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APPLICATIONS OF GLOBAL ANALYSTS IN

MATHEMATICAL PHYSICS

J. Marsden

Introduction,.
These notes are based on a series of ten lectures given
at Carleton University, Ottawa, from June 21 through July 6, 1973,
The notes follow the lectures fairly closely except for a few minor

amplifications.

The purpose of the lectures was to introduce some methods
of global analysis which I have found useful in various problems of
mathematical physics. Many of the results are based on work done
with P. Chernoff, D. Ebin, A. Fischer and A. Weinstein. A more complete
exposition of some of the points contained here may be found in
Chernoff-Marsden [1] and Marsden-Ebin-Fischer [1] as well as in

references cited later.

"Global Analysis" is a vague term. It has, by and large,
two more or less distinct subdivisions. On the one hand there are
those who deal with dynamical systems emphasizing topological problems
such as structural stability (see Smale [2]). On the other hand
there are those who deal with problems of nonlinear functional analysis

and partial differential equations using techniques combining geometry



and analysis. It is to the second group that we belong.

One of the first big successes of global analysis (in the
second sense above) was Morse theory as developed by Palais [7] and
Smale [3] and preceeded by the ideas of Leray-Schauder, Lusternik-
Schnirelman and Morse. The result is a beautiful geometrization and
powerful extension of the classical calculus of variations. (See

Graff [1] for more up-to-date work.)

Tt is in a similar spirit that we proceed here. Namely we
want to make use of ideas from geometry to shed light on problems in
analysis which arise in mathematical physics. Actually it comes as a
pleasant surprize that this point of view is useful, rather than being
a mere language convenience and an outlet for generalizations, As we
hope to demonstrate in the lectures, methods of global analysis can be

useful in attacking specific problems.

The first three lectures contain background material. This
is basic and more or less standard. FEach of the next seven lectures
discusses an application with only minor dependencies, except that
lectures 4 and 5, and 9 and 10 form units. Lectures 4 and 5 deal with
hydrodynamics and 9 and 10 with general relativity. Lecture 6 deals
with miscellaneous applications, both mathematical and physical, of
the concepts of symmetry groups and conserved quantities. TLecture 7
studies quantum mechanics as a hamiltonian system and discusses, e.g. the
Bargmann-Wigner theorem, Finally lecture 8 studies a general method

for obtaining global (in time) solutions to certain evolution equatioms.
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1. Infinite Dimensional Manifolds.

Basic Calculus.

We shall let E , F , G, ... denote Banach spaces. Let
UCUE be open and let f : U - F be a given mapping. We say £ 1is
Fréchet differentiable at X0 € U if there is a continuous (=
bounded) linear map Df(xo) : E 5 F such that for all e > 0 there

is a § > 0 such that Hh” < & implies
[£Cx, + B) - £(x;) - DE(xy)*hll < ellnl] .

The map Df(x is necessarily unique.

o)
Let L(E, F) denote the space of all continuous linear maps

from E to F together with the operator norm

Il = sup |z x]

x||<1
so that L(E, F) 1is a Banach space. Let LS(E, F) denote the same
space with the strong operator topology; i.e. the topology. of pointwise

convergence,

If f 1is Fréchet differentiable at each x € U and if

X = Df(x) € L(E, F) (resp. LS(E, F)) 1is continuous, we say £ 1is



of class C1 (resp. Tl) .

By induction it is not hard to formulate what it means for
f to be of class €' or Tr . For our purposes we shall be mostly
dealing with ct although " does arize in certain problems (see

Abraham [6] and Chernoff-Marsden [2]).

The usual rules of calculus hold. Foremost amongst these

is the chain rule:

D(feg)(x) = DE(g(x)) ° Dg(x)

To obtain substantial results, one often employs the

following:

Inverse Function Theorem. Let £ : UCE - F be ct , ¥ > 1

Assume Df(xo) is an isomorphism for some X0 € U . Then there
exists open neighborhoods UO of X and VO of f(xo) such that

f U0 ~>V0 is bijective and has a c® inverse f = ; VO —>UO . (We

say f 1is a local diffeomorphism.)

The proof of this is essentially the same as one learns in
advanced calculus where E , F are taken to be R" . For details,

see Lang [1} or Dieudonné [1].

Implicit Function Theorem. Let UCE , VCF be openand £ : UXx V G

be ¢ , r>1. For Xq €U, Yo € V , assume sz(xo, yo) (the



derivative with respect to y) is an isomorphism of F onto G

. . T - .
Then there is & unique C° map g : U, X W, -V where U  , WO are

0 — 0 —

0
sufficiently small neighborhoods of X, and f(xo, yo) respectively,

such that

(%, g(x, w)) = w

for all (x, w) € UO X W

Indeed, this follows from the inverse function theorem

applied to the map & : U X V-»E X @

(%, v) = (%, £(x, ¥))

which is a local diffeomorphism.

Results like these are central to the study of submanifolds
which we deal with later., They, in turn, are crucial to several of

the applications.

In applications, the spaces E , F , ... are often spaces
of functions and f : E - F may be some sort of non-linear differential

operator. Then Df(x will be what is called the linearization of

0’

£ about XO

Manifolds,
Let M Dbe a (Hausdorff) topological space. We say M 1is

a C manifold modelled on the Banach space E when it has the




following additional structure: there is an open covering {UQ} of

M together with homeomorphisms

w :U 5V CE
o o o

where Va is open in E such that for all « , B , the overlap map

(or coordinate change)

(defined on @B(Ua N UB)) is a C map.

By a chart (or coordinate patch) we mean a homoemorphism

® : UCM5VCE of open sets such that for all ¢« , the map

defined i
(defined on @Q(Ua ny)) 1is C

The collection of all charts yields what is called a maximal

atlas.

Let M and N be manifolds and f : M - N a continuous
map. We say f 1is of class ¢’ if for every chart © : UCM -V CE

of M and ¢ : U1 cCN —>V1 CF of N , the map

-1
\l}ofo[p

of the open set @(f—l(Ul) Nnu) to F is ct . By the chain rule



one sees that this holds for all charts if it holds for some

covering of N and M by charts.

Let M be a manifold and let S CM . 1In applications S
is often defined by some restrictive condition; e.g. by constraints
of the form f(x) =c¢ . It is important to know whether or not §
is smooth, e.g. has no sharp corners. Below we give a useful condition

for this, but first let us formulate the definition.

We say S 1is a submanifold of M (where M 1is modelled
on E) if we can write E =TF ® G (topological sum) and for every
x € § , there is a chart ¢ : UCM 5 VCE of M where x € U such

that

©(U NS =VN(Fx {w)
where w € G

In other words, the chart ¢ '"flattens out" S making it

lie in the subspace F

One sees that the above charts define a manifold structure
for S ; S will be modelled on F . The conditions ensure that the

manifold structure on S is compatible with that on M .

Vector Bundles.,

By a vector bupndle we mean a manifold E together with a



submanifold M C E and a projection w : E -M (i.e. mem =1m) such
that for each x € M , the fibre Ex =1 (x) 1is a linear space with

x as the zero element; there should also be a covering by charts

(called vector bundle charts) of the form

cp:w'l(U)cE_>V><F

where U 1is open in M , VT E , the model space for M and F 1is
some fixed Banach space such that the overlap maps are linear isomor-

phisms when restricted to each fiber,

Intuitively, one thinks of a vector bundle over M as a
collection of linear spaces Ex , one attatched to each x € M . For
v € EX , M(v) = x 1is the base point to which v 1is attatched, As
we shall see, the quantities v can be vectors, tensors, differential

forms, spinors, etc,

The Tangent Bundle,

The most basic vector bundle attatched to a manifold M is
its tangent bundle TM . It was an important observation in the
historical development of manifold theory, that the tangent space to a
manifold can be defined completely intrinsically. For example there
is no need to have a space in which the manifold is embedded; one might

think such an embedding is mecessary by thinking of surfaces in R3'.

There are two useful and equivalent ways to define TxM s

the fibre of TM above X &€ M .



First, we can use curves. Indeed, intuitively a tangent
vector v € TXM ought to be ¢'(0) for some curve c(t) in M with
c(0) = x . So consider all curves ¢ : R M with ¢(0) = x and
say €y ~ 02 if ci(O) = cé(O) in some (and hence every) chart about
x , where ¢' = dc/dt 1in that chart., Then T M is defined to be

the set of equivalence classes, and TM is the disjoint union of the

TM 's.
X

The above definition is useful because it is closely
connected with our intuition. There is a second definition which
brings out the vector bundle structure of TM more clearly. This

goes as follows.

Fix x € M again and look at charts ¢ defipned on neighbor-
hoods of x . Consider pairs (¢, e) where e € E , the model space

of M . Say

((Pl, el) ~ ((«st ez)
if
D(@, o+ 9@ (x) + e = e
P2 7 P )P 1- %2
Then TXM is the set of equivalence classes of such pairs. Clearly
TXM is a linear space. Moreover a chart ¢ induces paturally a

vector bundle chart on TM by using the definition, and these charts

make M manifestly a submanifold.

We leave it to the reader to check the equivalence of the
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two definitions. We use 7 : TM - M for the projection.

One often uses definitions involving derivations for TXM
in the case of finite dimensional manifolds. For infinite dimensional
manifolds this is possible but is rather cumbersome(see Schwartz [1],

p. 105 for a discussion).

Let f:M-»N bea G map, t > 1 . Then there is a
bundle map Tf : TM — TN naturally induced; i.e. Tf maps fibres to

fibres and the following diagram commutes:

=
v
=
=

vV
M ———F7—> N

Commutativity of this diagram means nothing more than for x € M 6, and

vETHM , TE(Y) € To N .

Using the first definition of TM , we define
TE(v) = SE f(c(t))lt_O where v = ¢'(0) . (Remember ¢*(0) stands
for the equivalence class of curves and in a chart for ‘TM , it really

is the derivative.)

Actually this definition is very useful for doing computations,

as we shall see later.

Using the second definition, if the local representative

for f 1is fCP ¢ : VCE ~>Vl C F relative to charts ¢ on M and
>
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¢y on N , then the local representative for Tf 1is, in the corresponding

charts for ™ and TN ,

(Tf)Cp VX E->V, XF

>V 1

(x, e) p;(fww(x), wa’w(x)-e)

One checks that this is consistent with the equivalence relation and

so yields a well defined map Tf

In the language of tangents, the chain rule can be neatly

expressed by saying that

T(fog) = TEeTg

Submersions.
Let E be a topological vector space, and F C E a closed
subspace. We say F splits if there is another closed subspace G

such that

E=F®G (topological sum)

For example if E 1is a Hilbert space this is always the case, for we
L
can choose G = F ., However in a general Banach space a closed subspace

need not have a closed complement.

We say topological vector space rather than Banach space here

because we want to use the case where E 1is TXM . The latter does
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not carry canonically the structure of a Banach space, but it does
have the structure of a topological vector space (if a norm is

assigned to each tangent space TxM , one speaks of a Finsler structure).

Now let M and N be Banach manifolds and f : M 5 N a
Coo map. We want to know when S = f-l(w) is a submanifold of M ,

where w € N 1is fixed. We say f is a submersion on S 1if for all

X &8, Txf : TXM - T N 1is surjective and kernel Txf splits.

£(x)

Theorem., Let f be a submersion on S as just described, Then S

is a smooth submanifold of M .

Proof. Work im a chart UCE for M . Write E = EO @ El where
EO = ker Df(x) , for = fixed. Consider the map & defined near

x to EO X F by

@(XO’ Xl) = (XO’ f(xos Xl))

Since EO is kernel Df(x) we see that sz is an isomorphism from

El to F and so D$ at x 1is an isomorphism. The map & is
therefore a local diffeomorphism by the inverse function theorem.

Clearly & vyields a chart showing S 1is a submanifeld. [

Since S 1is modelled on EO , this argument also shows:

Corollary. sz = kernel Txf

To make effective use of this result one must be judicious
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in the choice of N . The space N must be large enough so f maps
into N , but only just large enough to ensure that TXf will be

sur jective.

There is a similar result for immersions. Here f : M =N
should be injective and have injective tangent at each x € M and
the image should split. Also, the map f =should be closed.

Then f£(M) will be a submanifold of N.

The reader can work this case out for himself., We have
stressed the submersion case because it is more useful for the sort

of applications that we have in mind.

Differential Forms,

Given a linear topological space E , we let E  denote the

dual space; i.e. the space of all continuous linear maps 4 : E » R

Let M be a manifold and TM 1its tangent bundle. We can
form a new bundle TwM over M whose fibre over x € M 1is the dual

space T;M . It is not hard to see that this is a vector bundle. It

is called the cotangent bundle.

In general if m : E M is a vector bundle, a section s

of E 1is a map

s+ M E
such that

mes = identity
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In other words, s(x) € EX for each x € M .

A section X of the tangent bundle is called a vector field
while a section « of the cotangent bundle is called a one-form or a

covector field.

et f : M sR . Then since TR =R X R , Txf : TXM R,
or in other words Txf € T;M . Thus the tangent of f naturally
induces a one form on M . So regarded, it is denoted df and is

called the differential of f

o8

% k
We can generalize T M as follows. Let A M be the vector
bundle over M whose fiber at x € M 1is the k-multilinear alternating
k
continuous maps TXM X vee X TXM —R . A section of the bundle AM

is called a k-form. We regard real-valued functions as O-forms.

Let o be a k-form and B8 an £-form. Then the wedge

product o A B 1is defined as

(O/ /\ B)X(Vl’. e . ,Vk'b@) = i(sgn O)ax(vd(l) @ o ’VG(k))BX(VO'(k+1) 3. ’Vc<k+z))

where the sum is over all permutations o such that o(l) < ... < o(k)
and o(k+l) < ... <o(ktl) and sgno =+l 1is the sign of o
Note: We use the conventions of Bourbaki [1]. Compare with Abraham [2].

3
In the case of R~ we can identify one forms and two forms

with vectors. When we do so, o A B 1is seen to be just the cross
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product,

If f:Mo5N isa ¢ mapping and « 1is a ¢’ k-form

on N we get a "L k-form fo on M defined by

(f a)x(vl, vees vk) = af(x)(Tf'vl, ey Tf-vk)

1.

We call f o the pull back of o by f

1’ R Xk are vector fields on M and o 1is a

k-form we get a real valued function a(Xl, vees Xk) defined by

If X

A(Xp, e XD 0) = o (X (R, ey X (2)

Notice that the differential mapped a O-form to a l-form.
This can be generalized as follows. If ¢« is a k-form, define the

k+ 1 form do by

i A
. (-D (Dax Vi)(vO""’Vi""’Vk)

oo

dax(vo,...,vk) =
i
A . R . . .
where A denotes that v, is missing and DozX is the derivative of
k
¢« 1in charts; note o : UCE _aAk(E) so Dux + E5A(E) . One can
check that d 1is chart independent. The operator d plays a
fundamental role in calculus on manifolds. It is called the exterior

derivative,

It is not hard, but a little tedious, to verify:

¥ Note that the positioning of the stars agrees with Bourbaki[ll],

Lang [1] but is the opposite of Abraham [2].
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(i) d 1is real linear
(ii) ded = 0

and (iii) d(o¢ A B) = do A B + (-1)ka/ A dB

Condition (ii) is a generalization of the familiar identity V x (Vf) =0

from vector analysis.

If o is a k-form and X a vector field, define the

interior product o = XJd o by

(iXQ)X(vz,...,vk) = QX(X(X), VZ""’Vk)

so iXa is a k-1 form.

Define the Lie derivative LXa by

LX@ = lea + 1Xda

50 LXQ is a k-form if ¢« 1is. This object is an extremely useful

tool in Hamiltonian mechanics as we shall soon see.

Following are some of the basic operations on vector fields.

If X 1is a vector field on M and f : M - R , we set
X(£) : M =R , X de°X(x)

Notice that

By convention in =0 , so we see that X(f) = LXf

X(£f) 1is nothing but the derivative of £ 1in the direction of X
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Clearly X(f) 1is a derivation in f : X(fg) = £X(g) + gX(f)
As we have mentioned, this property is sometimes used (in finite

dimensions) to characterize vector fields,

Let X and Y be vector fields. Then their bracket [X, Y]

is a vector field on M such that in local coordinates
[X, Y] = DY:X - DX*Y
As a derivation, we have

[X, YI(E) = X(Y(£)) - Y(X(£))

et £ bea C° diffeomorphism of M onto N , r > 1

. . r . . . r .
That is, f 1is C  , a bijection with C inverse, Given a vector

field X on M , set

£ X =TF o X o £ 1

o
P

a vector field on N . Similarly if Y is a vector field on N ,

set

These are characterised by
-1
(£,X)(h) = (X(hof)) o f

which follows from the chain rule.
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In the following table we summarize some of the useful
identities connecting the various operations which we have introduced.
The proofs are straightforward algebraic manipulations. These
identities are quite convenient in various applications as we shall

see in the next lecture.

1. Vector fields on M with the bracket [X, Y] form a Lie algebra;
i.e., [X, Y] 1is real bilinear, skew symmetric and Jacobi's

identity holds: [[X, Y], z] + [[z, XI, ¥} + [[Y, z}, X] =0

2. Fora diffeomorphism f , £ [X, Y] = [£X, f

W

Y] and (feg) X =

e
KN

£, X

3. The forms on a manifold are a real associative algebra with A
as multiplication. Furthermore, o A B = (-l)kﬁﬁ ANao for k

and £ forms @ and B respectively.

fo K o ala
"oV

L. If £ isamap, F(oAB) =FfF o AEfB , (feg)a=gfa.

5. d 1is a real linear map on forms and: ddo =0 , d(o¢ A R) =do A B +

(—1)ka A dB for ¢« a k-form.

6., For ¢ a k-form and XO, ceas Xk vector fields:

O(-l)ixi(a<x0,..,,§i,...,xk) +

o=

da(XO,...,Xk) = .

»
+ % (- Ty

([xi,x,],xo,...,ﬁi,...,ﬁ o X
i< J

370
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KN e

For amap f , f do = df o .

(Poincaré lemma). If do = 0 then o 1is locally exact; i.e.

there is a neighborhood U about each point on which o« = dB

iXa is real bilinear in X , ¢ and for h : M >R , g = hiXa

k
_ s i s - ; = i ANB+ (-1 i
lxha . Also i_i_u 0, i(o AB) Lo g - A IXB

For a diffeomorphism f , fFig=1,fo.
X £°X

- di .
LXa i + lxda .

LXa is real bilinear in X , o and LX(Q AB) = an ANB + oA LXB

For a diffeomorphism f , fWLXa =L , fo.

(LXO[)(Xl,-..,Xk> = X(O[(Xl,...,xk)) = iz]_O/(Xla""[X’Xi]"-"Xk)

Locally, (Lon)X . (Vl,...,vk) = Dax'X(X)’(Vl,---,Vk)

+ (0% . (Vl,...,DX .V,,...,Vk)

X X 1

16.

n ™M=

1

i

The following identities hold:

foa =

fLXa + df A iX
= LXLYQ - LYL
= LXiYa - iYL

dLXa
lXLXa

TABLE 1

o

XO!

XO/
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Flows of Vector Fields.

By a flow (or a one parameter group of diffeomorphisms) we

mean a collection of (smooth) maps Ft : MM, £t € R such that

The term dynamical system is also used, For each x € M , t s Ft(x)

is the trajectory of x . The condition Ft+ = Ft ° FS expresses

S

nothing more than "causality'.

If X 1is a vector field, we say it has flow Ft if
4 F = X(F_ _(x)
gc Te(0 = X(F )

In other words, Ft(x) solves the system of differential equations
determined by X . 1In finite dimensions these are ordinary differential
equations. In infinite dimensions certain types of partial differential

equations can be handled; we shall discuss this point below.

If the individual solution curves (or integral curves) of

X are unique; i.e. if

L e(t) = X(e())

c(0)

n
>

has a unique solution, then one can prove the above flow property
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7 =F_ o Fs rather easily.

An important point is that, in general, the flow of a vector
field need not be defined for all t € R for each x € M ., For
example a trajectory can leave the manifold in a finite time. To
ensure this doesn't happen, one requires certain estimates to-establish
that a trajectory remains in a bounded region for bounded t-intervals.

If Ft(x) is defined for all t € R we say X has a complete flow.

Local Existence and Uniqueness Theorem. If X 1is a ¢’ vector field,

r>1, then X has a locally defined, unique Cr flow Ft

This result is proved by the Picard iteration method, as one
learns in elementary courses on differential equations. Thus it is
similar to the proof of the inverse function theorem. Actually it
can be deduced from the latter directly; see Robbin [1]. (1In fact
the other cornerstone of differential analysis, the Frobenius theorem

can also be so deduced; see Penot [4]).

One usually proceeds by using the above theorem to deduce
the existence of the local flow and then use special properties of X
to prove completeness. (For example we shall do this in certain cases

for Hamiltonian vector fields.)

The Heat Equation.

In these lectures we are copcerned to a great extent with

partial differential equations. For these, the above theorem is rather
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limited. To see why, consider the heat equation:

du

5t - A

where u is a function of x € R and t € R and u 1is given at

2 2
time t =0 , Here A =3 /3%  1is the Laplacian.

Of course this equation can be solved explicitly:

U e-lx-y12/4t

u(x, £ = | uy(Mdy , t>0
et T -0
The solution is actually good only for t > 0 . Nevertheless it
yields a well defined continuous semi flow. Ft on LZ(R) . In

general it won't be t-differentiable for all uy € LZ(R)

Indeed A 1is not a bounded operator on LZ(R) S0 we cannot
use the existence theorem. Rather A 1is defined only on a domain
D C LZ(R) , a dense linear subspace consisting of those f € L2 whose

derivatives (in the distribution sense) of order < 2 also lie in L2

@
One cannot remedy the situation by passing to the C
functions. Indeed this is not a Banach but a Fréchet space and it is
not hard to show that for these spaces the local existence theorem is

false,

However there is a general theorem which can cover the
situation, called the Hille Yosida theorem. We don't want to go into

this now, so we just state two useful special cases:; (See Yosida [1]
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for details. The "Schrodinger case'" - Stone's theorem - will be considered
later) .

parabolic Case. Let H be a Hilbert space and A : DCH »H a

(linear) self adjoint operator, A <0 . Then the equation g% = Au
defines a unique linear semi-flow Ft , £ >0 on H . The equation
%% = Au 1is satisfied for Uy €D and u, = Ft(uo)
For example, this covers the case of the heat equation. For
azu
the wave equation, ~— = Au , we use:
ot

Hyperbolic Case. Let H , A be as above. Then the equation

du _
ac ~ VY
dv

d—t—Au

defines a unique flow Fo,t €R on Dx H.

Densely Defined Vector Fields.

In view of the above examples, it is useful to extend our

notions about vector fields so as to include more interesting examples.

By a manifold domain D CM , we mean a dense subset D in

a manifold M such that D 1is also a manifold and the inclusion

i : D >M 1is smooth and Ti has dense range.

By a densely defined vector field, we mean a map X : D - IM

such that for x € D , X(x) € TM . A flow (or semi-flow) for X will




%

be a collection of maps Ft : DD, t€R (or t>0) [perhaps

locally defined] such that

and for x €D ,
L (x) = X(F
ac Te(®) = )

d

where It

is taken regarding Ft(x) as a curve in M

Such a generalization allows the more interesting examples
like the heat and wave equation and non-linear generalizations of them

to be included,

What about a local existence theorem? Since we already have
a good theorem (the Hille-Yosida theorem) available for the linear
case, it is natural to linearize. There is a theorem, the Nash-Moser
theorem which is suitable for these purposes. The exact hypotheses
are too complicated to give in full here, but basically the spaces
must be "decent' (technically, they must admit.”smoothing operators'’)
and if X 1is the vector field: X : D CE -»E , the linear operators
DX(x) : E - E must have flows (or semi-flows) which vary smoothly

with x . Then X will have a local flow.

For further information, see J. T. Schwartz [l], J. Marsden
{1} and M. 1. Gromov [1]. There are also a number of special techniques

available, some of which are discussed later.
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Flows and Lie Derivatives.

There is a very fundamental link between the flow of a vector

field and the Lie derivative.

Theorem. Let X be a ¢® vector field on M ,t>1 and o a k

form on M . Let Ft be the flow of X . Then
d F* B ¥
dt tO! - Ft (LXQ)

Actually the proof is very simple, once we have the identities

in table 1. 1Indeed if we differentiate in a chart

d %
Fr (Fta)x(vl, cees vk)

d

ac aFt(x)(D-Ft!vl, . DFt’Vk)

we get exactly the expression for LXa in formula 15 of table 1.

For example if Lo = 0 then FEW =qo ; i.e. o 1is preserved

X
by the flow.

The above theorem extends also to densely defined vector
fields. We just need that each Ft : DD be C1 and that o be

smooth on M (rather than on D)

One of the points we wish to make here is that these
geometrical ideas, culminating for example in the above theorem, can

be applied to partial differential as well as to ordinary differential

equations.
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2. Hamiltonian Systems.

This lecture contains some of the basic facts about
Hamiltonian systems. Some additional material will be brought in

later as it is needed.

Motivation.

To motivate the development, let us briefly consider
Hamilton's equations. The starting point is Newton's second law
which states that a particle of mass m > 0 moving in a potential
v(x) , x € R3 moves along a curve x(t) such that mx = -grad V(x)

1f we introduce the momentum p = mx and the energy H(x, p) =

%ﬁ Hsz + V(x) then Newton's law becomes Hamilton's Equations

ke
il

aH/api

-3H/3q" i=1, 2,3,

o
W

One now is interested in studying this system of first order equations
. . . . (0 T\
for given H . To do this, we introduce the matrix J = \-T 0) where

I is the n X n identity and note that the equations become

3

J grad H(E) where E = (x, p) . (In complex notation, setting

z = x + ip , they may be written as % = 2idH/3z).

Suppose we make a change of coordinates w = f(E) where
2n 2n . s . .
f: R =R is smooth. If E£(t) satisfies Hamilton's equatiomns,

the equations satisfied by w(t) are w = Aé = AJ gradaH(E) =

AJAWgrade(g(w)) where A = (awl/aEJ) is the Jaccbian of f . The
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equations for w will be Hamiltonian with energy K(w) = H(E(w)) if

o
W

AJA =J . A transformation satisfying this condition is called

canonical or symplectic.

The space R3 X R3 of the E's 1is called the phase space,

For a system of N particles we would use R3N X R3N

We wish to point out that for many fundamental physical
systems, the phase space is a manifold rather than Euclidean space.
These arize when constraints are present. For example the phase
space for the motion of the rigid body is the tangent bundle of the

group S0(3) of 3 x 3 orthogonal matrices with determinant +1

To generalize the notion of a Hamiltonian system, we first
need to geometrize the symplectic matrix J above. In infinite
dimensions there is a technical point however which is important. We

give a discussion of this in the following.

Strong and Weak Nondegenerate Bilinear Forms.

Let E be a Banach space and B : E x E 5 R a continuous

b
bilinear mapping. Then B induces a continuous map B : E - E ,

e L>Bb(e) defined through Bb(e)f = B(e, f) . We call B weakly

b
nondegenerate if B is injective; i.,e., B(e, f) = 0 for all f € E
implies e =0 . We call B nondegenerate or strongly nondegenerate

b
if B is an isomorphism. By the open mapping theorem it follows
b .
that B 1is nondegenerate iff B 1is weakly nondegenerate and B is

onto.
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If E 1is finite dimensional there is no difference between
strong and weak nondegeneracy. However in infinite dimensions the

distinction is important to bear in mind.

Let M be a Banach manifold. By a weak Riemannian structure

we mean a smooth assignment x5 <, > of a weakly nondegenerate

inner product (not necessarily complete) to each tangent space TxM
Here smooth means that in local charts x € UCE§s <, >x S LZ(E x E, R)
is smooth where L2<E X E, R) denotes the Banach space of bilinear
maps of E x E to R . Equivalently <, >X is a smooth section of

the vector bundle whose fiber at x € M is LZ(TXM X TxM’ R)

By a Riemannian manifold we mean a weak Riemannian manifold

in which <, >x is nondegenerate. Equivalently, the topology of
<, >X is complete on TXM , so that the model space E must be

igsomorphic to a Hilbert space.

For example the 1L inner product <f, g> = Ié f(x)g(x)dx

2
on E =C([0,1], R) 1is a weak Riemannian metric on E but not a

Riemannian metric.

Symplectic Forms.

Let P be a manifold modelled on a Banach space E

By a symplectic form we mean a two form «w on P such that

(a) w 1is clogsed; dw =0

(b) for each x € P , w, ot TXP X TxP - R is nondegenerate,
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If W in (b) is weakly nondegenerate, we speak of a weak

symplectic form.

The need for weak symplectic forms will be clear from
examples given below. For the moment the reader may wish to assume

P 1is finite dimensional in which case the distinction vanishes,

If (b) is dropped we refer to w as a nresymplectic
form. This case will be referred to later. The first result is

referred to as Darboux's theorem. Our proof follows Weinstein [1].

The method is also useful in Morse theory; see Palais [5].

Theorem, Let w be a symplectic form on the Banach manifold P

For each x € P there is a lggék_qpordinqte chart about x 1in which

w 1is constant.

Proof. We can assume P =E and x =0¢€ E . Let wy be the
constant form equalling Wy = w(0) . Let W= wo-ow and W, = wt £o R
0<t<1l. For each t , mt(O) = w(0) 1is nondegenerate. Hence by

ot

openness of the set of linear isomorphisms of E to E , there is a
neighborhood of 0 on which W, is nondegenerate for all 0 <t <1
We can assume that this neighborhood is a ball. Thus by the Poincaré
lemma (appendix 1) @ = do for some one form o . We can suppose

a(0) =0 .

Define a vector field Xt by iX W = o which is possible
t

since we is nondegenerate, Moreover, Xt will be smooth. Since
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Xt(O) = 0 we can, from the local existence theory restriect to a
sufficiently small ball on which the integral curves will be defined

for a time at least one,

Now let Ft be the flow of Xt . The connection between
Lie derivatives and flows still holds for time dependent vector fields,

so we have

d * Y d

T (Feop) = Ft(Ltht) tFOaE Y
F*d' o
= 1tht +Eo

Fi(d(-a) + W) = 0

e S

Therefore, F{wl = Fawo =w , 80 Fl provides the chart trénsforming

w to the constant form wl . 0

Of course such a result cannot be true for riemannian
structures (otherwise they would be flat). Darboux's theorem is not
true for weak symplectic forms. See Marsden [4]. Recently A. Tromba

has found some useful sufficient conditions to. cover the weak case.

Corollary. If P is finite dimensional and w 1is a symplectic form

then

(a) P 1is even dimensional, say dim P =m = 2n

(b) locally about each point there are coordinates

xl, cees xn, yl, ceey yn such that
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n . .
w =3 dx" A dyl
1

Such coordinates are called canonical.

Proof. By elementary linear algebra, any skew symmetric bilinear form
which is nondegenerate has the canonical form (_g é) where T 1is

the n X n identity. This is the matrix version of (b) pointwise on

M . The result now follows from Darboux's theorem. [

The corollary actually has a generalization to infinite
dimensions. Clearly it is just a result on the canonical form of a
skew symmetric bilinear mapping. First some notation. TLet FE be a
real vector space. By a complex structure on E we mean a linear map

J :+ E 5E such that JZ = -T . By setting ie = J(e) one then gives

E the structure of a complex vector space. We now show that a

symplectic form is the imaginary part of an inner product. (cf. Cook [1]).

Proposition. Eet H be a real Hilbert space and B a skew symmetric

weakly nondegenerate bilinear form on H . Then there exists a complex

structure J on H and a real innmer product s such that
s(x, y) = B(Jx, y) .
Setting
h(x, y) = s(x, y) + iB(x, y) ,

h is a hermetian innmer product., Finally, h or s 1is complete on
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H iff B 1is nondegenerate.

Proof., Let <, > be the given complete inner product on H . By
the Riesz theorem, B(X, y) = <Ax, y> for a bounded linear operator

A :H >H . Since B is skew, we find A" = -A .

Since B is weakly nondegenerate, A 1is injective., Now
kS 2 i .
-A2 >0 , and from A = -A we see that A is injective, Tet P
2 .
be a symmetric non-negative square root of -A~ . Hence P 1is injec-

.

tive. Since P =P | P has dense range. Thus P_1 is a well

s
defined unbounded operator., Set J = AP_l , so that

A=JP . From A=-A" and P? = -a% , we find that J is orthogonal
and J2 = -1 ., Thus we may assume J 1is a bounded operator. Moreover
J is symplectic in the sense that B(Jx, Jy) = B(x, v) . Define

s(x, y) = B(Ux, y) = <Px, y> since A =JP =PJ . Thus s 1is an

inner product on H . Finally, it is a straightforward check to see

that h 1is a hermetian inner product. For example; h(ix, y) = s(Jx, y)
+ iB(Jx, y) = =-B(x, y) + is(x, y) = ih(x, y) . The proposition

follows. [

Canonical Symplectic Forms.

We recall that a Banach space E is reflexive iff the
canonical injection E — E  is onto. For instance any finite

dimensional or Hilbert space is reflexive, The Lp spaces, 1 <p <=

are reflexive, but C([0, 1}, R) with the sup norm is not.

Let M be a manifold modelled on a Banach space E . TLet
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)
L P

T M be its cotangent bundle, and ¢ T'M »M the projection.

Define the canonical one form 6 on M by

8o W = -amTT"‘(W)

5 a * .
where o € T M and W € Tam(T M) . In a chart UCE this

H

formula is the same as saying

(%, o) = (e, B) = -a(e)

fo

where (x, o) EUXE , (e, B) €EXxE . If M is finite dimensional,
this says
i
- -y p.d
9 = -% p,dq

where ql,...,qn, Pyse+-sP are coordinates for T M .

The canonical two form is defined by w = do . Locally,

using the formula for d from table one, p. 19,
w(X, O[).((el’ Q’l)’ (ezs 0’2)) = {QZ(el) - 011(6‘:2)}
or, in the finite dimensional case,

w =2 dql A dpi .

Lo
w

Proposition (a) The form w 1is a weak symplectic form on p = 7'M

(b) w is symplectic iff E 1is reflexive ,

Proof. (a) Suppose u(x, (e, o;)s(eys @) =0 forall (e, o) .
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Setting e, = 0 we get az(el) =0 for all @, €E . By the

Hahn-Banach theorem, this implies ey = 0 . Setting @y = 0 we get

al(ez) =0 for all e2 €E , so oy = o .

(b) Suppose E is reflexive, We must show that the map

1 AN e aota
W

b PS wow b
w : EXE S (EXE) E X E , W (el, al)~(c2, az) =

i

anl, ate
W <

{az(el) - al(ez)} is onto. Let (B, f) € E* X E ~E XE . We can

take ey = £, oy = -R 3 then (el, al) is mapped to (B, f) wunder

Zmb . Conversely if wb is onto, then for (B, f) € B % B ,
there is (e, ) such that f(az) + B(ez) = Qz(el) - aye,) for

all e Setting e, = 0 we see f(az) = az(el) , SO0 :E - E

2 * % 2

is onto. O

Symplectic Forms induced by Metrics.

