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PREFACE

THOSE who have had experience in teaching elementary

dynamics to students of Engineering will agree that the

majority find considerable difficulty in grasping the fundamental

principles on which the subject is based. There are new physical

quantities to be understood, and new principles to be accepted

which can only be expressed in terms of these quantities. Un-

fortunately, in many cases, this subject has to be introduced at a

stage of development in mathematics at which the student expects

some proof of what he is told to believe. He is not so prepared

to accept things without proof as he was when first told that

2x3 = 6. Even at that early stage, probably an attempt was

made to prove to him that 2x3 = 6, yet, in the end, he merely

accepted the fact and memorised it.

The author believes that the difficulty experienced is partly,

though by no means entirely, due to the way the subject is often

presented. In the student's mind it is associated with branches

of pure mathematics such as trigonometry, analytical geometry,

or infinitesimal calculus, and he is inclined to think that salvation

lies in memorising a number of formulae which are to be used in

solving problems, instead of looking upon dynamics as a funda-

mental branch of physical science, in which mathematics is of

secondary importance and the physical ideas of primary import-

ance. Quite commonly in elementary text-books, the second law

of motion is at first summed up in the form, force = mass x ac-

celeration, and the student is then given a number of examples

to work out, most of which consist in substituting numbers in a

formula. This very successfully disguises the true meaning of

momentum, and the extraordinary generality of the second law

of motion. The same applies to problems dealing with motion.

The student is generally presented with certain formulae for

motion involving a constant acceleration. These formulae, are of
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very little, if any, use to him later on, and have merely enabled

him to get answers to certain problems without thinking.

At first sight the remedy would appear to lie in teaching

dynamics experimentally, but the author's experience is that this

is not so for the majority of students. The phenomena of every-

day life provide innumerable qualitative experiments, and to

most students quantitative laboratory experiments in dynamics

are neither interesting nor convincing.

In the following pages an attempt has been made to present the

principles of elementary dynamics, and to explain the meaning

of the phj^sical quantities involved, partly by definition and

description, but mainly by worked examples in vyhich formulae

have been avoided as far as possible. By continually having to

think of the principle and the physical quantities involved, the

student gradually acquires the true meaning of them, and they

become real to him.

It will be observed that the first of Newton's Laws of Motion

is expressed in a somewhat different form from that in which it

is usually given, and the laws are called the Laws of Momentum.

In working examples the absolute unit of force has generally

been adopted, and, where applicable, the answers have been

reduced to units of weight. It matters little, in the author's

opinion, whether absolute or gravitation units are used, so long

as mass is not defined as weight divided by the acceleration due

to gravity. To say that the engineer's unit of mass is 32*2 lbs.

is almost to suggest that he is rather lacking in intelligence,

and cannot be expected to understand the difference between

equality and proportionality. If weight is introduced in the early

conception of mass, the student's conception of mass is extremely

vague, and his conception of momentum as a physical quantity is

even more vague or erroneous. A student who cannot understand

the difference in the two units of force, and who has merely to rely

on formulae expressed in one particular set of units, is not likely

to get any knowledge of dynamics which will be of real use to him.
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A number of graphical examples have been worked out in the

text, and a number are included in the examples to be worked

by the student. These frequently require more time than analytical

examples, but they are more useful and instructive. This is par-

ticularly the case with the engineer, who is so frequently faced

with problems which can only be solved graphically.

Probably the majority of students will be learning differential

and integral calculus at the same time as dynamics, and they

should be encouraged to use the calculus in working examples,

although all the examples given can be worked without its use.

The examples at the ends of the chapters are arranged more

or less to follow the text, and students should work them as they

proceed with the reading, and not wait until they have completed

the chapter. The miscellaneous examples, at the end of the book,

are intended for revision, and for this reason they are not arranged

either in order of difficulty or in the order of the chapters dealing

with the principles involved. The answers have mostly been

obtained by means of a slide rule. It is hoped that the errors in

them are not numerous.

Though primarily written for engineering students the book

may be useful to some others. The course covered is approxi-

mately that required for the Qualifying Examination which

Cambridge students have to pass before their second year, if

they wish to take an honours degree in Engineering.

The author wishes to thank Mr J. B. Peace, Fellow of Emmanuel
College, for valuable suggestions and for having contributed a

large number of examples, also Mr W. de L. Winter of Trinity

College for very kindly reading the proofs and for useful criticism

and suggestions.

J. W. LANDON.

Cambridge,

August 1920.
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CHAPTER I

Introductory

The subject commonly called Dynamics is a part of the much
bigger subject called Mechanics. In its broadest aspect, me-

chanics deals with bodies or parts of bodies which are acted upon

by certain forces, and analyses and examines the effect of these

forces in producing motion, or in maintaining a state of rest.

For the present purpose mechanics may conveniently be divided

into three branches as follows :

Kinematics

/

I
Mechanics- Kinetics

.Statics

Kinematics is the branch of the subject which deals with the

motions of bodies. The bodies may be of any size or shape, and

at times it may be convenient to consider them indefinitely small,

i.e. as points.

Kinetics deals with the causes of the motions of bodies, and

attempts to find a definite relationship between these causes

producing or maintaining motion, and the motions themselves.

Statics treats of bodies which are at rest and examines how
this state may be maintained.

The subject of dynamics, as will be seen, does not in itself form

one of the main branches of mechanics, but it may be said gene-

rally to include kinetics and a part of kinematics. It deals with

motions in so far as they are required in the examination of the

forces producing them, and it also deals with the general con-

sideration of the mechanical energy possessed by bodies, either in

virtue of their position or of their motion.

Now there are certain fundamental conceptions, and there are

also certain principles or laws, which form the basis of the whole

subject. Neither the conceptions nor the laws are numerous.

L. B. D. 1
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Fundamental Conceptions

These consist of the ideas of space, mass and time. It would

be difficult, if not impossible, to define accurately either of these,

or to explain exactly how the human mind understands their

meaning. The conceptions are acquired in childhood or are

born in us. Space, mass, and time are the three fundamental

physical quantities, and all the other physical quantities we shall

deal with may be defined in terms of them. It is easy to realise

that before much practical use can be made of these, we must

decide on some unit of measurement of them. We shall here only

concern ourselves with two systems of units :

(1) Foot, Pound, Second system, (f.p.s.)

(2) Centimetre, Gram, Second system, (c.g.s.)

Space. We may say that this is what possesses length, breadth

and thickness. Each of these is a length and hence space is most

conveniently measured in units of length.

In the F.p.s. system the unit of length is the foot.

In the C.G.S. system the unit of length is the centimetre.

1 foot = 30 '5 centimetres.

Mass. This may be defined as the quantity of matter or the

quantity of stuflT in a body. Although it is difficult to define pre-

cisely what is meant by mass, we have no difficulty in realising

what we understand by the term. If, for example, we ask for

half a pound of tobacco, we are not probably interested in the

amount of space it occupies, or even its weight, so long as we get

the correct quantity of stuflf. It may be compressed in the form

of a cake and occupy little volume, or it may be loose and occupy

a considerable volume. We shall see later how we can compare

masses. Probably our earliest conception of mass in childhood is

when we try to throw things about. We find that some are more

difficult to move or throw than others, and we soon discover

that this does not depend upon the size. We consider that
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those which are more difficult to throw or move have more stuff

in them.

In the P.p.s. system the unit of mass is the pound (1 lb.). The
standard pound is a particular lump of platinum deposited in the

Exchequer Office.

In the C.G.S. system, the unit of mass is the gram. Originally

this was intended to be the mass of a cubic centimetre of pure

water at 4 degrees centigrade, but the standard is now one of

platinum like that of the pound.

1 pound = 453-6 grams.

In dealing with mass we might conveniently define what is

meant by density. The density of a substance is the mass per

unit volume.

This should not be confused with specific gravity. The
specific gravity of a substance is the ratio of the mass of a given

volume of the substance to the mass of an equal volume of water.

For example:

The density of water = 62*3 lbs. per cubic foot.

The specific gravity of steel = 7-78.

.-. The density of steel =- 7-78 x 62*3

= 485 lbs. per cubic foot.

Time. The unit of time which is adopted in both systems of

units is the second.

Vectors

The various physical quantities which we have to deal with
can be divided into two classes :

(1) Scalar quantities.

(2) Vector quantities.

A scalar quantity is one which possesses magnitude only, for

example, an interval of time, as 3 seconds. There is here no idea

1—2
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of direction. Again, 2 lbs. of bread. This is merely a definite

quantity of stuff and has no connection with direction.

In dealing with scalar quantities we add and subtract by the

ordinary rules of arithmetic. For example, in making a certain

article in a workshop, work may have to be done on it in three

different machines, and the lengths of time in these may be

15 minutes, 40 minutes, and 10 minutes. The total time for

machining is then, (15 + 40 + 10) = 65 minutes.

A vector quantity is one which possesses both magnitude and

direction^ for example, the weight of a body. We know that this

acts vertically downwards, and that it is generally easier to push

an object along than to raise it up.

Suppose we are dealing with the displacement of a body from

a given position. Here we want to know, not only how far the

body is from its original position, but also in what direction this

distance is. Let us take an actual example.

A ship travels 2 miles due east^ and then travels 1^ miles in a

direction north-east. What is the final displacement of the ship ?

The easiest wa)^ to solve this is to draw a diagram representing

the motion of the ship. Draw

OA due east to represent the

2 miles displacement. Make it

1 inch long. Now draw AB in

a direction north-east, and make

it j inch long to represent IJ

miles displacement.

The final position of the ship is obviously represented by the

point B, and the displacement from the starting-point is given by

OB, both in magnitude and direction. By measuring we find OB
is 1-62 inches, and we find also that the angle BOA is 19 degrees

9 minutes. We can say, therefore, that the ship is at a distance

from the starting-point of 3*24 miles, and that its displacement is

19-15 degrees north of east.

Here we are dealing with vector quantities, since in order to
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define them we have to state both magnitude and direction.

It is obvious that a vector quantity can conveniently be repre-

sented by a straight line, since the line may be drawn of a length

to represent the magnitude of the quantity, and also be drawn in

a definite direction to represent the direction of the quantity. In

fact, this is why such quantities are called vector quantities. A
vector is a straight line of definite length, drawn in a definite

direction. In order to indicate the starting-point of the vector,

or to indicate what is called the sense, it is often convenient to

put an arrow-head on the vector as is shewn in fig. 1.

Addition and Subtraction of Vectors

Suppose we have two vectors as shewn in fig. 2. Let us call

them X and y. If we want to find the vector sum of x and y,

we take a line OA equal and parallel to x, and then a line AB
equal and parallel to y. The sum of the two vectors is given by

OB. We write this :

OB = OA + AB,

the line over the top representing the fact that the addition is

vector addition. The order of the letters gives the sense.

Fig. 2.

If we wish to find the vector difference of x and y we take

the line OA as before, and then draw the line AB of the same
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length as y^ in the same direction, but in the opposite sense as

shewn in fig. 3.

We have OB' = OA + AB' = OA-AB = cc-y.

Now in many cases it is convenient to draw the figure accu-

rately to scale, and to ^
measure the

vector sum or difi'erence. Sometimes,

however, it is more convenient merely

to sketch the figure and to calculate the

true length and direction of OB or OB'.

We shall generally know ^, the angle

between the vector quantities we are

dealing with.

Draw OM perpendicular to AB as

,
then

0B2 = 0M2+ MB^

==0M2 + (AB-MA)2

= OM^ + AB^ - AB . 2MA + MA^

= OA^ + AB^ - 2AB . OA cos Q,

z^ = 01? + y^ — 2xy cos 6.

OB'2 = OA^ + AB'2 + 2AB' . OA cos 0,

or z"^ = ar^ + 2/^ + 2xy cos 6.

shewn in fig. 4
Fig. 3.

or

Similarly

Fig. 4.

The vector OB is called the resultant of OA and AB.

TJie resultant of a number of quantities represents the single
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the two

esultant

quantity which is exactly equivalent in every way to the number

of quantities.

For example in fig. 1, OB is the resultant of OA and AB, and

the ship would be in exactly the same position if it had moved
3*24 miles in a direction inclined at an angle 19 '15° N. of E., as

it is by making the two different movements.

Sometimes we shall find it convenient to think of a single

quantity as made up of two quantities. In this case

quantities are called the components of the single

quantity.

For example, consider the case of a body being pulled in a

certain direction by a pull of magni-

tude R (see fig. 5). We might produce

exactly the same effect on the body

by applying two pulls P and Q. say.

These are then called components of

the pull R.

If we fix the directions of P and

Q, we can at once obtain their mag-

nitudes, by remembering that the

vector sum of P and Q. must be

equal to R.

Let OB represent R. From B draw BA parallel to the direction

of Ql to intersect P.

Then OB == OA + AB,

.'. OA represents P, and AB represents Ql.

P _ OA _ sin <^

R ~ ~
~Now,

OB sin (d + <!>)'

sin
<f>

and

sin (O + cf))'

AB sin

OB sin (0 + (f>)'

sin^

sin {0 + (f>)'



8 ELEMENTARY DYNAMICS

Generally we employ rectangular components, i.e. components
which are at right angles to one another

as shewn in fig. 6.

In this case we have

Component AB = OB sin 0,

„ OA = OBcos^.

There is, however, more advantage in

choosing rectangular components than

the mere simplification of resolution, if the angle OAB is a right

angle, then the components OA and AB represent the whole of the

quantity OB which is effective in the two directions OA and AB
respectively. On the other hand, if the angle OAB is not a right

angle, as in fig. 5, then OA and AB are not the whole component

of OB in these directions, since component AB has an effect in the

direction OA and component OA has an effect in the direction AB.

The whole component, or resolved part, of OB in direction OA is

given by OM in fig. 5, where BM is at right angles to OA.

OM = OA + ABcosBAM

= 0A + ABcos(^ + <^)

= OA + the rectangular component of AB

in the direction OA.

In the case of rectangular components, neither component has

any effect in the direction of the other. We shall better realise

the importance of this later on when we have dealt with more

concrete cases, but we will take one illustration here. Suppose a

motor-car is travelling due east, and there is a north-east wind

blowing at 20 miles per hour. The north-east wind is equivalent

to two winds, one blowing from the north at 20 x sin 45°, i.e.

20 20
—7^ miles per hour, and one blowing from the east also at —r^

miles per hour. Now the northerly component will have no ap-

preciable effect on the motion of the car, whereas the easterly

component will produce a direct resistance to the car's motion.



VECTORS 9

It may be noted that whereas there is only a single resultant

of two quantities, there are an infinite number of pairs [of com-

ponents which will give the same resultant.

This is shewn in fig. 7.

The components (OAj, A^B), (OA2, AgB), (OA3, A3B) all have the

same resultant OB.

Fig. 7.

Average Values

When we are dealing with two quantities, say y and a?, which
are related to, or depend upon, one another, we shall at times

use the expression, '•Hhe average of one quantity, y say, with

respect to the other x" Let us make quite sure we understand

exactly what we mean.

If we were talking about cricket there would be no need to

explain what was meant by the average of a batsman during the

season. This is simply the total number of runs made divided by
the total number of innings played. Other average values are

obtained in a similar way.

Suppose for example we travel by motor-car between two
places distant 150 miles and we take 5J hours to do the journey,

150
we say the average speed was —— , i.e. 27 3 miles per hour.
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There again we simply take the total value of the one quantity

and divide it by the total value of the other quantity.

We must, however, be careful to state what two quantities we
are considering. For example, we may state the average cost of

an army to the country during a war as so many pounds per

day, or we may state the average cost per soldier. The values

will be entirely different. In each case- we find the total change
in one quantity and divide by the total change in the other

quantity. We shall have many illustrations of this as we proceed.

Rate of Change

Another idea we have to get hold of clearly is the rate of change

of one qy^ntity with respect to another.

Suppose for example we have two quantities, denoted by y and

X, and that y varies with x in some

particular manner. We may ex-

press this by giving a table of

simultaneous values of the two

quantities, as is done in a table of

logarithms. Here the two quanti-

ties are the numbers x and their

logarithms y.

We may also express the vari-

ation by representing simultaneous Fig. 8.

values of the two quantities on a curve as in fig. 8.

For any point A on the curve, ON represents the value of x and

NA or OM represents the corresponding value of y.

Frequently we want to know how rapidly one quantity, y say,

will change as the other quantity x changes. For example, we
may have a motor the speed of which is changing, and we want

to know what is the actual speed at different instants of time.

This is given us by a speedometer. If a speedometer is not avail-
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able, we may get the speed approximately by noting the time

taken to travel from one mile-post to the next. This will of

course only give us the average speed for the number of minutes

required to travel the mile, since the speed of the car may be

increasing or decreasing during this time. We should obviously

get more nearly what we wanted if we had posts at short in-

tervals of distance, and an accurate stop-watch to measure the

time taken between two consecutive posts. ^ If we have a cyclo-

meter, we may use this to measure our distances and thereby get

still more accurate values of the speed. Now suppose we take

the times for different distances from our starting-point, and

express the result by a curve as in fig. 9 where y represents the

distance from the starting-point and x represents the time taken.

Time C D

Fig. 9.

To find the speed of the car after a time given by OC we draw
CP perpendicular to Ox, then PC is the distance from the starting-

point.

Now find the distance from the start when the time has

increased by a small amount represented by CD. QD drawn
perpendicular to Ox will give the required distance. Draw PK
perpendicular to QD. Then the extra distance moved in the

small time is given by QD - PC = QK.

Let us represent the small change of distance by hs and the

small change in time by 8^.
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Then the average speed for the small interval of time

OK
~ PK

= tanQPK

= tan 0.

Now we shall get nearer to the true value of the speed at P,

the smaller we make PK; we shall only get the true value when

we take the interval of time indefinitely small. If we do

this we can no longer measure QK and PK, but we can still

measure tan ^, because the line joining PQ becomes' the tangent

to the curve at P, when PK becomes indefinitely small. This is

shewn in fig. 10.

Speed at P = tan 0, i.e. the value of ^ when St is made inde-
ed

finitely small

We write

change of distance with respect to time

We write this -j- = tan 6, where -r- stands for the rate of
at at
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We have taken a special case, but of course the same holds

generally for any quantities x and y and we ma^ write

dx
tan Q.

When Q is greater than one right angle, and less than two

right angles, tan 6 is negative. This means that the rate of change

is negative, i.e. y is decreasing as x increases, see point T (fig. 10).

Now in certain cases, instead of accurately drawing the curve

to scale we can express the relation between y and x analytically.

In such cases we can also determine the value of -

dx'
J. the

rate of change. This is done for us in the differential calculus.

Fig. 11.

We will find the value of the rate of change of y with respect

to x for two simple relationships. This will save us a good deal

of trouble later on.

(1) Suppose the relation is given by

y = a sin hx.

This is shewn plotted in fig. 11.

diiNow we want to find the value of -^ , i.e. the value of tan at
dx

any point.
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We may obtain it thus: Let the radius of the circle in fig. 12

be made equal to a and let the

angle AOB be equal to hx. Let,

also, the angle BOC be the small

angle representing a small incre-

ment of a?, namely hx, i.e.

A
AOB = hxj

AOC = h(x+ hx),

.'. BOC = 6. 8a;.

The value of y corresponding to

x = asinhx = BN.

The value of y corresponding to " ^ig- ^2.

(x + hx) = asmh{x-¥hx) = CM.

The increase of y for increase of x equal to hx is OK,

hy _CK
' ' hx hx'

A
But if COB is very small then the chord CB will be very nearly

at right angles to OB, i.e.

A A
CBK = complement of KBO

A
= complement of BOA.

Also CB = OB X angle COB

= a X b . hx,

A
and CK = CB sin CBK

A
= CB cos BOA

= a.b .hx. cos bx.

, dy ab .hx. cos bx
'

' dx hx

- ab cos bx.

Again, suppose that

y = a cos bx.
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Using fig. 12, we have,

Value of y corresponding to aj -a cos 6aj = ON,

„ „ „ (a3 + Sec) ==acos6 (£c + 8a?) = OM.

Increase of y for increase of x equal to Saj is - MN (since y
really decreases),

, hy _ MN
'

' hx Sx
'

But MN=:KB = CBcosKBC

a.b.Sx.sin BOA,

- — ab sin bx,
ax

We have then, if

y = a sin bx, -f = ab cos bx.^ ' dx '

and if y - a cos bx, —- — — ab sin bx.^
' dx

Area Curve

In some cases we are given the rate of change of one quantity

with respect to another, and we want to find the total efiect of

this rate of change. For example, we may be given the speed of

a body at different instants of time, and want to find how far the

body has travelled in different intervals of time. It will be shewn

in the next chapter that the distance is given by the area under

the curve representing the speed and time. We will now examine

a graphical construction which enables the area curve to be

drawn.

Suppose the given curve is OPQ and we want to find another

curve Opq%\xc\v that the ordinate at'any point, say qlA, represents

the area between the curve OQ and the axis of x. Take any

portion of the curve OP and let KL be the mid-ordinate. Draw
KK' parallel to Ox and join K' to any point B on Ox produced.

Draw Op parallel to BK', cutting FN at ;?. Then /)N is propor-

tional to the area OPN.
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l.e.

The triangles OpN and BOK' are similar

pN OK' _ KL
" ON ~ OB ~ OB '

jt)N =^^ X KL. ON
OB

_1_

OB
(area OPN),

i.e. jo is a point on the area curve.

For the area under PQ take the mid-ordinate RS. Draw RR'

parallel to Ox and join BR'. Draw pq parallel to BR', and draw

pv parallel to Ox.

or

O L N S M

Fig. 13.

The triangles pvq and BOR' are similar,

vq _ OR' _ RS
' ' pv~ OB OB

_ J^
~0B

Hence Mq=pN + vq

1

X (RS X pv)

(area NPGtM).

OB
(area OPQM),

i.e. 5' is a point on the area curve.

i
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Similarly we may find as many points as we like.

Scales. The scale of the area curve depends upon the distance

OB.

Let OB = A inches.

Take 1 square inch of area under the original curve. This, in

the area curve, is represented by an ordinate of length y inches.

.*. the scale for ordinates of the area curve is,

1 inch = h sq. ins.

Example. A speed-time curve is drawn to thefollowing scales^

1 inch = 5 seconds, for the x axis,

and, 1 inch = 4 feet per second, for the y axis.

It is required to find the value of h in inches, so that the scale

for the ordinates of the area curve is

1 inch — bOfeet.

1 sq. in. under the speed-time curve = 4x5 feet.

.*. for the ordinates of the area curve we have,

A X 4 X 5 = 50,

or, h — 2^ inches.

Examples. Chapter I

X. A sailing boat travels 400 yards in a direction north-east and then

500 yards in a direction 60° west of north. How far has it travelled from the

starting-point and in what direction?

If the boat now returns to its starting-point by moving, first due south and

then due east, how far will it travel in each of these directions?

2. Three vectors are of magnitude 3, 2, and 1, and their directions are

parallel to the sides AB, BC, CA of an equilateral triangle, taken in order.

Shew that the resultant vector is perpendicular to the direction of BC, and
find its magnitude.

Find also the values of two vectors, one acting in direction AB and the

other at right angles to AB, which have the same resultant as the three given

vectors.

L. E. D. 2
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3. Three wires radiate from a telegraph pole, in a horizontal plane. The
first runs east, the second north-east and the third north-west. The tensions

in the wires are, respectively, 200 lbs., 150 lbs, and 300 lbs. Calculate the

magnitude and direction of the resultant tension. The direction of the

resultant is to be specified by the angle ifc makes with the first wire.

Verify your result by a graphical construction.

4. A vector (r, d) is a straight line of length r which makes an angle 6

with some reference line, the angle being measured in a counter-clockwise

direction from the reference line.

If A, B, C represent the vectors (3, 40°), (5, 115°), and (4-5, 260°) respec-

tively, find graphically, (a) A -f B -f C, (b) A - B, (c) B - C - A.

Check the results analytically by resolving the separate vectors in two

directions, along and perpendicular to the reference line. •

5. The depth of a trench, measured from the surface of the ground, at

different distances along the bottom, is given in the table. Plot a longitudinal

section of the trench and estimate the average depth.

Depth in feet . .

.

3-0 6-2

5

8-1

24

6-7

40

5-1

54

6-0

60

5-6

70

6-0

80

5-2

92

4-3

100Distance in feet

6. A body is moved from rest by a pull P which changes with the distance

(s) moved and the time {t) taken, according to the equations

irt
P= 80-5s, and P = 80cos

30

the value of P being in pounds when s is measured in feet and t is measured

in seconds. Find, graphically, the space-&\era,ge of the pull, and the time-

average of the pull, for the first 8 feet of motion.

7. The' total number of letters collected from a certain district in one

year was 854,200. What was the average number of letters collected per day?

If there are 42 post boxes in the district what was the average number of

letters posted per week in each box?

The population in a certain district at intervals of 5 years was as shewn

below.
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Plot the figures, and from the graph estimate the population in 1908 and

1917, Find also the rate of increase per year for the same years.

Population in
]

thousands j"*
20-8 29 45-7 71-2 79-3

Year 1900 1906 1910 1915 1920

9. Plot the curve given by ^ = 2 8in-^, between the values a;=0 and
o

x=S. Measure the rate of change of y with respect to a; for a;= 1 and a;=2'5.

Check your results analytically.

10. Draw the circle x^ + y'^= 4:, and from it find the value of -p, (1) for

a;= l-5, (2) fora:=-l-5.

11. Draw a semicircle with a diameter of 4 inches. Taking one end of the

diameter as the origin, and the axis of x along the diameter, draw the area

curve.

What is the area under the semi-circular curve from x=0, to a; = 1-5?

12. Plot the curve y = l'5 sin — , between the values x= and a;= 4, and

draw the area curve. When the ordinates of the original curve are negative

the area is to be considered negative.

x^
13. Plot the curvey= -j, between the values x==0 and a;= 4, and draw the

area curve.

2—2



CHAPTER II

MOTION

Speed and velocity

Speed. The meaning of this is quite generally understood. It

is merely the rate of travel qf_ a_bgd:y. For example, if we state

that a train is travelling at 25 miles an hour, all we mean is, that

if the train continues to run at the same speed it will pass over

25 miles of line in one hour. Here we are not concerned with the

direction of travel. The direction may be changing continually,

or it may be either in a straight line or along any curved path.

Velocity. The velocity of a body is the rate of change oj

'^osUwnBiidi is always measured ina^^traight line. It is essentially

a vector quantity.

Consider a point on the flywheel of an engine. The flywheel

may be rotating uniformly at 240 revolutions per minute, and we

may say, therefore, that a point on the rim has a constant speed,

but we cannot say that it has a constant velocity, in fact, the

velocity is continually changing, since its direction is changing,

being always tangential to the wheel. This is a very important

distinction, as will be seen later.

Velocity may be either uniform or variable. If a body is

moving with a uniform velocity then it will pass over equal dis-

tances in equal intervals of time, no matter how short the intervals

may be, and the distances will all be in the same direction. In the

case of a varying velocity, the distances passed over in equal in-

tervals of time will be different, or it may be that the directions

will be different.
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Unit of Velocity. In the p. p. s. system this is 1 foot per second.

In the c. G. s. system the unit is 1 centimetre per second.

If we say that a body is moving with a velocity of 5 feet per

second due east, we imply that if it continues for 1 second to have

this velocity it will have moved 5 feet due east in the course of

the second. If the velocity be varying, then we have two ways of

dealing with it

;

( 1 ) We may state the ac^wa?velocity it has at each instant, or,

(2) We may state the average velocity in respect to time for

the interval under consideration.

Let us look at these things graphically.

K
a

Fig. 14.

Consider a body K moving in a straight line, and let us start

measuring the time when the body is at A.

Now we may represent the position of the body K at any in-

stant by drawing a distance-time

curve as shewn in fig. 15. After a

time t seconds represented by ON,

the distance from A will be given

by the ordinate PN, say s feet.

If the body had a uniform ve-

locity it is easy to see that the

distance-time curve would be a

straight line, since s has to increase

uniformly with t.

It is also evident, in this case, that the velocity will be repre-

PN
sented by —-, i.e. by tan 6^, (fig. 16).

«
o ^^
c ^^^

i P^^^
(0

B

/^ 1

^^<8 (
!

O N Time
Fig. 15.
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The velocity-time curve would be a straight line as shewn in

tan 6

Time
Fig. 16. Fig. 17.

Suppose the velocity is varying as shewn in fig. 15, then for any

interval of time, t say, we can find the average velocity.

_,, . .„ , , distance passed over PN s
This will merely be -.

—-—
-, = — = -

.

time taken ON t

We may want to know the velocity at any particular instant,

and this we can find from the space-time curve as follows

:

Suppose we require the velocity after a time t, when the distance

is given by point P on the curve.

Draw TP the tangent to the curve at the point P ; then the

velocity at P will be given by tan PTN, i.e. tan 6.

dsWe have. velocity
dt

= tan

We may now plot a velocity-time curve, fig. 18, the ordinates

of which represent the values of tan 6 for the space-time curve.

>» p
•fj ^^Q
> -^

i
-8t —

-

O N M A Time

Fig. 18. Fig. 19.

Agliin, we might have been given the velocity-time curve and

want to use it to find the distance passed over.
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It is easy to see, fig. 19, that for a small interval of time 8t,

the distance passed over is nearly equal to the velocity at P x 8^

= NPx MN

= area of rectangle PM, approximately.

For the true distance we must take St indefinitely small.

In this case we cannot draw the rectangle as it becomes a line,

but we can clearly see that the sum of the rectangles, for all the*

small intervals of time from O to A, becomes the area under the

curve on the base OA.

Having obtained the distance passed over in any time t by means

of the area under the curve, we can now obtain the average velocity

with regard to time by dividing this distance by the time.

^- , .^ area above OA
Ihe average velocity = —

= the mean height of the curve.

Example (1). A train has a speed of 60 miles jjer hour, what

is the speed in feet per second?

60 miles per hour

= 60 X 1760 X 3 feet per hour

60x1760x3^.
^

60x60
.f^^^P^^«^<^^^^d

= 88 feet per second.

Example (2). The vanes of a de Laval Steam Turbine are at

a mean distance o/*3J inchesfrom the centre of the rotor which runs

at 30,000 revolutions per minute. Find the speed of the vanes.

Speed = 27r X 3-5 inches in _ minute

Stt X 3-5 X 30,000 ^— leet per minute
12

27r X 3-5 X 30,000 X 60

12x5280

625 miles per hour.

miles per hour
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Example (3). A shell is fired at a target 2000 yards away,

and explodes at tJie instant of hitting. At a point distant 1800 yards

from the gun and 400 yards from the target, the sounds of firing

and exploding ofthe shell arrive simultaneously. Taking the velocity

of sound in air as \0^0 feet per second, and assuming the path of

the shell straight, find its average velocity.

In fig. 20, let A be the position of the gun, B the position of the

target and C the point where the sounds are heard.

2000 yds

^800 V^s

Fig. 20.

Time for sound to travel from A to C == time for shell to travel

from A to B 4- time for sound to travel from B to C.

Let V — the average velocity of the shell in feet per second, then,

1800 X 3 2000 X 3 400 X 3

1080

2000

V

1 400

1080

1080

or, V = 1542 feet per second.

Example (4). At a particular instant a body is moving with a

velocity of bfeet per second and 3 seconds later its velocity is \Ofeet

per second. If it is known that the speed

is increasijig uniformly with the time,

find the distance parsed over in the three

seconds.

The velocity-time curve is as shewn

in fig. 21. It is obvious that the time

average of the velocity

= J(10 + 5) = 7*5 feet per vsecond.

Distance passed over = 7*5 x 3

= ?2-5feet.

Time

Fig. 21.
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Example (5). The speed-time curve for a motor omnibus^

obtained hy means of a speed recorder, is given in the following

table

:

Speed
m.p.h.

6-1 8-1 9-4 10-7 12-8 14-4 15-9 16-8 17-7 18-3 18'7 19-2

Time
sees.

2 4 6 8 12 16 2Q 24 28 32 36 40

It is required to draw the distayice-time curve.

The speed-time curve is shewn plotted in fig. 22, the scales

being

:

1 small division = 1 mile per hour,

and r small division = 1 second.

.^

jst ^^^" "^
v> /

.£. I't |2'
3 -., 2
O' 7

20 -, 7

:§:::: :: :: ::: :::
^" " - =

:t : : " --;='-*?---
15= ^-'-'' /''

-£- -iS- ^-
^<t^ ^^^ ^

•^ii'^ ^ ^^ ~ /
-n T V /

10-©- ,^- ^
« ^'^ ^

-.h- ^^ -^^^
vr 7* p'^

- Z ^''
5 -I -A-^q-

'i
,'^$-

^ '*= +
:^^r^-—+— -"^'r'Vf

3e(por^djS

8I«
II

>

10 30 35 4015 20 25
Fig. 22.

The distance passed over is represented by the area under the

.curve to a scale such that

1 small square = ^|^ x 1 feet.

Take the distance passed over in the first 10 seconds.
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The number of small squares under the velocity-time curve = 82,

i.e. distance =—wk— feet.
bU

For the distance scale take

1 small division = ^-^- feet.

The distance for first 10 seconds = 4-1 divisions.

This is shewn by point A.

The distance-time curve obtained in this way is shewn in fig. 22.

If squared paper is not available the graphical method given in

chapter I may be used for drawing the area curve.

Referring to fig. 13, p. 16, if we keep the same scales as in

fig. 22, we find the distance OB thus.

Let h = the number of small divisions in OB.

The scale for distances is, 1 small division = hx^^ feet,

• 7, V 88 _ 88

i.e. h= 20 small divisions.

Example (6). The supply pipe to a tap is f inch bore, and the

nozzle of the tap at exit has a bore of J inch. The water leaves the

tap in a direction inclined at 90 degrees to the supply pipe.

If the tap discharges 3*6 gallons per minute, what is the velocity

of the water at exit, and the change of velocity as it passes through

the tap.

1 cubic foot of water contains 6J gallons.

Let V = the velocity of water at exit in feet per second.

The discharge = ^ ^-[aa ^ ^ ^^^^^ ^®®* P®"^ second

= - —~~ XV X 6-25 X 60 gallons per minute.
16 X 144

Hence rir^,^ x 6-25 x 60 x -y = 3*6,

16 X 144
3-6x16x144

^^ "" ~
'tt X 6-25 X 60

= 7*05 feet per second.
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li u = the velocity in the supply pipe, then

TT X9

27

4 X 64 X 144
~xu X 6-25x60 = 3-6,

and u = 7-05 X ^ X J

= 12*5 feet per second.

In fig. 23 let OA represent u and OB represent v, then AB repre-

sents the change of velocity, i.e. the

velocity which has to be vectorially

added to the velocity u to change it

to velocity v.

Change of velocity = Ju^ + v^

= n/12-52 + 7-052

= V205T
°

^ig- 23.

= 14-3 feet per second.

The direction is given by the angle ^, i.e.

tan~^ - = tan ^ -^ ^u 12-5

= 291" (nearly).

Angular Velocity

When a body is revolving about an axis it is often more con-

venient to express its speed in terms of the angle turned through

in unit time, instead of the distance moved in unit time. The

former is called the angular velocity of the body and is usually

measured in radians per second or revolutions per minute.

It is easy to establish a connection between the angular

velocity (w) and the speed, or velocity (v) at any instant (t). Let

a point A rotate about centre O, and let its distance from the
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centre be r. Suppose it turns through 6 radians in time t and
arrives at the point B (fig. 24).

n

Angular velocity = cd

But speed, v

t

arc AB vQ

t t

Fig. 24.
= (u . r.

Hence the velocity at any instant or the speed = wr.

Example (7). The flywheel of an engine is 7 fleet in diameter

and rotates at 240 revolutions per minute. Find the angular

velocity in radians per second^ and the linear speed ofl a point on

the rim..

Angular velocity = 240 revs, per min. -f

240 '.^

-j^- revs, per sec. ^

240 xW ,.

radians per second
60

= Stt rads. per sec.

Speed of a point on the rim = cor

= 87rx|-

— 88 ft. per sec.

Example (8). A nut is rotated on a flxed screw at N revolutions

per minute. If the screw has n threads per inch and is ofl effective

diameter d inches^ find an expression flor the speed ofl sliding ofl

the nut and screw.

Suppose we strip off one thread and flatten it out, we should

get an inclined plane as shewn in fig. 25, where CB equals the

circumference of the screw, i.e. ird, and AB equals the pitch of the

. 1
screw, I.e. -.



ANGULAR VELOCITY 29

Let u = the speed of sliding along AC in feet per minute. We
may resolve this into two compounds (a) vertical v^f (b) hori-

zontal Vg.

Fig. 25.

In one revolution the horizontal travel is ird inches.

.'. the horizontal speed = 7ro?N inches per minute.

In one revolution the vertical travel equals - inches.
^ n

N
.*. the- vertical speed = - inches per minute.

The velocity of sliding is equal to the resultant of v^ and v^,

V
vl + {-TrdnY inches per minute.

Acceleration

In precisely the same way as velocity is the rate of change

of position, so acceleration is the rate of change of velocity :

i.e. the change of velocity in unit time. The velocity may be in-

creasing uniformly, in which case we get a constant acceleration.

For example, a motor car increased its speed uniformly from
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4 miles per hour to 12 miles per hour in 10 seconds. Its accelera-

tion is (12 — 4), i.e. 8 miles per hour in 10 seconds,

=^ miles per hour in 1 second

— Tu ^ f& ^^®^ P®^ second in 1 second

= 1 '17 feet per second per second.

Again, the velocity may be changing at a variable rate, e.g. in

the first second it may increase 1 mile per hour, in the second

4 miles per hour and so on. The acceleration in this case is said

to be variable.

It is easy to see that acceleration is related to velocity in

exactly the same way as velocity is related to position.

Any propeHies or formulae which hold for velocity and position

will hold alsofor acceleration and velocity.

