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PREFACE.

THE present edition differs considerably from the original edi-
tion of 1893-94, especially in the third part. It trepresents
essentially the required course in theoretical mechanics as given
in the Engineering Department of the University of Michigan.
In order to keep within the bounds of a three-hour course
extending through a year and within the reach of the mathemati-
cal attainments of a second or third year's college student it
seemed best to confine the treatment largely to problems in one
and two dimensions (except in Statics). Thus the motion of a
rigid body about a fixed point had to be omitted, in spite of its
importance. But rectilinear motion and rotation about a fixed
axis have received more ample treatment, and at least some illus-
trations of plane motion have been given. It is hardly necessary
to say that the text has been carefully revised throughout, and
that the exercises have in part been modified and increased in
number.

For the sake of completeness, certain fundamental subjects,
such as simple and compound harmonic motion, the determina-
tion of centroids, motion under central forces, the theory of
moments of inertia and principal axes, have been retained in
greater fullness than might be thought necessary in so elementary
a work. Wherea shorter course is required the teacher will find
no difficulty in retrenching. Thus, Arts. 129-148, 155-156,
170-174, 176-178, 234-236, 239240, 248-249, 312-313, 324,
334, 382-388, 392, 411-417, 479-495, 509~511, 556-571, 637~
663, 702-704 may be omitted, as well as many of the numerous
applications and the more difficult exercises.

v



vi PREFACE.

The work is #ot a treatise on applied mechanics, the applica-
tions being merely used to illustrate the general principles and to
give the student an idea of the uses to which mechanics can be
put. It is intended to furnish a safe and sufficient basis, on the
one hand for the more advanced study of the science, on the other
for the study of its more simple applications. I wish in particular
that it may serve to stimulate the study of theoretical mechanics
in engineering schools. At a future time, I hope to embody in
a more advanced treatise, together with other matter, those por-
tions of the old edition which could not find a place in the present
volume.

To Professor E. R. Hedrick, of the University of Missouri,
who had the kindness of reading the manuscript and proofs of a
large part of the work, I am greatly indebted for pertinent criti-
cism and many valuable suggestions. My thanks are also due
to Mr. Wm. Marshall, of the University of Michigan, who has
ably assisted me in reading the proofs and eliminating errors.

" ALEXANDER ZIWET.

UNIVERSITY OF MICHIGAN,
January, 1904.
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THEORETICAL MECHANICS.

INTRODUCTION.

The science of theoretical mechanics has for its object the
mathematical study of motion.

The idea of motion is intimately related to the fundamental
ideas of space, time, and mass. It will be convenient to introduce
these consecutively. Thus we shall begin with a purely geomet-
rical study of motion, without regard to the time consumed in the
motion and to the mass of the thing moved, the moving object
being considered as a mere geometrical configuration. This intro-
ductory branch of mechanics may be called the Geometry of
motion.

The introduction of the idea of time will then lead us to study
the velocity and acceleration of geometrical configurations. This
constitutes the subject-matter of Kinematics proper. The term
kinematics is often used in a less restricted sense, so as to include
the geometry of motion.

Finally, endowing our geometrical points, lines, and other con-
figurations with mass, we are led to the ideas of momentum, force,
energy, etc. This part of our subject, the most comprehensive of
all, has been called Dynamics, owing to the importance of the idca
of force in its investigation. For the sake of convenience it is
usually divided into two branches, 8tatics and Kinetics. In statics
those cases are considered in which no change of motion is pro-
duced by the acﬁng forces, or, as it is commonly expressed, in
which the forces are in equilibrium. The investigations of statics
are therefore independent of the element of time. Kinctics treats

of motion in the most general way.
PART 1—1 1






2.] LINEAR MOTION. ) 3

PART I:
GEOMETRY OF MOTION; KINEMATICS

CHAPTER L

GEHOMETRY OF MOTION.
1. Lincar Motion; Translation and Rotation.

1. Motion consists in change of position.

We begin with the simple case of a point moving in a straight
line. The position of a point £ in a line is determined by its dis-
tance OP = x from some fixed point or origin, 0, assumed in the
line, the length & being taken with the proper sign to express the
sense (say forward or backward, to the right or to the left) in
which it is to be measured on the line. This sense is also indi-
cated by the order of the letters, so that PO = — OP, and
OP + PO =o.

The position of a point in a line is thus fully determined by a
single algebraical quantity or co-ordinate; viz. by its abscissa
x= OP.

2. Let the point 2 move in the line from any initial position
£, (Fig. 1) to any other position P, and let OF = x,, OP, = x,.

_ gt
ol & Rl )
" | (]
— - E—
Flg. 1.

This change of position, or displacement, is fully determined by
the distance AP, = x, — z, traversed by the point.
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body fully represents the displacement of the whole body. The
translation of a rigid body from one position to another is there-
fore measured by the segment AP P, of the straight line joining the
initial and final positions of any point P of the body.

Two or more consecutive translations of a rigid body in the
same direction produce a resultant translation in the same direc-
tion equal to the algebraic sum of the component translations.

5. When a rigid body has two of its points fixed, the only
motion it can have is a rotation about the line joining the fixed
points as axis. /n a motion of rotation all points of the body
excepting those on the axis describe arcs of circles whose centers lie
on the axis while the points on the axis are at rest.

Thus any point 2, not on the fixed axis, is carried from its
initial position £, to its final position 7, along a circular arc whose
center C lies on the axis. The rotation is evidently measured by
the angle P,CP, subtended at C by this arc AP, (Fig. 2).

Fig. 2.

The position of any point 2 (not on the axis) fully determines
the position of the whole body and is given by the angle § made
by CP with some initial line CO, passing through C at right angles
to the axis. If OCP,= 6, OCP, = 6,, the angle P,CP, =0, — 6,
measures the rotation, just as (Art. 2) the distance AP, = z, — x,
measures the displacement of a point, and hence (Art. 4) the trans-
lation of a rigid body.

Two or more consecutive rotations of a rigid body about the
same axis give a resultant rotation about the same axis whose
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9. The unit of length in the C. G.S. system is the centimeter
(cm.), . e. 1}y of the meter. The original standard meter is a
platinum bar preserved in the Palais des Archives in Paris ; two
carefully compared copies, known as prozotypes, are kept at the
National Bureau of Standards, in Washington, D. C. The meter
can be defined as the distance between two marks on the standard
meter when at a temperature of 0° C.

In the F. P. S. system, the unit of length is the foot, 7. . § of
the standard yard. The original British standard yard is a bronze
bar preserved in London.

The relation between these two fundamental units of length is,
according to the United States Coast and Geodetic Survey Bulletin,

No. g, 1889,
I cm. = 0.032 808 2 ft.

For practical use we have the following approximate relations :

1 m = 3.2808 ft, 1ft. = 30.48 cm.
I cm. = 0.3937 in. 1in.= 2.54 cm.

10. The unit of angle is either the degree, 7. ¢. y}; of one
revolution, or the radian, 7. e. the angle subtended by a circular
arc equal in length to the radius.

If a be any angle expressed in radians, and a°, &', a’’ the same
angle expressed respectively in degrees, minutes, seconds, we
have the relations

ko m™w

= = o= !
*=18 % T 10800 a—648000a’

or @ = 0.017 453a° = 0.000 291a’ = 0.000 004 85a’’.

11. Plane Motion.

11. The position of a plane figure in its plane is fully deter-
mined by the positions of any two of its points since every other
point of the figure forms with these two points an invariable tri-
angle. But the position of the figure can of course be determined
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in other ways ; for instance, by the position of one point and that
of a line of the figure passing through the point; or by the posi-
tion of two lines of the figure.

12. Let us now consider the motion of a plane figure in its plane
from any initial position to any other position. This displacement
can be brought about in various ways. Thus, it would be suffi-
cient to bring any two points 4, B of the figure from their initial
positions 4, B, (Fig. 3) to their final positions 4,, B,. This can
be done, for instance, by first giving the whole figure a translation

Fig. 3.

through a distance 4,4, and then a rotation through an angle
equal to the angle between 4 B, and 4,5, ; or by such a rotation
followed by the translation.

Instead of 4 we might have selected any other point of the
figure. But it is important to notice that the angle of rotation
required for a given displacement is always the same, while the

translation will differ according to the point selected as center.

13. This leads us to inquire whether the center of rotation can-
not be so selected as to reduce the translation to zero. Now any
rotation that is to bring 4 trom 4, to 4, must have its center on
the perpendicular bisector of 4,4, ; similarly for B. Hence the
intersection C of the perpendicular bisectors of 4,4, and BB, is
the only point by rotation about which both 4 and B can be
brought from their mitial to their final positions. That they
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actually are so brought follows at once from the equality of the
angles 4,CB;and A,CB, (and hence of the angles 4,C4, and
B,CB,) which are corresponding angles in the equal triangles
A, CB,and A4,CB,.

We thus have the proposition : Any displacement of an inva-
riable planc figure in its plane can be brought about by a single
rotation about a certain point which we may call the center of the
displacement.

14. The construction of the center C given in the preceding
article becomes impossible when the bisectors coincide (Fig. 4) and
when they are parallel (Fig. 5). In
the former case, C is readily found
as the intersection of 4,B,and 4, B,-
In the latter, z. e. whenever 4 4, = 5. 8,
B B,, the center lies at infinity, and ( b

the rotation becomes a translation.

A\ VA.
]
. c c
Fig. 4. Fig. 5.

Any translation may therefore be regarded as a rotation about
a center at infinity.

15. Let the figure F pass through a series of displacements.
Each displacement has its angle and its center. If the successive
positions F,, F,, ... F, of the figure are taken each very near the
preceding one, the angles of rotation will be very small, and the
successive centers C,, G, ... C, will follow each other very
closely. In the limit, 7. ¢. when the series of finite displacements
passes into a continuous motion of the figure, the centers C will
form a continuous curve (c) and the successive angles of rotation
approach zero while the radii of the successive arcs described by
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all the triangles 4 BC previously constructed. The vertices of these
triangles all lie on the body centrode. .

21. To find the equation of the path of any point 2 of the moving
figure, let this point be referred to a co-ordinate system fixed in, and
moving with, the figure (Fig. 8) ; let the middle point O’ of 4B be
the origin, and 0’4 the axis O’x’, of this system. Then the co-ordi-
nates x’, ¥ of P in this moving system are connected with its co-ordi-
nates x, y in the fixed system Ox, Oy by the equations

x = (a+ x’) cosg + ¥ sing,
y = (a— x') sing + ¥ cosg,

where ¢ is the angle O4 B that determines the instantaneous position
of AB. Solving these equations for sing and cosy, squaring and
adding, we find for the equation of the path of P

)’x—(a+x’)g)’+ J"y—(q—x’)x)’_I
_zn+},n_aa xn+},n_a: - %

or [(a—x')' +y"]# —4ayzy+ [(a+ )+ = (+"+ 5" —a")’,

which represents an ellipse, since

[(6—#) +77-[(a+ &) +y7] — 4ar"
— (xl’ +ylﬂ + a’)l —_— 4a’(xll +},ll)=(xl! +yli_a!)’
is necessarily positive.

In general, therefore, the points of the figure describe ellipses; O’
describes a circle ; 4 and B describe straight lines passing through
O, and so does every point on the circle of diameter 48. It is thjs
fact that by rolling a circle within a circle of double diameter the points
of the smaller circle are made to describe segments of straight lines,
which makes this form of motion of practical importance: it may
serve to transform circular into rectilinear motion.

22. Elliptic Motion (continued): Zwo points A, B of a plane
JSigure move along two fixed lines OA, OB, inclined to eack other at an
angle o (Fig. 9).

This case is readily reduced to the preceding one. For, let the
circle through O, 4, B intersect at B’ the perpendicular erected at O
to OA, and imagine 45 rigidly connected to 45’ ; then the points
A and B will move, by Art. 21, along OA4 and OB as desired, pro-
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vided 4 and B’ be made to move along the perpendicular lines OA4
and OB'.

The figure shows that, since X A5'B =4 40B = o, the diameter
of the rolling circle is OC = 4.B' = AB/sinw.

Fig. 9.

23. Connecting Rod Motion: One point A of the figure describes a
circle, while another point B moves on a straight line passing through
the center O of the circle (Fig. 10).

0 The two centrodes are
readily constructed by
points for a given ratio
/la, say 4, 3, or 2. If
/> a the fixed centrode
consists of two branches

P having a common asym-

0 B ptote; the body centrode

has two branches with a

common tangent at A.

Fig. 10. For /= a both centrodes

become circles, one of radius 2a about O, the other of radius @ about

the point 4. For / < a, the point B can describe only a portion of
the crank circle, and the centrodes become closed curves.

24. Conchoidal Motion: A point A of the figure moves along a fixed
straight line I, while a line of the figure, I', containing the point A, always
passes through a fixed point B (Fig. 11).
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The fixed point B may be regarded as a circle of infinitely small
radius, which the line 7 is to touch. The instantaneous center is there-
fore the intersection C of the perpendiculars erected at 4 on /and at
Bon/.

The fixed centrode is a

parabola whose vertex is v
B. To prove this we take
the fixed line / as axis of y, R v
the perpendicular OB to
it drawn through the fixed l !
point Ba; aox; of x. 'I’hen(,l 2 z
putting A=¢ an 0o a B
OB = a, we have for the \
co-ordinates of C Flg. 11.

x=a+ y tang,

J = a tang;

hence x — @ = 3*/a, or, for B as origin and parallel axes, y* = ax.
The proportion y/x = a/y also follows directly from the similar triangles
BDCand 40B.

The equation of the body centrode, for 4 as origin, 4B as polar
axis, is » cos’@ = a, or in cartesian co-ordinates a*(x* + y*) = x*.

The points of 7 can easily be shown to describe conchoids, whence
the name of this form of plane motion.

25. The results obtained in the preceding articles for the motion
of a plane figure in its plane apply directly to the motion of a
rigid body, if any one point of the body describes a plane curve
while a line of the body remains parallel to itself. For in this
case all points of the body move in parallel planes, and the
motion in any one of these planes determines the motion of the
whole figure.

The only modifications required would be that instead of an
instantaneous center we should have an instantaneous axis,
viz. the perpendicular to the plane of motion of any point
through the center of motion of this point, and that the cen-
trodes are now not curves, but cylindrical surfaces rolling one
upon the other.
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26. Exercises.

(1) Show how to find the direction of motion of any point P rigidly
connected with the connecting rod of a steam engine.

(2) A wheel rolls on a straight track ; find the direction of motion
of any point on its rim. What are the centrodes in this case ?

(3) Show how to construct the normal at any point of a conchoid.

(4) Find the equations of the centrodes when a line  of a plane
figure always touches a fixed circle O, while a point 4 of 7/ moves
along a fixed line /.

(5) Show that, in (4), the centrodes are parabolas when the fixed
circle touches the fixed line.

(6) Two straight lines /’, /”” of a plane figure constantly pass each
through a fixed point (¥, 0" ; investigate the motion.

(7) Four straight rods are jointed so as to form a plane quadrilateral
ABDE with invariable sides and variable angles. One side 4.8 being
fixed, investigate the motion of the opposite side; construct the cen
trodes graphically. :

(8) A right angle moves so that one side always passes through a
fixed point 4, while a point B on the other side, at the distance « from
the vertex, moves along a fixed line from which the fixed point 4 has
the distance @ ; determine the centrodes.

(9) If the quadrilateral of Ex. (7) be 4 parallelogram, show that
any point rigidly connected with the side opposite the fixed side de-
scribes a circle.

(10) In the problem of Art. 23 investigate the centrodes and the
path of the middle point of 4.8 analytically.

(11) Explain how elliptic motion (Art. 20) can be regarded as a
limiting case of connecting rod motion (Art. 23).

(12) Explain how the paths described by various points of the roll-
ing circle in elliptic motion (Art. 20) can be regarded as special
hypocycloids and hypotrochoids (Art. 19).

I11. Spherical Motion.

27. The motion of a spherical figure of invariable form on its
sphere presents a close analogy to plane motion; in fact, plane
motion is but a limiting case of spherical motion, since a plane
may be regarded as a sphere of infinite radius.
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By a generalization similar to that of Art. 25, the study of the
motion of a spherical figure on its sphere leads directly to the
laws of motion of a rigid body having one fixed point. For the
motion of such a body is evidently determined by the spherical
motion on any sphere described about the fixed point.

28. Let us consider any two positions /£, and 7, of a spherical
figure F on its sphere, and let O be the center of the sphere.
Just as in the case of plane motion (Art. 13) the displacement can
always be brought about by a single rotation about a point C on
the sphere, or what amounts to the same, by a single rotation
about the azis OC. The proof is strictly analogous to that given
in Art. 13. We first remark that the position of the figure on the
sphere is fully determined by the
position of two of its points (not
on the same diameter), say A
and B (Fig. 12), since any third
point forms with these an invari-
able spherical triangle. Let 4,
B, be the positions of 4, B in F;
A,, B, their positions in F; and
draw the great circles 4. 4, and
B,B,. Their perpendicular bi-
sectors intersect in two points o
C, D which are the ends of a Fik. 12.
diameter of the sphere. (D is the axis of the displacement and
the angle 4,CA,, or B ,CB,, gives the angle of the displacement.

29. If we consider a series of positions of the moving figure,
F, F, F, ... weobtain a series of axes of rotation, say c,. ¢, ...;
and in the limit when the motion becomes continuous, the axes
€y €y ... Will form a cone fixed in space, with the vertex at the
center O of the sphere. The points €, C,, ... where these axes
intersect the sphere form a curve (c) on the fixed sphere, while
the points ¢/,, 7, ... of the moving figure which come to coin-
cide with these fixed points form a spherical curve (/) invariably

PART 1—2
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85. A motion of a rigid body consisﬁng of a rotation about an
axis combined with a translation parallel to the axis is called a
screw motion, or a twist. We have proved therefore, in Art. 34,
that the most general displacement of a rigid body can be brought
about by a single twist.

88. To construct the central axis and find the translation and
angle of the twist when the displacement is given by the positions
A, B, Cyand A4,, B, C, of three points of the body, we first
remark that the projection on the central axis of the displacement
of any point, say A;4,, is equal to the translation of the twist, and
hence the projections of the displacements of all points of the body
(such as 4 4,, BB, C,C) are all equal. - If therefore from any
point O we draw lines 04, OB, OC equal and parallel to 4,4,
BB, C,C, their ends 4, B, C will lie in a plane 7 perpendicular
to the central axis, and the perpendicular p dropped from O on
this plane o will represent in length and direction the translation
of the twist. ' .

The direction of the central axis being thus determined, we find
its position in space by projecting the displacements of any two
of the three given points, say 4,4, and B B,, on the plane =, and
finding the intersection of the perpendicular bisectors of these pro-
jections. This intersection is evidently a point of the central axis,
and a perpendicular through it to the plane 7 will give the central
axis in position.

The angle of the twist is equal to the angle between the pro-
jections on 7 of A,B, and 4 B,

87. In the case of continuous motion there exists a central axis
for every position of the body ; but its position both in space and
in the body in general varies in the course of the motion. The
central axis at any moment is therefore called in this case the
instantaneous axis.

The straight lines of space which during the progress of the
motion become instantaneous axes for the infinitely small twists
of the body form a ruled surface. Similarly, the lines of the
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ing the first translation, and from its end 2 a segment 23 repre-
senting the second translation. The segment 13 will then rep-
resent a translation that would bring the body directly from its
initial to its final position. This segment 13 is called the geo-
metric sum, or the_resultant, of the segments 12 and 23, which
are called the components. The operation of combining the com-
ponents into a resultant, or of finding the geometric sum of two
segments, is called geometric addition, or composition.

40. The geometric sum of two segments can also be found by
drawing, from one and the same origin 1 (Fig. 15), segments 12,
12/, parallel and equal respectively to
the given segments, and completing 2
the parallelogram with 12 and 12’ as
adjacent sides ; the diagonal 13 is the
geometric sum, or resultant, of the
given segments. Geometric addition
is therefore often said to follow the
parallelogram law.

A glance at Fig. 15 shows that the order of succession in
which the given segments are combined is indifferent for the re-
sult ; in other words, geometric addition is commutative, like alge-
braic addition.

41. Rectilinear segments, taken as above with a definite sense
(Art. 38) and subjected to the parallelogram law of combination
(Art. 40), are called vectors. We can therefore say that a single
translation is represented by a vector, and that ke resultant of two
consecutive translations is found by adding their vectors geometri-
cally.

The vector, as the geometric symbol of a translation, has /engtk,
direction, and sense; but it is not restricted to any definite pos:tion,
the same translation being represented by all equal and parallel
vectors. We express this by saying that two vectors are equal if
they are of the same length, direction, and sense.

’

Fig. 15.

42. It is easily seen how the operation of geometric or vector
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subtracted, and then geometrically adding it to the resultant (Fig.
16). In other words, the geometric difference of two vectors AB
and CD is found by geometrically adding to 4B a vector equal
but opposite to CD. Thus, in Fig. 16, 13 is made equal and
parallel to AB; 32 is equal and B
parallel to CD reversed, that is
to DC; 12 is the reouired differ-
ence.

45. The composition of trans-
lations by geometric addition of
their vectors (Art. 42) holds, not
. for successtve translations only,
but, owing to the commutative
law (Art. 40), for simultaneous
translations as well. This is easily Flg. 16.
seen by resolving the components into infinitesimal parts,

To obtain a clear idea of two simultaneous translations it is
best to imagine the body as having one of these translations
with respect to some other body, while the latter itself is sub-
jected to the other translation. A man walking across the deck
of a vessel in motion, an object let fall in a moving carriage, a
spider running along a branch swayed by the wind, are familiar
examples.

1

48. This leads us to the idea of relative motion. Properly
speaking, all motion is relative; that is, we can conceive of the
motion of a body only with regard to some other body, called
the body of reference. If the latter be regarded as fixed, the
motion of the former is called its absolute motion.

Thus in speaking of the motion of a railway train, we usually
regard the earth as fixed and can thus call the displacement of
the train from one station to another an absolute displacement.
If, however, the motion of the earth with regard to the sun be
taken into account, the displacement of the train from station to
station is the relative displacement of the train with respect to the



26 GEOMETRY OF MOTION. [47.

earth ; and its absolute displacement would be found by combin-
ing this relative displacement with the absolute displacement of
the earth (with respect to the sun regarded as fixed).

47. It follows that when the two displacements are translations
the absolute displacement of the body will be found by geomctrically
adding its relative displacement to the absolute displacement of the
body of refevence. And conversely, the relative displacement of
a body ts found by geometrically subtracting from its absolute dis-
Placement the absolute displacement of the body of reference.

48. Analytically, the composition and resolution of vectors is
merely a problem of trigonometry. Thus, the resultant of two
vectors is the diagonal of the parallelogram formed by the two
vectors as adjacent sides; the resultant of three vectors is the
diagonal of the parallclepiped having the three vectors as concur-
rent edges. '

49. In the case of more than two or three vectors, however,
the solution by ordinary trigonometry would become rather
tedious, and it is best to proceed as follows :

Assume an origin O and three rectangular axes Oz, Oy, Os,
and project each vector on the three axes ; let X, ¥, Z be jts pro-
jections. These projections X, ¥, Z are three vectors whose
geometrical sum is equal to the vector. If # vectors were
originally given, we should now have them replaced by 37 com-
ponents of which # lic in each axis. The components lying in
the same axis can be added algebraically ; let their respective
sums be 2.Y, 2 ¥, £Z. The 7 vectors are therefore equivalent to
the three vectors .Y, 2 ¥, £Z, which form the concurrent edges
of a rectangular parallelepiped whose diagonal drawn through the
origin O is the resultant vector OR = R, ¢. e.

R=VEXY+ VY + (2N

The direction of this vector is given by the equations

X 8 Y 2z
COS a == —R“, Cos = T’ COos Yy = —R—,
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where a, 8, v are the angles made by OR with the axes Oz, Oy,
Oz, respectively.
If all the vectors lie in the same plane, we have simply :

R 2y
R=vV(EXy+(CY), tana=ﬁ.

50. Exercises.

(1) A ship sails first 6 miles N. 60° E., then 16 miles N. 60° W.,
and finally 18 miles S. 15° E. Find distance and bearing of the
point reached : (a) graphically, (4) analytically.

(2) Is ascale of 10 miles to the inch sufficient to obtain the results
of Ex. (1) correctly to whole miles and degrees?

(3) A body is given first.a translation of 3 feet along one side of an
equilateral triangle, then of 2 feet parallel to the second, then of 1 foot
parallel to the third side, the same way*around. Find the resulting
displacement. - :

(4) A ship is carried by the current 2 miles due W., and at the
same time by the wind 4 miles due N.W., and by her screw g miles
N.E. Find her resultant displacement.

(5) A ferry-boat crosses a river in a direction inclined at an angle
of 60° to the direction of the current. If the width of the river be
half a mile, what are the component displacements of the boat along
the river and at right angles to it?

(6) Two vectors of equal length are inclined to each other at an
angle a. Find the resultant in magnitude and direction.

(7) For what angle a, in Ex. (6), is the resultant equal in magni-
tude: (a) to each component a? (4) to § a?

(8) Resolve a vector a into two components making with the vector
angles of 30° and 45° on opposite sides.

(9) Steering his boat directly across a river whose current is due
west, a man arrives on the opposite bank at a point from which the

®starting-point bears S.E. ; the width of the river being 1500 feet, how
far has he rowed? What is the absolute, and what the relative, dis-
placement of the boat ?

(10) Assuming a raindrop to fall 24 feet in a second in a vertical
direction, find in what direction it appears to be falling toaman: (a)
walking at the rate of 4 feet per second, (%) driving at the rate of 10
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feet per second, (¢) riding on a bicycle at 18 feet per second, () in
a railroad car running 6o feet per second.

(11) Findin magnitude and direction the resultant of 6 translations
of 1, 2, 3, 4, 5, 6 feet, respectively, each component making an angle
of 45° with the preceding one: (@) graphically, (4) analytically.

(12) If a, b, ¢ are three vectors whose geometric sum is o, prove
that a/sin (éc) = b/sin (ca) = ¢/sin (ab).

(13) Find the resultant of two translations represented in magnitude
and direction by two rectangular chords of a circle drawn from a point
on its circumference.

(14) From a point C in the plane of a circle whose center is O,
draw two lines at right angles to each other and intersecting the circle
in 4, A’ and B, B', respectively. Show that the resultant of the four
vectors CA, CA’, CB, CH' is equal to twice CO.

(15) Prove that the geometric sum of two vectors P P, P P, issu-
ing from the same point /7, passes-through the middle point G of 2,2,
and has a length = 2 P,G.
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CHAPTER. IL

KINEMATICS.