If <, >x is a weak Riemannian metric on M , we have a

smooth map ¢ : ™M - T M defined by go(vx)wX =<V, W, X EM .

If <, > 1is a (strong) Riemannian metric it follows from the implicit

function theorem that ¢ is a diffeomorphism of TM onto T™M . In

any case, set () = $“(m) where  1is the canonical form on T M .

Clearly (Q 1is exact since (1 = d(@*(e))

Proposition. (a) If <, >x is a weak metric, then (O 1is a weak

symplectic form. 1In a chart U for M we have

Q(x,e)((el,ez), (e3,e4)) = DX<e,el>Xe3 - D <ese> ey <o e> -

where DX denotes the derivative with respect to x

€937
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(b)) 1If <, >X is a strong metric and M 1is modelled on

a reflexive space, then (1 1is a symplectic form.

(¢) Q = d8 where, locally, 8(x, e)(el, ez) = -<e, er>. -

Note. In the finite dimensional case, the formula for (I becomes

. . 08. . -
. . k
Q=73 gijdql A dql + ——il qlqu A dq

Jake]
where 975 voey @ 5 Q75 oau, én are coordinates for T .

Proof. By definition of pull-back, Q(x, e)((el, e2), (e3, eq)) =
w(x, e)(D@(X’e)(el, e2), D@(X,e)(e3, e4)) . But clearly Dm(x,e>(e1, ez) =

(el, Dx<e, ->Xe + <e2, ->X) , 8o the formula for (Q follows from

1
that for w . To check weak nondegeneracy, suppose Q(x,e)((el’ ez),(e3, eq)) =0

for all (e3, e4) . Setting ey = 0 we find <e4, e1>X = 0 for all

e, , whence e. = 0 . Then we obtain <e2, e

4 1 3
Part (b) follows from the easy fact that the transform of a symplectic

>X =0, so e2 =0 .

form by a diffeomorphism is still symplectic. [

The above result holds equally well for pseudo-Riemannian

manifolds.

Note that if M =H is a Hilbert space with the constant
inner product, then ® is, on H X H which we may identify with ¥ -
the complexified Hilbert space, equal to the imaginary part of the

i r oduct: Let = i = i T
inner produc e e eq + ie, , f fl + 1f2 . Then
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f.> + <e f >

<e, > = (<e1: 1 923 “o ) 1(<e19 £> - <e £.>)

2 27 71

SO

w(e, £y = ~Im<e, £> .

Canonical Transformations.

Let P , w be a weak symplectic manifold; i.,e. w 1is a

weak symplectic form on P . A (smooth) map f : P - P is called

1,

canonical or symplectic when fw=1w . It follows that fx(w AN voe N w)

WA ... ANw (k times). If P is 2n dimensional, p = w0 A ... A
(n times) is nowhere vanishing; by a computation one finds |, to be
a multiple of the Lebesgue measure in canonical coordinates. We call

u the phase volume or the Liouville form. Thus a symplectic map

preserves the phase volume, and is necessarily a local diffeomorphism.

We briefly discuss symplectic maps induced by maps on the

base space of a cotangent bundle.

Theorem. Let M be a manifold and f : M - M a diffeomorphism,

define the lift of £ by

KA 1.

TE: TMoTM ; Txf(ozm)v = (TFv) ,VET M .

Then Tf is symplectic and in fact (wa)xe =06 , where 6 1is the

canonical one form. (We could, equally well consider diffeomorphisms

from one manifold to another.)
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proof. By definition, (T £) 6(W) = 6(TT £*W) =

I

_T“f(@m)-(TT“TT“f-W) -T“f(am)-(T(T“oT“f)-W)

-am-(Tf-T(T*oT“f)-W)

-+ (T(£or o1 £)*W)

1]

-am-(TT*«W) = o(W)

Je e
w

% %
since, by construction, feorT oT £f =171 ., O

One can show conversely that any diffeomorphism of P = T'M

which preserves © 1s the lift of some diffeomorphism of M . But,
on the other hand, there are many other symplectic maps of P which

are not lifts.

Corollary. Let M be a weak Riemannian manifold and () the

corresponding weak symplectic form. Let f : M »M be a diffeomorphism

which is an isometry: <v, W>X = <Tfsv, Tf'w>f Then

(%)
Tf ¢+ TM - TM 1is symplectic.

Proof, The result is immediate from the above and the fact that

T'f o @ o Tf =@ where ¢ : TM > T M is as on p.34., [

Hamiltonian Vector Fields and Poisson Brackets.

Definition. Let P , w be a weak symplectic manifold., A vector
field X : D > TP with manifold domain D 1is called Hamiltonian if

there is a Cl function H : D » R such that
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as l-forms on D . We say X 1is locally Hamiltonian if ixm is

closed.

We write X = XH because usually in examples one is given

H and then one constructs the Hamiltonian vector field XH .

Because w 1is only weak, given H : D - R , XH need not
exist. Also, even if H 1is smooth on all of P , XH will in general
be defined only on a certain subset of P , but where it is defined,

it is unique,

The condition i_, w = dH reads

0 (X (0, v) = A,

x€eD ,ve TXD < TXM . From this .we note that, necessarily, for
each x € D , dH(x) : TXD >R is extendable to a bounded linear

functional‘on TXP

The relation w(XH, v) = dli*v 1is the geometrical formulation
of the same condition XH(i) = Jegrad H(£) with which we motivated

the discussion.

Some Properties of Hamiltonian Systems.

We now give a couple of simple properties of Hamiltonian
systems. The proofs are a bit more technical for densely defined
r. s r
vector fields so for purposes of these theorems we work with C  vector

fields.
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Theorem. Let XH be a Hamiltonian vector field on the symplectic

manifold P , w and let Ft be the flow of XH . Then

(1) F is symplectic, F§w=w

and (ii) energy is conserved; H th =H.

Proof. (i) Since FO = identity, it suffices to show that

d

S FEw =0 . But by lecture 1,
L pru@x) = FA(L, 0) (%)
dt  t tXH

F?[di wl(x) + F?[i dw] (%)

% 1

The first term is zero because it is ddH and the second is zero

because dw = 0

(ii) By the chain rule,

]

S (HF ) () = AH(F () + Xy (F (x))

(X (F (), X (F ()

= (UFt (X)

but this is zero in view of the skew symmetry of w. [

An immediate corollary of (i) is Liouville's theorem: F

preserves the phase volume. It seems likely that a version of

Liouville's theorem holds in infinite dimensions as well. The phase

volume would be a Wiener measure induced by the symplectic form.

More generally than (ii) one can show that for any function
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qf £°F, = (£, H)oF,

where (f, g} = w(Xf, Xg) is the Poisson bracket; in fact it is easy

to see that

{f, g) =1 f
g

(Note that sz = foFt for functions.)

The Wave Equation as a Hamiltonian System.

The wave equation for a function u(x, t) , x € R" , £t €R

is given by

2
e - Au+mu, m>0

with u given at t=0 , We consider
1, n n
P=H(R) X Ly(R)

1 . . , . . .
where H consists of functions in L2 whose first derivatives are

also in L2 . Let

and

XH(u, ) = (ﬁ, Au + mzu)

with symplectic form that associated with the L2 metric
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. - r . P »
w((u, w), (v, v)) = Jovu - uvo
(Recall that there is always an associated complex structure -- in

this case that of LZ(R’ C) ; in fact there is also one making the

flow of XH unitary as in Cook [1], at least if m > 0) . Define

1t is an easy verification (integration by parts) that XH , w and H
are in the proper relation, so in this sense the wave equation is

Hamiltonian.

That this equation has a flow on P follows from the

hyperbolic version of the Hille-Yosida theorem stated in lecture 1.

The Schrodinger Equation.

Let P =Y a complex Hilbert space with w = Im <,> . Let

H be a self adjoint operator with domain D and let

X (0) = iH-0
and
H(p) = <Hyp, ©>/2 , 9 €D

Again it is easy to check that w , XH and H are in the correct

relation.

In this sense XH is Hamiltonian. Note that ¢(t) 1is an

integral curve of XH if
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the abstract Schrodinger equation of quantum mechanics.

That XH has a flow is another case of the Hille-Yosida

theorem called Stone's theorem; i.e. if H is self adjoint, them iH

. itH
generates a one parameter unitary group, denoted e

We know from general principles that the flow eltH will be

symplectic. The additional structure needed for unitarity is exactly

complex linearity.

We shall return to quantum mechanical systems in a later

lecture.

We next turn our attention to geodesics and more generally

to Lagrangian systems.

The Spray of a Metric.

Let M be a weak Riemannian manifold with metric <, >x
on the tangent space TXM . We now wish to define the spray S of
the metric <, >X . This should be a vector field on T™ ; S : ™ —>T2M
whose integral curves project onto geodesics., Tocally, if (x, v) € TXM 5
write S(x, v) = ((x, v), (v, v(x, v)) . If M 1is finite dimensional,

. . . . i i ik
the geodesic spray is given by putting v (x, v) = -Tjk(x)v v . In

the general case, the correct definition for vy is

1
1 — R - o
(L <y(x, v), w> = 2D <V, V> W D <v, w> v



where Dx<v, v>x-w means the derivative of <v, V>x with respect to
x in the direction of w . 1In the finite-dimensional case, the

right hand side of (1) is given by

1955 1 3% %Bij ijk
5T YV VWY,
ox A%
which is the same as -F;kvjvkwi . So with this definition of v |

S 1is taken to be the spray. The verification that § 1is well-defined
independent of the charts is not too difficult. Notice that vy is
quadratic in v . One can also show that S 1s just the Hamiltonian
vector field on TM associated with the kinetic energy X<v, v> .

This will actually be done below; cf. Abraham [2] and Chernoff-

Marsden [1].

The point is that the definition of v 1in (1) makes sense
in the infinite as well as the finite dimensional case, whereas the

s e i . .. . . .
usual definition of rjk makes sense only in finite dimensions. This

then gives us a way to deal with geodesics in infinite dimensional

spaces.

Equations of Motion in a Potential.

Let trs (x(t), v(t)) be an integral curve of S . That is:

(2) x(t) = v(t) 3 v(t) = v(x(t), v(t))

These are the equations of motion in the absence of a potential. Now

let V : M »R (the potential energy) be given. At each x , we have
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N
<

the differential of V , dV(x) € T .M , and we define grad V(x) by:

(3) <grad V(x), w> = dV(x)*w

It is a definite assumption that grad V exists, since the map

8

TXM —;T;M induced by the metric is not necessarily bijective.

The equation of motion in the potential field V is given

by:
(%) x(t) = v(t) 5 v(t) = v(x(t), v(t)) - grad V(x(t))

The total energy, kinetic plus potential, is given by H(VX) =

%HVXHZ + V(x) . It is actually true that the vector field XH
determined by H and the symplectic structure on TM 1induced by the
metric is given by (4). This will be part of a more general derivation

of Lagrange's equations below.

Lagrangian Systems.

We now want to generalize the idea of motion in a potential
to that of a Lagrangian system; these are, however, still special
types of Hamiltonian systems. See Abraham [2] for‘an alternative
exposition of the finite dimensional case, and Marsden [1], and Chernoff-

Marsden [1] for additional results.

We begin with a manifold M and a given function L : ™ >R

called the Lagrangian. 1In case of motion in a potential, one takes
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N

L(Vx) == <v_, v - V(%)

X
which differs from the energy in that we use -V rather than +V .

Now L defines a map, called the fiber derivative,

FL : ™ —>TWM as follows: let v, w € TXM . Then set

FL(v)*w = gEL(v + tw)]t=0

That is, FL(V)*w 1is the derivative of 1 along the fiber in

direction w .

1
In case of L(vx) = §<VX, VX>X - V(x) , we see that

FL(V J)ew =<v , w> so we recover the usual map of TM —;TNM
X X x’ X x

associated with the bilinear form <, >

As we saw above, T M carries a canonical symplectic form

w . Using FL we obtain a closed two form wL on TM by

w. = (F *(D_
L= ()

In fact a straightforward computation yields the following local
formula for Wyt if M 1is modeled on a linear space E , so locally
TM looks like U X E where UCE 1is open, then wL(u, e) for

(u, €) € U X E 1is the skew symmetric bilinear form on E X E given by
UJL(U: e)'((els ez)’ (83, 64)) = Dl(DzL(U., e)'e3)'e1

- Dl(DZL(u’ e)-e3)-e1 + D2D2L(u, e)-ea-e1 - DZDZL(u’ e)'ez-e3
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where D D denote the indicated partial derivatives of L

172
It is easy to see that w is (weakly) nondegenerate if
DZDZL(u, e) 1is (weakly) nondegenerate. But we want to also allow degenerate
cases for later purposes. 1In case of motion in a potential, nondegeneracy
of w amounts to nondegeneracy of the metric <, >k . The action
of 1 1is defined by A : TB - R , A(v) = FL{(v)*v , and the energy of

L is E=A -1 . 1In charts,
E(u, e) = DZL(u, eyee - L(u, e)

and in finite dimensions it is the expression

oL
oL

0q

° ® 1 e
E(qa CI) = q - L(q, @) ,

(summation convention!)

Now given L , we say that a vector field Z on T™M 1is a

Lagrangian vector field or a Lagrangian system for L 1if the Lagrangian

condition holds:
wL(v)(Z(v), w) = dE(V)ew

for all v ¢ M, and w € TV(TM) . Here, dE denotes the differential

of E

Below we shall see that for motion in a potential, this leads

to the same equations of motion which we found above,
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If w; were a weak symplectic form there would be at most
one such Z . The fact that wL may be degenerate however means
that Z 1s not uniquely determined by L so that there is some
arbitrariness in what we may choose for Z . Also if . is degen-
erate, Z may not even exist. If it does, we say that we can define

consistent equations of motion. These ideas have been discussed in

the finite dimensional case by Dirac [1] and Kunzle [1].

The dynamics is obtained by finding the integral curves of
Z ; that is the curves v(t) such that wv(t) € TM satisfies
(dv/dt)(t) = Z(v(t)) . From the Lagrangian condition it is trivial

to check that energy is conserved even though 1L may be degenerate:

Proposition. Let Z be a Lagrangian vector field for 1 and let

v(t) € ™ be an integral curve of Z . Then E(v(t)) 1is constant

in t

Proof., By the chain rule,

£ E(u(D) = dE(v(£))+v' () = dE(v(£))* Z(v(E))

20 (v(£)) (Z(v(£)) , 2(v(£)) = O

by the skew symmetry of W O

We now want to generalize our previous local expression for
the spray of a metric, and the equations of motion in the presence of
a potential. 1In the general case the equations are called '"Lagrange's

equations'.
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Proposition. Let Z be a Lagrangian system for 1 and suppose Z

is a second order equation (that is, in a chart U X E for TM , ,

Z(u, e) = (e, Zz(u, e)) for some map 22 : Ux E 5E) . Then in the

chart U x E , an integral curve (u(t), v(t)) € U x E of Z satisfies

Lagrange's equations:

Loy = v
(1)

O, , v(©)w = DL(u(E), v(£))+w

for all w &€ E . 1In case 1L 1is nondegenerate we have

(2) %% = (D2D2L(U, V)}-I{DIL(U, v) - DlDZL(u’ v)ev}

In case of motion in a potential, (2) reduces readily to the

equations we found previously defining the spray and gradient.

Proof. From the definition of the energy E we have

dE(u, e)-(el, e = Dl(DZL(u’ e)ee, + D D L(u, e)rece

1 5Dy - DlL(u, e)ee

2) 2 1

Locally we may write Z(u, e) = (e, Y(u, e)) as Z 1is a second order

equation. Using the formula for W the condition on Y may be

written, after a short computation:

DlL(u, e)se, = Dl(DZL(u’ e)~e1)ve + DZ(DZL(u, e)eY(u, e))-e1

1

for all ey € E

This is the formula (2) above. Then, if (u(t), v(t)) is an integral

curve of Z we obtain, using dots to denote time differentiation,
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Dl(DZL(u’ u)~el-u + DZD L{u, u)'u-e1

DlL(u’ e>.e 2

d -
EEDZL(u’ u)-e1

by the chain rule. O

From these calculations one sees that if w, is nondegenerate
7 1is automatically a second order equation (cf. Abraham [2]). Also,
the condition of being second order is intrinsic; Z 1is second order
if TmeZ = identity , where 7 : TM - M 1is the projection. See

Abraham [2], or Lang [1].

Often L 1is obtained in the form

Leu, 0 = | 2w, 2, D
Q 0%

for a Lagrangian density £ and j some volume element on some
manifold Q . Then M 1is a space of functions on Q or more generally
sections of a vector bundle over Q . 1In this case, Lagrange's
equations may be converted to the usual form of Lagrange's equations

for a density £ . We shall see how this is done in a couple of

special cases in later lectures. (See also Marsden [1]).
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3. Elliptic Operators and Function Spaces.

In this lecture we shall discuss some of the basic spaces
of functions which are used in analysis. 1In addition we shall discuss
some of the fundamental properties of elliptic operators, first in
the case of the Laplacian, and then in general. These results,
especially the "splitting theorems'" are of considerable use in proving
certain subsets of the function spaces are actually submanifolds. This
will find application in hydrodynamics and general relativity.
Finally, we shall consider some elementary properties of the space of

maps of one manifold to another.

We begin then with a discussion of the Sobolev spaces.

Sobolev spaces.

Let 0 c R be an open bounded set with c” boundary.

Let O be the closure of ( . Define Cm(Q, Rn) to be the set of

1o

. . n w (oo} .
functions from () into R that can be extended to a C function

on some open set in R" containing Q. Let CE(Q, Rm) =
{f ¢ Cm(Q, Rm)] the support of f is contained in a compact subset
of Q} .

To describe the Sobolev spaces in an elementary fashion,

we temporarily introduce some more notation. An n multi-index is

* This definition is the same as saying that the functions are Ci
on the closed set ( (with difference quotients taken within Q)
by virtue of the Whitney extension theorem. See the appendix of
Abraham-Robbin [1]. The same technique can be applied to Sobolev
spaces; cf. the Calderon extension theorem below and Marsden [8].
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an ordered set of n non-negative integers. TIf k = (kl’ vees kn)

is an n multi-index, then put |k| = ky +k, + oo k . If

k
u € Cm(Q, Rm) , define D u by the formula

k k
[k| 1 n
Du=(d u/ax1 vos axn )

and DO(W) = u . For uwe€ca, R™ (or CE(Q, R™)) , define

e
|
]

Il = > |D%u(s) | ax

“ ol <s

o

Now HS(Q, Rm) (resp. H;(Q, Rm)) is defined to be the completion of
Cw(Q, Rm) (resp. CE(Q, Rm)) under the H Hs norm. These H°

spaces are called the Sobolev spaces. Note that Hg(Q, Rm) = HO(Q, Rm) =

LZ(Q, Rm) :)HS(Q, Rm) ; but for s> 1, H;(Q, Rm) # HS(Q, Rm) as we

shall see below.

There is another equivalent, and perhaps better, definition
of the Sobolev norm. Let dku be the kth total derivative of u
so that d% : O » 1SR, R where LN(R®, R™) denotes the k-linear

m
maps on R™ x R® % ... x R® - R" with the standard norm. Then if we set

k times
2 Vo k
|ul? = j L u(x) f| 2ax
@ pkcs
the | I and H H norms are equivalent. This is a simple exercise.
s s

Also note that HS(Q, Rn) and HS(Q, R™) are Hilbert spaces
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with the inner product

)

<u, v> = y DXu(x) s DNv(x) dx

<

RSREE

Sobolev Theorem.

(a) Let s> (n/2) +k . Then H3(Q, ™) c (@, R™ and

k m
the inclusion map is continuous (in fact is compact) when C (Q, R )

has the standard Ck topology, (the sup of the derivatives of order

< k)

(b) If s> (n/2) then HS(Q, Rm) is a ring under pointwise

multiplication of components. (This is often called the Schauder ring.)

-1
() If s>% and f €H(Q, R") then fl3n€nH" 2 .

(d) (Calderon Extension Theorem). If £ € HS(Q, Rm) then

f has an extension f € HS(Rn, R"

)

Regarding (c¢), see Palais [1] for a discussion of continuous
. . e s .
Sobolev chains; i.e., the definition of H for s not an integer;
basically one can use the Fourier transform or one can, interpolate.

(d) means that f can be extended across 3Q in an u® way.

Differentiability properties at the boundary presents some
technical problems but are very important in hydrodynamics. Thus it

. . . . . S
is important to distinguish HS from H

The proof of the Sobolev Theorem can be found in Nirenberg
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[1] and Palais [1]; see also Sobolev [1].

For most of hydrodynamics we will need s> (n/2)+1.
One of the outstanding problems in the field is determining
to what extent we can relax this condition on s. For
many problems, one would like to allow corners and discon-
tinuities in such things as the density of the fluid or the

k _ Wksp

velocity field. Lp spaces are often useful Tfor this.

7° Spaces of Sections.

Let M be a compact manifold, possibly with boundary,
Also, let E be a finite dimensional wvector bundle over M . For
example E may be the tangent bundle, or a temsor bundle over M .
Let 7 : E -M be the canonical projection. The following fact is
useful and is obvious from the definition of a vector bundle (see

lecture 1).

Proposition. Suppose for each x € M , we have n-l(x) =R . Then

there is a finite open cover {Ui} of M such that each U, is a

chart of M and W-l(Ui) = Ui X R for each i

Such a cover is called trivializing. Recall that a section
of E is amap h : M - E such that moh = idM . Informally, we
define, for s >0 , HS(E) to be the set of sections of E whose

derivatives up to order s are in L2

This makes sense since in view of the proposition, a section

of E can locally be thought of as a map from R" to R"™ where n
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is the dimension of M . Similarly, we can put a Hilbert structure
on H (E) by using a trivializing cover. However, since this
Hilbert space structure depends on the choice of charts, the norm on

HS(E) is not canonical, so we call HS(E) a Hilbertible Space (ie.,

it is a space on which some complete inner product exists). To obtain
S L
a good norm on H (E) one needs some additional structure such as a

connection.

One has to check that the definition of HS(E) is independent
of the trivialization and this can be done by virtue of compactness

of M .

Of course the Sobolev theorems have analogues for HS(E) .
In particular if s > 1 it makes sense to restrict a sectiom
h € HS(E) to M . This is by part (c¢) of the Sobolev Theorem. Of
course if s > (n/2) , h will be continuous and so this will be clear.
For s = 0 , we have LZ(E) and restriction to oM does not make

sense.

One defines HS(E) in a similar way. For s > % , when we

restrict h € HS(E) to 3 , h will vanish, as will its derivatives

to order s - % ,

Much of the theory goes over for M noncompact, but we must
specify a metric on M and a connection on E j; further M must be
complete and obey some curvature restriction such as sectional curvature

bounded above; see Cantor [2].
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QREEEEionS on Differential Forms.

Now, let M be a compact oriented Riemannian n-manifold

without boundary.

As in Lecture 1, let Ak be the vector bundle over M
whose fiber at x € M consists of k-linear skew-symmetric maps from
TXM , the tangent space to M at x €M , to R . For each x ,
C£=0Az forms a graded algebra with the wedge product. Then HS(Ak)

s . . . . .
is a space of H differential k-forms. The exterior derivative d

then is an operator:

a - HS+1(Ak) _>HS(Ak+1)

1t drops one degree of differentiability because d differentiates

once; i.e., is a first order operator.

The star operator = : HS(Ak) —aHS(An-k) is given on Ak

at x € M by

*(1) = +dx, A L. Adx_, E(dx, A L. A dxn) = +1

and

w(dx1 A e A dxp) = idxp+1 Ao A dxn

where the '"+" 1is taken if the dx1 A eee A dxn is positively

oriented and '-'" otherwise, Xps eees X form a coordinate system
- n

orthogonal at x , and * is extended linearly as an operator
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/\.k —)An-k . Now if o € HS(Ak) then clearly *y € HS(An_k) , SO %

can be taken as an operator from HS(Ak) to HS(An_k)

k . . .
The space A  carries, at each point x € M , an inner
product, It is the usual business: the metric converts covariant
tensors to contravariant ones (i.e., it raises or lowers indices) and

then one contracts. If o Rj are one forms, we have

<, A Les Ao

1 B. A vu. AB

k> "1

1 = det[<di, Pj>] . Tt is pnot hard to

check that if |, 1is the volume form on M then
<Q/’Q>fL=Q’/\7"‘B=R/\7"‘Q'

Note that the inner product may be defined by the above
formula, See Flanders [1] for more details on these matters. Define

s+1, k s, k-1 n(k+1)+1

the operator § : H (A7) -H (A7) by &= (-1 *d* . There

is an inner product on HO(Ak) (and hence on HS(A)) given by

[ <o, B>du

(o, BY = ¢
M

Proposition. For o € HS(Ak) and B € HS(Ak+1)

(dory B) = (o, 88 .

Proof. Note that d(o A *B) = do A *8 + (-1)ka A d*R

1§

do A *B - o A KGR,

since %% = (_1)k(n—k)
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Since oM = 9 , by Stokes Theorem, we get

r
fd(e A *B)
"M

o
i

r r
= doy A *B - o A *88
UM 'JM

(d0/> B) - (Q" 66) . o

Rephrasing, one says that d and &6 are adjoints in the (,) inner

product.

The § operator corresponds to the classical divergence
operator. This is easily seen: 1let X be a vector field on M .
Then because of the Riemannian structure X corresponds to a l-form

ﬁt, where %(v) = <X, v> .

Proposition. div(X) = -8(X)

Proof and Discussion. Let LX“ be the Lie derivative of |, with

respect to X . Then by definition, div(X)y =L (see Abraham [2]),

s

We have the general formula
LX“ = dlx(u) + 1Xd(u) .

Now d(y) = 0 since |, 1is an n-form, so LXM = d(iXM) = d(*i) (one

easily checks that iX“ = 7‘f’)\(’) . Hence

div(X) = div(X)%, = *(div(X)y) = *d*X = -8X ,

n(k+1)+1

since for k =1 , (-1) -1. 3
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The Laplace de Rham operator is defined by A = 8d + d§
: . i
Note that A : HS(A ) ~>HS 2(Ak) . If f 1is a real valued function
on R" , it is easy to check, using the above expressions for d , § ,

that A(f) = —vz(f) where sz = div(grad f) 1is the usual Laplacian.

Note &f = 0 on functions.
‘e s, k .
Proposition, Let o € H (A ) , then Ay = 0 iff

dy = 0 and éo =0

Proof. It is obvious that if do =0 and &y =0 then Ay =0 .
To show the converse, assume Ay =0 . Then 0 = (Aw, @) =

((d8 + 6o, o) = (b, da) + (do, do) , so the result follows., [
A form ¢ for which Ay = 0 1is called harmonic.

The Hodge decomposition theorem (for 3M = §).

Theorem. Let o € HS(Ak) . Then there is ¢ € HS+1(AR-1) s
B € Hs+l(Ak+l) and vy € Cw(Ak) such that ¢ = do + g + v and
ACy) = 0 . Here Cm(Ak) denotes the C sections of Ak .

Furthermore dy , 88 , and Y are mutually L orthogonal and so are

2

uniquely determined.

If ﬁk = {v € Cw(Ak)!Ay = 0} , then the above may be

summarized by

HS(Ak) _ d(HS+l(Ak_l)) o 6HS+1(Ak+1) ® ﬁk ]
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k
The fact that the Harmonic forms ¥  are all ¢ , follows
from regularity theorems on the Laplacian. This fact is also called
Weyl's lemma or, its gemeralization, Friedrich's theorem. We shall

discuss this further below,

The Hodge theorem goes back to V. W. D, Hodge [1], in the
1930's. Substantial contributions have been made by many authors,
leading up to the present theorem. See for example Weyl [1], and

Morrey-Eells [1].

We can easily check that the spaces in the Hodge decomposition

are orthogonal. For example
(doy, 6B) = (ddw, B) =0
since § 1is the adjoint of d and d2 =0

The basic idea behind the Hodge theorem can be abstracted
as follows. We consider a linear operator T on a Hilbert space E
with T2 =0, Inour case T =d and E 1is the L2 forms. (We
ignore the fact that T 1is only densely defined, etc.) Let T* be

the adjoint of T . Let H = {x € EITX =0 and T*x = 0} . We assert

E = Range T ® Range T* @ B

which, apart from technical points on differentiability and so on is

the essential content of the Hodge decomposition.

To see this, note, as before that the ranges of T and T%
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are orthogonal because

2
<ITx, Téy> = <T'x, y> =0 .

Let (C be the orthogonal complement of Range T @ Range T* ,

Certainly H< C . But if x € C ,

Il
o]

Ty, x> =0 for all y => T*x

)
e 4

Similarly Tx =0 , so C C H and hence ¢

The complete proof of the theorem may be found in Morrey [1].
For more elementary expositions, also consult Flanders [1] and Warner

[1].

. . . k
An interesting consequence of this theorem is that H is

isomorphic to the kth de Rham cohomology class (the clased k-forms mod
the exact ones). This is clear since over M , each closed form w
may be written w = do + v . (One can check that the §&B term drops
out when ® 1is closed; indeed we get 0 = d6B so (déB, B) =0 or

(8B, 6B) =0 so 6B =0 )

The Hodge theorem plays a fundamental role in incompressible
hydrodynamics, as we shall see in lecture 4, It enables one to introduce

the pressure for a given fluid state.

Below we shall generalize the Hodge theorem to yield some
decomposition theorems for general elliptic operators (rather than the

special case of the Laplacian). However, we first pause to discuss
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what happens if a boundary is present.

Hodge theory for manifolds with boundary.

This theory was worked out by Kodaira [1], Duff-Spencer [1],
and Morrey [1]. (See Morrey [2], Chapter 7.) Differentiability across
the boundary is very delicate, but important. The best possible

results in this regard were worked out by Morrey.

Also note that d and § may not be adjoints in this case,
because boundary terms arise when we integrate by parts. Hence we

must impose certain boundary conditions.

Let «o € HS(Ak) . Then ¢ 1is parallel or tangent to aM :

if the normal part, nog = i*(sx) = 0 where 1 : 3M -»M 1is the

inclusion map. Analogously « is perpendicular to oM if to = i* (@)

Let X be a vector field on M . Using the metric, we know
when X 1is tangent or perpendicular to aM . X corresponds to the
one-form X and also to the n - 1 form iXu (u 1is, as usual, the
volume form). Then X 1is tangent to M if and only if X is tangent

to oM iff ixu is normal to 3aM . Similarly X 1is normal to aM

iff ixu is tangent to M . Set

{a € HS(Ak),a is tangent to M}

s, . k
HE(A)

Hi(Ak) (o € HS(Ak)!a is perpendicular to 3M)

and

¥ = (o e 1% ]dw = 0, 80 = 0)
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The condition that dy = 0 and &y = 0 1is now stronger than Ay = 0 .

Following Kodaira [1l], one calls elements of u° , harmonic fields,

The Hodge Theorem.

s+1, k-1 s+1, k+l

15 = el ) @ st h) @ w1

One can easily check from the formula

-
(dory B) = (ery 8B) + | @ A 4B
M

that the summands in this decomposition are orthogonal.

There are two other closely related decompositions that are

of interest,

Theorem.
(@  w*w = @™o h) en?
where
s s, k
D, = lo € H (M) [ber = 0}
and dually

(b) HS(Ak) _ 5(HS+1(Ak+1)) " Cz

where CZ are the closed forms normal to 3aM .

Differential Operators and Their Symbols.

Let E and F be vector bundles over M and let
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Cm(E) s HS(E) denote the ¢~ and Hs sections of E as above.
Assume M is Riemannian and the fibers of E and F have inner

products.

A kth order differential operator is a linear map

D : C(E) -C”(F) such that if £ € C*(E) and f vanishes to kth
order at x € M , then D(f)(x) = 0 . (Vanishing to kth order makes

intrinsic sense independent of charts.)
Then in local charts D has the form

il

b® = ) 4y

o<lil<k  ax T...ax

where j = (jl,...,js) is a multi-index and aj is a ¢ function

mapping E to F .

Now D has an adjoint operator D¥* given in charts (with

the standard Euclidean inner product on fibers) by

; |31
D¥(h) = Z -y 1l 3135—3 (path)
o<| )< -

where pdxl A ... A dx" is the volume element and a? is the transpose

of aj . The crucial property of D¥* is
(g, D*h) = (Dg, h)

where (, ) denotes the L2 inner product, g € C;(E) , and h € CE(F)
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A kth order operator induces naturally a map
-k
D : H(E) »H® “(F)

For example we have the operators

a:u’u™ Let ok

s+ uSSy Sut o h

k -
and 4 : w5 Lt 20

The symbol of D assigns to each g € T;M , @ linear map

It is defined by

0(e) = DGl - 800 ) ()

g

where g € C (M, R) , dg(x) =& and £ € C(E) , f(x) = e . If there

is danger of confusion we write ¢_(D) to denote the dependence on D

g

By writing this out in coordinates one sees that OE is a polynomial

expression in & of degree k obtained by substituting each Ej in
i i
place of a 3/3x = in the highest order term. For example, if

iy 2%

D(f) =1 g T
OX X

+ (lower order terms)

then

- ij
9. =1L g €i€j

o
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(giJ is for each 1ij a map of EX to FX). For real valued
functions, the classical definition of an elliptic operator is that
the above quadratic form be definite. This can be generalized as

follows:

D is called elliptic if Og is an isomorphism for each

E40 .

We have now seen all three classical types of partial

differential equations:

elliptic: typified by Ay =B

parabolic: typified by %% = AU
52
hyperbolic: typified by —~% = Au .
ot

To see that A : HS(Ak) —aHs_z(Ak) is elliptic one uses the

facts that

(1) the symbol of d is = EA

%
(2) the symbol of & is o = i,

and (3) the symbol is multiplicative: Ug(D1°D2) = GE(D1)06§(D2)

The Regularity Theorem and Splitting Theorems.

Theorem. Let M be compact without boundary. TLet D be elliptic of

order k . Let f € LZ(E) and suppose D(f) € HS(F) . Then

£ e nom)

One can allow boundaries if the appropriate boundary conditions
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are used. See Nirenmberg [1]. As a special case of this theorem we

[oe]

get Weyl's lemma: Af =0 =f 1is C

The proof of the theorem is too intricate to go into here;
see Palais [1] or Yosida [1]. It is important to note that this sort

of result is certainly false if we use Ck spaces, although Holder

spaces Ck+a , 0 <o <1l would be suitable.
Theorem. (Fredholm Alternative) Let D be as above, Then

1Sy = p®t™(m)) @ ker D*

(D* HS(F) —>Hs_k(E)) . Indeed this holds true if we merely assume

that either D or D* has injective symbol.

The proof of this leans heavily on the regularity theorem,
The main technical point is to show that D(Hs+k) is closed. (One uses
the fact that Hf“s+k < const(”f“S + HDfHS) , for D elliptic.) Then
one shows that the L2 orthogonal complement of D(Hs+k) is in
ker D* , just as in the Hodge argument. This yields an L2 splitting
and we get an n® splitting via regularity. The splitting in case
D has injective symbol relies on the fact that .D* is, in this

case, elliptie., One could use, e.g.: D =d to get the Hodge theorem.

