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1 — SPECIAL RELATIVITY

James Clerk Maxwell was a country gentleman and a professor at Cambridge.
His equations for the electromagnetic field are

V-B=0 Gilbert’s law (1)
1
V xE+ EatB =0 Faraday’s law (2)
V-E=4mp Gauss’ law (3)
1 47, .
VxB-— E@E = Ampere-Maxwell’s law . (4)

Here p and j are the electric charge and current densities, respectively, and in a
complete specification of the theory one also needs a set of dynamical variables
describing electrically charged matter. It is understood that both p and j are
some given functions of these variables. Let us leave this matter aside for the
moment, and focus on the constant ¢ that can be determined by laboratory
experiments. Its value is about 300 000 km/s, and this happens to be equal—at
least within the experimental uncertainty—to the velocity of light. This is not
an accident. Suppose that

p=0 j=0. (5)

This means that no electric charges are present, and we are looking at Maxwell’s
equations in vacuo. It is then easy to check that we obtain an exact solution of
the equations if we take

B, = f(ct - o) B. = f(ct—2) (6)

all other components vanishing. This describes a plane electromagnetic wave
propagating in the direction of the z-axis with the velocity ¢. The arbitrary
function f gives the shape of the wave, and this is not changed as the wave
moves. Other solutions propagating with the same velocity are easy to find.
The existence of such solutions is fairly convincing evidence that light is an
electromagnetic wave described by Maxwell’s equations. That electromagnetic
waves with the expected properties do indeed exist was confirmed in the labo-
ratory by Heinrich Hertz some twenty years after Maxwell’s prediction.
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Figure 1: Active and passive transformations

1.1 INVARIANCE

It is clear that there is something unexpected about Maxwell’s theory. The
velocity of light is predicted to be equal to 300 000 km/s, and the question
7velocity with respect to what?” presents itself. In the end Albert Einstein
showed the question to be mistaken. This is not the place to go through his
argument in detail; rather we will show directly that Maxwell’s equations are
Lorentz invariant and then sketch how this is enough to dissolve the question.
First of all we have to recall what it means for an equation to be invariant
under some transformation. Think of Newton’s equations for the motion of two
bodies under gravitational attraction. They are invariant under rotation. This
does not mean that an individual solution must be invariant under rotation—
indeed this is false in general—but it means that if we start with a solution and
rotate it in space around an arbitrary point, the resulting configuration is again a
solution of the equations. An ellipse is not rotationally symmetric, but Newton’s
theory is because every ellipse that can be obtained by rotating a given ellipse
solves the equations provided that the original ellipse does. It is an important
point—to reemerge later—that the rotated ellipse counts as a distinct solution of
Newton’s equations, but at the same time it is observationally indistinguishable
from the original ellipse as far as measurements within the Earth-Sun system
are concerned.

To see what goes on conceptually let us consider the simplest case, that of
spatial translations. First we choose a set of Cartesian coordinates in space, so
that a point can be uniquely labelled by a vector x from some chosen origin.
Given a point x we define a new point x’ by

xX'=x+a, (7

where a is some constant vector. So you should read this as an assignment of
a new point x' to every point x. (Alternatively you could read it as a coor-
dinate transformation that assigns a new coordinate x' to the original point.
This would be the ”passive” viewpoint, and we would then be dealing with a
coordinate transformation only. But we choose the former and more interesting
”active” viewpoint here.)

Suppose that the charge density p is a given function of the points, i.e. of



the coordinate x. Then we demand that there exists a new function p' of the
points (whether labelled by x or by x’' does not matter), which is such that

p(xst) = p(x,t) . (8)

It is important to get the meaning of this equation right. At the point x + a
the function p' takes the same value as the function p takes at the point x. If
we like we can express the new function as a function of x; evidently

p'(x+a,t) = p(x,1) < p'(x,t) = p(x —a,t) . (9)

In physical terms we have moved the charge density to a new position. Adopt
the same rule for the electric field, i.e.

E'(x +a,t) = E(x,t), (10)

and again the same rule for the magnetic field and the electric current. It is then
easy to see that if the functions p, j, E and B are such that they solve Maxwell’s
equation, then so do the functions p’, j', E' and B’. The conclusion is that if
we have an allowed configuration—i.e. a solution of Maxwell’s equations—of
charges and fields with some characteristic spatial dependence, then the same
configuration moved to a new position differing from the first by a constant
vector a is also an allowed configuration. One says that Maxwell’s equations
are invariant under spatial translations. Similarly, they are invariant under
translations in time and under spatial rotations, although the latter property
can be seen only if we take into account that the electric and magnetic fields
are to transform as vectors under rotations.
Now consider the transformation

x' =x+vt. (11)

It is known as a Galilei transformation. Newton’s equations are invariant under
Galilei transformations. Since its effect is to transform a stationary particle
into one that moves with velocity v this means—granted that the transformed
solution is observationally indistinguishable from the original—that absolute
velocities are unobservable. The story for Maxwell’s equations is different: Re-
place the constant vector a with vt everywhere in the formulae above. If we start
with an allowed configuration of electric and magnetic fields the result will be a
configuration that is moving with constant velocity v compared to the original
configuration. But it is easy to see from the way the equations mix spatial and
time derivatives that the new configuration is not allowed since it does not solve
Maxwell’s equations. This suggests that Maxwell’s equations somehow single
out a special state of motion that can be defined as the state of rest, and that
the velocity c¢ is the velocity with respect to that state of rest. This is about as
different as it can be from Newtonian gravity (say).



At this point Einstein entered the scene and observed that one can avoid this
somewhat unpalatable conclusion. Since the problem evidently is that Maxwell’s
equations mix space and time derivatives in a characteristic fashion it is natural
to try to generalize the Galilei transformation so that the new transformation
also mixes space and time in a more intimate fashion. The appropriate language
in which to discuss this idea is called ”tensor calculus”, and we will take a detour
to explain tensors. Afterwards we will present Einstein’s argument in the way
that it was dressed up by Hermann Minkowski some years later—perhaps not
the most pedagogical way one can think of, but it happens that one of the aims of
this course is to give you a first exposure to tensor calculus. A moderate ability
to handle ”index notation” is all that you will need in succeeding chapters.

Perhaps I should add that most introductions to tensor calculus adopt the
"passive” viewpoint in which the transformations considered are just changes
of coordinates. This is also important but it is the active viewpoint that is
needed to discuss the invariance of Maxwell’s equations. (If the statement that
Maxwell’s equations hold in all coordinate systems were found to be false, the
conclusion would be that there is something wrong about the way we handle
coordinate systems. On the other hand it is a question of physics whether
Maxwell’s equations continue to hold after an active transformation of space and
time.) Hence in the discussion below you can consider the coordinate system as
having been fixed once and for all.

1.2 TENSORS

Suppose that space has 4 dimensions (the generalization to an arbitrary number
of dimension will be trivial). A point in the space can then be uniquely described
by giving the values of four coordinates z°, 2!, 22 and 23. We collect them
together into 2%, where the index a ranges from 0 to 3. We begin counting from
zero because we will eventually think of the z0-direction as the time direction in
”spacetime”, which is four dimensional. For now this does not matter; indeed
at the outset the coordinates have no other properties than that of being unique
labels of points in a four dimensional space. We are interested in transformations
of the space onto itself. They can be described by

% = 7' =2'%(z) . (12)

Thus the point that was described by the coordinates x® is moved to the point
that was described by the coordinates z'®. We will simplify matters a little by
assuming that the most general transformation that we want to describe is a
linear transformation. (This excludes translations, but we can easily take care
of them at the end.) Thus



3
@ =" A% . (13)
=0

This is simply a matrix equation. You may wonder why I write one index
"upstairs” and one ”downstairs”. There is a reason for this that begins to
emerge when we compute how the derivatives transform. Using the chain rule
we get

) ’. 018 0 10 0 < 13
a‘l)‘:@x'azﬁ_oax—'awzgm —ﬁ:z_: ' 95 - (14)

In general the gradient transforms in a different way than the coordinate vector
itself. In the special case A~! = A7, that is to when A is an orthogonal matrix,
there is no difference. (You should convince yourself that this is so—you have to
see through the ”upstairs-downstairs” notation to do it.) Orthogonal matrices
actually correspond to rotations but we will need the general case, and then we
get two different kinds of vectors.

Now we want a rule that tells us how various objects on the space transform
when the active transformation is carried through. This will include functions
(say the density of a fluid), four-component objects (such as the velocity of a
fluid on a four dimensional space), and even more complicated objects that we
will come to. First, a scalar function is by definition a function that transforms
according to

¢'(z") = ¢(z) - (15)

The new function takes the same value at the new point as the old function
takes at the old point. Second, a contravariant vector is a set of four functions
that transform according to

V(') ZA (16)

Hence a component of the new vector takes a value at the new point which is a
linear combination of the values taken by the old vector at the old point. Third,
a covariant vector is a set of four functions that transform according to

3

Us(a') =Y (A Us(@) - (17)

B=0
The scalar product of two vectors ought to be a scalar function. Now it is easy
to see that
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STUVE=DD "N Us(AT)LALVT =D ULV, (18)
a=0 a=03=0~vy=0 a=0

so the obvious scalar product of a covariant and a contravariant vector is indeed

a scalar, while it is not possible to define a scalar product of (say) two covariant

vectors.

At this point we introduce the Einstein summation convention. The rule is
that summation signs will not be written. Instead, whenever an index appears
twice in a term in an equation, once in an upstairs and once in a downstairs
position, summation over this index is understood. If an index appears only
once it is called a free index and it is understood that it may take any value;
in effect one free index means that there are four equations. Indices will never
appear twice in a downstairs or upstairs position, or more than twice. Equations
of the latter types simply never appear.

With the Einstein summation convention in force it is easy to define tensors
of ”arbitrary rank”. Thus a contravariant tensor of rank four (say) is a set of
4* functions that transforms according to

TPV (') = A%, AP AV, A THP (z) . (19)

This looks a bit complicated, but it is a perfectly definite definition. Similarly
a covariant tensor of rank three (say) is a set of 4% functions that transforms
according to

noy (2) = (AHE (AN (A1) Ay () (20)
?Mixed” tensors with some contravariant and some covariant indices can be

defined in the obvious way.
Tensors of the same rank can be added together, that is to say that

TP =UgP + VP (21)

is a mixed tensor if the terms on the right hand side are. There is also a kind
of "tensor multiplication”; as an example the object

UoVgy = Vg Uy (22)

is a covariant tensor of rank three. (Note that it does not matter in which order
we write the factors as long as they carry the correct indices.) Furthermore
higher rank tensors can be ”contracted” in various ways. Thus

M2P = Toom (23)
—an object that is constructed in accordance with the rules of the summation
convention—is a mixed tensor of rank two plus one. On the other hand the
object
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NoB =) Tresn (24)
¥=0

is not a tensor. It is not defined according to the rules, and it does not transform
like a tensor under general linear transformations.

It is easy to check that derivatives of arbitrary tensors transform as tensors
with an additional covariant index so that the equation

M, = 84T (25)

makes sense. Note that this works essentially because the matrix Aaﬂ is inde-
pendent of the coordinates. As a matter of fact this is the only point so far
where our restriction to linear transformations is important.

The order between two covariant (or two contravariant) indices matters. In
general therefore

Vo # Via - (26)

(On the other hand the order between a covariant and a contravariant index
does not matter at this point.) It is possible to require that a certain rank two
tensor obeys

Vo = —Vaa - (27)

Such a tensor is said to be anti-symmetric. The definition is meaningful because
the equation is preserved by the transformations that we consider, that is to say
that

Vag = —Vga <~ oltﬁ = _Vﬁlia . (28)

Clearly an anti-symmetric tensor has 4 - 3/2 = 6 rather than 42 = 16 inde-
pendent components (and you can easily generalize this calculation to arbitrary
dimensions). More generally we can define the anti-symmetric part of a tensor
as

1
Tiap) = 5(Tap = Tpa) (29)
1
Ttapy = g(Tapy + Tyap + Tora = Tsay = Typa = Tayp) (30)

and so on. By construction the tensor 7,3, is anti-symmetric in each pair of
indices separately. It has 4-3-2/3- 2 = 4 independent components. Evidently
we can define symmetric tensors in a similar way.

A common ingredient in many tensor arguments is the simple observation
that



VeVAT 5 =0. (31)

To see this, just rename a <> S. This is allowed since a and § are ”dummy”
indices that are being summed over. But T}, switches sign in the process,
while it does not matter in which order we write V® and V4. So the expression
must be equal to minus itself. Therefore it is equal to zero.

In general the various components of a given tensor will look completely
different as functions of position in the space, once an active transformation
is carried through. There is one exception to this rule however. Consider the
Kronecker delta, defined in terms of components by

o _ lifa=p
a5 = Oifa#8 - (32)
It is easy to see that
S5 =A% (A )0567 = A% (A1) =65 . (33)

The Kronecker delta is left invariant by all the transformations that we consider,
and is therefore said to be an invariant tensor. It is in fact the only invariant
tensor that we can construct (except for tensor products of several deltas).

There is another tensor that almost makes it, though. Define a totally anti-
symmetric tensor of rank four by

0123 _ | ’ B8 — laBré] (34)

This works because a totally anti-symmetric rank four tensor in four dimensions
has only one independent component—there is an epsilon tensor in any dimen-
sion, with rank equal to the dimension. Now if (and only if!) you remember
the definition of the determinant of a matrix you will see that

P10 = A% AP AT A° eP7 = detAePT (35)

The epsilon tensor does change under a general linear transformation, but it is
an invariant tensor if for some reason we restrict ourselves to transformations
such that

detA =1 . (36)

The epsilon tensor is important in itself, and so is the idea of restricting the set
of allowed transformations by the requirement that some particular tensor be
invariant under allowed transformations.

And this concludes our brief introduction to tensors in general. If we were
to allow arbitrary transformations rather than linear transformations only we
would now have to enter a lenghty discussion of how the notion of ”derivative”
can be included in the tensor formalism.



1.2 CARTESIAN TENSORS

The idea of Cartesian tensors will be presented in three dimensional space, and
so we introduce Latin indices i, j, k that run from one to three. Actually the
only change in the discussion above that we have to make is in the definition
of the epsilon tensor, which now has three indices only. But we will inject an
entirely new ingredient. Introduce the tensor

- 1 00
gv =101 0 , (37)
0 01
and require this tensor to be invariant. This is to say that we demand

g = NN gt (38)

In matrix notation this becomes

1=A1AT & AT =A"1. (39)

Therefore the only transformations that we will allow are those that are given
by orthogonal matrices. As you know (?) these are all rotations and reflections,
and nothing else.

We can also introduce a covariant tensor g;; as the "inverse” of g%, in the
sense that

gikg’” = (ﬂ . (40)
Since both g¥ and the Kronecker delta are represented by the unit matrix, so
is G9ij-

What is the point here? One answer is that we want to define the distance
between two points at ! and z! + Az respectively. According to Pythagoras, if
the coordinate axises are straight and orthogonal to each other then the square
of the distance As is

As® = (Az')? + (Az?)? + (Az?)? = g;; Az’ Axd . (41)

Rotations and reflections comprise—with translations—precisely those transfor-
mations of space onto itself that leave the distance between two arbitrary points
invariant. The tensor g;; is called the metric tensor. Note that at this point in
the story our coordinates have become ordinary Cartesian coordinates in space,
and the tensors are now called Cartesian tensors. They are special in the sense
that they transform only under a restricted set of linear transformations.

You may wonder how we would proceed if we insist on using some curvilinear
coordinate system. The answer is that it is perfectly possible to do so if some
appropriate changes are made. As an example, consider spherical polars so that
(2!, 22%,2%) = (r,0, ). Then we must adopt the metric
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1 0 0
gij = 0 r2 0 . (42)
0 0 r2%sind

Also it would make no sense to restrict ourselves to transformations that are
linear in these coordinates. Indeed the whole discussion gets more cumbersome
at various points, and for this reason we stick to Cartesian tensors here.

The distinction between covariant and contravariant tensors disappears for
Cartesian tensors, since they transform in the same fashion. Moreover we can
use the metric to ”raise and lower indices”. Thus, given a covariant tensor (T}
say) we can define a corresponding contravariant tensor by

T = g"g™ " T - (43)
This is consistent with our earlier definition of the covariant tensor g;; since
gieg® =8 =99 =g"*¢'gu . (44)

Anyway, because our metric is a unit matrix it evidently follows that

Vi . N |1
v =visgi=| W), (45)
v vy

and similarly for higher rank tensors. For this reason there is no reason to keep
the distinction between upstairs and downstairs indices in the formalism.

From now on we will write all indices downstairs when we work with Carte-
sian tensors. In particular Maxwell’s equation can be written

0;B; =0 Gilbert’s law (46)
€ik0; Er + %@Bi =0 Faraday’s law (47)

O;E; = 4mp Gauss’ law (48)
€10 By — %@E,- = 4%.7',- Ampere-Maxwell’s law . (49)

It is now an exercise to show that Maxwell’s equations are invariant under
rotations in space, provided that we adopt the transformation rules

EZI(.Z'I) = Az'jEj (.’L’) B;(Qfl) = det AAiij (18) . (50)

Note that the magnetic field is not quite a vector. It is a pseudovector, trans-
forming with an extra sign under reflections. Thus if

11



Aj=| 0 -1 0 (51)

the electric field switches direction but the magnetic field does not. On the
other hand the object

Fij = ez-jkBk (52)

is a tensor, so it would make some sense to rewrite Maxwell’s equations in terms
of this object. (Do it!)
You should note how scalar and cross products appear in the tensor notation:

a-b= aibi axb= eijkajbk . (53)

The epsilon tensor provides a useful way to derive the properties of the cross
product. Specifically in three dimensions we have the e— ¢ identity

€ijk€kmn = 5im6jn - 5in6jm . (54)

(Proof: Check it component by component!) Using this identity the rule for
repeated cross products follows:

ax (b X c) = eijkekmnajbmcn = (6im6jn — 6in6jm)ajbmcn =
(55)
= bia]‘C]‘ — cia]-bj =a-cb—a-bc. (56)

The odds are that once you get used to it you will find the index formalism very
convenient when handling cross products. Nevertheless it occasionally happens
that the cross product notation is superior; the rule is that one should not be
fanatic about notation.