1. Time.

51. Before introducing the idea of time into the study of motion,
a word must be said on the measurement of time.

1t is the province of astronomy to devise methods for measur-
ing time; the usual method consists in transit observations.
Thus the fundamental unit of time in astronomy, or the sidereal
day, is the interval between two successive upper transits of a
fixed star over the same meridian, that is, the interval of time in
which the earth makes one complete revolution referred to some

- fixed star.

52. For the purposes of every-day life, it is more convenient to
make the measurement of time depend on the apparent revolution
of the sun. But the interval between two successive upper tran-
sits of the sun over the same meridian, which is the #wue, or ap-
parent, solar day, is not constant throughout the year, owing to
the inclination of the earth’s axis to the plane of its orbit and to
the ellipticity of this orbit. The true solar day is thus not well
adapted to serve as a unit of time.

Astronomers imagine, therefore, a so-called mean sun, which
is supposed to travel around the earth at a uniform rate, in such
a way as to make the years of the real and mean suns equal.
The interval between two successive upper transits of this mean
sun over the same meridian is called the mean solar day. This
may be regarded as the standard on which all time determina-
tions in mechanics are based.

The mean solar day is subdivided into 24 hours = 1440 min-
utes = 86 400 seconds. In theoretical mechanics the second is
generally used as the unit of time.
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tion of uniform motion (1) represents a straight line ; the tangent
of the angle made by this line with the axis of # represents. the
velocity v. :

56. Let the point P start at the time #=0 from a point O
(Fig. 17); letit reach the point P, at the time # = £, and the point
£, at the time ¢ =¢. Then, putting OF, = s,, OP, = s, the space
passed over in the time #— 4, is s —s,; hence the velocity

t=0 t=b §=t
1 Il
o R R
Fig. 12,

v=(s—s,)/(t—1¢). The equation of uniform motion can there-
fore be written in the form

s—s,=v(t—1¢). (1)
If the times be counted from the instant when the moving
point is at A, we have 4, = 0, and the equation of motion is

s=s,+ vt (1"

Finally, if both times and spaces are counted from £, as origin,
we have s, = 0, so that (1”) reduces to (1).

57. To measure velocities we must adopt a unit of velocity.

In kinematics, the only fundamental, 7. ¢. independent, units
required are those of length and time. All other quantities can
be expressed in terms of length and time, and their units are
therefore called derived units.

Thus, the definition of the velocity of uniform motion as a
length divided by a time (Art. 54) can be expressed by the sym-
bolic equation ’

V= I,If yorV=LT",
and we say that the dimensions of velocity are 1 in length and
— I in time.

When L =1 and T = 1, we have V= 1. We must therefore
select for our unit of velocity that velocity with which unit length
is described in unit time.
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expression : the velocity of the motion at any particular point or
instant.

To obtain a mathematical expression for this velocity at the
point P, or at the time ¢/ let us consider a point moving in a
straight line. Let P (Fig. 18) be its position at the time 7, P’
its position at the time # 4 A7; let the spaces be counted from
the point O as origin so that OP=s5, OP’ = s + As. Then, by

t t :l-At
P P
Ok ) ———rp—tr8—s|
Flg. 18,

PP,

As P’ approaches P, i. e., as As and Az approach zero, this
average velocity As/Az will approach a definite limit. This limit
is called the velocity v of ke point at P; we have thus the
definition

P @
1. e., in variable motion in a straight line the velocity at any par-
ticular point of the path, or at any instant of time, is the value,
at that point or time, of the first derivative of the space with
respect to the time; in other words, velocity is the time-rate of
change of space.

This definition includes uniform motion as a special case; for
in this case, v being constant, the equation of uniform motion (1),
Art. 55, gives ds[dt=v. .

64. The definition of velocity given in the last article,

ds
V= 7[, (2)

enables us to find the velocity if the space be given as a function
of the time, say s = f(¢); and conversely, if the velocity be given
as a function of time or space, we find by integrating the differ-
ential equation ds/d¢ == v an integral equation of motion s = f(2).
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customary to mention the time unit but once and to speak of an
acceleration of so many feet per second, or cm. per second, it
being understood that the other time unit is also the second.

For the dimensions of acceleration we have (see Art. 57)

J= VT-!'= LT

Denoting, as in Arts. §8, 59, the concrete value of an accelera-
tion by J/, its unit by /|, and similarly for length and time, we
have the equation

J_L. 1}

LTLTY
which shows that () the numerical value /// of an acceleration
varies directly as the square of the unit of time, and inversely as
the unit of length; and (4) the unit of acceleration, /, varies di-.
rectly as the unit of length, and inversely as the square of the
unit of time.

67. Exercises.

(1) A point moving with constant acceleration gains at the rate ot
30 miles an hour in every minute. Express its acceleration in F. P. S,
units.

(2) At a place where the acceleration of gravity is g= 9.810
meters per second, what is the value of ¢ in feet per second ?

(3) A railroad train, 1o minutes after starting, attains a velocity of
45 miles an hour; what was its average acceleration during these 10
minutes ?

(4) If the acceleration of gravity, ¢ = 32 feet per second, be taken
as unit, what is the acceleration of the railroad train in Ex. (3)?

3. APPLICATIONS.

68. Uniformly Accelerated Motion. As in this case the acceler-
ation ; is constant (see Art. 65), the equation of motion ()

dis dv
aB=rh °f LF=,
can readily be integrated :
v=jt+ C.
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To determine the constant of integration C, we must know the
value of the velocity at some particular moment of time. Thus,
if v=1v, when =0, we find y,= C; hence, substituting this
value for C,

v — vy, =L (6)

This equation, which agrees with the definition of ;' given in
Art. 65, gives the velocity at any time £  Substituting ds/d# for
v and integrating again, we find s = v¢ + 4/7* + C’, where the
_constant of integration, C’, must again be determined from given
“initial conditions.” Thus, if we know that s = s, when =0,
we find s,= C’; hence

s—s, =7t + Lt @)

This equation gives the space or distance passed over in terms
of the time.

69. Eliminating ; between (6) and (7), we obtain the relation

s —s,=3}(z, + o),

which shows that in uniformly accelerated motion the space can
be found as if it were described uniformly with the mean velocity

(@, + 7).
70. To obtain the velocity in terms of the space, we have only
to eliminate # between (6) and (7) ; we find

%(,Dz - '”o’) =j(s - So)' (8)

This relation can also be derived by eliminating 4 between the
differential equations v = ds/dt, dv|dt = j, which gives vdv = jds,
and integrating. The same equation (8) is also obtained directly
from the fundamental equation of motion &*s/d#* = 7 by a process
very frequently used in mechanics, viz., by multiplying both
members of the equation by ds/dt. - This makes the left-hand
member the exact derivative of 3(ds/d¢)’ or }7%, and the inte-
gration can therefore be performed.
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71. The three equations (6), (7), (8) contain the complete
solution of the problem of uniformly accelerated motion. For
uniformly retarded motion, taking the direction of motion as
positive, we have only to write — 7 for + ;.

If the spaces be counted from the position of the moving point
at the time 7 = 0, we have s, = 0, and the equations become

V=1, +1, ()
s=vg+ 1P, @)
3 — vo’) =Js. (8 )

If in addition the initial velocity 7, be zero, the point starting
from rest at the time #= 0, the equations reduce to the following :

v=jt, (6"
s =3}/, (7")
3 =Js. (8"

72. The most important example of uniformly accelerated
motion is furnished by a body falling in vacuo near the earth’s
surface. Assuming that the body does not rotate during its fall,
its motion relative to the earth is a mere translation, and it is
sufficient to consider the motion of any one point of the body.
It is known from observation and experiment that under these
circumstances the acceleration of a falling body is constant at
any given place and equal to about g80o cm., or 32 ft., per second
per second ; the value of this so-called acceleration of gravity is
usually denoted by g.

In the exercises on falling bodies (Art. 74) we make through-
out the following simplifying assumptions : the falling body does
not rotate ; the resistance of the air is neglected, or the body
falls in vacuo; the space fallen through is so small that g may
be regarded as constant ; the earth is regarded as fixed.

738. The velocity » acquired by a falling body after falling from
rest through a height 4 is found from (8"") as

v = V7gk.
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again? (4) With what velocity? (¢) At what time is it 16,000 ft.
above the ground ? Explain the meaning of the double signs wherever
they occur in the answers.

(9) With what velocity must a ball be thrown vertically upwards to
reach a height of 100 ft.?

(10) A body is dropped from a point A4 at a height 4B = % above
the ground; at the same time another body is thrown vertically
upward from the point B, with an initial velocity »,, (2) When and
(%) where will they collide? (¢) If they are to meet at the height
4+ 4, what must be the initial velocity ?

(11) If a train can attain its regular speed in 3 minutes and can be
brought to rest in the same time, how much time is lost by making
four stops of 2 minutes each between two stations ?

(x2) The barrel of a rifle is 30 in. long; the muzzle velocity is
1300 ft./sec. ; if the motion in the barrel be uniformly accelerated,
what is the acceleration and what the time?

(13) If a stone dropped from a balloon while ascending at the rate
of 25 ft. /sec. reaches the ground in 6 seconds, what was the height of
the balloon when the stone was dropped ?

(14) If the speed of a train increases uniformly after starting for 8
minutes while the train travels 2 miles, what is the velocity acquired?

(15) A train running 30 miles an hour is brought to rest, uniformly,
in 2 minutes. How far does it travel ?

(16) Two particles fall from rest from the same point, at a short
interval of time r; find how far they will be apart when the first par-
ticle has fallen through a height 4. Take e.g. A=goo ft., 1=}y
second.

75. The general problem of rectilinear motion requires the
integration of the differential equation

d3s
dTa =/ (5)

where ;7 is a function of s, ¢ and 7, in connection with the

equation
ds
Z=7 (2)
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where the constant of integration, C, must be determined from
the so-called initial conditions of the problem. For instance, if
v = v, when s = 5, we have }7} = — p/s, + C; hence, eliminat-
ing C between this relation and (11),

1 1

}(v’—'ﬂo’)=—#(;—;;)' (12)

To perform the second integration we solve this equation for
v and substitute ds/d? for v:

ds ', 2k 24
—dyad: 'v°+—.\‘;—7’

or putting > + 2u /s, = 2p[p’,
ds 2p s—p
z=*Q7' rE (13)

Here the variables s and # can be separated, and we find

t=:§:JZZ;fJ _S",ds. (14)

To integrate put s — u/ =2*. The result will be different
according to the signs of u, p’, and 7, which must be determined
from the nature of the particular problem.

It is easily seen that the methods of integration used in this
problem apply whenever ; is given as a function of s alone.

78. It is an empirical fact that the acceleration of bodies fall-
ing in vacuo on the earth’s surface is constant only for distances
from the surface that are very small in comparison with the
radius of the earth. For larger distances the acceleration is
found inversely proportional to the square of the distance from
the earth’s center.

By a bold generalization Newton assumed this law to hold
generally between any two particles of matter, and this assump-
tion has been verified by all subsequent observations. It can
therefore be regarded as a general law of nature that any particle
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so that (10) becomes 1 our case

d’s gr
d_ta=—?r (is)

the minus sign indicating that the acceleration tends to diminish
the distances counted from O as origin.

The integration can now be performed as in Art. 77. Multiply-
ing by ds/dt and integrating, we find }2* = gR?/s + C. If the
initial velocity be zero, we have v = o-for s = s,; hence

C=—gR/s,
and

Here again the minus sign before the radical is selected since
the velocity v is directed in the sense opposite to that of the dis-
tance s.

Substituting ds/d? for v and separating the variables # and s we

have .
=1 i,’ S g
dt—_Rng so—sds’

* ence, integrating as indicated at the end of Art. 77 :

1 (sf —— . [ —=
t=1—e-J2-‘—;(l/s(so-—:)+sosm‘ °S ).

0

the constant of integration being zero since s = s, for £=0. The
last term can be slightly simplified by observing that

sin™! V1 — 23 = cos~x,
whence finally :

= —l S_o —___ —1 _J {_) o
Rz (1/5(50 $) + s, cos 5 (17)

80. Exercises.

(1) Find the velocity with which the body arrives at the surface of
the earth if it be dropped from a height equal to the earth’s radius, and
determine the time of falling through this height. Take &2 = 4000
miles, g = 32.
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82. It is shown in the theory of attraction that the attraction
of a spherical mass such as the earth on any point wizkin the mass
produces an acceleration directed to
the center of the sphere and propor-
tional to the distance from this center.
Thus, if we imagine a particle moving
along a diameter of the earth, say in a
straight narrow tube passing through
the center, we should have a case of
the motion represented by equation
(18).

To determine the value of « for our
problem we notice that at the earth’s
surface, that is, at the distance OF, = R
from the center O (Fig. 20), the acceleration must be g. If, there-
fore, 7 denote the numerical value of the acceleration at any distance
OP=s(<R),wehavej:g=5:R, orj=gs/[R. But the ac-
d’s g
7l
Denoting the positive constant g/ R by u?, the equation of motion
is

)

Fig. 20.

celeration tends to diminish the distance s, hence

d’s £z
7 pis, where p = J}% (19)

Integrating as in Arts. 77 and 79, we find
4}1}' = — }[l-’.f’ + C.

If the particle starts from rest at the surface, we have v =0
when s = R ; hence 0 = — }¢’R? 4+ C; and subtracting this from
the preceding equation, we find

v=—pVR -, (20)

where the minus sign of the square root is selected because s and
v have opposite sense.
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Writing ds/dt for v and separating the variables, we have

I ds
A= —— ——,
PYR —§
whence

1S ’
_“cos R+ c.

Ass= R when ¢ =0, we haveo=£cos“ 14+ C,or C"=o0.

Solving for s, we find
s = R cosput. (21)

Differentiating, we obtain v in terms of #:
v = — uR sinut. (22)

83. The motion represented by equations (21) and (22) belongs
to the important class of simple harmonic motions (see Arts. 121
sq.). The particle reaches the center when s=o0, ¢. ¢., when
pt=m/[2, or at the time /= m/2p. At this time the velocity has
its maximum*value. After passing through the center the point
moves on to the other end, 7, of the diameter, reaches this point
when s= — R, 7. e. when pt=m, or at the time ¢=m/u. As
the velocity then vanishes, the moving point begins the same
motion in the opposite sense.

The time of performing one complete oscillation (back and
forth) is called the period of the simple harmonic motion; it is
evidently

84. Exercises.
(1) Equation (19)isa differential equation whose general integral
is known to be of the form

s = C,sinuf 4 C, cosut;

determine the constants C,, C, and deduce equations (21) and (22).
(2) Find the velocity at the center and the period, taking g= 32
and R = 4000 miles.
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(3) If the acceleration, instead of being directed toward the center,
is directed away from it, the equation of motion would be @%s/d#*= p's.
Investigate this motion, which can be imagined as produced by a force
of repulsion emanating from the center.

(4) A point whose acceleration is proportional to its distance from
a fixed point O starts at the distance s, from O with a velocity 7,
directed away from O ; how far will it go before returning ?

4. ROTATION; ANGULAR VELOCITY; ANGULAR ACCELERATION.

85. A motion of rotation about a fixed axis can be treated in
precisely the same way in which we have treated rectilinear
motion in the preceding sections. It is only to be remembered
that rotations are measured by angles (see Arts. 8-10), while
translations are measured by lengths.

86. The rotation of a rigid body (see Art. 5) about a fixed axis
is said to be uniform if equal angles are described in equal times;
in other words, if the angle of rotation is proportional to the time
in which it is described. In this case of uniform rotation, the
quotient obtained by dividing the angle of rotation, 6, by the cor-
responding time, ¢, is called the angular velocity. Denoting it by
o we have  =0/¢; and the equation of motion is

0 = wt. (I)

Thus, expressing the time in seconds and the angle in radians
(Art. 10), the angular velocity is equal to the number of radians
described per second. (Compare Arts. 54, 55.)

87. If the time of a whole revolution be denoted by 7, we
have, from (1), 2 = »7"; hence

2w

© =7 | ©)

In engineering practice it is customary to take a whole revolu-
tion as angular unit and to express the angular velocity of uniform
rotation by the number of revolutions made in the unit of time.

PART I—4
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90. Let a point 7, whose perpendicular distance from the axis
of rotation is OF =7, rotate about the axis with the angular
velocity w = df/dt. In the element of time, @7, it will describe
an element of arc ds = rd0 = rwds. Its velocity v = ds/dt (fre-
quently called its linear velocity in contradistinction to the angular
velocity) is therefore related to the angular velocity of rotation by

the equation
V= r. (8)

91. The radius vector OP= r sweeps over a circular sector
which in uniform rotation has an area S = 30 = }w#?, while in
variable rotation the infinitesimal sector described during the ele-
ment of time ¢ is dS = }*'d0 = }an’ds.

The quotient ,
S 0
for uniform rotation, and the corresponding derivative
as do
@ =V =1 (10)

for variable rotation, represent, therefore, the sectorial, or arcal/,
velocity, 7. ¢. the rate of increase of area with the time (see
Art. 97).

The rate of change of this velocity with the time,

@ = a(") (1)

is called the sectorial, or area/, acceleration.

92. Exercises.

(1) If a fly-wheel of 10 ft. diameter makes 30 revolutions per
minute, what is its angular velocity, and what is the linear velocity of
a point on its rim?

(2) A pulley s ft. in diameter is driven by a belt travelling 450 ft.
a minute. Neglecting the slipping of the belt, find (a) the angular
velocity of the pulley in radians per second, and (&) its number of
revolutions per minute.
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It is however found convenient in curvilinear motion to incor-
porate in the definition of velocity the idea of the varying direction
of the motion by assigning to the velocity at P as its direction
that of the tangent to the curve at the point 2. The velocity a2
the point P is therefore represented by laying off on the tangent to
the curve at 7, in the sense of the motion, a segment P7" propor-
tional to ds/dt.

94. Velocity is thus defined as having both magnitude and
direction and is represented by a rectilinear segment P7. It is
assumed, moreover, that these segments representing velocities
can be combined and resolved according to the parallelogram law
(Arts. 38—45), so that velocity is a vector quantity. The results
of this assumption are in complete agreement with observed facts ;
a direct experimental verification would generally be difficult.

Thus if a point be subjected to two or more simultaneous
velocities, the velocity of the resulting motion will be represented
by the vector found by geometrically adding the component
velocities. A velocity may be resolved into any number of com-
ponent velocities whose geometric sum is equal to the given
velocity.

We proceed to consider the most important cases of the reso-
lution of a velocity in plane motion.

95. If the curve P, P (Fig. 22) in which the point moves be re-

v \ T
i'l v
) P Vs
//
8
oy // v
Q@ @

(o} [ // P
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Let 7, @ be the polar co-ordinates, ¥ the angle between z and
r; then v, = v cosy, v, = vsiny. The element ds of the curve
has in the same directions the components dr = ds cosy, rdf
= ds siny. Hence, dividing by 47, we find

(3)

and v=verrw=(5) +7(%): @

97. As the point P2 moves along the curve its radius vector OP
sweeps out the polar area S of the curve, 7. ¢., the area bounded
by any two radii vectores and the arc of curve between their ends.
If AS be the increment of this area in the time A¢, the limit of the
ratio AS/A¢, as At approaches zero, is called the sectorial velocity
dS|dt of the point P (about the origin 0):

as .. AS

dr At=oTt |
It follows from the well-known expression for the element of
polar area that in polar co-ordinates

as do
@ =V (s)
and in rectangular cartesian co-ordinates :

ds dy  dr
&I i(’Tz—y 7)'

(©)
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center C (Fig. 25) for the motion of the connecting rod. As the v
instantaneous motion of the rod PQ is a rotation about C, the

Cc

A o A P

Fig. 25.

linear velocities of P and Q must be as their distances from C, 7. e.

v CP

¥« CQ

Through O draw a perpendicular to OP; if PQ (produced if
necessary) meet this perpendicular in R, the similar triangles
CPQ and ORQ give:

v CP_ OR
«_ CQ-0Q
whence
'u==’i - OR,
a

1. . v is proportional to OR. If the scale of velocities be selected
so that the constant velocity # is represented by the length a of
the crank, the instantaneous piston speed v is represented in length
by OR.

102. The variation of the piston speed » in the course of the
motion can best be exhibited graphically. Thus a golar curve of
piston speed is obtained by laying off on OQ a length OR’ = OR,
for a number of positions of OQ, and joining the points R’ by a
continuous curve,
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A
cosyr = lim—é%,, sinye = lim 2777

We find therefore
V

J, =7 cosyr = cosy¥ lim 4
At=0 At

’

I Vv’ Av I Av dv
==COS1II‘ lmTv—E— mE=$n

and
vv’
F 7 sinde — sinde li
Ja=J siny = siny- lim 7
e i VvV’ vAa I Aa da
= sinyr im e Ay =limvyr=v_m
As
da  dads 1
&t dsdt " p”

‘where p = ds /da is the radius of curvature at P, we have finally :

. dv
Je= it" (I)
. P
J. - F’ (2)
whence
. - - dv\®*
F=Viitil= (7) +o (3)

113. When rectangular cartesian co-ordinates are used we may
resolve the acceleration ; into components 7, = 7 cos ¢, J,=7sin ¢,
along the axes Oz, Oy; ¢ being the angle at which the accelera-
tion 7 is inclined to the axis Oz. We obtain an expression for 7,
by projecting the triangle OVV"’ (Fig. 26) on the axis Ox and de-
noting the projections of the velocities OV, OV’ by v,, ©,/. This

gives
! ’ —
VV'cosp =v! —v,=Av,

whence, dividing by Az and passing to the limit: j, = dv_[dt.
PART 1—§
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Differentiating the relations x = » cos, y = r sinf, we find

dr adr .,d0 dy dr
??=—c050—rsm0—-—, il

. dé
7 ¥ 0 + r cosb —;

dr

and differentiating again :

d*x d*r do\? P dr do a0\ . P)
Zt—z—= _dt’_—r '2;) cosv — 2‘-7{7"-{-7'2-2-. sinb,

d%y dr CAN R dr do a6
?[2_ = z-tz- Ll 4 ;{7) sinf +1{2 Z"d‘; + r'dtg cosé.

Substituting these expressions for d%z/dt* and d*y/df* in the
above equations for ;, 7,, we find :

. dY d0\3 . dr d6 d’e_ 1d/(,d0 6
=gt N\& ) =ttt T T v @ '7t)' ©)
115. Exercises.

(1) Show that the velocity of a moving point is increasing, con-
stant, or diminishing, according to the value of the angle ¢ between v
and s (Fig. 26).

(2) Show that the sectorial velocity (Art. 97) is constant whenever

Jo=o.

(3) Show that the normal component of the acceleration is the
product of the radius of curvature into the square of the angular ve-
locity about the center of curvature. )

(4) Show that the velocity is the mean proportional between the
acceleration and half the chord intercepted by the direction of the
acceleration on the osculating circle.

(5) Show that the hodograph of rectilinear motion is a straight line.

(6) If the acceleration of a point P be always directed to a fixed
point A4, show that the radius vector 42 describes equal areas in equal
times.

(7) Show that in uniform circular motion the acceleration is
directed to the center and proportional to the radius.
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Taking in this plane the center O as origin and arbitrary rect-
angular axes Oz, Oy, we have for the direction cosines of OP:
z[r, y/r; hence for those of j : — x[r, — y[r. The components
of j are therefore

Jo=—WZ, j,=— 1Y,
and the equations of motion are

d*x a?
A=W =Y.

These equations show that the projections 7, #, of 7 on the axes
have each a simple harmonic motion, and the motion of 2 which
is in general curvilinear may be regarded as the resultant of these
component motions.

We proceed to examine in some detail the most important cases
of this composition of two or more simple harmonic motions, begin-
ning with those cases in which the resultant motion is rectilinear.

As, according to Hooke's law, the particles of elastic bodies,
after release from strain within the elastic limits, perform small
oscillations for which the acceleration is proportional to the dis-
placement from a middle position, the motions under discussion
find a wide application in the theories of elasticity, sound, light,
and electricity, and form the basis of the general theory of wave
motion in an elastic medium.

130. Two simple harmonic mnotions in the same line, of equal
period T, but differing in amplitude and phase, compound into a
single simple harmonic motion in the same line and of the same
period.

For, by Art. 123, the component displacements can be written

z, = a, cos(w? + €), x,=a, cos(w!+ ¢),

and being in the same line they can be added algcbraically, giving
the resultant displacemerit
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135. The composition of two or more simple harmonic motions
in the same line can readily be effected, even whken the components
differ in period. But the resultant motion is in general not simply
harmonic.

Thus, with two components

z,=a, cos(ot +¢), x,=a,cos(wt+¢),
putting o2 + ¢, = o2 + (v, — @) + €, = o f + ¢, + §, say, where

8 = (0, — »,)¢ + ¢, — ¢, is the difference of phase at the time 2, we
have for the resulting motion

x=x + xr,=a, cos(wt + ¢€) + a, cos(@,? + € + 8);
= (@, + a, cosd) cos(w,? + €) — a, sind sin(wz + ¢),
or putting @, + @, cosd = a cos¢, a, sind = a4 sine:

x=a cos(w,! + €, + ¢€),
where 5
. . ____a,sin
&= a" + a + 2a.a, cosd, tane= m,

d= ((l)2 —_— ml)t-}- €; — €.

It can be shown that this represents a simpie harmonic motion
only when o, = > o,

The formule can be interpreted geometrically by Fig. 36, as
in Art. 131. But as in the present case the angle 8, and con-
sequently the quantities @ and € in the expression for x, vary with
the time, the parallelogram OP, PP, while having constant sides has
variable angles and changes its form in the course of the motion.

A mechanism similar to that of Fig. 37 (Art. 133) can be used
to effect mechanically the composition of simple harmonic motions
in the same line whether the periods be equal or not. This is the
principle of the tide-predicting machine devised by Lord Kelvin.*

136. To show the connection of the present subject with the
theory of wave motion, imagine a flexible cord A8 of which one

* See THOMSON and TAIT, Aatural philesophy, Vol. 1., Part 1., new edition, 1879,
P- 43 sq. and p. 479 sq., and J. D. EVZRETT, Vibratory motion and sound, 1882.
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If P, be the initial position of the moving point at the time
t=o0, and X AOP,= 6, then the arc A= s described in the
time ¢ is s = {6, — 0); hence v =ds[dt= — ld0|d!, and dv|dt
= — /d*0[dt*, the negative sign indicating that @ diminishes as s
and ¢ increase.

