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Accelerating Universe: Theory versus Experiment
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The theory presented here, cosmological general relativity, uses a Rie-

mannian four-dimensional presentation of gravitation in which the coor-

dinates are those of Hubble, i.e. distances and velocity rather than the

traditional space and time. We solve the field equations and show that

there are three possibilities for the Universe to expand. The theory de-

scribes the Universe as having a three-phase evolution with a decelerating

expansion, followed by a constant and an accelerating expansion, and it

predicts that the Universe is now in the latter phase. It is shown, as-

suming Ωm = 0.245, that the time at which the Universe goes over from

a decelerating to an accelerating expansion, i.e., the constant-expansion

phase, occurs at 8.5 Gyr ago. Also, at that time the cosmic radiation

temperature was 146K. Recent observations of distant supernovae imply,

in defiance of expectations, that the Universe’s growth is accelerating,

contrary to what has always been assumed, that the expansion is slow-

ing down due to gravity. Our theory confirms these recent experimental

results by showing that the Universe now is definitely in a stage of accel-

erating expansion. The theory predicts also that now there is a positive

pressure, p = 0.034g/cm2, in the Universe. Although the theory has no

cosmological constant, we extract from it its equivalence and show that

Λ = 1.934× 10−35s−2. This value of Λ is in excellent agreement with the

measurements obtained by theHigh-Z Supernova Team and the Supernova

Cosmology Project. It is also shown that the three-dimensional space of

the Universe is Euclidean, as the Boomerang experiment shows. Com-

parison with general relativity theory is finally made and it is shown that

the classical experiments as well as the gravitational radiation prediction

follow from the present theory, too.
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1 Preliminaries

As in classical general relativity we start our discussion in flat spacevelocity
which will then be generalized to curved space.

The flat-spacevelocity cosmological metric is given by

ds2 = τ2dv2 −
(

dx2 + dy2 + dz2
)

. (1)

Here τ is Hubble’s time, the inverse of Hubble’s constant, as given by mea-
surements in the limit of zero distances and thus zero gravity. As such, τ is a
constant, in fact a universal constant (its numerical value is given in Section 8,
τ = 12.486Gyr). Its role in cosmology theory resembles that of c, the speed of
light in vacuum, in ordinary special relativity. The velocity v is used here in the
sense of cosmology, as in Hubble’s law, and is usually not the time-derivative of
the distance.

The Universe expansion is obtained from the metric (1) as a null condition,
ds = 0. Using spherical coordinates r, θ, φ for the metric (1), and the fact that
the Universe is spherically symmetric (dθ = dφ = 0), the null condition then
yields dr/dv = τ , or upon integration and using appropriate initial conditions,
gives r = τv or v = H0r, i.e. the Hubble law in the zero-gravity limit.

Based on the metric (1) a cosmological special relativity (CSR) was pre-
sented in the text [1] (see Chapter 2). In this theory the receding velocities of
galaxies and the distances between them in the Hubble expansion are united
into a four-dimensional pseudo-Euclidean manifold, similarly to space and time
in ordinary special relativity. The Hubble law is assumed and is written in
an invariant way that enables one to derive a four-dimensional transformation
which is similar to the Lorentz transformation. The parameter in the new trans-
formation is the ratio between the cosmic time to τ (in which the cosmic time
is measured backward with respect to the present time). Accordingly, the new
transformation relates physical quantities at different cosmic times in the limit
of weak or negligible gravitation.

The transformation between the four variables x, y, z, v and x′, y′, z′, v′

(assuming y′ = y and z′ = z) is given by

x′ =
x− tv

√

1− t2/τ2
, v′ =

v − tx/τ2
√

1− t2/τ2
, y′ = y, z′ = z. (2)

Equations (2) are the cosmological transformation and very much resemble the
well-known Lorentz transformation. In CSR it is the relative cosmic time which
takes the role of the relative velocity in Einstein’s special relativity. The trans-
formation (2) leaves invariant the Hubble time τ , just as the Lorentz transfor-
mation leaves invariant the speed of light in vacuum c.

2 Cosmology in spacevelocity

A cosmological general theory of relativity, suitable for the large-scale struc-
ture of the Universe, was subsequently developed [2-5]. In the framework of
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cosmological general relativity (CGR) gravitation is described by a curved four-
dimensional Riemannian spacevelocity. CGR incorporates the Hubble constant
τ at the outset. The Hubble law is assumed in CGR as a fundamental law.
CGR, in essence, extends Hubble’s law so as to incorporate gravitation in it;
it is actually a distribution theory that relates distances and velocities between
galaxies. The theory involves only measured quantities and it takes a picture of
the Universe as it is at any moment. The following is a brief review of CGR as
was originally given by the author in 1996 in Ref. 2.

The foundations of any gravitational theory are based on the principle of
equivalence and the principle of general covariance [6]. These two principles
lead immediately to the realization that gravitation should be described by a
four-dimensional curved spacetime, in our theory spacevelocity, and that the
field equations and the equations of motion should be written in a generally
covariant form. Hence these principles were adopted in CGR also. Use is made
in a four-dimensional Riemannian manifold with a metric gµν and a line element
ds2 = gµνdx

µdxν . The difference from Einstein’s general relativity is that our
coordinates are: x0 is a velocitylike coordinate (rather than a timelike coordi-
nate), thus x0 = τv where τ is the Hubble time in the zero-gravity limit and v
the velocity. The coordinate x0 = τv is the comparable to x0 = ct where c is the
speed of light and t is the time in ordinary general relativity. The other three
coordinates xk, k = 1, 2, 3, are spacelike, just as in general relativity theory.

An immediate consequence of the above choice of coordinates is that the
null condition ds = 0 describes the expansion of the Universe in the curved
spacevelocity (generalized Hubble’s law with gravitation) as compared to the
propagation of light in the curved spacetime in general relativity. This means
one solves the field equations (to be given in the sequel) for the metric tensor,
then from the null condition ds = 0 one obtains immedialety the dependence of
the relative distances between the galaxies on their relative velocities.

As usual in gravitational theories, one equates geometry to physics. The first
is expressed by means of a combination of the Ricci tensor and the Ricci scalar,
and follows to be naturally either the Ricci trace-free tensor or the Einstein
tensor. The Ricci trace-free tensor does not fit gravitation in general, and
the Einstein tensor is a natural candidate. The physical part is expressed by
the energy-momentum tensor which now has a different physical meaning from
that in Einstein’s theory. More important, the coupling constant that relates
geometry to physics is now also different.

Accordingly the field equations are

Gµν = Rµν − 1

2
gµνR = κTµν , (3)

exactly as in Einstein’s theory, with κ given by κ = 8πk/τ4, (in general relativity
it is given by 8πG/c4), where k is given by k = Gτ2/c2, with G being Newton’s
gravitational constant, and τ the Hubble constant time. When the equations of
motion will be written in terms of velocity instead of time, the constant k will
replace G. Using the above equations one then has κ = 8πG/c2τ2.
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The energy-momentum tensor T µν is constructed, along the lines of general
relativity theory, with the speed of light being replaced by the Hubble constant
time. If ρ is the average mass density of the Universe, then it will be assumed
that T µν = ρuµuν , where uµ = dxµ/ds is the four-velocity. In general relativity
theory one takes T 0

0 = ρ. In Newtonian gravity one has the Poisson equation
∇2φ = 4πGρ. At points where ρ = 0 one solves the vacuum Einstein field
equations in general relativity and the Laplace equation ∇2φ = 0 in Newtonian
gravity. In both theories a null (zero) solution is allowed as a trivial case. In
cosmology, however, there exists no situation at which ρ can be zero because the
Universe is filled with matter. In order to be able to have zero on the right-hand
side of Eq. (3) one takes T 0

0 not as equal to ρ, but to ρeff = ρ − ρc, where ρc
is the critical mass density, a constant in CGR given by ρc = 3/8πGτ2, whose
value is ρc ≈ 10−29g/cm3, a few hydrogen atoms per cubic meter. Accordingly
one takes

T µν = ρeffu
µuν ; ρeff = ρ− ρc (4)

for the energy-momentum tensor.
In the next sections we apply CGR to obtain the accelerating expanding

Universe and related subjects.