There are lots of tricks that can be played with the epsilon tensor. For
instance

1
Fij=eBe & Bi= geirFir - (57)

I will more often than not perform such calculations without comment.

1.3 INVARIANCE OF MAXWELL’S EQUATIONS

Now back to the problem that we had with Maxwell’s equations and the constant
velocity of light. The suggestion was that the transformation that creates a
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moving configuration from a static one must mix space and time in some clever
fashion, and we will rely on the tensor formalism for four dimensional spaces to
tell us how. The aim is to write Maxwell’s equations as a set of equations for
tensors in a four dimensional ”spacetime”.

First we collect the coordinates into a ”four vector”

e=(2)~(2).

We use the constant ¢ to give all the four coordinates the dimension of length.
It seems reasonable to use the charge density as the missing fourth component
of the current four vector; hence

fz(?)- (59)

The electric and magnetic fields require more thought though. We cannot turn
them into two four vectors since there are no candidates for their fourth com-
ponents. What we can do is to form one anti-symmetric tensor with six com-

ponents:
0 Fo; 0 —F;
Fuap = = . 60
o= (r 1 )= (5 ant ) (60)

This is perhaps not so surprising since we already knew that it is in some sense
natural to describe the magnetic field as a Cartesian tensor Fj; rather than as
a vector. We will refer to F,3 as the electromagnetic tensor. Of course we
cannot say whether it makes sense to talk about an electromagnetic tensor at
all until we have shown that Maxwell’s equations really are invariant under a
set of transformations under which it is a tensor; we are coming to it.

The question is whether Maxwell’s equations can be written in terms of j¢
and F, 3. (There are eight equations altogether, so we need two tensor equations
with one free index each.) After some experimentation one finds that Gilbert’s
and Faraday’s laws can be collected together as the single tensor equation

6[QF3,Y] =0 < 6aFBfY + &,Fag + agF,ya =0. (61)

In four dimensions a totally anti-symmetric tensor with three indices has four
components, so the number of equations is right. (When we ”expand out” the
anti-symmetric tensor in the second step we need only three terms because the
electromagnetic tensor is anti-symmetric in itself.)

The remaining equations are not so easily disposed of. This time experimen-
tation reveals a sign that just will not work out. The solution turns out to be
to introduce by fiat a new tensor that is

13



-1 0 0 0
0 1.0 0
af —
97=1 0 01 0 (62)
0 0 01
We can use this tensor to ”raise indices” if we like; hence
0 E;
FoP = gorgf'F,, = : . 63
g9 S ( —E; €iiBs ) (63)
Then the remaining four Maxwell equations take the elegant form
g FP = dmj™ . (64)

It goes without saying that this is not something that you are supposed to
see directly. But it is something that you ought to check. What one can see
directly is that in order to write this equation it is necessary to somehow ”raise
the indices” on F,g. In the case of Cartesian tensors we did have a similar
problem and we got around it by ”raising indices with the Kronecker delta”.
The interesting thing is that this strategy does not work in spacetime—the
tensor g®? is not a Kronecker delta. So what has been achieved?

In fact we are now in a position to see almost without calculation what is
the most general linear transformation of spacetime that leaves Maxwell’s equa-
tions invariant, that is to say that transforms a solution to another solution.
Since we defined g*% as a tensor that takes a quite definite form the allowed
transformations must leave this form invariant—the point being that g®? con-
tributes some fixed numbers to the equations, and if these numbers change when
we transform a configuration we could distinguish between the original and the
transformed configuration simply by checking what numbers are required for
Maxwell’s equations to hold. The conclusion is that we can admit any linear
transformation

z'® = aﬁxﬁ (65)
that obeys

9 = AN g = g*P (66)

Such transformations are called Lorentz transformations because they were orig-
inally discovered—without benefit of tensors—by Hendrik Lorentz. Tensors
transforming under such transformations are called Lorentz tensors. The tensor
9°P, or its covariant cousin that has the same form, is called the metric tensor.

Evidently the idea behind Lorentz tensors is similar to the idea behind Carte-
sian tensors, except that the metric tensor that is declared to be invariant
contains a sign in the former case that is missing in the latter. Moreover all
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rotations in space are examples of Lorentz transformations. It is easy to see
that all matrices of the form

A% = (67)

0

where A;; is an orthogonal matrix do indeed leave g®° invariant. Such a Lorentz
transformation is an ordinary rotation of space that leaves the fourth dimension
(i.e. time) alone. But it requires some further analysis to see precisely what
goes on in general, and what happened to the velocity of light.

Before we turn to such an analysis we rewrite the first set of Maxwell’s
equations a little, to make them even more elegant. Given a covariant anti-
symmetric tensor of rank two in four dimensions we can always define a ”dual”
contravariant tensor by means of the epsilon tensor (which happens to have four
indices in four dimensions). Thus

1 0 1€iinFj 0 B;
*FP = —e®P1F 5 = 2Rk k) = : ) . (68
2° 0 —LeijnFji  €ijpFro —B; € Ey (68)
With this definition Maxwell’s equations can be written in the form

g x FP =0 (69)

OpFP = AmrJe . (70)

The content of this brief statement is of course exactly the same as that we
started out with.

1.4 MINKOWSKI SPACE

Let us leave the electromagnetic field aside for the moment and concentrate on
what a Lorentz transformation does to spacetime itself. As we have seen an
ordinary rotation in (say) the y — z plane,

1 0 0 0
. 01 0 0
A% = 0 0 cosf siné ’ (71)

0 0 —sinf cosé

is a Lorentz transformation (although it is not usually called that). Due to the
minus sign in the metric tensor transformations in (say) the ¢t — z plane looks
just a bit different:
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cosha sinha 0 0
sinha cosha 0 O

=1 o 0o 10 |° (72)
0 0 01

where « is an arbitrary real number. Such a transformation is called a Lorentz
boost. A Lorentz boost transforms the point (ct, z,y, z) to a new point (ct', z',y', 2")
given by

a'® = A%aP (73)

or more explicitly by
ct' = cosha ct +sinha z 2’ =sinha ¢t + cosha z (74)
y' =y 7 =z. (75)

This is sometimes called a hyperbolic rotation. We want to understand it.

As a first step, let us draw a map of spacetime. To simplify matters, let us
pretend that space has only one dimension. Then we introduce an z-axis and a
t-axis. Any point on the resulting map corresponds to ”a point in space at some
particular time”. Now suppose that you have a particle moving with constant
velocity u. In spacetime, this is described by the straight line

x=ut. (76)

The line is called the ”world line” of the particle. More generally we can consider
curved world lines

z=xz(t) . (77)

If you think about it the particle is not moving along the world line, the world
line simply is. Clearly there is nothing in this picture that could not have been
imagined in the eighteenth century, and indeed the idea of the four dimensional
spacetime occurred already to Joseph-Louis Lagrange. What Newton’s equa-
tions (say) do for you is to predict the shape of the world line, given its location
and slope at one particular value of ¢.

The next step is to draw some flowlines of the boost. By definition a flow
line consists of all the points that can be reached from a given point through
a Lorentz boost by varying the parameter a. It is easy to see what the boost
does to points on the ct-axis:

(ct,0) = (ct',z") = (cosha ct,sinha ct) . (78)

This gives a flowline parametrized by the real number «, viz.
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Figure 2: Spacetime, including two world lines

ct' = cotha z' . (79)

Flowlines that start from the z-axis can also be computed. It is convenient to use
ct rather than ¢ on the vertical axis when we draw our picture of the flowlines.
The picture should be compared with a picture that shows the flowlines of a
rotation in the y — z-plane.

What happens to the world line of a particle moving with constant velocity if
we perform a Lorentz boost? The result must be another world line, describing
a particle in a different state of movement. So we choose some value of a and
perform the boost. Making use of £ = ut we find that

ct' = (cosha ¢ +sinha u)t ' = (sinha ¢+ cosha u)t . (80)
It follows that

,:sinha c+c?sha U =t (81)
cosha ¢+ sinha u
This is again a straight world line, corresponding to a particle that is moving
with the constant velocity u'. So now we know the answer to our first question.

Let us assume that the original particle was moving with zero velocity so
that u = 0. Then it gets transformed to a particle that is moving with a velocity
v, where
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Figure 3: Flowlines of a boost and a rotation

sinh «
= . 82
v cosh a ¢ (82)

If we like we can solve this equation for « as a function of v, and then use v
rather than o to parametrize the boost. The result of this calculation is that
a Lorentz boost that transforms a stationary particle to a particle moving with
velocity v transforms a point (¢,x) to a another point (¢', ') according to

; ct n vT ;L vt n T
J1-2 of1-2 Ji-5% J1-3

This is a standard parametrization of Lorentz boosts.

We may now deduce that if we perform a boost that turns a stationary
particle into a particle moving with velocity v then a particle moving with
velocity u will turn into a one that moves with velocity

ct

x

(83)

u+v
u'zl ar - (84)
CZ

An interesting consequence of this is that a particle moving with the velocity
of light will be transformed into a particle moving with the same velocity; i.e.
¢ =cor

r=c & ' =ct. (85)

The worldline of such a particle is in fact left invariant by the Lorentz boost.
(A rotation or a translation will change its world line, but not its velocity.) One
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can also prove that if the original velocity u is less than that of light, then so is
the transformed velocity;

u<c = u<ec. (86)

Hence, as far as Lorentz transformations are concerned, it is consistent to say
that no particle can move faster than light since such particles are not created
by any Lorentz boost.

This is all very different from the Galilei transformation that we considered
earlier. A Galilei transformation that transforms a stationary particle to a
particle moving with velocity v is given by

=t =z +uvt. (87)

If the original particle has velocity u the transformed particle has velocity

uW=u+uv. (88)

Since Newton’s equations are invariant under Galilei transformations it follows
that there are solutions describing particles moving at arbitrarily high velocities.
We may observe however that the actual value of ¢ that we want to use is very
large. For many practical purposes it can be regarded as infinite. But in the
limit that ¢ tends to infinity the Lorentz transformation becomes identical to
the Galilei transformation, so the familiar invariance of Newtonian physics is
recovered in this limit.

What are we to make of this? Since the days of Galileo Galilei it has been
agreed that absolute velocities are not observable—only relative velocities can
be measured. Since a Galilei transformation changes the absolute velocities
another way to say this is to say that it is impossible to distinguish a certain
state of the world from the state that results if the original state has been
subjected to a Galilei transformation. It was Einstein’s suggestion to change
this statement into this:

e It is impossible to distinguish a certain state of the world from the state
that results if the original state has been subjected to a Lorentz transfor-
mation.

It is also assumed that nothing can travel faster than light. Since the Lorentz
transformation leaves the velocity of light unchanged the trouble we had with
Maxwell’s equations goes away—the fact that the velocity of light is constant is
quite consistent with the idea that absolute velocities are not observable because
the velocity of light with respect to some material particle is always the same,
whatever the absolute velocity of the latter. This is so far so good. On the other
hand it means that Newton’s equations can be correct only in the limit that ¢
can be regarded as infinite. A grand conclusion, but this course will contain
a considerable amount of evidence for it. In particular it will be shown that
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Maxwell’s equations have the property that physical effects always propagate
with velocities equal to or less than that of light. We will also show that there
is a consistent generalization of Newtonian particle mechanics that has this
property. Hence we do not argue the case further here.

Let us think a bit more about our map of spacetime though. First of all we
will change our units. Instead of measuring time in seconds and length in meters
we will measure time in seconds and length in lightseconds. In these new units
the numerical value of ¢ is unity. We insert this value in all formule, and hence
we have seen the constant ¢ for the last time (almost). Next we define a distance
between two arbitrary points (¢,z,y, z) and (¢t + At,z + Az,y + Ay, z + Az)
in spacetime. We use the metric tensor for this purpose. Taking the hint from
Pythagoras the distance As squared will be given by

As® = gopAz®AxP = —A? + Az? + Ay? + A2 . (89)

This is something that Lagrange did not do. Moreover it looks funny, since
the distance squared can be both positive, negative and zero. If we draw a
new map of spacetime and fill in all the points whose distance squared from
some given point is zero we find that we have drawn a cone with its apex at
that point. It is called a light cone. Since we have agreed that no physical
influences can propagate faster than light this means that only points on or
inside the ”forward” light cone can be affected by what happens at the origin.
Worldlines of particles that travel slower than light are such that the distance
squared between any two points on the worldline is negative. Such lines are
called "timelike”. If the distance squared between two points is positive we say
that the distance between them is spacelike. If the distance squared between
two points is negative we say that the timelike distance between them is Ar,
where

AT? = —As? = At? — Az? — Ay? — A2 (90)

It can easily be shown that the distance from the origin to any point within the
lightcone is timelike, while the distance to any point without it is spacelike.

Four vectors can also be divided into spacelike, timelike and lightlike. We
define the obvious scalar product

U-V =U%asVP =UV, = U,g*?Vs . (91)

A vector is spacelike if U - U > 0, timelike if U - U < 0 and lighlike (or ”null”) if
U -U = 0. The velocity of a massive particle is always a timelike vector, while
the velocity of a photon is lightlike.

One remarkable physical consequence of our postulate must be mentioned.
Suppose a clock moves from the origin to the point (¢, z), where it crosses an-
other worldline. Suppose it is 12 o’clock at the origin and 4 o’clock at (¢,x).
Then make a Lorentz transformation so that the point (¢,z) is moved to the
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point (¢',z'). Since we have agreed that the new configuration must be indis-
tinguishable from the first, it must still be true that the clock strikes four at
(t',z"). But since t # t' this implies that whatever corresponds to the clock time
in our formalism, it cannot be the coordinate ¢. In fact the clock time must be
a scalar function, unchanged by Lorentz transformations. There is a reasonable
candidate, namely the timelike distance from the origin to (¢,z). Hence we
decide that proper time, as measured by a good clock on a world line, is equal
to A7. This sounds obvious if the clock is stationary, but it has some curious
consequences for moving clocks. In Euclidean geometry a straight line is the
shortest possible path between two given points, but because of the minus sign
in the metric it is easy to see that a straight timelike line is in fact the longest
path between two given points—that is to say if the points can be connected
by a timelike line at all, and if we take the proper time as a measure of length.
Suppose that two twins separate and that one of them travels on a straight
worldline and the other on a curved one. Assume also that the twins are robust
clocks, in the sense that their aging is not affected by the acceration as such.
Finally suppose that eventually they come together again. Then we conclude
that at that moment the twin who did not accelerate is older than the one who
did.

The conclusion is correct. Since c is so large it requires fantastic precision to
see this effect in everyday circumstances, but nevertheless it must be reckoned
with in the commercially available GPS system which-—at a modest cost—allows
you to procure a gadget that can tell you within ten metres or so where on
Earth you are, using electromagnetic radiation emitted by 24 satellites that are
orbiting the Earth at various speeds.
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Exercises:

1. Prove that

Vagy =Viagy] € Vagy = Viagy - (92)

2. Consider arbitrary transformations of space or spacetime, i.e.

% = ' = 2'%(z) . (93)
Define contravariant vectors as objects that transform according to

6mla
= 04P
Show that in the special case of Lorentz transformations we recover the trans-
formation of a Lorentz vector. Show how covariant vectors must transform in
order to guarantee that VU, transforms like a scalar.

V'e(z") VA (z) . (94)

3. Investigate whether

0,0 and 0, U, (95)

transform like tensors under the general transformations considered in exercise
2.

4. Is Kronecker’s delta 5 an invariant tensor under the general transformations
considered in exercise 27

5. Let g;; be a Kronecker delta and g,3 a Minkowski metric (i.e. one minus
sign). Check that the requirement

AN gHt = gY (96)

implies that Aij is an orthogonal matrix. Then investigate what restrictions
you must impose on A“ﬁ to ensure that

A% AP g7 = gof (97)

6. Draw a map of spacetime in which the z-axis and the t-axis appear orthogo-
nal. Also draw a lightcone from the origin. Now perform a Lorentz boost. Draw
the z'-axis and the t'-axis on the map. How do they relate to the light cone?

7. Consider a scalar field having the form
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#(z) = i r? =2 +y* + 2. (98)

Perform a Lorentz boost in the ¢ — z-plane, and express the new function ¢’
that you obtain in this way as a function of the coordinates (¢, z,y,z). What
does the new function look like?

8. Consider the electromagnetic field from a point charge at rest at the origin,

i
B =5 v Bi(z)=0. (99)

Perform a Lorentz boost in the ¢ — z-plane. Compute the electromagnetic field
you obtain, and express it as a function of the coordinates (t,z,y, z).

9. Repeat exercise 8, but now for the electromagnetic field

E; =cos(t —x) B; =cos(t —x) , (100)

all other components vanishing.
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2 — PARTICLES IN EXTERNAL FIELDS

All of electrodynamics is contained in the equations

I*xF*P =0 &  0,Fs,+0,Fap+05F,0 (101)

g F*P = 4z J° (102)

—except that these equations are almost empty unless we specify what the
charge and current densities represented by the four vector J* are. Maxwell’s
equations by themselves say nothing on this score except one important thing:
They imply that

0 = 0,05 F*P = 478, J* = 47 (8sp + 0;J;) - (103)

This is conservation of electric charge. In a complete specification of the theory
one also needs a set of dynamical variables describing electrically charged mat-
ter. Then J% is a given functions of these variables, and there will be a separate
set of equations that these variables must obey. For consistency they must be
such that 9-J = 0 always. Examples of such descriptions are classical point par-
ticles, electrically conducting fluids and fields such as the electron field ¥, used
in quantum electrodynamics. The coupled set of partial differential equations
that results is typically almost impossible to solve exactly in physically realistic
situations, and it will be necessary to resort to various approximations in or-
der to extract predictions from the equations. In this chapter we introduce the
classical point particle and—after coupling it to the electromagnetic field—we
solve the equations in the external field approximation, that is we assume that
the field is unaffected by the point particle and hence that it is given once and
for all. In fact we assume that the electromagnetic field is a vacuum solution of
Maxwell’s equations—the idea being that the charges whose motion we study
are small and do not affect the field much. The complementary approximation
is that the distribution of charged matter as described by J*(z) is fixed, so that
the equations to be solved are the ones given above. This is the topic of chapters
4 and 5. Other approximations are frequently used, such as the non-relativistic
approximation employed in magnetohydrodynamics (chapter 3), or the pertur-
bation method used in quantum electrodynamics. When such approximations
are used it is necessary to derive reliable criteria for their validity, and to check
whether these criteria are met in the given physical problem.