For details on this, see Berger-Ebin [1].

In later applications (see lectures 4 and 10) we will use this
result in the following way. Certain sets in which we are interested

will be defined by constraints £(x) = 0 . The relation v k;TXf-v
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will be a differential operator. To show it is surjective (and
hence f_l(O) is a submanifold) we can show (Txf)* is injective
with injective symbol. For then ker(TXf)* =0, so Txf itself will

be onto.

Manifolds of Maps.

History.

The basic idea was first laid down by Eells [1] in 1958.
He constructed a smooth manifold out of the continuous maps between
two manifolds, 1In 1961, Smale and Abraham worked out the more general
case of Ck mappings. Their notes are pretty much unavailable, but
the 1966 survey article by Eells [2] is a good reference, The HS
case is found in a 1967 article by Elliasson [1]. This is also found

in Palais [4] where it is done in the more general context of fiber

bundles.

Making the manifold out of the Ck diffeomorphism group on
a compact manifold without boundary was done independently by Abraham
(see Eells [2]) and Leslie [1] around 1966. The 1° case is found in
a paper by Ebin [1] and one by Omori [1] around 1968. Ebin also
showed that the volume preserving diffeomorphisms form a manifold.
Finally Ebin-Marsden [1] worked out the manifold structure for the
8

H diffeomorphisms, the symplectic and volume preserving diffeomorphisms

for a compact manifold with smooth boundary.

Other papers on manifolds of maps include those of Saber [1],
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Leslie [2, 3], Omori [2], Gordon [1], Penot [2, 3], and Graff [1].

Some further references are given below.

Local Structure.

Let M and N be compact manifolds and assume N 1is
without boundary. Tet n be the dimension of M , and £ the
dimension of N . Say f € HS(M, N) if for any m € M and any chart
(U, ®) containing m and any chart (V, y) at f(m) in N , the
map wcfo@—l : (U) ~>R£ is in HS(Q(U), RZ) . This can be shown to
be a well defined notion, independent of charts for s > (n/2) . The
basic fact one needs is that by the Sobolev Theorem we have
HS(M, N) C CO(M, N) . Things are not as nice, however, for s < (n/2) .
It is possible for a map to have a (derivative) singularity which is

L integrable in one coordinate system on N and not be integrable in

2

another, So for s < (nf2) , HS(M, N) cannot be defined invariantly.

Hence, from now on we assume s > (n/2)

In order to find charts in HS(M, N) we first need to
determine the appropriate modeling space. Let f € HS(M, N) . The
modeling space, should it exist, must be isomorphic to TfHS(M, N) ,
whatever that is. So a way to begin is to find a plausible candidate
for TfHS(M, N) . If P is any manifold and p € P then TPP can
be constructed by considering any smooth curve ¢ in P such that

c(0) =p ; then c'(0) € TpP (see lecture 1).

With this in mind, let us consider a curve c,. : ]-1, 1 —;HS(M, N

f
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such that cf(O) =f . Now if m &€ M , then the function t Facf(t)(m)
is a curve in N (i.e., for each t € ]-1, 1] , cf(t) € HS(M, N) and
therefore cf(t) + M 5N .) Now cf(O)(m) = f(m) , so the derivative

of this curve at 0 , (d/dt)cf(t)(m)lt=0 is an element of Tf(m)N .
5o the map m F;(d/dt)cf(t)(m)ltzo maps M to TN and covers f ,

i,e., if m_: TN - N is the canonical projection, this diagram

N
commlites:
TN
ct(0) . _d
£ /////,WN ¢1(0) = gre ()] o
M——"N
£

where

e1(0)(m) = S (D)(m|,_g

Making the identification

e (O] _pm = Se @], g

c%(O) is a good candidate for the tangent to ce at f ,

With the above motivation, let us define

THOM, N) = (X € BOQM, ™) |meX = £)

. s
Note this is a linear space, for if Vf and Xf are in TfH M, N) ,

we can define an + Xf (a € R) as the map m y;an(m) + Xf(m) where
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Vf(m) and Xf(m) are in It is this space which we use

;
Tf(m)l\
as a model for HS(M, N) near f

To show this we need the map expN : TN >N for p €N

Recall that if vp € TpN there is a unique geodesic o, through p

P
whose tangent vector at p 1is vp . Then expp(vp) =g (1) . 1In

v
general exp is a diffeomorphism from some neighborhood of 0 in
TpN onto a neighborhood p in N . However, since N is compact
and without boundary, it is geodesicly complete and hence exp is
defined on all of TPN . This map can be extended to a map exp : TN -5 N

such that if vp € TN then exp(vp) = expp(vp) . With this map we

define the map expy : TfHS(M, N) —>HS(M, N)
X > exp o X

— . s
We assert that expp maps the linear space TfH (M, N) onto
a neighborhood of f in HS(M, N) taking O to f and hence is a
candidate for a chart in HS(M, N) . It should be remarked that in
spite of the use of the map exp , the structure is independent of the
- . =]
metric on N . The assertion is easy to check in case things are C

or ¢° , by using standard properties of exp ; Milnor [1].

For the H° case and to show that the change of charts is
well defined (i.e., maps into the right spaces) and is smooth, one

needs the following lemma.

Local w-Lemma. (Left Composition of Maps). Let U be a bounded




-71-

open_set in rP , and h : R? 5 R be c” . Then Wt HS(U, Rn)-a

(s}

uS(u, R™) defined by w (£) =hef isa C map.

. , . . . s S
This conclusion is not true if h 1is merely an H or C

map. The problem can be seen in this way. If M and N are manifolds
and g : M >N 1is C1 then for p € M and vp € TPM , we have

Tpg : TM ST which is determined in the usual way: let

N
p gp) "’
¢ : I-1, 1[ € M be a curve such that ¢(0) = p and c'(0) = vp
Then Tpg(vp) = (d/dt)g(c(t))]t_O . Applying this procedure to G
and using the chain rule, we find for X € TfHS(U, Rn) that the

: X 45 ThoX ., But since Th is only

tangent of w is the map wah :

h
s-1

-1
H , ThoX 1is, at best, in 7® (U, Rm) and Tw, does not map into

h

the tangent space of HS(U, Rm) at wh(f)

This necessity of differentiating h is a crucial difference

between composition on the left and composition on the right.

The exact proof of the w-lemma may be found in Ebin [1] and
the other references above. In fact, the result essentially goes back
to Sobolev [1} p. 223. See also Marcus-Mizel [1], and Bourguinon -

Brezis [1].

Using the w-lemma, it is now routine to check that exp .
s
yields smooth charts on H (M, N) . TFor other methods of obtaining

charts, see Palais [4], Penot [3] and Krikorian [1].
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4. The Motion of an Incompressible Fluid.

Tﬁis lecture is concerned with some fundamental properties
of perfect fluids, We shall begin with some motivation and an intuitive
outline of the results. Then we shall fill in a number of the gaps.
The results of this section lean on work of Arnold [1] and Ebin-
Marsden [1]. They are primarily concerned with interpreting the
equations as a Hamiltonian system and with the associated existence
theory. These go hand in hand, and as a bonus, when one regards the
equations from the Hamiltonian point of view the existence theory
unexpectedly becomes easier, The difference is essentially that
between "Eulerian'" and 'Lagrangian (following the fluid)" coordinates,
as we hope to explain. A similar bit of analysis can be made for

. *
elasticity.

Basic Tdeas in Hydrodynamics.

Throughout, let M be a fixed compact, oriented, Riemannian,
n-manifold, possibly with a Cm boundary. Intuitively, M 1is the
space in which the fluid moves, For example, ™M might be the unit
ball in R3 . As an aside, for the general theory there seems to be
no particular advantage of assuming M is open in R" . This is
because the spaces of mappings of M to M that we will shortly

discuss are still very nonlinear.

A diffeomorphism on M 1is a c” bijective map T : M - M

such that n~1 is also C
¥This remark is based on some recent Joint work with T. Hughes.
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We let © = {orientation preserving diffeomorphisms on M}

If the Riemannian structure is given locally by gij : M 5R ,

then the volume element |, on M 1is the n-form which, in a (positively

oriented) coordinate chart, is given by

m =A/det(gij)dxl Ao A dx®

or, intrinsically, “(vl’ e vn) = det<v1, vj> for Vis sees Vo
oriented tangent vectors. We say a diffeomorphism 1T 1is volume

preserving if T#, =y . The condition T4 = means that the

Jacobian of T 1is one.

By the change of variables formula, it follows that a
diffeomorphism 17 is volume preserving if and only if for every
measurable set A CM , u(A) = (M(A)) . Here we also use |, to stand

for the measure defined by y (cf. Abraham [2], §12).
Set ﬁu ={Mn € @lﬂ is volume preserving}.

For technical reasons it will be convenient to enlarge £ and
Qu to slightly larger spaces. Namely let Qs (resp. Qi ) Dbe the
completion of & , (resp. @M ) under the Sobolev B® topology;

this will be discussed in detail later,

At least in the beginning, we will be discussing perfect
fluids; i.e., fluids which are nonviscous, homogeneous and incompressible.

We also ignore external forces for simplicity.
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Consider, then, our manifold M whose points are supposed
to represent the fluid particles at t = 0 . TLet us look at the fluid
moving in M , As t 1increases, call ﬂt(m) the curve
followed by the fluid particle which is initially at m € M , For
fixed t , each ﬂt will be a diffeomorphism of ™M . 1In fact, since
the fluid is incompressible, we have ﬂt € QM . The function t F;ﬂt
is thus a curve in Qu (they are easily seen to be orientation pre-
serving since they are connected to ﬂo , the identity function on M)

Note that if M has a fixed boundary the flow will be parallel to M .

The motions of a perfect fluid are governed by the Euler

equations which are as follows

[ o,
— + 9V v_ = -grad p
ot v, t t
t
(Euler equations) div Ve = 0
v is tangent to oM .

t

In these equations, Vv Ve is the covariant derivation and its ith
t
component is given in a coordinate chart by

i
. — . OV N -
(Vv v )l = \ v Lt 5 rt VJVk
vt Lot 3 LT ikEE
[

and P = p(t) 1is some (unknown) real valued function on M called

the pressure.



-75-

In the case of Euclidean space, each F;k = 0 and then we
get, using vector analysis notation

_>
Vvv = (ve9)vV .,

Note. We shall always use a subscripted variable to denote

that the variable is held fixed, as in Ve oo It will never denote

differentiation.

The physical derivation of these equations is quite simple
in R" . We use Newton's Law F = ma . We can ignore the mass because
of homogeneity (i.e., constant mass density) and we are assuming there
are no external forces, so the only forces result from the internal
pressure. We wish to deal with conservative force fields and therefore
one assumes these internal forces arise as the gradient of a real valued

function, the pressure. So we have

acceleration = -grad P -

Clearly the acceleration is given by

a = lim v(t + At, x(t +A€t)) - v(t, x(t))

At-0

L Qv v axt v vdv i
at L1 B
i

Here we have just used the chain rule, This gives us the correct

equation for Jv/3t . Now div v = 0 1is the same as assuming ﬂt is
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volume preserving, and v parallel to 3M just corresponds to

particles not moving across aM .

As the Fuler equations stand, they are not Hamiltonian. 1In
fact the way they are written, their form as an evolution equation is

not manifest. To rectify the latter problem, we use:

Theorem. Let X be an (HS) vector field on M . Then X can be

uniquely written

X =Y + grad p

for Y an (HS) divergence free vector field parallel to M and

*
p an (H ') function.” Here s >0 . We let P(X) =Y and call

P the projection onto the divergence free part.

This follows directly from the Hodge decomposition applied

to the corresponding one forms discussed in lecture 3,

Let E denote the space of all divergence free vector
fields on M which are parallel to 3M . Define T : E - E by

T(v) = -P(Vvv) . Note that

-P(Vvv) = -(Vvv - grad p) = —Vvv + grad p

and therefore we can rewrite the Euler equation (modulo a trivial sign

convention on p) as a differential equation on the linear space E :

3T T(Vt) vy, 1is given.

In case M were non-compact, e.g. M = R3 > P would only be locally

H

s+1
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. s s-1 . .
Notice that T maps H to H and so, as discussed in

lecture one, the usual existence and uniqueness theorem doesn't apply.
Tt is possible to use other methods however, such as the Nash-Moser

technique and Galaerkin methods.

Observe that the equation is non-local. This is due to the
non-local operator P ; i.e., given X 1in a neighborhood of Xy o
it is not possible to compute P(X) at x, . Rather P 1is an integral

0

operator. Indeed, from

X =Y + grad p ,

8X = Ap

A tex

Il

so p

-1, . . .
and A is an integral operator involving convolution with a suitable

green's function.

Summary of the Main Results,

Before getting down to some technical details we would like
to present the punch line. To do this we need to state a few facts

proven below.

As above, let £ denote all c” diffeomorphisms of M ,
N :M-»M . One can show that 8 1is (in a certain sense) a smooth
manifold modelled on a Fréchet space and it is a '"Lie group" in that

the group operations of composition and inversion are smooth,

The tangent space to © at the identity, TeQ consists of
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all vector fields on M . This is as in lecture 3: Indeed, if
' d
n(t) € § 1is a curve, I ﬂ(t)(m)[t_o represents a vector field on

M if T(0)(m) =m . Generally, Tl = (X : M - T™|meX = T} where

m: M -M 1is the projection.

Also as above, we let Qu = (N € Q{ﬂ is volume preserving}

Then 8 is also a '"Lie group' and

TeQu = (X ¢ TeQ{dlvergence of X = div x = 0}

If M has boundary we must always add the condition that X 1is

parallel to the boundary.

Now put a metric on § and hence Qu by

I

X, Y) = < X(m Y{(m) > m

(%, ¥) = | <X, ) > gy )
for X , Y € Tnﬂ . It is easy to see that (, ) 1is right invariant
on 8 . This metric corresponds exactly to the total kinetic energy

of the fluid:

J

1" 2
Energy = 5 i HVH dy
M
where v is the velocity field of the fluid:
(M (m) =<
Velle ™) = ds ns(m)|s=t

Given a time dependent vector field wv(t, x) satisfying the
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Euler equations, we can construct its flow ﬂt ; it is the solution to
d
T N = v (1 ()
My(m) = m

and of course conversely,given ﬂt we can obtain \

The first important fact is the following:

Theorem. (Arnold). A time dependent vector field wv(t, x) on M

satisfies the Euler equations

<=> its flow ﬂt is a geodesic in &

9

The second one is:

Theorem. (Ebin-Marsden). The spray governing the geodesics on mu s

Z T —>T239LL is a Coo map in HS : Z o T@S —aTzﬁj . Hence the
K — I ——_——

standard existence and uniqueness theorem can be used.

The first result is analogous to the way in which one can
describe the motion of a rigid body either by looking at its velocity
vector in Eulerian (space) coordinates or as a geodesic in the Lie
group SO(3) (body coordinates). 1In fact one can proceed in general
to describe Hamiltonian systems on Lie groups in general of which
hydrodynamics and the rigid body are special cases (see Arnold [1],

Marsden-Abraham [1] and Iacob [11).

The second result should be surprizing in view of our
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previous discussion that the standard existence and uniqueness theorem

could not be used in Eulerian coordinates.

We would now like to try to give the essence of this idea.
The key thing is that in Lagrangian coordinates, the equations change

their character completely. Suppose then that

ov -
SE + (veV)v = -~grad p
on R3 . We let ﬂt be the flow of v and look at the new variables

ﬂt, X = vtOHt instead of v 1itself. Now

i
@—X:@—V‘—oﬂ +K;§_\i_t_iﬁ£
at ot B gt ot
—, Qv .
. L. N o oo
=33 ﬂt + mkaxi Vt/ 7N, = -grad p
%
since v satisfies (dv/dt) + (v*V)v = -grad p .,

In order for the spray Z to be smooth, the map

M, X) Pa(%%, %%) has to at least map 1% to HS . Now grad p

A)
is the gradient part of (ve¥)v , so it is not completely obvious that

grad p 1is u® if v is H° . However we can see it by a simple

calculation: 1Indeed take the divergence of

QX +~\‘,.’vl QZT = ~grad
At 4 S
e 3%

to get
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A i ij V‘avi avj
v =) = —

J aXl """ 3% axl

since div v =0 . Thus if v 1is 1° , grad p will be H®  as well

(regularity of the Laplace operator),

By combining the previous two theorems with the existence

and uniqueness theorem, we obtain the following.

corollary. Let s > % + 1 (n = dimension of M) , and vy 2

divergence free H® vector field parallel to 3aM . Then there is a

unique HS Ve equalling Y at t =0 which satisfies the Euler

equations (that is, there is a p(x, t) such that the Euler equations

hold), defined for -e < t < ¢ for some ¢ >0 . TIf Vo is C , so

is v
-— tC

Recently Bourguignon and Brezis [1] have obtained these
results in a more classical way without using infinite dimensional

WS,P

manifolds. The same results are also obtained in the spaces 5

s > a + 1
p

The question naturally arises if we can infinitely extend

the solutions in the corollary. Such solutions would be called global.

Theorem. (Wolibner (1933), Judovich (1964), Kato (1967)). If

dim M = 2 , the solutions in theorem 2 can be indefinitely extended for

all t € R (and remain smooth).

The problem is open if dim M = 3
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The problem is also open, in general, if we consider the
equations with viscosity. This leads us to a hamiltonian system with

a dissipative term.

X VAV + VVV = -grad p (+ forces)

ot

Navier-Stokes div v = 0
equations

v=0 on M (note the change in boundary
conditions)
The term yAv 1is an approximation to viscous forces in the
fluid which tend to slow the fluid down. Thus the chances for a

global solution are increased.

For the Euler equations it is known (see Marsden-Ebin-Fischer
[1]) that if the C1 norm of v is bounded on an interval [0, T[ ,
then the solution can be extended beyond T . Thus one gets global
solutions if an a priori bound is known on the C1 norm. One can do

better for the Navier-Stokes equations:

Theorem., (Leray [3]). Let v, be a solution to the Navier-Stokes

equations, dim M = 3 . Suppose one has an a priori bound on the

spatial Lp norm of v, on finite t-intervals, where p > 3 . Then

the solution can be infinitely extended to [0, [ as a smooth

solution.

One can also show that one has global solutions if the

initial data is sufficiently small (Ladyzhenskaya [2]) and for fixed
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but perhaps large initial data the time of existence is of the order
of v . It is really the case of '"large" initial data which is of
interest and for these, Leray% theorem gives a criterion which is

necessary and sufficient, but is not too easy to verify (see remarks

below).

In the next lecture we shall discuss a method, using
"Chorin's formula'", which gives a fundamental improvement on the time

of existence for general initial data.

These difficulties with global solutions bear on the nature
of turbulence. (See the next lecture for further discussion.) Indeed
Leray believed that it is possible for solutions to become non-smooth
and non-unique after some time interval [0, T] , at which time they
turn into weak, or Hopf solutions and this was supposed to represent

turbulence.

Nowadays, the opposite point of view prevails, but it is not
yet completely settled. 1In other words, we now believe that turbulence

represents very complicated, but still smooth solutions to the equations.

But the situation is very delicate and one must be careful.
*
For example a law of Kolmogorov, experimentally verified for turbulent
flows, when translated into norms indicates that one has an a priori
bound on the Lp norm of . for p < 3 ! This just misses the

critical value of p = 3 |, hut refinements of this may be able to

raise the value of p above 3 .
* We refer to the - 5/3 law; see Landau-Lifschitz (1). The experimental verification

is not conclusive and is also consistent with other possible laws.
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There are other reasons for this view and we shall discuss them
below in lecture 5. Briefly, turbulence is believed to be a result

of successive losses of stability (rather than smoothness).

From Arnold's theorem we can rephrase the problem of

extending solutions of the Euler equations as follows:

Problem. Tet M be a (compact) 3-manifold. Then is Q; geodesically
complete? (That is, do geodesics exist for all time? From Wolibner's

*
result, the answer is yes, if dim M = 2 .)

The following simple lemma bears on the problem (the lemma

is standard); see Wolf [1], p. 89 and lecture 6 below.

Lemma. Let G be a finite dimensional Lie group with a right invariant

riemannian metric. Then G 1is geodesically complete.

The lemma also holds if G 1is a "Hilbert group-manifold",
but unfortunately, it does not apply to our problem because the
topology of our metric (recall it gives the L2 norm) does not
coincide with the topology on Sj . If the requirement div v =0
were dropped, the result is definitely false -- thié is the phenomenon
of shock waves in compressible flow. (For exaumple thé solution of
(du/dt) + u(du/dx) = 0 1in one dimension is wu(t, x) = uo(y) whetre
X =y + tuo(y) . One can see as soon as X >y becomes non-invertible,

that derivatives of u blow up.)

* At present the most reasonable sounding conjecture for this
problem is "no" because of "vortex sheets'" but "yes" for
the Navier-Stokes equations for which vortex sheets are
impossible by Leray's theorem.
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gelvin Circulation Theorem.
This is a standard classical theorem of hydrodynamics that
is very easy to prove in our context. It says the amount of circula-

tion about any closed loop is constant in time.

Kelvin Circulation Theorem. Let M be a manifold and £ M a

smooth closed loop i.e., a compact one manifold. TLet uL be a

solution to the Euler Equations on M and £(t) be the image of 4

at time t when each particle moves under the flow ﬂt of u, i.e.,

4(t) = N.(4) . Then

%E Y=o &
C (L)

is one form d
‘ ¢ L the on m dual to ut)

Proof. We have the identity L;; =vut Yd<u, u>, valid for any
vector field u on the manifold M . We leave the verification as an

exercise,.

Then, identifying the differential forms with their dual
vector fields, we find P (L;E) =P (Vuu) since P annihilates

exact forms. (Remember P projects onto the divergence free part).

So substituting into the Euler equations, we get the following

alternative form:

é’——l‘;“ ~ p— ota
TP (LW =0. ()

Let ﬂt be the flow of u, Then 4(t) = ﬂt(ﬁ) , and so changing
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variables,

r .
i u_ = M#(u )
1.0 e, e

wvhich becomes, on carrying out the differentiation,

da ~ r ~ >u

- u, = | M*(L u) + NE =—

dt . t i £t u t 3t
n.(8) 2

Let P (L;H) = Léﬁ - grad q . By Stokes theorem fﬁ grad q = 0

3

4T T = " ﬂ*(L/E + ég - grad q) =0 Il
dt ”‘vﬁ(t) t w, tu Jt

In practical fluid mechanics, this is an important theorem.
One can obtain a lot of qualitative information about specific flows
by following a closed loop throughout time and using the fact the

circulation is comstant.

The quantity du = » is the vorticity. (In three dimensions

w
ot

showing that vorticity moves with the fluid. This is, via Stokes

w = 7 x Gé.) From (*) we get + Luw =0 and so w, = Nw,_ ,

0 tt

theorem, another way of phrasing Kelvin's theorem.

Steady Flows.

A flow is steady if its vector field satisfies (du/dt) =0 ,
i.e., u 1is constant in time. This condition means that the 'shape"

of the fluid flow is not changing. Even if each particle is moving
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under the flow, the global configuration of the fluid does not change.

Not much is really known about steady flows, their stability,
or what initial conditions result in steady flows. We should mention,
however , that for viscous flow quite a bit more is known. See for
example Ladyzhenskaya [2] and Finn [1]. There are some elementary

equivalent formulations of the Euler problem.

Proposition. Let u, be a solution to the Euler equations on a

manifold M and ﬂt its flow. Then the following are equivalent:

(1) uy € TeAQS yields a steady flow (i.e., (du/3t) = 0)

(2) M, 1is a one parameter subgroup of 0° ()
"

(3) L . is an exact form

4y 1 duo is an exact form.

The details are omitted.

It follows at once from (4) that if Uy € TQQS(M) is a
harmonic vector field; i.e., u, satisfies éuo =0 and dﬁb: 0
then it yields a stationary flow. Also it is known there are other

steady flows for manifolds with boundary. For example, on a closed

£f(r)(d/230) 1is the velocity

2-disc, with polar coordinates (r, 8) , v

field of a steady flow because

rt 2
VVV = -Yp , where p(r, 8) = | f7(s)s ds
‘0

Clearly such a v need not be harmonic.
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For the remainder of this chapter we shall £ill in a number
of details.. In particular we shall prove Q: is a smooth manifold,
will prove Arnold's theorem and outline the proof that the geodesic
spray is smooth., (In Arnold [1], and Marsden-Abraham [1], the result

of Arnold is proved using Lie group methods).

Groups of Diffeomorphisms.

These objects have a very interesting yet complicated
structure. For this section we let M be a compact manifold without
boundary. Let QS(M) = {f € HS(M, M),f is one-one, orientation
preserving and f_1 S HS(M, M)} . The fact that QS(M) is a manifold
is a trivial consequence of the fact that HS(M, M) is a manifold and

the following proposition;
Proposition. If s > (n/2) + 1 , then QS(M) is open in HS(M, M)

Proof. Since s > (nf2) + 1 , we have a continuous inclusion

1
HS(M, M) € C°(M, M) (by the Sobolev Theorem). So it is sufficient to
show that if amap g on M 1is Cl close to a diffeomorphism, then

g 1is a diffeomorphism. To show this, note that G : f s inf f(x)

.XEMJ
is a continuous real valued map on Cl(M, M) , where Jf(x) 1is the
Jacobian of f : f¥, = (Jf)u . Also, since M 1is compact, if

£ e @S(M) , then G(f) # 0 . By continuity of G , there is a neighbor-
hood U of f in Cl(M, M) such that if g € U then G(g) # 0O

By the inverse function theorem U consists of local diffeomorphisms.

It is easy to show that if g € U then g 1is an onto map. This is
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because g(M) is open in M , as g 1is a local diffeomorphism and
since g 1s continuous and M 1is compact, then g(M) is closed.
Hence 1f M 1is connected g(M) =M . (If M 1is not connected, one
need just remark that g maps into each component of M since f
does and g 1is uniformly close to f .) It remains to show there is
a neighborhood of £ containing only 1-1 functions. (It is not true
that a local diffeomorphism on a compact set is a diffeomorphism.
consider the map which wraps S1 around itself twice.) It is an easy
exercise in point set topology to show that if M is connected then
any local diffeomorphism on M 1is a covering map; that is, is globally
k to 1 for some integer k . Also, the function that assigns to a
local diffeomorphism £ the number of elements in f-l(x) for any

x € M 1is continuous in the Cl topology onto the integers. In

particular there is a neighborhood of a diffeomorphism containing only

diffeomorphisms., [

Because of the above proposition, we will henceforth assume

s> (n/2) +1

. . P S
It is unknown whether, in general, the composition of two H
S
maps is again H . 1In all known proofs one needs that one of the maps
. . - . «© .
is a diffeomorphism or is C . The main composition properties are

stated in the following.

s .
Theorem. (a) ¥ is a group under composition.

(b) (o-Lemma) If T € 0°  the map Rn s 0 50 s
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[oo]

CwC o7 is a C map (in fact Rn is clearly "formally linear"

and continuous).

(¢) (w-Lemma-Global) If 7 € £° , then LptCeNeC is
0

C" . (This map is definitely not smooth, in fact it is not even a

e

locally Lipschitz mapgt)

(c)' More generally, the map

y)
o5y 0% L

M, YN =

(d) Qs is a topological group.

Remark. (d) follows from the other parts of the theorem because of

the following lemma of Montgomery [1]:

Lemma. Let G be a group that is also a topological space. Assume

further that G 1is a separable, metrizable, Baire space and multiplication

in G 1is separately continuous. Then G 1is a topological group.

We shall not prove (a), (b), (c)', here since we have already
given the basic ideas involved. The proof may be found in Ebin [1].
Another useful fact proved by Ebin is that if 17 is an HS map with
a Cl inverse, then the inverse is g° . This is analogous to what
one has in the Ck inverse function theorem (Lang [2]). These results
kto

also extend to the Lg and C spaces; cf, Bourguinon and Brezis

[1] and Ebin-Marsden [1].

% That it cannot be locally Lipschitz follows from an example given by

T. Kato. See the footncte on page 118.
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QS as a "Lie group".‘

QS is not precisely a Lie group, (since a left multiplication
is continuous, but not smooth) but it shares some important Lie group
properties. If we were to work with § = 9 , we would have Lie group,

but not a Banach manifold,

In general if G 1s a Lie group and e € G is the unit

element, then the Lie Algebra J of G may be identified with TeG
8 s s s .

Hence, Te£ (M) = 3"(M) =H (TM) = H vector fields on M (recall
members of TeQS(M) cover the identity map on M) serve as the Lie
algebra for QS . Since right multiplication is smooth, we can talk
about right invariant vector fields on 9% . By the w-lemma, if
X € Is+£ , the map X . NeX o N is a C)6 map from 2% to

T@s (£ > 0) ; in particular X « M &€ T QS and so it is a vector

U

field on o . In fact X is a right invariant Cﬁ vector field

on 0% (i.e., (R y =% o7 for €0 and X. = X(0) GTC;S)S)

n g s c

o %
Conversely if X 1is a right invariant C vector field, then

)« X

+£

%fe) e x° In fact the right invariant C'a vector fields are

, . s+4 . . . s .
isomorphic to % by evaluation at e , and in particular Te$ is

isomorphic to the C0 right invariant vector fields.

For 4 > 1 , there is a natural Lie bracket operation on the
£
C right invariant vector fields on QS . This defines the bracket
operation on the corresponding members of TeQS(M) . We now establish

that the Lie algebra structure of 9° 1is the usual Lie algebra

structure on the vector fields.,
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Theorem. Let £ > 1 and for X , Y € Hs+£(TM) , let X and ¥ be

. s
the corresponding right invariant vector fields on £ . Then

~

(X, §je = [X, Y] , the usual Lie bracket of vector fields on M .

Proof. Recall that locally [X, Y] =DX +» Y - DY « X (where DX 1is

the derivative of X ; cf. lecture 1. However, as shown above, for

Y o T , so in particular since

e ,X(M =X T and Y(T)

W « X =TY « X we get f§,1§]e

(DX + ¥ - DY - %, = DX(e) + Y(e) -
DY(e)X(e) =DX » Y - DY » X . [

Note since DX » Y € HS+%_1(TM) , we really cannot put this

s +
bracket on Teﬁ = %° and none of the @S ﬁ(TM) are Lie algebras
since they are not closed under the bracket operation; one would have

o]
to pass to § =9

For any Lie group G , there is a standard exp map from [
onto a neighborhood of the identity e in G . If X € g , there is
a unique one parameter smooth subgroup ¢ in G (i.e., c(t+s) = c(t) =
c(s) and ¢(0) = e) such that ¢'(0) =X . 1In this case X 1is the
infinitesimal generator of ¢ ; ¢ is the solution of c¢'(t) =‘§(c(t))

where X 1is the right invariant vector field equaling X at e

Define exp(X) = c(1)

If G has a Riemannian structure, then there is another map
E§E : 7 -G defined (as above) by following geodesics instead of
subgroups. If the metric is bi-invariant (i.e., if g = (gij) is
the Riemannian metric, then for a € G , (Ra)“(g) = (La)“(g) = g)
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then it is easy to show the two exp maps coincide.

s . .
In the case of 8 , we will construct a metric that is
right invariant, but not left invariant, and so the two exp maps will

in general be different.

Actually 98 (and Q;) have no bi-invariant metrics.
(Indeed, as in Sternberg [1], a group G has a bi-invariant metric iff

the image of G wunder the adjoint map is relatively compact.)

Let X € TeQS . Then X € HS(TM) XS and therefore has a
flow Ft (Ft(m) is the integral curve of X starting at m) . This
is a one parameter group Since Fs+t = Fs ° Ft . Since M 1is compact,
Ft is defined on all of M for all t € R . (Flows of Cr vector

fields on compact manifolds are always complete.)
Let us argue that we should have

exp X = F1

where exp 1is the (right) exponential map on £ . Indeed we need to

show Ft is an integral curve of X defined above. But

SF (m) = X(F (m))

S ~
Hence Ft is an integral curve in o of X . This justifies us in
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saying that exp X = Fl

Actually it is not obvious that Ft € QS ; i.e., the flow
of an HS vector field is Hs . (This, of course, is well-known in
the Ck case -- see lecture 1.) However the H° version is also
true. See Ebin-Marsden [1], Bourguinon and Brezis [1] and Fischer-

Marsden [2] for proofs.

So via this theorem and the remark that FO = id , we have

a sort of Lie group exponential map from TeQS(M) into a neighborhood
of identity, X p;Fl . It is natural to ask why not use this exp

map to directly define charts on QS(M) . We cannot do this because

it is a fact that exp does not map onto any neighborhood of the identity
in QS(M) . This is equivalent to saying that there are diffeomorphisms
near e not embeddable in a flow, In other words for any neighborhood
U of e in §° , there is T € U such that there is no flow Ft

with F1 =T . In fact T will not, in general, have a square root.

Explicit examples have been given by several people such as Eells and

Smale. One is written down in Omori [1l] and in Friefeld [11].

A : s .
A consequence of this is that the exp map on Teﬁ is not
1 P . .
C” , for if it were, it would be locally onto by the -inverse function

theorem.

Volume Preserving Diffeomorphisms.

For now let M be a compact Riemannian manifold without

boundary. (The boundary case is done below.) TLet y be the volume
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form given by the metric on M . Recall from the introduction that
0% = (f € ﬁs‘f*(u) =y} . We shall show that @: is a smooth sub-
u .

manifold of @S

Recall that if £ : P - Q 1is a smooth map between manifolds,

f 1is a submersion on a set A C P if Txf : TXP - T is a

£()%
surjection, for each x € A and the kernel splits. e showed in
lecture one that if P , Q are Hilbert manifolds and f : P - Q 1is

a C map, then for g€ Q , £ "(g) 1is a ¢” submanifold of P s

if f 1is a submersion on f-l(g)
We shall need the following:

Lemma. Let A be an n-form on M such that -Eﬂk =0 . Then A 1is

exact; A = dy for an n-1 form o .

This is a special case of de Rham's theorem, stating that a
closed form is exact if all its periods vanish. For the proof, see

for example Warner [1]. A discussion is also found in Flanders [1].

Theorem. Let s > (n/2) + 1 . Then 0° is a closed C sub-
theorem. Let aen &, 183 ¢f088C sub

manifold of QS

Proof. TLet y be the volume form on M . By the Hodge theorem,

[M]S =u + d(HS+1(An_1)) is a closed affine subspace of HS(An) ,

being the tramnslate of the closed subspace d(HS+1(An-1)) by u

Define the map
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¢ 0 05 S [l

T s N
Now Ty € [pd]S since

r , r .
J =) = - MR =0
M

M M
Hence p - Ty = do by the lemma. By the w-Lemma, one can easily

[==]

see that ¢ is a C map. Now ®S+1(M) = w-l(u) , so if ¢ is a
Mo

+1
submersion then @j M) 1is a Cco submanifold of QS+1(M)

We shall show this at e £ QS(M) (e 1is the identity map).

s+1

Tt turns out that Tew(X) =1 where X € TeQ (M) . Indeed let

W
ﬂt be a curve tangent to X , such as its flow. Then

T H(X) = (d/dt)ﬂﬁult_o which is indeed the Lie derivative. Using the
"magic' formula L = diXM + ixdi for the Lie derivative and the fact

that dy, = 0 , we get

= = di
Telb(X) LXLL ].XM

Hence to show Tew is a surjection, we only need .show that

+1 +1 . n-1
(ig:xer ™) =u" "
X e
=% and * is a bijection between n-1 forms and l-forms.

