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PREFACE

IN these days of numerous text-books the author who dares

still further to increase the number owes to the public, at least,

an explanation in which he shall set forth his purpose, however
far short of accomplishment he may have fallen.

Accordingly, in this volume, the author's hopes have been:

(i) To prepare a text-book adapted to the needs of first-

year students .
in physics at Northwestern University. One

fear in this connection is that the transfer of a course of

lectures from flexible manuscript to rigid type metal may
correspond to that stage of development which, in the life

history of an animal, is known as rigor mortis. This difficulty,

it is hoped, may be avoided by varying, from year to year, the

illustrative phenomena employed in the lecture demonstrations.

(ii) To keep the treatment elementary, and yet include all

the fundamental principles of physics; and at the same time

to bind them together with " connective tissue
"

in such a way
as to make clear to the student the essential unity of the

subject.

(iii) Not merely, or even mainly, to impart information, but

to set before the student a large and compact body of truth

obtained by a method which shall remain for him, throughout

life, a pattern and norm of clear and correct thinking.

To succeed completely in an undertaking so ambitious as

that suggested by the threefold purpose just stated is more

than the author dares to hope.
To my friend, Mr. John Mackenzie of Minneapolis, I am

indebted for those paragraphs in Chapter III which describe

Professor Osborne Reynolds' remarkable theory of gravitation.

The imperfections of the present text would have been many
more except for the clever revision of the proof by my col-

league, Professor R. R. Tatnall, and by my friend, Professor

A. A. Knowlton of the Armour Institute. Special thanks are

due Mr. J. H. Spencer of the United States Weather Bureau,
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to the Youth's Companion, and to the De Laval Steam Turbine

Company, for the use of cuts. Mr. John A. Fleming of the

Carnegie Institution was good enough to revise those paragraphs

dealing with the secular variation of the earth's magnetic field.

To my sister, Caroline L. Crew, I am indebted for the excision

of many awkward English constructions.

H. C.

EVANSTON, ILLINOIS,

April 8, 1908.



PAGE

INTRODUCTORY 1-5

CHAPTER I

KINEMATICS

Position of a Particle 6-10

Position of a Body 10

Measurement of Lengths, Areas, and Volumes .... 10-12

Angular Position 12

Change of Position 14

Addition and Subtraction of Vectors 14

Degrees of Freedom . . . . .

'

. . . . .18
Velocity 20-26

Angular Velocity ........... 27

Change of Velocity 29

Acceleration ............ 32

Angular Acceleration .......... 41

Summary of Kinematics.......... 42

CHAPTER II

SIMPLE HARMONIC MOTION

Linear S.H.M 46-50

Angular S.H.M 51

Composition of S.H.M. and Uniform Rectilinear Motion ... 51

CHAPTER III

SOME GENERAL PROPERTIES OF MATTER

I. Inertia ............ 54

Mass and Linear Momentum . . . . . . 57-63

Rotational Inertia and Angular Momentum .... 64

Force and Torque ........ 66-72

Statics ............ 73

The Couple 75

Centrifugal Force and Precession 76

Systems of Bodies
;
Newton's Third Law 79



viii TABLE OF CONTENTS

PAOB

II. Gravitation 82

Laws of Freely Falling Bodies 87

The Pendulum, Simple, Physical, and Reversible . . 92-98

Universal Gravitation 99

III. Matter as a Vehicle of Energy 104

Definitions of Work and Energy .
.

. . . . . 105-107

Dissipation of Energy 108

Conservation of Energy 109

Measure of Energy 110-113

Conditions of Equilibrium, in Terms of Energy . .. . .113
Power 115

Application of Principle of Energy to Machines . . . 116-121

Work of Friction 122

IV. Elasticity 127

Distinction between Solids, Fluids, and Gases .... 128

Strains, Stresses, and Moduli 129-136

Algebraic Summary of Dynamics 137

CHAPTEE IV

SOME SPECIAL PROPERTIES OF MATTER

Properties of Liquids 139

I. Hydrostatics 139

Definition of Pressure ........ 140

Six Propositions, inchidiug Pascal's Theorem, Archimedes'

Principle, etc . 140-145

II. Hydraulics 146

Torricelli's Theorem 147

Bernouilli's Theorem ........ 149

III. Surface Tension. Capillarity 152

Phenomena and Explanations 153-157

Liquid Jets 158

Attraction and Repulsion of Floating Bodies .... 160

Properties of Gases 163

Barometer and Manometer . . . 164

Circulation of the Earth's Atmosphere 167

Cyclones 169

Application of Principles to Pumps 172

Boyle's Law 177

CHAPTEE V

WAVES

Definition of Wave Motion 184

(i) Water Waves 185-189

(ii) Ripples 190-191



TABLE OF CONTENTS

(iii) Tidal Waves 192-195

(iv) Waves in Strings 196-202

(v) Resonance 202

Doppler's Principle 205

CHAPTER VI

SOUND

Introductory ............ 209

(i) Sound a Wave Motion 211

(ii) Stationary Waves in Air . 212

(iii) Graphical Representation of Sound Waves .... 216

(iv) Reflection of Sound Waves 218

(v) Speed of Sound Waves 220

(vi) Distinction between Noise and Musical Sound . . . 225

(vii) Three Characteristic Features of a Musical Note . . . 228

(viii) Relation of Tones to Each Other. Musical Scale . . . 237

(ix) Theory of Musical Instruments ...... 242

CHAPTER VII

THEORY OF HEAT

Introductory 247

(i) Distinction between Heat and Temperature .... 247

(ii) Measurement of Temperature. Thermometry.... 249

Historical Development of Thermometer . . . . 252

Measurement of High Temperatures ..... 255

(iii) Quantity of Heat. Calorimetry 257

(iv) Transfer of Heat 260

Heat Conduction 260

Convection Currents 264

Radiation of Heat . . . 267

(v) Some Effects of Heat 272

Change of Dimensions

(a) Expansion of Solids 273

(ft) Expansion of Liquids 277

(c) Expansion of Gases 281

Kinetic Theory of Gases 283

Change of Molecular State

(a) Melting . . . . . . -287

(6) Boiling 288

(vi) Nature of Heat 297

First Law of Thermodynamics 298

Second Law of Thermodynamics 300

Absolute Scale of Temperatures 300



X TABLE OF CONTENTS

CHAPTER VIII

MAGNETISM
PAGE

(i) The Compass Needle 308

(ii) Magnetic Declination 310

(iii) Magnetic Dip 312

(iv) Law of Magnetic Attraction ; Magnetic Fields . . . . 313

(v) The Earth a Great Magnet 317

(vi) The Earth's Action a Couple 318

(vii) Effect of Heat on Magnetic Quality 323

(viii) Magnetization a Molecular Property 324

(ix) Magnetic Induction 325

(x) Magnetic Permeability 327

CHAPTER IX

ELECTROSTATICS

Production of Electrification 330

Conductors and Nonconductors ... .... 332

Two Kinds of Electrification 333

Law of Electric Force. Coulomb 334

Electrostatic Induction 339

Equality of Induced Charges 342

The Idea of Potential 346

Lines of Force 350

The Idea of Electrical Capacity 353

Energy of a Charged Conductor ........ 355

The Oscillatory Discharge 356

CHAPTER X

ELECTRIC CURRENTS

The Fundamental Phenomenon 361

The Galvanoscope 363

I. The Production of Electric Currents

(a) The Voltaic Cell 365

(6) The Induction of Electric Currents 373

(c) The Thermopile 381

II. The Measurement of Electrical Quantities

The Idea of Electromotive Force 382

The Measurement of Electrical Current 385

The Idea of Resistance. Ohm's Law 387

Electro-magnetic Unit of Quantity 392

Electro-magnetic Unit of Capacity . . . , . . . 392



TABLE OF CONTENTS

III. Effects of an Electric Current





GENERAL PHYSICS

INTRODUCTORY

PHYSICS, in the present sense of the word, is not an ancient

science, but a creation of the last three hundred years. Com-

pared with astronomy and medicine, it is a mere upstart.

When, however, one considers the work of the Egyptians in

handling tremendous blocks of stone, such as those used in the

construction of the pyramids, or the work of the Greeks in

devising powerful catapults, or the work of the Romans in dis-

tributing water through well-constructed aqueducts, or any one

of their numerous clever devices, such as the steelyards, locks,

and surgical instruments which have been recovered at Pompeii,
it becomes evident that the ancients were familiar with a wide

range of physical science. That there were among them keen

observers is patent to every one who has considered the Hermes

of Praxiteles or the columns of the Parthenon.
"

The skill of

the ancients in hunting and the accuracy with which they ob-

served the motions of the planets are proverbial.

Nor were they wanting in the desire for a unitary view of

the world about them. This search for unity is evinced in the

idea of Heraclitus that igneous vapor (fire) was the one great

principle, in the idea of Thales that aqueous vapor was the key
to the situation, in the idea of Anaximenes that air was the

essential principle, and in the notion of Democritus that the

origin of all things was to be sought in the atom. The failure

of these various views gave rise to the general opinion that

four "elements" earth, air, fire, and water constituted an

irreducible minimum for the physical universe. The Ptolemaic

system of crystalline spheres, cycles, and epicycles is another

product of their eagerness for unity. Well, then, in what re-

spect does modern physical science differ from the ancient ?

Why is the beginning of this science supposed to lie only some

three hundred years back of the present ?



2 GENERAL PHYSICS

The answer to this question, like that to most others which

begin with "
why," is not easy ; and all that can be done here

is to point out briefly how ancient differs from modern science

rather than to explain why this difference exists. During the

fifteenth century there seemed to come over the minds of

thinking men a change, marked especially by an increased

freedom from the trammels of authority. Such freedom had

already, even as early as the fourteenth century, made itself

evident in painting, architecture, and music. A new literature

had found expression in Dante, Petrarch, and Boccaccio, whose

works were now being disseminated by the newly invented art

of printing. An increased boldness was shown by navigators,

which culminated in the discovery of America. This same

century was marked by the birth of Copernicus, with Para-

celsus and Leonardo da Vinci for contemporaries. Without

shedding any new light upon the " cause
"

of this changed at-

titude of mind, it may perhaps be best described as " the spirit

of the Renaissance." Previous to this time, those great gen-
eralizations which we now call "

physical laws
" seem to have

been rather fortuitous and unfruitful ; after this period, the

search for law, for the constant elements in the behavior of

nature, seems to have been more a matter of deliberate and

definite plan, while the results of the search have been tre-

mendously prolific of other important results.

It was upon such a background as this, and into such a

changed world as this, that on the 15th of February, 1564, at

Pisa, in Italy, the founder of modern physics was born. But,

while all science is the creation of man, it is equally true that

no science is the creation of any single man. In what sense,

therefore, can Galileo be spoken of as the founder of modern

physics? Just this: he it was who first discovered the funda-

mental principles of modern dynamics, the one branch of learn-

ing upon which the entire superstructure of the physical sciences

has been erected. His formulation of these principles was, as

we shall later see, imperfect; but his suggestion that bodies

change their motion when, and only when, acted upon by some

external force or, if you please, the substitution of the con-

ception
" force

"
in place of " cause

"
of motion has proven

to be the most fertile principle, as well as the first fundamental

and perfectly general principle, of modern dynamics, a principle
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which finds its later and more perfect expression in Newton's

Three Laws of Motion. Among the ancients, Archimedes

(287-212 B.C.) appears to be the one man who approached the

modern method in physics. He established a firm foundation

for the science of statics the conditions of equilibrium for

bodies at rest ; but this is a very special case of dynamics,
and the achievements of Archimedes, which early attracted the

attention of Galileo, remarkable and valuable as they impress
us to-day, bore little fruit until the idea of force as the con-

dition for change of motion was introduced by the great Ital-

ian. From Galileo's time, on, motions cease to be classified as

" natural
" and " violent.

"
All motions are henceforth "

natural,"

and are proper subjects for special investigation. The faith and

skill in experiment exhibited by Galileo set a new pace, one

which had possibly never before been reached, and one which

has certainly seldom since been surpassed.

The experimental method once established, new facts and

new generalizations accumulated with marvelous rapidity;

and the subject of natural philosophy, enriched by the labors of

Hooke, Boyle, and Newton in England, Descartes and Mer-

senne in France, Huygens in Holland, Torricelli and other

pupils of Galileo in Italy, became so bulky that certain natural

cleavage lines began to appear.

Certain phenomena were soon recognized as peculiar to living

bodies bodies which possess the ability to assimilate food,

the power of reproduction, sensation, etc., and these came to be

studied under the head of natural history and medicine. This

entire group, including, as it now does, botany, zoology, physi-

ology, anatomy, paleontology (as distinguished from geology),

bacteriology, etc., has, by wide consent, been given the name
of the natural sciences. All matter, other than that of living

bodies, is said to be inanimate; and it is with this class of

bodies especially that the physical sciences have to do.

In the early days, nearly all the phenomena of the physical
sciences were studied under the head of Natural Philosophy, a

term which was employed in contradistinction to Natural

History, and one which included such diverse subjects as the

motions of the solar system, engineering structures, and meteor-

ology. But Physics, or Natural Philosophy, in its narrow and

proper sense, does not deal with all the phenomena of dead
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matter. There are, for instance, certain bodies which are so

distant from us that they can be studied only by specially de-

signed instruments such as the telescope. Accordingly, the

study of the fixed stars, the planets, comets, etc., is pursued
under a special department of physical science called Astronomy.
There is another exceedingly large and important branch of

physical science which deals especially with those changes
which occur in homogeneous bodies mainly changes of com-

position. The systematic study of these changes is carried on

under the head of Chemistry.
Those properties of inanimate bodies which are not primarily

connected with a change in their chemical composition are then

the especial subjects of study pursued under the head of Physics.

Besides these there are other important, but more specialized,

branches of physical science which deal with particular groups
of bodies. Thus the comprehensive science which takes up the

study of the earth's crust from a physical and chemical stand-

point is called Geology ;
while Meteorology, a science of great

significance and of increasing practical value, deals exclusively

with the physica^phenomena of the earth's atmosphere.
Built upon the physical and natural sciences, is still another

group of studies distinguished from the preceding "pure"
sciences mainly by the purpose and attitude of mind on the part

of the student. Such are the various branches of engineering,
which are largely branches of applied physics ; such also is the

study of modern medicine, a science which has become immedi-

ately dependent upon Biology, Chemistry, Physics, Physiology,
and Anatomy.

In attempting to roughly locate Physics among the various

sciences, we have so far considered only those groups of phenom-
ena which are associated with matter, and have left to one side

the phenomena of mind, also the historical sciences which deal

with the purposes and the controlling wills of individuals and

nations. To one side also have been left those sciences which

deal with the consensus of sane opinion and with the expression
of the will of the entire race, sciences which Miinsterberg calls

*' Normative " and which include Logic and Mathematics.

The place of Physics in the family of the sciences is then a

very modest one, for it deals only with a particular group of

phenomena, associated with inanimate matter, and limited essen-
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tially to those changes in which the composition of the various

substances involved remains unaltered. Within this limited

domain the purpose of the physicist is to discover and to

describe the universal and constant modes in the behavior of

nature. Very often these results can be given a simple and

accurate mathematical formulation. With what splendid suc-

cess this work has been pushed forward will appear when we
come to study in more detail the work of the men who have

followed the great Galileo, men such as Newton, Faraday, and

Maxwell in England ; Fresnel and Ampere in France ; Gauss,

Weber, Kirchhoff, Helmholtz, and Hertz in Germany; Volta

and Melloni in Italy; Franklin, Henry, and Rowland in

America.



CHAPTER I

KINEMATICS

POSITION

1. Kirchhoff (1824-1886), a distinguished German physicist,

first clearly pointed out that the aim of the physicist is to

describe the motions of bodies completely and in the simplest

possible manner. But since a body is a limited portion of

matter, which we may consider as made up of a number of small

particles, it will be simpler to consider first the motion of a par-
ticle and then pass to the consideration of bodies in motion.

However, since motion is merely change of position, it will be

convenient first to learn how the position of a particle is defined.

The word "particle" is used always to denote a body so small that

its dimensions may be neglected in comparison with other dis-

tances involved. Thus a baseball may be considered a particle

when one is thinking only of its path through the air
; but in the

pitcher's hands it" becomes a body of very appreciable size, a

body which he sets into rotation about a definite axis in order

to give it any desired "curve."

POSITION OF A PARTICLE IN A PLANE

2. When geographers describe the position of a town, they
assume that the reader already knows the position of some point
on the earth, which may be called a point of reference. Such a

point of reference for the surface of the earth is the intersection

of the meridian through Greenwich with the equator. This

fixed, the location of a town is definitely described when two

things are known about it
; namely, its latitude and its longitude.

Thus the island of St. Helena is in 15 55' south latitude and

5 43' west longitude.
A similar method is frequently used in physics; e.g., the

position of a point P (Fig. 1), with reference to another point

0, in the same plane, is described when two mutually rectangn-
6
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lar straight lines are drawn through the point 0, and the

perpendicular distances of the point P from these two lines

respectively are given. The point of reference is generally

called the origin. The horizontal line of reference OX (Fig. 1)

is generally called the axis of
Y

X; and the vertical line of

reference OY the axis of Y.

The longitude x of the point

P is called its abscissa ;
while

the latitude y is known as its

ordinate. Abscissas are posi-

tive when drawn to the right

from the axis of Y; negative

when drawn to the left. Ordi-

nates are positive when drawn

upward from the axis of X;
negative when drawn down-

ward. These quantities x and

y are known as the rectan-

y

FIQ. 1. Showing one method of locating:

a point in a plane.

gular coordinates of the point P ; they are a special kind of

Cartesian coordinates, so called after Descartes, who first em-

ployed an algebra of this kind.

In the laboratory we have frequent occasions to draw curves,

and this is generally done by locating points on coordinate

paper in the manner just described.

Navigators and surveyors generally employ a different method

of locating one point with

reference to another in the

same plane. They give the

straight-line distance from

the first point to the second,

then they give the direction

of the line joining the points.

This method also is fre-

quently used in physics and is known as the method of polar

coordinates. The idea will be clear from Fig. 2, where is the

point of reference and OX any known direction. There is no

doubt about the exact position of a particle at P as soon as we
know the distance r between the points and P, and the angle

between the lines OP and OX. The angular distance we

FIG. 2. A second method of locating a

point in a plane.
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shall always consider positive when measured in a direction

contrary to that in which the hands of a clock move, a direction

which is called counter-clockwise. In like manner, is con-

sidered negative when measured in a clockwise sense. The
line OX we may call the line of reference.

POSITION OF A PARTICLE IN SPACE

3. If a point on the earth's surface is to be described still

more completely, we may choose the sea level as a plane of

reference, and give the altitude of the point. So in mathe-

matics and physics one frequently describes a point by locating
it first in a certain plane as de-

scribed in the preceding sections,

and then stating the position of

this plane with respect to some

other plane of reference. It will

be observed that, in general, three

specifications are needed to com-

pletely describe the position of one

point with reference to another;

and when the numerical values

of these three coordinates are once known, the position of the

point is given without ambiguity. Thus if the .rectangular
coordinates of a particle in space have the values,

z = + 3,

one can proceed to locate it as indicated in Fig. 3.

POSITION VECTORS

4. But a third and simpler way to think of the position of

a point is to consider it as completely specified by a single

straight line running from the point of reference to the point
under consideration. If in Fig. 4 we know, not only the

length, but also the direction and sense of the straight line

OP, we know all that can possibly be known about the posi-

tion of the particle at P.

To any quantity such as 7)P, possessing direction, sense, and

amount, the name "vector" has been given. This class of quan-
tities includes many of the most important studied in physics.
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A vector quantity is simply one which resembles a limited

straight line in three particulars ; namely, in the possession of
direction, sense, and numerical magnitude.
A vector which locates one point with

reference to another, as in Fig. 4, is

called a position vector, and is a type of

vector quantities in general, of which we
shall meet many examples in later pages.
The usefulness of the vector, in repre-

senting the position of a point, lies in its

clearness and simplicity ; for purposes of

numerical calculation it has small value. FlG 4

DIGRESSION ON SCALAR QUANTITIES

5. The mere length of a straight line is the same in what-

ever direction the line may lie. The length of a straight line is,

therefore, not a vector quantity. It is independent of direction.

Quantities which do not have direction are called scalars.

Philadelphia is a city 90 miles from New York. This dis-

tance is a scalar quantity. The information contained in this

statement tells me only that Philadelphia lies somewhere on a

circle of 90 miles radius described with New York as a center.

But " 90 miles southwest of New York "
gives me a vector

quantity, which locates the position of Philadelphia without

ambiguity. A pound of sugar, three yards of calico, two

gallons of water, a volume of anything, any amount of matter,

are illustrations of scalars.

SUMMARY

6. Summarizing, then, the position of a particle is nearly

always described by one or the other of the three following
methods :

(i) Rectangular coordinates, in which the position of a point
is denned by giving its distance from each of three mutually

perpendicular planes. These distances are called the rectangu-
lar coordinates of the particle and are usually denoted by x, y, z.

The three mutually perpendicular reference planes are indi-

cated in Fig. 3 by TOZ, ZOX, and XOY.
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(ii) Polar coordinates, in which the position of a particle is

described by its distance r from the origin, and by its latitude

and longitude on a sphere whose center is at the origin and

whose radius is the distance r just described. These three

quantities are called the polar coordinates of the particle and

are usually denoted by the letters r, 6, and < respectively.

(iii) Vectors, a graphical method in which the position of a

particle is located as the terminal point of a single straight

line drawn in a definite sense and in a definite direction from

the origin.

POSITION OF A BODY

7. Having thus far considered the position of a particle only,

we now take up the position of a body which has already been

defined as a limited portion of matter. For the present let us

deal only with perfectly rigid solids, that is, with bodies whose

size and shape are each constant. If we consider a body merely
as a system of rigidly connected particles, it is evident that its

position is completely defined only when the position of each

particle in the system is known. But since the body is rigid,

this is equivalent to saying that its position is completely de-

termined when we know the positions of any three points in

the body, provided of course that these points do not lie in the

same straight line. In other words, if a straight line and one

point outside this line be located in a body, the position of the

entire body is completely defined. It is clear, therefore, that a

body may have many different positions in which two points in

the body are fixed; for under this condition it may be rotated

through any angle about the straight line joining these two

points. As we shall see later, it is often quite as necessary to

consider the angular as well as the linear position of a body;
while for a single particle angular position is a term which has

no meaning.

MEASUREMENT OF LENGTHS

8. The actual determination of the position of any point in

the world about us leads at once to the measurement of a dis-

tance, by which is meant simply the comparison of any assigned
distance with a given distance which we agree to take as unity.
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As later experience will show, comparison is the essential fea-

ture of all measurement. Ten yards of cloth is simply a piece

of cloth which is ten times as long as a certain piece of wood
called a yard stick.

UNITS OF LENGTH. CENTIMETER. FOOT

9. Almost the entire scientific world has agreed to take as the

standard length the distance between two marks on a certain

platinum-iridium bar preserved in the International Metric Bureau

at Sevres, near Paris. This distance is called a meter. The one

hundredth part of the distance between these two marks is taken as

the unit and is called a centimeter. For many laboratory meas-

urements this smaller unit will be found more convenient than

the meter.

It will be observed that this definition is purely arbitrary, a

mere matter of convention. The fact that the meter is so

chosen as to be nearly equal to one ten-millionth of the distance

from the earth's equator to its north pole is interesting; but it

does not enter into the definition -of the unit of length. As a

matter of fact, the length of the earth's quadrant has been

found to be more nearly 10,000,880 meters. The student

who is not familiar with the metric system will find it interest-

ing to estimate his own height in centimeters, also to guess at

the length and width of this page in centimeters i and then

test the accuracy of his estimates by actual measurement with

a meter stick.

English and American engineers generally employ the yard
as the standard of length and the foot as the unit of length.

In Great Britain the yard is, by definition, the distance be-

tween two rulings on a certain bronze bar preserved in the

Standards Office at London. In the United States the yard is

defined as 36/39.37 of the standard meter at Sevres.

MEASUREMENT OF AREAS. UNIT OF AREA

10. Having settled upon the centimeter as a unit of length,

the simplest possible unit of area is the area of one square
centimeter. In consideration of this fact, the unit of area

almost universally employed in science is the square centimeter.

Very seldom, indeed, are areas measured by direct com-
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parison with a unit of area. More frequently it will be found

convenient to measure the linear dimensions of the surface in

question, and, from these, to compute by geometry the area of

the surface. Engineers, of course, employ the square foot as

the unit of area.

MEASUREMENT OF VOLUMES. UNIT OF VOLUME

11. Standards of volume, such as the bushel, the quart, the

cubic foot, are already familiar. In scientific work the cubic

centimeter is adopted as the unit of volume, and for the same

reasons that led to the adoption of the square centimeter as the

unit of area. An acquaintance with the metric system makes

the wisdom of this choice at once apparent.
In the case of volumes whose linear dimensions can be

measured, e.g. a parallelopipedon or a sphere, it is frequently
more convenient to compute the volume than to measure it

directly.

ANGULAR POSITION. UNIT ANGLE

12. When two straight lines do not coincide in direction, they
are said to have different angular positions. The difference of

their directions is the angular displacement of one line with re-

spect to the other. This angu-
lar displacement is expressed

by surveyors and astronomers

in degrees. But navigators
use "

points
"

of the compass,
or 11^, as units. In physics
and mathematics the unit of

angle mostly employed in the

description and discussion of

phenomena is different from

either of these. It is defined

as follows : If two straight
Fio. 5. Unit angle.

lines lying in the same plane
differ in direction, they will intersect. About the point of inter-

section as center, and in the plane of these two lines, draw a cir-

cle. These lines are said to include a unit angle when they inter-

cept an arc of this circle equal in length to its radius. See Fig. 5.

This unit angle is called the radian.
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It is evident, since the circumference of a circle is a length.

equal to 2 TT times the radius, that in one right angle there will

be one quarter of 2-Tr radians, i.e. radians. Compute, and

on the margin of this page record the number of degrees in one
radian.

Problems

1. Explain just how it is that any limited straight line is a vector

quantity, while the length of such a line is a scalar quantity.

2. What light does the etymology of the word "vector" shed upon its

present meaning ?

3. How many radians in the angle subtended by a semicircle?

4. The volume of a cube is 921 c.c. Find the area of one face of the cube.

5. Draw a pair of axes at right angles to each other. With reference to

these axes, locate the points A, B, and C which have abscissas and ordinates

as follows :

POINT ABSCISSA OEDINATB

A + 2 +7
B +5 - 10

C -8 -4
6. How many cubic centimeters iu the volume of a hemisphere of 8 cm.

radius?

7. Draw three mutually rectangular axes of coordinates and locate the

two points whose coordinates are (2, +3, + 4) and (+1, +5, +2).

8. Find the length of the vector joining the two points whose positions

are given in the preceding problem.

9. Which of the two following points is farther from the origin,

(+5, -9) or (+7, +7)?

10. The two mutually perpendicular sides of a right-angled triangle are

9 and 20 centimeters, respectively, in length. Find the area of the triangle

in square centimeters, and the length of the hypothenuse in centimeters.

11. Compute the number of seconds of arc in one radian.

|>
= 30, = 15

12. Locate the following position vectors I r = 30, = 345
]

[r = 30, 6 = 195

13. Considered as a unit of volume, what advantage has the cubic centi-

meter over the cubic inch ?

14. Indicate in three dimensions the position of a point whose polar

coordinates are r = 25, = 45, <j>
=90. See 6.

15. Locate the two following points by use of polar coordinates and de-

termine which of them is nearer to the line of reference, (r
= 12, = 15)

and (r = 6, 6 = 30).
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CHANGE OF POSITION

I. Case of a Particle

13. Since the position of a particle can always be defined by
a straight line of a definite length drawn in a definite direction,

it is evident that, if the particle moves to a new position, the

new line which describes this new position will, in general,

differ from the old one in its two characteristic features, viz. in

length and in angular position. But this line may change in

Y length only ; in which case the

particle moves along a straight

line. It may change in angular

position only ; in which case we
have motion on the surface of a

sphere.

Suppose now that a particle at

P (Fig. 6) has moved to a point
O such that the line OP has

X
changed in length and also in

angular position. If we take

the old position of the particle
FIG. 6.-Change of position, a quantity p ag a new point Qf reference,

having direction.

it is then clear that the change
of position will be described by the straight line, PQ, joining

the new and old positions.

Evidently, then, we may describe the new position Q of the

particle either by giving the two straight lines OP and PQ, or

by simply giving the one straight line OQ. For, by either

process, we definitely locate the new position Q.

The upshot of the whole matter is that change of position is

described in exactly the same way as is position itself ; namely, by
stating the length, sense, and direction of a straight line.

Digression on the Addition and Subtraction of Vectors

14. Referring to Fig. 7, let us denote the vector OP by p, the

vector PQ by q, and the vector OQ by r. Then it will be clear

that the new position Q of the particle may be located in either

one of two different but strictly equivalent methods. By one

method, the particle at Q is located as the terminal point of the



KINEMATICS 15

Y

vector r. By the other method it is the terminal point of two

vectors p and q, placed end to end with their arrows in the same

sense. And since r locates the point Q at the same distance and

in the same direction from the

origin, r is said to be the re-

sultant or vector sum of p and

q; while p and</ are said to be

the components of r. In the

algebra of vectors this fact is

expressed by writing

p + q
=

r, Eq . 1

an equation which contains the

whole story of vector addition.

In ordinary algebra, which deals

only with scalar quantities, we
should have

p + q>r,

but this inequation refers merely to lengths and not at all to

directions.

The resultant of any number of vectors is obtained by pre-

cisely the same process, namely, placing these vectors end to end,

in any order, but all in the same sense, and then joining the initial

point of the first vector to the terminal point of the last vector.

This graphical method gives rise to the vector potygon, as

illustrated in Fig. 8, where r is the resultant of the vectors p,

and s. From what precedes it will be seen that vector addi-

tion means nothing more than

what is implied in the statement

that, so far as mere transporta-

FIG. 7. Vector addition.

tion is concerned, it is all the

same whether one travels by
train directly from Chicago to

Pittsburg, or goes first from Chi-

cago to Toledo, thence to Cleve-

land, and thence to Pittsburg.

Since the sign of a vector determines its sense, one sees that

the subtraction of any given vector from another is precisely

the same as adding this vector to the other, having first re-

versed its sense.

FIG. 8. Polygon of vectors.
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When a particle receives a displacement which is represented

by any given vector, say OP, Fig. 9, the question often arises

as to what the amount of the displacement is in some other

direction, say OH.
This is found by letting fall from

the terminal point Pa perpendicu-
lar upon the line OH. If R denote

the foot of this perpendicular, we

may consider the vector OP as

broken up into two components
FIG. 9. -Illustrating the resolution ^ft and ftp of which the former

of a vector. .

lies entirely along OH ; the latter

has no component along OH. From the definition of a cosine

it is evident that OR= OP cos 0. Eq. 2

II. Case of a Rigid Body

15. As has been observed ( 7), the position of a rigid

body is fixed when any three points in the body, not lying in

the same straight line, are fixed. Accordingly, we see that the

positions of bodies change in several apparently different ways.

(1) If only two points are fixed in the body, as, for instance,

a wheel and axle held between two pivot points, AA' (Fig. 10),

then the body is free to rotate about the line joining these two

points. The motion of a rigid body about a fixed axis is called

a pure rotation. A bicycle wheel

lifted from the ground and spun is

an instance.

(2) It may happen that only one

point is fixed in the body, as in the

case of a walking-stick with its

lower end on the ground. Here the

body is free to rotate about many
different lines as axes. It may, Flo> 10._ Acaŝ ure rotation .

indeed, rotate about any straight
line passing through the lower end of the stick.

(3) It may be that no point in the body is fixed, but that

the body is compelled to move in such a way that each point of

the body describes a path equal and similar to the path of every

other point. Such a motion is called a pure translation. It
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occurs in the piston rod of a steam engine. A sled sliding to

and fro in its own tracks also represents the motion.

(4) Lastly, a body may be rotated and translated simul-

taneously. Such a case is represented in the wheel of a bicycle

while being ridden.

The student who pursues this subject farther will find that

a rigid body may be changed from any one position to any
other position by simply translating it along a certain straight

line and rotating it through a definite angle about a definite

axis. Consequently the first three cases just considered are

special cases of the fourth. The fact then is that every motion

of any rigid body turns out to be either a pure translation or a

pure rotation or a combination of these two ; in other words, a

rigid body may suffer a linear displacement or an angular dis-

placement, or a combination of the two.

As we have already seen, linear displacements are repre-
sented by vectors ;

so also are angular displacements. For

imagine the rough outline in Fig. 11 to represent any rigid

body having one point
fixed. Take this point as

origin. Imagine the body to

be turned through any angle
6 about an axis OP. Such

an angular displacement is

what we have just called a

pure rotation. It requires
for its description three speci-

fications, namely, (i) the
. ^/ FIG. 11. Angular displacement, a vector,

direction ot the axis 01 rota-

tion, (ii) the amount of rotation, i.e. the angle through which

the body has turned, and (iii) the sense of rotation. In short,

this angular displacement requires a vector to represent it.
*

Thus, if a grindstone be rotated through 90, its angular

displacement would be represented by a vector drawn in the

direction of the axis of the grindstone, and of a length ^, the
Zt

sense being such that if one looks in the direction of the arrow

* The student's attention is here especially directed to the fact that in add-

ing vectors which represent angular displacement, the resultant is not inde-

pendent of the order in which the vectors are added, except when the angular

displacements are infinitesimal.



18 GENERAL PHYSICS

on the vector, the stone will appear to rotate in a clockwise

direction. Such a relation between the direction of the vector

and the direction of the rotation is exactly that which exists

between the direction of advance and the direction of rotation in

an ordinary woodscrew. It is hence called the right-handed

screw relation. It is important to observe that the rule for

the addition of vectors applies to angular displacements only
when these are very small.

In the later parts of physics, we shall meet many quanti-
ties occurring in pairs similar to these two analogous displace-

ments, linear and angular, which we have just been considering.

DEGREES OF FREEDOM

I. Case of a Particle

16. It is interesting to observe that when a particle is free

to change its position by moving in any direction whatever,

it can move in three, and only three, directions such that its

motion along any one of these directions has no component

along either of the other two. And it is evident that these

three directions are mutually perpendicular ; for if they were

inclined at any angle other than 90, say 0, a displacement r

along one axis would have a component r cos 6 along the other.

These three directions are represented, therefore, by any three

rectangular axes. In view of these facts, a particle is said to

have three degrees of freedom. In other words, a particle has

three possibilities in the way of translational motion. It can-

not rotate because, by definition, it has no appreciable dimen-

sions.

II. Case of a Rigid Body

17. The case is quite different with an extended body. Con-

sider a coin, a metal cylinder, or any rigid body whatever ; if

it is perfectly free, it can be translated parallel to any of the

three rectangular axes. Like the particle, it has three degrees
of translational freedom. Now imagine this body supported
on a single pivot, in the same manner as a spinning top. Here

one point is fixed so that the body has no freedom of transla-

tion ; yet it is clearly possible for the body to rotate about any
one of three mutually perpendicular axes passing through this
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fixed point. A rotation about any one of these axes will have
no component of rotation about either of the other axes. A
rigid body not constrained in any way is said, therefore, to

have three degrees of freedom of rotation, making in all six

degrees of freedom for any unhampered body, namely, three

of translation and three of rotation.

The student will find it both interesting and important to

discover, in any particular case of constrained motion, just

haw many degrees of freedom a body has ; for the advanced

student will find later that the whole behavior of a body may
be described by use of as few coordinates as the body has de-

grees of freedom.

Interesting Special Case. Uniplanar Motion

18. When the motion is in a single plane, the rigid body
can be transferred from any one position to any other position

(in that plane, of course) by a pure Q,

rotation alone.

To prove this theorem, consider

any two positions of the body as

represented by AB and AB' in

Fig. 12. Bisect AA' and also BB'.

Draw perpendiculars through these

points of bisection. Denote by
the point where these perpendicu-
lars intersect. Then the axis about

which the body AB must be rotated

to bring it into the position A'B'

is perpendicular to the plane, and

passes through the point 0. For evidently the triangle A OB
may be rotated about this axis until it is exactly superposed

upon the congruent triangle A'OB'.

Problems

1. How many degrees of freedom has a particle which is compelled to

move in a plane ?

2. A marble free to roll on a floor, but not free to leave the floor, has

how many degrees of freedom ?

3. Design a rigid body having one degree of freedom of translation and

one of rotation.

^

FIG. 12.- illustrating the most

general uniplanar motion.
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4. How many degrees of freedom has one of the balls on the governor of

a steam engine?

5. Most motions that are employed in actual machinery are constrained,

i.e. they have less than six degrees of freedom. What, in your estimation,

is the special case which occurs most frequently in machines?

6. In the following motions of rigid bodies distinguish clearly which are

cases of pure translation, which are cases of pure rotation, and which are

cases involving both translation and rotation :

i. The motion of a door on its hinges.

ii. The motion of a carriage wheel with reference to its axle,

iii. The motion of a carriage wheel with reference to the road on which it

travels.

iv. The motion of a rocking-chair as one rocks in it.

v. The motion of the eyepiece as one focuses a pair of opera glasses.

vi. The motion of the blade, with reference to the handle, when one opens
a pocketknife.

7. What vector will describe the final position of a man who walks

10 miles N.W., then turns and walks 10 miles S.W. ?

8. Two boats sail from the same port ;
at the end of 5 hours one has

traveled 50 mi. due E., the other V5000 mi. S.E. What vector will then

represent their relative positions? Ans. 50 miles due S.

9. The coordinates of two points are (+2, +3) and (1, +4). Find

the vector which joins this pair of points.

10. A particle moves in a circle starting from a given point which we

may call the origin. Find the vector which describes the position of the

particle when $ of the circumference has been traversed.

11. Plot the following four points and show that they are the corners of

a parallelogram : ( + 3, + 2) ; (+4, +1); (+2, +5); (+3, +4).

12. What are the rectangular components of the vector which joins the

following two points : (+7, +3); (+10, +5)?

RATE OF CHANGE OF POSITION. VELOCITY

19. It is to be carefully observed that up to this point we
have been concerned not at all with the history of the body be-

tween the time of its leaving its old position and the time of

its reaching its new position. We do not care how long a body

may have been in changing its position, nor does it matter

through what " cause
"

it may have changed its position. We
have been concerned only with a method for describing, most

simply and most completely, the change in position of the

body. When, however, it is asked how this change occurred,

we are led to the consideration of Time and Velocity.
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In the world about us we find motion to be a state of matter

which is quite as natural perhaps even more natural than

rest. Displacement may be considered as the result of motion.

But very often we shall be concerned rather with the rate of

motion. Accordingly, we must now consider the method of

describing a rate of motion, i.e. a velocity.

When a man buys a railroad ticket from New Orleans to

Boston, he pays for "
displacement," and, in general, the price

of a railroad ticket varies directly as the amount of displace-

ment. But one's choice of a train depends largely upon its

speed, or rate of displacement. The difference in price between

a good watch and a poor one depends principally upon the rate

at which the angular position of the hands change. If this

rate is <very uniform, the watch is well made ; if the hands do

not move at a fairly constant rate, the watch is poorly made.

While etymologically the same, the words " rate
" and " ratio

"

now have different meanings; the former is a special case of

the latter. For while "ratio" denotes the quotient of any one

quantity by another,
" rate

"
is employed in physics to mean

only the ratio of some quantity to a time. Rate, unless other-

wise specified, is always an exact synonym of time rate; time

always appears in the denominator of any rate. The rate of

interest is the amount of money one pays for the use of a dollar,

divided by the number of years he has used the dollar. The

death rate is the total number of deaths among a thousand

people during any period, divided by the number of years in

that period.

But before we can measure time rates we must decide upon a

standard and a unit of time. These are described in the follow-

ing paragraph.

TIME. UNIT OF TIME

20. The mean (i.e. the average) time occupied by the sun in one

apparent revolution about the earth is known as the mean solar

day. This interval is universally employed as the standard of

time. The 3eio~o Part * a mean s lar day is called a second

and is used by the scientific world as the unit of time.

Intervals of time can be compared with marvelous accuracy

by means of watches, clocks, or chronographs.
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DEFINITION OF SPEED

21. More than a century ago it was proved by Lavoisier, the

great French chemist, that all matter has a continuous exist-

ence; from which fact it follows that, as a particle moves from

one point to another, it must occupy every intermediate

position along the route. This route is then a continuous

geometrical curve. Accordingly the path of a particle is de-

fined as the continuous locus of all the successive positions

which it occupies. We are now able to define clearly what is

meant by speed, namely, the rate at which a particle moves along

its path. Direction of motion, it will be observed, does not

enter into this definition. A man who, during fifteen minutes,

walks a mile along a winding cowpath travels with precisely

the same average speed as another man who walks a mile in

fifteen minutes along a straight city pavement.
Let us denote by p the distance which a particle has moved

along any path during the time t. Then for purposes of com-

putation, the average speed of the particle is expressed as

follows :

P
Average Speed = S = ~ Eq. 3

But if the speed of the particle is varying from point to point,

as is usually the case in nature, then denote by p l
the distance

traversed by the particle at the end of the time ^; and by p2
the

distance traversed by the end of the time
2

. Now if t
t

and t
2
be so chosen that ^ is very little earlier than t

; and t
2
a

very little later than , the speed at any instant t will be the

limit approached by the ratio^ ^- Accordingly one writes
<2
" r

i

Speed at instant t = & = [~^j^\ Eq. 4

where the subscript 2
= t indicates that

2 approaches in-

definitely near to tr
The necessity for some expression of this kind will appear

when one asks such a question as,
" What is the speed of a

baseball thrown vertically into the air ?
" The question has no

meaning unless one specifies some particular instant of time ;

for the ball has every speed from the initial speed with which
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it left the hand of the thrower to zero, which is its speed at the

top of its path.

Speed is, therefore, really, a limit. The conception of a

limit is something which each student should bring with him
from a study of elementary geometry ; or, not having acquired
it there, he should now master it once for all, since the idea is

one which is essential even in elementary physics.

UNIT OF SPEED

22. Having adopted the centimeter as the unit of length and
the second as the unit of time, we have no trouble in settling

upon the proper scientific unit of speed ; namely, a speed of one

centimeter per second. The engineer, however, generally employs
the foot per second for his unit of speed.

Problems

1. Find the average speed, in miles per hour, of a steamer which makes
the passage from New York to Liverpool, 3032 mi., in 6 da.

2. A 24-hour train from New York to Chicago, 926 mi., must make
what average speed ?

3. A shot travels a distance of 4 kilometers in 10.5 sec. Find its average

speed in meters per second.

4. A speed of 1 ft. per second is equivalent to a speed of how many
centimeters per second ?

5. A gun is fired at a distance of 1 kilometer; the report is heard 3.25

sec. later. From this observation, compute the speed of sound in air.

6. Light travels from the sun to the earth in about 8 min. The dis-

tance of the sun from the earth is about 95 million mi. Find the ap-

proximate speed of light m miles per second. What is the value of this

speed in meters per second ?

7. One man walks at the rate of 3 mi. per hour
; another walks at the

rate of 7 km. per hour. Which one travels faster ?

8. Assuming that the circumference of the earth at the equator is

25,000 mi., find the speed of a particle on the equator rotating once in 24

hours. Express this speed in miles per second, also in meters per second.

DEFINITION OF VELOCITY

23. It is evident from the preceding examples that speed
alone is not sufficient to determine the rate at which a particle

is changing position. Consider, for instance, a particle which
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moves through a small distance from P2
to P

3 along the curved

path indicated in Fig. 13, where P
2

is located by the vector r
a

and P
3 by the vector ry In order to describe the rate of

Y change of position,

it is necessary to

know not only how
far the particle

moved in passing
from P2 to P

3 , but

also in what direc-

tion the line joining
P

2
and P

3
lies.

Fm. 13.

It is clear, of

course, that when
a particle moves, it

always moves at

any particular in-

stant, in some one

direction, and in some one sense. To completely describe the

motion at any instant it is necessary, therefore, to know not only
the speed but also the direction and the sense of the motion at that

instant. This can be most conveniently done by use of a vector

called "velocity" which has the same direction and sense as that

of the motion and which has a length equal to the speed of the

motion. Such a vector completely describes the velocity of the

particle at the particular instant under consideration. Velocity

is, therefore, a vector quantity, and speed a scalar. To
illustrate : "A boat leaves her pier and steams in a straight

line at a speed of 10 miles an hour for 3 hours." From this

information, all that we know of the boat's position is that she

now lies somewhere on a circle of 30 miles' radius, having the

wharf for center. If, however, her velocity (instead of her

speed) had been given by saying that " she steamed for 3 hours

at a 10-mile rate in a northeasterly direction," her present

position would be accurately known. Velocity is, accordingly,
defined as the time rate of change of position of the particle.

Or, in terms of algebra, if we denote velocities by V,

Eq. 5
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Note carefully the difference between this equation, which

defines velocity, and Eq. 4, which defines speed ; the numerator

in (5) is a vector, while the numerator in (4) is a scalar.

From this follows the

DISTINCTION BETWEEN SPEED AND VELOCITY

24. Speed represents merely the rapidity of motion, while

velocity represents rapidity, direction, and sense. Speed is

denned by a single number, while velocity demands three

specifications ; namely, amount, direction, and sense. Imag-

ine two trains traveling along the same piece of double

track, the one going north 30 miles an hour, the other

going south 30 miles an hour. Both trains have the same

speed and the same direction ; but their velocities are as differ-

ent as they can be ; for they are directly opposite in sign, i.e*

in sense.

VELOCITY OF A BODY

25. We leave now the discussion of a particle and pass to

the consideration of an extended body, i.e. of a body whose

dimensions cannot be neglected in comparison with other

quantities involved. And since we have found ( 15) that

any change in the position of a body can be defined by not less

than two vectors, a translation and a rotation, it follows that

the rate at which a body changes position will require for its

description two velocities.

If the motion of the body is one of translation only, it is

the same as that of a car along a straight piece of railroad ;

the linear velocity is the same for every particle in the car;

and this velocity is completely described when the speed of

any one point on the car and the direction of the track are

given.

But suppose the car is placed on a turntable (Fig. 14), and

the table then made to rotate ; particles near the end of the

car will move rapidly, those near the center will move slowly.
In general, the speed of a particle will vary as the distance

from the axis of the turntable. How shall we describe a mo-

tion which is apparently so complicated ? This is very easily

done when we recall that practically the only quantity chang-

ing is the angular position of the car, and that this change is

the same for every part of the car.
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Imagine this car to have turned through an angle of

radians.

Consider next any horizontal line drawn in the car, the back

of a seat, or the edge of a window sill : each has been turned

through the same angle 6. Indeed, the new position of the

car is definitely fixed, when the motion is one of rotation only,

FIG. 14.

by saying that the axis of rotation is vertical, the amount of rota-

tion^ 6. The rate at which the angle 6 varies with time is

called the angular speed of the car (regardless of the axis about

which the rotation takes place).

ANGULAR SPEED

26. And, in general, if B
l
be the angular position of any line

in a body at a time ^, and #
2

its angular position at time
2 ,

then its average angular speed a> is defined and completely
described by the following equation :

Defining equation
for average angu- liiOj.

O
lar speed.

Unit angular speed is evidently that with which a body must

rotate in order to describe one radian per second.

The engineer generally employs a unit of angular speed
which is only about one tenth as large as this, namely, one revo-

lution per minute; for which he uses the symbol "R.P.M."

If, instead of the average angular speed, we wish to measure

the actual angular speed at any particular instant, we must then

take the average speed over an indefinitely small interval of
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time, including this particular instant. This operation is indi-

cated in the following notation :

[Q
Q ~] Defining equation

for angular speed Eq. 7

^2 ^l J'i**i at any instant.

ANGULAR VELOCITY

27. The numerical value of &> (in Eq. 7) together with the

direction and sense of the axis about which the rotation occurs

are the three specifications which describe any angular velocity.

It is evident, then, that one specification is sufficient to define

angular speed, but three specifications are required to define

angular velocity.

The graphical representation of angular velocity is quite as

simple as that of linear velocity ;
for we have only to lay off

along the axis of rotation as many units of length (centimeters)
as there are radians per second in the angular speed.

With this convention, the straight line OX (Fig. 15) com-

pletely represents an angular velocity ; for its length measures the

angular speed and its direction is the direction of the axis of

rotation, while the arrow indicates the

sense of rotation.

An angular velocity is said to be

positive when, on looking along the

positive direction of the axis OJT, the

body appears to rotate in the same

sense that a right-handed screw ap-

pears to rotate when one looks along
the direction of its advance. When Flo . ^^Representation of

the rotation is in the Opposite Sense, angular velocity by a straight

it is called negative.

The rate at which the angular velocity of the earth is chang-

ing is fairly well known ; for its axis changes direction at a

constant rate and describes a complete circle in the sky once

in every 25,000 years. No variation in the angular speed of the

earth has, however, certainly been detected ; although it is well

known that the friction of the tides must be slowing up the

earth to some slight, though as yet unmeasurable, extent.

This phenomenon is beautifully illustrated by spinning any,

ordinary top. From Eqs. 4 and 6 it is clear that angular speed
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is a quantity which is strictly analogous to linear speed ; while

Eqs. 5 and 7 show that linear and angular velocities are like-

wise strictly analogous.

RELATION BETWEEN LINEAR AND ANGULAR SPEED
f

28. Consider any point P (Fig. 16) in a rigid body rotat-

ing about any fixed axis, a wheel on its axle, for instance. Let

the perpendicular distance of this point
from the axis of rotation be r. If the

angular speed of the body is o>, it will

rotate once in seconds.
CO

But while the body performs one rota-

tion, the particle at P has moved over a

distance of 2 TTT.

FIG. 16. "Relation between Its average linear speed is, therefore,
linear and angular speed.

Distance 2 TTT
. /..

1 ime / ^ TT

In the case of a fixed axis, the angular speed of the body, and

the linear speed of any particle on it, are, therefore, related by
the following equation :

=ra>. Eq. 8

Problems

1. A boy attaches a small stone to the end of a string which is 80 centi-

meters long, and then swings it about his head at the rate of 3 turns per
second. What is the linear speed of the stone in centimeters per second?

2. The belt of a driving pulley travels at a speed of 15 in. per second.

The pulley rotates 10 times per second. Assuming that the belt does not

slip on the face of the pulley, compute the diameter of the pulley.
75

Ans. cm.
7T

3. In the case of a watch, compute the angular speeds of the second hand
and the hour hand, respectively. . TT _, tr

30
a '

21600'

4. What is the angular speed of a bicycle wheel making 30 revolutions

per minute? Ans. TT radians per second.

5. The front wheel of a bicycle is 28 in. in diameter. Find the angular

speed of the wheel about its axle when it is ridden at the rate of 12 mi. per
hour. Ans. 15.09 radians per second.
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6. How may the ordinary peg top be used to illustrate the case of a body
having a constant angular speed, but at the same instant a variable angular

velocity ?

7. Show that the fly wheel of an engine, when the steam is cut off,,

illustrates an angular velocity which is uniform in direction, but variable

in speed.

8. What is the aim of the clockmaker, to produce an instrument which

will give constant angular speed or constant angular velocity ?

CHANGE OF VELOCITY. ADDITION AND SUBTRACTION
OF VELOCITIES

29. Up to this point we have considered a particle which is

urged only by one single velocity. It often happens, however,,

that a particle has impressed upon it two or more different

velocities at the same time. For instance, if a man be sitting

in a moving street car, his motion with respect to the earth is

directly along the rails. If, however, he change his seat to one

directly opposite, on the other side of the car, his motion with

respect to the earth, as he walks across the car, is not along the

rails, nor across the rails, but in a diagonal direction, AC, as

indicated in Fig. 17. AB is a straight line which indicates the

A^-- ^ n
o

^c
FIG. 17. Addition of velocities.

velocity of the car ; BC is a straight line which represents

the velocity of the^an with respect to the car. These vectors

are added as are all other vectors, and AC is said to be the

resultant velocity of the components AB and BC. AC is, there-

fore, the straight line which represents the man's motion with

respect to the earth.

Since velocity is a vector quantity, it is evident that we may
at once apply to it the general rules for vector addition and

subtraction. For these see 14 above. Thus having given
a particle whose speed is v and whose direction is defined by 0,

its velocity will be the vector OP, in Fig. 18. Let us suppose
the motion to take place in the XY plane. Then if we desire
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the velocity of the particle in a direction parallel to the axis

of X, it is only necessary to project OP on the axis of OX.

We thus obtain OH as the required velocity. In like manner

HP will be the velocity parallel to the axis of T; or in terms

of algebra
OH = OP cos 0,

HP=OP sin 0, Eq. 9

In like manner, if it is desired to find the component of the

velocity OP, resolved in any other direction, say, along the line

OR, which makes an angle <f>
with OP, we have

OR = OP cos Eq. 10

This same re-

sult may be ex-

pressed graphic-

ally by saying
that the compo-
nent of a velocity

in any given
direction is the

projection of the

vector which rep-

resents that ve-

locity upon a

straight line

drawn in the

Z given direction.

Angular velocities are compounded and resolved in precisely

the same manner as linear velocities.

FIG. 18.

ALL MOTION RELATIVE

30. In the case above considered, where a man changes his

seat from one side of a car to the other, the question might have

been asked : What is his motion with respect to the car? The
answer would then have been that his velocity with respect to

the car is completely represented by the straight line BO, Fig.

17.
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Whether, then, the man's velocity is represented by AC or BC,

depends entirely upon whether we take the earth or the car as

our reference point.

And so it is with all velocities. Each one is a velocity with

reference to some point which for the time being we consider as

fixed. If a man be seated in a railway car which is traveling

at the rate of 30 miles an hour, we may say that the man is at

rest or in motion, according as we take for our reference point
some part of the car or some part of the earth.

Problems

1. Represent by a diagram the velocity of a boat which is being rowed

east, at the rate of 4 mi. an hour, while the current is carrying it south at

the rate of 1 mi. an hour.

2. A wheelman is riding north at the rate of 8 mi. an hour against a

head wind which is retarding him at the rate of 2 mi. an hour. What

speed would he make if there were no wind ?

3. What speed would this same wheelman make if he turned around and

rode with the wind ?

4. A canal boat is towed at the rate of 3 mi. an hour. How fast must

a man walk its deck in order that he may remain at rest with respect to the

towpath ?

5. A wheel rider travels east at the rate of 6 mi. per hour while the

wind is blowing from the north with a speed of 6 mi. per hour. From
what direction will the wind appear to strike the rider ?

6. A boat is rowed on the river so that its speed in still water would be

6 mi. an hour. Suppose the river flows at the rate of 4 mi. an hour.

Make a diagram showing the direction in which the boat must head in order

that its motion with reference to the bottom of the river may be at right

angles to the current.

7. A wheel having a diameter of 28 inches revolves once in two seconds.

Find the distance traversed in one hour by a particle on the circumference.

8. Two trains of the same length are running with the same speed on

parallel tracks, but in opposite directions. Their combined length is 800 ft.,

and they pass each other in 6 sec. What is the velocity of the trains rela-

tive to the track? From Shearer's Notes and Questions in Physics,

No. 49.