Velocity-time curve

Suppose we are given a velocity-time curve as shewn in fig. 26.

The acceleration at any time t will be given by the slope of the

curve at P, i.e. by the value of tan 6.

Fig. 26.

Again, if we are given an acceleration-time curve it follows that
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the change of velocity in time t is given by the area under the

curve from A to P, shewn shaded in fig. 27.

I
Fig. 27.

Velocity-space curve

In certain practical problems we can obtain the figures for a

velocity-space curve and it is often necessary to estimate the ac-

celeration. If V denote the velocity, and t denote the time, the

ov
acceleration is given by the value of ^ when ht is indefinitelyU

dv
diminished, i.e. by — . Suppose we wish to find the acceleration

dt

at distance s, i.e. at point P on the curve, fig. 28.

Space

Draw the tangent PT to the curve at P, the ordinate PN and
the normal PG, i e. the perpendicular to the tangent.
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OV 6S
Now the acceleration = ^ • ^ j when U is indefinitely diminished.

But the limit of

and the limit of

8s

It

Bv

Ss

%

= tan 6.

Hence the acceleration = v^r
as

= PN . tan e

= PN . tan NPG

= NG.

Or, the acceleration is given by the subnormal NG.

1
, Space curve

Velocity

Suppose we are given a velocity-space curve and we wish to find

the space-time curve.

SsWe have v = -^ , nearly,
bt

i.e. -Ss = Bt.

Draw the -, s, curve (fig. 29).

01 Space

Fig. 29.
Then, the time for any distance is

given by the area U7ider the curve.

In many problems, it is not necessary to actually draw the

graphs representing the motion to scale, as we can readily

calculate the quantities we require. It is, however, often very

helpful to sketch the graph roughly.

Example (9). A tramcar starts from rest and accelerates uni-

formlyfor 8 seconds to a speed o/ 10 miles per hour. It then runs



ACCELERATION 33

at a constant speedy and finally is brought to rest in iO/eet with a

constant retardation. The total distance passed over is 250 yards.

Find the value of the acceleration^ the retardation^ and the total

time taken.

k-8->K t,

Fig. 30.

The velocity-time curve is shewn in fig. 30, where t^ is the time

during which the speed is constant, and ^2 is the time of retardation.

The maximum speed attained = 10 miles per hour

= -\®- feet per second.

Area BEC = the distance passed over during the retardation, i.e.

||x^,= 40,

12x40
88

= 5*45 seconds.

Also, area OABC = the total distance passed over, i.e.

88 X 8 + ^8- X ^1 + 40 = 750.

.-. ^, = (750 -40- 58-7) ^3
= 44*3 seconds.

We have then,

88
Acceleration = ^—3 = 1 -83 feet per sec. per sec.

Retardation
6 X 5-45

Total time taken = 8 + 44-3 + 545

= 57*8 seconds.

L. E. D.

2*69 feet per sec. per sec.
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Example (10). Using the speed-time curvefor the motor omnibus

given on p. 25, it is required to construct an acceleration-time curve.

We have seen that the acceleration at any point P is given by

tan PTN, where FT is the tangent to the curve at P, fig. 31.

Take the acceleration at 20 seconds from the start,

A FN
tan FTN =—

NT

= .^^r— (measuring in divisions).

Now each vertical division = 1 mile per hour

= |§ feet per second,

and each horizontal division = 1 second.

Hence to get the true acceleration we have to multiply the
A

value of tan FTN by |-| or ff

.

.*. acceleration at P = .r=-^ x -—
37-5 15

= 0'43 ft. per sec. per sec.

Take for the acceleration scale, 1 small division = 0*1 ft. per sec.

per sec, then the acceleration at 20 seconds is given by the point Q.

Repeating this method for times 2, 5, 10, 15, etc. seconds, we
get the acceleration-time curve shewn in fig. 31.

Example (11). A body moves in such a way that its velocity in-

creases uniformly with the distance passed over, and at a distance

of bOfeet the velocity is 2^ feet per second. What is the acceleration

at the instant when the body has moved 15 feet?

The velocity-space curve is given in fig. 32. PN gives the

velocity at 15 feet. Draw PG perpendicular to OP.
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Speed in miles per liour

-* ro w
Acceleration In ft per sec. per sec.

3—2
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The acceleration = NG

- PNtan NPG

= PN tan PON

= PN X ^

—

ON

/
20 X 15y 1

V 50 J ""15

24 feet per sec. per sec.

15

Example (12)

tances is given in the table below,

curve, and the speed-time curve.

G 50 Space

Fig. 32.

The speed of a ship in . knots at different dis-

Draw the acceleration-space

Speed (knots) 10-0 12-3 14-1 15-5 16-4 17-0 17-0

Distance (nautical

miles) i i I 1 H H

A nautical mile=6080 feet, 1 knot=l nautical mile per hour.

.'. 1 knot = 100 feet per minute, approximately.

The velocity-space curve is shewn in fig. 33. The acceleration-

space curve is shewn dotted on the same figure. This is obtained

by drawing subnormals. The ordinates are each made equal to

twice the subnormals.
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Speed in knots,

o
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Scales : 1 division = 1 knot = \^^ feet per second.

1 division =^ nautical mile =150 feet.

We saw on p. 31, that the acceleration was given by v . -^ . If
cts

we measure the distances in feet and the velocities in feet per

second, the actual length of the subnormal NG in divisions will

1002
have to be multiplied by :r—r—^r^ , to obtain the true accelera-

loO X 60^

tion. Hence the scale for acceleration is

1 division
300 X 60-

1

108
^rpr^ feet per second per second.

We have seen that the area under the -, s, curve gives the

time. This curve is shewn in fig. 34, where the scale for - is,

1 division =
2^J^ (mile-hour units).

Scale for distance, 1 division = ^^ mile.

The dotted line shews the time-distance curve.

This is obtained by plotting as ordinates the area under the

1
-, s, curve.
V

The time for distance 8s = - 8s.
V

Hence, 1 small square ^ -^^ x -^ hour = g^^g-Q hour.

In the curve drawn, 1 division = 40 small squares

= 18 seconds.
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Acceleration due to gravity

The number of cases of motion in which the acceleration re-

mains constant are not numerous in Engineering, as in most

practical problems we either have a constant velocity or a varying

acceleration. One case in which it is usual to assume a constant

acceleration is that of a body falling freely. Experiment shews

that if the distance from the earth's surface is not large, then the

acceleration is nearly constant at any place on the earth. It

varies slightly at diiferent points on the earth's surface, but it

will be sufficiently near for our purpose to take the accelera-

tion as constant, and equal to 32 feet per second per second, or

981 cms. per second per second. This assumes that the resistance

of the air may be neglected, which is only true in the case of quite

small velocities. The numerical value of the acceleration is usually

denoted by the letter g.

We shall discuss this further when we are dealing with the

forces causing motion and the law of gravitation.

Projectiles

We will now work out a few examples on projectiles, making

the assumption mentioned above, but it must be borne in mind

that the results have very little practical value.

Example (13). A body is projected tvith a velocity of ufeet per

second in a direction inclined at angle to the horizontal. It is

required to find the total time of Jiight, the 'maximum horizontal

range, and the maximrUm. height reached.

Here it is convenient to treat the velocity as consisting of

a vertical component and a horizontal component.

Horizontal component = u cos 0.

Vertical component = u sin 6.

If we neglect air resistance the horizontal component of the
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velocity will remain constant, and the vertical component will

decrease uniformly by g feet per

second per second.

The path of the body will be as

shewn in fig. 35 and it is evident

that the total time of flight will

be twice the time taken to reach

the maximum height. The time

to reach the maximum height is

equal to the time for the vertical

velocity to become zero

u sin 6

Fig. 35.

.'. the time of flight
2u sin 6

The range is given by the distance moved horizontally in this

time,

2usm. ^

(A^ 7. G
u cos 6 X

-$-
/_«#sin2^

This is a maximum when sin 26 = I, i.e. when 0= 45°.

To find the maximum height, we note that since the vertical

velocity is decreasing uniformly, the average vertical velocity

u sin 6

.'. the maximum height

u sin u sin

u^ sin^

M,
Path of the Projectile. We can easily find the equation re-

presenting the path of the projectile.
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Let a; = the horizontal displacement at instant of time t from

the start. Then
" x = ucos6.t (1).

For the vertical distance,

Velocity at beginning = u sin 6.

Velocity at end = (u sin — gt).

Average velocity = J (2?^ sin ^ - gt).

.'.
2/ = I (2u sin — gt) . t,

or, y = u^iii6 . t — ^gt"^

Eliminating t from (1) and (2) we get,

u sin 6.x g a?

(2).

y
2 u^ cos2 6

'

9
2u^ cos2 6

a^.i.e. y — ^' tan 6

which is the equation of a 'parabola.

Example (14). A rifle hullet is fired at a target, on the same

level as the rifle and distant 900 yards, with a muzzle velocity of

2000 feet per second. Neglecting air resistance, find the angle of
elevation. Find also the limits, between the point offiring and the

target, within which a man 6 feet high can stand without being hit,

assuming the target at the same level as the ground.

V cos 9
Fig. 36.

Let 6 = the angle of elevation, and t = the time of flight.

Horizontally we have

2700 = 2000 cos (9 . < (1).
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Time to reach the maximum height = - seconds.

Retardation upwards = g ft. per sec. per sec.

2000 sin e t

9 2

From (1) and (2), by eliminating t we have,

2000 cos e X 4000 sin (9

(2).

2700
32

/. 2^=1° 14',

or ^ = 37 minutes.

Let a = the safe zone, and t = the time for the bullet to reach C.

For the vertical motion,

/4000 sin e - 32^^
6 =

For the horizontal motion,

2700 -a

/4000sin^-32A

V 2 )'' (^^•

2000cos^.« (4).
2

From (3) we get, by substituting for sin 6 its value 0-0108,

6 = 21-6^-16«2,

21-6-v/21-62-24 xl6
'
= —32

12-55
seconds.

32
From (4) we get

.-. a = 2700 -1569

= 1131 feet.
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Change of Direction

In dealing with acceleration, we have up to the present tacitly

assumed that the direction of motion remained unchanged, and

although dealing with vector quantities we have merely considered

the magnitude. We must now consider the case where the direc-

tion changes.

Suppose, for example, that a body at a particular instant is

moving with velocity 1.1 in a direc-

tion given by OA (fig. 37) and at

t seconds later it is moving with

a velocity v and in a direction

given by OB. Let us make OA
and OB of such lengths that they

represent u and v in magnitude.

Now in order to change from

velocity represented by OA to Fig. 37.

velocity represented by OB, it is

obvious that, we must add vectorially a velocity represented by

AB, call it q. Then the average acceleration during the time

= average rate of change of velocity

_ AB
~ T

Circular Motion

Let us apply this to a very common case, viz. that of a body

moving in a circular path with a constant speed. Suppose that

in time t the body moves from A to B (fig. 38). Draw Oa to re-

present the velocity at A, and Ob to represent the velocity at B.

The added velocity, required to change from velocity v at A to

velocity v at B, is given by AB, i.e. the average acceleration for

time ht is given by -k- .
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But since the triangles Oab and CAB are similar,

ah Oa
AB ~ CA

*

Oa. AB
.'. the acceleration

CA. Bt

Now

Fig. 38. -

When St is indefinitely diminished 89 becomes zero also, and we
see that the acceleration is always axiting towards the centre C and

is of magnitude
1^

This is an important result and should be remembered.

Example (15). A motor-car travelling at \0 miles per hour

takes a corner of 10 yards radius. What is the acceleration of the

car infeet per second per second?

The speed =1^ feet per second.

The acceleration

60

r

10^ X 88^

602
X — feet per sec. per sec.

= 7 '2 feet per sec. per sec.
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Example (16). The crank of an engine has a radius of 9 inches

and is rotating at 300 revolutiaiis per minute, what is the linear

speed, and the acceleration of tJie crank pin ?

27r X 300
The angular velocity =—^—

= IOtt radians per second.

The linear speed of the crank pin

:=107rx^

= 23-6 feet per second.

The acceleration of the crank pin towards the centre of rotation

9

740 feet per sec. per sec.

Relative Velocity

Up to the present, in dealing with motion, it has been assumed

that we have some fixed starting point for reference, and that

we have measured our displacement from this point. In actual

practice, a little thought will shew that we have no really fixed

point, but so far as we know any body or point may be moving.

It is frequently the case that we imagine a point on the earth's

surface as at rest, but in reality this is moving. Again, take the

case of an engine on a steamer or motor-car; when we talk about

the speed of any moving part of the engine, such as the piston, in

estimating its speed we usually imagine the steamer or car at rest.

In other words, in dealing with the motion of a body we do not

really know anything about the true motion but only the motion

refative to some other body which we imagine at rest. Thus all the

motions we deal with are really only relative motions. This being

so, it will be as well to carefully define what we mean by relative

motion. Suppose we have a body or a point A moving relatively

to another body or point B, then the relative motion of A with
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respect to B is the motion which A appears to have when we view

it from B. Take as an example two trains passing one another

on parallel tracks. Suppose the train A is moving at 10 miles per

hour and the train B at 1 5 miles per hour. Then to a person in train

A viewing train B the latter would appear to be moving with a

velocity of (15 — 10) miles per hour, i.e. the relative velocity of B to

A is 5 miles per hour. To a person situated in B and viewing A's

motion the latter will appear to be (10- 15), i.e. — 5 miles per

hour, or the relative velocity is 5 miles per hour in the opposite

direction.

Now let us see how we can always measure relative velocity.

It is obvious that if we give both bodies the same velocity their

relative velocities will be unaltered, e.g. the two trains both have

the velocity of the earth, but this does not affect their relative

velocities.

Suppose, now, a body A is moving as shewn in fig. 39, with

velocity u, a body B is moving with

velocity v, and we wish to find the

velocity of B relative to A. Give to

both bodies a velocity equal and op-

posite to that of A. This brings A to

rest, but does not aflfect the relative

velocity. It is obvious that B's resul-

tant velocity will be the velocity of B
, ^

relative to A. This is shewn by bA; in A vel. u

fig. 39, where ^n represents the velocity ^^'
'

of B, and nk represents the velocity of A reversed. Looking at

triangle Bn>fc, we see that kn represents the velocity of point A,

and we have

Bn = kn-\- Bk.

Or remembering that we are dealing with vectors :

The velocity of the body B is equal to the velocity of

the body A plus the relative velocity of B to A.
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Similarly we may state :

The velocity of f< is equal to the velocity of B 'plus the relative

velocity of ^ to B.

Two points rigidly connected. Instead of A and B being

two bodies, they may be two points in one rigid body. In this

case the relative motion is given in direction, since it must be

perpendicular to the line joining the two points. If this were not

so, there would be a component of relative velocity along AB, or

the points A and B must be either closing in or separating, which

is contrary to the assumption that they are rigidly connected.

This is shewn in fig. 40.

Relative velocity

Fis. 40.

Another way of stating this is by saying that the relative

motion of B to A is one of rotation of B about A. If to is the

angular velocity of B about A, then the relative velocity of B to

A = « . AB.

Example (17). The maximum speed of an airship in still air is

40 miles per hour. What is the shortest tim,e in which the ship can

travel a distance q/" 10 whiles due norths at a constant altitude^ if

there is a north-west wind blowing a^ 18 miles per hour? In what

direction will a flag attached to the airshipfly ?
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The actual velocity of the airship will be equal to the vector
sum of the velocity of the wind and the velocity of the ship rela-

tive to the wind, i.e. the velocity in still air.

N

Scale
l"= 10m.p.h.

S A
Fig. 41.

Draw OA in a direction south-east to represent to some scale the

velocity of the wind (18 miles per hour). Take a length AB to

represent, to the same scale, the velocity of the ship in still air.

Let this cut the north line through O in the point B.
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Then OB represents the actual velocity of the airship.

This by measurement = 25*2 miles per hour.

.'. The shortest time to travel 10 miles due north

10x60 . ,

= 23*8 minutes.

The flag will fly in the direction of the resultant wind on it,

that due to its motion with the airship, and the north-west wind.

This is given by the vector sum of BO and OA, i.e. BA.

.". The flag flies in the direction BA, which is inclined to the

north at an angle of 19°.

Example (18). The crank of a steam-engine is 9 inches and is

rotating a^ 360 revolutions per minute. The connecting rod is 30

inches long. Find the velocity of the piston when the crank is in

the position shewn in the figure below.

OTT

>d

—

Q

. Fig. 42.

In 6g. 42, CP represents the crank, PD the connecting rod, and
DC the line of stroke. The crosshead D is fixed to the piston and
will therefore have the same motion as the piston.

The velocity of P - wr

27rx360 9 ^ ,= —^.^— X —r teet per second
60 12 -

= 97r feet per second.

Let us give to D and P a velocity equal and opposite to that of

P. This brings P to rest and D's resultant motion will be the

L. E. D. 4
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relative velocity of D to P, which must be perpendicular to DP.

Draw po to represent a velocity equal and opposite to

that of P. Draw od parallel to DC, and 2>d perpendi-

cular to PD. It is obvious that opd is, a triangle of

velocities, and that od represents the velocity of D,

and pd the velocity of D relative to P.

Velocity of D

OtT ~op~Qb
i.e. the velocity of D = 18'3 feet per second.

— = ^ (by measurement),

Rolling wheel

A wheel rolls along a plane, without sliding, at a constant rate;

it is required to find the velocity of any point A on the rim.

Let V = the velocity of the centre C, w = the angular velocity of

the wheel, and r = the radius of the wheel.

V77777777777777777777777777777777777r

Fig. 44.

For one revolution of the wheel the centre C moves a distance

equal to the circumference of the wheel, i.e. the speed of C is the

same as the speed of a point on the circumference of the wheel.

.*. V = con-

The velocity of A = the vector sum of the velocity of C, and the

relative velocity of A to C.

The latter equals cor and is perpendicular to CA.

In fig. 44 let AE represent the velocity of C, and EF represent

the velocity of A relative to C.
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The actual velocity of A is represented by AF.

.". The velocity of A = 2o>r . cos 6

= (o . PA.

It is seen from the figure that A F is at right angles to PA.

.'. The point A is for the instant turning about the point P with

an angular velocity w.

Examples. Chapter II

1. Express the following in metres per second: (1) The speed of a runner

who does 100 yards in lOi seconds. (2) The speed of a train running at

60 miles per hour. (3) The speed of a point on the rim of a flywheel 7 feet

in diameter rotating at 250 revolutions per minute.

2. A popular method of estimating the distance away in miles of a flash

of lightning is to divide the time in seconds between the flash and the first

sound of the accompanying thunder by 5. What velocity of sound in feet

per second does this assume ?

3. The speed of a ship used to be measured by dropping overboard a log

attached to a line and measuring the speed with which the line ran out, it

being assumed that the log remained stationary. The line was divided into

sections of equal length. Find the length of a section in order that the number

of sections running out in 28 seconds should be equal to the speed of the ship

in knots.
1 knot= 6080 feet per hour.

4. The data for a distance-time curve of a train starting from rest is

tabulated below. Plot the curve and from it deduce the speed-time curve.

Distance x 10-=^

in feet
0-6 2-0 4-4 7-5 11-0 14-8 19-0

Time in minutes 1 2 3 4 5 6 7

Distance x 10"=^

in feet
23-0 27-8 32-5 37-6 43 48-4 54-2

Time in minutes 8 9 10 11 12 13 14

4—2
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6. A cam in the form of a circular disc is keyed eccentrically on a hori-

zontal shaft which rotates at 120 revolutions per minute. The diameter of

the disc is 6 inches and its centre is one inch from the axis of the shaft.

A rod presses against the edge of the disc, and is constrained to m.ove vertically

in the plane of the disc along a line passing through the axis of the shaft.

Draw the displacement-time curve of the rod for one revolution of the shaft,

and from this curve deduce approximately the velocity-time curve, stating in

each case the scales adopted. The end of the rod pressing on the disc may
be considered a point.

6. The distance (s) of the piston of an engine from the end of its stroke

is given by the equation, s = 6-5 - 6cos25f -O'Scos 50t, where s is in feet

and t is the time in seconds. Find the velocity at the times given by

t=^V second, t=^ second, and f= |^ second.

7. A point moves uniformly round a circle of 1 metre radius, makihg

100 revolutions per minute. Express its linear velocity in feet per secdlid,

and its angulur velocity in radians per second.

The wheels of a motor-car are 28 inches in diameter. How many revolutions

per minute does each wheel make when the car is running at 35 miles per hour?

8. A pulley wheel of 20 inches diameter is connected by a belt to a flywheel

of 5 feet diameter, which is rotating at 280 revolutions per minute. What is

the speed of the belt if there is no slipping?

Find tjie speed of rotation of the pulley (1) in revolutions per minute,

(2) in radians per second.

0. The spiral grooves in a rifle barrel make one complete turn in 10 inches.

Find the speed of rotation of a bullet when it leaves the muzzle with a velocity

of 2500 feet per second.

10. A fixed screw of ejffective diameter 2 inches has 3 threads per inch,

A nut on the screw is rotated at 300 revolutions per minute. What is the

speed of sliding of the nut in feet per second ?

11. At a particular instant a motor car is travelling at a speed of 10 miles

per hour, when it starts accelerating at a uniform rate of 2 feet per second

per second. Shew that the distance in the 20th second is 53-7 feet.

12. A train starting from rest at one station comes to rest at the next

station 6 miles off in 10 minutes, having first a uniform acceleration, then a

uniform velocity for 8 minutes and then a uniform retardation ; shew that

the greatest velocity attained is 40 miles an hour.
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13. The table below gives the speeds at different times of an electric train

running between two stations. Plot the speed-time curve and from it find the

total distance passed over, the mean speed, the initial acceleration, the ac-

celeration at the end of 40 seconds, and the final retardation.

Speed in miles

per hour
11-2 19 8 28 30 29-2 27 24-8 23-8 21-4 8-5

Time in

seconds
10 20 40 50 60 90 120 130 150 160 166

14. The velocity (v) of the piston of an engine at any time is given by the

equation, v= 10*47 sin 25 « + 0-87 sin 50 f, where v is in feet per second and t

is in seconds. What is the equation giving the acceleration of the piston in

terms of the time ?

15. The velocity of the ram of a slotting machine for different positions

during the cutting and return stroke is given in the table below. Plot the

velocity-space curve, and from it deduce the acceleration-space curve.

The length of the stroke is 9 inches.

Fraction of stroke

in^th 1 2 3 4 5 6 7 8

Velocity in ft. /sec.

Cutting stroke
14 21 24 26 27-5 29 29-5 30

Velocity in ft./sec.

Keturn stroke
19 32 42 49 55 59 61 62

Fraction of stroke

in iVth
9 10 11 12 13 14 15 16

Velocity in ft./sec.

Cutting stroke
29-5 29 27-5 26 24 21 14

Velocity in ft./sec.

Return stroke
61 59 55 49 42 32 19

16. A body moves along a straight path in such a way that its velocity,

in feet per second, is related to its displacement, in feet, from a fixed point

by the equation, v^=lS5-Q0s^. Plot the v, s, curve for the complete
motion, and from it deduce the acceleration-space curve.

Draw also the space-time curve.
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17. A stone is dropped from a balloon which is rising with acceleration a,

and ti seconds after this a second stone is dropped. Prove that the distance

between the stones at a time t after the second stone is dropped is

^{a + g)t^{t^ + 2t).

18. A stone falling freely under gravity is observed to pass from top to

bottom of a window 8 feet high in i second. Find the distance from the top

of the window to the point from which the stone fell.

19. A shell is fired so that at the highest point of its flight it just passes

over a mountain half-a-mile high and distant 5 miles from the point of pro-

jection. Shew that the horizontal component of the velocity of projection is

to the vertical component in the ratio of 5 to 1, and find the values of these

components.

20. Water is issuing from a fire-hose nozzle with a speed of 120 feet per

second. The jet is to pass through a window which is distant 35 feet vertically

and 30 feet horizontally from the nozzle. What must be the inclination of

the nozzle if the jet when it reaches the window is (1) to be rising, (2) to be

falling ?

21. A body at a particular instant was moving due east with a velocity

of 5 feet per second, and at a later time it was moving east-north-east with a

velocity of 8 feet per second. Find, graphically, the change of velocity in

magnitude and direction.

If the time which elapsed between the first and second velocities was

7 seconds, what was the magnitude of the average acceleration during this

time?

22. Water is flowing round a small pipe which is bent in an arc of a circle

of 18 inches radius, with a speed of 10 feet per second. What is the ac-

celeration of the water while passing round the bend ?

23. A cutter can be rowed in still water at 2 knots. It is rowed across

a river 400 yards broad, which is flowing at the rate of 1| knots, starting from

one side and reaching the opposite bank 100 yards further up stream. Find

the least time in which the passage can be made, and the direction in which

the boat will point while going across. Find also the least time and the

direction for the return journey.

1 knot=6080 feet per hour.

24. A train A moving with a constant speed of 30 miles per hour is passing

another train B which is at rest on a parallel track. At the instant when the

engines of the two trains are opposite one another, the train B starts with a
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constant acceleration of 2 feet per second per second. What length of time

will elapse before the two trains again occupy the same relative position ?

If the train B is 100 yards long, at what distance from the station will it

just have completely overtaken the train A ?

25. Two ships, A and B, start simultaneously from the same point. A
steams north-east at 15 knots, and B steams south at 10 knots. Shew that

the line AB moves parallel to a fixed direction, and find at what rate the

distance AB increases.

After one hour's steaming A changes its course to south ; after what time

will it be due east of B? At this instant it again changes its course and steams

west. At what distance from B will it cross B's course? The distances are

to be reckoned in sea miles.

26. Two straight railway tracks, OA and OB, intersect at O and the angle

AOB is 60°. A train, P, is running in the direction OA at 40 miles per hour,

and another, Q, in the direction OB at 25 miles per hour. Find the magnitude

and the direction of the velocity of Q relative to P.

27. A gun pointed at an inclination d to the horizontal is mounted on a

carriage which can run on a horizontal rail. If the shot leaves the gun with

a relative velocity v, the gun recoiling along the rail with velocity u, shew

how to find the range on a horizontal plane through the point of projection,

treating the shot as a projectile in vacuo. By how much is the range shortened

by the recoil ?

If i; = 1000 and w=10 feet per second, find whether the range is greater

for ^= 45° or ^= 46°.

28. The driving wheels of a locomotive are 7 feet in diameter. How many
revolutions does each wheel make in a minute when the locomotive is running

at 50 miles per hour ?

O is the centre of one of the wheels, A its point of contact with the rail,

and P a point on the rim. Find the magnitude and direction of the velocity

of the point P in each of the positions in which the angle AOP is 120°.

29. A ladder 30 feet long rests with one end on a vertical wall and the other

end on the ground at a distance of 12 feet from the wall. The lower end

begins to slide horizontally away from the wall with a velocity of 1-5 feet

per second. Determine graphically the velocity of the end on the wall, and
the relative velocity of the two ends.

30. A cable drum 3 feet in diameter, with side flanges 5 feet in diameter,

rests on the road. The free end of the cable, which comes from the under-

side of the drum, is pulled forward with a velocity of 2 feet per second. How
long will it take to wind up 30 feet of cable, and how far will the drum have

rolled during this time ?
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31. A slider is driven along a straight guide by means of a crank and

connecting rod. The length of the crank is 3 inches and the connecting-rod

12 inches. The line of stroke of the slider is 5 inches below the centre of the

crank shaft. The crank rotates uniformly at 40 revolutions per minute. Draw
a line diagram of the mechanism to a scale ^ full size, and determine the

length of stroke, the times of travel of the slider during the forward and return

strokes, and the velocity of the slider at the middle of each of the two strokes.

32. The figure below shews two sliders B and C with the same line of

stroke BCO. They are driven from the same shaft by means of two cranks

OA and OD. If the crank shaft rotates at 75 revolutions per minute, find

graphically for the position shewn the relative velocity of B and C.

0A = 6", AB^12", 00 = 4", DC = 8".

A

Fig. 45.



CHAPTER III

Linear Momentum

In the last chapter we dealt with motions, but we did not con-

sider how these motions were produced or changed. We have

now to investigate the causes of motion, and for this purpose, we

shall use two principles upon which the whole subject of mechanics

depends

:

(1) The Conservation of Momentum.

(2) The Conservation of Energy.

We will consider the first here, postponing the second for a

later chapter. First of all we must introduce, and make ourselves

quite familiar with, a new physical quantity, viz. Momentum.
It is really the product of two physical quantities and we may
define it thus :

The Momentum of a body is equal to the product of the mass and

the velocity with which it moves.

If a body of mass m lbs. is, at a particular instant, moving with

a velocity of v feet per second, then the body is said to possess

a quantity of momentum equal to 'tnv ft. lb. sec. units.

Sometimes we shall be considering the change of momentum of

a single body, and at others we shall. find it convenient to think

of the increase or decrease of the resultant momentum of a system,

or it may be the component of momentum in any particular direc-

tion. Since velocity is a vector quantity so momentum must be

considered a vector quantity, the direction being that of the

velocity.

The quantity of momentum of a oody or system may be changed

in various ways :

(1) The mass may remain constant and the velocity be changed

in magnitude, e.g. a train moving along a straight track may in-

crease or decrease its velocity.
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(2) The mass may remain constant and the velocity be changed
in direction without any change in magnitude, e.g. the speed of

the train may keep constant, but the direction may be changed.

(3) The mass may be changing with the velocity remaining

constant, e.g. a locomotive picking up water from a trough along

the track.

(4) Any combination of the above three, e.g. a rocket when
fired. Here the mass is changing as the products of combustion
are blown out, and also the velocity may be changing both in

magnitude and direction.

We will now state the laws or principles of momentum*.

1st Law. In any body or system the total momentum
remains constant unless the body or system is acted upon
by some external force.

2nd Law. If there is a change of momentum, then the
force producing it is proportional to the rate of change
of momentum and acts in the same direction.

' ThQ first law introduces a new term, viz. Force, which may for

the present be defined thus :

Force is that which produces or tends to produce a change of

momentum.

The law is the result of observation. If the momentum of

a body changes we immediately look for some cause, and this

cause we call force. For example, in cycling we may find that

our velocity has increased in magnitude, or our direction of

motion may be changed, and we immediately look for some cause.

It may be that a wind has sprung up and is exerting a force in

the direction of motion, thus increasing our velocity, or it may
be that we have met an obstacle in the form of a stone with the

result that a side force has been exerted and this has changed

our direction.

The second law is really based upon experimental observation,

* See Preface.



LINEAR MOMENTUM 59

and provides a means of measuring the force which is producing

a change of momentum.

Let us make the matter clear by taking a simple concrete case.

Suppose we have a mass M acted upon by a constant force F, and

that this force, during a time t, produces an increase of velocity

from Vi to fg. —>^
1

>v
2

'-^ M M
///////////y/y^ / / / / /

Fig. 46.

The momentum at the beginning of the time=: \Av^,

The momentum at the end of the time = M^g-

.'. the change of momentum = M-yg— Mv^.

From the 2nd law,

Foe —^ ^.

t

.*. we may write.

/MVg— M-yA

^^ M^.^,-^
(„),

t)

where A; is a constant^ the value of which depends upon the units

which we adopt for measuring the force.

Absolute System of Units

The unit force is that force which produces unit change of mo-

mentum in unit time.

Taking M = 1, -yg - '^i
= 1) ^^^ t = l, we have,

I =k . —^ , i.e. ^ = 1.

Hence with this unit we may write,

t

or, the force is equal to the change of m.omentum in unit time.



60 ELEMENTARY DYNAMICS

In the F.p.s. system the absolute unit of force is often called

the Poundal, and is that force which acting on a mass of 1 lb.

produces a change of velocity of 1 foot per second in one second.

In the c.G.s. system the absolute unit of force is called the

Dyne, and is that force which acting on a mass of 1 gram pro-

duces a change of velocity of 1 centimetre per second in one

second.

Gravitation Units

Newton discovered that any two masses attract one another

with a force which varies directly as the product of the masses,

and inversely as the square of the distance between them.

Thus, there is a force acting between every body and the earth

and this force is called the force due to gravity. For any particular

body, this force is not really constant except for a definite position,

but near the earth's surface the variation is so small that it may
be neglected. The force due to gravity on a body is called the

weight of the body.

We may take the unit weight, i.e. the force of gravity on unit

mass, to be our unit of force. This, as noted before, will not

strictly be constant unless we specify a definite position or place

on the earth's surface. The position is generally stated to be at

Greenwich, where the value of the acceleration of a freely falling

body is 32-19 feet per second per second, or 981 cms. per second

per second.

Denote the numerical value of this acceleration by g.

If we have M lbs. of mass falling freely the acceleration is

g feet per second per second, i.e. in unit time there is a change of

velocity equal to g, and therefore a change of momentum M^ units.

The force acting is M lbs. wt.

From (a) above, we have :

M=k.M.g.

9
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Hence with this unit we write,

^_ M{v.,-Vi)

or, Force equals the change of momentum per unit time divided

h9'
In what follows we shall generally use the absolute unit offorce

when working problems, and if necessary, we can express the

forces at the end in terms of weight.

It is obvious that

:

The absolute unit of force

= - {Units of weight},

or 1 lb. wt. =32 poundals,

and 1 gram wt. =981 dynes.

It is very important to distinguish between mass and weight.

As we have previously stated, m,ass is merely the quantity of

matter, and is a scalar quantity ; weighty on the other hand, is

Si.forceJ
and is a vector quantity (its direction being always towards

the centre of mass of the earth).

We are often, in problems, given the weight of a body, when
what we really want is the mass. This is due to the fact that

the commonest way of comparing masses is by weighing. Since

in any one place the rate of change of velocity due to gravity is

constant, it follows that the force due to gravity will only vary

with the mass. If we use gravitation units for force, the weight

and mass are numerically equal, but it must not be forgotten that

they are two entirely different physical quantities. The mass of

a body is constant no matter where the body may be, but on the

other hand, the weight will vary with the distance of the body
from the centre of the earth.
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Suppose, for example, we use a spring balance for measuring

our weight, and that this spring balance is calibrated at the

equator. Here using foot, second units,

^ = 32-091.

Now suppose we use the spring balance to weigh stuff at one

of the poles. Here

^ = 32-252.

The spring balance requires the same force to produce a definite

reading wherever it may be, hence for the same weight, the quan-

tities of stuff at the equator and poles will be in the ratio of

32-252: 32-091,

, „ ,

32-252-32-091 ,„„
^

,

I.e. we shall measure q^TaoI x 100 per cent., or ^ per
32*091

cent, more stuff at the equator than we do at the poles.

Example (1). A cage weighing 2J tons is raised and lowered

in a coal mine shaft by a steel cable. Find the tension in the cable,

(1) When the'hage is raised or lowered with a constant velocity,

(2) When the cage is lowered with the speed increasing uniformly

from to 1000 feet per minute, in the first bOfeet.

Let T be the tension in the cable in poundals, just above the

cage. Then the resultant force acting on the

cage is,

(T- 2-5 X 2240 x^)pdls.

(1) If the velocity is constant, there is

no change of momentum.

.*. T-2-5 X 2240x^ = 0,

or T = 2J tons wt.

(2) The resultant force downwards

= (2-5 X 2240 x^-T)pdls.

The average velocity= 500 feet per minute. 2-5

The time to move 50 feet -^ minute.

2240 xg pdts

Fig. 47.
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The change of momentum downwards per second

2-5 X 2240 X 1000

63

From the 2nd Law,

2-5 X 2240 x^-T

1
177

X 60 X 60 •

2-5 X 2240 X 10000

or

60 X 60

T = 2-5 X 2240 (32 - 2-8) pdls.

2-5 X 2240x29-2.,— lbs. wt.
32

2-28 tons wt.

Example (2). A train weighing 300 tons is being pulled up

an incline of 1 in 150 bi/ an engine

which is exerting a pull in the

coupling of 16 ions wt. If the

tractive resistance is constant and

equal to -^ of the weight, find the

acceleration in feet per second per

second. ^^^' ^^'

Let R be the resistance in tons wt. and P be the pull in the

coupling in tons wt.

The resultant force up the incline = (p — R - 300 sin 6) tons wt.

150'

tan 6 1 , - .

tan 6 =

.'. sinO
+ tan^

If a = the change of velocity per second, i.e. the acceleration,

in feet per second per second

(15-^00-2) x32
• • "^

~
300

5-5 X 32

300

0*585 ft. per sec. per sec.



64 ELEMENTARY DYNAMICS

Example (3). In the arrangement shewn in fig. 49 heloWj the

mass of the pulleys and friction may he neglected, and the string

m,ay he taken as inextensihle.

M
Find the ratio of— in order that M may ascend with a constant

acceleration of 2 feet per second per second.

The forces, in absolute units, acting on the masses are shewn on

fig. 49.

Consider each of the masses separately.

Take mass M. The resiiltant force acting

upwards in the direction of the accelera-

tion = Tj — M^,

.-. T^-Mg=^ Ma (1).

For mass m, we have

m^-Tg-M/S (2).

Also, since no resultant force is re-

quired to accelerate the pulleys we have,

Ti = 2T2,

and T2 = Tg.

Now imagine M raised 1 foot, then if

the string remains taut, m must be lowered

2 feet, and we get

:

/3 = 2a.

Substituting in (1) and (2), we have

:

2T2 - Mg == Ma,

and mg — Tg = 2m,a.

Eliminating T^ we get,

(2m - M)^ = (M -f- 4w) a.

g = S2 ft. per sec. per sec, and a = 2 ft. per sec. per sec,

.'. (2m- M) 16r=M-h4m,

or 17M=:28w,

M 28
i.e. — =Y=.m 17
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Example (4). Clay is raised from a pit in a truck which is

wound up an incline of 1 in 10. The winding engine is such that

the pull in the rope is kept constant and equal to 550 lbs. wt. The

weight of the loaded truck is 2 tons and the total resistance is equal

to 40 lbs. per ton.