Hence Tew is onto. Similarly T is onto. []

nﬂf

However this last step in the proof only holds if p 1is a
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(nowhere zero) n-form or a closed nondegenerate 2-form. This remark
allows us to show that the diffeomorphisms that preserve a symplectic
form form a submanifold of the diffeomorphism group using the same

sort of argument.

It follows from the basic connection between Lie derivatives
and flows given in Lecture one that a vector field generates volume
preserving diffeomorphisms if and only if it is divergent free. In
our context this means Teﬁj(M) = (X € QS(M)lgi = 0} . This is clearly
a subspace of TEQS(M) and in fact Te%j(M) is closed under the

bracket operation, in the same sense as TeSS(M) (see page 92 above).

Manifolds with Boundary.

Suppose M 1is a compact, oriented, Riemannian Manifold with
smooth boundary. Let M be the double of M , 1.e., M is two
copies of M with the boundaries identified, with the obvious
differential structure. Now M is a compact, oriented, Riemannian
manifold without boundary and M has a natural imbedding in M. We

have the manifold structure of HS(M,/E) by our above work. Clearly

9°m c u®M, M) and in fact:

Theoren. SS(M) is a C submanifold of HS(M, ﬁ}

Sketch of Proof. Briefly, we put a metric on M such that oM cM

is totally geodesic. Then let E : THS(M,‘ﬁ) —aHS(M,‘ﬁ) be the

exponential map associated with this metric.

Let M € ﬁS(M) c HS(M, ﬁ) and choose an exponential chart
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E: UC TnHS(M,/ﬁ) ﬂaHS(M,‘ﬁ) about T . Also we should have

TnQS(M) = {X € HS(M, ™)X covers T and

X(x) €T M for all x € 3M}

(=)
which is a closed subspace of

s ~ s ~

H'(M, TM) = TH (M, M)

s
Since oM 1is totally geodesic, E takes U N T.8 (M) onto a

M
neighborhood of 1 in SS(M) . See Ebin-Marsden [1] for details, LI
s
By inspecting the above argument we see TeQS(M) = {H vec tor

fields on M that are tangent to M} . Formally, this is a Lie

algebra in the same sense as we had when M had no boundary,

Theorem. If y 1is the volume on M and QS(M) is the set of

8 .
volume preserving diffeomorphisms, then QS(M) < (M) 1is a smooth

submanifold.

This is proven as in the case that M has no boundary,
This proof works here because we have the Hodge theorems for manifolds
with boundary. The rest of the material from the no boundary case (such
as the o and w-lemmas) carries over to the case when M has a
boundary, For the non-compact case, see Cantor [1,2].

If M has boundary, then HS(M,M) will not be a smooth

manifold, but will have "corners'"., Thus it is interesting that

nevertheless, QS(M) is a smooth manifold,
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ropology of the Diffeomorphism Group.

For topological theorems we can work in Q(M) = Qm(M)
Indeed it follows from very general results of Cerf [1] and Palais [3]
that the topology of o®  and N are the same; one uses the fact
that the injection of £ into ﬁs is dense. The first theorem in
this field was proven by Smale [1] in 1959. He showed that Q(Sz) is
contractable to SO0(3) ; here 52 is the 2-sphere, and S0(3) 1is the
special orthogonal group on R3 , which we can regard as the (identity
component of the) isometry group of S2 . This theorem was extended
to all compact 2-manifolds by Earle and Eells [1] and to the boundary

case by Earle and Schatz [1].

It is fairly simple to show that Q(Sl) is contractable to

S0(2) . The following argument is based on a suggestion of J. Eells.

First fix s € Sl . Let 6 : [0, 1] —>Sl be a parameteri-

zation of Sl such that 6(0) = 6(1) = s . Now let f be a diffeo-

morphism that leaves s fixed. Then the map

he(t, x) ¢ [0, 1] X st st

ceeroo + (-0 a0 x £ s
(t, x) Hi
s

is an homotopy from f to id 1
S
1 1 .
Suppose g : S 5§ maps s to g(s) # s ; then there is

. 1 1 .
a rotation r : S 5 8 that carries g{(s) to s and therefore
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reg(s) = s . Hence, by the above argument rog is homotopic to the
identity. Therefore g 1is homotopic to r-1 , which 1is, naturally,

also a rotation. ||

For dimension 3 the situation is much more complicated and
little is known. The work of Cerf [2] seems indicative of the
complexity. Antoneli et al. [1] have shown that if M has high
dimension Q(M) will not have the homotopy type of a finite cell
complex. Various people have also been working towards showing Q(M)
is a simple group; cf. Herman [1]}, Epstein [1] and Herman-Sergeraert
[1]. This result was actually known to von Neumann for the case of
homeomorphisms. It has recently been announced for £(M) by W.

Thurston.

Another important result in this field is that of Omori [1].
He proved that for any compact Riemannian manifold without boundary
N(M) 1is contractable to £H<M) , the set of volume preserving diffeo-
morphisms. In fact if V = {v € cm(An)’v is nondegenerate, positively

. r ®© n ©
oriented and Y = QWL} (C (A7) are the C n-forms) then RQ(M)
is diffeomorphic to © x ¥V . This implies Q(M) 1is contractable
" ,

to £M<M) since V is contractable to pu . (In fact V 1is convex.)

The proof that H(M) =~ QM(M) X ¥V uses an important result of Moser [1].

Theorem. [Moser]. If on a compact manifold M , there are 2 volume

elements y and v such that ﬁMv = IM“ , then there is map f € (M)

such that f¥*(v) =
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We formulate the results following Ebin-Marsden [1].

Theorem. Let M be compact without boundary with a smooth volume

element y

Then £ 1

convex),

Lemma. Th

Let
r r
V:{\)ECOO(A“)[\)>O,J\)=;:M}
M M
s diffeomorphic to ® X V . 1In particular (since V is
" x5

0 is a deformation retract of @
1

For the proof, we begin by proving Moser's result.

ere is a map ¥ : r® L 0° , 8> (n/2) + 1 such that

S

s-1

wu R N 1 , wu(n) = M*(u) satisfies wuox = identity. Further,
x:V 59 isa C map.

Proof. For v €V, let v =tv+ (l- By ,so that v ¢ v®
Since »ﬂi = Iv , we can write, as before, 5 - v = do . Define Xt
by iXtVt = o so that Xt € HS(TM) . Let ﬂt be the flow of Xt s

S
S0 6 ég

Define y(v) = ﬂil . We want to show that ni(vt) =4

by showing d/dt(ﬂ%(vt)) = 0 . 1Indeed, we have, from the basic fact

about Lie

Note that

derivatives
d Sa ate d_
acMEve)) = nE(th\)t T
= ML v - - V)
t
= ﬂi(da -pt+tvy =0 . [
X 1s canonically defined, given the Riemannian metric on M .
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Proof. Define & @M XV -8 by &L, v) = fex(v) . Then

-1 ' -1 . .
8 M = (MoN*) () , N*(p)) as is easily checked.
This can be generalized to the boundary case as well.

The basic technique used here is essentially the same as

that used in the proof of Darboux's theorem in lecture 2.

It is also possible to study other groups of diffeomorphisms.
For example, let M be a compact manifold and let G be a compact
group. Let @ : G XM M be a group action, and let @g(m) = 8(g, m)

Set

8500 = (0 € 8°an|Nes, = & M)

This is a subgroup of QS(M) , & ¢~ submanifold and has "Lie

algebra®
TEQ;(M) = (ver s’ |v commutes with all
infinitesimal generators of &}
Of course, we can also take QS as(M) = QS(M) N QZ(M) . Since this

intersection is not in general transversal, it is not obvious that
QM @(M) is a submanifold., Tt is true, but requires some argument
3

(Marsden [7]). The group Q: @(M) is important in the study of flows

3
. . . . 3
with various symmetries (e.g., a flow in R that is symmetric with

respect to a given axis). Also, in general we find that dim(ﬁé(M))

and codim(Q@(M)) are both infinite so Frobenius methods do not work



-103-

(Leslie [2] and Omori [1, 3] have shown that if g 1is a Lie sub-
algebra of Teﬁ with finite dimension or codimension, then ¢ comes

from a smooth subgroup of ¥)

The metric on QS

It follows from the results we established above that the
tangent space to QS(M) at a point T € 0% is given by
T QS(M) = {X € HS(M, TM)]X covers T, G(Xoﬂ_l) =0, and X 1is

n
parallel to ?M} . Note that if X € TnQS(M) then Xoﬂ_l is a
ol
vector field on M . 1If we are working on 2%  then the divergence
condition 6(X°ﬂ—1) = 0 1is dropped, so T 9° consists of H° sections

U
parallel to M which cover 1

Let M be a compact Riemannian manifold m € M and let
< > be the inner product on TmM . Now we put a metric on QS(M)
as follows: Let T € SS(M) and X , Y € TnQS(M) . Then X(m) and

Y(m are in T M . Now define:
(m) N(m)

(X, V) = JM<X(m), T (m)>p gy G ()

. . . s ! s
This is a symmetric bilinear form on each tangent space TUQ of

8
87 (M) . By restriction it also defines a symmetric bilinear form on

each tangent space of Si

The norm induced by this inner product is clearly an L
norm and hence the topology it induces is weaker than the 1° topology

on each T QS(M) . Thus, in the terminology of lecture 2, ( , ) is a

7
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weak metric. It is important to allow weak metrics although most
definitions of Riemannian manifolds exclude this (as in Lang [1]).
Also, recall that this is the physically appropriate metric for

hydrodynamics, since for X € T QS(M) , 5(X, X) represents the total

i
kinetic energy of a fluid in state T and velocity field v = Xc’ﬂ.l .
So finding geodesics is formally the same as finding a flow satisfying

a least energy condition. (This is the connection with variational

principles or least action principles in fluid mechanics.)

This metric ( , )ﬂ just constructed is smooth in this
sense: If B(Tnﬁj, ani) is the vector bundle of bilinear maps over
the tangent spaces of QS(M) (i.e., if gn € B(Tnﬁj, Tnﬁj) then
gy TﬂQS(M) X THQS(M) SR is bilinear), then the map T ( , )y is
a section of this bundle, and to say the metric is smooth is to say
this section is smooth., (Here each fiber of B(Tnﬁj, Tnﬁj) has the

standard topology put on bilinear maps on banach spaces, and one

constructs the bundle as in Lang [1], Ch. ITI, §4.)

Note. It is not always true that a weak metric yields geodesics. For
example, suppose M # ¢ . Then on QS(M) , this weak metric would
yield geodesics which would try to cross the boundary of M . We shall

see this in more detail below.

The Spray on Qi

S
We now wish to construct the spray on QM corresponding to
the metric ( , ) . Recall from lecture 2 that this means finding the

Hamiltonian vector field on T@S corresponding to the energy
M
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K(X) = 5(X, X) . Assume

Theorem., Let Z be the spray of the metric on M . Then the spray

of (,) omn QS(M) is given by
= s 2,8
Z: TR ST () 5 XisZoX

We shall just make the result plausibiz, leaving details to

the reader. See also Ebin-Marsden {1} and Eliasson [1].

. S . . 8 .
Note, As with T® , it is not hard to see that TX(TS ) consists of

2
Hs maps Y : M > T M which cover X ; i.,e.,, such that Ty e Y =X,

2
1t TM —-»TM 1is the projection, The spray Z satisfies
Ty e Z = identity, since Z 1is a vector field., Thus Z(X) € TX’I‘ADs

where 17

so Z 1is indeed a vector field on TQS .

The idea behind the proof is to realize that we can explicitly
write down what should be the geodesics on SS(M) . From the
construction of charts on @S(M) , there is the map exp : TQS(M) —>£S(M)
where EQE(X) = expeX and exp : TM - M 1is the Riemannian exponential
map on M . First we assert that for X € TeQS(M) , the geodesic on
QS(M) through e 1in the direction X is’given by t > exp(tX)

What this geodesic looks like is seen by considering any m € M . Then
t 4 exp(tX) (m) = exp(tXm) is the geodesic starting at m in the
direction Xm . So exp(tX) represents all of the geodesics on‘ M

in the direction of the wvector field X evaluated at m € M . Now

in general , as t increases it is likely that some pair of geodesics

will intersect. Say this happens at ¢t = to . Then exp(tOX) is not
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a diffeomorphism. Hence even if M 1is a simple manifold (like the

flat 2-torus), QS(M) is not geodesicly complete.

. s
If we can show t > exp tX 1is a geodesic on £  , then the

formula for Z follows at once, since for each m € M , v(t)

(d/dt)exp(tX(m)) satisfies (d/de)v(c) = Z{(v{£)) , and v(0) X(m)

Hence it suffices to establish our assertion concerning the geodesics

s
on #

Of course a fundamental property of geodesics is that they
locally minimize length. Suppose we have a family of geodesic curves
t e M(t)(m) , starting at m € M , where for tO €R, t0 near 0 , the
map m &;ﬂ(to)(m) is a diffeomorphism so that ¢t paﬂt is a curve in
0% . Then since the length of a curve in @S(M) given by our weak
metric is the integral over M of the lengths of each curve,
t %aﬂt(m) , this integrated length is also minimized. Hence it is
reasonable that ¢t g N(t) should be a geodesic on QS(M) . The

curves t ey exp(tX)(m) have all the above properties so t &> exp(tX)

should be a geodesic on QS(M) . This concludes our justification

- o

Corollary. 7Z is a C vector field on TQS

[e)
This is a consequence of the omega lemma since Z 1is a C map .

Let us consider a simple example. Let 72 be the flat 2-torus.

Then T(Tz) 2 72 X R2 is also a flat 4-manifold and T(TTz)E (Tz X Rz) X

(R2 X RZ) . In this case the spray for the flat metric is given by
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Z 0 T(TY) S T(TID) ¢ (x, V) e ((x, V), (v, 0))

The x 1in the first coordinate is just the base point of the tangent
vector in TTZ . The v in the third coordinate is an important
formal property of sprays reflecting the fact that the geodesic
equations are "'second order" (see Lang [1]) and the 0 1in the last

coordinate reflects the fact that the metric is flat, hence each
i —
jk -
m + tX{m) (where X € TeQS(Tz) and using the obvious identification).

T 0 . 1In this case the geodesics are of the form 7M(t)(m) =

These are straight lines and hence QS(TZ) is "flat®, TIn general,
. 1 .
in coordinates x = (X, ..., xn) on a manifold M , we have

2(x, V) = ((x, 9, (v, ~Tilv)

We now consider the metric for QS(M) C:QS(M) . Even if
NS(M) is geometrically relatively simple, as above for Tz . ﬂi(M)
may be geometrically very complicated. C(Consider the above example,
It should be clear that the diffeomorphism specified by having each
point moving along straight lines is generally not volume preserving.
So requiring each point on a geodesic in QS to be volume preserving
must introduce some curvature., In fact the curvature of the space

@j is rather complicated. For M = 72 it is worked out in Arnold [1].

Suppose S 1is a submanifold of a Riemannian manifold Q
such that we have an orthogonal projection of T Q onto T S for each
P P
p € S . This gives us a bundle map P : TQ r S » TS {(where

™ s =(v € TpQ|p € 58}) . This is of course the situation we have
) P
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for @:(M) as a submanifold of QS(M) where the projection is given
by the Hodge theorem (i.e., we project onto the divergent free part
of X for X E€ TeQS(M)) . In this situation, the following tells us

how to put the spray on the submanifold.

Lemma. If Z 1is the spray on Q then TPoZ 1is the spray on S

This is a standard result in Riemannian geometry, see e.g.
Hermann [l]. A proof using Hamiltonian theory may be found in Ebin-

Marsden [1].

Now Z 1is a vector field on TQ as is TPeZ omn TS
However their difference, say h , can be identified (technically by
means of the vertical lift -- see below) with a map of TS into
TQ F S , which turns out to be (the quadratic part of) the second
fundamental form of S as a submanifold. Specifically for v € TS ,
h(v) 1is the normal component of v,V ; see Hermann [1] or Chernoff-
Marsden [1] for details. Thus this difference h 1in the sprays tells
us how curved S 1is in Q . (More exactly the curvatures on Q and
on S are related through this second fundamental form by the Gauss-

Codazzi equations; cf. Yano [1l], p. 94 and lecture 9.)
Define

S s
P 0 THTGD T8N

by carrying a vector field to its divergent free part. As we mentioned

. 2 . . A
above, this is an L orthogonal projection as it is orthogonal for the
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weak inner product on TeQS(M) . We define for X € THQS(M) H

S
N €8 0D

-1
Pp(X) = (R (X))o

This makes P right invariant and is correct since the metric on

s . . . .
9§ (M) 1is right invariant as we now show
&

Proposition.

(i) Let T € 9°) ; then (Rp)sX, = X ol (vhere ¢ € 9300

g

. S S
(Rﬂ)* : ngg (M) —>Tgonc\9 (M)
(ii) If 7€ mi(m) then ((Rp)eX > (Rp)xf) . op = (X, D,
where X , Y € TQQS(M)

Proof. Part (i) has been used before and is easily seen. We will

show the second part. Let 1 € Q:(M) ; then:

Ry R0 oy = (KoM, YoT)

" XeT(my , YeT(my>

du
Iu £oT(m)

-1 *
o L Y ()R
1)

But, since ﬂ_l is volume preserving, (ﬂ—l)*(du) = d; and ﬂ—l(M) =M .

Hence

" x(my, Y(m)>
“M

((Rp), X5 (Rp),Y) cm®

= (X, Y)Q . g
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. 3 . . . .
Note that the metric on & is not right invariant.

Putting all this together we can write down the spray S
on Q;(M) . Namely, for X & T@i(M) we have 8§(X) = TP(Z(X)) = TP(Z°X)
There is a major assumption in writing down this formula., When we
write TP , we assume P 1is a c® map. This is not at all obvious
since if X € TnQS(M) , we compose X with ﬂ—l , project, and then

s s .S .
compose with 7 . As we have seen, composition of H maps is not

smooth but is at most continuous. However, we have

Theorem. P 1is a Cco bundle map. That is P : T@S(M) r @S(M)A%
- - K

TQS(M) is ¢ . Hence the spray S on Si s S(X) = TP(ZeX) , is
o s
also a C vector field on TQM
For a proof see Ebin-Marsden [1]. There is an alternative

and perhaps simpler proof to the one in the aforementioned paper. 1In
this proof one defines another metric on TQS(M) ; namely for

X , Y€ TeAQS(M) , set

=&+ e, 0%

where ( , ) is the L? metric on TeASS(M) , and A is the

Laplacian. Then extend ( , )S to make it right invariant.

It turns out that this metric is smcoth and by regularity
. . . s .
properties of A 1is equivalent to the H metric. Smoothness facts
like this again are not obvious but are proven in Ebin [1]. These

facts are also useful for other purposes. The Hodge decomposition is
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then easily seen to be orthogonal in this strong metric ( , )S and

hence it follows automatically that the projection P is smooth.

This result is important for we are going to apply the Picard

theorem from ordinary differential equations to the equation:

dXt

dt

S(X,) = TP(ZeX )

and this requires that S 1is at least a Lipshitz map.

In case M has boundary, we do not get a spray on 9° , but
we do get one on QS . This is basically because P projects from
vector fields sticking out of M , onto vector fields parallel to
OM . We shall just accept as plausible that this extension can be

made.,

As mentioned earlier, it is unknown whether QE(M) is
geodesically complete. (By Arnalds theorem, this is the same thing as
saying solutions to the Euler equations go for all time, and remain
in HS) . Note that this is not equivalent to saying the induced

distance metric is complete since the metric is only weak. In fact

QS(M) is not complete in this distance sense since the completion of

My

QE(M) under an L2 topology is much larger than @S(M) . (Presumably
it consists of a class of measure preserving maps from M to M .)

Derivation of the Euler Equations.

To show geodesics in Q:(M) satisfy the Euler equations, we
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need to know a bit more about T2M . Let m: T »M be the projection
2 %ﬂ . . .

so that Tm : TM - ITM . An element w € T is called vertical if

Tm(w) = 0 (in coordinates this means the third component is 0)

Now let v , w € TmM ; define the vertical left of w with respect

to v to be

£ 4 2
(@), = g(v + tw)|t=0 €T M= TV(TM)

In coordinates this is simply

0 = m, v, 0, W

The proof that geodesics in Qi yield solutions to the
Euler equations essentially is calculations. The idea is to show that

if a curve Xt € ™0° satisfies the spray equation
v

S
T = S(X) , X € T@M(M) ,

then Xt gives rise to a solution to the Euler equations in a sense
explained below. For alternative proofs, see Arnold [1], Marsden-

Abraham [1], or Chernoff-Marsden [1]; see also Hermann [1].
Lemma. Z(X) = ZoX = TXoX - (VXX)i for X € Teﬁs

Proof. 1In coordinates
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Now
(o)t =) %3 oo (mxex - (vx)) T = - 0 b x3x®
- 3x X .0 K
| ik

This then puts the right expressions in the fourth component. Ul

Note that both TXeoX and (¥ X)'e are elements of T_®
X X X u

The latter is by construction of the vertical 1lift. To see this for
2
TXeX , let ™ot T™ —» TM be the projection; then since nlcTX = Xorr

we have

TrloTXOX = XomreX = X

since TmeX 1s the identity.

As we have observed, the map X g5 ZoX (for X € TQS(M)) is

C” . Hence even though TXeX and VXX are only Hs_1 , their

difference must be HS

Lemma. Let ¢ and X be in T SS(M) then TP[(O)i] = (P(o))i

l

Proof. Since P 1is linear on each fiber and P(X) =X , we get

(P(0)) gy = qE(PCO + R |

d
= P(X + tc)[t=0

= TP(gE(X + tc))l (chain rule)

t=0

- (e}l . O
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Lemma. Let T € Qi and X € TnQS(M) ; then TP(T(XOﬂ_l)OX) =

(r(p,[xon 1)) ox

_1 .
Proof, XoT is an Hs vector field on M . Let Ft be its flow

(or any curve tangent to X). Let Gt = (XO’ﬂ_l)OFt . Then GO = XoT

and (G /dt) = T(Xon'l)o(xon'l) . Thus we get

TP(T(Xon'l)o(xon'l)) = gEP(Gt)[tzo (chain rule)

d -1
= PN D FI g
= 2(p_(x=1 1)) e(xen™h
. . , -1 -1 -1 -1
But by right invariance TP(T(XeT ")o(XeT 7)) = TP(T(XeT “)oX)°T . O

P s .
Proposition. The spray on Tﬁu is given by

-1 , v Iy s
S(X) = T(XeN ")oX - (PevXon_lxon el where X € THQM(M)

Proof. This follows directly from the above lemmas. []

So now that we have an explicit formula for the spray, let
us inspect the Euler equations. Recall that theée describe the time
evolution of the velocity vector field on M . The equations are
written out in Eulerian coordinates and are equations involving elements
of TeQS(M) . The spray on the other hand is a map on all of TﬂS(M)
The integral curves of the spray are the velocities written in Lagrangian

coordinates. So if Xt SN QS(M) is an integral curve of the spray,

e

we wish to show that the pullback of X_ , i.e., xton;l € TGQS(M) , is
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a solution of the Euler equations. Let us recall that the vector
field w(t) = Xt°ﬂ;1 is justified as follows. We want ﬂt to be

the flow of v , so this means that
d
N0 = v (1 ()

Since we are dealing with geodesics and hence (d7)/dt) =X , we get

-1
desired relatio =X o
the ire ion v, ‘ ﬂt .

It turns out, as we shall see momentarily, that the derivative
loss of the Euler equations occurs in this pullback operation (or

"coordinate change").

We are interested in computing (dv/dt) , and so we need

this lemma.

Lemma. We have:

dx
dv(e) _d o ool ot -l =l -
dt dt(xt nt ) = dt nt: TXt Tﬂt Xt nt :

Proof. This follows by differentiating both places & occurs, using

the chain rule and the formula
d -1, -1 dan -1
atle ) = "M o qe ° T

The last formula follows from the chain rule applied to

So, putting this together, we get:
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|

-1 -1 -1
S(X)eMy = T(X oM DX o

Now using the previous formula for S(X) , this becomes

4
= —(Pevvv )v . Note especially the cancellation of the Tvev terms
which has occurred, But as we recall P (V v ) =V v_ - ¥p where
e vt t Vt t t
p 1s a smooth function. We can identify P (V v )'6 with P (V. v )
e Vt t'v e vt t

(since dv/dt really stands for its vertical 1ift) and hence get the

Euler equations

or

dvt
-— + V =V
v vt P

dt t

(The minus sign on the pressure can be recovered by using Py .} Thus

we have proved:

Theorem. If Xt is an integral curve of the spray on Qi , 1ts

pullback v, = Xtoﬂ;l does satisfy the Euler equations. In other

words, ﬂt is a geodesic on Qi iff its velocity field satisfies

the Euler equations.

By inspecting the above calculation it becomes clear where
the derivative loss occurs. If X 1is an HS vector field on M ,
we know S(X) is an 1° vector field on TM . However it is the
sum of two Hs_1 vector fields on TM . The top derivatives cancel,

but when this is pulled back to Eulerian coordinates one of these terms
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disappears, namely TXtOX and so what we are left with is one of the

s-1
H summands .

All of the above goes through for manifolds with boundary
since the Hodge theorem projects vector fields at the boundary onto

those which are tangent to the boundary as mentioned before.

As a consequence of these calculations we have this theorem,

mentioned earlier.

Theorem., Given Vo € TeQS there is an ¢ > 0 and a unique vector
o

field wv(t) € TeQS for -e < t < e which satisfies the Euler

equation. Moreover, these solutions . depend continuously on the

initial data Y

Proof. TFor the existence part of the theorem it is sufficient to find
short-time solutions to the geodesic spray on Q:(M) . But since QS(M)
is a Hilbert manifold and the spray is smooth the existence follows
immediately from the existence theorem for Cr vector fields on

Banach manifolds (see lecture 1).

The continuous dependence on initial conditions follows

from the fact that the pullback v = Xtoﬂ;1 involves left composition

so it is continuous (but not smooth). The initial condition for the
. S . . .
spray on 8 (M) 1is an element of TQQM(M) since we are interested in

flows in 8 (M) starting at the identity. [

T vt »

This existence theorem has been proved in weaker forms by
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Lichtenstein {1] and Guynter [1]. The general case of manifolds with

boundary is due to Ebin-Marsden [1].

The flow in Lagrangian coordinates is Coo . In Euler
coordinates, let Et(vo) =V, be the solution flow. Then for fixed
t, Et is a continuous map, but is probably not differentiable.*
Various smoothness properties of the Euler and Navier-Stokes equations

are important in developments discussed in the next lecture (see

Marsden [71).

The proof of the above Theorem is based on the existence
of integral curves for the spray S . This in turn follows from the
fundamental existence theorem for ordinary differential equations.
Recall that this theorem is proven by showing an iteration (called
Picard iteration) always yields solutions. So, by inspecting the above
proof it should be possible to find an approximation procedure which

converges to solutions,

This in fact, points out an essential difference between
working with the whole spray and working with its pullback Pe(vvv)
The Picard method will not in general converge for the Euler equation
as it stands. 1Indeed in practical numerical computations, one often

uses Lagrangian coordinates. (See also the next lecture.)

S
* TIndeed, Kato [5] has shown that the evolution operator Ut : H —;HS

ou u , . . .
for — + ua— =0 on R 1is continuous, but is not Holder continuous

at A%

for any exponment o , 0 <o <1
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5. Turbulence and Chorin's Formula.

This lecture is concerned with some aspects of the Navier
Stokes equations which are connected with turbulence. We shall be
beginning with a representation theorem for the solution of the Navier-
Stokes equations which was discovered by A. Chorin in an attempt to
find a good numerical scheme to calculate solutions. This scheme is
important in that it allows good calculations at interesting Reynolds

numbers. One writes the Navier-Stokes equations as

ov _ 1 . - -
St TR Av + (veV)v = -grad p

div v =20

v=0 on oM

and calls R = 1/(viscosity) the Reynolds number; if one rescales v
to Vv , distances by a factor d and time by d/V we get a new
solution with R = Vd/v . Most numerical schemes break down with R
a few hundred, but Chorin's scheme is valid far beyond that possibly
up to R = 50,000 . Our goal is to present the formula and to discuss
where it comes from and its plausibility. The second part of the
lecture will discuss some aspects of turbulence theory. This subject
is basically concerned with qualitative features of the solutions as

R —»® , The approach here follows that of Ruelle-Takens [1].

Statement of Chorin's Formula.

Let us write the Navier-Stokes equations as follows:
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~

where A = %P'A and Z(v) =—P((v-5§v) . Here P 1is the projection
onto the divergence free part discussed in the last lecture (Av 1is
divergence free, but need not be parallel to 3M , so one still requires

a P in front of Av)

Let Ht denote the evolution operator or semi-group defined
by ’Z . It exists because it is an elementary exercise to show that
A is self adjoint and < 0 on the Hilbert space LZ(M) with domain
Hé(M) . (See the parabolic form of the Hille-Yosida theorem discussed

in lecture 1). Thus Ho is defined for t > 0 , and solves 3dv/3t = Av

(This is called the 'Stokes'" equation.)

Let Et denote the evolution operator for the Euler equations

which was obtained in the last lecture.

Let Ft denote the full solution to the Navier-Stokes

equations.

Let o(v) be a potential for v ; e.g.: o(v) = dA_l(v) ,
so v = 8(p(v)) . Here & 1is the divergence operator discussed in
lecture 3. (More concretely in three dimensions, v = 7 x o(v) V)
Let d(£) be a function of £ €R , £ >0 with d(£) = IV where
v = 1/R is the viscosity of the fluid. It will turn out that

d(£) will be a measure of the thickness of the boundary layer.

[oe]

Let be a C function equal to one a distance > d(£)

gy

from JM and = 0 on a neighborhood of aM .

&y

Define the operator
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5,(v) = 8(g, 0(v) ,

we call @2 the vorticity creation operator. The reason for this is

that @z(v) equals v away from aM , but if v 1is only HBM s
®Z(V) will be zero on oM so has the effect of ''chopping off" v
within the boundary layer (we do not use By v since that is not
divergence free), Such a chopping off effectively creates vorticity.

(See the figure following.)

The formula now reads as follows:

Ft(v) = golution of Navier-Stokes equation

. n
limit (H 0d oF Y v
0 s o t/n t/n t/n

In this formula the power means iteration. For example:

) °F oH

t/3 "t/3 /3By 3oH

t/3 " t/3 R RN L

3
(Ht/3°@t/3°Et/3) v =Hi3 t/3 £/3°%¢/3°"t/3

Thus one divides the time scale into n parts and then iterates the
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the procedure: solve Euler's equations then create vorticity, then

solve the Stokes equation then the Euler equation, etc,

This is the basic method underlying Chorin's technique.
However part of the beauty of the method is the way in which he solves
numerically for Et and Ht . He uses vorticity methods for E and

probabilistic methods for Ht . See Chorin [2] for details.

In the following figurevwe reproduce one of Chorin's outputs.
The O0's mark negative vorticity and *'s mark positive vorticity.
This representation is for flow past a cylinder with R and t as
marked and initial v corresponding to parallel flow. It is a remark-
able achievement to obtain on the computer something resembling the
famous "Karmen vortex street'". (For a spectacular photqgraph, see
Scientific American, January 1970, p. 40; this is reproduced on the
cover of "Basic Complex Analysis™, W. H. Freeman Co. (1973).) Below
we shall discuss further the qualitative features of why and how such

periodic phenomena can get generated.

As is well known (Nelson [3]) product formulas are
closely related to Wiener integrals; Chorin has recently
used this idea to improve the scheme still further, as far
as computer efficiency goes, so the method 1s valid into

the fully turbulent region.

* The computer has distorted the cylinder somewhat into an ellipse.
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The interesting feature of the above formula is that the

error for lafge n is 0(1l/n) 1independent of R . Furthermore using

the formula as an existence theorem we find that smooth solutions to

the Navier-Stokes equations exist for a time interval T > 0 independent

of R as R -« and converge in Lp to solutions of the Euler eguations.

This is an important result, for it guarantees as positive
time of existence for given initial data, no matter how small the
viscosity. This is strong evidence for the existence of smooth

turbulent solutions. (See below.)

In case M = P (for example using periodic boundary

conditions) the formula reads
F.v = limit (H °F )nv
t t/n “t/n
n - ®

This formula was proven in Ebin-Marsden [1] and Marsden [5]. It
enabled us to show that as v -0 (or R — o) the solutions converge in il
to solutions of the Euler equations. (See also Swann [1], Kato [2].)
Basically this means that turbulence cannot occur if no boundaries are

present. Such convergence will not occur if M # § in topologies

stronger than Lp because the boundary conditions and the vorticity

carried into the mainstream flow will not allow 1it.

The complete proofs of these results are too technical for us
to go into here. Rather we shall confine ourselves, in the next
section, to an elementary exposition of where these formulas come from.

We shall also include some additional intuition below.
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The Lie-Trotter Formula.

et X and Y be vector fields with flows Ht and Et

Then the flow Ft of X+Y 1is given by

n

Ft = limit (Ht/naE )

0 s o t/n

Theorem. This is valid if X , Y are Cr vector fields for those t

for

which Ft is defined.

Let us give the idea (for details, see e.g., Nelson [11).

We first show Ft defined by the limit is a flow. One shows

F = FtOFS first if s , t are ratiomally related and takes limits.

t+s

Consider, e.g.: t = s

n

)

]
[}

= limit (H
n — o

2t/n°E2t/n

)2n

limit (H
n — o

2t/2n°E2t/2n

limit 2n
n oo (Ht/noEt/n)

n n

)

limit (Ht/noE
n -

t/n’ ° (Ht/noEt/n)
Next o ho dp { =X + Y Indeed, f 11
X ne shows = t(x)nt=0 = X(x) (x) . ndeed, formally,

d . .. d n
tht(x)ltso = Llimit dt(Ht/HOEt/n) X’t =0
n — o
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oHt/nD"°°oH

, .. d
limit dt<Ht/n E

n —o® t/n

limit [%(X(x)+¥(x))+,=n+ %(X(X)+Y(X))]
n - ®

X(x) + Y(x)

It follows now that Ft is the flow of X4Y since

d d
a. _ 4 f
tht(X) dst+t(X) Ys=0 .

d
= EEFS<Ft(X))[s=O

= X(F () + Y(F (x))

The above formula arose historically in Lie group theory.
It tells us how to exponentiate the sum of two elements in the Lie

algebra. In the case of matrix groups it is the classical formula:

et(A+B) -1 tA/netB/n n

)

imit (e
n -—®

Of course if [X, Y] = 0 the formula reads F, = HtoEt , but

it really is the case in which X , Y do not commute that is of interest.