3 Gravitational field equations

In the four-dimensional spacevelocity the spherically symmetric metric is given
by

ds2 = τ2dv2 − eµdr2 −R2
(

dθ2 + sin2 θdφ2
)

, (5)

where µ and R are functions of v and r alone, and comoving coordinates
xµ = (x0, x1, x2, x3) = (τv, r, θ, φ) have been used. With the above choice
of coordinates, the zero-component of the geodesic equation becomes an iden-
tity, and since r, θ and φ are constants along the geodesics, one has dx0 = ds
and therefore

uα = uα = (1, 0, 0, 0) . (6)

The metric (5) shows that the area of the sphere r = constant is given by
4πR2 and that R should satisfy R′ = ∂R/∂r > 0. The possibility that R′ = 0
at a point r0 is excluded since it would allow the lines r = constants at the
neighboring points r0 and r0 + dr to coincide at r0, thus creating a caustic
surface at which the comoving coordinates break down.

As has been shown in the previous sections the Universe expands by the
null condition ds = 0, and if the expansion is spherically symmetric one has
dθ = dφ = 0. The metric (5) then yields

τ2dv2 − eµdr2 = 0, (7)

thus
dr

dv
= τe−µ/2. (8)
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This is the differential equation that determines the Universe expansion. In
the following we solve the gravitational field equations in order to find out the
function µ (r.v).

The gravitational field equations (3), written in the form

Rµν = κ

(

Tµν −
1

2
gµνT

)

, (9)

where
Tµν = ρeffuµuν + p (uµuν − gµν) , (10)

with ρeff = ρ − ρc and T = Tµνg
µν , are now solved. Using Eq. (6) one finds

that the only nonvanishing components of Tµν are T00 = τ2ρeff , T11 = c−1τpeµ,
T22 = c−1τpR2 and T33 = c−1τpR2 sin2 θ, and that T = τ2ρeff − 3c−1τp.

The only nonvanishing components of the Ricci tensor yield (dots and primes
denote differentiation with respect to v and r, respectively), using Eq. (9), the
following field equations:

R00 = −1

2
µ̈− 2

R
R̈ − 1

4
µ̇2 =

κ

2

(

τ2ρeff + 3c−1τp
)

, (11a)

R01 =
1

R
R′µ̇− 2

R
Ṙ′ = 0, (11b)

R11 = eµ
(

1

2
µ̈+

1

4
µ̇2 +

1

R
µ̇Ṙ

)

+
1

R
(µ′R′ − 2R′′)

=
κ

2
eµ
(

τ2ρeff − c−1τp
)

, (11c)

R22 = RR̈+
1

2
RṘµ̇+ Ṙ2 + 1− e−µ

(

RR′′ − 1

2
RR′µ′ +R′2

)

=
κ

2
R2
(

τ2ρeff − c−1τp
)

, (11d)

R33 = sin2 θR22 =
κ

2
R2 sin2 θ

(

τ2ρeff − c−1τp
)

. (11e)

The field equations obtained for the components 00, 01, 11, and 22 (the 33
component contributes no new information) are given by

−µ̈− 4

R
R̈− 1

2
µ̇2 = κ

(

τ2ρeff + 3c−1τp
)

, (12)

2Ṙ′ −R′µ̇ = 0, (13)

µ̈+
1

2
µ̇2 +

2

R
Ṙµ̇+ e−µ

(

2

R
R′µ′ − 4

R
R′′

)

= κ
(

τ2ρeff − c−1τp
)

(14)

2

R
R̈+ 2

(

Ṙ

R

)2

+
1

R
Ṙµ̇+

2

R2
+ e−µ

[

1

R
R′µ′ − 2

(

R′

R

)2

− 2

R
R′′

]
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= κ
(

τ2ρeff − c−1τp
)

. (15)

It is convenient to eliminate the term with the second velocity-derivative of µ
from the above equations. This can easily be done, and combinations of Eqs.
(12)–(15) then give the following set of three independent field equations:

eµ
(

2RR̈+ Ṙ2 + 1
)

−R′2 = −κτc−1eµR2p, (16)

2Ṙ′ −R′µ̇ = 0, (17)

e−µ

[

1

R
R′µ′ −

(

R′

R

)2

− 2

R
R′′

]

+
1

R
Ṙµ̇+

(

Ṙ

R

)2

+
1

R2

= κτ2ρeff , (18)

other equations being trivial combinations of (16)–(18).

4 Solution of the field equations

The solution of Eq. (17) satisfying the condition R′ > 0 is given by

eµ =
R′2

1 + f (r)
, (19)

where f (r) is an arbitrary function of the coordinate r and satisfies the condition
f (r) + 1 > 0. Substituting (19) in the other two field equations (16) and (18)
then gives

2RR̈+ Ṙ2 − f = −κc−1τR2p, (20)

1

RR′

(

2ṘṘ′ − f ′

)

+
1

R2

(

Ṙ2 − f
)

= κτ2ρeff , (21)

respectively.
The simplest solution of the above two equations, which satisfies the condi-

tion R′ = 1 > 0, is given by
R = r. (22)

Using Eq. (22) in Eqs. (20) and (21) gives

f (r) = κc−1τpr2, (23)

and

f ′ +
f

r
= −κτ2ρeffr, (24)

respectively. The solution of Eq. (24) is the sum of the solutions of the homo-
geneous equation

f ′ +
f

r
= 0, (25)
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and a particular solution of Eq. (24). These are given by

f1 = −2Gm

c2r
, (26)

and
f2 = −κ

3
τ2ρeffr

2. (27)

The solution f1 represents a particle at the origin of coordinates and as such
is not relevant to our problem. We take, accordingly, f2 as the general solution,

f (r) = −κ

3
τ2ρeffr

2 = −κ

3
τ2 (ρ− ρc) r

2

= −κ

3
τ2ρc

(

ρ

ρc
− 1

)

r2. (28)

Using the values of κ = 8πG/c2τ2 and ρc = 3/8πGτ2, we obtain

f (r) =
1− Ωm

c2τ2
r2, (29)

where Ωm = ρ/ρc.
The two solutions given by Eqs. (23) and (29) for f(r) can now be equated,

giving

p =
1− Ωm

κcτ3
=

c

τ

1− Ωm

8πG
= 4.544 (1− Ωm)× 10−2g/cm2. (30)

Furthermore, from Eqs. (19) and (22) we find that

e−µ = 1 + f (r) = 1 + τc−1κpr2 = 1 +
1− Ωm

c2τ2
r2. (31)

It will be recalled that the Universe expansion is determined by Eq. (8),
dr/dv = τe−µ/2. The only thing that is left to be determined is the signs of
(1− Ωm) or the pressure p.