Find the velocity of the truck after it has moved from rest up

a distance of bO feet measured along the incline.

Fig. 50.

tan6' = y\y,

sin 6
1

= ^ nearly.
VioT 10

The resultant force up the track

= 550^ - 80^ - 4480 sm 6 . g

= (550-80-448)5^

= 22 X ^ pdls.

Let V — the velocity gained in time t.

Then by the 2nd law of momentum,

22^ = 2 X 2240 X-,

or.

22x32
2x2240'

n
70

(1).

L. E. D.
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The gain of velocity will be uniform since the force applied is

V
constant, and therefore the average velocity = -

.

Hence

and from (1)

50,

550

To"

/no

= 3*95 feet per second.

Varying Force

In order to derive our units we have, up to the present, assumed

a constant force and a constant

mass, but in many cases the

force will not be constant and

the momentum may be chang-

ing in various ways. Suppose

the force is varying with the

time in the manner shewn in

fig. 51. Here we can either Time

measure the rate of change of -^^S- ^-'^•

momentum at definite instants of time, or, ,we can find the total

change of momentum for a definite interval of time.

Let 8 (m^•) be a small change of momentum produced in time

St starting at time t. Thus for this interval of time we have the

8(mv)

It
time average of the force equal to , and the true force at

time t is the value of —^

—

- when ht is indefinitely diminished,

I.e. F =
d(mv)

~dr '

dv

dt
'

or if m is constant,

where a — the acceleration at the particular instant of time t.
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Again we have
B(niv)

nearly,

I

Bt

or F,8t = 8 (mv).

For any time T we may find the sum of each of these terms.

We get ^Fht = ^8(mv).

Now 2f8^, when St is made indefinitely small, is represented

by the area under the force-time curve from t — to t = T, and

this area, therefore, represents the total change of momentum
produced by the varying force.

Suppose we find the value of
^FSt

. This obviously gives us"

the time average of the force. Let us call it F.

Then, i^. T - the total change of momentum.

We must now see how these laws are applied to practical pro-

blems, and chiefly we shall deal here with the second law, which

we will re-write in this form

:

Force in Absolute units

= Change of momentum in unit time.

Accelerating Force on a Piston

Take the case of a petrol engine. Suppose we wish to find the

thrust in the connecting rod for a given position of the crank.

Let P =: the total force in lbs. wt. due to the gases on the piston

for the position considered.

y / / y / y y
Fig. 52.

5—2
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In example (18), p. 49, we have seen how the velocity of the

piston may be found, and we can therefore draw a velocity-space

curve. From this curve we can construct an acceleration-space

curve. Let a be the acceleration, measured towards the crank shaft

of the piston, in the given position. Let Gl=the reaction, in lbs. wt.,

of the connecting rod on the gudgeon pin. Consider the motion

of the piston. The resultant force in the direction of the motion

= (P — Q cos <^) g pdls.

This must equal the rate of change of momentum.

.'. (P-Qcos<^)^= Ma,

where M is the mass of the piston and gudgeon pin in lbs.,

r Ma") 1 ,,

i.e. Q = j P - -\ T lbs. wt.

To get some idea of the possible magnitude of the quantities

involved, take the following example.

Example (5). In a jmrticular engine the mass of the piston and

gudgeon pin is 5 lbs. When the engine is running at 1500 revolu-

tions per minute the acceleration at the beginning of the working

stroke is 7500 feet per second per second. The diameter of the

cylinder is 4 inches, and the pressure at the beginning of the stroke

is 300 lbs. per square inch.

To find the value of Q at the beginning of the stroke we have

P = TT X 4 X 300 lbs. wt.

cos ^ = 1.

.-.Q^ {1200.-^^^} lbs. wt.

= 3768-1172

= 2596 lbs. wt.

Example (6). In starting a train, the engine driver opens the

throttle so that the tractive force increases uniformly from zero to

7 tons wt. during the first 20 seconds. The total weight of the train
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is 400 to7is, and (he resistance at starting increases up to 17 Ihs. a

ton, and then r&inains constantfor the remainder of the 20 seconds.

Find the instant the train starts to move, and draw a velocity-

time curve for the tims considered.

Let P = the tractive force, and R = the maximum tractive resist-

ance. The train will start when P = R.

In fig. 53, OAB represents the tractive force-time curve and OAC
represents the tractive resistance-time curve.

The maximum value of R = AN

17x400,
= -2240-*""^"^-

= 3 '04 tons wt.

>(t
K/
^

1

1

Ayff
1

7 tons
/I

' IG C
1

1/ 1

/ |N

1

20 sees—

Fig. 53.

^ Time

The time at which the train begins to move is given by ON

= —=— X 20 seconds

= 8*7 seconds. -

The resultant force acting to produce momentum is given at

every instant by the difference between the ordinates of OAB and
OAC. Take T seconds from N.

Area AKG represents the total momentum generated.
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li v = the velocity in feet per second, and if we measure our

mass in tons, we have

400^? = area KAG
= J KG. AG,

KG _ 7

AG ~20'

2" 2^(J ^
"^

0-014 Tl

32..-. 400v-i
.". V

The velocity-time curve for the 20 seconds considered is shewn

in fig. 54, where the zero for the time in the equation above is

8-7 seconds.

o

/

t

/
/

1
f

/
/
/

/
/

/
/

> /

y
,^

_ _ 1 1 J,

15 205 10
Time in Seconds

Fig. 54.

Example (7). The curve below shews the total tractive resistance

per ton at different speeds for a motor lorry on a road. The motor

of the lorry is producing a constant total tractive force of 217 lbs.

wt. If the weight of the lorry is 7 tons find the maximu7n speed

attained. Find also the time taken to increase the speed from 9 to

1 3 miles per hour.

The tractive force per ton is equal to ^y^=31 lbs. This is

shewn by the dotted line in the figure.

At maximum speed the change of velocity will be zero and

hence the tractive force = the tractive resistance.
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From the figure the maximum speed = 15-1 miles per hour.

To find the time we have, if Sv is the gain of velocity in a small

time 8tj

Acceleration (a) = ^ (nearly),

a

Draw a curve representing - and v, then the area under this curve

gives the time.

32

/
2

a

28
©
o
E
c6

I

|-24
4-1

i
•" 22

9.0

/
y
/

y/
y/^^

9 10 11 12 13 14

Speed, miles'per hour

Fig. 55.

If R = the tractive resistance in lbs. wt. per ton,

Accelerating force per ton - (31 — R) lbs. wt.

.*. Acceleration = ^——^^ /^ ft

15 16

2240

2240

per sec. per sec.,

70

a (31-R)x32 31
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Using fig. 55 we find

Speed in miles Tractive Force Accelerating Force 1
per hour per ton in lbs. in lbs. Accel, in ft./sec.^

9 22 9 7-78
10 22-8 8-2 8-54
11 23-75 7-25 9-66
12 25 6 11-7

13 26-5 4-5 15-5
13-5 27-5 3-5 20
14 28-5 2-5 28

The curve is shewn in fig. 56.

J

4l ±X
i
t

on -
1

- A
t

e J
O J r
tJ I* 1^ /
« 7'

u ^^

in- - I.-****

J __-_
10 n 12 13 14

Speed in miles per hour

Fig. 56.

15

Scales 1 division = imile per hour = f§ foot per second.

1
1 division =

1 foot per sec. per sec.
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The area under the curve between 10 miles per hour and 13 miles

per hour
= 167 squares

= 167 X ^1 X 1 seconds

= 49 seconds.

.*. The time required = 49 seconds.

Example (8). A machine-gun is mounted on an aeroplane, and

when the latter is travelling at 50 miles per hour the gun isfired in

the direction of travel for 1 5 seconds. Find the reduction in speed

of the aeroplane due to this, and the force te7iding to move the gun

relative to the aeroplane.

Total weight of aeroplane 1800 lbs. Rate of firing 600 bullets

per minute. Weight of bullet \oz. Muzzle velocity of bullets

2000 feet per second.

The reaction of the force acting on the bullets is at every instant

acting on the gun, and therefore on the aeroplane.

The time average of the force on the bullets = the change of

momentum per second.

The mass discharged per second = ^^ lb.

The change of velocity = 2000 feet per second.

/. Force = -{^ x 2000 pdls.

= 19-5 lbs. wt.

This is the force tending to move the gun relative to the aeroplane.

Now let us examine the effect of the reaction of the force on

the aeroplane. We may neglect the small change of mass due to

the discharge of the bullets.

The force of y^^^ x 2000 pdls. acts for 15 seconds. If v = the

velocity of the aeroplane, in feet per second, at the end of the 15

seconds,

1800(55ji^-.)=A.2000><15,

or, v=: 73-3 -5-2

= 68*] feet per second

= 46-5 miles per hour.
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Sxample (9). A balloon of total mass 620 lbs. is d^'ifting hori-

zontally token 40 lbs. of sand are suddenly released. Find the

acceleration imtnediately after the sand is released.

Since initially there is no vertical acceleration, the upthrust

equals 620 lbs. wt. This upthrust is equal to the weight of the

volume of air displaced by the balloon. The latter will be practi-

cally the same before and after the release of the sand.

After the release of the sand we have the net resultant force

upwards
= {620 - 580} lbs. wt.

= 40 lbs. wt.

Let a = the vertical acceleration upwards immediately after

release of the sand, then

40^ - 580a,

40 X 32
l.e. a

580

= 2-2 feet per sec. per sec.

As the balloon begins to ascend there will be an increasing

resistance due to the motion, and the acceleration will decrease. .

Example (10). Water issuing from a nozzle^ of 2 inches dia-

meter, ivith a velocity of 50 feet per

second, impinges on a vertical wall, the

jet being at right angles to the wall. Ij / /

there is no splash find the pressure 0"""-^"-—>___ ^ -^ "^/
/

exerted on the wall. ( TD^¥^--\̂
\ \

If there is no splash the water will \ \

flow along the surface of the wall after
^

impact. Let F be the pressure pro-
I

duced on the wall. This must equal Fig. 57.
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the change of momentum per second in a direction perpendicular

to the wall

= the mass impinging per second x the change of velocity in

the direction of the force

= pav . V, where p is the density of water,

= pav^.

.'. Pressure = 62*5 x x 50 x 50 pdls.

62-5 2500

32 X 144

107 lbs. wt.

lbs. wt.

Example (11). ^ifly cubic feet of water are flowing per minute

along the fixed vane AB shewn in fig. 58 below. The speed along

the vane is constant and equal to 20 feet per second. Find the

magnitude and direction of the resultantforce produced on the vane.

.^
'^

I Fig. 58.

The mass flowing per second

50 X 62-5

Fig. 59.

60

= 52 lbs.

The magnitude of the momentum per second at A or B

- 52 X 20

= 1040 units.

Let OP represent 1040 units at A, and OQ represent 1040 units

at B (fig. 59).
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The change of momentum per second is represented by PQ,

-2x1040 sin 221°

= 2080 X 0-382

= 795 units

= Force of the vane on the water.

The resultant force on the vane

= 795 pdls. -

= 24-8 lbs. wt.

The direction of the force is given by the angle a,

' a = 90-22i

= 671°.

Impulse

When two bodies impinge on one another, or a moving body

impinges on a fixed object, there is a more or less sudden change

of momentum. In many cases, it is impossible to measure the time

of the impact or the rate at which the momentum of either body

is changed, and in such cases, we can only measure the final effect

of the stress which exists between the two bodies while they are

in contact.

We have already seen that, F .t= Mv, Where F is the average

force acting, t the time, and Mv is the total change of momentum
produced.

Since we cannot measure the force itself, in such cases we have

to be content with estimating the value of the product, which

can be obtained by measuring the value of the total change of

momentum. This product is called the Impulse. There is no

special name for the units in which it is measured. In the absolute

system the unit will be the same as that of momentum, in the

gravitation system the unit will be that of momentum multiplied

b5^ g (the numerical value of the acceleration due to gravity).
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Example (12). A mass of clay weighing 5 lbs. is thrown

against a fixed wall with a velocity of 10feet per second and sticks

on the wall. What is the impulse of the blow?

The impulse = the total change of momentum

= 5 X 10 F.p.s. units.

Here we cannot find what is the average pressure on the wall, or

the pressure at any instant, since we know nothing about the time

taken for the clay to come to rest. It may be asked, what happens

to the wall, since it receives the same impulse, but in the opposite

direction, as the clay. Theoretically there is the same change of

momentum produced, but the mass of the wall and the earth, to

which it is fixed, is so great that the velocity is negligibly small.

Magnitude of impulsive force. It may be noted that,

generally, the time of the impact will be very short, and hence

we may expect that the time average of the force will be large.

To give some idea of this, we may take two cases which have

been investigated.

(1) Two ivory billiard balls impinge with equal velocities of

8 feet per second. It has been shewn that the time of the impact

is 4 oVo ^^ ^ second, and that the maximum total pressure between

the balls, which occurs at the instant when they are at rest, is

equal to 1300 lbs.

(2) A leaden bullet weighing 0*03 lb. hits a steel target with

a velocity of 1800 feet per second. The time required to stop

the bullet is about ysJxjT^ second.

Hence the time average of the force on the target

0-03 X 1800 ^,=
1

pdls.

18000
0-03 X 1800 X 18000=

22i0T^2
'^^^"'-

= 13'5 tons wt.

In this case the pressure is probably nearly uniform during the

stopping of the bullet.

In cases where the time during which the force is acting is very
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small we speak of the impulse as a blow. As we have already seen,

the time may be very short indeed and the average force will

therefore be very large, since the product of the two is equal to

the definite and finite change of momentum which occurs. In

such cases, we can generally omit the effect of steady forces which

may also be acting during the time of the blow, since the changes

of momentum produced by them in the short time will be negli-

gibly small.

Take the example of the bullet given on p. 77, and suppose it

is fired vertically downwards at the target. By neglecting the

steady force, namely the weight, in considering the impact, we are

only neglecting 0*03 lb. wt. in comparison with 13 "5 tons wt.,

^ 0-03 X 100 1
I.e. we are making an error or ^,,^—tttt or tt^t^ttp^ per cent.

2240 X 13-5 10000

Case of two bodies impinging. When two bodies impinge

we may if we like consider the two as a single system. Hence in

all cases of bodies impinging there is no total change of momen-
tum due to the impact since there is no external force acting, or

as it is often stated, the total momentum before impact equals the

total momentum after impact. Another way of looking at the pro-

blem is to consider each body separately. Since the total change of

momentum is zero, one body must lose exactly the same quantity

as the other body gains. But the forces acting on each body are

proportional to the change of momentum of each body, and since

these are equal in magnitude and opposite in sign, the forces on the

two bodies are equal and opposite. This is true whatever be the

length of time during which the bodies are in contact. The two
equal and opposite forces which are called into play together form

what is called a stress.

Equilibrium. The second law of momentum is quite general

in its application, and we may use it to investigate the forces acting

on a body or system of bodies which is in equilibrium, i.e. at rest.

In this case, the rate of change of momentum is zero, and there-

fore the resultant force, on the system or any part of it, must also

be zero. By applying the law, firstly to the whole and afterwards
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to the different parts, we can shew that, in every case, the inter-

action of any two bodies, or parts of a body which are connected

or in contact, consists of a stress in which the two components

are always equal in magnitude and opposite in sign. This fact is

often stated in the form, " to every action there is an equal and

opposite reaction," and is called Newton's third law of motion. As
we have seen, it really follows directly from the second law of

momentum. It forms the basis of investigation of the internal

and external forces in statical problems.

Example (13). A railway truck of mass 12 tons, moving with

a velocity of 6 whiles per hour, impinges on another truck weighing

10 tons, and moving in the same direction with a velocity of 2 miles

per hour. When impact occurs the two trucks are automatically

coupled together. Find the velocity of the trucks after impact.

12 tons 10 tons

Fig. 60.

Let F . i5 be the impulse between the two trucks, and let v — the

final velocity in the original direction of motion.

For the 12 ton truck,

F.^ = 12(6-'y).

For the 10 ton truck,

F.«5 = 10(v-2).

.'. 72-12^=.10v-20,

or v = ^^ = 4*17 miles per hour.

The impulse of the blow =F .t

.^,^ . 2240x88
= 12(6-.) X—^^-
= 7220 F.p.s. units.

Or, Momentum before impact = Momentum after impact,

i.e. 12 X 6 + 10 X 2 = (12 + 10) V,

.". V = 4:'l7 miles per hour.
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Sxample (14). A shell of mass m, lbs. impinges obliquely on

a fixed target and ricochets. If the striking velocity is u feet per

second inclined at an angle 6 to the normal at the point of contact,

and the velocity of 7'ebound is v feet per second inclined at an
angle <{> to the 7iorm,al, find the I'esultant blow on the target.

Resolve the blow into two components, P and Q say, tangential

and normal to the plane of the target.

normal

/////////////////////A ^////////^////y//////

• \

a \

Tangential^

Normal.

\

Fig. 61.

p = m,u sin 6 — mv sin ^
= m{u sin 6 ^v sin ^).

Q = mu cos 6 + Tnv cos <^

= m (u cos 6 + V cos <t>).

Resultant (R) = x/p^ + Q^

= m {u^ sin^ 9 + v^ sin^ <j5> — 2uv sin sin
<f>

+ u^ cos^ 6 + v^ cos^ <^ + 2uv cos 6 cos <^p

= m {^2 + vV 2uv . cos (0 + <f>)}^.

This makes an angle a with the normal such that

P
^ tan a = -

Q
u sin 6 — v sin

(f>

u cos d + v cos ^
'

Or using vectors : The change of momentum equals the vector

difference of mu and mv.
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This is given by OB in fig. 62, where OA represents the initial

TOomentum mu of the projectile, and BA represents the final mo-

mentum mv.

The impulse of the blow = OB

= m {u^ + v^ ^ 2uv cos (0 + <j>)]^y

and the direction may be calculated from the figure.

It may be noted that generally we shall not be able to deter-

mine the values of v and <^, if we are merely given u and 0.

Fig. 62.

Example (15). A hammer head weighing 1*2 lbs., arid moving

with a velocity of 16 feet per second, strikes a nail of Q'l lb. weight

and drives it | inch into a piece of wood. Assuming no rebound

of the hammer and the resistance to penetration of the nail constant

find its magnitude.

Let V = the velocity in feet per second with which the nail and

hammer move immediately after the impact. Then by the con-

servation of momentum,

l-2xl6-(l-2 + 0-l)v;

16x1-2
•'• ^ = -T3-

= 14'8 feet per second.

Since the resistance to penetration is constant the time rate of

change of velocity will be uniform.

L. E.D. 6
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.'. the average velocity of penetration = —^r—

= 7'4 feet per second,

and the time of penetration = —^—-— second.
24 X 7-4

The resistance = rate of change of momentum

= l-3x 14-8x24x7-4pdls.

1-3 X 14-8 X 24 X 7-4 „=
32

l^^-^^-

= 1071bs. wt.

The magnitude of the blow between the hammer and the nail

= the change of momentum of the hammer

= 1-2 (16 -14-8)

= 1-2 X 1-2

= 1-44 F.p.s. units.

Example (16). A bar of inetal 3 inches wide, 1 inch thick, and

1 5 feet long is to he passed through a rolling mill, the area of section

being thereby reduced by \. The diameter of the rolls is 12 inches

and they rotate at 200 revolutions per minute. Assuming that the

speed at which the bar leaves the rolls is the same as that of the

surface of the rolls, shew that the tangential impulse on the rolls

when the bar is first gripped is 1180 absolute f.p.s. units. Shew

also that, apart from the foirce required to overcom,e friction and

to do the work of deforming the metal, a tangential force of
6 '4 lbs. wt. is required to maintain the motion.

The density of the metal = 4:80 lbs. per cubic foot.

The speed of the surface of the rolls

_ 27r X 200

"60x2
= 10-47 feet per second

= the speed at which the bar leaves the rolls.
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Since the same volume of metal passes in and out of the rolls

in a unit time, the velocity at which the bar is fed into the rolls

= f X 10-47

= 7*85 feet per second.

At starting, the whole bar is suddenly given this velocity,

I.-,

the impulse = 480 x ^f^ x 15 x 7*85

= 1170 abs. F.p.s. units.

The steady tangential force required to maintain the motion

= the change of momentum per second

^ = the mass per second x the change of velocity

i

480x3x7-85 ,,^,^ ^„^,
;

=
144

X (10-47 -7-85)

;

= 204 pdls.

= 6-4 lbs. wt.

Examples. Chapter III

1. What do you understand by momentum ? Define force in terms of this

quantity.

In 5 seconds a car weighing 30 cwt. changes its speed from 20 feet per sec.

to .27 feet per sec. ; what uniform force must have been acting if it requires

50 lbs. per ton to just move the car steadily on the track ? If the power is

cut off at the end of the 5 seconds, what constant deceleration will result, and
how far will the car run before coming to rest ?

2. Express a force equal to the weight of 1 ton in (1) absolute f.p.s. units

[(pouudals), (2) absolute c.g.s. units (dynes).

1 inch = 2 -54 centimetres. 1 pound= 453-6 grams.

Acceleration due to gravity= 981 cms. per sec. per sec.

3. A car weighing 12 tons is ascending a slope of 3 in 100 against a

frictional resistance equal to 1 per cent, of its weight. What pull is required

in order that the car may increase its velocity by 1-5 miles per hour in one
second ?

4. Explain fully how you infer that at a given place on the earth a body's
weight is proportional to its mass.

6—2
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Two weights W, W are connected by a light string passing over a light

pulley. If the pulley moves upwards with an acceleration equal to that of

gravity shew that the tension of the string is

4WW'
W+W'

5. A cage weighing 2000 lbs. can be raised or lowered in the shaft of a

mine by a cable. Find the tension in the cable (1) when the cage is rising

or falling with a uniform velocity, (2) when it is rising with an acceleration

of 2 feet per second per second, and (3) when it is falling with an acceleration

of 5 feet per second per second.

«. A tram-car weighing 17,000 lbs. is ascending a gradient of 1 in 20 with

an acceleration of 1-2 feet per second per second. If the resistance is equal

to 0*011 of the weight find the tractive force on the rails. If the tractive force

and resistance remain the same, what would be the acceleration when
travelling down a gradient of 1 in 30 ?

7. A truck is running on the level with a velocity of 20 miles per hour

when the wheels are locked by the application of the brakes. If the coefficient

of sliding friction between the wheels and the rails is 0*08, for how long and

for what distance does the truck move before coming to rest ?

Find the corresponding time and distance if the truck is moving down a

slope of 1 in 100.

8. Find the magnitude and direction of the force which, acting on a mass
of 4 pounds which is moving with a velocity of 8 feet per second, will in

4 seconds cause its velocity to be 8 feet per second in a direction at right

angles to the original direction of motion.

9. A fire engine is delivering 312 gallons of water per minute through a

nozzle of 1|- inch diameter, fixed to the engine and inclined upwards at 30°

to the horizontal. Find the vertical and horizontal reactions produced on

the engine.

1 gallon of water weighs 10 lbs. 1 cubic foot of water weighs 62*5 lbs.

10. A motor-car has a machine-gun mounted on it, and when the car is

at rest the gun is fired horizontally and straight to the front for 15 seconds.

Find the velocity of the car at the end of this time.

Bate of firing, 600 bullets per minute ; muzzle velocity of bullets, 2400 feet

per second; weight of bullet, J oz. ; weight of loaded car, 18 cwt.; resistance

to motion of the car, 16 lbs.

11. A mass of 10 lbs. is acted upon by a force P which varies with the

time t according to the law, P=2 sin —t lbs. weight, where t is in seconds,
15

Plot the force-time curve from i=0 to t= 30, and from it deduce the velocity-

time curve, being given that the velocity is zero when the time is zero.
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I

12. A boat is sailing at a constant velocity of 6 knots before a following

wind of twice the velocity of the boat. The sail area is 450 square feet, and

may be assumed a plane area perpendicular to the direction of motion of the

boat. Find the total resistance to motion of the boat.

One cubic foot of air weighs 0*08 lb.

One knot equals 6080 feet per hour.

13. The relation between the total tractive resistance and the speed for a

locomotive and train weighing 246 tons is given below. The total load on

the driving wheels of the locomotive is 33 tons, and the coefficient of sliding

friction between the wheels and the rails is 1/5, The train is accelerated from

Test as rapidly as possible on a level track. Plot a curve shewing the value of

r :
— for different speeds, and from it estimate the time for the train

acceleration

to attain a speed of 45 miles an hour.

Speed in "feet

per sec.
5 7-5 10 20 30 40 50 60 70 80

Eesistance in

lbs. per ton
10-9 7-3 6-6 6-5 7-a 8-4 9-9 11-8 13-9 16-3 19-3

14. A torpedo boat fitted with hydraulic propulsion took in 1 ton of water

per second in a direction perpendicular to the direction of motion of the boat,

and discharged it horizontally astern with a velocity of 37*25 feet per second,

relative to the boat. With this discharge the steady speed of the boat was
12-6 knots. Find the resistance to motion of the boat.

15. A locomotive while travelling at 40 miles per hour scoops up 760

gallons of water from a trough in a length of 500 yards. The water enters

the scoop horizontally and is discharged into the tank of the locomotive

vertically downwards. The delivery pipe has a diameter of 4 inches. Due
to the change of momentum of the water, find (1) the horizontal resistance

to the train's motion, (2) the reduction of pressure on the rails.

16. If the resistance to the motion of a train running at V miles per hour

be 0-3(V + 10) lbs. per ton, find, graphically or otherwise, how long it will

take to reduce the speed from 50 to 30 miles per hour in the case of a train

running freely on the level. How far will the train run in the time ?

17. A balloon weighing 800 lbs. is descending with a constant acceleration

•of 1 foot per second per second, when 50 lbs. of ballast is suddenly released.

Find the magnitude and direction of the acceleration immediately after the
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18. It is found that a bullet weighing 0*4 ounce and travelling at 2400 feet

per second will just penetrate 36 inches of a certain wood. If a similar bullet

with the same initial velocity is fired through 18 inches of the same wood,
what will be the velocity when it emerges, and what is the force of resistance

to penetration ? Neglect the spin of the bullet.

19. Find the minimum plan area a parachute may have to enable a man
weighing 10 stone to descend vertically at a final speed of not more than
25 feet per second. The weight of the parachute may be taken as 10 lbs.,

and the weight of one cubic foot of air 0*08 lb.

20. The velocity of flow in a water main of 6 inches diameter is 5 feet,

per second. At one place the main is bent through an angle of 30". Find
the resultant force on the bend.

21. The inlet valve of a petrol engine is held on its seat by a spring which
exerts a force of 1^ lbs. If the valve opens downwards, weighs 3 ounces, and
has a lift of 0*2 inch, find the time occupied in closing, and the velocity at

the instant of closing.

22. A plumb-line, 7 feet long, is suspended from the roof of a railway

carriage which is travelling along a straight level track. The plumb-bob is

observed to be displaced 3 inches from the vertical through the point of sus-

pension in the opposite direction to the direction of motion of the train.

What is the acceleration of the train?

23. The acceleration of the reciprocating parts of a steam engine is given

in feet per second per second by 120 cos ^ + 20 cos 2^, where d is the angle

which the crank makes with the inner dead centre. If the weight of the

reciprocating parts is 8 tons, find the accelerating force required in the

direction of the line of stroke for the positions given by values of d, 0°, 45°,

90°, 135°, 180°.

24. A small mass is suspended by two equal strings each inclined at 30°

to the vertical. Shew that if one of the strings be suddenly cut the tension

in the other is immediately increased by 50 °/o-

25. Using a pile-driver with a hammer weighing 1 ton, it is found that a

pile weighing 4 cwt. is driven 5 inches into the ground when the hammer

falls a distance of 10 feet before striking. Assuming that there is no rebound

of the hammer, and that the mean resistance and the drop remain the same,

find the distance which the pile would be driven if the weight of the hammer

were increased by | ton.
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26. The muzzle velocity of an eighteen-pounder shell is 1600 feet per

second, and the gun recoils in its cradle a distance of 40 inches. The force

exerted on the gun during recoil is 1^ tons weight. Find the mass of the gun

and its momentum at the beginning of recoil.

27. A sledge hammer of mass 14 lbs. falls freely from a height of 4 feet

on an anvil and rises 6 inches after the blow. If the time of contact be ^^jt

of a second, find the mean force between the hammer and the anvil.

28. Two masses A and B, weighing 3 and 4 kilograms respectively, are

connected by a light inextensible string which passes over a light frictionless

pulley. The strings are vertical and just taut, the mass A resting on the

ground and the mass B being supported 1 metre from the ground. If the

support of B is suddenly removed, find (1) the time before B first reaches the

ground, (2) the impulse in the string when B is first jerked off the ground,

(3) the greatest height to which B subsequently rises.

29. A freely suspended steel bar, 1^ inches diameter, was subjected to a

pressure on the end by means of a charge of explosive. The pressure varied

with the time in the manner shewn by the table below.

Find the magnitude of the impulse produced. If the bar weighs 12 lbs.

find the velocity acquired.

Pressure, tons per
sq. inch

27 £0 37

5

22

10

8

20

3

30 40
Time, millionths ' ^

of a second
1 2-5

30. Two equal masses A and B, moving in the same straight line and in

the same direction, collide. Before the collision the distance of A behind B
is diminishing at the rate of 6 feet per second and after the collision the

distance of B ahead of A is increasing at the rate of 2 feet per second ; also

at one instant during collision both are moving at 10 feet per second. Find

their velocities before and after collision.



CHAPTER lY

Angular Momentum

In the chapter dealing with motion we saw that when a body was
rotating about an axis it was convenient to use the term angular
velocity to express the motion.

We must now investigate how
forces ma}' produce a change in

angular velocity. In doing this,

we do not have to introduce any

new principles, but merely to

apply those we have already

stated. We will first of all deal

with cases where the rotation

is about a fixed axis, and where

the forces applied are in a plane

perpendicular to the axis' of

rotation. ^ig- ^3.

Suppose we have a body, as shewn in fig. 63, which is free to

rotate about a fixed axis through O perpendicular to the plane

of the paper. Let this body be acted upon by a set of forces Pj,

P2, etc.

Consider any small particle A of mass m situated at a distance

r from O. If at a particular instant the angular velocity of the

body is w, then the linear velocity of A will be tor in a direction

perpendicular to OA.

The particle at A will also have an acceleration of magnitude

cD^r towards O as found in Chapter II.

Now there will be certain forces acting on the particle at A, and

we may conveniently consider these as having a total component,

/ say, perpendicular to OA and ^, say, along AO.

We will deal first of all with the force /^ acting perpendicular
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to OA, leaving the force p for future consideration. It is obvious

that the force p will have no effect on the rotation.

Let the angular velocity at the instant considered be increasing

by an amount Sw in a time U, or at the rate -7- . The linear ac-

celeration of A perpendicular to OA is r—

.

Applying the second law of momentum to the particle at A and

measuring forces in absolute units we have

f= the rate of change of momentum,

i.e. f— m.r
.-J- •>

where m is the mass of the particle.

Multiplying by r we have

•^•^='"'•'•5 (^^-

Now we may imagine the whole body to consist of an infinite

number of particles such as the one at A, and for each particle we
shall get an equation similar to equation (1).

Adding the right and left-hand sides of all these equations we
may express the sum thus

But
-J-

is the same for each of the particles, and hence we may

write diM

-^
dt

Ifr = the algebraic sum of the moments* of all the forces acting

on the particles about O.

These include both external and internal forces. But the in

ternal forces balance, and hence

2/r = the algebraic sum of the moments of all the external forces

about the axis O.

This is often called the torque or turning moment on the body

and is denoted by the symbol T.

* The moment of a force about a point is equal to the product of the magni-
tude of the force and the perpendicular distance from the point to the force.

2/r — ^[ tnr^ . -^ )

.
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%mr^ = the sum of the products of the mass of each particle

multiplied by the square of its distancefrom O.

This is called the moment of inertia* of the body about the

axis O, and is usually denoted by the symbol I.

The above equation may be written

dt

Now just as the mass multiplied by the linear velocity is called

linear momentum or more commonly momentum, so the product

Id) is called the angular momentum, or sometimes the moment
of momentum.

I -^ is the same thing as \r^ , i.e. the rate of change of angular

momentum.

Using absolute units for the torque we may write the second law

of momentum as applied to rotation thus :

Torque = Rate of change of angular momentum.
If the torque is measured in gravitation units we must write

™ _ Rate of change of angular momentum

Varying Torque

If the torque is varying, we can, as we did in dealing with linear

momentum, either measure the rate of change of angular momen-
tum at definite instants of time, or, we can find the total change

of angular momentum for a definite interval of time.

Suppose the torque at different instants of time is given by the

curve in fig. 64.

We have. Torque, T = —j- .

* Inertia may be defined as that property of a body in virtue of which it

will not change its state of motion or rest unless acted upon by some external

force. For translational problems it is measured by the mass.
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If we take a narrow strip as shewn shaded in the figure, the

area = T 8^

= 8{l<o),

i.e. the area represents the change of angular momentum during

time St.

.*. For any time 6 from the starts the area under the torque-time

curve from < = to t — 9, measures the total change of angular

momentum.

Time

Fig. 64.

If the moment of inertia is constant, then the area under the

curve represents the total change of angular velocity.

As in dealing with linear momentum, we may find the time-

average of the torque. This is given by the area under the torque-

time curve divided by the length of the base. Thus, .

The time-average of the torque x the time
= the total change of angular momentum.

Impulsive Torque

In many problems we cannot measure the torque at each instant

of time, either due to the total time being so short, or for other

reasons. In such cases, all we can do is to measure the total effect

produced by the torque during the time concerned. This is given

us by the total change of angular momentum, and gives us the
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product of the torque and time, or the area under the torque-time

curve. This we may call the impulsive torque but we must
remember that it is not a true torque but a product of force^ dis-

tance and time, i.e. a product of an impulse and a distance.

Example (1). Two masses M and m are supported by an in-

extensible string which passes over a pulley as

shewn i7i Jig. 65. Find the acceleration.

Let I be the moment of inertia and r be the

radius of the pulley.

The forces acting are shewn on the figure.

Let a = the acceleration of M downwards.

We have for M,

Mg-Tj=Ma (1).

Form, T^-mg = ma (2).

For the pulley the resultant torque

= (Ti-T,)r.

The angular acceleration

.-. (T,-T,)

Adding (1) and (2) we get,

la

r
,(3).

Fig. 65.

From this and (3),

(T2 - Tj) =3 (M + m) a - (M - 7n) g.

la
/-72=(M+»^)a-(M-m)5r,

I.e. The acceleration = ~ JL .

M ->-m +

We can also find Tj and T^ if desired.

It will be noted that here T^ and T2 are different, since the
pulley requires a turning moment to change its angular velocity.
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In example (3) on p. 64, we assumed that the moments of

inertia of the pulleys were negligibly small, and in that case we
had the tensions in the string on the two sides equal.

Example (2). A gas engine works against a constant torque of
525 Ihs. ft. If the gas supply is suddenly cut off and the resisting

torque remains the same, find in how many revolutions the speed

will falljrorn 250 to 240 revolutions per minute.

The fiywheel of the engine has a mass of 3 tons and it may he

considered concentrated at a radius of 3 feet.

Since the resisting torque is constant the speed will decrease

uniformly.

rPk ^' 4J.U A 250 + 240
Ine time average of the speed ==

2i

= 245 revolutions per minute.

If t is the time in seconds for the fall in speed, then the angular

retardation = — revolutions per minute per second

207r ,.
= -^TT- radians per sec. per sec.

The torque = the change of angular momentum per second.

525 X 32 = 3 X 2240 x 3= x
TT

t =

3t'

9 X 2240 X TT

525 X 32

= 3-77 seconds.

.'. The number of revolutions required

= 15-4 revolutions.

Example (3). A flywheel, of moment of inertia 900 Ih. ft. units,
has a fan attached to its spindle. It is rotating at 60 revolutions
per minute ivhen the fan is suddenly immersed in water. If the
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resistance of the water he proportional to the square of the speed, and

if the speed he halved in 3 minutes, find the initial retarding couple.

The retarding torque = Aw^, where \ is a constant to be deter-

mined, and 0) is the angular velocity in radians per second.

By the second law of momentum we have,

, dia
-Xc

dt
'

where I is the moment of inertia.

_dt^_I 2
dlO X. CO'

1

This gives,

Plot-^,i.e.—-=—

-

doi retardation

dt

and speed curve, using any suitable

scale for - ^- . This is done in fiff. 66.
do)

^

"" " "" ^ "" "~ " "" "" "" " "" "* ^ ""

\

\
\
K
\
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\

c \
V

d > I
o

s,

s
d)

s
£. t ^

V
%,

Sl ^s ^ **
*1 * ~"

_ J
3ir

speed, radians per second

Fig. 66.

2Tr
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The scale for speed is, 1 division =^ radians per second.

The scale for ^—;— is such that its value for o) equal to
retardation

27r radians per second is represented by 5 divisions,

i.e. 6 divisions = T- x ——
,A 4o7r^

T
.*. 1 division =

207r2X
•

Now if we take a narrow vertical strip between the base and

the curve the area = ^r- x Sw
OO)

= the time to change speed by amount Sa>.

. . The area under the curve between w =77 and <a = 2Tr represents

180 seconds.

The area= 198 small squares

= 0-157 Y seconds.
A

.-. 0157 X 5^ = 180,
A

i.e. A - 0-785.

The initial retarding couple = 0*785 x 47r^ pdls. ft.

= 967 lb. ft.

Example (4). A tope is being wound on to a drumfrom a coil

on the ground, as shewn in Jig. 67. The rope weighs 1 Ih. a foot

and the radius of the drum, which may also he taken as its radius

of gyration"^, is 2 feet. The mass of the drum is 80 lbs. When the

drum starts there is one complete turn of rope on it, and it

accelerates uniformly at the rate of 20 revolutions per m,inute per

second. Find the couple at the end of 4 seconds. Neglect the

diamieter of the rope.