Resolving the acceleration of gravity, g, into its normal and
tangential components g cos 8, g sin 8, and considering that the
former is without effect owing to the condition that the point is

Fig. 40.

constrained to move in a circle, we obtain the equation of motion
in the form dv/dt = g sinf, or

2

ldt” + g sinf = o. (23)

150. The first integration is readily performed by multiplying
the equation by 46 /d? which makes the left-hand member an exact

derivative,
d[ / (d8\?
2l z\7) —¢ cosf |;

hence integrating, we obtain

(dO\* '
1 —_— -_— =
3 (1 7 ) g cosl = C,
or considering that v = — /d/d,
3* — gl cosd = Cl.
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or, putting g// = p*:
a6
as
This is a well known differential equation (compare Art. 82,
eq. (19), and Art. 125), whose general integral is
0 =C, cosut + C, sinpt.
The constants (|, C, can be determined from the initial condi-

tions for which we shall now take § = 6,and v=o0 whenf=o0;
this gives €, = 6,, C;=0; hence

= — Wb, (25)

I
0= = —cos™! —.
0, cosut, ¢ Pl A

The last equation gives with § = — 6, the time ¢ of one swing
or beat, that is, half the period: -

T /
tl=;=7r\l;. (26)

The time of a small oscillation or swing is thus seen to be inde-
pendent of the arc through which the pendulum swings ; in other
words, for all small arcs the times of swing of the same pendulum
are very nearly the same ; such oscillations are therefore called
isockronous.

152, The formula (26) shows that for a pendulum of given
length /, the time of one swing ¢, varies for different places owing
to the variation of g. As/ and ¢ can be measured very accu-
rately, the pendulum can be used to determine g, the acceleration
of gravity at any place ; (26) gives:

4
&="43 (27)
1

Now let /, be the length of a pendulum which beats seconds, . e.
makes just one swing per second; by (26) and (27) we find for
the length /, of such a seconds pendulum :

g /
lo=,,,—,z=il%- . (28)
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OP = r drawn from the center O to the moving point P, the com-
ponent 7, of the acceleration, at right angles to the radius vector,
is always zero. We have therefore by the last of the equations

(6) of Art. 114:
. 1d ’_2(10 _
Jo-;zt ar =0,

dé

r’z=c, (35)

whence

where ¢ is the constant of integration. By Art. 97 this equation
means that the sectorial velocity is constant and equal to %c.

160. Let S be the sector 2,0P described by the radius vector »
in the time /, so that &S = }°40 is the elementary sector described
in the element of time 42. Then (35) can be written ‘

as
?; = }‘.)

whence integrating, since S=o0 for z=0:
S = ez

This shows that tke sector is proportional to the time in whick it is
described, which is merely another way of stating that the sectorial
velocity is constant.

It can be shown conversely, by reversing the steps of the above
argument, that if in a planc motion the areas swept out by the
radius vector drawn from a fixed point of the plane are propor-
tional to the time, the acceleration must constantly pass through
that point.

It is well known that Kepler had found by a careful examina-
tion of the observations available to him that #ke orbits described
by the plancts are plang curves, and the sector described by the radius
vector drawn from the sun to any planct is proportional to the time
tn which it is described. This constitutes Kepler's first law of
-planetary motion.
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tains three variables z, y, # We must therefore try to combine
the equations so as to form integrable combinations.

1638. Let us first multiply the equations (36) by y, x and sub-
tract; the right-hand member of the resulting equation is zero
while the left-hand member is an exact derivative :

dy _E_d (Y _ 4R\
*ar vl = a\Fa Tl a )=
Integrating we find
dy dx
YaTraTo
or, introducing polar co-ordinates :

do
r 2Z=5 (35)

which is the equation (35), Art. 159; comp. Art. 97.

164. Next multiply the equations (36) by dx/dt, dy/dt and add.
The left-hand member of the resulting equation is

ded>* dyd’y d dr\? dy d .
@ ar ™t drar =21[* (4:) +4 (72:) =z

the right-hand member becomes
(. dx A\ _  And _ find
— S \Fatra)T T At @ )= - 500
dr

==/

The resulting equation

A3 = —f(r) dr
can be integrated and gives

17— == [ ) s7)

1. e. it determincs the velocity = as a function of 7.
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fO=— 2 3= —%‘:[(7521% (:‘)]

245 ()18

__a d*1 d1 1d1\do
== (W?'E?“"?Q@?)Tr

d*1 1\dr1,
““"(2@;*“;)‘“'
hence

f(r)= i: ( ;}19:5- + }) (39)

168. Kepler in his second law had established the empirical fact
that the orbits of the plancts are ellipses, with the sun at one of
the foci.

From this Newton concluded that the law of acceleration must
be that of the inverse square of the distance from the sun.

Our equation (39) enables us to draw this conclusion. The
polar equation of an ellipse referred to focus and major axis is

-t
=1 ¢ cosd’

where / = #[a = a(1 — #); a, b being the semi-axes, / the semi-
latus rectum, and ¢ the eccentricity. Hence

1_1 ¢ g D1__¢ 0
;-=—l-+7COS, aa"zr——l'cos’

so that (39) becomes

A= (40)
169. The third law of Kepler, found by him likewise as an

empirical fact, asserts that e squares of the periodic times of dif-

Jerent planets are as the cubes of the major axes of thetr orbits.
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d(}v’)_ dx dy __kd x’+
dar r’ ALY’ _r’dt
M dr_ d1
=—pa=Vlar
hence integrating
# B
W —Iylr==— S (42)

0

171. To find the equation of the path, or orézf, write the equa-
tions (41) in the form

d*r »

and eliminate »* by means of (35);

&r  p 0(10 ay l‘ ., do
dE= "V g AT Sz

Each of these equations can be integrated by itself:

B o
e —), = — ‘- s1n0, d_t - v = (COSe - l)’ (43)

where 7,, v, are the components of the velocity when 6 = o.
Multiplying by y, x and subtracting we find, by Art. 163 :

p B . b
(B=v)z+ur+e=ticcost+ysind) = 2yT7 (ua)

172. The geometrical meaning of this equation is that the
radius vector » = /2% + »* drawn from the fixed point O to the
moving point P is proportional to the distance of P from the
fixed straight line

(:_—‘—v,)x+1l,y+c=o. (45)

It represents, therefore, a conic section having O for a focus and
the line (45) for the corresponding directrix.
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The character of the conic depends on the absolute value of
the ratio of the radius vector to the distance from the directrix ;
according as this ratio,

N

is <1, = 1, or > 1, the conic will be an ellipse, a parabola, or a
hyperbola. This criterion can be simplified. Multiplying by p/c
and squaring, we have

22,
2 2 2=
.._?_. <+ q}’ + 1/] o,
1 2 2 g3 = 1 i o
or since v, + Yy =17, and ¢ = LA smw[ro =737,

2p
N (49)

2
'Ul)

VIIA

173. If polar co-ordinates be introduced in (44), the equation of
the orbit assumes the form

I_ B (B_* S W
S =3 + (‘_ ‘3) cosf - sind,

or putting (cv, — p)[/c* = C cosa, v,[/c = C'sina,

1_p

;=at C cos(f + a). (47)

This equation might hdve been obtained directly by integrat-
ing (39), which in our case, with f(r) = p/*, reduces to

a’1

dé*r

I_ 4,
tr=a
the general integral of this differential cquation is of the form (47),
C and a being the constants of integration.

Equation (47) represents a conic section referred to the focus as
origin and a line making an angle a with the focal axis as polar

axis.
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The quadrilateral 1 2 3 4 is therefore, and always remains, inscribed
in the quadrangle C,C,C,,C,. This can be shown to hold even for
the complete quadrilateral and quadrangle. The complete quadrilateral,
or four-side, 1 2 3 4 has six vertices, viz. the six intersections 1, 2, 3,
4, 5, 6 of its four sides, the complete quadrangle, or four-point,
C,,C,sC,,C,, hassix sides, viz. the six lines C,,C,,, C,,C,, C,sC,,, C,,C,,»
C,C,, C,C, joining its four vertices; and these six sides of the quad-
rangle pass through the six vertices of the quadrilateral, respectively.

Flg. 49.

It remains to prove that C,,C,, passes through 5 and that C,C,, passes
through 6.

Now the velocity of 2 can be expressed by o, - C,,2 and also by
w,-Cy2; hence C,2/C,2=w,/w; similarly C,3/C,, 3= v,/w,
We have therefore, by the proposition of Menelaus,* for the intersec-
tion of 2 3 with C,C,,:

*If the sides of a triangle A4 3C be cut by any transversal, in the points 47, 5/, O,
then B, €8 AT
AC B4 B
solid geometry, Boston, Ginn, 1899, p. 240.

— 1. See for instance BEMAN and SMITH, New plane and
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5Ca_.
SCu w,

The same value is obtained by determining the intersection of 1 4 with
C,,C,,; the two intersections must therefore coincide.

The proof for the point 6 is analogous.

A corresponding proposition holds of course for four bar linkages
with crossed bars 1 2 4 3, or 1 3 2 4.

192. Lever-crank. The linkage considered in the preceding article
becomes a mechanism, or linkwork, as soon as one of its four links is
fixed. It occurs in machines under a variety of forms some of which
are referred to below.

Let the link 3 4 be fixed ; then the center C,, (Fig. 49) disappears;
C, falls into 4, C, into 3,
and C,, becomes the inter- 3
section 5 of 4 1 and 3 2.

If 1 2 were fixed instead

of 3 4, 3 4 would have its 2

center at 5. Similarly, if 1

either 4 1 or 2 3 be fixed,

the center of the other is [ 4 3
6. Hence whichever of the

four links be fixed, the cen-

ters of all the links lie at some of thesix vertices of the complete quad-
rilateral 1 2 3 4.

If 3 4 be the fixed link (Fig. 50), the ratio of the angular velocities
w, of 41 and w, of 32 can be found. For if » denote the angular
velocity of 1 2 about 5, we have

Flg. 80.

41.0,=51.w, 32.0,=52.0;
hence
@, _4152 52 51,

w, 3251 32[ 41’
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198. Parallelogram: 41 = 32 =4, 4 3 =1 2= 4(Fig. 51). The
link 1 2 has evidently a motion of translation, its instantaneous center
lying at the intersection of the parallel lines 4 1, 3 2.

The fixed centrode is the line at infinity ; the body centrode may be

Flig. 51.

regarded as a circle of infinite radius described about the midpoint of
3 4 as center.

To find the equation of the path of any point 2 rigidly connected
with 1 2, let x, y be the rectangular co-ordinates, with respect to 4 as
origin and 4 3 as axis of x, and x,, y, its co-ordinates for parallel axes
through 1; then, putting ¥ 34 1 =6, we have

x=a cosf + x,, y=ésin0+yl;

hence, eliminating 6,

(x—xl)’ + (}’-)’1)’= a’,

which represents a circle of radius @ whose center has the fixed co-ordi-
nates x,, y, (comp. Art. 26, Ex. (9)).

For the velocity of 2 we have dx/dt =

A —ao sind, dy/dt = aw cosf; hence

A A v = aw, as is otherwise apparent.
1

2 194, If in the parallelogram 12 34
the point 4 alone be fixed, we have a
linkage called the pantograph.

It can serve to trace a curve similar to
a given curve. Indeed, any line through
4 (Fig. 52) cuts the opposite links 1 2, z 3 (produced if necessary)

4 8
Flg. 52,
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in points 4, A’ whose paths are homothetic (similar and similarly
situated) curves. For the points 4, 4, 4’ remain always in line and
the ratio 44/44’ remains constant. Hence if a pencil be attached
to A’ and 4 be made to trace a given curve, 4’ will trace a similar
curve.

Instead of fixing 4, the point 4’ might be fixed ; then 4 and 4 will
describe similar curves. This property is utilized in Watf’s parallel
motion (see Art. 199). .

The parallelogram linkage furnishes also a simple instrument for
describing ellipses. Let the sides of the parallelogram be 23=41
=a, 12= 34=24; and let a point 4’ on 2 3 produced, at the dis-
tance 4 from 2, be fixed (Fig. 53). Then, if 1 be made to describe a

3
1

Fig. 53.

N

Ar

straight line passing through 4’, 4 will describe an ellipse. For,
taking 4’ as origin and A4’ 1 as axis of x, we have for the co-ordinates
of 4: x = (@ + 26) cosy, y= asing, whence

27
G@ray ta— "

195. In the parallelogram 1 2 3 4, let the link 1 2 be turned so as
to coincide in direction with 4 3, and then give the links 41 and 32
rotations of opposite sense. We thus obtain a linkage with equal,
but intersecting, opposite sides, a so-called anti-parallelogram
(Fig. 54). If 34 be fixed, the instantaneous center of 1 2 is the
intersection 5 of 4 1 and 2 3.

To obtain the centrodes in this case, notice that as the triangles
152 and 5 3 4 are equal, the triangle § 4 2 is isosceles; hence 51 =
53,and 45 — 35=41=a. Thedifference of the radii vectores of
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The theory of inversors is based on the following geometrical prop-
osition : If three lines C4 =a, C4A'=a, CO= 4 (Fig. 55) turn
about C so that O, 4, A’ are always in line, the product 04 - 04’
remains constant, viz. 04+ OA4’ = 4 — a*. For if the circle of radius
a described about C intersect the line OC in B and B’, we have
0OA4-04'= OB-0OB' = (b—a) (b + a).

This proposition shows that in the anti-parallelogram 1 2 3 4 (Fig.
56), with the vertex 4 fixed, the line joining the vertices 4 and 2 in-

. V 7 \a

"
P) I\ _ ——

Flg. 56.

tersects the circle described about 3 with radius 3 2 in a point 2’ such
that 2 and 2’ describe inverse curves with respect to 4 as pole. For we
have 42’ - 42 =43 — 23'=4'—a'.

Moreover, any parallel to 4 2 will intersect the links 41, 43, 21 in
points O, 4, A’ dividing the three lines in the same ratio; hence

42'(=13) _ o4
04 42

i.e. OA- OA' = 42'- 4 2 = b — a*, so that if O be fixed, 4 and 4’
will describe inverse curves for O as pole. This is the principle on
which Hart’s inversor is based.

197. Peaucellier's cell is another inversor (Fig. 57). It consists
of the linked rhombus 4 B A’ B’ whose side we denote by a4, and the
two equal links O B, O B’ of length 4. If O be fixed, 4 and A4’ evi-
dently describe inverse curves for O as pole.

The figure shows that with X4 OB =y, XA’ A B=¢ we have
OA = b cosy — a cos¢y, OA’ = b cosy + a cos¢, whence

OA4- 0A4' = B cos’y — a* cos',
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velocity of B4’ about C. Then v = '+ CA4’; also since the point B
describes a circle about O, wd = «’- CB; hence
’
V=w- EC,% b.
If B4’ intersect OO’ in E, we have from similar triangles C4’: CB
= OE: OB; hence

v=uw-O0F.
The variable length OF depends on the angles £0B8 =6 and
BE O = ¢ which are connected by the relation (Art. 197)
P —a

a cos¢ + 4 cosd = 0D = v

The figure gives O = 4 cosé + 5 sind coty ; hence, finally,
v = wb sind (cotd + coty).

199. In the steam engine and other machines mechanisms are re-
quired for transforming the alternating rectilinear motion of the piston

Fig. 58.

into the reciprocating circular motion of a crank, eccentric, or beam;
a mechanism of this kind is called, rather inappropriately, a parallel
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PART II:

INTRODUCTION TO DYNAMICS;
STATICS.

CHAPTER IIL
INTRODUCTION TO DYNAMICS.
1. Mass; Moments of Mass; Centroids.

I. MASS; DENSITY.

200. In the first part of this work only the geometrical and
kinematical properties of motion have been considered, the moving
object being regarded as a mere point or as a geometrical con-
figuration. It is, however, known, from observation and experi-
ment, that the motions of actual physical bodies are not fully
described and determined by those properties alone.

Physical bodies are distinguished from geometrical configura- ‘
tions by being possessed of mass; and this property as affecting
their motion must be taken into account in dynamics.

201. In physics the mass of a body is usually said to be zke
quantiiy of matter contained in the body. Postponing for the
present the full discussion of the idea of mass in its relation to
acceleration and force, and of the methods for comparing and
measuring masses, it will suffice for our present purpose to think
of the mass of a body as a certain constant quantity, independent
of the body’s position or motion with respect to the earth or other
bodies, as an indestructible something underlying every physical
body.

PART 11—9
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In the metric system, then, there is no difference between den-
sity and specific density or specific gravity.

2, MOMENTS AND CENTERS OF MASS.

210. The proauct of a mass m, concentrated at a point 2, into
the distance of the point P from any given point, line, or plane
is called the moment of this mass with respect to the point, line,
or plane.

Thus, denoting by 7, ¢, p, the distance of the point 2 from
the point O, the line /, and the plane =, respectively, we have
for the moments of # with respect to O, /, m, the expressions
mr, mq, mp.

211. Let a system of 7z points, or particles, 72, P, ... P, be
given ; let m,, m,, ... m_ be their masses, and p,, 2, - - - 2, their
distances from a given plane w. Then we call moment of the
system with respect to the plane 7 the algebraic sum

mp +mp,+ -+ mp =Zmp,

the distances p,, 2,, --- 2, being taken with the same sign or
opposite signs according as they lie on the same side or on oppo-
site sides of the plane .

It is always possible to determine one and only one distance
P such that Zmp = Mp, where M =Zm=m + m+ ...+ m,
is the total mass of the system. If this distance 7 should happen
to be equal to zero, the moment of the system would evidently
vanish with respect to the plane .

212. Let us now refer the points P to a rectangular set of axes
and let x, y, z be their eo-ordinates. Then we have for the
moments of the system with respect to the co-ordinate planes yz,
zx, xy, respectively

max, + mx,+ .. + mzx, =3Imxr= Mz,
my, +my,+ -+ my,=Zmy = My,
ms, + mg,+ oo+ mg, =Zmz= M3,
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The point G whose co-ordinates are

_ Z2mx _ Zmy _ Zmz
= M‘: J= M z=7’ (l)

is called the center of mass, or the centroid, of the system.

The centroid is, therefore, defined as a point such that if the
whole mass M of the system be concentrated at this point, its moment
with respect to any ome of the co-ordinate planes is equal to the
moment of the system.

218. It is easy to see that this holds not only for the co-ordinate
planes but for any plane whatever. Let

ar+ By +ys—p,=0

be the equation of any plane in the normal form; 3, 2, 2,,... 2.,
the distances of the points G, P,, P,, - .. P, from this plane. Then
we wish to prove that 2mp = Mp.

Now

7=f&+37+’7§—1’¢, P1=u1+ﬁ}'g+'7zl—fv"‘;

hence
Imp = aZmx + BEmy + yEZms — pEm
=M(Z+ B + vE—p)

= Mp.

The centroid can therefore be defined as a point such that its
moment with respect to any plane is equal to that of the whole
system, with respect to the same plane.

It follows that the moment of the system vanishes for any plane
passing through the centroid.

214. In the case of a continuous mass, whether it be of one,
two, or three dimensions, the same reasoning will apply if we
imagine the mass divided up into elements 4/ of one, two, or
three infinitesimal dimecnsions, respectively. The summations
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indicated above by 2 will then become integrations, so that the
centroid of a continuous mass has the co-ordinates

Sz [yat  [zdM
faw” 77 fanr’ *T famr
According as the mass is of one, two, or three dimensions,

a single, double, or triple intcgration over the whole mass will
in general be required for the determination of the moments
J2dM, [ydM, [zdM of the mass with respect to the co-ordi-
nate planes, as well as of the total mass f dM= M.

Thus, for a mass distributed along a line or a curve we have,

if ds be the line-element,
- dM = p''ds,

(0

T=

where p"’ is called the lincar density ; for a mass distributed over
a surface-area we have, with 45 as a surface-element,

dM = p'dS,

where p’ is the surface (or areal) density ; finally, for a mass dis-
tributed throughout a volume whose clement is JV

dM=pdV,
where p is the volume density.

If the mass be distributed along a straight line, the centroid
lies of course on this line, and one co-ordinate is sufficient to
determine the position of the centroid. In the case of a plane
area, the centroid lies in the plane and two co-ordinates determine
its position; we then speak of moments with respect to lines,
instead of planes.

215. If the mass be homogeneous (Art. 207), 7. e., if the den-
sity p be constant, it will be noticed that p cancels from the
numerator and denominator in the equations (2), and does not
enter into the problem. Instead of speaking of a center of mass,
we may then speak of a center of arc, of arca, of volume. The
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homogeneous segment PQ. If we imagine the mass of every
such element concentrated at its middle point, the homogeneous
triangle is replaced by its median CC’ in which the density is
proportional to the distance from the vertex C.

The centroid of a homogeneous triangular area lies therefore on
the median at two thirds of its length from c
the vertex; as this holds for each median,
the intersection of the three medians is the
centroid (comp. Art. 227).

() For n=2, we have x=4/ This F N
gives the position of the centroid of a /omo-
geneous pyramid or cone, by reasoning similar o
to that used in (). Fig. 60.

Thus, to find the centroid of any homogeneous pyramid or
cone, join the vertex to the centroid of the area of the base; the
required centroid lies on this line at a distance equal to § of its
length from the vertex.

223. Homogeneous Circular Arc (Fig. 61). Let O be the
center, » the radius of the circle; ACB
= s the arc, C its middle point. The cen-
troid G must lie on the bisecting radius
OC, since this being a line of symmetry,
the sum of the moments of the elements
of the arc is zero with respect to this line
(Art. 216). To find the distance Z = OG,
we take moments with respect to the di-
ameter perpendicular to OC. With OC
as axis of x, we have

u s-Z=[zds =7 [ds cosCOP=7r[dy.

Fig. 61. Hence, s.Z=r.c, if ¢ be the length of
the chord 4B.
If the angle AOB = 2a of the arc AB were given, we might
obtain the result by taking the angle COP= @ as independent
variable. We have then
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two parallel sides 4B = a, CD = b, denoting the height of the
trapezoid by %, and the distances of G from ¢ and 4 by 7 and 7/,
we obtain

C_F D E
': —
! "
G" /”,
1
_— |
E’ A E B
Fig. 64.

¥a+ -7 = Yah-}h + 3ok -3,
Ha+ Y7 = Yak-$4 + 3ok - /.
Dividing, we find

7 EG_a+26 da+6
TS GF T 2a+6 a+1b

This gives the following construction: Make A£'=4 on the
prolongation of @, and DF’ = a on the
prolongation of 4, in the opposite sense ;

x then £’F will intersect £F in G.
<PrP 281. To find the centroid of the
a cross-section of a T-iron (Fig. 63), it

is only necessary to find its distance -
. P #z from the lower side AB; for it must
« c lie on the axis of symmetry CD. Tak-
A * & 38 ing moments with respect to 4B we
obtain with the notation indicated in

the figure:
[208 + 2(6 — B)a] -7 = 208.5 + 26 — B)a. 5,

Flg. 65.

hence
aB + ba® — a?B

=} B ita—af
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If a, B are nearly equal and very small in comparison with a, 5,
we have approximately
- a + ba
Z=1} a+b—a
or still more roughly r

F=torv

232. The area of a homogeneous circular sector (Fig. 61, p. 139),
of radius » and angle AOB = 2a can be resolved into triangular
elements POP = }7°d6, the bisecting radius OC being taken as
polar axis. The centroid of such an element lies, by Art. 227, at
the distance » from the center O. Regarding the mass, p’ . }°d6,
of each element as concentrated at its centroid, the sector is re-
placed by a homogeneous circular arc of radius 4 and density
3p'7d6. By Art. 223, the centroid of such an arc, which is the
required centroid of the sector, lies on the bisecting radius OC at
the distance §r.sina/a from the center 0. Hence

233. In general, for areas bounded by curves we must resort to
integration, using the general formula of Art. 214.
If the area S be plane, we have in rectangular co-ordinates

M= f * jm p'dxdy,
. = Yn
Mz= f f p'xdxdy, M.j= r p'ydxdy;
n vYn o Y

and if the mass be homogeneous, 7. ¢. p’ = const., since then the
first integration can at once be effected :

s=[vr-n
S.F= j:' Apy—2)dz, S-F=} j: (2 — 7,

or similar expressions for y as independent variable.
PART II—IO
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In polar co-ordinates, the element of area is »drd6, and we have
x = r cosB, y = r sinf; hence

S= f f rdrd0,
S-z=[ [ cosbdrdd, S.7=[[7 sinbdrde;

or, performing the first integration, -

S=13 j: 16,

SZ=}| 7%cosbdd, S-7=13%| »*sin6d6.
o ()

It will be noticed that these last formula express also that the
infinitesimal sector }»%46 is taken as element, the centroid of this
element having the co-ordinates §r cos6, §r sinf.

234. As a somewhat more complicated example let us consider a
circular disk of radius @, in which the density varies directly as the’
distance from the center. Let a circle described upon a radius as
diameter be cut out of this disk ; it is required to find the centroid of
the remainder.

Let O be the center of the disk of radius @, C that of the disk of
radius 32 ; G, the centroid of the latter, G the required centroid ; and
put OG, =%, OG=73%. Then if M, be the mass of the smaller disk,
M, that of the larger, we must have (M, — M)) - X = M %,.

The equation of the smaller circle is »=a cosf. Taking as ele-
ment of the mass of the smaller disk the mass contained between two
arcs of radii » and » 4 4r, we have for this element:

dM, = p' - 20rdr,
or since p' = kr, r = a cosb,
dM, = 2ka*0 cos'dd (cosf).
Hence
0
M, = 3k’ f 0d (cos*0)
t L]
]
— LY 3
= §ka'(0 cos'd f cos 0110)',2

= i [ cost0as = ' § = ko,
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The centroid of the element 4/, lies, according to Art. 223, at the
distance 7 sin0/0 from O. We have therefore

Mx, = — zkd'f 0 sinf cos'0d6 - r smo

= 24a* f “sin’0 cos'ody = sha'.
(]

The mass of the larger disk is

My= [Threanredr = ank [ r'dr = uia’.
0

Substituting these values in the equation of moments we find :

M7z, 6
= 11

= = a==0.1616a.
M, — M, 5(3x—2)

235. Proceeding to the determination of the centroids of curved
surface-areas, we begin with the special case of the homogeneous
area of a surface of revolution, bounded by two planes at right
angles to the axis. The centroid evidently lies on the axis of
revolution, which we take as axis of x; it is therefore sufficient
to take moments with respect to the ys-plane. As element we
take the strip contained between two planes, parallel to the ys-
plane, at the distances x and x + dr from it; if the equation of
the meridian section be 7 = f{z), where 7 is the distance of any
point of the surface from the axis of revolution, we have for this
element :

dS = 2mnds = 2w VAP + dp = 2mf(2) V1 + fdx.