To describe a vacuum solution we take a rather picturesque view of the field,
and draw it as a set of ”field lines” permeating space. Remember that such
pictures give information about the direction of the electric and magnetic fields
throughout space; the electric field (say) is everywhere tangent to the electric
field lines. There will be an electric field line through every point in space
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where the electric field is non-vanishing, so a priori the ”density of field lines”
is meaningless. Nevertheless in our pictures the field is stronger wherever the
field lines crowd together. The reason is that the divergence of the field is zero.
Suppose that we define a surface as follows: First take a compact surface that is
everywhere orthogonal to the field lines, then extend the surface along the field
lines from the boundary of the original surface, and finally put a cap orthogonal
to the field lines so that the surface becomes closed. Gauss’ law then says that

‘/ dSl-E::/ndsz-E. (104)
S1 Sa

If < E > is the average strength of the field on a surface orthogonal to the field
and if A is the area of the surface it follows that

<E> Al =<E>yA,. (105)

But if we draw a finite set of field lines in our picture they will be diluted or
concentrated by the change of area in exactly the same way. This is why the
field line pictures are so useful.

2.1 POINT PARTICLES

We now wish to provide an explicit model for charged matter. Our first choice
is the ”point particle model”, where we consider particles that are completely
described by their spacetime coordinates z®(7), where 7 is some parameter
along the trajectory of the particle, and which are assumed to carry a charge
+e. Outside the trajectories we assume that Maxwell’s vacuum equations hold.
It is clear that this will lead to consistency problems, since the Coulomb field

1
Eox (106)

diverges in the neighbourhood of a point source. These problems are discussed
in chapter 6; for the moment we avoid them by adopting the external field
approximation — the electromagnetic field is assumed to be fixed once and for
all, independently of the location of the test charges, and the problem will be
to compute the trajectories of the point particles in this external field.

How do we choose our equations of motion? We must require that they
shall be relativistically invariant and consistent with Maxwell’s equations (which
means that the electric current J*(z) must be divergence free). They should
also agree with experiments. The easiest way to ensure the first two properties is
to derive the equations from the principle of least action. The two requirements
will be met automatically if the Lagrangian is a gauge invariant scalar. Apart
from this the action is not to be ”derived” from first principles, instead we are

25



trying to suggest a reasonable candidate. The most reasonable candidate is
usually the simplest one, so it should not be too difficult to do this.

How do we choose the action? We consider a free particle first, and add the
interaction to an external electromagnetic field afterwards. As in non-relativistic
physics, the degrees of freedom of a particle are its three position coordinates
z;. But the question how to handle its time coordinate ¢ is not so immediately
answered in the relativistic case. The only quantity that we can form from z®
which is invariant under both Lorentz boosts and translations is

dr® = —dz®dzy = dtdt — da;da; . (107)

Now we know that the parameter 7 measures the timelike length of the worldline,
and that this corresponds to time as measured by a clock carried by the particle.
The calibration of this clock is left arbitrary for the time being. Since the
Lagrangian of our particle has to be a scalar it is natural to try

S = —mass - length of worldline = —m / dr = —m / dry |- 322920 g0
dr dr

which looks a bit peculiar but which will turn out to be suitable precisely because
of the square root. We can now investigate the effects of a recalibration of the
internal clock:

' =7'(r). (109)
The point is that

dr dr' dz® dr' dz [ dx'e dx!
— ! _ @ _ rl a
5= m/dT d’l"\/ dr dr' dr dr' m / dr dr' dr' ’ (110)
In words, the action is unchanged by recalibrations of the internal time 7. Since

we do not know how the internal clock is calibrated, this is a very satisfactory
result. If we want to, we can use the coordinate time ¢ as our time parameter:

¥ =t=1t(r) . (111)

We just proved that the value of the action is unchanged by this manceuvre.
But it will look different, indeed

S = —m/dt —%dj—: = —m/dt\/l—:i:2 , (112)

where the dot denotes differentiation with respect to ¢, as usual. We have
now solved the problem of finding a relativistically invariant action which is a
function of z; only. If we insert the velocity of light ¢, and take the limit ¢ — oo,
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we recover the action for a non-relativistic particle, as indeed we must if our
chosen action is intended to describe physics.

We can now derive a relativistically invariant set of equations of motion
by varying our action. Before doing so we will include an extra term that
describes the coupling of our test particle to an external electromagnetic field.
The simplest way to do this — which will lead to the experimentally correct
Lorentz equation of motion — is to use the vector potential for this purpose.
We suggest

dz®
= — A, . 1
S m/dT+e/deT (113)

The form of the interaction term is dictated by Lorentz invariance and gauge
invariance;

§Aq = O = 35S = e/deiaaA = e/dfﬂ =0. (114)
dr dr

(We are restricting ourselves to gauge transformations that are zero at the end-
points.) The interaction term also has the nice feature that it is invariant under
arbitrary reparametrizations of 7, so again we can use the coordinate time ¢
as the time parameter if we want to. It must be kept in mind that the vector
potential is a function of both the parameter ¢ and the dynamical variables x;.

We can now derive the equations of motion. There are two ways to do this;
the first way is to reparametrize the action so that ¢ is being used as the time
parameter, and then vary it with respect to z;(t). In this way we obtain Lorentz’
equation in its original 3 + 1 form:

d m;
— | — | = e(E; + €12 By) . 11
di ( 1= mm) e(Ei + €ijr;By) (115)

It would not have been so easy to guess this directly.

It is worth while dwelling a little on the second way to derive the equations of
motion, because at first sight it seems that we have a problem: If we vary (1)
in the action as it stands it would appear that we will obtain four rather than
three equations. So how can this be consistent with what we had? The answer
is that the reparametrization invariance of the action is a gauge invariance—not
the same gauge invariance as the gauge invariance of the Maxwell equations,
but a different realization of the same idea.

To see how this works, consider an arbitrary variation of the action (and let
us agree to let the dot stand for differentiation with respect to 7):

— a i miq _exB
08 = /dT(Sa: (dT (m) ek Fa5> . (116)

The equations of motion are therefore
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Va=—|——=) -eifFp=0. 117
= () - o
However, this is not four equations. Only three of them are independent since
(as a short calculation verifies)

i-V=0. (118)

This holds whatever functions z%(7) we consider—and therefore the action is
automatically invariant under transformations of the special form

0x*(T) = &(T)&™(7) . (119)

This special form contains one arbitrary function while a general variation con-
tains four. It follows that only three of the latter can be used to derive non-trivial
equations of motion.

The ”gauge transformation” leaving the action invariant that we found is
exactly the infinitesimal form of an arbitrary reparametrization of the parame-
ter;

T =71-£&1). (120)

Since we think of z as a scalar function of 7 it follows for infinitesimal reparametriza-
tions that

2' (") = z(1) =  bx(r) =2 (1) —z(r) = £(1)2(7) . (121)

The entire calculation illustrates the important fact that whenever an action has
a gauge invariance—that is to say whenever it is invariant under a variation of
the dynamical variables that contains an arbitrary function like A(z,t) or £(7)—
then the number of independent equations of motion is smaller than it would
appear at first sight. There is another remarkable thing to notice. Let us look
at the free particle for simplicity. Imagine transforming from the Lagrangian
(108) to the Hamiltonian formulation. The first step is to derive the momenta

oL M,
— = e 122
Pa or™ | /—iBig (122)

The remarkable thing is that

Pap® +m? =0. (123)

This is an identity. It is clear that we do not have four pairs of freely specifiable
positions and momenta. Physically this was expected (since a free particle in
3 dimensional space should have 3 degrees of freedom only). This is a theme
that can be developed quite far—in effect we have found a gauge theory where
the number of independent equations of motion is fewer than expected, and
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where there are constraints on the kind of initial conditions that are allowed.
This turns out to be true for all gauge theories, including electrodynamics itself
as we will see later. (The analogy between eqgs. (103) and (118) may be clear
already?)

What is perhaps less clear is what I mean by “gauge theory”. A precise
and general definition is a little hard to give at this stage, but the following
is precise and general enough: Let a theory with dynamical variables ¢; and
evolution parameter ¢ be described by the Lagrangian L(q,¢). Then

e The theory has a symmetry if there exists a transformation such that

6gi = eVi(g,q) = 05=0, (124)
where € is a small but otherwise arbitary number.

e The theory has a gauge symmetry if there exists a transformation such
that

6g; = €(t)Vi(g,9) = 65=0, (125)
where €(t) is a small but otherwise arbitary function.

A gauge theory is a theory that has a gauge symmetry—and yes, there is a huge
difference between symmetry and gauge symmetry even though the definitions
look similar. We will return to this later on.

2.2 MOTION IN EXTERNAL FIELDS

We will now use Lorentz’ equation

D; = eE; + e€;jp 2By + F; (126)

(where F; is any non-electromagnetic force that may be present) to study the
motion of an electrically charged particle in an external electromagnetic field,
regarded as a fixed function of . The momentum is given by

. 1
i = mYE; ; = —.
pl ’Y (2] ’Y \/m
We will be able to obtain exact solutions only in simple cases. The importance
of these solutions nevertheless transcends these simple cases, since they can

be used as building blocks to understand more complicated cases by means of
perturbation theory.

(127)
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The first case to be considered is a constant electric field along the z-axis.
The particle is then subject to constant acceleration, and you probably know
already (if not, it is easy to show, especially if you exercise a little ingenuity)
that the solution is given by a hyperboloid in Minkowski space,

1
2?-tP==, (128)
a
where
el
— 129
o= (129)

and we adjusted the initial data suitably. When ¢t — oo the velocity tends to c.
Motion in a magnetic field is more interesting. It is also easy, since

d
E(mvvi) = e€;j,v; By, = v? = constant . (130)

Therefore the energy of the particle is conserved. Also 7 is conserved, so the
relativistic problem is no more difficult than the non-relativistic one. If the field
is constant and directed along the z-axis, the equations reduce to

eB eB
Vg = — Dy = ——— v, =0 . 131
Ug m’yvy Uy mVUw Uz (131)

The solution is immediate:

vy = v cos (wpt) vy = Fv sin (wgpt) v, = constant . (132)

Here the transverse velocity v is constant and the cyclotron frequency wpg is
given by

wp = —— (133)

The motion has two components; the particle is moving with constant speed
along a field line while at the same time it is gyrating around it with a frequency
given by wg. Another integration yields the trajectory, which is a spiral wound
around a field line. The radius of the spiral — known as the Larmor radius —
is

vy myvy

= . 134
wB le| B (134)

Hence the radius increases with m and decreases with B. The spiral is a left hand
or a right hand screw depending on the sign of the charge. To remember which
is which we observe that the motion is such that the magnetic field generated
by the particle itself opposes the external field.
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Figure 4: Motion in a constant magnetic field (directed towards you).
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Figure 5: F' x B drift.

This is so far so good. To discuss more complicated cases we adopt the
non-relativistic approximation

Di = md; . (135)

The first case to be discussed is that of a constant magnetic field and an orthog-
onal external force F;. Suppose that B; points along the z-axis and that we pull
the particle in the y-direction. As the particle speeds up the velocity dependent
Lorentz force becomes stronger, and bends the trajectory. Since the Larmor
radius grows with v, the circle gets deformed so that one segment grows and
another shrinks. When we draw a smooth curve composed of such segments we
see that on the average it goes off in the z-direction, with a speed that we may
call the drift velocity. Note that positive and negative charges drift in opposite
directions, which means that an electric current will be generated in a plasma
subject to both magnetic and gravitational fields.
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We want an analytic expression for the drift velocity. We will derive it for the
case of crossed electric and magnetic fields (and call it ” E x B drift”). Suppose
that a constant magnetic field is directed along the z-axis and a constant electric
field along the y-axis. The sign of the electric force acting on a particle now
depends on its charge, which means that ions and electrons are pulled in opposite
directions and therefore they will drift in the same direction. We introduce a
vector vp; defined by

’[)Di =0 Ez + eijk:'UDjBk =0. (136)
(It will turn out that vp; is precisely the drift velocity.) Then

m(’U, - ’[)Di) = mi)i = e(E,- + Eijk'l}jBk) = eeijk(vj - ’UDj)Bk . (137)

Hence v; — vp; is a solution to the problem of a charged particle in a constant
magnetic field only. We have this solution already, and it follows that

v;(t) = vp; + a spiral around a field line . (138)

Evidently vp; is the drift velocity, and it only remains to solve forit. If £-B =0
(which we assume) it is easy to check that a solution is

vpe = =L (139)

all other components zero. This agrees with our qualitative solution. The
solution for vp; is not unique since we can add a component parallell to the
magnetic field, but without loss of essential generality we can make the solution
unique by stipulating that the drift velocity is perpendicular to the field lines—
motion along the field lines is taken care of by the spiralling motion that we
are superposing. Note that our non-relativistic approximation assumes that
vp << 1, therefore it can apply only provided that

E<<B. (140)

This will be so in many physically interesting cases, as will be further discussed
in the chapter on magnetohydrodynamics.

For later reference, we also give the solution for a magnetic field crossed with
an external force:

eiijjBk . (141)

1
i = g

This is as far as we will get with exact solutions. We still have to deal with
inhomogeneous magnetic fields, and to do so we will make use of the solutions
we have already and try to make some kind of Taylor expansion in z/L, where
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Figure 6: Grad—-B drift.

L is the scale length of the inhomogeneity. Our basic assumption is that such
an expansion is valid, which means that the inhomogeneities have to be modest.
One case of interest is that of a magnetic field directed along the z-axis but
increasing in strength in (say) the y-direction. This gives rise to an effect called
grad-B drift. The point is again that the Larmor radius a varies with y since

1
— . 142
aocB (142)

When we apply our qualitative argument this implies that the particle will drift
along the z-axis, with a direction which depends on the sign of the charge. To
get an analytic expression for this drift velocity we regard it as caused by an
”effective” force in the y-direction due to the fact that as the particle spirals
around its field line it meets a stronger magnetic field, and hence a stronger
Lorentz force, along a part of its trajectory. The effective force can then be
computed as a time average of the Lorentz force F along the unperturbed
trajectory, using the formula

1T
< Fy>= jll_r)réo T/o Fy(t,y)dt . (143)
Since the inhomogeneity is modest the Lorentz force itself can be approximated
by

F, = —evy B, (y) & —evy (B, (0) + yasz(O)) - (144)

When this expression is inserted into the integral along with our previous solu-
tiuon y and v, for the unperturbed motion we find that

aev
2

< F, >= —e < v, cos (wpt)(B? + acos (wpt)d,BY) >= F 9,BY . (145)

(For a constant field the time averaged Lorentz force vanishes, as it should.)
Finally we use this effective force in our previous solution for a particle subjected
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Figure 7: Curvature drift.

to an external force crossed with a magnetic field, and conclude that the grad-B
drift is given by

vpi = i%éijkBjakB ; (146)
where B is the strength of the magnetic field.

Another inhomogeneity occurs if the magnetic field lines are curved. If the
area considered is sufficiently small this can always be approximated by field
lines that are circles of some radius r. In order to be consistent with Ampeére’s
law the strength of the magnetic field must decrease with r;

1
Box . (147)

The unperturbed motion is given by spirals around the field lines. There are
now two effects. There is a grad-B drift out of the plane in which the field
lines lie, but there is also a curvature drift due to the fact that the particles
experience a centrifugal force

il

Foc — 14
x (148)

where v)| is the velocity along the field lines. This drift will also be directed
out of the plane, and unfortunately the two effects add. The reason why this
is unfortunate is that if one tries to confine a plasma by bending magnetic field
lines into a torus then the grad-B drift and the curvature drift will conspire
to help the plasma escape. And for this reason fusion reactors are difficult to
build.

Other ways to confine electrically charged particles can be envisaged. Con-
sider an axisymmetric magnetic field whose strength increases in the z-direction:

B = B,(r,2)e, + B,(r, z)e, . (149)
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Gilbert’s law must be satisfied. In our coordinates:

Or(rB,
0;B; =0 =4 # +9,B,=0. (150)
In the approximation that
0.B.(r,z) =~ 0.B,(z) = some freely specified function (151)

Maxwell’s equation can then be solved by

1
B, = ~5rd.B . (152)

So much for Maxwell’s equations.
In the situation that we are describing there is a non-vanishing Lorentz force
along the z-axis:

1
F. =e(v,Bg — vyBy) = 56”"1),}56232 . (153)

(Bg is zero.) Since we are looking for a small perturbation of the gyration
around the field lines we approximate

Vy R —UL r~a = F,=—ud.B, , (154)

where

2
_ mv] evia

= = 155
2B 2 (155)
In fact p equals the magnetic moment for a loop around the field line:
2
_ aren = oV a2 _ WY
W = current - area = e L 5B (156)

Anyway the conclusion is that the particle is subject to a force directed away
from the direction in which the magnetic field is increasing. The crucial question
is whether this force is strong enough to cause a particle that moves in this
direction to turn around.

This question can be answered elegantly. The argument assumes that the
effect of the inhomogeneity in the magnetic field can be regarded as an ”adia-
batic” perturbation, which means that the particle feels a magnetic field which
changes slowly compared to unperturbed gyration. More generally, suppose that
a mechanical system admits some constants of the motion, and then suppose
that the parameters that define the system (in our case the magnetic field) are
changing with time at a rate e. Then we are interested in those constants of the
motion that change at a rate €?; in the limit when € is very small they can be
regarded as constants of the motion of the perturbed system as well, and they
are called adiabatic invariants. To be concrete, consider
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Figure 8: A particle in a magnetic bottle.