9. An express train runs due north, from Chicago to Milwaukee, at the

rate of 50 mi. an hour, during a west wind which is blowing at the rate of

25 mi. an hour. Find the direction of the smoke which leaves the

locomotive.
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10. Find the resultant of the following three velocities, 10, 6, and 10V2,
which make the angles + 45, 0, and 30 respectively with the horizontal.

Ans. 24.2 in a horizontal direction.

11. Two velocities each of 16 cm. per second include an angle of 120

between them. Find the resultant.

RATE OF CHANGE OF VELOCITY. ACCELERATION

31. Having now considered three fundamental ideas (posi-

tion, change of position, and velocity), we proceed to the study
of a fourth fundamental quantity ; namely, rate of change of

velocity.

If all the motions we encounter in nature had velocities

which were uniform both in direction and in speed, the vocabu-

lary of physics would be even smaller than it now is. Although
the behavior of a good clock or the rotation of the earth on its

axis are marvelously close approximations to constant angular

speeds, it is an interesting fact that no instance of perfectly con-

stant speed has yet been discovered in nature or invented by man.

The motion of a cutting tool on a shaper is fairly constant so

far as direction" is concerned ;
but its speed is by no means

constant.

32. If the velocity of a particle is not uniform, it must be

because either the direction of the motion, or the speed of the

motion, is changing, or both. For these are the only two con-

tinuously variable elements in velocity. When either or both

Y of these changes occur, i.e. when
the velocity of the particle is

changing, the motion is said to

be accelerated (ad+ celero).

If the vector OP
l (Fig. 19)

represents the velocity of the

particle at a time tv and the

vector OP2 represents it at a

time tv we know from the prop-
erties of vectors that the total

change in velocity during the interval t^t^ is represented by the

vector P^PV In other words, the straight line joining Pl
and

P
2 is as many centimeters long as there are units of speed in the

FjQi 19
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increment of velocity P1
P2 - Not only so, but the direction of

this straight line is the same as that of the added velocity.

p p
To the rate,

*
2-, has been given the name acceleration.

Let us denote this acceleration by a, the change in velocity by
v, then

v Defining equation
: for average ac- Eq. 11
tn t\

celeration.

Acceleration, then, is simply the rate at which the particle is

gaining or losing velocity. This rate is not always constant
;

consequently, the average acceleration will depend in such a

case upon how long an interval, 2
tv is covered by the average.

In order to get the actual acceleration at any particular point of

time
, we must take the average over an indefinitely small

interval of time, including t.

[p
p ~|

r v Defining equation= for acceleration at Eq. 12
2 iJ<2 ='i L^2 *lJ<2='i

anV instant *

Acceleration is accordingly the limit approached by the ratio

between an increment of velocity and the corresponding increment

in time. If, therefore, a particle is moving with uniform

velocity, its acceleration is zero. Whether the particle is

moving fast or slowly makes no difference. So long as its

velocity is not changing, its acceleration is zero.

UNIT OF ACCELERATION

33. From this "
defining equation," our unit of acceleration

is obtained exactly as we obtained our unit of velocity, viz., we
make each of the terms in the right-hand member unity, then

a must be unity. We thus arrive at the following definition :

Unit acceleration is an acceleration in which unit change of veloc-

ity is produced in unit of time.

Since, in pure science, the centimeter per second is the unit

of velocity, the natural unit of acceleration is the centimeter

per second per second, often written cm. /sec.
2

. Thus a projectile

fired from a gun gains during each second a velocity of approx-

imately 981 centimeters per second toward the center of the

earth. Accordingly the acceleration of a body falling freely

under gravity is said to be 981 cm. /sec.
2

. In engineers' units

this quantity would read approximately 32.2 ft./sec.
2

.
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ANGULAR ACCELERATION

34. Angular velocity, like linear, depends for its value upon
two variables, namely, the direction of the axis of rotation, and

rate of rotation. If, in any spinning body, either of these two

variables changes, the body is said to have an angular accelera-

tion. Thus the shaft of a turbine steamer may be rotated with

a constant angular speed, but if the steamer is changing her

course, the angular velocity of the shaft is changing, and the

shaft is said to have an angular acceleration. If, at another

time, the boat be moving in a perfectly straight line and the

speed of the turbine be varying, the motion of the shaft is also

said to have an angular acceleration.

In general, the velocity of a spinning body varies from instant

to instant ; as, for example, the fly wheel of a stationary engine ;

so that if we wish to obtain the angular velocity at a particular

instant , we must choose t
2
and t

l
in such a way that

2
shall

be a time a very little later than
, and t a time a very little

earlier than t. Then, if we denote by (o^
the angular velocity

at the instant t, and by &>
2
the angular velocity at the instant

2,

the angular acceleration at any instant t will be the limit ap-

proached by A as t
2

t
l approaches zero.

f^-ft),! Defining equationA = for angular Ji,q. Id
(_ tn t-, J'2='t acceleration.

Since the numerator in the right-hand member is a vector quan-

tity, while the denominator is a scalar, it follows that the

angular acceleration A is also a vector quantity, and is, there-

fore, compounded and resolved as are other vector quantities.

Two IMPORTANT SPECIAL CASES

35. Having now considered in some detail the three funda-

mental conceptions of kinematics, namely position, velocity,

and acceleration, we proceed to the study of two highly inter-

esting special cases.

CASE I. Motion of a Particle along a Straight Line :

Direction of Velocity Constant; Speed Variable

36. If, in Fig. 20, the velocity of a particle be changed from

OP
1

to 0P
2 (the points 0, Pv Pz

all lying on the same
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straight line), then the acceleration results from a change of

speed only. For the velocity of the particle is all the while

along the straight line OP
Z

. y

Here the acceleration is in

the same direction as the

motion of the particle.

Let us imagine that the

speed of a particle changes
from OP

l
to OP2

in any
interval of time t, and that,

throughout the motion, the FIG. 20.

acceleration is constant. Let us call the acceleration a ; then the

particle will gain a units of speed during each second. The
total gain of speed during any time t is therefore given by the

following expression :

s = at. Eq. 14

If, now, we happen to know the speed of the particle at the

beginning of the interval and call it S
Q , then the actual speed at

the end of the interval will be the original speed plus the speed

gained, viz.:- S=
S<) + s,

or
S=8

Q +at. Eq. 15

This equation is very useful ; for it not only describes the

variable speed S at each instant of time, but it also enables us

to compute the value of any one of the four quantities involved

as soon as we know the other three.

In case a particle loses speed, then we have a negative value
P

for s, and hence a negative value for a in the equation, a = -
.

c

For in these problems, t is always positive.

Not infrequently we shall want to know something more

about the motion of the particle than its mere speed. We
often want to know what the position of the particle is after a

certain interval during which its motion has been accelerated.

If the acceleration a is a constant, then the gain in speed as

time goes on will be proportional to the time,

s = at.

And the mean speed of the particle from the beginning to end

of the interval is the value of the speed at the middle of this
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interval, viz. the speed represented by the line LM, in Fig. 21,

but this speed is, by definition, the mean of S
Q
and S + at.

which is tS
Q + . Call this average speed, S. We may now

2t

take this average value of the speed and substitute it for 8 in

Eq. 3, 21, thus obtaining

SPEED IN

CM. PER SEC.

I
TIME IN

"i SECONDS

or

p = SQ
t + % at*. Eq. 16

where p is the length of path (or simply the distance) covered

by the moving particle.

For the special case which we are considering, namely,
motion in a straight line, this equation, together with Eq. 15,

S = 8^ + at, tells the

whole story. One

gives us the speed of

the particle when we
know the acceleration

and the duration of its

action ; the other gives
us the change in the

M
position of the particle.

If between these two

equations we eliminate t, we get another useful expression giv-

ing us the speed of a particle in terms of its acceleration and

the distance traversed, namely

S* = S*+2ap. Eq. 17

To solve any problem, then, under this special case which we

have just been considering (direction of velocity constant :

speed variable), one has merely to observe which of the above

five quantities (S, SQ, a, t, and p) are given, which required, and

lastly which of these three equations contains the desired and

the known quantities. He has then one equation to solve for

the unknown quantity.
Problems

1. A bicycle and rider start from rest at the top of a hill. At the end of

16 seconds the foot of the hill is reached, with a speed of 640 cm. per second.

Find the average acceleration of the wheel during the descent of the hilL

Here S, 5 , and t are given. Ans. a 40.
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2. Having computed the acceleration, use this and the speed at the foot

of the hill to compute the length of the hill. Ans. x = 51.2 m.

3. A train running at 36 km. per hour is stopped by a sudden application

of the brake. What acceleration must be produced by the brakes in order

to stop the train in 8 sec. ? Here, again, S, S
,
and I are given.

Ans. a = - 125.

4. When steam is turned on again, a constant acceleration of 50 units

is produced. How long will it be before the train has again acquired its

original speed of 36 km. per hour? Ans. 20 sec.

5. Over what distance will this train haye traveled while coming to

rest in the third problem? .4ns. 40 m.

6. How far will the train travel while again acquiring its original speed
in the fourth problem? Ans. 100 m.

7. A football player running north at the rate of 8 in. per second re-

verses his velocity and in an interval of 2 sec. is again running, this time

south, with a speed of 8 m. per second. Find his mean acceleration during
the interval. Ans. a = 800.

8. A body is simultaneously urged to move with speeds of 40, 15, and

'20 respectively. Can it remain at rest ?

9. A train which is uniformly accelerated starts from rest, and at the

nd of 3 sec. has acquired a speed with which it would travel through 1 km.

in the next 5 min. Find the acceleration.

10. Two bodies, whose respective velocities are accelerated in every

second by 30 and 50 cm. per second, begin to move toward each other at

the same instant. At first they are 2 km. apart, and have no initial velocity.

After how many seconds will they meet ?

11. A body tends to move with equal speeds in two directions inclined

to each other at 120. Find its path and resultant velocity.

12. One man A is standing at a point 1500 ft. east of another man B.

At the same instant both men start to walk east, B at the rate of 4 mi. an

hour, and A at the rate of 3 mi. an hour. How long will be required for

B to overtake A ?

13. A particle has an initial speed of 20 cm. a second, and receives an

acceleration of 8 cm. per second every second. What distance will it travel

in 15 sec. ?

14. A wind is blowing from a point intermediate between north and

east. The northerly component of its velocity is 10 mi. an hour, and the

easterly component is 36 mi. an hour. Find the whole velocity.

15. Write in the margin of your book the special form which Eqs. 15,

16, and 17 assume when the particle starts from rest.
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CASE II. Uniform Motion in a Circle: Direction of Velocity

Variable ; Speed Constant

37. If, however, in Fig. 22, the velocity of a particle be

changed from OP
Z
to OPS , where the vector constantly

equal in length to OP2,- there is no change in speed ; but there is

Y a change in the direction of the

velocity. The motion is, there-

fore, accelerated.

Such a motion takes place

when a particle moves in a

circle at a uniform speed.

It is approximated in the_ following instances : when a

FIG. 22. boy whirls about his head a

small mass attached to the end of a string ; a small particle of

gravel sticking to the wheel of a bicycle in motion ;
the earth

in its revolution about the sun ; the motion of the moon in its

orbit about the earth ; each particle which goes to make up the

fly wheel of an engine.

In each of these cases, let us consider the center of the

circular path (Fig. 23) as a fixed point of reference.

And let us draw a straight line from through the point where

the particle lies when we first VELOCITY)

begin to observe its motion.

Call this line OX.
For a clear understanding of

this motion, it is next essential

that the student distinguish care-

fully between the position, the

path, and the velocity of the

moving particle.

The position of a particle Pt
at

any instant t is completely given
when we know the particular radius which joins the particle

and the center at that instant.

By the path of a particle is meant ( 21) the line which is

made up of the successive positions of the particle.

The velocity of the particle at any instant is evidently in a

direction which is tangent to the circle at the point where the

particle is at that particular instant.

FIQ. 23.



KINEMATICS 39

Imagine the particle at any time to be at the point Pt
in

23. The direction of the velocity will there be perpendicular

to the radius OP
t
. And the same is true at any other instant,

for in circular motion the straight line which represents the

velocity anoT the radius which represents the position of the

particle are always at. right- angles to each other.

If we wish to represent the velocity completely, we must

choose for the constant length of this tangent line as many
centimeters as there are units in

the constant speed of the particle.

In Fig. 24 let Pv P2 , Ps, etc.,

represent positions of a particle

P at small intervals of time t. V3
'

Imagine the particle to be mov-

ing with uniform speed in a cir-

cle. OV\, OVV OF
3 (drawn at

right angles to OPV OP
2 ,

respectively) may then repre-

sent the velocities of the particle FIG. 24.

in its positions Pv P2 , P3 , respectively.

We can now determine at once the acceleration of the-

particle. For, if the angular speed of the radius OP
1
be <,

so that the speed of the particle P is S = wR, then the angu-
lar speed of OV is also w, because it keeps always just 90

ahead of OP
1 ; and the point V\ will describe a circle of radius

S, with a speed aS. Now the total change in the velocity of

the particle P remember there is no change in speed dur-

ing the time t is completely represented by the line V-^V^
For V^V^ is the velocity which must be added to the velocity

to give the velocity OV
2

. And hence, by definition,

Acceleration of the particle = ^
-

But L_l measures the speed of the point F, and is hence

equal to &>$, in a direction at right angles to 0V.
Hence the acceleration of a particle moving with speed S

in a circle is completely described by saying that the direction

of the acceleration is parallel to PO, and the amount of the

acceleration is equal to co/S. Or we may say the acceleration is

always toward the center and is numerically equal to &>$.
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And since (Eq. 8, 28) /S=coH, we may also write

Acceleration of a particle 1 S2

D . . , \=a>iS=a>
2M = Eq. 18P moving in a

circle] ft

If we denote the time of one revolution of a particle in a circle

an interval known as the period of the motion by T, then

2_.
we have T= ; and hence substituting for o>, in Eq. 18,

u>

Acceleration towards center = - =

We have now a complete description of the motion of a

particle which moves with uniform speed in a circle. The
student should be able to put into words the meaning of each

of these different expressions. For example, the last form,
02

says that "the acceleration of a particle moving with
R
uniform speed in a circle is constant, and is numerically equal
to the linear speed of the particle squared and divided by the

radius of the path."

GENERAL CASE OP LINEAR ACCELERATION

38. We have now considered, in some detail, two special

cases of acceleration, in one of which the speed alone varies,

in the other of which the direction alone varies.

The importance which attaches to these two cases arises

partly from the fact that the acceleration of any particle what-

ever, moving at any given instant in any path, however tortu-

ous, may always be resolved into two components, one along
the path, and one normal to the path ; and these two compo-
nents belong respectively to the two special cases which we
have just studied. We thus have the general result:

., ,
f Vector sum of the acceleration along

I otal acceleration of
. . , }

= { the path and the acceleration normal
any particle

*

[
to the path.

The advanced student will discover in Vector Analysis a

much more elegant method of treating this subject.

ADDITION AND SUBTRACTION OF ACCELERATIONS

Since acceleration is a vector quantity, it follows at once that

accelerations are added and subtracted in the same manner as

velocities and other vectors. See 14.
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DEFINITION OF ANGULAR ACCELERATION

39. Consider any spinning body, such as the propeller shaft

in a steamer, a top, the earth, the fly wheel of an engine, or a

grindstone. It is at once clear that the angular velocity with

which any of these rigid bodies is rotating may change in either

one of two ways, as already intimated in 34, namely,

(i) The angular speed of the body about its axis may change

(as, for instance, that of a fly wheel when the engine is just

starting or stopping), and

(ii) The direction of the axis of rotation may change (as,

for instance, that of the propeller shaft, when the steamer is

turning around without slowing up her engines). A body
which is changing in either one of these two respects is said to

have an angular acceleration. This quantity is a vector and a

strict analogue of linear acceleration. Denoting angular veloc-

ities by a^ and o>
2 , and angular acceleration by A, we have

already ( 34) obtained the defining equation

A r3_*i\ Eq>13

UNIT OF ANGULAR ACCELERATION

40. When the rate at which a body is rotating changes by one

radian per second during each second, the value of its angular
acceleration is unity.

Two IMPORTANT SPECIAL CASES

41. Corresponding to the two special cases of linear accel-

eration, we have here also two special cases.

CASE I. Direction of Axis of Spin Constant; Hate of Spin
Variable

42. Here the whole story is told by three simple equations
which are identical in form with Eqs. 15, 16, and 17, 36.

Denoting angles by #, angular speeds by G>, angular acceleration

by A, and time by t, one has

co = o) + At, Eq. 15'

e = a>
Q
t +

-| At*, Eq. 16'

Eq. 17'
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CASE II. Rate of Spin Constant ; Direction of Axis of Spin
Variable

43. Here again the analogue is complete ; the axis about

which the acceleration occurs is at right angles to the axis of

spin ; and the amount of acceleration is given by an expression

which is identical in form with Eq. 18, 37, namely,

Acceleration about]
A = axis normal to axis I = flea, Eq. 18'

of spin

where, as before, o> is the angular speed with which the body
is spinning, while O is the angular speed with which the axis

of spin is changing direction.

This case is well illustrated by the ordinary gyroscope ; also

by the motion of the earth, a body in which the constant rate

of spin co is 2 TT radians a day, and in which the axis of spin

has its direction changed at the rate II by the pull of the moon

upon the equatorial belt of the earth. Observe that just as in

Eq. 18 the three quantities a, S, and co are vectors, each at right

angles to the other two, so here in Eq. 18', A, ft, and co are

three mutually rectangular vectors.

The student will find it an interesting exercise to prove that

angular and linear accelerations at any point on a rotating

rigid body are connected by the following equation,

a = rA, Eq. 8'

an equation which is strictly analogous to Eq. 8, p. 28.

This subject is one whose detailed discussion at this point
would lead us too far afield ; but it is hoped that every student

will at least get a fair grasp of the exact analogy between

translation and rotation in Kinematics, and thus reduce the

complexity of the subject by at least one half.

ALGEBRAIC SUMMARY OF KINEMATICS

Linear Angular

Fundamental Quantities

Length and time; p and t. Angle and time; 6 and t.
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Linear Angular

Position

Defined by a vector whose

length measures a distance.

Defined by a vector whose

length measures an angle.

r=

Velocity

V'= ro>.

I

Acceleration

a = rA.

A =
=tt

Special Case I. Direction Constant : Speed Variable

at, G> = ft> + At,

Special Case IT. Direction Variable : Speed Constant

a = So). A = flo).

Problems

1. Twenty seconds after the current is turned on an electric motor, the

armature, starting from rest, has acquired an angular speed of 6000 radians

per second. Find the average angular acceleration.

2. The fly wheel of an engine is subject to a negative angular accelera-

tion of 4 radians per second per second. If the wheel is making 220 R.P.M.

when steam is shut off, how long will it take the fly wheel to come to rest ?

3. A particle is accelerated vertically upward with an acceleration of 3,

and horizontally eastward with an acceleration of 4. Find the total accelera-

tion of the particle.

4. A particle on the surface of a fly wheel of 120 cm. radius, rotating
with an angular speed of 4 radians per second, is accelerated toward the

center at what rate ?

5. How fast must a bicycle wheel be made to revolve in order that a small

particle of mud attached to the tire may experience an acceleration of

12 cm./sec.
2 ? It is assumed that the diameter of the wheel is 70 cm.
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6. What data would you need in order to compute the acceleration of the

moon toward the earth as it revolves about the earth in an orbit which is

practically a circle V

7. A grindstone is set in motion with an angular speed of 3 radians per
second. When left to itself it rotates through an angle of 60 radians before

stopping. Find the angular acceleration.

8. The shaft of a hoisting windlass is set into motion (starting from rest),

under an angular acceleration of 200 radians per second per second. What

angle will it have turned through by the end of 3 seconds?
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CHAPTER II

SIMPLE HARMONIC MOTION

CASE I. LINEAR MOTION

44. There is another motion with which all students, even

beginners, are already familiar in a general way, but which few

beginners are able to describe in a manner intelligible to others

or useful to themselves. This motion is typified by that of -a

particle P (Fig. 25) supported by a vertical spiral

spring, and vibrating freely in a vertical straight line.

The motion of any point on a guitar string which has

just been plucked and let go furnishes another illus-

tration of this motion. If a body be suspended by a

rubber band and then slightly displaced up or down
and suddenly released, its motion also will be that

which we are about to study.
In each of these cases observe that, when the body

vibrates freely,

(a) The motion is one of translation ; because the

particles of the body describe equal and similar paths.

(J) The path is a limited straight line. /--"--,

(<?) The particle moves most rapidly at the middle
F'""T

i

of its path, and comes to rest at each end of its path.

(cT) The motion gradually dies down, unless kept up by
some " outside

"
means.

Such would be a popular and qualitative description of the

motion.

CASE II. ANGULAR MOTION

45. In the case of solid bodies having a fixed axis of rotation,

we frequently meet a similar motion, and one with which, again,

all students are familiar in a general way.
The pendulum of a clock is approximately a rigid body

whose angular position is constantly changing. It typifies the

motion we are about to describe. The motion of the balance

45
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wheel in a watch movement also illustrates the motion under

consideration. If a slender lath be clamped at one end, while

the free end is pulled aside and suddenly let go, this free end

will vibrate with practically the same motion as that of a pen-

dulum left to itself.

Observe that, in each case, when the body vibrates freely,

(#) Its motion is an angular one.

(by The amount of swing (angular displacement) never ex-

ceeds, in any one case, a certain limited angle.

(c) The angular speed is most rapid at the middle, and

ceases altogether at the end of the swing.

(d) The vibration gradually dies down, unless kept up by
some means external to the system we are studying, as, for

instance, by the weight of the clock or the coiled spring of

the watch.

These two motions, the linear and the angular, are each close

approximations to what is called Simple Harmonic Motion
; and

are often indicated by the letters S.H.M.

The student should note here, once for all, that a mere name
of a physical quantity or phenomenon, such as the above, while

exceedingly convenient, does not define it. We now proceed
to the exact

DEFINITION OF LINEAR SIMPLE HARMONIC MOTION

46. Imagine a point P (Fig. 26) to move with uniform

speed in the circumference of

a circle. Imagine any diame-

ter drawn in the circle. And
from the point P, in each of

its successive positions, imagine
a perpendicular let fa'll upon
this diameter. The motion of

the foot of this perpendicular,

H, to and fro along the diame-

ter, is a simple harmonic motion.

It is evident that the speed of

the point H near either end of

the diameter will be much less

than at the center 0. In this

respect the-motion of His like that of a pendulum bob.

FIG. 26. Simple Harmonic Motion.
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The same definition may be put more elegantly, as follows :

Simple harmonic motion is the projection of uniform circular

motion upon a diameter of the circle. We shall presently see

that this motion can be accurately described (denned) in a

manner even simpler than this.

The student frequently confounds simple harmonic with cir-

cular motion, and should, therefore, at this point, carefully

distinguish between these two motions. The actual motion of

one of Jupiter's moons is very nearly circular, while its appar-
ent motion is practically simple harmonic. As these moons

revolve about Jupiter, we see them move alternately to the

right and to the left, but we do not observe their motion

toward us or away from us. Hence their motion is apparently

simple harmonic. For S.H.M. is merely uniform circular

motion seen edgewise.

47. The circle in which we have imagined the point P (Fig.

26) to move with uniform speed is called the circle of reference.

We shall also employ the center of this circle as our point

of reference.

AMPLITUDE OF S.H.M.

48. The radius of the circle of reference is the maximum
distance to which H can recede from in either direction.

This maximum distance, which will be denoted by A, is called

the amplitude of the S.H.M. Accordingly the amplitude of

S.H.M. is defined as the radius of the circle of reference.

PERIOD OF S.H.M.

49. Let us denote by 8 the uniform speed of the point P in

the circle of reference. In one complete revolution of the

circle this point will travel a distance 2?rA. The time re-

27TV1
quired for this round trip will, therefore, be ~ seconds.

This interval of time, generally denoted by T, is a constant,

and is called the period of the S.H.M. Accordingly the Period

is defined as the time occupied in one round trip of the actual

moving point If to and fro across the diameter of the circle.

The reciprocal oi the period T is called the frequency, and is

generally denoted by n.
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FIG. 27.

PHASE OF S.H.M.

50. The angular position of the radius vector OP at any
instant t is measured by the angle 6 (Fig. 27) which this

radius makes with the line

of reference OX. This

angle 0, expressed in radi-

ans, is called the phase of

the S.H.M. at the time t.

Phase of S.H.M. is, there-

fore, defined as the angle be-

tween the line of reference

and the radius vector drawn to the point moving in the circle of

reference.

Imagine the point to start from D, at the time t = 0, and

move about the circle of reference in a counter-clockwise sense,

the phase will increase from to 2 TT ; but if the motion is

clockwise, i.e. negative, the phase will decrease from to

27T. Evidently the phase is continually changing as time

goes on. It is, therefore, a variable quantity ; and when the

angle and the time are each measured from the line of refer-

ence OX, it is very easy to express the angle in terms of the

time t by saying
= at, Eq. 6

where o> is the angular speed of the radius A.

EPOCH

51. But let us now suppose that the line of reference from

which the angle 6 is measured is not OX, but some line OR,
such as indicated in Fig. 27, while the line of reference for

times remains the same. Let e denote the angle between the

reference line for angles and the reference line for times ; i.e.

let the angle ROX be indicated by e. Then the proper ex-

pression for the phase will be, not a>t, but cot + e. This angle e,

which is the value of the phase at the time t = 0, is called the

epoch of the S.H.M.

DISPLACEMENT OF S.H.M.

52. The point which is actually moving with S.H.M. is repre-
sented by H in Fig. 27. The distance of this moving particle,
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at any instant, from the center of the circle of reference is called

its Displacement. We shall denote this displacement OH by
x. Then in the right-angled triangle OPH, Fig. 27, it is evi-

dent from the definition of a cosine that

cos = 4>A
or x = A cos 0,

But by the definition of constant angular speed, we have

= cat,

and hence x = A cos cat. Eq. 21

Or if angles be measured from some line OR, Fig. 27, instead

of OX, we have the most general expression for S.H.M.,

namely,
x = J.cos(ft> + e). Eq. 22

This equation tells the whole story concerning the displace-

ment. Every possible value which x can assume is easily com-

puted as soon as we know the corresponding value of the

variable t and of the constants A, co, and e.

To completely describe any S.H.M. we must, then, tell the

following four things about it:

(1) The amplitude A, i.e. the radius of the circle of refer-

ence.

(2) The period T, or, what is the same thing, _ou for

27T^
(3) The phase at any time t, namely, cot + e.

(4) The direction of motion of the point P in the circle of

reference, i.e. the sign of co must be given.

These having been given, nothing can be added that will

make the description more definite.

LINEAR ACCELERATION OF S.H.M.

53. In our previous study of circular motion, we found that

whenever a particle moves in a circle with uniform speed, it is

always accelerated toward the center. The amount of this

acceleration we found ( 37) to be aPA, where A is the radius

of the circle and co is its angular speed.
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FIG. 28. Acceleration of S.H.M.

In other words, the acceleration

in uniform circular motion is rep-

resented by a vector of length
a)

2 P drawn to in the direc-

tion PO.
Hence the acceleration in

S.H.M., which is the projection
of uniform circular motion, is rep-

resented by the projection of this

vector, that is, by a vector of

length a)
2 HO drawn to in the

direction HO. See Eq. 2, 14.

Let us denote by a this acceleration of S.H.M., then

a = cos 6 = x
Eq. 23

This equation shows us, when once we know the displacement
of any S.H.M., how to obtain the corresponding acceleration.

This is the fundamental equation of S.H.M., and may perhaps
be written in the following form :

Acceleration . ,.= A negative constant.
Displacement

In other words, the acceleration is proportional to the displace-

ment and opposite in sense.

The relation between displacement, velocity, and acceleration

will be clear from Fig. 29.

v = =f^=4- --
V a -f-

= 4 ' ? > V -

<(=-(- a = a= a - 4-

a and x always have opposite signs.

FIG. 29.

This equation (23) also gives us an exceedingly useful ex-

pression for the period of a S.H.M. For, since

= and =--, we have Zf

=2ir\/* Eq. 24
x a

On account of damping such as that due to frictional resistance, the

amplitude of all actual vibratory motions, except those in which energy is
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supplied from outside the vibrating system, continually diminishes. Hence
we do not meet any motions in nature which are accurately simple harmonic

;

but in thousands of cases the approximation is so close that in treating
these cases we may, with impunity, use the laws of S.H.M.

ANGULAR SIMPLE HARMONIC MOTION

As we have already seen ( 45), bodies rotating about a fixed

axis may have an angular motion which is analogous to the

linear motion which we have just been studying. A most

excellent illustration is to be found in the motion of the balance

wheel of a watch.

The angular displacement of such a body is described in

terms of three constants and the time exactly as in the case of

linear S.H.M. Thus

6 = 6 cos (cot + e), Eq. 22'

where the constants are

= maximum angular displacement, or amplitude,

&> =
, where T= period of oscillation,

e = phase at time t = 0,

while the variables are 6 and t.

Just as in the case of linear S.H.M. it was shown (Eq. 24)
that the period depends only upon the ratio of displacement to

acceleration, so here it may be shown in the same way that

T= 2^gBKul'ar displacement^ = g ^Jj9_ . E ^r

*
(Angular acceleration)

* A

In other words, the criterion of angular S.H.M. is that the

angular acceleration shall be proportional to the angular displace-

ment, but opposite in sense.

THE HARMONIC CURVE, OR THE COMPOSITION OF UNIFORM
RECTILINEAR MOTION WITH A S.H.M. IN A

DIRECTION AT RIGHT ANGLES

54, If one walks along the smooth sand of the lake shore or

the ocean beach, dragging his walking stick behind him and
at the same time vibrating it to and fro sidewise, he will trace

upon the sand a wave-shaped line which is of considerable im-

portance in Physics and which is known as the Harmonic Curve.
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It is the resultant of two motions which are at right angles

to each other and which are described by the following equations :

(i) y = A cos <, Simple Harmonic Motion,

'in x = Vt. Uniform Rectilinear Motion.
and

Eliminating t between these two equations of motion, we
have the equation of the path, namely,

i
M= A cos [ Eq. of Harmonic Curve 25

Such a motion is evidently periodic, the same value of y

recurring whenever changes by 2 TT, as illustrated in Fig. 30.

FIG. 30. Path resulting from S.H.M. and uniform rectilinear motion.

This curve is also known in mathematics as the cosine- or

sine-curve.

Problems

1. Show, either graphically or algebraically, that when the particle H
(Fig. 28) is passing the center and has its maximum speed, the acceleration

is zero.

2. Show that when the particle H (Fig. 28) reaches the end of its swing
and for an instant stands still, the acceleration is maximum.

3. The displacement in a certain

S.H.M. at a given instant is 32. At
the same instant the acceleration is + $.

Find the period of the S.H.M.

Ans. 16 TT.

4. The period of a S.H.M. is 6.28

seconds, and the acceleration at a given
instant is 4. What is the displace-

ment at the same instant ?

5. In any S.H.M. when is the dis-

placement a maximum? When is it a

minimum?

6. At what part of its path does a

particle in S.H.M. move most rapidly?

7. A man walks at a uniform rate in a circular track ABCD, Fig. 31.

Another man starts from A at the same time and walks along the diameter
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AC so that the line joining them is perpendicular to AC. What kind of

motion will the second man have ? Where will he walk the fastest ? The
first goes clear around in 20 minutes. What is his angular speed? What
is the periodic time of the second man ? Shearer's Questions 407.

8. (i) Draw a curve with time as x, and distance of M (Fig. 31) from

&sy.

(ii) Draw the corresponding time-velocity curve,

(iii) Draw the corresponding time-acceleration curve.

Shearer's Questions 410.



CHAPTER III

SOME GENERAL PROPERTIES OF MATTER

55. Up to this point we have been considering some of the

motions of particles or bodies, and have confined our attention

entirely to the motion, not at all to the moving object. We
next proceed to study some of those properties which all pieces

of matter have in common ; properties possessed alike by
bodies at rest and by bodies in motion, and by bodies of every

possible chemical composition. Properties of this kind are

called general properties.

We shall consider four of these, viz. Inertia, Gravitation,

Capacity for Energy, and Elasticity. Afterwards we shall in-

vestigate some of the special properties of inanimate matter,

such as hardness, magnetic quality, transparency, color, and we
shall then see how these special properties are employed to

classify the different kinds of bodies.

Matter is something with which we are familiar in a general

way from- our earliest years ; on the other hand, investigators
in physical science have spent centuries in studying the various

peculiarities of matter, and have not yet succeeded in defining
it in terms of anything simpler. Much has recently been dis-

covered to commend the view that matter will ultimately be

found to consist of electricity in motion ; but at present this

idea is merely a suggestive hypothesis.

I. INERTIA

56. One of the commonest experiences of life is that of
"
sizing up

"
a body by pushing, pulling, or "

hefting
"

it.

When one sees a barrel being rolled along the street, he can

always tell whether it is empty or is filled with something that has

considerable weight. The empty barrel rebounds to a greater

extent as it passes over a small stone, and is more easily turned

aside from a straight course.

Even a wagon drawn by a team behaves so differently when
54
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empty and when loaded that an observer does not need to look

into the box of the wagon to see whether it contains a load

or not.

Imagine three balls, each six inches in diameter, each painted

black, one a rubber football, one a wooden ball from a bowling

alley, one an iron cannon ball. Imagine them all started roll-

ing with the same speed over a moderately smooth sidewalk.

Any boy or girl can tell instantly, by observing the behavior

of the three balls, which one is filled with air, which one is

made of wood, and which one of iron.

Everybody knows that the empty barrel is more easily set in

motion than the full one, and that it is more easily stopped than

the full one. Any one can tell, by kicking the barrel, whether

it is full or empty. In like manner, any one can go up to the

three black balls, each of the same size and color, each at rest

on the ground, and can distinguish, by a push with the foot,

the iron ball from the wooden ball, the wooden ball from the

football. But just how is one able to arrive so quickly at the

correct conclusion ? The answer is that every one knows from

his previous experience with matter these two facts :

(i) That it requires an effort to put matter into motion when
the matter is already at rest ; that it requires an effort to stop

matter after it has once been set in motion.

(ii) That, with any given body, the amount of effort is

greater in proportion as the change of motion is greater ; and

that, for any given change of motion, the amount of effort is

greater in proportion as the amount of matter in the body is

greater.

The first of these facts is described by saying that all matter

possesses inertia. Now inertia is simply the Latin word for

laziness ; but this laziness of matter differs in one essential

respect from that exhibited by ourselves on certain more or

less rare occasions in that matter hesitates quite as much to

stop when once in motion as to start when once at rest. Does

your own experience indicate that liquids and gases, as well

as solids, possess inertia ?

In all the experience of the human race no exception has

been found to the statement that all matter possesses inertia.

How, then, shall we explain the fact that a marble started roll-

ing on a level blanket so soon stops ? Here the blanket forms
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a slight hill in front of the marble, and hence exerts an effort,

so to speak, against the marble. But suppose the marble put
into motion on a smooth level table ; here the marble rolls much
farther before it stops, but the very slight roughness of the

table is sufficient to bring the marble to rest. The effort which

a sheet of level plate glass can oppose to the motion of the mar-

ble is slighter still, yet sufficient to stop the marble by and by.

The smoother the road and the freer the bearings are from fric-

tion, the longer a bicycle will run when coasting on level ground.

Suppose now that a bicycle wheel is entirely free from fric-

tion, not only the friction of the bearings, but the friction of the

air. How long will it continue to spin when the frame is held

above the ground and the wheel set in motion ? All our experi-

ence goes to show that, under these ideal conditions, the wheel

would never stop. The earth in its rotation on its axis comes

very nearly being such a body ; the earth is, indeed, so per-

fectly free from any effort to stop it, that it keeps on moving,

year after year, with essentially the same speed.

How nearly constant this speed of rotation is may be judged from the

estimate of Sir George Darwin (Ency. Brit., Art. "
Tides," Sec. 48), that the

effect of the tides in retarding the motion of the earth is perhaps 0.44 second

in a century.

In like manner, if a body has a motion of pure translation,

( 15), the natural and logical inference is that the body
will keep on moving indefinitely if no effort is exerted against it.

This inference was first made by Galileo on the ground of the

following experiment.
A body is allowed to roll down the inclined plane AF, of

fixed height AB (Fig. 32). The body on reaching the foot of

the plane AF with a constant and

definite velocity, is allowed to roll

up a second incline of variable

slope. Galileo observed that as

the slope of the second plane
FIG. 32. Galileo's experimental evi- ,...,,. , ,

dence for the principle of inertia.
diminished it required a longer
and longer time for the ball to

reach an elevation equal to AB. From this he argued that if

friction were eliminated and the ball were allowed to roll along
a perfectly smooth and horizontal plane F&, the time required
would be infinite. In other words, there would be no retar-
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dation along such a plane, and hence the motion would be

uniform in direction and speed.

57. But as a matter of fact in all cases of actual motion we
find that there is some outside influence at work which interferes

with the uniformity of the motion. Thus, in the case of a

bullet fired vertically upwards, we find that the bullet does not

continue to move upwards forever, but soon returns to the

earth. In the case of a kite, on the other hand, the combined

effort of the string and the weight of the kite are not sufficient

to bring the kite down. An equally peculiar case is that of an

empty bottle corked and then immersed under water. The
bottle at once rises to the surface.

In order to explain such various motions in a really simple
and comprehensive way it will be necessary first to define two

new terms, viz., Mass and Momentum.

COMPARISON OF MASSES

58. In the preceding paragraphs it has been pointed out that

we all know something about estimating the amount of matter

in a body by the difficulty of starting or stopping it.

It is customary in the physical sciences to employ the word
"mass" to denote the inertia or, if you prefer, amount of matter in

a body; and we shall hereafter use the word "mass" to mean

simply the inertia or amount of matter in a body, nothing more,

nothing less.

The next problem which arises is to find some quantitative
method for estimating the mass of a body. The solution may
probably be best obtained by considering some simple experi-
ment such as the following : Let two small iron wagons, or a

pair of roller skates, be placed on a smooth horizontal table and

attached to each other by means of a stretched rubber band AB,

FIG. 33. Fundamental method for measurement of mass.

as indicated in Fig. 33. Let them be held apart at a distance

of 100 centimeters by means of a meter stick. If now the

wagons are made to run with very little friction, we may assume,
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when the meter stick is quickly removed and the wagons ap-

proach each other,

(i) That the only external influence at work is that of the

contracting rubber band, and

(ii) That this rubber band pulls equally hard upon each of

the wagons.
These are, at this stage, pure assumptions ; but they are not

violent assumptions ;
and they are amply justified by the expe-

rience of every one.

From the moment when the wagons are released until they
collide they will acquire an increasing and hence accelerated

motion. Let us indicate by MA and MB the respective masses

of the wagons and their loads, and by a and b the respective

accelerations which the wagons have at any instant. Then by
definition, i.e. by convention of the scientific world, the ratio of

the masses MA and MB is equal to the ratio -, a fact more easily
a

expressed by the following equation :

*"-A __ 1 Defining equation for j? n Ofi

jLf ,, ratio of masses.

But since the time during which the stretched rubber acts is

the same for each wagon, we may, in view of Eq. 16, substitute

for the ratio -, the ratio of the distances which the respective
a

wagons traverse before collision. Let us observe, then, the

point on the meter stick at which the collision occurs, and

denote by pA and pB the distance from this point to the respec-

tive ends of the meter. We shall then have

M" V) Another equation de-
and hence _^1 = -C. scribing the ratio Eq. 27

MX PA ^ two masses.

From Eq. 15 it follows that we might have obtained the ratio

of these two masses from the velocities of the respective

wagons just before collision. For since the accelerations a and

b are in the same ratio as the velocities acquired during any
time , we should have

X* V*
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where VA and VB are the velocities (measured with respect to

the table) with which the wagons collide.

A balance for measuring the velocities of collision, and thus

comparing masses on this principle, has been devised by the

English physicist, Hicks. For description, see Duff's Me-

chanics, p. 80.

UNIT OF MASS

59. Having once learned how to compare (i.e. measure)

masses, we have only to select a certain standard of mass, in

order to be able to determine the mass of any body whatever.

There is a piece of matter preserved in the International

Bureau of Weights and Measures at Sevres, near Paris, a piece
of platinum-iridium, weighing about two pounds, which the

scientific world has arbitrarily agreed to call the standard kilo-

grain, i.e. 1000 grams. The gram, which is therefore one

thousandth part of this standard of mass, is taken as the unit

of mass.

When hereafter we shall speak of the mass of a body as "25

grams," we shall mean that the body has 25 times as much
matter in it as there is in one gram ; that the effort required
to start it moving with a given speed is 25 times that required
to start one gram moving with the same speed ; or, what hap-

pens to be the same thing, that it weighs 25 times as much
as one gram.

DIGRESSION ON FUNDAMENTAL AND DERIVED UNITS

60. The standard of mass, and also the standards of length
and time, have been defined in a purely arbitrary way. See

9 and 20. They do not depend upon any other standards

for their value. A unit which is chosen in this arbitrary^ man-

ner, without reference to other units, is called a fundamental unit.

In modern physics there are practically only three fundamental

units, viz. the unit of mass, the unit of length, and the unit of

time.

All other units are on a different basis, as will be seen by

considering one of them, say the unit of speed. The whole

scientific world uses as unit speed, that speed with which a

particle will traverse unit distance in unit time. In the metric

system we say unit speed is one centimeter a second. The
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unit of speed thus depends upon the units of time and length.

It is, therefore, said to be a derived unit.

Derived units are defined as those which depend for their value

upon the fundamental units. In like manner, the unit of accel-

eration, the unit of area, and the unit of volume are all derived

units. So are all the units employed in this text-book, except

the three fundamental ones just mentioned. Units which are

based upon the centimeter, gram, and second are spoken of as

"C.G.S. units."

The engineer uses a different set of fundamental units,

namely, length, force, and time. We have not yet studied the

subject of force ; but it will be allowable here to anticipate,

merely to say that the engineer's unit of force is the weight of

a certain mass of metal preserved in the Standards Office at

Westminster, London, and called the Standard Pound.

Mass in engineering practice is, therefore, a derived unit ;

and the size of this unit is about 32.2 times the mass of the

standard pound. It is not often used ; but when used is fre-

quently called the slug.

DIMENSIONS OF UNITS

61. The powers to which the three fundamental units enter

into the various derived units are called the "dimensions" of

the derived units. Thus, if we denote the units of length, mass,

and time by L, M, and T, respectively, we may write the fol-

lowing table at once from the defining equations for the quan-
tities there listed :

QUANTITY



SOME GENERAL PROPERTIES OF MATTER 61

to the same power. Thus if, in attempting to write from mem-

ory the expression for p (Eq. 16), one were to put down

he could at once detect the error ; for each of the terms on the

right-hand side must be of the same dimensions as p, namely,
L1

; while as the expression now stands the term iS
Q
t
2 has the

dimensions L1!71
.

Dimensional equations are generally written in square brack-

ets, thus, [F] =

DIGRESSION ON DENSITY

62. From the earliest times it must have been observed that

there are certain bodies which float on water, while others sink,

more or less rapidly, and also that whether or not a body floats

depends not at all upon its size. Thus it is well known that

lead, volume for volume, is a heavier substance than wood.

But note carefully that this statement does not imply that any

particular piece of lead has a greater mass than some particular

piece of wood.

To describe the manner in which mass and volume are re-

lated the term "
density

" has been introduced and is denned

as follows : The average density of any body is simply the ratio

of its mass to its volume.*

If we denote the mass of a body by M, its volume by F", and

its density by .Z), then
*

T-\ _ M-_ Defining equation for r? tyo~
77"' average density.

The gram was intended to be, and is very nearly, equal
to the mass of one cubic centimeter of water at a temperature
of 4 C. The mass of any body of water is, therefore, numer-

ically equal to its volume, provided we use the centimeter and

the gram as units.

In terms of Eq. 28, M= V in the case of water ; and hence

the density of water is very approximately unity. More ac-

curately,

1 cubic centimeter of water at 4 C = 0.999980 gram.

Congres international de Physique I. 96 (1900).
* Or, as Newton puts it, in the first two lines of the Principia,

" The quan-

tity of matter is the measure of the same, arising from its density and bulk

conjointly.'
1 ''



62 GENERAL PHYSICS

DIGRESSION ON MOMENT OF MASS AND CENTER OF MASS

63. Let us consider any rigid body of mass Mas made up
of a large number of particles. Call the masses of these parti-

cles mv w2 , 7W
3 , etc. ;

their positions in the body may be stated

by means of rectangular coordinates (x^y-fi^), (x^y^z^)^ (#3#3
2
3)?

etc., respectively. Next form the sums indicated in the three

following equations :

etc. =
etc - =

+ wZgZg + etc. = 2 (mz)

Each of these products is called a "moment of mass." Those

in the first equation are the moments of mass with respect to

the [FZ-plane ; those in the second equation are the moments

of mass with respect to the JTZ-plane ; while the moments of

mass, for each particle, with respect to the Jfr"-plane are

given in the third equation.

Let us now choose a point whose distance x from the YZ-

plane is such that
- 2(rnaf) -.-, oo t>x = \^.

}
, Eq. 28 Bm

and whose distance, y, from the XZ-pl&ue is such that

- = 2(my)
M

In like manner, make the distance from the JTI^-plane such that

2 (mz)- V_S_ .-
Tlf
Jf

The point thus determined by these three rectangular coordi-

nates (ic, ^, 2,) is called the center of mass of the body.
If the origin of coordinates be chosen at the center of mass,

it follows that x =
~y
= z = ; and hence

2 (mx) = 2 (my) = 2 (mz) = 0. Eq. 28 C

It follows, therefore, from Eq. 28 C that the center of mass of

any body is the point about which the moment of mass is zero.

If we pass a plane through the center of mass, it does not fol-

low that there are as many particles of unit mass on one side
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the plane as the other ; but it does follow that the moment of

mass of the particles on one side is the same as the moment of

those on the other. A briefer and clearer way of viewing this

subject is perhaps the following. Let each particle m be

completely located with reference to any fixed origin by
means of a position vector r. Then the position vector of the

center of mass R is by definition expressed in the following

equation :

R=*&p.. Eq. 28 DM
As will be seen later, in the discussion of gravitation, the

center of mass is practically identical with the center of

gravity.
DEFINITION OF LINEAR MOMENTUM

64. The product obtained by multiplying the mass of a body

by its linear velocity is one so frequently employed in physics

that a special name has been given to it, viz. Linear Momentum.
Since velocity is a vector quantity and mass a scalar quan-

tity, it is evident that their product, momentum, is a vector

quantity, and that its direction is the same as that of the

velocity factor. The product of the mass and linear speed of

a body gives the merely numerical part, the scalar factor, of

momentum.
The momentum of a bicycle ridden north at the rate of six

miles an hour is by no means the same as that of the same wheel

ridden east at six miles an hour. The mere numerical values of

these two momenta are the same ;
the difference of momenta

in these two cases is keenly appreciated when we consider the

difficulty involved in avoiding a collision with another wheel

going south. For instance, in a crowded street, when the wheels

are proceeding from north to south, one after another, the dan-

ger to another wheel moving east or west six miles an hour is

enormously greater than the danger to the same wheel going
north or south six miles an hour.

Let m denote the mass of a particle and v its velocity, then

Defining eq. for

Linear momentum of a particle = mv. linear mo- Eq. 29
mentum.

The reasonableness of this definition will be seen when we
recall that the mass of a bodv is one of the factors which
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measure the difficulty of starting or stopping the body. But,

as every one knows, the difficulty of starting or stopping a body
in translation depends also upon how fast you start it going, or

upon how fast it is moving when you attempt to stop it. It

depends, as Newton said (Definition 2, Principia), upon the
"
quantity of motion "

in it
; or, as we now say, upon its linear

momentum.

Since, then, the difficulty of stopping a body in translation

depends both upon its mass and upon its velocity, we say,

Linear momentum = Mass x Velocity.

ROTATIONAL INERTIA AND ANGULAR MOMENTUM

65. Two children who are seesawing, one at each end of a

board, know very well that the seesawing goes on more smoothly
and with greater uniformity when they are out near the ends of

the board than when they are in near the middle. But when

they are near the middle, the board is much more quickly
started or stopped by a third party taking hold of the end.

The mass of the board and the children is the same in each case;

only the distribution of the mass is different.

The children and the board constitute a typical rotating

system. The axis of rotation is the line of contact of the board

and the log over which the board is balanced. The point to

which attention is here directed is that the resistance which a

body offers to being set in rotation, i.e. its rotational inertia, is

not measured by its mass merely, but depends also upon the dis-

tribution of its mass, i.e. upon the position of the mass.

Imagine two fly wheels to have equal masses. In the first

case, we shall suppose the mass to be distributed mostly near the

axis of rotation ;
in the second case, the mass is placed far out,

mostly near the rim of the wheel. Which wheel is more easily

set into rotation ?

The farther away a particle is from the axis of rotation, the

greater its leverage. Consequently it is found, when we

attempt to impress a linear speed v upon any particle rotating

about a fixed axis, that the effectiveness, of the particle in resist-

ing us is measured by the product of its linear momentum mv
and its distance r from the axis of rotation. Thus the ability

of a particle to keep a fly wheel in rotation is measured by
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the distance of the particle from the shaft, as well as by its

linear momentum.

The product mv r is called the angular momentum of the

particle m.

Angular momentum = mv r.

But since v = ra>, we may write

Defining eq. for

Angular momentum = mr2co angular mo- Eq . 30
menturn.

And just as we define

Linear momentum = Linear inertia x Linear velocity,

so we may define

Angular momentum = Rotational inertia x Angular velocity.

Employing this analogy, which we shall find amply justified as

we advance, it follows that the rotational inertia of a particle is

measured by wr2
,
where m is the mass of the particle and r its

distance from the axis of rotation. This product which meas-

ures the rotational inertia of any particle is generally, though
with little propriety, known as the moment of inertia, and is

usually denoted by /. Observe that the rotational inertia of a

particle is not invariable, as is its linear inertia, but depends

upon the position of the axis of rotation with reference to the

rotating mass.

Passing from a particle to a rigid body, it is found by experi-

ment that the moment of inertia of a body is the sum of the

moments of inertia of all the particles of the body, a result

which may be most briefly expressed by the following equation :

Rotational inertia = 1= 2 (.mr
2
') Eq. 31

Angular momentum = Ico Eq. 32

Problems

1. How is it that, in a fly wheel weighing one ton, the effect of the wheel

in steadying the motion of the engine is very much increased by placing
most of the mass out near the rim of the wheel?

2. If an extra pound is to be added to a bicycle wheel, where will it prove
to be the greater hindrance to starting, when placed in the tire or in the

hub? Why?
3. Why is it that in the balance wheel of a watch most of the material is

placed in the rim of the wheel?
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4. An iron hoop, circular in shape, and very thin, weighs 200 g. Ite

radius is 15 cm. Find its rotational inertia about an axis which passes

through the center of the hoop and is perpendicular to the plane of the

circle.

5. The angular momentum of a certain fly wheel is 25,000,000 C.G.S.

units. Its angular speed is 20 radians per second. Find its moment of

inertia.

66. At the beginning of this chapter, we cited some familiar

instances of the behavior of matter in motion. We then

digressed for a moment to increase our vocabulary by the defini-

tion of four very important physical quantities ; namely,

(1) Mass (Linear Inertia).

(2) Moment of Inertia (Rotational Inertia).

(3) Linear Momentum.

(4) Angular Momentum.

Returning now to the consideration of inertia, we shall treat

first the behavior of a body which is left to itself.

CASE I. No EXTERNAL INFLUENCE AT WORK
Newton s First Law of Motion

67. As we all know, it is not an easy matter " to leave a

body to itself"; but Galileo and Newton have correctly in-

ferred the behavior of a body when left to itself, and have de-

scribed this behavior in the following simple way :

If a body is in translation under no external influence, its

linear momentum remains constant. This fact is generally
called Newton's First Law of Motion, and is described algebra-

ically by the following equation :

mv = constant. Eq. 33

In like manner if a body is in rotation under no external influ-

ences, its angular momentum remains constant. Or, more briefly,

Iw = constant. Eq. 34

Experiment shows that these two statements are true for

bodies at rest as well as for bodies in motion, and that they are

true for a body of any size, shape, or composition. But they
are true only under the conditions stated ; namely, that the body,
or system of bodies, is affected by no outside action. Before one
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can say whether or not a body is acted upon by outside influ-

ences, he must be very careful to define just what the body is

which he is studying. This done, the distinction between " in-

ternal
" and " external

"
influences is easy.

If, therefore, a heavy fly wheel, set in rotation and " left to

itself," gradually diminishes in angular speed, we may fairly

expect to find the wheel is not really left to itself and is not en-

tirely free from external influences. In such an expectation no

one has yet been disappointed.
If a skater coasting on level ice finds himself moving more

and more slowly, he suspects resistance to his motion in the air,

and in the frictional resistance between the ice and the skates.

If a baseball, thrown vertically into the air, changes its

velocity (as it does, first diminishing, then, stopping, and then

increasing in speed), we may rest satisfied that an outside in-

fluence is at work. In this case it is popularly called "
gravity."

Since, then, bodies left to themselves move with uniform

velocity, we may say that motion is a state of matter quite as

natural as rest. For bodies in motion and left alone keep in

motion ; while bodies at rest and left alone remain at rest.

CASE II. AN EXTERNAL INFLUENCE AT WORK
Force and Torque ; Newton's Second Law

68. In the preceding pages we have frequently been com-

pelled to speak of the motion of a body as influenced by
" re-

sistance," by "external action," by "some outside influence,"

or by
" some external effort." These terms have all been used

to express the same idea ; but such loose, vague, and varying
names are not in keeping with the spirit of modern physics.

We accordingly take the first opportunity to define exactly
what is meant by these various external influences which change
the momentum of a body. For the common feature of all these

actions which affect a body from without is that they do not

permit the body to move with unchanged momentum ; they

continually alter the velocity of the body, and hence change its

momentum.
It is now nearly three hundred years since men began to

observe that changes of momentum are brought about always

by the interaction of one body upon another ; that the train of
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circumstances which precedes any particular change of motion

is, in general, complicated and far-reaching. The "cause of

motion," in other words, usually presents insurmountable diffi-

culties, and leads to metaphysical obscurities. Accordingly,

physical science, at a very early stage of its history, cut loose

entirely from all considerations of the " cause of motion," i.e.

of these external influences which we speak of as producing

change of momentum, and adopted in its stead the ideas of

"force" and "torque." All these external influences, however

complicated and whatever their nature, whether magnetic, capil-

lary, or gravitational, are all grouped under two heads. They
are called Forces if they change the linear momentum of the body,

and Torques (or Moments of Force) if they change the angular

momentum of the body.