The above formula has been generalized to linear evolution
equations, as in the Hille-Yosida theorem by Trotter [l], and to certain
non-linear semi-groups by Brezis-Pazy [l] and Marsden [5]. These

results can be used to establish the claims made about the Navier Stokes
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equation if 2aM = § . Indeed one takes X = Zl and Y = Z

For M # @ the composition B oE_ doesn't even make
sense (except perhaps in LZ(M) , but that is not too useful) because
Et(v) ,even if v =0 on ?M , will not be 0O on M , but will
only be parallel to 3M . The purpose of the vorticity creation

operator is to correct for this failure of the boundary conditions.

Some additional intuition on Chorin's Formula.

Consider again the formula

n
F (v) = limit (H od oE , ) v
t n t/n t/n t/n

The term Et v gives the main overall features of the flow past the

/n

boundary. Let us call it the downstream drift. Consider the effect:

drifts us downstream, then & creates vorticity near aM ,

“t/n

has the effect of diffusing this vorticity away from M

E
t/n
then H
t/n
then Et/n tends to sweep this vorticity downstream etc, The net

effect is a lot of vorticity swept downstream. This is exactly what

happens in examples such as the von Karmen vortex street.

The proof of Chorin's formula is based on a generalization of
the Lie Trotter product formula due to Chernoff [1] in the linear case
and Brezis-Pazy [1] and Marsden [5] in the non-linear case. We discuss

this formula next.

Chernoff's Formula.

Suppose K(t) 1is a family of operators, t > 0 (satisfying
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suitable hypotheses). Let X = K'(0) . Then the flow of X 1is

F(x) = limit K(e/n) 1" (%) .
n oo
This is Chernoff's generalization of the Lie-Trotter formula. We

obtain the previous formula for X+Y wusing K(t) = HtoEt

For details on the hypotheses, see the aformentioned references

and Chernoff-Marsden [1] and Nelson [1].

In applications to hydrodynamics it is important to use
Lagrangian coordinates, for as we have stressed in the previous lecture,
the Euler equations then become a ¢” vector field. This is a great
advantage in dealing with these product formulas (in the linear case it
corresponds to adding a bounded operator to an unbounded one -- a

relatively easy procedure).

For example one can give an almost trivial proof of the

formula

. o n
Et = limit (PEt/n)
n ‘

where Et is the evolution operator for %% + (ueP)u =0

whose
solution is known explicitly. A similar theorem proved using Euler

coordinates and with more effort was done by Chorin [1].

To obtain Chorin's formula as previously described, one

choos t = od o
es K(t) Ht &, Et
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calculation of the Generator.

Probably the most crucial thing in Chorin's formula is the
formal reason why K'(0) =’K + Z . TIndeed we claim that & contributes
nothing to K'(0) . This is, of course, crucial if our resulting flow

is to be associated with the Navier-Stokes equations. In the following

we attempt to show why K'(0) = A + Z with K(t) as above.

In order to see this, write

Il L

1
= 5 - - -
t(Ht”tEtv v) {[Ht@tEtv Ht@tv]

+ [Ht@ v - Htv] + [Htv - v]}

t

The first and last terms converge, respectively to Z(v) and z&
(one needs to know Ht@t is t-continuous for this). Thus the validity
is assured by the following key lemma: if v 1is suitably smooth,

v=0 on M, then in Lp s

P | _
limit - [Ht@tv - Htv] =0
t -0

Indeed, if K(t, x, y) 1is a Green's function for 7 on M

then
l(H d v - Hv)(x) = 1r R(t, x [(& 7y - 1d
G N T S » IRV - v(y)ldy
ro1
= 1 K(t, x, Y)go(M(y) - o(v)(y)ldy
M
= e, %, NIeeMY - o) () ]dy
B
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where Bt = {x € M’d(x, oM) < d(t)} . Taking into account the nature
of the singularity of K and the choice of d(t) it is easy to see

that in LP norm, the above is majorized by

C, X Sl\T [g.0(v) - w(v)]

where Ct , the Lp norm of % r dK(t, x, yydy goes to zero as
t

t -0 on account of the rapidity with which the volume of Bt goes

to zero as t -0 . This gives the formula.

The Hopf Bifurcation.

We now turn our attention to the qualitative nature of
turbulence. Actually the literature is very confusing -- a few
representative works are listed in the bibliography. However we wish
to describe a theory due to Ruelle-Takens [1] which has several very

attractive features.

Basically we want to study the Navier-Stokes equations and
let R 5= . Thus we are interested in studying dynamical systems
depending on a parameter. One of the most basic results in this regard

is a theorem of Hopf from 1942 (Hopf [1]).

In order to understand Hopf's theorem, let us review some
standard material in ordinary differential equations. For a complete
discussion of this material, see Coddington-Levinson [1] and Abraham-

n n

Robbin [1]. TLet X : R R be a linear map. Then regarding X as

a vector field on R , its flow is given by Ft(a) = etX(a) , where



-131-

(o]
t
a € R" and e X _ by (tan/n!) ; in this expression XO =1 and

" n=0
multiplication is as matrices. Let 11, ceo Ak be the (possibly

complex) eigenvalues of X ., Since X has only real entries when

considered as a matrix, the Ki appear in conjugate pairs. Clearly

t}\l txk
e s cess € are the eigenvalues of Ft
Now suppose that for all 1 , we have Re(Ki) < 0 . Then as
At
t 1increases ’e * l is decreasing and hence the orbit of a point

a € R" i.e., the curve t i Ft(a) , is approaching zero. (This is
clear if X is diagonalizable; for the general case one uses the Jordan
canonical form.) Since Ft is linear, for each t we have Ft(O) =0

In this situation, we say O 1is an attracting or stable fixed point.

th
Now if all Re(Ki) > 0 , it is clear that each Ie ll is
increasing with t , and so the orbit of a point under the flow is

away from O . Here, we say O 1is a repelling or unstable fixed point.

For the nonlinear case, we linearize and apply the above
results as follows. Let X be a vector field on some manifold M
Suppose there is a point my € M such that X(mo) =0 . Then Ft s

the flow of X leaves m fixed; Ft(m It makes sense to

0 T M

consider Dx(m TmOM —;TmOM . If Yis +e+5 ¥y, is a coordinate
system for M at L the coordinate matrix expression for DX(m

is just DX(mO) = (axl/ayj)(mo) . Now, DX(mO) can be treated as a

0’

O)

linear map on R" and the same analysis as above applies. Hence my
is an attracting or repelling fixed point (or neither) for the flow of

X depending on the sign of the real part of the eigenvalues of
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(aXl/BYJ)(mO) . However if m_  1is attracting (when the real parts

0
of the eigenvalues are < 0) , it is only nearby points which - mg  as

t 5=

To begin our study of the Hopf theorem, let us consider a
physical example of the general phenomenon of bifurcation. The idea
in each case is that the system depends on some real parameter, and
the system undergoes a sudden qualitative change as the parameter
crosses some critical point. (For research in a slightly different
direction and for more examples, consult the papers in Antman-Keller

[1] and Zarantonello [1].)

Example . (Couette Flow). Suppose we have a viscous fluid between

two concentric cylinders (see the following figure). Suppose further

we forcibly rotate the cylinders in opposite directions at some constant
angular velocity p which is our parameter, For p near 0 , we get

a steady horizontal laminar flow in the fluid. However as p reaches
some critical point, the fluid breaks up into what are called Taylor
cells and the fluid moves radially in cells from the inner cylinder to
the outer one and vice versa. Note, that the’directions of flow are

such that flow is continuous.
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In the above example, we have a situation described by
differentiél equations and at some critical point of the parameter,
the given solution becomes unstable and the system shifts to a "stable"
solution. This sharp division of solutions is the sort of bifurcation

we shall encounter in Hopf's theorem.
P

For simplicity, let us consider the case where the underlying
space is simply R2 . Let XM be a vector field on R2 depending
smoothly on some real parameter |, . Actually it is convenient to
put Xu in R3 by considering the map §,: (x, v, u) &9(XM(X, ¥), 0)
This way we can graph the flow Fi of XLL and keep track of the

parameter " . The flow Gt of X is Gt(x, Y, W) = (ﬁt(x, y), W)

Similarly, we consider Xu acting on the plane |4 = const.

Now suppose XM(O’ 0) = (0, 0) for each ypy ; more generally
one could consider a curve (XM’ yu) of critical points of X . We
can apply the analysis we developed for vector fields, i.e., for each
u » we look at the eigenvalues of DXM(O’ 0) say A(u) and X?Ej
(They are complex conjugate.) Note that the eigenvalues depend on
and by our earlier analysis of flows, we know the qualitative behaviour
of the flow depends on the sign of Re(A(u)) and Re(A(y)) (which are
equal in case A(u) itself is not real). So if we know how A(u)
depends on p then we can hope to extract some information about the
flow near (0, 0) as |, 1increases. We make these hypotheses:

Suppose Re(A(u)) <0 for p <0 and Re(A(0)) = 0 and Re(A(u))

is increasing as y increases across O . Also assume that
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A(u) 1is not real and that for gy =0 , (0, 0) 1is an attracting

fixed point for X

(perhaps with a weaker or slower attraction than when Re(A{(y)) <O ).

Now for p < 0 , we know from the above that the flow is
"stable," i.e., points near (0, 0) are carried towards (0O, 0) by
the flow, as is the case for j = 0 (only slower) by assumption,

The surprising case is the behavior for p >0

Theorem. (E. Hopf). In the situation described above, there is a

stable periodic orbit for X when 0 <y <eg for some ¢ >0
L — Lot SUmE

(Stable here means points near the periodic orbit will remain near

and eventually be carried closer to the orbit by the flow.)

So as in the example we get a qualitative change in the
stable solutions as | crosses O , from an attracting fixed point

at (0, 0) to a periodic solution away from (0, 0)

. . n .
This theorem does generalize to R where we can get tori
forming as the stable solutions (instead of closed orbits) as further

bifurcations take place; see Ruelle-Takens [1] for details.

The proof of the theorem occurs in many places besides

Hopf [1]. See, for instance Andronov and Chaikin [1], or Bruslinskaya

* See Ruelle [4] for a version suitable for systems with symmetry,

such as Couette flow.
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[3], or Ruelle-Takens [1].

Hopf's theorem is closely related to a linear model used in
physics known as the "Turing model.'" As D. Ruelle, S. Smale, N.
Kopell and H. Hartman have remarked, these sort of phenomena may be
basic for understanding a large variety of qualitative changes which
occur in nature, including biclogical and chemical systems. See for
instance Turing [1], Selkov [1]. We have examined here only one of
many types of possible bifurcations. There are many others which
occur in Thom's theory of morphogenesis (see articles in Chillingworth
[1] and Abraham [4] for more details and bibliography). Meyer [1] and

Abraham [5] are representative of the Hamiltonian case.

For applications to fluid mechanics one wishes the vector
field XM to be the Navier-Stokes equations and | to be the Reynolds
number. One is hampered by the fact that XM in this case is not a
Cr vector field (even in Lagrangian coordinates). However this
difficulty can be overcome and indeed the Hopf theorem is valid. For
details see Marsden [3], Joseph-Sattinger [1], Iooss [1l, 2], Judovich

[3, 4], Bruslinskaya [1] etc.

Moreover, an important feature is that one can show that

when a bifurcation does occur one retains global existence of smooth

solutions near the closed orbit, This is in fact good evidence in the

direction of verifying that the Navier-Stokes equations do not break

down when turbulence develops.
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Stability and Turbulence.

Shoftly we shall explain more fully the Ruclle-Takens theory
of turbulence, For now we just wish to stress the point that turbulence
appears to be some complicated Zlow which sets in after successive
bifurcations have occurrec. 1In this process, stable solutions
become unstable, as the Reynolds number is increased, Hence turbulence
is supposed to be a necessary consequence of the equations anc in fact
of the "generic case'" and just represents a complicated solution. For
example in Couette flow as one increases the angular velocity Ql of

the inner cylinder one finds a shift from laminar flow to Taylor cells

~
&

1 Eventually

or rclated patterns at some bifurcation value of ¢
turbulence sets in. Tn this scheme, as has been realized for a long
time, one first looks for a stability theorem and for when stability
fails (Hopf [4], Chandresekar [1], Lin [1] etc.). For example, if one
stayed closed enough to laminar flow, one would expect the flow to

remain approximately laminar. Scrrin [2] has a theorem of this sort

which we »nresent as an illustration:

Stability Theorem, Let D C R3 be z bounded domain and suppose the

Voo . . . .
flow v is prescribed on 2D (this corresponds to having a moving
r P § P g B

boundary, as in Couctte flow). Let V = max”vﬁ(x)“ , d = diameter of
RED
>0

D and v equal the viscosity. Then if the Reynolds number

N - 2
R = (vd/v) < 3.7, Vi is universally T, stable.

- 2 . .
Universally L stable means that ifl VE is any other
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solution to the equations and with the same boundary conditions, then

NV
t

<

the L2 norm (or energy) of - vz goes to zero as t — 0

The proof is really very simple and we recommend reading

Serrin [2] for the argument.

Chandresekar [1], Serrin [2], and Velte [1] have analyzed

criteria of this sort in some detail for Couette flow,

As a special case, we recover something that we expect.
. Y . .
Namely if Ve = 0 on 3 1is any solution for v > 0 then v: -0

. 2 . . . .
as t - in L norm, since the zero solution is universally stable.

Couette flow is not the only situation where this Taylor
cell type of phenomenon occurs and where the above analysis is possible.
For example, in the Bénard Problem one has a vessel of water heated
from below. At a critical value of the temperature gradient, one
observes convection currents, which behave like Taylor cells; cf.

Rabinowitz [1].

This transition from laminar to periodic motion (the Hopf
bifurcétion) occurs in many other physical situations such as flow

behind an obstable.

A Definition of Turbulence.

A traditional definition (as in Hopf [2], Landau-Lifschitz
[1]) says that turbulence develops when the vector field v, can be

described as vt(w . wn) = f(twl, cees twn) where f 1is a

13
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quasi-periodic function, i.e., f 1is periodic in each coordinate,
but the periods are not rationally related. For example, if the orbits
of the v, on the tori given by the Hopf theorem can be described by

spirals with irrationally related angles, then v, would such a flow.

Considering the above example a bit further, it should be
clear there are many orbits that the v, could follow which are
qualitatively like the quasi-periodic ones but which fail themselves
to be quasi-periodic. 1In fact a small neighborhood of a quasi-periodic
function may fail to contain many other such functions. One might
desire the functions describing turbulence to contain most functions
and not only a sparse subset. More precisely, say a subset U of a
topological space S 1is generic if it is a Baire set (i.e., the
countable intersection of open dense subsets)., It seems reasonable
to expect that the functions describing turbulence should be generic,
since turbulence is a common phenomena and the equations of flow are
never exact. Thus we would want a theory of turbulence that would not

be destroyed by adding on small perturbations to the equations of motion.

The above sort of reasoning lead Ruelle-Takens [1] to point
out that since quasi-periodic functions are not generic, it is unlikely
they '"really'" describe turbulence.* In its place, they propose the use
of "strange attractors.'" (See Smale [2] and Williams [1}.) These
exhibit much of the qualitative behavior one would expect from '"turbulent!

solutions to the Navier-Stokes equations and they are stable under

perturbations.

* See also Joseph-Sattinger [1].
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Here is an example of a strange attractor, Let U C R" be
open and S U - U some flow; suppose further for x € U , there is

an s € R such that ¢ = Gt(x) , i.e., = Dbelongs to a periodic

s+t(x)
orbit of the flow. Let (d/dt)ct(x)]tzo =Y _ and let V be the
affine hypersurface in U orthogonal to YX . For a small neighborhood
S of x in V , there is amap P : S -V called the Poincaré map,
defined as follows: For w & S , it is easy to show there is a smallest
P € R such that Op (w) € V.. Call P(w) = Op (w) . Now of course
one can do this for eZch point of the periodic o:bit. By doing this

one gets a map on a small "tubular" neighborhood of the periodic orbit
in U . (Here one must check that there is a neighborhood N os the
orbit such that if x € N then x belongs to a unique hypersurface
orthogonal to the orbit.) Also one can drop the condition that P be
defined about a closed orbit by requiring that the vector field be
almost parallel and everywhere transversal to a hypersurface 'V . 1In
this case one can define a Poincaré map P over the entire space U

by letting P(x) be the first intersection of the integral curve

through =x with V

In particular consider V to be a solid torus in three
space and suppose we have a flow o, on U such that its Poincare
map wraps the torus around twice. Then the attracting set of the flow
(i.e., (x € U]x = lim ct(y) for some y € U} 1is locally a Cantor

o
set cross a 2-manifold (see Smale [2]). This is certainly a strange

attractor! Ruelle-Takens [1] have shown if we define a strange attractor

to be one which is neither a closed orbit or a point, then there are
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4
stable strange attractors on T in the sense that a whole neighborhood

of vector fields has a strange attractor as well.

1f the attracting set of the flow, in the space of vector
fields, which is generated by Navier-Stokes equations is strange, then
a solution attracted to this set will clearly behave in a complicated,
turbulent manner and since strange attractors are ''geperic'", this sort
of behavior should not be uncommon. Thus we have the following

reasonable definition of turbulence as proposed by Ruelle-Takens:

... the motion of a fluid system is turbulent when this
motion is described by an integral curve of a vector field X  which
B
tends to a set A , and A is neither empty nor a fixed point nor a

closed orbit."

This turbulent motion is supposed to occur on one of the tori
k . . . .
T that occurs in the Hopf bifurcation. This takes place after a
finite number of successive bifurcations have occurred. However as
S. Smale and C. Simon pointed out to us, there may be an infinite number

of other qualitative changes which occur during this onset of turbulence

(such as stable and unstable manifolds intersecting in various ways

ete).

Since this sort of phenomena is supposed to be ''generic,' one
would expect it to occur in other similar phenomena such as the Benard
problem. (As the temperature gradient becomes very large, the flow

becomes '"turbulent.™)



-141-

Recently Ruelle [1] (and unpublished work) has shown how the
usual statistical mechanics of ergodic systems can be used to study

the case of strange attractors, following work of Bowen [l] and Sinai

[1]. Tt remains to connect this up with observed statistical properties

of fluids, like the time average of the pressure in turbulent flow.

For the analytical nature of turbulent solutions, the work

of Bass [1, 2] seems to be important.

In summary then, this view of turbulence may be phrased as
follows. OQur solutions for small | (= Reynolds number in many fluid
problems) are stable and as  increases, these solutions become
unstable at certain critical values of |, and the solution falls to a
more complicated stable solution; eventually, after a certain finite
number of such bifurcations, the solution falls to a strange attractor
(in the space of all time dependent solutions to the problem). Such
a solution, which is wandering close to a strange attractor, is called

turbulent,



~142-

6. Symmetry Groups in Mechanics.

In this lecture we shall discuss the conservation laws
resulting when one has a Hamiltonian system with symmetry. Intuitively
one should think of linear and angular momentum which arise from
translational and rotational invariance respectively. However one can
have more sophisticated conservation laws too such as those dealing
with spin, with the rigid body etc. Following these topics, we shall
explain how one can shrink down the phase space in order to eliminate
the variables which were obtained from the conservation laws. Some
of these are subtle yet very fundamental, viz Jacobi's "elimination
of the node" in celestial mechanics. Finally we shall discuss a
completeness theorem in geometry and how various conservation laws can
be used to prove it. Other completenass theorems are proved in lecture 8,

This lecture is based on Souriau [1] and Marsden-Weinstein [1].

Before beginning the actual mechanics, we shall need a little

notation and a few facts concerning Lie groups.

Preliminaries on Lie Groups and Group Actions.

Let G be a Lie group; i.e. a ¢ manifold which is also
a group and the group operations are c® . Let G denote the Lie
algebra of G ; we can think of ( either as the vector space TeG
or as the space of all left invariant vector fields on G . The latter

gives us a bracket [£, ] on  making it into a Lie algebra; i.e.

tle,nl,cl Loy &1, M0+ (M, ¢l E] = 0 holds.

Example 1, S0(3) the group of all 3x3 orthogonal matrices of
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determinant +1 is a 3 dimensional Lie group. (G = TeSO(3) consists
of the 3x3 skew adjoint matrices with bracket equalling the
commutator. This space of matrices is, in turn identifiable with R

Making the identification, the bracket is just the cross product.

2. See the example §, the diffeomorphism group, discussed

in lecture &4,

By an action (or 'non-linear representation") of G on a

manifold M , we mean a collection of mappings @g : M 5M such that

(i) égh = @goéh

and (ii) @e = identity e = identity in G

We also require (g, x) p;@g(x) to be €

Notice that if G = R , an action is nothing more than a
flow. As every flow determines a generating vector field, we are led
to define the infinitesimal generators of an action. We do this in

the following discussion.

Let & € G . Let exp £ denote the exponential of §
(This is defined as follows; let E denote the left invariant vector
field which equals & at e ; then exp tf 1is the integral curve of
E starting at e . TFor matrix groups expf = eA defined, e.g. as a
power series.) Now one verifies exp t§ 1is a one parameter subgroup
is a

of G ; i.e., exp(t+s)E = exp tE ¢ exp s§ . Thus Qexp ce
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flow on M . Let denote its generator. We call the map £ F>§M

fa

of G to vector fields on M the infinitesimal generator of the

action. One has [gM, ﬂM] = -[g, ﬂ]M .

Let G act on M and let x € M . The isotropy group of

x is, by definition:

G = (g€ c]@g(x) = x)

It is a subgroup of G
G 1is said to act freely on M 1if each x € M has GX = {e}

G 1is said to act properly on M if the map (g, x) > (%, ég(x))
of Gx M sMx M 1is proper; i.e. inverse images of compact sets

are compact.,

If G actson M and xX €M , {@g(x)lg € G} = G*x 1is the
orbit of x . These are always immersed submanifolds of M . (One
maps G/GX — G'x to obtain the required immersion.) Moreover, M 1is
the disjoint union of the orbits. Thus one can consider M/G the space

of all orbits.

oo

If G acts freely and properly on M then M/G is a C

manifold and 1 : M - M/G 1is a submersion. Let m(x) = [x] . Now

T (Gx) = (E . (0]E € G)

and

T[X](M/G) = TXM/TXG~x.
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(These facts are proven, for example in Bourbaki [1].) When we form
quotient manifolds in the sequel we implicitly assume these hypotheses.
1f M consists only of one orbit, we say that we have a homogeneous
space. Thus M= G/GX . (In general M/G 1is not a manifold; consider

sl acting on the plane; M/G is then a half ray.)

Let G act on M and on N by actions @g and Yg

respectively. A map ¢ : M - N 1is called equivariant (or an inter-

twining map) if

pod =Y of for all € G
g o Y 23

Consider now just a given Lie group G . Then there is an

action of G on € by linear transformations called the adjoint

action:

Here R and L1_ are the right and left translation maps. The

infinitesimal generator of this action is £ f;ﬁq ) §Q(C) =[g, ¢l = adE(g)

We also get an action on the dual space (% called the

coadjoint action by using (Ad _
g

1) %

The Moment Function of Souriau and Neoethers Theorem.

We now consider a general setting for finding conservation
laws. The basic results are due to Souriau [1] but were found also

in Marsden [1] and Smale [4].
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Definition. Let G be a Lie group and P a (weak) symplectic
manifold. TLet G act on P by symplectic diffeomorphisms. (It

follows that each infinitesimal generator §p satisfies di_w = 0 .)

g

<o
By a moment for the action we mean a C map ¢ : P — G*

A
W

such that if denotes the dual map from § to the space of smooth

It

function on P , i.e. @(E)(p) t(p)-€ , we have

i, w

achEy) o

i

i.e., <Tp¢°v, €> = wp(EP(p), v) for E &€, v E TpP . In other

A . .
words, each infinitesimal generator § has () as a Hamiltonian

P
function. A moment, if it exists, is defined up to an arbitrary

additive constant in G

Theorem. Let H : P -5 R be invariant under & , i.e., Hed =H

Then ¢ 1is a constant of the motion for XH ;s i.e, if Ft is the

flow of XH s wth =4

Proof. From Hed =H it follows that Hed = H and hence
— g exp tf

A
L. H =0 . But this means {@(g), H} =0 so %(E€) 1is a constant of

%

the motion., [
In order to actually compute 1 we use:

Theorem. Let G act symplectically on P . Assume ® = -d9 and the

action leaves 8 invariant. Then ¢(p)-€ = (iE 8)(p) and ¢ 1is
P

equivariant; i.e. wO@g = (Ad _1)*°w
g
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proof. Since @g leaves 8 1invariant, we have L§ 6 =0 . Hence
di_ 6 + i§ de =0
% P
i.e., i, w=di. 8
gP EP
Hence we can choose @(E) = iF 8 as required. We leave equivariance
o
p

of this formula as an exercise. [

Let us specialize further to give an even more useful formula:

Theorem, Let G act on M . Then the action lifts to one on T*M

preserving the canonical one form (this was essentially proved in

lecture 2). We have

B E =t E (), o € TM

This follows in a straightforward way from the previous
theorem. The quantities are sometimes written P(X)(ax) = @X'X(X) , X
a vector field on M and called the momentum functions. Equivariance

can be phrased infinitesimally in terms of the commutation relations:

P([X, Y]) = -{P(X), P(V)}

In examples of linear or angular momentum the conserved

quantity ¢ reduces to the usual expressions.

We can alsc specialize to TM with a given metric rather

than to T*M with the canonical symplectic structure.
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Theorem., Let G act on M by isometries, where M 1is a given

Riemannian manifold. Let V : M >R be invariant and let

H(v) = 5<v, v> + V(x) , v € TM . Then if §M is an infinitesimal

generator of the action, the function

YE(v) =<, 5, (0>

is a constant of the motion for XH

It is also useful to present a version for general Lagrangian
systems. The classical Noether theorem is a special case. Although
this follows from the above, we give a separate proof here. (See
lecture 2 for a general discussion of Lagrangian systems, and an

explanation of the notation FL .)

In this result, observe that we do allow for the possibility
that 1 might be degenerate. The only special assumption needed on

Z is that it exist and be second order,

Proposition. TLet Z be a Lagrangian vector field for 1L : TM -+ R and

suppose Z 1is a second order equation,

Let @t be a one parameter group of diffeomorphisms of M

generated by the vector field Y : M - TM . Suppose that for each real

number t , LoT@t = L . Then the function P(Y) : TM - R ,

P(Y) (v)

FL(v)°Y 1is constant along integral curves of Z

Proof. Let wv(t) be an integral curve for Z . Then we shall show
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that (d4/de) {P(Y)(v(t))} = 0 . 1Indeed, in a coordinate chart, if

(u(t), v(t)) 1is the integral curve,

SFLO(D) Y] = S0 Leu(t), v(£)¥(u()))

D1D2L(u(t), v(t))-Y(u(t))-u(t)+D2D2L(u(t), v(t))

* Y(u(t))s v(£)+D,L(u(t), v(t)) DY (u(t))*i(t)

Now the condition that Z be the Lagrangian vector field of L means
exactly that the first two terms equal DlL(u(t), v(t))eY(u(t)) (see
the results given in lecture 2,). However if we differentiate LOTét

with respect to t we obtain for any point (u, v) ,

]
1l

d
L8 (W, pE (W] o

DlL(u, v)~Y(u)+D2L(u, v)eDY(u)ev

Comparing this with the above gives (d/dt){FL(v)*Y} = 0 and proves

the assertion. D

The Reduced Phase Space.

As mentioned in the introduction, when one has a group of
symmetries, it is a classical procedure to eliminate a number of
variables in order to get rid of the symmetries. We present now,
following Marsden-Weinstein [1] a unified, as well as simplified,

scheme for carrying out such a program.

For simplicity we shall always assume the moment ¥ 1is
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equivalent with respect to the Ad _l* action. (This is not really

o
o

necessary, for Souriau has shown that one can suitably modify the

action.)

Let  be a regular value of § ; i.e., ¢ 1is a submersion

on W—l(u) , SO w-l(u) is a submanifold.

Let GM be the isotropy group of | for the G action on
G* . By equivarience, 4 (u) 1is invariant under Gu so the orbit
space Urnl(u)/G;hL is defined. ©Note also that by equivariance if
p € L‘f_l(u) and @g(p) € w-l(u) then g € Gu . We let

P = "’-1(“)/%

and call P  the reduced phase space.
"

The main result is as follows.

Theorem. ILet G be a Lie group acting symplectically on the symplectic

manifold P , w . Let ¢ Dbe a moment for the action. Let y € G
be a ~egular value of ¥ . Suppose G acts freely and properly
—_— "
on the manifold w'l(u) . Then if i : w_l(u) - P is inclusion,
o

there is a unique symplectic structure @ on the reduced phase space
— N e

P such that mw = i%y , where 1 is the projection of w_l(u) onto
b — LU & b —

P
1

To prove this we shall make use of the following:

Lemma. For p € w_l(u) we have
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(1) 1,06 p) =T (6rp) 0 Tp<w'l<u>>

and (ii) Tp(w—l(u)) is the w-orthogonal complement of Tp(G°p)

Proof. (i) Let & € G , so §P(p) € Tp(G-p) . We must show
Eo(P) € Tp(w'l(u)) iff € € (G the Lie algebra of G . Equivariance
M B
i e F = i = iff
gives Tpu ,P(p) 56*(M) , so £ ¢ Qu iff §q*(u) 0 i

Sp(P) € ker T i = Tp(v'l(u>>

(il) For E € G , v € TpP we have w(§P(p), v) = <pr-v, g>

since ¢ 1is a moment. Thus v € ker pr iff m(ZP(p), v) 0 for

all £€¢ . O

In the following proof we use the fact that if F CTE is a
. L L 4 .
subspace of a symplectic space E , then (F )7 =F where is the
w-orthogonal complement. In finite dimensions this follows by dimension

counting. It is also true in infinite dimensions for weak symplectic

forms if E 1is reflexive. We now prove our theorem.

Proof. For v € Tp(w_l(u)) , let [v] € denote the

€T P
ﬂu(P) i
corresponding equivalence class in pr-l(“)/Tp(GM°p) , so [v] = Tﬂ@.v .

The assertion m*y = i%*w becomes
bl b
wM([V]’ [w]) = w(v, w) , for all v, w € pr-l(u)

Thus w is unique. Moreover, w is well-defined because of the
1
lemma. Also w is smooth because quantities on a quotient M/G are
v

smooth when they have smooth pull-backs to M . Thus u)LL is a well-



-152-

defined smooth two-form on P
v

To show w is symplectic we first show w is non-
degenerate;  ([v], [w]) =0 for all w¢€ pr—l(u) implies
v

<

v £ Tp(G »p) by the lemma, or [v] =0 . It remains to show w is

M
closed., But from mw = iy and dw = 0 , we conclude that
v
mx(dy ) =0 , so dy =0 since Tr is surjective. O
b v b
Remarks. FEven if w = -d® and the action leaves § invariant, w

need not be exact. For ¢ # 0 , & does not project to a one-form on

Pu because G(EP)(p) = 4(p)E £ 0

As a consequence, observe that (in the finite dimensional
case) P is even~dimensional. TIf ¢ is a submersion, then
v

dim P = dim P - dim G - dim G
H Mo

If p 1is a regular value of ¢ , the action is always

locally free near ¢ ()

Examples. 1. ©Let us begin by recalling the cotangent bundle case.
Namely, if G acts on a manifold M , we obtain a symplectic action
on T*M which preserves the canonical one-form 5 on THM . A

moment for this action is given by ¢ : T*M - G .
<), B> = <, E (m)>, o € T M
By an earlier general theorem, this moment is Ad¥-equivarient.

We conclude that if G acts freely and properly on
1
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-1 -
¥ (M) = (o € T*M!<hu EM(m)> =<, €& for all € ¢ (G} , then 1(M)/GLL
is a symplectic manifold. TIf the gM(m) span a space of dimension =

dim G at m , then it is easy to see that each point of TéM is regular.

2. 1If we specialize example 1, taking M =G with ¢
acting on itself by left multiplication, then the moment ¢ : T*G - G*

is given by

() = (TRg)*'oz € T*G = Gk , oc€ TgG

where Rg denotes right translation (cf. Arnold [1], Marsden-Abraham
[1]). Thus each € G* is regular and w'l(u) is the graph of the
right invariant one-form w whose value at e is . Now

G = {ge¢ G’L*w = } , so the action of G on ¢ () 1is left

K &1 Ko 55 ‘

translation on the base point. Thus tj;—l(u)/GLL 2 G/Gu A Gy C G
Thus the reduced phase space is just the orbit of  in % . That
this is a symplectic manifold then follows Ffrom the above theorem.
The rather special construction in this case is due to Kirillov-

Kostant; see Kostant [1]. If one traces through the definitions one

finds for B € Gy , Yl = (adul)*B and -YZ = (ad uz)*B , that
wu(’yl’ ’Yz) = B([Uza ul])

When viewed directly, the symplectic structure on Geop C (% seems
rather special. However, it becomes natural when viewed in the context
of reduced phase spaces, Moreover, the proof becomes more transparent.

This example is studied further below.
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3, If G acts on M and leaves a given closed two-form
F on M invariant, then we get a symplectic action on T*M with
the symplectic form Wp = ® + m*F where ® 1s the canonical form and
7 : T*M M the projection. Such a situation arises when one has a
particle moving in the "electromagnetic field" F (see Souriau [1]

and Sniatycki-Tulczyjew [2]). Now suppose F = dA 1is exact and A

is invariant. Then the moment is given by

<d7(O/): £> = <Q/_A: EM(m>>

(this corresponds to the classical prescription of replacing p by
p - S A in an electromagnetic potential A) . The verification is
the same as in example 1. Thus again, if y 1is a regular value
and G acts freely and properly on w'l(u) , we can form the reduced

phase space P
K

4, Let G = S0(3) and P a symplectic manifold. Here

3 3

G~ R~ and the adjoint action is the usual one. For y € R™ ,u #0 ,

1 . . . . .
G =5 corresponding to rotations about the axis |, . (Since G 1is
v
semi-simple, a symplectic action of G on P has an Ad*-equivariant
moment ¥ by Souriau [1]). One refers to ¢ as "angular momentum"

-1

in this case. The reduction of P to % (p;)/Sl is a generalization

of the procedure called "elimination of the nodes' (cf. Smale [4] and

Whittaker [1, p. 344]).

5. Suppose we have the situation of the above theorem, and

in addition G 1is abelian. Ad¥-equivariance means that the generating
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functions @(E) are all in involution on P . Furthermore, Gu =G
for each |, € G* . If the action is free and |, 1is a regular value,
we can form Pu = wnl(u)/G . In this case dim PM = dim P - 2 dim G
The reduction to P represents the classical reduction of a Hamil-

tonian system by integrals in involution.