J = /pdq . (157)

Here ¢ is some periodic angle variable, p is its canonically conjugated momen-
tum, and the integral is evaluated over an entire period of the unperturbed
motion. Using rather advanced techniques from analytical mechanics it can be
shown that J is an adiabatic invariant.

In our problem the momentum p is the angular momentum and ¢ is the
angular coordinate ¢; then

J= /pdq = /va_ad¢ =2mmuia = 47r%,u . (158)

It follows that 4 is a constant. (A nice result in itself.) On the other hand the
kinetic energy is preserved by motion in a magnetic field, so we also have that

1 1 1
constant = imvﬁ + §mvi = §mvﬁ +uB , (159)

where v|| is the velocity along the field lines. Combining these results we find
that when the particle moves into a region with increasing B then vﬁ must de-
crease. If B becomes strong enough vﬁ goes to zero—the particle turns around!
The adiabatic argument evidently breaks down for particles whose velocity is
precisely aligned with the field lines (when g = 0) and by continuity for particles
for which the angle between the velocity and the field lines is small. Indeed for
such particles the perturbation is not adiabatic. The upshot of all this is that
we have shown that an electrically charged particle can be confined in a mag-
netic "bottle”. This is the mechanism that traps electrically charged particles
in the Earth’s magnetic field, for instance. Note that if we have a plasma of
many particles in such a bottle the distribution of velocities is non-isotropic,
since particles whose velocities are closely aligned with the field do escape.
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There is much more to be said about the motion of charged particles in
electromagnetic fields, but the above constitutes a good beginning.

Exercises:

1. Fix 7 = t directly in the action, and then derive Lorentz’ equation for a
particle in an electromagnetic field.

2. The field of a (hypothetical!) magnetic monopole is
Z;
Bi=b=, (160)

where b is the magnetic charge (if any). Discuss the motion of an electrically
charged particle in this field. To get the qualitative behaviour right, note that in
the gravitational two body problem conservation of angular momentum is used
to show that the motion is confined to a plane. Now try to find an analogous
conserved quantity for the present problem.
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Figure 9: Lagrangian and Eulerian coordinates at two different times

3 — MAGNETOHYDRODYNAMICS

For the time being we abandon the point particle description of charged mat-
ter, and replace it with a hydromechanical one. Fluids are described by a field
theory, and historically this was the first field theory to be studied—the dis-
covery of the electromagnetic field came later. As we did for point particles,
we will restrict ourselves to a purely classical description, but now with the
advantage that the concept of an electrically conducting fluid does not lead to
any obvious absurdities like divergent field strengths. The equations are consis-
tent, even though we will consider the coupled problem in which both the fluid
and the electromagnetic field are dynamical. We will use the non-relativistic
approximation throughout this chapter.

3.1 FLUID DYNAMICS

How do we describe a fluid? You are invited to think of a fluid as a substance
made up of little fluid elements that can be characterised by their density p and
their velocity v;; the values of these quantities vary from fluid element to fluid
element. This means that we assume that local thermodynamic equilibrium
holds, and that the atomic structure of matter is so far beneath us that it
can be completely ignored. The following is intended as a brief sketch of the
resulting theory of fluid mechanics.

There are two kinds of coordinates in use, Lagrangian and Eulerian—both
are useful and both were introduced by Léonard Euler, who thought of every-
thing. The Lagrangian coordinates X ¢ label the individual fluid elements. We
can carry through this labelling at some particular moment in time ¢ = 0 in
such a way that the Lagrangian coordinates form a Cartesian system then, but
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as time goes the fluid flows and the Lagrangian coordinates will become highly
curvilinear regarded as spatial coordinates. This is inconvenient, and there-
fore we introduce the Eulerian coordinates ! which are labels for the spatial
points. They can be taken to be Cartesian by construction; their drawback is
that the Eulerian coordinates of a particular fluid element become functions of
time x;(7). Here I am being very careful and I denote time in the Lagrangian
picture by 7. This is the proper time along the wordline followed by some fluid
element. Since the discussion is non—relativistic it is true that 7 = ¢, where ¢t is
the usual (Eulerian) coordinate time.

It is assumed that we can transform between the coordinates (7, X;) and
(t,z;), that is to say that

2t = 24X, 1) & Xt = Xi(x,t) . (161)

If we knew the explicit form of these functions we would know everything there
is to know about the time development of the fluid. Since 7 = t it seems that
one kind of label for time would be enough, but according to the rules for how
derivatives transform it will be true that

0 oto n ox; 0
or  Ordt Ot Ox;
where a new piece of notation was introduced in the last step. This is often

(and confusingly) called the Eulerian time derivative.
The velocity of the fluid is defined by

=0 +v;0; = Dy , (162)

o d:ci
vi= oo
It is important to realize that p and v; are the density and the velocity of the
individual fluid elements that make up the fluid. Therefore, if they are expressed
as functions of the Eulerian coordinates they are time dependent for two reasons,
explicitly and also because the coordinates are time dependent:

%p(m,t) = %p(m(X, 7),7) = Op(z,t) + v;0;p(z, 1) . (164)

It is the Eulerian time derivative that appears here.

To understand the uses of both Eulerian and Lagrangian coordinates it is
instructive to derive the equation of mass conservation in some detail. Consider
a volume V that moves with the fluid so that by construction fluid elements
cannot enter or leave V. This means that the size of V becomes time dependent.
Conservation of mass within this comoving volume is something we understand
in comoving, that is Lagrangian, coordinates—it becomes the statement that

(163)

o=% /V oz, )dV (1) = /V (Dtpdv+p%dV(t)> . (165)
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In order to differentiate the volume element we use the formula

6z'jls:]M-imAIjnju'ktp = €mprdetM (166)

which holds for an arbitrary matrix M. Now

dv(t) = d®z = J&*X | (167)
where the Lagrangian volume element d®X is time independent and
oz’
= - 1
J = det X7 (168)
Using our formula for the determinant it is not hard to show that
d
4J = JO;v; . (169)
dr
Collecting things together we see that
d
i | patiave = [ i+ pdiwaavie =o. (170)
dT \% v

Since this equation holds for arbitrary comoving volumes the integrand must be
zero, so that we obtain the equation for mass conservation in the form

Dyp + pOiv; = Op + 0;(pv;) =0 . (171)

If you found the derivation a little sketchy, consult the exercises.

We now want an equation of motion for the fluid. According to Newton’s
laws a particular fluid element will accelerate for two reasons—because there
may be an external force (say gravity) acting on the entire little volume, and
because neighbouring fluid elements exert a force on the surface S of the fluid
element. Therefore the equation of motion for the fluid can be written as

pDw; = F; 4+ 0;T;; (172)

where Tj; is the stress tensor and F; the external force. To see what the stress
tensor has to do with surface forces we take the integral of this equation over
a small fluid element (so small that its density is constant) and using Gauss’
theorem we see that

Ma,-:/ F,dV+/T“dS] . (173)
14 S

The stress tensor indeed describes surface forces. An object that associates a
vector to another vector (in this case a force vector to a normal vector of a
surface) must be a second rank tensor. To be physically reasonable it must be a
symmetric tensor (examination shows that if it were not then the fluid element
would start to rotate like mad!). And finally it must be given as an explicit
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Figure 10: Surface forces, in general and for an isotropic perfect fluid

function of the dynamical variables before the theory can be said to be fully
specified. We will use the particularly simple choice

p 0 O
Ty=—|0p 0|, (174)
0 0 p

where p is the pressure. This means that the surface forces from neighbouring
fluid elements act orthogonally to the surface—indeed it is the absence of tan-
gential forces that characterizes a fluid. We have also assumed that the fluid
itself does not single out any special direction in space—it is said to be isotropic.
Finally we need an equation of state which gives p as a function of the dynamical
variables. A useful choice is

p=p(p), (175)

for some specified function p. This equation of state defines a ”barotropic” fluid;
a common and interesting choice of function is

P=Cp (176)

where the exponent v is some number. More generally we might wish the fluid
to be described by (say) its local temperature, and then a more complicated
equation of state would have to be adopted.

We can now write down a complete set of equations for the fluid:

Op + Oi(pvi) =0 (177)

pDw; = —0;p+ F; + nAv; . (178)
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p=p(p) - (179)

One extra term was added to the equation of motion; it is a kind of friction term
that describes the viscosity of the fluid. The coefficient of viscosity is  and A
is the Laplace operator. The equation as a whole is known as the Navier-Stokes
equation.

To get a small idea about what is in these equations, let us consider them
in the approximation that the viscosity is zero and that no external forces are
present. Then the equations to be solved are

Op + 0i(pv;) =0 (180)
dp
p(‘?tvi + pvjajvz- + d—p@,p =0. (181)

A solution is evidently p = py = constant and v; = 0. If we linearize around
this solution we find that

Ogp1 + poOiv; =0 (182)
po@t’l}j + Szaipl =0, (183)
where
dp

= =) . 184
p=po+pi 5 (dp>0 (184)

It follows that
6t2p1 = 328j6jp1 . (185)

This is the wave equation and s is the velocity of the propagating wave. It is
eagy to find a plane wave solution of the equations:

) K . .
pL= Kez(kiwi—wt) vi = p_skiez(kiwi—wt) , (186)
0

where w = sv/k;k; and I%,- is a unit vector in the direction of k;. The wave travels
in the direction of k;. Because the movement of the fluid, given by v;, is in the
same direction the wave is said to be longitudinal. These are sound waves, and
s is the velocity of sound.

3.2 THE MHD EQUATIONS

42



We have yet to bring in electromagnetism. Our fluid is supposed to be elec-
trically neutral — the charges of ions and the electrons cancel each other —
but to conduct electric currents, and the electric and magnetic fields will both
determine and be determined by the fluid. Magnetic fields are then far more
important than electric fields, because when the charge density is zero electric
fields arise only through Faraday’s law as a consequence of changes in the mag-
netic field. About the fluid, one might at first sight suppose that two fluids
will be needed, one for the ions and one for the electrons, but in fact there is a
range of physically important phenomena for which a one fluid description suf-
fices. The basic reason is that electromagnetic forces are very strong; although
a relative velocity between ions and electrons is needed for an electric current to
exist, this relative velocity can be very small, in fact utterly ignorable compared
to the bulk motion of the fluid.

Let us see what the equations for magnetohydrodynamics are, in the relevant
approximation. As far as the (electrically neutral) fluid is concerned, all that
we will do is to set

Fi = GijkjjBk (187)

in the equation of motion given above. The current density j; is caused solely
by the motion of the electrons relative to the ions. We are going to treat the
fluid as isotropic, using eq. (174). Actually an electrically conducting fluid
in a magnetic field is not necessarily isotropic — we argued previously that a
plasma in a magnetic bottle has an anisotropic velocity distribution — but we
will ignore this point.

The equations for the magnetic and electric fields require more thought. Our
approximations will be that v = v/c is small, that changes over time are small
compared to changes over space (in our units time is measured in seconds and
space in lightseconds, so this is the non-relativistic approximation again) and
that the magnetic field is more important than the electric field. To be precise
about it, we will assume that

o(E) = o(vB) 0(0) = o(v0,) . (188)

In this approximation Maxwell’s equations can be written

0;B; =0 Gilbert’s law (189)
GijkajEk +6B; =0 Faraday’s law (190)
€ij10; Br = 4mj; Ampere’s law . (191)

We dropped Gauss’ law since the charge density is zero anyway. We see imme-
diately that we can use Ampere’s law to define the current in terms of B;. The
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result can be inserted in the equation of motion for the fluid. We would like to
eliminate the electric field as well, and use only p, v; and B; as our variables.
The way to do this is to use Ohm’s law to express the electric field in terms of
the current (and hence in terms of B;).

Now Ohm’s law has a chance to be true only in the rest frame of the fluid
or, which is practically the same thing, in the rest frame of the ions where the
equation of motion for the electrons is

mei)ge = —e(Ez{ + eiij;eB;c) — ’)/’U,ge + fz . (192)

The friction term is caused by collisions and f; denotes inertial forces. We
assume that the collision frequency is high enough so that v}® quickly reaches a
constant value, in which case the left hand side is zero and f; goes away. We
will also ignore the term involving the magnetic field, which can be justified
either if the collision frequency is much larger than the cyclotron frequency or
if this term vanishes when we take spatial averages (that is to say, there may be
a problem here if the magnetic field has strong spatial gradients). Under these
assumptions Ohm’s law follows:

jl=okE! . (193)

Here o is the electrical conductivity of the fluid (and for simplicity we assume
it to be constant).

Now we must transform Ohm’s law from the rest frame of the fluid to the
frame that we will actually use to describe things. In our approximation the
Lorentz transformation becomes

B = B; E/=E; + €ijkV; By . (194)

The current is caused by the relative motion of positive and negative charges,
and relative velocities are invariant under such changes of reference frames, so
we can supplement these equations with

Ji=7Ji - (195)

Hence both the magnetic field and the current are invariant under boosts in
this approximation. The electric field on the other hand depends on the frame
of reference. We can now translate Ohm’s law to the frame we are using; if we
also use Ampere’s law to eliminate j; we get

1
E,' = —e,-jkajBk - Eijk’l)jBk . (196)

4o

The evolution equation for B; can now be obtained by inserting this expression
in Faraday’s law.
We are ready to state a complete set of equations for magnetohydrodynamics:
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Op + Oi(pvi) =0 (197)

p=Cp" (198)

1 9 1
pDyv; = —0;p — 8_71'6ZB + EBjajBi + nAv; . (199)
6tBi = —GijkajEk(U,U,B) . (200)

These equations must be supplemented with the equation 0;B; = 0 as an initial
condition.

Inspection shows that the full set of equations for magnetohydrodynamics
is much more complicated than the Navier-Stokes equation, which in itself is
sufficiently non-linear so that its general solution is quite out of reach. Therefore
we have to aim for qualitative understanding. We begin with the equation for
the magnetic field, which T will write out (for once) in cross product notation
(because I want to keep the repeated cross products, and then the index notation
is clumsy). If we make use of Gilbert’s law and assume that o is constant in
space we get

1

If we ignore the second term on the left hand side, this is just the diffusion
equation

0B = xAB. (202)

The effect is therefore that a concentration of magnetic field lines will diffuse
through the fluid, and disappear in the characteristic diffusion time

L2
tp ~ " oLl?, (203)

where L is a typical length in the problem. Diffusion can be ignored if the time
scale of the processes that we are interested in is smaller than ¢p, that is to say
if either the conductivity or the length scale is very large. The latter is often
the case in astrophysical applications. Let us therefore consider the equation

GB+Vx(Bxv)=0. (204)

This equation has an interesting interpretation (called Kelvin’s circulation the-
orem in honour of a famous friend of Maxwell’s). We define the magnetic flux
through a surface that moves with the fluid, and take its time derivative:
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Figure 11: Change of an area enclosed by a loop

P
i = i/ B-dS= / OB -dS +/ B - (rate of change of area) .  (205)

To figure out how the area element changes with time, consult fig. 11. When
we integrate the change of area elements around the loop and apply Stokes’
theorem (named for a teacher of Maxwell’s) the second integral becomes

B-(vxdl)= dl-(va):/Vx(va)-dS. (206)
oS oS S

Putting things together and using our equation for B; we get

@:/(atB+Vx(va))-dS:0. (207)
dt s
The conclusion is that when the diffusion of the field lines can be ignored then the
magnetic flux through a loop moving with the fluid remains constant. Another
way to say this is that the magnetic field lines are frozen into the fluid and are
carried along with it.

What can we say about the equation of motion for the fluid itself? If its
viscosity can be ignored it is enough to understand

1 1
pDw; = —8;(p+ —B*) + —
87 4

There are two contributions from the magnetic field. One works just like an
addition to the pressure. The second term has a picturesque interpretation;
it tells us that the field lines carry tension and resist bending. To see this,
we observe that if the field lines are straight and the magnetic field strength
constant then there is no variation along them, and hence our term vanishes.
To see it in more detail, remember that the vector B; is a tangent vector of its
field line. Suppose that the field line is given in parametric form as

B,9;B; . (208)
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zi(o) - B; = Bi;(0) , (209)

where the dot stands for differentiation with respect to the parameter o. Here
we have chosen a parameter along the curve such that

didi=1. (210)

(This can always be arranged.) In this way we get a clean separation between
the geometry of the field line, considered as a curve, and the strength of the
magnetic field. A small calculation follows:

Ccll”;‘ %(3@) = B%(B@-) = B%; +BBi; . (211)
If the field line is bent, the vector &; is directed inwards—in fact this part of
the expression is analogous to the “centripetal force” in mechanics. Hence the
equation of motion for the fluid says that the fluid is drawn inwards, and since
the magnetic field lines are frozen into the fluid the field line will follow. There
is also a component of the force acting along the field line. Indeed the field line
behaves like a tensionful string, that resists stretching and bending.

To see how magnetic pressure and tension work we first take up a simple
problem which arises when one tries to confine a plasma, as in fusion research.
We drive a current in the direction of (say) the z-axis, and observe that Ampeére’s
law implies that a magnetic field in the ¢ direction will result. Can the pres-
sure from this magnetic field confine the plasma in a cylinder? To answer this
question we look for a steady state solution in which the velocity of the fluid is
zero. The only non-vanishing component of B; is By = B(r). The precise form
of this function depends on the radial dependence of the current I(r), and we
leave it open. A steady state solution for the fluid will exist if we can arrange
matters so that the r-component of the equation

B,;0;B; = B

2

B 1
0= —8,~(p + g) + EB,@]-B,- (212)

holds. Working it out (or remembering the analogy to the centripetal force) we
find that

B? B?
=_ — )= 21
0 Or(p + 87 ) 4d7r (213)

The second term is directed inwards, as promised. It follows that the hydrody-
namical pressure of the fluid in a steady state is given in terms of B(r) — and
hence in terms of the current — by

dp 1 d

% = _87”"2 %(7232) . (214)
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Figure 12: The kink and neck instabilities

To achieve thermonuclear fusion plasmas of very high density and temperature,
hence high pressure, are needed. Our equation shows that this requires very
strong magnetic fields, hence high currents. Actually the situation is worse
than this, because our solution is unstable. If the plasma cylinder develops
a small kink, the magnetic pressure will cause the kink to grow. Moreover a
"neck” along the cylinder will be ”strangled” by the magnetic field. But if we
thread a magnetic field through the cylinder the kink instability is stabilized by
magnetic tension and the neck instability by magnetic pressure. Indeed fusion
researchers believe that a fusion reactor can be built in 20 years time.