Hence, if the boundmg planes have the distances z,, #, from the
ys-plane:

=27 f §167) I/;T—dx S-Z= 2wrzﬂx) m—fﬁdm

238. When the area is bounded by two planes perpendicular to
the axis of revolution and any two meridian planes, inclined to
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of x and y,, 5, are the two ordinates of the curve bounding the
area. On the other hand, if 7 be the distance of the centroid G
of the plane area from the axis,

we have
Sy= %f(}':’ —}'l’)d.t, e
by Art. 233. Combining these g
two results, we find U z
Fig. 66.

V=2n7-S5,

i. e., the volume of a solid of revolution is obtained by multiplying
the gencrating arca into the path described by its centroid.

The proposition evidently holds even for a partial revolution.

289. To find the centroid of a portion of any curved surface
F(x, y, 2)= o, we have only to substitute dM = p’dS in the
general formule of Art. 214, and then express 4S by the ordi-
nary methods of analytic geometry.

Denoting by /, m, n the direction cosines of the normal to
the surface at the point (¥, y, £), and putting for shortness
OF|ox = F,, 0F|dy=F, 0F[0z=F, we have
dyds dzdx dzdy

= = »

/ m n

as=

I m n I

Hence, substituting
dS=dedy VEI A ET+ B}
F,

in the formulae of Art. 214, we find

'z 2 2 ]
M= f" f ey Vet B+ EY
n van 1;'

where the integration is to be extended over the projection of
the portion of surface under consideration on the plane zy. The
equation of the curve bounding this projection must be given ;
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248. In polar co-ordinates, 7. e. for the radius vector 7, the co-
latitude @ and the longitude ¢ (Fig. 72), the element of volume
is an infinitesimal rectangular parallelepiped having the concur-
rent edges dr, »d0, » sinfd¢ ; hence

dv = 7 sinfdrd0de.

As x=r cosl, y = r sinf cosp, z = r sinf sing, the centroid is
determined by the equations :

x

d¢

Fig. 72.

M= [ [pr* sinddrdods,

M-z= f f f pr® sinf cosOdrd0de,
M-y= f j ' f pr® sin®0 cospdrdfde,
M-z = [ [pr* sin®0 sinpdrdfds.

In the simple cases that occur most frequently in the applica-
tions the triple integrals can often be reduced at once to double or
even simple integrals by selecting a convenient element.

249. As an illustration let us determine the centroid of the volume
OABCD (Fig. 73) bounded by the three co-ordinate planes and the
warped quadrilateral (hyperbolic paraboloid) 4BCD. The latter is
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generated by the line ZM gliding along 48 and CD s0 as to remain
parallel to the plane yz. The data are O4d = CD=ga, OB =,
OC=AD=c.

We take as element an infinitesimal prism Q2 of base dxds and
z

A D

Fig. 73.

height y. From similar triangles we have y/RL = (¢ —s)/c, and
RL[b= (a —x)/a; hence ‘
8—x c—5

a ¢

y=94

Thus we find, rejecting the constants which cancel in numerator and
denominator,

ﬁcﬁex(a — x) (¢ — z)dxdz j:.x(a —x)dx (& — §)

J_r=_j,;aj:c(a—ac)(c—z)dm;—‘f‘(,,__x)d,‘,r,(‘,_F)
i Tt TR

S e

AL S [

y=

ffb“"'x C 2 dxds E’T‘_ﬁ'(a—x)dx-}c;

__._.x”__
- f(l %

Finally, = }¢, by analogy with %.
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7. ¢ 1 F.P.S. unit of momentum = 13 825.3 C.G.S. units, and 1
C.G.S. unit = 0.000072 331 F.P.S. units.

254. Exercises.

(1) What is the momentum of a cannon-ball weighing 200 1bs. when
moving with a velocity of 1500 ft. per second?

(2) With what velocity must a railroad-truck weighing 3 tons move
to have the same momentum as the cannon-ball in Ex. (1) ?

(3) ‘Determine the momentum of a one-ton ram after falling through
4 feet.

255. The product my of the mass m é"a particle into its accelera-
tion j is called force. Denoting it by F, we may write our equa-
tions (2) in the form >

my = Ft, :=§f—;f, ym? = Fs. (3)

As long as the velocity of a particle of constant mass remains
constant, its momentum remains unchanged. If the velocity
changes uniformly from the value » at the time # to 2/ at the
time #, the corresponding change of momentum is

mv —mv=mjtl —mjt= K¢ —1¥); (4)
hence
mv’- — my
F=2 T (5)

Here the acceleration, and hence the force, was assumed con-
stant. If 7 be variable, we have in the limit as # — # approaches

Z2€ero ;. :
d(mv) dv
P =mg . ©

Instead of defining force as the product of mass and accelera-
tion, we may therefore define it as the rate of change of momentum
with the time.

256. Integrating equation (6), we find

4
f Fdt = mv — mv. (7)
t
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force is not arbitrary, but based on the characteristics of motion as
observed in nature.

In the corollaries to his laws Newton tries to show how the compo-
sition and resolution of forces by the parallelogram rule follows from
his definition. In deriving this result he tacitly assumes that the action
of any force on a particle takes place independently of the action of
any other forces that may be acting on the particle at the same time,
a principle that would seem to deserve explicit statement. Some
writers on mechanics, in particular French authors, prefer to replace
Newton’s second law by this principle of the independence of the action
of forces.

272. The third law expresses the physical fact that in nature all
forces occur in pairs of equal and opposite forces. In modern phrase-
ology, two such equal and opposite forces in the same line are said to
constitute a-s¢ress. Newton’s third law is therefore called the law of
stress.

This law, which was first clearly conceived in Newton’s time, involves
what may be regarded as the second fundamental property of matter
or mass (the first being its indestructibility ) ; viz. that any fwo particles
of matter determine in each other oppositely directed accelerations along
the line joining them. 4

The historical development of the fundamental ideas of mechanics
is discussed in a very instructive manner by E. MAcH, in his Science
of mechanics, a critical and historical account of its development, trans-
lated by T. J. McCormack, 2d edition, Chicago, Open Court Pub-
lishing Co., 1900.
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The graphical condition of equilibrium consists in the closing of
the force polygon, that is, in the coincidence of its terminal point
6 with its initial point 1.

y,

279. Analytically, a systematic solution is obtained by resolv-
ing each force F into three components X, ¥, Z, along three
rectangular axes passing through the particle, or point of applica-
tion of the given forces. All components lying in the direction
of the same axis can then be added algebraically, and the whole
system of forces is found to be equivalent to three rectangular
forces 2.X, 2Y, £Z, which, by the parallelogram law, can be
combined into a single resultant

R=Vv(EXP+CVy+ 2y

The angles @, 8, ¥ made by this resultant with the axes are
given by the relations

Fig. 76.

cosa_cosB cosy 1
X TY T 2Z KR
280. If the forces all lie in the same plane, only two axes are
required and we have

= VEX)Y+ GV, tanf=5% X,

where 6 is the angle between the axis of X and R. :

281. The condition of equilibrium (Art. 277) R=0 becomes,
by Art. 279, EX )+ (2Y )+ (2Z)*=o0. -As all terms in the
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286. Varignon's Theorem. Multiplying the last equation by any
length OS = s taken through the initial point O of R and at right
angles to /, we obtain ’

R-s cos(l, R)= P-s cos(l, P) + Q-scos(/, Q),

or since s cos(/, R) =r, s cos(/, P)
= p, scos(/, Q) =g, where 7, 9, ¢
are the perpendiculars let fall from
Son R, P, Q, respectively,

Rr=Fp + Q.

In this form the proposition is inde-
pendent of the dircction of the line
Z and holds for any point S in the
plane of the parallelogram. Fig. 78.

287. Moment of a Force. The product of a force into its per-
pendicular distance from a point is called the moment of the force
about the point. The product is taken with the positive or nega-
tive sign according as the force tends to turn counter-clockwise
or clockwisc about the point.

The proposition of Art. 286, Pp + Qg = Rr, can now be stated
in the following form: the algebraic sum of the moments of any
' two intersecting forces about any point in
thetr plane is cquai to the moment of
their resultant about the same point.

288. The product Rr represents twice
the area of the triangle having R for its
base and S for its vertex; £p, Qg can
be interpreted similarly. This remark
leads to another simple proof of Varig-
non’s theorem, which may serve to
make its meaning better understood. With the notation of Fig.
79 we have

SOR = SOQ + SOR + QOR,
or :
Rr=Q-g+P ST+ P-TU;

PART 1I—12
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This equation proves Varignon's theorem of moments for two
parallel forces. ‘

297. If in particular, the origin of moments be taken at the
point s (Fig. 83) where pg is met by R, we have.

= Pps—Q-sq, orl =7
o= Pps —Q-sq, orQ P
This means that the resultant of two parallel forces divides their
distance in the inverse ratio of the forces. As this proposition
finds application in the theory of the lever, it is commonly referred
to as the principle of the lever.
Dropping perpendiculars p, ¢ from any point of the resultant
R on the components £, Q, the relation can be expressed in the
form :

Pp=—0Qq.

This important relation can also be obtained by observing that
the triangles prs and P/ pP, as well as the triangles ¢grs and 0’90,
arc similar, so that
ps F sq F
sr P v Q
whence, dividing,
rs_¢Q
sqg P

298. It has been shown that two parallel forces P, Q acting on
a rigid body, provided they are not equal and of opposite sense,
have a resultant R = P+ (Q, parallel to Pand Q, and that its
position in the rigid body can be found either analytically from
the fact that R divides the distance between P and Q in the inverse
ratio of these forces, or graphically by the construction of Art.
204.

This graphical construction is best carried out in the following
order (Fig. 84). The parallel forces P, Q being given in position,
begin by constructing the force polygon, or stress diagram which
here consists merely of a straight line on which the forces =1 2,
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The process will best be understood from the following example.

The horizontal beam 48 (Fig. 85) resting freely on the fixed sup-
ports A, B carries four weights IV, W, W,, IV,

To determine the position of the resultant and the reactions 4, B of
the supports, construct the force polygon by laying off in succession
onavertical line12=MW,,23=W,34= W, 4 5= W,; select
any point O as pole and join it to the points 1, 2, 3, 4, 5.

Now we may regard 1 O and O 2 as components into which }#] has
been resolved ; similarly 2 O and O 3 as components of }¥,, 3 O and

-

ey

Fig. 85.

O 4 as components of }¥,, and 4 O and O 5 as components of ¥
This resolution of the weights into components is transferred into the
main figure by constructing the funicular polygon as follows: through
any point A’ on the line of the reaction 4 draw a parallel I to
O 1 ; through the intersection of I with JF] draw a line II parallel to
O 2 ; through the intersection of II with 1/, draw III parallel to O 3;
through the intersection of I1I with ¥, draw 1V parallel to O 4; and
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of the curve in the form

- Substituting this value of dx/dy in the relation ds* = d2* 4 4y},
we obtain
ds\? a3 sds
—)=14S,ordy=4—-——
(@) Eate VSt

which gives by integration y 4+ C= V's® 4+ &, the minus sign
being rejected since y increases with s.
The constant C can be made to disappear by taking the origin

T
u ~,
:&\‘
AN
He——— 1 \\
[ ! AN
N
w P
c E ° \\‘
] \\
i N
/4 \\\ ! \\ T
7 o’ Q N
Fig. 90.

O’ on the vertical through O at the distance 0’0 = ¢ below the
lowest point 0. We have, therefore,

r=s+3

By means of this relation, s can be eliminated from the original
differential equation, and the result,

can be integrated :
clog(y+Vvy—-—)=x+0C
As y = ¢ when = 0, we find C= ¢ log ¢; hence

z
e

Y+ Vi —E=ce
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A= 1V,
Be Fe W,_Icosfl—rsm0

2/sin¢
=}(cot0—§)- w.

If either the dimensions of the cylinder, or the angle 8, be such as to
make tand = //r, no force # will be required to maintain equilibrium ;
G and 4 will then lie in the same vertical line.

338. Zhe homogeneous rod AB = 2! of weight W is jointed at A, so
as to turn about A in a vertical plane. A cord BC attached to the end
B of the rod runs at C over a smooth pulley, and c
carries a weight P. The axis of the pulley Cis
parallel to, and in the same vertical plane with, 8
the axis of the joint A ; AC=h. Find the position
of equilibrium and the pressure on the axis of the
Joint A. (Fig. 101.)

o \P

To make the rod AB free, cut the cord between "o/ W
B and C and introduce the tension, whichis = P; R
also, replace the pressure 4 (since not only its A A

Fig. 101.

magnitude but also its direction is unknown) by its
horizontal and vertical components 4, 4,. Then, puttingf 4CB = ¢,
% BAC = 0, the conditions of equi’ibrium are

A,= Psing, A4 = IV— P cose,
P-hsing = W-/sino.

From the last equation

sing /7 }

sino 2 P’
while from the triangle 4 BC

sing 2/

sind ~  BC’

hence BC = 2/P| 1V, i.c. if we take % to represent W, P will be
represented by 3B C.
For the total pressure 4 we have

A=A4 A= W'+ P — 210 Pcosy,
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sary to know the stress in every member. The following exam-
ple illustrates a simple method for finding these stresses when the
external forces are given.

Let the frame-work represented in Fig. 108 be cut in two
along any line a8 ; the portion on either side of this line must be
in equilibrium under the action of its external forces and the

Fig. 108.

stresses in the members intersected by a8. Thus, in the figure,
the forces 4, W, F,, F,, F,form a system in equilibrium ; hence,
the sum of the moments of these forces with respect to any point
must vanish.

To determine 7|, take moments about the intersection of &,
and F;; thus F, and F, are eliminated from the equation of
moments, and 7, is found. Similarly #, is obtained by taking
moments about the intersection of /; and F#,. The arms of the
moments are best taken from an accurately drawn diagram of the
frame-work.

If only two members be intersected by af, the origin for the
moments is taken first on one, then on the other, of the two
members intersected.
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Next, beginning at the vertex 4 the stresses in the two members
intersecting at 4 are found by resolving the reaction A4 along the direc-
tions of these members; and this is done in the stress diagram by
drawing parallels to these directions through the points @ and 4. The
intersection is denoted by ¢.

857. It will be noticed that the three lines meeting at 4 have cor-
responding to them, in the stress diagram, the three sides a4, é¢, ca of
a triangle. The force 4 = aé is represented by a4 ; the stress in the
member é¢ (i. e. in the member separating the compartments 4, ¢ in
the frame diagram) is represented in magnitude, direction, and sense
by the side 4¢ in the stress diagram ; and the stress in the member ca
is given by the side ca of the triangle aéc. To obtain the sense of
each stress correctly, the triangle ab¢c in the stress diagram must be
traversed in the sense of the known force 4 = a4 ; this shows that the
member 4¢ is compressed, the stress at 4 acting towards 4, while ca
is subject to tension.

It will be found in general that the Jines of the stress diagram corve-
sponding to all the lines meeting at any one vertex of the frame diagram
form a closed polygon. The reason is obvious: the forces at the vertex
must be in equilibrium.

858. To continue the construction of the stress diagram, we pass to
another vertex of the frame diagram, selecting one at which not more
than two stresses are unknown. Thus at the vertex acd the stress in ac
is known, being represented by ac in the stress diagram. Hence draw-
ing through « a parallel to 4a, through ¢ a parallel to ¢, we find the
point & of the stress diagram.

The vertex Jcbef can now be attacked ; 4, ¢4, be are already drawn,
and it only remains to draw ¢f parallel to ¢f and 4f parallel to 4f.

The rest explains itself. Considerations of symmetry are frequently
helpful in affording checks.

359. Exercises.

(1) Check the computed stresses of Exercises (1) and (2), Art.
352, by constructing the stress diagrams.

(2) Find the stresses in the frame (Fig. 112) if 44’ = 40 ft.,
BB =12 ft., the distance between these lines is 3 ft., and B4
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represents what must be overcome by the resistance of the material
of the beam, 7. ¢. by the internal forces holding together its fibers.

These definitions are readily generalized. Let any beam or
girder, supported in any manner, and acted upon by any number
of vertical forces, be divided by a vertical cross-section into two
portions 4 and B. For the portion A the shearing force at the
cross-section is the sum of all the external forces acting on B;
and the bending moment is the sum of the moments of all these
forces with respect to some point in the cross-section.

wl wg wl

(2]
7
/
/s
/
,/
————

4 In I

Fig. 115,

861. According to its definition the bending moment of a beam
at any cross-section is found by adding the moments, with respect
to the cross-section, of all the external forces on one side of the
section.

Graphically, the bending moment is readily derived from the
funicular polygon. Thus in Fig. 115, for the cross-section af,
the resultant of the forces onthe leftis R = A — W, — W, =03
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363. Imagine a body resting with a plane surface on a hori-
zontal plane. Let a small horizontal force P be applied at its
centroid (which is supposed to be situated so low that the body
is not overturned), and let the force P be gradually increased
until motion ensues. At any instant before motion sets in, the
friction is equal to the value of P at that instant. The value of
7’ at the moment when motion just begins is equal and opposite to
the frictional resistance F between the surfaces at this moment,
and this resistance is called the limiting static friction.

Careful experiments with dry solids in contact have shown this
force to be subject to the following laws:

(1) The magnitude of the limiting friction F bears a constant
ratio to the normal pressure N between the surfaces in contact ;
that is

F= o2 r'

where p is a constant depending on the condition and nature of
the surfaces in contact. This constant which must be determined
experimentally for different substances and surface conditions is
called the coefficient of static friction. It is in general a proper
fraction ; for perfectly smooth surfaces u = o.

(2) For a grcen normal pressure the limiting static friction, and
hence the cociicient of static friction, is independent of the arca of
contact, prozided the pressure be not so great as to produce cutting

or crushing.

864. The frictional resistance between two surfaces in relative
motion is called kinetic friction. It is subject, in addition to the
two laws just mentioned, to the third law :

\3) For moderaze vclocities, Kinetic friction is nearly independent
of i velosities of the bodies tn contact.

The coefficient of static friction is somewhat greater than that
of kinetic fricion. A slight jarring will often reduce the coefhi-
cient from its static to its kinetic value.

It must not be forgotten that these so-called laws of friction are
experimental laws, and therefore true only approximately and
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" 877. Let us try to determine the condition which 7} and 7, must
satisfy to prevent slipping. To do this we determine the equilibrium
of the belt at the moment when slipping is just on the point of taking
place.

The tension of the belt increases gradually along the arc of contact
CD from the value 7] at C to the value 7, at D. Let it be 7 at the
point Pand 7'+ 4 T at the near point /~ (Fig. 126). The portion 2/
of the belt is in equilibrium under the action of the forces 7, 77+ 47
and the reaction 4R of the pulley; hence 4R must pass through the

T+ aT

Fig. 126.

intersection of 7" and 77+ 47 and be equal and opposite to their
resultant. As the angle P4/ = 40 approaches zero, the reaction J2
approaches as limiting direction the line through 2 inclined to 4.2 at
the friction angle ¢. Resolving therefore 77+ 47 along 7" and at right
angles to it we have:

¢ —lim (T + 47) cos:-w_— Ve
MY = ey (T + dT)sindo

.y . 40 (T + AT) cosdo — T
="M T A7 sinde’ 40
40

1 aT cosdl — 1
T+ 47 sin’ (To cosd0+ 7 AB_)‘

PART 11—16.
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340). The reaction of the ground will act a short distance ¢ in
front of the vertical radius €4 = 7; for equilibrium this reaction
must pass through the center C.
The horizontal force / neces-
sary to produce rolling is equal
and opposite to the horizontal
component of this reaction ; and
as we assume the yielding of the
ground to be very slight, we
have /W= c|[r, or

F=£l_V. Fig. 127.
r

The formula shows the advantage of a large radius.

The force F is called the force of rolling friction; a couple of
moment F7 is often spoken of as the couple of rolling friction.

As it would be difficult to determine the point of application
of the reaction, the constant ¢ must be found experimentally ; it
is called the cocfficient of rolling friction. The numerical value
of "this coefficient for hard substances is very much smaller than
that of the cocfficient of sliding friction.

379. If the material of the supporting plane is partly elastic it
will risc behind the wheel after having been compressed, thus
diminishing the amount of rolling friction. It would seem to
follow that there is no resistance to rolling for perfectly clastic
materials.  This is, however, not the case as carcful experiments
have shown. The vertical compression which makes the sup-
porting surface bulge out in front of the wheel as well as behind
it is accompanicd by a horizontal extension which makes the
wheel slip slightly ; this slipping calls forth sliding friction both
bchind and in front of the lowest point.

V1. Solid Statics.

I. THE CONDITIONS OF EQUILIBRIUM.

380. The equilibrium of a rigid body in the most general case,
that is, when acted upon by any number of forces £ in a space of
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Let » be the radius of the shaft, R that of the wheel, 7. ¢. the
lever-arm of the force F'; and let F be inclined to the vertical at an
angled . Then with the co-ordinates and notations of the figure, the
conditions ZX = o, Z¥ = o, 2Z = o, give

R |
F i\‘ | 7L
'f'\ﬂ& (1 z

4

oY

Flg. 133.

A,+B,=o0. A+ B,—W—Fcos# =0, A,+ B,+ Fsind=o,
where 4, A, A, are the components of the unknown reaction at 4 ;
B, B, B, those at B. .

Taking moments about each of the co-ordinate axes, we find

FR=Wr, (a+ 6)Fsin0+/B,=o,aW+(a + 6)Fcosd —/B =o,

where /= a + & + ¢ is the length of the shaft.
Solving the equations we find
R

F=—
r

S

4= ‘(b+c+icoso)-W, B= I(a+ (atr#cow)- W,

=7 R 7
_ Ter . _ 1 (a+d)r . .
A,= _Tk_sma w, B, = IR sind- W

394. As another example, consider a rigid body of weight W, sup-
ported at three points A, A,, A,; and let it be required o0 determine
the distribution of the pressure between the three supports.

Let the vertical through the centroid of the body meet the plane
of the triangle 4,4,4, at a point G, whose distances from the sides
A4, A4, A A, we may denote by g, #,, #,. Then, if 4, 4, 4,
be the unknown reactions, and 4,, 4,, 4, the altitudes of the triangle,

we have
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A+ A, + A,=W
and, taking moments about 4,4,, 4,4,, 4,4,,

“7s
A hy=Wp, A hy=Wp, A -h=Wp,
Hence,
-W.

a=Lw, a,=nw, 4=
2

1

2
A
Substituting these values in the first equation, we find the condition,

by by b
wtatn="

If G falls outside the triangle, one or two of the points 4, 4,, 4,
will be subject to pressures vertically upwards. If G be the centroid
of the triangular area A4,4,4,, we have p,/h = p.|h,=p,/h;=};
hence in this case the three reactions are equal. (Comp. Art. go1.)

895. The axis of the hinges of a door is inclined at an angle 0 to the
horizon.  The door is turned out of its position of equilibrium through
an angle ¢, and held in this posi-
tion by a jforce F perpendicular
20 the plane of the door. Deter-
mine F and the reaction of the
hinges A, B (Fig. 134).

Let the axis of the hinges be
taken as the axis of x, the verti-
cal plane through it as the plane
zx, and the point midway be-
tween the hinges 4, B as the
origin O. Regarding the door
as a homogeneous rectangular
plate whose dimensions are 458
= 2a, OC= 264, the co-ordi-
nates of its centroid G are o,
bsing, bcos¢.  If the force F be
applied at a point 2 on the middle line OC at the distance OP = p
from O, the co-ordinates of its point of application P are o, p sing,
D Cos¢.

To proceed systematically, we may tabulate the components of the
forces, and the co-ordinates of their points of application, and then

Fig. 134.



254

STATICS.

[395-

form the component couples, as shown below. The components of the
unknown reactions 4, B of the hinges are called 4,, 4, 4,, B,, B, B,.

g ' COMPONENTS Co-ORDINATES. CourLgs.

3

& [ X ) ¢ | V4 x | y ' yZ—zV | 2 X—axZ 2V —yX

W | — W sin® o | Wcost |6un¢6coﬁ¢ Wb cosd sing — W3 sind cosd . Wb sinb sing

F o F cos$ | — Fsing pnné )cos¢ | — Fp(sin + cost) o o

A Ay A A, ° —Aa g’a

B B, B: B, —a o o o Ba — B
From this table the six conditions of equilibrium are at once

obtained :

— Wsiné

+ A4, + B ,=o,

Fcosp + A + B =o,

Wcosd — Fsing + A, + B, = o,

Wb cosf sing — Fp

=0,

— Wésin0cosp + (— A, + B,))a=o,

Wi sind sing + (A4, — B,)a

= o.

(1)
(2)
(3)
(4)
(5)
(6)

If the reactions were not required, equation (4) alone would be suf-
ficient, as it furnishes the value of Z, viz.,

F= 4 cosd sing « W.
?

This relation can of course be found directly by taking moments

about the axis of the hinges.

the hinges, F'is greatest when ¢ = = /2.
The five remaining equations are sufficient to determine A+ B,
4,4, B, B,
To find the reactions for a door with vertical axis, we have to put
0 = = /2, which gives of course = o, and

A+ B,= W, A'+B'=o,

Al

b .
— B = —;Wsmgo,

A'+B.= o,

A,— B, = —;Wcosy;

It shows that, for a given inclination of
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.-.ay=a{(£—x)1/xfa'}=°’

whence (/ — x)x* = (%' — a") 0,
SN N Yoo
or x* = a'l.
(4) Give the rod a vertical displacement to a parallel position :

a s c=Ew=2l o w U
—W6y+C;6y=o,..C—qW—\l;.”’. ',,)

s 7,

(¢) Give the rod a displacement in its own direction :

A28+ Ceos }r&:—Wﬁ’}i’. 3 = o.

3 ’ r
A= V———-x’a— 4 . = (f)’— 1 W. f A
a RN

417. In a parallelogram formed by four rods with hinges at the ver-
tices, elastic strings are stretched along the diagonals. Determine the
ratio of the tensions in these strings.

Let m, »' be the lengths of the diagonals, 7, 7" the tensions, and
dm, dm' the changes of length of the diagonals when the parallelogram
is slightly deformed ; then by the principle of virtual work

Tom+ T'ém' = o. (1)
From geometry we have, if @, 4 are the sides of the parallelogram,

m 4+ ' = 2a* + 28,

hence, differentiating, .
mdm + m' ém’ = o. (2)

From (1) and (2) we find’
T|T'=m|m'. 3)

418. As any body or system of bodies can be regarded as made
up of particles and as the work of such a system is the algebraic
sum of the works of the forces acting on each particle it follows
from Art. 410 that ¢t is @ necessary condition of equilibrium of any
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Hence, by the principle of virtual work,

s 80
P-a89_=Q.2_n_,
whence
Q 2ma
P=T5
P
4
!
/ ?
]
COO0Y i
s IR

Flg. 142,
This shows the advantage of a large head and a small pitch.