Thus, at a single stroke, physical science rids itself of all

hazy metaphysical considerations and confines its attention to

observable and measurable quantities, such as masses and

velocities. This achievement is due largely to Galileo and

Newton. In the future, therefore, when we speak of bodies
" acted upon by

"
forces, we shall understand that these forces

are merely names which cover our ignorance of the real causes

of motion ; but we must not forget that these forces stand for

definite physical quantities which can be accurately measured

and can be used to predict future results with a precision which

is almost incredible.

Newton, looking for the shortest and clearest description of

what had been observed to happen where masses, either in mo-

tion or at rest, are acted upon by forces, arrived at the follow-

ing statement, which is generally known as Newton's Second

Law of Motion :

The change in the linear momentum of a body is proportional

to the force acting upon the body ; and the direction of the change
is the same as the direction of the force.

A similar law describes the behavior of a body in which

there occurs a change of angular momentum.

The change in the angular momentum of a body is proportional

to the torque (or moment of force) acting upon the body ; and the

axis and direction of the change are the same as the axis and

direction of the moment of force.
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DEFINITION OF FORCE

69. Force is defined as that which changes the linear momen-

tum of a body ;
and it is measured by the time rate at which the

linear momentum is changed.

This idea we owe to Galileo (1564-1642). In popular usage
force has an endless variety of meanings ; in physics it is never

used except in this one sense. The student should observe

carefully that in this definition nothing whatever is said as to

the origin or source of the force which produces the change of

momentum. The source of the external influence may be elec-

tric, magnetic, or gravitational ; it matters not. If the mo-

mentum is changed, some external force is acting on the body ;

and the measure of this force is the ratio between the change of

momentum and the time occupied in this change. This is the

whole story about force.

It may be expressed in the shorthand of algebra as follows :

Let F denote the force acting upon a body of mass m, let v
l
be

its linear velocity at the time tp and v
2

its linear 'velocity at

the time t
z ; then the

Average Force

acting upon the body during the interval t
2 ^ is given by

the following equation :

mv<> mv-, /V9 V-,\ Defining equa-F= * -=m --- - tion for aver- Eq. 35
2 t\ \*2 *1 ' affe

If the interval
2 ^ be very small indeed, the force at any

instant t lying in the interval
2

t
1

is given as follows :

F=m

Since we have already (Eq. 12) agreed to call the rate of

change of velocity by the name acceleration, we may also write

this as follows :

F= ma. ??Clequation
Eq. 36

j

and define force as the product of mass and acceleration, a defini-

tion which is exactly equivalent to that given above.

Of the two factors in this defining equation, one, m, is a

scalar, and the other, a, is a vector quantity. Hence force
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itself is a vector quantity, and can, therefore, be represented in

direction, sense, and amount by a straight line.

DEFINITION OP TORQUE

70. In a precisely analogous manner, torque is the name

given to the time rate at which the angular momentum is

changed. Let L denote the torque acting upon a rigid body
whose rotational inertia (moment of inertia) is / and which is

capable of rotation about some given axis ; let to be the amount

by which its angular velocity is changed during the time t ;

then the

Average Torque

acting upon the body during the interval t is given by the

following equation :

L = = / x rate of change of angular velocity,

or, Eq. 13,

L = IA, Eq. 37

where A denotes the angular acceleration of the rigid body
about the given axis.

RELATION BETWEEN FORCE AND TORQUE

71. As a matter of fact many bodies are set into rotation by
means of "a single force" applied to the body at what is practi-

cally a single point. Thus, one starts a grindstone or a coffee

mill by means of a push of the handle
;
the beam of a balance

is set into rotation by means of a force applied at the knife-

edge.
The effect of such a force acting on any such body is in

general to change not only its motion of translation, but also

its motion of rotation. The amount of this change in rota-

tional speed will obviously depend upon two things : (1) the

magnitude of the force applied, and (2) the distance of the

line in which it acts from the axis of rotation.

Thus, if one wishes to shut a door and can exert only a

limited force, he knows that this force will be much more

effective when applied near the edge of the door than when

applied near the hinge line.

In like manner, when one wishes to turn a heavy wheel, he
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FIG. 35. Moment of force on a

particle, at the end of an arm r.

always takes hold near the rim and not near the hub. He
does this in order to make the perpendicular distance between

the force and the axis as great as

possible.

Hence, the effect of a force in

producing rotation about any
axis can be measured by the

following product, viz. Fr, where

F is the force acting, and r is

the perpendicular distance from

the axis to the direction of the

force. See Fig. 35.

Let us denote the moment of force by L, then

L = rF, Eq. 38

This simple relation between force and moment of force,

L = rF, should be thoroughly mastered by every student ;
for

it is the connecting link between force and torque, and is

generally considered as the defining equation for torque. Out-

side of engineering circles torque is generally called " moment
of force," because "moment" is a Latin word which means im-

portance; and since the product Fr measures the importance of

the force F in producing rotation, it is appropriately called

moment of force. The word is used here then in the same

sense in which Shakespeare employs it when he speaks of " en-

terprises of great pith and moment."

ADDITION OF FORCES

72. Since forces are directed quantities, they are added in

the same manner as are all directed quantities ; that is, in the

same manner as displacements, velocities,

momenta, accelerations, viz. by placing
end to end the lines which represent the

single forces. The line joining the ex-

tremities of the broken line so formed

represents the resultant force, or simply

the resultant.

Each force produces its own effect quite independently of

the others. This is one of the essential features, although

merely a tacit implication, of Newton's Second Law.

Imagine the three vectors F^ Fz, F& indicated in Fig. 36,

FIG. 36.
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FIG. 37.

-F,

to represent in direction and in amount three different forces

acting at any point 0. The line OA in Fig. 37 will then

.A represent a force which alone

will change the momentum of a

body at the same rate as will the

three forces Fv F2 , Fz , combined.

This is all that is meant by a

resultant.

Imagine the sense of the force

F
s
to be reversed ; the line OA,

in Fig. 38, will then be the resultant. The numerical values

of the forces are the same in Fig. 38 as in Fig. 37 ; so are

their directions ; but the resultants in

these two cases are very different. Ac-

cordingly, the student should bear in

mind that the sense of a force is, in

general, quite as important a factor as its

amount, or its direction.

73. Very often the resultant of a given

system of forces is zero; in this case the

body acted upon is said to be in equilibrium.

That large branch of Mechanics which deals

with forces which are in equilibrium is called

Statics. Thus, when a metal ball is suspended by
a spiral spring as shown in Fig. 39, the weight of

the ball, acting downwards, is exactly balanced by
the pull of the spring upwards ; and either of these

forces is to be measured by the acceleration it would

produce in the ball if the other force were absent.FIG. 39.

UNIT OF FORCE : THE DYNE. THE POUND

74. Since the force acting upon any body is the product of

the acceleration which it produces in this body multiplied by
the mass of the body, we have no liberty of choice as to a unit

of force. For, provided we wish to be at all consistent, we must

maintain our previously employed units of acceleration and

mass. But these we have already defined in 33 and 59.

Hence the unit of force which is called a "dyne" is that force

which will produce unit acceleration in a mass of one gram.
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Or, what is the same thing, unit force is that force which is

capable of changing the momentum of a body at the rate of one

unit per second.

Or, what is the same thing still, we may define the unit of

force as that force which will change the velocity of a mass of

one gram at the rate of one unit (that is, one centimeter per

second) per second. Note that "
dyne

"
is simply the Anglicized

form of the Greek word for force. The student will be inter-

ested in proving that the dimensions of force are MLT~2
.

The engineer employs as a unit of force the weight of a one-

pound mass at London ;
in other words, his unit of force is that

force which the standard pound exerts upon the bottom of the

box which contains it at the Standards Office in London.

In order to distinguish between the mass of a pound and the

force of a pound, it is well to write the former "
Ibs.

" and the

latter "pounds."
The unit of torque has no special name ; its value is evi-

dently (Eq. 38) the torque of one dyne acting through an arm

of one centimeter in a direction perpendicular both to the arm

and to the axis. The engineer, starting from the same equation,

uses the pound-foot as his unit of torque. (This unit is to be

carefully distinguished from the foot-pound, which the engineer

uses as a unit of work, and in which the distance and the force

are measured in the same direction instead of at right angles as

here. )

STATICS

Case of a Particle

Let us consider first the case of a single particle acted upon

by any number of forces all lying in the same plane. If these

forces produce no acceleration of the particle, they are said to

be in equilibrium. From what has preceded it will be evident

that the condition for equilibrium here is as follows :

Polygon of forces. Represent all the forces by limited straight

lines. Starting with any one of these forces, lay them off end to

end. If the polygon thus formed is closed (that is, if the terminal

point of the last vector coincides with the starting point of the first

vector), the forces are in equilibrium.

If there are only three forces acting upon the particle then

they must form a triangle when placed end to end. This is, of
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course, a special case of the preceding. Another way of ex-

pressing this result, due to Lami, and often called " Lami's

theorem," is to say that three forces are in equilibrium when
each is proportional to the sine of the angle between the other

two. For most purposes the graphical method of determining

equilibrium is convenient; but when numerical computations
are concerned, the algebraic method is often better.

Algebraic Condition for Equilibrium

Let us denote by Rv Rv Ry etc. the various forces which

act upon the particle; and by P 2 , #3 , etc. the respective

angles which these forces make with the axis of X. Then ifX
is the sum of all the components along the direction of the

JT-axis, and Y the sum of all the components along the JT-axis,

we shall have as the condition of equilibrium,

X = E
l
cos B

1 + R2 cos
2 + E3

cos
3 + etc. = 2(J? cos 0) = 0.

Y = R
1
sin

1 + RZ sin
2 + Rz

sin
3 + etc. = 2(72 sin 0) = 0.

For if there is no force acting along either of two perpendic-
ular axes, then it must follow that the resultant ~VX2 + Y2

is

zero and the particle is in equilibrium.

What form will the condition of equilibrium take when the

particle is free to move not only in two dimensions, but in

three ?

Case of a Body

We shall here consider only the case of a body which is free

to rotate about a single fixed axis, such, for instance, as a grind-

stone or the fly wheel of a stationary engine. In seeking for

the condition of equilibrium of such a body we have to remem-

ber that the question is now one of torques, and that the per-

pendicular distance from the axis of rotation to the line of the

force is a factor which is quite as important as the amount of

the force.

Since the resultant torque L is to be zero, we may express
the condition of equilibrium as follows:

L = FlPl +F^ + F3p3 + etc. = S(^) = Eq. 39

where Fr F^ Fy etc. are the forces and pv jt?2 , j 3 , etc. are the

perpendiculars let fall from the axis to the lines of action of

the respective forces.
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Thus in the case of a windlass where the force F acting

through the arm a raises a weight W acting through an arm 5,

we have, as the condition of equilibrium

Fa - Wb = 0.

Observe that in the case of torques it is quite as important to

give to each moment of force its correct sign as it is to assign
the proper sense to forces.

THE COUPLE

One of the most important combinations of forces occurring
in nature is that in which the resultant of the linear forces,

2J7

, is zero, while the torque is not zero. The typical case

here is that of two forces which are equal, parallel, and op-

positely directed, but which do not lie in the same straight

line. Call the two forces F
l
and F

z ; then since F + F2
= 0,

it follows that they can produce no change of linear velocity
in the body upon which they act. But, consider their torque
with respect to any point lying, either between or outside

the lines of the two forces, and it will be seen that they
exert a torque whose value is F^r, where r is the least distance

between the two forces. A couple will therefore produce

angular acceleration. Hence the two equal forces F
l
and

F<i cannot be said to be in complete equilibrium unless they act

along the same straight line.

Problems

1. An iron rod 4 ft. long weighs 10 lb., and has suspended from one

end a weight of 4 lb., from the other end a weight of 8 lb. At what

point must the rod be supported in order to be in equilibrium ?

2. A pendulum bob weighing 2 lb. is pushed aside by the hand
until the suspension string makes an angle of 30 with the vertical. What
horizontal force must the hand exert in order to do this.

3. An iron bar carrying a weight of 3 lb. at one end balances when

supported at a point 4 ft. from that end. If the bar weighs 2 lb. per
foot length, what is the total length of the bar?

4. A man can just close a door against a strong wind by using a hori-

zontal force of 50 lb. at a distance of 2 ft. from the hinge line. What force

will be required at a distance of 2| ft.

5. Find the center of mass of a uniform light-angled triangle ?
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6. Prove that when a particle is in equilibrium under the action of

three forces, the resultant moment of these three forces about any line

is zero.

7. Two parallel forces, of which one is 5 lb., have a resultant of 6 lb.,

acting at a distance of 2 ft. from the larger force. Find the distance

between the parallel forces.

8. A square sheet of metal 8 cm. on the side has a square of 2 cm. on

the side cut out of one of its corners. Find the center of mass of the re-

maining figure.

9. Find the center of mass of four masses, of 3, 6, 8, 4 lb., respectively,

which are placed in a straight line with the following distances separating

them, 6 in., 2 ft., and 3 ft., respectively.

10. Three men are carrying a log. The rear end is carried by one man
;

the forward end is supported over a stick each end of which is carried by
one of the other two men. Where must this stick be placed under the log

to divide the load equally between the three men?

11. What couple will two equal parallel and opposite forces of 3 dynes

produce when acting at opposite ends of an arm 0.1 mm. long?

12. A string 80 in. long is stretched by a force of 5 lb. What force

must be applied at the middle of the string to depress it 1 in.? Neg-
lect the weight of the string.

13. An I-beam is supported by two pillars, one at each end, the load on

the respective pillars being 100 nnd 200 lb. When the pillars are shifted

so that each stands 1 ft. from the end of the beam, the loads are 90 and

210 lb. respectively. Find the length of the beam.

14. Prove that when the arms of a balance are unequal, the true weight
of a body may be found by observing its apparent weight, first in one scale

pan, then in the other, and afterwards taking the square root of the product
of their apparent weights.

Two INTERESTING SPECIAL CASES

I. Centripetal and Centrifugal Force

75. We have found that, in general, the force acting upon

any body is to be measured by the product of the mass of the

body and its acceleration ; and when a particle moves in a

circle with constant speed, we have found ( 37) that it is

always accelerated toward the center with an acceleration which

is measured by the square of its linear speed divided by the

radius of the circle.

a = v2 = a)2r. Eq. 18
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If now we wish to know what force F is required to keep
this particle moving in a circular path, we have only to multi-

ply the mass of the particle m by its acceleration. Thus,

F= m =
r

= mv to. Eq. 40

This expression gives the force which one must exert upon
a string in order to change the direction of the linear momentum
mv at the rate CD.

This force is sometimes called centripetal force because it

measures the pull of the string towards the center
;

it is some-

times called centrifugal force because it measures the pull of the

stone outward. As we shall see later ( 77) both names are

appropriate ; for each represents one of the two points of view

from which every force may be considered. These laws of uni-

form circular motion were discovered by Huygens (16251695),
the great Dutch physicist and astronomer.

II. The G-yroscope; Precession

76. The rotational analogue of this centrifugal force is one

of the most interesting phenomena of me-

chanics and astronomy.

Corresponding to the linear momentum
of a rigid body is the angular momentum
of a rigid body, such, for instance, as that

of a detached bicycle wheel, shown in

Fig. 40. Such a bicycle wheel held in one

hand can be set spinning rapidly with an

angular velocity which may be denoted by
fl. The angular momentum of the wheel

will,' by analogy, then be _ZH. And the

torque L required to change the direction

of this angular momentum at the con-

stant rate co, will, by the same analogy, be _ZH<0;

of algebra,
L = i& 60.

FIG. 40. Bicycle wheel

detached so as to easily

show precession.

or in terms

Eq. 41

If the spinning wheel is supported by both handles with its axle

horizontal, there is no torque acting upon it, and hence no tend-

ency for the axle to change direction; but if the wheel be set
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spinning about a horizontal axis and held lightly by one handle,

then the weight of the wheel exerts a torque about another

horizontal axis perpendicular to the axis of spin, and the

torque L makes the axis of spin, therefore, rotate about a

vertical axis. This rotation of the axis of spin is called pre-

cession. The advanced student will find this phenomenon

beautifully exhibited by the earth, upon the equatorial belt of

which the moon exerts a torque L.

The simplest illustration is the ordinary peg top; but some

of the various forms of gyroscope, usually found on sale at the

expositions and toy stores, are more convenient.

Problems

1. A mass of 500 g. is acted upon by a force of .3500 dynes. Find the

acceleration produced in the mass. Starting from rest, under this accelera-

tion, what speed will the mass acquire in 8 sec. ?

Ans. a 7, v = 56.

2. A force of 20 dynes is able to produce an acceleration of 2 in a certain

body. What is the mass of the body? Ans. m = 10 g.

3. What force would be required to change the momentum of a body
from 25 to 150 in 12.5 sec. ? Ans. F = 10 dynes.

4. A boy swings about his head, in a circle of 1 m. radius, a bullet

whose mass is 20 g. What is the pull on the string when the bullet is

making 1 revolution per second? Ans. 8000 7r
2
dynes.

5. A locomotive whose mass is 100,000 kg. is rounding a curve of

400 m. radius at a speed of 10 m. per second. What is the force which the

locomotive exerts upon the outer rail ? This problem is similar to the pre-

ceding; the only difference is that here the flange of the wheel, or the

outer rail, holds the locomotive in its circular path, while in the preceding
the string holds the bullet in its circular path.

'

Ans. 2500 million dynes.

6. Why does a bicycle rider " lean in
"
as he rounds a corner ?

7. How does a cyclist
"
right

" himself by turning his front wheel toward

the side to which he is falling? The centrifugal force, i.e. the righting
77? V

force, acting upon the wheel and rider is measured by This may be

increased by increasing v, or by diminishing r.

8. An engine fly wheel is spinning about a horizontal axis with an an-

gular momentum of 50,000,000 C.G.S. units. How great a torque will be

required to rotate the axle of the fly wheel (still spinning) about a vertical

axis at the rate of radian per second ? About what axis must this torque
be exerted?
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ON SYSTEMS OF BODIES ; NEWTON'S THIRD LAW OF MOTION

77. If we take acceleration as the test for the presence of

force, questions such as the following are likely to arise : A
railroad train is running on a level track at the uniform rate of

24 miles an hour, there is no change in the speed or in the

direction of the velocity; accordingly the acceleration of the

train is zero. This conclusion is plain, simple, unavoidable.

But how can this be, when the engine is exerting a force of

millions of dynes on the train ?

The answer is simply this: The pull of the engine is only
one among many forces acting upon the train. In these forces

we must include the friction of the rails, the friction of the

bearings, and the friction of the wind. These forces are all

opposing the pull of the engine. If now the train be running

uniformly at the rate of 24 miles an hour, we conclude that

these opposing forces are exactly equal and opposite to the pull

of the engine; and hence that the total force acting upon the

train is zero. If steam be cut off the engine, the opposing
forces accelerate the motion of the train in such a way as to

dimmish its speed. When the train comes to rest, the opposing
forces become zero; and hence the total forces are again zero

and the acceleration is again zero. When the engineer lets on

steam, the forward pull of the engine is greater than the

backward pull of the opposing frictional forces. Hence the

motion of the train is accelerated, this time in such a way
that its speed is increased. This acceleration will continue

until the frictional forces are exactly equal and opposite 'to

the pull of the engine. At this point the acceleration is

again zero.

From this illustration the student will observe that great
care is necessary to include in any system under discussion all

the various parts of that system. The track and the air re-

tarding the train are essentially parts of the system.
When the forces which aid any uniform motion are added to

those which oppose the motion, the sum is always zero. But

even when the motion is not uniform, it is found that the mass

which is being accelerated exhibits a force of reaction just

opposite in sense and equal in amount to the resultant of all

the other forces acting upon the body. This is an observed
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fact of nature which Newton was the first to accurately de-

scribe. This he did by saying that action is always equal and

opposite to reaction; or the mutual actions of any two bodies are

always equal and oppositely directed.

This statement is known as Newton's Third Law of Motion.

This force of reaction in accelerated bodies is beautifully illus-

trated by the following experiment :

With a piece of light string support an iron ball, from two

to four inches in diameter, as indicated in Fig. 41. To the

lower side of the ball attach a piece of the

same kind of thread.

Taking hold of this lower thread, one may
by pulling break either thread he likes. If

he pulls slowly, the lower thread will be

affected only by the pull of the hand, while

the upper thread will be stretched both by
the pull of the hand and by the weight of

the iron ball. In this case, of course, the

upper string will break first.

If, on the other hand, one pulls the lower

string quickly, it will as before feel the pull

FIG. .- Illustrating
f the hand alone ' But the UPPer string

reaction which is Avill be stretched practically by the weight
measured by mass Q the baR Qnl for jn thig cage the bftU
X acceleration.

will be so rapidly accelerated that the re-

action of the ball (its mass x its acceleration) will be suffi-

cient to break the lower string before the ball has moved

through a distance sufficient to appreciably stretch the upper

string.

The student will find it an excellent habit to look at every
force from these two points of view.

When a body, or system of bodies, is not accelerated, we may
consider it is acted upon by two or more forces whose sum is

always zero, or by two or more moments of forces whose sum
is always zero.

When a body is accelerated we may consider the force of

reaction as one of the forces acting upon the body ; and from

this point of view, which is due to D'Alembert, all forces are

balanced forces.
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RELATIONS OF NEWTON'S LAWS TO EACH OTHER

78. The first law describes the behavior of a body when
there is no external force acting upon it ; or if you prefer, it

states the conditions under which there are no external forces.

The second law describes the behavior of bodies when external

forces are acting. It is clear, therefore, that the first law is

merely a special case of the second law, telling us what happens
when the external forces have a particular value, namely, zero.

To clearly grasp the relation of the third law to the other

two it is helpful to recur to the idea of Maxwell that when two

bodies interact there is a "
dynamical transaction

"
taking place

between them. " Just as in commercial affairs the same trans-

action between two parties is called Buying when we consider

one party, Selling when we consider the other, and Trade when
we take both parties into consideration" {Matter and Motion,

Art. 39).

The third law tells us then what happens when we include

in our system all the bodies whose action we are considering.

Under these conditions, that is, under no external forces, the

third law says that the forces remaining are equal. The
" forces remaining

"
may be called internal forces.

Put in other words, the first law furnishes one, but not the

only, criterion for the presence (or absence, if you like) of

force. The second law tells us how to measure force, an idea

due to Galileo. The third law expresses the fact that forces

always occur in pairs which are equal and opposite.

Problems

1. A bicycle rider exerts a force of 10 million dynes on a pedal. Sup-

pose the force to be at right angles to the pedal crank, and imagine the

crank to be 18 centimeters long, what moment of force does the rider

exert? Ans. L = 180 x 106
.

2. At one end of a board which is 20 ft. long is placed a stone weigh-

ing 40 Ib. At the other end of the board is placed a stone weighing
90 Ib. Neglecting the weight of the board, find the point at which it

must be supported in order that these two stones may just balance each

other. Ans. 6^ ft. from end.

3. When a bicycle is being ridden through a wet or slushy street, how is

it that the water collects- in a little ridge at the middle of the tire?

4. In opening my pocket-knife I catch the blade at a point 8 cm.

from the pin about which the blade turns; and, at this point, I exert
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a force of 500,000 dynes. What moment of force is required to open the

knife?

5. A mass of 20 g. is revolving uniformly once in 5 sec. in a circle of

30 cm. radius. Find the centrifugal force.

6. A skater weighing 70 kg. describes a circle of 30 metres radius with a

speed of 6 m. per second. Find the horizontal force tending to throw him

over. Why does he incline himself toward the center of the circle?

7. How many times a minute must a mass of 3 g. revolve in a hori-

zontal plane at the end of a string 50 cm. long in order that the force on

the string may equal 1000 dynes?

8. An angler, fishing with rod and line, hooks a fish. Will the fish ap-

pear to pull harder if the rod is a long one or a short one? Why?
9. Taking a period of the moon's revolution around the earth as 28

days and its distance from the center of the earth as 240,000 mi., calculate

its acceleration.

II. SECOND GENERAL PROPERTY OF MATTER : GRAVITATION

79. Children at a very early age learn to look toward the

floor for things that leave their hands. This indicates what is

probably their first acquaintance with the great fact that the

earth attracts all bodies to itself. This single fact was prac-

tically all that men knew of gravitation until the sixteenth

century, when Galileo, by his researches along this line, in-

stituted the era of modern physics.

Before the time of Galileo (1564-1643), the ideas of men con-

cerning gravitation were simply chaotic. They had observed

that some bodies, such as stones, fall very rapidly ; that others,

such as feathers and thin paper, fall very slowly ; that heavy
bodies fall with a constantly increasing speed ; that lighter

bodies, such as small raindrops, or feathers, fall with a prac-

tically uniform speed ; that in some media certain bodies do

not fall at all, as, for instance, wood in water, or iron in mer-

cury. Galileo was the man who first harmonized these ap-

parently contradictory facts, and described them all in a very

simple way.

Up to this period nothing was known as to how far a body
would fall in a given time, or as to what speed it would acquire

in a given time, or as to what speed it would attain in falling

a given distance.

The difficulty in getting at these facts, i.e. the difficulty
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in discovering how a body falls, lay partly in the circumstance

that the ancients had no accurate method for measuring small

intervals of time, partly in the circumstance that the speed of

falling bodies, after a minute interval of time, is liable to be

very rapid, and partly in the fact that the predecessors of

Galileo had little or no idea of obtaining knowledge by

experiment.
For measuring small intervals of time, Galileo employed

an ingenious water clock, consisting of a large vessel of water

with a small opening in the bottom. Just before the begin-

ning of the observation, this opening was closed by the finger.

At the beginning of the observation the finger was released

and the water allowed to flow until the end of the observation,

when the opening was again closed. The water flowing out

was collected in a cup and weighed, the weight of the water

being proportional to the duration of the observation. To

prevent the attraction of the earth from giving the falling

body too high a speed, he allowed the body to roll down a

smooth inclined plane of small slope.

But first he satisfied himself that all kinds of matter would

fall the same distance in the same time. One ball might be

made of copper, another of iron ; the time of descent was the

same in each case. The resistance of the air was practically

eliminated when bodies of the same size and nearly the same

density were let fall. But, in many cases, large bodies and

small bodies occupy practically the same time in falling from the

same height. On the other hand, as every one knows, a bunch

of cotton does not fall as rapidly, in air, as does a bullet of lead.

But Galileo's conclusions were that, in all such cases, the

difference in speed was due to the resistance of the air. He

regretted that he had no means of producing a vacuum, so

that he might appeal to a direct experiment ; accordingly he

employed a series of fluids of different densities, such as mer-

cury, water, air, and found that as the density of the fluid

diminished the bodies descending in these fluids fell more

nearly at the same rate, i.e. the same distance in the same

time. He argued, therefore, that, in the limit (i.e. in a vacuum),

where the density is zero, all bodies, when starting from rest,

whatever their size, shape, or composition, fall through equal

distances in equal times.
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FIG. 42. Galileo's experiment.

How thoroughly Galileo was justified in this conclusion

was proved later, about the year 1650, when the air pump
was invented by Otto von Guericke. One of the first ex-

periments to be tried in the newly discovered vacuum was

to place a feather and a coin in the same tube, and see whether

they would fall at the same rate in a region devoid of air. The
result was such as to show that Galileo was perfectly correct in

thinking that the earth impresses the same velocity upon all

falling bodies, if allowance is made for the resistance of

the air.

80. Galileo was now ready to begin his experiment on the

inclined plane, to which we have referred above. This is very

conveniently repeated in the following form (see Fig. 42):

From one side of a room to

another stretch a brass or steel

wire of one or two millimeters

diameter. The wire should

have a slope of about one foot

in eight or nine, and should

be stretched very taut.

A small carriage to run on this wire track can be easily

made by soldering to a small brass bar the straps of two small

and very light wooden pulleys (see Fig. 43). The straps of the

pulleys must be sawed through on the other side, so that they

may slip over the wire. A
small piece of metal, say a brass

sphere, hooked on to the lower

part of the carriage, will keep
the whole upright on the wire

track.

A metronome, a clock, or a

telegraph sounder should beat

seconds in the room. Parallel

to the stretched wire, and about

six inches above it, should be

stretched a string, on which some small indices of cardboard

are strung, as shown in Fig. 42.

On the beat of the seconds pendulum the carriage is re-

leased at the upper end of the inclined track. The position

of the carriage at the end of one second is marked by sliding a

FIG. 43. Carriage for Galileo's ex-

periment.
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cardboard index along the string to the proper place. A
second observer, or a very soft buffer, to catch the carriage
at the lower end of the track, is convenient. Another trial

enables one to mark the position of the carriage at the end

of the second second, a third observation gives the position

of the carriage at the end of the third second, and so on.

Having thus marked off, on the inclined plane, the positions of

the falling body at the ends of successive seconds, one may
tabulate his results as they are given in the first two columns

of the following table. From these the acceleration along the

plane is easily computed by means of our general equation for

acceleration in terms of distance and time, Eq. 16. These

results are given in column 3 and are, it will be noticed, nearly

constant, thus indicating that the acceleration along the plane
does not vary, although the velocity does vary.

TIME
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# _ AX_ |2 7 {in
the experiment

_
t

-4. 1 recorded above.

The values computed from a in this

manner are given in the fourth column of

-4 the table -above.

In this manner Galileo inferred that this

particular acceleration, namely, the acceler-

ation produced, upon a freely falling body,

by the earth, is also a constant This is a

_ 9 capital discovery; a fact with whose con-

sequences we are so familiar that we are

perhaps a trifle blind as to its importance.
As every one knows, gravity accelerates

a body most rapidly along the vertical direc-

tion, and does not accelerate a body at all

in a horizontal direction. Indeed, all that

we mean by a " horizontal
"
direction is one

" 16 in which the acceleration of gravity has no

component.
This device is, therefore, competent not only to show that

the acceleration of gravity is a constant, but also to give us the

numerical value of this constant. Since, however, no allow-

FIG. 44.

FIG. 45.

ance has here been made for friction, or for the sag of the wire,

or for the fact that a part of the body is rolling instead of

sliding, the results are about 25 per cent too small.

How nearly constant the acceleration of gravity is at various

parts of the earth's surface will be shown by the following
table :
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PLACK
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Relation between Distance and Time

Relation between Distance and Speed

numerical value of the acceleration g is practically always 981

centimeter/second
2 units.

Relation between Speed and Time

Eq. 15

Eq. 16

Eq. 17

83. But when a body is not falling freely, one obtains its

acceleration by the general method of first

finding the resultant of all the forces

acting upon it and then dividing this re-

sultant by the mass of the body.
Thus if two masses m

l
and m

2
be

strung over a light frictionless pulley by
means of a thin string, as shown in Fig.

46, the mass which falls is not a "freely

falling body." The same may be said of

a body which rolls or slides down an

inclined plane. Referring to Fig. 46,

which represents the essential feature of

Atwood's machine (a classical instrument

devised for the purpose of diluting grav-

ity, so to speak), we proceed to write

the equations of motion for the two bodies m
l
and w

2
there

represented.

The data of the problem are, say, the masses of the bodies

and the acceleration of gravity g. It is required to find the

acceleration a of the system and the force T with which the

string is stretched.

Consider first the body ml ;
all the forces acting upon it are -

(i) the tension T of the string acting upward,

(ii) its weight m^g acting downward ;
and

(iii) the reaction of the mass m
l against its upward

acceleration, which amounts to m^, acting down-

ward.

FIG. 46.
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These three are the only forces acting upon m^ and they all

act along the same straight line ; hence its equation of motion

2 - mig
- m^a

= 0. Eq. 42

Considering now the mass iw
2 , the forces acting upon it are

(i) the tension T, acting upward the tension being
the same in every part of the string,

(ii) the weight m^g acting downward, and

(iii) the reaction of the mass m2 acting upward against

its downward acceleration a ; the acceleration for

each of the two bodies being the same in amount

but opposite in sense.

Since these are the only forces acting upon ra
2, and since

they all act in the same straight line, the equation of motion

for m is

These two equations, since they contain but two unknown

quantities, are competent to give us the values of each of them.

Eliminating between them first T and then a, we obtain

m* m
\ 17a = ---

g, Eq. 44m
z + m 1

m 2 m,m9and T -
g. Eq. 45m

1 + w2

A method identical with this gives one the solution of

practically any problem of bodies falling over frictionless in-

clined planes or pulleys, or combinations of these two. A little

later we shall learn how to take friction into account.

84. On the other hand a body may be falling freely and also

have an initial velocity in a horizontal direction, as, for instance,

a bullet fired from a gun which is held horizontal. If we take

the muzzle of the gun as the origin of coordinates, the equations
of motion for the bullet are

x = Vt, Eq. 5

and

Eq. 16

Between these two equations one may eliminate t and thus

obtain the path of the bullet, namely,
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an equation which the advanced student will recognize as tluit

of a parabola.

If the initial velocity is not horizontal then one must substi-

tute for V the horizontal component of the initial velocity ;

likewise the vertical component of the initial velocity will enter

into the equation for the vertical motion. But these are mat-

ters which, like the resistance of the air, must be left for later

study.

Problems on Gravitation

In considering the following questions, the resistance of the air is to be

neglected and the acceleration of gravity assumed to be 981, using the centi-

meter and second as units.

1. A stone let fall from a window 20 m. high will strike the ground with

what speed? Ans. 1980 cm. per second.

2. A boy throws a baseball to a height of 39 m. With what speed does

the ball leave his hands? With what speed will it return to his hands?

Ans. 27.66 m. per second.

3. A tuning fork makes 250 vibrations a second. How many vibrations

will it make while it falls from rest a distance of 10 cm.? How many
while falling 20 cm.?' In the latter case, compare the number of vibrations

performed in the first and the second decimeters of the fall.

Ans. 35.7 vibrations; 50.4 vibrations.

4. A gun is held horizontal at a distance of 300 cm. above the ground.
How long after the gun is fired until the bullet reaches the ground ? During
this interval, how far will it travel in a horizontal direction if it leaves

the muzzle of the gun with a speed of 500 m. a second ?

Ans. 0.78 sec.; 390 m.

5. A block is allowed to slide down a smooth inclined plane of 30 slope.

What speed would it acquire at the end of 4 sec. if its motion were not

opposed by friction ? Ans. 1962 cm. per second.

6. Determine the acceleration and the tension in each of the following

diagrams: Shearer 157.

FIG. 46 bis
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20

FIG. 46 E

7. A man who weighs 150 Ib. steps into an elevator just as it is starting

up with an acceleration of 200 C.G.S. units. By how much will his weight

appear to increase ?

8. Starting from rest, an automobile travels 400 ft. during the first ten

seconds. Suppose the engine to exert a constant pull, what must be the in-

clination of a hill in order that the machine will ascend it at constant speed ?

9. Two weights whose sum is 4 Ib. are strung over a massless and fric-

tionless pulley ;
the difference between the two weights is 2 oz. Find the

acceleration which gravity will produce in the system.

10. Find the time required for a body to slide down an inclined plane
whose length is 32 ft. and which makes an angle of 30 with the horizontal.

11. An ore bucket descending a mine shaft breaks the cable at an instant

when the bucket is moving with a speed 20 ft. per second and is at a height
of 240 ft. from the bottom of the mine. How long after the break will the

bucket strike the bottom?

THE PENDULUM

85. The first accurate information concerning the amount of

the earth's acceleration was obtained by Huygens (1629-1695),
the inventor of the pendulum clock.

Galileo had already rediscovered what had previously been

known and what is now familiar to most boys, that a pendulum
takes practically the same time to vibrate, whether the angle

through which it swings be large or small. In other words, he

showed that the period of a pendulum does not depend upon its

amplitude. Mersenne, in 1644, had determined the length of a

pendulum which would beat seconds. But Huygens went a step
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farther, and showed how this period does depend upon the accel-

eration of gravity, and how a pendulum may be used to measure

this acceleration with accuracy.

DETERMINATION OF THE PERIOD OF THE SIMPLE PENDULUM

86. DEFINITION. A heavy particle suspended from a fixed

point by means of a thread whose mass is negligible is called a

simple pendulum.

When such a pendulum is pulled aside through an angle 6

(Fig. 47), the particle is urged back toward its position of equi-

librium with an acceleration which may be easily computed as

follows :

The simple pendulum is represented by the line OB, the heavy

particle by B, its position of equilibrium by D.

Let the vertical line BO represent the acceleration of gravity.
This may be replaced by two components : one, AC acting along
the direction of the string, balanced by the pull of the string

toward the support 0, and hence not affecting the

particle at B, the other component BA acting prac-

tically at right angles to the string and urging
the particle back into its position of equilibrium.
And since the triangles ABO and OBD are similar,

this latter acceleration a bears to g the same ratio

that BA bears to BO, and hence

a BA . /i- = = = sin 0.

9 BO

The acceleration represented by BA we call

negative because it is toward the left.

But when the angle 9 is small, we may replace
sin 9 by 9 without appreciable error. Hence a =

g9, where 9 is, as usual in physics, measured in

radians.

Let I denote the constant length of the pendu-

lum, 19 will then be the linear displacement of

the particle from its position of rest. This dis-

1 placement we call positive because it is toward

FIG. 47. the right.
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Accordingly, we have

a = gB = acceleration,
and

x =W = displacement.

Eliminating 0, we have

where aoc x ;
for g and I are constants.

That is, the acceleration varies as the displacement, and is

opposite in direction ; since when the particle is displaced

to the right the acceleration is to the left, and vice versa.

This motion therefore satisfies the criterion for simple har-

monic motion. And hence we know that the particle B moves

to and fro with a S.H.M. in a path which, for small ampli-

tudes, is practically straight.

'Since the motion of the pendulum is simple harmonic, we

may apply to it at once the principles of S.H.M. and write

for the period T _
linear disPlacement Eq . 23
linear acceleration

g sin 6

-, approximately. Eq. 24

This simple expression enables one to compute the value of

g. For Tand I are easily measured; and then we have for the

computation of g the following laboratory equation :

where it is to be noted that T is the time of one "
complete

vibration," i.e. of a swing "to and fro," not ?'to or fro."
*

DIGRESSION ON CENTER OF GRAVITY

87. One would naturally next proceed to a discussion of the

actual physical pendulum, such as is employed in clocks and in

the laboratory. But before this can be intelligently taken up,
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we must add to our vocabulary another term, namely, center of

gravity.

The mass of any particle multiplied by the acceleration of

gravity measures the force with which this particle is drawn

towards the earth, a force which is ordinarily called the

weight of the body.
For any body of moderate size it is found by experiment

that the direction in which the weight of any particle acts is

the same for all parts of the body ;
in other words the vector

g does not vary from one part of the body to another. The
total weight of a body is, of course, the resultant of the indi-

vidual weights of its individual particles.

We have found ( 14) a general method for the addition

of all vectors. This method when applied to any number of

forces gives us the amount and the direction of the result-

ant ; but there is one very important thing which this rule

does not tell us, namely, the point at which the resultant

is applied.

Let us, for instance, string two heavy masses M^ and M^
(Fig. 48) upon a light

M 2 rod. Let W
l

be the
^ =^

weight of one mass and

W8 W2
the weight of the

other. We then know,

by the rule for addition

of vectors, that the total weight of the system R is Wl + Wv
But through what point of the system this total weight R acts

we have yet to discover.

From whatever point we may hang the system, the weight
of it, as read off on the spring balance, will be the same. But

there is only one point on the bar at which we can place the

balance and have the system remain horizontal. That is, there

is only one point of support about which the weights will offer

no moment of force tending to rotate the bar. When once

we have placed the hook of the balance at this point of zero

moment, we have discovered the point through which the

resultant R acts. The weight is not zero, but the arm of the
c5 *

resultant weight is then zero
; or, what is more strictly true,

the sum of all the moments of force tending to rotate the sys-

tem about this point of support is zero. This point is known
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as the "center of gravity" of the system. The center of gravity
is accordingly defined as the point through which the total weight
of the body considered as a single vertical force acts. That
the center of gravity is identical with the center of mass, when
we assume the weights of the particles in the body as parallel

forces, may be proved as follows: Take Eq. 28 B 63 and

multiply each side by g. One then has

and two similar equations for ^ and 2. Now Mg is the total

weight of the body; and mgx is the moment of force of the

particle ra. These equations, therefore, mean that the sum of

all the moments of force tending to rotate the body are equiva-
lent to the torque of the total weight of the body acting at the

center of mass (ic, y, z). But such a point is, by definition,

also the center of gravity.

CENTER OF GRAVITY BY EXPERIMENT

88. From this definition it is evident that if a body be sup-

ported through this point it will be in equilibrium ; i.e. it will

not rotate, because there is no resultant moment of force acting

upon it, and it will not be translated because the point at which

it is supported is fixed. This leads to an easy method for

determining, by experiment, the position of the center of mass

in a body.
If a body is straight and slender, as in the case of a wire or

a walking stick, we may locate the center of mass at once by

balancing the body over a knife-edge, thus discovering the

point about which the moment of force is zero.

But if the body be a lamina, i.e. a thin flat plate, we may
infer from symmetry that the center of mass lies somewhere in

the plane of the body. And by balancing the body about a

knife-edge we may determine in this plane a straight line AB
(Fig. 49), which contains the center of mass. If, now, we
choose another position for the knife-edge, say A'B', and

balance the body on it again, we shall locate the center of

mass on another straight line.

Since now we know that the center of mass lies on each

of these two straight lines, we know that it must lie at
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their intersection, C. We shall hereafter frequently denote

center of mass by the letters c.m.

In the case of an extended

body, i.e. one all three of

whose dimensions are con-

siderable, we should need to

balance the body about three

different lines ; for in this

case, each balance would de-
A'N termine one vertical plane

FIG. 49.-Determmation of center of mass ^ which ^ ^ u ftnd
by experiment.

three such planes would be

required to locate, by their intersection, the c.m. of the

extended body.
In many cases of this kind the c.m. can be located by symme-

try, as in the case of a sphere or a parallelopipedon or a cylinder ;

but only where the density of the body is uniform or symmetri-
cal. In the case of " loaded

"
dice, for instance, the center of

mass would not coincide with the center of figure.

It is a general principle of dynamics, first formulated by
Galileo, that the center of mass always seeks the lowest possible

position in space. This we now recognize as a special case of

a still more general principle, that the potential energy of a

body tends to become a minimum.

But however this principle is stated, it suggests still another

slightly different method for getting the c.m. of a body
extended in all three dimensions ; namely, instead of bal-

ancing on a knife-edge, suspend the body from some one

point by a thread; the c.m. will seek its lowest .position,

and will, therefore, lie in the straight line determined by the

thread.

If now the body be suspended from another point, a second

line will be determined in which also the c.m. lies. The inter-

section of these two lines must occur, else the body would have

two centers of mass. This intersection must therefore be the

c.m. In this way two observations, instead of three, suffice to

locate the c.m. of a three-dimensional body.
From this digression, we return now to the
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DETERMINATION OF THE PERIOD OF THE PHYSICAL
PENDULUM

89. Imagine any rigid body which may be perfectly irregular

in shape, or more or less regular as shown in Fig. 50. Let it

be suspended at the point S so that it swings

freely in a vertical plane. Such a body is called

a physical or compound pendulum. Denote the

c.m. by Cr and let SG-' indicate the position

in which the line SGr comes to rest. Denote

the distance of Cr from S by a and the deflection

of the pendulum at any instant by 0. If the

mass of this rotating body is M, the only force

acting upon it is its weight Mg acting through
the c.m., Gr. This force exerts a torque Mg GrG-',

equal to Mg a&, tending to restore the pendulum
to its position of rest. And since this torque is

proportional to the displacement and opposite
in sense, the motion will be simple harmonic.

FIG. 50.

We may, therefore,

with Eq. 24,

at once write the period, by analogy

m_ 9 / Angular displacement _o /

*
Angular acceleration * --A

But, Eq. 37, 70,

Hfnr>p T -n-

A _ Moment of force _ MgaO
Moment of inertia /

Period of physical
Pendulum. Eq. 47

If a simple pendulum of length I is to have the same period, it

will be necessary that T
l = ^F' E(

l-
48

Ma

This value of I is known as the equivalent length of the physical

pendulum.

REVERSIBLE PENDULUM

90. The advanced student will find in the reversible pendu-
lum a beautiful device by which the length of the equivalent

simple pendulum can be directly measured in the laboratory.

Here one can only say that if the pendulum vibrates with
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equal periods about two points /S and (Fig. 50), which in-

clude the center of gravity G- in the straight line joining

them, then the distance 80 is the length of equivalent simple

pendulum.
Problems

1. Shortly after the invention of the pendulum clock, one was sent

from Paris, where it kept correct time, to Cayenne, in South America. In

the latter place the clock lost 2| minutes daily. The length of the pendu-
lum was adjusted so that the clock kept correct time in Cayenne; and in

this condition the instrument was sent back to Paris, where it now gained
2 minutes daily. Explain this phenomenon.

2. It is well known that metals expand on heating. What will be the

effects of the cold weather in winter and the hot weather of summer upon
the rate of a clock having a brass pendulum ?

3. A clock having a pendulum 60 cm. long keeps correct time. The

pendulum is lengthened to 60.5 cm. How many seconds will the clock

lose each day? Am. 362 sec.

4. The period of a given pendulum at Denver is exactly 1 sec. The

period of the same pendulum at Chicago is 0.9995 sec. The acceleration

of gravity at Denver is 979 C.G.S. units. What is its value at Chicago?
Ans. 979.97 C.G.S. units.

5. There are 454 g. in 1 Ib. What is the force, in dynes, with which

the earth attracts a mass of 1 Ib., at a place where g = 980 C.G.S. units?

Ans. 444920 dynes.

6. Find the weight of 7 kg. in dynes ; g = 960.

Ans. 6,720,000 dynes.

7. A spring balance is made and graduated at a town where g = 983.

At another town, where g = 979, the spring balance is used in a meat
market. Who gains by this error, the man who buys the meat or the man
who sells? Ans. The buyer.

8. From the basket of a balloon hangs a spring balance. This balance

carries a mass of 100 g. The balloon ascends with acceleration of 220

C.G.S. units. What will be the apparent weight of the 100 g. during the

ascent? Ans. 122.4 g.

9. A ball thrown vertically upward is caught by the thrower 5 sec.

later. Neglect the resistance of the air, and compute the height to which
the ball was thrown. Ans. 30.66 m.

10.. The radius of the earth is 636,000,000 cm. At what linear speed
must a body move along the surface of the earth to lose all apparent

weight? Ans. Eq. 18, = 981, v - 7899 m. per second.
636 x 106
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11. In which of the following cases does the c.m. lie inside, and which

outside the body : a teacup, a straight copper wire, the same wire bent into

the arc of a circle, a hoop, a silver half-dollar, a baseball, a football?

12. Locate, by geometry, the c.m. of a triangular sheet of brass. If a

corner of this triangle be clipped off along a line parallel to the opposite

side, the c.m. will be displaced along what line?

13. A meter scale (the mass of which is negligible) is divided into deci-

meters, and at the end of the first and eighth decimeters are attached

masses of 1 and 9 k. respectively. Where is the c.m. of the system ?

Ans. At the end of 73rd cm. on the scale.

91. Hitherto we have been considering a special case of

gravitation, namely, the acceleration which the earth produces

upon small bodies near its surface.

Newton's discovery of the law which governs the general

case of gravitation must always be reckoned one of the most

brilliant achievements of the human mind. The circum-

stances which led up to this discovery are something like the

following:

Copernicus (1473-1543) had suggested, on grounds of sim-

plicity and symmetry, that the sun and not the earth was the

center of what we now call the solar system ; but neither he

nor any of his successors up to the time of Newton had shown

what it was that kept the planets in motion about the sun.

Kepler (1571-1620) in the meanwhile had succeeded in de-

scribing, with a high degree of accuracy, the motion of the

planets about the sun. His description is as follows :

(i) Each planet moves in a nearly circular ellipse, with the

sun in one focus,

(ii) at such a speed that the line from the center of the sun

to the center of the planet sweeps out equal areas in equal

times,

(iii) while the square of the year, measured in any unit of

time, bears to the cube of the planet's distance from the sun a

ratio which is constant for each member of the solar system.
Next came Newton (1642-1727), who, building upon the

dynamics of Galileo, argued from Kepler's second statement

that no force from behind is necessary to drive the planet
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along its orbit, but only a deflecting force acting toward the

sun, a force which is continually balancing the centrifugal
force of the planet. His next step was to infer from Kepler's

first statement that the value of this deflecting force varies

inversely as the square of the distance which separates the

planet from the sun. While from Kepler's third statement

he inferred that the force of attraction between the planet
and the sun is proportional to the mass of the planet, the

constant of proportionality being the same for each of the

planets. Following this, he concluded that, unless there be

something more peculiar than mere size in the -mass of the

sun, this attraction must be proportional also to the mass

of the sun.

Before summarizing these results of Newton, let us recall

the fact that the dimensions of each of these planets are so

small compared with their distances from the sun that they

may be treated as particles. Newton showed by mathematical

computation that if we suppose the sun to attract each of the

planets with a force which varies directly as the mass of the

planet, and inversely as the square of the distance between

the planet and the sun, this supposition will explain, in the

most satisfactory manner, all the motions of the planets.

Going one step farther, he generalizes and supposes that any
two particles, or masses which may be considered as particles,

m and m', attract one another with a force depending only on

the product of the masses mm! , and the square of their distance

r. Expressing this in the language of algebra,

F= a- dynes, Eq. 49
ri

where (r is a numerical constant found to be 6.48 x 10~8
very

approximately.
The clever methods by which Cavendish, Boys, Poynting,

and others have determined the value of this " constant of gravi-

tation
"

Gr is a matter which must be postponed for advanced

study.

Newton also proved that this supposition would explain the

circular path of the moon. And by an elegant demonstration,

he showed that the reason that ordinary bodies at the surface of

the earth are heavy is that the earth attracts them just as it
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does the moon. The whole earth acts as if its mass were concen 1

trated at its centre, so that bodies at the surface of the earth act

as if attracted by a particle whose mass is that of the earth, and

whose distance is 4000 miles. What we call the weight of a

body thus becomes a special case of the forces described in

Eq. 49, which is known as Newton's Law of Universal Gravi-

tation. Let the student bear in mind, however, that this law

simply describes the behavior of a mass m in the presence of

another mass m', and, as Newton himself clearly pointed out,

does not explain gravitation even in the slightest degree. Why
bodies attract one another is as much a mystery as ever.* How
bodies attract one another Newton discovered and described in

the most perfect manner.

THE BALANCE

92. The balance is known to most people as an instrument

for comparing the weights of two different bodies, i.e. for com-

paring two different forces. The grocer when he sells us a

pound of coffee deals out an amount such as the earth will

attract with a force which English-speaking people have agreed
to call "the weight of one pound."

* In this connection the granular pressure theory advanced by Osborne Rey-

nolds, Professor of Engineering, Owens College, Manchester, should be men-

tioned. It purports to explain gravitation as being due to the push or pressure
of a universal granular medium which fills all space, is under enormous pressure,

and has a very high density. There is no attractive force inherent in masses of

matter themselves. In spaces where no matter exists the grains of the medium,
which are almost infinitely small, are arranged in what Reynolds calls "normal

piling," such as that of spherical cannon balls. Where matter exists the grains

are in "abnormal piling," there being a smaller number of grains per unit volume

in the latter than in the former. Matter indicates a certain deficiency of grains

in the medium, a "singular surface of misfit," a crack or gap in the otherwise

uniform medium, and dilatations and strains, due to the pressure, are set up in

the granular medium between such "
negative inequalities

" or " singular surfaces

of misfit." This causes curvature in the normal arrangement of the medium be-

tween the "
negative inequalities

" or atoms and the normally piled grains of the

medium, and the pressure of the medium under such conditions pushes the "
neg-

ative inequalities" or atoms together according to the law of universal gravitation.

As Reynolds states, this theory leads to an inversion of ideas hitherto con-

ceived or preconceived as to matter and mass, inasmuch as it maintains that
' matter is absence of mass. The theory also purports to explain cohesion, and to

give a key to the explanation of practically all other physical phenomena upon

purely dynamical principles.



102 GENERAL PHYSICS

The weight of one pound is simply the pull of the earth* upon

a certain piece of platinum preserved in the Standards Office at

London.

The essential features of the ordinary balance are :
-

1. A rigid beam carrying three knife-edges, one near each

end, and a third, as nearly as possible, midway between these two.

2. Two scale pans, supported, one on each knife-edge, at

the end.

3. The beam when carrying the knife-edges and the pans
must be so adjusted as to come to rest in a definite position,

usually horizontal. This is accomplished by so placing the

knife-edges and so distributing the mass in the beam that the

c.m. of the whole system lies just below the central knife-edge.

Why would not neutral equilibrium answer quite as well as

stable ?

4. The whole system must be sensitive to a small moment of

force. This is accomplished by making the distance from the

central knife-edge to the c.m. very small. How does this secure

the desired result ?

5. A pointer, or index of some kind, generally fastened to the

beam, for the purpose of indicating the position of equilibrium.

PRINCIPLE OF THE BALANCE

93. In physics the balance is employed to compare two masses

by comparing their weights. This is done as follows : The posi-

tion of equilibrium is observed before any mass has been added

to either pan, that is, when the pans are empty. The body
whose mass is required, having been placed in one pan, standard

masses are then placed in the other pan until the moments of

force which their weights exert on the beam are just equal.

Since these two masses tend to rotate the beam in opposite
senses with equal moments, the total moment will be zero. This

equality and opposition of moments is indicated by the pointer

coming back to the same position of equilibrium which it had

when the pans were empty. Thus the immediate purpose of

*
Strictly speaking, "the weight of a pound" is the pull of the earth on the

platinum mass diminished by the centrifugal force due to the earth's rotation.

The weight of a body is, therefore, about one third of one per cent less than the

pull of the earth upon it.
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the balance is simply to tell us when we have equal moments

of force.

Now if, in addition, the arms of the balance (that is, the

respective distances

between central and

end knife-edges) are

equal, we know that

the weights of the

two bodies in their

respective pans are

equal.

Let l
l
and 1

2 (Fig.

51) indicate the FIG. 51.

length of the arms,

W
l
and W2

the weights of the two masses M
l
and M

z
. Then,

by proper adjustment of the masses, we make

Wl - - Wlrr rl ~
''22'

so that the total moment L is zero.

L = W& + TT2Z2 = 0.

If, now, Zj
= lv

then W
1
= Wv

or

But Newton and Galileo have shown that, at any one point

on the earth's surface, the acceleration of gravity is the same for

all bodies. Expressed in a more useful form, i.e. in an alge-

braic form, this would read,

ffi =9v
and hence M'

l
= Mv

So that really the equality of masses is an inference from the

equality of moments. And this inference would not be allowable

if the earth acted as a magnet, attracting different bodies with a

force depending upon the kind of material as well as the mass of

material in them.

The earth, indeed, is a great magnet, directing the compass needle, as we all

know
; but, as we shall see later, it does not attract the needle as a whole. It

simply rotates the needle into one position, but does not translate it
;
since the

lines of magnetic force at any one point on the earth's surface are practically

parallel.
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Aside from the Tower of Pisa experiments by Galileo, and

from the consistency of the results obtained by the balance,

Newton furnished conclusive evidence by the use of a hollow

pendulum that gravity acts equally upon all substances with-

out regard to their chemical composition. For a description

of this experiment see the Principia, Book III, Prop. VI.