3.3 ALFVEN WAVES

It was observed by Hannes Alfvén that magnetohydrodynamics gives rise to
more than just sound waves. Indeed if there is tension in the field lines it should
be possible to pluck them and make them vibrate like the strings of a violin.
To verify that this is so we assume that viscosity and magnetic diffusion can
be ignored, and then we linearize the equations of MHD around the solution
p = po = constant, B; = BZQ = constant, v; = 0. We define

p=po+p1 B;=B!+B] . (215)

The linearized equations are

Orp1 + po0iv; =0 (216)
1
pg@t’l}i + 828,'p1 + —BO(GZBI — 6]31) =0 (217)
4m= 7 '
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6th-1 + B?(’)jvj - B;-)(’)jvi =0, (218)
where s?> was defined in eq. (184).
The next step is to have a look at these equations. It is clear that we can
obtain an equation that depends on v; only. To be precise about it, it is
6?1),- — (s + vi)@iajvj + va,’?(@iakvj — 0;0kv;) + vaf(?j@kvk =0, (219)

where we made the convenient definition

Ao B
‘ ViArpo
The dimension of this object is that of velocity, and the superscript is in honour

of Alfvén. There is no striking simplicity about the equation though. To make
progress we see if there is a plane wave solution, so we try the Ansatz

v

1l

(220)

vi(z,t) = uzelkizi—wt) (221)

(Here u; is some constant vector, and the wave propagates in the direction of
k;.) Our equation becomes

—w?u; + (82 + 03k -uk; — vt - k(u? - uk; — ot kui + kowo?) =0, (222)

It is more illuminating to write it as

((82 + Ui)kzk] - ’UA . k(k,U}A + U?kj) + (UA . k)zdm) u; = wzui . (223)
This is illuminating because it can be written as

M,-juj = (.UQ'U,,' y (224)

where M;; is a known matrix, because we are going to make a choice for the
direction k;. So this is an Eigenvalue problem where the unknowns are the
vector u; and the Eigenvalue w?.

We investigate two special choices for the propagation direction k;. First we
assume that

v k=0. (225)

This corresponds to a wave that travels perpendicularly to the field lines. It is
a longitudinal wave (u; o k;) with the (phase) velocity

NGRS (226)
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This is unsurprising: It just says that the speed of sound is determined by the
combined effect of the hydrostatic and magnetic pressures. This wave is called
magnetosonic.

A more interesting case is a wave that travels in the direction of the field,
that is to say

v = vk . (227)

’i =
(The ”hat” always denotes a vector normalized to a unit vector.) Then our
equation reduces to
(K*v% — w?)u; + (s> —v))kik-u=0. (228)
At this point the second case splits into two subcases. We can assume that the
wave is longitudinal, i.e. that
w; = uk; . (229)

The equation becomes

(k?*s? —wu; =0 . (230)

The wave propagates (along the field lines) at the speed s. Or else we may
assume that the wave is transverse,

k-u=0. (231)

Then the equation becomes

(K*v% —w?u; =0 . (232)

The wave propagates (along the field lines) at the Alfvén velocity v#. Let us
study this transverse Alfvén wave in a little more detail, to make sure that it
really corresponds to vibrating field lines. This means that we should solve the
equation for B} as well. This is easy to do. The solution is

Bk

B} = ———v; (233)

Just in case you forgot, BY = Bol},-, and v; is orthogonal to IAcZ-, SO we can
conclude that the field lines really do vibrate in the transverse direction, like
strings. You should not allow the complicated algebra to obscure the way it
works. It is quite simple really. The over all conclusion is that the spectrum
of oscillations in a plasma is much more interesting than it is in an ordinary
fluid. Taking viscosity and magnetic diffusion (which we ignored) into account
will complicate the analysis still further, but physically it is evident that this
will cause damping of the waves.
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Figure 13: Two kinds of MHD waves

To wind up this story, we should say that the fluid description that we have
studied has its limitations. We can try to characterize a real plasma through its
Debye length, which is the distance at which electric charges are shielded, and
its plasma oscillations, which consist of electric charges oscillating around their
equilibrium positions. For the fluid description to be valid it is necessary that
the phenomena that we wish to describe take place on longer length and time
scales than the Debye length and the period of the plasma oscillations. Also the
interesting scales have to be larger than the scales that characterize the gyration
of the charges around the field lines. If any of these requirements fails one has
to fall back on kinetic theory, the Boltzmann equation, and the like. But this
is not for us, now.

In conclusion, the set of equations for magnetohydrodynamics that we de-
rived is highly non-linear and there is no way in which their general solution
can be found. On the other hand it was easy to extract non-trivial insights
about the behaviour of ionized matter from these equations. We found that the
magnetic field lines are frozen into the fluid, although they also have a tendency
to diffuse away. A concentration of field lines exerts a pressure on the fluid, and
moreover the field lines carry tension and can vibrate like strings.

Exercises:

1. Perform the derivation of the differential equation that describes conservation
of mass in full detail.

2. In our equations for MHD we neglected the relative velocity between the
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electrons and the ions. In the outer layer of the Sun the electron density is about
ne = 102° per cubic meter, the magnetic field is about B = 102 Gauss, and a
typical length scale is L = 10% meters. Make an order of magnitude estimate
of the relative velocity v,..; to see whether it can be neglected compared to the
bulk velocity.

3. Consider two magnetic field lines, one that goes around in a circle and has
constant magnetic field there, and one that goes along the x-axis with a magnetic
field strength that varies in magnitude in the direction of the axis. Compute
the vector field B;0;B; and sketch what it looks like. Under the assumption
that the field lines are frozen into a fluid that evolves according to eq. (208),
verify that the field lines behave similarly to violin strings.
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4 — MAXWELL’S EQUATIONS

We change subject again. We go back to Maxwell’s equations in their full glory.
Again we make an approximation though namely the opposite approximation
compared to chapter 2: We assume that the (conserved) current J¢ is given once
and for all, and investigate the dynamics of the electromagnetic field coupled
to this fixed current. The key player is really the wave equation—now viewed
as the equation that determines the propagation of electromagnetic waves, not
sound waves, so their speed is always equal to c.

4.1 SOME REMARKS ON THE WAVE EQUATION

A quick manipulation of Maxwell’s equations in vacuo (when J* = 0) shows
that

0,07 Fap = —0"(0aFpy + 05Fya) =0 . (234)

When there are no charges around all the components of the field strength have
to satisfy this equation. Before we try to understand Maxwell’s equations it
seems advisable to understand a scalar field that obeys

O¢ =0 (235)

where we have defined the d’Alembert operator

0=0,0*"=0,+0,+0;—0; . (236)

The equation is known as the wave equation. In view of the special theory of
relativity one of the things that we want to convince ourselves of is that nothing
goes faster than light in this model.

First I want to stress that the wave equation can be regarded as an ordinary
dynamical system—with the complication that there is an infinite number of
”degrees of freedom”. Those of you who have some familiarity with analytical
mechanics will enjoy looking at the action integral

SI61 = =3 [ d*a(@a00%+m?6?) = 5 [ d'2(0,606-0,00i-m?4?) , (231)

where m is a real number called the "mass” of the field. The field equation
follows when we apply the Principle of Least Action. We subject the dynamical
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variable ¢(x) to arbitrary small variations and require that the variation of the
action should vanish. If we allow ourselves to drop some total derivatives this
is a very simple calculation:

0=48 = /d4m6¢(6a8°‘¢ “mle) = (O—mYé=0.  (238)

This is the Klein-Gordon equation; we call it the wave equation if the mass
vanishes.

T assume that you know the Principle of Least Action, but perhaps you need
to be convinced that it really applies to field theories. Recall (from analytical
mechanics) how the variation of an action that depends on a large but finite
number of degrees of freedom is carried out:

1 N N .
) (5 /dt > ($ndn —w2¢n¢n)> = —/dtan(d)n + W) . (239)
n=1 n=1

It is clear that a field theory can be loosely described as going to the limit where
N is infinite;

Pu(t) = dtx), Y — / Pz . (240)

(To get the spatial derivative terms in the limit we would have to introduce
some kind of "nearest neighbour interaction” in our model.) In a field theory
we are dealing with an infinite set of degrees of freedom—in the present case
there is one per point in space. The space coordinates play the role of the index
n. At a formal level it is a quite straightforward generalization. Actually there
are some subtleties; as usual in analytical mechanics we ignored a total time
derivative in the calculation, but ignoring a total spatial derivative—we did that
also—requires some justification. We will not go into this here, since the action
principle plays a peripheral role in the course.

Another way to convince ourselves that the space coordinates should be
regarded as a kind of continuous ”indices” is as follows: We can rewrite the
wave equation in the form

b(x,t) = Ap(x,1) . (241)

This is not too different from the Newtonian equations

Ei(t) = Fi(x(t)) - (242)

In the latter case a unique solution is obtained by specifying the values of z;
and z; for all values of ¢ at some particular time ty; the equation then allows us
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to solve for all the higher order time derivatives and to construct the solution
by power series. We can imagine that the same procedure can be carried out for
the wave equation, provided that we specify ¢ and ¢ for all values of x at some
particular time ty. In fact—although we will not proceed by power series—we
will see that this intuition is correct.

In addition to the wave equation we are also interested in the related inho-
mogeneous equation that includes a fixed function p(x) as a ”source”,

O¢p=p. (243)

We will come to it soon.

The wave equation itself describes a particularly simple kind of waves. We
have set an arbitrary constant ¢ = 1 in the definition of O and will therefore get
waves propagating ”at the speed of light”, while other physicists might prefer
waves propagating at the speed of sound. But what do we mean by a ”wave”?
An attempt at a general definition might be a disturbance that propagates into
an undisturbed region in such a way that there is a discontinuity in the field—
or perhaps only in its first or second derivatives—at the boundary between the
disturbed and the undisturbed regions. In this sense the wave equation does
describe waves, as we will see.

Apart from the minus sign the d’Alembert operator looks like a four di-
mensional version of the Laplace operator, but the minus sign is absolutely
crucial. The Klein-Gordon equation is the archetype of a hyperbolic differential
equation, while the Laplace operator is the archetype of an elliptic differential
operator. Precisely, a differential operator

9*9,05 (244)

is called elliptic if all of the eigenvalues of g®? have the same sign, it is called
hyperbolic if one eigenvalue has a different sign, and the remaining cases are
not so important. (If we make the definition slightly more general so that terms
linear in the derivatives are allowed as well then it becomes interesting to con-
sider the case where one eigenvalue is zero—these are the parabolic equations,
and the diffusion equation is an important example.) To illustrate the differ-
ence between the elliptic and the hyperbolic case, let us see if there can be
discontinuous solutions of the equation

9*P8,050 =0 . (245)

We will be quite drastic about it and look for discontinuities in the field itself
(rather than in its first or second derivatives). Thus we make the Ansatz

¢(z) = O(f(2))p(z) , (246)

where O is Heaviside’s step function, whose derivative is Dirac’s delta function.
According to our Ansatz the equation
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f@) =0 (247)

defines a hypersurface in spacetime where the solution is discontinuous. To see
whether there are such solutions we insert the Ansatz in the equation and find
that

9°%0,03¢ = 8'(f)pg*P0afOsf +
(248)

+0(£)9** (90ads.f + 200 f05) + O(£)9*°0a05¢) = 0 .

There are three sets of terms here, and they have to vanish separately if the
equation is to hold. The terms that multiply the step function vanish only if
p(z) obeys the wave equation, so we see that this equation is obeyed on both
sides of the putative discontinuity. The terms that multiply the delta function
give a relation between the discontinuity and the form of the hypersurface. The
terms that multiply the derivative of the delta function give a condition on the
hypersurface itself. They vanish if and only if

9*Pkoks =0, (249)

where

ko = 0o f (250)

is the normal vector of our hypersurface. But if we diagonalize g we see that
this can never happen if the equation is elliptic (so that all the eigenvalues are
positive). In the hyperbolic case it is perfectly possible, though; surfaces having
this property do exist; if the matrix ¢®? is the metric in Minkowski spacetime
they are called lightlike surfaces. An example (regular everywhere except at the
origin) is the light cone

2 -2 —y?—22=0. (251)

Naturally lightlike surfaces can have a considerably more general form.

The conclusion is that solutions of hyperbolic differential equations may be
discontinuous, but only across quite special hypersurfaces (called characteristic
surfaces). These are wave fronts moving with some characteristic speed—in our
case with the speed of light ¢ = 1. Elliptic differential equation do not admit
such solutions. Another important difference between elliptic and hyperbolic
equations emerges when we try to write down their general solution. A gen-
eral solution of a differential equation always contains undetermined constants;
we have already argued that for the wave equation we will need two numbers
for each spatial point (since we can think of the spatial coordinates as indices
labelling the degrees of freedom). It is time to verify this expectation and to
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Figure 14: The light cone of the origin

make it precise; the argument that we will give actually fails for the Laplace
equation.

4.2 GREEN FUNCTIONS

Let us shift our attention to the inhomogeneous equation that includes a source
term. We will try to formulate conditions under which the solution is unique.
Roughly speaking we want to make sense of the implication that

0p=p &  b=2p. (252)

The problem is somehow to ”invert” a differential operator. The ”inverse” is
also known as a Green function. It may be helpful to make an analogy to the
inverse of an ordinary matrix equation:

> MV =W & Vi=> M;'W; . (253)
J J

There are two features of this that are of interest to us: An inverse will exist
at all only if certain conditions are obeyed (namely that the matrix has no zero
eigenvalues) and the calculation is very much simplified if the matrix is given in
diagonal form. What we want to do can be regarded as the problem of inverting
an infinite dimensional matrix, with rows and columns labelled by z and z'. We
perform the replacements

1
0 — 0,6(z, z') 5 D(z,z') . (254)
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”Matrix multiplication” now involves an integral rather than a sum, as in

Dé =1 - /d4x” 0,6(z,2")D(z",2') = §(x, ") . (255)

The "matrix” equation that we consider is

/ 2 O,6(z,a)4(@) = plz) &  Ble) = / d*z' D(z,2)p(a') . (256)

In this sense D(xz,z') is the sought for inverse of 0. In a little less detail, the
equation that defines the inverse is

OD(z,z') = §(z,2') . (257)

The inverse is a function—or a ”distribution” —that depends on two spacetime
points. It is called the Green function.

It is clear that the existence of the Green function can not be a quite trivial
matter. If we pursue the analogy to the finite dimensional case we see that
the d’Alembertian ”matrix” does have zero eigenvalues, since it is easy to find
solutions to the homogeneous equation

Op=0. (258)

All is not lost, however; this only means that we will have to add some extra
conditions to our problem which are such that the homogeneous solutions are
excluded. It should come as no surprise that the inversion of an infinite dimen-
sional "matrix” requires extra care. There will exist an inverse, but it will not
be unique, rather it will depend on the extra conditions that we have to add in
order to make it well defined. This comment applies to both the Laplace and
the d’Alembert operators, although the details differ somewhat—in the former
case the extra conditions are the boundary conditions that are needed to specify
a unique solution of the Laplace equation, and in the latter it will turn out to
be initial conditions. In the elliptic case the boundary surrounds the region in
which the solution is sought, but in the hyperbolic case it does not.

Now we turn to the actual calculation of Green functions for the d’Alembertian.
We will refer to z as the ”observation point” and to z’ as the ”source point”, for
reasons which will emerge at the end. Taking the hint from the matrix analogy,
we begin by ”diagonalizing” the operator. This is done by means of a Fourier
transformation;

i) = [dz o) o= [ G maw . @)

Then the solution of the differential equation becomes trivial:
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P =i e sm)=-PP (260)

p
The difficulty now resides in the transformation back to z-space:
d4p e—ip(z—a')
(z) = — /d4x'/ 2n) 2 p(z') . (261)

If we compare this expression to the formal expression involving the Green
function that we are trying to reproduce, we can conclude that

N_ d4p efz'p(zfz')
Do) =~ | G o 262

where we made use of the definition

W = /Pip; = p’=pipi —popo = (w +po)(w — po) - (263)

It remains to do the momentum integrals explicitly. The way to proceed is to
perform the integral over py first, using the calculus of residues. (If you do not
know the calculus of residues, too bad, since you will miss the point here —
however, this is the only place where I will use complex analysis, and you can
take the final result on trust. Even better, look up the recipe for how to do
integrals this way in a book. It is simple.)

A subtlety appears immediately, since the integrand has poles on the real
axis at

po = tw . (264)

The integral is in fact ill defined unless a prescription for how to handle these is
supplied. So we supply one. At first sight this looks like cheating, but it is not
so at all. Recall that the original equation does not have a unique solution until
some extra conditions are specified. The choice of these conditions depends on
the physical situation being considered, and it turns out that any consistent
set of conditions corresponds to a definite pole presciption for our integral, and
conversely. Any possible pole prescription defines a Green function, and all of
them are of interest in their own right.

So we make the our problem more specific. We will look for a solution of
the equation

DDret(maxl) = 6(5[:)3;,) (265)

—whatever the pole prescription our integral will satisfy this—and the extra
condition

t'>t = Dpe(s,r)=0. (266)
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Figure 15: How the retarded Green function is defined by pole prescriptions

These conditions define the retarded Green function. There is also an advanced
Green function that obeys

<t =  Dgg(z,z')=0. (267)

We will soon see why the condition that defines the retarded Green function is
an interesting one. For the moment the point is that our problem has become an
unambiguous one because a definite pole prescription will now be forced upon
us. To see this, note that if t —¢# > 0 then we can close the contour in the lower
half plane, while if t —#' < 0 we can close it in the upper half plane. This means
that if we deform the contour so that it passes above the singularities we find
that there are no poles within the contour for t —¢' < 0, and hence the resulting
Green function vanishes when the observation point z is earlier than the source
point 2’. The Green function defined by this condition is precisely the retarded
Green function.