As a special case, let XH be a Hamiltonian vector field on
P , so that the flow of XH yields an action of R on P . The
moment is just H 1itself so we get a symplectic structure on H_l(e)/R
which is just the space of orbits on each energy surface (we assume e

is a regular value of H)

6. Let N denote the group of Cm-diffeomorphisms of a
finite dimensional Riemannian manifold ™M . Suppose M is compact,
or restrict to diffeomorphisms which are "asymptotic to the identity".
Now as we saw in lecture &4, Teﬁ = ¥(M) = the vector fields on M ' and
we put on § the L2 metric which is obtained from ¥(M) by right
invariance., Thus & acting on T® on the right is a symplectic
action. As in example 2, we conclude that for each X € X(M) , the
set {ﬂ*X,ﬂ € 9} € ¥(M) 1is a weak symplectic manifold, The symplectic

structure is

r

wx(ﬂ*LYlX, ﬂ*LYZX) = <X, Y, Y I

M 1

One may similarly restrict to volume preserving diffeomorphisms and
divergence free vector fields. This symplectic manifold is left

invariant by the Euler equations on %¥(M) and they define a2 Hamiltonian
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system so restricted. (See the following theorem and corollary).

7. Let M and £ Dbe as in example 6. Let I denote the
space of all Riemannian metrics on M . Define the DeWitt metric on

m by

G.(h, k) = | [<h, ko - (er h)(er 1)l
g ‘M g

Where h , k € Tgm = the symmetric 2-tensors on M , <h, k> 1is the
inner product of h , k using the metric g , tr denotes the trace,
and g is the volume element associated with g . Qg is a weak

metric and gives a (weak) symplectic structure on T .

The space T 1is a basic (weak) symplectic manifold used in
general relativity. We will now describe its reduced phase space in
the presence of the symmetry group £ . (See lecture 9 for the
connections of these ideas with general relativity.) £ acts
symplectically on TM by pull-back. The moment for this action is
not difficult to compute. It is:

r
(g, WX =2 . <X, 6m>du
M g
1 ; . .
where 7 =k - E(tr k)g and & is the divergence taken with respect
to g . Of particular interest is the case w-l(O) = {(g, k) € Tm]6W = 0}

(referred to as the divergence constraint in general relativity).

The isotropy group is all of & , so the reduced phase space

is w—l(O)/Q . If we work near a metric with no isometries (asymptotically
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the identity if M is not compact), then w—l(O)/Q is a manifold

by using methods explained in lecture 10. We conclude that w-l(O)/Q
is a (weak) symplectic manifold.* This is the basic space one uses for
a dynamical formulation of general relativity. It is related to
"superspace" M/Q in that all "geometrically equivalent' objects have
been identified. See Marsden-Fischer [1] for further results along

these lines.

8. Let H be complex Hilbert space with ® = Im<,> and
1
G =S . Then G acts symplectically on H by @Z(@) =20 ,

lz! =1, €H . Amoment is easily seen to be
Y(@)ez = 5, o>z

Thus w—l(l) is the unit sphere, so w—l(l)/G is projective Hilbert
space, We recover the well-known fact that projective Hilbert space
is a symplectic manifold (in fact it has a Kahler structure). This

result will be useful for the next lecture.

Hamiltonian Systems on the Reduced Phase Space.

Theorem. ZLet the conditions of the above theorem hold, TLet K be

another group acting symplectically on P with a moment ¢ . TLet the

actions of K and G commute and «¢ be invariant under G . Then

(i) K leaves ¢ invariant

(ii) the induced action of X on P is symplectic and has a
K

moment which is naturally induced from the moment ¢

* It is a conjecture of D. Ebin that this is true globally.
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Proof. (i) This follows as in the proof that ¢ 1is conserved by

any G invariant Hamiltonian system on P (see above).

To prove (ii), let YK denote the action of k € K on P
-1
By (i), ¥ "(p) 1is invariant under this action, and since the action
commutes with that of G , we get a well-defined action on P . Also,
M

if ?k is the induced action on P ,
M

Tp'rr{\f/-}:w = Y¥rew = Yeidw = 1%, @ = i%*w
wlkp o Tkiptw Tk bk !

~

Hence Yﬁw =w®w . Similarly, from the definition of moment we see
B b
that the induced moment is a moment for the induced action: namely,

the induced moment < satisfies &ow = @, so for [v] =Tn°v € TP ,
M b M

E € QK , we have

~

<Tge [v], £ = <Torv, &> = w(f,, V) :‘w“(EPu, (vh

since, as is easy to see, the generators §P s EP on ¥ "(p) and
)

P are related by the projection 7w . I

P Mo

For example, if we consider example 2 and let G = K acting
on T*G by lifting the right action, we can conclude that the natural
action of G on the orbit Gey < (3% is a symplectic action. The

induced moment is easily seen to be just the identity map:

25(Ad~:g«u) = Adly, € G

The fact that G acts symplectically on the orbit G- , so

that Gey 1is a "homogeneous Hamiltonian G-space', is a known and useful
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result, See Kostant [1] and Souriau [1, p. 116].

Taking K = R , we are led to:

Corollary. Let the conditions of the theorem preceeding the above hold

and let XH be a Hamiltonian vector field on P with H {nvariant

under the action of G . Then the flow of XH induces a Hamiltonian
flow on P whose energy H is that induced from H ; i.e.,
o]
Hom = Hoi
K W

For example if < , > 1is a left invariant metric on a group
G , the Hamiltonian H(v) = %, v> , which yields geodesics on G ,
induces a Hamiltonian system on the orbits in G% ~ §{ . Note that the
original Hamiltonian system on P is completely determined by the

induced systems on the reduced spaces P
V8

Similarly, in each of the other examples above, if we start
with a given Hamiltonian system on P , invariant under G , then we
can, with no essential loss of information, pass to the Hamiltonian

system on the reduced phase space,

Relative Equilibria and Relative Periodic Points.

Definition. 1In the situation of the above corollary, a point p € P

such that ﬂp(p) €P is a critical point [resp. periodic point] for
L

the induced Hamiltonian system on PM is called a relative equilibrium

[resp. relative periodic point] of the original system.

Poincaré [1] considered relative periodic points in the n-body
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problem on an equal footing with ordinary periodic points. Indeed,

in general, the only '"true" dynamics is that taking place in the

reduced phase space P
Mo

The following shows that our definition coincides with the

standard ones (Smale [4], Robbin [4]).

Theorem. (i) p € P 1is a relative equilibrium iff there is a one-

parameter subgroup g(t) € G such that for all ¢ € R , Ft(P) = @g(t)(p)

where Ft is the flow of XH and ¢ is the action of G

(i1) p € P 1is a relative periodic point iff there is a

g€ G ,and T > 0 such that for all t € R (p) = @g(Ft(p))

’ Ft-H'

Proof. (i) p 1is a relative equilibrium iff ﬂu(p) is a fixed point
for the induced flow on P iff nu(Ft(p)) =m (p) . If this holds
ko W

there is a unique curve g(t) € ¢  such that F.(p) = ¢ (p) since
1

g(t)

the action of G on w-l(u) is free. The flow property
Ko

Ft+s(p) = FtOFS(p) immediately gives g(t+s) = g(t)g(s) , so g(t)

(p)

is a one-parameter subgroup of G . Conversely, if F (p) = &
L t g(t)

where g(t) 1is a one-parameter subgroup of G , we must show g(t) € G
' W

But this follows from invariance of w_l(u) under Ft and equivariance

(see §2 above).
One proves (ii) in a similar way. [J

As a result of our definition we have the following theorem
of Smale, whose proof has also been simplified by Robbin [4] and

Souriau. We present yet another proof.
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Theorem. Let | be a fegular value of {. Then p € w-l(u) is a

relative equilibrium iff p is a critical point of {yH : P - xR,

Proof. By our definition and the non degeneracy of the symplectic
form on Pu » P is a relative equilibrium iff p 1is a critical point
of ﬁ', the reduced Hamiltonian. Since we have invariance under G,
this is equivalent to p being a critical point of HYﬁ_l(u) i.e. of

1 x H (Lagrange multiplier theorem). [J

Thus the advantage of passing to PM is that relative
equilibria really become equilibria and, moreover, we have a Hamilton-

ian system on P with a (non-degenerate) symplectic form,
K

In the above theorem, it is pecessary that |, be a regular
value. For example, in the n-body problem (where G = S0(3)), if all
the bodies are lined up with velocities headed towards the center of
mass, we have a critical point of ¢ x H but the bodies do not travel

in circles (theorem 4(i) fails).

There are a number of equivalent ways to rephrase the above
result if P =TM and H =K + V . (In particular see Smale [4]; some

interesting conditions have also been given by 0. Lanford.)

Using these ideas, Smale is able to estimate the number of
relative equilibria by using Morse theory to count the critical points.
The results yield quite interesting information for the n-body problem

(see Smale [4], Tacob [2]).
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Stability of Relative Equilibria.

Let us recall the classical definition of Liapunov stability

(see also lectures 5, 8). Let x be a critical point of a flow Ft 5
i.e., Ft(x) = x . Then x 1is stable if for every neighborhood U
of x there is a neighborhood V of x such that y € V implies

Fty € U for all ¢t

Now we can define stability of relative equilibria as

follows:

Definition. Let p € P be a relative equilibrium of the Hamiltonian

vector field XH . We call p relatively stable if the point p 1is
(Liapunov) stable for the induced flow on the quotient space P/G ,

(on P/G , p 1is a fixed point),

Theorem. Let the conditions guaranteeing the symplectic structure on

Pu and the above corollary hold and let p € P be a relative

equilibrium. Let H be the induced Hamiltonian on P . If dH is
0 = is

definite at 1 (p) , them p 1is relatively stable,
—_—— T, ——=n

Proof, The condition tells us that 1 (p) 1is a stable fixed point
e m ,
on P , by conservation of energy. Thus we conclude that within each
o
-1
v (uW)/G , p 1is stable. But by openness of the conditions, the same
1

is true of nearby reduced phase spaces P , , u' mnear y . Thus p

is actually relatively stable. [

If G 1is a Lie group with a left invariant metric, a

relative equilibrium represents a fixed point v 1in the Lie algebra,
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or a onme-parameter subgroup of G . We can use theorem 6 to test
for its stability. If we do so, we recover a result of V. Arnold
[1] (who proved it directly by an apparently more complicated

procedure) as follows. The quadratic form dzﬁ' at v &€ G 1is, in

this case, worked out to be -- after a short straightforward computation:

Q (v 5 wy) = B(v, w)), B(v, w)>+ <[w, v], B(v, w,)>

where <B(u, v), w> = <[u, w], v> . Thus the condition requires Q,

to be definite. 1In case of a rigid body (G = SO(3)) this yields the
classical result that a rigid body spins stably about its longest and
shortest principal axes, but unstably about the middle one. For

fluids (G = & = group of volume-preserving diffeomorphisms) the
situation is complicated by the fact that the metric is only weak so

the criterion is not directly applicable. 1In celestial mechanics
stability of the relative equilibria often depends on stability criteria
much deeper than that above, such as Moser's '"twist stability theorem';

(see Abraham [2]).

Completeness of Homogeneous Spaces.

Recall that a homogeneous space is a manifold together with
a transitive group action @& on it. The following is a classical and

useful result.

Theorem. Let M be a riemannian manifold and suppose either

(a) M 1is compact

or (b) M 1is a homogeneous space, the transitive action consisting
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of isometries.

Then M 1is geodesically complete.

Here, geodesically complete means that the geodesic flow on
T is complete; i.e. geodesics can be indefinitely extended (without
running off M) . 1In the finite dimensional case it is equivalent to

M being complete as a metric space and to closed balls being compact.

To prove (a) one uses the fact that if an integral curve
stays in a compact set then it can be indefinitely extended (this
follows from the local existence theory). But TM 1is a union of
compact invariant sets, namely the sets s¢ = {v € TM,HVH =c} ,c ER,

¢ >0 . Hence (a) holds,

One proves (b) by using the homogeneity to keep translating
vectors to a fixed point say Xg s to estimate the time of existence,.
This time does not shrink because of conservation of energy. Hence
one can keep on extending a geodesic by a definite ¢ time interval,

independent of the base point. Hence a geodesic can be indefinitely

extended,

For pseudo-riemannian manifolds (i.e. the metric need not be
positive definite) this argument does not work. However we have the

following (see Wolf [1], p. 95, Marsden [9]).

Theorem. Let M be a compact pseudo-riemannian manifold. Tet G be

a Lie group which acts transitively on M by isometries, Then M 1is
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geodesically complete.

This result was proved by Hermann [3] in the special case of

a semi-simple compact Lie group carrying a left invariant pseudo-
riemannian metric. It should be noted that in the statement of the
theorem neither the homogeneity nor the compactness may be dropped.
For example it has become well-known to relativi-ts that there are
incomplete Lorentz metrics on the two torus. These were constructed
by Y. Clifton and W. Pohl. (See Markus [1], p. 189.) An incomplete
metric on the noncompact group S0(2, 1) is constructed in Hermann
[3] although this is a special case of a whole class of incomplete

pseudo-riemannian manifolds constructed by J. A. Wolf. (See Wolf [1,2]).

Proof. We shall show that the tangent bundle TM of M 1is the union
of compact subsets SQ parametrized by elements o of the dual @
of the Lie algebra of G , with Sa invariant under the geodesic flow.
Since a vector field whose integral curves remain in a compact set

has a complete flow, this is clearly enough to prove the theorem, as

above.

Let P : TM —» G , P(Vv)*E = <v, EM(X)>V be the moment and

for o« € G* , set S =P "(o) . By the conservation theorems, So
o Y

is invariant under the flow. Obviously TM 1is the union of the Sa

Therefore, it remains only to prove the following lemma. In this lemma

we use the fact that TXM = {EM(X)IE € G} which follows from the fact

that M 1is homogeneous, i.e. there is only one orbit.
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Lemma. Each of the sets Sa is a compact subset of TM

Proof. Certainly Sa is closed, Furthermore, the restriction of
the canonical projection m : ™M - M to § is one-to-one because
o
from the fact that the EM(m) span TmM , we see that Sa intersects

each fiber in at most one point.

We claim first of all that n(Sa) is closed and hence compact.
Indeed x ¢ n(sa) means that « 1is not in the range of the linear
map dtained by restricting‘ P to TxM . Thus ¢ 1is not in the
range of P’TyM for y in a whole neighborhood of x . Hence w(Sa)

is closed.

Now let v o vy € Sa , SO <vx, EM(X)> = <Vy, EM(y)> = (%)
for all £ € 3 . From the fact that §M(m) span TmM and non-
degeneracy of < , > , we may conclude that v, is close to vy if

, ; -1 . .
x 1s close to y . Hence the inverse T : (S ) =S is continuous.
o o

Thus SQ is compact. [I

Remarks., 1. Tf dim G = dim M , then S is actually a submanifold
BR— o
because P : TM - (3* 1is a submersion in that case (the derivative of

P along the fibers is one-to-one and hence surjective).

2. Of course we have actually proved more. We only require
that the iqfinitesimal generators span at each point, and that we have
an invariant Hamiltonian system, Clearly conservation of energy, which
is the basis of the proof for the Riemannian case (see above), plays

no role here,
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7. Quantum Mechanical Systems.

In this lecture we shall describe a few aspects of quantum
mechanics. Obviously we cannot be exhaustive here, but we will try
to mention a number of important foundational points. (For further
elucidation, see von Neumann [2], Mackey [l, 2], Jauch [l], Varadarajan

[1], Chernoff-Marsden [1]).

In order to clarify the differences between classical and
quantum mechanics, it is convenient to adopt a probabilistic point of
view and think in terms of statistical mechanics rather than particle

mechanics, We begin with some general considerations.

Basic Properties of Physical Systems.

A physical system consists of two collections of objects,

denoted S and & -- called states and observables respectively --

together with a mapping

S X 6 - (Borel probability measures on the real line R)

(ws A) H}JJA ¥

Additionally, there is usually a Hamiltonian structure

described below.

Elements # € S describe the state of the system at some
instant and elements A € & represent '"observable quantities'; when
A is measured and the system is in state ¢ , MA,W represents the
probability distribution for the observed values of A . Thus if E CR ,

by w(E) € R is the probability that we will measure the value of A
b

.

“This lecture was prepared in collaboration with P. Chernoff,
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to lie in the set E if the system is known to be in state

Normally there is also some dynamics; i.e. a flow or

evolution operator Ut S QN

The set § 1is usually a convex set and Ut consists of
convex automorphisms. The set P of extreme points -- called the
pure states, is usually symplectic and (for conservative systems) the
flow Ft on P 1is Hamiltonian. (The flows Ft , Ut determine one

another.)

Statistical Mechanics.

Consider now the following example: 1let P , w be a
symplectic manifold, say finite dimensional and define the states and

observables by:

(a) States; S consists of probability measures v on P
(b) Observables; @ consists of real valued functions A : P - R
(¢) The map S X & — (Borel measures on R) is given by

u, A(E) = \)(A_l(E)) , where E CR

The states are measures rather thanvpoints of P to allow
for the fact that we may only have a statistical knowledge of the

""exact' state.

It is easy to see that the pure states are point measures,
80 are in one-to-one correspondence with points of P itself., Note

that every observable A 1is sharp in a pure state; i.e. the corresponding
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measure on R 1is a point measure. In other words there is no

dispersion when measuring any observable in a pure state.

Around 1930, B. O. Koopman noted that the above picture can
be expressed in Hilbert space language. Let H denote the Hilbert
space of all square integrable functions ¢ : P »C , with respect to
Liouville measure. Each ¢ € ¥ determines a probability measure
\)‘lI = lwlzu if HwH =1, If A 1is an observable, its expected value
is

.
Al =,
P

e(A) =

where A is regarded as a (self adjoint) multiplication operator on #

The dynamics Ft : P 5P on phase space P 1induces in a
natural way, and is induced by (under certain conditions) a dynamics on

S and on ¥ , namely Uy = F*ov and Utw = UoF_

Consider the map ¢ vy of H to S . It is many-to-one.

In fact Vw = vw| if ¢' = elam where o : P - R . These phase

i . .
transformations 1 & e aw form the phase group of classical mechanics.
Tt is not hard to see that an operator A on H 1is a
multiplication operator iff it commutes with all phase transformations.
Classical observables are those A's which are self-adjoint; i.e. real

valued.

Since only the measures have physical meaning, we see that

any quantity of physical meaning must be invariant under the phase group.
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It follows that the imner products <, ¢> and their squares !<w, m>,2
can have no physical meaning. One says that there is '"no coherence" in
classical mechanics. (This is because l<ela¢, elB@>, # ,<@, ¢>lz in

general.)

We can think of H as a symplectic manifold with the usual
symplectic form: ® = Im< > . The dynamics induced on H 1is unitary
and thus symplectic; i.e. it is Hamiltonian (see lecture 2), Thus the

dynamics on ¥ is consistent with the statistical interpretation.

We can regard the phase group G as a symmetry group of ¥
by ¢ Faelaw . Indeed, as explained in lecture 6 we can form the reduced

phase space; we just get back P and the old dynamics on P . We have

the following picture

N .
, Hilbert space N ____i___> S (statistical states)
! (Liouville—KooPmanj AN
picture) S U
~N

N
reduction of phase\ P (pure states)

space by the phase/
group

Quantum Mechanics.

Quantum mechanics differs from classical mechanics in that
the phase group is much smaller; interference and coherence ~- typical
wave phenomena -- now play a fundamental role. Furthermore, all

predictions are necessarily statistical in that there are no dispersion

free states (¥ € S 1is dispersion free when ba g is a point measure
>

for each A € @)
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In classical mechanics, each state v € & was a "mixture!
of pure states. We use vy because of ignorance as to the true state.
Increasing our knowledge will '"reduce" v to a measure with smaller

variance,

In quantum mechanics, states are not always reducible into
statistical states of mixtures. This is clearly illustrated by
experiments with polarized beams of coherent light (even with single
photons). 1In such an experiment, states can be described by unit
vectors 1§ € R2 giving the direction of polarization. The probability
that a ¢ wave passes through a ¢ filter is observed to be <o, > 2 .
A little thought shows that no such polarized state ¢ can be realized

as a statistical mixture of other polarized states.*

These sorts of experimental facts lead one to consider the
states as forming a Hilbert space T H and the states as being the
unit rays in ¥ . (These are the pure states; mixed states corresponding
to v's above are introduced below.) Thus, letting P denote the
rays in ¥ (P is called projective Hilbert space), we have a map

H > P , again many to one. This time the phase group is the circle

* Furthermore, the experiment is not reproducible in the sense that
no matter how carefully ¢ 1is prepared, there is uncertainty in
the outcome (unless the probability is 0 or 1) . Such an uncer-
tainty seems to be fundamental.

* We take H to be complex but it is not a priori clear why it shouldn't
be real. There are good reasons for the complex structure related
to the Hamiltonian structure; (see lecture 2 and references in
Jauch [1]).
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group {ela; o € R} . The reason P 1is chosen this way is that one

imagines general elementary selective measurements wherein

2
l<¢, @>] , for each ¢ , 0 € ¥ , HwH = H@H =1 1is the object with
physical meaning -- it represents the probability that we will find
¢ 1in state ¢ or if you like, the "transition probability" for going

from © to

More generally, we can imagine a general selection measurement.
let FCH be a (closed) subspace and @ € ¥ . The probability of
transition from ¢ to F is <PF@, ©> where PF is the orthogonal

projection onto F

Just as 1in the case of statistical mechanics we observe that
P 1is the reduction of ¥H by the phase group (this was noted in

lecture 6).

Once the above view is accepted, then as Mackey has shown,
the rest of the picture of what S , @ and Ua have to be is pretty
3y

much forced upon us. This goes as follows.

Consider an observable A . For each E © R we have ba w(E)
3
measuring a probability of observing A to lie in E if the state is
¢ . The previous discussion suggests there should be a projection

operator Pg on H# such that

A
MA,LIJ'<E) - <PE1JJ: ﬂf> .

Since |, 1is a probability measure we must have:



-173-

A
Py =0, Pp =1 (1)
@
A LA
and P - = LJPE, (2)
UE, i=l t
i=1

if Ei are disjoint. It follows that the PA are mutually orthogonal.

E.
kS
We also must have by (2),
A A A A
= +
PEUF PE\F PF\E * Penp
A A A
Pp = PE\F * Prrp
A A A
and PF = PF\E + PEDF
A A A A,
Hence P:EPF = PEﬂF = P?PE ; 1.e. the PE s commute.

The spectral theorem (see, e.g. Yosida [1]) now tells us that

there is a unique self adjoint operator, also denoted A , such that

A

A= [ " adp )

o M

self adjoint operator A vyields a spectral measure and hence defines

{P is the spectral measure of A . Conversely any

MLy

Thus, to every observable there is a self adjoint operator
A , but it is not clear that every self adjoint operator is physically
realizable., (For example it is not clear how to measure (position) plus

(momentum) = q + p in the laboratory.)

Of course it is well known that a self adjoint operator

(like the position operator) need not have any square integrable
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eigenfunctions. What is asserted to be of physical relevance is the

probability measure , which is always well defined. Of course,

ALy
one must avoid trivial "paradoxes" in quantum mechanics which arise
from an inadequate understanding of the spectral theorem, or by

ascribing more physical meaning (e.g. individual trajectories) to the

theory than that given by the WAy

Notice that the expected value of A 1in a state ¢ is

ey = (2 ndu, 0) = 7 raly, v = <ar, >

Thus a state ¢ vyields a mapping F 4> <P p, ¢> of subspaces

F
in # to [0, 1] describing a transition probability., It is a

"probability measure' based on the closed subspaces,

We can generalize the notion of state so as to allow for the
possibility of mixed states (with the same statistical interpretation
as in the classical case) by just considering a general 'measure"
defined on the closed subspaces of H . Tt is a famous theorem of
Gleason (see Varadarajan [1] for a proof) that such a state is given
by F & trace (PFD) where D is a positive operator of trace one on

# , called a density matrix.

Thus quantum mechanics is specified as follows: we are given

a complex Hilbert space # and set

S

Il

all density matrices, a convex set
G = self adjoint operators on ¥

“A(E) = trace (PéD) s PA the spectral projections of A& .

E
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Tt is not hard to see that the pure states (extreme points
of S) are identifiable with unit vectors in ¥# , modulo the phase

group -- what we previously called P
Thus we again get this picture:

(Hilbert space H ——> S (density matrices)

picture) SO
~

(reduction by phase\\\\

group Sl) P

Projective Hilbert
Space. (Phase space)

Bargmann-Wigner Theorem.

In the case of statistical mechanics we saw that the flow
on P naturally induced one on ¥ . For quantum mechanics this is
not so obvious, and was considered by Bargmann-Wigner (seé Varadarajan
[1] for proofs and details). Since P are the extreme points of S ,

we can just as well work with S as P

Theorem., Let Ut be a flow by convex automorphisms on S . Then Ut

is induced by a one parameter unitary group Vt on H , unique up to

phase factors.

The result is conceptually important because H 1is a
mathematical construct for analytical convenience. Only P should be

directly physically relevant.

Note. A convex automorphism of S can be implemented by either a

unitary or anti-unitary operator (Wigner), but for one parameter groups
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the later case is excluded.

One can go on to see when actions of groups 1lift from P
(or 8) to H . Then there is a cohomology condition needed on the

group (see Simms [1], Chichilnisky [1] for more information).

We also remark that S is, in the classical case, a
simplex. This means that each state in S can be uniquely represented
in terms of the extreme points (see Choquet [1] for general information

on this point).

Miscellany.

At this point one might ask: what do we choose for ¥ ?
The answer actually is that ¥ should be L2 of the configuration
(rather than phase) space. The reason for this is best seen through an
analysis given by Mackey and Wightman. The result is that if one makes
entirely reasonable hypotheses on what the position and momentum
operators ought to be, then their structure and that of the Hilbert
space is determined. One finds that if the classical phase space is
P = T*M , then the quantum mechanical Hilbert space is H = LZ(M, C)
and the quantum operators corresponding to a position observable £

(a function f : M - R) and a momentum observable P(X) (P{X)*a = o(X)

X a vector field on M -- see lecture 6) are:

Qf multiplication by £

and P

< iX as a differential operator

The associations f F>Qf , P(X) p;PX are often called the Dirac

3
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Quantization Rules. They preserve bracket operations.

This suggests that corresponding to the classical system
K+ V on T 1is the quantum system with energy operator -A + V
on H . (Some problems related to this are discussed in the next

lecture.)

Exact quantum procedures are not so simple. 1In fact an old
theorem of Groenwald and Van Hove asserts that there is no map possible
from all classical observables to quantum observables that preserves
the bracket operations. However much work is currently being done on

some geometric aspects of this problem (see Souriau [1]).

Another fundamental question is the reverse problem: 1in
what sense is classical mechanics a limit of quantum mechanics (as
h , Planck's constant — 0) ? This has been investigated by many people,
but the deepest analysis seems to be due to Maslov (see Arnold [2]).

This problem is discussed further in the Appendix.

The C* Algebra Approach to Quantum Mechanics.

There are many ways of generalizing the examples of physical systems
given in the first part of the lecture. One of these, taken by von Neumann,
is to regard the set of observables as an algebra. This is mathemati-
cally convenient although it may not correspond exactly with physical
reality for as mentioned above, the sum of two observables need not be
observable. Other ways of generalization are the '"quantum logic" point

of view described in Varadarajan [1] and Mackey [1].

In the classical case the algebra is the algebra of functions
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on phase space -- a commutative algebra. The quantum case is distinguished
by having a non-commutative algebra. 1Indeed any C* algebra which
is commutative must be isomorphic to a space of continuous functions

and so, is in this sense, classical.

Segal's formulation of this point of view proceeds as follows.
Let Q@ be a C* algebra; i.e. a Banach space which is also an
algebra and has a conjugation (or adjoint) operation * satisfying
certain simple axioms. For example one can think of an algebra of
bounded operators on a Hilbert space (unbounded operators are included
via their spectral projections). Simmons [1l] contains a very readable

account of the elementary properties of C* algebras.
Take the observables to be the self adjoint elements of ( .

The states are the normalized positive linear functionals
on O . (It is easy to see that they are automatically continuous.)
We are to think of states in the same way as before. TIf € 1is a

state, E(A) 1is the expectation of A 1in the state €

Of central importance is the Gelfand-Naimark-Segal construction:
Let @ be a C* algebra and & a state of (@ . Then there is a
Hilbert space H , a unit (cyclic) vector ¢ € ¥ and a *-representation

T G - £(¥) (the bounded operators on H) such that

e

e(a) = <n8(A)$, > for all A€ Q

In fact H , ¢ , m are unique up to unitary equivalence., See Lanford

[1] for details.
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In this way, we can construct our probability measure
U Thus we have a general example of a physical system consisting
3
of S , 6 and the map by e just constructed which includes both
, B

classical and quantum systems as special cases,

There is no canonical Hilbert space, but one can be constructed
for each €& . We can still form P , the extreme points of g , but
in general P won't be a symplectic manifold. (It is in the examples

previously constructed however.)

The above Gelfand-Naimark-Segal construction is similar to
Gleason's theorem in that it delineates states. It essentially
enables one to recover the Hilbert space formalism from the abstract
C* algebra formalism. However, often it is convenient to stick with
the general C* algebra point of view. For example, one can characterize

pure states € as those for which Te is irreducible,

Several other ideas from the Hilbert space approach carry over.
For example the general form of the uncertainty principle is valid:

for observables A , B € @ , and a state € ,

oA, £)a(B, &) > HE(C) , C = i(AB - BA)

where (A, &) is the variance of the probability distribution

by et o ©F —e? - ewn? - et - ewnh

Proof. Let [X, Y] = &(XY*) . This is an inner product on ( so obeys

the Schwartz inequality. ©Note that it is enough to prove the inequality
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in case @&(A) =0 , 8(B) = 0 for we can replace A , B by A - g(A)I ,

and B.- &(B)I . Then

e(C) = i[E€(AB) - €(BA)]
= 2 Im [A, B]
< 2 [A, A]%[B, B]l/2

8o %£(C) < o(A, &)o(B, &) , Q ED

A Hidden Variables Theorem.

The orthodox interpretation of quantum mechanics presented
above has discomforted many physicists, notably including Planck,
Einstein, de Broglie, and Schrodinger (see for example De Broglie [1]
and Einstein-Podolsky-Rosen [1]). It is hard to escape the feeling
that a statistical theory must be, in some sense, an incomplete
description of reality. One might hope that the probabilistic aspects
of the theory are really due, as in the case of classical statistical
mechanics, to some sort of averaging over an enormous number of "hidden
variables'; in a perfect description of a state, in which these hidden
parameters would have well-determined values, all the observables would
be sharp. However, von Neumann [2] has given a proof that the results
of quantum mechanics are not compatible wifh a reasonably formulated
hidden variable hypothesis. We shall outline an argument along von
Neumann's lines, but in the more general setting of Segal's C*-algebra

formulation of quantum theory.

Let the observables of a given physical system be represented

by the self-adjoint elements of a €* algebra Q@ . If A€ (J 1is an
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observable and p 1is a state, the dispersion of A ' in the state p
2 2 2
is given by o (A, p) = p(A") - p((A - p(A)T") . We shall say that

p 1s a dispersion-free state provided that oz(A, p) = 0 for every

observable A € @ . The results of experiment show that the states of
quantum systems prepared in the laboratory are not dispersion-free.

The hidden-variable hypothesis is that the physical state p owes its
dispersion to the fact that it is a statistical ensemble of ideal
dispersion-free states. (The latter need not be physically realizable --
just as one cannot really prepare a classical gas with precisely
determined positions and velocities for each of its molecules.)

Mathematically, the hypothesis states that every state p 1is of the

form
(L p(a) = ; p (A)du(w)
w
Q
where each p is a dispersion-free state and |, 1is a probability
measure on some space () . The coordinate @ € ()} represents, of

course, the indeterminate '"hidden variables'.

Theorem. (See Segal [4].) A C* algebra (Q admits hidden variables

in the above sense only if (0 1is abelian. (The corresponding physical

system is then ''classical'.)

Proof. (Chernoff) The first step is to show that a dispersion-free
state p is multiplicative. ©Note that the bilinear form

W
<A, B>> = pw(AB*) is a Hermitian inner product on @ .

(<A, B>> = pw(AA*) is > 0 by hypothesis. From this it follows
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easily that pw(C*) = pw(aj for any C € ¢ . 1In particular we have

<B, A>> = pw((AB*)*) = pm(AB*) = <<A, B>> .) Hence, by the Schwarz

inequality,

L
A < AA%) 2 *B) %
l@w( B)| < o, (AN¥) %p (B¥*B)%

for all A , B € 0 . From this we see that if pw(AA*) = 0 then

pw(AB) = 0 for all B . Suppose that A 1is self-adjoint. Then,

since (@ 1is dispersion-free, pw((A - pw(A)I)Z) = 0 . Therefore, for
A - A))B) =0 . hat i AB) = A

every B , pw(( pw( ))B) That is, p (AB) pw( )pw(B)

This holds as well for non-self-adjoint A by linearity. 1In particular,

if @ 1is dispersion-free it follows that pw(AB) = pw(BA)

But if (¢ admits hidden variables, it follows immediately
from (1) that every state o satisfies p(AB) = p(BA) . Since there
are enough states to distinguish the members of (¢ , (e.g. states of

the form A s <Ay, ¢>) it follows that AB = BA . Thus @ 1is abelian. O

Remark., Conversely, a well-known theorem of Gelfand and Naimark states
that every abelian C¥* algebra is isomorphic to C(X) , the set of
continuous functions on some compact set X . (Many accounts of this
result are available; a very readable one is in Simmons [1].) The
states of ( are simply the probability measures on X , which are
convex superpositions of the §-measures at the points of X ; the

latter are, of course, precisely the dispersion-free states.

We can also dispose of a less stringent notion of hidden

variables. According to Jauch {11], Mackey has proposed the
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consideration of '"g~dispersion-free'" states. A state p 1is called
¢-dispersion-free if for every projection E € G we have pZ(E, p) <e
A system is said to admit ''‘quasi-hidden variables' if for all ¢ > 0 ,
every state can be represented as fpwdu(w) where all the states

Py are g¢-dispersion-free. (In fact one can say '"if for some ¢ >

0 sufficiently small' but this leads to a harder theorem), If (¢ admits
quasi-hidden variables and p 1is a pure state of (O , then it is

easy to see that p 1s e-dispersion free for every e . Then by the
argument above p must be multiplicative on the algebra generated

by the projections in ¢ . This will be all of (@ in many interesting
cases -- in particular, if @ 1is a von Neumann algebra (i.e. closed

in the strong operation topology). But then, because the pure states
separate elements of (@ , it follows as before that (¢ 1is abelian.

(We must hasten to add that Jauch and Mackey were considering these
questions in the context of lattices of '"'questions' which are more
general than the projection lattices which we have discussed; so from
the foundational point of view the notion of quasi-hidden variables

has raised problems which our simple argument cannot handle.)