* For definition of radius of gyration, see p. 105.
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Let Ti and Tg be the tensions in the rope at the points shewn
in the figure.

The weight of the hanging part of the

rope will be 20g pdls.

The average speed during the first

4 seconds

= 40 revolutions per minute.

The mass of the rope wound on in

4 seconds

40x4
60

X 47r lbs.

The mass of the rope on the drum at

the end of 4 seconds

=
(f +l)47rlbs.

= -^r- lbs.
Fig. 67.

The moment of inertia of the drum and rope on it

447r
= 80 X 22 +^ X 22

= 504 lbs. ft.2

The speed of the rope at the end of 4 seconds

80x47r.
^

,

=—TTTT— leet per second.
oO

Let C = the couple in pdls. feet units on the drum. For the

drum we have,

C-2T, = 504x2-?A?5 (1)

= 1055 pdls. ft.

For the portion of the rope between the drum and the ground,

T,-20^-T, = 20x^x2 (2)

= 84 pdls.
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Considering the coil, the pull Tj has to supply momentum to

the new portion of the rope which is being jerked from the coil.

Ihe mass per second =—^— lbs.

The change of velocity = —^tt" ^^®^ P^^ second.
60

T, =

From (2) and (3),

From (1),

_ /80 X 47ry
^"1^60"-;

= 280 pdls.

T2 = 84 + 280 + 640

= 1004 pdls.

C - 1055 + 2008

- 3063 pdls. ft.

= 96 lbs. ft.

.(3)

Example (5). In a press for stamping medals a flywheel is

keyed to a vertical screw which rotates in a nut fixed to theframe.

If M is the mass, k the radius of gyration of the screw and wheel,

n the number of threads per unit length, r the m^ean radius of the

screw, and fx the coefficient of friction, find an expression for the

vertical acceleration of the screw and wheel when left to themselves.

Imagine one complete turn of the thread stripped off from the

nut and opened out as shewn in fig. 68.

•^l^

\
A

\
f^

^^ 1

n

^^^^^^v'
Mg 1

y

< 2i, r -->

Fig. 68.

L.E.D.
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Let R = the normal pressure between the nut and screw. The
friction fxR will act at right angles to this and so as to oppose the

motion.

The resultant force vertically downwards

= M^ - R cos — fiR sin 0.

The horizontal force acting at a radius r

= R sin 6 — fxR cos 0.

Let a — the linear axial acceleration, and A ::= the angular ac-

celeration. Then

an 1

A 27r 27m*

We may apply the second law of momentum to the two com-

ponents of the motion and we have

M^ — R (cos + fjL sin 0) = Ma (1),

and R(sin^-/xcos^)r= MF. A (2).

Eliminating R from (1) and (2) we get

Mk^ . A /cos + iJi sin ^\
Mo .

( -T—^— ^ I = Ma.
r \sin d — fx cos 0/

.'. The vertical acceleration
ik^ 27rn /27rnr + /aX

]

\ r \2'7rnr — fxJ J

If /x, = this reduces to -—p
—— + 1

Example (6). In an inward-flow water turbine the water

enters the wheel at a radius of \\ inches^ with a velocity of ^Q feet

per second, and is inclined at 10° to the tangent at the point of

entry. The water leaves the wheel with a velocity of 10 feet per

second at a radius of 5 inches, and in a direction inclined hack-
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wards at 50° to the tangent at the point of exit. If 400 cubic feet

of water per minute pass through the wheel, and there is no shock

at entry, find the turning moment produced.

Fig. 69.

The mass of water per second
400x62-5

60

-417 lbs.

The moment of momentum initially ~ 450 x 36 x OC.

„ „ finally =-417xlOxOD,
where OC and OD are the perpendiculars from O on to the actual

directions of motion of the water at entry and exit.

The turning moment

= Change of moment of momentum per second

= 417 X 36 X OC + 450 x 10 x OD
= 417 {36 X ii cos 10° + 10 X 3% cos 50°} pdls. ft.

= ^y. {36 X 1-1 X 0-985 + 10 x ^^ x 0-643} lbs. ft.

= 458 lbs. ft.

7—2
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500 r.p.m.

Fig. 70.

Example (7). Two toothed wheels, of moiments of inertia 4

and 2 lbs, ft. units respectively, are

arranged on -parallel shafts. The

first wheel is rotating uith a speed

of 500 r.p.m. when the second wheel,

which is initially at rest, is suddenly

made to mesh with it, by sliding the

second tvheel along tlie shaft. If the

number of teeth on the wheels are 28

and 20 respectively, find the speed of each wheel immediately after

they are in mesh.

When the wheels are in mesh, since the circumferences have

the same speed, we have

r^~ 20~n^'

where n^ and n^ are the speeds, in revolutions per minute, after

meshing.

Let P = the tangential component of the impulse between the

teeth of the wheels during the period of meshing.

|(500-«.).For (1),

For (2),

P . ri = 4

P.i-
2t

i.e.

ri 2 (500 - ni)

1000 - 2n,
i.e.

and

or

and

28

20

^2= l-4ni,

1000-2??.! = 1-42x^1,

1000

3-96

1400

3-96

253 r.p.m.

354 r p.m.
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Moment of Inertia

The values of the moment of inertia of various bodies can be

obtained by employing the integral calculus to effect the sum-

mation required, or we may employ certain graphical methods.

Here we will state the values for a few bodies which are frequently

met with in rotation problems.

^ BoiUh's Rulefor Moment of Inertia

The following simple rule for rapidly obtaining the moment of

inertia of many bodies dealt with in dynamics will be found very

useful.

The moment of inertia about a symmetrical axis through the

centre of gravity

Sum of the squares of the perpendicular semi-axes

3, 4, or 5

3, is to be used for a rectangular or square body.

4, is to be used for an elliptical or circular body.

5, is to be used for an ellipsoidal or spherical body.

Let us see how this is applied :

Rectangular plate

Suppose we want the moment of inertia about ox. Here the

only axis perpendicular to the axis con-

sidered is the 2/-axis, the thickness being

supposed negligibly small.

/l2

Similarly,

and

M

3
rVMA^

where oz is the axis perpendicular to the

plane of the figure.

K-- b--

Fig. 71.
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Circular disc or cylinder

Let r = the radius.

_ M (r^ + 7-2) _ Mr2

For a thin disc

Sphere

I =!^'-i

L.= M
7^ + r

Moment of Inertia about any A ocis

For determining the moment of inertia about an axis which

does not pass through the centre of gravity we may employ the

following

:

The moment of inertia of a body about any axis is equal to the

mom,ent of inertia about a parallel axis through the centre of

gravity plus the product of the mass and the square of the distance

between the two axes.

Fig. 73.

Referring to fig. 73, let CD be an axis through the centre of

gravity parallel to the axis AB. Then
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= 2m (z + hy

= 2mz^ + ^mh^ + Sm . 2hz

= ^m^ +Mh^+2h '%mz,

where M = the total mass.

Now %mz^ = IcD >

and "Xmz = the moment of the mass of all the particles about CD

= zero, since the centre of gravity lies on CD. See p. 117.

Plane Lamina

Another proposition which is often useful in determining

moments of inertia is as follows :

In the case of a plane lamina or flat body in which the thickness

is negligibly small the moment ofinertia about an axis perpendicular

to the plane is equal to the sum, of the moments of inertia about any

two axes in the plane mutually at right angles to each other and
intersecting on the first axis.

Fig. 74.
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Take the axis of oz perpendicular to the plane, and the axes ox

and 07/ in the plane.

If m is the mass of a particle A, fig, 74, then

= ^m 0A2

= 2r/i (ON^ + NA2)

= "^mx^ + ^my^

Hoop about a diameter

The moment of inertia I^^ for a thin-rimined hoop of radius r

and mass m equals mr^.

But lox = loy,

Hollow cylinder about its axis

Let R and r be the external and internal radii respectively.

Let h be the height, and p be the density.

Treat the hollow cylinder as the difference between two solid

cylinders of radii R and r respectively.

R2 ^ r^
I = p-rrR^h ^— pirr^h -

p.(R^-^).(?!±l)

R^ + r'

where M is the mass.

Thin rod

This may be treated as a thin rectangular plate in which two

of the axes are negligibly small.

Let I be the length of the rod and m be the mass.
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The moment of inertia about an axis through the middle

= 7n.' (Routh'
o

s rule)

mP
-12-

The moment of inertia about one end

Radius of Gyration

In the case of a thin-rimmed hoop all the mass may be con-

sidered to act at the same radius, viz. the radius of the hoop r, and

hence the moment of inertia about an axis through the centre

perpendicular to the plane = mr^, where m is the total mass.

In the case of a body where the mass is at different distances

from the axis of rotation, it is often convenient to imagine it re-

placed by a simpler body having all the mass concentrated at the

same radius. This body must have the same dynamical effect so

far as rotation is concerned as the original body.

If M = the mass of the original body,

I = the moment of inertia of the original body,

and k = the radius at which we may imagine the whole mass to

be acting, then

U¥ = I,

or k^ = — .

M

k is called the radius of gyration.

For example, the moment of inertia of a flywheel = 6750 ft.^ lbs.
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The mass of the wheel = 1100 lbs.

.'. The radius of gyration = sj^\ 50TOTT

= 248 feet.

Example (8). The figure shews a sheave of an eccentric, the

sheave consisting of a steel disc of radius 6 inches and thickness

1 irtch, with a hole of 4 inches diameter, the centre of which is

3 inchesfrom the centre of the disc. Find the moment of inertia of

the sheave about the axis of the hole.

the

Fig. 75.

The moment of inertia about A = the moment of inertia of the

complete disc about B + the mass of the complete disc x AB^

moment of inertia of the part removed for the hole about A

= ^^'^^^12
1 2 H4)r^"^36^12^^>

where p is the density, i.e. 480 lbs. per cubic foot,

_307r_107r

= 5-8 lbs. ft.2
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Examples. Chapter IV

1. Define the term moment of inertia as applied to a revolving mass.

Awheel of mass 50 lbs., rotating at 400 revolutions per minute, is brought

to rest in 10 seconds by the application of a brake. Find the average

frictional torque during the 10 seconds, if the whole mass of the wheel may
be considered as situated at 18 inches from the axis.

2. A wheel of 200 lbs. weight and radius of gyration 2 feet is mounted on

smooth bearings. The axle is 3 inches in diameter, and a weight of 40 lbs.

hangs from a string wrapped round the axle. With what acceleration will

the weight fall ?

If after the weight has fallen through 6 feet from rest the string is cut and

a retarding tangential force of 20 lbs, applied on the axle, how many revolu-

tions will the wheel make before coming to rest ?

3. A uniform circular disc of weight W is mounted with its axis horizontal

and a light string passing over it carries weights M and M + m, at its ends.

If the string does not slip on the disc, shew that when the system is in motion

the acceleration of the weights is equal to

2m
^4M+2m +W

Find also the values of the tensions in the two portions of the string, and
the resultant thrust on the bearings of the disc.

4. The axle of a flywheel is 6 inches in diameter. A weight of 20 lbs.,

hung at the end of a fine flexible wire which is wrapped round the axle, is

just sufficient to overcome friction, and when put in motion, falls with a

constant velocity. When an additional 50 lbs. is hung on the wire it descends

mth a constant acceleration equal to :^. Find the value at the end of

10 seconds, of (1) the velocity of the weight, (2) the angular velocity of the

flywheel. Find also the moment of inertia of the flywheel.

5. In the previous question if instead of the additional 50 lbs. being hung
on the wire, the weight of 20 lbs. is pulled downwards with a steady force of

50 lbs. wt., what will be its acceleration ?

6. A propeller and shaft, the moment of inertia of which is 500 lbs. ft.2

units, is observed to slow up in the manner given in the table below. Find
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the retarding torque at speeds of 800 and 300 revolutions per minute, and

the number of revolutions made during this fall of speed.

Speed,
revs, per min.

1000 875 765 645 550 460 375 305 240

Time,
seconds

15 30 45 60 75 90 105 120

7. The drum of a winch has an effective diameter of 12 inches. The axis

is horizontal and 40 feet above the ground. One end of a chain, weighing

2 lbs. per foot, is fixed to the drum, and the chain hangs vertically to a loose

heap ou the ground where there are 40 feet of chain. The drum is rotated at a

constant speed so that 60 feet of chain are wound up per minute. Neglecting

friction, find the couple required to rotate the drum. Draw a curve shewing

the couple during the last 40 seconds before the chain is completely wound up.

8. An oscillating rotary valve has a motion given by the equation,

^= 3sin4<,

where 6 is the angle turned through in time t. Shew that the torque varies

directly as the angle turned through.

©. A disc, the moment of inertia of which is 300 lbs. ft.^ units, is retarded

from a speed of 50 revolutions per minute by a resisting couple which varies

directly with the speed. If the time for the speed to be reduced to 20 revolu-

tions per minute is 4 minutes, find the initial retarding couple.

10. In a rifle barrel the grooves make one complete turn in 10 inches. A
bullet of mass 0-4 ounce and radius of gyration 0*11 inch has a muzzle velocity

of 2000 feet per second. What are the values of the effective impulse and

impulsive couple exerted on the bullet during its travel along the barrel ?

11. In order to determine the moment of inertia of a flywheel and its shaft

it was speeded up by a belt which was then thrown out of gear. When coming

to rest under its own friction it was found to take 42 seconds to change the speed

from 200 to 180 revolutions per minute. With a brake giving a constant torque

of 18 lbs. feet it took only 18 seconds to change from 200 to 180 revolutions

per minute. Find the moment of inertia of the flywheel and shaft.

12. A cylindrical nut, whose internal and external radii are 1 inch and

4 inches respectively, works along a vertical screwed shaft. The pitch of the

screw is | inch and the coefficient of friction J . If the nut be set turning so

as to travel down the shaft, shew that its linear retardation will be approxi-

mately 0-05 foot per second per second.
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13. A cylinder rolls down a plane inclined to the horizontal at an angle 6.

Shew that the acceleration of the centre of the cylinder is | gr sin a.

14. As a flywheel rotates it winds up on its axle a light inextensible string

which is attached to a weight of 50 lbs. resting on the ground in such a

position that the string is vertical when it becomes tight. The moment of

inertia of the flywheel is 200 lbs. ins.^, and the diameter of the axle is 2 inches.

Shew that at the instant when the weight leaves the ground the angular

velocity of the flywheel is reduced in the ratio 4 to 5.

15. A uniform circular trap-door, 2 feet in diameter, is to be provided with

a stop in such a way that when the door is thrown open against the stop there

shall be no jar on the hinge. Find where the stop must be placed.

16. A water turbine is taking 500 cubic feet of water per minute. The

water enters the wheel at a radius of 10 inches and with a velocity of 25 feet

per second inclined at 20° to the tangent at the point of entry. If there is no

shock at entry, and the discharge is radial, find the turning moment on the

wheel.

17. A uniform circular disc of diameter 1 foot is rotating about an axis

through its centre perpendicular to its plane at a speed of 100 revolutions per

minute ; this is brought up to a stationary disc of the same mass but of

diameter 2 feet, which is free to rotate about the same axis. After rubbing the

two rotate together ; find the common angular velocity.

18. A door is 6 feet 6 inches high and 2 feet 6 inches wide and weighs

40 lbs. Find the moment of inertia about the hinges.

19. A hollow sphere has an external diameter of 9 inches and an internal

diameter of 8 inches. It is made of metal the density of which is 480 lbs. per

cubic foot. Find the moment of inertia about a diameter.

20. The rim of a cast-iron flywheel is rectangular in cross-section, the

thickness being 6 inches. The outside and inside diameters of the rim are

4 feet and 3 feet 3 inches respectively. If the density of cast-iron is 460 lbs.

per cubic foot, find the moment of inertia of the flywheel. The hub and
spokes may be omitted.

21. A round rod, \ inch in diameter, is screwed into a solid sphere of

6 inches diameter, the axis of the rod being along a radius of the sphere. The
length of the rod from the end to the centre of the sphere is 3 feet, and both
the rod and sphere are of steel the density of which is 490 lbs. per cubic foot.

Find the moment of inertia about an axis (1) through the centre of gravity,

(2) through the end of the rod.



CHAPTEE V

CENTRIFUGAL FORCE AND CENTRE OF MASS

Centrifugal Force

When we were applying the second law of momentum to rotation

we dealt only with the tangential components of the forces acting

on the particles ; we must now deal with the normal forces.

Suppose we have a mass m rotating in a circle of radius r with

an angular velocity w. We have already

shewn that such a mass has, continually, an y- ^ \

acceleration towards the centre of magnitude / w \
(oV. This means that there is a rate of change

|

'\ x
of momentum towards the centre equal to * ^/ r

?no>V. In order to produce this rate of change \ /

of momentum we must have a force F acting •-— --^

always towards the centre. This force is some- - ^
^ig- 76.

times called the centripetal force.

Thus, F = m.(i>V...> (1).

The force may be provided, in the case just considered, by

attaching the mass m to the centre of rotation by means of a string.

The tension in this string will be equal to mwV.

In the case where m is a small particle of a body, the force

is provided by an internal stress being set up in the material of

the body. That this is so, is well known, since it is possible by

rotating bodies at sufficiently large speeds to cause the internal

stresses set up to be greater than the material can withstand, with

the result that the body flies to pieces. Many cases have occurred,

frequently with disastrous results, where engine flywheels, for

/
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example, have suddenly flown to pieces due to the governor sticking,

and the speed increasing greatly beyond the normal.

In dealing with cases of rotation where the angular velocity is

constant it has become customary to use the principles of statics

to solve problems. There is a good deal to be said for this method,

but unfortunately it is often a stumbling block to beginners.

However, the method has become so usual that it is not desirable

to try to change it, and we must adopt it. In statical problems the

velocity is zero and the rate of change of momentum is zero. The
resultant force is therefore zero. Now, taking the case of the

rotating mass just considered, let us imagine that there is a force

equal to mwV acting away from the centre instead of towards the

centre, and that instead of the body having a rate of change of

momentum it is in equilibrium. The resultant force on the mass

must be zero,

.*. F - y?icoV = 0, '

where F is the pull in the string towards the centre.

This imaginary force equal in magnitude to mm'^r and acting

away from the centre of rotation, which we apply to make the

problem a statical one, is called the centrifugal force.

It is exactly equal in magnitude to the true force which must act

to produce the acceleration but is in the opposite direction. It is

obvious that all dynamical problems might be treated as statical

problems if we introduce imaginary forces equal and opposite to

the rates of change of momentum. It is often convenient to do
this.

Example (1). A mass ofm lbs. is suspendedfro7n a string of
length I and is rotating in a horizontal circle of radius r. Find
the time of one revolution and also the tension in the string.

Such an arrangement is called a conical pendulum.

We will treat this problem firstly as dynamical and secondly

as statical.
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(1) Dynamical.

Let T be the tension in the string, and w the angular velocity.

The resultant force vertically = T cos 6 — mg.

The resultant force horizontally = T sin 6.

The rate of change of momentum vertically = 0.

The rate of change of momentum
horizontally (towards C) — moi^r.

From the second law of momentum

T cos 6 — mg — {a),

and T sin 6 = mwV ...{b).

From {a) and (6),

^ a ^^'^
tan ff -— ,

I.e.

Fig. 77.

rcot Q

= ^ , where h - OC,

J\-
For one revolution the angle turned through = 27r.

9.

The time for one revolution
CO

-v/l
From (a),

cos Q
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I

(2) Statical.

Apply a force nua^r as shewn in fig. 78. We may now treat the

mass m as in equilibrium under

the action of the three forces,

T, mwV, and mg.

Resolving vertically and

horizontally, we have

T cos ^ — mg = 0,

and T sin 9 — rrn^r = 0.

From these, as before, we get

IT = mgy

ma)V

mg

and -A-
Fig. 78.

Example (2). A simple governorfor operating the throttle valve

of a steam engine is shewn in fig. 79. The vertical spindle^ to which

is fixed the piece AB, derives its rotation from, the crank shaft of

the engine. The sleeve DC can slide up and down the spindle, and
moves a lever, theforked end of which fits in a groove on the sleeve.

This lever opens or closes the throttle valve.

It is required to find the total mass W of the loaded sleeve so that the

angle CAH may be 30°, when the engine is moving at its normal speed

and rotating the governor spindle at \20 revolutions per minute.

Take AB = CD = 3 inches.

CH - HA = BG = GD = 10 inches.

The weight of each hall = 3 Ihs.

The radius of the ball path = (1 -5 + 10 sin 30°)

= 6*5 inches.

The centrifugal force per ball —
3xl67r"x6-5

12
pdls.

= 267r2.

Let P equal the pull in each of rods CH and DG,

and Q „ „ „ HA and GB.

L. E. D.
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Consider one ball and resolve the forces vertically and hori-

zontally.

Fig. 79.

We have P cos 30' - Q cos 30° + 3g = 0^

(P + Q)sin30°-267r2:=0/'

or p - Q = -^

P + Q = 267r2 X 2

rri 9 96 X 2
.-. 2P = 527r2-

= 512-111
= 401 pdls.

200-5
P==

32
6-26 lbs. wt.
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Revolving vertically for the sleeve we have

2Pcos30° = W^.

401 X n/3W
2x32

= 10-85 lbs. wt.

Centre of Mass, or Centre of Inertia

In dynamical problems when we are dealing with a body of

finite size and* not merely a small particle, we may consider the

body as consisting of a very large (infinite) number of small par-

ticles. These particles may be moving with different velocities,

e.g. a body rotating about an axis, and in estimating the total

change of momentum we shall require to find the vector sum of

the changes of momentum of all the particles.

Take the case of a body the mass of which may be considered

concentrated in one plane, e.g. a thin sheet of material. Let the

body be rotating about a fixed axis with an angular velocity w.

Fig. 80.

Suppose we take two axes Ox and Oy in the body, for convenience

at right angles, and passing through the axis of rotation. Let x
and y be the coordinates of a particle of mass m (fig. 80).

8—2
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The rate of change of momentum is rrnn^r^ where r = OA, and is

in direction AO.

The rate of change of momentum in the direction Ox

= moi^r cos 6

= moi^x.

The rate of change of momentum in the direction Oy

= moy^r sin 6

= TtHiP-y.

For the whole body we have,

Total force in direction xO = ^nm^x = P.

„ „ yO = %mi^^y = Q.

/. P = o>^'^mx,

and Ql = oy^%my.

Now we can obviously find a point, coordinates S, y, say, in the

body such that

M5 = ^mx

and My = ^my,

where M = the total mass of the body,

%mx

and 2/=-^.

The point whose coordinates are x and y is called the centre

of mass or centre of inertia of the body.

The resultant force in the direction xO and yO is given by

and Q = M2/ . w^

and instead of thinking of the individual particles we may imagine

the whole mass of the body concentrated at the centre of mass.
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The single resultant force required to produce the change of

momentum
= \/p2 + a2

= Ma)2 OG^

where G is the centre of mass of the body.

The centre of gravity of a body is the point through which

the resultant force on the body due to gravity always acts, no

matter what the position of the body.

It is easy to shew that the centre of gravity coincides with the

centre of mass.

In fig. 80 imagine the weight of each particle, such as m at A,

to act at right angles to the plane of the figure.

Let X and y be the coordinates of the centre of gravity. Taking

moments about the axes Oy and Ox, we have

M^ xx' = ^mgx,

i.e.

and

i.e.

From the previous article we see that, x=x, and y' = y, and
hence the centre of gravity coincides with the centre of mass.

Example (3). A motor om,nibus, when fully loaded^ weighs

6^ tons and the height of the centre of gravity is 4 feet 10 inches

above the ground, and may be assumed to be in the vertical plane

midway between the wheels. The effective breadth of the wheel base

is 6 feet 8 inches. Assuming no side slip, what is the maximum,
speed at which the omnibus can take a corner of 5 yards mean
radius without beginning to overturn ?

x'
%m,x

~ M '

Ug xy' = ^fngy,

y'
^my
M
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Th^, omnibus keeps the middle of the road so that the wheel base

is horizontal.

What minimum, coefficient of friction is required to prevent side

slip?

T
1-

i

4' 10'
T
mg

15

x«

1^ 6'8" ^

Fig. 81.

Let V — the maximum gpeed in feet per second, and m = the

mass of the loaded omnibus.

The acceleration of the centre of gravdty = —

15
feet per sec. per sec.

The centrifugal force acting at the centre of gravity = ^k" •

When overturning is about to begin the pressure between the

inner wheels and the road will be zero.

Let R = the normal pressure on the outer wheels, and P — the

tangential pressure preventing skidding.
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Taking moments about A we have

'^'x58-m^x40 = 0,

, 40 X 15 X 32
i.e. ^ = gg

= 333,

.•. V = 18-2 ^eet per second

= 12*4 miles per hour.

For P we must have

pdls.

15

6-5 X 2240 X 18-2^
"

15

= 4*5 tons wt.

Similarly R = mg pdls.

= 6*5 tons wt.

P
The coefficient of friction = -

R

_4;5
"6-5

= 0-69.

Cant on Railway Curves

When a train travels along a curved track a force will be re-

quired towards the centre of curvature in order to provide the

necessary change of momentum. If the track is level, as is usual

in the case of tramways, the flanges on the wheels bear against

the outer rail. In railway curves the outer rail is raised above

the inner rail, and by this means, for a definite speed, all side

thrust on the flanges may be avoided. The amount the outer rail

is raised above the inner is called the cant. If the speed of the

train exceeds that for which the cant was calculated the outer

flange has to transmit some thrust ; if the speed is less than that
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for which the cant was calculated the inner flange will bear

against the rail.

We will investigate this.

Fig. 82.

In fig. 82 let G be the centre of gravity, P and Q tlie normal

thrusts on the wheels, a the mean distance between them, S the

flange thrust, and v the speed in feet per second.

The acceleration towards the centre of curvature is - , where R
R

is the radius of curvature. Put on a centrifugal force , and
R

we may then treat the problem as a statical one.

Resolving all the forces parallel and perpendicular to the track,

we have :

Perpendicular to the track

P + Q - Mg cos 0^0 (1).
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Parallel to the track

S + M^sin^-—-cos^ = (2).
R

If S is zero, i.e. no side thrust on the flanges, we get from (2)

tan ^ = — .

Let h = the cant, then tan 6 = , = -
, since h is small

compared with a,

i.e. the cant = —

.

Also S == M ( — cos^— ^ sin^

^ . -
j

, if ^ is small.

Example (4). Let R = 660 feet,

V =: 40 miles per hour

= —5— feet per second,
o

a = i feet 8J inches

56-5 _ ^^-^feet.

The cant of the outer rail {h) for no side flange thrust

56-5x88^x4
~ 12x660x9x32
= 0-765 foot

= 9|^ inches. ,

For a speed of 60 miles per hour, the side thrust of the flanges

(-882 ^^ 0-765 X 121

= M {11 -7 -5-2 1 absolute units.
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Or taking M = 2240 lbs. we get,

The thrust per ton
_ 2240x6-5
~ 32

= 455 lbs. per ton.

Stress in the Rim of a Flywheel

Let us consider a flywheel in which the thickness of the rim is

small compared with the mean radius, the flywheel consisting of

a heavy rim connected to the hub by spokes.

Let p = the density of the metal of the wheel,

Q) = the angular velocity of the wheel,

r^the mean radius, i.e. the radius of the centre of mass

of a cross-section of the rim.

Take a small part of the rim subtending an angle SO at the

centre of the wheel (fig. 83).

Let a = the area of cross-section of the

rim.

P = the total pull on the area at A or B

in absolute units.

The mass of the element AB = par W.

The acceleration towards the centre C

= wV.

The centrifugal force on the element

= p.a.rKoi\8e,

and acts at the centre of mass of the ele-

ment.

This centrifugal force has to be balanced

by the components of the forces P at A

and B,

on • ^^2P. sm— par'^ (o^ 80.
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But since BO is very small, we may write

. SO SO

and we get P . 80 = par^m^SOy

or P = par^tt)^.

Let/= the internal force per unit area at A or B, then

P

a'

= pv^ absolute units,

where v is the velocity of the centre of mass of a cross-section

of the rim.

EiXaonple (5). A flywheel is made of cast-iron which breaks

when subjected to a pull of 10 tons per sq. inch. The external

diameter is % feet and the thickness of the rim, is 6 inches. What is

the speedy in revolutions per minute, which will cause the flywheel

tofly to pieces ?

The density of ca^st-iron = 470 lbs. per cubicfoot.

Let N = the required speed.

Then c. = -g^,

and V = -^jr- X -^ feet per second.

The breaking stress = 10 x 144 x 2240 x g pdls. per sq. foot.

Using the formula, y^p-w^, we have

470 X 47r2x n2x7-52
10 X 144 X 2240 X 32 =

1202

or
470 x4x 3-142 X 7-52

= 1195 revolutions per minute.
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Examples. Chapter V
1. A bucket of water is swung round in a vertical circle of 26 inches radius.

What is the minimum speed of rotation if none of the water is spilled ?

2. A particle is attached to the end of a string of length I, the other end

of which is fixed, and moves as a conical pendulum making n revolutions

per minute. Find the radius of the circular path which it describes.

A mass of 10 lbs. rotates as a conical pendulum at the end of an elastic

string, of unstretched length 3 feet, and makes 40 revolutions per minute.

If the string is stretched ^^^ of its length by the weight of 1 lb. find the length

of the string during the motion.

3. The spindle EB shewn in fig. 84 receives vertical support only at E,

and is supported horizontally by collars at A and B, DC is a stiff arm rigidly

attached to the spindle and carrying a weight at C. If AB is 8 inches, DC
10 inches, D midway between A and B, and the weight at C 10 lbs., find the

horizontal forces at A and B.

Also find these forces when the spindle is rotating freely at 100 revolutions

per minute, and determine the speed of rotation for which the reaction at A
is zero.

Ej,
mm//////

G

Fig. 84.

4. A particle of mud, sticking to the rim of a motor-car wheel travelling

at 20 miles per hour, leaves it when situated at a point 30° behind the vertical

line between the centre of the wheel and the road. Determine its velocity

relative to the road, the mudguard, and the top of the wheel respectively.

To what forces and to what accelerations is the particle subjected before it

leaves the wheel ?
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6. The governor of a steam engine, when making 210 revolutions per

minute, takes up the position shewn on the sketch.

If each ball weighs 1 lb., determine the weight W.

Supposing the speed of the engine to increase 2

per cent, before the throttle valve moved, what pull

would the governor exert on the throttle valve

lever?

6. A steam roundabout revolves four times a

minute. A wooden horse on the roundabout is

suspended from the roof by an iron rod, and the

centre of gravity of the horse and the man on it is

at a distance of 20 feet from the axis about which

the roundabout turns. Find the angle which the

suspending rod makes with the vertical. Find also

the horizontal displacement of the centre of gravity

caused by centrifugal force, supposing this centre of gravity to be at a dis-

tance of 5 feet from the point of suspension.

Fig. 85.

7. A car weighing 30 cwt. is running at 15 miles per hour round a curve

of 60 feet radius on a level road. What horizontal force perpendicular to the

direction of motion must be exerted by the ground on the wheels of the car?

Assuming that the grip of the outer wheel is sufficient to prevent skidding,

find at what speed the inner wheel will begin to lift off the ground. The width

of the wheel base is 4 feet, the centre of gravity is 3 feet above the ground,

and the given radius, 60 feet, is the radius of the circle midway between the

tracks of the inner and outer wheels.

8. A motor-car track is designed to allow of cars running round a curve

of 500 feet radius at 60 miles an hour without any frictional side pressure

between the tyres and the road surface. Find the slope to which the curved

part of the track must be banked up, and the side pressure produced per ton

of car when the speed is 80 miles an hour.

9. A uniform disc is mounted on an axle which passes through its centre

O. A mass of 25 lbs. is clamped to the disc, its centre of gravity being at a

point A distant 2 feet from the centre O, and another mass of 40 lbs. is

clamped with its centre of gravity at B distant 2*5 feet from O. The angle

AOB is 120°. Find the resultant force on the axle due to the rotation of

these masses, when the disc is making 200 revolutions per minute.
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lO. In the shaft governor, shewn diagrammatically in fig. 86, the

ball levers are pivoted to a piece D
which is fixed to the shaft F. For the

position shewn, the pull in the springs

connecting the balls is 150 lbs., and there

is a force on the sleeve along the axis of

the shaft equal to 115 lbs. In addition to

this there is a maximum axial force on

the sleeve due to friction of 10 lbs. , which

may act in either direction. Find the two

extreme speeds at which the shaft may run

without the sleeve of the governor moving ^*

along it. The length of AB is 6 inches; the length of BC is 3| inches;

the balls are 12 inches apart and each weighs 15 lbs.

11. A cast-iron flywheel has a mean diameter of 4 feet. If the mean tensile

stress in the rim is to be limited to 1000 lbs. per sq. inch find the maximum
allowable speed of the wheel. A cubic foot of cast-iron weighs 470 lbs.

12. What is the side pressure between a train weighing 300 tons and the

rails, when the train is going round a curve of 120 yards radius at 30 miles

per hour, the rails being on the same level? What should be the cant for no

side pressure with a speed of 30 miles per hour if the gauge is 4 feet 8^ inches?

With this cant, what will be the side pressure if the speed is 45 miles per hour?

13. A belt the mass of which is p lbs. per foot length passes round half the

circumference of a pulley wheel, the speed of the belt being v feet per second.

If Tj and Tg be the tensions in lbs. in the two sides of the belt, shew that,

neglecting the weight of the belt, the total pull on the pulley is equal to

( 2pv^
'

Ti-fT, lbs.

14. The wheel base of a steam tractor weighing 16 tons is 6 feet 10 inches

across and the distance between the axles when they are parallel is 10 feet

10 inches. When going round a curve the distances between the points of

contact of the wheels and the ground are 11 feet 4 inches for the outside

pair, and 9 feet 4 inches for the inner pair. If the speed is 6 miles per hour,

find the force tending to shift the tractor sideways.

15. A railway line over a bridge is curved, the radius of the curve being

400 yards. Find the side thrust on the bridge when a locomotive weighing

90 tons passes over at a speed of 30 miles per hour.
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If the gauge is 4 ft. 8| inches, find how much the outer rail must be raised

above the inner rail in order that there shall be no thrust on the flange.

16. A casting weighing 6 lbs. is bolted to the face-plate of a lathe, for the

purpose of machining, in such a position that its centre of gravity is at a

distance of 2 inches from the axis of the mandrel. The centrifugal force is to

be balanced by two 3 lb. masses placed on two radii on opposite sides, and

inclined at 45° to the diameter passing through the centre of gravity of the

casting. Find how far from the centre the masses should be placed.



CHAPTER VI

WORK, POWER AND ENERGY

Work

We have now to introduce some new physical quantities, and

also another principle or law, mentioned in Chapter III, which is

very far reaching in its applications and of particular importance

to engineers.

Fig. 87.

If a force acting on a body causes a displacement of it then the

force is said to do work. Also, if a body is moved in the opposite

direction to a force acting on it, work is said to be done against

the force.

We see that there are two things necessary before work can be

done, viz. force and motion.

The quantity of work done is measured hy the product of the

component of the force in the direction of the displacement^ and the

displacement.

For example, in the case shewn in fig. 87, if the force P moves

the mass a distance s then.

The work done = P cos 6 . s

= F.s,

where F is the component of the force in the direction of motion.
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The absolute unit of work in the f.p.s. system is the/oot-poundal.

One foot-poundal is the work done by 1 poundal of force acting

through a distance of 1 foot.

In the c.G.s. system the absolute unit is the erg.

One erg is the work done by 1 dyne offorce acting through a

distance of 1 centimetre.

1 joule =r 10'' ergs.

Frequently the gravitation unit is used, and we speak of the

number of foot-lbs. of work done.

One ft.-lb. is the work done by aforce equal to the weight of 1 lb.

acting through a distance of 1 foot.

In the simple case shewn in tig. 87 we considered the force

constant, but in many cases the

force varies as the displacement

increases. In such cases we may
conveniently draw a Force-Space

curve such as is shewn in fig. 88.

The work done for a small dis-

placement 8s will be represented

by AB . Ss, i.e. the cross shaded

area, and the total work done is

represented by the area under the

force-space curve, shewn shaded

vertically.

Or, we may find the space-average of the force (F) from the

graph, or otherwise, and the work done will then be equal to F . s,

where s is the total displacement.

Note. This space-average of the force must not be confused

with the time-average of the force which we used in applying the

principle of momentum. In very few cases will the two averages

have the same value.

Example (1). The weight of the centre span of the Quebec bridge

is 5400 tons. This span was raised into position through a vertical

li. E. D. 9

Space
Fig. 88.
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height o/* 150 feet hy means of hydraulic jacks. Find the useful

work done infoot-tons.

During lifting the vertical force downwards was constant and

= 5400 X 2240 lbs. wt.

The distance through which this force was overcome

- 150 feet.

.-. The work done = 5400 x 2240 x 150 ft. -lbs.

- 8-1 X 10^ ft.-tons.

Power

Power is a name given to the time-rate of doing work, or is the

amount of work done -per unit time.

Absolute System of Units.

F.p.s. system. The unit of power is 1 foot-poundal per second.

c.G.s. system. The unit of power is 1 erg per second.

1 watt is 1 joule per second, i.e. 10'' ergs per second.

Practical Unit. The British unit, most frequently employed

for measuring power, is the horse-power originally introduced

by Watt.

1 horse-poiver (h.p.) is a rate oj

working equal to 550 ft.-lhs. of

work per second, or 33,000 ft.-lbs.

of work per minute.

It may be noted that power

multiplied by time gives us work

done, or

W - H . ^,

where W = the work done, H - the

power, and t = the time.

In dealing with heat engines we

01
I Time

Fig. 89.

frequently use this as a basis for a large unit of work called the
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horse-power-hour. This is the work done by an agent, working

at 1 horse-power, in one hour.

i.e. 1 horse-power-hour = 33,000 x 60 ft. -lbs.