Thus we have

dr

dv
= τ

√

1 + κτc−1pr2 = τ

√

1 +
1− Ωm

c2τ2
r2. (32)

For simplicity we confine ourselves to the linear approximation, thus Eq. (32)
yields

dr

dv
= τ

(

1 +
κ

2
τc−1pr2

)

= τ

[

1 +
1− Ωm

2c2τ2
r2
]

. (33)

5 Classification of universes

The second term in the square bracket in the above equation represents the
deviation due to gravity from the standard Hubble law. For without that term,
Eq. (33) reduces to dr/dv = τ , thus r = τv+ const. The constant can be taken
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zero if one assumes, as usual, that at r = 0 the velocity should also vanish. Thus
r = τv, or v = H0r (since H0 ≈ 1/τ). Accordingly, the equation of motion (33)
describes the expansion of the Universe when Ωm = 1, namely when ρ = ρc.
The equation then coincides with the standard Hubble law.

The equation of motion (33) can easily be integrated exactly by the substi-
tions

sinχ =

√

(Ωm − 1)

2

r

2cτ
; Ωm > 1, (34a)

sinhχ =

√

(1− Ωm)

2

r

2cτ
; Ωm < 1. (34b)

One then obtains, using Eqs. (33) and (34),

dv = cdχ/ (Ωm − 1)1/2 cosχ; Ωm > 1, (35a)

dv = cdχ/ (1− Ωm)
1/2

coshχ; Ωm < 1. (35b)

We give below the exact solutions for the expansion of the Universe for each
of the cases, Ωm > 1 and Ωm < 1. As will be seen, the case of Ωm = 1 can be
obtained at the limit Ωm → 1 from both cases.

The case Ωm > 1. From Eq. (35a) we have
∫

dv =
c

√

(Ωm − 1) /2

∫

dχ

cosχ
, (36)

where sinχ = r/a, and a = cτ
√

(Ωm − 1) /2. A simple calculation gives [7]

∫

dχ

cosχ
= ln

∣

∣

∣

∣

1 + sinχ

cosχ

∣

∣

∣

∣

. (37)

A straightforward calculation then gives

v =
a

2τ
ln

∣

∣

∣

∣

1 + r/a

1− r/a

∣

∣

∣

∣

. (38)

As is seen, when r → 0 then v → 0 and using the L’Hospital lemma, v → r/τ
as a → 0 (and thus Ωm → 1).

The case Ωm < 1. From Eq. (35b) we now have
∫

dv =
c

√

(1− Ωm) /2

∫

dχ

coshχ
, (39)

where sinhχ = r/b, and b = cτ
√

(1− Ωm) /2. A straightforward calculation
then gives [7]

∫

dχ

coshχ
= arctan eχ. (40)

We then obtain

coshχ =

√

1 +
r2

b2
, (41)
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eχ = sinhχ+ coshχ =
r

b
+

√

1 +
r2

b2
. (42)

Equations (39) and (40) now give

v =
2c

√

(1− Ωm) /2
arctan eχ +K, (43)

where K is an integration constant which is determined by the requirement that
at r = 0 then v should be zero. We obtain

K = −πc/2
√

(1− Ωm) /2, (44)

and thus

v =
2c

√

(1− Ωm) /2

(

arctan eχ − π

4

)

. (45)

A straightforward calculation then gives

v =
b

τ

{

2 arctan

(

r

b
+

√

1 +
r2

b2

)

− π

2

}

. (46)

As for the case Ωm > 1 one finds that v → 0 when r → 0, and again, using
L’Hospital lemma, r = τv when b → 0 (and thus Ωm → 1).

6 Physical meaning

To see the physical meaning of these solutions, however, one does not need the
exact solutions. Rather, it is enough to write down the solutions in the lowest
approximation in τ−1. One obtains, by differentiating Eq. (33) with respect to
v, for Ωm > 1,

d2r/dv2 = −kr; k =
(Ωm − 1)

2c2
, (47)

the solution of which is

r (v) = A sinα
v

c
+B cosα

v

c
, (48)

where α2 = (Ωm−1)/2 and A andB are constants. The latter can be determined
by the initial condition r (0) = 0 = B and dr (0) /dv = τ = Aα/c, thus

r (v) =
cτ

α
sinα

v

c
. (49)

This is obviously a closed Universe, and presents a decelerating expansion.
For Ωm < 1 we have

d2r/dv2 =
(1− Ωm) r

2c2
, (50)

whose solution, using the same initial conditions, is

r (v) =
cτ

β
sinhβ

v

c
, (51)

where β2 = (1− Ωm)/2. This is now an open accelerating Universe.
For Ωm = 1 we have, of course, r = τv.
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7 The accelerating universe

We finally determine which of the three cases of expansion is the one at present
epoch of time. To this end we have to write the solutions (49) and (51) in
ordinary Hubble’s law form v = H0r. Expanding Eqs. (49) and (51) into power
series in v/c and keeping terms up to the second order, we obtain

r = τv
(

1− α2v2/6c2
)

, (52a)

r = τv
(

1 + β2v2/6c2
)

, (52b)

for Ωm > 1 and Ωm < 1, respectively. Using now the expressions for α and β,
Eqs. (52) then reduce into the single equation

r = τv
[

1 + (1− Ωm) v2/6c2
]

. (53)

Inverting now this equation by writing it as v = H0r, we obtain in the lowest
approximation

H0 = h
[

1− (1− Ωm) v2/6c2
]

, (54)

where h = τ−1. To the same approximation one also obtains

H0 = h
[

1− (1− Ωm) z2/6
]

= h
[

1− (1− Ωm) r2/6c2τ2
]

, (55)

where z is the redshift parameter. As is seen, and it is confirmed by experiments,
H0 depends on the distance it is being measured; it has physical meaning only at
the zero-distance limit, namely when measured locally, in which case it becomes
h = 1/τ .

It follows that the measured value of H0 depends on the “short” and “long”
distance scales [8]. The farther the distance H0 is being measured, the lower
the value for H0 is obtained. By Eq. (55) this is possible only when Ωm < 1,
namely when the Universe is accelerating. By Eq. (30) we also find that the
pressure is positive.

The possibility that the Universe expansion is accelerating was first predicted
using CGR by the author in 1996 [2] before the supernovae experiments results
became known.

It will be noted that the constant expansion is just a transition stage between
the decelerating and the accelerating expansions as the Universe evolves toward
its present situation.

Figure 1 describes the Hubble diagram of the above solutions for the three
types of expansion for values of Ωm from 100 to 0.245. The figure describes
the three-phase evolution of the Universe. Curves (1)-(5) represent the stages
of decelerating expansion according to Eq. (49). As the density of matter ρ
decreases, the Universe goes over from the lower curves to the upper ones,
but it does not have enough time to close up to a big crunch. The Universe
subsequently goes over to curve (6) with Ωm = 1, at which time it has a constant
expansion for a fraction of a second. This then followed by going to the upper
curves (7) and (8) with Ωm < 1, where the Universe expands with acceleration
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according to Eq. (51). Curve no. 8 fits the present situation of the Universe.
For curves (1)-(4) in the diagram we use the cutoff when the curves were at
their maximum. In Table 1 we present the cosmic times with respect to the big
bang, the cosmic radiation temperature and the pressure for each of the curves
in Fig. 1.

Figures 2 and 3 show the Hubble diagrams for the distance-redshift rela-
tionship predicted by the theory for the accelerating expanding Universe at the
present time, and Figures 4 and 5 show the experimental results.