Problems

1. At the surface of the sun the acceleration of a falling body is

26 times as great as at the surface of the earth. A man who weighs 150

Ib. at the earth would weigh how much at the sun ?

2. The rotation period of Jupiter is 10 hr.
;

its radius is 11 times that

of the earth. Compute what fraction of its weight a body would lose in

being carried from the north pole to the equator.

3. The earth is nearly 3 times as far away from the sun as the planet

Venus. If the earth were transferred to the orbit of Venus and made to

move in it, what length of year would be necessary in order that the cen-

trifugal force should just balance the sun's attraction. Assume the orbit

circular. See Eq. 40, 75.

4. Prove that the " dimensions "
of the "

gravitational constant
"

are

5. If a hole were drilled through the earth along any diameter, the

attraction of the earth on any body placed in this tube would vary directly

as the distance of the body from the center of the earth. Neglecting fric-

tion, what kind of motion would be executed by a body dropped into this

tube at the surface of the earth ?

6. In the preceding problem prove that a body would fall through the

earth, so to speak, in approximately 42 minutes.

7. A fly is inclosed in a corked bottle. The bottle and fly are weighed
with great accuracy (i) when the fly is standing still on the bottom of the

bottle and (ii) while the fly is flying about inside the bottle but without

touching the glass. How will these two weights compare ?

8. Sound travels at the constant rate of 1100 ft. a second. At what

height above the surface of the earth must a body be let fall so as to reach

the earth at the same instant as the sound of a pistol shot fired at the same

place and time from which the falling body starts ?

III. MATTER AS A VEHICLE OF ENERGY

94. Work is something of which every one has, or ought to

have, a fairly definite idea. The farmer knows that it requires

twice as much work to plough a two-acre field as to plough a

one-acre field. For while the horses exert no more force on
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the plough in the first case than in the second, the total length

of furrow is twice as great in the first case as in the second. In

like manner, we all know that it requires twice as much work

to carry 2000 bricks to the top of a house as to carry 1000

bricks to the same height. For while the distance is the same

in each case, the weight of 2000 bricks is twice that of 1000

bricks.

In general, the quantity of work done depends upon two

factors, and upon two factors only : (1) the force exerted, and

(2) the distance through which this force is exerted.

DEFINITION OF WORK
95. Consequently, the term work is employed in physics to

denote one definite quantity, viz. the product of a force multi-

plied by the distance through which it is exerted, both distance

and force being measured in the same direction.

A mass B (Fig. 52) is attracted by the earth with a force

of 1000 dynes. What work will be required to roll this mass

up an inclined plane

whose length OA is

24 centimeters? If

work were defined
-^"^ w

simply as " the prod-
uct of force by dis-

tance
"
the answer to

the problem would be
'

A
1000 x 24 = 24,000

units of work. But using the proper definition, we observe

that since here the force, i.e. the weight of the body B, is

vertical, we must measure the distance also in a vertical

direction.

Evidently, therefore, we must know the height AX before we
can solve the problem at all. In other words, we must know
how steep the inclined plane is before we can estimate the work

required to carry the body B through the distance OA.

Suppose the height AX to be 12 centimeters. The work in

this particular case will then amount to 1000 x 12 units of

work.

So, in general, to obtain the work done we have merely to

multiply the force exerted by the distance resolved along the
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direction of the force ; or, what amounts to the same thing,

multiply the distance by the force resolved along the direction

of the displacement.
Let us denote the work by W, the force by F, and the dis-

placement by I. Then the denning equation for work may be

written as follows:

W=FlcosO = Fz, Eq. 50

where 6 is the angle between the directions of the two vectors,

F and I', and x is the component of I in the direction of F.

This algebraic definition is of course identical with the one

given above in words.

96. Rotational Analogue. The student will find it an inter-

esting exercise to prove that, in like manner, the work done by
a torque L acting about any given axis is measured by the

product of the torque, and the angular displacement 6 about

this same axis. Thus
W= L0, Eq. 51

an expression which is convenient in computing the amount of

work done in winding a watch, turning a dynamo, etc.

UNITS OF WORK: THE ERG AND JOULE

97. Since now the unit of force is the dyne, and the unit of

distance the centimeter, the only consistent unit of work is that

amount of work which is done when a force of one dyne is exerted

through a distance of one centimeter.

This unit is of such frequent occurrence in physics that it has

been given a special name. It is called an Erg, which is simply
the Greek form of our English word "work."

A larger, and for many purposes, therefore, more convenient,

unit is the Joule, which is defined as 107
ergs. This unit will

be found especially convenient when we come to consider the

work done by an electric current.

The engineer's unit of work is, of course, the work done in

exerting a force of 1 pound through a distance of 1 foot. It is

called the foot-pound.

Problems

1. How many ergs of work will be done in exerting a force of 6 dynes

through a distance of 18 cm.? Ans. 108 ergs.
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2. What work will be required to hoist 10 kg. of water against an accel-

eration of 981 units from a well whose depth is 12 in.?

Ans. 11,772 million ergs.

3. Suppose forces to be measured in "
pounds weight

" and distances in

feet; how many foot-pounds of work are required to carry 100 Ib. of brick

to the top of a building 42 ft. high? Ans. 4200 foot-pounds.

4. If the weight of one kilogram be taken as the unit of force and the

meter as the unit of length, what will be the unit of work ?

Ans. One kilogrammeter.

5. If 2640 foot-pounds of work are required to propel a bicycle for a dis-

tance of one mile, what is the average force required to propel the wheel?

6. A magnet attracts a piece of iron with a force of 8000 dynes. How
. much work will be performed by the magnet in moving the iron through a

distance of 0.15 mm.?

7. A force of one million dynes is required to operate a " double action
"

bicycle pump. If the length of stroke is 12 cm., how much work will be

required to make 50 complete strokes of the pump?

ENERGY

98. We shall see later that a body may be able to do work
in consequence of

1. Its position.

2. Its speed (angular or linear).

3. Its temperature.
4. Its electrical condition.

5. Its chemical composition.
Etc.

The power of doing work is called energy, and the system is

said to possess energy when it can do work. Since the work
which a system can do is the measure of its energy, the same

unit is employed for energy as for work, viz., the erg.

If we were to attempt to study all the forms of energy which

a system may possess, we should find ourselves at once in the

midst of the entire subject of physics. Accordingly, we shall

here consider only the energy which a mechanical system may
have by virtue of

1. The relative position of its parts ; and

2. The relative speed of its parts.

Every one is familiar with many instances of these two forms

of energy.
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The boy who starts at the top of a hill on a bicycle knmvs

that his energy of position is such that, without pedaling, it

will carry him to the bottom of the hill and some distance

beyond. If, coming in the opposite direction, he approaches
the foot of the hill with sufficient speed, the energy due to his

motion may be ample to carry him to the top without any

pedaling. In this case the system consists of the bicyclist

and the earth.

An uncoiled spring will not run a watch
;

but if, using a

key, we change the relative position of its parts, by coiling it

up, it will run the watch for the next twenty-four hours.

When one drives a nail, he gives the hammer a high speed.

The energy due to this speed does the work of forcing the nail

into the wood.

In the language of physics, the energy which a body possesses

in virtue of its position is called Potential Energy; while the

energy which a body possesses in virtue of its speed is called

Kinetic Energy.
The energy of the Niagara River just at the top of the falls

is nearly all potential, but just before reaching the bottom of

the falls it is nearly all kinetic. The energy of the iron block

the ram used in a pile driver is all potential at the top of

the stroke, but all kinetic just before striking the pile at the

bottom of the stroke.

The question now arises as to how much work a body can

do in virtue of its position, and how much work a body can do

in virtue of its speed. In other words, what are the proper
measures for potential and kinetic energy respectively ? Before

answering these two questions we must digress for a moment
to consider the

DISSIPATION OF ENERGY

99. It is well known to every one that a ball, or a bicycle,

which is allowed to run

down one hill from a cer-

tain height h (Fig. 53)
will not, with the speed
thus acquired, ascend an

FJG 53

A
adjoining hill to the same

height. The ball, or the

wheel, always stops short of its original elevation. The
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explanation of this is something which does not now concern

us. The important fact is that the kinetic energy of the wheel

at the bottom of the hill is not quite sufficient to do the work

of carrying the wheel to its original height.

The same is observed to be true of a pendulum as it swings
from its position of rest at A to its position of rest at O

(Fig. 54). The point G^is always a little lower than the point

A, i.e. the kinetic energy of the pen-
dulum at B is not quite sufficient to

do the work of carrying the bob to

its original height.

In every case of this kind it has

been observed that we never get out

of a machine all the work which we

put into it. Some of the mechanical

energy of a system is always wasted

when we attempt to use that energy

by transforming it, or transferring

it.

As we shall learn later, this unavoidable waste of energy is

brought about by friction ; a portion of the mechanical energy
is transformed into heat energy, where it is of less use to us

than before. This tendency of energy to assume a more and

more useless form is known as the principle of the Dissipation

of Energy.

CONSERVATION OF ENERGY

100. But the most important discovery along this line,

perhaps the most important discovery of the nineteenth century,

is the following: that when allowance has been made for unavoid-

able wastes, the sum of the kinetic and potential energies of a

body or system of bodies never changes, unless through some

external influence.

" Waste of energy
"

is a very common expression ; but, as we
shall learn by and by, this never means destruction of energy.
There is no evidence that the slightest bit of energy has ever

been annihilated. Energy is, in this respect, like matter. No
human being has ever succeeded in creating or destroying any
amount of either one. When, therefore, we speak of allowing
for "unavoidable wastes," we refer to that energy which has
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been unavoidably changed into heat or some other form of

energy which, for our purpose, is useless.

The law of the Conservation of Energy expresses the fact that

the sum total of the energy in any isolated system remains the

same. This energy can change from one form to another, it

tends constantly to become less and less available ; but, so far

as is known, it has never changed in quantity.

That this grand principle was more or less clearly suspected
and grasped by Galileo, Stevinus, Leibnitz, Huygens, and

N-ewton there can be little doubt
; but it is also very certain

that the clear and definite establishment of the principle is due

to Helmholtz, Joule, and Kelvin, the last named of whom is

still (1907) living. If a single date be asked, perhaps the year

1847, in which Helmholtz's Memoir on the Conservation of

Energy appeared, will mark more nearly than any other the

rise of the doctrine of the conservation of energy. And yet
the French Academy of Sciences many years before (1775) had

announced that it would not receive any further communica-

tions upon the subject of perpetual motion; which practically

affirms their belief that energy cannot, by any human power,
be created.

The evidence for and the full import of this principle the

student can hardly expect to comprehend until he is more

or less familiar with the subjects of heat, electricity, and

chemistry.

MEASURE OF KINETIC ENERGY OF TRANSLATION

101. By the application of this principle to many special

cases, the proper measure of the kinetic energy of a body in

translation has been found to be as follows :

If a force F acts upon a mass m initially at rest, for a time t,

it will produce in it a speed of translation s, such that ( 69)

F= ma = m s/t.

If the force F remains constant, then the acceleration will

remain constant, and the mass m will travel, during this time,

a distance #, such that ( 36)
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But the work done by a constant force F exerted through a

distance x is Fx, and therefore

Fx = -i ms 2
. Eq. 52

Now this work has all gone toward putting the mass m in

motion, since, by supposition, there has been no waste from

friction or other causes. We see, therefore, that the right-hand
member of this equation, half the product of the mass by the

square of the speed, is the proper measure of the work put into

the body. Relying now upon the conservation of energy, it

is seen that this product also measures the amount of work

which we shall be able to get out of the body, i.e. measures its

kinetic energy of translation. Let us denote this energy by
K.E., then

K.E. =lws 2
. Eq. 53

ANALOGUE. KINETIC ENERGY OF ROTATION

102. Consider any particle m of a rigid body which is

rotating about an axis (Fig. 55) with a constant angular

speed eo. The linear speed of the

particle m will be ra, where r is the

distance of the particle from the axis

of rotation, Eq.8. Hence according to

Eq. 53 the kinetic energy of the par-

ticle m will be ^mr^co
2

. Obviously
we may consider the entire rigid body
as made up of such particles as m\
let us call them mv mv my etc., and

suppose them situated at distances rv r2, r
3 , etc. Then the

total kinetic energy of the body will be the sum

K.E. of body = 1
m^r-fa* + 1 ra

2
r
2
2
&>

2
2 + | w8

r
8
2

8
a + etc.

But since, by hypothesis, the body is rigid, every part of it

is rotating with the same angular velocity, a fact which may
be expressed by writing

tOj
= ft>

2
== &)

g
= etc. = to

Hence K.E. of body= l
(m^r* + w2

r
2
2 + w3

r
3
2>2 =
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Let us now denote the quantity in the parenthesis, which for

any given body is a constant, by I. We may then write

K.E. of body = | Jo>2, Eq. 54

which is strictly analogous to Eq. 53.

The quantity /, whose defining equation becomes

I = m^r-f + m2r^ + m3
r
s
2 + etc. = 2(?wr

2
), Eq. 55

is, of course, the rotational inertia already described in 65,

which the student should now reread. The principal object of

a heavy fly wheel on an engine is to supply energy of this type,

which shall keep the machinery going while the piston rod is

in the neighborhood of the "dead point," where it exerts a

relatively small torque.

MEASURE OF POTENTIAL ENERGY

103. We turn next to a system whose parts have a definite

relative position, and ask how much work can be gotten out of

it. For instance a coiled watch spring, a stretched rubber

band, a pond of water at a definite height above a waterwheel,

a stone raised to a certain height above the ground. How
shall we measure the potential energy of each of these systems ?

Experiment has answered this question in a clear and simple
manner. The amount of work done in bringing the system into

its present position is, barring frictional losses, exactly equal to

the potential energy now in the system.
The weight of the water in the pond F multiplied by the

average height x through which it was pumped, is at once the

work required, Fx, to give the water its present potential energy
and is also the measure of its present potential energy; or,

denoting potential energy by P.E., we have

P.E. = Fx.

It must not be forgotten that here allowance is to be made for

the energy wasted in friction in the pump.
The student will observe that in like manner the energy of

the coiled watch spring is simply the average moment of force

which one exerts upon the key L multiplied by the angle

through which he turns the key, say 6. Or if the torque L
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be spent entirely in producing angular velocity, and if the

body, say a fly wheel, start from rest,

the analogue of Eq. 52.

As a single, simple, concrete illustration of the manner in

which the law of the conservation of energy- is used quanti-

tatively, imagine a ball let fall from a second-story window
whose height above the ground is h. The total energy of the

ball just before it is allowed to drop, taken with reference to

the ground, is mgh, where m is the mass of the ball and g the

acceleration of gravity. Therefore, according to the law, mgh
is the energy at any intermediate height, say x, where the

velocity of the falling ball is v. Hence

^ mv
2 + mgx = mgh = constant

an equation which may at once be used for computing the

velocity of the ball at any given height x, the value of h being

given as one of the data of the problem.

DEFINITION AND CONDITIONS OF EQUILIBRIUM

104. At this point it becomes necessary to digress slightly

from the main thread of our discussion to consider a certain

class of critical conditions which are most clearly described in

terms of potential energy. If the speed of a body is zero, the

body is said to be at rest ;
but if the acceleration is zero, the body

is said to be in static equilibrium. Thus a pendulum bob at the

end of its SAviug is in rest, but it is not in equilibrium ; while

the same bob at the instant of passing through its lowest point
is in motion, but it is also in static equilibrium. Rest is not

the criterion of equilibrium. The condition of zero accelera-

tion is the absence of force and torque, which may be expressed

by writing
= 0.

If we confine our attention to systems in which friction is

not the determining factor, then it is a matter of daily experi-

ence that bodies may be in equilibrium in a variety of ways.
A lead pencil may, with a little care, be made to stand upon
an end which has not been sharpened, and it is said to be in

equilibrium; but a breath of wind or the slightest blow is
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sufficient to " start
"

it, and when once started, it falls over,
" of itself," we say. If the pencil be a round one, it will rest

on its side in any position we may give it, so long as it lies on

a horizontal plane. Here, again, it is said to be in equilibrium;

but if it be displaced slightly, it will still be in equilibrium in

its new position; for there is no force or moment of force

acting upon it in any position so long as it lies on its side.

Let us again consider such a body as a brick lying on any
one of its sides. We all know that if the brick be slightly

lifted at one end, i.e. if the brick be slightly rotated about one

edge, it will not go on and " of itself
"
rotate still farther ; but,

if released, will return to its original position of equilibrium.

These three cases typify all the cases of equilibrium met with

in nature. Their essential features are the following:
1. Unstable Equilibrium. When a body is supported in

such a way that its center of mass is lowered by a slight dis-

placement, its equilibrium is said to be unstable ; for the

slightest displacement will introduce a moment of force tend-

ing to rotate the body still farther. For illustration, imagine
a cone inverted and balanced on its apex. The c.m. when the

cone is ever so little inclined moves down a spherical surface,

and hence tends to move farther, of itself.

2. Neutral Equilibrium. If a body is supported in such a

way that its c.m. remains at the same height above the point
or line of support, its stability is said to be neutral ;

for when
disturbed no moment of force will be introduced to displace it

farther or to restore it to its original position. Such a case

is represented by a right cone lying on its side in a level plane.
The c.m. lies on a level, and has, therefore, no tendency to

move in any direction.

3. Stable Equilibrium. When a body is supported in such

a way that the slightest displacement will raise its c.m., the

body is said to be in stable equilibrium ;
for the slightest dis-

placement will introduce a moment of force tending to restore

the body to its original position. Such a case is found in a

right cone standing on its base. Any small motion of such a

cone starts the c.m. uphill, so to speak ; and when left to

itself, the c.m. tends to roll back, downhill.

It should be carefully observed that in each of the three dif-

ferent cases of equilibrium the c.m. of the displaced body
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moves in such a way that the potential energy becomes less,

If, therefore, in the given position the potential energy of the

body is a maximum, the equilibrium is unstable ; if the poten-

tial energy is a minimum, the equilibrium is stable : but, if the

potential energy does not vary when the body is displaced, the

equilibrium is neutral.

SUMMARY OP THE PRINCIPAL DISCOVERIES CONCERNING
ENERGY

105. 1. Energy is known only in connection with matter.

We know of no matter devoid of energy, and know of no form

of energy which is not associated with matter.

2. If no energy be given to or taken away from a system ,

the sum of its kinetic and potential energies remains constant.

3. When a system is left at rest, its potential energy tends to

assume the form of kinetic energy. This great law of nature

may be described in another way by saying that there is a uni-

versal tendency for the potential energy of a system at rest to

decrease.

POWER

106. One important feature of any mechanical system is the

rate at which it can do work. Two steam engines may be

similar in design and yet so different in dimensions that one

can do twice as much work as the other in any given time, both

using steam from the same boiler.

In everyday life, power is a word which is employed with

considerable variety of meaning ;
but in physics it is always

used to denote the time rate of doing work. Accordingly the

denning equation becomes

Power = P = <
*
~

i Eq. 56
L ',-*! J

where, of course, W denotes work and
, time.

The fundamental idea involved in power is rapidity of work-

ing. The reason it is more fatiguing to ride a wheel uphill

than to ride it along a level stretch at the same rate is that, in

the former case, the rate of working is higher. The main dif-

ference between a 10-horse power motor and a 5-horse power
one is not that the one has done or is doing twice as much
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work as the other, but that the one can do work twice as

rapidly as the other.

UNITS OF POWER

107. Three units of power are in common use,

(i) The erg per second, which, has no special name, and is

inconveniently small.

(ii) The joule per second, which, in honor of James Watt, the

inventor of the steam engine, is called a watt, and

(iii) The horse power, introduced by James Watt ; defined

as 33,000 foot-pounds per minute, and generally indicated by the

symbol IP.

1IP=746 watts.

108. Having now completed a brief survey of the five funda-

mental conceptions of mechanics ; namely, inertia, momentum,

force, energy, and power, we pass to some simple concrete prob-
lems in energy which, it is hoped, will make the foregoing

principles the intellectual property of each student.

APPLICATIONS OF THE PRINCIPLES OF ENERGY TO

MECHANICS

I. The Lever

109. The lever is a machine which, in various forms, is

familiar to every lad. It has a variety of objects. Sometimes

it is employed to increase the force which one is able to apply
at some particular point, as in raising a heavy stone or crack-

ing a nut. Sometimes it is employed to multiply the motion of

a point, as in the index on the dial of a steam gauge ; sometimes,

as in sugar tongs, pliers, and tweezers, to reach otherwise

inaccessible places.

The principle of the lever was first correctly enunciated by
the Greek scholar Archimedes (287-212 B.C.). The essential

__ feature of all levers is a

/ill 11^ more or less rigid bar
' *

rotating about the edge
of some body as an axis.

This edge is called the
2 - FIG. 56.

fulcrum of the lever.

Since hardly any energy is here wasted in friction, one obtains

by use of a lever practically as much work as he puts into it.

i

" *i=
!

I F;
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Let F^ (in either Fig. 56 or Fig. 57) be the force exerted on

the end of the lever whose length is xv and F2 the force exerted

upon the arm of length
xy Since these forces

are each supposed to be

at right angles to the

arm, the distance through

FlG 57
which the force F

1
acts

is x6, and the distance

through which F% acts is #
20, where is the angle through which

the lever is rotated. The work put into the lever is therefore

F^O. And the work gotten out of the lever F^0 must, on

the principle of conservation of energy be the same, or

and hence F
2 /Fl

= x
1 /x2 .

The physical meaning of this equation is that the force which

one can obtain by use of a lever is to the force which he applies

to the lever inversely as the lengths of the arms.

The ratio F% /F1
is sometimes called the mechanical advan-

tage of the lever. _
Great care must always be observed in

~~

estimating the length of the arms of a lever. --
The fulcrum at is the axis of rotation. The

distance from the axis to the point where the

force is applied is the one arm x
l ; the distance

from the axis to the point where the opposing
force is applied is the other arm xv These defi-

nitions are illustrated in each of Figs. 56 and 57.

II. The Pulley

110. The pulley is simply a lever used for a

particular purpose, viz. to change the direction in

which a force is applied and to gain mechanical
-ji

advantage. I

Fixed Pulley

111. The bar constituting the lever is the di-

ameter of the pulley AB (see Fig. 58"). is the '

, . N if i u\u i, * n FIG. 58. The
axle (axis) about which the bar is continually pulley a spec ia i

rotating. And- hence is the fulcrum. case of the lever.
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Since here the arms AO and BO of the lever are equal, it is

mrrrrrTrrTrTrr^rmrrrrmrrr^ evident that F
1
= F

z
. So that

the only advantage offered by
the fixed pulley is a change of

direction ;
a pull downward can

be transformed into a pull

upward.

Movable Pulley

112. When a pulley is ar-

ranged as in Fig. 59, it is

evident that at any particular

instant the point may be con-

sidered as fixed, and as the

fulcrum about which the lever

rotates.* The force at A acts,

therefore, through an arm twice

as long as that of the force at

B.

Now it is found by experi-

ment that when any point P
on the rope is lifted through
a distance x-^ the point B on

the pulley is lifted through a

distance #
2, which is only half

as great ;
in symbols,I

FIG. 59.

Since the work done by the force F
1

is equal to the energy
stored up, we have

or the mechanical advantage of a movable pulley is 2.

Block and Tackle

113. In the case of the block and tackle (Fig. 60) we secure a

mechanical advantage of 2 for each movable pulley added. So

* A line drawn through the point O, perpendicular to the plane of the pulley

block, is called the instantaneous axis of rotation. Where is the instantaneous

axis of rotation of a carriage wheel rolling on the ground ?
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that with a machine such as that figured one is able to exert a

force six times as great as without its aid. For the force F
l
is

exerted downward through a distance six

times as great as that through which the

force F2
is exerted upward.

And, in general, to obtain the mechanical

advantage of such a machine one has only

to observe the distance through which the

force F
l

is exerted in order to exert the

force Fz through the distance #
2

. Call

this observed distance xr
Then it matters not what the mechanism

of the block and tackle is, provided only that

no energy is lost inside^the mechanical advan-

tage may always be computed as follows :

The work put into the machine is F^v
the work obtained is F^xy

and -^2/^1
= xi/xv

Therefore x-Jxv an easily observed ratio,

is the required mechanical advantage. In the case represented
in Fig. 60, evidently

2Tj
= D Xy

FIG. 60,

The Differential Pulley

114. An interesting form of pulley and one very

widely used in large machine shops is that known
as the differential pulley and shown in Fig. 61. It

consists of two parallel fixed pulleys, cast in a single

piece J., and one movable pulley jB, to which the

weight W is attached.

Of the two fixed pulleys one has a radius a little

larger than that of the other. Let us denote their

radii by R and r. Then if the force F be applied
to the free side of the chain coming from the large

pulley, and if any link, say P, of this chain be dis-

placed through one circumference of the larger fixed

pulley, the work done by the force F will be F 2 m-R.

During this same time the work done on the weight W (which
is lifted by one chain and lowered by the other) is

FIG. 61.
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Hence, neglecting friction and employing the law of the con-

servation of energy, we have

F 2 irR = W-jr(R - r),

TF 2.fl _ f mechanical advantage
F R r 1 of differential pulley.

III. The Inclined Plane

115. The inclined plane is a device frequently employed to

avoid the direct lifting of heavy weights. Barrels are frequently
loaded into wagons by use of skids, which are simply inclined

planes. Goods are

often taken aboard

steamers by inclined

gangways. What ad-

vantage does such a

device offer ? The

energy required to

raise a mass to a cer-
FIG. 62. The inclined plane.

tain height above the

ground is quite independent of the path by which it has been

raised, provided friction be negligible.

Let F
l
be the force required to push the body along the in-

cline OA (Fig. 62) ; and F
2
the weight of the body. Let the

length of the slope OA be x
l
and the vertical height XA be x

2
.

Then the work put into the mass by the force F
l

is Fxv and

the potential energy of the mass at the top of the plane is F^c2
.

But by the law of the conservation of energy these two are

or, FI/FI = xi/xz I/sin #

where 6 is the angle AOX which measures the steepness of the

inclined plane. The mechanical advantage of the inclined plane

is, therefore, I/sin 0; that is, the mechanical advantage varies

inversely as the sine of the angle of slope. This statement is

sometimes called the law of the inclined plane.
In road building the ratio of the rise to the length of the

road is called its "
grade

"
; but the ratio of the rise to the

length of base is called its "pitch." The numerical value of

the grade is evidently the sine of the angle of slope.
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Problems

1. Show that, in the case of a windlass, such as is used for hoisting stone

to the top of a building, the mechanical advantage of the windlass is R/r,
where R is the radius of the crank operated by the man, and r is the radius

of the axle on which the rope is wound. The windlass should be considered

as a special case of the lever.

2. A lever is 14 cm. long. Where must the fulcrum be placed in order

that a weight of 8 g. at one end may just balance a weight of 16 g. at the

other end? Ans. 4| cm. from end.

3. A meter stick is suspended at a point 40 cm. from one end. A kilo-

gram placed at one end of the long arm will be balanced by what weight

placed at the end of the short arm ? Ans. 1500 g.

4. When a weight is prevented from sliding down an inclined plane by
a force acting along the plane, show that the ratio of this force to the normal

pressure on the plane is the same

as the ratio of the height to the

base of the plane.

5. What is the greatest weight
which a man weighing 150 Ib. can

lift by means of one movable and

one fixed pulley ? The man is not

supposed to be anchored to the

ground in any way.
Ans. 300 pounds.

FlG> 63<

6. A man weighing 150 Ib. is lowered into a well by means of a wind-

lass, the arm of which is 30 in. long and the axle of which is 8 in. in

diameter. Find the force required to let him down with uniform velocity.

7. A screw, the pitch of which is 5 mm., is turned by means of a lever

which is 120 cm. long. What force will be required to raise 2000 kg.?

8. A weight of 300 Ib. is raised 3 ft. by means of a block and tackle,

the block of which has three sheaves. Determine the force required and

the space through which it has acted.

9. The pedal crank of a bicycle is 61 inches long. The rider exerts a

force of 100 Ib. on the pedal. Find the force exerted on the chain when
a 6-inch sprocket is used.

10. A body is displaced against a force which varies directly as the amount

of displacement. The initial value of the force is 2 Ib., the final value 10 Ib.,

and the displacement 6 in. Find the work done.

11. A belt which drives a pulley travels at the rate of 12 ft. per second.

The pull of the belt is 50 Ib., the diameter of the pulley is 3 ft. Find the

torque exerted upon the pulley and the power which the belt is trans*

mitting.
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Work of Friction

116. When two surfaces are brought into contact, a number
of interesting phenomena are observed. There is, for instance,

a certain amount of adhesion, which becomes very great in the

case of two highly polished surfaces, such for instance, as two

pieces of optically plane plate glass. This adhesion is very
marked in the case of objects covered with gold leaf, in the case

of graphite and paper when an ordinary pencil is used, in the

case of silver deposited on the back of a mirror, etc.

But there is another very different, and, so far as every-

day life is concerned, more important, phenomenon exhibited

when two solid surfaces are brought together, namely, one of

these surfaces cannot be moved over the other, even at uniform

speed, without the exertion of force. The resistance which

either one of the bodies offers to this motion is called the force of

friction and is said to be due to friction.

Frictional forces, like all other forces, are vector quantities,

and are to be compounded and resolved as are other forces.

In machinery, friction is at times a most useful feature, at

other times a most wasteful one. Thus, for instance, it is by
friction that belts are able to drive pulleys ; but on the other

hand, it is through friction that a very large portion of the en-

ergy given to an ordinary machine is wasted. And it is on this

ground that a discussion of friction finds place under the head

of energy.
The origin of friction doubtless lies in the interlocking of the

small hills and valleys, slight rugosities, that remain on even

the most highly polished surfaces. As might be expected, there-

fore, friction diminishes as polish increases. Note that just

the opposite is true of adhesion.

Sliding Friction

117. The principal experimental facts regarding the behavior

of one solid body sliding over another may be summarized as

follows :

*

The fractional resistance between solid bodies is (i) proportional
to the force with ivhich the two bodies are pressed together; (ii) is

independent of the area of the surfaces in contact; and (iii) is,

within wide limits, independent of the relative speed of the bodies.

The first of these facts may be put into useful quantitative form
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as follows : Let N be the normal force pressing the two bodies

together, and F the force of friction ; then for any two given
materials

where f is a proportionality constant which is known as the

coefficient of friction for the two materials in question.

The following table will give some idea of the values which

f assumes in practice :

MATERIALS
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The rate at which energy is absorbed by friction when one

body is drawn a distance s over another during an interval t

is then F fm=1*1= fNv Eq.-59
t t

Work
Time

where .2V is the load and v the speed.

Rolling Friction

118. Why are ball bearings, instead of ordinary bearings,

used in a bicycle ? The reply is, in order to substitute rolling

friction for sliding friction, since rolling friction is very much
less than sliding friction. But the question now arises, why
should tfyere be any friction in, say, a smooth iron car wheel

rolling over a level smooth iron track ? The reply is that the

iron track is slightly and temporarily indented so that the

FIG. 65.

wheel has really to run uphill all the time. Every one who
rides a bicycle for any distance over a level sandy road soon,

becomes familiar with this phenomenon in an exaggerated form

and keenly realizes the uphill feature of the problem.

Regarding methods for observing this rolling friction quan-

titatively, perhaps the following is the simplest. See Fig. 65.
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Let a metal cylinder C roll upon a pair of rails R and R' . A
pair of equal masses M may be strung over the cylinder by
means of string to furnish the load. A pair of equal scale

pans P and P' supported by a thread, which is wrapped about

the cylinder several times in the manner indicated, can receive

small weights just sufficient to roll the cylinder in one direc-

tion or the other. Two forces now act upon the cylinder,

(i) the load made up of the weight of the cylinder and the

suspended masses M\ call this force N : and

(ii) the weight W placed in the one pan or the other. If

the cylinder is to remain in equilibrium as regards translation,

the reaction of the rails I
7
"

must just balance these two forces,

or - Y= 0.

In like manner, if the cylinder is to remain in equilibrium as

regards rotation, the moments of all the forces acting upon it

must add up to

zero. We know
the points through
which N and W
act; but as yet
we do not know
the point through
which the reaction

Y acts. Let 0,

Fig. 66, denote the

lowest point of the

cylinder, and x the

distance between

the lines of action

of N and Y, respectively. Then taking moments of force

about the point as an axis of rotation, one has

or, solving for x,

N-Q- Y-x + W-r= 0,

x = Wr
Eq. 60

an equation which could not be true unless the cylinder were

in contact with the rail at some finite distance x from the

lowest point on the cylinder, which in turn shows that the
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cylinder is constantly rolling uphill. The energy used up
in rolling friction is therefore spent in distorting the material

of the rail a fact which will be clearer after we have con-

sidered the subject of elasticity, to which we now proceed. A
much more extended study of friction is essential for all

students looking forward to engineering.

Problems

1. Is rolling friction the rotational analogue of sliding friction in the

same sense that torque is of force ?

2. A fly wheel whose moment of inertia is 20 million C.G.S. units is ro-

tating with an angular speed of 240 R.P.M. A friction brake brings this

wheel to rest in 20 sec. Find the torque exerted by the brake.

3. A brick lying on an oak plank begins to slide down when one end of

the plank is raised so that it is 4 ft. higher than the other. If the coeffi-

cient of friction of oak and brick is 0.64, what is the length of the plank?

4. What is the nature of the friction between the axle and the hub of a

wagon, rolling or sliding ?

5. How does oil act to diminish friction ?

6. What is the total force of friction on a train which is pulled at a con-

stant speed of 20 mi. an hour by an engine exerting 50 horse power?

7. What force of friction will be required to bring a mass of 4 gr. to

rest in a space of 500 cm., the initial horizontal velocity of the body being
100 cm. per second ?

8. The coefficient of friction of iron on ice is, say 0.16. A boy is able

to pull 100 pounds in a horizontal direction. What is the greatest load he

can move by the use of a sled shod with iron runners?

9. It requires a force of 10 tons to move a given freight train. If the

coefficient of friction between the driving wheels and the rails is 0.14, what
is the least weight which the locomotive may have in order to start the

train ?

10. What is the angle of repose for one oak plank lying on another, the

fibers being parallel? See Table, 117.

11. What power will be absorbed in pulling a 400-lb. cake of ice over

a level wooden platform at the rate of 5 ft. per second ? Take coefficient of

friction as 0.20.

12. A horse pulls a sleigh at the rate of 8 miles per hour. The sleigh

with its occupants weighs 500 Ib. If the coefficient of friction is 0.16,

what power must the horse exert ?

13. Referring to Problem 6, 84, solve the case represented in Fig. A,
when the coefficient of friction between^n2 and the inclined plane is 0.33.

\ !V
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14. Referring to Problem 6, 84, solve the case represented in Fig. B,

when the coefficient of friction between the mass "30" and the inclined

plane is 0.20.

15. A locomotive can pull a train of 500 tons weight along a level piece

of track. What weight can it pull up a grade of 1 in 60, the coefficient of

friction being the same in each case ?

IV. Elasticity

119. In the preceding pages we have had frequent occasion

to deal with a "
rigid

"
body, by which we have meant a per-

fectly rigid body; i.e. one the relative position of whose parts

admits of no change whatever. Experience tells us that no

such bodies are met with in nature ; although we have many
close approximations. A strip of hard and brittle window

glass may be bent with ease. Cold steel can be rolled or

drawn into various shapes. While for all ordinary operations

the metal parts of a pair of shears, the frame of a bicycle, the

beam of a balance, etc., are rigid bodies, there are many cases

in which we are forced to recognize the fact that each of these

bodies changes form or volume. Bodies that can be changed in

either size or shape are said to be elastic.

In the case of a collision, it may become painfully evident

that one's bicycle frame is not a rigid body. In case one is

weighing a large load, the balance beam is liable to bend

slightly and thus lower the c.m. of the balance, and hence

diminish the sensibility of the balance.

A large variety of the phenomena of elasticity are familiar

to us all ; one need only mention the pneumatic tire, the rub-

ber band, the bending of an oar, the "
straining

"
of a ship, the

vibrations of a steel bridge.
120. To bring some degree of order out of this chaos of

experience is the object of this chapter. And this is not very
difficult. For, indeed, careful examination shows that, after

all, there are only two kinds of changes which may occur in

the configuration of elastic bodies ; viz.

1. Change of size, i.e. Compression or Dilatation.]
^,

.

2. Change of shape, i.e. Distortion.
j

When a body is changed in either size or shape, it is said to be

strained. The size of a body may be strained, and the shape
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of a body may be strained ; and these are the only strains that

are known. Since all known bodies are subject to one or both

of these changes, elasticity is said to be a general property of

matter.

Distinction between Solids and Fluids

121. But while all bodies may be changed as indicated, they
behave very differently during the change.

If we attempt to alter the shape of a piece of glass tubing by

slightly bending it, we shall find that this will require a mo-

ment of force; that, if we remove the force, the rod regains its

original shape. In like manner, we should find that force

would be required to change the size of the glass rod, and that

this force would need to be maintained as long as the changed
size is maintained.

Now imagine a second case in which the glass tube is full of

mercury or coal gas while it is being bent : the mercury will

offer no permanent resistance whatever to a change of shape ; it

conforms perfectly, without requiring any moment of force, to

the shape of the containing vessel. The mercury has, in fact,

no elasticity of shape. The same is true of the coal gas. But

if one attempts to compress the mercury or the coal gas into a

smaller volume, he finds this operation requires force ; and that

this force must be maintained so long as the diminished volume

is maintained. Mercury and coal gas have, therefore, elasticity

of size; but they have no shape of their own.

All bodies in nature fall into one or other of the two cases

we have just considered ; and this fact leads to the following
definitions :

1. Bodies which exhibit elasticity both of shape and of size

are called solids.

2. Bodies which possess elasticity of size, but not of shape,

are called fluids.

As is well known to every one, this distinction between

fluids and solids is not a distinction between different sub-

stances, but between different bodies. For the same sub-

stance may, under different circumstances, assume each of

these two states one needs only to recall the case of ice

and water.
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Distinction between (rases and Liquids

122. While mercury and air are alike in possessing only

elasticity of size, they differ very much in the manner in which

they exhibit this elasticity of size.

No one ever heard of a closed vessel partly full of air
; a

closed vessel of any size containing any amount of air is always
full of it ; and, at ordinary temperatures, the air is distributed

uniformly throughout the entire vessel. Contrast this with

mercury or water, which may or may not completely fill the

vessel.

Definitions :

1. "There are certain fluids any portion of which, however

small, is capable of expanding indefinitely so as to fill any ves-

sel, however large. These are called gases.

2. " There are certain other fluids a small portion of which,

when placed in a large vessel, does not expand so as to fill the

vessel uniformly, but remains in a collected mass at the bottom,

even when the pressure is removed. These fluids are called

liquids." MAXWELL, Art. " Constitution of Bodies," Ency.
Brit.

123. We might summarize the preceding classification of

bodies as follows:

[Rigid not known in nature.
Bodies \ re TJ

[Elastic
Sollds -

rn
1 Fluids

{

Gases -

I Liquids.

QUANTITATIVE CONSIDERATION OF ELASTICITY

Coefficients of Elasticity

124. A builder who is putting up a roof or a bridge always
finds himself between Scylla and Charybdis. The bridge must
be strong enough to sustain the heaviest load easily ; and, at the

same time, it must contain as little useless material as possible.

In order to secure this latter result, the engineer must have

definite and quantitative information concerning the elastic

properties of the steel to be used in the bridge ; in particular,

he must know what elongation (stretch) will occur in a speci-
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men of this steel, having a definite length and a definite area of

cross section, when it is given a definite load to carry.

In like manner, the engineer who designs a cotton mill must

know what moment of force a steel shaft will safely transmit

before he can determine the proper size of shafting to be used

in the mill. The designer of a steam engine must likewise be

definitely informed concerning the elastic properties of steam.

A certain amount of steam has been admitted to the cylinder of

an engine and the port closed ; what pressure will it exert

when the piston has reached the 'end of the stroke ? Answers

to such questions as these have been obtained by the following
method :

General Definition of Stress and Strain

125. When two or more forces are applied to a body in such

a way that their resultant is zero, there is no acceleration and

no evidence, therefore, from the motion of the body, that such

individual forces are acting. Such forces are said to be in

equilibrium. Their existence is shown by the strains which

they produce in a body.
"A stress is an equilibrating application of force to a body.
"A strain is any definite alteration of form or dimension of

a solid." KELVIN.

Elasticity is measured by the resistance which a body offers to

change either of size or of shape, i.e.

Elasticity = . Eq. 61
Strain

Elasticity of Size. I. Length

126. When a force is applied to a body in such a way as to

alter its length, either by compressing it or by stretching it, the

force is necessarily distributed over the cross section of the

body.
The longitudinal stress at any point in a body is defined as

the ratio of the force to area at that point. Longitudinal stress,

then, is not a force, and is not measured in dynes ;
but it is

measured in dynes per square centimeter.

A longitudinal stress always changes both the length and the

cross section of the body to which it is applied. But in most

practical cases the change in cross section is small ; and we
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consider only the alteration in length. The total change in

length depends not only upon the stress, but also upon the

length of the body. Hang a kilogram on the end of a wire

one meter long : the elongation will be a certain amount. If,

now, the same kilogram is hung from the end of a wire of

the same kind two meters long, the elongation will be twice as

great. But the wire is strained at each point in its length by
the same amount in each case. Consequently longitudinal strain

is denned as the ratio of the total elongation to the length.

127. In the case of a wire, let

L = length of wire ;

a = area of cross section of wire ;

F= stretching force applied to wire;

e = total elongation produced by F.

The longitudinal stress = F/a dynes per square centimeter

and the longitudinal strain = e/L centimeters per centimeter.

Now the longitudinal elasticity of any material is measured

by the ratio of the longitudinal stress to the longitudinal strain.

And hence for this ratio, which is generally known as Young's*

modulus, we have in the case of a wj/e

Young's modulus =^Longitudinal stress

Longitudinal strain

V
or -M=^ = . Eq. 62

/ e\ ea

L

From this equation it is evident that, in order to determineM
by experiment, we must measure the four quantities in the right-

hand member of the equation. As a stretching force it is often

most convenient to use the \yeight of a mass m ;
viz. mg. If

we employ a round wire of diameter c?, its area will be 7rd 2
/4.

Accordingly Eq. 62 may be written

~

* The life of Thomas Young, a London physician, forms an interesting chap-

ter in the history of physical science. See his biography in Ency. Brit.
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in which all the quantities on the right are directly measurable.

Such an equation we have called a laboratory equation.

128. M has been measured for a large number of substances,

and has been found to be constant, for any one substance, within

certain limits. These limits vary from substance to substance.

For steel and glass these limits are not very wide ; for rubber

these limits are exceedingly wide. And hence the popular im-

pression that rubber is highly elastic. As a matter of fact, glass

or iron is vastly more elastic than rubber ; for to produce a

given strain in glass much greater stress is required than to

produce the same strain in rubber. One can test this by allow-

ing two small balls, one of rubber and one of glass, to fall from

equal heights. The flattening of the rubber when they rebound

to equal heights is much greater. (Try this on oiled glass or

marble plate.)

129. In such an equation as that which defines Young's mod-

ulus many important physical facts have been summarized.

The student should early acquire the habit of interpreting the

physical meaning of each equation which he employs.

Solving Eq. 62 for e, we have

from which we may write at once :

The elongation

oc directly as the stretching force (Hooke's Law).
oc directly as the length.

oc inversely as the area of cross section of the wire.

oc inversely as the longitudinal elasticity ; i.e. the elonga-
tion depends also upon the material of which the wire

is made.

Each of these predictions is easily tested in the laboratory.

Hooked Law

The fact that, for a rod of given length, cross section, and

material, the elongation varies as the stretching force is one of

the earliest important discoveries in the subject of elasticity.

It was made by Robert Hooke in 1660 and published by him

in 1676 under the form of the following anagram :

ceiiinosssttnn
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In 1678 he rearranged these letters and translated them as

follows :
" Ut tensio sic vis; that is, the Power of any spring is

in the same proportion with the Tension thereof." Observe

that at this early date he uses power in the sense in which we
now employ the word force; while his tension is equivalent to

our extension.

The best evidence for the truth of Hooke's law is the fact

first pointed out by Stokes, that all elastic solids can be made
to vibrate isochronously ; for equal periods of vibration, at all

amplitudes, means that the force acting upon the body is pro-

portional to the displacement.
The extreme convenience of this modulus can here be merely

indicated by saying that, if an engineer wishes an iron rod of

length L to carry a certain load, which we may call F, without

producing an elongation greater than a certain amount e, our

equation tells him at once just how large a cross section a the

rod must have ; viz.

a = FL/eM.

As indicating the approximate numerical values of the mod-

ulus, the following will serve :

For Bessemer steel, M= 22 x 1011 = 31 x 106

Cast iron = 12 x 1011 " = 17 x 106 "

Brass wire = 10 x 10n " = 14 x 106 "

Copper wire = 12 x 1011 " = 17 x 106 "

Elasticity of Size'. II. Volume

130. Let us denote the volume of a body by V. Imagine
the volume to be subjected to pressure so that it is diminished

by an amount v.

The ratio of the diminution to the total volume is called the

voluminal strain. Suppose further that this change of volume

has been produced by applying a force F to a surface of area

a
; as, for instance, when air is compressed in an ordinary bicycle

pump. The ratio of the total force to the area over which it

is applied is the voluminal stress; and is what we call pressure.

In accordance with our general equation ( 125), the elas-

ticity of volume for any material is measured by the ratio of

the voluminal stress to the voluminal strain. This ratio is
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generally known as the bulk modulus, and is commonly denoted

by*.
Voluminal stress

Bulk modulus = Jc=

or

Voluminal strain'

FV
av Eq. 63

The reciprocal of the bulk modulus is what is known as the

compressibility of a substance.

Approximate values of certain bulk moduli are given in the

following table :
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mental facts are summarized in the following equation, where,

if the shaft be clamped at one end, 6 is the amount of twist, in

radians, which will be produced by a torque Z/, applied at the

free end :
7

6 = ~^-.L Eq. 64

In other words, the amount of twist (angular displacement)
varies

(i) directly as the torque L which produces the twist

(Hooke's Law).

(ii) directly as the length of shaft L

(iii) inversely as the rigidity modulus n.

(iv) inversely as the fourth power of the radius of the

shaft r.

Eq. 64, together with the following table, will enable the

reader to solve many practical problems concerning mill shaft-

ing, etc. :

SUBSTANCE
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Eliminating L between this and Eq. 64, one has

A = - 7^0 = - constant x 6.
+* > I

Hence the motion is simple harmonic and has the following

period :

Eq. 65

which is a convenient laboratory equation for measuring w, the

modulus of rigidity for the material from which the wire is

manufactured.

PROBLEMS ON ELASTICITY

1. A wire whose original length was 64.4 cm. has been stretched so that

it is now 70.0 cm. long. Find the longitudinal strain of the wire.

Ans. .0869.

2. A wire has a radius of 2 mm. and carries a load of 40 kg. Find the

longitudinal stress on every cross section of the wire. Express your result

in C.G.S. units.
Ang

981000000

a

3. A certain metal rod has an area of cross section equal to 3 mm 2
.

The length of the rod is 150 cm. Young's modulus for this rod is 12 x 1011

C.G.S. How much will the rod be elongated by stretching it with a force

of 8,000,000 dynes? Ans. -fa cm.

4. I wish to support a weight of 10 kg. by use of a wire 2 m. long.

Young's modulus for the wire is 8 x 10n C.G.S. What cross section must the

wire have in order that it may not stretch more than 1 mm. when the load

is attached. Ans. 0.0245 cm2
.

5. A very slight stress applied to a rubber band will produce a very great

strain. Would you, therefore, say that rubber is a highly elastic or highly
inelastic substance? What gives the popular impression that rubber is

very elastic?

6. A steel rod requires a large stretching force to produce even a small

elongation. Is it, therefore, very elastic or very inelastic?

7. Under ordinary conditions it requires a much larger pressure to com-

press a gallon of water by a certain amount than it does to compress a gal-

lon of air by the same amount. Which, would you say, has the greater

elasticity of volume?

8. Two wires suspended from a beam have each the same length and

carry the same load. One wire is of brass, the other of Bessemer steel; the

former has a diameter of 3 mm.; find what diameter the latter should have

in order that the load will produce the same elongation in each wire.

9. What are the "dimensions" of longitudinal stress? Of longitu-

dinal strain? Of the bulk modulus?
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10. A piece of mill shafting 1 in. in diameter can just withstand a cer-

tain torque L without injury. How much stronger will be a piece of

1^-inch shafting from the same material?

11. Two torsion pendulums are alike in all respects except that the first

is made of wire which is fa in. in diameter and 6 in. in length, while the

second is made of wire ^ in. in diameter and is 8 ft. long. Compare their

periods of oscillation.

ALGEBRAIC SUMMARY OF DYNAMICS

Linear Angular

Fundamental Quantities

Length, inertia, and time.

x, m, t

Angle, rotational inertia, and

time.

x
V = -

t

mv

1=

Velocity

v = rci>.

Acceleration

a = rA.

Simple Harmonic Motion

Momentum

la) r mv.

I

Force and Torque

, /, t

e
&) = -

t

= ma

Ico

= IA
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ALGEBRAIC SUMMARY OF DYNAMICS Continued

Angular Linear

Centrifugal Force and Precessional Couple

mvco

K.E. = iw
P.E. = Fx

Fv

Power

K.E. =1/0)2

P.E. =L0

Leo



CHAPTER IV

SOME SPECIAL PROPERTIES OF MATTER

133. In the preceding pages we have considered four prop-
erties of matter which are perfectly general. It is an experi-
mental fact that matter possessing any one of these, possesses
all the others. This by no means exhausts the list of general

properties, but it probably includes those which are most im-

portant as parts of the intellectual equipment of a liberally

educated man.

PROPERTIES OF LIQUIDS

134. We shall first consider some of the special properties of

liquids, and from the three following points of view :

I. Behavior of Liquids at Rest and under Gravity ; Hydro-
statics.

II. Behavior of Liquids in Motion under Gravity ; Hydraul-
ics. Wave motion in liquids will, however, be treated in the

following chapter, along with waves in strings.

III. Behavior of Liquids at Rest and freed from Gravity;
Surface Tension.

I. HYDROSTATICS

135. There are few people who are not familiar with the

fact that the water in a teapot stands at the same height in the

spout as in the pot. The danger of a leak in the hull of a boat

arises from the fact that the boat will continue to "
fill

"
until

the water stands at the same level inside and out. Mercury
in a U-tube stands at the same level in each arm, provided the

diameter of the tube is uniform or large. If, in any of these

cases, the level is disturbed for an instant, it is quickly restored

when the force producing the disturbance is removed.

This behavior of liquids has been summarized and described

in a very brief and simple manner. But we must first digress^

to add another word to our vocabulary ; namely, pressure.
139
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DEFINITION OF PRESSURE

136. In physics the term "pressure
"

is employed always to de-

note the ratio between the force applied to any surface and the

area of that surface. Let us denote pressures by P, forces by
JP, areas by A, then

TT

P = _ Defining equation for aver-

A <*9e pressure over area A.

jp __ _ Defining equation for pres-

U4_L=0
sure at any point.

Eq. 66

From this definition the dyne per square centimeter follows as

the natural unit of pressure. But no unit can be considered

thoroughly practical until it is expressed in some more concrete

form. Besides, this unit is very small, and hence the Interna-

tional Congress on Physics which met at Paris in 1900 adopted
a larger unit, namely, one million dynes per square centimeter,

and called it the barye (from the Greek /3apo<?, weight).

As we shall find, a little later (Eq. 67), this definition of the

barye is equivalent to assuming a standard value for the accel-

eration of gravity. For since the accepted value for the den-

sity of mercury is 13.5950, it follows from #AZ> = 106 that <?
=

980.692. Normal atmospheric pressure also becomes exactly

^ baryes.
The engineer's unit is sometimes the pound per square foot,

more generally the pound per square inch. Thus steam gauges
are practically always graduated in pounds per square inch.

The definition of a fluid ( 121) as a body which is devoid

of elasticity of shape (rigidity) is equivalent to saying that a

fluid cannot sustain any tangential stress.

137. From this definition follows at once the experimental
facts described in the first two of the following propositions.

Proposition I. The stress (pressure) across any surface

drawn in a liquid at rest is normal to that surface.

Proposition II. At any point in a liquid at rest the stress

(pressure) is the same in all directions. Pascal's Theorem.

138. The two preceding propositions would be equally true

for liquids which were not acted upon by gravity. In the

case of all actual liquids, we have to consider among the forces
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which act upon them, not only the pressure due to the contain-

ing vessel, as indicated in Fig. 68, but also the pressure due to

the weight of the liquid itself.

This fact is familiar to all boys
who have observed when in swim-

ming that they can dive to very
moderate depths without being
troubled by water getting into their

ears; but that, if they exceed a

depth of eight or ten feet, water

almost invariably gets into their ears. Builders know that

when a tank is put into the attic of a house, the walls of the

tank must be made strong, not in proportion to the volume of

water which it is to hold, but in proportion to the depth of

water in the tank. These and all similar phenomena are

described as follows:

Proposition III. The pressure at any point in a liquid at rest

under gravity is proportional to the depth.

The facts are summarized more compactly in

the symbols of algebra as follows: The pressure

at any point in the liquid will be the total weight
of the liquid supported by any small area abtiut

that point, divided by the area. To this must be

added the pressure of the air upon the free sur-

face of the liquid. Let

P = pressure at any point in liquid (see Fig. 69) ;

B = pressure of earth's atmosphere on free sur-

face of liquid ;

W= weight of liquid supported by area a.

P=W/ a + B.

FIG. G9.

Then

But from the definition of density (Eq. 28)

W= ahD g,

where h = vertical distance of area a from free surface ;

D= density of fluid, here supposed to be uniform ;

g = acceleration of gravity.

Hence P = hD-g + B. Eq. 67
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If we now neglect all pressure of the atmosphere, and con-

sider that due to the liquid alone, we may write

Pxh,

which is Proposition III stated above.

The important idea here is that in any given liquid the differ-

ence of pressure, P2
Pv between any two points depends only

upon their difference of level, A
2

Ar Thus

The fact that the pressure is independent of the form of

the containing vessel is generally known as the "Hydrostatic
Paradox."

139. In Proposition IT only the variation of pressure with

direction is considered. But consider a vessel filled with water

in one case and mercury in another. At any given point in

the vessel how will the pressure change when the liquids are

changed ?

This question also is definitely answered by Eq. 67, since it

shows
PccD.

We have then as a corollary to Proposition III the following
theorem easily verified by experiments on liquids in a U-tube.

Proposition IV. Other things remaining the same, the pres-

sure at any given point in a liquid varies directly as the

density of the liquid.

140. Another important experimental fact, also an inference

from Eq. 67, is the following :

Proposition V. The pressure is the same at all points in a

horizontal plane of a liquid at rest under gravity.