The essential point of the argument given abové was the non-
existence in general of a large supply of linear functionals on (
which carry squares to squares. A much deeper analysis has been
carried out by Kochen and Specker [11], c¢f. also Bell [l]. They have
faced squarely the fact, which we have mentioned, that it is really not
physically reasonable for the sum of non-commuting observables always

to be an observable. Drastically reducing the algebraic operations
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which they allow, they nevertheless reach the same results; their
functidnals are required to be linear only on commuting observables.

We shall not go into the details of their arguments, for which we

refer the reader to their paper, which also includes an interesting
discussion of the entire problem of hidden variables and various attempts
to introduce them. Some recent work on this subject centering around
Bells' inequality has been done. The results again are against hidden

variables theories. See Clauser et al [l] and Freedman-Clauser [1].

The Measurement Process.

Let us now discuss the process of measurement in some detail,
following von Neumann [1]. (A clear summary of von Neumann's ideas
may be found in the book of Nelson [2]; see also Jauch [1] and de

Broglie [1].)

Various solutions of the problems of measurement have been
proposed; cf. Bohm and Bub {1]. However it is not yet clear that the
problems have been solved. The measurement of an observable involves
the interaction of a 'physical system" with an '"observing apparatus',
so we should first describe the mathematical treatment of such

composite systems.

1f the pure states of a system S correspond to the unit
rays of H , and those of a second system S' <correspond to the rays
of H' , then the pure states of the compound system consisting of S

and S' correspond to the unit rays of the tensor product* H ® H' .

% The tensor product H¥ ® H' is the direct product in the category of
Hilbert spaces, just as the cartesian product is in the category of
manifolds (if P and P' are phase spaces for isolated systems PxP'
is the phase space for the interacting system), A pure state in a

composite quantum system is much more complicated than an ordered pair
of pure states of the subsystems. This fact seems related to many,
if not all, of the so-called '"paradoxes" of quantum theory.
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The tensor product of Hilbert spaces ¥ and H' 1is by definition
the completion of their algebraic tensor product with respect to the
following inner product:

1 {l = I 1 ' .
b

For example, LZ(R3) & L2(R3) = LZ(R6) . 1If {ei} and {fj} are

0

orthonormal bases of H and ¥' respectively, then {ei ® f }i j=1

3
is an orthonormal basis of H ® ¥' . An observable A of §
corresponds to the operator A® I on H ® H' ; similarly the
observable B of S§' corresponds to I ® B . It can be shown that

every observable of the composite system is a function of observables
of the above sort, in the sense that every bounded operator on H & }'

is a limit of operators of the form z(Ai R I (I ® Bi) . A state p

of the compound system determines a state of § by the relation
pg(d) = p(A B T)

It is important to note that Pq will in general be a mixture even if
p 1is pure. Thus, if p 1is given by the vector X 01 ® @{ , with

[¢i} " {@i} orthogonal systems in ¥ and ¥' , we have
@ =3 ol P, 0>
ps C\Dl CP19 ‘]'. 3

so that g is given by the density matrix T H@£H2P$

1

Now let S be a physical system which we wish to study.
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Suppose that we wish to measure an observable A of S . For
simplicity let us assume that A has a pure point spectrum, with
eigenvectors D> Py eve - To measure A 1t is necessary to allow
the system S to interact with an apparatus S' . A suitable
apparatus for measuring A will have the property that, if the system
S is initially in the state P; s after the interaction the composite
system of S and §' will be in the state P ® Gi , where {ei} is
a sequence of orthonormal vectors in H' . The interaction, of course,

is governed by the Schrodinger equation for the composite system,
=]

Hence, if the initial state of S 1is given by ¢ =X cPs the final
» 1

state of S 4+ S' will be B =75% .94 ® ei by linearity. Now if B
1
is an observable of §S' , then after the interaction the expected

value of B will be

[ee]
<(1 ® B)a, 6> = ¥ !c.12<Be.l, 8,> »

so that, although S + S' is in the pure state & , S' 1is in the

[ea]
mixed state by fcilzPQ . Similarly, S8 1is in the mixed state
i=1 Y1

1=
2]
z IC.IZP
i=1 - %1

Now the apparatus is supposed to be of a macroscopic nature,
its orthogonal states ei represent, say, different counter readings.
After the interaction the observer "looks" at the apparatus. Through
his faculty of introspection he realizes that the apparatus is in a

120

definite state, say ej . (This occurs with probability ’Cj
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once this act of consciousness has taken place it is no longer true
’ @

that the state of § + S' 1is L c.p, X B, ; it must be ¢, X 8, .
jo1 R i "3 i
One then says that the system has been found to be in the state mj .

This is the famous (or notorious) '"reduction of the wave packet'.¥*

We now venture to make some philosophical remarks. Tt is
important to realize that an analogous 'reduction' takes place in a
classical statistical mechanical system when new information is gained,
This is never regarded as a difficulty, because the classical probability
packet is always viewed as a mere reflection of the observer's
ignorance of the objective underlying state of the system. This is a
perfectly consistent interpretation. Why can not the same interpreta-

tion serve in the quantum mechanical case?

As long as we are concerned only with a single observable

(or with a commuting family of observables) it is perfectly possible
to view the quantum system classically. That is, one can interpret
the reduction from the mixture to the state @j as a reduction of
classical type., But the existence of incompatible observables in
quantum mechanics forces this interpretation to break down. Indeed,

the entire point of the negative results concerning "hidden variables"

* Of course, "looking at the apparatus'" involves interaction with
some further apparatus ultimately with the consciousness of the
observer. But one can lump all that into S and the observers mind
into S' . Nevertheless, apparently one cannot find a mathematical
device to yield the reduction of pure states. This is the
fundamental problem in interpreting the foundations of quantum
mechanics.
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is that there is no 'objective underlying state" of the system!

Perhaps the quantum probability distributions can be
interpreted as reflecting our partial knowledge, as long as we do not
insist that there be an objective entity of which we have partial
knowledge. This seems reminiscent of the problem of the golden
mountain in the sentence '"The golden mountain does not exist". If
one asks "what does not exist?" and answers '"the golden mountain',
one is implying that the golden mountain is in fact an entity with
some sort of '"existence'. Some philosophers tried to rescue the
situation by stating that the golden mountain "subsists' -- that is,
has enough of a shadowy sort of existence to serve as the subject of
a sentence. Now Bertrand Russell has observed that the real solution
of the problem is to recognize that the original sentence is implicitly
quantified, and actually should be regarded as saying "for every x
it is false that x 1is both golden and mountainous'". 1In the absence
of new physical discoveries, it seems not impossible that the same
sort of purely grammatical trick may be the ultimate solution of the

quantum measurement problem,
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8. Completeness Theorems and Nonlinear Wave Equationms.

As we have mentioned in earlier lectures, the question of
the completeness of a flow is a fundawmental one; i.e. can solutions be

indefinitely extended in time?

In order to deal with this question, one usually proceeds
as follows. One first establishes a local existence theorem and then
one uses some kind of estimates (so called a priori estimates) to show
that this solution does not move to e« in a finite time, and hence can
be extended to exist for all time. (See the results at the end of

lecture 6.)

Below we shall illustrate this general procedure with a
couple of examples. We begin by describing a general technique based

on energy estimates.,

Liapunov Methods.

The concept of Liapunov stability (see lecture 6) can be used
effectively as a completeness theorem. Below we shall apply this

theorem to nonlinear wave equations.

Theorem, Let E be a Banach space and Ft a local flow on E with

fixed point at O . Suppose that for any bounded set B C E there is

an ¢ > 0 such that integral curves beginning in B exist for a time

interval > e

Let H : E 53R be a smooth function invariant under the flow.

(a) If H(uw) > const.“u”2 , then the flow is complete,
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(b) If H(0) =0 , DH(O) = O and DZH(O) is positive or negative

definite, then there is a neighborhood U of 0 such that any integral

curve starting in 0 1is defined for all t ; moreover, 0 is stable.

Proof. (a) Let uw € E ., Since H is conserved we have the a priori
. 2 . .

estimate HuH < constant, so u remains in a Bounded set B . But

because of the assumption on the flow, the integral curve beginning at

u can be indefinitely extended.

(b) From the assumptions, there are constants « , B such that

olull? < [D%H(0)e (u, w! < glluf? .

Hence, by Taylor's theorem, in a small neighborhood UO of O , we have

2 2
viull” < Juce) | < sffull”
Because H 1is conserved, this shows that there are neighborhoods U ,
V of 0O such that if u € U , it remains in V as long as it is

defined., Hence we have completeness as in (a). Since V can be

arbitrarily small, we also have stability. [

Nonlinear Wave Equations.

The following equation has been of considerable interest in

quantum field theory:
2
o 2 2
L= v - mo - ogf (1)
at

on R" , where ¢ 1is a scalar function, m >0 , o € R and p > 2 1is
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an integer. The constant ¢ 1is called the coupling constant and the

non-linear term a@p represents some sort of self interaction of the

field o

This equation in the same sense as the linear wave equation

(see lecture 2) is Hamiltonian. The energy function is

2

. ® . } m [0 r +1
HO, §) = 50, o> + 59, Vo> + o<, o> + =7 | o

p+l J @ dx .

We chose the phase space to be Hl X L as for the linear wave equation.

2

We want to apply the previous theorem to discuss global
solutions. 1In order to do this we need a local existence theory and we
need to know H 1is smooth. For the latter, the key thing is whether

p+L . _ . . o
or mot @ is integrable. To answer this one uses a generalization
of the Sobolev inequalities. We shall discuss these points in turn,
but let us first state the results corresponding to cases (a), (b) of

the previous theorem.

Theorem. (a) Suppose n =2 , ¢ >0 and p 1is odd, or else n =3

and p = 3 . Then the flow of (1) is complete.

(b) Suppose n =2 with p , o arbitrary or n=3 ,p =2, 3, 4,

o arbitrary. Then there is an ¢ > 0 such that if ¢, @ is in the

Hl X L2 e-ball about O then the corresponding solutions exist for

all t € R (actually if the initial data is Coo , so is the solution).

1
Furthermore the O solution is Liapunov stable in the H x L2 topology.
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Notice that the conditions

p odd, o >0 1is precisely

what makes the last ferm of H>0, so H(y, é) > const(H@Hé, + Hé“; )

which is (a) of the previous theorem,

The other restrictions om n , p come from the Sobolev

theorem in the following form. (See Nirenberg [1], Cantor [1]).

Sobolev-Nirenberg-Gagliardo inequality:

Suppose

T =

J 1l m R
- + a(r n) + (1 a)q

where

g

<a<l (if m~- j - % is an integer

vV

1, only a<1l is

k
allowed). Then for f : R™ LR s

e < constyfio™e)?, - fiell
L L L-

for a constant independent of f .

For example suppose n =3 and f € H1 Then taking m =1

b
. . 6
», =0, a=1 we find that f € L= and

6, . 1/6 .
(r‘ /

£ dx) 2,172

< (eonst) ([ (v6)T) 17,

Such results can be used to prove smoothness of H above and smoothness
results in the following:

Local Existence Theory.

Theorem. Let E be a Banach space, A

: DCE 5 E 1linear, the

adalelhuhitll: ik

generator of a semi-group Ut and let J : E - E be smooth with DJ
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bounded on bounded sets. Then

du _

it = Au + J(u)

defines a unique local flow whose local time of existence is uniformly

> 0 on bounded sets. (The evolution operator, F is ¢" for

t _— f——

fixed t .)

This result is due to Segal [1] who, based on earlier work
of Jorgens, pointed out how it can be used to prove the results (a) on
the wave equation (the result (b) is due to, amongst others, Chadam [1],

Marsden [10]).

The proof of this result is remarkably simple. Namely, we

convert the differential equation to the following integral equation:

I t
u(t) = UtuO + ;o Ut_sJ(u(s))ds . (2)

The key thing is that the unbounded operator A now disappears and

only the bounded operator U, and the smooth operator J are involved.
One can now use the usual Picard method to solve (2).‘ Also one verifies
that the solution lies in D if g does and that the solution satisfies

the equation (for the latter, J should be Cl and not merely Lipschitz).

The point is that using the Sobolev-Nirenberg-Gagliardo

inequalities one can verify that J has the requisite smoothness: take

v <£> €' x Ly
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(so one has to check o F;@p of H1 to L2 is smooth). Then the

global existence claims follow by the Liapunov method.

We hasten to add that the method depends crucially on the
positivity of the linearized energy norm. For other systems of interest,
such as the coupled Maxwell-Dirac equations these ideas can give local
solutions but they do not help determine if one has global solutions.

That particular problem remains largely open. (See Gross [1].)

Quantum Mechanical Completeness Theorems.

Recall that Stone's theorem asserts that every self adjoint
operator H on a Hilbert space ¥ determines a one parameter unitary
itH . 1 "
group (or flow) Ut = e , defined for all t € R . '"Completeness
therefore amounts to the question of verifying self adjointness. Actually

this is not such a simple question and is an active area of current

research, (See, e.g. Simon [1].)

Let us recall a couple of definitions. Let ¥ be a Hilbert

space and H : DC M - ¥ a linear operator, with D dense.
The adjoint H* : D¥ Cc § 5> ¥ 1is defined as follows:
D% = {x € ﬂlﬂz € H such that <z,y> = <x,Hy> for all y € D}

and H*x = z .
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An operator is symmetric if <Hx, y> = <x, Hy> for all

x, vy € D . Equivalently, H* DH ; i.e. D* 2D and H¥ =H on D
An operator is self adjoint if H* =H

Often self adjointness is not so easy to check because it
depends crucially on the correct choice of D . For example A 1is

self adjoint on HZ(Rn) , but not on C? (¥ = LZ(Rn) D0

One is led to introduce another notion. Recall that the
closure H of an operator U 1is that operator whose graph is the
closure of the graph of H . (This operator H always is well defined

for symmetric operators.)

A symmetric operator H is called essentially self adjoint

if its closure H 1is self adjoint.

It can be shown that this is equivalent to saying that H

has at most one self adjoint extensiom.

For example, A with domain C?) is essentially self adjoint

2
and its closure is A with domain H

Since there is a unique way of recovering a self adjoint
operator from an essentially self adjoint one, there is no loss in
trying to verify the condition of essential self adjointness. This is

what is done in practice.

If an operator is not essentially self adjoint this means some

CO = ¢ Functions with compact support.
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additional information e.g. boundary conditions -- must be specified

in order to uniquely determine the dynamics.

Consider the Hamiltonian operator for the Hydrogen atom,
H=-A4+— on R3 . Despite the fact that the solution of the
Schrodinger equation has been known explicitly for a half century, only
in 1950 was this operator shown to be essentially self adjoint on C%
(the domain of the closure turns out to be HZ) . This was done by

T. Kato (see Kato [6] for details and references).

3
More genmerally, on R, -A + V 1is essentially self adjoint
if v € L2 + L . The Loo part is trivial, being a bounded operator.
[ve]

To handle the L part (the part of 1/r mnear the origin) one uses a

2
Sobolev estimate in the form: 1let V € L2 . Then for all ¢ > 0 there

is an M€ such that for all £ € H2 s

el <ol + eliacl,

One can then use:

Kato's Criterion. Let A be (essentially) self adjoint on # with

domain .DA . Let B Dbe symmetric, DB ) DA and assume for some

0<a <1

Bxll < cfixll + afjax]

for all x €D, . Then A+ B 1is (essentially) self adjoint on D

A AT

This result is a rather elementary result in operator theory.
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We won't go into the details here.

The above method is the basic one by which one handles local
singularities such as occur in the Hydrogen atom. On the other hand
there can be problems at o such as occur when an atom is placed in
an external field. This situation is covered by a theorem of Ikebe-

Kato [1]:

Theorem. Let V : R3 — R be such that V is smooth and V(x) > VO(HXH)

where VO(r) is monotone decreasing and for H > VO ,

(v}

r dr
: Nﬁ{ - V(r)

[oe}

0 (the ¢ functions

Then =~A + V is essentially self adjoint on C

with compact support).

o

Note. If Vo(r) = -r , ¢ <2 then we have the validity of the

assumptions.

The result is too intricate to go into here (an exposition

of the proof, generalized to manifolds will appear in Chernoff-Marsden

1.

Tkebe-Kato then go on to combine this result with the previous
type of result. The final result covers most (non-relativistic) cases

of interest.

A Classical Analogue of the Tkebe-Kato Theorem.

There is a theorem in classical mechanics which yields
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completeness of a Hamiltonian system under the same conditions as in
the Tkebe-Kato theorem. (See Weinstein-Marsden [1].) The argument

. . . n
works well on manifolds just as easily as on R
Let us begin by considering the one dimensional case.

+ ) +
Let R be the nonnegative reals and VO : R SR a
1
nonincreasing C function. Consider the Hamiltonian system with the

usual kinetic energy and potential VO ; i.e. if c¢(t) 1is a solution

curve we have

dVO
e"(t) = - == (c(t)

By monotonicity of V., , if ¢'(0) >0 then c'(t) >0 for all

0
t>0 . Thus if H = [c'(t)/2]2 + Vo(c(t)) is the constant total

energy,

e'(8) = 201 - Vo(e())? .

is positively complete iff

Definition. The potential VO

X

r dx
1

J

Xy (20 - VN

/2900 as X —» ®

for all Xy >0 and U such that Vo(xl) <H

It is easy to see that if this holds for some x, , H ,

such that VO(Xl) < H then it holds for all such x H (use the

l 3

fact that improper integrals with asymptotic integrands are simultaneously

convergent or divergent).
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Since the above integral is just the time required for c(t)
to move from Xy to x we see that VO is positively complete iff
all integral curves c(t) with c(0) >0 , ¢'(0) > 0 are defined

for all t >0 . (The case when c¢'(0) = 0 1is easily disposed of.)

Below we will use the notation /z(xo, H)(t) for the integral

curve with /E(XO, H)(0) = x, and energy H .

0

Example. The function -x¥  for o >0 1is positively complete iff

o <2, The same is true for
-x[log(x + 1)1%, -x log(x + 1)[log(log(x + 1) + 1]% etc.
Consider now the general case.

Theorem. Let M be a complete Riemannian manifold @ctually M may

be infinite-dimensional) and let V be a C1 function on M . Suppose

there is a point p € M and a positively complete VO on R+ such

that for all m € M [with d(m, p) sufficiently largel,

1

V(m) > Vo(d(m, p)) where d 1is the Riemannian distance on M .

Then the flow on TM of the Hamiltonian vector field with (the usual

kinetic energy K(v) = <v, v>/2 and) potential V is a complete flow

(i.e. integral curves are defined for all t € R)

Examples. If V(m) > -(Constant)d(m, p)2 for sufficiently large
d(m, p) the conditions hold. This is satisfied if ngad V(m)H <

(Constant)d(m, p) (for sufficiently large d(m, p))

Proof of Theorem. Let ¢ : [0, b[ 5 T be an integral curve, 0 <b <= ,

"See W. Gordon [1], D. Ebin [2], and A. Weinstein and J. Marsden [1].
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As usual, it will suffice to show that the curve co(t) , the projection
of c(t) on M , remains in a bounded set for all t &€ [0, b[ (a
similar argument holds for ¢ € ]-b, 0]) . (In infinite dimensions

one uses an argument of Ebin [2].)
Let n = cO(O) and H the energy of c(t) . Let

£,(0) = d(ey(t), p) and £,(t) =T(d(n , p), H)(E)
(notation as above). Now

t
£.(t) £d(p, n) + lle(sy]lds

"0
t
= d(p, n) + f (2[H - V(CO(S))])l/ZdS
I,
t
<, m + | - vye () D M s
“0
Also we have
f =d + {‘t 2[ VA(E ] 1/2d
(0 = ey + [ 2l - iy D s

It follows from these and monotonicity of VO that

£1(8) < £,(8) <E(d(n, p), H)(D)
for all t € [0, b] . This is an elementary comparison argument. (See

the lemma below.) We conclude that fl(t) = d(co(t), p) remains

bounded for t € [0, b[ and so the result follows.[
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Remarks. (1) The completeness for t > 0 1is preserved if a dissipa-
tive vector field Y 1is added to the Hamiltonian vector field (i.e.
Yy is vertical [Tm(Y) = 0] and VYK < 0 where K 1is the kinetic

energy). This is easy to see.

(2) This proof also gives an estimate for the growth of

for example if V_ = -x2 then

d(co(t), p) in terms of V 0

0 5
d(co(t), p) - d(n, p) grows like et .

When is the Sum of two Complete Vector Fields Complete?

Unfortunately, not always. For example consider

2
X : R2 —9R2 s Y ¢ R2 - R,

2 2
X(x, y) =, 0 , ¥Y(x,y) =0, x)
Each of X , Y has a complete flow, but X + Y does not.

Using the sort of argument in the previous theorem however,

one can get a result,

Theorem., Let H be a Hilbert space and let X and Y be locally

Lipschitz vector fields which satisfy the foliowing:

(a) X and 'Y are bounded and Lipschitz on bounded sets,

(b) there is a constant B > 0 such that <¥(x), x> < BHXHZ

for all x €H ,

(c) there is a locally Lipschitz monotone increasing function

o ax
c(t) >0 , £t >0 such that FRPYe™

=+ and XK(xg), x> < [lxglled/x,lh
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or, stronger, if x(t) 1is an integral curve of X ,

5 =l < edlxolh

Then X , Y and X +Y are positively complete (i.e, complete for

t>0.)

Note. One may assume HX(xO)H < c(HxOH) in (c¢) instead of

d
T I < edlxl .
Proof. We begin with an elementary comparison lemma:

Lemma. Suppose r'(t) = c(r(t)) and r, >0 ., Then r(t) >0 is

o

defined for all t >0 . Suppose £(t) > 0 , is continuous and

AL
f(t) < ry + ©oce(f(s))ds , t € [0, T]
0
Then
f(t) <r(t) for t € [0, Tf
This lemma is not hard to prove. See Hartman [1] for such
results.

Proof of Theorem. ©Let u(t) be an integral curve of X + Y . By

assumption (a), it suffices to show wu(t) 1is bounded on finite t-

intervals, say t € [0, T[] . Now using (b),

3 5 lueo)?

<u(t), X(u(t)) + v(u(t))>

allueyI® + <u(t), K(u(e))> .

IA
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By assumption (c) we have for an integral curve x(t) of X

<x(t), X(x(t))> = % %E Hx(t)[l2 < Hx(t)”c(Hx(t)H) . Therefore

<XO, X(X0)> < ”XOHC(”XOH) for any XO € H . Thus we get

& ol < sluol + edlaolh
and hence

5 P < eduol

By the lemma, e_BtHu(t)H is bounded, so Hu(t)” is bounded.

!
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9. General Relativity as a Hamiltonian System®

In this lecture we discuss the Einstein field equations of
general relativity from the point of view of Hamiltonian systems. 1In
order to motivate the discussion, we digress to include some background

and motivational material.

Background.

The basic tenet of special relativity, that the speed of
light is constant independent of the movement of source or observer,
3

4
is reflected in a simple mathematical structure on R =R~ X R

(space x time), viz the Minkowski metric:

4
Vew = vlwl + v2w2 + v3w3 - V4W

or, as a matrix:

+1 0
+1
+1

(use units such that ¢ = 1).

The physically meaningful concepts in special relativity
are those invariant under the Lorentz group; i.e., the group of linear
isometries of the Minkowski metric.

As Einstein showed in 1905, the above picture - forced by
concrete experiments (namely the Michaelson-Morley experiment) - has
consequences of a non intuitive nature such as length contractions,
time dilatation etc, All this is described in most elementary texts,

such as Taylor-Wheeler [1].

* This and the next lecture are based on Fisher-Marsden
[1,2,5,6].
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Later Einstein had the following brilliant insight: it is
physicaily impossible to distinguish gravitational forces from
acceleration forces. Indeed, by Galileo's fameous experiment we
know that gravitational mass is the same as inertial mass (''principle
of equivalence'). But acceleration is a purely geometrical (or
kinematical) phenomena. Therefore it should be possible to geometrize
space time in such a way that the gravitational fields are part of
the geometry itself,

This is what Einstein did in his papers of 1915-17,

(See Lanczos [2] for more historical facts).

It is fairly obvious how to generalize Minkowski space.

We just use a Lorentz manifold V ; i.e. a 4-manifold with a

symmetric bilinear form < , >a on each tangent space TXV » which

has signature (+H-).

We want the following to hold: particles in free fall (in
the gravitational field) should follow geodesics on V

Thus we are asserting that a body moving under the force of
gravitation alone (e.g. a satellite circling the earth) should travel
along a geodesic in an appropriate differentiable manifold. Such a
manifold is certainly not flat 3-space, since the motion of a
satellite would not then be geodesic. It is also easy to see that
the manifold cannot be a curved three-dimensional Riemannian space:

P launched at the same

consider the case of two projectiles Pl, 2

time from A with trajectories as indicated in the Figure, both
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passing through B (this is easily arranged). It is clear that not

both P1 and P2 can be geodesic with respect to any 3-space metric;

since B <can be moved arbitrarily close to A , there are no normal

neighborhoods of A (in which there are unique minimizing geodesics).

N EA;\
TH
\ SR

\\

On the other hand, we do get unique trajectories if we
require the projectile to pass through B at a given time. So we
are compelled to consider a manifold of dimension at least four,
Finally, it is almost obvious that this 4-manifold cannot be Riemannian
(metric tensor positive definite): Riemannian manifolds are isotropic
in the sense that there are no intrinsically defined, distinguished
directions, But space time is not isotropic; for example the geodesic
connecting (you,now) with (Sirius, 1 second later) could not be
traversed by a material particle required to travel at a speed below
that of light. One has to distinguish between pqssible particle
trajectories (timelike curves), impossible particle trajectories
(spacelike curves), and possible photon trajectories (null curves).

All in all, one is led to consider a four-dimensional lLorentz
manifold whose metric tensor g has signature (4+4++-) . This is
quite natural since it tells us that locally (in the tangent space,
or in a normal neighborhood) the universe looks like Minkowski-

space, As stated above, in this manifold, the "world line" or space
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time trajectory of a freely falling particle is a geodesic, Furthermore,
it is assumed that this geodesic does not depend on the mass of the
particle (an orange and a grapefruit behave the same way in the same
gravitational field). This is another way of stating the principle of
equivalence,

Less obvious than the above is the following. In Newtonian

gravitational theory, the gravitational potential ¢ must satisfy

2
v ¢ = 0 exterior to matter. Since the metric is supposed to geometrize
these potentials, what conditions should we impose on the metric?
Using this analogy and a good deal of intuition and

guesswork, Einstein was led to the (empty space) field equations¥

" The curvature temsor R 6

oBY is defined on vector fields by

o
R(X,Y,Z) = g V.2 - ¥.9,Z Z where (VXY)Q = XB oY + ¢ XBYY

-V
XY Y'X [X,Y] 3xP By
(summation on repeated indices) and
D

v _ . aprO%sy  %Bp 'gov\

Tgy =28 n

g axf ¥ ot
Here g is the components of the metric in a chart, and g@p is the

inverse matrix. We write x% = (xJ,t) for local coordinates. Also

raising indices corresponds to identifying TXV and TV via g , as

X
usual (see lecture 2) e.g.: XB = gRVXY etc,
. . ' . 5 )
The Ricci tensor Ric =R is R = R a contraction),and
B o8 268 ( s
the scalar curvature is R =R ¢ . One writes AwﬁlY for the covariant
o

derivative of a tensor.
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Following this, Einstein incorporated matter, or other

external sources via

G_ =R _-%Rg =T
of of * gaP o

where T is a given energy momentum tensor of the sources (T

of oB

is divergence free and R@n is not, so Einstein modified R

o

to G _ - fortunately R _ =0 1is equivalent to G = 0)
o of of

Sometimes a ''cosmological constant" A is also included:

G - A =T .
o gaB oB

Later these equations were '"justified" on theoretical grounds by
Cartan-Weyl. They proved that any symmetric divergence free

2-tensor depending on g, Dg, ng had to have the form* G - Ag

of of °

There is another piece of motivation that lends insight into
the nature of the field equations which is due to Pirani [1]. This
proceeds as follows:

Let u be the tangent to a timelike geodesic =x(t)

(timelike means < u,u > < 0), so VU= 0 . Consider the Jacobi

field (or deviation vector) T along x(t) ; it satisfies Jacobi's
equation:

vuvuﬂ + R(M,wu =0
where R 1is the curvature tensor. Regarded as a map Ru in T,

Ric(u,u) is its trace,

We are supposing Ric = 0 , Let e, i=1,2,3 be vectors

ot

It is usually assumed that the tensor depends linearly on ng, but
see Rund-Lovelock [11].
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orthogonal to u at a point p where t = 0 ., Then extend e, to be

Jacobi fields with initial condition Vuei =0 &t p . Then

vu(u-e) = vuu-ei + u*g e, =uty e, so vuvu(u-ei) = u-vuvuei = -u-R(eiu)u =0
(we have < R(v,u)U,u > = 0 always by skew symmetry of < R(u,v)w,z >
in w,z) . Hence ure, = 0 for all time. Choose e, to be eigenvectors

of iu on the space orthogonal to u . We denote this restriction by

~ L NJL:‘ _ _ ~ .
R W - Thus Rubi = kiei , and Al -+ AZ + KS = 0 because Ru is zero.

Now these vectors e, span a three volume, Multiply e,
by € (so that we can be sure exp maps the field €e, onto geodesics

close to the geodesic through p ). A satisfactory approximation of

the volume of the cube spanned by these vectors is (vol) = €3e1 A e, A ey .

We compute:

2 j

4 og.B i
ngdX dx" = -dt” + gijdx dx
2

d
— (vol)!
ds2 P

|
9,7, (VoD |

eS{Vuvuel) Aey Aeytoer A9V .e,) Ae,t ei A&y A TT e,
+ First derivative terms]lp .

Since the ei's are Jocobi fields and eigenvectors (at p)
of §i , and since vuei‘p = 0 , we have

2

a
n izﬁ(vol)lp = -y 2, + x3)(vol){p =0 if _iggll =0
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as the condition equivalent to Ric =0 ,

We can iﬁterpret this more physically as follows. Imagine
ourselves in a freely falling elevator and watch a collection of
freely falling particles. The particles are initially at rest with
respect to each other, but due to motion towards the earth's center,
they will pick up a relative motion (see the following Figure).

The condition (1) says that the 3-volume (up to second order)
is remaining constant during the motion. This geometric property is
directly verifiable in the case of the Newtonian gravitational field,

so is a reasonable condidate for generalization., Thus we shall adopt

K
e

Ric = 0 as the Einstein field equations in our Lorentz four manifold.

WIDTH DECREASES
== DUE YO ATTRACTION.
bt TOWARDS CENTRE
i

—t

A" 7

A

! UL pEGHT

La-4~+-4  |NCREASES
DUE TO
GREATER
ACCELERATION
OF CLOSER
PARTICLES

The general program

Let V be a spacetime with M a three-dimensional spacelike
section without boundary (a spacelike section is a submanifold such

that for 0 #v € TM,<v,v>2> 0) . Assume for the moment that M is

compact, so that there exists a neighborhood U of M in which the

timelike geodesics (that is geodesics whose tangent vectors v have

% See also J. Wheeler [2].
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<v,v ><0) orthogonal to M have no focal points, If we let t

measure proper.time on these geodesics, with ¢t =0 on M = MO >
then the function t 1is well-defined in U . The surfaces Mt

given by t = constant form a one parameter family of space sections,

all diffeomorphic to M . Let &y be the induced Riemannian metric
on Mt . Via the aformentioned diffeomorphism, we can regard g, @8s

a curve in the space of positive definite metrics on M . The fact

that V 1is Ricci flat implies that 8¢ satisfies certain differential

equations, We want to work these out,
We also want to go the other way: given M , a positive

definite metric g9 > and a symmetric tensor ko = éO (the second

fundamental form of M in V) we want to find the curve 8

describing the time evolution of the geometry of M , and then to
past together the resulting 3-manifolds Mt to obtain a piece of

spacetime.

The Space of Riemannian Metrics.

Fix a 3-manifold M which we shall take to be compact for
simplicity. This is supposed to represent a model for the spatial

universe. Let SZ(M) be the set of all ¢~ symmetric two tensors on
M and let I CiSz(M) be the cone of positive definite ones; i.e.

riemannian metrics.

The "time evolution" of the universe will be represented by
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a curve of metrics g(t) € M . Of course there is no global time
scale and physiéally this evolution takes place relative to a given system
of "clocks" and a global "frame'", This point will be briefly discussed
below, We want W to be the configuration space for a dynamical
system. The first job therefore will be to construct a metric on In .

As was the case with hydrodynamics, one should properly

work with metrics in the Sobolev class HS . This space is denoted

mS . For simplicity most of the development will be dome in I .

Below we shall discuss briefly the existence questions, which make

use of HS . This also comes into play in lecture 10. Since In 1is

an open cone in SZ(M) (using the HS or C topology), for

g €m , we have

Tm = S, (M)
g 2
s0 T =M x SZ(M)
Define a metric (¢ on M as follows:

n(hK) = [ (h-k - (trh)(trk)Jd (1)
8 M 8

where g € m, h,k € Tgm, h*k is the induced inner product,
hek = hleij, trh = hli is the trace and “g is the volume determined

by g . Observe that h+*k and trh both depend upon g . Thus
G 1s a non constant metric. § 1is called the deWitt metric., Although
G 1is not positive definite, we can easily demonstrate that ¢ 1is

weakly non degenerate: suppose Gg(h,k) =0 for all h € S2 .
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Then qg(k, k - X(trk)g) = O . But this equals jM k'k so k=0 .

The first thing we will want to do is work out the spray
of G .

Proposition. The spray S of G 1is given as follows:

1ts principal part is

q: Tm4—952 X 82

S(g,k) = (K, k x k - 5(txl)k - 5 (kek - (trk)?)g) (2)

Note, The factor % here depends on dim M = 3

Proof. We use the formulas for the spray in lecture 2. We

first must compute the derivative of Qg with respect to g . We

do this in three steps:

Lemma, The derivative of g k>ug in direction h € §
— 2

is given by %(trh)ug .

Proof. Let g(t) = g+ th . The derivative in question is

: |

, 1
- . Using the local formula = Jdet n
dat Pg(t) & b = Wdet gy dXCA LA ax

£=0

d
we get the result from the formula — det . =
g ar det(ey ; + thij)l erhy det(y; )

t=0

The latter formula may be proven from the fact that the derivative - det ar the

. . . d d -
identity is trace,so s det(gij + t-hij) = det(gij) TS det(l + tg lh)

o

w _1
= det(gij) tr(hij) . Note g: TXM —aTXM s0 g h 1is a linear map
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from TxM to itself and trh is the trace of this map. In coordinate
-1 . . 0
language g h raises one index on h .,

Lemma, The derivative of g hek in direction hl is given by

1

- 4 .
- . = =h k. ,
2 h1 (h X k) where h x k =hg "k or (h X k)ij hiﬁ ; in

coordinates,
- - - - -1
Proof, Now h-k = tr(g lhg lk) and as usual, gf g(t) Lo 2 1 18

where g(t) = g + th1 . Thus we get for the derivative

-1 -1, -1 -1 -1 -1
- tr(g "h, g "hg k) - tr(g hg hlg k)

1

and this gives the result., O

In a similar way, one proves

Lemma, The derivative of g tr(h) in direction hl is given by

-hl°h .