Our estimate for h, based on published data, is h ≈ 80 km/sec-Mpc. As-
suming τ−1 ≈ 80 km/sec-Mpc, Eq. (55) then gives

H0 = h
[

1− 1.3× 10−4 (1− Ωm) r2
]

, (56)

where r is in Mpc. A computer best-fit can then fix both h and Ωm.
To summarize, a theory of cosmology has been presented in which the dy-

namical variables are those of Hubble, i.e. distances and velocities. The theory
descirbes the Universe as having a three-phase evolution with a decelerating ex-
pansion, followed by a constant and an accelerating expansion, and it predicts
that the Universe is now in the latter phase. As the density of matter decreases,
while the Universe is at the decelerating phase, it does not have enough time to
close up to a big crunch. Rather, it goes to the constant-expansion phase, and
then to the accelerating stage. As we have seen, the equation obtained for the
Universe expansion, Eq. (51), is very simple.

8 Theory versus experiment

The Einstein gravitational field equations with the added cosmological term are
[9]:

Rµν − 1

2
gµνR + Λgµν = κTµν , (57)

where Λ is the cosmological constant, the value of which is supposed to be
determined by experiment. In Eq. (57) Rµν and R are the Ricci tensor and
scalar, respectively, κ = 8πG, where G is Newton’s constant and the speed of
light is taken as unity.

Recently the two groups (the Supernovae Cosmology Project and the High-Z
Supernova Team) concluded that the expansion of the Universe is accelerating
[10-16]. The two groups had discovered and measured moderately high redshift
(0.3 < z < 0.9) supernovae, and found that they were fainter than what one
would expect them to be if the cosmos expansion were slowing down or constant.
Both teams obtained

Ωm ≈ 0.3, ΩΛ ≈ 0.7, (58)

and ruled out the traditional (Ωm, ΩΛ)=(1, 0) Universe. Their value of the
density parameter ΩΛ corresponds to a cosmological constant that is small but,
nevertheless, nonzero and positive,

Λ ≈ 10−52m−2 ≈ 10−35s−2. (59)
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In previous sections a four-dimensional cosmological theory (CGR) was pre-
sented. Although the theory has no cosmological constant, it predicts that the
Universe accelerates and hence it has the equivalence of a positive cosmological
constant in Einstein’s general relativity. In the framework of this theory (see
Section 2) the zero-zero component of the field equations (3) is written as

R0

0 −
1

2
δ00R = κρeff = κ (ρ− ρc) , (60)

where ρc = 3/κτ2 is the critical mass density and τ is Hubble’s time in the
zero-gravity limit.

Comparing Eq. (60) with the zero-zero component of Eq. (57), one obtains
the expression for the cosmological constant of general relativity,

Λ = κρc = 3/τ2. (61)

To find out the numerical value of τ we use the relationship between h =
τ−1 and H0 given by Eq. (55) (CR denote values according to Cosmological
Relativity):

H0 = h
[

1−
(

1− ΩCR
m

)

z2/6
]

, (62)

where z = v/c is the redshift and ΩCR
m = ρm/ρc with ρc = 3h2/8πG. (Notice

that our ρc = 1.194 × 10−29g/cm3 is different from the standard ρc defined
with H0.) The redshift parameter z determines the distance at which H0 is
measured. We choose z = 1 and take for

ΩCR
m = 0.245, (63)

its value at the present time (see Table 1) (corresponds to 0.32 in the standard
theory), Eq. (62) then gives

H0 = 0.874h. (64)

At the value z = 1 the corresponding Hubble parameter H0 according to the
latest results from HST can be taken [17] as H0 = 70km/s-Mpc, thus h =
(70/0.874)km/s-Mpc, or

h = 80.092km/s-Mpc, (65)

and
τ = 12.486Gyr = 3.938× 1017s. (66)

What is left is to find the value of ΩCR
Λ

. We have ΩCR
Λ

= ρST
c /ρc, where

ρST
c = 3H2

0/8πG and ρc = 3h2/8πG. Thus ΩCR
Λ

= (H0/h)
2 = 0.8742, or

ΩCR
Λ = 0.764. (67)

As is seen from Eqs. (63) and (67) one has

ΩT = ΩCR
m +ΩCR

Λ = 0.245 + 0.764 = 1.009 ≈ 1, (68)
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which means the Universe is Euclidean.
As a final result we calculate the cosmological constant according to Eq.

(61). One obtains
Λ = 3/τ2 = 1.934× 10−35s−2. (69)

Our results confirm those of the supernovae experiments and indicate on
the existance of the dark energy as has recently received confirmation from the
Boomerang cosmic microwave background experiment [18,19], which showed
that the Universe is Euclidean.

9 Some remarks

In this paper the cosmological general relativity, a relativistic theory in spaceve-
locity, has been presented and applied to the problem of the expansion of the
Universe. The theory, which predicts a positive pressure for the Universe now,
describes the Universe as having a three-phase evolution: decelerating, constant
and accelerating expansion, but it is now in the latter stage. Furthermore, the
cosmological constant that was extracted from the theory agrees with the ex-
perimental result. Finally, it has also been shown that the three-dimensional
spatial space of the Universe is Euclidean, again in agreement with observations.

Recently [20,21], more confirmation to the Universe accelerating expansion
came from the most distant supernova, SN 1997ff, that was recorded by the
Hubble Space Telescope. As has been pointed out before, if we look back far
enough, we should find a decelerating expansion (curves 1-5 in Figure 1). Beyond
z = 1 one should see an earlier time when the mass density was dominant. The
measurements obtained from SN 1997ff’s redshift and brightness provide a direct
proof for the transition from past decelerating to present accelerating expansion
(see Figures 6 and 7). The measurements also exclude the possibility that the
acceleration of the Universe is not real but is due to other astrophysical effects
such as dust.

Table 2 gives some of the cosmological parameters obtained here and in the
standard theory.

10 Comparison with general relativity

In order to compare the present theory with general relativity, we now add
the time coordinate. We then have a time-space-velocity Universe with two
time-like and three space-like coordinates, with signature (+ − − − +). We
will be concerned with the classical experiments of general relativity and the
gravitational waves predicted by that theory. In the following we show that all
these results are also obtained from the present theory. To this end we proceed
as follows.

We first find the cosmological-equivalent of the Schwarzschild spherically-
symmetric solution in cosmology. It will be useful to change variables from the

13



classical Schwarzschild metric to new variables as follows:

sin2 χ = rs/r, dr = −2rs sin
−3 χ cosχdχ, (70)

where rs = 2GM/c2 is the Schwarzschild radius. We also change the time
coordinate cdt = rsdη, thus η is a time parameter. The classical Schwarzschild
solution will thus have the following form:

ds2 = r2s
[

cos2 χdη2 − 4 sin−6 χdχ2 − sin−4 χ
(

dθ2 + sin2 θdφ2
)]

. (71)

So far this is just the classical spherically symmetric solution of the Einstein field
equations in four dimensions, though written in new variables. The non-zero
Christoffel symbols are given by

Γ0

01 = − sinχ cos−1 χ, Γ1

00 = −1

4
sin7 χ cosχ,

Γ1

11 = −3 sin−1 χ cosχ, Γ1

22 =
1

2
sinχ cosχ,

Γ1

33 =
1

2
sinχ cosχ sin2 θ, Γ2

12 = −2 sin−1 χ cosχ, (72)

Γ2

33 = − sin θ cos θ, Γ3

13 = −2 sin−1 χ cosχ, Γ3

23 = sin−1 θ cos θ.