For if the pressure were not the same at all points, we should

have present a force tending to drive a particle from one point
to another on a horizontal surface. And this we do not find in

nature. When, a spherical pebble sinks in quiet water, there is

no lateral pressure thrusting it either to one side or the other.

A simple experiment illustrating this fact is that sketched in

Fig. 70, where the height (above the outside level) of the liquid

in the inverted glass bulb indicates a variation of pressure as
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the lower end of the tube is raised or lowered, but shows no

variation when the lower end of the tube is moved about in any
horizontal plane.

Among those surfaces over which the

pressure is uniform may be reckoned the

top of the liquid, the bounding surface,

more generally called the free surface.

FIG. 70,

141. If we assume the converse of Prop-
osition V, which is also amply verified by

experiment, then it follows as a corollary

that the free surface of a liquid is horizontal.

But all that is meant by a horizontal surface is one which

stands perpendicular to the direction of the force acting upon
the liquid. By experiments such as that outlined below, this

particular case has been generalized into the following theorem :

Proposition VI. Any free liquid surface is, at each

point, perpendicular to the resultant of all the forces

acting upon the

liquid particle at

that point.

To illustrate,

attach a vessel of

colored liquid to

FIG. 71.

as shown in Fig. 71. The curved

form which the free surface as-

sumes when the vessel is rotated

is at every point normal to the

force F resulting from the weight

mg of a liquid particle m, and

from the centrifugal force mraP, act-

ing upon the same particle. The
vertical line in Fig. 72 is the axis of

rotation of the whirling table; the

curve is a cross section of the free

surface. The resultant force JT, or

the normal to the liquid surface,

a whirling table

FIG. 72.
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therefore makes an angle 6 with the horizontal whose tangent is

tan 6 = --.
ra)2

Free surfaces are, therefore, not always horizontal.

THE PRINCIPLE OP ARCHIMEDES

142. The modern marine engineer, in designing a boat, com-

putes the weight of all the material which enters into its con-

struction. Often the iron used in the hull is actually weighed.

Knowing the dimensions of the boat, the designer is then able

to say, generally within less than an inch, and before the boat

is launched, just how deep she will lie in the water. The sim-

ple manner in which this prediction is made will be evident

from the following :

Whether a body floats or sinks when placed in a liquid, one

fact is patent to everybody, the body apparently loses weight.
But just how much weight a body loses under these circum-

stances was first determined by Archimedes (287-212 B.C.), the

founder of our present system of hydrostatics.

It is evident that, since the pressure increases with the depth,
the bottom of an immersed body will be subjected to a pres-

sure upward which is greater than the pressure downward
to which the top of the body is subjected. The pressure of the

water on a body will, therefore, always exert a buoyant force.

Archimedes saw very clearly, by a

simple deduction from experiment, that

if from any vessel of liquid (Fig. 73) we

imagine a portion of the liquid to be

removed, the position of the remainder
Fia. 73.

being unchanged, the upward force ex-

erted by the pressure on the surface so exposed would just be

able to support the weight of the liquid removed. Not only

so, but it is evident that this upward force acts through the

center of mass of the displaced fluid ; since, when the fluid is

replaced, there is no moment of force tending to rotate it.

This point is called the center of buoyancy.

By such reasoning he established the following theorem,

which is known as the Principle of Archimedes.



SOME SPECIAL PROPERTIES OF MATTER 145

Proposition VIL The resultant force of a fluid on a body
immersed in it acts vertically upward through the center of mass

of the displaced fluid ; and is equal to the weight of the displaced

fluid.

Manifold applications of this principle will be met in the

laboratory.

STABILITY OF FLOATING BODIES

143. The equilibrum of any body and hence also of a float-

ing body is secured only when the following conditions are

satisfied (see 104) :

(i) The sura of all the forces (of translation) acting upon
it is zero.

2.^=0.

(ii) The sum of all the. moments of force acting upon it

is zero.

When a body which will float is placed in the water, it will there-

fore sink to such a depth that the water displaced is equal to its

own weight. The first of the.

two conditions is then satis-

fied. But when the body is

first put into the water its

center of gravity Gr will not,

in general, lie in the same FlQ 74

vertical line with the center

of buoyancy B. The result is a couple, as indicated in Fig.

74, which tends to rotate the body until B and Gr do lie in the

same vertical line. Then both of the above conditions for

equilibrium will be satisfied.

But the owner of the boat now imposes a third condition.

He demands not only that B and Gr shall lie in the same verti-

cal line, but also that the boat shall be right side up. How this

condition is satisfied by the builder of the boat may be most

easily explained in terms of a point which is called the " meta-

center
" and which is defined as follows :

When a body
" rolls

"
in the water, as indicated in Fig. 75,

the center of buoyancy moves in the body, and thus describes a

curve BB', Fig. 75 (c). The center of curvature of this curve
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(0
FIG. 75.

described by the center of buoyancy in its motion through the

body is known as the metacenter. The inetacenter may, there-

fore, be considered as the

point in a floating body at

which the upward thrust of

the water is applied. The

condition for stability in a

vessel is, therefore, that its

metacenter shall be higher

than its center of gravity.

For then if a boat heels

over, there will be called

into play a moment of force

tending to right it ; but if

the metacenter lies below

the center of gravity, then when a boat rolls ever so little there

will be a torque tending to roll it still farther.

The weight of a vessel being constant, it is clear that stabil-

ity varies directly as the height of the metacenter above the

center of gravity. Things are generally made fast and cargoes
stowed in such a way that they will not shift ; hence the center

of gravity may be considered as a fixed point.

In sailing vessels even more than with steamers stability

is a consideration of prime importance. In the battleship,

stability is more difficult to secure, since the armor belt must

be placed high, and also because the guns are more effective

when placed high both circumstances tending to elevate the

center of gravity. The capsizing of the British gunboat Cap-
tain in the Bay of Biscay with great loss of life in 1870 was due

to insufficient metacentric height.

II. HYDRAULICS

144. In the problems of hydrostatics, we have been consider-

ing only cases in which at every point of the liquid the forces

were in equilibrium, because the pressures were equal. But

now let us consider what happens when two bottles are con-

nected as in Fig. 76. At C there is a stopcock which retains

the water at a height h in the vessel A. So long as the stop-

cock is closed, the pressure on any element of the liquid in the

small tube is the same on the right as on the left ; but when
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the cock is opened, the pressure on the right is only that of the

atmosphere, while that on the left is considerably greater. The

result is that the water flows from

the left to the right until it stands f

I l-^_-=i_^
c

FIG. 76.

at the same level in each bottle.

How does this happen ? One

reply and a perfectly valid one

is that this is merely a special case of Newton's Second Law.

But in order to look at the matter from another point of view,

let us compute the potential energy of a mass of water m :

1. When it is all confined in the bottle A.

2. When equally divided between the bottles A and B.

Imagine the bottles each of the same diameter and of uni-

form diameter throughout.
Let h denote the height of the liquid in A before the stop-

cock G is opened. If, now, we neglect the very small amount

of liquid in the connecting tube, the center of mass of the liquid

when it is all in A will lie at a height h/'2 ; and the potential

energy of the water with reference to the bottom of the bottle

is therefore mg h/'l.

When, however, the stopcock has been opened, the water

is shared equally by the two bottles. The center of mass in

each bottle stands at a height h/4 ; the potential energy of the

water in each bottle is, therefore (mg/2)(Ji4/) ;
and the total

potential energy of the water now is 2 (mg/%) A/4 or mgh/ in-

stead of mgh/2 as in the preceding case. While neither the

mass nor the weight nor the volume of the liquid has changed,
we observe that the potential energy has diminished by 50 per

cent. The motion of the liquid the fact that- "water seeks

its level
"

is, therefore, simply a special case of the general

dynamical principle that the potential energy of a system when
left to itself tends to become as small as possible. See 105.

What becomes of the 50 per cent of energy which, in this

particular case, ceases to be potential ?

The laws of fluid friction very different from those for

solids must be postponed for later study.

SPEED OF EFFLUX. TOERICELLI'S THEOREM

145. When a liquid is flowing through a pipe, such, for ex-

ample, as that which connects the two bottles in Fig. 76, one
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needs frequently to know not only to what height the water will

rise, but also with what speed the liquid will flow under given
conditions. Owing to the difficulty of handling fluid friction,

a general answer to this question has never been obtained.

But there are many cases in which friction becomes negli-

gible ; these were first solved by Daniel Bernoulli (1700-1782),
the solution being described in a theorem which bears his name.

We can here consider but a single special case, which was

solved experimentally in 1643 by Torricelli, the lifelong friend

and pupil of Galileo, two centuries before the law of the con-

servation of energy had been established.

Imagine a tank of water, in the side of which is placed an

aperture A (Fig. 77) at a distance h below the upper surface.

With what speed will the water

flow from the aperture ? Neglect-

ing friction, it is permissible to

apply the law of the conservation

of energy to the system.
Let m denote the mass and v

the speed of liquid which passes

the aperture during any small

interval of time, such that the

upper level of the liquid will not

be appreciably altered. The ki-

netic energy of this mass as it

leaves the aperture is ^ mv^ This energy has been gained at

the expense of work done by gravity. The change in potential

energy is measured by the amount of work done in raising the

mass m from the nozzle to the upper surface of the liquid

against gravity. This is mgh. Since the increase of kinetic

energy must just equal the diminution in potential, we have

^ mv
2 = mgli,

or v=~\/2(/h. Eq. 68

This is the theorem of Torricelli, which may also be derived

as a special case of the elegant theorem of Bernoulli given

below.

146. It is to be observed that the quantity of liquid which

passes through an orifice in a given time cannot be computed

FIG. 77.
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from this speed and the area of the aperture, the reason being
that the stream lines which crowd together at the opening inter-

fere with one another and thus contract the jet. Accordingly,
in order to compute the output of liquid in any time

,
one

must determine a, the area of the smallest cross section of the

jet, called the vena contracta.

Bernouillis Theorem

147. In general the motion at any point in a fluid is varying
from instant to instant ; but there are many cases of great prac-

tical importance in which the velocity of the fluid varies from

point to point, but remains "constant at any giveja fixed point.

A motion of this^Eno' which may vary with position, but

which does not vary with time,, is said ia be steady. The path
which any particle of fluid describes in steady motion is called

a stream line. From the definition, it is evident that one stream

line never intersects another ; so that we may consider a tube

of the fluid bounded by these stream lines as an isolated pipe

through which the fluid is flowing without friction. This is

sometimes called a tube of flow. Five tubes of flow are repre-

sented in Fig. 77 bis.

Let us now consider the still more special case in which the

fluid is incompressible. Water is, for all practical purposes,

such a fluid; for

an increase of pres-

sure amounting to

one atmosphere
will alter its vol-

ume by only one

part in 20,000. If

the pipe be large

so that friction is

negligible, we may
apply to any given mass- oi this incompressible fluid, under

steady motion, the principle of the conservation of energy; in

other words, we may equate to a constant the total energy of

a given mass of the fluid as it moves along through its tube of

flow.

Let us consider the mass of unit .volume which is measured

by the density and indicated by p. Denote the velocity of the

FIG. 77 bis.
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fluid by v ;
then the kinetic energy of unit volume is \ pv

2
. The

potential energy of unit volume due to position is clearly pgh,

where k is its elevation above the horizontal plane of reference.

In addition to this, the unit volume has potential energy due to

the fact that it is under pressure. This last statement will be

clear when one considers that the work required to force a

volume, v, of incompressible fluid into a tank under constant

pressure, p, is pv. The area of the piston multiplied by p is

the force; the product of the force by the length of stroke of

the piston is pv, and is also the work done.

Equating the total energy per unit volume to a constant, we

have then for any particular tube of flow,

| pv
2 + pgh + p = H'= constant, Eq. 68

which is the theorem of Bernouilli (1738). Upon this funda-

mental equation the entire science of hydraulics is built.

Variation of Pressure with Speed

147 bis. We can consider here only a single illustration of

this theorem a very special case ; namely, that in which the

fluid flows through a horizontal pipe, a case in which, by proper
choice of axes, we may write h = 0. Bernouilli's Theorem then

becomes

| pv
2 + p = constant, Eq. 69

which means that when particles flowing along a stream line

reach a portion of the tube where the speed is greater, they at

the same time reach, a point where the pressure is less, and vice

versa; for otherwise the right-hand member of the equation
could not remain constant.

Accordingly if a fluid be forced through a pipe with a con-

striction in it, such as shown in

Fig. 78, the speed at b will be

greater than either at a or at c.

Now it has been shown experi-

^= mentally by attaching upright
o

'

tubes at these three points that
FIG. 78. ,, . ,

the pressure is least where the

speed is greatest, namely, right at the constriction.
'

This is

the experimental fact which is described by Eq. 69; and is



SOME SPECIAL PROPERTIES OF MATTER 151

exactly what one would expect when he remembers that it is

the larger pressure at a which imparts the extra speed at b.

This particular case was first described by the Italian Venturi

in 1797 and is the principle used in the "Venturi water meter,"

invented by the American engineer, Clemens Herschel, in 1887.

148. The various other applications of this principle which

are encountered in everyday life are numerous and interesting.

Following is a short list, each of which is to be explained in

terms of Eq. 69.

(i) The ordinary atomizer ; an air jet produced by squeezing
the bulb lowers the pressure sufficiently to raise the liquid from

the bottle to the nozzle.

(ii) The Bunsen filter pump or aspirator. |

(iii) The forced draught in a locomotive furnished

by exhaust steam.

(iv) The ball nozzle, shown in Fig. 79, where a jet

of fluid is blown so rapidly past the

ball that the atmospheric pressure on

the lower side of the ball holds it up

snug against the socket.

(v) The curved baseball, where

the passage of the air over the ball is

greatly facilitated on the side at which the di-

rection of rotation is opposite to the direction

in which the ball has been thrown the left-

hand side in Fig. 80 ;
while the obstruction to passage is

greater on the side that is rotating in the same direction in

which the ball is being translated. Hence, if a ball leaves the

pitcher's hands in the direction indicated by the arrow P, and

rotates in the direction shown by the arrow R, it will curve

toward the side indicated by the arrow C.

Problems

1. A solid cube 12 cm. on each edge is made of a material whose density

is 13.5. What is its weight in a vacuum? Find its apparent weight in

water. Density of water = 1. A ns. 23,328 g. 21,600 g.

2. A body whose volume is 100 cm.8 has a density of 1.4. Find its

apparent weight in alcohol whose density is 0.8. Ans. 60 g.

3. A piece of wood whose density is 0.6 floats on water. The volume

of the wood is 40 cm. 8 What is the volume of the water displaced?

Ans. 24 cm. 8
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4. What variation in pressure would be produced by descending to a

depth of 76 cm. of mercury? Density of mercury is 13.546 at 20 C.

5. Find the speed of efflux from the bottom of a standpipe which is

filled with water to a height of 30 ft.

6. A wire 120 cm. long weighs 40 g. in air
;
when immersed in water,

it weighs 30 g. Find the mean diameter of the wire.

7. If a submarine boat weighs 50 tons and displaces 3000 cu. ft. when

immersed, how much water will it have to take in to sink?

Duff, Mechanics, p. 258.

8. A rectangular vessel partly filled with water is given an acceleration

of 50 cm. /sec.
2 in a horizontal direction. Find the inclination of the free

surface of the liquid. Shearer, 461 a.

9. How much mercury will be required to fill a cylindrical tube 5 mm.
in internal radius and 100 cm. long ?

10. What is the specific gravity of a substance such that 3 cu. in. of

it weigh a pound ?

11. What is the pressure at a point 100 m. below the surface of the sea,

the density of the sea water being 1.024?

12. A piece of quartz whose density is 2.7 weighs 50 g. in vacuo.

What will be its apparent weight in water ?

13. Show that when a cubical box is filled with water the total force

exerted on the sides and bottom of the box is three times the weight of

the water.

14. A town on the prairie is supplied with water from a standpipe 110

ft. high. What pressure will be available on the first floor of a house in

that town ?

15. From one end of a balance beam is suspended in water a 50-gram
brass mass. From the other end of the beam hangs a piece of quartz, also

suspended in water. Given the density of brass as 7.0, the density of quartz

2.7, and the fact that their two weights are in equilibrium, find the weight
of the quartz.

16. A silver coin having a density of 9 is dropped into a lake 20 ft.

deep. How long will it take the coin to reach the bottom, neglecting
friction ?

III. SURFACE TENSION. CAPILLARITY

149. When two liquids are brought together, either they mix
and diffuse the one into the other, or they do not mix, and con-

sequently exhibit what are known as the phenomena of surface

tension. In these phenomena, sometimes called capillary, the

very laws of hydrostatics which we have just been studying

appear to be contradicted.
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friERCUR*

FIG. 81.

Arrange two U-tubes (as in Fig. 81), the smaller arm hav-

ing an inner diameter of from one to two millimeters.

Partly fill one U-tube

with mercury and the

other with water: the

mercury in the small

arm does not rise so WA1

high as in the large ;

while with the water

the reverse is true.

Either of these phe-
nomena is sufficient to show that, in communicating vessels,

liquids do not always stand at the same height. But, as noted

above ( 135), this is only the fact when the communicating
vessels have the same diameter, or when each is large.

Any one who has ever placed a small drop of mercury on a

plate of glass knows that its center of mass stands at some dis-

tance, perhaps a millimeter, above the surface of the glass,

(see Fig. 82). This phenomenon, on its face, would appear to-

be an exception to the general dynam-

j
^

?
ical principle that the potential energy
of a system tends always to a minimum.

Why does not the drop flatten out ?

Why does not its center of mass assume a lower position ?

Our task now is to show that these contradictions are only

apparent, and that the phenomena of the liquids in the U-tube

and the phenomenon of the drop of mercury are in perfect
accord with general principles already known. In the discovery
of the harmony between any one truth and all other truths lies

the essential feature of an "
explanation."

150. No one can try the following qualitative experiments
without being impressed with the fact that liquids in air behave

very much as if they were contained in a sac or thin membrane,

continually holding them in position.

1. A glass rod dipped into a tumbler of water picks up a

drop and carries it on the end of the rod as if a little rubber

bag were tied about the end of the rod and filled with water.

2. A falling raindrop nearly always assumes a spherical

shape as if it were inclosed in a skin of some sort, and this,

FIG. 82. Mercury on glass.
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skin were continually compressing it into the smallest possible
volume.

3. In a camel's-hair brush, when dry, the individual hairs

stand apart to some extent, giving it a rather bushy appear-
ance. Dip the camel's-hair brush into a

tumbler of water ; the same bushy appear-
ance remains. Remove the wet brush from

the water to the air ; the film of adhering
water at once binds the individual hairs

together as a band does a sheaf of oats.

The liquid in air acts as if it were covered

by a film always tending to contract.

4. A piece of clean, fine wire gauze may
be bent into the shape of a small open box.

Water may be poured into this box to a

considerable
FIG. 83. A drop of oil

freed from gravity.

depth without its running

through the meshes.

5. One may make a mixture 1 of alcohol and water that will

have very nearly the same density as olive oil a combination

known as Plateau's Mixture. A drop of oil placed in this

liquid, as indicated in Fig. 83, will not mix with it, nor will it

be affected by gravity. How do you explain the perfectly

spherical shape which the oil assumes ?

6. One of the sim-

plest methods of observ- A

ing this phenomenon of

liquid surfaces is the

following, due to Van
der Mensbrugge:
Make a strong solu-

tion of castile soap.

Bend a piece of alumi-

num wire (about No. 20

or No. 25) into the shape shown in Fig. 84, making the diame-

ter of the ring about two inches. At some point A of this ring

tie a loop of thread B. If, now, the ring be dipped into the

soap solution, a film will spread over it. This film has two

1 About 60 per cent of alcohol (density 0.806) and 40 per cent of water will

give a mixture which is nearly right for ordinary olive oil (density 0.917).

FIG. 84.
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surfaces inclosing a thin layer of the soap solution between

them. The thread floats on the film ; now with the point of a

lead pencil puncture the film at some point within the loop of

thread B.

Each surface of the film between the wire and the thread

now tends to become as small as possible, as is indicated by the

fact that the area within the loop tends to become as large as

possible, i.e. the loop

assumes a circular form,

as shown in Fig. 85.

151. Such evidence as

this proves that if we

enlarge a liquid surface

we shall have to do work

upon it just as truly as if

., . , FIG. 85. Soap film assuming smallest area,
we stretch a rubber band

or inflate a bicycle tire. On the other hand, if a surface

contracts, it exerts a force in so doing, and thus does work

for us.

A wire is easily bent into the shape indicated in Fig. 86.

Dip this wire into a soap solution to cover it with a film. If,

now, a small straight wire, CD, is laid across the frame, the film

on the B side may be broken out with the finger. The two sur-

faces on the A side will exert a certain definite force and draw
the bar CD quickly to the end

_, of the frame. The total force

Q thus exerted upon the bar,

divided by twice the width of

6' the film, will give the force per
FIG. 86. Work done by a contracting centimeter which a single liquid

surface exerts upon the cross

bar. This quantity is naturally measured in dynes per centi-

meter, and is called the surface tension of the liquid. Surface

tension is denoted by T.

Suppose the bar CD is displaced a distance x, as indicated in

the figure. The force which we must use to do this is 2 T - CD
dynes. The work which one must perform is (2 T - CD~)x ergs.
The increase in area is 2 x - CD square centimeters. For the

film has two surfaces.

m B
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Consequently, the amount of energy in unit area is

Accordingly we may define the surface tension of any liquid

as the amount of potential energy in unit area of its surface, a

definition which is strictly equivalent to the one given above.

And now we see that, when a drop of mercury gathers itself

up into a little round globule, lifting its center of gravity above

the plate on which it rests, it does so in order to make its sur-

face as small as possible, and thus reduce its potential energy
to a minimum. So far, therefore, from violating our previous

experience, this behavior of liquid surfaces is quite in accord

with it.

152. Before examining more closely into the nature of this

energy which we have found resident in the surface of a liquid,

it will be necessary to show that liquid particles attract their

immediate neighbors just as solid particles do. A crayon of

chalk is more or less difficult to break, because across any sec-

tion of it the particles on one side are attracting the particles

on the opposite side with considerable force. That this same

phenomenon happens in liquids may be conveniently demon-
strated by a tube partially filled with water and then freed from

air and sealed what is ordinarily called a

"water hammer." The liquid in a tube of

this kind may, without difficulty, be made
to assume the position indicated in Fig. 87,.

an experimental fact which it is difficult to-

explain except by assuming that the glass
walls of the tube attract the adjacent parti-

cles of water, and these particles in turn

attract the neighboring particles of water
;

Fro. 87. Water ham- and so on, throughout the entire mass of
&

H(luid - TheSe f0rC6S Which are n0t at alL

understood are sufficiently great to sus-

tain the excess of weight of one column over the other.

153. Another fact which is very certain is that there is noth-

ing of the nature of an actual membrane stretched over the free

surface of a liquid ; for actual ordinary membranes (i) are not
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perfectly extensible and contractile, and (ii) do not, in general,
show the same tensile force in all directions ; nor (iii) is this

tensile force independent of the thickness of the film.

How, then, is this apparent membrane and this surface

energy to be explained? The following answer, for the sake

of its admirable clearness and comprehensiveness, is taken

from Professor W. F. Magic's Lectures on Physics, Sec. 67,

(Princeton, 1904):-
" The general laws of hydrostatics depend upon the principle that a.

liquid subject to the attraction of gravity will be in equilibrium only when
its configuration is such that the action of gravity on it introduces no shear-

ing stresses. Now gravity is not the only force which acts on the liquid.

Its parts also exert forces of cohesion on each other, and true equilibrium will

not be reached until the liquid assumes such a position that these forces of

cohesion so act, together with the weights of the parts of the liquid, as to-

introduce no shearing stresses. We can explain all the phenomena which
are treated under capillarity by taking these forces of cohesion into account.

It is not necessary for us to know, and in fact we do not know, the way in

which the cohesion depends upon the masses of the interacting parts and
the distances between them. It is necessary, however, to assume this much,,

that the force of cohesion exerted by a small part or element of the body
acts only on those elements which are in its immediate neighborhood. That
is, we assume, as the law of the force of cohesion between elements, that the

force between contiguous elements is very great, and diminishes very rapidly
when they are separated, so as to become imperceptible, even when the dis-

tance between them is still very small. This general law of cohesive forces

is illustrated by the behavior of an iron bar when we break it. It require*
a very great force to break it; but after it is broken, even though the two
surfaces at the break are fitted together again with the utmost nicety, the

two parts can be separated with no perceptible effort.

" Because of the short distance within which an element of the liquid acts

on its neighbors, those elements which lie below the surface by a depth equal
to this distance, which we call the range of action, are in equilibrium under

the action of their neighboring elements. It is only those elements which
lie in or very near to the surface which are attracted unequally in different

directions. These unequal attractions, acting on the elements of the surface

film, will produce a peculiar condition in it. This will be the same for all

parts of the surface, owing to the minuteness of the range of action, so long^

as the radius of curvature of the surface is not very small, that is, is not

of the same order of magnitude as the range of action. Thomas Young-

(1773-1829) suggested that the special action of the cohesive forces in the

surface film may be represented by supposing the film to be under tension,

similar in general to that in a stretched membrane. This tension should be

the same, in the case of any given liquid, for all parts of its surface. It is

called the surface tension, and its numerical value, when determined for the

surface of separation between any two bodies, is a characteristic number for
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those bodies. The position of the liquid column in the capillary tube, or

any of the other phenomena ascribed to capillary action, are, on this view,

due to equilibrium between the weights of the parts of the liquid and the

forces due to the tensions acting in curved portions of the surface film.

" Another useful concept for the study of capillary phenomena was intro-

duced by Gauss (1777-1855). It is now called surface energy. It is plain

from the consideration of the action of the cohesive forces, that when the

surface of a liquid mass is enlarged, the potential energy of the liquid is

increased on that account. For the surface can only be enlarged by the

passage of elements of the liquid from the interior mass into the surface

film. Each of the elements in the film is drawn inward toward the interior

by a force of cohesion, and hence negative work is done on all the elements

which pass out from the interior into the surface film. The negative work

thus done is equivalent to an increase in the potential energy of the liquid.

The surface, therefore, possesses an energy peculiar to itself, proportional
to the extent of surface and characteristic of the bodies separated by the

surface. For a given surface its numerical value is the same as that of the

surface tension for the same surface.

"
By the aid of this concept of surface energy all the phenomena of capil-

larity may be explained as illustrations of the general principle that the

potential energy of a system of bodies at rest tends to become the least

possible."

LIQUID JETS

154. When a continuous stream of liquid flows from a tap or

garden hose and breaks up into small drops, the phenomena
occur in such rapid succession that the eye cannot follow them

with any certainty. In order to reduce the rapidity with

which these events occur Plateau arranged a large drop of olive

oil between two rings one capable of mov-

ing up and down above the other as

shown in Fig. 88 the whole immersed in

a mixture of alcohol and water of the same

density as oil.

By sliding the rod A up, the globule of

oil elongates itself in the same way that it

would if it were falling freely under gravity
from a nozzle. It is found that the column

of oil becomes unstable when its length
exceeds its circumference, and that the sur-

face tension proceeds first to form a sort of

waist and then to pinch the column in two,

leaving between the two parts a small drop such as that pic-

tured in Fig. 89. The first three of these figures represent the

FIG. 88.



SOME SPECIAL PROPERTIES OF MATTER 159

behavior of the drop of oil in Plateau's mixture ; the right-

hand figure refers to the jet of water.

FIG. 89.

O
Instantaneous photographs of jets of water, falling

freely, show that they are pinched off by surface tension

in precisely this manner.

o

CAPILLARY PHENOMENA O
155. When a solid is partially immersed in a liquid, ^

either one of two things may happen; namely, the parti-

cles of the solid may attract those of the liquid more strongly
than the particles of liquid attract each other, in which case the

liquid is said to " wet "
the solid

; or

the particles of the liquid may cohere

with a greater force than that with

which the particles of the solid at-

tracts them, in which case the liquid
" does not wet "

the solid.

In the former case the liquid appears
to run up the side of the solid, as

shown in Fig. 90 ; while in the latter

case the liquid is depressed in the

neighborhood of the solid, as indi-

cated in Fig. 91.

The angle at which the liquid sur-

face meets the immersed portion of

the solid is perfectly definite and is

known as the angle of contact.
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observed that water will rise to a much greater height on the

inside than on the outside.

Let T denote the surface tension of water, r the radius-

(~\ of the tube, a the an-

gle of contact, D the

density of water; then

*- A, the excess of height,.

may be computed as

i follows :

The upward compo-
nent of the force per

'

. _ ______ unit length acting at

^ each point where the

\

__ I liquid surface touches

tube is T cos a. Hence
the total force along the direction of the axis of the tube is

ZirrTcos a. The total weight of the column of liquid raised

above the level of the outside liquid is irr^TiDg. Since these

two are the only forces acting upon the liquid column, their

sum must be zero. Hence we have

2 T cos a - rhDg = 0, Eq. 70

a single equation which serves to determine A, and which shows

that, other things remaining the same, AQC-, a fact which is

known as Jurin's Law.

Attraction and Repulsion of Floating Bodies

157. Another curious consequence of the elevation and

depression of liquids on the surface of immersed solids is the

attraction of floating bodies such as may be observed about the

edge of any quiet lake, where all the little twigs that have fallen

into the water will be found attached either to each other or to

the shore as if tied up to the wharf.

A more convenient method of observing this phenomenon is

to take two English walnut shells, and float them in a finger

bowl. It will be found that one of these shells will tow the

other about with perfect ease, the only connection between the

two being the liquid film which rises between them.
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J

This state of affairs is diagrammatically represented in Fig. 93,

and may be completely explained by reference ( 140) to the

following general principle; namely, Over any portion of the free

surface of a liquid which is

plane, and at all points in N N'

the liquid which are at this

same level, the pressure is

constant and is equal to

that of the atmosphere. As
one ascends in the liquid

from this level the pressure

diminishes; as one descends

in the liquid, the pressure
increases.

Thus in Fig. 93, the pressure at b is the same as that at a;

and the pressure at each of these points is that of the outside

atmosphere. As one ascends to the point c between the two

floating nut shells, the pressure diminishes, while outside the

liquid the pressure remains that of the atmosphere. The result

is a force in the direction from the greater to the less pressure,

which holds the two bodies together, so that if one shall be

pulled about in the finger bowl it will tow the other behind it.

FIG. 93. - Attraction of two bodies, each wet

by the liquid.

FIG. 94. Attraction of two bodies, neither

of which is wet by the liquid.

158. Oddly enough the

same thing happens when
neither of the two floating

bodies is wet by the liquid,

as for instance two pieces

of paraffine or two pieces

of beeswax, a case which is

diagrammed in Fig. 94.

Here the pressure at a is

that of the atmosphere ; the pressure at m is considerably

greater; while at n, on the same level with m, but in the open

air, the pressure is only that of the atmosphere.
The result is, therefore, two forces in the direction of the

arrows tending to hold the two bodies together.

159. Only one other possibility remains, namely, one of the

bodies may be wet and the other one not. When two such

bodies float near each other, it will be observed that, in the
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region between them (Fig. 95), the liquid does not rise quite so

high against the wetted one as it does on the outside of the

wetted one. Note also that in the region between the bodies

the liquid rises a little

higher against the

body which is not wet

than it does on the

outside of this same

body.~
rzZZTZ ~ZHIZT3I3IZI Following the ordi-

jj'iti. 95. Repulsion of two bodies, one of which nary laws of dynamics
is wet, the other not.

as in the preceding

cases, the pressure at
,
at i, and at /is that of the atmosphere;

pressure at A, and at e, which is on the same level, is greater

than that of the atmosphere. Hence there is a force from e

towards i as indicated by the arrow.

The pressure at 8, which is higher in the liquid than a, is less

than that of the atmosphere, resulting in a force from / towards

*, as shown by the arrow. Accordingly the two bodies appear
to repel each other.

Many floating bodies, by being slightly elevated or depressed
in the wr

ater, may be made to act either as bodies which are wet

or not wet by the liquid. It is often convenient thus to illus-

trate all three cases by the use of only two different bodies.

160. There is a host of other beautiful phenomena which fall

under the head of capillarity, such as those of thin soap films,

the variation of surface tension with impurities, electric field,

etc. ; but these must be left for outside reading and obser-

vation. A single remark, however, concerning those exquisite

soap-bubble experiments of childhood.

Almost any substance when dissolved in water diminishes the

surface tension of the water. Dissolved soap has this effect.

Whence then arises the peculiar efficiency of a soap solution

for producing good soap bubbles ? The reply is that the soap

enormously increases the viscosity temporary rigidity, so to

speak of the liquid and thus prevents the bubbles from so

quickly breaking.
Problems on Capillarity

1. Two mercury globules, of radii 2 mm. and 1 mm., respectively, are

brought into contact. They unite and form one globule. Compare the
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surface of this globule with the sum of the surfaces of the two globules
before union. Compare the sum of the surface energies before union with

that after union.

2. How is it that you can round the end of a glass rod by holding it in a

Bunsen flame?

3. Chemists often use a solid glass rod, instead of a funnel, in pouring
a liquid from one vessel to another. Explain this.

4. Find the pressure, due to surface tension, inside a spherical drop of

pure water whose radius is 2 mm. The value of the surface tension for

pure water in air is 75 dynes per centimeter.

5. How high will pure water rise in a glass tube whose internal diameter

is ^ff mm. ? Assume the angle of contact to be zero.

6. Find the pressure in a spherical soap bubble which is 8 cm. in diam-

eter, assuming the surface tension as 30 dynes per centimeter.

7. Explain by a diagram on the blackboard just how it happens that a

jet of water flowing from a tap breaks into drops at a short distance below

the nozzle.

8. An inverted U-tube supports two soap bubbles, one from each arm
of the tube. The diameter of one bubble is 3 cm., the diameter of the other

1 cm. If the tube be left to itself, which bubble will increase in size, and

why?
9. How does surface tension determine the size of the drop of liquid

which may be held on the end of a glass rod ?

10. When a soap bubble breaks, it is observed that the water is thrown

violently in many directions. Explain.

11. A test tube is filled with dry sand at the temperature of 20 C. If

this sand be moistened by pouring on a little water at 20 C., is there any
reason for thinking that the temperature of the mixture will be different

from 20 C.?

PROPERTIES OF GASES

161. Most of the theorems which we have just been studying
under the subject of Hydrostatics are quite as true for fluids in

general as for liquids ; all of them, in fact, except those which

refer to the " free surface
"
of a liquid. For this " free surface

"

is precisely the thing which we^jlp_not, ,finjj jn gases. A gas

might, indeed, be defined as a body which has no free surface.

A sailing vessel under way, a tree bending to a breeze, a bank

of sand raised by the wind, is each an evidence that this air,

upon which we are so dependent for life, is something which

can hand over momentum to other bodies. Any one who has

ever pedaled a wheel against a head wind knows that air exerts

pressure when in motion, and that air, therefore, probably has
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FIG. 96. The " sucker."

inertia. The boy who has blown up a paper bag for the pur-

pose of bursting it between his hands knows at least that the

inclosed air is a body.
The lad who has lifted a brick with a piece of wet leather

and a string (Fig. 96) knows that he must keep the edges of

the leather down snug on the brick ;

and that, when he does so, the earth's

atmosphere, without difficulty, keeps
the brick up snug against the leather,

except in the middle. Here the

leather has been lifted, and has in turn

lifted the whole column of the earth's

atmosphere, leaving, on top of the

brick, a space in which there is practi-

cally no air.

The ancients were, perhaps, essen-

tially as familiar with these facts as we
are ; at any rate, they were familiar with several kinds of

pumps dependent upon these principles. Of the connection

between these various facts it appears that they had little or

no conception. But since the essential feature of scientific

knowledge consists not only in knowing the facts, but also in

knowing the connection between them, we proceed to the con-

sideration of some of the properties of gases and of their con-

nection one with another.

162. Before the time of Galileo

nearly all the phenomena of pumps
were explained by saying that "na-

ture abhors a vacuum." And this

horror vacui is a fairly good explana-

tion ;
it will, in any event, explain a

large part of the more familiar phe-

nomena, such as those of air pumps
and barometers. In addition to this

" horror of a vacuum," it was proved

by Galileo that air had weight. This

he accomplished by weighing a bottle into which he had

pumped two or three times its volume of air, and afterward,

having allowed the excess of air to escape, again weighing the

FIG. 97. Section of sucker

shown in Fig. 96.
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bottle. See Ostwald's Klassiker der Exakten Wissenschaften,

No. 11, p. 71, for Galileo's own account of this experiment.
These were two capital discoveries : (1) that nature abhors

a vacuum, and (2) that air has weight.

163. Torricelli (1608-1647) showed, by a justly celebrated

experiment, the connett ;on between these two facts
; namely,

nature abhors a vacuum because the air has we :

ght. Torricelli's

experiment was as follows : Taking a tube more than 76 centi-

meters long and closed at one end (Fig. 98),

he filled it with mercury, and placing his finger

over the open end, inverted the tube in a dish of

mercury. The column of mercury fell a short

distance, but remained standing in the tube

approximately at the height of 76 centimeters

above the surface of the mercury in the dish.

Torricelli ascribed the support of this col-

umn of mercury to the pressure of the atmos-

phere, and explained the pressure in turn as

due to the weight of the atmosphere. He
showed, indeed, that the weight of the earth's at-

mosphere is very approximately that of an ocean

of mercury covering the earth to the depth of 76 centimeters.

But if this be the fact of the case, Torricelli saw that the

height of mercury in the inverted tube should diminish as

one ascends in the earth's atmosphere. This test was shortly
made by Pascal, 1648, who carried the inverted tube such a

tube and dish is called a mercurial barometer to the top of a

mountain in France and found that the mercury fell some seven

or eight centimeters during the ascent.

The evidence for thinking that we reside at the bottom of an

ocean of air, exerting its pressure equally in all directions, was

completed by Otto von Guericke, who devised, in 1650, a pump
exactly like a single-acting air pump, only the valves were not

automatic. This enabled him to remove the greater part of the

air from a glass vessel attached to the pump. In the nearly
vacant space thus formed he found that the pressure was much
less than that of the outer air, and on opening the valve, air

would immediately rush in until the pressure within became

equal to that without.

FIG. 98. Torricelli's

experiment.
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Scientists have agreed to adopt 76 centimeters as the standard

height of the barometer at sea level
;
and the pressure required

to support a column of mercury of this height is known as the

normal atmospheric pressure.

From the observed height of the barometer at any time, we
can readily calculate the pressure of the atmosphere. For in

Fig. 98 the pressure B over the free surface of the mercury in

the basin is that of the atmosphere ; while the pressure at the

same level inside the tube is that due to a column of mercury
whose height is h ; and since these two pressures are equal we

have, Eq. 67,

B = Dgh dynes per sq. cm., Eq. 71

where D at 0C is 13.596, g = 980.69, and h at the surface of

the earth never very far from 76 centimeters. The pressure

which the atmosphere exerts upon a barometer is mainly

dependent upon two factors; namely, (1) the height of the

atmosphere, and (2) the average density of the atmosphere.

Anything which changes either one of these changes the " read-

ing of the barometer," i.e. the difference in level between the

two horizontal surfaces of the mercury in the barometer.

Water vapor when under the same pressure as air has a den-

sity which is less than that of air. If, then, there be much
water vapor in any portion of the atmosphere, its density will

be diminished, consequently its pressure will be diminished,

and the mercury column which it supports will be shorter.

The barometer is said to "fall." But the same thing happens
when the height of the atmosphere is lowered or its pressure is

changed by a cyclonic motion. The barometer is, therefore,

not an instrument for telling whether or not it is about to rain,

but for measuring the pressure of the earth's atmosphere.

Nevertheless, barometric observations are of great aid to the

Weather Bureau in predicting atmospheric changes.

COMPOSITION OP THE EARTH'S ATMOSPHERE

164. More than a century elapsed between the time of Torri-

celli and the discovery of the principal elements in the air which

we breathe. These were first shown by Lavoisier (1743-1794),
one of the founders of modern chemistry, to be nitrogen and

oxygen, in the approximate proportion four of nitrogen to
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one of oxygen. In addition to these there is always present a

variable quantity of water vapor, ^^ per cent of carbonic acid

gas, together with traces of the recently discovered gases, argon,

neon, crypton, xenon, and helium.

When we remember that this ocean of air in which we live

is invisible, odorless, tasteless, apparently devoid of weight,

and almost intangible, it is little wonder that the discovery of

its properties came rather late in the history of science. What
men have already learned concerning gases is little short of

marvelous. And he who thinks that physics is a subject which

has to deal only with things that can be seen and felt and heard

needs only to read the story of argon and the chain of facts

from which was drawn the inference that this element is pres-

ent in the earth's atmosphere. In physics, as elsewhere, the

discovery of the appropriate idea is at once the important and

the difficult matter.

CIRCULATION OF THE EARTH'S ATMOSPHERE

165. Few motions have more significance for the human race

than those of our atmosphere. Of these there are many ; but

the trade winds and cyclones are of especial importance and

interest. . It is assumed that the student has already made the

acquaintance of trade winds in his study of physical geography

Accordingly we pass at once to the explanation of cyclones, a

name which has been given to those great circular rotating
storms which sweep over both our northern and southern hemi-

spheres, and which are responsible for most of what we call

"our weather." But since these immense whirls, ranging from

500 to 1000 miles in diameter, acquire their peculiar twist

entirely from the earth's rotation, it will be necessary first to

consider just how the motion of any body over the surface of

the earth is affected by the daily motion of our planet.

Deflection to the Right

166. We are living on the surface of a spinning top whose
9

angular speed is - - radians per second. The angular ve-
ob-100

locity of this sphere, &>, may be represented by the vector

OP in Fig. 99, where is the center of the earth and P the

north pole. Let E represent a point on the equator and (7 any
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locality in latitude X. Then the vector &> may be resolved

along the direction OC. The value of this component Off is

a) sin X. The effect of the rotation of the earth, then, at any

point G is precisely the same as if the

point G were situated at the pole P
and the earth had an angular speed of

ft> sin X instead of CD. Let us consider,

therefore, how the motion of, say, a

bullet would be affected by the earth's

rotation (i) when the gun is directed

along any meridian at a target situ-

ated exactly at the north pole. Imag-
ine the distance of the target from the

gun to be 400 yards. The speed of

the gun toward the east will then be 400 -
yards per

Fia. 99.

second, or approximately 1 inch per second. If the muzzle

speed is 1800 feet (600 yards) per second it will require f of a

second for the shot to reach the target. But during this | of a

second the bullet has drifted some f of an inch towards the

east ; and, hence, if the gun is accurately aimed at the target, the

shot will strike f of an inch to the right of the bull's eye. (ii)

Next suppose the muzzle of the

gun placed exactly at the north

pole and the target placed on a

parallel of latitude 400 yards

away. The bullet as it leaves

the gun now has no easterly ve-

locity impressed upon it ; but the

target has. During the f of a

second that the projectile is in

the air, the target has moved | of

an inch to the left, the result

being that the bullet strikes to

the right of the bull's eye as be-

fore. (iii) Next let us suppose that both gun and target are

situated 400 yards apart on the same parallel of latitude. Let

M (Fig. 100) denote the muzzle of the rifle and T the position

of the target at the instant when the shot is fired. With the

north pole P as center, draw a circle through M and Tr It is

FIG. 100. Illustrating deflection

to the right.
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then clear that, during the f of a second that the shot is in the

air, the target will move through the angle 8, amounting to

| x 15", that is, 10" of arc
; so that when the bullet strikes

the target the latter is in the position marked Ty Hence the

bullet moving straight ahead according to Newton's First Law
hits the target at the right of the bull's eye.

The student will find it interesting to prove that if the gun
had been directed exactly west instead of east as shown in Fig.

100, the deflection would still have been to the right. Prove

also that at the south pole the deflection will be always to the

left.

(iv) Next suppose we leave the polar region and pass to a

locality C whose latitude is X. The only change is that the

angular speed, about a vertical line, has now been reduced in

the ratio of sin \ to unity. Thus in latitude 30 N. the drift

is always to the right, but just half as large as at the north

pole.

Cyclones

167. We are now prepared to consider the typical storm

which takes its origin in a region of low atmospheric pres-

sure. This low barometer may occur in consequence of various

changes let us imagine it due to excessive heating of the

earth's surface by sunshine in some

particular locality. As the heated

air rises and flows off, the surround-

ing air rushes from all sides into this

region of low barometer, as shown in

Fig. 101. But from whichever of w

the four corners of the earth the air

moves, observe that it will have im-

pressed upon it the same deflection

to the right that we found in the case
f , . a , ,, - . , FIG. 101. A typical cyclone of

of the rifle ball. The result is that the northern hemisphere.

all storms in the northern hemisphere

having a " low
"

center rotate in a counter-clockwise direction.

Hence also the rule of Buys-Ballot : To find the storm center

stand with your back to the wind and then the center of low

barometer will be on your left.

But some disturbances, generally accompanied by clear

weather in summer and cold in winter, take their origin in
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regions of high barometer. These are called anti-cyclones.

Here the air is moving away from the center and toward the

periphery ; and since the deflection is still to the right, the cir-

culation of the air is now
in the clockwise direction.

The accompanying chart,

Fig. 101 bis, shows the

circulation of the atmos-

phere in the United States

for January 2, 1904. The
tracks which these great

cyclones and anti-cyclones

follow in sweeping over

our country are interesting-

ly shown in each copy of

FIG. 101 b is. Typical cyclone. This chart the Monthly Weather Re-
shows lines of equal barometric pressure view published by the
in inches of mercury, with resulting winds,

TJ

'
'

w th
at 8 A.M. January 2, 1904. The arrows show
the tendency of the wind to blow from a Bureau. It should be
High towards a Law, and also the spiral noted that Buys-Ballot'smotion caused by the earth s rotation, out- *

ward from a High, inward towards a Low. rule holds equally well for

cyclones and anti-cyclones.

168. Another point of view, and perhaps a better one, from

which the deflection to the right may be regarded, is the follow-

ing one, given by Professor Cleveland Abbe in terms of cen-

trifugal force :

" The difference between the deflection to the right in the Northern

Hemisphere and that to the left in the Southern Hemisphere results from

the nature of the forces that

produce these deflections,

and not from the way in

which the observer looks at

the weather map. The de-

flections are true natural

phenomena, not mere opti-

cal delusions.

"When a body rests

quietly on the earth's sur-
Fio. 102. Deflection to the right,

face the centrifugal force,

cd (Fig. 102), due to the diurnal rotation of the earth, gives the body a

slight tendency to move toward the equator, wliich tendency is counter-

balanced by the fact that the surface of the earth, and especially of the

H
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ocean, is an oblate spheroid ;
the attraction of gravity, ac, is not perpendicu-

lar to this spheroidal surface, but is directed toward the center of the earth

and its action on any body at the surface must be resolved into two com-

ponents; the principal one, ab, is vertical or normal to the spheroidal sur-

face and constitutes the greater part of what we call weight, the other

component, be, is a feeble horizontal sliding force directed toward the pole

(the North Pole in the Northern Hemisphere and the South Pole in the

Southern). The centrifugal force, cd, is directed outward in the plane of

the small circle of latitude and is also to be resolved into two parts, one of

which, ed, is normal to the surface of the spheroidal globe; it acts upward,
and therefore partly counteracts the force of attraction

;
the difference

between it and the attraction is called apparent gravity, and gives rise to

what is ordinarily known as the weight of a body. The other component
of the centrifugal force, namely, ce, is parallel to the surface of the globe
and is a horizontal sliding force directed toward the equator. But the

earth's surface represents a state of equilibrium ; therefore, the two horizon-

tal components, respectively pushing northward and southward, just coun-

terbalance each other, or be is equal and opposite to ce. If the earth should

rotate faster or slower, then the curvature of the spheroid would change so

as to always maintain this balance between be and ce so that bodies would

have no tendency to slide either north or south.
" Now a body or a mass of water or air that is in motion east or west

relative to the earth's surface is rotating around the earth's axis respectively

faster or slower than the earth itself. If it has a greater velocity than the

earth, it must therefore have a greater tendency to slide toward the equator ;

if it moves westward, as does an easterly wind, then it presses from the

equator. These laws are true for both hemispheres ;
in both cases a west

wind moving eastward presses toward the equator, which is toward the

right hand for west winds in the Northern Hemisphere but toward the

left hand for the Southern Hemisphere." Monthly Weather Review,

October, 1905.

APPLICATION OF PRECEDING PRINCIPLES

TO PUMPS

169. Pumps of all kinds, whether for gas
or liquids, whether to exhaust a vessel of

the fluid it contains, or to force fluid into

a vessel, are all modifications of the typical

form shown in Fig. 103.

S is a hollow tube dipping into a vessel

of fluid W.

P is a piston fitting snugly into the cyl-

inder C.

V^ is a valve opening out of C.

V<i is a valve opening into C.

--w-

FIG. 103. A typical

pump.
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FIG. 104. The force

pump.

1. Force Pump. The figure as it stands represents the com-

mon force pump, such as that employed in the ordinary fire

engine and in pumping water into standpipes. When the

piston P is moved in the direction indicated

by the arrow, the pressure in the region be-

tween the valves is diminished. The effect

of this is to open the lower valve and close

the upper one.

Not only so, but the pressure of the at-

mosphere on the free surface of the water in

the well begins to raise the water in the tube.

And if the lower valve be not too high above

the surface of the well, the water will pour

through the valve Vz, and partly fill the

space between the valves.

If the motion of the piston be now re-

versed (Fig. 104), the water inclosed between

the valves will be forced through the upper
valve into the hose or vessel in which it is

desired.

Such a stream, however, would be intermittent; for in the

region above the upper valve the pressure would cease, during
the out stroke of the piston. To avoid this difficulty, most

force pumps are furnished with an air chamber (J5, Fig. 104).

When the pump first begins, this chamber is filled with air.

When the water is forced through the upper valve, this air is

compressed; energy is stored up in it; and, when the out

stroke of the piston occurs, this compressed air supplies enough

energy to drive the water partially out of the bulb B, and

thus keep the stream flowing until the piston begins its inward

stroke. This large copper bulb on the fire-engine is familiar

to every one.

2. The Human Heart. The human heart is exactly such a

force pump as that diagrammed in Fig. 104, only here the

space between the valves is no longer furnished with a piston,

but has elastic walls, which, by alternate contraction and

expansion, effect the same result as the piston. When the

pressure in the right ventricle of the heart (Vr, Fig. 105) is

relieved, the blood from the veins rushes in by way of the right

auricle Aur ; when the walls of the heart contract, this blood
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VC S

is driven into the pulmonary arteries Pa on its way to the

lungs. In like manner, the left side of the heart acts as a

force pump, receiving

fresh blood from the

lungs and driving it to

the extremities of the

body. The elasticity of

the arteries and veins

takes the place of the

air chamber in the

force pump.
3. The Ordinary Lift

Pump. Here the up-

per valve is placed in

the piston itself, as in-

dicated in Fig. 106. FIG. 105. The human heart considered as a

Since the pump has no force pump,

air chamber, the stream is of course intermittent. On the

down stroke the upper valve opens ; on the up stroke it

closes ; the pressure between the valves

is diminished ; the lower valve opens and

the water rushes through. On the next

down stroke of the piston, it dips into

the water, which is held up by the lower
^- valve ; and, on the succeeding up stroke,

lifts its load of water to the spout.

4. The Bicycle

Pump. This is

a force pump, in

which air is the

fluid transferred.

The piston
'

here

V,

bpi
rWi-w-----

FIQ. 106. Lift pump;
on up stroke.

valve ; is the

valve, in fact.

The down stroke

of an ordinary

V,

foot pump is represented in Fig. 107. FIG. 107. Single-acting bicycle

On the up stroke the air rushes into pump>

the cylinder all around the edge of the piston ; while the valve
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Vy, next the tire, closes by the back pressure of the air in the

tube.

Why is such a pump so hard to operate when the tire is

fairly well inflated?

5. The Vacuum Pump. If we reverse the valves indicated

in Fig. 107, we shall have a pump which, instead of pumping
air into a tire, will empty the tire. This is only the general

principle of the ordinary air pump, which is one of the most

important instruments of the physical laboratory. During the

last half century it has received

many radical modifications and

improvements. Of these per-

haps the most valuable is the

substitution of mercury in glass

for the solid piston in a brass

cylinder. Mercury does not

wet or soil glass, does not ap-

preciably evaporate at ordinary

temperatures, moves through a

glass tube easily; and is, hence,

excellently adapted to this use.

The action of the Sprengel
air pump will be clear from the

accompanying figure. The fall-

ing drops of mercury from the

nozzle ^entangle the air in the

chamber C and carry it down
the narrow glass tube. The

drops of mercury act as pistons.

More air rushes in from the bulb JB, and the whole vessel is

thus gradually exhausted.

The reservoir R is kept filled with mercury ; the pres-

sure of the atmosphere forces this over to the nozzle N.

It is collected again in a glass vessel 6r, and poured back

into the reservoir R. It can thus be used over and over

many times.

The vertical heights of the columns A and D of mercury
must each exceed the barometric height. Why ? Such pumps
are in daily use in the manufacture of incandescent electric

lamps and "
X-ray

"
bulbs.

FIG. 108. Sprengel air pump.
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6. The Geissler-Toepler Pump, of which there are many modi-

fications, is shown in its essential features in Fig. 109. The

large bulb B opens above, by means of a valve V
l

to the

atmosphere. At the bottom this bulb opens, by means of the

tube on the right, to the vessel which is

to be exhausted. In this tube is a glass-

stemmed valve V% which floats on mer-

cury and prevents any air from passing
back into the exhausted chamber.

The tube which extends vertically

downward from B is necessarily longer
than the barometric height, and is con-

nected to a large vessel of mercury Mby
means of a strong but flexible rubber

tube.

If now the vessel of mercury M be

raised, the large bulb B will fill, the

valve V
2
will close, and the air in B will

be driven out through the valve Vr If

now the large vessel of mercury be low-

ered, the upper valve V- will at once

close, and will remain sealed by mercury

trapped between the open stopcock S
and the seat of the valve. But as soon

as the mercury falls below the junction
of the two lower tubes, the air will rush from the vessel to be

exhausted into the chamber B. On repeating this operation
the bulb B is again emptied into the atmosphere and again
filled at the expense of what air remains in the vessel to be

exhausted.

7. The Geryk Pump. A mechanical pump of high perfection
has recently been devised in which oil is used as a sort of pack-

ing for the piston, thus leaving practically no " clearance
" and

producing a very high vacuum in a very few strokes. A dia-

gram of this instrument is shown in Fig. 110. When the piston

comes down upon the oil in the bottom of the cylinder, the air

is all forced up through the valve in the piston, into the region
above the piston.

On the upward stroke the valve not only closes, but is her-

metically sealed by the layer of oil on the upper side of the

FIG. 109. Geissler-

Toepler pump.
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piston. A pump of this type will in a few minutes produce a

vacuum of 0.001 millimeter of mercury. That is to say, out of

every million particles originally in

the vessel only one will remain at the

end of, say, ten minutes. These

pumps are frequently used in tandem,

the intake Jof the second pump being

directly connected with the exhaust E
of the first pump.