424 In the mechanism formed by the crank and connecting
rod of a steam-engine (Fig. 143), known as slider-crank, the
driving force P acts at 2 in the direction through the center O of

R+--__\Q

a

b ———

N, P

Q

Fig. 143.

the crank circle while the resistance Q is applied at Q tangentially
to the crank circle. For the only displacement compatible with
the conditions of the mechanism we must again have

P-3p=Q-8,

where 8p is the distance through which P advances along 2P0 and
8¢ is the infnitesimal circular arc @ 80 described by Q. To ex-
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press 8p in terms of 80 and the given lengths 0Q = a, PQ =/,
we regard it as the differential of the distance OP = p for which
we have the relation

I* =a’+ p*— 2a p cosb;
differentiating this equation we find

0= 2pdp — 2a cosOdp + 2a p sinf d6,
whence 0
a p sin
7 —a cosh 80.

p=—dp=

Substituting this value in the equation of virtual work we find :

Q_Sp p sinf
PT 8 p—acosb’

If through O we draw the radius perpendicular to OP and
intersecting PQ produced at R, and also drop from Q the perpen-
dicular SQ on OP, we have p —a cosl = SP, a sinf = SQ;
hence

Q 2 a sinf 2-S0
P a(p—acosh)™ a-SP’

or since SQ/SP=OR/[p:

This result follows at once by the principle of virtual velocities
(Art. 412) from Art. 101, where it was proved that the velocities
of Pand Q are as OR is to a.

The effect of friction at 2 can be taken into account by observ-
ing that the normal pressure on the guides at Pis P tan¢ (see
Art. 292, Ex. (15)), where ¢ is the angle OPQ. Hence, if the
coefficient of friction be g, the frictional force is uP tang, and the
equation of virtual work becomes '

PART I11—18
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Pbp = Qbg + P tand 8p,

whence s
% —(1—p m¢)8—$,
or with the above value of 8 /8¢ :

(0] 2 sinf
?-—-(I—“tamﬁ)p—a cos@

= (I — ta_n¢)9a—Ri.
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443. In the case of the direct impact of spheres, as considered
in Art. 432, the velocity, and hence also the kinetic energy, of
each sphere is in general changed by the impact; a transfer of
kinetic energy can be said to take place. Thus, when a sphere
at rest is struck by a moving sphere, kinetic energy is imparted
to the former by the impulsive force, and this energy can then
be spent in doing work against a resistance. Impact is there-
fore frequently used for the purpose of performing useful
work.

444. For instance, to’drive a nail into a wooden plank, the
resistance — F of the wood must be overcome through a certain
distance s. This might be done by applying a pressure F equal
and opposite to the resistance — F'; as, however, this pressure
would have to be very large, it is more convenient to impart to
the nail, by striking it with a hammer, an amount of kinetic
energy, i mi? equivalent to the work Fs that is to be done.
Neglecting elasticity, and denoting the mass of the hammer
by m, that of the nail by »/, the velocity of the hammer at the
moment when it strikes the head of the nail by #, we have,

by (5), mv + m'v' = mu,
or since, by (6), for inelastic impact 2/ = v,

m
vV=—u.
m+ m'

This is the common velocity of hammer and nail after the
stroke. We find, therefore, by (9),

3 (m+ m')-( mi )2= Fs,

m+m'
m

or ;
m+ m

-3 mid = Fs. (10)

445. It will be noticed that while the total kinetic energy
of hammer and nail just before striking was } m#? + o, the
kinetic energy utilized for driving the nail is only the fraction
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465. If the two particles of Art. 464 move on inclined planes inter-
secting in the horizontal axis of the pulley (Fig. 150), it is only necessary
to resolve the weights », ¢ and m,g into two components, one parallel,
the other perpendicular, to the inclined plane. If the planes be smooth,

Fig. 150.

the system formed by the two particles is made free by introducing the
normal reactions of the planes which counterbalance the perpendicular
cori\ponents of the weights. The resultant force is therefore the differ-
ence of the parallel components, and the acceleration is

. m,sin@, — m,sin 6,
my + my

& (8)

where @), 6, are the angles of inclination of the planes to the horizon.
The tension 7 of the connecting cord is again determined by equating
this value of s to the one obtained by considering either of the two
particles separately. Thus, m, taken by itself, becomes free if we intro-
duce not only the normal reaction of the plane, but also the tension of
the string. This gives
j= m,gsin 6, — T. ()

m,
Similarly, we have for m,

:_ T — mygsinby

7 P (10)
_ mymsg . .
Hence, I= e 1 (sin 6, + sin 6;). (11)

With 6, =0, = /2 the formule (8) to (11) reduce, of course, to the
formule (4) to (7).
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hence, puttinng (s)ds =mf(s) and defining f(s) as the poten-
tial, and — mf(s) as the potential energy, due to the force R =
F(s), we have

3 m? — L mod = mf (s)— mf(so),

or, with the notation of Art. 477,
T+ V=T,+ V,=const. (18)

It appears from these definitions that (just as in the particular
case of Art. 476) the force exerted on unit mass at any point is
the space-derivative of the potential at that point:

Lr=2 1)

480. Free Oscillations. Among the forces of the form R= F(s),
next to the Newtonian forces (Art. 472) which are inversely pro-
portional to the square of the distance s, the most important on
account of their applications are forces directly proportional to
the distance s from a fixed point O.

With the origin at O, the equation of rectilinear motion under
such a force is

d3s
moa=— mK3s, (19)

if the force be attractive, 7. ¢., directed toward O. The less im-
portant case of repulsion for which the minus sign would have
to be replaced by plus, will not be considered here.

It has becen shown in Kinematics (Arts. 81-84, 120-128, see
espccially Art. 125) that the rectilinear motion defined by this
equation (19) is a simple harmonic oscillation or vibration,
about the point O as center. This point O, at which the force
R = — m«?s is zero, is therefore a position of equilibrium for the
particle.

The potential energy V' due to the force R = — m«?®s is, by

Art. 479,
= —fRd.r = mlc’fsdr =} mis? 4+ C.
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dt = &%
& — wt
whence =L log £+ m (21)

2p g — uo ’
the constant of integration being zero if the initial velocity is
zero. Solving for v, we have
_g_e“'—e“"_g
v = ————— =¢<tanh uz.
p M+ # (22)
Writing ds/dt¢ for v and integrating again, we find, since s = 0

forz = o,
5 = ﬁ—;log (e + o) = "%]og cosh pt. (23)

The relation between v and s can be obtained by eliminating #
between the expressions for v and s, or more conveniently by
eliminating # from the original differential equation by means

of the relation @=@£—v@.
dt ds dt ds
.. dv
This gives ds = £Y%Y_,
g & —wt
whence, with v = o for s = o,
Y SRV '
s= 2 ]Oggz . (24)

490. Exercises.

(1) Show that, as ¢ increases, the motion considered in Art. 489
approaches more and more a state of uniform motion without ever
reaching it.

(2) Determine the motion of a body projected vertically upward in
the air with given initial velocity v, the resistance of the air being pro-
portional to the square of the velocity.

(3) In Ex. (2) find the whole time of ascent and the height reached
by the particle.

(4) Show that, owing to the resistance of the air, a body projected
vertically upward returns to the starting point with a velocity less than
the initial velocity of projection.
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The velocity reduces to zero at the time

1 logb
b—a

- a

tl=

As a and b are positive and & > a, s has always the sign of
vy, ¢. €., the particle remains always on the same side of O; it
reaches its elongation at the time ¢, for which v vanishes, and
then approaches the point O asymptotically.

Hence, in this case, the damping effect of the medium is
sufficiently great to prevent actual oscillations. Such motions
are sometimes called aperiodic.

(&) If A=k, the roots are real and equal, viz.,, = — A, and
the general solution is

s=(c; + cpt)e™.
With s=o0, v=17, for £=0, we find
s=gpte™, v=0(1 — At)e™.

The velpcity vanishes for # =1/A, and then only. The
nature of the motion is essentially the same as in the previous
case.

(¢) If A<k, the roots are complex, say = —a + B7, where
e and B are positive constants. The general solution

s =¢""(c, cos B¢ + ¢, sin B¢)

gives with s=0, v=17, for #=o0:
s= %’e"" sinfB¢, v= %’e“"(ﬁ cos B¢ — a sin B¢).

Here v vanishes whenever tan8¢=8/a=V(k/A®R—1; s
vanishes (7. ¢., the particle passes through O) whenever ¢ is an
integral multiple of 7/8; s has an infinite number of maxima
and minima whose absolute values rapidly diminish.

The resistance of the medium, while not sufficient to extin-
guish the oscillations, continually shortens their amplitude ; this
is the typical case of damped oscillations.
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(10) A steam engine (diameter of piston = g in., stroke = t ft., num-
ber of revolutions = 150 per minute, mean effective piston pressure =
50 lbs. per square inch) drives a circular saw of 3 ft. diameter, making
4000 rev./min. Neglecting the frictional resistances, determine the force
exerted by the teeth of the saw.

(11) A saw of 10 in. diameter makes 4000 rev./min. ; a planer whose
head has a diameter of 6 in. makes 5000 rev./min. If the resistance at
the teeth of the saw be 10 lbs., at the planer 15 lbs., and if both are
driven by an engine making 170 rev./min., with piston diameter = 8 in.,
stroke = 10 in., what is the mean effective piston pressure?

(12) Find the horse-power of the wheel in Ex. (16), Art. 449, if it
makes 150 rev./min.

(13) A water-wheel weighing (with the water in it) 21,000 Ibs. makes
10 rev./min. ; its horizontal shaft rests in bearings 8 in. in diameter.
The coefficient of friction being o.1, determine the horse-power lost in
friction. ‘

(14) Determine the indicated horse-power of a gas engine working at
150 rev./min., if there is an-explosion every two revolutions ; diameter of
piston = 12 in,, length of crank = 8 in. ; mean effective pressure in one
cycle = 62 1bs.*

111. Free Curvilinear Motion.
I. GENERAL PRINCIPLES.

500. I.ct 7 be the acceleration of a particle of mass s at the
time 7; R the resultant of all the forces acting on the particle ;
then its equation of motion is (Art. 456)

my = R.

In curvilinear motion (Fig. 156) the direction of s and R differs
from the direction of the velocity v; and the angle 4 between

* For further applied problems of a similar character, the student is referred
to J. PERRY, Applied Meckanics, New York, Van Nostrand, 1898, pp. 46-49, and
F. B. SANBORN, Mechanics Problems, New York, The Engineering News Publishing
Company, 1902.
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514. The dynamical meaning of equation (10) appears by con-
sidering that mdx/dt, mdy/dt
are the components of the
momentum mv of the moving
particle (Fig. 158). The prod-
uct mvp of the momentum and
its perpendicular distance from P
the origin is called the moment N
of momentum, or the angular z
momentum, of the particle about \
the origin.

As the moment of mv is
equal to the algebraic sum of the moments of its components,
we have

<

Fig. 158.

d; dr
myp =mx ;i% - myz-

The angular momentum is evidently nothing but twice the
sectorial velocity muliiplied by the mass, just as linear momen-
tum is linear velocity times mass.

The dynamical meaning of equation (9) can therefore be
expressed as follows: ke time-rate of change of angular momen-
tum about any fixed point is cqual to the moment of the resultant.
JSorce about the same point.

515. The most important case in which the integration in
(10) can be performed is the case when
xY—yX=o0,

which evidently means that the direction of the resultant force
R passes through the origin. If this condition be fulfilled,
equation (10) reduces to the form

mx%—my‘£x=c, (11)

where ¢ is a constant of integration to be determined from the
initial position and velocity.
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530. Another first integral of the equations of motion is
obtained by combining the equations-(1) according to the prin-
ciple of kinetic energy and work (Art. 504, comp. Art. 164).

This gives
d(y mv?)=— Fdr, or d(} )= — f(r)dr, (6)

whence =yl —2 j:f(’)d’ H (7)

i. e., the velocity at any distance r depends only on this distance
(besides the initial radius vector and velocity) and is indepen-
dent of the path described, being the same as if the particle
had been projected with the initial velocity along the straight
line joining the initial position to the center.

531. To perform the second integration we have only to
substitute in (7) for v its value in terms of » and £ or » and 6.
Now the general expression for the velocity in any curvilinear
motion is (Art. g6)

(o) (&)

From these expressions one of the variables # and # can be
eliminated by substituting for d0/d" its value ¢/»? from (4); this

B O S [CopR ®

It is often convenient to replace the radius vector » by its
reciprocal #=1/r; we then have

= (00 s o (WY a) ©)

532. The formule (4) and (7), together with the expression
(8) or (9), contain the complete solution of the two principal
problems mentioned in Art. 528. Thus, if the law of force be
given, the form of the function f(r) is known, and v can be
found from (7) in function of » or #; substituting this value of
v in either (8) or (9), we have a differential equation of the first
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540. By introducing the co-ordinates of the mean center, we can
now reduce the equations of motion to the simple form

2 2 2,
TE =), L= (y-3), L2 =—R (D),

dar
where « = 3« Finally, taking the mean center as origin, we have

d*x o, dYy .. d’
—_— = — KX, =—K, —=—K’z.
dr ’dr P ar
It thus appears that the motion of the particle is the same as if there were
only a single center of force, viz., the mean center (X%, ¥, 3), attracting with
a force proportional to the distance from this center.
The plane of the orbit is, of course, determined by the mean center

and the initial velocity.

541. It is easy to see that most of the considerations of Art. 539
apply even when some or all of the centers repe/ the particle with forces
proportional to the distance. It may, however, happen in this case that
the mean center lies at infinity, in which case, of course, it can not be
taken as origin.

Simple geometrical considerations can also be used to solve such
problems. Thus, in the case of two
attractive centers O,, O, (Fig. 161)
of equal intensity «*, the forces can
evidently be represented by the dis-
tances PO, = r, PO,=r, of the par-
ticle P from the centers. Their
resultant is therefore =2 PO, if O
denotes the point midway between O, Fig. 161.
and O,; and this resultant always °
passes through this fixed point O, and is proportional to the distance
2’0 from this point.

542. Exercises.

(1) Determine the constants of integration in Art. 5§35, if x, 3, are
the co-ordinates of the particle at the time #=o0 and 2, », the com-
ponents of its velocity 7, at the same time, The equation of the orbit
will assume the form .
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On the other hand, the attraction exerted by the earth on a mass » on
its surface, 7. e., at the distance R = 3963 miles from the center, is

F'=mg.

Now, if these forces are actually in the inverse ratio of the squares of

the distances, we must have
F'_a
F R
or, since the distance of the moon is nearly = 60 &,
F'=060®F.
Substituting the above values of # and #', we find

'R,
7"

With R = 3963 miles, 7= 27% 7* 43™, this gives

g=4f.6

£=32.0,
a value which agrees sufficiently with the observed value of g, consider-
ing the rough degree of approximation used.

546. In this way Newton was finally led to his law of universal
gravitation, which asserts that every particle of mass m attracts
every other particle of mass m' with a force “

F= x’%”'. (12)

where 7 is the distance of the particles and « a constant, viz., the
acceleration produced by a unit of mass in a unit of mass at unit
distance (see Arts. 472, 473).

The best test of this hypothesis as an actual law of physical
nature is found in the close agreement of the results of theo-
retical astronomy based on this law with the observed celestial
phenomena.

547. Taking Newton’s law as a basis, let us now turn to the
converse problem of determining the motion of a particle acted
upon by a single central force for whick f(r)= u/* (problem of
planctary motion).
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du"\? " du'
V=1 — 0 = + —m8M8—
({10’) 1—#% or dd=+ 7 —

has the general integral
0—a =T cos'4', or #' = cos (6 — a),

where a is the constant of integration. The orbit has, therefore, the

equation
1 _—l’:+‘/”‘_2+_‘5 -
o cos (0 — w), , (16)

which agrees with the equation (47) given in Kinematics, Art. 173,
excepting the different notation used for the constants.

549. The equation (16) represents a conic section referred to its focus
as origin. The general focal equation of a conic is

+;cos 0—a), (x7)

where / is the semi-latus rectum, or parameter, ¢ the eccentricity, and
« the angle made with the polar axis by the line joining the focus to the
nearest vertex.

In a planetary orbit (Fig. 162), the sun S being at one of the foci, the
nearest vertex 4 is called the perihelion, the other vertex A4' the aphelion,
and the angle 6 — « made by any radius vector SP= r with the peri-
helion distance S4 is called the frue anomaly.

Comparing equations (17) and
(16), we find, for the determina-
tion of the constants :

or, solving for ¢ and 4, .

c=Vul, h= p‘-’—;l- (19) Fig. 162.
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553. The magnitudes of the axes having thus been found, their
directions can be determined by a simple construction which furnishes .
the second focus.

In the e/lipse, the focal radii have a constant sum = 24, and lie on
the same side of the tangent, making equal angles with it. In the
hyperbola, they have a con-
stant difference = 2 @, and lie
on opposite sides of the tan-
gent.

Hence, determining the
point O" (Fig. 163), which
is symmetrical to the center o}
of force O with respect to the Fig- 163.
initial velocity, and drawing
the line £,0", we have only to lay off on this line from 2, a length
F,0'=1(2a—r); then O' is the second focus, which for an elliptic
orbit must be taken with O on the same side of the tangent 7,7, and for
a hyperbolic orbit on the opposite side.

554. For a parabola, since ¢ =1, we find, from (19),
& lrdsiny,
h—O, 1-—-;:——,‘.—' (23)
The axis of the parabola is readily found by remembering that the
perpendicular let fall from the focus on the tangent bisects the tangent
(. e., the segment of the tangent between the
point of contact and the axis). Hence, if
OT (Fig. 164) be the perpendicular let fall
from the center O on the velocity 7, it is
only necessary to make 77"'= A7, and 7'
will be a point of the axis. Moreover, the
_ perpendicular let fall from 7" on O7" will
o A} T meet the axis at the vertex 4 of the parabola,
Fig. 164 so that OA4 =4/

555. The relation (21), which must evidently hold at any point of
the orbit, can be written in the form

v’:z"(_l.q: L)’ (24)

r 2a
2A
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558. The relation of the eccentric angle ¢ to the polar co-ordinates
7, 0 will appear from Fig. 165, in which 2 is the position of the planet

Fig. 1685.

at the time # 2P’ the corresponding point on the circumscribed circle,
X AOP= 0 the true anomaly, and X 4CP’ = ¢ the eccentric anomaly.
The focal equation of the ellipse

_ / _a(1—=2)

T 1+4ecosf 1+4ecos

r

gives r+e¢rcos @=a—aé* ; and the figure shows that » cos §=a cos p —ae ;
hence,
ence r=a(1 —ecos¢), ora— r=aecos ¢. (28)
Equating this value of » to that given by the polar equation of the
ellipse, we have
cos ¢ — ¢
I—eccos¢

1—ecos¢p= , or cos f =

1+ ecosf

A more symmetrical form can be given to this relation by computing

o erp 1—cosg,
1 — cos = 2sin ia—(l'*");—ecost#
_ 9 — — _I—-t£05¢ H
14+cosf=2cos’30=(1—¢ I—ecose’

whence, by division, tan}6=1""tn}g. (29)

559. To find ¢ in terms of 7, we have only to substitute in (24) for
* its value from (8), Art. 531, and to integrate the resulting differential
equation
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intersects the circle, touches it, or does not meet it at all; 7. ¢.,

according as 22
k1, or ;ﬂéézlcosz%eo. “(11)

587. Equation (2), Art. 579, serves to determine the reaction
AV of the circle, or the pressure — .V on the circle. We have

m?=—mgcosﬂ+1\’,

whence N = m(v; + g cos 0).
Substituting for 22 its value from (10), we find
N= mg(2£;+3cosﬂ). (12)

The pressure on the curve has therefore its greatest value when
0 = o, i. ¢, at the lowest point 4. It becomes zero for / cos 6,
= — % 4, which is easily constructed.

588. If the constraint be complete as for a bead sliding along
a circular wire, or a small ball moving within a tube, the pres-
sure merely changes sign at the point § =#6,. But if the con-
straint be one-sided, the particle may at this point leave the
circle. The one-sided constraint may be such that OP</, as
when the particle runs in a groove cut on the inside of a ring,
or when it is joined to the center by a cord; in this case the
particle may leave the circle at some point of its upper half.
Again, the one-sided constraint may be such that OP;I, as
when the ‘particle runs in a groove cut on the rim of a disk;
in this case the particle can of course only move on the upper
half of the circle.

589. Exercises.

(1) For A=/ equation (10) can be integrated in finite terms.
Show that in this limiting case the particle approaches the highest point
B of the circle asymptotically, reaching it only in an infinite time.
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length 2 @, attached to the cusp of the involute, and wrapping itself on
a cylinder erected on the involute as base. Show that, if the particle
starts from rest at the cusp of the original cycloid, the tension of the
cord is twice the normal component of the weight of the particle.

3. MOTION ON A FIXED SURFACE.

590. Just as for motion on a curve (Art. §82), we find the
general equations of motion

d’x
7

Ly _ —uN?%
"ldt2 Y+N FNdf’ (l)

dx
=X+N,—
+ FNds

d%z dz
The normal reaction
=VNI+ NI+ N} (2)
being at right angles to the constraining surface

M=, 7, z)=0, (3)
the following conditions must be satisfied :

N._N,_N,
5. ;:—4,‘ 4)

where ¢, ¢,, ¢, denote, as usual, the partial derivatives of
¢(x, y, z) with regard to x, y, 2, respectively.

If the acceleration of the particle be zero, the equations (1)
reduce to the conditions of equilibrium of a "particle on a
surface:

591. A particle of mass m, subject to gravity, is constrained to
remain on the surface of a sphere of radius r. 1f the constraint
is produced by a weightless rod or cord joining the particle
to the center of the sphere, the rod or cord describes a cone,
and the apparatus is called a conical or spherical pendulum.
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(5) Determine the curve that should be substituted for the circular
arc in Ex. (4) if the mass  is to be in equilibrium, for a given angular
velocity o, at every point of the arc.
~ (6) From the equations (5) and (6), Art. 591, derive the approximate
path of the bob of a conical pendulum when the angle 6 remains very
small.
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CHAPTER VL
KINETICS8 OF THE RIGID BODY.

I. General Principles.

594. In kinetics the term rigid dody means any system or
aggregate of mass-particles whose mutual distances remain
invariable. A rigid body may therefore consist of a finite
number of rigidly connected particles or of a continuous mass
of one, two, or three dimensions. Its motion depends not only
on the forces acting on the body, but also on the way in which
the mass is distributed throughout the body.

In the present section the rigid body is assumed to be free
unless the contrary be stated explicitly. For the sake of sim-
plicity the body is conceived as a rigidly connected system of a
Jfinite number of particles.

595. Let us consider any one particle 7 of the body; at any
time ¢, let ; be its acceleration and F the resultant of all the
forces acting on the particle. Then the motion of this particle
(see Art. 500) is determined by the equation

mj =F. (D)

It should be noticed that among the forces acting on the
particle are included not only those external forces acting on
the rigid body that happen to be applied at s, but also the
so-called internal jforces which would replace the rigid con-
nection of the particle » with the rest of the body.

596. If, at the time ¢, x, y, z are the co-ordinates of the par-
ticle 7 with respect to a fixed set of rectangular axes, then the
components of its velocity # may be denoted by %, 5, Z; those
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, B, v the direction cosines of /; and, as before (Art. 622), p, ¢,
the distances of any point (z, y, 2)
of the given mass from m, /, and O,
respectively. Then, projecting the
closed polygon formed by 7, z, 3, 2
on the line /, we have m

p=cr+ By +yz;

hence, squaring, multiplying by .,
and summing over the whole mass, ,

U/ (a,8,7)

we find Fig. 174.
Smp?= N

aBZmad + PEmy? + Y Zmzd + 2 ByEmys + 29eEZmzx + 2a8Zmxy,
or, with the notations (6),
I'=A'@+BR+Cod+2DBy +2 Eye+2 Faf.  (8)

Thus ke moment of inertia for any plane through the origin is
expressed as a homogeneous quadratic function of the direction
cosines of the normal of the plane.

633. The moment of inertia /= Zmg3 for the line / can now
be found from equation (1), Art. 622, by substituting for Zm»?
and Zmp? their values from (7) and (8):

I=3SmRA-I'=A"+B +C-1I
=A(1—®)+B'(1- )+ C'(1 —9¥)— 2 DBy—2 Eya—2 FuB,
or, since «?+ B+42=1, :
I=A"(B+v)+ B (v*+ @)+ C'(+ ) —2 DBy—2 Eya—2 Faf
=X B'+C"+B{C' + A" )+ vy A + B')—2DBy—2Eya—2Fap;
hence, finally, applying the relations of Art. 631,
[=Ad+ BB +Cp~2 DBy—2 Eya—2 FaB. (9)

The moment of inertia for any line through the origin s,
therefore, also a komogeneous quadratic function of the direction

cosines of the line.
2D
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642. There is another ellipsoid closely connected with the theory
of principal axes; it is obtained from the momental ellipsoid by the
process of reciprocation. .

About any point O (Fig. 175) taken as center let us describe a
sphere of radius ¢, and construct for every point 2 its polar plane »
with regard to the sphere. If P describe any surface, the plane » will
envelop another surface which is called the polar reciprocal of the
former surface with regard to the sphere.

Let Q be the intersection of OP with =,
and put OP=p, OQ=g¢; then it appears
from the figure that _

pg=¢e. (16)

643. It is easy to see that the polar
reciprocal of the momental ellipsoid (11') [I{ @“ -
with respect to the sphere of radius e is the
ellipsoid

-
-

S o

a2 Z g?
—=+=+—==1
o 9 9 ! (17)

To prove this it is only necessary to show that the relation (16) is
fulfilled for p as radius vector of (11'), and ¢ as perpendicular to the
tangent plane of (17). Now this tangent plane has the equation

Fig. 175.

X 4
E2x+Lyv+Ez=1;
n 7 g5 ’

hence we have for the direction cosines e, 8, v, and for the length g,.
of the perpendicular to the tangent plane

e __L =T = ! =9.
x/0’ /9 308 [2g0 + 3 gt + 5/

These relations give ¢, = (x/¢1)9, ¢:B = (¥/93)¢, 95y = (2/¢s) ¢, whence

' + 0,0+ g5’y = (x—:+ L+ %)9’=¢’- (18)
CAU L )
For the radius vector p of (11') whose direction cosines «, 8, y are the

same as those of ¢, we have by (11'):

(] <

F =91’“’ + 98" + gs'y*
Hence p** =¢*; and this is what we wished to prove,
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660. To find the radius of inertia ¢ for a line /, parallel to 4, and
passing through any point 2, we lay through 2 a plane =,, perpendicular
to /, and a parallel plane ), tangent to the fundamental ellipsoid ; let
Q. O, be the intersections of these planes with the centroidal line 4.
Then, putting GQy= ¢y, GQ\=¢., GP=7r, PQ,=d, we have; by

Art. 627, q,= qo’+(12.