It is very lengthy, but one can verify that all components of the Ricci tensor
Rαβ are equal to zero identically.

We now extend this solution to cosmology. In order to conform with the
standard notation, the zero component will be chosen as the time parameter,
followed by the three space-like coordinates and then the fourth coordinate
representing the velocity τdv. We will make one more change by choosing
τdv = rsdu, thus u is the velocity parameter. The simplest way to have a
cosmological solution of the Einstein field equation is using the so-called co-
moving coordinates in which:

ds2 = r2s
[

cos2 χdη2 − 4 sin−6 χdχ2 − sin−4 χ
(

dθ2 + sin2 θdφ2
)

+ du2
]

. (73)

The coordinates are now x0 = η, x1 = χ, x2 = θ, x3 = φ, and x4 = u, and rs is
now a function of the velocity u, rs = rs(u) to be determined by the Einstein
field equations in five dimensions. Accordingly we have the following form for
the metric:

gµν = r2s













cos2 χ 0
−4 sin−6 χ

− sin−4 χ
− sin−4 χ sin2 θ

0 1













, (74a)

√−g = 2r5s sin
−7 χ cosχ sin θ. (74b)
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The non-zero Christoffel symbols are given by

Γ0

01 = − sinχ cos−1 χ, Γ0

04 = ṙsr
−1

s ,

Γ1

00 = −1

4
sin7 χ cosχ, Γ1

11 = −3 sin−1 χ cosχ,

Γ1

14 = ṙsr
−1

s , Γ1

22 =
1

2
sinχ cosχ, Γ1

33 =
1

2
sinχ cosχ sin2 θ,

Γ2

12 = −2 sin−1 χ cosχ, Γ2

24 = ṙsr
−1

s , Γ2

33 = − sin θ cos θ, (75)

Γ3

13 = −2 sin−1 χ cosχ, Γ3

23 = sin−1 θ cos θ, Γ3

34 = ṙsr
−1

s ,

Γ4

00 = −ṙsr
−1

s cos2 χ, Γ4

11 = 4ṙsr
−1

s sin−6 χ, Γ4

22 = ṙsr
−1

s sin−4 χ,

Γ4

33 = ṙsr
−1

s sin−4 χ sin2 θ, Γ4

44 = ṙsr
−1

s ,

where the dots denote derivatives with respect to the velocity parameter u.
The Ricci tensor components after a lengthy but straightforward calculation,

are given by:
R00 = −

(

r̈sr
−1

s + 2ṙs
2r−2

s

)

cos2 χ,

R11 = 4
(

r̈sr
−1

s + 2ṙs
2r−2

s

)

sin−6 χ,

R22 =
(

r̈sr
−1

s + 2ṙs
2r−2

s

)

sin−4 χ, (76)

R33 =
(

r̈sr
−1

s + 2ṙs
2r−2

s

)

sin−4 χ sin2 θ,

R44 = −4
(

r̈sr
−1

s − ṙs
2r−2

s

)

.

All other components are identically zero.
We are interested in vacuum solution of the Einstein field equations for

the spherically symmetric metric (generalized Schwarzschild to cosmology), the
right-hand sides of the above equations should be taken zero. A simple calcula-
tion then shows that ṙs = 0, r̈s = 0. Accordingly the cosmological Schwarzschild
metric is given by Eq. (74a) with a constant rs = 2GM/c2. The metric (74a)
can then be written, using the coordinate transformations (70), as

gµν =













1− rs
r 0

−
(

1− rs
r

)

−1

−r2

−r2 sin2 θ
0 1













, (77)

where the coordinates are now x0 = ct, x1 = r, x2 = θ, x3 = φ, and x4 = τv.
We are now in a position to compare the present theory with general rela-

tivity.
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11 Gravitational redshift

We start with the simplest experiment of the gravitational redshift. Although
this experiment is not considered as one of the proofs of general relativity (it
can be derived from conservation laws and Newtonian theory).

Consider two clocks at rest at two points denoted by 1 and 2. The prop-
agation of light is determined by ds at each point. Since at these points all
spatial infinitesimal displacements and change in velocities vanish, one has
ds2 = g00c

2dt2. Hence at the two points we have

ds (1) = [g00 (1)]
1/2 cdt, (78a)

ds (2) = [g00 (2)]
1/2

cdt (78b)

for the proper time (see Fig. 8).
The ratio of the rates of similar clocks, located at different places in a grav-

itational field, is therefore given by

ds (2) /ds (1) = [g00 (2) /g00 (1)]
1/2 . (79)

The frequency ν0 of an atom located at point 1, when measured by an observer
located at point 2, is therefore given by

ν = ν0 [g00 (1) /g00 (2)]
1/2 . (80)

If the gravitational field is produced by a spherically symmetric mass distri-
bution, then we may use the generalized Schwarzschild metric given above to
calculate the above ratio at the two points. In this case g00 = 1 − 2GM/c2r,
and therefore

[g00 (1) /g00 (2)]
1/2 ≈ 1 +

(

GM/c2
)

(1/r2 − 1/r1)

to first order in GM/c2r. We thus obtain

∆ν/ν0 = (ν − ν0) /ν0 ≈ −
(

GM/c2
)

(1/r1 − 1/r2)

for the frequency shift per unit frequency. Taking now r1 to be the observed
radius of the Sun and r2 the radius of the Earth’s orbit around the Sun, then
we find that

∆ν/ν0 ≈ −GMSun/c
2rSun, (81)

where MSun and rSun are the mass and radius of the Sun. Accordingly we
obtain ∆ν/ν0 ≈ −2.12× 10−6 for the frequency shift per unit frequency of the
light emitted from the Sun. The calculation made above amounts to neglecting
completely the Earth’s gravitational field. The above result is the standard
gravitational redshift (also known as the gravitational time dilation).
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12 Motion in a centrally symmetric gravitational

field

We assume that small test particles move along geodesics in the gravitational
field. We also assume that planets have small masses as compared with the mass
of the Sun, to the extent that they can be considered as test particles moving in
the gravitational field of the Sun. As a result of these assumptions, the geodesic
equation in the cosmological Schwarzschild field will be taken to describe the
equation of motion of a planet moving in the gravitational field of the Sun. In
fact, we do not need the exact solution of the generalized Schwarzschild metric
(77), but just its first approximation. We obtain in the first approximation the
following expressions for the components of the metric tensor:

g00 = 1− rs/r, g0m = 0, g04 = 0,

gmn = −δmn − rsx
mxn/r3, gm4 = 0, g44 = 1. (82a)

The contravariant components of the metric tensor are consequently given, in
the same approximation, by

g00 = 1 + rs/r, g0m = 0, g04 = 0,

gmn = −δmn + rsx
mxn/r3, gm4 = 0, g44 = 1. (82b)

We may indeed verify that the relation gµλg
λν = δνµ between the contravariant

and covariant components of the above approximate metric tensor is satisfied to
orders of magnitude of the square of rs/r. A straightforward calculation then
gives the following expressions for the Christoffel symbols:

Γ0

0n = −rs
2

∂

∂xn

(

1

r

)

,

Γk
00 = −− rs

2

(

1− rs
r

) ∂

∂xk

(

1

r

)

, (83)

Γk
mn = rs

xk

r3
δmn − 3

2
rs
xkxmxn

r5
.