8. The Siphon. When it is desired

to transfer liquid from a vessel A at

one level to another vessel at a lower

level, a bent tube something like that

shown in Fig. Ill is very convenient

and is known as a siphon.

To start the siphon it is

first filled with liquid,

then inverted and placed
with the upper arm under the surface

A as shown. The operation then be-

comes simple if we understand (i)

that the pressure at B in the tube is

the same as at A because they each lie

in the same horizontal plane, and (ii)

that the pressure increases as we go
down in the liquid from B to (7. But

the pressure on the free surface at

is just one atmosphere. Hence the liquid will be continually

forced out of the lower end of the tube until the free surface

Ye.seeljjo'b.e

Exhausted

FIG. 110. The Geryk Air

Pump.

FIG. 111. Siphon.

in each vessel stands at the same level. There are many other

useful and clever forms of this instrument, all dependent upon
this same principle.
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BOYLE'S LAW

170. When Torricelli discovered the proper method of meas-

uring the pressure of the earth's atmosphere, he furnished us

also a method by which gaseous pressures, in general, may be

measured. The method is as follows :

Connect the vessel containing the gas to one end of a U-tube

containing mercury. The pressure due to the excess of height
h (Fig. 112) of the mercury in

the open arm over that in the

closed arm will be measured by

DgJi. If to this we add the

pressure of the atmosphere B,

we obtain the pressure P in the

vessel.
i

P=B + Dgh, Eq. 67 j
{

i

where
j

B = barometric pressure ;

D = density of mercury ;

g = acceleration of gravity ;
FlG - 112-

h = difference of level between the two mercury surfaces.

If the mercury in the open arm of the U-tube stands at a

lower level than in the closed arm, h becomes negative, and we
have

Shortly after the time of Torricelli's experiment, Robert Boyle,
a distinguished English chemist, invented an air pump, and

became greatly interested in the following question :

Gases are easily compressed. A bladder filled with air and

closed at ordinary pressure can be reduced in volume without

much difficulty, i.e. without greatly increasing the pressure.

But, "Just how does the volume of a given body of gas vary
when the pressure is varied ?

"

To discover how one quantity varies with another, the general

method is to let one quantity vary, measure its successive values,

and also measure the corresponding values of the other quantity.
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This Boyle did. He inclosed a definite mass of air in the

closed arm of a U-tube, as indicated in Fig. 113. He varied

the volume V of this inclosed gas by pouring in more and
more mercury, and measured the pressures corresponding.
The method employed for measuring the pressure is that

which we have just described.

where ff= height of barometer.

Now Boyle found that (i) so long as the mass of air remained

constant, and (ii) so long as its temperature remained constant, the

product of the pressure by the volume of the gas
was very approximately a constant. This law

was published in 1660. It may be stated alge-

braically as follows :

PV=C= constant. Eq. 72

When the mass of gas inclosed in the short arm
of the tube was doubled, it was found that,

for any given pressure, the volume was also

doubled ; or to obtain any given volume it

was now necessary to double the pressure.
And in general it has been found that the prod-

FIG. us Boyle's uct PV is proportional to the mass M of the

inclosed gas, a result which may be stated as

follows : For constant temperatures,

PV= MK Eq. 73

where K is a constant.

Since, however,
M=DV, Eq. 28

we may eliminate M, and obtain a result which is entirely in-

dependent of the mass of gas inclosed, namely

p =K= constant. Eq. 74

The interpretation of this equation is evidently the following :

At any given temperature, the pressure in a gas varies directly

as its density, and is independent of the mass.
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171. Boyle's experiments were mostly performed with pres-
sures greater than one atmosphere (76 centimeters of mer-

cury) ;
but Mariotte (1620-1684), a French physicist, shortly

afterward showed that Boyle's Law holds when the air in

the containing vessel is rarefied ; that is, when the pressure
is less than one atmosphere. This he demonstrated as fol-

lows :

Two pieces of straight glass tubing are connected by a rubber

tube, as indicated in Fig. 114. A portion of air is sealed off by
mercury in the closed arm B. On lowering the arm A, the

mercury in A falls below the level of that in B. Let this de-

pression be indicated by A, then

where, as before, H is the height of the barometer and D the

density of mercury. The tube B is graduated so that the vol-

ume of the gas V can be read off directly.

In this case also the product _PF"was found to be invariable.

Quantities such as .PF'are known
as invariants. The factors which

enter the product are each variable,

but the product itself is a constant. -i

r

FIG. 114. Marietta's experiment.

172. The usefulness of this law

of Boyle's can scarcely be over-

estimated. For, if we know the

pressure corresponding to any one

known volume, we know at once

the value of the constant K, and

can hence .compute the pressure

corresponding to any other vol-

ume
; or, if it be desired, one

can compute the volume corresponding to any other pressure.
For example, suppose that a bottle whose capacity is 100 cubic

centimeters contains compressed air at a pressure equal to that

of 180 centimeters of mercury. Let us compute the volume

which this air, at the same temperature, would occupy if

allowed to escape into the atmosphere at normal pressure. Let

jP
x , V\ represent the pressure and volume, respectively, of the

air while in the bottle, and jP
2 , Vv its pressure and volume
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after being released. It is required to find Vv According to

Boyle's Law, the product of pressure and volume remains con-

stant. Hence Eq. 72 becomes

But P
1
= 180

; Vl
= 100 ; and P2

= 76. Hence, substituting
these values, and using one centimeter of mercury as the unit

of pressure, we obtain the following value for in Eq. 72 :

P
l
V

l
= 180 x 100 = 18000 = 0.

And, therefore,

O 18000
2 P

2 76
cm.

Hence the 100 cubic centimeters of compressed air, if allowed

to escape, would occupy 236.8 cubic centimeters.

173. A perfect gas is defined as one which obeys Boyle's Law

exactly ;
but it has been found by many observers that all

gases deviate more or less from the law ; in other words, there

are no perfect gases in nature. These deviations have been

especially studied by the French physicist, Amagat, whose

description of the facts, together with Boyle's original memoir,
will be found in The Laws of G-ases, edited by Professor Carl

Barus (New York, 1899).

Boyle's Law has been modified by the Dutch physicist, Van
der Waals, so as to describe the behavior of actual gases with

much greater accuracy. Using the same notation as above,

and denoting by a and b two quantities which are constant for

any one gas, he writes

p + (y- j) = constant. Eq. 75

This is the most perfect description which has yet been given
for the changes in volumes which occur in gases under a wide

range of pressures. The interpretation of the constants a and

b will be of interest to the advanced student.

174. The graphical interpretation of Boyle's Law leads at

once to the equilateral hyperbola shown in Fig. 115 ; or, if one
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employs Eq. 74 and plots pressures as a function of densities, he

is then, of course, led to the straight

line.

175. Before leaving the subject

of this chapter, it is necessary to

warn the beginner that there are

many fundamental phenomena, such

as osmosis of liquids, diffusion of

gases, absorption of gases by liquids

and solids, which we have not been

able here to discuss.

Problems

FIG. 115. Graph of P V=
constant.

1. What is the height of a water barometer when the mercurial barome-

ter reads 760 mm.? Density of mercury = 13.6.

Ans. 10.336 in.

2. An atmospheric pressure of 15 Ib. to the square inch is equivalent to a

pressure of how many kilograms to the square centimeter?
Ans. 1.056

3. Twenty-four cubic centimeters of gas at a pressure of 71 cm. of mer-

cury would have what volume under a pressure of 76 cm. ?

Ans. 22.4

4. A cylinder 16 in. long is closed at one end by a piston. If the cylinder
is filled with air at atmospheric pressure (76 cm.), and the piston is thrust

down within 1 in. of the other end, what will be the pressure of the in-

closed air? (It is here assumed that the temperature is the same in each

case.) Ans. 1216 cm. of mercury.

5. Two hollow spheres of radii 8 and 10 contain equal masses of hydro-

gen. Compare the pressures. Ans. 1000:512

6. Find the lifting power of a balloon, filled with coal gas, from the fol-

lowing data : volume of balloon = 1000 m.3
; weight of balloon and car =

60kg. A liter of coal gas weighs 1.193 g. ;
a liter, of air weighs 1.293 g.

Ans. 40 kg.

Jones, Examples in Physics.

7. One wall of a room is 9 x 24 ft. If the room is closed tightly at a

time when the height of the barometer is 30 in., what pressure must the

wall sustain when the barometer suddenly drops to 29 in. ?

Shearer, 527.
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8. If 1000 cm. 8 of hydrogen under a pressure of 20 cm. of mercury is

subjected to a pressure of 84 cm. of mercury, what will be the resulting

volume? Am. 238.1 cm.8

9. Compute the weight of air contained in a moderate-sized living room,

say one which is 5 x 5 x 3 m., at the temperature of C.

10. When a barometer stands at 75 cm. the volume of the empty space

above the mercury is 8 cm. 3 and its length is 13 cm. How far would the

column fall if you introduced 5 cm. 3 of air into the tube? .4ns. 19.+ cm.

Jones, Examples, p. 98.



CHAPTER V

WAVES

176. The word at the head of this chapter will recall to most

minds one or more of the following phenomena : the surface

of a lake swept by a wind, the constantly enlarging rings pro-
duced by a stone falling into quiet water, the " swell

"
that

follows a storm at sea, the waves which always accompany a

moving boat. Most people have seen waves run along a clothes-

line, or some stretched rope, when struck by a walking stick.

Experience shows us that these and all similar cases have two

features in common. First, there is a disturbance at some point

in a certain medium Second, this disturbance is propagated to

other points of the medium.

At a given instant the stone is dropped into quiet water
; at

a later instant the disturbance may have reached points several

meters away. At a given instant the stretched clothesline is at

rest in its position of equilibrium. When one end is suddenly

depressed, this depression runs along the line at a definite rate
;

or if the disturbance be an elevation, it is an elevation that

runs along the line. Concerning any wave motion the two

important questions are (i) concerning the origin of the dis-

turbance, and (ii) concerning the nature of the propagation.
But what is meant by "a disturbance"? Simply this, a body

is said to be disturbed when it is thrown out of equilibrium.

But when is a body or system of bodies in equilibrium ?

Not necessarily when it is at rest, but when its potential energy
is a minimum. A pendulum is at rest at the end of its swing,
but is by no means in equilibrium. A pendulum moves most

rapidly at the lowest point in its path ;
but there is the one

point where it is in equilibrium.
A disturbance, then, implies the addition of energy to a

system. And as this disturbance is propagated through the

medium, some energy is in general distributed through the

medium.

183
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FIG. 116.

DEFINITION OF WAVE MOTION

177. We may, therefore, define a wave motion as a state of

disturbance being propagated from one part of a medium to

another.

Note that in this definition nothing is said about any up-and-
down motion, such as is seen in the disturbed clothesline. One

has only to replace the clothesline by a stretched spiral spring
to see that waves may travel without any such up-and-down
motion. Such a spring (Fig. 116) should be from two to three

meters long, made
. W* of brass wire, No.

Vl o . 18 or 20, wound
in a spiral of ap-

proximately eight

millimeters diam-

eter. Fix the

ends of the spring

to two rigid points A and J5, so that the spring will be stretched

to nearly twice its unstretched length. If this spring be

grasped at any point (7, moved in the direction of the arrow,

then quickly and gently released, the disturbance thus intro-

duced will run to and fro along the line ; but there will be no

appreciable up-and-down motion. This very important experi-

ment should be carefully observed.

Note further that, in the definition of wave motion, nothing
is said about any transfer of matter. For although in each case

experiment shows that the particles of the medium oscillate

through a small range, it is evidently not the

medium, but the energy, which is transferred.

For clearly exhibiting the distinction between

the motion of the wave and the motion of the

particles of the medium, there is perhaps noth-

ing superior to the wave model used by Lord

Kelvin in his Baltimore Lectures in 1884. This

device consists of, say, 20 or 30 equal wooden

bars suspended by a piano wire, as shown in

Fig. 117. Since these bars are fastened so

that when one of them is twisted the wire is

also twisted, it is clear that a single rotation

FIG. 117. Kelvin's

wave model.
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given to the lowest bar will be propagated throughout the entire

series, the wave moving vertically upwards, while the particles

(the bars) move in a horizontal plane only.

SOME SPECIAL KINDS OF WAVES

I. Water Waves

178. Of these there are several kinds, and most of them are

studied to best advantage in the laboratory or in a canal.

The genesis of water waves by wind is very imperfectly
understood ; but we may consider that the source of these waves

is anything which elevates or depresses the water at any point.

Imagine X to represent the level surface of the undisturbed

water. If by any means the surface of the water be given the

form indicated in Fig. 118, the operation will be equivalent to

taking the water from the "
trough

"
of the wave .5(7, and lift-

ing it up into the "crest"
t 4.1 A j> T r> AX"XB C/^^D EX"X X

of the wave AB. Let m ^'- ^<^ ^ ylX^^^X^ v^-
be the mass of water _J
which will just fill the FlG- U8. Typical sea wave,

trough BC'; the amount of water in the crest will then also

be m. Let h denote the difference in height between the cen-

ter of mass of the trough and the center of mass of the crest.

The operation of producing a single wave in water previously

quiet will require that one lift a mass m through a height h

against gravity. The potential energy stored in the wave will,

therefore be mgh. This potential energy tends to a minimum,
i.e. in this case the center of mass tends to fall, and, since water

has inertia, the crest in falling goes on beyond its position of

equilibrium, and thus we have a continual oscillation due to

gravitation.

In addition to this potential energy, it must not be forgotten
that waves have considerable kinetic energy. Indeed, it may
be shown that in wave motion practically one half the energy
is kinetic and one half potential. The disturbance at any

point in the water over which a wave is passing is then very

similar, but not identical, with that in one arm of a U-tube

partially filled with mercury and the mercury in oscillation.

Take a U-tube of a diameter not less than one centimeter.

Pour it half full of clean mercury water will answer nearly
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as well. Incline it and close one end with the thumb, as in-

dicated in Fig. 119. Bring the tube into a vertical position and

suddenly raise the thumb. A dozen or more oscillations follow.

They are, so far as vertical motion

is concerned, such as would occur

at any point in an ocean of mer-

cury, or of water traversed by
waves.

Why do these oscillations so

quickly stop? Would this same

cause be at work in a large lake

or at sea to stop the waves?

Waves or oscillations which are

made to diminish gradually in amplitude are said to be

damped.
179. The actual motion of the water particles in sea waves

seems to have been first accurately guessed by Franz Gerstner

(1802), who assumed that these particles move in circular orbits,

as shown in Fig. 120, where the line of centers represents

the undisturbed surface of water. When a train of waves

passes over this surface, the particles P, which, in equilibrium,
are situated at 0, are now set into uniform circular motion.

DIRECTION OF WAVE MOTION

nr *

FIG. 120. Gerstner' s explanation of the form of sea waves.

The curve drawn through their positions at any particular

instant is called the " locus
"

of these particles. This locus is

the wave form at any instant. To find the wave form at any
later instant, say when each particle has moved 90 ahead in

its orbit, one has only to mark in each circle a point 90 ahead

of the present position of P and then draw the locus of these

new points.

In deep water, the motion of the particles under the surface

is identical with that at the surface, except that the circular

orbits become smaller and smaller as one leaves the surface.

In shallow water, the particles move in ellipses which become

flatter and flatter as one approaches the bottom. The justifi-
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cation for this view of Gerstner's lies in the fact that these

elliptical motions can be observed on small particles scattered

through the water, and also in the fact that the actual wave

form is seen to be very nearly what his theory called the

"trochoidal theory" predicts. Many of the properties of

trochoidal waves are beautifully illustrated by an apparatus

devised for this purpose by Professor C. S. Lyman, an excel-

lent modification of which is made by Dr. Forbes of Columbia

University. %.

Definition of Wave Length

180. A series of waves, such as one can start in water by

rocking a boat, or by raising and lowering a floating block,

is called a train of waves. In any train of water waves the

distance between two successive crests is called a "wave length."

The distance between two successive troughs is also a wave

length. But the general definition of a wave length is the short-

est distance between any two particles whose motion is in the

same phase.

What would correspond to "two successive crests" in the

waves produced by compression in the spiral spring ?

Speed of Water Waves

181. A train of waves is traveling over a point; how far

does this train travel during the period of one complete oscilla-

tion of the water at this point? Evidently one wave length.

Let us call this wave length Z, and the period of one oscillation T.

If, by any means, direct observation or computation, we can

obtain I and T, we have at once the speed of the wave ; for,

denoting speed by F"and frequency by w, we have

V=L = nL Eq. 76

This may be called the fundamental equation of wave motion ;

for, since it depends simply upon the defining equation for

speed, it is necessarily true for a wave motion of any type.

There enters into the equation no dynamical quantity, nor,

indeed, anything characteristic of the medium
;

it is merely a

kinematic definition of wave velocity in general.
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Regarding the speed of water waves as a function of the body
of water upon which they travel, time permits us only to say
that :

(i) In shallow water, i.e. where the depth h is rather small

compared with the wave length, the speed F"is

F= V^A, Eq. 77-

where <?, as usual, indicates the acceleration of gravity. Ob-

serve that in this case F"is independent of the wave length.

(ii) In deep water, i.e. where the depth is rather large com-

pared with the wave length ?, the speed is

Si.
27T

Eq. 78

This equation describes those great waves which overtake the

swiftest Atlantic liners; a simple computation shows, for in-

stance, that a deep sea wave which is 400 feet in length travels

with a speed of 26 knots an hour.

Refraction of Water Waves

182. The variation of speed with depth, and the independ-
ence of speed and wave length indicated in Eq. 77, may be

easily tested in the laboratory by means of a wave trough.

FIG. 121. Refraction of water waves.

The equation for shallow water waves also describes very per-

fectly the curious fact, easily observed on the shore of nearly

any lake or pond, or at the sea coast, that, whenever waves

approach the shore, the crest of the wave is always more or less

parallel to the shore line. In Fig. 121 let the heavy line repre-
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sent the shore near the entrance to a small bay. A train of

waves, A, B, C, D, etc., approaches the shore. When the

waves leave the deep water, the crests have the direction indi-

cated by 6r6r'. The nearer they approach the shore, the more

they are turned about. Such a process is called refraction.

The end A has travelled faster than the end A'. The dotted

lines are called contour lines, and indicate the depth of the water.

Every point on the contour line marked "10" has a depth of

10 centimeters ; every point on the line marked " 20
"

has a

depth of 20 centimeters, etc.

Explain why the crests of the waves are rotated as they

approach the shore. Since they start in parallel to each other,

why do they not remain so?

Reflection of Water Waves

183. If a breakwater or solid pier (Fig. 122) is built out

into a body of water, one has there an opportunity to see what

happens when water waves strike a rigid body.

FIG. 122. Reflection of water waves.

In such circumstances it is not difficult to see that the. direc-

tion of the reflected waves is very different from that of the

incident waves.

From our experience in the laboratory, we know that when
a train of waves is started at one end of a wave trough, they
no sooner reach the other end than they are reflected back.

These two trains of waves, the incident and reflected, may
combine with each other to produce a series of waves which
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appear to have no motion of translation, the so-called station-

ary waves. In order that these two trains of waves should

produce stationary waves, it is necessary that all the waves

should be of one length. A moment's practice with a wooden

paddle in a trough of water enables one to produce such waves.

A more detailed study of stationary waves will be made
under the head of Waves in Strings.

Summary concerning Water Waves

1. Medium of propagation bounding surface between air

and water.

2. Motion of particles small, in paths, nearly circular;

through a part of the path the motion of the particle is in the

same direction as the motion of the wave ; in part of the path
it is at right angles to the motion of the wave.

3. Speed in deep water, depends upon length of wave, but

in shallow water, it depends upon the depth.

4. Water waves are reflected, and thus produce stationary

waves.

II. Ripples

184. In our study of liquids we found that work was re-

quired to enlarge the surface of any given body of liquid. We
found that equilibrium was reached only when the liquid sur-

face became as small as possible.

Consider any quiet body of liquid, such as a cup of tea. Its

surface is in equilibrium when level, because then it has a mini-

mum of potential energy. Any disturbance of this surface,

such as is produced by drawing a spoon through it, will in-

crease the area, and will, therefore, impart to the surface some

energy.

Suppose a surface disturbed as shown in Fig. 123, and then

left to itself. Not only will gravity tend to lower the liquid

crests and fil1 the

troughs, but the

surface tension of

the liquid will also

do exactly the

same thing. Surface tension is, therefore, competent to produce

waves in a liquid just as gravity is. And when the lengths of

FIG. 123. Showing that a surface disturbed by ripples is

larger than a level surface.
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HIGH SPEED

the waves become very small, the surface tension is even more

effective than gravity. So that in the case of very small waves,

we may consider them as propagated by surface tension alone.

These ripples are known to every one who has watched the

bow of a rowboat as it -moves through quiet water. They are

beautifully seen in the case of a duck

swimming on a smooth pond. And what

is a very curious thing, these ripples

always manage to keep just a trifle ahead

of the duck, however fast or slowly he

swims.

We may see the same phenomenon in

the laboratory. When a piece of wire is

drawn through a dish of water (Fig. 124),

at a moderate rate, the ripples which pre-

cede it have a certain length ;
but when

the wire is drawn more rapidly through

the water the ripples become finer, i.e. rip-

ples of a shorter wave length are produced.
But in each case the ripples precede the

moving body. It follows, therefore, that

ripples of short wave length travel faster FIG. 124. Showing that

than those of long wave length. This is

just the reverse of what happens in ordi-

nary water waves; for there the longer the waves the faster

they travel.

185. Neglecting the effect of gravity upon the speed of these

short waves and considering only the surface tension T, it may
be shown, by ordinary dynamics, that their speed is

K* =^, Eq.T9

where D is the density of the liquid and I the length of the wave.

If now one takes account of gravity also, remembering Eq.

78, and that from this cause the square of speed will be in-

creased by the amount, --, he has the general expression for
2 TT

deep-water waves, namely

short ripples travel faster

than long ones.

ID 27T
Eq. 80
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It follows, therefore, that the slowest waves are not the very
short ones, nor the very long ones. The slowest of all water

waves have been found to have a length of about 16 milli-

meters. Waves longer than this are spoken of as water waves,
while waves shorter than this are called ripples.

In order to discover whether or not ripples are reflected, as

water waves are, one has merely to produce ripples in a shallow

dish of water and let the ripples proceed until they strike the

edge of the dish.

Summary concerning Ripples

1. Medium of propagation free surface of liquid.

2. Speed increases as the wave length diminishes.

3. Reflected in same manner as water waves.

4. Motion of particles same as that of water waves.

III. Tidal Waves

186. To one who goes to the seashore for the first time, few

things are more striking than the two great changes in the

height of the water which occur every twenty-four hours. The
water recedes until at a certain hour it reaches what is called

low tide ;
not many minutes are required to see that the water

is again rising. The tide is coming in
; at the end of six hours

after low tide, the maximum height, called high tide, is reached ;

the tide immediately begins to recede ; and so on in endless

procession. So gigantic is this phenomenon that one would

never suspect its being a wave motion until he has formed a

mental picture of the whole disturbance as reported by ob-

servers from all parts of the world.

Approximate Explanation of Tides

187. Those who have rightly understood Newton's capital

discovery of universal gravitation, know that the moon attracts

each part of the earth with a force which is greater as the dis-

tance between that part of the earth and the moon is less.

The larger part of the earth's surface is covered by its oceans.

Imagine the whole of it to be under water. In Fig. 125, con-

sider three particles, -4, B, and 6", lying on a diameter of the

earth, drawn in the direction joining the moon and the earth.
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A is on the side of the earth next the moon ; B at the center

of the earth ; C on the side of the earth away from the moon.

A will be more attracted than B, that is, it will be attracted

away from JB; while B, in turn,

will be more strongly attracted s~\
(MOON)

than (7, that is, B will be attracted ^
away from C. The difference FIG. 125. - Lunar tides. Arrow at A
between the actual attraction of indicates direction of tidal wave in

the moon at any point on the passing about the earth,

earth's surface and the average attraction is called the "tide-

generating force
"

at that point. The result of this tide-

producing force is that the water at A, attempting to get as

near the moon as possible, is heaped up, is drawn away from

the solid body of the earth.

To draw B away from C is equivalent to repelling C from B.

So that in case the earth always presented the same side to the

moon, we should have at the points A and C high tides. On
the great circle which lies 90 away from these we should have

low tide.

188. The above is a brief sketch of what is known as the

equilibrium theory of the tides, and is a fundamental picture

which each student should clearly grasp. But as a matter of

fact it comes very far from accurately representing the time

at which high water would occur on a rotating earth, even if

we assume, as in the preceding section, that the ocean covers it

to a uniform depth. For as the solid nucleus B is rotating on

its axis, carrying the towns and cities of the earth with it, the

result is evidently that every twenty-four hoars each seacoast

town must pass through these two antipodal tide crests, that is,

through two high tides and two low tides.

This great heap of water, which is dragged over the earth's

surface every day, consists, at any one point of the earth's surface,

of a rise and fall of sea level. It is periodic as waves are ; that

is, the tides recur at equal intervals, the disturbance is propa-

gated from one part to another of the medium (the oceans) ;

and these features show that what we have here to deal with is

a wave, on a magnificent scale, traveling at a stupendous speed.

At the equator the length of this wave is 12,500 miles. Its

period is 12 hours and 25 minutes, half the apparent diurnal

period of the moon.
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189. But in order to understand the actual behavior of this

great wave it is necessary at this point to make a brief digres-

sion upon the subject of

Forced Vibrations

For since this tidal wave is compelled by the moon to travel

about the earth at the same rate as the moon itself, the disturb-

ance is called a forced vibration. The water waves, which

have been considered in previous pages, are called free

vibrations.

In general, a free vibration is one in which the period is deter-

mined by the properties of the vibrating body itself; while a

A
forced vibration is one whose period is deter-

mined by some outside body acting upon it, and

, supplying energy to it. Let us consider a sim-

\ pie gravitational pendulum, which has a point
of support at A, a bob at B, and a length Z, as

V shown in Fig. 126. If this pendulum be once

u set in motion and then left to itself, it will
D

FIG. 126. vibrate with a period T, where

This is known as the free period of the pendulum.

(i) Suppose, however, that the point of support A is moved

to and fro in a horizontal direction with a motion which has a

period exactly equal to T. The result is familiar to every one :

the amplitude of the pendulum will increase until as much energy
is given by the pendulum to the air and string as is given to

the pendulum by the agent which moves the point A. This

phenomenon is usually spoken of as sympathetic resonance or

sympathetic communication of vibrations.

(ii) Let us next suppose that the point of support A is

urged by a periodic force whose period is longer than that of the

free pendulum. Here it will be observed that, as soon as the

motion becomes steady, the pendulum has assumed a new period,

namely, the period of the force ; not only so but the phase of

the force and the phase of the pendulum are the same.

Thus when the force acts toward the right, as indicated

in Fig. 127, so also does the pendulum bob move toward
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the right. The effect may be stated by saying that the

pendulum acts as if it were vibrating freely but with an

increased length OB.

(iii) If, however, we make the period of the force ;\

at A shorter than the free period of the pendulum,
we shall again find that the actual period of the

pendulum soon becomes identical with that of the

force ; but, unlike the preceding case,

the phase of the pendulum is now just

opposite that of the force, as indicated

in Fig. 128. The effect is indeed that

of a free pendulum with a shortened Fl - 127-

i ii /-> ~n Period of
length OS.

force greater

190. Returning now to the subject of than period

B, B the tides, it will be seen that we have a
per

FIG. 128.
tide-sfeneratinsr force whose period is 12 hours 25

Period of force .

*

shorter than minutes acting upon a body ot water whose depth,
period of pen- say 3 miles, is very small compared with the length

of the tidal wave. The problem is then one of

waves in shallow water where the speed of the wave varies

with the depth. Referring to Eq. 77, it will be seen that the

oceans would have to be 13 miles deep in order that a,free wave
would sweep around the earth at the equator once in 24 hours

50 minutes. And since the actual oceans are not nearly so

deep as this, it is clear that a free wave, even in the Pacific

Ocean, would have a period much longer than that of the

apparent motion of the moon.

The tides then fall under the third case which we met in the

preceding section, the case where the period of the force is less

than the period of the free vibration. This being so, it follows

that the tides will be in opposite phase with the tide-generating
force ; that is, in opposite phase with the tides predicted on the

equilibrium theory.

This is known as the dynamical theory of the tides, and shows

that under the circumstances described, high water would actu-

ally occur where low water was expected on the equilibrium

theory.

The presence of large continents of land, the varying motion

of the moon, the superposition of solar tides, and many other

circumstances render the actual facts tremendously complex
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when compared with the simple outline of lunar tides here

given. Every one interested should read Sir George Darwin's

popular lectures on The Tides (Boston, 1898).

Summary concerning Tides

1. They satisfy the conditions of wave motion.

2. They are forced vibrations.

3. Wave length at equator 12,500 miles.

4. Period of lunar tides 12 hours 25 minutes.

5. Period of solar tides 12 hours minutes.

6. Velocity at equator 1042 miles per hour.

IV. Waves in Strings

191. An easy way to study these roughly is to fasten together
two lengths of ordinary rubber tubing, and thus make one piece
about 20 feet long. By the aid of a heavy mass, or of some

more convenient means, clamp one end of the tube to the edge
of a table, or even to the floor, as shown at B in Fig. 129.

FIG. 129. A simple method of studying waves in strings.

Taking the free end A in the hand, one can produce in the

tube any tension he desires, and can send trains of waves down
the tube in the direction given by the arrow.

Transverse and Longitudinal Waves

Consider the motion of any one point in the rubber tube.

As a train of waves passes through this point, it oscillates, to

and fro, in a direction perpendicular to that of the arrow.

The. motion of the particles in the medium is then across the

direction in which the waves travel. Such waves are said to be

transverse.

In the case of the spiral spring, alternately compressed and

elongated (Fig. 130), any one small part of the spring is dis-

placed in the same direc- _ ..........................................__

tion as that in which the ) ) )) ))))&

wave is traveling. The FlG " 1>. -Longitudinal waves in aspiral spring.

displacement of the particles is lengthwise. Such waves are

accordingly called longitudinal waves.
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In the short time at our disposal the only type of waves in

strings which we can consider are the transverse ones.

Returning now to the rubber tube, stretched upon the floor,

observe the following :

1. That you can vary the length of the waves you send along
the string by varying the rapidity with which you move your
hand to and fro. Let us denote by T the time occupied by

your hand in one complete vibration. During this interval the

disturbance travels just one wave length I along the tube.

If we had any means of measuring 2* and Z, we could determine

the speed of the waves V\ for ( 181),

F=|. Eq. 76

2. Observe also that you can vary the length of the waves by

varying the force with which you stretch the rubber tube,

while your hand moves to and fro at the same rate as before.

From this fact it follows that the speed of the wave depends

upon the tension in the string.

3. Notice that a single disturbance sent down the tube does

not in general cease when the wave strikes the fixed end

(5, Fig. 129). If it does, the wave has been damped out by
friction on the floor

; stretch the tube a little more, holding it

up so as just to clear the floor. The reflected wave can now be

easity seen running back in a direction just opposite that of the

incident wave. Such a disturbance is called a solitary wave.

4. With a moment's practice one can obtain a reflected train

of waves which interfere with the incident train in such a way
as to produce stationary waves, exactly similar to the station-

ary water waves obtained in the water trough.

Speed of Transverse Waves in Strings

192. Imagine a perfectly flexible and uniform cord drawn

through a brass tube arid stretched as shown in section in Fig.
131. It is an astonishing fact that there is a perfectly definite

speed with which any
such cord may be drawn

through the tube with- c

out exerting any pres-
FlG> 131 ' - "lustrating how centrifugal force

balances stretching force when a transverse
Sure Upon the tube. wave traverses a string.
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This is true whatever the curvature of the tube may be,

provided only that the curvature is continuous, i.e. provided
there are no sharp angles in the tube. And what is still

more curious is the fact that this particular speed is exactly
that with which a free wave will travel in this same cord. Our

problem now is to determine from simple dynamics this critical

velocity.

(i) First one must compute the pressure (force per unit

length) which the cord would exert upon the tube, if the en-

tire system were at rest.

Let A, B, and C (Fig. 132)

represent three consecutive

points on the tube, and R
its radius of curvature at

B. Suppose that the arc

ABO subtends the angle 6

at the center of curvature

0; then, if the tension in

the string is T, the normal component of this tension atB will be
a

2 T sin -
;
and hence

a

2 T sin-
's

FIG. 132. Resolution of forces at any point
B on the tube.

Pressure at B = = approximately.

This is the force with which each unit length of string is

pressed against the tube when the cord and the tube are at

rest.

(ii) Next one must compute the centrifugal force with

which each unit length of the string is thrust away from the

tube when it is moved through the tube.

Let p denote the mass of unit length (linear density) of the

string and V the speed with which it is drawn through the

tube. Then when the string passes the point B (Fig. 132)
where the radius of curvature is R, it is evident that the out-

V2

ward pressure on the cord will be /*
--
R

It follows, therefore, that the total pressure will be zero

when these two opposite pressures are equal, that is, when

T M
R R

= 0. Eq. 81
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The value of the speed given by this expression,

Eq. 82

is then the critical speed with which the string must be pulled

through the tube.

But since, with this speed, there is no pressure on the walls

of the tube, one may entirely remove the tube, and there re-

mains a solitary wave traveling along the string with a defi-

nite speed, which is independent of the curvature and is a

function of only the tension and the linear density.

Interference of Waves in Strings

193. Returning for a moment to the stretched rubber tube,

it is easily shown that a solitary wave sent down from the

hand to the fixed end is reflected and travels back to the hand.

If a second wave be sent from the hand so as to meet the re-

flected wave, the two are said to "interfere," and the resultant

disturbance at any point on the tube where they pass is the

sum of the disturbances due to the outgoing and incoming
wave.

The following experiment, due to Wylie, illustrates very

simply the manner in which two trains of waves interfere.

To one of the prongs of an electrically driven tuning fork

attach a light string silk floss is excellent and make the

other end fast to some rigid object, as shown in Fig. 133.

FIG. 133. A single train of waves excited by one prong of a fork.

When the fork starts to vibrate, a train of waves will run

down the whole length of the string from to B
;
and if the

tension of the string is properly adjusted, stationary waves

will be produced throughout the entire length of the string,

At some point A (Fig. 134) now tie a second string of

length equal to CA ; attach the other end to prong D and

make the tension the same in each string. Each prong of the

fork will now send a wave down the cord. But the prongs of
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the fork, at any instant, are moving in exactly opposite direc-

tions ; hence at A the trains of waves in DA and CA are in

exactly opposite phases. And since they each tend to dis-

FIG. 134. Wylie's experiment, showing two trains of waves interfering at A.

place the point A by equal amounts in opposite directions, the

result is that the point A is not displaced at all. The waves

DA and CA are said to interfere completely at A. No disturb-

ance, therefore, can now enter that portion of the string lying
between A and B.

Interference is often observed also in trains of water waves.

Thus when the solar and lunar tides reach any point on the

earth's surface in the same phase, they interfere and thus pro-

duce the spring tides. When, however, they reach any point in

opposite phases, they interfere and thus produce the neap tides.

It has been suggested that the so-called tidal waves which

occasionally sweep the decks of the Atlantic liners are due to

the interference of two trains of running waves.

Formation of Stationary Waves in a String

194. Referring to Fig. 133, where the string is fixed at one

end 1?, we have first to discover how the wave reflected from

B is related to the wave incident at B. The condition under

which reflection here occurs is that the end is fixed; hence

the reflected wave must be of such a character that when com-

pounded with the incident wave the result will be zero displace-

ment of the string at B.

The simplest method for obtaining the form of the reflected

wave from this principle is by use of the terms inversion and

perversion. Hold a mirror perpendicular to the direction of

the stretched string ; the

image of a wave (in the

mirror) is called its inver-

sion. But if the mirror is

held parallel to the cord,

the image of the wave is called its perversion.

Let the upper wave in Fig. 135 represent the incident wave;

then the wave reflected from B will be exactly the same as one

FIG. 135. Condition of reflection from fixed

end.
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which is both the inversion and perversion of the incident wave.

For if we imagine the cord to be infinitely long, instead of stop-

ping at B, and if an inversion and perversion approaches B
from the rear, as far behind B as the incident wave is in

front, then the two waves will evidently interfere at B in

such a way as to leave the string unmoved
;
in other words the

boundary condition will be satisfied. The reflected wave may
therefore be simply described as the perversion and inversion of

the incident wave.

But suppose now that a train of waves is reflected at B ; then

each particular reflected wave will, at certain points in its return

path, meet an incident wave which is in exactly opposite phase ;

call this point -ZVj ; furthermore, if at any particular instant
.ZVj

is a point of exactly opposite phases, it will always be such a

point for waves of this length. When the reflected wave has

traveled half a length farther it will again meet an incident

wave in precisely opposite phase ; this will also be a point of

no motion ; call it -ZV
2

. All such points where the interference

is such as to produce no motion are called nodes. Midway be-

tween these are other points where the two trains of waves

incident and reflected meet in exactly the same phase: these

are called antinodes.

With a little practice one can make the rubber tube vibrate

in such a way as to show either one, two, or three, perhaps

more, of these nodes. The fixed point B is of course always
a node. Any portion of the vibrating string which lies

between two consecutive nodes is called a loop or ventral

segment.

The chief char- N 4^- ~~^*^~ ""be """x"' ~^W
acteristic of sta-
, . FIG. 136. Production of nodes in a string,
tionary waves is

that, at each point in the medium, the two interfering

trains differ in phase by a constant amount, ranging from

to 180. A string in which stationary vibrations have

been set up may therefore be clamped at any two nodes

even two consecutive nodes without changing the mode of

vibration.

One convenient feature of stationary vibrations is that the

nodes are easily observed by the eye ; and since they are just

half a wave apart, one can easily measure the length of the
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wave. Then, after eliminating V between the following equa-

tions, V=nl, Eq. 76

82

the frequency ( 49) of the wave motion is obtainable from

the directly measurable quantities Z, /*, and T.

Summary concerning Transverse Waves in Strings

1. Medium is linear.

2. Motion of particles is at right angles to direction in which

wave travels.

3. Speed of propagation is independent of the length of the

string, the material of the string, and the shape of the wave.

Speed depends only upon (i) the stretching force T, and

(ii) the linear density p,.

4. Wave reflected from fixed point is perversion and inver-

sion of incident wave.

5. In stationary waves the distance between two successive

nodes is half a wave length.

V. Resonance

195. When one attempts to ring a large church bell, he soon

learns that he must pull the rope at certain intervals if he

wishes to ring the bell with ease. Any heavy object, such as a

stone suspended from a crane, can be set swinging if one's

pushes are properly timed. A heavy rowboat or small sail-

boat, moored in quiet water, can without difficulty be set

rocking, if one throws his weight first on one side, then on the

other, at correct intervals. The order, "rout step," given
soldiers about to cross a bridge is to prevent dangerous vibra-

tions in the bridge.

What is more, every one knows how to discover the correct

interval in each of these cases. By watching the amplitude of

vibration, he at once times his efforts so that this amplitude
will increase. These are all instances of the mechanical prin-

ciple known as sympathetic resonance.

196. The following experiment should be carefully studied :

Mount two heavy pendulums of any kind upon one common
wall bracket or frame, as shown in Fig. 137. Heavy lead disks
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FIG. 137. Illustrating trans-

fer of energy by resonance.

on ^-inch iron rod, suspended by knife-edges at the top, do very
well. The upper end of the rod should be furnished with an

eye through which a piece of a three-cornered file may be

thrust for a knife-edge.

The lower end of the rod should be

threaded for three inches, so that the

bob of the pendulum may be held up

by a nut, and so that the period of

either pendulum may be slightly varied

at will. Paint one pendulum red, the

other blue.

1. Adjust the pendulums so that they
have very nearly the same period. Set

the blue one in vibration, leaving the

red one at rest. In less than one min-

ute, the red one will pick up sufficient

kinetic energy to set itself in vibration with an amplitude
not greatly inferior to that of the blue one.

Where did this energy come from ? How did it get from

the blue pendulum into the red pendulum ?

2. Now reverse the order. Set the red pendulum in motion,

allowing the blue one to be initially at rest.

3. Take a wooden mallet and tap one of these heavy pendu-
lums in a most irregular way. The result of a dozen such

blows is to disturb the pendulum very little.

Now give the same pendulum one-half dozen gentle taps,

delivering each tap just as the pendulum passes its position of

equilibrium, going away from you. How do you explain the

large amplitude which these six taps produce in the pendulum ?

4. Adjust the pendulums so that one is from 8 to 10 per
cent longer than the other. Set the blue one in vibration.

What is the history of the red one for the next five minutes ?

How do you explain the small amplitude and the complete

stoppages of the red one ?

197. A supremely beautiful example of resonance is ob-

tained in the following simple manner described by Professor

Wilberforce of Liverpool (Phil. Mag. October, 1894) :

At the lower end of a spiral spring suspend a mass whose

moment of inertia is variable, and which can be so adjusted
that its period of rotational vibration about a vertical axis is
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very nearly equal to its period of translational vibration along
its vertical axis.

Now it may be easily shown that a spiral of wire such as

a watch spring, or even a paper ribbon cannot be elongated
without at the same time being twisted,

nor can it be shortened without being
at the same time untwisted.

Accordingly, if such a spring as that

shown in Fig. 138 be set to vibrating

up and down, the suspended cylinder
will at each vibration be given a slight

torque. If these torques are timed,

as we have supposed, so as to coincide

exactly with the free period of rota-

tion, the cylinder will be gradually set

into rotation, until finally practically

all the energy of translation has been

transformed into energy of rotation.

But it is equally true that "a spiral

spring cannot be twisted without at

the same time introducing more or

less of a compressional stress along the axis ; nor can it be

untwisted without producing a stress which tends to elongate
the spring

Accordingly, when the kinetic energy of the spring has be-

come entirely rotational, and the difference of phase between

the two vibrations has changed sign (for the periods are not

exactly equal and even if they were at some one amplitude,

they would not be so at others), each oscillation of the cylinder
will produce a slight up-and-down motion, and the energy will

now be transferred in the opposite direction, until it is again

practically all translational.

What we have here, then, is resonance between two degrees
of freedom in the same body, each motion being simple har-

monic.

The following dimensions for Wilberforce's spring have been

found convenient :

Height of brass cylinder (Fig. 138) . . . . . Iff inches

Diameter of brass C}4inder (Fig. 138) .... ! inches

Length of brass screw 6| inches

FIG. 138. Wilberforce's

spiral spring.
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Diameter of brass screw ^ inch

Weight of brass traveling nuts, each
-^

ounce

Diameter of steel wire in spiral jL inch

Diameter of spiral . 1^ inches

Length of spiral (unstretched) 18 inches

Change of Wave Length due to Motion. Doppler's Principle

198. So far in our study of wave motion we have considered

both the source of the waves and the observer of the waves to

be relatively at rest. But if either the point at which the

waves originate or the point at which they are observed is in

motion, one with respect to the other, then the frequency of the

train of waves will either be changed or appear to be changed
in a definite ratio.

This idea may be most easily grasped perhaps from the fol-

lowing analogy, which is quantitatively correct for any ordinary
train of waves.

Imagine two boys seated some distance apart upon the bank
of a creek. Let the boy who is upstream have a basket of

corks from which he throws into the creek n corks each second.

So long as both boys remain seated the corks will float by the

lower boy at the rate of n per second, i.e. with a frequency of

n. And if the creek flows with a uniform speed V, the dis-

tance between the successive corks I will be given by the

equation T7
1 = -. Eq. 76

n

But let us now suppose that the upper boy starts down-

stream with his basket, the corks will now pass the lower boy
more frequently than n per second : while if the basket of corks

be carried upstream, the individual corks will float by the

lower boy less frequently than n per second.

When both boys were at rest, there were n corks distributed

over the distance traversed by the stream in one second ;
i.e.

over a distance numerically equal to V. When the upper boy
moves downstream with the speed D, there are n corks distrib-

uted over a shorter distance, namely, a distance numerically

equal to V v. Hence the wave length (distance apart of the

I
7
"

v
corks) is shortened in the ratio .
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If the boy with the basket had moved upstream, instead of

down, the wave lengths would have been increased, of course,

in the ratio
j^ ;

a ratio which is not quite, but nearly, the

reciprocal of the preceding whenever V is large compared
with v.

The student will find it an interesting exercise to prove that

if the boy with the basket remains seated, while the other boy
moves upstream with a speed w, the frequency of the train will

appear to be increased in the ratio j^> and hence the appar-

ent wave length is altered in the inverse ratio
V+u

When the boys both move up or down stream with the same

speed, the problem becomes more complicated, and its discussion

must be postponed. But when v is very small compared with

V v
V, it will be observed that is very approximately the

same as ; so that in this case the effect is practically the

same whether the source or the observer be in motion.

This general notion appears to have been first distinctly

enunciated by Christian Doppler in 1843, and is therefore

known as "
Doppler's Principle." It may be stated as follows:

When a source of waves, such as a tuning fork, is approaching

or receding from an observer, the length of the waves emitted is

decreased or increased respectively. When, on the other hand, an

observer is approaching or receding from a source of waves, the

frequency of the waves appears to be increased or diminished

respectively.

ON THE TRANSFER OF MECHANICAL ENERGY. WAVES
AND CURRENTS

199. The effects of waves on the seacoast are so well known
as to need no description. The energy of waves is here exhib-

ited on a gigantic scale, in some places undermining cliffs,

in others transporting large quantities of sand or tearing away
sea walls. Wave motion is, indeed, one of nature's general

methods for transferring energy.
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Every child who has plaj^ed with a garden hose knows that

the jet of water can be used to dig a considerable hole in the

ground. In the far West these jets are employed on a large
scale for mining. The process is known as hydraulic mining.

Currents of air are employed for running windmills, thus

transferring the energy of the wind to the water, which is

pumped into a tank in the attic of a house. One may transfer

energy to a body by throwing a stone at it or by firing a shot

at it. All of these are simply special kinds of currents.

Currents of matter may be called the second general method

which nature employs for transferring energy. The moving
matter, in these currents, may be air, water, stones, shot,

etc.

Our study of the subjects which follow, Sound, Heat, Elec-

tricity, Light, we shall find to be largely a study of the transfer

of energy by one or the other of these two general methods,

Currents and Waves.

Problems

1. A clothesline which weighs 1 kg. is stretched between two posts

which are twenty m. apart. The tension on the line is 3 million dynes.
How long will it take for a transverse disturbance started at one end to

travel the entire length of the rope ?

2. A stretched cord is set into stationary transverse vibration so that its

frequency is 120. The nodes are 40 cm. apart. With what velocity does a

wave travel in this string ?

3. Some long waves coming from the deep water of a lake strike upon
the edge of a shoal which is covered with a uniform depth of 8 in. How
fast will the waves travel through this shallow water ?

4. A train of water waves each of which is 20 ft. long passes a buoy
with a speed of 24 ft. per second. If at the instant under consideration a

crest is passing the buoy, what is the condition of the water at a point 85

ft. back of the buoy ?

5. Compute the speed of a wave 10 ft. long when traveling over the

surface of deep water.

6. How long must a wave in the Atlantic Ocean be to have the same

speed as the steamer Lusitania, 24 knots ?

7. The water in a wave tank diminishes in depth from 9 in. to 1 in.

How will the speed of large waves in this tank be affected ?

8. Will a train of very short ripples travel more rapidly in mercury or

in water? The surface tension of water in contact with air is 75; that of

mercury in air is 513.
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9. A whistle emitting 1200 vibrations per second is approached by an

observer at a speed of 60 ft. per second. Assume the speed of sound 1100

ft. per second. Find what number of vibrations the observer will appear to

hear in one second.

10. How much faster will a transverse wave travel in an aluminum wire

than in an iron wire of the same cross section stretched by the same force?



CHAPTER VI

SOUND

200. We have not been in this world very long before we
learn to attract the attention of our friends by the use of our

voice. At a very little later period we have learned to distin-

guish between the voices of friends. There is no longer any
doubt as to whether it is mother or father that is speaking,

though neither be in sight. We can soon produce sounds which

are more or less loud according to our wish. The ability to

"
carry a tune

" marks a period when we are able not only to

distinguish one note from another as having a different pitch,

but also to produce notes of different pitch. Not many years

later, and we have learned to distinguish the flute from the

piano, the piano from the guitar, the guitar from the human

voice, and so on. In childhood we discover the echo
;

first

perhaps that of a footfall approaching a good-sized building at

night. In early youth we observe that a distant locomotive

sends up a column of white steam some little while before the

sound of the whistle reaches our ears ; and we infer that it

takes time for sound to travel the intervening distance. There

is no longer any difficulty in distinguishing between a noise

and a musical sound ; and when several notes are sounded to-

gether, we decide at once which combination is harmonious and

which is unpleasant to the ear.

Something like the foregoing is a part, at least, of our common
" stock in trade

"
of information on the subject of sound ; but

the arrangement of these facts in our minds is perhaps quite as

chaotic as the above presentation of them. The object of the

present chapter is to aid the student in rearranging this large
but disordered heap of valuable information into a well-ordered

whole. This will involve the discovery of many new relations

among many familiar facts.

p 209
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201. In taking up the study of any group of phenomena
which are perceived by one of our senses, we are always con-

fronted by three problems :

(i) The first of these is the origin and transmission of the

disturbance, or stimulus, which is detected by the sense in

question ; a purely physical problem.

(ii) Next there is the structure and function of the sense

organ which detects the disturbance ; a purely physiological

problem.

(iii) Then there is the purely psychological problem involved

in the translation of physiological stimulation into perception.

The first of these problems, which is also the simplest, is of

course the only one considered in this chapter. Any good text-

book on Physiology, such as Huxley's, will discuss the second

problem ; and any good text-book on Psychology, such as

James's, will do the same for the third.

202. It is a little difficult for the student who has only just

covered the ground of General Dynamics, to realize that he has,

in a certain very true sense, been over the whole ground of

Physics.
The study of Acoustics largely a study of waves in air

is, from the student's point of view, a valuable one, forming as

it does a kind of connecting link between those visible motions

which we have just been studying, and those invisible motions

which we are shortly to consider under the heads of Light, Heat,
and Electricity.

Most of the motions involved in sound can be made evident

to the eye by proper experimental devices ; so that one realizes

here, perhaps more easily than elsewhere, that Physics is largely

Applied Dynamics.

ANALYSIS

203. The subject will be considered in the following order :

(i) Sound a wave motion.

(ii) Stationary waves in air.

(iii) Graphical representation of sound waves,

(iv) Reflection of sound waves.

/- \ c j e j f Solids,
(v) bpeed of sound in i

( Gases.
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(vi) Distinction between a noise and a musical sound.

Loudness.

Pitch.(vii) Three features by which musical tones

are distinguished from each other.
Quality.

(viii) Relation of tones to each other. The musical scale,

(ix) Application of preceding f Wind instruments.

principles to musical i Stringed instruments,

instruments. [Vibrating membranes.

I. SOUND A WAVE MOTION

204. Of the multitudinous sounds which reach our ears

during any single day, there are very few which we are not

able to "locate" at once. And when we find the source of

any sound, we find ourselves in the presence of some vibrating

body.
When one string of a guitar is emitting a note, there is no

difficulty in telling which one ; we have only to look at the

strings. A piece of thin steel say part of the blade of a hack

saw or piece of clock spring clamped in a vice gives a note

only when set in vibration. The sound disappears as the vibra-

tions "die down." The edges of a tuning fork become hazy
in appearance as it begins to emit a note.

Even when the sounds are not so distinct and definite as

those mentioned, we have no difficulty in finding the vibrat-

ing body. A carriage rolling over a stony street emits many
sounds ; but a carriage maker will quickly detect the vibrating

parts, and remove them or tighten them up, or interpose rubber

in such a way that these vibrating parts no longer receive

blows. The carriage then runs much more quietly.

In addition to the vibrating body, there is one other essential

feature in the production of every sound ; namely, an elastic

medium practically always air between the vibrating body
and the hearer.

The sound of a watch, a bell, or a clock, placed under the

receiver of an air pump, is much diminished when the air is

even partially removed. It is very difficult to make the sound-

ing body quite inaudible in a vacuum, for the reason that the

body must rest on some kind of support; and this support,

being necessarily somewhat elastic, will transmit some vibration
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to the receiver, and hence to the outside air. But we are per-

fectly justified in inferring that, if no elastic medium whatever

lay between the source of vibration and the listening ear, no

sound would be heard.

For the hearing of a sound, then, two things are always re-

quired :

(i)
A vibrating body, rapidly disturbing its surrounding

medium.

(ii)
An elastic medium connecting the vibrating body and the

listening ear.

II. STATIONARY WAVES IN AIR

205. One of the shortest cuts to a clear and accurate con-

ception of sound waves is through the following series of ex-

periments. Indeed, the whole philosophy of air waves and the

propagation of sound is wrapped up in them. But the first

step in understanding stationary waves in air is to understand

the nature of the vibrating body which produces them. Hence

we first consider th^T

Longitudinal Vibrations of a Rod
\

A round brass rod AB from 8 to 10 millimeters in diameter

and from 80 to 100 centimeters in length is clamped to a table

in an ordinary vise or by means of an iron clamp, as shown in

the figure. A small ivory ball or glass marble or hollow sphere

is suspended by two

strings, as indicated, so

as just to touch the end

of the rod B. When
B rubbed with a dry cloth

upon which a little pow-
dered rosin has been

sprinkled, the rod will

emit a very high musi-

Fia. 139. Showing longitudinal vibrations of cal note. It is not the
brass rod '

easiest matter in the

world to get this note at first, but every one succeeds after

a few trials
; a fairly firm grasp and a quick but steady pull

will generally accomplish the end.
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When this note sounds, it is observed that the ivory ball

rebounds, often several inches, showing that it has received a

blow from the direction AB.
The rosin on the cloth has evidently taken hold of the rod

and elongated it, then let it go, taken hold of it again, suddenly
let it go again, and so on. The vibrating body here is evi-

dently the brass rod. The motion of the particles in the rod

is evidently in the direction AB. This is shown by the fact

that they are originally displaced in that direction by the rosin

and by the fact that the momentum which they communicate

to the ball is in the direction AB. Such vibrations we have

( 191) called longitudinal.

When the brass rod is elongated by a pull and suddenly let

go, would you expect, from analogy with other bodies, that it

would go back to its position of equilibrium and stop there, or

would you expect its inertia to carry it beyond ? Would you
consider it necessary, for the production of free vibrations, that

the vibrating body have inertia as well as elasticity ? When
the length of a rod is altered, as in this case, by stretching,

what four factors determine the force which restores it to its

original length ? The present is an excellent occasion for re-

viewing the whole subject of elasticity.

Are the ends of the vibrating rods nodes or antinodes ? The
middle point must be a node because it is held fast by the iron

clamp.

Character of Disturbance in Air

206. Let us now suppose that the nature of the vibrations in

the rod is clearly understood. What sort of disturbance does

the rod produce in the air ? The displacement of the particles

in the rod was so small and rapid as to be invisible ; we were

obliged to get our evidence by means of the ivory ball.