The figure gives the relation @? = »* — ¢,%, which, in combination with
(23), reduces the expression for the radius of inertia for the line 7 to

he i
the simple form F=r_A (24)

661. The value of * — A, and hence the value of ¢, remains the same
for the perpendiculars to all planes through 7, tangent to the same
quadric surface A : these per- )
pendiculars form, therefore,
an equimomental cone at AP.
By varying A we thus obtain
all the equimomental cones
at P. The principal diame-
ters of all these cones coin-
cide in direction, since they
coincide with the directions
of the principal axes of tne
momental ellipsoid at P (see
Art. 640) ; but they also coin-
cide with the principal diam-
eters of the cones enveloped by the tangent planes =,. It thus appears
that ke principal axes at the point P coincide in direction with the prin-
cipal diameters of the tangent cone from P as vertex to the fundamental
ellipsoid 52/9.* + y* /92 + 52 /g5t = 1.

Fig. 176.

662. Instead of the fundamental ellipsoid, we might have used any
quadric surface A confocal to it. In particular, we may select the con-
focal surfaces A, Ay Ag that pass through 2. For each of these the cone
of the tangent planes collapses into a plane, viz., the tangent plane to
the surface at 2, while the cone of the perpendiculars reduces to a single
line, viz., the normal to the surface at 2. Thus we find that zke prin-
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angulaf velocity  about the z-axis we have (Art. 175) #=—wy,
J=wux, so that

Zm(xy— yz) = 0Zn(2+ y?) = 0-Zmr = Jo,

where » is the distance of the particle » from the axis and-
I=7Zmr? the moment of inertia of the body for this axis.

This expression for the angular momentum can be derived
without reference to any co-ordinate system. For evidently
mor is the linear momentum of the particle m, mwr? is its
moment, 7. ¢., the angular momentum of the barticle, about the
axis; and Zmwrd = wimrd=/o is the angular momentum of
the body about the axis.

It thus appears that, just as in translation the linear momen-
tum of a body is the product of its mass into its linear velocity,
so in the case of rotation the angular momentum of the body
about the axis of rotation is the product of its moment of inertia
(for this axis) #nto the angular velocity.

As regards the right-hand member of equation (1), the
reactions of the axis need not be taken into account in form-
ing the moment A ; for as these reactions meet the axis, their
moments about this axis are zero.

666. Substituting /o for Zm(xy—yz) in equation (1), and
observing that the moment of inertia 7 about a fired axis re-
mains constant, we find the equation of motion in the form

1%~ H; @)
7. e., for rotation about a fixed axis, 2ke product of the moment of
tnertia for this axis into the angular acceleration equals the mo-
ment of the external forces about this axis; just as, in the case
of rectilinear translation, the product of the mass of the body
into the linear acceleration equals the resultant force R along

the line of motion:

dv _
m;t = R.

2E
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(9) A homogeneous plate whose shape is that of the segment of a
parabola bounded by the curve and its latus rectum swings about the
latus rectum which is horizontal. Find the length of the equivalent
simple pendulum.

(10) A fly-wheel of 10 ft. radius makes 45 rev./min. Its rim (re-
garded as a circular line) weighs 8ooo 1bs., while each of the 10 spokes
(regarded as a straight line) weighs 200 Ibs. Find the kinetic energy
stored in the wheel.

(11) Find the work that would have to be done by the engine to
increase the number of revolutions to 6o per minute for the fly-wheel in
Ex. (10).

(12) When ¢ is given while / and 4 vary, the equation (6) represents
a hyperbola whose asymptotes are the axis of / and the bisector of the
angle between the (positive) axes of 4 and Z. Show that ,,, = 2 ¢ for
k=g ; also that /, and hence the period of oscillation, can be made very
large by taking 4 either very large or very small. The latter case occurs
for a ship whose metacenter (whicﬁ plays the part of the point of suspen-
sion) lies very near its centroid.

(13) Explain how to determine experimentally the moment of inertia
of a body for any line 7 by observing its small oscillations about / as
axis.

(14) Find the horse-power required to keep a wheel weighing £ tons
rotating with /V rev./min., the radius of the axle being # ft. and the
coefficient of friction p.

(15) If ¢ be the radius of inertia of the wheel in Ex. (14) (including
the shaft and other attachments), for its axis, determine : (a) after how
many revolutions, (4) in what time, the wheel will come to rest if left to
itself. :

(16) A homogeneous circular disk, 1 ft. in diameter and weighing
25 Ibs., is making 240 rev./min. when left to itself. Determine the
constant tangential force applied to its rim that would bring it to rest
in 1 min. ’

(17) A cord is wrapped around the horizontal axle of a heavy wheel ;
the free end of the cord passes over a fixed vertical pulley and carries
a mass of 75 Ibs. It is found that when the mass has descended 10 ft.
the wheel is making 67 rev./min. What is the moment of inertia of the
wheel ?
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Dividing this equation by (8), we find :

e _I+r
r 7’
whence, I= I'.T"LT’. 9)

674. Magnetic Needle. The moment M of a magnetic needle is
defined as the moment of the couple acting on the needle when placed
in a uniform field of unit strength, at right angles to the lines of
force. The forces of this couple can be regarded as applied at the poles
and as equal to the pole-strengths. If the strength of the fiel:l is not 1,
but /, the moment of the couple acting on the needle is M4 ; and if
the needle is placed at an angle 6 with the lines of force, the moment of
the so-called restoring, or directing, couple that tends to place the axis
of the needle parallel to the lines of force is easily seen to be
= MH:sin 0.

The equation of motion for the oscillations of a magnetic needle,
pivoted so as to turn freely in a horizontal plane, when the needle is
placed in any position in the earth’s magnetic field, is therefore

1%=—Mﬂsin0, (10)

where A is the strength of the earth’s horizontal field.

675. When the oscillations are small, sin @ can be replaced by 6, and
we find for the length of the equivalent simple pendulum

MH’
and for the time of one complete oscillation ‘

T=21r\/ﬁ{7~ (11)

This formula is used for determining M/ by observing 7°; as the
quotient Af/H can be found from deflection observations, the formula
serves ultimately for the determination of the earth’s horizontal in-
tensity A.
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682. Steam Engine. In the steam engine the pressure 2P of the
steam on the piston (Fig. 179) is first resolved at the cross-head 2 into
a component ' = 2P sec ¢ along the connecting rod PQ and a com-
ponent P'"= Ptan ¢ at right angles to the guides of the cross-head.

Fig. 179.

Only the former of these components P’ acts on the crank; it can
be resolved at the crank pin Q into a normal component along the
crank QO:

P! = P'cos (0 + ¢) = Psec ¢ cos (§ + ¢) = P (cos § —sin 0 tan ¢),
and a tangential component, at right angles to the crank,
F!=P'sin (0 + ¢) = P(sin § + cos f tan ¢).

As P passes through the center of rotation O it has no turning effect.
The rotation of the crank is therefore due entirely to the force 2’ ; its
moment about O is

H = PFla=a(sin 0+ cos 6 tan ¢) P,

where @ = OQ is the length of the crank.

Even if P were constant (which it is not, see Arts. 469-471), this
moment / would vary with the angles 6 and ¢.

The angle ¢ can be eliminated, its variation depending on that of the
angle 6. For, with OQ =a, PQ =/, the triangle OPQ gives

sing a . I .
—-=-, Or 8in ¢ =—sin
sin@ /7’ ¢ m ’

if we put //a=m.
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As the angle ¢ is generally small, the length of the connecting rod
being usually at least 3 or 4 times that of the crank, we can substitute
sing for tan ¢ so that we obtain for the #urming moment the simple
approximate expression

H=a(s1n0+—zl’;sin 20)P.

683. Fly-Wheel. As the turning moment A varies in the course of
the stroke, it follows that even if the resistance were constant, the angular
velocity o of the crank, or the linear velocity % of its end Q, will not
remain constant. In order to diminish this irregularity in the rotation
of the crank as much as possible, a heavy fly-whee/ is fixed on the crank
shaft.

The function of the fly-wheel is not to create energy, but to store and
distribute it. During that part of the stroke during which the turning
moment / is greater than its mean value for one stroke, energy is being
accumulated in the mass of the fly-wheel; and when A is less than its
mean value, part of this energy is comsumed in doing useful work and
thus making up for the lack of turning moment.

684. It must here suffice to discuss a simple ideal case. Assuming
the connecting rod of infinite length so that ¢ = o, and the driving force:
P'= P constant, its tangential component
(Fig. 180) is A/ =Psin6, and the turning

moment is
H = Pasiné.

The work done by the driving force in a Ad 0 A
double (forth and back) stroke is evidently

W=2.P-2a=4Pa.
Fig. 180.
If, for the sake of simplicity, we assume the

resistance & to be overcome by the crank as constant in magnitude and
always tangential to the crank circle, the work of this resistance in a
double stroke is= Q. 2ra. This must be equal to the work of the
driving force, so that

g ’ 4 Pa=27Qa,

whence Q0=2%P=0637 P.
L3
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685. Itis easy to determine the angle 6, for which the effective driving
force ' = Psin 6, is just equal to the resist-
ance Q = 2 P/x; we find approximately
-------------- 0, = 40°, 140°, 220°, 320°.
As long as A'> Q, i.e., from C, to C,
K and from C; to C, (Fig. 181), the rotation
is accelerated ; from C, to Gy and from C,
to G it is retarded. The velocity is there-
fore greatest at C; and C, least at C; and
G.
Now, in the interval C,C; the work ¥},
of the driving force is

===,

Fig. 181.

We=P- chord C,C;= P- 2 acos 6, =xQa cos 0,,
since Q = 2 P/, while the work of the resistance Q is
Wy'=Q-arc GC;=Q - a(r—126);

hence, the energy stored in the fly-wheel in this interval C,C; is

Wo— W, = -n-Qa(cos 6—1+42 g‘>= 21 rQa=%Qa,
w

approximately.

686. On the other hand, if w), , be the angular velocities of the
crank, 7, 7, the linear velocities of the crank-pin, at C,, C,, respectively,
and if the mass of the fly-wheel reduced to the crank-pin be denoted by
m,, we find for the same energy stored in the fly-wheel in the period C,C;
the other expression :

Ty — Ty =4 ma¥(od — o) = § m (v} — 0.
Now, the difference v, — 7, between the greatest and least velocity,
divided by their mean % (7, + #,) =, measures the relative fluctuation
in velocity ; the reciprocal of this quotient,

v ™+ vy
K= =
n—v 20—1n)

can be regarded as a measure of the uniformity of the rotation; it is
called the degree of uniformity. Introducing this quantity x, we have

T— L=1mz
K
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Equating the two expressions found for the kinetic energy stored in
the fly-wheel, we find for the reduced mass of the wheel,

Qa
h

mo=§«x-=5

If the resistance Q be expressed in pounds, the mass 7, in pounds
will be
a

m,=13% xg% .

The coefficient « is selected differently according to the nature of the
engine and the object for which it is used. For slow-running engines it
is between 10 and 20 ; for very fast engines it may reach 100 or more.

687. Exercises.

(1) Show that m,=112,000 xH/2*N, if HP is the horse-power,
AV the number of revolutions per minute.

(2) Find m, when P = 100, V=25, v= 56 ft. per second, x = 50.

688. Reactions of the Fixed Axis. A rigid body that turns
about a fixed axis exerts an action on the fixed axis that tends
partly to shift it bodily and partly to turn it out of its position.
The axis must, therefore, be kept fixed by certain forces, called
the reactions of the axis. As a straight line is determined by
two of its points, to fix the axis it suffices to fix two of its points,
say A and B. " The reactions of the fixed axis can, therefore,
be regarded as two (in general unknown and variable) forces,
A at A and B at B.

Like any system of forces acting on a rigid body, these two
forces can be replaced by a single force R together with a
couple A. Thus, if we apply at 4 two equal and opposite
forces, each equal and parallel to B, the resultant of 4 and B
at A4 will form a single force R, while B at B with — Bat 4
forms a couple A.

689. In certain particular cases the reactions of the fixed axis
may be zero. It is obvious that for a revolving piece of ma-
chinery it is desirable to avoid as far as possible any action on
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and hence z2=0,2=0; and we put O4d=4a, OB=56. Then
the six equations of motion are (see Art. 600 (4) and Art.

Gor (6)): Smi=3X+ A, + B,
Smy=3Y+ A, + B,
o=2Z+4,+ B,
—3mzj=3(yZ —2Y)—ad,— bB,,
Smzi =32 X —xZ)+ ad.+ bB,,
Sm(zy — yz) = 3(2V — yX).

698. It remains to introduce into these equations the values
for #, y. Asthe motion is a pure rotation, we have (see Art.
175) #= —wy, y=wx; hence, ¥=—wy— ¥, j=ar— oy
Summing over the whole body, we find

Smi= — o3my — 3Emr = — Moy — Mo,
Smy= oZmx—olimy= Moz — Mo,
where 7, y are the co-ordinates of the centroid; and
—3Imzj = — 03mzxr + *Zmyz = — Eo + DaB,
Smsk = — @Smys — o?3msr = — Do — Ew?,
Sm(xy — y¥) = 0Smi® — W mxy + 0Zmy? + 0 ZTmry = Co,
where C=Zm(22 +33), D =Zmyz, E = Zmzx are the notations

introduced in Art. 630.
With these values the equations of motion assume the form:

— M¥o?—Mjo=3X+A, + B,
— My + Mzo=2Y + A, + B,,
0=2Z+4,+8, (12)
Do?— Eo=3(yZ—=2Y)—ad,— bB,,
—Et—Do=3(sX—2Z)+aA,+ 6B,
Co=3(xY—-yX)
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699. The last equation is identical with equation (2), Art. 666.

The components of the reactions along the axis of rotation
occur only in the third equation, and can therefore not be found
separately. The longitudinal pressure on the axis is

= —A‘—B,=EZ.

The remaining four equations are sufficient to determine 4,,
A, B, B,

The total stress to which the axis is subject, instead of being
represented by the two forces, at 4 and B, can be reduced for the
origin Oto a force and a couple (comp. Art. 688). The equations
(12) give for the components of the force

—A,— B, =2X+ Mio*+ Mjo,
—A,—B,=2Y+ Myo?— Mio, (13)
—A,—B,=2Z.

This force consists of the resultant of the external forces,
R=VEXP+CYP+(E2p

and two forces in the xy-plane which form the reversed effective
force of the centroid ; for Mzw? and M7w? give as resultant the
centrifugal force Mw?Va?+ 2= Ma®, directed from the origin
towards the projection of the centroid on the xy-plane, while
Myo, — Miw form the tangential resultant Mw7, perpendicular
to the plane through axis and centroid.
The couple has a component in the yz-plane, and one in the
zz-plane, viz.:
aAd,+bB,=3(yZ—2Y)— Do+ Eo,
—ad,—bB,=3(2 X —xZ)+ Eo? + Do,

while the component in the xy-plane is zero. The resultant
couple lies, therefore, in a plane passing through the axis of
rotation.

(14)

700. In the particular case when no forces X, Y, Z are acting
on the body, the last of the equations (12), or equation (2), shows
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point (Art. 603). Hence resolving along OG and at right
angles to it, and taking moments about O, we find the three
equations of motion :

— mhb2 =R, + P, (17)
mhd = R, + P, (18)
m(g? + /2)8 = H, (19)

where ¢ is the radius of inertia for the centroidal axis parallel to
the fixed axis.

The equation (19), which is the same as equation (2), Art.
666, determines @ and its derivatives; substituting their values
in (17) and (18), the reactions 2,, P, are found.

704. If the fixed axis be assumed horizontal and gravity as
the only impressed force, we have the case of the compound
pendulum (Art. 669). Taking the axis of x vertically down-
ward, we have

R,=mgcosb, R,=—mgsin0, H= —mghsin.
Equation (19) becomes

. /l .
6= — q_zé-rl——/z—"sm 0,

and gives by integration if ® = @, for 6 = 6,:

e2= aﬁ—m2+?zgizﬁ(cos0—cosﬁo).
Substituting in (17) and (18), we find for the components of
the pressure on the axis:

—P.=mgcos 0+ mhe?=m wozé—qif/z 0+22+—3/l—c030)
2
— Py=—mg. L siné.
¢ P+ R
The latter component is independent of the initial conditions,
the former is not. The total pressurc on the axis, v 7’?+P,2,
varies in general in the course of the motion both in magnitude

and in its direction in the body. In the particular case when
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w2 =2ghcos 6,/(g*+ /), 7. e, when the initial kinetic energy
Y m($ + 7)ol = mgh cos 6, (which means that o is zero when
OG is horizontal), we have

2
—-P,= mg% cosl, —Py=—mg 9—2%

and the inclination ¢ of the total pressure to OG is given by

sin 6,

—Py__ _¢
= =— tan 6.
tan ¢ y-) Zt+3R an

705. Exercises.

(1) A homogeneous straight rod of mass m and length / hinged at
one end so as to swing in a vertical plane, is let go from a horizontal
position. Determine the pressure on the axis of the hinge (Fig. 187).

With k=3%/, =17 6,=—4%m wy=o0, we have, by Art. 704,

w2=37gcos0, —P.=§mgcosb, — Py=—} mgsiné.

The component pressure along the rod,
— P, is always positive, ¢. e., directed from
O toward G ; as 0 varies from — } = through -FX
zero to § m, — A, varies from zero to § of the
weight of the rod to zero. The component
perpendicular to the rod, — £, is positive
while the rod descends and negative while
it ascends; it is therefore always inclined

lo

Fig 187.

downward ; its maximum value, equal to }
of the weight of the rod, occurs when the rod is horizontal. The total
pressure on the axis is '

P =P+ P} =1 mgV100 cos’d + sin’d = } mgV/99 cos’d + 1.

This pressure is greatest, viz., = § mg when the rod is vertical ; it is
least, viz., = } mg, when the rod is horizontal. The inclination ¢ of P

to the rod is given by P
]

tan¢=F=—]16tan0.

Discuss in a similar way the horizontal and vertical components
of P. ’
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As the initial motion after impact is a rotation about the axis
of z, we have = —wy, y=wx, £=0, so that the momentum of
a particle of mass » has the components —mey, mex, o.
Reducing these momenta to the origin O, we find a resultant
momentum whose components are —w3my=0, wEZmr= Moz,
0; and a resulting couple whose vector has the components
—wimzx=—Ew, —oZmyz=—Dw, oZm(+*+)?)=Co, where
C, D, E have the same meaning as in Art. 698.

The six equations of motion just after the impact are there-
fore, if the body was originally at rest,

0=-X+AZ+.BI’
Mrzo=Y+A4,+ B,
0=_Z+A,+'B,, (23)

—Eo=yZ—-2Y—ad,—bB,
—Do=2,X—xZ+ad.+ Bb,,
Co=xY—nX.
It is easily verified that this is the form assumed by the equa-

tions (19), (20) of Art. 615 in the present case.
\

710. The last of these equations is nothing but the equation
(20) of Art. 706. The components 4,, B, along the axis cannot
be determined separately; the other components of the reactions
can be found from the first, second, fourth, and fifth equations.

The impulsive stress to which the axis is subjected by the
impulse, or the so-called percussion of the axis, instead of being
represented by twoimpulses, 4, B as above, can also be regarded
as composed of an impulsive pressure at O whose components
are

—'{4:_ B:=X) _Ay—.By’:Yb—M}w! —A,—_B."—'_Z,
and an impulsive couple whose vector has the components
ad,+b6B,=ynZ—zY+Ew, —ad,—b,B,=2X—xZ+ Do, 0.

The last component being ‘zero, the resulting couple lies in a
plane passing through the axis of z.
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centroid takes place as if the centroid were fixed (Art. 606), it
will often be convenient to take moments about the centroid.
The equation (2') then assumes the form

12 =H, (2"
where 7 is the moment of inertia of the body about the centroidal
axis perpendicular to the plane, /& the sum of the moments of the
external forces about the same axis, ® the angular velocity about
the axis.

Analogous considerations hold for the equations of the change
of motion due to impulses (Arts. 614, 615).

716. As an instructive example of plane motion consider the motion
of a homogeneous circular cylinder down an inclined plane, the axis of
the cylinder remaining horizontal. Let m be the mass, @ the radius of

Fiz. 190.

the cylinder. In Fig. 190, G, is the initial position of the centroid (at
the time #=o0) when the linear velocity » of the centroid and the angu-
lar velocity w about it are both zero; G is the position of the centroid
at any time # The inclination of the plane to the horizon is .

If that point of the circumference which is initially in contact with
the plane (at O) has at the time # the position '0', then O'GC=0is
the angle through which the cylinder has turned about its axis in the
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719. Pure rolling occurs only if the frictional force F is of sufficient
amount to prevent sliding (or skpping, as it is called). The moment Fa
of the friction produces angular momentum, giving the cylinder an
angular velocity o (clockwise in Fig. 190) about its axis. Mechanical
means might be substituted for friction to produce the same effect, e. g.,
gearing, or a flexible band wrapped around the cylinder and stretched
up the plane.

In the case of pure rolling the principle of kinetic energy and work
gives (rolling friction being neglected)

ymo + } Jo® = mgh, €)

the work of /V as well as that of # being zero because the point of ap-
plication C is instantaneously at rest.

The left-hand member which represents the kinetic energy of the
cylinder can be simplified by introducing the mass reduced to the point
of contact C, 4. e., to the distance @ from the centroid (Art. 677):
m'=1/a*; as in the case of pure rolling (Art. 717) aw=2, (7) reduces to

3 (m + m") v* = mgh. (8)
Denoting, as in Art. 718, the velocity of frictionless sliding by z,, we
find : .
v= ——-——_\/ f—{-m’/_m . (9)
For the homogeneous cylinder, m'=1} m (see Ex. (1), Art. 679), so that
v=V3}o.

The same reasoning applies when the cylinder is replaced by any
other solid of revolution whose mass is distributed symmetrically both
with respect to the axis of revolution and with respect to thé centroidal
plane perpendicular to this axis; the formule (6) to (9) hold without
change in this more general case. But the quotient m'/m will not
always be a pure number ; it will depend on the dimensions of the body
and on the distance a of the centroid from the inclined plane.

720. Exercises.

(1) A homogeneous cylinder of 1 ft. diameter rolls down a plane
inclined at 30° to the horizon, over a distance of 2o ft.; find the final
linear and angular velocity.
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Combining this with the first of the equations (10) and putting 7 =m¢®, -
we find for the acceleration of the centroid G and for the reaction #
along the plane : & &

=2 gsina=—"gsinea (12)
7w Lt m+m' ’
F=;T%,mgsina=m:_’m, mg sin a. (13)

It appears from (12) that in pure rolling the acceleration of the
centroid is constant but always less than in frictionless sliding; indeed,
of the component of the weight along the plane, mg sin «, only the
fraction m/(m+m') produces linear acceleration ; the remaining portion,
viz., m'[(m + m') of mg sin «, is used to produce angular acceleration.

The acceleration &v/dt of the centroid being constant, the motion of
the centroid is uniformly accelerated. And as, by (5), adw/dt= dv/dt
the rotation about the centroid is likewise uniformly. accelerated.

723. The value of the frictional resistance F is given by (13). Itis
important to notice the difference in the effect of friction in the case of
sliding from that in the case of rolling. In sliding motion, the whole
amount of friction comes into play, the resistance along the plane being
F = pV, where p is the coefficient of friction. Not so in the case of
pure rolling, where only as much of this force becomes active as is
necessary to prevent sliding ; hence, in the case of rolling, the resistance
F along the plane is in general < pV.

It follows that if rolling takes place and is kept up by friction alone,
we must have for the resistance # along the plane

F < pmg cos a.
Owing to the value (13) of #, this gives the following dynamical con-
dition for the possibility of pure rolling :

m'
m 4 m'

tan @ < p, or tana§(: +-:’7)p.. (14)
724. Suppose that the condition (14) is not satisfied so that
tana>(1 +£—,>p.- (15)

The motion will be a combination of rolling and sliding. The distance
x = G,G = OC (Fig. 190) through which the centroid moves in any
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as well as the rotation about the centroid is uniformly retarded. Inte-
grating these equations, we find

V= 0y — pgl, w=wo—p.%§l.
Hence v would vanish at the time #4 = 7,/pg, o at the time 4 =
m'awy/pmyg. But the motion changes its character as soon as the
velocity of the point of contact 4 becomes zero. Initially, this velocity
is zy + awy > 0, so that the initial motion is rolling combined with slid-
ing, the instantaneous axis lying (parallel to the axis of w) at the dis-
tance 7,/wy above the centroid. At the time 4 the velocity of 4 is

m

v+aw=v.,+awo—vp.g(l +;)t;
it vanishes at the time
—_ U+t aw
h= wg (1 + m/m"y’
after which the motion becomes pure rolling.

As 7, and aw, are both positive, this time # must lie between the
times #4 and 4. If 4> 4, so that o vanishes first and has become
negative at the time #% when pure rolling sets in, the sphere will, after
the time &, 7ol forward (i. ¢., in the sense of ;). If, however, 4 < 4,
» first reduces to zero, and is, therefore, negative when pure rolling
begins; the sphere will, therefore, after the time %, ro/l backward.
If #4 = 4, the sphere comes to a stop at the time 4 =4 = 4.

The values of #4 and %4 show that we have t,%t, according as

vZL"—'amo.
o<m

730. Exercises.

(1) Discuss that case of the problem of Art. 728, when the initial
angular velocity w, gives to the lowest point of the sphere a velocity aw,

opposite in sense to 7, ; distinguish the three cases 7, 2 |@wy|, taking the
sense of 7, as positive so that u, is a negative quantity.

(2) What must be the initial motion to produce rolling backward :
(@) for a sphere? () for a cylinder or disk? (¢) for a hoop?

(3) A homogeneous circular disk 2 ft. in diameter is set spinning at
the rate of 5 rev./sec.; it is thus placed, with its axis horizonta!, on
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a horizontal plane whose coefficient of friction is 5. How long will
it slip (or “skid”), and what will be its linear and angular velocity
when the motion becomes pure rolling?

(4) At what height above the table (cushion height) must a billiard
ball be struck (horizontally) if its motion is to be pure rolling from the
beginning ?

(5) A billiard ball is started as a “dead ball,” 7.¢., with no initial
rotation, and with z,= 7 ft. per second. If it goes 10 ft. before the
motion becomes pure rolling, what is the coefficient of friction?
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—C—

Page 16.