If the power is varying we may find the work done by drawing

a power-time curve, fig. 89.

The work done in time t is obviously represented by the shaded

area under the curve.

Example (2). An electric crane raises a load o/S tons through

a vertical distance of 20 feet, in 12 seconds, at a uniform speed. If

23 per cent, of the power supplied is wasted in friction, what is

the horse-power which has to be supplied to the motor ?

The work done in 12 seconds = 3 x 2240 x 20 ft.-lbs.

rw., , n , 3 X 2240 x 20 ^, „The work done per second = yY) rt.-lbs.

.*. The horse-power used in raising the load

3 X 2240 X 20

12 X 550

= 20-4 H.p.

Let H =: the horse-power supplied to the motor.

H = 20-4 + ,?^H,

20-4

" = 077

= 26-5 H.p.

Energy

The energy of a body is its capacity to do work.

'It is measured by the amount of work which can be done, and

therefore has the same units as work. So long as we deal with

the energy of a body, or system of bodies, and not with energy

9—2
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in the abstract, for mechanical problems we may divide energy

into two classes

:

(1) Potential Energy.

(2) Kinetic Energy.

The Potential Energy of a body is the energy a body possesses

in virtue of its position.

The commonest case is the energy due to a body's position

relative to the earth.

Suppose we have a mass of M lbs. raised a distance h feet above

the ground, then if we allow the body to fall the force of gravity,

M^ absolute units, will act through the distance A, and the work

it does will be equal to Mgh absolute units.

Mgh is a measure of the potential energy, in absolute units, of a

mass M raised a height h.

Another example of potential energy is afforded by a mass of

iron which is in the neighbourhood of a fixed magnet. If there

is no resisting force such as friction, the mass of iron, if freed,

will be moved to the magnet. Therefore, when separated from the

magnet, it possesses Potential Energy due to its position. Again,

a helical spring or elastic body which is stretched, has potential

energy stored up in it, and this can be got out when the spring or

body is allowed to return to its normal length.

The Kinetic Energy of a body is the energy it possesses in

virtue of its m,otion.

That there is energy possessed by a body in motion is easily

seen when we realise that, in order to stop a body which is moving,

we shall have to exert a force, and work will be done against this

force while the body is being brought to rest.

We must find an expression to represent the quantity of kinetic

energy possessed by a mass M say, moving with a speed v.

Suppose we apply a constant force F, in a direction opposite to
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that of the motion, and that this force stops the body in a

distance s.

The kinetic energy of the body

= the work done against the force

= F . s.

Now this constant force will produce a uniform rate of change

1)

of speed given by - , where t is the time taken to come to rest.
t

.'. We have F = —- .

t

V
Also, the time-average of the speed will be ^

,

V

The kinetic energy = F . s

Mv V

= 1 Mv\

This is the expression required for the kinetic energy.

The kinetic energy in absolute units is equal to one-half the pro-

duct of the mass and the square of the speed.

Suppose now the force is not constant. Let it be F when the

velocity is u, and suppose that it produces a small decrease of

velocity 8w, and that the distance moved is 85. Then

F . 8s = the change of kinetic energy for the distance 8.9

^ 8(lMt)2)
or F = -~ .

hs

This is only true when 8s is made indefinitely small, as F may
vary over the distance 8s. When 8s is made indefinitely small

we get

_ d{^Uv^)
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or, the force for any position of the body is equal to the rate of
change of the kinetic energy with respect to the distance.

If F is the space-average of the force, and s is the total distance,

F.s = the total change of kinetic energy.

Gravitation Units.

Mv^
The kinetic energy = J— , where g is the numerical value of

the acceleration due to gravity.

If we use this unit, it is clear that in equating the work done

to the kinetic energy the force must be measured in Gravitation

Units.

Elxample (3). A motor-car weighing 18 cwt. and travelling at

10 rniles per hour is brought to rest in 20 feet by the application of

its brake. Find the space-average of its retardingforce.

The kinetic energy of the car

= ^mv^ abs. units

= 1 X 18 X 112 X (If X lOy ft.-pdls.

-2-17 X 10^ ft.-pdls.

Let F be the space-average of the retarding force in abs. units.

The work done against this force F by the car is equal to F.s,

i.e. F X 20 ft.-pdls.

.-. Fx 20 = 2-17 X 10^

2-17 X 10« J,F=-^^— pdls.

~ 20x32 ^^'•

= 3^0 lbs.

Comparison between Momentum and Kinetic Energy

If a constant force F acts on a body of mass M and produces a

change of velocity from u to v, in a distance s, and a time t,

then,

F X ^ = the change of momentum = (^Mv— Mu),

F X s = the change of kinetic energy = (| Mv^ — ^ Mu^).
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If the force is varying, for estimating the change of momentum
we must use the time-average of the force. *

For estimating the change of kinetic energy we must use the

space-average of the force.

Example (4). In the problem on p. 69 we had the accelerating

force-time curve for the first 11*1 seconds after the starting of a

train.

Find the time-average and the space-average of the force.

The force increased uniformly with the time and at the end of

11-1 seconds was 3 -96 tons wt.

3'96
.*. The time-average of the force = —^

= 1-98 tons wt.

To find the space-average of the force we want to know the

distance moved. This we can obtain from the velocity-time curve

shewn on p. 70. The area under the curve gives the distance. By
counting squares we find there are 128.

.-. The distance = 128 x O'l x 0-5 = 6-4 feet.

The velocity at the end of the time = 1-72 feet per second.

Equating the work done to the kinetic energy generated, we
have

F . s = i Mt;^, where F is the space-average of the force.

F X 6-4 = 1x400 X 1-722.

400 X 1-722

2 x6-4

400 X 1-72-
tons wt.

2x6-4x32

= 2-89 tons wt.

We thus have,

Time-average of the force = 1-98 tons wt.

Space-average of the force = 2-89 tons wt.
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It should be noted that energy is a scalar quantity and not

a vector quantity. The force in the case of potential energy

and the velocity in the case of kinetic energy will have definite

directions, but this does not affect the energies. We have already

defined the energy of a body merely as its capacity for doing work.

By suitable means we can arrange for the direction of the work

done by a given quantity of energy to be what we wish. For

example in the case shewn in fig. 90, we may use the potential

energy of the mass m in doing work against a resistance F acting

on M.

hzs
M

y/////////////?////////

Fig. 90.

Or again, take the case of a motor-car going round a corner at

a constant speed. In order to change the momentum we know we
must have a force acting towards the centre of rotation for a given

time, but this force does no work since it always acts at right

angles to the motion, and the kinetic energy remains constant

although the direction is changing.

In dealing then with energy, in order to ohtaiii the total we add

the quantities algebraically and not vectoHally.

Conservation of Energy

So far we have only been dealing with two forms of energy,

potential and kinetic, but, apart from these mechanical forms, there

are, in nature, several forms of energy, heat, light, electrical,

chemical and so on.

Now the various forms of energy can be converted one into

another. When a piece of iron is hammered on an anvil the
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potential energy of the hammer is first changed into kinetic energy.

This is changed into heat when th^ hammer strikes the iron. In

the case of a steam engine driving an electrical generator we have

a case of heat energy of the steam being used to produce electrical

energy. The heat of the steam is produced from chemical energy

in the coal.

In all these conversions of energy from one form to another

which are either arranged by man, or occur in nature, we assume

that there is no net loss or gain of energy. When a definite

quantity of one form of energy, A say, is used up in producing

another form of energy, B say, the quantity of B produced is

exactly equal to the quantity of A which has disappeared. To put

it in another way, man finds he cannot create or destroy energy

and he believes that the Deity does not do so.

The whole of physical science rests on this principle of the con-

servation of energy. Whenever physical phenomena have been

discovered, which appeared at first to violate this principle, further

experiments have always shewn, either an error of observation,

or that a form of energy has been discovered which, up to that

time, was unknown to man. It seems most probable that there

are still forms of energy which exist unknown to man, or which

man cannot make use of by converting them to other forms.

Now in mechanical problems we shall always be dealing with

a definite body, or system of bodies, and generally we need only

concern ourselves with the mechanical forms of energy.

In such cases the body or system of bodies may have the total

energy altered by work being done on or by the body or system.

We may express this as follows :

Whenever a body or system of bodies has its energy changed the

increase of energy is exactly equal to the net work done on the

system by the externalforces. Or,

Work put in - work got out = Gain of energy.
If the left-hand side is negative the gain of energy will be

negative, i.e. there will be a loss of energy in the body or system.
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Example (5). A shell weighing 2,60 lbs. , which did not explode,

was found to have penetrated the ground in a certain place a dis-

tance of ^ feet in the direction of impact. The striking velocity was

820 feet per second. What was the space-average resistance to

penetration of the ground? Neglect the energy due to rotation.

If the velocity of the shell had been 1000feet per second at striking,

howfar would it have penetrated ?

Let R — the average resistance to penetration in lbs. wt.

We may neglect the change of potential energy of the shell and
may say,

The work done against the resistance of the ground = the loss

of kinetic energy of the shell, i.e.

Rx^x8 = ix260x 820^

. „ 260x820%,
2 X 32 X 8

= 342,000 lbs. wt.

= 153 tons wt.

Let 37 = the distance of penetration for a striking velocity of

1000 feet per second.

Then, since R is constant,

X 10002

8 8202
'

.-. ^=11-9 feet.

Example (6). A spring is such that it extends J inchfor a pull

of 1 lb. wt. A mass of 4 lbs. is suspended by the spring, being

fixed to the end, and is pulled down until the spring is extended a

total distance of 5 inches. If the mass is suddenly let go, how

high will it rise and what will be its maximum velocity ?

The mass of the spring may be neglected.

The energy stored in the spring, when stretched, is equal to

the work done in stretching it.
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//////////////

The pull-extension curve will be a straight line as shewn in

fig. 91.

For 5 inches extension the pull of

the spring =10 lbs. wt.

The energy in the spring initially

= area OAB

Let h = the maximum height in

inches which the mass rises.

When the mass is at its maximum
height, the spring is extended (5 - A)

inches.

The pull of the spring in this posi-

tion

= 2 (5 -A) lbs. wt.

The energy stored in the spring in

this position

1

1

Extension B

Fig. 91.

2 (5 -Ay
2 X 12

ft.-lbs.

4A
The gain of potential energy of the mass =^ ft.-lbs.

1 z

The gain of potential energy of the mass =*the loss of strain

energy of the spring.

4A_10x5 2(5-A)2
*•

12 ~2Vl2~ 2712 '

or h^-eh=0,
i.e. h = 0, or A = 6 inches.

It is obvious that the spring will be in compression.

To find the maximum velocity of the mass. The velocity will

continue to increase so long as the pull of the spring is greater

than the weight of the mass, i.e. until the spring's extension is

reduced to 2 inches. We have then.
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The gain of potential- and kinetic energy of the mass = the loss

of strain energy in the spring,

or, using absolute units,

4x3x32 1/10x5 ^x2=x
2'*" -V2~>n2~2TT2J"'-''12 2

i.e. 32 + 2!)2 = If X 32,

/18o< 32

Ux'2 '

or -y =^ 3'46 feet per second.

Example (7). A railway siding is level for the first 50 yards,

and then rises at a slope of ~~. A wagon weighing 10 tons is

shunted on to the siding with a velocity o/* 1 8 Tniles per hour, and

is observed to reach the foot of the incline in 6 seconds. If the

resisting force due to friction is constant, what is its magnitude ?

Howfar up the incline will the wagon travel before coming to rest ?

Let V — the velocity at the foot of the incline in feet per second.

The average velocity for the first 6 seconds

. 18 X 88

60
+ v

2

.
26-4 + 2;

. .

^
— X b = 150,

i.e. v = 50 -26-4

= 23"6 feet per second.

Let F — the force due to friction in abs. units.

By the 2nd law of momentum we have,

m (v, - V,)

t

10 X (26-4 -23-6)

6

10x2-8^
tons wt.

abs. units

6 X 32

= 0*146 tons wt.
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The total retarding force up the incline

= 0-146 + ^V X 10 (approx.)

= 0-396 tons wt.

Again, by the 2nd law of momentum for the incline,

0-396 X 32 = 10 X *^—

,

t

where t is the time taken to come to rest, i.e.

10 X 23-6
seconds.

0-396 X 32

The average velocity = -^— feet per second.

03.

g

236
.*. The distance up the incline = ^^-^7— x —-—^-^77,-7^* 2 32 X 0-39o

= 220 feet.

Or, we may use the energy principle.

The work done against friction = the loss of energy.

For the first part of motion,

Fx 150 = 1 X 10(26-42-23-62),

5(26-42-23-62) ^
•*• F = ^ n^Tv abs. units

150

5 X 50 X 2-8
"-^

32^150 ^^"^"^-

= 0-146 tons wt.

For the motion up the incline, let s = the distance in feet.

10 X s
The gain of potential energ}^ = —rfr- (nearly)

= — foot-tons.
4

.-. 0-146 x^xs = |- lOx 23-62- ^x^,

5 X 23-62

0-396 X 32

= 220 feet.
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Example (8). 200 gallo^is of water are to he pumped per

miriute through a 3-inch pipe up a height of 40 feet. The useful

horse-power of the pump is 42 per cent, of the horse-power supplied^

and the estimated loss due to friction in the pipe is equivalent to

an additional height o/ 16 feet. What horse-power will have to be

supplied to the pump ?

1 cubic foot contains 6^ gallons.

1 gallon of water weighs 10 lbs.

Let V = the velocity of delivery in feet per second, and d = the

diameter of the pipe in feet.

^, Trd' 200 1
Then, ^x^ =— x^,

_ 200 X 4 X 16
^•®'

"" ~ 60 X 6-25 X TT

= 10 '85 feet per second.

The mass of water delivered per second == -J^- lbs.

-33-3 lbs.

The potential energy supplied per second = 33*3 x 40 ft.-lbs.

The work done against friction per second = 33*3 x 16 ft.-lbs.

The kinetic energy supplied per second

1 X 33-3 X 10-852
^2 ^32 ^'-^^'-

The total energy supplied per second

r 10-8521
- 33-3

J40
+ 16 +^^^^1 ft.-lbs.

= 33-3 {40 + 16 + 1-84}

- 1930 ft.-lbs.

The horse-power given to th& water = -V\V"-

.'. The horse-power to be supplied to the pump =
-^fjj-

x -W~

= 8-35.
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In applying the principle of conservation of energy to mecha-

nical problems, we must be careful to see that we are not getting

energy developed which we are neglecting. For example, take

the case of an impact between two bodies where we are getting

a sudden change of momentum. Most frequently in such cases

we shall get energy dissipated in the form of heat. Work may
actually be done in damaging the bodies which impinge, or

vibrations may be set up by the impact, the energy of which is

ultimately changed to heat. In such cases we cannot apply the

principle stated above, but we can still apply the principle of con-

servation of momentum.

Consider the example of two trucks on p. 79.
'

Before impact the total kinetic energy

= (i X 12 X 36 + i X 10 X 4) g()|^ ft.-tons

= 15-85 ft.-tons.

After impact the total kinetic energy

= ^x22x4-172x

I

60^ X 32
= 12-9 ft.-tons.

.'. The energy lost during impact =^(15-85 — 12*9)

= 2-95 ft.-tons.

Example (9). In a ballistic pendulum, for estimating the

velocity of rifle bullets, a block of wood weighing 10 lbs. was sus-

pended by two parallel strings as shewn in fig. 92. When a bullet

weighi7ig 0*4 oz. was fired into the block in a horizontal direction,

passing through the centre of gravity of the block, it was observed

that the block rose 6*95 inches. Find the velocity of the bullet.

In this case we shall get a considerable quantity of heat

developed. We may assume that the block does not appreciably

move until the bullet has penetrated its greatest distance.

Let V = the initial velocity of the bullet in feet per second, and
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V = the velocity with which the block begins to move in feet per

second.

The total momentum of the bullet and the block in a horizontal

direction must remain constant, since there is no resultant force

in that direction.

i.e.

or

0-4 / _ 0-4\
,

v=: 10-025 X 40v,

V-401V .(1).

/////////////////////////

Fig. 92.

The block and the bullet now swing forward, and all their

kinetic energy is changed to potential energy when they reach

their highest point.

.'. 1 (10-025) V2= 10-025 X 32 x ^^^ (2),

, 64 X 6-95
i.e. V^ = ___^-_,

or V = 6*06 feet per second.

.*. from (1),
'

The velocity of the bullet = 401 x 6-06

= 2430 feet per second.
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The fraction of the initial energy dissipated in heat

^ (9^\ X 2430^ - 1 (10-025) X 6-062

= 1
10025 X 40 X 6-06»

2430^

= 0-9975.

Example (10). Loads M, m, and P are suspended by a string

which passes over a light frictionless

pulley as shewn in fig. 93. A ring fixed

at A is large enoughfor in to pass through

but stops P. The string connected to m
passes through a hole in P. M is greater

than m and less than P + m. Shew that^

if the masses start from rest in the

position shewn in the figure, after the

Tnass m has passed twice through the

ring the system will, for the instant,

come to rest again with P at a height

TETX

L

/ M+m V ^ , .

I above the ring.
\P + m+Mj ^

Fig. 93.

Let h' be the required height above

the ring when the system is again at rest.

The total energy lost is all potential

and is equal to

(P + m-M)g{h-h').
This energy is lost due to the two impacts at the ring.

On the first passage through the ring the velocity v is given by

<,(P + m-M)A =(^±^)«^ (1).

When P strikes the ring the energy lost

^Pv\
L. E. D.

.(2).

10
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On the return journey, just before m strikes P, the velocity of

m will again be v, since there is no loss of energy.

Let T = the impulse in the string when P is jerked into motion,

and let u = the velocity after the jerk.

Then for P and m,

T = (P + m)u — 7nv,

and for M, T = M^; — Mu.

Eliminating T, we get,

/ M+m \
u= V (3).

The energy lost

= i(M +7)i)v^-l(M + m+P}u" (4).

The total energy lost from (2) and (4)

--i(P + m+ M)(v^-u'')

= (P +m-M)g{h-h').
Since the masses came to rest at a height h',

(P + ?n - M) gli = (P + m + M) — .

From equations (3) and (1),

(M + mf v^
gh -

2(P + m + M)(P + m- M)'

M+m
\P + M + mj

Energy and Momentum Principles

It should be noted that since in defining work and mechanical

energy we have introduced no new physical facts, but merely

definitions in terms of physical quantities already measurable, we

cannot really obtain any new results by the application of the

principle of the conservation of energy in the restricted form given

above. The same results can always be obtained by the principle

of momentum, but frequently the labour may be very considerably

reduced by using the principle of energy.
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This of course does not apply to the general principle of con-

servation of energy where all forms of energyare taken into account.

We will emphasize the two principles as applied to translation

by restating them.

(1) "/?! any system, the total momentum remains constant unless

the system is acted upon by externalforces
"

If external forces are acting, then the resultant change of

momentum is equal to the resultant external force multiplied by

the time during which it acts.

(2) "/rz. any systein the total'energy remains constant unless the

system is acted upon hy externalforces
"

If external forces are acting, then the total change of energy

is equal to the resultant external force multiplied by the distance

moved by the point of application in the direction of the force.

Kinetic Energy due to rotation about a fixed axis

Bearing in mind that kinetic energy is a scalar quantity, it is

easy to estimate the kinetic energy

of a body due to rotation.

Suppose a body is rotating about

a fixed axis O with an angular velo-

city o> radians per second. Consider

a small particle of mass m at a dis-

tance r from the axis. This has a

speed inr, and its kinetic energy

Fig. 94.

= -2-- t---
.'. For the whole body the kinetic

energy = ^S^^mw^r^, the summation

being effected for all the particles of the body,

i.e. The kinetic energy = ^ co^ !Smr^

where I equals the moment of inertia of the body about the axis

through- O.

10—2
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Fig. 95.

Work done by a couple or torque

Let a body, pivoted about a fixed axis, be subjected to a turning

moment or torque T. Consider a particle

at A, distant r from the axis, and let f
be the force acting on the particle in a

direction perpendicular to AO. The com-

ponent of force acting on A in the

direction AO will do no work, since there

is no motion towards or away from O.

If the body rotate through a small angle

8^, the work done on the particle ~f. rSO.

For the whole body we shall have,

The work done = 2/r8^

= 8^ X y^r,

since S6 is the same for all the particles.

Now 2/r = the algebraic sum of the moments of all the forces,

external and internal, about the axis through O. The internal

forces mutually balance.

.-. 1fr = the algebraic sum of the moments of all the external

forces about the axis through O, i.e.

2/r = the torque.

.*. The work done=^ tSO.

Constant Torque.

If the torque is constant then the work done for an angle of

rotation 6 = TO,

Varying Torque.

If the torque be a varying one, the work done may be obtained

from the curve connecting the torque and angle turned through.

The work done = 2x8^

= The area under the torque-angle curve.
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Energy principle applied to rotation

The energy principle applied to rotation may be stated thus,

Ths work done by the resultant torque = the gain of rotational

kinetic energy.

Example (11)- A clock spring is such that the turning moment
required to wind it up varies as the a^igle of wind. The turning

moment exerted at the end of the first revolution equals 3 inch-lbs.

Find the work done in making the third revolution.

The torque-angle curve will be a straight line as shewn in fig. 96.

Let OC = 47r radians, and OD = 67r

radians.

The work done during the third

revolution

area ABDC

/AC+BD\
xCD.

AC = 6 inch-lbs. BD = 9 inch-lbs.

.-. The work done

c

Fig. 96.

6 + 9 _

"
2 ""

= IStt inch-lbs.

= 3-93 foot-lbs.

angle

Example (12). In a De Laval Steam Turbine giving 5 horse-

power the rotor runs at 30,000 revolutions per minute. The vanes,

on which the steam, acts, are at a mean distance from the axis of
31 inches. Neglecting frictional losses, find the tangential force

exerted by the steam on the rotor.
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Let P = the force in lbs. weight acting tangentially on the rotor.

P X 3*5
The torque on the rotor =——— lbs. ft.

The angle turned through per minute

= 30,000 X 27r radians.

The work done per minute by the steam

Px 3-5 X 30,000 x27r

12

Horse-power x 33,000.

ft.-lbs.

.-. P X 3-5 X 5000 X TT = 5 X 33,000,

r,
33

or P =
3'5 X TT

= 3 lbs. wt.

Example (13). A uniform trap-door, 2 feet hy 2 feet, and

weighing "20 Ihs., falls from the vertical position and strikes the

floor only along the edge opposite the hinges. Find the angular

velocity of the door just before it strikes the Jioor, and the magnitude

of the blow on the edge.

(1) To find the angular velocity we may equate the loss of

potential energy and the gain of kinetic energy.

Since the centre of gravity falls 1 foot, the loss of potential

energy

= 20 X ^ ft.-pdls.

The moment of inertia about an axis through the hinges

= 20{^+l}

= -^lbs. ft."
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The gain of kinetic energy == J x »/ x w^ where o> is the angular

velocity just before striking the floor.

.-. */-o)2z= 20x32,

or, CO = \/48

= 69 radians per second.

(2) To find the impulse on the edge, we have, the impulsive

torque equals the change of angular momentum.

Let P = the impulse in absolute units.

Then P X 2 = the impulsive torque.

or.

P X 2 = 8/ ^ 6-9^

P =1 92 abs. units.

Example (14). The turning moment on the crank shaft of an

engine for different positions of the crank is given in the figui'e

below. The scales are such that 1 inch = 150 Ihs. ft. of turning

moment, and 1 inch = 135 degrees of angle turned through by the

crank. The mean speed of the engine is 150 revolutions per

minute, and the moment of inertia of the flywheel is 944 Ibs.ft.^

units.

If the resisting moment is constant, find apj^roximately the greatest

fluctuation of speed.

200 -

100

180"

Crank angle

Fig. 97.
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The area under the curve gives the work done per revolution.

This area =1*16 square inches.

. . 150 X 135 .^ „
1 sq. in. = —-—-— TT ft.-lbs.

loU

= 1127r ft.-lbs.

The work done per revolution = 112 x l*167r= ISOtt ft.-lbs.

If T is the resisting torque, we have

Tx27r=1307r,

.-. T = 65 lbs. ft.

This torque is represented in fig. 97 by the line abed.

Now from a to h, since the turning moment is greater than the

resisting moment, there will be a resultant moment increasing the

speed of the engine. The gain of kinetic energy will be represented

by the shaded area above ab.

Similarly from 6 to c the speed will be decreasing, and the loss

of kinetic energy will be given by the shaded area below be.

From c to d the speed will again be increasing, the gain of

kinetic energy being given by the shaded area above cd.

From d to a the speed will be decreasing, the loss of kinetic

energy being given by the shaded area below da.

The greatest change of energy will be given by the greatest of

the four shaded areas. By trial it will be found that the area above

ab is the greatest.

This area = 0*227 square inch

- 25-57r ft. -lbs.

Let o>i be the angular velocity at a, and w.^ be the angular

velocity at b. If I is the moment of inertia of the flywheel, we
have

^ Io>2^ - i Iwj^ = 25'57r X g,

!•«' ("'^ "'^
)
^ —944 (^)-
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Now we do not exactly know the mean speed in terms of Wj

and (Uj since the speed is not changing uniformly. We may, how-

ever, as a close approximation, near enough for practical purposes,

assume that ^-^r

—

- is equal to the mean speed, i.e.

CO2 + a>i

2

'Zir X it>U

60 •

equation (1) we get

(a>2 - coi) (0)2 + 1

°^ XTT X 32

944

(0,2-
. 51

<">)=9|
X TT X 32 X 60

4x47rx 150
i.e. (wo — tuj) = ^—;

—

-—- radians per second.
^ ' 944 X 47r X 150 ^

Or, if Ni and Ng are the extreme limits of speed in revolutions

per minute,

(a>2 — 0)1) X 60
(N2-N1)

27r

51 X 16 X 60 X 60

944 X 47r X 150

= 1 '65 revolutions per minute.

The percentage fluctuation in speed

= ^'^^00

= 1*1 per cent.

Example (15). Taking the figures given in the example on

p. 100, find the energy lost in heat due to the impact of the two

wheels.

The kinetic energy before impact

'27r X 500\2/27r X 0UU\2
^^

V 60 7 ^^-'P^^^'
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The kinetic energy after impact

1 47r2

2 3600

1 47r2

2 3600

.'. The energy lost in heat

1 47r2

(4 X 253^ + 2 X .3542)

X 5-07 X 10^ ft.-pdls.

2 3600

^^'^x 10^x4-93

9T64

=-. 84-3 ft.-lbs.

{10«- 0-507 X lO*'} X ^ft.-lbs.

Examples. Chapter VI

1. A cage weighing 3 tons is supported by a steel rope which weighs 20 lbs.

per yard, and is being lifted at a uniform speed. How much work is done

when the free length of the rope is shortened from 1500 feet to 300 feet ?

If the uniform speed is 2 feet per second, at what rate is work being done

in lifting (1) when the depth is 1500 feet, (2) when it is 300 feet ?

2. How many foot-pounds of work are done in pumping 1 ton of water

into a boiler against a pressure of 150 lbs. per square inch? If the pump has

a solid ram of 2 inches diameter, with a 10-inch stroke, how many strokes

are required and what is the thrust on the ram ?

1 cubic foot of water weighs 62*5 lbs.

3. The values of the net pressure on the piston of an engine during one

stroke are given in the following table. The length of the stroke is 16 inches,

and the distances are measured in inches from one end of the stroke. The

pressures are given in lbs. per square inch.

Distance 2 4 6 8

32

10

26

12

22

14

18

16

10Pressure 40 72 75 50
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Draw a graph connecting the pressure and the distance and find the space-

average of the pressure.

If the piston diameter is 14 inches, how much work is done during the

stroke ?

4. What do you understand by the expressions " the work done by a force,"

and "the power supplied by an agent"? In what units are these quantities

usually measured ?

A truck, weighing 8 tons, is being drawn by a horse along a siding on a down
grade of 1 in 400, the horse exerting a constant horizontal pull of 120 lbs. on

a chain inclined at 30° to the rails. The frictional resistances to motion of

the truck amount to 12 lbs. per ton. Find how far the truck will be moved
from rest in one minute, and the power which the horse is exerting at the

end of the minute.

5. The table below gives the horse-power trariamitted by the propeller

shafts for different speeds in the case of the " Mauretania " Atlantic Liner.

Draw a graph shewing how the resistance overcome varies with the speed.

Shaft
horse-power

12,500 20,000 27,300 37,500 51,000 75,000

Speed in

knots

!

16 18 20 22 24- 26

6. A planing machine is working with its stroke set at 4 feet, and is planing

a piece of work 3 feet long, the tool clearing the work 6 inches at each end.

There is a constant frictional resistance equivalent to 45 pounds at the tool,

and the cutting resistance is 560 lbs. more. The machine makes 20 complete

strokes per minute. Find its average rate of working, in horse-power.

If the cutting stroke take twice as long as the return stroke, find the average

speed of each, and if the highest cutting speed is 1| times the mean, find the

greatest rate of working.

7. A wagon weighing 10 tons is running at 6 miles per hour when the

brakes are applied and it is brought to rest in 15 yards. How much work is

done in bringing the wagon to rest, and what is the space-average of the total

braking force ?
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8. A car, for which the frictional resistance is 30 lbs. per ton, is travelling

on the level at the rate of 30 feet per second, when it comes to a hill of 1 in

20, and after the speed has become steady on the hill the engine is working

at the same power as on the level. Find this steady speed.

If while the car is slowing down the tractive force of the engine increases

uniformly with the distance from the bottom of the hill until it reaches its

steady value on the hill, find how far the car travels before reaching its steady

speed.

9. The road and wind resistance to the motion of a motor-car weighing

30 cwt. is given by (40 + 0*03 v^) lbs., where v is the speed in miles per hour.

What horse-power will be required to drive the car up a hill of 1 in 30 at a

steady speed of 20 miles per hour ?

If the maximum tractive force the motor can supply is 220 lbs., what is the

maximum speed attainable up the hill ?

10. A body is given kinetic energy by a force acting on it. How is the

force related to the kinetic energy generated ?

A railway wagon weighing 12 tons runs into a stop when travelling at

6 miles per hour. The buffer springs of the wagon are such that each exerts

a force of 4 tons per inch of compression. Assuming the stop does not yield,

find how much the springs are compressed when the wagon is for the instant

brought to rest.

11. A motor-car, weighing 1 ton, ascends a hill of slope 1 in 12 at a

uniform speed of 6 miles per hour. When it reaches the top it begins to

travel down a uniform slope of 1 in 40. If the tractive force produced by the

engine and the road-and-wind resistance are constant, find what the velocity

and the kinetic energy will be when the car has travelled 25 yards down the

slope.

12. A 5 ton truck is pulled from rest up a slope of 1 in 50 ; the pull to just

move it on the level is 126 pounds ; the tension in the rope varies with the

distance (along the slope) as given below. Find the total work done, the

kinetic energy at the end, and the horse-power exerted at the distance of

15 feet.

Distance
in feet

5 10 15 20 25 30 35 40

Pull in lbs. 450 570 620 640 620 550 470 410 350
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13. A body is acted upon by a force which causes motion. How are the

momentum and the kinetic energy generated, each related to the force acting?

It is estimated that the actual work done in accelerating a steamer of

1000 tons displacement from rest, for the first 210 seconds, is 4500 foot-tons,

and the distance travelled is 2000 feet. Find,

(1) the speed attained,

(2) the space-average of the accelerating force,

(3) the t^me-average of the accelerating force.

14. The total pressure on the base of a shell during its passage along the

bore is given in the table below. The total travel is 4^ feet and it may be

assumed that 6 per cent, of the pressure is used in overcoming friction and
imparting rotation to the shell. Plot the pressure-distance curve and estimate

the muzzle velocity of the shell, given that it weighs 12 lbs.

Distance
in feet i i i 1 1| H H 2 n 3 H 4

25
Total pres-

sure, tons
4 54 97 123 130 124 106 91 81 62 50 40 30

15. A train, running on the level, with steam shut off, has its speed

reduced from 52 miles per hour to 48 miles per hour in 800 yards. Assuming
that the resistance to motion is constant, find its value per ton of the train.

If the train weighs 200 tons, at what rate, in horse-power, must work be

done to keep it moving at 50 miles per hour against the same constant re-

sistance?

16. A motor lorry, of total weight 8 tons, starts from rest and is observed

to have the accelerations at different points given below

:

Distance, feet 10 20 30 40 50

Acceleration,

ft. per sec. per sec.
21 1-57 1-2 0-87 0-54 0-30

Find the accelerating force for each distance, and plot a force-distance

curve. From the curve, find the total work done in accelerating, and the

velocity at each distance.
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17. State the principle of conservation of energy as it applies to mechani-

cal problems.

A mass is suspended by a string ABC, 3 feet long, from the point A, and
is swinging through an angle of 30° on either side of the vertical. Find the

velocity of the mass when it is vertically below A.

If at this instant the point B in the string is suddenly fixed, find the new
angle of swing, AB being equal to ^ BC.

18. A light spring, whose inertia may be neglected, is such that a | lb.

weight will compress it 1 inch. It is compressed 2 inches and placed on a

table so that it will expand in a vertical direction. If a ^ lb. weight is put

upon it and the spring is released, what is the velocity of the | lb. at the

instant that it leaves the spring?

19. In fig. 98 A is a hard steel shaft which can slide horizontally in the

bearings BB. It is provided with stops which are just in contact with the end

of the spring bujffer. A lead bullet moving with a velocity of 1000 feet per

second strikes the end of the shaft in the centre. The mass of the shaft is

5 lbs., that of the bullet 0*04 lb., and the spring compresses 1 inch under a

load of 20 lbs. The force required to overcome the friction of the shaft is

1 lb. Assuming that the mass of the spring may be neglected, find to the

nearest hundredth of an inch by how much the spring is compressed by the

blow.

^^:::i
f b"

^
^

Fig. 98.

20. A bullet, weighing 0*025 lb. and moving with a velocity of 2000 feet

per second, strikes a ballistic pendulum weighing 20 lbs., and remains in it

after the impact. Determine the percentage of kinetic energy lost, and the

average pressure exerted between the bullet and pendulum, supposing the

former to come to rest after travelling six inches.

21. A railway wagon of total load 20 tons is shunted on to a siding and

reaches a hydraulic buffer stop at a speed of 6 miles per hour. The buffer

stop is such that it exerts a substantially steady force of 40 tons while the

buffers are being pushed in, but only exerts a negligible force while returning.

The wagon buffer springs each require a force of 4 tons to compress them
1 inch.
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Find (1) the distance the wagon moves before coming to rest after striking

the buffer stop, (2) the velocity of the wagon at the instant it leaves the

buffer stop.

22. A steamer of 10,000 tons, when its engines are not working, slows

down from 7 to 5 feet per second in 90 feet. Find the average resistance to

motion.

If the engines are started and the speed is uniformly increased from 5 to

7 feet per second in 120 feet at what average rate in horse-power are the

engines working during this motion, the resistance to motion being taken as

uniform, and equal to the average resistance in the first part of the question?

23. A train weighing 200 tons has its speed reduced by a constant braking

force from 60 miles per hour to 40 miles per hour in 4 seconds. Determine

the change in the momentum of the train, the change in its kinetic energy,

and the distance travelled. Also find the value of the retarding force, taking

it as (1) the change of momentum per second, and (2) the change of kinetic

energy per foot of distance.

24. The propulsion horse-power required to drive a steamer of 12,000 tons

displacement at a steady speed of 20 knots is 15,000. Assuming that the re-

sistance is proportional to the square of the speed, and that the engine exerts

a constant propeller thrust at all speeds, find the initial acceleration, when
the steamer starts from rest, and the acceleration when the speed is 10 knots.

(Take 1 knot= 100 feet per minute.)

25. Shew that the twisting moment in a shaft which is transmitting

power is given by , where H is the horse-power transmitted and N
27rlN

the number of revolutions per minute.

A torsion dynamometer, which registers the angle of twist per foot length

of the shaft when running, was used to determine the horse-power given out

by a steam turbine. The mean speed of the shaft was found to be 2000 r.p.m.

and the dynamometer registered 8i^'25 minutes. Find the horse-power given

out by the turbine, having given that a couple of 72 inch-lbs. applied to the

shaft produces an angle of twist per foot length of one minute.

26. The drum of a capstan has an effective diameter of 10 inches. Eight
men on the capstan bars, walking round three times a minute, at a mean
radius of 5^ feet, can produce a pull of 2i tons in the rope being wound up.

Find the horse-power got out, and the horse-power wasted in friction etc.,

assuming each man exerts a force of 70 lbs. on the bars. The tension in the

rope coming off the drum may be neglected.
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27. What is understood by the moment of inertia of a body about an axis?

Shew that the kinetic energy of a body rotating with angular velocity w
about an axis is 1 1 w^, where I is the moment of inertia of the body about the

axis.

A rectangular door of sides 10 and 6 feet and weighing 500 lbs., swings

about a horizontal axis fixed along its greater edge ; find its angular velocity

as it reaches the vertical from rest in the horizontal position. What is the

pull on the axis as it reaches the vertical? What would be the angular

velocity if the hinges exert a constant frictional couple of 100 inch-lbs.?

28. An engine works against a constant load which absorbs 25 horse-

power when the speed is 250 revolutions per minute. The flywheel of the

engine weighs 3 tons, and its radius of gyration is 3 feet.

Find (1) the work done against the load in one revolution, (2) the energy

stored in the flywheel when the speed is 250 revolutions per minute.

If the source of power be cut off while the load remains constant, in how
many revolutions will the speed drop from 250 to 240 revolutions per minute?

20. The figure below shews the torque exerted on the crank of a two-

cylinder tandem gas engine for different cranks angles during one revolution.

The torque scale is such that 1 inch = 40,000 lbs. feet.