In air, not only is the disturbance small and rapid, but

the whole vibrating mass is invisible ; so that, even when
the disturbances are large and slow, we do not ordinarily see

them.

However, Topler of Dresden has shown that by a certain

disposition of apparatus which he describes as the schlieren

Methode it is quite possible to see these waves ; while Mach of

Vienna has succeeded in- photographing the stationary waves
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which accompany a Mauser rifle ball, as

shown in Fig. 140, and Wood of Balti-

more has photographed sound waves

under many interesting circumstances.

Kundfs Resonance Tube

207. Nevertheless, the simplest man-

ner of putting air waves into objective

evidence is probably the following, which

was devised in 1865 by the late Professor
FIG. 140. showing the com- J

pressions and rarefactions Kundt of Berlin :

which accompany a rifle TO one end of the brass rod described
ball in its flight. , ,. . , .

in the preceding section attach a disk of

cork B which fits loosely into a glass tube about 30 millimeters

in diameter and a meter in length.

By the aid of

a cork and a file A

you can, in a mo-

ment, make enough
FIG. 141. Kundt's device for studying waves in air.

cork dust* to

lightly cover the bottom of the tube.

At the end D of the glass tube, fit another easily moving

piston, so that the distance between the two pistons D and B
can be varied. A large glass tube is more easily excited into

longitudinal vibrations than the solid brass rod.

Such an arrangement is called a Kundt's resonance tube.

Set the brass rod into longitudinal vibration as before. If

the cork piston at B is free and does not rub on the walls of the

glass tube, the elastic air will be disturbed very much as the

ivory ball was. As the rod elongates, the air between the two

pistons must be suddenly compressed, for it has not time to

escape around the edge of the disk the compression is too

quick for that ; when the rod contracts, the inclosed air is

suddenly rarefied.

This rod thus starts a train of waves down the tube exactly

analogous to those which we produced in the long spiral

spring ( 191). When this train of waves strikes the fixed

* Avoid the lycoppdium powder which is sometimes recommended for this

purpose. The slightest bit of breath or moist air introduced into the tube will

make the dust adhere firmly to the walls of the tube.



SOUND 215

piston (Fig. 142), we have all the conditions necessary for

reflection. And if reflection occurs, we shall have a train of

waves starting back in the direction from D and B. We
should then expect this train of reflected waves to interfere

with the incident train and B D

produce stationary waves with =p
their characteristic nodes and

e=

loops. The nodes would be FlG 142 _ Showing action of piston in

those points in the tube at Kundt's tube.

which the cork dust is not disturbed ;
the loops would be

clearly marked throughout their length by the motion of the

dust.

208. The evidence for thinking that the phenomena which

we have just predicted are the phenomena which actually occur

is then the following :

1. Air is a fluid. It has, therefore, no elasticity of shape.

It cannot, therefore, transmit transverse vibrations.

2. There are certain equidistant points in the tube where

the cork dust is not at all disturbed. (If these are not

sharply marked on first rubbing the brass rod, the cork at D
should be shifted a little.) These correspond to the nodes

predicted.
3. Between these points of rest there are certain regions of

very great disturbance. These correspond to the predicted

loops.

4. By slightly adjusting the fixed piston, the nodes and

antinodes become much more sharply marked. And this

result is exactly what one might expect if the air waves had

a definite wave length determined by the vibrating rod and not

by the glass tube.

5. To these reasons for thinking sound waves longitudinal,
must be added the very cogent evidence furnished by the inano-

metric flame, which will be considered later, 219.

From testimony of this kind one is led to think that sound con-

sists of a wave motion in the air, and that the motion of the par-

ticles of air is to and fro in the same direction as that in which

the sound is traveling, that this longitudinal wave motion can

be reflected, and that two trains of sound waves may interfere to

produce stationary sound waves.
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What really travels through the air, then, is a series of com-

pressions, alternating with a series of rarefactions. This is

fairly represented in Fig. 143.

Just how far apart these successive rarefactions and compres-
sions are depends entirely upon how fast the piston works.

Every time the pis-

ton moves forward, a

FIG. 143. Showing the compression and rarefactions

in Kundt's tube.

compression occurs;

this compression
starts out on its journey traveling at a definite rate. When
the piston goes back, a rarefaction starts out. These disturb-

ances travel in the same direction and with the same speed.

The distance through which a compression (or a rarefaction)

travels while the piston makes one complete oscillation to

and fro is called a wave length. And this corresponds exactly

with the definition of wave length given above ( 180);
viz. the distance between any particle and its nearest neighbor

that moves in the same phase.

III. GRAPHICAL REPRESENTATION OF SOUND WAVES

209. It is not possible to go much farther with the discus-

sion of air waves without an exact graphical or analytical mode

of describing them. The former of these two methods is the

only one here available.

As to the proper mode of representing water waves there

can be no question. We have only to draw a vertical section

through the body of water at right angles to the crest of the

wave. Such a section is

Q
shown in Fig. 118. The <

distance of any particle

above or below the level

surface OX measures the displacement of the particle.

Nor can there be any hesitation as to the proper way of rep-

resenting transverse waves in strings. Imagine the vibrating

string at any instant to lose its flexibility ; let it instantane-

ously become a rigid body, and we have at once a picture of

the wave. Such a diagram is shown in Fig. 129.

The vertical distance of any particle from the position of

equilibrium OX in Fig. 118 gives the displacement of that

particle. This is the distance which is called the ordinate of

FIG. 118.
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the curve. From such a curve we can instantly point out those

particles which are in the same phase, or in opposite phase.

Be able to go to the blackboard and point out on such a curve

a series of points which differ in phase by 180 ; and another

series which differ in phase by 90.

But suppose that we are dealing with a compression running

along a spiral spring. Here the displacements of the particles

all lie in the direction of the stretched spring, i.e. along
the line OX, which represents the position of equilibrium.

How then shall we draw these displacements? And the

same question arises when we attempt to picture a sound

wave.

The whole question is this : How shall we represent the

state of disturbance at any and every point in the air when a

train of waves is passing through it ?

The method is as follows : We agree to represent all waves

in one way, namely, after the manner of the transverse wave

in Figs. 129 or 136. To every particle of air in the line

along which the wave travels corresponds a point on the curve.

But when the wave is longitudinal, the ordinate of any point

GRAPHIC REPRESENTATION

OF LONGITUDINAL WAVE

FIG. 144.

on the curve represents the displacement of the corresponding

particle along the line OX. Displacements then are represented

by lines drawn at right angles to the actual displacement. This

convention leads naturally to the following rules, for any point
in the medium :

(i) Positive
f ordinates indicate displacement of air particles

Negative
'

i right.
to *

left.

[positive 1

(ii) Where the tangent to the wave is < ,
. >, there

[negative]

J
rarefaction.

!

[compression.
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Thus Fig. 145 represents a wave in which the displacements
are all to the right, and in which the progression of the wave

is also to the right.

Any point c on the

front of the wave
(

indicates a compres-
FIG. 145. A solitary wave in air, compression leading. . . .

sion. Any point r on

the rear side of the wave indicates a rarefaction. A point

exactly at the top of the wave represents that point in the

medium where there is neither compression nor rarefaction, but

ordinary atmospheric pressure. Such a wave might have been

produced by giving the piston of a Kundt's tube a single short

quick displacement
to the right.

Figure 146 repre-

sents a wave in air FIG. 146. A solitary wave in air, rarefaction leading.

which might have been produced by displacing the piston

suddenly to the left. Here the rarefaction leads and the dis-

placement of the particles is in a direction just opposite that of

the wave motion. A solitary wave of the type of either

Fig. 145 or Fig. 146 is generally called a pulse ; so also is the

blow which produces it.

IV. REFLECTION OF SOUND WAVES

210. The echo from a hillside or from a large building is

familiar to every one. But reflection of sound is more conven-

iently shown by placing a watch in the focus of a parabolic

mirror, as indicated in Fig. 147.

The mirror thus reflects a beam of

sound, so to speak, which may be

directed to any portion of the

room. This also illustrates the

fact that the direction of the re-

flected beam is determined by the

same rule as in the case of a bil-

liard ball reflected from the cushion

of the table or as in the case of water waves (Fig. 122) strik-

ing a pier; namely, the direction of the incident sound and the

direction of reflected sound make equal angles with the normal

to the reflecting surface.
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211. But in many cases

The Phase of the Reflected Wave

is also a matter of great importance especially in Kundt's

tube. Here reflection occurs at the face of a solid piston ;

hence the condition of reflection is that there shall be no motion of
the air particles which lie immediately against the wall. The

graphical method studied above tells us at once that the

reflected wave must be both the perversion and inversion of the

incident wave as shown in

Fig. 135. For this is the

only wave form which will

compound with the inci-
, , , . FIG. 135.
dent wave and travel in

the opposite direction, yet always give a zero displacement at B.

Observe, however, that the slope of the resultant at B is far

from zero. The value of the tangent is sometimes positive,

sometimes negative, sometimes zero, showing that while the

motion at B is zero, the pressure there is continually varying.

Curiously enough the waves in the Kundt's tube are reflected

also when the fixed piston is removed, and the end of the tube is

left open. Here the boundary condition is changed ; for now the

air at the end of the tube is perfectly free to move to and fro,

but the pressure is invariable, namely, that of the atmosphere.
The graphical method tells us now that the reflected wave must

be such as to keep the tangent of the resultant wave always

INCIDENT REFLECTED

FIG. 148. Condition of reflection from open end.

zero. From which it follows that the reflected wave is the

inversion of the incident, as shown in the accompanying figure.

212. One of the most highly instructive cases of reflection

is that which occurs when a single sharp disturbance of the air

is produced in front of a long flight of steps or near a fence

constructed of vertical bars. From each step or bar is reflected

a little wavelet ; but since the distances of the steps from the

ear increase in arithmetical progression, it follows that these
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wavelets will reach the ear as a succession of pulses a train

of waves in fact. The result is then that a single incident dis-

turbance is reflected as a definite musical tone, whose frequency
is determined by the distance apart of the bars.

About the campus of Northwestern University there is an

iron fence, built of square bars placed 6| inches apart. On

any evening when the air is acoustically clear, every footfall on

the concrete walk which runs alongside the fence is reflected as

a musical note whose pitch is about two octaves above middle

C on the piano.

This phenomenon, which seems to have been first recorded

by Thomas Young in 1813, has a very important bearing upon
the explanation of what we call "white light," a difficult

inquiry which must be reserved for much later study.

V. SPEED OF SOUND

213. The interval which elapses between the fall of a dis-

tant tree or stone and the noise which reaches the ear must

have been observed in primitive times. But the first accurate

measure of the speed of sound was made by a commission

appointed by the French Academy of Science in 1738. Some
five or six stations near Paris were selected

; a cannon was

placed at each station ; observers at each of the other stations

recorded the interval between seeing the fire and hearing the

report of one of the guns. By combining observations made
in diametrically opposite directions from the gun, they elimi-

nated the effect of the wind. The results obtained were, when
reduced to a temperature of C., 332:9 meters per second.

These experiments were suggested largely by the fact that

Newton (Principle Book II, Proposition 50, Scholium) had

some years previously computed the speed of sound from purely

dynamical principles.

By methods whose details would here occupy too much time

he concluded that the speed with which a compression or rare-

faction travels through the air is given by the expression

Eq. 85

where V= speed of the disturbance,

E = voluminal elasticity of the air,

D = density of the air.
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In Newton's time the pressure of the air (approximately 1.014

million dynes per square centimeter) was thought to represent

its elasticity. For the density of air, Newton employed the

approximately correct value ^ ^ grams per cubic centimeter.

These data gave him a value of V which was nearly 20 per

cent smaller than the observed values. In the meantime, 1816,

Laplace had explained this discrepancy by pointing out that

the rarefactions and condensations which occur in sound waves

are so rapid that there is not sufficient time for equalization of

temperature between them, and that the value of E to be

emplo}^ed in Eq. 85 is that which represents the elasticity of

air when no heat is admitted to it or leaves it. This elasticity

was measured and was found to be 1.41 times greater than

when the temperature of the air is maintained constant.

Introducing this correction factor, which is generally indicated

by 7, and denoting pressure by p, Laplace's expression for the

speed of sound becomes

At this point Laplace requested the French government to

make some new measures of this -quantity, which they did in

1825, by a more refined application of the same method as

employed by the French Academy. Their result (331.36
meters per second at C.) compared very favorably with that

predicted by Laplace. More accurate determinations have

been made since, of which a fair average value would probably
be 332 meters per second at C.

Laplace's expression carries with it two interesting conse-

quences. (i) From Boyle's Law (Eq. 74) we know that
-^

does not vary at any one temperature. Hence as the barometer

rises and falls one does not expect the speed of sound to change ;

for the density is altered in the same ratio as the pressure.

(ii) But when the barometer remains constant, and the

temperature changes, we should expect the density of the

heated air to be less than that of the cooler, and consequently
the speed of sound to be greater in warm air than in cool. And,

indeed, the fact has been well established that, for atmos-

pheric temperatures, the increase of velocity is about 60 centi-

meters per second per degree centigrade.
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Speed of Sound in Solids

214. When the speed of sound in air is known, Kundt's tube

offers us a beautiful method of finding the speed in the rubbed

brass rod. When the brass rod is set into longitudinal vibra-

tions we know that, whatever the length of the wave which

travels through the brass rod, the two ends of the rod are

antinodes ;
for they are free, and when compared with other

parts of the rod they are places of great motion. The middle

point likewise must be a node, because it is clamped, and is

hence a place of no motion. Not only so, but it is the only

node in the rod. The ends of the rod are then successive

antinodes ; accordingly the distance between them is one half

the wave length of the disturbance in the brass.

Let us denote by JVthe frequency of the brass rod, and by L
its length ; then, employing the fundamental equation of wave

motion, 181,

Speed in brass = 2 NL.

Whatever the frequency of the vibrations in the column of

air, we know it is the same as the frequency of the brass rod.

Let us call the distance between successive dust heaps d; then

Speed in air = 2 Nd.

TT Speed in brass _ 2 NL _ L
Speed in air 2 Nd d

. . Speed in brass = (L/d) 332 meters per second.

Accordingly, we have to measure only the distance between

the dust heaps and the distance between the ends of the brass

rod.

Evidently the same method may be employed with steel,

glass, wood, and other substances.

Speed of Sound in Gases

215. Most useful of all is Kundt's tube in determining the

speed of waves in various gases. For this purpose a glass rod

(Cr, Fig. 149), held rigidly at its middle point by being corked

and waxed into the outer tube, is better than the brass rod.

The movable piston rod at the other end must be reasonably

gastight. Into each end is sealed a tube through which

various gases can be introduced and removed. Measure the
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1

distance between the dust heaps when the tube is filled with

air. Denote this distance by I. Now fill the tube with ordi-

nary coal gas. The dust

heaps are much farther

apart than before. Call
G

J =fl ^ llr=a

that distance L, Let N FIG . 149. A form of Kundt's tube for use with

be the frequency of the various gases.

glass rod. Then, since the fundamental equation of wave

motion always holds, we have

Speed in coal gas = 2 NL,

Speed in air = 2 JVZ,

and hence, eliminating JV, the numerical value of which we do

notknow'

Speed in coal gas ^L ^
Speed in air I

'

where both quantities in the right-hand member are easily

measurable. The process for other gases is essentially the

same.

When once the speed of sound has been measured for any

particular gas, Laplace's equation (86) furnishes a convenient

means of determining the value of 7, a constant of great im-

portance in the theory of heat.

Sound Waves in Three-dimensional Space

216. Hitherto we have been considering waves in air as they
travel through tubes, say through a speaking tube; but in

ordinary conversation we stand in an open space, surrounded

FIG. 150. Sound waves in air.

by air on all sides ; the voice is heard by those at our back,

also by those in front, and by those at our side. The waves

produced by our voice evidently travel away from us in all
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SPEED OF SOUND

SUBSTANCE
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all the recording barometers on the earth were affected. And

by such means this great disturbance was followed through
three trips from Krakatoa, near the island of Sumatra, to the

antipodes. The entire circuit of the globe was performed in

the almost incredibly short interval of 36 hours.

Compute the speed of this wave and compare it with the

speed of sound as given in the preceding pages.

217. Preceding is a table containing the speed of sound in a

few of the more important substances.

VI. DISTINCTION BETWEEN A NOISE AND MUSICAL
SOUND

218. It is not a violent assumption to suppose that every
student recognizes at once the difference between a musical tone

and a noise even though individuals may classify differently

the performance of a bagpipe or of a hurdy-gurdy. But the

problem which confronts us here is to distinguish between

the character of two mechanical disturbances, one of which

produces music, the other noise. How do the vibrations of a

wagon rumbling over cobblestones, of the splash of water, or of

footsteps on a pavement, differ from those of a wire in a piano ?

To answer this question intelligently one must first discover

some means for accurately describing the vibrations emitted by
various bodies.

The Manometric Flame

219. So far as concerns a picture of sound waves in the air,

nothing can surpass in beauty and simplicity the " manometric

flame,'
1

which was invented and perfected by Rudolph Konig,
of Paris. The con-

struction of the in- I J R

strument will be

clear on considera-

tion of Fig. 151.

Two blocks of

wood, R and $, are

bored out. Be-

tween them is

clamped a dia-

phragm of very
Q

COMPRESSION

FIG. -151- Konig's device to show variation of pressure

produced by sound waves.
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thin goldbeater's skin. This diaphragm divides the whole

apparatus into two parts. On the left-hand side of the

diaphragm illuminating gas is admitted, as indicated by
the arrows, and so long as the diaphragm is undisturbed,

the flame is apparently undisturbed. But if the disturbance

of the flame is very rapid, as is the case with acoustical

disturbances generally, we might not be able to detect by
the eye any changes in the flame. Accordingly a rotating
mirror is placed near the flame. A crank enables the

observer to give this mirror a moderate angular speed, say two
or three turns a second. For every new position which the

mirror assumes, the image of the flame takes a new position.

The effect of rotation on the mirror is, then, to separate the

images of the flame at successive instants.

The space on the right of the diaphragm M is one end of a

speaking tube, a sort of cul de sac, into which all kinds of

sound waves can be sent for examination and study.
The effect of a sound wave (if our previously formed concep-

tion of sound waves be correct) upon the diaphragm will be to

drive it alternately forward and backward. When a compres-
sion arrives at the diaphragm, the membrane will be thrust

slightly to the left. The gas space 6r will suddenly be made
smaller in volume ; the pressure of the gas will as suddenly

rise; the flame will immediately become higher just as if

more pressure had been put on at the gas works.

But this compression in the speaking tube will be followed

by a rarefaction. What is the effect of this rarefaction on the

membrane? The pressure on the right diminishes, the mem-
brane moves to the right, the pressure in the gas chamber Gr sud-

denly diminishes ;
the flame as suddenly diminishes in height.

The essential features of the instrument are, then :

1. A membrane which responds at once to any displacement
of the air particles adjoining it; i.e. to any wave of compres-
sion or rarefaction.

2. A gas flame so arranged as to respond to every motion of

the membrane.

3. A mirror that can be rotated so as to separate the succes-

sive images of the flame, and thus allow us to detect the varia-

tions of pressure at the membrane due to any disturbance of

the air.
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A VIOLIN STRING STRONGLY BOWED .

A VIOLIN STRING GENTLY BOWED

A TUNING FORK. YIELDING THE SAME NOTE .

FIG. 154.

Since now the height of the flame measures, in a general way,
the displacement of the particles adjoining the membrane, we
need only draw an out-

line of the image of the

flame in the rotating
mirror, and we have at

once a graphical repre-

sentation of a sound

wave. Such are the

following diagrams (see

Fig. 154). They mere-

ly record the variations

of pressure produced by
three different trains of

waves at the membrane of the manometric flame. As the

name indicates, such a flame is simply a quick-acting barome-

ter, responding to changes of pressure which occur at rates

even as high as several hundred per second.

220. If now one examines with this instrument a number of

noises and musical tones, he finds that corresponding to these

two different sensa-

tions, the mano-
metric flame shows

two different kinds

of disturbances in

the air. These are

exhibited fairly well

in Fig. 155. The
FlG - 155 - noise is made up of

many small parts of trains of waves, all jumbled together.

But the flame shows that a musical note is produced by one

train of uniform waves.

It shows also that vowels, as employed by singers, are

musical tones, while consonants are essentially brief noises.

"The sensation of a musical tone is due to rapid periodic

motion of a sonorous body ; the sensation of a noise to non-peri-

odic motion." -HELMHOLTZ, Sensations of Tone, p. 8.

GRAPHICAL REPRESENTATION OF A NOISE.

GRAPHICAL REPRESENTATION OF A MUSICAL NOTE.
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VII. THREE FEATURES BY WHICH MUSICAL TONES ARE
DISTINGUISHED FROM EACH OTHER

A. Loudness

221. When the key of a piano is struck gently, and again
with a hard blow, we recognize that the two notes thus pro-
duced are alike except that the second is louder than the first.

The vibrations of a guitar string when first struck are suffi-

ciently large for us to see them ; but as the vibrations diminish

in amplitude, we observe that the note diminishes in loudness.

When a note is sung into the tube of a manometric flame, it

is at once evident that the indentations in the ribbon of flame

are deeper in proportion as the

note is louder (see Fig. 156).
That is, the louder the sound,

the greater the displacement
f the air particles against the

B membrane.

FIG. 156. -.1 and B are two notes alike From these, and similar

in all respects, except that A is louder experiments, it is concluded

therefore that the loudness, or

intensity, of a sound increases or diminishes as the amplitude of

the vibrating air particles at the ear increases or diminishes.

Since the energy of a vibrating body is, other things being

equal, proportional to the square of its amplitude, loudness evi-

dently increases with energy of vibration in the source. The
variation of loudness with distance is an immediate conse-

quence of this fact. For when a sound wave spreads out as

indicated in Fig. 150, 216, the energy emitted by the source

during any minute interval of time is, at any later instant,

spread out over a spherical surface which has the source at its

center. Now the area of this spherical surface must increase as

the square of its radius and hence the quantity of energy which

is incident upon the ear at any given instant must vary in-

versely as the square of this distance, a fact with which every
one is familiar.

Digression on the Effect of Wind upon the Intensity of Sound

222. When a spherical wave is propagated in the manner just

described, it is customary to describe the continuous locus of
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all air particles having the same phase as the wave front.

When an observer is at some distance from the origin of the

sound, the wave front which strikes his ear is practically plane.

Suppose that a wind is blowing in the same direction in which

the sound is proceeding. One might expect the apparent speed
of sound to be slightly increased ; or if the wind be traveling

against the sound, he would find the speed slightly diminished.

But it is a matter of common observation that the audibility or

loudness of sound coming from any considerable distance is also

dependent upon the direction of the wind. A sound is said to

"
carry

"
better with the wind than against it.

The explanation of this phenomenon was first given, in 1857,

by Stokes of Cambridge. He argued that since the upper lay-

ers of the air are always carried along more rapidly by the

wind than those next the surface of the earth, a vertical plane

wave front traveling with the wind will, as it advances, be-

come more and more inclined toward the surface of the earth,

as shown in Fig. 157. In

this manner the sound is,

so to speak, continually

brought down to the ear

of the observer. But if

the SOUnd be traveling FlG . 157. -Sound traveling with^i^ Dotted

against the wind, the up- lines show successive positions of wave front in

per portions of the ad vane- stl11 air "

ing plane wave front will be bent backwards so that the sound

is directed somewhat upwards and above the listening ear

as shown in Fig. 158.

If we remember that

sound always travels in a

direction perpendicular
to the wave front, it will

be clear that the observer
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any sounding board gives a thin, weak sound
;
but when

stretched over the body of the violin, the sound is full and

resonant. The explanation of this phenomenon, which is as

follows, was also given by Stokes (Papers, Vol. IV, p. 299) :

When a solid body moves through the air slowly, the air

flows from in front toward the rear, almost exactly in the same

manner as if the solid were moving through an incompressible
fluid ; but when the motion becomes very rapid, the air in

front is to some extent compressed, and equalization of pres-

sure between the front and rear does not occur in exactly the

same manner as before. If, however, the vibrating body be

thin and small, as a piano wire, the equalization of pressure
between front and rear is very much facilitated. But in the

case of a broad flat body, such as the sounding box of a guitar,

there is less chance for the lateral escape of the air and hence,

corresponding to every slightest vibration of this board, a

wave of condensation and rarefaction is emitted. For the air

can no longer behave as an incompressible fluid unless the fre-

quency of vibration be very much less than that employed in

music. Thus, although the amplitude of the sounding board

is much less than that of the string, the actual amplitude at

the ear is enormously increased by its use. In the reenforce-

ment of sound in this manner the two fundamental factors are,

then, the size and frequency of the vibrating body.
Stokes illustrates this principle most

beautifully by holding a tuning fork near
"" a piece of cardboard in the position indi-

cated by the plane B in Fig. 159, where

the two small rectangles represent a hori-

zontal cross section of the fork. If the

cardboard be placed in the positions A
or (7, the air in front of the vibrating

prong has no difficulty in getting around

to the rear, but when the fork is held
>

near the edge of the cardboard, as in jB,
FIG. 159. Stokes's explana-

tion of effect of sounding these side currents are hindered, and
board, waves of compression and rarefaction,

instead of annulling each other, go to increase the intensity of

the sound.
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B. Pitch

224. On clamping a piece of steel or brass spring, say a

piece of clock spring, in a vise, one observes not only that the

spring vibrates more rapidly as it is made shorter, but also

that it emits a higher note. (See Fig. 160.)

In the case of a wire, whether stretched from

one fence post to another or between two fixed

pins in a piano, there is no doubt but that it

vibrates more rapidly the more it is stretched;

we observe also that the note it emits is higher

and higher the more it is stretched.

From such experience we might suspect the

pitch of a note to depend upon the frequency
FlG - 1(

^.
Illus-

( 49, 181) of the vibrating body. But we need
fact thaTpitch

more direct and conclusive evidence to thoroughly varies with,

establish such a conclusion. A card held against
fre(iuency-

a rotating toothed wheel will furnish us just such evidence.

Here we compel the card to make one vibration every time it

passes a tooth. The frequency of the vibrating card is the

number of teeth passed per second. When the wheel slows

up, the pitch of the. note produced by the card falls ; when the

wheel increases in speed, the pitch of the note rises.

If still further evidence be desired, try the following ex-

periment :

Into the speaking-tube of a manometric flame sound two

notes of different pitch in rapid succession. Or, what is better

still, use two manometric flames placed near each other and

viewed in the same rotating mirror. It is then easily seen that

when the flames are excited by notes of the same pitch, the

notches in the image of each flame are at the same distance apart.

But if either flame be excited by a note of higher pitch, the

notches on this flame are closer together. And if one note

be an octave above another, we

^/^/'^/'^T/^/^7/^1/^1 see that the notches are exactly
A twice as close together in the

high note as in the low. (See

B
, "77

"

77 7,
~

think that the pitch of anyT IG. 161. A and B are two notes alike in

ail respects except pitch. tone depends simply upon the
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frequency of the vibrating body which produces it; or, what is

the same thing, upon the period of the vibrating body.

For, if we denote the frequency by n and the period by T,

_ _j; Defining equation~ m for frequency.

The numerical value of any pitch is the frequency n. A
tuning fork which makes three hundred vibrations per second

is said to have "a pitch of three hundred."

225. There are many laboratory methods for the actual

determination of the pitch of sound, most of them based upon
the characteristic equation of wave motion ; namely,

V= nl Eq. 76

The following must suffice as a type of them all. Take a

small whistle, such as that devised by Galton, for the source of

sound whose pitch

is to be measured.

This source is placed
at one end of a Y-

shaped tube which

opens into two
parallel tubes.
These parallel tubes,

at their farther end,

again . unite into a

Y-shaped tube, as

shown in Fig. 162.

If, now; a gas
flame which is just

on the point of flar-

ing be placed at the

end of this second

Y, it will serve as a

very sensitive means

for detecting any
disturbance in the

air at that point.

The U-shaped por-

tion of one of these

FIG. 162. parallel tubes is so
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arranged as to telescope upon itself, somewhat after the fashion

of a trombone.

In this manner the length of path from the whistle to the

flame is constant through one tube and variable through the

other. At the first Y, the wave which leaves the whistle is

divided into two parts. These two parts reunite at the second

Y, but the phase in which they meet depends upon the differ-

ence of length between the two routes which they travel. If

this difference is a whole number of wave lengths, the two
waves will reenforce each other ; but if their path differs by an

odd number of half wave lengths, they will interfere and pro-
duce silence. As the telescope is moved along, these silent

points will be indicated by the sensitive flame. If now we
measure the difference in length of the variable tube between

two successive silent points, we shall have the wave length of

the tone which is emitted by the whistle. Knowing the velocity
of sound in air V, we may now easily compute n from Eq. 76.

One advantage of the sensitive flame is that it may be used

even when the pitch of the whistle is so high as to be inaudible

to the human ear.

C. Quality

226. But two notes may have the same pitch, and may have

the same loudness, and yet be quite different. Two tenor voices

singing the same note with equal loudness may be easily distin-

guished ; for, as we are accustomed to say, they have different

qualities. Strike the same note upon a piano and upon an

organ ; let them be equally loud ;
no one finds any difficulty in

distinguishing the piano from the organ. Two of our friends

may converse in the same key and with equally loud voices,

but we do not hesitate in telling their voices apart, even though

they stand at our back, or perhaps in the dark. Their voices

have a different quality. These differences are most strikingly

illustrated in the various instruments of the orchestra, where

we recognize with great ease just which instruments are being
used. A guitar string when plucked at its middle emits a note

of different character from that of the same string when plucked
near one end.

How shall we explain these differences, so familiar to every
one ? Difference of amplitude produces difference of loudness.
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Difference of frequency produces difference of pitch. But

what produces difference of quality ?

The most direct answer to this question is obtained by means

of the manometric flame. Into the speaking tube of such a

flame pronounce as nearly as possible, with the same pitch and

loudness, each of the vowels of the alphabet. It is observed at

once that the ribbon of flame seen in the mirror is different in

each case ; to each particular vowel corresponds a wave of

different shape. The notches in the ribbon have not the same

form for any two vowels. It is then the form of the wave which

determines the quality of any note.

It is well to remember that, while to every different quality
there corresponds a different form of wave, Helmholtz has

proved that the converse of this is not true. Quality depends

simply on what components combine to produce the wave, not

at all upon the phases in which they combine.

In Fig. 163 is shown the appearance of two flames each excited

by a note of the same frequency and same loudness, but of

different quality. In this case

see not only that the form of

the wave in A is different from

that in .5, but we see just how

it differs.

In B there is present a small

FIG. 163. TWO notes of the same pitch wave having twice the frequency
and loudness, but of different quality. Qf ^ of ^ go

sents the fundamental, while B represents a note in which both

the fundamental and the octave are present.

In the case of the vowels which we have just examined, this

difference of wave form is brought about by changes in the

cavity of the mouth. Pronounce the vowels a and o in succes-

sion, and observe the manner in which you change the air space

inclosed within your mouth during the interval between the

pronunciation of the two vowels.

In general, experiment shows that the wave form which

determines the quality of any tone depends upon the presence

of vibrations more rapid than the fundamental, the fundamen-

tal being defined as the lowest note which a body can give

out. These other and higher notes are called overtones or

harmonics.
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227. The presence of these harmonics in a piano wire may be

easily shown by holding down a key of, say, middle C, and then

striking several times a note one or two octaves below. It will

then be found that when the vibrations of the lower note have

been damped out, the upper note is still sounding, owing to

resonance between it and one of the harmonics of the lower

note.

The resonators devised by Helmholtz (which are simply hol-

low spheres tuned to respond to certain definite tones), when

connected with a manometric flame, form a very sensitive means

for detecting those harmonics which have the same frequency
as the resonators.

The existence of these overtones may easily be shown in any
stretched string. Damp the string at the middle point. If

now it be bowed at a point one quarter of the length of the

string from either end, the string

will vibrate as shown in Fig. 164,

B, and the octave of the funda-

mental will be heard. Evidently,

therefore, the first overtone in a

stretched string is the octave of

the fundamental. For ( 215),

F'=2w.L=2 WjZ/j, where n is the

frequency of the fundamental and

FUNDAMENTAL 1:1

first overtone : and

is the frequency of the

since = 2, it follows that - 1 = 2. It
L\ n

may be shown in like manner that the pitch of the next over-

tone is to that of the fundamental as 3 : 1. The third overtone

is two octaves above the fundamental, and so on.

A better method still of showing these overtones is by aid

of two open organ -pipes

FUNDAMENTAL OF HIGHER NOTE
165), one of which

.

^~"
''

^ ~~^j N v
is an octave above the

--^.- T7RST OVEHTO other. When both are
-I __-- -' ~-___ ___ ~"^_,_OF LOWER NOTE

FIG. 165. -Showing wave length of overtone in sounded at the same time,

one pipe equal to wave length of fundamental the first Overtone of the

lower pipe can readily be

made to beat with the fundamental of the higher pipe. It is

these higher and feebler tones which give the distinguishing

quality to any particular note.
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228. Here is perhaps the place to mention a useful dis-

tinction between the terms "note" and "tone." When, for

instance, a violin string is bowed, the whole musical sound

emitted is called a note. Hut, as we now see, each of these

notes is made up of a series of irresolvable notes which are

called tones. The lowest of these tones is the one which deter-

mines the pitch of the note, and is called the fundamental ;

the rest are called overtones or upper partials. If the frequen-
cies of these overtones are exact multiples of the frequency of

the fundamental, they are called harmonics.

Digression on Beats

229. When two notes are slightly out of unison, they have

slightly different wave lengths in air. The consequence is

that they reach our ears with a difference of phase which is

constantly changing. At one instant, they interfere in such

a way as almost to produce silence ; at the next instant, they
combine in such a way as to produce a sound louder than that

of either alone.

Most people are familiar with the peculiar rise and fall

that attends the sound of a large bell after the clapper has

A
struck it for the last time. This is due

to the interference of two different seg-

ments of the bell, such as A and B in

Fig. 166, which travel around the rim

owing to lack of perfect symmetry or

homogeneity in the metal. The same

phenomenon is easily shown with a glass

bell or an iron ring.

Two tones which interfere in this way
to produce this alternate rise and fall of

intensity are said to beat. These alter-

nations of loudness are called beats.
FIG. 166. A vibrating bell

jar: really equivalent to lms phenomenon is most readily
four different vibrating shown by means of two tuning forks

which are in unison. If the forks are

in exact unison to begin with, a little wax placed on the prong
of either one will slow it up ; for the wax adds to the inertia of

the fork, and does not add to its elastic force. Consequently,
whatever difference of phase may exist at any instant between
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the two forks, this difference will continuously change, and

hence will follow a series of beats. The more wax placed on

the prong, the more rapid the beats. How do you explain
this? Two guitar strings are easily adjusted to unison.

Tighten either one ever so little and they beat.

It is easily seen from the theory of waves in general that

the number of beats per second is numerically equal to the

difference in frequency between the notes beating. For the

interval between two successive beats is simply the time taken

for one train of waves at any point, say at the listening ear,

to gain 360 (2 TT radians) in phase over the other train. Each
train of waves travels at the same speed ; but as these trains

pass any one point their difference of phase is continually

changing. If one note makes 500 vibrations per second and

another 502 per second, it is evident that at any point the

latter will gain in phase, over the first, 4 TT radians each second.

These two notes will be in the same phase twice each second,

and in opposite phase twice each second. They will there-

fore beat twice each second. In general, if the frequency of

one note is n and of another n', the number of beats per second

will be n n',

VIII. RELATION OF TONES TO EACH OTHER. THE
MUSICAL SCALE

230. Up to the present moment we have been studying
the nature of a single train of waves in the air, the propaga-
tion of a single musical tone. We now proceed to consider

some of the relations of musical tones to each other. Here we
find ourselves already in the domain of Music.

But there are some experimental facts which must be viewed

as a sort of connecting link between Music and Physics. These

constitute the

Scientific Basis of Music

There are few ears which have the ability to determine,

on hearing a single musical tone, just what the pitch of the

note is. Frequency is a difficult thing for the human ear to

determine. But there are very many observers who, on hear-

ing two notes, can tell what the ratio of their frequency is. If

two keys "on a piano are struck, there is no difficulty in saying
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whether their pitches are related as 3:2 or 1 : 2, or in some

other ratio ; but not more than one person in a hundred can

make an intelligent guess as to the frequency (absolute pitch)
of either note.

Definition of Musical Interval

231. The interval between two notes is defined as the ratio of

their frequencies. Two notes having the same pitch, whatever

their quality or intensity, are said to be in unison. The interval

in this case is not zero, but unity. If the ratio be 2 : 1, the

interval is said to be an

A note whose pitch (frequency) is 400 is, then, an octave

above a note whose pitch is 200. A note whose pitch is 100 is

an octave below one whose pitch is 200. The impressions pro-

duced upon the human ear by a note and its octave are strik-

ingly similar. So alike, indeed, are the two sensations that

many fairly well trained musicians sometimes mistake the one

for the other. So far as the author is aware, this similarity

has never been satisfactorily explained.

The Major Chord

232. Still more remarkable is the following fact concerning
the human ear a fact which has been well known for more

than two thousand years, a fact which is fundamental in all

music, but which, up to the present century, had baffled all

attempts at explanation.

The fact is that any three tones whose frequencies are as

4:5:6 always make a pleasing impression upon the ear. This

combination of notes is known as the major triad ; or, taken

together with the octave of the fundamental, is called the major
chord. The universal judgment is that three such notes, what-

ever their frequencies, produce harmony when sounded to-

gether.

The explanation of this, which we owe to Helmholtz,

is based upon the disagreeable impression resulting from

beats.

Helmholtz likened the effect of beats on the human ear to

the unpleasant sensation of a flickering light upon' the eye.
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i

When, however, the beats become very rapid, they cease to be

disagreeable, just as an electric light alternating in intensit}
r

ceases to be painful when the alternations are very rapid.

Helmholtz showed that beats are most disagreeable when they

occur at the rate of 30 per second ; but they can be detected

even when they run as high as 132 per second. He next

showed that the physical basis for the harmony of the major
chord lies in the fact that neither between notes whose frequen-

cies bear the simple ratios 4:5:6, nor between their overtones,

nor between their overtones

#js J4 J'a and fundamentals, are there

any disagreeable beats.

In Fig. 167 are repre-

sented the totality of tones

in the major chord up to the

sixth harmonic.

Beginning with the fun-

damental C, it will be

observed that none of the

overtones are so near the

fundamental or each other

as to beat and produce dissonance.

Consider next the note E, whose frequency is five ;
its fourth

harmonic is in unison with the fifth harmonic of the funda-

mental. But the third and fifth harmonic of E are each

more or less dissonant with the fourth and sixth of the

fundamental.

When we come to the note G, whose frequency is six, we
find only one harmonic, the third, which is not already present
in the fundamental. This third beats with the fourth and fifth

of the fundamental and distracts somewhat from the harmony.
But the octave C', it will be observed, introduces no harmonics

whatever that are not already in the fundamental. This

almost complete freedom from beats thus explains the remark-

able harmony of the major chord.

The Major Scale

233. Musicians divide the interval between any note and its

octave into a series of seven smaller intervals called tones and

semitones. The notes which make up the octave are denoted

FIG. 167. Major chord represented by half

notes; harmonics represented by quarter
notes.
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by the letters of the alphabet, and are built up out of three

major triads, as follows :

C : E : # = 4:5:6.
F : A: 2 CY = 4 : 5 : 6.

G- : B : 21) = 4 : 5 : C.

Let us call the lowest note of the octave (7, and denote its

frequency by
" m "

; these proportions then amount to a series

of equations which we may solve to find the frequency of any
other note in the octave. Thus,

C=m.
(7:^=4:5. .-. E=\m.
/~y ^ sy t

^
/> s~y g

TABLE OF MUSICAL NOMENCLATURES

NAME OF NOTE.
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ployed tells the reader the time for which any note is to be

sounded, while the vertical position of the note among the

lines and spaces gives its pitch. The modern system of

musical notation is, then, essentially that invented by Descartes

in 1637 and universally employed in analytical geometry. The

bass and treble are connected by the fact that the C represented

by the first line above the bass is identical with the C on the

first line below the treble. This note is called Middle C on

the piano. Ordinarily its frequency is about 264.

234. The scale thus formed and represented in the preceding
table is called the natural or diatonic scale. Between the suc-

cessive notes it will be observed that there are three kinds of

intervals ; namely,

C-D, F-&, A-B, | called a major tone,

D-E, Gr-A, -!g
- called a minor tone,

and E-F, B-C, \
S
6 called a major semitone.

If all music were written in the key of (7, this diatonic scale

would suffice. But on instruments with fixed notes, such as

the piano and guitar, it would be impossible to pass to other

keys without enormously complicating the instrument. To
avoid this difficulty Bach (1685-1750) invented the so-called

tempered scale, in which the octave is divided into twelve equal

intervals, or half notes, each tone having a frequency 2A that

of the preceding. This interval is very nearly the semimajor
tone. The student will now see why the black key on the

piano is omitted between B and (7, and also between E
and F.

The names of the notes employed in vocal music are derived

from the initial syllables of the following stanza, from an old

Latin hymn :

" Ut queant laxis resonare fibris

Jfi'ra gestorum/amuli tuorum

Solve polluti labri reatum

/S'anct Joannes."

Poggendorff, Geschichte der Physik, p. 802.
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IX. APPLICATION OF PRECEDING PRINCIPLES TO VARIOUS
INSTRUMENTS

Wind Instruments

235. Of these the organ pipe is perhaps the simplest and

most typical. There are two kinds, open and closed. In each

of them two trains of waves interfere to produce stationary
waves. By an open pipe is meant one which is not closed at

either end ; by a closed pipe is meant one which is closed at one

end only. These two types are shown in

Fig. 168.

One train of waves is produced by blow-

ing against the lip I, of the pipe; another

train is produced by reflection from the

upper end of the pipe.

In the case of the open pipe, reflection

occurs when the incident train strikes the

quiet air at the end of the pipe ; in the

case of the closed pipe, reflection occurs

FIG. los." Section" "of wnen the wave strikes against the wooden

open and closed organ end of the pipe. In either case, the whole

behavior of the air in the organ pipe is

exactly that of a small portion of the air in a Kundt's

tube ( 215).
In the case of the open organ pipe, it is evident that each

end is an antinode, i.e. a place where no compression occurs,

but where great motion is always possible. Consequently, an

open organ pipe is simply that portion of a Kundt's tube which

lies between two consecutive antinodes, as shown in Fig. 169,

where N denotes a
N A N A N * N A N

1. - T=-

l 1

node and A an anti-

node. It is evident,

therefore, that the

wave length of the

FIG. 169. Correspondence between the open organ

pipe and Kundt's tube.

fundamental is just twice the length of the open pipe which

emits it.

As a matter of fact this rule is not quite exact; for it is

found that the fundamental wave length is a little more than

twice the length of the pipe. This is due to the fact that the
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inertia of the air surrounding the open end of the pipe has the

effect of slightly increasing the effective length of the pipe,

very much in the same way that the velocity of a rifle ball is

found to increase even after the ball has left the muzzle of the

gun. Just as the dead air about the muzzle of the gun forms

a tube, so to speak, in which the gaseous products of the burn-

ing powder continue to expand, so the quiet air about the end

of the organ pipe has the effect of practically extending the

length of the actual circular pipe by about 0.6 of its radius, a

quantity which is called the "end correction."

In the case of the closed pipe, no longitudinal motion of the

air is possible at the stopped end
; consequently, this end must

be a node, while the lower (i.e. the open) end is an antinode.

The correspondence is indicated by Fig. 170.

It is at once evident that the length of a closed pipe is one

quarter of a wave length of its fundamental.

The student will find it interesting to prove that an open

pipe yields the complete series of harmonics 1, 2, 3, 4, 5, 6, etc. ;

while the closed pipe NANANANA1
gives only the odd ~ L _ , - j-^'-

notes 1, 3, 5, 7, 9, etc. N /p
5

Make a sketch after FIG. 170. Correspondence between closed organ pipe

.-, . -, f -.-,. -tne aD(i Kundt's tube.
the style of rig. loo,

showing the distribution of nodes and loops in both open and

closed pipes.

A very direct means of experimentally locating the nodes and

loops in an open pipe is to replace the bottom of a pill box with

a thin stretched membrane, say very thin paper, place a

little sand in the box, and lower it into the sounding tube,

holding the membrane of the box horizontal. The sand dis-

tinctly announces the positions of the loops becoming silent

at the nodes.

To this class of instruments belong also the flute, the clarinet,

the cornet, and the trombone. In the first three of these instru-

ments the vibrating column of air is made to break up, by
means of stops, so as to yield either the fundamental or over-

tones at the will of the player. The opening of a stop at any

point on the tube insures an antinode at that point. While in

the trombone the player controls the pitch by varying the

length of the air column.
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Stringed Instruments

236. Of these perhaps the simplest and most typical is the-

guitar. This instrument has six strings, three of silk covered

with silver wire, and three of catgut. The range of the instru-

ment is about three octaves. The lowest string yields the note

E; the highest open string, 4 E; or when held at the middle, 8

E. Three methods of varying the pitch are illustrated in the

guitar :

1. To vary the pitch n of any one string a screw is em-

ployed to change the tension T. As the tension increases, the

force restoring the string to its position of equilibrium becomes

greater. The frequency therefore increases.

2. To pass from one note to another on the same string,
" frets

"
are employed. The finger holds the string down over

the fret and thus changes the length of the string.

V= nl = 2nL = a constant. . . woe.
L

3. In passing from one string to another, the pitch of the

lower strings is diminished by increasing their density. This

is accomplished by wrapping them with silver wire. The

strings would be too clumsy and too rigid if the same mass

were given to the string by use of catgut. The wrapping of

silver wire adds nothing to the restoring force, but does in-

crease the mass to be moved, and hence diminishes the fre-

quency.
These three facts are most briefly and definitely summarized

by writing Eq. 82 (" 192) as follows :

Eq. 82

from which it follows that, other things remaining constant,

(i) n varies as ~\/~T.

(ii) n varies as .

L

(iii) n varies as .

V>
In the violin the length of the string is no longer determined

by the position of the fret, but is under the entire control of
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the player. The violin is, therefore, much more responsive to

the will and to the skill of the player than is the guitar.

The piano is an instrument of between 80 and 90 strings, or

sets of strings, each of which is employed to produce one note

only. The tension and length of each string is intended to

remain constant. Anything which changes the tension of a

string once adjusted is said to put the piano "out of tune."

The harp is essentially a piano in which the strings are

plucked by the fingers, instead of being struck by hammers.

Vibrating Membranes. The Human Voice.

237. Of this class, the drum is the well-known example.
But by all odds the most interesting and most marvelous

instrument of this, or indeed of any class, is that which pro-

duces the human voice. Here, in general, three factors

enter:

(a) The vibrations of the so-called vocal cords.

(6) The vibrations of the tongue.

(<?) The vibrations of the lips.

The vocal cords consist of membranes situated one on each

side of the throat (larynx). By changing the muscular ten-

sion of these one easily changes the pitch of his voice. By
altering the form of the mouth one easily changes the over-

.tones, and hence the quality of the tone. In this manner the

various vowel sounds are produced.

Problems

1. Approaching a large building at night, I stamp my foot on the pave-

ment and 0.6 second later I hear the echo. How far away is the building?
Ans. 99.6 m.

2. What is the pitch of sound whose wave length in air is 33.2 cm.

Ans. 1000.

3. Explain how the violinist varies the pitch of any one string by plac-

ing his finger upon it.

4. A well is 1800 cm. deep. How long a time will be required
for a sound to travel from the bottom to the top of the well? How long
will a stone be in falling from the top to the bottom of the well? How
long, then, after the stone is let fall before you hear the splash ?

Ans. Total interval = 1.969 sec.

5. A Kundt's tube is filled with hydrogen, and it is then found that the

distance between the successive dust heaps is 3.8 times as great as when
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the same note is sounded in the tube filled with air. From this compute
the speed of sound in hydrogen. Ans. 1261.6 m. per second.

6. The brass rod used to excite a certain Kundt's tube is just 1 in.

long ;
the dust heaps which it produces in air are 99 mm. apart. What

is the speed of sound in brass? Ans. 3353 in. per sec.

7. An open organ pipe 166 cm. long will yield a note of what pitch ?

Ans. 100.

8. A closed organ pipe 62 cm. long will yield what note ?

9. Explain how it is that the speed of sound in a gas increases as the

temperature rises. Show that an equation of the following form describes,

this phenomenon :

V = 332.0 + 0.6 t meters per second

= 332.0 (1 + 0.00181 t~) meters per second.

10. Two telegraph sounders are placed on the same electric circuit so that

they click each five times a second. One of these sounders is fixed
;
the other

I can carry off to some distance. How far away shall I have to take the

movable one in order to hear its nth click at the same instant that I hear

the (n + l)th click of the fixed sounder? This is the "unison" method for

measuring the speed of sound. Ans. 66.4 m.

11. In how many ways could you change the pitch of a string which

now emits the note C, so that it would emit the note G in the same octave?

12. Would increase of temperature change the pitch of an organ pipe?
Would it change the ratio of the frequencies of a series of pipes.

Shearer, 1265.

13. Make a diagram of the frets on a guitar and show how, starting

from any one string, any other string may be tuned by the use of beats.

14. Assuming the density of hydrogen as 0.0000896, find the speed of

sound in hydrogen under normal atmospheric pressure of 76 cm.

15. Assuming the density of marsh gas to be 0.000727, find the tempera-
ture at which the speed of sound in air will be equal to the speed of sound

in marsh gas at 0C.

16. A brass and an iron rod have each the same size, shape, and density

Through which would you expect sound to travel more rapidly? Why?
How much more rapidly?
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CHAPTER VII

THEORY OF HEAT

238- Our experiences with heat and cold cover a wide range.
We use the words hot, warm,, and cold, with great accuracy.
And yet heat is something concerning which our two most

important senses sight and hearing give us no direct in-

formation. Indeed there is strong evidence for thinking that

this intangible, invisible, something which we call " heat
"

is

not a substance at all, but rather a fornijof energy. The ob-

ject of the present chapter is to discover the constant elements

in the nature of heat, and especially to examine the evidence

for thinking it a kind of energy and not a variety of matter;,

in short, to reduce the idea of heat to one of matter and motion,,

as was done in the case of sound. The subject is one which is;

so intimately connected with all the various parts of Physics
that it is well-nigh impossible to offer any systematic analysis ;

but perhaps the following order of treatment will serve our

purpose :

I. Distinction between Heat and Temperature.
II. Measurement of Temperature. Thermometry.

III. Quantity of Heat. Calorimetry.
IV. Transfer of Heat.

V. Some Effects of Heat.

VI. Nature of Heat.

I. DISTINCTION BETWEEN HEAT AND TEMPERATURE

239. Most people will agree that a cup of water taken from a

boiling kettle has, at the instant it is dipped out, the same temper-
ature as that of the boiling water. Most people will likewise

agree that for heating purposes the large kettle is much more
efficient than the small cup of water. A water bag or a water

bottle that holds a gallon will give out more heat and give it

out longerr other things being equal, than one which holds only
a pint. If the temperature of the two vessels of water are the

247
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same, the larger is said to contain more heat. If a bath tub

be half filled with cold water, one can heat it more by pouring
in a gallon of boiling water than by putting in a quart of boil-

ing water; for, although the temperatures are the same, the

gallon contains more heat than the quart. These simple facts

are cited merely to show that popular notions concerning the

distinction between heat and temperature are perfectly clear.

They are also correct. But before the word "
temperature

" can

be admitted to the rather select vocabulary of Physics, it must be

defined in unmistakable English. This we now proceed to do.

Imagine three vessels of water, A, B, (Fig. 171), each

containing a different quantity of water. If A and B are

placed side by side, in contact,

and B thereby gains heat, be

it ever so little, A has im-

parted heat to B ; and A is said

to have a higher temperature
FIG- m - than B.

Put in contact with B; if B thereby loses heat, be it

ever so little, heat has passed into C ; and is said to be at

a lower temperature than B.

When, in general, one body is placed in contact with another,

the difference of temperature between the bodies is that which

determines which way the heat flows. If the heat flows from

A to B, A has the higher temperature; but if the heat flows

from B to A, then B has the higher tem-

perature.

Consider two vessels of water, E and F
(Fig. 172), connected by a rubber tube.

Does the water always flow from the large

vessel to the small one ? What does deter-

mine the direction of the flow ? If the

water flows from E to F, does the surface

of the water in F rise by the same amount

that the surface in E falls ?

Returning now to Fig. 171, we observe that the analogy is

very perfect. Whether heat flows from A to or vice versa

depends, not at all upon the size of the vessels, but upon their

difference of heat level or, more accurately, upon their difference

of temperature.

FIG. 172.
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240. The following definitions will now be clear to every one

who has mastered the foregoing facts:

" DEFINITION OF TEMPERATURE. The temperature of a body
is its thermal state considered with reference to its power of com-

municating heat to other bodies.

"DEFINITION OF HIGHER AND LOWER TEMPERATURE. If
when two bodies are placed in thermal communication, one of the

bodies loses heat, and the other gains heat, that body which gives

out heat is said to have a higher temperature than that which

receives heat from it.

" COROLLARY. If when two bodies are placed in thermal com-

munication, neither of them loses or gains heat, the two bodies are

said to have equal temperatures or the same temperature. The

two bodies are then said to be in thermal equilibrium.

"LAW OF EQUAL TEMPERATURE. Bodies whose temperatures

are equal to that of the same body have themselves equal tempera-
tures.'" -MAXWELL, Theory of Heat, Ch. II.

The point in this definition which calls for emphasis is the

fact that temperature is a state of a body.
" It is a condition

and not a theory which confronts us."

241. In estimating temperatures, the student must be warned

against drawing incorrect inferences from his sensations. For,

in judging the temperature of the atmosphere, it is well known
that our estimate is greatly influenced by any wind that may
be blowing and by the presence of moisture in the air. If the

hand be dipped into hot water and immediately afterward into

tap water, the tap water will feel distinctly cold. But if a

piece of ice be held in the hand for a moment, the same tap

water will immediately after feel distinctly warm. The indi-

cations of thermometers such as are usually employed in the

laboratory are much more independent of their previous history

than are the sensations of the human hand.

II. MEASUREMENT OF TEMPERATURE. THERMOMETRY

242. The mercurial thermometer is an instrument which

belongs quite as much to the household as to the physical

laboratory. But the principles upon which it is constructed

are not so well known as the instrument itself.
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Since heat itself is invisible and intangible, and can be per-

ceived only through its effects upon bodies, we must employ
some one of these effects for the measurement of heat. For

ordinary purposes the universal choice has been change in size,

which always accompanies a change in temperature. We might
take a brass rod 10 centimeters long, and then define one

degree as that difference in temperature which is required to

lengthen the brass rod by y^^ millimeter. Such an instru-

ment would be portable and would give the same reading for

the same temperature ; but it would be impossible to meas-

ure such a minute elongation except by means of elaborate

apparatus.
If a glass bulb fitted with a hollow stem were partially filled

with water, we might define one degree as that difference of

temperature which would increase the volume of water by y^o
of itself. But, unfortunately, water does not always increase

in volume as its temperature rises. Moreover, each particular

volume of the water does not correspond to one particular

temperature. As we shall see presently, a body of water at 6

has the same volume as at 2. A water thermometer would,

therefore, be ambiguous in its readings. Hence water is never

used for making thermometers.