All other components vanish.
We now use these expressions for the Christoffel symbols in the geodesic

equation

ẍk +
(

Γk
αβ − Γ0

αβ ẋ
k
)

ẋαẋβ = 0, (84)

where a dot denotes differentiation with respect to the time coordinate x0. We
obtain

Γ0

αβ ẋ
αẋβ = Γ0

00 + 2Γ0

0nẋ
n + 2Γ0

04ẋ
4 + Γ0

mn
˙xmẋn + 2Γ0

m4
˙xmẋ4 + Γ0

44ẋ
4ẋ4

= −rsẋn
∂

∂xn

(

1

r

)

, (85a)
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Γk
αβ ẋ

αẋβ = Γk
00 + 2Γk

0lẋ
l + 2Γk

04ẋ
4 + Γk

mn
˙xmẋn + 2Γk

m4
˙xmẋ4 + Γk

44ẋ
4ẋ4

= −rs
2

∂

∂xk

(

1

r

)

+ rs

[

rs
2r

∂

∂xk

(

1

r

)

−
(

ẋsẋs
) ∂

∂xk

(

1

r

)

− 3

2r5
(

xsẋs
)2

xk

]

.

(85b)
Consequently we obtain from the geodesic equation (84) the following equation
of motion for the planet:

ẍk − rs
2

∂

∂xk

(

1

r

)

= rs

[

(

ẋsẋs
) ∂

∂xk

(

1

r

)

− rs
2r

∂

∂xk

(

1

r

)

− ẋn
∂

∂xn

(

1

r

)

ẋk +
3

2r5
(

xsẋs
)2

xk

]

.

(86)
Replacing now the derivatives with respect to x0 by those with respect to t(≡
x0/c) in the latter equation, we obtain

ẍ−GM∇1

r
= rs

[

(

ẋ
2
)

∇
(

1

r

)

− GM

r
∇
(

1

r

)

−
(

ẋ · ∇1

r

)

ẋ+
3

2r5
(x · ẋ)2 x

]

,

(87)
where use has been made of the three-dimensional notation.

Hence the equation of motion of the planet differs from the Newtonian one
since the left-hand side of Eq. (87) is proportional to terms of order of magnitude
rs instead of vanishing identically. This correction leads to a fundamental effect,
namely, to a systematically secular change in the perihelion of the orbit of the
planet.

To integrate the equation of motion (87) we multiply it vectorially by the
radius vector x. We obtain

x× ẍ = −rs (ẋ · ∇ (1/r)) (x× ẋ) . (88)

All other terms in Eq. (87) are proportional to the radius vector x and thus
contribute nothing. Equation (88) may be integrated to yield the first integral

x× ẋ = Je−rs/r. (89)

Here J is a constant vector, the angular momentum per mass unit of the planet.
One can easily check that the first integral (89) indeed leads back to Eq. (88)
by taking the time derivatives of both sides of Eq. (89).

From Eq. (89) we see that the radius vector xmoves in a plane perpendicular
to the constant angular momentum vector J, thus the planet moves in a plane
similar to the case in Newtonian mechanics. If we now introduce in this plane
coordinates r and φ to describe the motion of the planet, the equation of motion
(87) consequently decomposes into two equations. Introducing now the new
variable u = 1/r, we can then rewrite the equations in terms of u(φ), using

ṙ = − u′

u2
φ̇,

r̈ =
2u′2

u3
φ̇2 − u′′

u2
φ̇2 − u′

u2
φ̈,
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where a prime denotes a differentiation with respect to the angle φ. We subse-
quently obtain

φ̈ = 2
u′

u
φ̇2 − 2GM

c2
u′φ̇2.

A straightforward calculation then gives, using the expression for φ̈,

u′′ + u−GM

(

u2

φ̇

)2

=
GM

c2

[

2u2 − u′2 − 2GMu

(

u2

φ̇

)2
]

(90).

The latter equation can be further simplified if we use the first integral

r2φ̇ = Je−2GM/c2r.

We obtain
u2

φ̇
=

1

J
e2GMu/c2 ,

(

u2

φ̇

)2

=
1

J2
e4GMu/c2 ≈ 1

J2

(

1 +
4GM

c2
u

)

.

Hence, to an accuracy of 1/c2, Eq. (90) gives

u′′ + u− GM

J2
=

GM

c2

(

2u2 − u′2 + 2
GM

J2
u

)

. (91)

Equation (91) can be used to determine the motion of the planet. The
Newtonian equation of motion that corresponds to Eq. (91) is one whose left-
hand side is identical to the above equation, but is equal to zero rather than to
the terms on the right-hand side. This fact can easily be seen if one lets GM/c2

go to zero in Eq. (91). Therefore in the Newtonian limit we have

u′′ + u− GM

J2
≈ 0, (92)

whose solution can be written as

u ≈ u0 (1 + ǫ cosφ) . (93)

Here u0 is a constant, and ǫ is the eccentricity of the ellipse, ǫ = (1− b2/a2)1/2,
where a and b are the semimajor and semiminor axes of the ellipse. Using
the solution (93) in the Newtonian limit of the equation of motion (92) then
determines the value of the constant u0, as u0 = GM/J2.

To solve the equation of motion (91), we therefore assume a solution of the
form

u = u0 (1 + ǫ cosαφ) , (94)

where α is some parameter to be determined, and whose value in the usual
nonrelativistic mechanics is unity. The appearance of the parameter α 6= 1 in
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our solution is an indication that the motion of the planet will no longer be a
closed ellipse.

Using the above solution in Eq. (91), and equating coefficients of cosαφ,
then gives

α2 = 1− 2GM

c2

(

2u0 +
GM

J2

)

.

If we substitute for GM/J2 in the above equation its nonrelativistic value u0,
then the error will be of a higher order. Hence the latter equation can be written
as

α2 = 1− 6GM

c2
u0

or

α = 1− 3GM

c2
u0. (95)

Successive perihelia occur at two angles φ1 and φ2 when αφ2 − αφ1 = 2π.
Since the parameter α is smaller than unity, we have φ2 − φ1 = 2π/α > 2π.
Hence we can write φ2 − φ1 = 2π +∆φ, with ∆φ > 0, or

α (φ2 − φ1) = α (2π +∆φ) =

(

1− 3GM

c2
u0

)

(2π +∆φ) = 2π. (96)

As a result there will be an advance in the perihelion of the orbit of the planet
per revolution given by Eq. (96) or, to first order, by

∆φ = 6πGMu0/c
2. (97)

The constant u0 can also be expressed in terms of the eccentricity, using the
Newtonian approximation. Denoting the radial distances of the orbit, which
correspond to the angles φ2 = 0 and φ1 = π, by r2 and r1, respectively, we have
from Eq. (93),

1/r2 = u0 (1 + ǫ) , 1/r1 = u0 (1− ǫ) .

Hence since r1 + r2 = 2a, we obtain (see Fig. 9)

2a = r1 + r2 = 2/u0

(

1− ǫ2
)

,

where a is the semimajor axis of the orbit, and therefore

u0 = 1/a
(

1− ǫ2
)

.

Using this value for u0 in the expression (97) for ∆φ, we obtain for the perihelion
advance the expression

∆φ =
6πGM

c2a (1− ǫ2)
(98)

in radians per revolution (see Fig. 10). This is the standard general relativistic
formula for the advance of the perihelion.