(1) Join the point P to the instantaneous center C; the direction
of motion is perpendicular to C2. ’

(3) See Art. 24.

(4) With O as origin and the diameter perpendicular to / as x-axis,
the space centrode is y*= cx + aV2® + )%, where a is the radius of the
circle, ¢ the distance of O from 2. With A4 as origin and /' as x-axis
the body centrode is * = ay + ¢V2*+)*. The upper sign corresponds
to /7 sliding over the first and second quadrants of the circle, the lower
sign to /7 sliding over the third and fourth quadrants. If ¢>a, the com-
plete fixed centrode has a node at O with the tangents ay= + VZ—a’x.
‘The polar equations of the centrodes are 7 sin*@=c¢ cosf+ a and
7' cos’@’' = asin6' + ¢. The body centrode for ¢ >a is (apart from
position) the fixed centrode for ¢<a, and vice versa.

(s5) F¥=za(x+}a).

(6) The fixed centrode is a circle passing through O', 0"; the body
centrode is a circle of twice the radius of the fixed centrode. The path

of any point in the fixed plane is a Pascal limagon ; the points of the
body centrode describe cardioids.

(8) Two equal parabolas ; the motion is the same as that of Ex. (s5).

(10) With O as pole and OB as polar axis the equation of the fixed
centrode is 12 cos’@ — 2arcos’d + a* =72 With O as origin and OB
as x-axis the equation in cartesian co-ordinates is

B+ — V2 + = 2ax,
or - &+ & — PP(2*+ ) = g4 @
This last equation represents, however, not only the centrode of 48 as

B moves on the positive x-axis, but also the centrode of 48 when B
461
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moves on the negative x-axis. With /+a =y, /—a = d, the cartesian
equation can also be written :

r=t 5= VE-HE-2).

- The equation of the &ody cmtradz, with 4 as pole and 4B as
polar axis, AC=7", X BAC =40, is found by observing that » =+’ 4 q,
/sin @' = OB sin @ = r cos 6 sin @ ; substituting the resulting values of »
and @ in the equation of the fixed centrode, we find
(@ — P cos* 07 — 2 al%’ sin?6' + P(/*— a®cos 6") = o,
which breaks up into the two equations
/+acosb _, /—acosf
=7 . T " =/.—_=".
N a+/cos@’ & a—1lcost
These relations can be read off directly from the figure if perpendicu-
lars be dropped from O on 4B and from B on AC. In cartesnan co-
ordinates each of these equations is of the fourth degree.
For the patlz of any pomt P whose body co-ordmates, with 4 as origin
and 4B as x'-axis, are x', y', we have
x=acosf+ x'cosp+y'sing, y=asin §—x'sin ¢ + y'cos ¢.
After eliminating ¢ by means of the relation //a =sin/sin ¢, it re-
mains to eliminate 6 ; the result is somewhat complicated.
For the path of the midpoint of AB the equations reduce to
x=acos@+4/cosp, y=asin@ —3}7/sing,
whence x=Va— 43 +3VIE—4), e
which is of the fourth degree.

Page 27.
3) V3. (6) 2acosta.
(4) 9.3 miles; N. 10°E. (7) (&) 160°48".7.
(8) (V3—1)a, $V2(V3—1)a.
(10) Inclination to vertical : (@) 9}°; (&) 22§°; (¢) 36§°; (&) 683°.
Page 33.
(5) (@) 5.9; (8) 40.6; (¢) 73.3; (d) 35.2; (¢) 1093.
(6) t=2(a+8)/(v,+ v).-
(8) 184, 200 miles per second=2.964 X 10" cm. per second. More
exact measurements give 2.9989 X 10" cm. per second.

(9) (@) 2 hr.; () 13} min.
(10) About 31°. (11) 24 miles per hour.
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Page 37.
(1) B ft./sec’ (3) o.1r ft./sect.
(2) 32.186. (4) 0.0034.
Page 40.
(1) (¢) 145 ft. (2) o.275 ft./sec’.

(4) h=¢ [1 + ;— \/—; (z t+ é)] Ap approximate value is

h=1gct?/(c +gt). For a direct numerical computation the method of
successive approximations can be used. Thus, neglecting the time %,
required by the sound, find the depth s approximately from s =} g/%,
with #=4; with this value of s find #,; hence the time of fall 4, with
which correct 5; etc. Result: s= 0.4 meters.

(5) (@ 4% min.  (8) o0.18 ft./sec’.  (¢) 33y miles per hour.
(d) 4 min. 4} sec.

(8) (@) 4} miles. (8) 645 ft./sec. (¢) 14 min. () 1200 ft./sec.
(¢) 58 and 17 sec. The resistance of the air would modify these results
quite appreciably.

(9) 8o ft./sec.
(10) (@) t=h/v. (8) h—s=13}gh/vd. (©) v="gh
(11) 2o min. (12) g}y sec. (13) 426 ft. (14) 30 miles per hour.
(16) h— A'=17V/2 gh approximately ; 0.6 ft.

Page 45.
(1) »= 26,000 ft. per second, /= 34 min. 50 sec., approximately.
(2) Tt represents a cycloid.
(4) (&) v=17 miles per second, #¢=co. (6) v=17 miles per
second, #=116 hr.

2
(5) v=—V2gR £¢l,where 11_.,_£= L.

2gR s 4:7
(a) If H<V2 \F f——\/?['\/.\'(xzk—:) '\/.WR—JO)

+ @R (cos™ - \/: —cos™! —I-\/%)]'

(&)Ifﬂo—\/zgk\/' t=} ——-(s., b, (t)vao>'\/zgR\[§:
[.m \F—:+.?R+\/'
V: + 2R +Vs,

0

\/—R ———— - Vso(So+ ®R) — Vs(s + x’R)]






ANSWERS. 465

Page 51.
(1) == radians; v=15.7 ft./sec. (2) (@) 3; (4) 284;.
(3) —o.157 rad./sec*. (5) (a) 402; (&) 25 sec.
@s (1) 31 fu.fsec.

(8) (a) 0.022 rad./sec?; () 15.7 ft./sec.; () 7.8 ft./sec.

Page 56.

(3) v=21 ft./sec., at 22° to the train.

(5) o= 24.2 ft./sec., at 24}° to the track.

(6) About 20'". (7) 36 miles per hour. (8) v,=w,siné.

(9) Resolve # into #, parallel to the track, and z, along the tangent
to the wheel; show that » bisects the angle between these components ;
it follows that 2, = 7, and hence v = 2 ©ycos OCP, Wh(?l’e O is the center
of the wheel and C its point of contact.

(11) r=19y, 6 =ot; hence, eliminating ¢4 r= (z/w)0, a spiral of
Archimedes.

(12) At the pole O erect a perpendicular O/ = a to the radius vector
OP=r; then P'Pis the normal. Proof by Ex. (10).

(13) For the ellipse, 7, + 7, = 2 a, whence dr,/dt=— dr,/dt. Notice
that dr,/dt, dry/dt are the projections (not the components) of the
velocity » (with which the curve is described) on the radii vectores 7, 5.
This is seen by observing that z can be resolved into components in
two ways: (a) into dr/dt along r, and a component L7 ; () into
dry/dt along 7, and a component L7, Hence the perpendiculars
erected at the ends of &r/d¢ and dry/d? (laid off from P in the proper
sense) must meet at the end of .

(14) The projections of the velocity on the radius vector and on the
focal axis are in the constant ratio ¢ of the focal radius vector to the dis-
tance to the directrix. It follows that the tangent meets the directrix
at the same point as does the perpendicular to the radius vector through

the focus.
Page 62.

(4) N =210, 0 =122, V=14 ft./sec.

(5) 16.5 knots ; 9} ft./sec.

(6) 55° 66°, 2% in. (8) 5% ft./sec.

(7) o.174, 0.119, 0.146 of the stroke.  (9) At 0.447 of the stroke.
2H
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dx 40 sin26 @ a6
(IO) Ff d’(sm0+zm) df—(l n)adtcoso,

air= a(do>[coso+ m c0520+sin40}
ar ar (m* —sin? 9)"

rﬁy do\? .
—(1— n)a(w) sin 0.
Ifm= l/a is large, we have approximately

%_ (j) <c050+ cos 2 0) —(1- n)a(az) sin 6.

Page 67.

(2) Follows from the last of the equations (6), Art. 114.

.7 v\2
(3) By (2), Art. 112, 7, = o=P (P)
(4) By Art. 112, j,=ssiny=1*/p; hence, o= - psiny.
(6) Since y is directed towards 4, we have, with 4 as origin, j,=o,
i.e,r = const.
€)) %=m=const. ; r=const. ; hence, by (6), Art. 114, /=7,= —ro?.

(9) Differentiate twice with respect to 7 the equations of the cycloid

x=a(@—sinf), y=a(1 —cosf). At the lowest point: L =o,

it
dy _ (dO\' . ., dx a0 dy d0
7 a( ) ; at the highest point : A28 g a(;i?) .
Page 69.

(1) (a) 2360 ft. above the point ; (8) after 3 min. 2 sec.; (¢) 2670 ft.
behind the train ; () 25 miles per hour.

(4) 45"
(6) Construct a vertical circle having the given point as its highest

point and touching, (@) the straight line, (8) the circle.
Page 72.

(9) (@) 137} ft. from the vertical of the starting point ; (8) 6} sec.;
(¢) 201 ft./sec., at 6}° to the vertical.

(10) 227 ft./sec. (11) 4°21' or 86°48'.
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(13) Let OV'=19, be the given initial velocity. On the vertical
through O lay off OD = H=1/2g¢; then the horizontal through D is
the directrix. Double the angle DOV, making X VOF=2% DOV, and
lay of OF = OD = H; then F is the focus.

(14) With »/2 g= H, the locus is x*=— 4 H(y— H), a parabola.
(17) A horizontal line.

(18) (@) 1.5 sec.; (4) 25.1 ft. from the building; (¢) 597 ft./sec.,
at 164° to the vertical.

(19) 300 ft. from tee, in 1 sec. (20) At a distance of 6260 ft.

Page 78.
(3) (@) o, —4.94; (8) —2.72, —2.47; (¢) — 3.14, 0.
Page 82.
(1) x=10.81 cos(} £+ 27}°). (2) x=2acos}8-cos(wf+38).

(3) (@) x=2acoswt; (b)) x=o0, the case known in physics as
interference.

(4) x1=—5.18 cos 7Z, x,= 14.14 cos (x¢+ 30°).

Page 97.
(1) 0.99672; 86116. (3) 32.16. (5) 980.4.
(2) 3.2595 ft. (4) 28.8 ft.
(8) The pendulum should be lengthened by 15 of its length.
(9) It will lose about 67 sec. (10) About a mile.
Page 99.
(3) r1.0038. (5) Use equation (24), Art. 150.

(6) Determining the constant from the condition 6 == for z=o,
we find instead of (24), Art. 150, }2°=2g/cos*}6. Substituting
v =— /d8/dt and integrating, we find #=+//glog tan } (x4 0), if 6=0
when 7=o0. This shows that the point approaches the highest point of
the circle asymptotically, . e., without reaching it in any finite time.

Page 109.
(2) Let x4 )y*=a® be the circle, the acceleration being parallel to
the axis of y; then j=—a%?/)*, where 7, is the x-component of the

initial velocity.
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Q) S =
(4) Let j=p’r be the acceleration ; x,, y, the initial position ; #, z,
the components of the initial velocity ; then the path is the hyperbola

(2" — p’)2* + 2 (Wl — vywy) 2y + (2 — i) )P = (v — v’},l)z_
_E ,_ T%sing _ 7,2 sin 2 Y 2
6) a=5 b= — ) tane= Thofcosa gy where €= e E_s
Page 112.

(3) Find first the relative velocity of 4' with respect to 4, whence o
is obtained ; determine the distances CA4, CA4'.

(5) vp=ccot ¢, v,=4¢/sin ¢, where — ¢ is the velocity of 4.
(6) v,=28.3, vy=22.4 ft./sec.

Page 140.

(3) Based on the proposition that the bisector of an angle of a
triangle divides the opposite side into segments proportional to the
adjacent sides.

(5) The center of the incircle of the triangle formed by the mid-
points of the sides.

(6) About 1000 miles below the earth’s surface.
@) 2=y=(2/m)r.
(9) Taking OA as axis of x,

x=27:(asina+c05a—1), j:%(sina—acosa).

- 3\/_—log(1+\/z) a 2Vz2—1 .
(x0) = V2+log (1 +Vz) 4 r= V24 log (1 +V2) ta.
(11) X=ma, y=4%a. (12) x=y=4%a.

(13) *=o, j=ﬁ+§y, where s =¢(£—¢ °).

() F=r- S8, 5, 120086 5 g,

Page 150.

(1) }V@E+ P, yVal+ 48, yVaad+ 5
(2) With 4E, AF as axes, X =z a, 7= {5 a.




ANSWERS. 469

3r—2

(3) With the sides of the triangle as axes, X =y 6(7—_1)

V2
6(1r——x5a'

(5) Resolve the area into elements parallel to B.D.

(6) With the lower base and the perpendicular side as axes,
F=} (@ +ab+8)/(a+b), 7=} (a+20)k/(@+9).

(7) Compare Art. 231.

@ z=1 (at+a'yB+ad'(e—PB)e

2 (a+a)B+2(—pPe

distance from center =

. 184588 _ .
(9) x—;-—a+b_-8——4.9om.,
first imati ~_ 1 a+8 _ in.
rst approximation, ¥ =Z-——r—s=4.93 in.;
d tion, L oi
second approximatio x—~ P 5 =450 in.
_ 1a(a+zb')—(2a—&+b')8 .
(xo)x—; PRI ey S R
_ 1a’/3+ba’— ’B 1 @B+ ba? 1 aB
(r) = 2 aftbe—eaB’ 2aB+ba—aB 2aB8+ da A

0.33 a, 0.25 a.
(14) x =—8c/(a®— ).
(15) For a segment of a ring of angle 2 « and radii 7, 73, the dis-

. . — 2 sine ri4nrrntrd
tance of the centroid from the center is x == - it nntn
3 « n+r

Hence, x = Ez;—(74o + 73 V2) = 3.65 ft.; 1.c., the centroid lies about
™

1 in. above the lower arc.

(16) E'_:%x’ j’=‘§‘}'- (17) E"—‘-E} j:%.
— 4 - 4
18) X =-—a =0.40538, y=—0.
(18) = "a=040534, y=—"
- 2
I X¥X=———a=o0.58 a, = 5.
(19) 3(1r 2) 548 V=3 —2)

(21) Take the vertex as origin, the axis of the cone as axis of x, and
one of the bounding planes as plane of xy. Then, if @ be the radius
of the base, % the height, and 2 « the angle at the vertex of the cone,
the formule of Art. 236 give

n=(a/h)x=tane-x, S=takseca- ¢,
sing _ 1 — cos ¢.

X=%h y=}a- T-, t=}a- 3
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(22) About 2600 miles from the center.
(23) At } 7 from the lid.

Page 158.
= __ - 3n +1"1"x+"a

(I) x_%a' (2) x—i‘h ’.12_'_’.1’.’_‘_’.2

(3) Let 7] be the volume of the supplementary pyramid, ¥, that of
the whole pyramid, / that of the frustum ; ), ¥, x the distances of their
centroids from the lower base ; 4,, 4, /4 their heights. Then the equation
of moments is (¥, — W})x = Vaxy — Vix,. By geometry, Vy/Vy=7r2/n3;
hence () — r*)x = r’x; — rx\.  Also Ay/hy=r3/n, hy—h=h, 23=1% s,
X =h+ 1A ; whence finally ¥ is found as in (2).

- 3(za—h)?
(4) 4—-“_,‘
(5) x=4%4 (1) F=1n
6) y=1n (8) Z=}a,7=45, i=}c.
F=V—=4a: —_ 457+ 128
(9) (@) x=y=ta; (@) F=B s
- _97+16 —_2(157—8)
O #="gear=ts O F=Gap®
_ _ 637°— 64
©) Z=tta; ) =gl —i6)*
(10) Take as element a hemispherical shell of radius » and thickness
dr; x= _"iL
2(n+4)

(11) Let A, A, P, be the vertices of the #riangle, PP, a median, G

the centroid ; then
PG _2 AG_Z—x

AP 3 PR x—x
For the tetrahedron A AP,/P/P, let P; be the centroid of the base
opposite A so that x5 =} (x;+ a3+ x,). Then, proceeding as above,
we find x =} (% + x5+ 23+ x,).
(12) About 0.2 mile. (13) x=3(H+4).
(14) Compare Art. 225, Ex. (5), Art. 224, and Ex. (11), Art. 238.
V=3%n(p+ ¢+ 7)A, where 4 is the area of the triangle ;
S=nlalg+n)+6(r+2)+c(2+9)]

; whence, T=x+% (x,—x,) =} (5, + x5+ x3).
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(15) Taking the axis of the cup as axis of y, let (x,, y,) be the
centroid of the mass m of cup and handle, (o, y;) that of the water
whose mass m' = £y,. Then the co-ordinates x, y of the centroid of the
cup, handle, and water satisfy the equation

(m + ky) x* — kxyxy — 2 mx,x + mxy® = o.

(16) Taking the axis of z parallel to the axis of the cylinder, and the

origin in the line of intersection of the bases, we have V =ffzdx¢y, or
if ¢ be the angle of inclination of the bases,

V=tan¢ij¢xdy=tan¢-yff¢xdy.

(17) Apply (16) twice. -
Page 161.
(2) 34+ miles per hour. (3) 32,000 lb.-ft.
Page 165.
(1) 6.4 X 10°® poundals, 8.9 x 10° dynes.
(2) 45 lb. (3) o.14. (5) 6o.
Page 174.
(3) 120° (4) 218 1b. at 36° 35' to the force of 100 Ibs.

(5) 1035, 14.64. (1) @Q=4(—P+ V4B —3P.
(8) 569, inclination to horizon = 9g° 26'.
(9) Twice the focal distance.
(10) 124° 14", (11) 90°. (12) 18.48.
(13) R =6 and acts along s.

(14) The resultant acts along the diameter through 4, and is in
magnitude equal to the perimeter.

(15) 1 +V)P.

(16) () Wsin 6, Wcos@; (&) Wtan0, W/cos@; () W'sin6/cos a,
W cos (6 + «)/cos a.

(19) Produce BO to the intersection D with the circumscribed circle ;
then DA is equal and parallel to the resultant of 04, OB ; DAO'C is
a parallelogram ; hence, D4 =CO'.

(20) Resolve the components 5, 7, along the bisectors of 8.
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Page 201.

(1) C=1, D=1}, E=6§, AB=4.5, BC=4.1, CD=40,
DE = 4.2, EF=8.9; reaction at 4 = 4.5, at /= 8.9.

(2) H=15, T=81

) ‘=\/ﬁ§ H=1wc.

(4) 1185 lbs. per square inch; 3.5 ft.
(s) H=47.41bs.,, T=357.2 lbs.,, y —c=9.8 ft.

X Page 215.
(1) I'=1.68, A=9.76, E =12.80 lbs.
(2) T=2mW, A=V4m'—2m+ 1 W, where m=¢/I.

(3) The three forces ¥, 7, 4, must pass through a point; cos ¢
=2V }(1 — m’), where m=17//b; T'=W sec ¢, A= W tan ¢.

(4) T=4W cos8/sin (0—¢).

=—B=—%

ac ac a¥
==} = — —a? = —_— A
6) B=%W, A4,=-%~VF=GW, 4, (1 P)W

/cos @
ppy W, A= W.

(7) (a) Equilibrium impossible; (8) F=E=

(8) x=am, A=~m*— 1 W, C=mW, where m=(1/a)*.
(9) B=3Gw+W)tanb, A=Qw+W)Vitan’6+1.
(10) cosf@=}(m +Vm®+ 32), where m=//a.

S
_ 1 C0s8 4 pycos@Vitsin ® ot c=lcosd

(1) P=} sin(0+¢)’ b sin (0 + ¢) cot ¢ /sin 0
¢ being the angle at which BC is inclined to the horizon.

(12) m=(W+ 2 F'sine")/(W+ 2 Fsin), C,= Fcosa — F'cos a',
C,=W+ Fsina+ F'sinea'.

(13) A=1W, B=}Wcosa, P=} Wsina.

(14) P=222W, P'=—"—W.

m—1

2Vn

P=
(15) (n—1)cosa+2Vnsina

W, P, = Wisin a.
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Page 219.
(3) 60"
(5) cot 6= § for hemisphere, 4/4 a for cone, 4/2 & for pyramid.
(6) A=V3p/psa. (1) k=Vp/2 ps.

Page 222.

(3) Let % be the altitude of 4.8 C, through C, and a, 4 the segments

into which this altitude divides 4.3 ; then C, = ——2—_W,C,= 1 4= .,
a+é 2 b+4a

@) 4 cosacong__B 4, [ smacosé W=2W-2B,
2

sin (¢ + B) sin (« +8)
Page 235.
__ sing
(1) 4 tons. (2) P= (b —) w.
3) (@ s“Ao—@W<1°<s“l(::;':"’)W (4) P=o, or

PZ2Wsinb; (¢) if Pact up the plane, P<m W; if Pact

down the plane, P2 sin (¢ — 6) .
cos ¢

(5) 226} lbs. ; 56} lbs.
6) (a) P _sin(6— ¢) ) 1,=sing0+ QW

cos(e + ¢) cos(e — ¢)
T _ ~14 W+ E’ W'
_ 2 m cos 0 sin 4
._(3},A (1—mcos*O) W, C=mcosOW, p = —mcot’ where
(10) 4= ,,,MS_;V, C=rmcos OW, sin20="Ltan2 ¢,
where m = //c. sin ¢ . "
11) sind < §.
(1) =t Page 282.
(1) 3.5 ft. (2) 1380 ft./sec.
(3) 8% ft./sec. (4) 36% ft./sec.

(5) (@) v=4avy, v'=58; B) v=—14}, v =174
(6) Ifthe ongmal velocities are of the same sense, v = 424, 2' = 46} ;
if not, v =— 19§, ' = 10§.
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(7) e=o gives () 447y, () —2py; e=1 gives (a) 9=38}, v'=
49}, (&) v=—755%, v'=35¢
@B) v=—ecu. (10) 8} ft.
(11) (a) 0.31 ft.; (8) 9} sec.; (¢) 6648 ft. (13) (I :")‘u.
(14) (@) 4% ft./sec.; (b) 38% ft./sec.

(15) For e=o0: (a) v=m:m,u; (%) limv=o0; (¢) limv=4s'
m—m' 2m .
For e=1: (a) v=mu, v'=m+m,u; @ limyv=—u4,

limo'=0; (¢) limv=24'—4, limo'=«'. Interpret these results.

Page 288.
(1) The momenta are as 20: 1 ; the kinetic energy is the same.
(2) 3125 Ibs. (3) 9 lbs. (4) 6250 lbs.
(5) About 450 Ibs. ; about J5 of the available energy is wasted.
(6) 4.9 ft.-lbs.  (7) 363 ft.-tons; 9 miles per hour. (10) 3 tons.
(x1) 13} and 2 ft.-tons.  (12) 144,000 lbs. (13) About 3300 lbs.
(14) About 60 lbs. per sq. in. (15) About 400 Ibs. per sq. in.

(16) 449 lb.-ft. (17) 26 lbs.
Page 292.
(1) 57 Ib.-ft. (2) 16 ft./sec.

(3) =88, B=59°; v'=14.4, B'=17}"

(4) v=16% ft. per second; F= 160,000 lbs.

(5) 5:1. 6) 17:1.

(7) The impinging sphere is brought to rest;
Y=V +u" tan B'=u'/u.

Page 300.
(1) (&) 250 Ibs. (2) (a) 8 ft./sec.; () 20 ft.
(3) (@) 764 1bs.; (8) 14 mile; (¢) 1146 lbs. (4) 4.9 sec.
(s) 35.8 and 4.2 ft. above the ground ; 504 lbs.; 11.2 sec.
(6) 7 = (m, sin 6, — m, sin 6, — p,m, cos 6, — pym, cos 0,)g/(my + my),
T = (sin 6, + sin 6; — p, cos 0, + p,y cOS O) mymyg [ (my + my).
(7) j=5.8 ft./sect; T'=1y lbs.
(9) 0.036. (10) 288 ft.
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(11) (@) About 1600 lbs; (4) about 3750 lbs.

(12) 589 ft. (Find first sin @ by successive approximation.)

(13) (@) 120; (&) 200 lbs. (14) 4125 lbs. (15) 5624 lbs.

(16) (a) 2625, 3058; (8) 1375, 1602; (@) 217; (8) 113.

(17) (@) 1267.2 ft.-tons; (8) 4435.2 ft.-tons; (¢) 5:2; (d) about
11 mile.

(18) (a) 1146; (8) 1946; (¢) 800; (4) 2050 Ibs.

(19) 2016 ft.-tons. (21) About 7 in. (23) 513,274 ft.-tons.

(20) 397} ft.-tons. (22) 30 ft.

Page 313.
(1) (@) 11,133 ft.-lbs.; (4) 22} ft.
(2) 61bs./in.?; 83,400 ft.-lbs. (4) 864 ft./sec.?

/ — ) — mg
), work = } mix,?, where x = \’m

. 2
(5) Tlme—;<1r+2;0 A

6) (a) 3 1b.; (4) 11.3 ft./sec.; (¢) 0.6 sec.

(o If xog 2 pm, (4 — /) m,, the particle comes to rest between 7,
and Q (Fig. 155). If xo> 2 pmy (4 — 1) /m,, but x5 (Fxy— 2 p) <
2//umg, the Barticle comes to rest between Q and Q'; etc.

(9) If xy < ¢, nothing is changed ; if x, > ¢, the particle performs
simple harmonic oscillations about Q,, just as in the case x, < e.

(10) The length / is increased to / + ¢ +Ve (e + 2 4).

(11) Take x,= 4 —/ in Ex. (8). (12) 424 min.
(14) y=h(1 +V T + 2~ /A).
Page 317.

(2) The equation of motion m %‘;: — mg — mky® gives, with

k= /g, .
B LT LT AP g T )
v 1 po, Sin uf + g cos ut’ "—FsIOS : sin uf 4 cos ut ),

2, 2 2
s=_g_zlogg’+"v°— I log £ 4%

YR Y el P

Time of ascent=—L tan-(y[£ - 2,), height=—1 A .)_
(3) Timeofascent \/Z_gta.n ( P vo), height ; klog :+gv.,
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(0 2=—YE_

(5) Zn vacuo v, = 17 ft. per second ; in the air 7, = 122 ft. /sec.
) :=%’(t—e"), v=ge M =9)— &s. »

£ ' -
(7)‘v=;(1—r“),s_— t+k(e" 1):]-——+k,log oy

Page 321.
(2) The logarithmic decrement is log ¢=* = — M

@) If p+x :-—-t,tcos:d+¢',smxt+ - o ,smp.t, if p=x,
$'=¢,C0S k¢ + ¢ 5in xl+ — sm .
(5) The term due to the forced oscillation is
a
cos u(f—4);
V=i + 4 Xt )3
hence, this oscillation lags behind the force by the phase difference u#4;
the amplitude is less than for undamped oscillations. The free oscilla-

tions (if any) will rapidly die out so that the motion soon approaches a
state of motion given by the above term.