Let us compute the retarded Green function: For the pg-integral the calculus
of residues gives us

oo p e—ipo(t—t') @( 1)2 R
= -0t —-1t)2m es =
Km m(m—me+w) E:

(268)
2
= -0t —t) " sin (w(t — 1)) ,
w
where O is the step function again. Plugging this result into the expression

for D(x,z') we can continue the integration. We switch to spherical polars in
momentum space:
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Figure 16: Pole prescriptions for the advanced Green function

d3p e—ipi(zi—zi)

Dret(wawl) =-0(t— tl)/ (271’)3

> sin (w(t —t')) =

(269)
0t ) [ B g gt o 1)

This is trivial to do if we perform the angular integrations first, collect terms,
and make use of a well known representation of the delta function afterwards.
The final result is

ot —t)

D,(z,z') = —
ret(a ) 47T|.CL',—ZL';|

§(t—t —|z; — ) . (270)
If we had chosen to deform the contour so that it passes below the singularities
we would have obtained the advanced Green function

ot —t)

D T .'EI = -
adv( ’ ) 47T|$z—$;|

8t —t' + |z — i) . (271)
This vanishes if the source point lies to the past of the observation point.

Note that the retarded Green function has support (that is to say, it is non-
zero) on the forward light cone from the source point z’, while the support of
the advanced Green function is on the backward light cone. To emphasize this
fact we rewrite our Green functions, using the delta function identity

t—lz) ot +|2[)
2|z| 2z

You may need a quick reminder about how to prove things about the delta
function: A delta function is defined by what it does inside an integrand. Thus

5(z?) = 8(|af? — £2) = &

(272)

dy ..y F(0) é(z)
dr F(z)d(ax) = | —= F(Z)o(y) = —~ = O(ax)=—+. (273
/ & Fiw) = T4 (@)= 37 @73)
A similar but more involved calculation shows that
o(x — x,
5(f(w)) = 3 2~ Fa) (274)
a E(xa”
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Figure 17: The support of some Green functions

where we are summing over those values z, for which f(z,) is zero. Our delta
function identity is a special case of this relation. We can use it to verify that

ot —t')
27
and similarly for the advanced Green function. The fact that their support is

confined to the light cone (z — z')2 = 0 is now manifestly displayed.

Note by the way that we had a little bit of luck in the calculation. (Or
perhaps it was more than that?) If the dimension of spacetime had been 2
+ 1 rather than 3 + 1 then the ”space” part of the momentum integral that
we performed to get D,.; would not have been so easy to do. In fact in 2 + 1
dimensions the support of these Green functions is not confined to the light cone,
but extends to its interior. Running ahead a bit, the retarded Green function
describes how a small disturbance affects the future. In 3 + 1 dimensions the
effects of an event governed by the wave equation propagate into the future
with the speed of light (this is a strong form of Huygen’s principle), but in 2
+ 1 dimensions the effects ”ring on” for a considerable amount of time. The
latter type of behaviour is in fact generic for wave motion (think of the rings
left behind by a stone that is thrown into a lake) but fortunately not for the
kind of waves that we use to obtain information about our environment—Ilight
and sound waves, both of which are described by the wave equation in 3 + 1
dimensions.

If we now go back to the homogeneous wave equation we find that the Green
functions provide us with a general solution of the initial value problem. To see
this we define a new object which is called the commutator Green function
(because of the way it occurs in quantum field theory):

Dret(ma ml) = -

5((z —z")?), (275)

d3p e—pi(Ti—yi)
(27)3 w

sin (w(t —t')) .
(276)

D(waml) = Dret(maml) - Dadv(maml) = _/
It has the following easily verified properties:
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OD(z,z') =0 D(z,z')i=¢ =0 oD (z,x )y = —0©) (z,2") .
(277)
Now consider the expression

M@=/Q%W®D@w%Mﬂ—DmﬂW@%, (278)

where the integral is taken over the hypersurface ¢ = constant and v and v are
two arbitrary functions defined on this hypersurface. It is easy to check that, by
construction, ¢(z) is a solution to the homogeneous wave equation. Moreover
this solution obeys

d(x,t') = u(x) Oy p(m,t") = v(z) . (279)
In words, we have constructed a solution of the wave equation by specifying
the form of the function and its first time derivative on an arbitrarily chosen
spacelike hypersurface in an arbitrary way. More precisely, such data given
on a spacelike hypersurface will determine the solution within the characteristic
cone whose base is the hypersurface; the boundaries of this cone are the lightlike
characteristic surfaces that we found earlier. Conversely, any solution can be
uniquely specified in this manner. And this is the solution of the initial data
problem. The story for an elliptic differential equation is rather different; in
that case the required data are either a function or its normal derivative given
on a surface that surrounds the region where the solution is to be determined.
With the initial value problem of the homogeneous equation under control
we can rephrase our work on the inhomogeneous equation as follows: Suppose
that the source is ”localized in time” so that

t < to = plt,z) =0. (280)

Then the appropriate solution of the inhomogeneous equation is

¢mm=@4ww+/&faﬂmfmwu (281)
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Figure 20: How effects propagate into the future

where the ”in” field is a solution of the homogeneous wave equation such that

¢(tin7 1’) = ¢zn (tz'n; 37) (282)

at some time t;, < to at which we are specifying the initial conditions of the
problem. Note that we have a solution of the homogeneous wave equation
wherever p(x) = 0, and that this solution will be discontinuous across a lightlike
characteristic surface ”starting out” from the region where p # 0.

If you think this through you will see that the retarded Green function is used
to describe the later effects of an earlier cause. We could replace the retarded
Green function with the advanced Green function and we would still have a
solution of the equation, but it would not obey the stated initial condition. (If
you do not believe that causes have to precede effects then you can play with the
idea that the advanced Green function should be used in physical problems.)

4.3 SOME REMARKS ON MAXWELL’S EQUATIONS

Given that we understand the wave equation, how far can we carry a similar
analysis of Maxwell’s equations? The answer turns out to be that we already
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have all the knowledge we need. Let us begin by looking for characteristic
surfaces, that is for wavefronts. We make the discontinuous Ansatz

Fop(z) = O(f(2))fap() - (283)

Maxwell’s equations in vacuo then imply that f,g is a solution of Maxwell’s
equations and that on the hypersurface f(z) = 0 itself it must obey

fapk® =0 * fagh® =0, (284)

where k, is the normal vector of the surface f(z) = 0. But this implies that f,s

must take a very special form at every point on the discontinuity itself, namely

fap =akplg ; kK =k-1=0. (285)

Hence the normal vector k, is a lightlike vector. If you think about it you also
see that [, must be spacelike.

The proof goes as follows: Choose an arbitrary basis (ka,Pa,Ma,Na) in
Minkowski space. In terms of this basis we can expand

fap = alk[apg] + an[amB] + a3k[an5] + a4pamp) +aspang) +asmang - (286)
Then the second of the Maxwell equations implies that
€Pksfs=0 = as=as=as=0. (287)
In the next step we define a new vector by
aly, = a1py + asmg + azng . (288)
We are almost there. It only remains to observe that

fapk? = kok-1—1,k> =0 = E=k-1=0 (289)

(since ko and l, are linearly independent). This is it.

So there are two important conclusions: The characteristic surfaces have a
lightlike normal, and the field strength takes a very special form close to the
discontinuity. To see how special it is we observe that there are two Lorentz
invariant quantities that we may use to classify electromagnetic fields, and both
of them vanish on both sides of the discontinuity. Indeed

FopF* = Fopx F*% =0 o E’-B’=E-B=0. (290)

Any field for which this happens is called a radiation field, and we will study
such fields in considerable detail later on.
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It is clear that we are studying hyperbolic equations. On the other hand it is
also clear that there is something a little ”non-local” about Maxwell’s equations,
with the flavour of elliptic boundary value problems. In fact they can be written
as

/ dS-B=0 Gilbert’s law (291)
av
/ dl-E+ 6,5/ dS-B=0 Faraday’s law (292)
as 5
/ dS-E = 47r/ dVp Gauss’ law (293)
av v
/ dl-B= / dS - (47j + O:E) Ampere-Maxwell’s law . (294)
as 5

If these equations hold for arbitrary volumes V bounded by surfaces 9V and
for arbitrary surfaces S bounded by curves 35 then the above obviously rather
“non-local” equations are equivalent to Maxwell’s equations. Hence we can
draw important conclusions about the situation in a volume or on a surface
by studying the situation at their boundaries. This vaguely non-local flavour
of otherwise local equations is in fact typical of an important class of theories
called gauge theories, and it is to gauge invariance that we turn next.

4.4 GAUGE SYMMETRY

There are a number of problems with the formulation of Maxwell’s theory in
terms of field strengths. Not only its non-local flavour but also the fact that as
they stand the field equations cannot be derived from a local action principle.
These problems go away once the theory is formulated in terms of a vector
potential. This idea turns out to be very deep and a rather straightforward
modification leads directly to the field equations governing the strong and weak
interactions. Electrodynamics remains the simplest possible case—in particular
once the equations have been reformulated in this way it will be evident that
the dynamics is precisely that of the wave equation that we have solved already.

We first concentrate on the half of Maxwell’s equation that can be written
in the equivalent forms

OxF*P =0 & 0,Fs, =0 &  0aFpy+0,Fap+0sFy =0. (295)

In 3+1 notation this is Faraday’s and Gilbert’s laws. It is easy to see that a
solution is given by
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Fog = 0 Ag — O A, (296)

where the—quite unrestricted '—four vector A, is known as the vector poten-
tial. It is not quite so easy to see that the converse holds, but it does (the proof
proceeds through explicit integrations and is messy rather than difficult). The
precise statement is known as Poincaré’s lemma, and says that for any antisym-
metric covariant tensors Fy, Fop, and so on (the pattern should be obvious)
defined on a simply connected space (R" is simply connected) one can find
antisymmetric covariant tensors A, A,, ... such that

OaFp =0 & Fo = 9,A (297)
OaFpy) =0 @ Flag) = GaAp) (208)
FaFpys) = 0 At Flapy) = OaAp] » (299)

and so on. The solution is not unique. Given any solution the general solution
is given by

A" = A + constant Al = Ay 4 0a) ap = Aag + 0arg , (300)

where A (and so on) are completely unrestricted.

Poincaré’s lemma, is very important, so let us state very clearly what it says
about electromagnetism: The entire content of Gilbert’s and Faraday’s laws is
that the field strength can be expressed as the four dimensional ”curl” of a
vector potential; moreover if the field strength has been fully specified then the
vector potential is determined only up to a gradient, in other words the field
strength is unchanged by the gauge transformation

Ay 5 AL = Ay +8,A =  Fag— Flg=Fas, (301)

where A(z) is an arbitrary function. To avoid any misunderstanding of the
notation, there is no coordinate transformation involved here. Only a gauge
transformation. The field strength is gauge invariant, and so are the electric
and magnetic fields. A striking way to state the mathematical result is the
following: Suppose we are given a covariant vector field A, (z), and we want to
know whether it can be written as a gradient of a scalar. Poincaré’s lemma says
that this happens if and only if its field strength vanishes.

Poincaré’s lemma holds if space is simply connected, which means that any
closed curve can be deformed to a point without leaving the space. This is
true for R™ but not for the surface of a cylinder (say). In the latter case it
can happen that there is a vector potential that ”points” around the cylinder.
Such a vector potential can give rise to a vanishing field strength even though
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it cannot be set to zero by means of a gauge transformation. This loophole in
Poincaré’s lemma is used in the Aharonov-Bohm effect, which you may have
heard of. If not, forget it for now and assume that we are on R™.

Gauge symmetry is a most important property. It dictates the form of the
electromagnetic interactions and in suitably modified form it also dictates the
form of the other known force fields in Nature. Therefore it is important to be
clear about what it means. First of all it is not a symmetry in the sense that
Lorentz transformations are symmetries (of Maxwell’s equations, say). The idea
behind a symmetry is that we can transform a given solution and obtain another
solution—another solution that counts as distinct from the first, even though
it is observationally indistinguishable from the first. A gauge transformation
on the other hand transforms a description of a certain solution into another
description of the same solution. Let us jump ahead a bit and suppose that
we have solved the other Maxwell equation as well. Now try to imagine the
infinite dimensional space of all solutions of Maxwell’s equations for the vector
potential. From any given solution we can reach other solutions be means of a
gauge transformation

Ag = Al = Ag + 05A (302)

Consider the set of all vector potentials which can be reached from a given
vector potential A, by means of a gauge transformation. We call this the gauge
orbit through the point A, (which is a point in the space of solutions). It is
clear that not every solution lies on the same gauge orbit (if the field strengths
are different the gauge orbits must be different since the field strength is gauge
invariant). It is also clear that different gauge orbits cannot intersect. Hence
we get a picture of the space of solutions as a space ”foliated” by gauge orbits.
The fundamental idea is now that a physical state of the field corresponds to a
gauge orbit, that is to say to an equivalence class of solutions, and not to just
a point in the space of solutions as would be the case for the wave equation.

If you do not like this picture you can simplify it through a choice of gauge.
The idea then is to choose one point from every gauge orbit, and to discard all
the other solutions. Technically what one does is to impose some condition on
the vector potential, such as the Coulomb gauge

8;A; =0. (303)

The point is that even if we start with a vector potential A; which does not
obey this condition, we can always find another — let us say A} — which does.
If Al is related to A; by a gauge transformation as above, then

8, AL = 0;A; + 09\ . (304)

Hence

8; A, =0 & AN = —0;A; . (305)
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Figure 21: The space of solutions of Maxwell’s equations, with gauge orbits.

Figure 22: Gauge fixing: Choose one point on every gauge orbit. (Two of these
gauge choices are bad ones.)

Now we solve Poisson’s equation for A so that this equation holds. Then the
Coulomb gauge condition holds for A}. (Usually we do not even have to actually
do this—we are just using this argument to show that no generality is lost by
assuming that the vector potential obeys the Coulomb condition in the first
place.) Moreover there is no ambiguity left in the vector potential once the
Coulomb gauge condition is imposed; any gauge transformation would result in
a violation of the gauge condition. This follows from the fact that if we assume
that A goes to zero at infinity then

AA=0 = A=0. (306)

Hence the Coulomb gauge does what we advertized: It selects one special point
from every gauge orbit, and there is a one-to-one correspondence between phys-
ical states and solutions of Maxwell’s equations that also obey the Coulomb
gauge condition.

A similar argument can be used to show that we can always impose the
Lorenz gauge
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0, A" =0, (307)

provided that we can always solve the equation

OA=-8-A (308)

for an arbitrary function 9 - A(z). This is actually a little more sophisticated
than the Coulomb gauge since it entails solving an initial value problem rather
than just solving the Laplace equation at fixed time, but we know how to do
it. It is also more sophisticated because the Lorenz gauge condition does not
fully specify a point on the gauge orbit; we have the freedom to perform gauge
transformations with gauge functions that obey

OA=0. (309)

This equation does not imply that A vanishes. This is a little regrettable from
a pedagogical point of view: The Coulomb gauge is easier to explain in a satis-
factory way, but—as we will see—the Lorenz gauge is particularly easy to use.
If you find my treatment of these matters a little vague I can only refer you to
a course on constrained Hamiltonian systems, where they are explained fully.

The Coulomb and Lorenz gauges are the only ones that we will use, but—in
particular in quantum field theory — many other gauge choices have been found
useful for special purposes. The main conclusion so far is that we have found
the general exact solution of the equation

dpxF*P =0, (310)

and that we have introduced the idea of gauge symmetry to deal with the
peculiarities of the solution.

4.5 THE DYNAMICS OF MAXWELL’S EQUATIONS

The next equation,

O FP = dmJ™ | (311)

contains true dynamical information and is not so easily disposed of. If—and
only if —we make use of the vector potential we can give an elegant derivation
of this equation from the principle of least action. This is an important point
because—as far as we know—all fundamental equations can be so derived. The
action is

1
S[A4] = —/d4a: (g5 Fap P + 40 T%) . (312)

70



Here it is understood that the vector potential is the dynamical variable and
that

Faﬁ = 6,114/;1 - 65Aa . (313)

(We hold the source term J(z) fixed throughout this chapter.) Hence one half
of Maxwell’s equations,

B[QFB,Y] =0, (314)

hold per definition. The variation of the action is simple to perform and indeed
leads to the desired equation.
The equation is

0P Fso =0A, —0,0- A= —4n], . (315)

One’s first reaction is that since the d’Alembert operator appears the way to
solve it is to impose initial data on the vector potential and its first time deriva-
tive at some special time and then solve for the vector potential at arbitrary
times. There is a problem with this however. Indeed it is obvious that there
is no way that initial conditions can help us to specify a unique solution for
the vector potential, since we can always perform a gauge transformation to a
different vector potential

Al = Ay + 0,A (316)

that also obeys the equation and the initial conditions. All that we have to do
is to ensure that the arbitrary function A(z) vanishes in a neighbourhood of the
initial data surface. For this reason it is clear that the equation does not admit
a Green function as it stands.

There is another way to see that there is a problem. Let us make a ”3+1
split” of the equation. Then

DAi - 81(8114] - 6,5A0) = —47’(]',' (317)

The problem is that the second order time derivatives of Ay have dropped
out—the zeroth component of the equation does not give a clue to the time
development of Ap, rather it gives a constraint that the putative initial data
have to satisfy. Hence two problems appear: The problem is underdetermined
in the sense that the time development is partly arbitrary, and it is overdeter-
mined in the sense that initial data cannot be chosen freely. This situation is
in fact typical of gauge theories in general, all the way up to Einstein’s theory
of gravitation which is also a gauge theory.
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Fortunately it is not too difficult to wiggle out of the problem. The basic
difficulty is the ambiguity in the vector potential and we can get rid of this am-
biguity through a gauge fixing condition. The simplest choice for our purposes
is the Lorenz gauge

9-A=0. (319)

The point is that we can choose to impose this condition without any loss of
essential generality. Now the field equation collapses to

OA, = —4rJ, . (320)

This is simply the inhomogeneous wave equation, and hence we have the general
solution of Maxwell’s equation with fixed sources and the Lorenz gauge imposed
under complete control. There is no problem with keeping the gauge condition
in force, since it follows from the gauge fixed equation together with conservation
of electric charge that

00-A=—-470-J=0. (321)
If we make sure that the gauge condition holds on the initial data surface (and
that its time derivative is zero as well) then it will hold for all times. In partic-
ular, a conserved current will not cause trouble with the Lorenz gauge.