In the next section we discuss the deflection of a light ray moving in a
gravitational field.
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13 Deflection of light in a gravitational field

To discuss the effect of gravitation on the propagation of light signals we may use
the geodesic equation, along with the null condition ds = 0 at a fixed velocity.
A light signal propagating in the gravitational field of the Sun, for instance, will
thus be described by the null geodesics in the cosmological Schwarzschild field
at dv = 0.

Using the approximate solution for the cosmological Schwarzschild metric,
given by Eq. (82a), we obtain

gµνdx
µdxν =

(

1− 2GM

c2r

)

c2dt2 −
[

dxsdxs +
2GM

c2
(xsdxs)2

r3

]

= 0. (99)

Hence we have, to the first approximation in GM/c2, the following equation of
motion for the propagation of light in a gravitational field:

(

1 +
2GM

c2r

)

[

(

ẋsẋs
)

+
2GM

c2

(

xsẋs
)2

r3

]

= c2, (100)

where a dot denotes differentiation with respect to the time coordinate t(≡
x0/c).

Just as in the case of planetary motion (see previous section), the motion
here also takes place in a plane. Hence in this plane we may introduce the polar
coordinates r and φ. The equation of motion (100) then yields, to the first
approximation in GM/c2, the following equation in the polar coordinates:

(

ṙ2 + r2φ̇2

)

+
4GM

c2
ṙ2

r
+

2GM

c2
rφ̇2 = c2. (101)

Changing now variables from r to u(φ) ≡ 1/r, we obtain

[

u′2 + u2 +
2GMu

c2
(

2u′2 + u2
)

]

(

φ̇

u2

)2

= c2, (102)

where a prime denotes differentiation with respectto the angle φ.
Moreover we may use the first integral of the motion,

r2φ̇ = Je−2GM/c2r, (103)

in Eq. (102), thus getting

u′2 + u2 +
2GMu

c2
(

2u′2 + u2
)

=
( c

J

)2

e4GMu/c2 . (104)

Differentiation of this equation with respect to φ then gives

u′′ + u+
GM

c2
(

2u′2 + 4uu′′ + 3u2
)

=
2GM

J2
. (105)
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In Eq. (105) terms have been kept to the first approximation in GM/c2 only.
To solve Eq. (105) we notice that, in the lowest approximation, we have,

from Eq. (104),

u′2 ≈
( c

J

)2

− u2, (106)

u′′ ≈ −u. (107)

Hence using these approximate expressions in Eq. (105) gives

u′′ + u =
3GM

c2
u2 (108)

for the equation of motion of the orbit of the light ray propagating in a spheri-
cally symmetric gravitational field.

In the lowest approximation, namely, when the gravitational field of the
central body is completely neglected, the right-hand side of Eq. (108) can be
taken as zero, and therefore u satisfies the equation u′′ + u = 0. The solution
of this equation is a straight line given by

u =
1

R
sinφ, (109)

where R is a constant. This equation for the straight line shows that r ≡ 1/u
has a minimum value R at the angle φ = π/2. If we denote y = r sinφ, the
straight line (109) can then be described by

y = r sinφ = R = constant (110)

(see Fig. 11).
We now use the approximate value for u, Eq. (109), in the right-hand side of

Eq. (108), since the error introduced in doing so is of higher order. We therefore
obtain the following for the equation of motion of the orbit of the light ray:

u′′ + u =
3GM

c2R2
sin2 φ. (111)

The solution of this equation is then given by

u =
1

R
sinφ+

GM

c2R2

(

1 + cos2 φ
)

. (112)

Introducing now the Cartesian coordinates x = r cosφ and y = r sinφ, the
above solution can then be written as

y = R− GM

c2R

2x2 + y2

(x2 + y2)1/2
. (113)

We thus see that for large values of |x| the above solution asymptotically ap-
proaches the following expression:

y ≈ R− 2GM

c2R
|x|. (114)
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As seen from Eq. (114), asymptotically, the orbit of the light ray is described
by two straight lines in the spacetime. These straight lines make angles with
respect to the x axis given by tanφ = ±

(

2GM/c2R
)

(see Fig. 12). The angle
of deflection ∆φ between the two asymptotes is therefore given by

∆φ =
4GM

c2R
. (115)

This is the angle of deflection of a light ray in passing through the grav-
itational field of a central body, described by the cosmological Schwarzschild
metric. For a light ray just grazing the Sun, Eq. (115) gives the value

∆φ =
4GMSun
c2RSun

= 1.75seconds.

This is the standard general-relativistic formula. Observations indeed confirm
this result. One of the latest measurements gives 1.75±0.10 seconds. It is worth
mentioning that only general relativity theory and the present theory predict
the correct factor of the deflection of light in the gravitational field.

In the next section the gravitational radiation prediction is considered.

14 Gravitational radiation

In the following we show that the present theory also predicts gravitational
radiation, a distinguished result of classical general relativity theory. We will
not develop a complete theory of gravitational radiation. Rather we will confine
ourselves in showing that the present theory does predict the phenomenon. This
is done in the weak field approximation, as is usually done in standard general
relativity theory.

14.1 Linear approximation

For convenience, the coordinate system to be used in the linearized theory will
be Cartesian, and hence the Minkowskian metric will have the form

ηµν = ηµν = (1,−1,−1,−1, 1), (116)

when c and τ are taken as unity. The gravitational field described by the metric
tensor gµν is now called weak if it differs from the Minkowskian metric tensor
by terms which are much smaller than unity,

|gµν − ηµν | ≪ 1. (117)

The above condition need not be satisfied in the entire spacetime, and it could
be valid at a region of it.

We now assume that the metric tensor can be expanded as an infinite series,

gµν = ηµν + λ1gµν + λ2
2gµν + · · · , (118)
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where λ is some small parameter, and we limit ourselves to the first-order term

1gµν alone. Hence we can write

gµν ≈ ηµν + hµν , (119a)

where hµν = λ1gµν . We also expand the contravariant components of the metric
tensor,

gµν ≈ ηµν + hµν . (119b)

From the condition gµλg
λν = δνµ one then is able to relate hµν to hµν (neglecting

nonlinear terms),
hµν = −ηµρηνσhσρ. (120)

14.2 The linearized Einstein equations

We can now derive the linearized Einstein equations. To this end we have to
find the first approximate value of the Einstein tensor, the Ricci tensor, the
Ricci scalar, and the Christoffel symbols. A simple calculation then gives

Γµ
αβ ≈ 1

2
ηµλ (hλα,β + hλβ,α − hαβ,λ) (121)

for the Christoffel symbols and

Rαβγδ ≈
1

2
(hαδ,βγ + hβγ,αδ − hβδ,αγ − hαγ,βδ) (122)

for the Riemann tensor. Accordingly we have the following expressions for the
Ricci tensor, the Ricci scalar, and the Einstein tensor, respectively:

Rβδ ≈ 1

2
ηαγ (hαδ,βγ + hβγ,αδ − hβδ,αγ − hαγ,βδ) (123)

R ≈ ηαγηβδ (hαδ,βγ − hβδ,αγ) (124)

Gµν ≈ −1

2

[

h,µν + ηρσ (hµν,ρσ − hµρ,νσ − hνρ,µσ)− ηµνη
ρσ
(

h,ρσ − ηαβhρσ,αβ

)]

,

(125)
where h = ηαβhαβ .