Continuing with the proof the proposition, we have from

lecture 2 that if we write 8(g,k) = (k, Sg(k)), Sy should satisfy:

ﬁg(sg(k>,h) =% Dgiog(k,k)}-h - Dgng(k,h)-k (3)

From the lemmas we get

DG (kb) by = IM(- 2h) (K x by + (erh)hyk o+ (erkohyTh) du

+ fM[h-k - (trh)(erk)]-} trh, A
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Thus the right hand side of (3) becomes

P he(k x k) - Bhek(trk) - (trh) kek + (trk)2ech + %[k'k - (trk)z]trh}dpg
M

(4)

while the left side is f {Sg(k)'h - tr(Sgk) tr(h)} dug which becomes,
M

on substituting the stated expression for Sg , using g¢h = trh ,

trg = 3 , and tr(k x k)

il

kek

H

[ he(k x k) - %(h-k)trk

1 2
y 3 {k*k trh - (trk)" trh) dug

- [ kek trh - %(trk)z trh - é {k*k-3 trh - (trk)23trh} dug
™

which equals (4) above. [

The Gravitational Potential.

We have established our metric G on M and have determined
its spray. We now proceed to consider a potential and will compute
its gradient. The spray S of ( is simply algebraic, whereas the

gradient of the potential will involve non linear differential operators.
Define V: M =R by V(g) = Z'F R(g) d, where R(g)

is the scalar curvature {(remember g is a three dimensional metric)

and as usual Mg is the volume associated with g .

Proposition. The gradient of V with respect to the metric @

on M is

grad V(g) = -2 Ric(g) + % R(g)g € S,(M) .
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Proof. Let g(t) = g + th . Then

a(g)h = 2 [ R(g() N

dt “y =0
The derivative may be done in two parts. The Mg(t) part is taken
care of by the lemmas., For the scalar curvature we use:

Lemma., %E R(g(t))l = A(trh) + §sh - Ric(g)*h
t=0

where ggh = hlJlilj is the double covariant divergence,

This is a straightforward but somewhat lengthy computation
which we shall omit. (See Lichnerowicz [2]).
Since we are taking M compact with no boundary, the two

terms A(trh) , s§8h drop out by Stokes theorem. Hence we get

dv(g)*h = - 2 [ Ric(g)*h du_ + [ R(g)tr(h) du
‘M & u &

It is now easy to verify that the formula in the proposition satisfies

I

Qg(grad V(g),h) = dv(g)+h

I

if we remember that tr(Ric(g)) R{(g) and trg =3 . O

The Energy Condition; Coordinate Invariance and Conservation Laws

1f we consider the Lagrangian L{g,k) = % Qg(k,k) - V(g) on

I , then we have computed above the corresponding spray to be

Sg(k) - grad V(g) . Thus an integral curve g(t) satisfies

2

dg_ 3 (EE) - gradv(g) .
dtz g dt
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These equations have an important property which is not
shared by the usual non relativistic field theories, This ié that not
only is the total energy conserved, but it is pointwise conserved,
Actually this law is intimately connected with another conservation

law which we shall develop first.

Theorem. Let 7w = (trk)g - k) ® Mg » the conjugate momentum, Then

along an integral curve of L above, g; gm =0 ., Here, O8m is

defined by §(trk)g - k) ® Mg ; 8h = hijll . In particular if

8T =0 at t =0 , then this condition is maintained. Furthermore,

this law is the conservation law associated with the invariance of L

under the (left) action of the group of diffeomorphisms £ on m by

@n(g) =T.8 -

In otherwords, we get a free conservation law just because
our theory is invariant under coordinate transformations. The actual

form of V is irrelevant.

Proof. We are considering the action of o on M as stated., See
lecture 4 for the relevant properties of ¢ which are used here.
Consider X a vector field on M , so X is in'the Lie algebra of
9§ . The one parameter subgroup corresponding to X 1is its flow
Ft € 0 , Since

d

—F .8 =-Lg ,
I Tosl T

we see that the corresponding infinitesimal generator on M 1is
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g~ - LX8 € SZ(M) . Hence by our conservation laws (lecture &) ,

(g,k) > Qg (k, -LXg)

is a conserved quantity. At this point, we need the following:

Lemma. L gk = - 2{ X-6k .
Lemma YM 5 o ,jM iy
Proof. It is easy to derive the following formula LXg = Xl‘j + XJli .

From this it follows that 8(k*X) = (8k)'X + k*9X = (8k)*X + %k~LXg .

Since, by Stokes theorem I 5(k+X) du =0 , we get the lemma ., [
M

il

Now Gy(k, Lyg) = [ (k-L g - (trk)(erlyg))dy

M

[ (e e - (g a
M

L g
I

-2 f X061
M

Thus for any vector field X , f X*6m 1is conserved. Hence §m itself
M

is conserved, [

This result could also be obtained from Noethers theorem.

Notice that the bundle in question is SZ(M) , and since £ depends
on second derivatives of the fields g , since R(g) does, one would
have to use the second jet bundle, That approach seems more complicated.

The energy c¢onservation law is as follows.
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Theorem. For the equations for L above, we have

3
> {¥(g,k) ug} + 2 886m =0

where

H(g, k) = 5 qg(k:k) + 2 R(2)

is the energy density. In particular if &m =0 , H=0 at ¢ =0 then

these conditions are maintained in time.

Proof. Let Hg(k) = S{k*k - (trk)z} the kinetic energy density.

Then

c - dk
— (¥ =0 (k, — + DX (k)°k
(ug) é( ’dt)“g o g() by

i
+ E tr(k) ug

where ( 1is the pointwise Dewitt metric. Using the lemmas on p. 213-214,

Dghg(k)-k = - ke(k X k) + kek(trk)
and

- dk, _ . 1

qg(k, ) = ke kox ko= H(trk)kek - g ¥ (trk)

(erk (kok) - H(erk)® - %‘M(trk)}

+ 2 Ric(g)*k - 2 R(g) tr(k)

5 r(g) tr(k) + 3 R(g) tr(k)

Adding we get

§; () = 2 Ric(g) "k - R(g) tr(k)
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On the other hand,
'S’E (2 R(3) 1) = R(@Er() u, + (2 plerk)

+ 258k - 2 Ric(g)k) P

Hence adding,

i

o .
t (H ug) 2(A(trk) 66k)ug

)

- 286m . O

There is good a priori evidence, including a theorem, that
any genuinely relativistic theory, in the absense of external fields,
must have ¥ pointwise constant (see Fischer-Marsden [1]).

Therefore one selects out the subset ¢ of T defined by:

c = {(g,k)] %{k'k - (trk)z} + 2R(g) = 0 and
8(k - (trk)g) = 0} (5

The previous results prove that our Hamiltonian flow on T leaves

¢ invariant and we thus select out (C as the physically meaningful
subset. It is rather analogous to what one does in electromagnetism.
In general, C is not a manifold., This point is discussed in lecture
10.

Thus for (g,k) € ¢ , the evolution equations become,

98 - i

St

ak = s (k) - grad V(g) (6)
ot 8

k x k - %(trk)k + 2 Ric(g)
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The extra terms have dropped out in view of ¥ =0

Relationahip with the Four Geometry.

We now form L =M x R and construct a Lorentz metric on

L as follows.

g(x,t)((vxr):(wss)) = gx(t)(v’w) - rs

where (v,r), w,s) €T (M x R) ~ TM x R and g is the time

(x,t)

dependent metric on M . In coordinates, the formula reads:

~ i 2
dO/ B= dl J _
g@B x"dx gij x dx dt

where x© = (x",t) ; i=1,2,3, §=0,1,2,3 .

Theorem., The Lorentz metric B is Ricci flat if and only if g

satisfies the evolution equations (6) above, together with the

initial constraints (5).

This result therefore establishes the equivalence between
solving the intiial value problem for the three metric g and
Ricci-flatness of the four metric g i.e. the Einstein field equations.
Note that we have taken a special form for Z , namely we have assumed

0 -1 . This point is discussed below.

Boi T 7 2 Boo T
The proof turns on the Gauss-Codazzi equations which relate
the curvatures on L,M with the second fundamental form and the unit

normal, This result which we assume here, is the following, for the

case at hand:
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Lemma. Let Sij be the second fundamental form on M and 2Z¥

(4
the unit normal to M , so Z* = (0,1) . Let )R be the
—_— —— O/B'Yé ————
curvature tensor on L , (3)R.. that on M . Then
ijkd ——— —
a3, .
.y (&) R
(1) ROin = 3t (8 x S)ij
Ly (W) - (3) -
D)2 7R i Rike ¥ S5 ™ S5k
Giiy Wi o =

oijk ~ Sik|j ~ Sijlk

Now if g;g are related as before, we assert that

8y = 7 7 Ky

[N

where kij - 08 . Indeed, we have §.. = -Z2,3. = - T,

t ij il] i] o ij

Q/

But from the formula for the Christoffel symbols, we compute that

, and so our claim holds.

i3 T % 83,0

Now suppose § is Ricci flat. Then in particular,

0= (D LB (200 () L ske (&)

Rij ol 0130 kijg .

Applying (i), (ii) of the lemma with Sij = -% kij gives

ok, .
e 131 kg (3) 1 )
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-
.
|

1 (3) 1 _ 1
or eyl s(k % k)ij + 2 Rij + %(k x k)ij s(trk) k

L (3)
(ex o - 5k o) + 20

which is the correct equation of motion for k , according to (6).

Similarly from

O R N O A O N ON

oi 00iB ooio koig

kb ()
=8 Ryois

we obtain from (iii)

ke
0 =% {kkkli B kkilz}

or §(trk g - k) =0
Similarly from 4ROO = 0 we obtain the energy statement. The converse
is proved in exactly the same way. O

The Lapse and Shift.

Although any Lorentz metric & can be put in the form

T = gij dxlde - dt2 by a suitable coordinate change (namely in

gaussian, or normal, coordinates),the above description is incomplete
since it singles out this coordinate system as special. The situation
can be remedied however, by introducing what are called the lapse and

shift functions, The shift function is a time dependent vector



field X prescribed in advance, corresponding to a choice of coordinate

system. Now we set

Il

¥ o= (1 - < X,X >)de’ - 2% dt dxt 4 g, dxTdx)
o 1 1]

and this corresponds to the evolution equations

é-g = - o
dt k I‘X°
ok -5 (k) - 2 Ric(e) - Lok
ot g ° X

This carn all be seen very sinply as a change from what we
.- 11 . -

might call "space” Yo "body" coordinates. Namely, if g 1is

is a solution for no skift and n is the flow of X, then

;=1 % —
)

-
5
= Wy & solves the abeve. g sabove is just the metric

in the induced coordinate change on M xR

This therefore takes care of coordinate changes on MXR
corresponding to changes in M ., For changes along R one introduces
the lapse and things now become more involved. We now introduce

Ni: M xR =R and

2 .3
= - d
A3 Ndt  + g ® dx
with

.@E:Nk_

At

3K _ . .
=— = NS (k) - 2N Ric(g) + 2 Hess N
ot g

where Hess N = Nlilj is the Hessian of N ., We shall not go into
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details here except to remark that this can be handled by the following
device, Set T = the ¢ maps € ; M X R >R . 1If one knows how to treat
relativistic particles by extension of the Lagrangian to a homegeneous
degenerate one, (see Lancos [1]) then we are motivated to extend our
Lagrangian from M to M x T with T generalizing a single time
parameter R . This procedure leads to the above equations of motion,
with the degeneracy reflected in the arbitrariness of N ., One can use
the symmetry groups ® and J to construct a reduced phase space

using the methods of lecture 6 to recover a result of Fadeev [1].

See Marsden-Fischer [1l]. However we shall not pursue the matter

further here,

Remarks on existence of solutions

The original theorem concerning existence of solutions for
the Einstein system is due to Fourés-Bruhat [1]. The result was
improved on by Lichmerowicz [1] using Leray systems. See also
Choquet-Bruhat [1] and Dionne [1]. The method involves the theory of
second order partial differential equations which are quasi-linear and
"strictly hyperbolie", Actually, there is a simpler theory of quasi-
linear first order systems which is applicable here (cf. Fischer-Marsden
[2,3]).

The way this goes is a bit complicated and will not be presented
in detail here. We will illustrate with the wave equation how one
reduces a second order system to a first order omne. The method for

relativity is more complicated, but the basic idea is the same.
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First of all let us consider the linear problem in R Let

. n m
u be a vector-valued function u:R - R . The system

s}
(1) 28V AT 2 4B
at /. i
i=1 ox

is said to be symmetric hyperbolic if the m X m matrices AI are

symmetric for all 1 < i <n . The system is first order and linear
in u . Under fairly mild restrictions (A1 > B should be of class

S

H , s> (n/2) + 1) , there exists a unique solution ug in H®

(all time) for any initial condition u in H® . This result is due
0

basically to Petrovsky [1], Friedrichs [1], and others. A proof may be
found in Courant-Hilbert [1] Vol. II; see also Kato [3,4] and
Dunford-Schwartz [1l]. Using standard techniques of reducing second
order systems to first order, this theorem may be used to solve the

wave equation in rR" :

EXAMPLE. The wave equation,

The equation is

§—§ = OPEE = £(x, ... ,x00)
ot
Put, formally, . e
£ 4y
af
oL u
axl !
of a
n
Ry
of
| ot _un+1
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Then the wave equation for £ 1is the same as the following

symmetric hypérbolic system for wu :

[ o _
5t Yntl
{ at aXl

O _ %1
ot 3x

aun+l au1 aun

—5E—=——i+...+_ﬁ A

\ 3x 3%

In this case

A = etc.

are symmetric (n+2) X (n+2) matrices.
Thus, using the linear theory for general first order symmetric

hyoerbolic systems, we get an existence theorem for the wave equation,

namely that if (fo, (afo/at))é HS+1 X Hs there is a unique solution

s+1 .
ft €H + » ~o < t < o , satisfying the given initial conditions,
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The hyperbolicity of (azf/atz) = Azf is reflected in the

symmetry of the Ai . If we had used (azf/atz) = —Azf , the Ai
would not have come out symmetric - the Cauchy problem in this case
is not well posed.

Now consider the nonlinear problem in R" . 1In this case

we have a system of the form

)

u i Ju
St AT (x,t,u) =t B(x,t,u) ,

oX

.

where the Ai and B are matrices which are polynomial in u (or
more generally, satisfy Sobolev's "condition T'"; cf. Sobolev {1]).
The system is quasi-linear and the matrices Ai are symmetric, The
nonlinear theorem is obtained from the linear theory by adapting the
Picard method, In this case also, unique solutions eXist in u® )
but only for short time, in contrast to the linear theory.

The Einstein system above is rather like the wave equation and
one can show that in the appropriate variables, obtained in a way not
unlike that for the wave equation, it is symmetric hyperbolic.

The verification that it is symmetric hyperbolic uses
"harmonic coordinates"; cf. Lichnervowicz [1].

Thus we get existence and uniqueness of smooth solutions for
short time (which can be extended to maximal solutions as well). These
solutions depend continuously on the initial data.

For details of all of this, see Fischer-Marsden [2].
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. . . s . . . +
10. Linearization Stability of the Einstein Equations.
This lecture is concerned with some "hard" applications of

global analysis methods to general relativity.

There have been a number of impressive applications of
differential topology to relativity recently. One of the most important
of such applications has been to the study of the topology of space-
times in the works of Geroch, Hawking and Penrose. Using techniques
of differential topology and differential geometry, they prove, for
example, various incompleteness theorems from which one may infer the
existence of black holes -- under reasonable mathematical hypotheses
on the spacetime involved. See W. Kundt [1] for a recent survey and

KR

a bibliography for this subject.

The techniques used in the above are taken from the study
of the topology and geometry of finite dimensional manifolds. OQur
main concern here is with the applications of infinite dimensional

manifolds.

That infinite dimensional manifold theory is relevant for
general relativity was first pointed out by J. A. Wheeler [1],
He stressed the usefulness of considering superspace S . S consists
of riemannian metrics on a given three manifold M , with metrics
which can be obtained one from the other by a coordinate transformation,
identified, i.e. S =M™/0 . This space § is important for we can
view the universe as an evolving (or time dependent) geometry and
hence as a curve in S as explained in lecture 9. The geometry and
% See also the new book of Hawking and Ellis, Cambridge (1973).

+ Part of this lecture is adapted from the 1973 essay of A. Fischer and
J. Marsden in the Gravity Research Foundation.
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topology of S has been investigated by several people. See for

example Fischer [1].

Recall from lecture 9 that the Einstein field equations state
that, outside of regions of matter, the metric tensor gaﬁ must be
Ricei flat; i.e. RQB =0 . (1) This is a complicated coupled system
of non-linear partial differential equations. One can regard the
Einstein equations as a Hamiltonian system of differential equations
on S in an appropriate sense. This idea goes back to Arnowitt,

Deser and Misner [1] but was put into the setting of S , explicitly

using infinite dimensional manifolds by Fischer-Marsden [1].

The above applications to general relativity can be regarded
as "soft'" in the sense that infinite dimensional manifolds are involved
mostly as a language convenience and as a guide to the theory's
structure, While this is important, it is perhaps not critical to the

development of the theory.

The first substantial "hard" theorem using infinite dimensional
analysis (at least in an informal way) is due to Brill and Deser [1].
They establish the important result that any non-trivial perturbation
of Minkowski space leads to a spacetime with strictly positive mass
(or internal gravitational energy). The technique they use is an
adaptation of methods from the calculus of variations. The idea
behind the proof is rather simple; they show that on the space of
solutions to Einstein's equations, the mass function has a non-degenerate

critical point at flat, or Minkowski, space.
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An important feature of the work of Brill and Deser is that
the infinite dimensional techniques employed are natural, useful and

indispensible.

Linearization Stability.

Another fundamental problem in general relativity which has
been solved using techniques from global analysis is that of linearization
stability. This problem may be explained as follows. Suppose we have
a given spacetime, for example the Schwarzchild metric, and then wish
to consider a slightly perturbed situation; for instance the introduction
of a slight irregularity or a small planet. To consider such situations
directly is not easy because of the non-linear nature of Einstein's
equations. Instead, it is common to linearize the equations, solve
these linearized equations, and assert that the solution is an approxi-

mation to the "true'" solution of the non-linear equations.
q

To motivate linearization, we consider the following standard

perturbation argument.

Suppose Ric(go) = 0 and we seek to solve for g near gg

Write g(A) for a parameter A and expand:

g(h) = g, + Ah + Ak o+ L.

d
The approximation to first order is g + Ah . Now h = 5%’K—0 . If

Ric(g(d)) = 0 we find that for h ,

D Ric(gy)+h =0 . (2)
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These are the linearized field equations (they are written out below).

It is perhaps surprizing that the implicit assumption -- that
the solution of the linear equations approximates the solution of the
full equations -- is not always valid. Such a possibility was indicated
by Brill-Deser [2], and has been established rigorously by the authors®
in the case the universe is "toroidal"; 1i.e. T3 X R where T3 denotes

the flat 3-torus. If the above assumption on the given spacetime is

valid, that spacetime is called linearization stable.

The theorem below shows that Brill's example is exceptional
and that most spacetimes can be expected to be linearization stable.
Although it would be unpleasant if this were not so, the example and
the delicacy of the result show that caution is to be exercised when

such sweeping assumptions are made.

Theorem. Suppose that the ("background") spacetime with metric tensor

go/R satisfies the following conditions: there is a space like

hypersurface M with induced metric g and second fundamental form

k  such that

(1) there are no infinitesimal isometries X on both

g and k (if M is not compact, X is required

to vanish at infinity)

(i1) 4if k=0 and M is compact then g is not flat
(R)
(ii1) 4if k % 0, tr(k)= trace of k is constant on M
is M is compact, and tr(k) =0 if M is non-compact
(iv) if M is non-compact, g 1s complete and in a

suitable sense asymptotically Euclidean.

*General isolatio %heorems along these lines are given in
Fischer-Marsden ?6 .
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Then near M , the spacetime metric is linearization

gaB
stable,

Brill's example fits in because condition (ii) fails for

M= T3 , the flat 3-torus.

The following corollary was obtained by Choquet-Bruhat and
Deser [1] independently.

3.

Corollary. Minkowski space is linearization stable,

Although the proof is complicated in details, we can endeavor
to give the main ideas here. Further details will be filled in below.
It is a simple and elegant application of the theory of infinite

dimensional manifolds.

In order to solve the Einstein equations, one can, as explained
in lecture 9, regard them as evolution equations with g , k (as given
in the statement of the theorem) as initial, or Cauchy, data. However
we must remember that there are the non-linear constraints to be

imposed; i.e.:

(g, m = 5((trm) > - mem) + R(g) = 0

(3)
(g, ™

Il
|
3

This defines a certain non-linear subset C of T , the space of all
g's and k's on M . The principal method is the following: mnear

those g , k for which the conditions of the theorem are satisfied,

* The linearized equations in this case are referred to as the 'weak
field approximation'" and can be used to study gravitational waves.
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the set (¢ is a smooth infinite dimensional submanifold of the space

Th . The other points are singular.

The smoothness of the set (C entails that tangent vectors
to C are closely approximated by points in € itself (which would
not be the case if (€ has corpers or other singularities). This
remark together with existence theorems for the Einstein equations

then yields the desired result.

Fortunately, establishing the smoothness of (C can be done

by techniques which we have previously developed in lectures 1 and 3.

Some Proofs.

Now we shall fill in a few proofs of the above results. We

begin by studying the constraint manifold.

Let ¢, = 1oy = (e, m [¥(g, m = 0)

Theorem 1, Let (g, m) € OH satisfy condition (ii) of (R). Then

in a neighborhood of (g, m) , Cﬁ is a smooth submanifold of Th .

Proof. Consider ¥ : TM »C . We show that DH(g, m) is onto. It
follows that H 1is a submersion at g, m so that H_l(O) is then a
smooth submanifold in a neighborhood of (g, m) (see lecture 1l). From

A. Lichnerowicz [2] we have the classical formula
DR(g)*h = A(trh) + 88h - heRic(g) (4)

and from this one finds
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DH(g, M+ (h, w) = 2{3(trm)m-mxm}+h + A(trh) + 88h - h-Ric(g)

+ 2{%(trrr)g_l - mlew (3)

where m X m = ﬁlkﬂkj . Using elliptic theory, it follows that

DH(g, ™) is surjective provided that its adjoint DH(g, m)* 1is in-
jective and has injective symbol. A straightforward computation shows

that DH(g, m=* : c’ ~>Sz X 82 is given by

DH(g, mM)**N = (2{%(trrr)n-m<rr}'lN + gAN + Hess N - N Ric(g) ,
. -1
2{%(trmg = - TIN) . (6)

Note. The symbol of DH(g, m)* is Ga(s) = (-gH§H2 + (€ x §)_1 s
2(%(trﬁ)g-l -m)s 3 § € TXM , 8 € SZ(M)X , which is always injective,
so one has the L2 orthogonal splitting c” = ker DH* @ range (DH) ;

see lecture 3.
If N € kernel (DH(g, m)*) then
gAN + Hess N - N Ric(g) + 2(%(trm)m-mxm)N = O (@))
and

2(%(trw)g-l - mN =0 . (8

Taking the trace of (7) gives (trm)¢N =0 , so (8) gives Nm =0 .

Thus, (7) gives

gAN + Hess N - NeRic(g) =0 €))
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whose trace gives
2AN - N*R(g) =0 . (10)

Using H(g, m) =0 , Nm =0 , (10) becomes AN =0 , so N 1is constant.
If m# 0 this gives N =0, If m =0 then from (7), N Ric(g) =0
so as g 1is not flat in this case, Ric(g) # 0 as we are on a 3-

manifold and so N =0, U

In the non-compact case N constant would automatically

force N = 0 by using suitable asymptotic conditions.

By the same methods one can prove the following theorem in

geometry.

KR

Theorem 2. Let p €C ,p <0 ,p #0 . Then mp={gem|R(g)=p}‘

is a smooth submanifold of mn , as is m& = {g € mlR(g) =0 , g not

flat}

This result enables one to handle the time symmetric case
directly (i.e. m =0 on M) , if we restrict to deformations respecting

the time symmetry.
If (i1) of (R) is not fulfilled, i.e. if k =0 and if g

is flat, then DH(g, ) 1is not a submersion. In fact the behaviour
near these points is rather different. For example, using an idea of
Brill-Deser [2] one can show that if g 1is flat, solutions of R(g) = 0
near g are obtainable from g by a coordinate transformation and the

addition of a covariant constant h € 52 , 50 in particular are flat,

* A refinement of the argument due to J.P. Bourguinon shows that we only

need p # 0 and p not a positive constant. See Fischer-Marsden [6].
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Next we investigate the divergence constraint. Let

- S & I
Cg S, € = (g, m|om = - E 0)

Theorem 3. Let (g, m) € Cé satisfy the following condition:

(i)': for a vector field X , L.,g =0 and LXﬂ =0 implies X =0

%8

Then C6 is a smooth submanifold in a neighborhood of (g, )

Proof., One computes that D&(g, m): 82 X 82 —» % 1is given by:

DE(g, M (hy ») = 6o + s, Lo Ikl

L 13
ik il T T (trh)lj (11)

and its adjoint D&(g, m)*: X =8, X S, is:

b
Dé(g, M)*eX = ({-%wa + H(8X)m - (X ® &7 + 8m ® X))
FH(Lygge g - k(X om)g, My 8) (12)
47X 2 ’ X
(b denotes that the indices are lowered). The symbol of D&% is

again injective, so it suffices to show D&(g, m)*X = 0 implies

X =0 . Since 6&m =0 , the condition D&(g, m)*X = 0 reads:
(-%L,m + L(éx)ﬂ)b + l(L gemryg = 0 (13)
X ‘ 487K

and

L,g =0 . (14)

From (14), 86X =0 so (13) gives LXﬂ =0 . Thus X =0 by ()" . O
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1
The regular points satisfying (1) are just those (g,m)

having discrete isotropy group under the action of the diffeomorphism
group, It is known that almost every g has no isometries (Ebin [1]).

To show that C = CH 0 C6 is a submanifold, we need

additional restrictions because there may be points at which the inter-
section is not transversal, This extra condition is (iii)} of the

conditions (R) on p. 232.

Theorem 4., Let (g, m) € C satisfy conditions (R). Then in a

neighborhood of (g, m, C is a smooth submanifold.

Proof. Consider 3 = (H,8) P | N RV We want to show

D&(g, ) 1is surjective; this will show that é_l ({0} x {0} < T

is a submanifold and will give the result. We koow D3 from (5)

and (11). The adjoint map is given as follows:

Da(g, M*: ¢ x ¥ S, X 52, (N,X) —>((AN)g + Hess N -N Ric(g)
42y < T XN - £ Lom 4+ A - 2E @ 57 4 sam e X))° (15)
2 m 7 I 2 28

FHLgmE - (ime 5 23(trmE T - TN+ (3

The symbol of this map, OF(D@(g, m*¥), £ € TxM may be shown to be

injective., (Indeed, one must show £ # 0 , and og(N,X) = (gHiHZN
1oikg o3, 1 gk, gi 1 L1
+TEREN+ 5T ikx + 5T g, X -5 €X +7 8 w (§kX£+E£Xk)

1
= + = {mpli - -
2(§in §in)> 0 implies X,N = O . This may be
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shown by contracting the second component with g,§l§J and §IXJ
to give X =0 Then the first component gives N = 0.)
Thus it remains to show that D3(g, m)* is injective. Let

N,X € ker(Dd(g, m*). Since &m =0 , (15) gives
(AN)g + Hess N - N Ric(g) + 2{%(trﬂ)ﬁ X miN
- 1 L + l(éX) + l =0 16
2 XTF 2 TT 4(LX8‘TT)g = (16)
d (2(trme - MN + % Lg= 0 (17
an 5 meg - ™ 5 LXg - )

Taking the trace and using ¥(g, m) = 0 gives:

2N + 2{rem - %(trrr)z}N - %(dtrn) X = 0 (18)
and 2(2(trmg - N +  Log = 0 (19)
g tETmE =T 2 “x®

If ™ =0 then (18) gives N=constant and (16) gives
NRic(g) =0 so N =0, as Ric(g) # 0 in this case. By (19), and
(i) of (R) we obtain X = 0

If m#0 , trm = constant, so (18) gives

2AN + 2{Ter - %(trﬂ)Z}N = 2AN + 2(m - %(trﬂ)g)ZN =0 , using g-g=3.

Since (T ~ %(trrr)g)2 = (1 - %(trﬂ)g)-(ﬂ - %(trﬂ)g) > 0 , we conclude

that N = 0 . Then as before, X =0 . [

Integration of Infinitesimal Deformations of Ricci Flat Spacetimes

As explained previously, we can use Theorem 4 to prove the

following result,
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(4)

Theorem 5. Let g be a lorentz metric on V satisfying (1):

Ric((4)g) =0, Let (4)h satisfy the linearized equations (2); i.e.

@g)-On oo, On o 5(@n - Lex@nyg)- o

DRic( g)- =R (&) g

(19)

where ag(X) = LXg and AL is the Lichnerowicz d'Alembertian

Lichnerowicz [21].

Let M be a compact oriented space-like hypersurface in V

with induced metric g and second fundamental form k . Assume

g,k satisfy the conditions (R).

Ihen there exists a 8 > 0 and a smooth curve (a)g(k) of

exact solutions of Ric((A) 2(3)) = 0 such that (4)g(0) = (4)g and

d (4) 4
D g(X)' = ( )h

Proof. 1In Gaussian Normal coordinates im a neighborhood of M ,

(4)h induces a deformation h,y by
4 ij .
T T G CR RN
1, “-1 1 . . -1
==-(h X7+ 7 X w +-§(h - gtrh) + E(h'g)g-(trg)h)
B3 _ Lok 3t Lo iR e &)
where ™ - = 2(g Bis 2(tr g)eg ") , gij =3 gij/ t etc.

This induced deformation h,w satisfies the linearized constraint
equations: D¥(g,m) - (h,w) = 0, D&(g, m)*(h,w) = 0 . TIn other words,

(h,W) e T(g,ﬂ) C .
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Thus by Theorem 4, we can find a curve (g(}), n(3)) €C
tangent to (h,w) at (g, 1m) .. This gives us spacetimes (Q)g(l)
defined on a neighborhood of M by the existence theory.

4
The only thing is that 3 g(a)/oA at i = 0 may not match

(4)h in the 0,0 or Qi components. But this can be achieved by

using a suitable lapse and shift; i.e. a suitable space time coordinate

transformation. See lecture 9. O
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APPENDIX

ON THE CORRESPONDENCE PRINCIPLE IN QUANTUM MECHANICS

Introduction

The problem we are concerned with is showing, in a suitable
sense, that the solutions of the Schrodinger equation converge
to solutions of Hamilton's equation as “h - 0.

The formal resolution of this problem has been known since
1930 (cf. Frenkel [1]) via Hamilton-Jacobi theory. However,
these formal resolutions show that the equations converge and
not that the solutions of the equations converge. The last step
is not simple because it is, in essence, a singular perturbation
problem for non-linear partial differential equations.

A more complete treatment with refined formulas has been
given by Maslov [1] (cf. Arnold [2]). Unfortunately this approach
is quite complicated.

The aim of this appendix is to outline a simple proof of the
convergence of the solutions as 2 - 0 by using the Hamilton-
Jacobi theory, the "hydrodynamic' formulation of quantum mechanics
and recent theorems on vanishing viscosity in hydrodynamics
(see lectures 4 and 5 and Ebin-Marsden [1], Marsden [5]).

We shall be working on 83 to simplify the exposition,

It can be generalized to "asymptotically flat" or compact

Riemannian manifolds and multiparticle systems as well.
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Hamilton-Jacobi Equation; The Classical Equations

The following picture of classical mechanics is standard

(cf. Synge and Griffiths [11]).

Consider the Hamilton-Jacobi equation for S(x,t), x € DRB,
te R,
[oF} _
S0+ H(x,v8) = 0 (1)
where
2
He,p) = =B+ Ut
2m
The solution of this equation is related to the classical
trajectories as follows: let SO be § at t = 0, let x c U33
and p = v¥S (x ). The classical trajectory starting at x , p
0 o' o 0 o

is, say =x(t), p(t) so % =p/fm, p = -VU. Then VS(t,x(t)) = p(t).
Thus the ''waves of action'" defined by S = constant sweep out the
classical trajectories.

Consider a classical statistical state represented by an
initial probability function p on ER3. This would then evolve
by letting it flow along the trajectories; i.e., by the equation
of continuity:

%—S—-ﬁ-div [0y S/m] =0 (2)

Thus we may regard (1) and (2) as a way of propagating a pro-
bability density o on configuration space with initial momenta

v SO via classical trajectories.
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The Quantum Equations

Consider a solution ¢¢(t,x) of Schrodingers equation:

2
h W _ A
I LA ol (3)
5 eiSA so that P is a probability measure on ERB.

write  =,/p e
Writing out (3) gives
~§’2 28 L 2
i i~
%_A“/p_l_—b_t—-,_ﬁ(vs) + U =0
(4)

o .
E% + div [p vS/m] =0

Clearly as - — 0, (4) reduces to (1) and (2), so the solutions
and in particular %i ought to converge as “ 50 to the
solutions of (1) and (2). However, the equations (4) are non-
linear and n 1is involved in the highest order term, so such a

conclusion is far from obvious.

The Resolution via Hydrodynamics

Theorem. Fix an initial p and dS. Let Qﬁ(t) denote
the solution of (4) (i.e., of (3)) and o(t) that of (1), (2).

Assume, e.g., U is C with compact support. Then for each t, as

-0, Qﬁ(t) — p(t) 1in each Sobolev space HS, s > 5 and hence

0

in the ¢ topology; O < \t\ < T for some T > 0.
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One proves this by rewriting (4) by taking the gradient of
the first equation; this yields the hydrodynamic model:

2

4 ~ > 1
o Aw/e) + % (98) + 5 9(v8) - vS + vl = 0

op . _
= + div(pVS/m) = 0

These equations are the same as the equations for compressible
flow v = VS/m with the extra "forcing'" term

1.2 .2

S S I
U o AM9/p)  (or pressure p = U o (MD)) -
w2

While —’%; A(AVG) is not a viscosity term, it can be
handled in the same way, as in [2], [5], [6]. One uses "Lagrangian"
coordinates and Trotter product formulas to show that the error is
i VE;* - JE W= O(ﬁg) in H2 norm. In fact it is a general
result that if a linear genérator arising from a differential operator
VI added to the hydrodynamic equations (with no boundaries present)
then the solutions converge as v — 0.

Remarks, 1., This technique only seems to work for»sufficiently
smooth U. It would be interesting and nén-trivial to extend this
to the hydrogen atom.

2. There are topological obstructions to obtaining § for all
t by this method since the trajectories in configuration space
can cross; i.e., a ''shock can develop. The correction required
is the Maslov index, and it allows the previcus analysis to be

extended globally in time.
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