Let us remind ourselves about the nature of the general solution. In partic-
ular, suppose that the source is localized in time so that

tkglm Jz) =0, (322)
and that the incoming radiation is known to be
Jlim 4% (2) = 42,(z) , (323)

where the ”in” field is some solution of the wave equation. Under these condi-
tions the unique solution for the vector potential is

A%(z) = A%, (x) — 47r/d4x' D,ei(z, ") J*(2") . (324)

Let us be a little bit more explicit about this. Assume for simplicity that the
”in” field vanishes. Then the electrostatic potential (say) is

wl

p=A° = /d%'L), lret » (325)
|z — i

where the integral is over all space and the subscript reminds us that the function

p(t',x') must be evaluated at the retarded time t' = ¢t — |z; — «}|. If p is time
independent the expression reduces to the Coulomb potential that is familiar
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from electrostatics. The integral may be quite difficult to evaluate in closed
form; the case when the source is a point particle moving in an arbitrary way
will occupy us later on.

The situation that we will consider in chapter 5 is indeed that when the in
field vanishes and there is electromagnetic radiation produced by a source J*(x)
that is localized in space and time. For the moment the nice thing about this
situation is that the initial data then are such that the Lorenz gauge is manifestly
trouble free. There are still some puzzles concerning gauge invariance though.
Let us try to count the "number of degrees of freedom” in the electromagnetic
field. Recall that in a quite precise sense a scalar field has one degree of freedom
per point in space. (The amount of information that we have to specify in order
to get a well posed initial value problem is therefore two numbers per spatial
point.) When working in the Lorenz gauge we found that Maxwell’s equations
reduced to the wave equation for the vector potential—if you like four copies of
the wave equation, which would suggest that the electromagnetic field carries
four times as many degrees of freedom per point. But this cannot be quite right,
since as a matter of fact we do not need all the information that is specified in
this way; the point being that—as we have seen—even when the Lorenz gauge
is imposed the vector potential remains arbitrary to some extent and can be
changed by a gauge transformation without changing the physics. It is more
transparent to use the Coulomb gauge here, since the Coulomb condition really
selects one point from every gauge orbit. I refer you to the exercises for this, and
simply state the answer: There are two degrees of freedom per spatial point,
or in other words exactly two times as much freedom as there is in the wave
equation.

The correct framework for addressing this problem is the Hamiltonian for-
mulation of the equations; this can be obtained from the action but only pro-
vided that one knows how to handle gauge invariance within the Hamiltonian
formalism. It would carry us too far to go through this topic here.

4.6 GAUGE THEORIES AND MATHEMATICS

The ideas behind Maxwell’s equations, and gauge theories in general, are far
reaching. An important strand in mathematical physics is the application of
gauge theories to mathematics, and especially to topology. We will give one
example of this—indeed an old example, known to Gauss. Suppose that we
have two closed curves in space, given in parametric form as

C :  zi(s) (O ACH (326)

Suppose that the explicit form is very complicated, so that it is hard to visualize
the curves. Now there is an important property of a pair of closed curves
called the linking number. This is an integer that is preserved under arbitrary
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Figure 23: Linking numbers

deformations of the curves, as long as they are not allowed to pass through each
other. To define it, deform one of the closed loops to a circle. This assumes that
it does not form a knot—as a matter of fact ideas from gauge theories really
show their strength when it comes to classification of knots, but we have to
begin somewhere. Then define the linking number as the number of times the
other curve passes through the disk spanned by the circle, counting intersections
as positive or negative depending on the whether the parameter s’ increases or
decreases as we pass through the disk. It is intuitively obvious that the linking
number is well defined, but it can clearly be difficult to compute if we are just
given the equations for the curves.

Fortunately the calculation can be reduced to a problem in elementary elec-
trostatics. Suppose that there is a current running through the second loop,
such that

ji(z"d®z' = Idl} . (327)

This is to say that the current is confined to the loop C'. Then it follows from
Ampere’s law (without the displacement current, since we are doing electrostat-
ics) that

/ dl,Bz = 47T/ dSsz =4rIm s (328)
C S

where m is the linking number—the equation being a simple consequence of the
way the linking number is defined. On the other hand we know that

AB; = —47T€ijkajjk = = Gz]ka /d3 Ili_k_ . (329)

Here we made use of the Green function for the Laplacian. If we use the fact that
the current has support only on the loop C’ and carry through the differentiation
we get

€ijk (:C j — ;L"-)dl'
Bi(z) = -1 / , J|xj——x'|13k . (330)

We already have a formula for the linking number in terms of a line integral of
the magnetic field around the first loop C, so it follows that
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dl;dl,
ezjk/ /1 |.CE — .’L"|3 . (331)

This is Gauss’ formula for the linking number. The question whether two given
loops are linked can now be settled by means of a straightforward calculation.

Many more examples of the application of gauge theories to solve mathe-
matical problems can be given. For instance we have already observed that
the theory is somewhat sensitive to the topology of the space on which it is
defined since the validity of Poincaré’s lemma depends on it. This theme can
be developed quite far, but we let go of mathematics at this point.

Exercises:

1. Can a solution of the wave equation be discontinuous across the surface
t = 27 If so, what can you say about the nature of the discontinuity across this
surface? How would you interpret such a solution physically?

2. Find a solution of the wave equation that describes a spherical wave going
out from a source at the origin; i.e. a solution that depends on r and ¢ only and
that is singular at r = 0. Do this in two ways:

a) Look at the wave equation in spherical polars and guess the answer.

b) Assume the source p(z) = O(t)F(t)6® (z) and use D,qi(z, z').
In b) Alice sits at the origin and starts talking at ¢t = 0.

3. Use a Fourier transformation and the calculus of residues to compute the
Green function of the operator

A—m?,

where A is the Laplacian. Assume that space is infinite and, as a boundary
condition, that the field ¢ that occurs in the equation

(A = m?)¢(z) = p(x)

tends to zero at infinity (sufficiently fast). How do you handle the case m = 0?7

Alternatively, find the Green function G(z) = G(x — 0) by assuming that it
is spherically symmetric (a function of 7 only) and observing that it must solve
the homogeneous equation everywhere except at 7 = 0. Then invent a way of
fixing the overall factor.
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4. Show that at any given point one can find four vectors such that the field
strength tensor at that point takes the form

Fop = Pladp] T M[aNp] - (332)
(Hint: Think of Fys as an anti-symmetric matrix. A symmetric matrix can

always be diagonalized. What is the corresponding statement for an anti-
symmetric matrix?) Note that eq. (285) is more special in two ways. Which?

5. Consider the action

1
S:/d4$ (_16—7r aﬁFaﬁ—AaJa) ;
where Fog = 0, Ag — 03As och J*(x) is a fixed external current. Show that
the action is invariant under the gauge transformation

Au(@) > AL (2) = Au(@) + OuA(z)  J* = Jo = J°

(where A is an arbitrary scalar function), if and only if J* obeys a suitable
condition. What is the physical interpretation of this condition?

6. Suppose space has a hole in it. Specifically, remove all points with 22432 < 1
from space. Define a vector potential on what is left, which is everywhere
regular, gives a vanishing magnetic field, and which is such that it cannot be
gauge transformed to zero. What went wrong with Poincaré’s lemma?

7. By definition a vector field that obeys

o;V;=0

is called a transverse vector field, while a vector field that can be written as
the gradient of a scalar field is called a longitudinal vector field. Introduce the
operators

0.0 0.,
A AN

(As usual "1/A” is a formal way of writing the Green function of the Laplacian,
which is unique once boundary conditions have been specified.) Show that these
operators are projection operators, and use them to show that an arbitrary
vector field can be written as the sum of a transverse and a longitudinal vector
field.

Pl =6 - Pk = (333)
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8. Consider Maxwell’s equations

OA, — 0,0 A= —4nJ,

in the Coulomb gauge (9;4; = 0). Make a 3+1 split and follow this up by
splitting the vector equation into transverse and longitudinal parts. Think about
it and show that the number of degrees of freedom of the theory is twice the
number of degrees of freedom in the wave equation.

9. Consider a symmetric tensor field h,g that obeys the equation

Dhag — 868" hyg — 050" by + Baph =0 . (334)

(This is a linearization of Einstein’s equations for the gravitational field.) Show
that this equation has a gauge symmetry, that is to say that there is an analogue
of the transformation

Aa = Ao + 0 . (335)

Given any solution h.g, the gauge transformed field must automatically solve
the equation as well.
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5 — RADIATION FROM MOVING CHARGES

To study the radiation emitted from moving charges we adopt an approximation
which is the opposite of the external field approximation: We assume that the
trajectories X ®(7) of the charged particles are given, and use Maxwell’s equation

Qg F*P = 4z je (336)

to compute the resulting electromagnetic fields. Before going into details, let us
recall why radiation takes places in the first place. A stationary electric charge
gives rise to an electric field

E = T%er (337)

directed radially outwards from the particle. The electric field from a charge
moving with constant speed can be computed from this by means of a Lorentz
transformation. After some manipulations, we obtain

e 1—o?

B= 72 (1 — v2 sin? ¢)% ero (338)
where 7 is the distance from the point where the field is measured to the point
where the particle is situated at the moment when the field is measured, e,
points in the direction between these two points and 1 is the angle between e,
and the velocity of the charge. This is a kind of squashed Coulomb field, and
the point to notice is that it still falls off as one over r squared —- nothing very
interesting happens.

But let us now consider a particle initially at rest at the origin, submitted
to a brief period of acceleration a at time ¢ = 0, and then moving with constant
speed v. The news that the particle has accelerated travels with finite speed,
which means that sufficiently far away from the particle the field that is observed
will remain a Coulomb field directed away from the origin. Where r << ¢t it will
have a different direction, since it points away from the instantaneous location
of the charge, which at ¢t & r may be quite some distance away from the origin.
So, at r &~ ct the field ”jumps”, and after that it changes (perhaps slowly) only
because of the movement of the charge. The most interesting thing about the
field in the region where the ”jump” occurs is that it falls off as one over r rather
than as one over r squared. This conclusion follows if we assume that the field
is linear both in e (which is obvious) and in a (as will follow from Maxwell’s
equation). Because then we can use dimensional analysis to conclude that
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A shell of radiation is moving outwards. Some exact calculations by others (for
related situations) are shown too.

E x % . (339)

This is the reason why electromagnetic radiation can be detected from far away!

5.1 A RELATIVISTIC REMINDER

Since our discussion will involve a certain amount of passing back and forth
between the four vector description of particles on the one hand and the 3+1
description on the other it is as well to collect a few relevant formulse and
arguments here. Suppose that we have a worldline X“(7) and that a 3+1 split
yields

X% = (z;,t) . (340)
We want to compute the four-velocity
. dxe
X = . 341
dr (341)
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Since it is understood that the parameter 7 denotes proper time we have

1
dr* = dt* —dz? = %:\/I—UQE;, (342)
where
dz;
i = — 4
v o (343)

is the ordinary spatial velocity of the particle described by the world line and
the ”relativistic factor” « will recur. With these definitions it is straightforward
to see that

dt dX*
— = i) - 44
dr dt (yvi>7) (344)

e

We can go on to compute the four-acceleration; when doing this we will have to
differentiate v and the result is
— =~%a-v. (345)
We get in this way that the four-acceleration is
X = (y’ai +7'a-voi,7'a - v) (346)
where a; denotes the ordinary acceration in three-space.
While this is not a course in relativistic kinematics it is perhaps as well to
remind you that the energy-momentum four-vector of the particle is
P, =mX, = (myvs,my) . (347)
Newton’s second law (in three-space) must be modified into
d 2
F;, = a(mfyvi) =mvy(a; +v°a - vv;) . (348)
Note that the particle makes much more resistance to acceration in the direction
of its velocity (in which case the relativistic factor v changes) than to perpen-
dicular acceleration (in which « remains constant). Let F' denote the magnitude
of the force. For perpendicular acceleration we obtain
F-v=0 = F=mvya, . (349)

For acceleration in the direction of motion we get

F,=Fi; = F=mYq. (350)

When 7 is large this makes a huge difference.
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There is also a conceptual point that is worth clarifying. The energy of
a particle is the fourth component of a four-vector. In the rest frame of the
particle (where the momentum of the particle vanishes) this four vector is

P = (07050’E) = (070:0;m62) ’ (351)

where E is the energy in the rest frame of the particle and we restored an
explicit factor of ¢ so as to recover a famous formula. On the other hand the
four-velocity in the rest frame is

Ve =X*=(0,0,0,1) . (352)
It follows that

E=-V°P, . (353)

This is a Lorentz scalar and does not depend on the choice of the coordinate
system.

This is as it should be—the notion of "energy of a particle as measured in
its own rest frame” is independent of the velocity with which the particle moves
relative to the chosen frame of reference. Therefore it should be a scalar. It
is instructive to see why the ”energy of a particle as measured in an arbitrary
frame of reference” cannot be regarded as a scalar in a similar useful manner.
Whatever frame of reference we use there will be a vector

n'® =(0,0,0,1) . (354)

The energy E' of the particle as measured in this frame of reference is the fourth
component of P® in this frame, and hence it can be written as a Lorentz scalar
E'= -n'*P, . (355)

While this is true it is not useful unless there is something in the physics of the
problem that singles out the vector n'® for attention. If we change our frame of
reference to another arbitrarily chosen one we have to define a new four vector
n''* and we obtain a new Lorentz scalar

E'"=-n"*p, # —n'*P, = E' . (356)

Therefore the choice of scalar (E' or E") that describes the energy of the particle
depends on the frame of reference chosen. The scalar is not interesting unless
the frame of reference itself is interesting.

5.2 LIENARD-WICHERT FIELDS
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We now turn to a more detailed analysis. The first task is to give an exact
solution of Maxwell’s equations given that the current is that produced by a
charge moving on a fixed trajectory X (7), namely

J@) = / dr X°5(z, X (7)) . (357)

In the Lorenz gauge the solution for the vector potential can be written down
immediatiately using the retarded Green function:

A%(z) = —4n / d*y Dyer(z,4) () - (358)

This is the Liénard—Wiechert potential, and it only remains to make it more
explicit. Making it so will turn out to be a rather lengthy affair.

Calculating the Liénard-Wiechert fields

We already have the Green function, namely

0(z° —4° 2
Té((m -y)7) - (359)
If we plug this into our expression for A* and use the delta function in the

current to perform the y-integral we obtain

DTet(may) = -

A%(z) = 26 / dr 0(z° — XO(r))8((x — X)?)X° . (360)
To do the 7-integral we observe that there is a unique solution of

(z-X)?=0 & T="1p. (361)

(Actually there are two solutions, but one of them is killed by the © function.

The point z® = X *(79) is called the retarded point. It is where the charge was

located at the time when it emitted the radiation which is felt "now” by the

observer.) Therefore—using the delta function identity that we know already—
5((z — X)?) = f(T =) __ dr-mn) (362)

Z(r—X)? 2(z—X)-X
Now we can do the remaining integral and arrive at the Liénard-Wiechert po-
tential
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Xa
A¥(z) = —e—— 363
@)= ox (363)
where the subscript reminds us that X is to be evaluated at the retarded proper
time 9. Now the retarded time is actually a function of x and ¢ since

t=10+7r(m0), (364)

where r = |z; — X;(70)|. Inverting this equation we obtain 79 = 79(z,t). Since
we have not specified the worldline X*(7) we can not be more specific than
that, but it should be clear from the picture what is going on.

We are more interested in the resulting field strength though. It is not
straightforward to differentiate the Liénard-Wiechert potential because the lo-
cation of the retarded point depends on z, so we may as well backtrack and
consider

FoP =2 / dr 0(z° — XO(r)0%5((w — X)) XP — (@ B) . (365)

(The derivative of the © function is a delta function. Therefore it contributes
only at the retarded point, and we ignore it. The same argument is used in the
partial integration below.) We want to remove the derivative from the delta
function so that we can do the 7 integral. To achieve this we observe that

of dr d

0%6(f(7)) = %555(1‘@) : (366)

Now at least the derivative is with respect to 7, so we can perform a partial
integration. Then, just as when we calculated the potential, the delta function
is rewritten as a definite thing times 6(7 — 79). Finally we do the 7 integral and
end up with

Faﬁ:_

e d ((w“ — X9)XB — (2P — XB)Xa>
- — - et - (367)
X (z-X)dr X -(z-X)
The whole thing to be evaluated at the retarded proper time. The expression
may not be very transparent, but we see by inspection that the field has a term
proportional to the acceleration so that our intuitive argument about the fall
off of the radiation field is valid.

Finally we carry out the differentiation and then rewrite everything in 3 +
1 notation, using

(z — X)* = (rng,7) (368)
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X% = (yvi,7) (369)

X = (y%a; +v*a - vv,va - v) . (370)

Here v; and a; denote the ordinary velocity and acceleration of the particle.
After a certain amount of calculation we can conclude that

Bi = eijknjEk . (371)
Moreover the electric field itself can be conveniently split into two parts,
E; = EP*" + EJ°" (372)
where the near field is given by

e

E; = m(m - 'Ui)|ret (373)
and the far field is
ar €
EZf N m(n ' a(ni - vi) - (1 -n- U)ai)lret : (374)

It only remains to understand these expressions.