The moment of inertia of the flywheel is 90 tons ft.^ units, and the speed

is 200 revolutions per minute. The engine is working against a constant re-

sisting moment, and giving the same torque-angle diagram every revolution.

Find graphically the resisting torque and estimate the maximum percentage

fluctuation of flywheel speed.

360'

Fig. 99.
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30. A 6-inch shaft is being tuwied in a lathe and it is found that the

tangential pressure on the tool at the cutting edge is 785 lbs. The traverse

of the saddle is ^V inch per revolution of the mandrel and the speed of the

latter is 20 revolutions per minute. Find the energy usefully expended in

cutting per foot of traverse. Find also the efficiency of the machine if 1*3

horse-power is being supplied by the belt.

81. Two uniform discs of steel are each 3 feet in diameter. They are

mounted side by side on the same shaft, and are free to move indepen-

dently and without friction. One disc A is rotating at 500 revolutions per

minute, the other, B, is at rest. A projection on the disc A impinges on

a similar projection on the disc B and the blow dissipates one-fifth of the

kinetic energy. Find the angular velocities of the two discs after the blow,

and determine how long it will be until the projection on B overtakes the

projection on A.

Also find the magnitude of the blow, if each disc weigh 250 lbs. and if the

projections on the disc are each 15 inches from the centre of the shaft.

32. In example (14), p. 109, shew that the kinetic energy of the system is

reduced in the ratio 4 to 5.

L. E. D. 11



CHAPTER VII

Units and Dimensions

In the first chapter we noted that there were three fundamental

conceptions, space, mass, and time, and we saw how these were

measured in certain units. The units were those of length, mass,

and time.

We also called attention to the fact that all physical quantities

could be defined in terms of these fundamental units. In the

previous chapters we have introduced all the physical quantities

we require jn elementary dynamics, and we have based the

measurement of each of these quantities directly on the funda-

mental units, or on phj^sical quantities the measurement of which

had already been based on these units.

It will be useful, as a revision of the previous chapters and also

for other purposes, to examine again, in some detail, how each of

the physical quantities we have introduced and used is related to

the units of length, mass, and time. We shall then be able to see

immediately how the measure of each quantity would be affected

by a change in any or all of the fundamental units. We will de-

note these by L, M, and T respectively.

Let us consider density. This we defined as the mass per unit

volume, i.e. the mass of a body divided by the volume of the body.

Now the volume is equal to the product of length, breadth and

thickness, and each of these is a length. We say, therefore, that

volume has three elements of length or, has the dimensions

(length )^ i.e. L=^.

M
. *. Density has the dimensions -^

= L-MVI . T",

T^ denoting that it has no time dimension.
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The significance of this will perhaps be realised better if we take

a concrete example.

Example (1). The density of steelin c.G.s. units is 7 '78. Find

the density in f.p.s. units, given that, 1 centimetre = 0'0^2% footf

and 1 ^ram=r 0-00221 Ih.

The dimensions are L~^ . M . T°.

.*. The density in lbs. per cubic foot

= 7-78 x(0-0328)-3x 0-00221

= 484.

We will now find the dimensions of certain quantities in length,

mass, and time.

Dimensions

Absolute System of Units

Velocity (linear) =^^^ = L . J-^ - L . M^ . T~\

Acceleration (linear) = ^^ ^^^ 7 ^ L . T-^ . J-^ = L . M<* . T'^.^ ' time

Angle '(radians) = ^^ - L . L'^ = L^ . M^ . T^.

Angular velocity =—; = T~^ ^ L^ . M^ . T~^.
time

Angular acceleration = ^"^^ ^! ^^ ^^^ ^ = T'^ . T-^ = L° . M^ . T~\
time

Momentum = mass x velocity =M.L.T~^=L.M. T~^.

,- momentum
, , , .. _^ „

Force = -. = M . L .
T-i

.
T-i = L . M . T-2.

time

Weight = force = L . M . T-2.

Impulse = force x time = L . M . T"- . T - L . M . T~^.

Angular momentum = momentum x distance = L . M . T"^ . L

- L2 . M . T-i.

11 2
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Torque = force x distance = L . M . T"^ . L = L^ . M . T'^.

Impulsive torque = torque x time = L^ . M . T~^ . T = L^ . M . T~^.

Moment of inertia = mass x (distance)^ = M . L^ = L^ . M . T^,

Work = force x distance ^L.M.T-^.L^L^.M. T"2.

Energy = capacity for work = L^ . M . T"^.

worlc
Powers -r^ = LMVI.T-2.T-i=L2.M.T-3.

time

Use of dimensions in checking formulae

If we have an equation involving physical quantities, the

dimensions in each of the units, length, mass, and time, must be

the same on the two sides of the equation. If this were not so,

by changing the units of length, mass, and time we should alter

the equation.

Suppose, for example, in an equation, the dimensions of the left-

hand side in mass were M^, and on the right-hand side M, and we
wished to change from lbs. to grams. We should multiply the left-

hand side by (453-6)2 and the right-hand side by 453-6, which
would completely alter the equation.

We will examine a few of the formulae we have derived in the

previous chapters. The student should examine all the remainder.

(1) Net work done = kinetic energy gained,

or p .s = \ Mv\

The left-hand side has dimensions, L^. M . T"^.

The right-hand side has dimensions, M . (L . T"^)^

= L2. M.T-2.

(2) Acceleration = v . -^

,

The left-hand side has dimensions, L . T-^

L . T~^ X L . T~'
The right-hand side has dimensions,

—'

L

L.T-2.
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3) Torque - moment of inertia x angular acceleration,

T-:I.A.

The left-hand side has dimensions, L^ . M . T"^.

The rightrhand side has dimensions, L^. M . T~^.

Example (2). Find the number of watts in 1 horse-power,

having given: 1 lh. = ^b^'^ grams, ly^.^^ 30*48 cms., and g = ^2'2feet

per sec. per sec.

\ horse-power = 550 ft.-lbs. per sec.

= 550 X 32*2 abs. f.p.s. units of power.

The dimensions of power are L^ . M . T~^.

/. 1 horse-power = 550 x 32*2 x 30*482 x 453*6

= 746 X 10^ ergs per sec.

= 746 watts.



CHAPTER VIII

Simple Harmonic Motion

In many cases of motion we have a body which moves back-

wards and forwards about a mean position, as, for example, the

piston of a steam engine or the pendulum of a clock.

We will now investigate a particularly simple form of such a

motion called Simple Harmonic Motion.

A body is said to move with a simple harmonic motion in

a straight line when it has an acceleration directed towards some

fixed point in its path, and proportional to the distance of the body

from the fixed point.

Suppose, for example, that a body P moves in the straight line

A'A with simple harmonic motion about a fixed point O.

Fig. 100.

The acceleration will be in direction PO always, and equal to

/A. OP, where /x is a constant*.

If we consider OA to be the positive direction of the displace-

ment, the acceleration along PO will be negative, and we must

write V—
Acceleration - - fi , s,

where s = OP.

* It should be noted that /a is a constant for a definite system of units,

but its value will change if the unit of time be changed. Writing accelera-

tion =/x X distance, we see immediately, that in order that the dimensions of

the two sides of the equation may be the same, /x must have dimensions

LMVI« . T-2.
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Now suppose the body is started with a given velocity, u say,

when it is at O, then, since the acceleration is always towards O,

it follows that the velocity will gradually be diminished to zero,

and the body will for an instant be at rest at the point A, say.

The body P will then start moving back to O with a velocity which

will increase to n, but in the direction AO. Exactly the same type

of motion will now occur to the left of O. We see then, that the

body will continue to move backwards and forwards along the

path AA'.

The velocity-time curve must be something like that shewn in

fig. 101,

Fig. 101.

where OB represents the time to reach the first rest position A,

and 00 represents the time to make one complete reciprocation, i.e.

the time for the body to travel from O to A, A to A' and A' to O.

Also, we can see that the displacement-time curve must be some-

thing like the dotted curve in tig. 101, where BD represents OA.

Now in order to analyse the motion we want to know the exact

shape of these curves.

For the space-time curve let us try the equation

s = rt sin ht.
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From the example on p. 14 we have

The velocity, v = -j-^ab cos bt.

dv
The acceleration, a = -y^ = - a6^ sin ht

at

= -b\s.

If, therefore, we make b^ equal to /x, we see immediately that

this displacement is the one w^e want.

We have then for simple harmonic motion

The acceleration — — fx . s.

The velocity = a . Jfx . cos \/fxt.

The displacement = a sin Jfit.

Also, we may obtain the acceleration in terms of the time, and

the velocity in terms of the displacement.

The acceleration = — /xa sin ^J/xt

The velocity = ajfx . v 1 - sin^ sifit

av^.yi-(iy

= Jjx . sja^ - s\

The periodic time is the time for one complete vibration.

This is the time for the body to move from O to A, A to A' and

back to O.

From the curve we see that this is represented by the length OC,

for which Jfit = 27r,

.*. the periodic time = —p

.

The greatest displacement (a) on either side of the centre is called

the amplitude of the motion.
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It should be noted that the periodic time is independent of the

amplitude and depends only on the value of /x.

Acceleration
' Displacement

*

Hence we may say, for any simple harmonic motion,

The periodic time = 27r
/DiDisplacement •

/////////////

Acceleration

Example
(
1 ). A mass of i lbs. is suspendedfrom the end of a

light helical spring, and when the system is at rest the spring is

found to be extended 3 inches. The mass is now slowly depressed a

further distance of 2 inches and then let go.

Find {a) the periodic time of vibration., (b) the

maxim,um, velocity.

Experiment shews that the pull produced by

a helical spring is proportional to the extension.

If P = the pull, and x — the extension, then

we may write

P = \x, where A, is a constant for the spring.

In this case, when P = 4^ pdls.,

x = ^ feet.

. A ^

Fig. 102.
or, A. == 1 6^.

Let s = the displacement at any instant downwards from the

equilibrium position.

From the 2nd law of momentum we have

(P — ig) = 4a, where a = the acceleration upwards.

P-4^

4
= ig.s,
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or, a varies as the displacement, and therefore the motion is simple

harmonic.

rp, • 1- ,• n /Displacement
ihe periodic time = Stt x . / —^-

V Acceleration

"•/Iiff
=—7=r seconds.
4v/2

The number of complete vibrations per minute

= X bO

= 108.

The maximum velocity occurs when the mass passes the equi-

librium position, i.e. when s = 0.

.'. The maximum velocity = Jfx . a

4v^2 feet per second.

Oscillation

Now suppose instead of a mass moving in a straight line we
have a mass oscillating in a circle about a fixed axis. It is easily

seen that all the reasoning we have just employed will hold, so

long as we substitute angular displacement for linear displacement,

angular velocity for linear velocity and angular acceleration for

linear acceleration.

Simple Pendulum

A simple pendulum is a mass, which may be considered small,

attached to a fixed point by a weightless rod or string and oscil-

lating in a vertical plane.
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Let m = the mass, I = the length of the string, and let the

string make an angle B with the vertical at

some instant of time.

Treat the problem as one of rotation about

O, and apply the 2nd law of momentum to

the mass m.

The only forces acting on m are the ten-

sion T in the string and the weight mg.

The turning moment about O

— mgl sin 6.

The moment of inertia of m about O - ml^,

since the mass m is small.

.-. mgl sin 6 = — rrd'^ . A,

where A is the angular acceleration in a

counter-clockwise direction.

mgl sin Q
.'. The angular acceleration =

mr-

^
. sin 0,

i.e. the angular acceleration varies as sin 0.

This is not a case of simple harmonic motion, but if we keep

the angle 6 always small, i.e. the amplitude small, then sin 6 = 0,

very nearly. In this case we may write.

The angular acceleration = j.O,
V

i.e. the angular acceleration varies as the angle of displacement,

and the motion is simple harmonic.

The periodic time = 2i

-2i

W Ac

Displacement

Acceleration

The fact, that for small swings the pendulum has a definite

periodic time independent of the amplitude, is the reason why it is

frequently employed to control clocks.
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Example (2). Find the length of a simple pendulum to heat

seconds, i,e. a pendulum which makes one complete oscillation in

2 seconds.

The periodic time = 27r . / -

.

or,

V 32'

= 3-25 feet.

It may be noted that if we keep the length of the pendulum
exactly constant, then for different positions on the earth's surface

the periodic time will vary inversely as the square root of the

acceleration due to gravity. This gives us a convenient means of

comparing the values of g at different places.

Compound Pendulum

A body which is arranged to swing like a pendulum, but in

which the whole mass is not concen-

trated at a point, is called a compound

pendulum.

Let O be the centre of suspension, G

be the centre of gravity, and let the body

be at some instant in a position such

that OG is inclined at an angle 6 to the

vertical. See fig. 104.

Let OG = h.

The weight may be considered to act

through G.

The restoring moment about the axis

O =mg xOO sin 6

= mgh . Of

if e is always small. Fig. 104.
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The equation of motion becomes

I . A = - mgh . 0,

where I is the moment of inertia of the body about O, or,

i.e. the body has a simple harmonic motion.

The periodic time = 27r^—j-

where h is the radius of gyration of the body about O.

For the simple pendulum, the periodic time

Hence the length of a simple pendulum which has the same

periodic time as the compound pendulum

~ h'

This length is called the length of the simple equivalent pendu-

lum (s.E.p.).

Example (3). The centre of gravity of a connecting rod is 4*5

feetfrom the centre of the small end. When suspended on a knife

edge at the centre of the small end it has the same periodic time as

a plumb-line of Q'2 feet. If the rod weighs 500 lbs,, find the mo-
ment of inertia about an axis through the centre of gravity parallel

to the axis of the end.

We have the simple equivalent pendulum

~ h' ,
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where k is the radius of gyration about the axis of the small end,

and h is the distance 4 -5 feet.

k^
6-2 =

4-5'

or. A;=x/6-2x4-5

= V27^
The moment of inertia about the axis through the centre of

gravity

= Mk^ - MA2

= 500 {27-9 -4-52}

= 500 X (27-9 -20-3)

= 3800 lbs. ft.2

Example (4). A solid cylinder of radius r isfree to oscillate

in a vertical plane about a fixed axis A as shewn in thefigure below.

21ie cylinder is connected to the link IKE by a pin joint at the axis,

which is horizontal.

Show that if the inertia and weight of the link AB is negligible

Fig. 105.
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and there is no friction, the periodic time for a small oscillation

ivill be given by 2ir .1 —

.

Further shew that if the cylinder is fixed to the link the periodic

time will be increased in the ratio
2R-^ + r2

2R^

\st Ca^e. Since the pin joint at B is frictionless, the onlj ex-

ternal forces acting on the cylinder are

the pull P along link BA and the weight

of the cylinder mg acting vertically down-

wards.

Now since there is no couple on the

cylinder, it will have no rotation about

B, and a diameter which is horizontal,

say, will remain horizontal, i.e. there will

be no relative motion between any point

of the cylinder and B.

Therefore the acceleration of every point

of the cylinder will equal the acceleration

of B. The latter may be considered as

consisting of two components,

(1) an acceleration w^BA in the direc-

tion BA, where w is the angular velocity

of AB, and

(2) an acceleration a, say, perpendicular to BA.

Also, a = R . O, where O is the angular acceleration of BA.

Resolving the forces on the cylinder perpendicular to BA
we get

mg sin 6 = — mR . fi.

Fig. 106.

I.e. O - ^ . ^, if ^ is small.

This is a simple harmonic motion.

The periodic time i.y
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2nd Case. If the cylinder is fixed to the link it will rotate with

the link and we get a compound pendulum as treated on p. 172.

YYtV

The moment of inertia about A = mR^ + —^ .

.'. The (radius of gyration)^ about A = R^ + —

.

The centre of gravity of the pendulum is at a distance R from A.

2~'

.'. The periodic time _ ^ ,

i.e. the periodic time is increased in the ratio ^ /
^ V 2R2

It will be seen that in the first case the arrangement behaves

as a simple pendulum of length R, and it will be remembered that

in the simple pendulum the mass was to be considered small, i.e.

we were neglecting the rotation of the mass itself about its centre

of mass. This is equivalent, in the above example, to neglecting

the term —^ .

Example (5). The balance wheel of a ivatch weighs ^i^ ounce^

and its radius of gyration is J inch. It is controlled by aflat spiral

spring and has a periodic time of \ second. What torque per

degree of twist must the spring exert ?

Let X - the torque in lbs. inch exerted by the spring per degree

of twist.

If the wheel is rotated through 6 radians from its mean position,

then

The restoring couple due to the spring

= Tn—^ Pdls. ft.
TT X 12

Let A = the angular acceleration of the wheel in the direction

of twist.
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The equation of motion of the wheel is,

300

1\2 X.^xlSOx^r
X A = — -

A =

TTX 12

A. X 15 X 4800 X 16 X 144 x 32
.6

= -(1-89 X lO^x A).^.

27r 1
The periodic time =

,
- ^ .

Vl-89xl0»xA 2

.-. X
Ui

1-89x10''
8-96 X 10-8 lbs. ins.

i I

Harmonic Motion and Circular Motion

We will now see how we can obtain mechanically a simple

harmonic motion from a circular

motion or vice-versa.

In fig. 107, Q represents a pin

fixed to a circular disc which is

rotating about O. This pin en-

gages with a slotted link K con-

strained by guides to move in a

line passing through O.

As the disc is rotated the pin

Q will slide in the slot, and the

link K will move backwards

and forwards in a straight line.

Draw QP perpendicular to the

line of motion of K, then the

motion of P will be the same as

the motion of the link K.

Suppose the disc is rotated

with a constant angular ve-

locity OJ.

L. E. D. 12

Fig. 107,
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The acceleration of Q = w^ . QO, and is always towards O.

The acceleration of P = the component of the acceleration of Q
in the line PO, ^

= (iP . QO . cos POQ
= 0)2 . PO,

i.e. the acceleration of P is always towards O, and varies as its

displacement from O.

.'. P has a simple harmonic motion.

It is easy to see that the periodic time is the time for Q to

make one complete rotation, i.e. — . Here w^ corresponds to /a in

the previous pages.

The other results follow very simply.

The velocity of P = the component of

Q's velocity in the direction OP,
A

= <o . OQ . sin POQ
A

= u) . OQ . cos QOC,

where 00 is perpendicular to OP (fig. 107).

If OQ = cr, and if we start measuring

the time when P is at O,

the angle QOC = (at.

.', The velocity of P = wci cos int.

For the displacement, in the same way,

we have
s = OP

= a sin oit.

Crank and con^iecting rod

In the crank and connecting rod

mechanism, used in steam engines and

other machines, the slotted link is replaced by a connecting rod

QA, as shewn in fig. 108. The" crosshead has not a true simple

harmonic motion.

Fig. 108.
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We can see, however, that if the rod QA is very long compared

with the crank OQ, then the angle <fi will always be small and the

motion of A will be very nearly the same as that of P, where QP
is perpendicular to the line of stroke,

i.e. A has approximately a simple harmonic motion.

Sxample (6). The slide-valve of a steam engine has a total

travel of 4 inches. It is drivenfrom the crank shaft hy an eccentric^

the rod of which is so long com^pared with the travel that the motion

of the valve may he considered simple harmonic. If the crank slwft

rotates at 240 revolutions per mifiute, find (1 ) the maximum, velocity

of the valve, (2) the velocity of the valve at one-third of the stroke,

(3) the time to travel the middle third of its path.

Fig. 109.

Let AA' represent the travel of the valve, i.e. 4 inches. Draw
a circle with AA' as diameter. The motion of the valve will be
given by the component of motion, parallel to AA', of a point Q
rotating round the circle with an angular velocity (w) equal to that

of the crank shaft.

27r X 240

60

= Stt radians per second.

12—2
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(1) The maximum velocity will occur when the valve is at O,

i.e. Q is at Qj.

.*. The maximum velocity = Stt x ^^

= 4-19 feet per second.

(2) Let 0P2 = |^AA'.

The velocity at one-third stroke

= 4-19 sin (9

=-- 4-19 X —--
OQ2

_ 4-19 X n/2^-(|) ^

2

= 3*94 feet per second.

(3) LetOPg^l^AA'.

The time to travel the middle third of the stroke, i.e. P2P3,

= the time for Q to rotate through an angle (tt — 26)

IT -26 ' ^= —5— seconds.
OTT

Now cos 6 = \^

i.e. 6 =- 70-5° = 0-391 tt radians.

. rru .. • A
1-0-782

. . Ihe time required =
o

= 0-0272 second.

Example (7). The drum of a steam engine indicator is driven

by a cord wrapped round part of the drum and is controlled hy a

helical spring which always exerts a couple opposed to that produced

hy the pull of the cord. The end of the cord has a motion propor-

tional to the piston's motion, and the latter Tnay be assumed to be

simple harmonic. Shew that, neglecting friction and the effect of

stretch of the cord, the spri7ig must he wound up so that the mean
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torque it exerts on the drum is not less than the absolute magnitude

—^ - 1 L where N= the speed of the engine in revolutions per

minute, n = the number of oscillations the drum would make per

minute if oscillating freely under the control of the spring^ \ = the

torque required to twist the spring through 1 radian, and a = the

amplitude of the motion of the drum.

Fig. 110.

Let = the angle of rotation of the drum measured in a clock-

wise direction from the mean position.

Let C = the couple produced by the spring for this position.
'

„ T = the tension in the cord.

,, r = the radius of the drum.

,, I =: the moment of inertia of the drum.

The resultant torque on the drum = Tr-C.

.'. From the 2nd law of momentum we have

Tr-C = I.A (1),

where A is the angular acceleration measured in a clockwise

direction.
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Let
(f>
— the angle of twist of the spring when the drum is in its

mean position.

For angle of rotation 0, the angle of twist in the spring =
{<f>

+ 0).

.'. c = \(<f> + 0).

Substituting in (1) we get

T.r-X(<^ + ^)-I.A (2).

The motion of the end of the string is given by

27rN
x = ra sin wt, where ot = -^^ .

But x = re,

.'. = a sin oit

Also A == — ao)^ sin (lit.

.'. From (2) we get

Tr = \ (<j> + a sin wt) — lacu^ sin w^,

i.e. Tr =
\(f>

— (law^ — Xa) sin lot.

Now if the drum's motion is to be the same as that of the string

T must always be positive, and if (law^ — Xa) is positive, A^ must

be not less than (laay^ - \a) sin mt.

The maximum value of sin mt^l.

.* . \<f> <^ law" — Xa.

But X<fi = the mean torque due to the spring.

,'. The mean torque <(; Xa \—— IV (3).

Suppose the drum were oscillating with its own spring, and there

were no cord, we should have

-X(9 = I.A,

X ^
I.e. A = - = .d,

which is a simple harmonic motion.
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The periodic time -v/;-

But the periodic time
_60
n

I 602

Also " =60'^ •

.-. From (3),

the mean torque <j: Xa j —^ --)

If (laoo^ —\a) is negative, i.e. ( —^ - 1 j is negative, then we must

take sin co^ = — 1 , and we get

the mean torque <j; Xa -^
1

^ r »

i.e. the mean torque must not be less than the absolute magnitude

of Xa -^
—

i

Examples. Chapter VIII

X. A mass is suspended at the end of a light vertical spring, and when at

rest stretches the spring I feet. Shew that if it is slightly displaced from this

position of rest and then let go it will vibrate with a periodic time equal to

27r . / - , where g is the acceleration due to gravity in feet per second per

second.

2. A body of mass 2 lbs. moves in such a way that the curve connecting

its displacement (in feet) from a given point in its line of action and the time

(in seconds) is represented by the equation s = 2sin3«. Find the time of a

complete oscillation, and the force acting on it when at a distance of 1 foot

from the fixed point. Plot the velocity-time curve for a complete oscillation.
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3. A pendulum of a clock beats seconds. If the clock keeps correct time

in one place, how many seconds per day will it lose in a place where the ac-

celeration due to gravity is decreased by y^ per cent.?

4. A part of a machine weighing 60 lbs. describes Simple Harmonic Motion,

making 180 complete vibrations per minute, and the length of the stroke is

2 feet. Find the greatest velocity, and the force acting on the moving part

at one end of its stroke and at ^ of its stroke.

5. A uniform rod, weighted at one end, floats in water with its axis vertical

and part of the rod projecting above the free surface. The total weight of the

rod is 3 lbs. and its cross-section is circular and of diameter 2 inches. If it

is depressed vertically and then let go find the periodic time of vibration.

When a body is in water the upthrust on it is equal to the weight of the

volume of water displaced.

6. A particle of mass m moves in a straight line under the action of a force,

towards a point O in the line, the value of which, at a distance x from the

point, is nifjix. Determine the time of an oscillation.

Shew that the potential energy when the particle is at a distance x from O
is ^nifjuc^.

Shew also that the motion of a simple pendulum making small oscillations

approximates to the same type.

7. A simple pendulum, of length 3 feet, oscillates through an angle of

12 degrees on either side of the vertical. Using the principle of conservation

of energy, find the maximum velocity. Compare this with the maximum
velocity obtained by considering the motion to be simple harmonic.

8. A thin rod, 3 feet long, is pivoted at one end and oscillates through a

small angle in a vertical plane. Find the periodic time of oscillation, and

shew that it will be the same if the rod is pivoted at a point one-third the

length from the end as it is when pivoted about the end.

9. A mass of 5 lbs. has a simple harmonic motion, the period of which is

^ second and the amplitude 6 inches. Draw diagrams to stated scales shewing

(i) the force acting on the mass as a function of the time, (ii) the velocity as

a function of the displacement.

10. A flywheel is hung up with its axis vertical by two long ropes parallel

to and equidistant from its axis so that it can execute torsional oscillations.

It is found that a static couple of 50 lbs. ft. will turn it through an angle of

one-tenth of a radian, and that if it be turned through a small angle and then

let go the period of a complete oscillation backwards and forwards is 5 seconds.

Calculate how much energy will be stored in this flywheel when running

200 revolutions per minute.
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11. A mass of 5 lbs. is suspended by a spring, and when at rest, just

touches the platform of a spring balance without the latter taking any of the

weight. The spring is such that it extends 1 inch for 10 lbs. and the platform

of the spring balance is depressed 1 inch for 20 lbs. If the mass of 5 lbs. is

slowly depressed | inch and then let go, find the periodic time of vibration.

Find, also, the maximum height the mass rises and the maximum velocity it

attains.

12. A Tee square, of the dimensions shewn in the figure, is suspended

at A, and oscillates through a small angle in its own

plane. The horizontal cross-piece is twice as thick as

the vertical piece. Find the periodic time of oscillation.

13. A rectangular bar magnet, weighing 0*2 lb., is

6 inches long and of cross-section ^ inch by J inch.

It is pivoted in a horizontal plane so that it is free to

swing about a vertical axis through its middle. Find

the periodic time of oscillation in a place where the

earth's magnetic field has a horizontal intensity of

0"19 dyne, if the magnetic moment of the magnet is

400 dyne-cm. units.

14. A rotary valve for an engine makes 500 com-

plete oscillations per minute about a horizontal axis,

the total angle of rotation being 90 degrees. The motion

is obtained from a rack which moves with a simple

harmonic motion, and drives a pinion of effective

diameter 1| inches keyed to the valve spindle. If the K--- 9"
>\

moment of inertia of the valve, spindle, and pinion is '

-i?- 1 1

1

'

30 lb.-inch units, find, neglecting friction, the maxi-
^'

mum total pressure between the teeth of the rack and the pinion.

15. A machine is carried by, and in the middle of, two girders, built in

at the ends. The dead weight of the machine causes a deflection of | inch.

Shew that if the girders weigh jijjth of that of the engine, the frequency

of a small vertical oscillation will be between 252 and 265 vibrations per

minute.

Assume firstly, that all the weight of the girders is at the centre, and secondly,

that the weight of the girders may be neglected in comparison with the weight

of the machine. *

16. The stroke of an engine is 6 inches, the connecting rod 10 inches, and

the speed of the crank 720 revolutions per minute. The line of stroke passes

through the axis of the crank shaft.

A
o-

CO

-%-

2'!. 1

«

cq

1

2"
\

1

1

V|
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Draw the velocity-space curve for the motion of the piston, and from this

construct the acceleration-space curve-

On the same diagram shew the acceleration-space curve, assuming the

connecting rod infinitely long.

17. A uniform rectangular block of length 12 inches and of height 6 inches

is suspended in a horizontal position by

two vertical strings AB and C D, as shewn ///y
in the figure. The centre of gravity of ^^^^^

the block is 2 feet below thfi points of

suspension. Find the time of a small

oscillation in the plane of the strings.

If the vertical strings are replaced by

two equal strings OB and OD, the centre

of gravity remaining at the same dis-

tance below the point of suspen8ion,what

will be the*periodic time for small oscil-

lations?

18. Shew that the motion of the

crosshead of an engine is approximately

simple harmonic.

Find the force that is necessary to

start the reciprocating parts of an engine

into motion at the beginning of each

stroke, when the engine is running at

120 revolutions per minute. The mass ^^^' ^^-'•

of the reciprocating parts is 1 ton, the stroke is 5 feet and the obliquity of

the connecting rod may be neglected.



CHAPTER IX

MISCELLANEOUS

Transmission of power by belts

Power is frequently transmitted from an engine shaft or motor

shaft to a machine by means of a belt connecting pulleys on the

two shafts as shewn in fig. 113. When the machine is doing work

the tension in the two sides of the belt will be different.

Fig. 113.

Let Tj = the tension in lbs. wt. in the tight side of the belt,

Ts = the tension in the slack side of the belt,

N = the speed in revolutions per minute of the machine

shaft,

R = the radius of the pulley on the machine shaft in feet.

The resultant turning moment on the machine shaft

= TiR - T2R

= (Ti - T2) R lbs. ft.

The angle turned through in 1 minute = 27rN radians.

The work done per minute = (Tj - To) R x 27rN ft. -lbs.

'. The horse-power transmitted to the machine = - ^ ^ .
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Example (1). In order to measure the horse-power which can

he given out hy an engine, a brake is arranged, consisting of a belt

on the Jlyivheel of b feet diaineter, as shewn in fig. 114. A iveight

of 50 lbs. is attached to one side of the belt and a weight of 20 lbs.

to the other side. The 20 lbs. weight is partly supported on a spring

balance. When theflywheel is running at 1 50 revolutions per minute

the spring balance reads 9*2 lbs. Find the horse-power absorbed by

the brake.

50 lbs

Fig. 114.

We have Tj = 50 lbs. wt.,

and Ta = (20 - 9-2) = 10-8 lbs. wt.

The resisting moment on the wheel

= (50- 10-8) X 2-5 lbs. ft.

(50-10-8)x2-5x27rx 150
.*. The horse-power

33,000

39-2 X 2-5 X 6-28 X 150

33,000

2-8.
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Machines

A machine is an instrument for converting energy into useful

work. ]n order to take in the energy supplied the receiving end

of the machine will require a definite motion, depending on the

form in which the energy is supplied. Also, the motion of the

working end will have to be of a definite kind, depending on the

nature of the work which is required to be done.

Take the case of a steam engine. Here the energy is supplied

in the form of the pressure of the steam. This acts on a piston,

and does work by moving it along a straight path. The receiving

end has therefore a reciprocating motion. The working end, on

the other hand, is required to rotate, and the force of the steam

on the piston has to produce a couple causing rotation of the

crank shaft against the resisting torque.

Fig. 115.

If we like, we can consider the torque on the crank shaft

produced by a force R acting on the crank pin at right angles to

the crank. In this case the crank pin becomes the working end

and the piston becomes the receiving end.

Let V = the velocity of the piston or the crosshead

and V = „ „ crank pin.

The velocity ratio of the machine

_ The velocity of the receiving end

The velocity of the working end
_V
V

'
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If we may neglect friction and also the change in kinetic and
potential energy of the moving points, then we must have for a

definite interval of time^

The work put in at the receiving end

= the work got out at the working end.

Taking a unit interval of time we have,

The power supplied at the receiving end

= the power given out at the working end.

If E = the force exerted at the receiving end

and R = „ overcome at the working end,

E.V^R.-y

R V
or — = -

,

E v'

i.e. t\\Q force ratio is inversely proportional to the velocity ratio.

Example (2). On p. 50 wefound, for the position of the crank

V 42
shewn, the value of - =^ . Suppose the steam pressure = 80 lbs,

per sq. inch, and the diameter of the pisto7i = 10 inches. Find the

crank effort, i.e. the tangentialforce on the crank pin.

The total pressure (E) = 257r x 80

= 6280 lbs. wt.

V
The crank effort (R) = - x E

= 11 X 6280

= 4050 lbs. wt.

Friction. If we consider friction then there will be some energy

R V
wasted in heat, and the ratio of — will no longer be equal to -

.

E ^ ^ V

The ratio - =—=7^;

—

-,
— is called the mechanical advantage of

E Effort

a machine.
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^, T . 7 /r. •
f. 1 . Power given out

Ihe mechanical efficiency of a machine = ^pi -. -.
—

*^ ^ Fower given in

_ Rv

~EV
Mechanical advantage

Velocity ratio

Example (3). Fig. \\^{a)onp. 192 shews diagrammatically the

meclianism of a drawing press. ABC is a hell-crank lever pivoted

at B. Tfie end C is connected hy the link CD to the piece D, which

is constrained to move in direction BD. By dratving velocity tri-

angles, find the ratio of the velocity of f< to the velocity of D.

Neglecting friction, wJiat verticalforce P applied at A is required

to produce a vertical push of 1 ton on D?

The bell-crank lever ABC is pivoted at B, and therefore the

velocity of A : the velocity of C as AB : BC.

In fig. 116 (6), draw oa perpendicular to AB, and equal to AB,

to represent the velocity of A. Draw oc perpendicular to BC, and

equal to BC, to represent the velocity of C.

The relative velocity of D to C must be perpendicular to CD,

and the velocity of D is along BD.

Draw cd perpendicular to CD, and draw od parallel to BD.

The velocity of D equals the vector sum of the velocity of C and
the relative velocity of D to C.

ocd is a triangle of velocities.

.*. od represents the velocity of D, to the same scale as oa

represents the velocity of A.

Velocity of A oa

Velocity of D od

= ^TKc. (by measurement)

= 1-2.

Now P acts vertically. Draw op vertical, and draw ap perpen-

dicular to op.
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Then op represents the component of A's velocity in the

direction of the force P.

Fixed centre

Fig. 116.

Employing the principle, work put in = work got out, we have

p X op = F X oc?,

where F is the force required at D.

op

od

0-98

0^
= 1-18 tons.

= 1 X
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Example (4). The mechanical efficiency of a certain type of

tackle may be taken equal to I =
j

, where n = the total number

of sheaves round which the rope is wrapped.

A runner tackle^ in which the m,oving block has 3 sheaves and the

fixed block 2 slieaves, is to be used to overcoine a resistance of 5 tons.

What will be the pull in the running end of the rope, and the

mechanical advantage of the tackle ?

.^ .
>P

5 tons

.. . ^ Fixed
Moving

Fig. 117.

The sheaves are really all the same size and not as shewn in

fig. 117, and the portions of the rope may be assumed parallel.

From the figure, we see that if the moving block shifts 1 foot

there will be a motion of the running end equal to 6 feet.

.'. The velocity ratio = 6.

Let P = the pull of the running end, in tons wt.

The mechanical efficiency = .^^
—

-. —

^

Work put in

5

~Px6'

or P = fo

Px6 7 + 5'

6.0
42

=^ tons wt.

The mechanical advantage
5

" P

— 35
-TT7
-3-5.

L. E. D. 13
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Example (5). In a steam tractor the motion is transmittedfrom
the crank shaft A through two parallel shafts B and C. A wheel of

22 teeth on A gears with a wheel of 21 teeth on B. Compound with

this wheel is a wheel of 17 teeth gearing with a wheel of 4:4: teeth

keyed on shaft C. Keyed also on C is a wheel of \2 teeth gearing

with a wheel of 5Q teeth fixed to the road wheel.

Find the velocity o'atio of the gear, and, neglecting friction, find
the coujyle required on the crank shaft to produce a total tractive

force of 1000 lbs., the diameter of the road wheels being 7 feet.

22

:^ 21

,^

12

56

y^

A

17

B

44

C

Road wheel

Fig. 118.

The arrangement of the gear is shewn diagrammatically in

fig. 118,
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For one revolution of the crank shaft A we have

Shaft B makes |f revolutions,

„ C „ If ^ ii revolutions,

» D „ If xjjx If revolutions.

r^, , . ' n .^ Speed of A
/. The velocity ratio oi the gear = ,5^^—-^—

^

—

21 X 44x56
~22xl7x 12

= 11-53.

Let T = the couple on the crank shaft in lbs. ft.

P = the tractive force in lbs., at the points of contact of the

two road wheels.

The couple on the road wheels shaft D

= P X I lbs. ft.

Neglecting friction, we must have the work put into the crank

shaft in any time = the work given out by the road wheels in the

same time.

.-. p x|--Tx 11-53.

Putting P- 1000 lbs.,

100x3
11^53"we get T = 15^^' ^303 lbs. ft.

Relative Momentum and Relative Kinetic Energy

In dealing with motion we pointed out that we really do not

know anything about absolute motion, and that all the motions

we deal with are relative motions. In the same way, when we
talk or write about momentum, and kinetic energy, since these

involve velocity and speed, we are really implying relative mo-
mentum, and relative kinetic energy.

13—2
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MomentuTn. Suppose we are determining the force acting on

a body by considering the time-rate of change of momentum. If

the momentum is changing uniformly with the time, we have

m{y — u)
^^

t
'

where v and u are the final and initial velocities of the mass m,

measured relatively to some body of reference.

Suppose the body of reference has itself a constant velocity V

the s{

mentum
in the same direction as u and v, then the real change of mo-

=m (v + y) - m (u + W)

= m{y- u).