Page 324.
(1) 1 watt=o0.00134 H.P., 1 H.P. = 746 watts (with g = 981).
(2) 1 metric H.P.= 736 watts = 0.986 British H.P.

(3) 20} (5) (a) 64; (8) 224; (c) 384. (7) 35,200 gals.
(4) a1} (6) 188 gals. (8) About 1 hr.
(9) (@) 177,000 ft.-tons; (&) 51 hr.; (¢) about 74 days (of 8 hr.).
(10) 25 lbs. (12) 12.8. (14) 21}
(11) 15.6 1bs. (13) 1.

Page 331.
(1) U=ez+C. (2) V=mg(s—2).

4) U=~ [Rr)dr=—F().

(5) As 7= (x — 2 + (y — 30 + (s — 8}, rdr = (x — m) dx +
(y — o) dy 4 (2 — %) 5 ; hence the direction cosmes of R=/r) are
+ ﬂ =+ aa , etc. Hence X = + f(r) 3 etc.,, and putting

f ) dr = F(7), we find U= + F(r).
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(9) (a) Ellipse; (4) hyperbola; (¢) parabola.
(10) The parabola x — x.,-——l(y —y.,)——(y — %)%, where 24 is

the distance of O from the pomt O that blsects 0,0, ; the point mid-
way between O and O; is taken as origin, and OO; as axis of x.

(11) t= itan“(%tan 0)-

Page 357.
W) @ =575 O f)=52-%

(2) vo— F./ro.
(4) 687 days.
(5) By (24), Art. 555, v’=3ﬁ F 5 ; as the velocity is not changed

z I '
mstantaneously, we must have ——:;:E Lt o o whence the new

major semi-axis @' can be found. @ 7

(6) An ellipse with the end of its minor axis at the point where the
change takes place.

(7) (a) Ellipse with @ =4 r; (4) parabola.

(8) Differentiate (24), Art. 555, with respect to u and a.

(9) The periodic time 7" would be diminished by sT

/ /sin @ /sin @
[ . — h = y VY=
(x0) ¥ Ttecosf T T Fecos8 7 1tecost’
entiating and remembering that »°49/d¢ = ¢, we find
& _Csng, D=F :
7= "7 sin 6, i 7(cos 0+o);
eliminating 6, we find the equation of the hodograph

2+ (y - if) = G),, or since ¢ =Vu/, 2+ (y - "7‘)’= (’f)’

(11) 1.034114. (12) t=\,2—:—3(tan}0+§tan’;0).

; differ-

Page 362.

(2) Let p;, ps be the distances of m,, m,; from the common centroid
at any time #; § =x,—X, etc.; then the equations of the relative
motion are

% _ my + my ) & a*y my+ me )
df —?”'J(T:pl P e am= m.f( m P’) "o e
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Page 370.
(4) (@) 73 1bs.; (8) 4801bs.; () 6.4 rev./sec.
(5) 4840 lbs. 6) e= ig in.
(1) 8. (9) 32.20. '
(12) 7} 1bs. (x3) (a) 76 per min.; (4) 108.

(14) In Fig. 166, CD: RF'= PC: PR, hence CD="5"%

..
(15) 7%8° (16) tan 8=%; 8 in latitude 44° 57"

(17) (a) 76.4 rev./min., (4) 71.4. (18) About 48 miles per hour.

== const.

Page 373.

(1) The integration gives tan}(r +60) =tan } (= + 6,) - eﬁ' ; as 6
approaches =, # approaches infinity.

(5) The particle remains on the circle as long as cos0+§ 4// is
positive.
(6) v,> 22 ft./sec.

(7) To count the angles from the highest point of the circle, put
w— 0= ¢ ; then, putting 2 — /=4, where A' is the height to which the
velocity at the highest point is due, we have

N=— _2 1-4-_1.')
3 mg(cos $ 3 7
The particle remains on the curve as long as cos ¢ > §(/+ A")/4
Distinguish the cases ' >0, A'=o0, £2'<o.
(9) 1.4617a. (10) 4=7Va/g.

Page 377.
(1) (a) 9.8in.; () 1.231bs.; (¢) 354°; 1.1 in,, 11.1 lbs., 844°.
(2) Distance from axis = (g/w’) cot 6.
(3) P=mgcos 0 (rv®/g cot 6 — 1).

(5) Taking AC as axis of x, its intersection with the required curve
as axis of y, the equation of the curve is 3 = (2 g/v’) ».

(6) An ellipse.
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Page 394.
WA=t @R a1 G0 b
@) @17 (@) Hd 3 (1n) pan 38,
©®) +#; 5) 4" @) §a 1
Ol () g OFE () yattad,

@) 5 1.

(13) @) 7=§{Fa+(a—a)f?]; (5)/=4[aB+ (6—B)e’). When
B(e) is small, the second term within the bracket can be neglected.

(14) 1= pd[2 64> — (6 — 2 a)(h— 2 a)’].

Page 398.
() =HEB+5). (2) (@) Ka'; 0) ka5 ©) Hpat
(3) (@ 4% ©) 4% () 4a% (@) e~ (5) $(a’ + o).
©6) (@) }a*; (B) 345 () F(F+34).  (8) §at
©) @) 18; @) 1a'; (o) 1 +5).
(10) B+, }(E+aY), 3@ +5).

() 7= 4B + (¢ - gy — L EELIT =SB
(12) L=} [a%— (@ — 2 8¢ — 9]
=38[d'(@a+64)—6a(a+26)8+4(3a+26)8—-88];
L, =382 —ad —28);
L,=1+1,=}8[(+6a%+85)—6a(a+25)8
+8(za+6)8— 1687

(13) 34 (14) $2° (15) §a*+ 5.  (18) ¢ (a®+ Hsin?f).

(19) For the line joining the midpoints of the non-parallel sides the
moment of inertia of the trapezoid is the same (by symmetry) as that
of the rectangle having this side as base and an altitude equal to that
of the trapezoid. Transferring to the centroidal line, we find

st i)

21
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Page 420.

L2 4 34 N
(1) 3"\!4—{‘23—““' €)) 3600z
(2) $Vaa. _ -';‘;

. (8) W= V"T'
() m(SL'). () $a.

3 (10) 300,000 ft.-lbs.

(5) 156 ft.-tons. (11) 234,000 ft.-1bs.
(6) 4 min. 22 sec. (14) H kN

‘ P PN iGN 1 g
@t5) @) 3600g ur 36,900 pr' reves ()306 P

(16) 1} oz. (17) 1000 Ib.-ft. (18) (¢) 2/V3 = 1.155.

Page 425.

(1) m=}m. (4) $m (3) @%m; (3)gm.

(7) As the motion is uniformly accelerated, the final velocity is twice
the average velocity, 7.¢., =2 X 15/¢ where ¢ is the required time.
The principle of kinetic energy and work then gives #= 7.1 sec.

Page 431.
(2) 7143 Ibs.
Page 447.
() 34 (&) F=}maw; reactions: — - F, ——2_F
R L
(9) £ has twice the value found for inelastic impact.
(11) F= \/*_(—\7;———1)”1\/6’—4. (12) 12.6 ft./sec.

Page 453.
(1) v=20.6 ft. per second.
(4) () 0833715 (8) 0.775 7y
(OIS
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Page 456.
(1) (@) si=4%gsing, j,=4gsing, j,={gsina

() &,=f}4§cos¢, a’».=zp.§cosu, n’».=p.§cosa.

© :::§§, 3, 2, respectively.

. (@) (@) 2105 ft.; (5) 236.8 ft.
-Pn.go 458,

= M
@ x—M+m+m'h

Page 459.

(1) If 5,>|aw], F has the same sense as in the case of Art. 729 ; the
equations are therefore the same; but «, is a negative quantity. If
2, < |@ay), the sense of F is reversed. In both cases the sphere rolls
forward, 7. ¢., in the sense of v,.

(3) =09} sec.; v=—10.5 ft./sec.; number of revolutions per

second = §. 4) }a. ) &
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ABERRATION of light, 57.

Absolute motion, 25.

—— units, 163-166.

Acceleration(in rectilinear motion), 36-49.

—— (in curvilinear motion), 62-68.

——, angular, so.

—— in cartesian co-ordinates, 65-66.

—— directly proportional to the distance,
46-49.

—— of gravity, 37, 39

inversely proportional to square of
distance, 42-46.

——, normal, 64-65, 67.

—— in polar co-ordinates, 66-67.

—— in simple harmonic motion, 76, 78.

——, tangential, 64-65.

—— in uniform circular motion, 74.

—— as vector, 63.

Activity, 322.

Advantage, mechanical, 268.

d’Alembert, principle of, 334-337, 381.

Amplitude, 74.

——, correction for, 99.

Anchor ring, moment of inertia of, 399.

Angle of friction, 232,

—— of incidence and reflection, 291.

—— of repose, 233.

Angle-iron, centroid of cross-section, 151.

Angular acceleration, 5o.

momentum, 333.

—— ——, conservation of, 386.

—— ——, equations of, 383.

—— —— about fixed axis, 416—417.

—— —— in plane motion, 450.

of rigid body, 383.

Angular velocity, 49, 50,

—— —— as rotor, 113.

—— —— resolved along axes, 117,

—— velocities, composition of, 114-117.

—— ——, parallelogram of, 116~117.

Anomaly, eccentric, 354.

Anomaly, mean, 356.

— true, 351, 354.

Anti-parallelogram, 123-124.

Aperiodic motion, 31q.

Aphelion, 351.

Apparent solar day, 29.

Appell, P., 179.

Archimedean spiral, 57, 343.

Arcs of curves, centroids, 135, 138-141.

Areal acceleration, §1.

—— density, 135.

—— velocity, §1.

Areas, centroids of, 141-153.

——, conservation of, 387.

——, principle of, 104.

Arm of a couple, 201.

—— of inertia, 394.

Astatic equilibrium, 218,

Attraction and repulsion, 102, 305-309,
343-344, 350-

Atwood’s machine, 297-300, 425-426.

Available work, 268.

Average angular velocity, 50.

force, 303.

—— piston pressure, 305.

—— velocity, 34.

Axis of rotation, §.

Axle-friction, 239.

—— in Atwood’s machine, 426,

BALANCE, common, 218.
——, running, 434.

——, standing, 433.
Ballistic pendulum, 449.
Beat, 95.

Belt-friction, 240~242.

Belt on pulleys, 51, 52.
Bending moment, 228-230.
Binding screw, 271-272.
Body centrode, 11, 112,
—— falling én vacuo, 39-41.
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Conditions of equilibrium for parallel
forces, 190-191, 192-193.

—— for forces in a plane, 208—
209, 210-211, 211-217,

—— —— —— for forces acting on any
rigid body, 244, 250.

Condition for pure rolling, 452.

Cone, centroid of, 139, 153.

——, equimomental, 405.

—— of friction, 233.

——, moment of inertia of, 395.

——, principal axes of, 409.

Confocal conics, 410-412.

—— quadrics, 412-414.

Conical pendulum, 375-378.

Conic sections as orbits, 343~347, 348-358.

Conic, tangent to, §57.

Connecting rod, motion of, 14, 16, 58-62,
112,

—— ——and crank, forces acting on,
181, 272-274, 428-429.

Conservation of angular momentum, 334,
386.

—— —— areas, 334, 387.

—— —— energy, 286, 308, 308-309, 320,
323, 330.

—— —— lincar momentum, 385.

—— —— motion of centroid, 280, 385.

Conservative forces, 329.

Constant, elastic, 311.

—— of gravitation, 305-306, 313.

Constrained motion, 362-378.

Constraining force, 365-366.

Constraints, 18-19, 117-119, 255-258,
263, 297, 363-366.

Constraint, complete, 117-119.

Cord, equilibrium of, 193-201.

—— running over pulley, 297-300, 425-
426.

Correction for amplitude in pendulum, 99.

Cotterill, J. H., 61.

Couple of forces, 189-190, 201-208.

——, centrifugal, 434.

—— represented by vector, 204-205.

of rolling friction, 343.

Crane, 179-180.

Crank and connecting rod, 272, 274, 428-
429.

Cube, impact on, 449-450.

—— as pendulum, 420.

, principal axes of, 409.
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Curvilinear motion, 325-378.

Cyclic sections of ellipsoid, 406.

Cycloid, 11, §7.

Cycloid, centroid of arc, 141.

——, centroid of solids generated by revo-
lution of, 158.

——, motion on, 374-375.

Cylinder, centroid of, 153, 159.

——, moment of inertia of, 395, 398, 399.

——, moving down inclined plane, 451~
456.

——, moving up inclined plane, 456-457.

—— on horizontal plane, 457-458.

Cylindrical rod as pendulum, 420.

DaLBy, W. E, 435.

Damped oscillations, 318-320.

Damping ratio, 321.

Decrement, logarithmic, 321.

Degree of uniformity, 430.

Degrees of freedom, 18-19, 119, 255-258,
381,

Density, 131-132, 135.

Derived units, 31, 130.

Deviation due to obliquity of connecting
rod, 60.

Dimensions, 31-32, 37, 160, 163, 260, 322.

Direct impact of spheres, 278-293.

Directing couple, 423.

Displacement, 3, 4, 8, 17, 19.

—— in simple harmonic motion, 74.

Distribution of principal axes in space,
410-416.

Door, moment of inertia, 395.

—— on hinges, 253-255.

Driving force, 268, 427.

Dynamic stability, 449.

Dynamical meaning of principal axes, 438

—— —— —— radius of inertia, 424.

Dynamics, I, 129-169.

Dyne, 163, 165-166.

EARTH and moon, 141, 348-349, 358.

Eccentric anomaly, 354.

Effective force, 334-335.

Efficiency of machines, 268, 322-325.

Elastic constant, 311.

—— stress or tension, 310.

—— strings and springs, 310-315.

Elasticity, perfect and imperfect, in im-
pact, 280-281.
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Friction angle, 232,

—— circle, 238.

—— cone, 233.

—— in pure rolling, 453, 455-457-

, rolling, 242-243.

Frustum of cone or pyramid, centroid of,
158,

Fulcrum, 192,

Fundamental units, 31, 130,

—— ellipsoid, 408.

Funicular polygon,
225-228, 229-230.

186-138, 193-201,

GALILEO’s laws of falling bodies, 40.

Gas engine, 325.

, expanding, 313.

Gases, kinetic theory of, 291-293.

Geometric addition, 23.

—— derivative, 63.

—— difference, 25.

—— subtraction, 24.

—— sum, 23.

Geometry of motion, 1, 3-28.

Governor, 376-378.

Grain, gram, 130. )

Graphical methods in statics, 171, 172~
173, 183-184, 185-188, 191, 193-195,
201, 224-228, 234, 236.

time-table, 33.

Gravitation, constant of, 305-306, 313.

, terrestrial, 348-349.

units, 163-166.

, universal, 43-44, 349.

Gravity, acceleration of, 37, 39.

and centrifugal force, 370-371.

Guldinus, first proposition of, 140.

——, second proposition of, 148-149.

Gyration, ellipsoid of, 408.

——, radius of, 394.

HALLEY, 348.

Hammer and nail, 285-286, 288.
Harmonic motion, 74.

Hart’s inversor, 125.

Head or height due to a velocity, 40.
Helix, centroid of arc, 141.
Hemisphere, centroid of volume, 158.
Heterogeneous mass, 131.

Hexagon, moment of inertia, 395.
Higher pairs, 118.

Hodograph, 63-64, 67, 73, 358.

489

Homogeneous mass, 131.

Hooke’s law of elastic stress, 310.
Hoop, equivalent simple pendulum, 422,
—— on inclined plane, 454-457.
Horse-power, 322, 324-325, 421.
Hyperbola, as orbit, 343-347, 348-358.
—, focal, 413.

Hyperbolic spiral, 343.

Hypocycloid, Hypotrochoid, 11.

IMrAcT, direct, 275~-290, 291-293.

——, oblique, 2go-291.

—— of water in pipe, 289.

Impressed force, 334.

Impulse, 161-162, 275, 390-392.

—— acting on body with fixed axis, 442~
450.

Impulsive force, 276.

—— reactions, 444-450.

Inclined plane, 68-70, 175, 296, 299-300,

369-370, 451-457.

Independence of translation and rotation,
388.

Indicator, 304-305.

diagram, 305.

Inertia, 160.

, ellipsoids of, 399410,

—, force of, 335.

—, law of, 168.

——, moment of, 393.

, product of, 393.

—— of pulley, 425-426.

—, radius of, 394.

——, spherical points of, 410,

Instantaneous axis, 15, 21.

—— center, 10.

—— force, 276,

Intensity of force, 338.

Internal forces, 379.

Invariable plane, line, direction, 388.

Invariant of forces acting on rigid body,
246, 248.

Inverse of a curve with respect to a circle,
124-125.

Inversors, 124-127.

Isochronous motions, 75, 374.

JAcK, 235.
Jointed frames, 219-228,
Joule, 261.
Journal friction, 236-239.
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Momentum, conservation of angular, 386.

——, conservation of linear, 38s.

——, equations of linear and angular,
383.

— of rigid body, 277, 382, 383.

Moon and earth, 141, 348-349, 358.

Motion, 3.

——on a fixed curve, 365-375.

——on a fixed surface, 375-378.

——, mean, 354.

NEUTRAL equilibrium, 218-219.

Newton, 106, 347-348.

Newton's laws of motion, 167-169.

——law of universal gravitation, 43-44,
349.

Newtonian forces, 305-309.

Normal acceleration, 64-65.

force, 326.

OBLIQUE impact, 290~291.

Octant of ellipsoid, centroid of volume,
158.

One-sided constraint, 364.

Orbit, 339, 348.

Oscillations, damped, 318-320.

——, due to torsion, 422-423.

—, forced, 321-322,

, free, 309-315.

PaIrs, lower and higher, 118,
Pantograph, 122-123.

Pappus, first proposition of, 140, 141.
, second proposition of, 148-149.
Parabola as catenary, 197.

, centroid of arc, 141.

——, centroid of area, 152.

as orbit, 348-358.

Parabolic segment as pendulum, 421.
Paraboloid, centroid of volume, 158,
, moment of inertia, 399.
Parallel forces, 183-201.

—— motion, 127-128.
Parallelopiped, centroid of volume, 153.
, principal axes, 409.
Parallelogram, centroid of area, 141.
(mechanism), 122.

——, moment of inertia, 399.

—— of angular velocities, 116-117.
—— of forces, 171.

— law, 23, 116,
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Parallelogram law for couples, 205-206.

Particle, 131, 159, 293-294.

Particles, centroid of, 137-138, 140.

Peaucellier’s cell, 125-127.

Peg-top, moment of inertia, 410,

Pendulum, 92-99.

——, compound, 419-422.

——, simple mathcmatical, 372-375.

——, spherical or conical, 375-378.

Percussion of axis, 445.

——, center of, 447.

Perfect elasticity, 311,

Perfectly smooth, 236.

Pericycloid, peritrochoid, 11.

Perihelion, 351.

Period, periodic time, 74, 106, 354-358.

Permanent axis of rotation, 432, 438.

—— set, 310,

Perry, J., 289, 325.

Phase, phase-angle, 75.

Pile-driver, 288-289.

Pin-friction, 239.

Piston-pressure, 303-305.

Piston-rod motion, 58-62.

Pivot-friction, 239-240.

Plane area, centroid of, 145-146.

—— kinematics, §2-128.

motion, 4, 7-16, 450~460.

statics, 208-243.

Planetary motion, 106-109, 347-362.

Plumb-line, 371.

Point of application, 172.

Polar co-ordinates, 156. .

—— reciprocal of momental ellipsoid,

407-408.

Potential, 307, 329.

—— energy, 308, 308-309, 330.

Pound (force), 165.

—— (standard), 130.

Poundal, 163, 165-166.

Power, 268, 322, 427.

Pressure, 179.

—— on curve, 366-367.

—— of piston, 303-305.

—— on rails, 370.

Principal axes, 402, 404-405, 409-410.

—— ——, distribution in space, 410~
416.

—— ——, dynamical meaning, 438.

—— moments of inertia, 402.

—— radii of inertia, 405.
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Rotation, 4, 5, 49~52, 113.
Rotor, 113, 167, 205.
Rough, 236.

Running balance, 434.

SAFETY-VALVE, 193.

Sagging of telegraph wire, 201.

Sanborn, F. B,, 325.

Screw, binding, 271-272.

—— motion, 18-22,

Second, 29-30.

Seconds pendulum, 95-97.

Sector of circle, centroid, 145, 152.

of sphere, centroid, 154-155.

Sectorial acceleration, 5I.

velocity, 51, 67, 100-103, 324.

Segment of circle, centroid, 152.

of sphere, centroid, 158.

, rectilinear, moment of inertia, 394,
395-

Semi-circle, centroid of arc, 141.

Sense, 3, 22, 33, 202.

Set, permanent, 310,

Shearing force, 228.

Sidereal day, 29-30.

Similar curves, 122-123.

Simple harmonic motion, 74-78, 347.

wave motion, 85-87.

—— mathematical pendulum, 372-375.

Sine-curve, centroid of area, 152.

Skew forces, 207, 247-248.

Sleigh, 300.

Slide valve, 61, 62.

Slider crank, 119, 272-274.

Sliding, 452.

—— friction, 236-242.

pair, 118, .

Small oscillations due to torsion, 422-423.

Solid statics, 243~274. ;

of revolution, centroid, 155, 158.

Specific density, specific gravity, 132-133.

Speed, 33.

Sphere, centroid of volume, 154~155.

on horizontal plane, 458-460.

on inclined plane, 454-457.

——, moment of inertia, 395, 398.

, reduced mass, 425.

Spheres, impact of, 278-293.

Spherical motion, 16-18.

pendulum, 375-378.

—— points of inertia, 410.
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Spherical sector, centroid, 154-155.

segment, centroid, 158.

shell, moment of inertia, 398.

surface, centroid of area, 148,

Spinning, 452.

Spiral of Archimedes, 57, 343.

——, equiangular, hyperbolic, logarithmic,
343. ¢

——— spring, 314.

Square, moment of inertia, 395.

Stability, 217-219.

, dynamic, 449.

Stable equilibrium, 217-219.

Standard mass, 130.

Standards, 7.

Standing balance, 433.

Static friction, 231.

Statics, 1, 170-274.

and kinematics compared, 205,

Steam engine, 313, 324-325.

indicator, 304~305.

hammer, 289.

Strain, strain energy, 312.

Stress, 195, 222, 338, 359.

diagram, 172, 185.

—— during impact, 279.

, elastic, 310.

, law of, 169.

Stresses in a frame, 222-228.

Stroke, 58.

Strut, 222.

Surface area, centroid, 149~-150.

—— density, 135, 398.

—— of revolution, centroid, 147-148.

Suspension bridge, 197, 201.

Swing, 95.

Sylvester, 119.

Symmetry, 136, 153-154, 408-409.

T-IRON, centroid of cross-section, 144-145,
151-152.

——, moment of inertia of cross-section,
395, 399-

Tacking against the wind, 180~181.

Tangential acceleration, 64-65.

—— force, 326.

Tension, 179, 195, 222, 297.

——, elastic, 310.

Terrestrial gravitation, 348-349.

Thomson and Tait, 19, 83, 86.

Three bodies, problem of, 361-362.
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Tie, 222.

Time, 29-30.

—— of flight, 72.

—— in planetary motion, 354-358.

Toggle-joint press, 181.

Top, moment of inertia, 410.

Torque, 202.

Torsion, oscillations due to, 422423

Total energy, 312, 323.

—— reaction, 232. '

work, 268, 323.

Translation, 4, 9, 22-28, 112,

Trapezoid, centroid of area, 143-144, 151.

—— , moment of inertia, 399.

Triangle, centroid of area, 138-139, 141—
142, 150-151.

—— of forces, 171.

, moment of inertia, 395, 398, 399.

Triangular frame, centroid, 141.

—— plate swinging, 442.

Trip-hammer, 448.

Trochoid, 11.

True anomaly, 351, 354.

—— solar day, 29.

Truncated cylinder, centroid, 159.

Turning pair, 118.

Twist, 21.

Twisting pair, 118.

Two bodies, problem of, 359-362.

U-IRON, centroid of cross-section, 151.
Uniform circular motion, 67-68, 73-74.
mass distribution, 131.

—— rectilinear motion, 30, 30-34.
rotation, 49.

Uniformly accelerated motion, 36, 37-41.
—— —— rotation, 0.

Unit of acceleration, 36-37.

—— of angle, 7.

—— of density, 132.

—— of force, 163-166.

—— of length, 7.

—— of mass, 130.

—— of momentum, 160-161.

—— of power, 322, 324.

—— of velocity, 31.

—— of work, 260-261.

INDEX.

Units, 6.

—— of force and work, 286-287.
—— , fundamental and derived, 130,
Universal gravitation, 43-44, 349.
Unstable equilibrium, 218-219.
Useful work, 268, 286, 323.

VALVE-GEAR motion, 62.

Variable force, 302-325.

rectilinear motion, 34, 34—49.
Varignon’s theorem, 177-179, 184-185.
Vector, 23, 23-28, 53, 204-205.
Velocity, 34-35.

—— of light, 34, 57.

—— in plane motion, §1-52, §2-62.
—— of propagation of wave, 84.
——, sectorial or areal, §1, §5, 334
—— of uniform motion, 30.
Velocities in the rigid body, 109~117.
Virtual moment, 263.

—— velocity, 263.

—- work, 262.

Volume density, 135.

WASTED work, 286, 323.

Water in a pipe, impact of, 289.
Water-wheel, 325.

Watt, 324.

Watt’s parallel motion, 127-128,
Wave length, 84.

motion, 83~87.

Weber, H., 86.

Wedge, 270-271.

Weight, 164, 179, 191-192, 268.
Wheel, pulled over obstacle, 216-217.
——, rolling, 16, 57, 68.

——, rotating, 51, §2.

—— and axle, 251-252, 421, 426,
Wire, stretched between two points, 201,
Work, 166-167, 258-260, 284.
against gravity, 297, 30I.

, available or total, 268, 323.
, lost or wasted, 323.

—— of piston pressure, 303-305.
—— of revolving shaft, 427.
——, useful, 268, 323.
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