We see that near the particle there is a field falling off like 1/r? that becomes
an ordinary Coulomb field in the non-relativistic limit. In fact if we evaluate it
as a function of the present position of the charge, rather than as a function of
its retarded position, it becomes precisely the squashed Coulomb field that we
discussed above. If the charge moves with constant velocity the near field is all
there is to it.

The far field, also known as the radiation field, is indeed linear in the accel-
eration and falls off like 1/r. It has the properties that we were led to expect
from our qualitative discussion. In particular

n-Efor=pn.Bf" =0 . (375)

The far fields are transverse. Moreover both the Lorentz invariant quantities
that we can form from an electromagnetic field, namely

I =E?>-B? L=E-B, (376)

are zero for the far field. This is in agreement with our discussion of character-
istic surfaces for Maxwell’s equations (in chapter 4), when we showed that this
has to be so at any surface in spacetime where the field is discontinuous, and
perhaps vanishing on one side of the surface. Hence we do indeed expect these
invariants to vanish for any propagating wave in Maxwell’s theory.
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5.3 THE NON-RELATIVISTIC APPROXIMATION

Ultimately our interest is not in the electric and magnetic fields. What we really
want to know is how much power the particle radiates, and how this power is
distributed over angles. The instantaneous flux of energy is described by the
Poynting vector

1 1
Sz' = EeijkEjBk ~ EEZTL,' 5 (377)

where the second equality is valid for the radiation field. Since we are mostly
interested in looking at the accelerating particle from a distance we will from
now on make the approximation

E;~ E/"". (378)

What we are after is the power radiated per solid angle, which is given by S - n.
For a first study we adopt the non-relativistic approximation, in which

E; ~ ;(n -an; — a;) - (379)

We want to know the total amount of power radiated per unit solid angle as a
function of time. A quick calculation reveals that

P, e? e?

— =r28n; = —(a®> — (n-a)?) = —a’sin’ 4 380

S =rSmi= (@ = (n0)?) = : (380)
where 6 is the angle between n and a. The result is due to Larmor. The total
radiated power is

dp 2 g dP 2
P = Q— = i _ = = 242 . 1
/d 70 ; d¢/0 dﬁsmGdQ 3¢ (381)

So much for the non-relativistic result.

5.4 TOTAL RADIATED POWER

In the relativistic case we have to be a little careful about the definition of
’radiated power”. This happens because retarded time t' differs from time as
measured by the observer. Therefore there will be a difference between power
emitted and power received. To see how, suppose that the distance between the
charge and the observer is r and use ¢’ to denote retarded time. Then

At A
t=t'+r = At=At+Ar :>A—t,:1+A—;z1—n-v. (382)
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This quantity is important enough to deserve a symbol of its own;

_dt
S dt
Consider a certain amount of energy E emitted by the particle into a given solid

angle, received by the observer between ¢; and t5. The total received energy is
defined by

k=1—-n-v (383)

2 dP,
E= dt—=% . 384
t1 df} ( )
The total emitted energy on the other hand is defined by
> dP,
E= dt' === 385

Finally we can be explicit about it all. The total energy radiated into a unit
solid angle between two arbitrary times is

ta t)
E= dtr’S -n = dt"ﬂ

r?S.-n. (386)
tl t’l dtl

From this formula we can read off the total emitted and received powers, and
observe that

dpem — dP’I"CC
a ~ "dn
Whether the one or the other of these are of primary interest depends on the
circumstances.

(387)

The factor &

The total emitted power is the power emitted by a charge in its own rest
frame. This is an invariant description, not dependent on our choice of labora-
tory (or observatory) frame, and hence the total emitted power is a spacetime
scalar. A precise argument is that total emitted power is the time derivative of
the fourth component of a four vector P,, and hence it can be written in terms
of four vectors as
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Pe = o ~VPos(VeP,) . (388)
It is also clear that in the reference frame of the charge the total emitted power
must reduce to the non-relativistic Larmor result. There is then only one rea-

sonable conjecture that one can make for the relativistic formula, namely
2 e?
3m?

This result is in fact correct. Using eq. (346) we find

P = XX, . (389)

Pam = 5874 +72(a-0)?) = 374 (@d + %) , (390)
where we decomposed the acceleration into parts which are perpendicular and
parallell to the velocity in the last step. An obvious first comment is that the
power goes up rapidly when the velocity of the particle becomes relativistic, due
to the factor v2.

We can use our formula to explain why particle physics is so expensive.
To do experiments one uses magnetic fields cleverly contrived to make charged
particles run around in circles. Hence, if the radius of the accelerator is R,

v
0=0 = — . 391
a-v a= 4 (391)

It follows that the total amount of energy emitted per revolution is

2rR 47 €2
AE="""P, = —~%?3
) em 3 R’y

Since 7 occurs raised to the power four, we conclude that there is considerable
energy loss when relativistic particles are running around in circles, which is
what they do at CERN.

Radiative losses are less serious for linear accelerations. To make a fair
comparison of linear and perpendicular accelerations we must remember that
it is easiest to accelerate a relativistic particle perpendicularly to its direction
of motion. Suppose that we have a perpendicular and a parallel force of equal
magnitude F. Then for perpendicular acceleration we have

(392)

F= %(m'yv) =mya, , (393)

while for acceleration in the direction of motion we get (since then we have to
differentiate v as well)

d
F = a(m'yv) =my’q . (394)

The power emitted in the perpendicular case is
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2 e? 2 ¢?
Per = gmﬁ’z(mﬁ’cﬂ)z = EW’Y?FZ ) (395)
and in the parallel case
2 €2 2 e?
Pep, = gﬁ(mW’BaH)Q = EWFQ (396)

For given F the power in the perpendicular case is greater by a factor ~2.
Hence if we consider radiation from relativistic particles moving in an arbitrary
fashion it may be a good approximation to ignore the acceleration parallel to
the velocity.

5.5 ANGULAR DISTRIBUTION OF RADIATED POWER

Let us now look at the radiation from a relativistic particle in somewhat more
detail. What is the angular distribution like? The total received power per unit
solid angle is given by

dP,

@rec _ 2.,
- =rSmi (397)

evaluated at the retarded time as usual. A minor calculation, using eq. (387),
then shows that the total emitted power is

dPem _ 62 2

A0 dnrd (n-a(n; —v;) — Ka;) (398)
After a certain amount of additional calculation this becomes
dP., € (a®> 2n-av-a (n-a)*(1—0?)
dQ ~ 4r \ k3 K4 a K5 ) (399)
A more instructive form is
dP., €2 .
a0 - =~ something , (400)

where ”something” depends on the details of the motion. In the non-relativistic
case k =~ 1, and the prefactor does not matter. In the extreme relativistic case

k=1l—-n-va1l—cosv, (401)

where ¢ is the angle between the velocity and the direction of the emitted
radiation. Examination of the expression for emitted power then shows that
for relativistic motion the radiation will be very strongly peaked in the forward
direction.
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It is instructive to make a rough estimate of this beaming effect. We are
looking for the range of angles for which

o(k) =o0(l—w) . (402)

Then we have for small angles, while at the same time v is very close to being
one, that

2

mzl—vcoswzl—v+7. (403)

Roughly speaking this means that we require

o) = o2(1—v) = ~/AF0(1=0) = % . (404)

The conclusion of this exercise is that for highly relativistic motion the radiation
will be concentrated within a cone centered around the forwards direction and
having an opening angle of about

1
~ = 4
(] ~ (405)

—and this statement is independent of the details of the motion.

The details of the motion cannot be completely ignored. Let us look at two
special cases. First the case when the acceleration and the velocity of the charge
are parallel. Then we obtain (if we use 6 to denote the angle between n; and a;
and perform a modest calculation)

dP.,, €%*a® .,

= in®@ . 4
10 1 pcE S (406)
This is a factor 1/k° times the Larmor result; the radiation will be beamed
around the forwards direction but it will still be zero in precisely that direction.

In the case when the acceleration is perpendicular to the velocity we get

dP.,, e%d® ( cos? 9>

,-y2 K2

dQ  4nk3 (407)

As noted already, this case is the most important one.

5.6 SYNCHROTRON RADIATION

The case of relativistic charges running around in circles is of great importance
in various branches of physics. Particle accelerators have been mentioned. But
circular motion also occurs naturally whenever there are magnetic fields around.
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Figure 25: Angular distribution of emitted power (acceleration and velocity
parallel)

Moreover (as we have seen) arbitrary motion may be approximated as instanta-
neously cicular motion when radiation from relativistic particles is considered.
The received frequency spectrum has a surprising feature that was first under-
stood by Julian Schwinger, who analyzed the large radiative losses in accelera-
tors. His results were then applied by Shklovskii and Hoyle to the radio emission
from galaxies such as Cygnus A. The detailed theory is quite involved, but a
rough understanding of the surprising feature is easily achieved.

Let us consider an electron moving in a magnetic field. In the relativistic
case the cyclotron frequency is about

lelB 1
B = mey ~ R (408)

where R is the radius of the circle. Due to the beaming effect, radiation will be
emitted into a cone with opening angle

1
~—. 4
(G 5 (409)
It follows that the radiation will reach the observer in sharp pulses. How sharp?
Suppose that the width of the pulse (in time) is AL. If we Fourier decompose
a sharp pulse of this width we can use the relation

AwAL ~ 1 (410)

to estimate the highest frequency observed. The obvious guess is that one will
see frequencies up to the cyclotron frequency that characterizes the motion, and
then nothing. However, this is wrong.

To see why we observe that during the time that the observer is illuminated
by the beam the particle itself has moved a distance d, so that the illumination
occurs during a time interval
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v

= o 411

v " (411)
During this time interval the forwards edge of the pulse (that moves with the
velocity of light) will move a distance At, and hence the width of the pulse that
reaches the observer is

L=D—-d=——2—"=(=-1 N — 412
d pore -1 53 (412)

where the last step follows from the fact that

R R_1__R_R
y

1 1 1
o _ 1
11)1—>1 1—v2 27 (413)

The conclusion of this (admittedly rough) argument is that the width of the
observed pulse is

3

AL ~ % = Aw~ % ~ywp . (414)

Hence we will actually see very high harmonics of the fundamental frequency.

Sharpening of the pulse in synchrotron radiation

Exercises:

1. Compute the electric field from a charge moving with constant velocity in two
ways: By Lorentz transforming a Coulomb field, and by evaluating the Liénard-
Wiechert near field in terms of the present position of the charge. Check that
the results agree.

2. Argue using conservation of energy that the radiation field must fall off like
1/r.
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3. Draw the angular distribution of the emitted power for the case when the
acceleration and velocity are perpendicular.

4. The “searchlight effect”, namely that the emitted radiation from a fast
particle is concentrated in the forwards direction, can be understood from the
geometry of Minkowski space. Draw the forward light cone of the point of emis-
sion in the instantaneous rest frame of the particle (where the non-relativistic
Larmor result holds). Then cut this light cone with a plane of simultaneity for
a fast moving observer and observe where most of the radiation goes from her
point of view. What is the connection to the appearance of the sky from a
relativistic space ship, as given in good sf films?
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6 — RADIATION DAMPING

Our discussion of electrodynamics with point particles representing matter is
clearly incomplete—we have considered the external field and external current
approximations, but we have not tried to consider the full non-linear problem
where fields and point particles are in mutual interaction. We will take some
steps to remedy this defect, along the same path that we often tread to take the
interaction of a mechanical system with its environment into account. The idea
is that energy ”leaks” from the mechanical system to its environment, and that
this can be modelled by adding a friction term to the equations. For a particle
sliding on a table, we have

ma = Fepy — kv, (415)

where F¢*t is some mechanical force acting on the particle. This equation is
not invariant under time reversal, nor should it be since the leakage of energy
to the environment is irreversible. Can we do something similar for the energy
that leaks out in the form of radiation? It turns out that we can, but the
scheme that we will come up with suffers from a certain amount of pathological
behaviour. In our treatment of charged particles we have closed our eyes for
the obvious difficulty that the energy in the Coulomb field of a pointlike charge
is—on the face of it—infinite. It seems reasonable that it is this difficulty that
comes back to haunt our attempt to handle radiation damping through energy
balance. As a matter of fact there are consistency problems here that have never
been completely resolved. Our analysis will show why: The coupling strength
of electrodynamics being what it is the difficulties would show up in a region
where quantum electrodynamics must take over anyway.

6.1 THE NON-RELATIVISTIC CASE

We restrict ourselves to the non-relativistic approximation. Then the leakage of
energy is given by

P(t) = §e2a2 . (416)

Suppose that we can indeed describe the motion as

ma = Frgt + Fraq . (417)
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We must arrange that the work done by the radiative reaction force F,q is
equal to the total energy radiated, which means that it must be true that

b2 t2 2 b2 2 2
0:/ Fmd-vdt+/ gezazdt:/ (Fmd—gezd)-fudt+ 562[a-fu]§f . (418)

t1 t1 t1

Let us assume that the motion is such that the boundary terms can be ignored—
for instance because the motion is periodic and we are integrating over one
period. Then it is consistent with our result to assume that the equation we are
after is

ma = Fepy +m7a (419)

where we have defined a constant 7 by

2e?
T=_—".
3m

The dimension of 7 is that of time. For an electron, we find that 7 = 6.26-10724
seconds. The equation is due to Lorentz.

Our equation for radiation damping does have the expected property that
it is not invariant under time reversal. However, what is surprising is that it
contains third order time derivatives. This means that the set of solutions is
uncomfortably large. In particular, for vanishing external force it is physically
clear that the only solution should be a = 0, but in fact there is a one parameter
family of solutions

(420)

a = constant x e'/™ . (421)

There are "runaway” solutions of our equation. It will therefore be necessary
to supplement the equation with some additional restriction on the space of
solutions before we can accept it.

The following suggestion was made by Dirac (whose point of view was much
deeper than ours—he was trying to make sense of the relativistic theory, in spite
of the bothersome fact that a point particle has a divergent electromagnetic self
energy, while an extended particle is hard to define in a relativistic way). The
general solution of the equation with an external force F' included is given by

t
a=e'(ag - L/ e VITR(t)dt') . (422)
mt Jo
The constant ag is at our disposal. However, unlike the integration constants
that occur when we compute the velocity and the position we will not try to fix
ag by specifying its initial value. Instead we insist that the acceleration must
tend to zero in the remote future; hence we choose
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o
= —HITE@dt 423
w= [t (423)

Adding the two terms together we get

oo
a= Let/T/ e VITR@)dt (424)
mT p
This equation for the trajectory of the particle is the one that we will adopt. It
is important to realize that any solution of Dirac’s equation is also a solution to
the original Lorentz’ equation, but that the converse does not hold—runaway
solutions have been eliminated.

Unfortunately our equation is no longer a local differential equation in the
time variable, but an integrodifferential equation. It says that the acceleration
at any given time is determined by the force that will act on the particle in
the future, weighted by the (rapidly falling) factor e*/7. Clearly an unusual
equation! To get an idea of how it works we consider a simple situation where
the particle is acted on by a force which is localized in time,

F(t) = kO(t — t1)O(ts — t) . (425)

The acceleration of the particle according to Dirac’s equation is now readily
computed:

k
t<t;:a= Eet/T(e*tl/T—e*”/T) 1 <t<ty: a= E(l—e(t’”)/T) . (426)
m

The acceleration is zero for t2 < t. On the other hand ” preacceleration” occurs—
the particle starts to accelerate before the force is turned on. This behaviour
seems on the face of it to be manifestly unphysical, and presumably its presence
means that our equation can not be quite correct, but we can always argue
that since the timescale 7 is so short this does not matter. Indeed because of
the uncertainty relation AtAFE ~ h the uncertainty in energy becomes equal to
the rest energy m of the particle when we consider a time resolution 7, ~ i/m
which, for an electron, is about 137 x 7. The conclusion is that the classical
theory breaks down completely before we can even begin to actually measure
the preacceleration (but only because the fine structure constant e?/F takes the
small value 1/137).

Preacceleration
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In spite of the somewhat dubious character of the Lorentz-Dirac equation it
will give reasonable results when we apply it to the case of periodic motion. Let
us consider a harmonic oscillator and use our original differential equation

i+ Wi =T . (427)

To solve it we try the Ansatz

z(t) = zoe™ ™ = ra® +a®+wi=0. (428)

This can be solved for . It is convenient to rewrite the equation according to

z=1a & d=T1wy = Z(+1)+62=0. (429)

Since 7 is a small quantity so is §, and we work out the answer to lowest non-
trivial order in 4. When § = 0 the three roots are

§=0 = 2 €{0,0,—1} . (430)

For ¢ non-zero but small there will be one real root close to —1 and a pair of
complex conjugate roots close to +id. The real root is unacceptable, since it
leads to a runaway solution. The complex roots on the other hand correspond
to almost oscillatory motion. A slightly more careful treatment reveals that to
the lowest relevant order in § the root close to id is

1o .o 3.3
z R 56 + 6 — Zz& . (431)
Hence we find
a=T/2+i(wo+Aw), TrTwS Aw= —%Tzwg , (432)

where I' is known as the decay constant and Aw as the level shift. The important
point is that

Tw << 1 = wo >>T >> Aw . (433)

The decay constant is larger than the level shift and both are small corrections
to the oscillatory motion.

As usual in radiation problems it is the Fourier transform of the acceleration
that we are mainly interested in. The upshot of the discussion above is that

r_

a(t) ~ e~z HworAY) 4 complex conjugate (434)

1
T/24i(w—wo— Aw)

a(w) ~/ e~ 3 —ilwotAw)givt gy (435)
0
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The total energy radiated is

I~ / a2(t)dt ~ / la(w)[2dw | (436)
and hence the energy radiated per unit frequency is

dI 1

dw (T/2)? + (w —wp — Aw)? ~
This curve defines a spectral line, and it has a shape which is typical for decaying
systems. The width of the spectral line can be defined as the width of the
distribution at half maximum intensity, and is equal to I'. The classical level
shift is much smaller than the line width whereas the level shift in quantum
electrodynamics, which is called the Lamb shift, turns out to be comparable to
the line width. This was a famous mystery once upon a time.

~ la(w)[* ~ (437)

A spectral line including radiation damping
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