Now we may assume that the time is the same whatever is our

body of reference,

m (v — u) - „
.*. F =—^^

, as before.
t

Kinetic Energy. Suppose we are determining the force acting

on a body by considering the space-rate of change of kinetic

energy. Again taking the force constant, relative to our body of

reference, we have

where s is the distance moved relative to the body of reference.

If the body of reference has a constant velocity V, then the

real change of kinetic energy

2 2

+ mV {v — u).
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Let s' = the total distance moved during this change.

Then Fs' =—^ ' ^m{y- u) V.

Now

I.e.

s =s + yt, and F = -^^ ^
.

t

.'. Fs+F .Wt =—^^ ^ + Fi5 . V,

m (v^ — u^) , „

F = —^-^r- ' , as beiore.

Hence we may use relative kinetic energy if at the same time

we use the relative displacement.

As an example, consider the energy required to accelerate or

retard the piston of a locomotive which is travelling at any given

speed relative to the earth. In estimating this, we are not con-

cerned with the speed of the locomotive, but merely with the

speed of the piston relative to the cylinder, and the distance

moved by the piston relative to the cylinder while this change of

speed has occurred.

In the same way, in order to find the total work done by the

steam, we use the force-space curve, the force being the total

pressure of the steam on the piston and the space being the rela-

tive displacement of the piston in its cylinder.

Indicated Horse-Power

The indicated liorse-power (i.h.p.) of an engine is the horse-

power supplied to the engine by the working substance, e.g. in a

steam engine, the horse-power supplied by the steam as it acts

on the piston. The term indicated is used since the i.h.p. is

usually obtained by means of an Indicator. This is a small in-

strument which autographically records the force-space curve at

the receiving end of the engine. An indicator diagram for a
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steam engine in which the steam acts only on one side of the

piston is shewn in fig. 119.

ahc represents the pressure of the steam as the piston is moving
in towards the crank shaft, i.e. during the forward stroke, and cda

represents the pressure during the return stroke.

Stroke

Fig. 119.

Let Py = the mean pressure in lbs. per sq. inch during the

forward stroke.

Pj, =: the mean pressure in lbs. per sq. inch during the re-

turn stroke.

A = the area of the piston in sq. inches.

L = the length of the stroke in feet.

N = the speed of the engine in revolutions per minute.

The work done by the steam during the forward stroke

= P^..A. L ft.-lbs.

The work done by the steam during the return stroke

= - P,, . A . L ft.-lbs.



INDICATED HORSE-POWER 199

The negative sign is used since the engine has to do work in

pushing the steam out of the cylinder.

.*. The work done by the steam per revolution

= (P^-P,).AL

= P . A . L ft.-lbs.,

where P is the mean effective pressure given by the diagram abcda.

This is obtained from the mean distance between tl^p curves

abc and cda, or the area abcda divided by the length of the diagram.

The work done per minute = P . A . L . N ft.-lbs.

P . L.A.N
.'. The indicated horse-power = '

' '
.

The brake horse-power (b.h.p.) or the horse-power which is given

out by the. engine may be obtained by using a brake such as is

shewn in fig. 114, p. 188.

The difference between the indicated horse-power and the brake

horse-power represents the horse-power which is wasted in friction

in the engine itself.

The mechanical efficiency

Brake horse-power

Indicated horse-power

'

Example (6). The driving wheels of a two-cylinder locomotive

are ^ feet in diawxter. The mean pressure of the steam, in each

cylinder is 60 lbs. per sq. inch. The diameter of the cylinders is

20 inches^ and the stroke 22 inches. Find the indicated horse-power

if the speed of the locomotive is 20 miles per hour.

Find also the draw-bar pull produced, if \2'5 per cent, of the

power supplied is wasted in friction.

The speed of the driving wheels and crank shaft

_ 20 X 5280

60 X TT X 6

= 93*5 revolutions per minute.
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i.H.p. for one end of one cylinder

_ 60 X TT X 10^ X 22 X 93-5
~

33,000 X 12
= 98.

.-. Total I.H.P. =.4 X 98

-392.

The horse-power available for draw-bar pull

-0-875x392

= 343.

If P — the draw-bar pull in tons

The work done per revolution

— P X TT X 6 ft.-tons.

The useful energy supplied per revolution

4x60x7rxl00x22
= 2240x12 ^ ^'^^^ ^^-*^^^'

Equating these, we get

240 X TT X 100 X 22 X 0-875

2240 X 12x7rx6

= 2-86 tons.

Mechanical Losses in a Steam Tractor

As an illustration of the method of applying the principle of

the conservation of energy to a practical problem, we will briefly

discuss an actual test of a steam tractor which was made in order

to determine the mechanical efficiency, and to discover where the

losses of power occurred.

The tractor is driven by a steam engine, fitted with a flj^wheel,

and the motion is transmitted through gear wheels from the crank

shaft to the driving wheels, as described in example (5), p. 194.

A clutch is fitted between the crank shaft and the gear.
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Tests were made while the tractor was drawing a train of loaded

wagons along a level road. The power put in was measured by

taking indicator diagrams from the cylinders. The power trans-

mitted to the wagons was measured by the pull in the spring

coupling between the tractor and the wagons.

For this purpose an apparatus was arranged to autographically

draw a pull-distance curve, and at the same time equal intervals

of time were recorded on the diagram.

The following are the figures for one test

:

Indicated horse-power =:: 19*1.

Speed of crank shaft = 236 revolutions per minute.

Space-average of pull on wagons = 582 lbs.

Speed of tractor from diagram = 446 feet per minute.

Velocity ratio of gear = 11 'SS.

Diameter of driving wheels = 7 feet.

Horse-power transmitted to the wagons

_ 582 X 446
~ 33,000

= 7-9.

.'. Overall mechanical efficiency

_ 7-9

~19-1

= 41*3 per cent.

Horse-power lost in the tractor

= 191 -7-9

= 11-2.

To find the slip of the driving wheels on the road, we have,

236
Speed of the driving wheels = Z" revolutions per minute

= 20-4 revolutions per minute.
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Speed of the circumference of driving wheels

= 20*4 X 7 X TT feet per minute

= 450 feet per minute.

Speed of the tractor = 446 feet per minute.

.*. Percentage slip of the driving wheels

450-446
= -^50—^1^^

= 0-9 per cent.

The total mechanical losses in the tractor consist of the following

items :

(1} Engine friction loss.

(2) Gear friction loss.

(3) Friction loss of the driving wheels on the road and other

resistances to motion (traction loss).

(1) In order to determine the engine friction the clutch was

disengaged and an absorption brake fitted on the flywheel. A
number of tests of the indicated horse-power and the flywheel

horse-power were taken.

These tests shewed that the power lost in engine friction was

practically constant and equal to 3*3 horse-power.

(2) To determine the gear loss the total horse-power lost be-

tween the cylinders and the driving wheels was estimated. This

was eftected by jacking up the tractor, and fitting a brake-ring

and an absorption brake on one of the driving wheels.

From a series of tests it was found that the brake horse-power

was related to the indicated horse-power as follows :

Brake horse-power ==0-925 (indicated horse-power) - 3*06.

For indicated horse-power = 19-1, we have,

Brake horse-power = 0-925 x 19-1 - 3-06

= 17-66 -3-06

= 14-6.
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The horse-power transmitted to the gear

= 191- 3-3

= 15-8.

The horse-power lost in friction of the gear

= 15-8 -14-6

= 1-2.

14-6
The efficiency of the gearing = r-—

^

= 92*5 per cent.

(3) The horse-power given to the wagons

= 7-9.

.'. Horse-power wasted in tractor road-friction and resistance

= 14-6-7-9

= 6-7.

Summary of Losses

Input. 19-1 H.P.

Output. Engine Friction 3-3 H.P.

Gear Friction 1-2 H.P.

Traction Loss 6-7 H.P.

Transmitted to Wagons 7-9 H.P.

Total 19-1 H.P.

Pelton Water Wheel

In a Pelton Wheel a number of buckets are arranged round the

rim of a disc, and a jet of water, moving with a high velocity,

impinges tangentially on the buckets. The reaction to the tan-

gential pressure required to change the momentum of the water,

provides the turning moment on the wheel.
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A diagrammatic sketch of the wheel is shewn in fig. 120, and
an enlarged sectional plan of one bucket is shewn also in the figure.

Let a = the area of the nozzle in sq. feet.

u = linear speed of the buckets in feet per second.

V = the velocity of the water as it issues from the nozzle in

feet per second.

p = the density of the water in lbs. per cubic foot.

Fig. 120.

The tangential pressure on the wheel

= the change of momentum of the water per second

= the mass of water impinging per second x the change of velocity.

The velocity of the water, relative to the bucket, just before it

impinges is {y - u).

In the absence of friction, this will also be the magnitude of

the relative velocity of water and bucket at any point of the

bucket. The direction will be changed by the normal pressure

but this cannot affect the relative tangential velocity.

The final velocity of the water relative to the bucket in the

direction of the jet = - {v — u) cos 0.
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.-. The final velocity of the water relative to the fixed nozzle

= — {v-u) cos 6 + u

= u (1 + cos 0) — V.

.*. The change of velocity in the direction of the jet

= v — {w (1 + cos 0) - v]

= 2v-u(l +cos6).

In practice 6 is made very small, just sufficient to allow the

water leaving to clear the wheel. Take ^ = 0.

.

The change of velocity in thfe direction of the jet = 2 (v - u).

The quantity of water impinging on one bucket per second

depends upon the relative velocity, and = pa(v — u) lbs.

With a number of buckets, neglecting splash, we may assume

that all the water impinges on the wheel.

.-. The mass of water impinging per second

= pav lbs.

The tangential pressure on the wheel

= pav x2{v -u) abs. units

Jpav{v-u)
^^^^^^^

9

The work done on the wheel per second

= -^—^ ^ X u ft.-lbs.

9

The energy supplied to the wheel per second

1 ^

^9

.^Theeffidency = 2^1i!±.-Iib
pair
~2~

4: (v — u) u
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The kinetic energy carried away by the water per second

= ^-^^fc^ft.-lbs.

J.i V = 2u, i.e. the velocity of the bucket equals one-half the

velocity of the jet, the kinetic energy carried away equals zero,

and the efficiency is unity.

Taking this condition we get

The maximum horse-power of the wheel
2g X 550

•

Total Kinetic Energy of a Body moving in a Plane

Let the body shewn in fig. 121 have any motion whatever in

the plane of the paper.

Let G be the centre of gravity, and let it have a velocity v at

the instant considered.

Consider the velocity (u) of any point A.

The velocity of A = the velocity of G + the relative

velocity of A to G (vector sum).

Fig. 121.
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Let o> = the angular velocity of the body at the instant con-

sidered, and r = the distance AG.

Then the relative velocity of A to G = wr, and is perpendicular

to AG.

Draw AB perpendicular to GA to represent tar, and draw BO to

represent v.

Then AC will represent u, and we have

AC = AB + BC,

or u^ = (oV^ + v^+ 2(or . v . cos <j}.

Draw AN perpendicular to the direction of motion of G. Then
AN is perpendicular to BC, and AB is perpendicular to AG.

.-. GAN = <^

and rcos</) = AN.

If Sm is the mass of a particle of the body at A, the kinetic

energy of it

= I Sm . u^.

For the whole body we get

The kinetic energy = ^ ^8m .u^

= ^i8m (o)V^ + v^+ 2wv . AN)

= ^ :S r^Sr/i + ~'$Sm + 2o>v ^ Sm . AN.

^T^Sm = the moment of inertia (I) of the body about an axis

through G.

S Sm = the total mass M.

^Sm . AH - the moment of each particle about the axis GN
= zero, since G is the centre of gravity.

.'. The kinetic energy of the body
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We may express this in words thus :

The total kinetic energy of a body moving in a plane equals

the kinetic energy of the whole mass moving with the velocity of

the centre of gravity plus the kinetic energy due to rotation about

the centre of gravity.

Example (7). In the arrangement shewit in fig. 122, each of

the pulleys has a mass w, a radius r, and a

radius of gyration k. If when left to itself

the mass M descends and raises mass m, find

the velocity of M when it has fallen a dis-

tance hfrom rest.

Using the principle of the conservation

of energy we may write,

the loss of potential energy = the gain

of kinetic energy.

Let 17= the velocity of M after descending

a distance h.

The mass m and the pulley B will have

ascended a distance ^ , and their linear

velocity will be ^

.

The angular velocity of pulley A will be

Fig. 122.

V

r'

V

Yr'

We have then,

lAgh -{in + w)g ^ = \ Mv^ -\-^{m + w) -+^wk^ -^ + 1 wk^—^

B

I.e.

or

"{
5wkm w Dw/c^)

M + T-^i + i;^}

v^i
(2M

(2M-

m — w) gh

m> — w) gh,

.4

1(

m w bwk^''
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Example (8). A wagon of total mass M ha^ four wheels^ each

of mass m, radius r, and radius of gyration k. Shew that the effect

of the rotation of the wheels is the same as that of an increase of

mass equal to —^ .

Let the speed of the wagon be increased from u to v hy the

application of a constant accelerating force F in the direction of

motion.

We may equate the work done by this force to the gain of

kinetic energy.

Initially.

The kinetic energy of the wagon without the wheels

= J (M - 4m) u\

The kinetic energy of the wheels = 4
1
1 mu^ + Jm^ .

—
j-

, sisince

u
the angular velocity of the wheels is -

.

:. The total kinetic energy = ^Mu^-¥ 2m— . u"^
r"

Finally.

The total kinetic energy = J ( M + 4m -^ ) v^.

If s is the distance, and t the time for the change of velocity,

f.s = i(m + ^)(«^-«^) (1).

With the wheels locked we should have

F.s=::iM(2;2-w2),

assuming the same accelerating force to act.

.*. The rotational inertia of the wheel is equivalent to an ad-

ditional mass of —r—

.

IT

L. E. D. 14
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We may find the acceleration tlius :

rrora(l). f.s^^^f

But
V + u

. t = s,

M H —
) ^ acceleration.

The acceleration

M +
^vfik^

'

J

Examples. Chapter IX
1. It is required to transmit 50 horse-power from a pulley, 36 inches

in diameter, running at 250 revolutions per

minute. The belt is I inch thick, and the per-

missible stress in the material is 600 lbs. per

square inch. Find the proper width of the belt,

on the assumption that the tension in the tight

portion of the belt is twice that in the slack

portion.

2. Shew that the horse-power delivered by a

belt to a pulley of diameter D feet, running at

N revolutions per minute, is given by

(Ti-T2)D.N
10500

where Tj and T2 are the tensions in lbs. in the

two sides of the belt.

Power is transmitted from a pulley A to a

pulley B, and in order to measure the power the

belt is arranged as shewn in fig. 123.

If the weight W attached to the light jockey

pulley P is 150 lbs. and the spring balance

attached to the light jockey pulley Q reads

70 lbs. , find the horse-power transmitted when the speed of B is 200 revolu

tions per minute and its diameter is 9 inches.

Spring

balance
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3. A flywheel, of mass 10 tons, is rotating 40 times per minute and the

mean diameter of its rim is 19 feet. Express its energy as the fraction of

a horse-power-hour.

Find the difference of the tensions in belting passing over the flywheel

which would reduce it to rest in 10 minutes, taking the outer diameter of

the flywheel as 20 feet.

4. Fig. 124 shews an absorption brake arranged for measuring the horse-

power given out by a water turbine. When the brake was arranged on a

pulley, which was quite free to rotate without friction, the spring balance

read 4 lbs. If the brake pulley of the turbine is rotating at 500 revolutions

per minute, and the spring balance reads 36 lbs. find the horse-power given

out.

//////////////

Fig. 124.

5. The table of a planing machine has a rack fixed to its underside, and
takes its motion, along the bed of the machine, from a pinion which gears

with the rack. The pinion has 14 teeth of 1| inch circumferential pitch, and
to its axle is keyed a wheel of 68 teeth, which is driven from the pulley shaft

through a wheel of 17 teeth. If the pulley shaft is running at a speed of

90 revolutions per minute, what is the linear speed of the table in feet per

minute?

The table weighs 1000 lbs., and the coefficient of friction between the table

and the bed is 0*12. If no power is lost in the gear, what torque must be

applied to the pulley shaft in order to move the table along the bed?

14—2
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6. The moving block of a tackle has two sheaves and the fixed block three

sheaves. For raising a load the relation of the effort P to the load W is given

W / w\
by P = Q ( 1 + o ) » where Q is the velocity ratio, and n is the number of

sheaves round which the rope is wrapped.

Sketch the arrangement, and find the ejB&ciency and the effort, when a load

of 10 tons is raised.

What value of P would you expect to be required to slowly lower 10 tons?

7. The sketch, fig. 125, shews the mechanism of a coining press, in which
pressure is exerted on the piece D by a pull

at the end A of a bell-crank lever ABC
pivoted at B. The direction of the pull is

perpendicular to BD, and D is constrained to

move along BD.

Determine, graphically, the velocity ratio

of D to A. Neglecting friction, what pull is

required at A to move D against a thrust of

2 tons?

[Prick the figure through to your paper. ]

8. A winch has four parallel shafts A, B,

C and D. On shaft A there is a pinion with

11 teeth, which meshes with a wheel with 39

teeth on shaft B. Compound with this wheel,

a pinion of 12 teeth meshes with a wheel with

50 teeth on shaft C. This shaft has a pinion

with 11 teeth meshing with a wheel with 70

teeth on the drum shaft D. The external

diameter of the drum is 10 inches, and

the winding rope has a circumference of

2^ inches.

If the pull in the rope being wound on the

drum is 5 tons, and the efficiency of the ^. ^^k
machine is 75 per cent, , what tangential force

will have to be applied to a handle of 15 inches' effective radius (i) if it is

fixed on shaft A, (ii) if it is fixed on shaft B?

9. A flywheel, 6 feet in diameter and weighing half a ton, is supported

midway between two bearings on a shaft of 4 inches diameter. Power is

delivered to the shaft at the rate of 25 horse-power, and drives the flywheel
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at 150 revolutions per minute against the friction of a strap which passes

over the upper half of the circumference, and carries 300 lbs. at one end and

25 lbs. at the other. Find how much of the power is absorbed by the friction

of the strap, and how much by the friction of the bearings. Find also the

total thrust, and the resultant frictional force, on each bearing.

lO. Define the terms velocity ratio, mechanical advantage, efficiency, and

shew that the efficiency is equal to the mechanical advantage divided by the

velocity ratio.

In a test of a crane with a velocity ratio of 280 the following values of load

and effort were observed:

Load in tons 1 2 3 4 5 6

Efforts in lbs. 31 49 67-5 86 104-5 123

Plot the values given and obtain the relation between load and effort,

also a curve shewing the efficiency for the above loads.

Plot

11. Shew how to find the crank effort in a single cylinder engine for any

given crosshead thrust. The crank of an engine is 8 inches, the connecting

rod 30 inches; the crosshead thrusts at quarter stroke, at half stroke, and at

three-quarter stroke are 4000, 2500, and 600 lbs. wt. respectively. Find the

corresponding turning moments on the crank.

12. An electric motor has keyed to its spindle a wheel A of 14 teeth which

gears with a wheel B of 70 teeth. Compound with B is a wheel C of 13 teeth

which gears with a wheel D of 48 teeth. Compound with D is a wheel E of

23 teeth which gears with a wheel F of 54 teeth. Wheel F is keyed to the

axle of the chain barrel of a crane, the effective diameter of which is 15 inches.

Find the speed of the motor when the chain is being wound on the barrel at

a rate of 20 feet per minute.

If a load of 10 tons is being raised at this speed, what power will be taken

by the motor, assuming the combined efficiency of the motor and crane is

45 per cent. ?

13. A steam engine is driving a dynamo by a belt and is running at 120 re-

volutions per minute. The diameter of the driving pulley is 3 feet, and the

tensions in the tight and slack portions of the belt are 2000 lbs. and 800 lbs.

respectively. What horse-power is the engine delivering ?
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14. A sliding door of a railway carriage is 3 feet broad and weighs 250 lbs.

It closes in the direction of motion of the train. The door is fully open and
the train travelling at 20 miles per hour when the latter starts slowing up
with a constant retardation of 2 feet per second per second. If the resistance

to motion between the door and the carriage is constant and equal to 4 lbs.,

find the velocity, relative to the train, with which the door closes. If the

catch on the door automatically couples it when it closes, find the impulse

and the energy dissipated.

15. A locomotive with two cylinders each 19 inches diameter, 22 inches

stroke, and driving wheels 5| feet diameter, is working with a mean steam
pressure in the cylinders of 135 lbs. per sq. inch. Find the tractive force at

the rails, assuming that 10 per cent, of the power developed is wasted in engine

friction. Calculate also the greatest load, including the engine, which can be

taken up an incline of 1 in 150 at 10 miles per hour if the resistance per ton

at this speed is 6-9 lbs.

16. The pressure in one end of a steam engine cylinder, during ^ revolu-

tion, is shewn on the indicator diagram below, fig. 126. The piston area is

80 sq. inches, the stroke is 15 inches and the engine runs at 120 revolutions

per minute. Determine the average effective pressure during a revolution, the

work done per minute, and the horse-power.

Fig. 126.

17. The engines of a steamer are developing 2500 indicated horse-power

when the speed is steady and equal to 16 knots. If the overall efficiency is

60 per cent., find the total resistance to motion of the vessel in tons.
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Assuming the total resistance varies as the square of the speed, find the

new steady speed when the horse-power is increased to 3000, the overall

efficiency remaining the same.

[1 knot= 6080 feet per hour.]

18. A gas engine is speeding up under no load, and at the beginning of

one cycle the speed is 100 revolutions per minute. The indicator diagram for

the cycle is given below. Find the work done during the cycle, and the speed

of the engine at the end of the cycle, neglecting friction.

Diameter of piston 18 inches. Length of stroke 2 feet. Moment of inertia

of flywheel 107 tons ft.2 Scale for pressure, 1 inch = 180 lbs. per sq. in.

Fig. 127.

19. In a single cylinder steam engine, the diameters of the piston and the

piston rod are respectively 11 inches and 1| inches, the length of stroke

1 foot, and the speed 197 revolutions per minute. The mean pressure on
each side of the piston is found from the indicator diagrams to be 16*5 lbs.

per sq. in. Find the indicated horse-power.

If the engine is driving a dynamo, the output of which is 10*8 kilowatts

and the efficiency 95 per cent. , find the horse-power wasted in friction in the

engine.

[0*746 kilowatt= 1 horse-power.]

20. In order to determine the efficiency of some gearing, power was
transmitted through it from a steam engine. The indicated horse-power of

the engine and the horse-power given out by the gearing to a brake wheel
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were measured. Previous experiment shewed that the horse-power wasted in

friction in the engine was practically constant and equal to 2'6.

Find the eflBciency of the gearing from the following data

:

I.H.P. of the engine, 24-2.

Speed of engine shaft, 240 r.p.m.

Velocity ratio (crank shaft to brake wheel), 11-7.

Torque on brake wheel, 4750 lbs. ft.

21. A motor-car delivers 25 horse-power to its shaft. The engine shaft is

geared down to the back axle in the ratio 4 to 1, and 12 per cent, of the

shaft-power is lost in the gear. The car wheels are 28 inches in diameter, and
the car is running at 32 miles per hour. Find the torque on the engine shaft,

the torque on the back axle, and the propulsive force between the road and
the driving wheels.

The car runs up a slope of 1 in 25, and the gear is changed so that the

reduction ratio is 6 to 1, and the gear loss is now 25 per cent, of the shaft

power. If the torque on the engine shaft remains constant, while the

resistance to motion is proportional to the square of the speed, find the

uniform velocity with which the car ascends the slope. The weight of the

car is 2500 lbs.

22. A gas engine is working at 10 indicated horse-power and at 200 revo-

lutions per minute when the gas is suddenly cut off. Assuming the torque

due to the brake and other resistances remain constant, find the number of

revolutions the engine makes before coming to rest. The moment of inertia

of the flywheels is 3500 lbs. feet^.

23. What is the rate in horse-power at which energy can be delivered by

a stream, 2 square feet in section, flowing at the rate of 8 feet per second?

(1 cu. ft. of water weighs 62^ lbs.)

If the stream is used to drive a water wheel turning at a constant rate of

30 revolutions per minute and exerts on it a constant couple of 120 in feet

and lbs., what is the efficiency of the arrangement?

24. Flat vanes are arranged radially round the circumference of a wheel

to form a water turbine. A jet of water impinges on the vanes, the direction

of the jet being tangential to the wheel and at a distance of 9 inches from

the centre. The velocity of the jet is 50 feet per second, and the discharge

is 20 cubic feet per minute. Find what should be the speed of the wheel for

maximum horse-power, and the theoretical horse-power at that speed.
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25. The effective diameter of a Pelton wheel is 40 inches and the nozzle

area 12-5 square inches. It is suppUed with 672 cubic feet of water per minute

and runs at a speed of 380 revolutions per minute. Find the theoretical

efficiency assuming the direction of motion of the water completely reversed.

If the horse-power given out is 250, what is the actual efficiency?

26. A moving staircase has a speed of 100 feet per minute, and rises

30 feet vertically in 50 feet horizontally. 180 people use the staircase per

minute, and the average weight per person is 9 stones. When they step on

at the bottom, they do so at a speed relative to the ground of 80 feet per

minute in the direction of motion of the staircase. They remain at rest

relatively to the staircase while moving horizontally at the. bottom and top,

but during the rise they climb relatively to the staircase at a rate of 60 feet

vertically per minute. At the top they step off in the direction of motion

with a speed of 100 feet per minute relative to the ground.

Find the horse-power required to maintain the motion of the staircase,

neglecting friction.

27. Work is done at the rate of 17*5 horse-power in driving a car, which

weighs 8 tons, up an incline of 1 in 20 at a speed of 6 miles per hour. If the

frictional resistances remain constant, find the acceleration in feet per second

per second when the car is allowed to run freely down the same incline.

28. In a horse car the energy of rotation of the wheels is a negligible

fraction of the total energy of the car, but in an electric car the energy of the

rotation of armatures, gear wheels, etc., is appreciable. Given two cars, one

in which the rotational energy may be neglected, and one in which it amounts
to one-tenth of the total energy of the car, shew that, neglecting friction,

their accelerations down a given slope are in the ratio of 10 to 9.

Call the two cars A and B and suppose that their total weights are equal,

then find the acceleration down a slope of inclination a (1) of car A running

alone, (2) of car B running alone, (3) of A and B running coupled.

29. A pump is driven by an electric motor by means of a belt. When the

inotor is absorbing 20 horse-power, the pump lifts 400 gallons of water per

minute through a height of 80 feet. What is the efficiency of the plant as a

whole ? Neglect the kinetic energy of the water. 1 gallon of water weighs

10 lbs.

If the motor has an efficiency of 88 per cent., find the efficiency of the pump,
nagl&cting any loss of power in the belt.
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In addition to raising the water through 80 feet the pump is required to

deliver it against a pressure of 20 lbs. per sq. inch. Assuming that the

efficiency of the plant is the same as in the previous case, find what power

must be supplied to the motor.

30. A steam engine has a stroke of 10 inches, and is running uniformly

at a speed of 250 revolutions per minute. The piston weighs 80 lbs. Neglecting

the obliquity of the connecting rod, find how much energy is stored in the

piston (1) between dead centre and quarter stroke, and (2) between quarter

stroke and half stroke. «

Also find the amount of energy stored in the piston while the crank moves J
through an angle pf 45° from dead centre.



MISCELLANEOUS EXAMPLES

The following examples are not arranged in order of difficulty nor according

to the principle involved.

1. Four members of a frame, A, B, C and D, all lie in one plane, and

meet at a point. Members B, C and D make angles, all measured in the

same direction, of 90°, 210°, 257^° respectively, with the member A. The
pulls in the members C and D are 4'7 tons and 5 tons respectively. Find the

pulls in members A and B (1) graphically, (2) by calculation.

a. In order to find the height of an airship which is travelling over the

sea, a gun is fired from the ship and the time between the firing of the gun
and the receipt of the sound reflected from the sea is noted. The time in one

case was 15*8 seconds. What was the height of the airship ?

If five minutes later the time was 16 "6 seconds, what was the vertical

velocity assuming it to be uniform?

[Velocity of sound in air= 1080 feet per second.]

3. A section of a railway between two points A and B distant 2000 yards

apart, is given by the following table which shews the elevation above A for

every 200 yards :

Distances
in yds.

A 200 400 600 800 1000 1200 1400 1600 1800 B

Heights
in ft.

3i 10 17 25 32 38 40 36i 28i 16

A train, the mass of which exclusive of the engine is 300 tons, passes A at

a speed of 30 miles per hour. The locomotive exerts a constant draw-bar

pull of 7000 lbs., and the train resistance may be taken as 15 lbs. per ton.

Draw a curve shewing the variation in speed as the train advances from A to B.

4. Shew that if a body is moving in a circular path of radius r feet with

a uniform speed of w radians per second, then it has an acceleration towards

the centre equal to w^r feet per second per second.

The mean diameter of a cast-iron flywheel is 4 ft. 3 in. What is the

maximum speed of rotation, expressed in revolutions per minute, if the mean
stress in the rim is not to exceed ^ ton per sq. inch?

[1 cubic foot of cast-iron weighs 460 lbs.]
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5. The relation between the tractive force on a car weighing 1 ton and the

time is as follows :

Time in sees. 5 10 15 20 25 30

Force in lbs. wt. 110 108 104 98 88 78 70

If the car starts from rest and the resistances to motion are equivalent to

a force of 40 lbs., draw the acceleration-time curve for the motion and find

the velocity at the end of the 30 seconds.

6. A train A, moving with a constant speed of 30 miles per hour, is passing

another train B, which is at rest on a parallel track. At the instant when
the engines of the two tr|i,ins are opposite, the train B starts with a constant

acceleration of 2 feet per second per second. What length of time will elapse

before the two trains again occupy the same relative position ? If the train B
is 100 yards long, at what distance from its starting point will it have com-

pletely overtaken train A ?

7. Below is an indicator diagram for one end of one cylinder of a loco-

motive, the spring used being such that 1 inch on the diagram represents

150 lbs. per sq. inch. The diameter of the cylinder is 20 inches, the stroke

22 inches, and the speed 240 revolutions per minute. Find the indicated

horse-power represented by the diagram.

[Prick the diagram through to your paper.]

Fig. 128.

8. A uniform disc, 18 inches in diameter, and weighing 30 lbs., is keyed

to a spindle of 1 inch diameter and is mounted on frictionless bearings. A
light cord is wound round the spindle and carries a weight of 1 lb. at its free

end. Find the angular acceleration of the disc, and the linear acceleration

of the weight when the system is in motion.
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9. One part of the track of a switch-back railway consists of a complete

vertical circle of 20 feet diameter. Neglecting friction, find the minimum
velocity with which a car must start on its journey round the circle if it is to

keep the rails. How high must the starting point of the track be above the

top of the circular portion in order that this minimum velocity may be at-

tained ? The rotational inertia of the wheels may be neglected.

10. A shell is fired so that at the highest point of its flight it just passes

over a mountain 3000 feet high and distant 5 miles from the point of pro-

jection. Find the ratio of the horizontal component of the velocity of pro-

jection to the vertical component, and the values of these components.

If the shell weighs 350 lbs., what is its kinetic energy (1) as it leaves the

gun, (2) as it passes through the highest point of its flight ?

11. The crank of an engine is 9 inches, the connecting rod 3 feet, and the

line of stroke of the piston passes through the axis of the crank shaft. The
speed of the crank is 210 revolutions per minute. Find, graphically, the

velocity of the piston at one-quarter of the distance from each end of the

stroke.

For the same two positions of the piston, find the velocity of rubbing

between the connecting rod and crank pin, if the latter is 2| inches in diameter.

12. In a double-acting steam engine the stroke is 12 inches long and the

connecting rod may be assumed infinitely long. The effective thrust on the

crosshead due to the steam pressure is constant and equal to 2000 lbs. Shew
that the torque on the crank shaft produced by this thrust varies as the sine

of the angle turned through by the crank from the dead centre position.

Plot a curve shewing the turning moment on the crank and the angle

turned through by the crank.

13. In the previous question, the engine is working against a constant

resisting torque and the mean speed is 240 revolutions per minute. Find the

moment of inertia of the flywheel required to limit the speed fluctuation to

3 per cent, above or below the mean speed.

14. A gunboat with hydraulic jet propulsion takes water in through
vertical openings amidships and discharges it astern. A discharge of 5*2 tons

per second at a velocity of 29 feet per second relative to the boat gave a speed

of 9-3 knots. Find the resistance to motion of the boat.
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15. A casting, the shape of which is an equilateral triangle with a cylin-

drical boss at each corner, is bolted to the face-plate of a lathe, the axis of

one of the bosses coinciding with the axis of the face-plate. The length of

the sides of the casting, measured from centre to centre of the bosses, is

10 inches, and the weight is 6 lbs. Find where on the face-plate a mass of 2 lbs.

should be bolted in order to balance the centrifugal force of the casting.

16. A flexible belt weighing | lb. per foot connects two equal pulleys the

centres of which are 10 feet apart. The diameter of the pulleys is 3 feet, and

the moment of inertia of each is 110 lbs. ft. Find the couple required to

uniformly increase the speed from 120 revolutions per minute to 240 revo-

lutions per minute in 30 seconds.

17. A roundabout makes 3 revolutions per minute, and the horses are

suspended from the roof at a distance of 15 feet frona the centre by rods

8 feet long. What is (1) the angular velocity of the roundabout, (2) the speed

of the points of suspension, (3) the speed of the horses?

18. A train weighing 100 tons starts from rest and the engine exerts a

uniform pull of 3 tons against a road resistance of 15 lbs. per ton. In what

time will the speed reach v feet per second, and how far will the train move
in the time ?

If steam is cut off and the brakes applied, with a retarding force of 20 tons,

when the speed is v feet per second, how far and how long will the train run

before coming to rest?

The train has to run a distance of 2 miles from stop to stop and the speed

is not to exceed 45 miles an hour. How long will the journey take?

19. The balance wheel of a small clock weighs jounce and its radius of

gyration is f inch. The periodic time of oscillation is 1 second and its

amplitude 180 degrees. What is the strength of the controlling spring ex-

pressed in inch-lbs. per radian? Find also the maximum energy stored in

the spring at any time.

20. Explain clearly how it is that the pressure of a brake on the rim of

the wheel of a vehicle produces a retarding force on the vehicle considered

as a whole.

A railway truck, weighing 15. tons, is running freely at 20 miles an hour

down an incline of 1 in 100 when brakes are applied equally to all four wheels

i
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with a pressure of 1000 lbs. each. Taking the coefficient of friction between

brake-block and wheel to be |, and neglecting other resistances to motion

and also the inertia of the wheels, find how far down the incline the truck

would travel after the application of the brakes. In what manner would the

inertia of the wheels, if taken into account, affect the calculated value of the

retarding force?

21. A cage, weighing 16 cwt. with its load of coal, is lifted from the bottom

of a mine by a rope weighing 6 lbs. per yard. The rope is wound straight on

to a drum 8 feet in diameter, and a constant torque of 4 tons ft. is applied

to drive the drum. At the start there is a length of 210 feet of rope hanging

vertical, and there is one complete turn of rope on the drum. The inertia of

the drum itself may be neglected. Find how much work has been done when
four more complete turns have been wound on the drum, and the velocity of

the cage at that instant.

22. A marine turbine makes 165 revolutions per minute, and carries a

screw whose blades measure 8 feet 8 inches from the centre of the shaft to

the tip of the blade. Find the circumferential speed of the tip of the blade,

and express it in feet per second and in miles per hour.

The wheel of a Laval turbine is 30 inches in diameter, and it runs at

10,500 revolutions per minute. Find the speed of a point on the rim.

23. A car starts from rest and its velocity has the following values at the

times specified:

Time in sees. 1 2 3 4 5

Velocity in ft. per sec. 2 5 8-0 9-5 10

Plot the velocity-time curve and find the time-average of the velocity, and
the total distance covered.

Find also the time-averase of the acceleration, and its maximum value.

24. A body weighing 10 lbs. is moving with a simple harmonic motion,

the length of its path being 12 inches, and the maximum velocity 8 feet per

second. Draw the force-distance curve, and the force-time curve for the

motion from the centre to one end of the path, and determine the space

average and the time-average of the force.
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25. The figure below shews a governor in which, at a speed of 120 revolu-

tions, the sleeve remains at rest. For this speed, find the forces in the rods
AB and BC, if the ball at B weighs 1 lb.

Assuming the sleeve at C does not move, at what speed will the stress in

BC be zero?

Fig. 129.

26. A btillet weighing ^ ounce and travelling at 2000 feet per second is

just held up by a fixed block of wood of length 36 inches in the direction of

impact. A ballistic pendulum arranged as shewn in fig, 92, p. 144, is made
of the same wood. It is 30 inches long in the direction of impact and weighs

25 lbs. A bullet similar to the above and travelling with the same speed is

fired into the pendulum. Find (1) the speed with which the bullet emerges,

(2) the height the pendulum rises, (3) the kinetic energy imparted to the

pendulum, (4) the energy wasted in heat, (5) the time taken for the bullet to

pass through the pendulum. The pendulum may be assumed to remain at

rest during the passage of the bullet through it.

27. What is the side pressure between a train weighing 300 tons and the

rails when the train goes round a curve of 120 yards radius at the rate of

30 miles an hour, the rails being on the same level? What will the side

pressure be if the rails are banked at an angle of 5° ?

28. A motor running at 600 revolutions per minute is belted to a machine,

the ordinary fast and loose pulley arrangement being used, and the speed

being reduced in the ratio 3 to 1. If the belt is suddenly shifted from the
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loose to the fast pulley, find the speed of the machine shaft immediately after

slipping has ceased. The moment of inertia of the armature shaft of the

motor is 800 lbs. ft.^, that of the machine shaft 400 lbs. ft.2, and the inertia

of the loose pulley and belt may be neglected.