A simplification in the linearized field equations occurs if we introduce the
new variables

γµν = hµν − 1

2
ηµνh, (126)

from which one obtains

hµν = γµν − 1

2
ηµνγ, (127)

with γ = ηαβγαβ . Introducing the above expressions into the Einstein field
equations we obtain

©γµν − ηαβ (γαµ,βν + γαν,βµ) + ηµνη
λρηαβγλα,ρβ = −2κTµν (128)
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for the linearized gravitational field equations. In Eq. (128) the symbol © is
the operator in flat space,

©f = ηαβf,αβ =

(

1

c2
∂2

∂t2
−∇2 +

1

τ2
∂2

∂v2

)

f. (129)

We can simplify still further the above field equations by choosing coordi-
nates in which

γµ = ηρσγµρ,σ = 0. (130)

This is similar to choosing a gauge in solving the wave equation in electrody-
namics. As a result we finally obtain for the linearized Einstein equations the
following:

©γµν = −2κTµν , (131)

along with the supplementary condition

ηρσγµρ,σ = 0, (132)

which solutions γµν of Eq. (131) should satisfy. Finally we see from Eq. (131)
that a necessary condition for Eq. (132) to be satisfied is that

ηαβTµα,β = 0, (133)

which is an expression for the conservation of the energy and momentum without
including gravitation.

14.3 Gravitational waves

In vacuum, Eq. (131) reduces to

©γµν = 0, (134)

or
(

∇2 − 1

c2
∂2

∂t2

)

γµν =
1

τ2
∂2γµν
∂v2

. (135)

Thus the gravitational field, like the electromagnetic field, propagates in vac-
uum with the speed of light. The above analysis also shows the existance of
gravitational waves.
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Table 1: The Cosmic Times with respect to the Big Bang, the Cosmic Tem-
perature and the Cosmic Pressure for each of the Curves in Fig. 1.

Curve Ωm Time in Units Time Temperature Pressure
No⋆. of τ (Gyr) (K) (g/cm2)

DECELERATING EXPANSION
1 100 3.1× 10−6 3.87× 10−5 1096 -4.499
2 25 9.8× 10−5 1.22× 10−3 195.0 -1.091
3 10 3.0× 10−4 3.75× 10−3 111.5 -0.409
4 5 1.2× 10−3 1.50× 10−2 58.20 -0.182
5 1.5 1.3× 10−2 1.62× 10−1 16.43 -0.023

CONSTANT EXPANSION
6 1 3.0× 10−2 3.75× 10−1 11.15 0

ACCELERATING EXPANSION
7 0.5 1.3× 10−1 1.62 5.538 +0.023
8 0.245 1.0 12.50 2.730 +0.034

⋆The calculations are made using Carmeli’s cosmological transformation,
Eq. (2), that relates physical quantities at different cosmic times when gravity
is extremely weak.

For example, we denote the temperature by θ, and the temperature at the
present time by θ0, we then have

θ =
θ0

√

1− t2

τ2

=
θ0

√

1− (τ − T )2

τ2

=
2.73K

√

2τT − T 2

τ2

=
2.73K

√

T

τ

(

2− T

τ

)

,

where T is the time with respect to B.B.
The formula for the pressure is given by Eq. (30), p = c(1−Ω)/8πGτ . Using

c = 3× 1010cm/s, τ = 3.938× 1017s and G = 6.67× 10−8cm3/gs2, we obtain

p = 4.544× 10−2 (1− Ω) g/cm2.
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Table 2: Cosmological parameters in cosmological general relativity and in
standard theory

COSMOLOGICAL STANDARD
RELATIVITY THEORY

Theory type Spacevelocity Spacetime
Expansion Tri-phase: One phase
type decelerating, constant,

accelerating
Present expansion Accelerating One of three

(predicted) possibilities
Pressure 0.034g/cm2 Negative
Cosmological constant 1.934× 10−35s−2 Depends

(predicted)
ΩT = Ωm +ΩΛ 1.009 Depends
Constant-expansion 8.5Gyr ago No prediction
occurs at
Constant-expansion Fraction of Not known
duration second
Temperature at 146K No prediction
constant expansion

29



FIGURE CAPTIONS

Fig. 1 Hubble’s diagram describing the three-phase evolution of the Universe
according to cosmological general relativity theory. Curves (1) to (5) represent
the stages of decelerating expansion according to r(v) = (cτ/α) sinαv/c, where
α2 = (Ω− 1)/2, Ω = ρ/ρc, with ρc a constant, ρc = 3/8πGτ2, and c and τ are
the speed of light and the Hubble time in vacuum (both universal constants).
As the density of matter ρ decreases, the Universe goes over from the lower
curves to the upper ones, but it does not have enough time to close up to a
big crunch. The Universe subsequently goes to curve (6) with Ω = 1, at which
time it has a constant expansion for a fraction of a second. This then followed
by going to the upper curves (7), (8) with Ω < 1 where the Universe expands
with acceleration according to r(v) = (cτ/β) sinh βv/c, where β2 = (1 − Ω)/2.
Curve no. 8 fits the present situation of the Universe. (Source: S. Behar and
M. Carmeli, Ref. 3)

Fig. 2 Hubble’s diagram of the Universe at the present phase of evolution with
accelerating expansion. (Source: S. Behar and M. Carmeli, Ref. 3)

Fig. 3 Hubble’s diagram describing decelerating, constant and accelerating ex-
pansions in a logarithmic scale. (Source: S. Behar and M. Carmeli, Ref. 3)

Fig. 4 Distance vs. redshift diagram showing the deviation from a constant
toward an accelerating expansion. (Source: A. Riess et al., Ref. 12)

Fig. 5 Relative intensity of light and relative distance vs. redshift. (Source: A.
Riess et al., Ref. 12)

Fig. 6 Hubble diagram of SNe Ia minus an empty (i.e., “empty” Ω = 0) Uni-
verse compared to cosmological and astrophysical models. The points are the
redshift-binned data from the HZT (Riess et al. 1998) and the SCP (Perlmutter
et al. 1999). The measurements of SN 1997ff are inconsistent with astrophysical
effects which could mimic previous evidence for an accelerating Universe from
SNe Ia at z ≈ 0.5. (Source: A. Riess et al., Ref. 21)

Fig. 7 Same as Fig. 6 with the inclusion of a family of plausible, flat ΩΛ

cosmologies. The transition redshift (i.e., the coasting point) between the ac-
celerating and decelerating phases is indicated and is given as [2ΩΛ/ΩM ]1/3−1.
SN 1997ff is seen to lie within the epoch of deceleration. This conclusion is
drawn from the result that the apparent brightness of SN 1997ff is inconsistent
with values of ΩΛ ≥ 0.9 and hence a transition redshift greater than that of SN
1997ff. (Source: A. Riess et al., Ref. 21)

Fig. 8 Propagation of light in curved spacetime.

Fig. 9 Newtonian limit of planetary motion. The motion is described by a
closed ellipse if the effect of other planets is completely neglected.

Fig. 10 Planetary elliptic orbit with perihelion advance. The effect is a general
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relativistic one. The advance of the perihelion is given by ∆φ in radians per
revolution, where ∆φ = 6πGM/c2a(1− ǫ2), with M being the mass of the Sun,
a the semimajor axis, and ǫ the eccentricity of the orbit of the planet.

Fig. 11 Light ray when the effect of the central body’s gravitational field
is completely neglected. The light ray then moves along the straight line
y = r sinφ = R = constant, namely, u = 1/r = (1/R) sinφ

Fig. 12 Bending of a light ray in the gravitational field of a spherically sym-
metric body. The angle of deflection ∆φ = 4GM/c2R, where M is the mass of
the central body and R is the closest distance of the light ray from the center
of the body.
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