29. A uniform plank 20 feet long has one end against a vertical wall, the

other on a horizontal plane. The plank just starts skidding when the angle

of inclination to the vertical is 80°. Assuming the resistance to motion

down the vertical wall is negligibly small, and that along the horizontal plane

it is constant, find the angular velocity of the plank at the instant it reaches

the ground.

30. The motion of a point is the resultant of two simple harmonic motions

in two directions at right angles to one another and of the same periodic

time. Shew that the path of the point is an ellipse.

31. A ship lies at anchor, half a mile from the shore, in a stream running

at 8 miles per hour. A boat starts from the shore, 1 mile higher up stream,

and is rowed at right angles to the shore. At what speed must it be rowed

in order that it may reach the ship ?

Find also the speed required when the boat is rowed in a direction at right

angles to the line joining its starting point to the ship.

If the greatest speed at which the boat can be rowed is 5 miles per hour,

shew that it cannot reach the ship unless its starting point be at least

1100 yards higher up stream than the ship.

32. A bullet of mass m travelling at a certain speed is just stopped in a

distance S by a fixed target, the resistance to penetration of which is constant.

Shew that if the same bullet travelling horizontally with the same speed

strikes a target of the same material as before, and of mass M, which is free to

M
move horizontally, it will penetrate a distance ., S. Find the time of

M+7n
penetration,

33. In a steam engine the crank is 6 inches long, the connecting rod

3 feet long, and the speed 200 revolutions per minute. Shew that the velocity

in feet per second is approximately given by 10*47 sin ^+ '87 sin 2^, where 6

is the angle which the crank makes with the inner dead centre.

Find a similar expression for the acceleration of the piston.

34. In an engine driven by water pressure the crank AB is acted upon
by three connecting rods BC, BD, BE. For the positions shewn in fig. 130,

the thrusts in the rods are 40 lbs., 180 lbs., and 200 lbs. respectively. Find,

graphically, the resultant force produced by these on the crank pin, and
also its components parallel and perpendicular to the crank.

L. E. D. 15
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Check your results analytically, by resolving all the forces along and
perpendicular to the crank.

[The figure may be pricked through to your paper.]

R = 3'34

D
Fig. 130.

36. An engineer's pocket-book gives the following formula for the re-

tarding force R required to stop a train travelling at V miles per hour in

D feet, R being the force in percentage of the weight of the train.

y2

D'
Prove this formula.

36. In a small shaping machine the mechanism of which is shewn dia-

grammatically in fig. 131, the tool is fixed to the ram C. When the crank AB
is inclined at 45° to the line of stroke the force at the cutting edge of the tool

along the line of stroke is 500 pounds. Find the couple required on the crank,

neglecting friction and the effect of inertia of the moving parts. Find, also,

the length of stroke of the tool, and the ratio of time of cutting to time of

return.

AB= 3"

BC = 15"

AD=: 3"

Fig, 131.
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37. In an inclined railway the length of the track is 7017 feet and the

gradient is uniform and equal to 1 in 9-75. The weight of an empty train is

19 tons, and it can carry a maximum load of 21 tons. Two trains are run

simultaneously, one ascending and the other descending, the two being con-

nected by a steel-wire rope which passes round a 10 foot pulley at the top.

The pulley is rotated by a stationary engine. The weight of the rope is

2^ lbs. per foot. Neglecting friction, find the varying torque required to

steadily haul a full train up the incline, the descending train being empty.

If the journey takes 15 minutes, neglecting the power to start and stop,

find the average horse-power.

38. In question 37 above, if the trains are started with a uniform ac-

celeration so that they attain their speed in 6 seconds, what torque on the

pulley will be required for accelerating? The moment of inertia of the pulley

and the wheels of the train may be neglected.

39. A disc of 10 inches diameter is keyed eccentrically to a horizontal

shaft, the distance between the centres being 3 inches. The disc presses

against the underside of a horizontal plate, and is used as a cam to give a

reciprocating vertical motion to the plate. Shew that the reciprocating

motion is simple harmonic, and determine the length of the stroke. Find

also the maximum velocity of the plate when the disc is rotating once in a

second.

40. A car starts from rest and moves with a uniform acceleration of

1^ feet per second per second. How long will it take to acquire a velocity of

20 miles per hour, and how many feet will it move in the time ?

If the car weighs 2000 lbs. and the motion is on the level and against an

external resistance of 30 lbs. wt. what is the value of the horizontal force

between the car and the ground ?

41. A weight moves as a conical pendulum, at the end of a string 8 feet

long and makes 40 revolutions per minute. Find to the nearest degree the

inclination of the string to the vertical.

A string whose length is I passes through a heavy ring and has its ends

attached to two points, distant a apart in the same vertical line. Shew that

when the ring rotates in a horizontal circle the portion of string between the

ring and the lower point of support will be horizontal if the angular velocity

is given by 0,2=2^^^^^.

15—2



228 ELEMENTARY DYNAMICS

42. A traction engine weighing 8 tons is hauling a loaded wagon iSreighing

18 tons along a level road, at 5 miles per hour. There is a spring coupling

between the engine and the wagon, and the extension of the spring shews
that the pull on the wagon is 600 lbs. At what rate in horse-power is work
being done in hauling the wagon?

If the resistance per ton is the same for the engine as for the wagon, what
is the total resistance overcome by the engine and at what rate, in horse-

power, is the engine working?

43. The motion of a body moving in a straight path is given by

s= 10 + 8t + 6t^, s being measured in feet and t in seconds. Plot the distance-

time curve, the velocity-time curve, and the velocity-space curve, for the first

6 seconds. For this period find the time-average and the space-average of the

velocity.

44. A body swings about a fixed horizontal axis through an angle a on
either side of its position of equilibrium. Prove that for different values of

a the maximum angular velocity of the body is proportional to sin -
.

A body makes complete revolutions about a fixed horizontal axis, about

which its radius of gyration is A;, and the centre of gravity of the body is at

a distance c from the axis. If the greatest and least angular velocities are

^ per cent, greater and ^ per cent, less than w, prove that w = */ ,f .

45. What do you understand by a curve of crank effort? Shew how to

determine the crank effort corresponding to a given piston-thrust in any

position of the crank of a single-cylinder engine.

Determine the crank effort for a piston-thrust of 100 lbs. when the crank

makes (I) 45°, (2) 90°, (3) 135° with the line of stroke, the lengths of the

crank and connecting rod being 6 inches and 24 inches.

46. A cage weighing 1 ton is being raised from the bottom of a shaft

200 feet deep by means of a drum and chain. The chain weighs 5 lbs. per

foot. Draw a curve of the effort exerted at the lifting drum, throughout the

motion, and find the whole work done during the lift. If the cage is raised

at a uniform speed in 2| minutes, find the maximum and the mean values

of the horse-power exerted at the drum.

47. Two links AB and CD are pivoted at A and C and a weight of 10 lbs.

hangs from point E in the link BD, as shewn in fig. 182. Prick the figure

through to your paper, and taking 2 inches to represent the velocity of the
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point D, find the angular velocity ratio of AB and CD, and the position of

the point in BD which has a vertical motion.

Find also what couple must be applied to CD in order to just support the

weight.

-> Couple

27r

Fig. 132.

48. A uniform heavy rod is supported in a horizontal position, being

pivoted at one point in its length and attached at another point to the end

of a spring which hangs from a fixed point vertically above the point of

attachment. If a is the distance between the points of support, k the radius

of gyration about the pivot, and d the extension of the spring when it carries

a weight equal to the weight of the rod, shew that the period of small oscilla-

tions in a vertical plane is

If a sliding weight is moved from the pivot towards the spring how is the

period affected ?

49. The engines of a steamship develop 20,500 i.h.p. Of the power de-

veloped 15 per cent, is lost in engine and shaft friction, and 30 per cent, in

slip and friction of the propeller. If the speed of the ship is 20 knots what

is the total resistance to its motion?

If the resistance vary as the square of the speed, what i.h.p. is required for

a speed of 22 knots?
1 knot is 6080 feet per hour.

50. A centrifugal pump lifts water at the rate of 6000 gallons per minute
and discharges it at a level of 10 feet above the level of suction. The dis-

charge pipe is 18 inches in diameter and runs just half full. Find how much
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work is spent per minute (1) in lifting the water, (2) in imparting kinetic

energy to it.

The pump runs at 460 revolutions per minute and one-fifth of the power
supplied to it is wasted in friction, slip, etc. What is the torque on its shaft?

51. A train starts from rest and its velocity during the first 90 seconds of

its motion is given in the following table:

Time from start in sees. 15 30 45 60 75

19-3

90

20Velocity in ft, per sec. 5-2 10 14 1 17-3

Plot the velocity-time curve, and determine the distance travelled in the

given time.

From the curve deduce the value of the starting acceleration and plot a

curve shewing approximately how the acceleration diminishes.

62. In a gas engine the maximum amount of energy which the two fly-

wheels have to absorb and give out during running is equal to 3550 ft.-lbs.

The mean speed of the engine is 200 revolutions per minute, and the moment
of inertia of each wheel is equivalent to a mass of 692 lbs. acting at a radius

of 2^ feet. Find the greatest fluctuation of speed of the engine.

53. What is the length of a simple pendulum whose periodic time is

2-3 seconds?

How will the time-keeping of a pendulum clock be affected if it be taken to

a place where "/7" is decreased by O'Ol per cent.?

54. A balloon weighing 5 cwt. is moving horizontally at 100 feet from the

ground when 50 lbs. of ballast is suddenly released. Neglecting the friction

of the air, find how high the balloon will be when the ballast reaches the

ground.

55. A shell is fired at an elevation of 15° so as to hit a mark 900 yards

distant on a horizontal plane. Find its velocity of projection and its time of

flight. Find also its height above the groundwhen it has travelled 600 yards

horizontally.

56. A lifting gear consists of a train of toothed wheels as shewn in fig.

133, the intermediate wheels being keyed to the same axle. The gear is

driven by a force P applied at the end of the handle AP, which is 18 inches

long and is fixed to the wheel A. The load W is supported by a rope wound
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round a drum of 4 inches diameter. The numbers of teeth are, on A 21, on

B 60, on C 18, on D 70. Find the velocity ratio of the machine.

If a force P of 3 lbs. raises a loadW of 200 lbs. , shew that the efficiency is

66*7 per cent.
,

Fig. 133.

57. An engine running at 120 revolutions per minute has a pulley of

36 inches diameter which is belted to a pulley of 20 inches diameter on

a countershaft. A second pulley on the countershaft is belted to a pulley of

12 inches diameter on a dynamo, and the dynamo is required to run at 720

revolutions per minute. Find the diameter of the second pulley on the

countershait.

The engine is delivering 50 horse-power to its belt, and 2 horse-power is

lost in friction at the countershaft. Neglecting other losses, find the tension

in each belt, assuming that in each case the tension in the tight portion of

a belt is double that in the slack portion.

58. In an inward flow water turbine the external diameter of the rotor is

15 inches and the vanes are radial at the point of entry. The velocity of the

water just before entry is 50 feet per second, and the speed of the rotor is

380 revolutions per minute.

At what angle of inclination with the tangent should the water enter if

there is to be no shock ?

Assuming no shock, the supply 500 cubic feet^per minute, and the discharge

radial, find the turning moment on the rotor.
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59. Two trains start from a station along the same track, one 8 minutes
after the other. Each has a constant acceleration until the maximum speed

of 50 miles per hour is reached, 1 mile from the start. How far has the first

train gone when the second train starts, and how far apart are they when
both are running at the same speed?

If the second train, with the same acceleration, reaches a maximum speed

of 60 miles an hour, at what distance from the starting point will it overtake

the first ?

60. A car weighing 22 cwt. is running on a level road at 12 miles an hour

round a curve of 40 feet radius, measured to the centre of gravity of the car.

What horizontal force perpendicular to the direction of motion must be exerted

by tie ground on the wheels of the car?

Assuming that the grip of the outer wheels is sufficient to prevent skidding,

find at what speed the inner wheels will begin to lift off the ground. The
width of the wheel base is 3 feet 9 inches and the centre of gravity is 3 feet

above the ground.

61. What do you understand by the principle of conservation of momen-
tum ? Shew how this principle is based on the laws of momentum.

A railway truck, weighing 10 tons, moving with a velocity of 4 miles per

hour, impinges on another truck, weighing 8 tons, and moving in the opposite

direction with a velocity of 1 mile per hour. When impact occurs the two

trucks are automatically coupled together. Find the velocity of the trucks

after impact, and the number of foot-tons of energy lost.

62. A cage is being pulled up a shaft with a velocity of 10 feet per second.

A block of stone, weighing 50 lbs., is dropped down the shaft and after falling

through 60 feet it meets the cage. The cage continues to ascend without

change of velocity, carrying the stone with it. What is the impulse of the

blow between the stone and the cage ?

If the motion of the stone is completely reversed in half a' second, what is

the average value of the thrust between the cage and the stone ?

63. On a railway line there are two points of observation 1 mile apart.

A train passes the first point at 30 miles an hour, and after an interval of

90 seconds it passes the second point at the same speed. What is its average

speed between the points ? If the train had uniform acceleration during the

first half of the interval and uniform retardation during the second half,

what was the highest speed reached during the interval, and what was the

value of the acceleration ?
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64. Simultaneous values of speed and time for a train are given jn the

table below.

Find graphically the acceleration in feet per second per second at the end

of the 1st minute and at the end of the 5th minute.

Find also the distance passed over in attaining a speed of 55 miles pei hour.

Time
sees.

50 100 150 200 250 300 350 400 450 500

•

Velocity

m.p. h.
24-6 36-3 43-7 48-3 51-3 53-5 55-1 56-2 57-6 57-9

65. In a steam engine mechanism, AB represents the crank, BC the con-

necting rod, and T is the point of intersection of the connecting rod and the

line through A perpendicular to line of stroke. Shew that if M is the couple

on the crank, the thrust on the crosshead in the direction of motion is given

M M
by ^^ , and the normal thrust on the guides of the crosshead is given by^

.

Shew, also, that the angular velocity ratio of the connecting rod and crank is

equal to ^^

.

66. An electrically propelled car is fitted with a recording accelerometer,

the drum of which is driven by gearing connected to the wheels. The record

traced in starting the car from rest is shewn in fig. 134. Find the velocity of

the car after 5 seconds and the horse-power per ton which is then being

expended in acceleration.

V

\
k

o \N^
• ^

®

^ ° 10 20 30 40 50 60 70 80
Distance travelled by car. feet

Fig. 134.

90 TOO
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V-
67. If a train's resistance to motion under certain conditions be 4 + —— lbs.

I JUL)

per ton, when the speed is V miles per hour, shew that the horse-power ex-

pended in hauling a train of 200 tons is 2-13 V 4-0-0026 V^. Plot a curve

shewing the relation between horse-power and speed between 10 and 40 miles

per hour.

68. A truck moving with a given velocity impinges on another truck of

the same mass which is at rest. Shew that, if there is no loss of energy due

to the impact, the first truck will be left at rest, and the second truck will

move off with the velocity originally possessed by the first truck,

60. Shew how the distance passed over in a given time by a body whose

velocity continually varies with the time, may be estimated.

A body starts from rest with a constant acceleration of 1 foot per second

per second ; after a time the body has a constant retardation and finally

comes to rest 10 miles from its starting point. Find the maximum velocity

and the value of the retardation if the total time taken is 16 minutes.

70. A cage weighing 4000 lbs. is wound up a shaft. The relation between

the tension, T lbs. wt. in the rope, and the distance, x feet, which the cage

has risen, is given in the following table

:

X 10 20 30 40 50 60 70 80

T 6000 5900 5660 5200
•

4500 3500 2650 2130 2000

Plot a curve for tension and distance, and find the work done during the

80 feet given, and the kinetic energy of the cage at the end of that distance.

At what point is the kinetic energy greatest, and what is then its value ?

71. A door I feet wide, of mass m lbs., swinging to with an angular velocity

w radians per second is brought to rest in an angle d radians by a buffer stop

which applies a uniform force P at a distance ^ from the axis of the hinges.

Find the magnitude of P, and the hinge reactions normal to the door, when

the buffer is placed in a horizontal plane half way up.

72. A motor-car has 30 inch wheels, and weighs 2000 lbs. When travelling

at 18 miles per hour, a total braking force of 500 lbs. is applied at a radius

of 6 inches from the centre of the wheels.

Determine the time taken to reduce the speed to 10 miles per hour, and

the ratio between the distances travelled while the speed waa being reduced
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from 18 to 10 miles per hour, and from 10 miles per hour till the car stopped.

In practice, what other factors would have to be considered in making these

calculations?

73. A 4 inch shaft is to be turned in a lathe. If the cutting speed is not

to exceed 40 feet per minute what is the maximum speed at which the shaft

may be rotated. The speed of the tool along the shaft is so small that it may
be neglected.

74. The stroke of a steam engine is 24 inches, the cylinder diameter is

14 inches. Steam is admitted to the cylinder at 100 lbs. per sq. in. pressure,

during a quarter of the stroke, and then expands, the expansion curve being

the hyperbola pt; = constant. On the other side of the piston there is a

constant pressure of 16 lbs. per sq. inch. Plot a curve shewing the effective

steam thi'ust on the piston during the stroke, and find how much work is

done by the steam on the piston in one stroke.

75. A string 15 feet long has its ends fixed to two points at the same level

and 10 feet apart. A smooth ring is threaded on the string and is initially

held vertically below one fij:ed end of the string by a horizontal force. If the

ring is suddenly released shew that it will move in an elliptical path. Find

its velocity when it has travelled a horizontal distance (1) of 2-5 feet, (2) of

5 feet.

76. A flywheel weighing 10,000 lbs. is suspended from a pair of centres

entering conical holes in the rim, so that it can swing in a vertical plane.

The liue joining the centres is parallel to, and distant 3 feet from, the axis

of the wheel. The period of a complete swing is 2-5 seconds. Find the radius

of gyration of the wheel, and the energy stored in it, when running at 250

revolutions per minute.

77. Two vessels start from the same point: one steams due north at

10 miles per hour, the other steams north-east at such a speed as always to

keep due east of the first. Find the velocity of the second vessel, and the

magnitude and direction of the relative velocity of the two.

At one hour from the start both vessels change their course and steam due

west, maintaining the same speeds as before. After what time will the faster

vessel overtake the slower, and how far has each steamed in the time?

78. The crank of a petrol engine is 3 inches and the connecting rod

12 inches long. The engine runs at 720 revolutions per minute. Find

graphically the velocity of the piston when it has performed (a) one-quarter

of its out-stroke, {b) one-quarter of its in-stroke.

Find also the angular velocity of the connecting rod for each of the two

positions.



236 ELEMENTARY DYNAMICS

79. A pendulum bob, weighing 8 ounces, rotates uniformly in a hori-

zontal circle at the end of a light string 1 foot long, the other end of the

string being fixed. If it make 120 revolutions per minute, what is the tension

in the string, and what angle does the string make with the vertical?

At what angle and with what speed does the pendulum rotate if the tension

in the string is equal to four times the weight of the bob ?

80. A lifting tackle consists of two blocks: the upper one is fixed and
contains two sheaves, the lower one contains one sheave and is fast to one

end of the rope. Sketch the tackle and find its velocity ratio.

The following table gives the pull required to lift various loads

:

Load in lbs. 28 54 112 168 224 280 336

Pull in lbs. 30 38 64 87 109 130 150

Find the efficiency of the tackle for each of the given loads, and draw

graphs of pull and efficiency on a load base.

81. A hose is directed perpendicularly against a wall and delivers 10 cubic

feet of water per minute through a nozzle of 1 inch diameter, the water

having no rebound from the wall. Determine the pressure on the wall.

82. A practical formula used for estimating the tractive force F, at the

PLD2
rails in lbs. for a two cylinder locomotive is, F

:

W , where W is the dia-

meter of the driving wheels in inches, P is the mean pressure of steam in the

cylinders in lbs. per sq. inch, D is the diameter of the cylinders in inches,

and L is the length of stroke in inches. Derive this formula.

83. A jet of water impinges with velocity v feet per second on a serie? of

plane vanes set round the circumference of a wheel and moving with velocity

u feet per second. Shew that for each square inch of section of the jet the

horse-power communicated to the wheel is very nearly 2*45 {v - u)v .ii. 10~^,

and find an expression for the efficiency of the jet.

84. The slide-valve of a horizontal steam engine derives its motion from

a point P in a link AB, where AP = ^AB. The horizontal displacements of

A and B for any crank position are given by the equations

a;i = 2-5sin(^-f27°),

a;2= 2-6sin(6' + 150°).
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Shew that the resulting motion of the valve may be expressed by the

equation
x= asm (d + e)

and find the values of a and e.

86. A flywheel possesses 50 foot-tons of kinetic energy when rotating at

200 revolutions per minute. What is its moment of inertia, the unit being

1 lb. at 1 foot radius? How many foot-lbs. of work must be done to increase

its speed from 200 to 202 revolutions per minute ?

86. A steam engine has a crank 9 inches long and a connecting rod

36 inches long. At the instant when the crank is at right angles to the con-

necting rod there is a thrust of 600 lbs. wt. in the piston rod. Find the

turning moment on the crank, and the force on the crosshead guides.

On the return stroke there is a pull of 600 lbs. wt. in the piston rod at the

instant when the crank makes 180° with the position given above. Find in

this position the turning moment, and the force on the guides.

87. Three masses A, B, and C are bolted to the spokes of a horizontal

wheel, the centre of which is O. The masses are 3, 5, and 4 lbs. respectively
;

AOB = 60°, BOC = 90° ; OA =: 24 inches, OB = 20 inches, OC = 18 inches. Find

the magnitude and angular position of a mass D which will produce no re-

sultant transverse thrust on the shaft, taking OD = 15 inches,

88. The speed and power trials of a cruiser gave the following results:

Speed in knots 14 18 22 26

Horse-power 2600 6000 11,800 23,000

Find the value of the resistance overcome at each speed, and plot curves

of horse-power and resistance relative to speed.

If the vessel weigh 5000 tons, what additional horse-power is required to

give the vessel an acceleration of 1 knot per minute when the speed is 22 knots?

Take a knot as 100 feet per minute.

89. A flywheel and shaft, the moment of inertia of which is 10 lbs. ft.'^,

are mounted on ball bearings so that friction may be neglected. The diameter

of the shaft is 2 inches, and a string wrapped round it carries a weight of

10 lbs. The shaft is horizontal, and the string is so connected to it that, when
completely unwound by the rotation of the shaft, it winds on again. The weight

is supported 4 feet from the ground, with the string just taut, and is then let go.

Find how high the weight will be raised after its first contact with the ground.
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90. The mechanism of a small machine for punching holes in paper is

shewn in fig. 135, the links being connected by pin joints, and the punch
constrained to move vertically. Find, graphically, the velocity ratio of the

points C and B.

Estimate the vertical force required at C to produce a force on the punch
of 50 lbs. (a) when ABC is in the position shewn, (b) when ABC is perpen-

dicular to OA.

0A= 1", AB^I", AC=i3i", and O is f" from the axis of the punch.

C

O
/////////////

Fig. 135.

01. Two equal toothed wheels A and B are connected by a light link C.

The wheels are rotating with an angular velocity w, with the link C fixed,

when suddenly the link C is released and the wheel A is fixed. Shew that,

if the inertia of the link be neglected, it will begin to rotate with an angular

velocity r-yra 5^
» where k is the radius of gyration of either wheel about its

centre, and a is the effective radius of the wheels.

What is the impulsive couple which will be required on wheel A ?

92. A pendulum consists of a thin rod weighing 2 ounces and a uniform

disc of 3 inches diameter weighing ^ lb. The rod which is 3 feet long extends

to the centre of the disc. Find the periodic time of swing of the pendulum

when suspended from the free end.
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93. It is required to transmit 25 horse-power from a pulley of 30 inches

diameter running at 350 revolutions per minute, by means of a belt. Find

the required width of the belt, having given the ratios of the tensions on the

two sides to be equal to 2, the thickness | inch, and the allowable stress

500 lbs. per sq. inch.

94. A smooth wire, bent into the form of a circle of radius r, is rotating

above its vertical diameter with angular velocity w. If a mass is strung on

the wire, shew that it will be in equilibrium when its angular distance, 0,

from the vertical diameter is such that

ru}'^cosd= g.

The mass is given a small displacement from its position of equilibrium,

shew that it will oscillate about this position and that the period of oscilla-

tion is

2«-

w sin '

95. For the purpose of conveying small packages from one room to

another vertically above it, the package is enclosed in a small cylinder which

forms a piston for a vertical tube passing from the one room to the other.

The cylinder being fitted into the lower end, the upper portion of the tube is

connected to a reservoir in which a vacuum of 5 lbs. per sq. inch by gauge

is maintained. The cylinder and contents weigh 1 lb. and the diameter is

1^ inches. Taking the friction between the tube and the cylinder to be 1 lb.

find the time for the cylinder to travel vertically upwards 40 feet from the

starting point, and also find the velocity of arrival. The vacuum pressure

may be assumed to remain constant, and the effect of the inertia of the air

below the cylinder may be neglected.

96. A mass vi, whose centre of gravity is at a point B, is supported by

two equal links AB, CB, which are hinged to a vertical spindle at A and C.

Find the forces in the links AB, CB

(1) when the system is at rest

;

2fl

(2) when it is rotating about AC with angular velocity <a and w^= 7r7»

;

4:0

(3) when it is rotating about AC with angular velocity w and ^2= Ap •

97. A steam engine is suddenly brought up by an unyielding obstacle

interposed in the line of motion of the piston rod ; find the impulse for a

given position of the crank, taking into account the momentum of a flywheel

on the crank shaft, and of a piston and connecting rod, but neglecting the

angular motion of the connecting rod, that is to say treating it as of infinite

length.
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98. The displacement s, in feet, of a piston is given in terms of the time

t, in seconds by
s = 0-5 cos Airt + 0-25 cos 8irt.

If the piston weighs 20 lbs. find the force in the piston rod required for

accelerating at the following times, 0, ^V, ^, I second.

Find also the kinetic energy given out or taken in by the piston (1) during

the first half-stroke, (2) during the middle half-stroke.

90. A particle is suspended by three equal strings of length a from three

points forming an equilateral triangle of side 2b in a horizontal plane. If one

string be cut, shew that the tension of each of the others is instantaneously

changed in the ratio

3aP-ib^

lOO. A wheel of 24 inches diameter, and having a radius of gyration of

10 inches, rolls along the ground and meets a step 6 inches high. Shew that

if the speed of the wheel is less than 6*18 feet per second it will not be able

to lift itself on to the step. Assume that the wheel is inelastic, and that there

is no slipping at its point of contact with the square edge of the step.

I



ANSWERS TO EXAMPLES

CHAPTER I. (Pages 17—19)

1. 554 yards; 15° 45' west of north; 533 yards; 150 yards.

2. 1-732; 1-5; 0-866. 3. 331 lbs.; 73° 34' north of east.

4. (a) 2-1, 106^°; (b) 5-06, 329-4°; (c) 7-97, 118°. 5. 6-1 feet.

6. 60; 66. 7. 2340; 390. 8. 37,600; 76,800; 3600; 1300.

0. -; --^. lO. t1-13; ±1-13. 11. 2-15 square inches.

3 Js

CHAPTER 11. (Pages 51—56)

1. (1) 8-97 metres per second. (2) 26-84 metres per second.

(3) 2796 metres per second.

2. 1056 feet per second. 3. 47-3 feet.

6. 131 feet per second ; 150 feet per second ; zero.

7. 34-4 feet per second; 10-47 radians per second; 420 revolutions per

minute.

8. 4400 feet per minute ; 840 revolutions per minute ; 88 radians per second.

O. 3000 revolutions per second. lO. 2-62 feet per second.

13. 1-05 miles; 22-8 miles per hour; 1*65 feet per second per second;

0-42 foot per second per second ; 2*08 feet per second per second.

14. a = 261-8 cos 25^ + 43-5 cos 50«. 18. 21-2 feet.

19. 2055 feet per second ; 411 feet per second. 20. 51° 20'; 88°.

21. 3-88 feet per second; 52° 12' north of east; 0-554 foot per second per

second.

22. 66-7 feet per second per second.

23. 12-2 minutes ; 151° to the direction of current
;

7-1 „ 123°

24. 44 seconds; 2499 feet. 25. 23-2 knots; 4-12 hours; 7*07 sea miles.

26. 35 miles per hour ; inclined at 82° to OB.
27. Greater for ^ = 45°.

28. 200 revolutions per minute ; 127 feet per second inclined at 150° and
30° with the direction of motion of the train.

29. 0-655 foot per second ; 1*635 feet per second. 30. 10 seconds; 50 feet.

31. 6-72 inches ;
0-69 second ; 0-81 second ; 80 feet per minute ; 63-2 feet

per minute.

32. 324 feet per minute.

L. E. D. 16
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CHAPTER III. (Pages 83—87)

1. 222 lbs. wt.; f foot per second per second ; 510 feet.

2. 72,100 poundals ; lO^" dynes. 3. 1-305 tons wt.

5. 2000 lbs. wt.; 2125 lbs. wt.; 1688 lbs. wt.

6. 1674 lbs. wt, ; 3'86 feet per second per second.

7. 11-4 seconds ; 167 feet ; 13-1 seconds ; 192 feet.

8. 0-354 lb. wt. inclined at 45° to the original direction of motion.

9. 98 lbs. wt.; 170 lbs. wt. lO. 1-77 feet per second.

12. 116 lbs. wt. 13. 92 seconds. 14. ^ ton wt.

15. 550 lbs. wt. ; 505 lbs. wt. 16. 138-6 seconds; 10,000 feet.

17. 1-06 feet per second per second upwards.

l'8. 1700 feet per second ; 750 lbs. wt. 19. 96 square feet.

20. 4-97 lbs. wt. 21. 0*0122 second ; 2-73 feet per second.

22. 1-14 feet per second per second.

23. 35,21-2, -5, -21-2, -25 tons wt. 25. 6-6 inches.

26. 0-517 tons. 12-85 tons-feet-seconds units. 27. 950 lbs. wt.

28. 1'19 seconds; 286,000 absolute c.g.s. units; 18-1 centimetres.

29. 46 absolute f.p.s. units ;
3-83 feet per second.

30. (A) 13 feet per second ; 9 feet per second. (B) 7 feet per second ; 11 feet

per second.

CHAPTER IV. (Pages 107—109)

1. 14-7 lbs. feet. 2. 0-025 feet per second per second ; 14-45 revolutions.

{4(M-fm)-hW}M (4M-f-W)(M4-m)
,
8M2-f8Mr/i-fW (2Mj-7n)

^
• 4M -f- 2m -f-W ^ ' ~^lvr+2?M +W ^

' 7" 4M -f 2m +W ^'

4. 32 feet per second ; 128 radians per second ;
26-9 lbs. feet-.

6. 0-155^ foot per second per second.

6. 12 lbs. feet; 7-4 lbs. feet; 720 revolutions.

7. 40-03 lbs. feet. 9. 0-186 lbs. feet.

10. 50 absolute f.p.s. units ; 0*032 absolute f.p.s. units.

11. 8660 lbs. feet^. 15. 1 foot 3 inches from the hinge.

16. 318 lbs. feet. 17. 20 revolutions per minute.

18. 83-3 lbs. feet2. 19. 2*65 lbs. feet^. 20. 3360 lbs. feet^.

21. (1) 6-53 lbs. feet^. (2) 298 lbs. feet^.
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5.

7.

9.

lO.

11.

14.

CHAPTER V. (Pages 124—127)
«

86-8 revolutions per minute. 3. \l^ '--i ; 3'58 feet.

Pull of 12-5 lbs. wt. at A and push of 12-5 lbs. wt. at B.

„ 26-8 „ „ pull of 1-7

92-3 revolutions per minute.

10-36 miles per hour inclined at 75° to the road.

20 „ „ „ 150°

38-6 „ „ „ 165°

7-7 lbs. ; 0-4 lbs. wt. 6. 6-2°
; 6^ inches.

847 lbs. wt.; 24-4 miles per hour. 8. 25-8°; 767 lbs. wt. per ton.

1182 lbs. wt.

270 revolutions per minute; 266 revolutions per minute.

473 revolutions per minute. 12. 50*4 tons wt.; 9^ inches ; 63 tons wt.

5-23 tons wt. 15. 454 tons wt. 2-8 inches. 16. 2-83 inches.

7.

8.

lO.

12.

13.

14.

16.

CHAPTER VI. (Pages 154—161)

6800 ft. -tons ; 60-8 horse-power ; 31-7 horse-power.

346ft.-tons; 1970 strokes ; 471 lbs. wt.

40 lbs. per square inch ; 8200 foot-lbs. 4, 169 feet ; 1*07 horse-power.

0-62 horse-power ; 60 feet per minute ; 120 feet per minute ; 1*65 horse-

power.

12-1 ft.-tons ; 0-269 ton wt.

6-3 feet per second ; 538 feet. 9. 8-75 horse-power ; 47*5 miles per hour.

6-6 inches. 11. 16-7 miles per hour ;
9-32 ft.-tons.

9-6 ft.-tons; 3-3 ft.-tons; 5-2 horse-power.

17 feet per second ; 2-25 tons wt. ; 2-52 tons wt.

1880 feet per second. 15. 12-5 lbs. per ton ; 333 horse-power.

17.

19.

21.

22.

23.

Distance
feet

10 20 30 40 50

Speed
feet per second

6 8 9-2 9-9 10-3

13-4 ft.-tons.

5-06 feet per second; 33-6°. 18, 3-26 feet per second,

2-45 indies. 20. 99-75 per cent., 3125 lbs. wt.

9*8 inches ; 5*15 feet per second.

41-7 tons wt.; 1785 horse-power.

5867 abs. ft.-ton-sec. units; 13,400 ft.-tons; 293 feet; 45-8 tons wt.
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24. 0-294 foot per second per second ; 0'22 foot per second per second.

25. 18 '9 horse-power. 26. 1-33 horse-ppwer ;
0-43 horse-power.

27. 4 radians per second; 1250 lbs. wt.; 3-98 radians per second.

28. 3300 ft. -lbs.; 289 ft.-tons ; 3-76 seconds.

29. 8160 lbs. ft.; 1^ per cent. 30. 105-5 ft.-tons ; 57-5 per cent.

31. A, 56-5 revolutions per minute; B, 443-5 revolutions per minute;

0-155 second ; 326 lbs. wt. sec. units.

CHAPTER VIII. (Pages 183—186)

2. 2-09 seconds
; 1% lb. wt. 3. 4-32 seconds.

4. Gtt feet per second; 665 lbs. wt.; 337-5 lbs. wt.; 1-65 seconds.

7. 2-048 feet per second; 2-052 feet per second. 8. 1-57 seconds.

10. 31 ft.-tons. 11. 0-179 second ;
1-3 inches; 3 feet per second.

12. 1-4 seconds. 13. 30-4 seconds. 14. 224 lbs. wt.

17. 1-57 seconds ; 1-59 seconds. 18. 12-3 tons wt.

CHAPTER IX. (Pages 210—218)

1. 9| inches. 2. 0-57 horse-power.

3. 0-28 horse-power-hour ; 44-2 lbs. wt. 4. 5-07 horse-power.

5. 39 '4 feet per minute ;
8-38 lbs. feet. 6. 61*5 per cent.; 3| tons

; f ton.

7. 0-215 ;
0-45 ton wt. 8. (1) 57 lbs. wt. (2) 203 lbs. wt.

9. 23-6 horse-power ; 1-4 horse-power ;
722-5 lbs. wt. ; 147 lbs. wt.

10. P = 18-4W -I- 12-6, where P-the effort in lbs., and W = the load in tons.

11. 2533 lbs. feet ; 1733 lbs. feet ; 328 lbs. feet.

12. 221 revolutions per minute; 30-2 horse-power. 13. 41-1 horse-power.

14. 0-547 foot per second; 136-5 absolute f.p.s. units; 33-6 ft.-lbs.

15. 6-55 tons wt.; 673 tons.

16. 35-5 lbs. per square inch; 190 ft.-tons; 12-9 horse-power.

17. 13-7 tons wt.; 17 knots. 18. 21 -8 ft.-tons; 106 revolutions per minute.

19. 18*5 horse-power; 3-3 horse-power. 20. 86 per cent.

21. 85-5 lbs. feet; 301 lbs. feet; 258 lbs. wt. ; 30-2 miles per hour.

22. 14-5 revolutions. 23. 1-82 horse-power ; 37-8 per cent.

24. 318 revolutions per minute ;
0*74 horse-power.

25. 100 per cent, (nearly) ; 75-6 per cent. * 26. 9-6 horse-power.

27. 1-25 feet per second per second.

28. (1) .9 sin a. (2) ^^g sin a. (3) fl^f sin a.

29. 48-5 per cent. ; 55 per cent.; 31-6 horse-power.

30. Ill ft.-lbs.; 37 ft.-lbs.; 74 ft.-lbs.
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Laws of momentum 58

,, ,, motion Preface vi

Length 2

Linear momentum Chapter III 57

,, velocity 20
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Mass 2

Machines Chapter IX 189
Mechanical Advantage 19
Mechanics 1

Momentum, Linear Chapter III 57
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,, , Laws of 58
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,, ,, inertia, definition 90,

values of 101
Motion Chapter II 20

,, , Third Law of 79
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Potential Energy 132
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Power Chapter VI 130

,, , Unit of 130
Projectiles 39
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Railway curves 119
Rate of change 10
Relative momentum 195
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Resultant 6

Retardation 33
Rolling Wheel 50
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Scalar quantity 3
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Simple harmonic motion 166
Space 2

Space-average of force 129
Specific gravity 3

Speed 20
Springs 139, 149, 169
Statics 1

Steam tractor—Mechanical losses

200
Stress 78

,, in flywheel 122
Subnormal 32

Third law of motion 79
Time 3

Time-average of force 129
Torque 89
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