243. But there is one substance, viz. mercury, which has

shown itself eminently adapted to the purpose. Among the

advantages of mercury may be mentioned the following :

() It is easily prepared in a pure state.

(6) It does not wet glass or stick to it.

(c) It expands rapidly with rise of temperature, so that its

changes in volume are easily read.

(cf) To each particular volume corresponds a definite tem-

perature.

(e) It does not freeze except at temperatures comparatively

low, and does not boil except at temperatures comparatively

high.

(jf) Compared with water and most solutions it requires a

very small amount of heat to raise its temperature through
a given range.
The indications of temperature which are given by the mer-

curial thermometer hinge upon the fact that mercury expands
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with rise of temperature more rapidly than does glass. If,

therefore, a glass tube having a bulb blown at one end be

partially filled with mercury and immersed in a bath at higher

temperature than its own, the mercury will rise in the tube.

If the instrument is immersed in a bath of lower temperature,

heat will flow from the mercury to the bath, and the mercury
will descend in the tube. When the mercury is neither rising

nor falling, it is fair to suppose that the thermometer is at the

same temperature as the bath, or, at least, the part of the bath

immediately about the thermometer.

Manufacture of a Mercurial Thermometer

244. The steps in the process are as follows :

1. The selection of a piece of thick-walled capillary tubing
of very uniform bore.

2. A bulb is blown on the end of this tube.

3. The bulb is filled with mercury. It is then highly heated

and "sealed off."

4. The tube of the thermometer is graduated.
This last step is one which demands further consideration.

Fixed Points of a Thermometer

245. It so happens that there are two temperatures which

can be easily produced and reproduced at almost any place and

at any time : one of them is the melting point of ice, the other

is the boiling point of water.

It has been agreed upon by the whole scientific world, that

these two temperatures the melting point of ice and the boiling

point of water should be called zero and one hundred degrees,

respectively. Together they are known as the fixed points of the

thermometer. The interval between these two fixed points is

divided into 100 steps degrees in such a way that the ap-

parent change in volume of the mercury between any two

successive steps is exactly yj^ part of the total apparent change
in volume between and 100. This is known as the " cen-

tigrade scale," and is generally indicated by writing a " C."

after the numerical value of the temperature. Thus " 48 C."

means "48 degrees on the centigrade scale."

The first step in the graduation of a thermometer is, then,

to determine the fixed points, and mark them on the tube.
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-76

Next the 50 point is so chosen that the

volume (not the length) of the tube between

50 and 100 is equal to the volume between

50 and 0. In like manner, the 25 point
must halve the volume between and 50.

The manner in which these points are deter-

mined will be considered in the laboratory.

Temperature Scales of Fahrenheit and

Reaumur

246. Besides the centigrade scale which, in

a modified form, was suggested by Celsius,

there are two others which are widely used in

everyday life. In the one proposed by
Fia. 173. Showing Fahrenheit, the volume between the fixed

four stages in the while theints j divided into jgQ parts;manufacture of a L
% . .

mercurial ther- zero is placed at a point which is 32 of these

mometer.
degrees below the melting point of ice.

In the other, proposed by Reaumur, the volume between the

freezing point and the boiling point of water is divided into 80

degrees, the former of these two points being employed as zero.

It is important to notice that these three thermometers, Celsius,

Fahrenheit, and Reaumur, differ in no essential respect. They
are identical in principle, mode of construction, and use, the

only difference being in the size of the degree employed.

247. Essential Features of a Good Thermometer.

1. It must be easily portable.

2. It must be permanent.
3. It must always give the same reading when subjected to

the same temperature.
4. It must be possible for the user to test the correctness of

its graduation, and to determine any errors in its graduation.
5. It must be relatively small, so that when placed in con-

tact with a second body, the temperature of the second body
will not be seriously affected.

Historical Development of the Thermometer

248. Although the thermometer is one of the oldest instru-

ments of physical science and has a history covering three
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hundred years, there is even now scarcely a year goes by that

does not bring either some new form of thermometer or some

important improvement.
In Winkelmann's Handbuch der Physik, Fernet traces the

development of the instrument through a series of steps which

are somewhat as follows :

(i) Some time previous to 1603, Galileo had made and used

in lectures at Padua a thermoscope or indicator of temperature,

which in its essential features is shown in Fig.

174.

A glass bulb with a rather long and uniform

stem is inverted with its lower end placed under

the surface of some colored liquid, such as wine.

But before the stem is placed in the liquid the

bulb must be heated to a temperature a little

higher than any temperature it is afterward

desired to measure. At the standard tempera-

ture, say, that of the room, the 'liquid rises to

a certain mark on the scale and remains there,

except for variations of the barometer. When
taken out-of-doors the air in the bulb expands or

contracts and the water in the tube thus falls

with rise of temperature and rises with a fall

of temperature. This simple device is surpris-
i -4.- j j -e i r^ v FlG - 174. Ga-

ingly sensitive, and proved useful, even in trail-
iiie0 's ther-

leo's time, for the detection of fever. mometer.

(ii) As noted by Pascal in 1643 the readings of this ther-

mometer are dependent upon the simultaneous readings of the

barometer. To avoid this difficulty, Father Schoot, in 1657,

sealed the liquid off from the atmosphere by bending the tube

and sealing a bulb on each end as shown in Fig. 175. What
this device indicates is evidently the difference in temperature
between the two bulbs A and B. It is therefore called a differ-

ential thermometer.

(iii) In each of the preceding instruments a gas is employed
as a thermometric substance ; but in 1631 a French physician,.

Jean Rey, first made use of the expansion of a liquid for the

measurement of temperature. A glass bulb, provided with a

stem and filled with water, was used by him to distinguish

between normal blood temperature and those of fever patients.
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(iv) The first liquid thermometer to secure independence
of atmospheric pressure was made . about 1641 by sealing off

A B the end of the glass stem. About this time the

Academy of Sciences at Florence introduced the

use of mercury and a scale graduated so that one

end indicated the lowest temperature of winter,

the other, the highest temperature of summer.

(v) These rough and inaccurate standard tem-

peratures were partly replaced by the one excel-

lent standard in 1664 ; for it was in this year
that Robert Hooke, Secretary of the Royal Society
of London, suggested the melting point of ice as

the standard temperature. In the year following

Huygens proposed the boiling point of water as

the standard, neither of these men having yet

recognized the fact that at least two fixed points
FIG. 175.

absolutely necessary in order to make the
School's dif- *

ferential ther- thermometric readings from one instrument com-
mometer.

parable with those from another.

(vi) This important step, the use of two definite fixed

points, was first proposed in 1688 by Dalance, who adopted the

melting points of ice and butter as the two temperatures in

question. Newton constructed a thermometer on this principle,

using the melting point of ice as zero and the temperature of

his own body as 12. He also tested the uniformity of the bore

in the stem of the thermometer, thus introducing a process

which is now called calibration. As a thermometric substance

he employed linseed oil.

(vii) The next advance is due to Fahrenheit (1686-1736),
& Danish mechanician living in Amsterdam, who introduced

the modern mercury thermometer with cylindrical bulb and

stem, about the year 1714. For fixed points he used various

temperatures, among them that of a mixture of salt and ice,

0; melting ice, 32; "blood heat," 96; boiling water, 212.

Which pair were taken as standard in any particular case

appears to have been determined largely by the range of tem-

peratures for which that particular instrument was intended.

(viii) The Reaumur scale, described above, was introduced

about 1730. Little interest attaches to this thermometer other

than its wide use in domestic and industrial circles.
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(ix) In 1742, Anders Celsius, professor of astronomy at

Upsala, proposed a scale with the zero at the boiling point of

water and with 100 at the melting point of ice. The inversion

of this scale, which gives us the modern centigrade instrument,

is due to Christin in France (1743), possibly also to Stromer,

in Upsala (1750).

(x) In the meantime, many investigators had been searching

for the conditions which determine the exact temperatures
at which ice melts and water boils. But it was the German

physicist Lambert (1728-1777) who finally placed the science

of thermometry upon its modern basis by using air as a

thermometric substance and proposing as an " absolute zero
"

that temperature at which the gas would contract so much as to

bring the particles of air into actual contact with one another.

Besides this he introduced many important corrections which

render the air thermometer an instrument of precision.

As will be seen later ( 270 and 291) the absolute zero of

.Lambert when denned in a more practicable manner is essen-

tially that in use to-day. Yet it was the exact measurements

of the French physicist Regnault (1810-1878) upon the proper-

ties of gases and vapors that made possible a reasonably exact

absolute scale of temperatures. So much for practical ther-

mometry. The dynamical foundation upon which the absolute

scale is based can be considered only after we have looked into

the subject of thermodynamics.

Measurement of High Temperatures

249. The determination of temperatures which lie above, say,

the boiling point of sulphur, 445 C., demands methods which

constitute almost a separate science pyrometry and one

which cannot here be considered. It may, however, be men-

tioned that these methods are practically all based upon one

or more of the three following principles, which the student

will meet later.

(i) The variation of electrical resistance with temperature,

giving rise to what is known as " electrical resistance ther-

mometry
" and "

platinum temperatures," since the resistance

used is generally that of a platinum wire. Valuable both for

moderately high and for very low temperatures ; especially use-

ful between 400 and 1200 C.
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(ii) The variation with change of temperature of either (a)
the total amount of energy radiated by a hot body, or (6) the

energy (brightness) of a particular wave length (color) of light

radiated by a hot body.
The total energy varies according to a law first determined

by Stefan and Boltzmann ; the partial energy according to one

investigated by Wien and Planck.

These are the basis of what is known as "
blackbody tempera-

tures," since the methods are strictly accurate only for bodies

which are perfectly
" black." Available for the highest tem-

peratures known.

(iii) The variation of electromotive force in a circuit made
of two wires of different material when the temperature of one

of the junctions of these two wires is changed, a method which

leads to "thermoelectric thermometry."

TABLE OF RELIABLE MELTING AND BOILING POINTS

CENTIGRADE FAHRENHEIT

Liquid Hydrogen
Liquid Oxygen
Freezing Mercury

Melting Ice

Boiling point of Water at 760 mm. pressure

Boiling point of Aniline at 760 mm. pressure

Boiling point of Naphthaline at 760 mm. pressure

Boiling point of Diphenylamine at 760 mm. pressure

Boiling point of Sulphur at 760 mm. pressure

Melting point of Tin

Melting point of Lead

Melting point of Zinc

Melting point of Antimony .....
Melting point of Aluminium ....
Melting point of NaCl

Melting point of Silver (in air) ....
Melting point of Silver (in reducing atmosphere)

Melting point of Gold

Melting point of Copper (in air) ....
Melting point of KaSC^ .....
Melting point of Copper (in reducing atmosphere)

Melting point of Nickel

Melting point of Pure Iron

-253
-182
-39

100

184

220

302

445

232

327

419

632

657

800

955

962

1064

1062

1070

1084

1427

1503

-423
-295
-38

32

212

363

428

575

833

449

620

786

.1169

1214

1472

1751

1763

1947

1943

1958

1983

2600

2737
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The preceding table, prepared by Dr. J. A. Harker for the

Cambridge Scientific Instrument Co., in 1906, gives a fair idea

of the range of temperatures employed in modern physics.

Even higher melting points than those listed in the preceding
table have been measured with remarkable accuracy. Thus

Waidner and Burgess, at Washington, using three different

methods, obtain for palladium 1546 C., and for platinum
1753 C.; while Mendenhall and Ingersoll, at Madison, have

determined the melting point of rhodium to be 1907 or

1968 C., and that of iridium to be 2292 or 2388 C., according
to the value accepted for platinum, concerning which there

appears to be still an uncertainty, lying somewhere between

10 and 50 C. The temperature of the positive crater of the

electric arc lies probably between 3600 and 3900 C.
; while

that of the sun is probably in the neighborhood of 7800 C.

III. QUANTITY OF HEAT

250. We have already learned that temperature is merely a

condition determining the direction of the flow of heat very
much as pressure is a condition determining the direction of

the current when two vessels of compressed air are connected.

And just as we need a means of measuring the amount of air

which escapes from either of the two vessels into the other, so

we need a method of estimating the quantity of heat which

passes from one body to another when they are brought into

contact with a difference of temperature.
When a hot body is brought into the neighborhood of cooler

bodies, we have excellent reason for thinking something passes

from the hotter one because the cooler ones always rise in

temperature. If a cold body is brought into the midst of hotter

ones, we observe again that when the temperature of the cold

body rises it is always at the expense of the hotter surroundings.
Let- us call this something which passes "heat," and proceed to

discover what factors determine its amount. The simplest
method of doing this is perhaps through the following series of

experiments :

(i) Take equal masses of water and mix them together. It

will be found that the temperature of the mixture is an exact

mean between the two original temperatures, whatever the

masses may have been.

s
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(ii) Now take unequal masses of water which we may in-

dicate by m^ and mv having temperatures t
1
and t

2 respectively.

On mixing these two, it is found that the final temperature 9
is obtained by multiplying the mass of each by its original

temperature, adding these products, and dividing by the sum
of the masses. This result seems first to have been formulated

by the Russian physicist Richmann (17111753); it is known
as Richmann's rule, and is most clearly expressed by the follow-

ing equation :

= %*i + 2*2
. Eq. 88w

x + m 2

If we assume that as much heat is given up by one mass of

water as is gained by the other, then the experimental fact

expressed by Richmann's rule shows that the amount of heat

given up or absorbed by any body depends upon the mass and

the change of temperature. This inference will be clearer if

we rewrite Eq. 88 in the following form :

This equation may, indeed, be considered as a definition of equal

quantities of heat.

Unit of Heat

251. Having once discovered a method of duplicating a given

quantity of heat, the measurement of heat becomes possible so

soon as a unit of heat has been agreed upon. For this purpose
we have only to place equal to unity both the mass and the

change of temperature in the preceding equation, a process
which leads to the following widely employed definition.

Unit of heat is that quantity which will raise the temperature of

one gram of water from to 1 C. This unit is called a gram.

calorie. Engineers more frequently employ the British Thermal

Unit (written "B.T.U."), which is the amount of heat re-

quired to raise the temperature of one pound of water one

Fahrenheit degree.
It has been suggested by Professor E. H. Griffiths that, in

order to make the mechanical equivalent of heat ( 289) almost

exactly 42 million ergs per gram degree, we should define the

unit of heat as follows, viz. the quantity of heat necessary to raise

the temperature of one gram of waterfrom 10 to 11 0.
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(iii) So far we have been dealing with a single substance,

namely, water, a most convenient material because it is easily-

obtained in large quantities and in a state of high purity. Now
mix two liquids which differ in chemical composition but have

no chemical action upon each other. It was discovered by
the Scottish chemist, Black (1728-1799), that under these

circumstances Richrnann's rule must be modified. He found

that equal masses of different substances when changing tempera-
ture by equal amounts do not give out equal amounts of heat,,

and was led to assign to each substance a certain constant which

would indicate the specific effect of heat in raising the tempera-
ture of that particular substance. If we denote this constant

by c, then Richmann's rule in its generalized form becomes

Q __
m

1
<?
1
^
1 4- wy?2 2

j, g^
m^ + ra

2
<?
2

This equation, which may be written

wi^iOj- 0) = w*
2
c
2(0

- *
2)>

shows that, in general, the amount of heat which a body gives

up, without change of state, depends, in general, upon three

factors, namely, mass, difference of temperature, and a specific

constant which is now called "specific heat" and which is-

defined as follows :

DEFINITION OF SPECIFIC HEAT

252. The ratio between the amount of heat required to raise the

temperature of any body one degree and that required to raise the

temperature of an equal mass of water one degree, is known as

the specific heat of the body.

The numerical value of the specific heat of any substance will

be the quantity of heat (number of calories) required to change
the temperature of one gram of the substance by one degree.

Let us denote by Q the quantity of heat added to a body
whose mass is m and whose specific heat is c; let

t^
be the

initial and
2

the final temperature of the body ; accordingly
the change in temperature produced by Q will be

2
1.

Then

V Defining equation for ~l? n on-"' secificheat '
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becomes the defining equation for the average specific heat be-

tween the temperatures t and
2 .

Another useful conception is that of "heat capacity of a

body
" which is defined as the amount of heat in calories re-

quired to raise the temperature of that particular body one

centigrade degree. Evidently, therefore, the heat capacity of

a body is measured by the product of its mass and specific

heat.

Various applications of Eq. 90 will be taken up in the labor-

atory under the head of calorimetry.

TABLE OF SPECIFIC HEATS

SOLIDS
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Very little, indeed, is known about the mechanism by which
the particles of a solid body hand on the heat from one to

another. A great deal else, however, is known about heat con-

duction. At any rate, we know that the process does not de-

pend upon the visible motion of matter. Again, every one

knows that he can hold the stick of a burning match for 30 or

40 seconds without difficulty ;
but a copper wire of the same

size and shape held in a match flame for that length of time

becomes unbearably hot.

An iron and a copper rod, each of the same length, say half a

meter, and of the same cross section, each having one end

placed in the same flame, will become unequally heated at equal
distances from the junction (see Fig. 176). For if at equal
distances from the

flame on each rod

be placed either bits

of wax or matches,

those on the copper
]] It h 1

FIG. 176. Illustrating the fact that copper is a better

earlier than those on conductor than iron.

the iron. A series of bicycle balls attached with wax,
three centimeters apart, along each bar will melt off in such

a way as to show the progress of temperatures in the bars.

It is here to be borne in mind that the rapidity with which

the iron and the copper change temperature at any point de-

pends, not only upon the rate of couduction, but also upon the

specific heats of iron and copper. In the present experiment,

however, these two values are so nearly equal that the relative

conductivities of iron and copper are fairly represented.
A good experiment to illustrate differences in conductivity

is the following, the results of which are familiar to us all :

Take a piece of woolen goods, a piece of glass, and a piece of

iron. Put them in some cold place where their temperature
will fall 50 or 60 F. below that of the human body. If these

three bodies are now examined, the iron will feel very cold to

the hand because it conducts off the heat of the hand most

rapidly ; the glass will feel moderately cold
;
while the woolen

piece is quite comfortable, being a very poor conductor. Now
place these same bodies in an oven where they will reach a tem-

perature 50 or 60 F. above blood heat ; the iron will be un-
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comfortably hot, because it conducts heat to the hand so rapidly,

while the woolen goods feels merely warm, being unable to give

up its heat quickly. Here is a case, then, where sensation is

determined largely by power to conduct heat, a property which

is called "
conductivity."

It is a curious fact that all substances which are good
conductors of electricity are also good conductors of heat.

Indeed, one of the most brilliant achievements of modern

electrical theory is the explanation, by the late Professor Drude

of Berlin, of just how this interesting fact comes about a

matter which must be postponed until after the electron theory
has been considered.

255. Among the various applications of thermal conductivity
none is perhaps more important than the classical invention of

the safety lamp by Sir Humphry Davy. The explosive mixture

of gases which occurs in many mines and which is known
as "fire damp" must, of course, be protected from naked flames.

For this purpose Davy suggested that the flame be inclosed

in a small cage of wire gauze. The effectiveness of this

device rests upon the fact that, when the fire damp penetrates
the hood and burns, the flame cannot strike back through

the meshes of the gauze because the heat

of combustion is carried off so rapidly, owing
to the conductivity of the iron, that the tem-

perature just outside is always lower than

that of ignition. That this is true may be

shown ei,ther by lowering a piece of flat wire

gauze over an ordinary Bunsen flame (Fig.

177), when it will be seen that the flame

does not pass through the meshes, or by
FIG. 177. ill us-

fij-gt allowing the gas to pass through the
trating the princi- .

pie of the Davy gauze and then lighting it above. In the

safety lamp. latter case it will be observed that the flame

remains entirely upon the upper side. Since human nature

is what it is, the lock on the safety lamp which prevents
the miner from lighting his pipe from it is a feature quite as

essential perhaps as the wire gauze.
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Measure of Conductivity

256. Were we to attempt to melt ice by means of a copper

bar, one end of which is held in a flame at constant tempera-

ture, the other end on the ice, we should find the rate at which

the ice is melted depends upon the dimensions as well as upon
the composition of the bar. If the bar were made twice as

thick, the heat would be transferred nearly twice as rapidly.

But if the cross section remained constant while the bar were

made twice as long, we should find the ice melting only about

half as rapidly as before.

By such experiments, it has been found that the rate at

which heat "flows" through a solid from one surface to

another when these surfaces are at constant, but different, tem-

peratures depends upon four things only, viz. (1) the substance

from which the solid is made, (2) the distance apart of the

surfaces, (3) the area of the surfaces, and (4) the difference in

temperature between the surfaces. Let H denote the amount

of heat which passes during the time t from one surface whose

area is 8 to another of equal area. Then if k represents the

thermal conductivity of the subtance, B
1
the temperature of

the first surface, and #
2
the temperature of the second, we may

describe the above facts by writing

g=i ('.-*.)*. Eq.91
L

where I is the distance apart of the surfaces.

Since all the quantities except k have already been defined,

this is evidently the defining equation for thermal conductivity.
The modern theory of conduction is almost entirely the creation

of a single genius, the French physicist Fourier (1768-1830),
whose results are contained in his Analytical Theory of Heat.

In actual cases which occur in the laboratory we do not

generally measure the heat across a limited surface drawn in a

solid, but a bar or some body of definite form is selected and

the flow from one end to the other is measured. In any such

case where I is considerable, as it generally is, it is clear that

one has to reckon also with the amount of heat which escapes
sidewise from the lateral surface of the bar. It is these

"boundary conditions" which introduce many of the most

difficult problems in experimental and mathematical physics.
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Professor E. H. Hall has devised a clever method for experi-

ments of this kind, in which he manages to continually send

back into the sides of the bar just as much heat as escapes, thus

eliminating, instead of correcting for, the surface loss of heat.

In the case of gases and liquids, it is found that the con-

ductivities are, in general, very small compared with those

of solids, as will be seen from the following table:

TABLE OF THERMAL CONDUCTIVITIES

(Value expressed in C.G.S. units)

SOLIDS
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quisite manner how the principle of heat conduction combined

with the principle of Archimedes leads to a large number of

our most important and vital phenomena.
The air inside the balloon is heated by conduction from the

flame at the mouth of the balloon, and then rises, filling the

balloon with a gas whose density is much less than that of

the surrounding air. The buoyant force thus produced lifts the

balloon into the upper atmosphere, where it finds a position of

equilibrium determined by the temperature and pressure of the

surrounding air.

If a cup of tea be too hot to drink, we may cool it by adding
cream or cold water. Here the heat of the tea is transferred

to the cooler liquid by the process of conduction ; but the hot

and cold portions of the tea do not need to be stirred : they

will mix, although a little more slowly, of themselves. This

automatic mixing, which is a mere mechanical process, is called

convection.

The hot air of a chimney rises, mixes with the outside air,

and gives some of its heat to the outside air. The hot air

rises because its density is less than that of cold air. This pro-

cess of carrying the hot air up the chimney is, again, convec-

tion. A beaker of water to which a

flame is applfed on one side, as in

Fig. 178, becomes equally heated

all through. First of all, the water

just over the flame becomes hot by
conduction through the glass. Then,

by convection, the hot water just over

the flame is displaced by the colder

water, which is heavier, and therefore

sinks to the bottom, as indicated by
the arrows. The potential energy of

the system is thus less than if the cold

water remained on top.

This cold water, in turn, becomes FlG - 178. Convection currents

heated by conduction through the

glass. These currents produced by differences of density and

easily detected by small particles in the water, are called

"convection currents." They are exhibited on a gigantic
scale in the equatorial regions of the earth, where the lower
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layers of the atmosphere, in contact with the water of the

oceans or with the land, become highly heated by conduction, and

then rise by convection. The air rushing in from north and south

constitutes the well-known trade winds.

Perhaps the best illustration of con-

vection currents is obtained by the sim-

ple experiment indicated in Fig. 179.

B is a glass tube with both ends fitting

into a cork in the bottom of a lamp

chimney. The chimney A is filled with

colored water
;
but the tube B is filled

with clear water. The circulation be-

comes very evident in a few seconds

after a flame is applied to one side.

Observe that here again the heat is com-

FIG. 179. Circulation in municated to the water by conduction

tubes, brought about by through the glass, while the water is
convection currents.

transferred from one part of the vessel

to another by the mechanical (not thermal) process of convection.

From the preceding it will be evident that in fluids we have,

in general, both processes, conduction and convection, always
at work ; while in solids, con-

vection is necessarily impossi-

ble. When, however, heat is

applied to the upper layers of a

fluid, convection may be reduced

to a minimum.
To illustrate, put 'a small

piece of ice, say two grams, in

the bottom of a test tube, and

hold it at the bottom by means

of a little coil of wire or wire

gauze (see Fig. 180). The tube

may be filled with water, and

held over a flame until the

water in the top of the tube FlG - ISO. Illustrating the fact that

, ., rr,, i , j ,. water is a poor conductor of heat.
boils. The heated portions,

being lighter than the cold, remain on top, while water is such

a poor conductor of heat that the ice in the bottom is not easily

melted.
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In all the varied processes of heat conduction, whether aided

by convection or not, it will be observed that the heat is trans-

ferred from places of higher temperature to places of lower

temperature. In this respect heat behaves like steam and all

other fluids in flowing from points of higher pressure to points
of iower pressure. We shall later find electricity behaving in

a similar way, flowing from places of higher to places of lower

electrical pressure.

2. Radiation of Heat

258. When the hand is held some inches at the side of, orunder-

neath, an incandescent electric lamp, the sensation of heat is

distinctly recognized. The same is true of the hand placed
beneath a heated metal ball (see -Fig. 181). We hold our

hands before an open grate fire to warm
them. How does the heat pass from

the fire to the hands ? Certainly not

by conduction. For air is one of the

very poorest conductors known (see

Table, 256). Nor is it a case of con-

duction aided by convection currents.

For, in each of the three cases cited

above, the currents due to convection

are such as to cool the hand.

Indeed, one of the earliest observations FlQ 181._ Radtation of heat

made after the discovery of the air pump downward from a hot iron

was that both heat and light pass through
bal1 '

a vacuum with the utmost ease. There is every reason for be-

lieving that the space which separates us from the sun is more

nearly a perfect vacuum than any other known ; yet across

this vast, and so-called empty, region, the earth daily receives

enormous quantities of heat. But by what process? We call

it radiation. But what is radiation ?

The question here raised can be answered (but only very im-

perfectly) by anticipating some of the results of optics and

thermodynamics. At this point we must content ourselves

with saying that there is most excellent evidence for thinking
that light is a form of energy, that light consists in a wave

motion, that this wave motion is propagated in a medium, called

the ether, which permeates all bodies and fills all interstellar
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space, and that this wave motion travels in free space {i.e. space

devoid of matter) at the rate of 300 million meters per second,

but generally more slowly in space which is not devoid of

matter.

Now the experimental evidence for thinking that radiant heat is

of exactly the same nature as light is overwhelming. And all the

more important laws of radiant heat and of light are included

under one single and general statement of the Laws of Radiant

Energy.

If, however, we once take for granted the evidence for think-

ing radiant heat a wave motion, we may immediately predict

interference, reflection, refraction, and other properties of waves.

259. These results have been amply verified by more than

two centuries of experiments, covering the work of Newton,

Melloni, Stewart, Kirchhoff, Tynclall, Langley, and others.

The following experiment by Newton sets forth the fact and

the explanation with essential truth and clearness :

" If in two large cylindrical vessels of glass inverted, two little thermom-

eters be suspended so as not to touch the vessels, and the air be drawn out

of one of these vessels, and these vessels, thus prepared, be carried out of a

cold place into a warm one
;
the thermometer -m vacua will grow warm as

much, and almost as soon, as the thermometer which is not in vacuo ; and

when the vessel is carried back into the cold place, the thermometer in vacuo

will grow cold almost as soon as the other thermometer. Is not the heat of

the warm room conveyed through the vacuum by the vibrations of a much
subtiler medium than air, which, after the air was drawn out, remained in

the vacuum ? And is not this medium the same by- which light is refracted

or reflected, and by whose vibrations light communicates heat to bodies,

and is put into fits of easy Reflection and easy Transmission? And do not

the vibrations of this medium, in hot bodies, contribute to the intenseness

and duration of their heat? And do not hot bodies communicate their heat

to contiguous cold ones, by the vibrations of this medium propagated from

them into the cold ones ? And is not this medium exeedingly more rare

and subtile than the air, and exceedingly more elastick and active? And
doth it not readily pervade all bodies? And is it not (by its elastic force)

expanded through the heavens?" Optics, Book III, Query 18.

A strong argument for thinking that radiant heat is propa-

gated by the same mechanism as ordinary light is found in the

fact that after a solar eclipse the heat rays and light rays reap-

pear, as nearly as can be observed, at the same instant. From
this and evidence to be adduced later it appears that heat waves,

light waves, and electric waves all travel with the stupendous
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speed of 300 million meters per second and are essentially

identical except as regards wave length.

Measurement of Radiation

260. The first step toward discovering the laws of any phe-
nomenon is the invention of some method for measuring the

quantities involved. There are three principal methods for de-

termining the amount of radiant energy which falls upon a

body. These are each dependent upon the fact that when radiant

energy is incident upon a well-blackened body such as one

covered with lampblack practically all the incident energy of

wave motion is transformed into heat energy. The measurement

of radiation then reduces itself to the measurement of a rise in

temperature generally very small. Bodies which absorb all

the radiant energy falling on them are said to be "
perfectly

black." The three methods are the following:

(i) Radiomicrometer. The earliest of these instruments was
the thermocouple (see 369) and galvanometer, in which the

junction of two different metals is the blackened body a

device used with great effectiveness by the Italian physicist

Melloni, and greatly refined by the German physicist Rubens.

But this has been surpassed in convenience by a modification

due to Professor C. V. Boys, who suspends a small wire circuit

of two different metals between the poles of a magnet as

seen in Fig. 182. The junction marked Jj is

shielded from the radiation, while that marked

J
2

is blackened and exposed to the radiation.

The difference in temperature thus produced

generates an electric current in the circuit

and the current causes the thermocouple to

rotate.

By means of this instrument, which is called

a "radiomicrometer," placed at one end of a

large room Boys has been able to show to an

audience the radiation from a single candle FlG i82~^ Boys"

placed at the other end of the room. radiomicrometer.

(ii) Radiometer. An even more sensitive instrument is the

modification of Crookes's radiometer introduced by Professor E.

F. Nichols of Columbia University. This instrument consists

essentially of a horizontal bar delicately suspended in a properly
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exhausted vessel. At each end of the bar is attached a thin

glass disk blackened on one side. The radiation is admitted to

the instrument through a window of fluorite which is remark-

ably transparent to all wave lengths. On striking the black

surface, the radiant energy is degraded to heat and the black

disk repelled probably owing to the

bombardment of the smallest particles

of air, which, in a vacuum of this degree,

are reflected freely from the disk to

the wall of the containing vessel and

acquire greater kinetic energy as the

temperature rises. So delicate is this

instrument that by means of it, Nichols

and Hull, and Lebedew, have been

able to accurately measure the pressure
exerted by a beam of sunlight a

vastly smaller effect than that of the
FIG. 183.-The radiometer.

radiant energy which CQmes to ug in

such a beam, and which must be eliminated before the light

pressure can be measured.

(iii) Bolometer. Here the blackened body is a thin strip of

metal which forms one arm of a Wheatstone bridge, an elec-

trical instrument which will be met in the laboratory. Before

the radiation is allowed to fall upon the wire, the galvanometer

reading is zero. But the radiation heats the wire and thus

increases its electrical resistance. This throws the bridge out

of "
balance," and the galvanometer needle is deflected through

an angle which is proportional to the amount of the incident

radiation. The late Secretary of the Smithsonian Institution,

Professor Langley, who perfected this method, showed that dif-

ferences of temperature of even less than a millionth of a degree

centigrade could be detected in this way.

Laivs of Radiation

261. By means of such methods as those just indicated two

general results connecting radiation and temperature have

been obtained.

(i) Stefan-Boltzmann Law. It was first suggested by Stefan,

afterwards predicted from theory by Boltzmann, and has been

amply verified by experiment, that the total radiation (i.e. ra-
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diation of all wave lengths) of any perfectly black hot body is

directly proportional to the fourth power of its absolute tem-

perature.

Premising that the absolute scale of temperature begins with

a zero 273 C. below that of melting ice, and denoting the

total radiation by E, this law may be expressed as follows:

E = C(t + 273)
4 Stefan-Boltzmann Law. Eq. 92

where C is a constant throughout a wide range of temperatures,

(ii) Displacement Law. It has also been found that if the

various radiations be separated, say by a prism, so that the

different wave lengths are sent off in different directions, and

if the radiation of each wave length be measured, that wave

length at which the radiation is most intense becomes shorter

and shorter as the temperature rises, a fact which is true for

all bodies. And accurate experiment shows that this variation,

in the case of black bodies, occurs in such a way that the product
of the wave length Xm of maximum radiation and the absolute

temperature is constant
; or, in terms of algebra,

\m(t -f- 273) = Constant. Eq. 93

Upon laws such as these are based the optical and radiation

methods for high temperature measurement described in 249,

and widely employed, not only by investigators, but also by

engineers.

(iii) Stewart-Kirchhoff Law. Let us denote by IT the amount
of heat which falls upon a body at temperature t in one second :

and by h denote the amount of heat which this body absorbs in

one second when at the same temperature. The ratio -^- is
Ji

what Kirchhoff calls the absorption of the body, and is denoted

by A. A body which absorbs all the heat falling upon it is

said to be absolutely black ; its absorption is unity.
Let us now denote by E the amount of heat which this same

body, at this same temperature, would emit in one second in

virtue of its hotness only. This quantity E is called the

emission of the body. Now Balfour Stewart in England and

Kirchhoff in Germany independently proved that

I. The ratio of the emission to the absorption of any body

depends upon the temperature only ; and
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II. This ratio is numerically equal to the emission of a per-

fectly black body at the same temperature.

The quantitative form in which these laws are expressed is due

to Kirchhoff. From these two statements it is evident that a

piece of polished metal will not emit so strong a light as a

piece of metal covered with lampblack and heated to the same

temperature. For since the absorption of polished metal is less,

its emission will also be less. This result is in thorough accord

with what we might expect if radiant heat consists in a wave

motion. For in our study of vibrating bodies (see Resonance,

195), we have found that any source of vibration, e.g. a

tuning fork or a pendulum, can absorb only those vibrations

which are of the same period as its own.

A source of vibrations is a source of radiant energy. It has

been proved that the red-hot carbon emits waves of all lengths.

It might, therefore, be expected that the carbon when cool

would absorb waves of all lengths, and thus appear black, pro-
vided the disturbances involved in the radiation of heat are

ordinary mechanical disturbances such as we have been study-

ing under the subject of dynamics and sound. Once in posses-

sion of this general law, we have the explanation of a host of

important household and meteorological phenomena. For

instance, land being, in general, a much better absorber than

water for radiant energy, it follows that the surface of the land

will cool more quickly than the surface of a lake on a clear

night ; conversely, it will rise in temperature more rapidly than

the water during the day when the sun is shining. Indeed, the

ground at the bottom of a lake or river may radiate energy

through the water so rapidly as to drop the temperature of the

lake bottom below the freezing point, thus producing a coating
of ice which clings fast to the bottom and is known as " anchor

ice."

Air being a very poor absorber of heat, the radiant energy
of the sun passes directly through it with small loss, strikes

the ground, is there transformed into heat, and raises the tem-

perature of the air just over it by conduction and convection.

V. SOME EFFECTS OF HEAT

262. Among the multitudinous effects of heat the following
two have been selected as being perhaps the most important.
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1. Change of Dimensions or of Stress.

2. Change of Molecular State.

CHANGE OF DIMENSIONS

1. Expansion of Solids

263. The familar fact that solids as a rule increase in size

as their temperature rises is illustrated in the manufacture of

large guns, which are built up of coaxial cylinders, the inside

diameter of each one being a trifling bit smaller than the out-

side diameter of the preceding. When the outside cylinder is

sufficiently heated it will slip over the inside one, and, on

cooling, will shrink so as to form what is practically a single

piece of metal, but one which is stronger than a single casting.

Wagon tires are shrunk on to wooden wheels in the same man-

ner. On account of the changes in length caused by tempera-
ture variations, engineers generally rest one end of a girder

bridge, not directly upon the pier, but upon an iron roller as

shown in Fig. 184.

Coefficients of Expansion

Many accurate experiments by methods which must be

studied in the laboratory have shown that the change in length

is, for a moderate
__

range of tempera-

ture, proportional
to the change in

temperature.
If a bar whose

length is I centi-
FIG. 184. Koller providing for expansion of iron bridge.

meters changes
in length by e centimeters, while its temperature changes by

2, the change in unit length per degree is . This incre-

ment in length experienced by each unit of length for one

degree rise in temperature is called the coefficient of linear

expansion for the material of which the bar is made.

Let us denote this coefficient by a, then

Defining eq. for coef .

linear expansion. Eq. 94
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The three quantities on the right-hand side of this equation
can each be measured in the laboratory, and the coefficient a

thus determined.

We are accordingly led to the following expression for the

length of a bar l
t
at any temperature , when ? is its length at

the zero of temperature :

l
t
= / (1 + at ). Eq. 95

Observe that the value of the coefficient of linear expansion
will vary from one thermometric scale to another. Measure-

ments of the highest precision show also that this coefficient

itself is a function of the temperature, thus rendering the length
of a bar a function of both the first and second power of the

temperature as expressed in the following equation:

lt= (1 + at + bt2). Eq. 96

In general, the coefficient b is very small.

264. In the case of many alloys the expansion is profoundly
modified by the percentage composition. Taking advantage of

this fact, the French physicist Guillaume has succeeded in dis-

covering a nickel-steel alloy about 36% nickel for which

the linear coefficient a has a value of less than one part in a

million. Owing to the fact that the size of a body constructed

of this metal is practically invariable with temperature, the sub-

stance has been called "invar." The value of its linear coeffi-

cient is as follows :

= (0.965 -0.00017 A,)'6
.

The usefulness of such a metal for scales of length employed in

geodetic measurements and for clock pendulums is at once

apparent.

TABLE OF LINEAR COEFFICIENTS

(Centigrade Scale)

Glass 0.0000085 =
Platinum 0.0000085 =
Steel ...... 0.000012 =
Brass 0.000018 =

Copper 0.000019 =
Aluminium .... 0.000023 =
Zinc 0.000029 =

TTRroSirff
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Study this table to discover why platinum wire is fused into

the glass of an incandescent lamp, instead of copper or any
other cheaper wire.

265. Under certain circumstances it is possible for a sub-

stance to have a coefficient of expansion which is apparently

negative. That is, the substance may contract instead of ex-

panding on being heated, as the following experiment shows:

Take a piece of ordinary rubber tubing from three to five

feet in length. Into each end fasten a three-way connecting

tube of brass, as shown in Fig. 185. These can be wired in

very easily. The upper end of

the tube is attached to a support.

To the lower end is fixed a heavy

stretching weight. Cork up one

of the openings at the top, and

into the other introduce a current

of steam. The rubber will con-

tract to such an extent as to be

easily seen at once by the whole

class. We might be inclined to

say that under these circumstances

rubber has a negative coefficient

of expansion. If, however, the

heavy weight be replaced by a

light one, we shall find that the

rubber expands when the Steam is FIG. 185. The contraction of rubber

introduced. From this it would on heating,

seem that the apparently negative coefficient of expansion is due

to a change of the elasticity of the rubber when heated. In

other words we may say that Young's Modulus ( 127) for

rubber increases on heating so that a given stretching force

produces less elongation. The above phenomenon cannot, then,,

be properly called "
negative expansion," not at least in the

usual sense of this term.

Problems

1. Prove by squaring each side of Eq. 95 that for any solid the coefficient

of superficial expansion that is, the rate at which area increases with

temperature- is twice the linear coefficient.

2. Prove in like manner that the coefficient of voluminal expansion is

three times the linear coefficient.
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3. Look up the subject of compensated pendulums in some encyclopedia
or larger treatise on physics, and be able to explain the principle by means

of a diagram on the blackboard.

4. A wagon tire 300 cm. in circumference is heated until its length has

increased by 1 cm., i.e. by one third of one per cent. By what per cent

has the area inclosed by the tire increased?

A ns. Two thirds of one per cent.

5. For every degree (centigrade) that iron is heated it increases in

length by one thousandth of one per cent. When the temperature rises

from to 30, how much longer will an iron bridge of 200 feet span
become? Ans. 0.72 inch.

6. Since glass, copper, etc., expand on heating and contract again
on cooling, why not employ a rod of definite length made of some one

of these materials to measure temperatures ? To each length of the rod

would correspond a definite

temperature. What practical

objections ?

7. Explain, by diagram on

blackboard, just how a strip of

zinc soldered to a strip of sheet

copper, as indicated in Fig.

186, can be employed to an-

nounce (by the ringing of a

bell) when a room is too hot

and when too cold.

8. An iron cannon ball of

radius 5 cm. is heated until

its radius has been increased by -^ of one per cent. Find by what per cent

the volume of the ball has been increased.

9. Long horizontal steam-pipes are always supported in such a way that

they are free to move at one end. Why?
10. A brass wire 100 ft. long is fixed at its upper end and carries

a scale pan at its lower end. When a mass of one kilogram is added to the

scale pan the wire is elongated by Js inch. To what extent must the temper-
ature of the wire be lowered in order to restore the wire to its original length?

11. A clock with a steel pendulum is adjusted to beat seconds at a tem-

perature of 20 C. Find how many seconds it will gain each day when its

temperature falls to C.

12. An iron rail 30 feet long is laid during the summer when the tem-

perature is 30 C. Find its length in winter when the weather is 10 C.

below zero.

13. An iron telegraph wire is stretched between two poles which are

400 ft. apart and has a sag of 5 ft., and a stress of 10,000 Ib. per square
inch. What stress will be caused by a drop in temperature sufficient to

make the sag only 4 ft. ?

PIG. 186. Device for announcing change of

temperature.
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14. Suppose the limit of accuracy in measuring the standard meter to be

zffiotf mm - What variation in temperature of the bar imagine it to be

platinum would be permissible during the measurement?

CHANGE OF DIMENSIONS

2. Expansion of Liquids

266. Since liquid bodies are defined ( 122) as those which

have no shape of their own, but assume the shape of the con-

taining vessel, it is evident that a liquid body has no character-

istic edges or lines, and hence no coefficient of linear expansion.

But liquid bodies have characteristic volumes, and these do

change when heated.

Definition of Coefficient of Expansion of a Liquid

If we denote by V\ and V
z
the volume of a liquid at the

temperatures t^ and
2 respectively, and if we call the coeffi-

cient of expansion 5, its defining equation becomes

I ^2~^i Defining eq. for g 07
-y // / -\ cubical expansion.

When, therefore, we speak of the coefficient of expansion of

a liquid, we shall always refer to its coefficient of cubical expan-

sion, i.e. to that fraction of itself by which a volume of liquid

increases when heated through one degree.

Of all liquids, water and mercury are perhaps the two of

most importance in the physical sciences. We shall consider

these briefly.

Mercury

267. The very elegant method by which Regnault* deter-

mined the density of mercury at various temperatures, and

hence its coefficient of expansion, has long served as a model

for succeeding experimenters. The process is as follows :

Two U -tubes, filled with mercury, as shown in Fig. 187, are

connected at the bottom by a tube of small caliber ;
and this

tube contains a little air which serves to separate the two

columns of mercury. We have then really two U-tubes of mer-

cury joined by a capillary tube of air.

* Regnault (b. 1810, d. 1878), a French physicist distinguished for his experi-

mental skill.
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In the portion of the tube marked (7, the pressure must be

the same throughout the volume of air. For if the pressure
due to each of the mercury columns were

not the same, the mercury surfaces would

move one way or the other until they
were equal.

Suppose now that we heat the mercury
in the branch B until it reaches a tem-

perature tv and that in the branch A we
cool to the temperature tr The density
of the mercury in B will diminish on

heating; consequently the difference of

level indicated by y% will increase. The

density of the mercury in A will in-

crease on cooling, and hence the dif-

FIG. 187. Regnauit's ex- ference of level in A will diminish ; call

periment. thig difference yr The pressure in O
due to mercury in A is, by the Third Law of Hydrostatics,

y^D^g; while the same pressure in C due to B is y^D^g.
But these pressures must be the same. Hence,

By measuring y2 and yv Regnault was thus enabled to

determine the fraction of itself by which the density of

mercury was changed when its temperature varied from

tf to *
a

.

But how can one obtain from this fraction the value of the

coefficient of expansion ?

Consider any constant mass of- mercury M, whose volume is

changing in consequence of a variation in temperature. The

defining equation for density gives
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Now substituting in Eq. 97,

y\ Eq. 98

where #x
and y2 are differences of level corresponding to tem-

peratures j
and

2 respectively, and b is the coefficient of cubical

expansion. These quantities yl
and y2 are, how-

ever, difficult to measure with accuracy.
Of course, we might take a single tube of mercury,

Fig. 188, and measure its height at two different

temperatures ;
but here the difficulty is that the

glass vessel containing the mercury expands with

the heat, so that the volume of the mercury is no

longer proportional to the height of the column.

In this way we should obtain only the apparent

expansion of mercury. It is the apparent expansion

which is used in glass and mercury thermometers.
_

The beauty of Regnault's method is that the
Apparent

height of the column depends only on the tempera- expansion.

ture, and not at all upon the containing vessel. Regnault
thus measured the absolute expansion. The value which he

thus obtained for the average coefficient of expansion of mer-

cury between and 100 was 0.0001815.

The most accurate of recent values is probably that obtained

at the Reichsanstalt,
1
namely, 0.00018245.

Water

268. From many points of view, water is a remarkable sub-

stance. This is strikingly exhibited in its behavior under

heat. In general, warm liquids are less dense than the same

liquids cold ; and this is true of water except between the tem-

peratures C. and 3. 98 C. The manner in which water ex-

pands under heat is clearly set forth in the curve, Fig. 189.

The coefficient of expansion of water has recently been deter-

1
Reichsanstalt, the great national physical laboratory of Germany, situated

in Oharlottenburg, a suburb of Berlin.
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THE ORDINATF8
OF THIS CURVE
EXTEND ABOUT
6 METERS

BELOW THIS LINE

TEMPERATURE
IN DEGREES
CENTIGRADE

FIG. 189. Expansion of water.

mined at the Reichsanstalt by the method which Regnault

employed for mercury. The results are summarized in the

following table :

DENSITY OF WATER

TEMPERATURE
CENTIGRADE
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economic importance of this anomaly of water is seen in the

fact that it prevents our lakes and rivers from freezing except
over the surface.

Problems.

1. Graham's compensated pendulum is made of a steel rod which carries

at its lower end a glass cylinder containing mercury. Show that the linear

expansion of the steel (which extends to the base of the cylinder) will be

very approximately counterbalanced by the cubical expansion of the mer-

cury when the height of the mercury is ^ the height of the steel pendulum.

2. A large thermometer bulb, made of glass, and placed in melting ice,

holds 200 g. of mercury. How much mercury will overflow when placed in

a bath of steam at atmospheric pressure ?

3. A mercury barometer in a laboratory at 15 C. reads 756.2 mm. What
are the three most important corrections which must be made in order to

obtain the true barometric height?

4. A glass cylinder which weighs 5 g. in air, weighs only 2.994 g. in water

at 20 C. Find its weight in water at 40 C.

5. Compare the density of water at 30 as obtained

(i) from the table in 268, with that obtained

(ii) from Eq. 98J.

CHANGE OF DIMENSIONS OR OF STRESS

3. Expansion of Grases

269. We have already seen ( 248) that the earliest ther-

mometers were made by inclosing a certain mass of gas in a

glass bulb whose stem was sealed by immersing the end in a

liquid. Such a device is at once the simplest and earliest for

studying the effects of heat upon gases.

Having substituted mercury for water in the thermometer of

Galileo, Amontons, in 1699, discovered that the change of pres-

sure produced by heating through a range of 100 was the same

whatever the amount of air inclosed in the bulb.

Law of Charles

By definition, the volume of a gas is always the volume of the

containing vessel. Boyle's Law states the experimental fact

that to each volume of gas there corresponds a definite pressure,

provided the mass and the temperature remain constant. If,

however, the temperature varies, the effect may be

(1) a change of volume while the pressure remains constant; or

(2) a change of pressure while the volume remains constant ; or

(3) a change of both pressure and volume.
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To determine the effect of heat on a gas, we must then meas-

ure either

(1) the ratio of increase of volume to original

volume in a gas kept at constant pressure ; or

(2) the ratio of increase of pressure to original pres-

sure in a gas kept at constant volume,
in each case for a rise of one degree in temperature.

These two quantities were first roughly measured

by Charles, afterwards more accurately by the

French chemist, Gay-Lussac (1778-1850).
The capital discovery was thus made that :

(<z) These two quantities are the same for any
one gas.

(5) They have very approximately the same

numerical value for all gases, namely, 2|y. Later

and more accurate observations have shown that

this value is more nearly 0.003665 = ^y^-.

The actual measurement of these quantities is a

somewhat difficult matter, requiring many precau-

tions, and may well be reserved for the student's

second or third year in physics. But the algebraic description

of Gay-Lussac's results is a matter of the utmost simplicity.

It is as follows :

Let VQ and Vt represent the volumes of a given mass of gas
at the temperatures and t respectively ; then, so long as the

pressure remains constant,

Vt
= F (1 + 0.003665 *). Law of Charles. Eq. 99

If, in like manner, PQ
and P

t represent the pressures of a

given mass of gas at the temperatures and t respectively,

then, so long as the volume remains the same,

P
t
=P (1 + 0.003665 ). Eq. 100

Gay-Lussac's result may be summarized by saying that the

pressure of a given mass of gas at any temperature t varies

directly as a factor (1 + at} where a has the value

FIG. 190.

Galileo's

thermometer.

Boyle
' Law

270. Boyle having already shown that the pressure varies

inversely as the volume, we may combine these two results into

a single expression, thus :



where C is a proportionality factor.

Clearing of fractions,
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*.}

Eq. 101

or

PV=RT, Eq. 102

where R = - and T= t + 273.

In other words, if we measure temperature from a zero which

is 273 C. below the melting point of ice and denote these tem-

peratures by jT, we find that the pressure and the volume each

vary directly as the temperature. A gas which obeys Boyle's

law perfectly is said to be an ideal or perfect gas. Temperatures
measured on this scale are called "ideal gas temperatures."
Perfect gases do not occur in nature ; but Lord Kelvin has

proved that if they did occur, temperatures measured by use of

any one of them would coincide with absolute temperatures,

which we shall meet a little later.

The value of R in Eq. 102 is a quantity which will have

different values for each particular gas, but will remain constant

for any one gas. For unit mass of air the value of R is 2.872

X 106
ergs/gr. 1 C. But if pressures be measured in pounds

per square foot, masses in pounds and volumes in cubic feet,

t -D co -IQ foot-poundsthen for air R= 53.18 ., \. a .

Ib. 1 t.

If we denote by m the mass of the gas being studied and

consider this as a variable, then Boyle's Law may be written in

its most general form as follows :

= mRT.

KINETIC THEORY OF GASES

271. Any satisfactory theory of gases must explain at least

the following observed phenomena :

1. The Law of Boyle.
2. The Law of Charles and Gay-Lussac.
3. Dalton's Law A mixture of gases having no chemical

reaction on each other exerts at any given temperature a total
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pressure which is equal to the sum of the partial pressures

which would be produced by each gas separately if it alone

occupied the containing vessel at the given temperature.
4. The Hypothesis of Avogadro that " the masses of mole-

cules are in the same ratio as the densities of the gases to which

they belong," or what amounts to the same thing, the number

of molecules in equal volumes of all gases is the same. It is here

supposed, of course, that the temperature and pressure is the

same for each gas.

Assumptions

272. The kinetic theory of gases, which is largely the creation

of Bernouilli, Clausius, and Maxwell, begins with the following

assumptions :

(i) That a gas consists of a large number of small smooth

particles which rebound with unchanged speed when they strike

the wall of a containing vessel at the same temperature as that

of the gas.

(ii) That the particles are so small as seldom to collide with

each other.

(iii) That the particles exert no appreciable attraction upon
each other.

From the first assumption it would follow that the kinetic

energy of such a system ought to remain constant so long as

the walls of the containing vessel remain at the same tem-

perature.

Definitions

273. Let P = pressure of gas, measured in dynes/cm.
2

V = volume of containing vessel, in cm. 3

N= total number of particles molecules.

n = = number of particles per cm. 3

m = mass of each particle.

u = square root of mean square of the speed of the

particles

=
Vfl/ + v

y
2 + ve

z where v^ v
y, vz are the com-

ponents of the mean velocity of all particles along the axes of

X, Y, and Z, respectively.
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We proceed to show that the pressure may be computed from

simple dynamical principles to be

p _ nmu2

~3~'

Since the particles are supposed to move at random in all direc-

tions, the sum of the squares of the t^'s, v
y's,

and v^s are each

equal to the other ; and hence

Nw2 = 3 2(^2
)
= 3 2(vy

2
) = 32 (vz

2
), Eq. 103

or, the mean value of vx
2 =

| u
2

. Eq. 104

The fundamental hypothesis of the gas theory is that the

pressure on any wall of the containing vessel is due to the mo-
mentum which is delivered to that wall per second by the

gas particles. Imagine the vessel to have two parallel walls

perpendicular to the axis of X and these walls to be a centi-

meters apart. The T'and Z components of the velocity being
each parallel to these walls will contribute nothing to the pres-

sure on these walls.

Limiting our consideration now to a single particle, this particle

will travel to and fro from one of these walls to the other ^*

times per second. At each impact the velocity of the particle

changes by 2 vx and its momentum by 2 mvx . The momentum

imparted to the wall per second by this particle is therefore

2 mv^ - or vx
2

. But momentum per second means average

force ; so that the expression just obtained gives us the mean
force which a particle rebounding from one of these walls to

the other would exert upon each of them.

Now consider N particles ; then if the total force on each of

these walls be denoted by F, we shall have

a

But since v 2 = A u\ it follows that
** o

F= mNu*

Eq. 105
3a

If s is the area of the wall over which this force is exerted, the

pressure will be

p = F Fa
=

8

=

V'
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'Substituting the value of F from Eq. 105, we have

p=
iNrnju?_

Eq.106

= ^ WWW
2
,

which is the fundamental equation of the kinetic theory of

gases, a result which we now proceed to interpret.

Laws of Boyle and Charles

274. If now we make the common and perhaps reasonable

assumption that the kinetic energy resident in any mass of gas
is the kinetic energy of translation of the small particles and

that the ideal gas temperature ( 270) is proportional to the

mean kinetic energy of all the particles, we have T<x. ^mu
2
,
and

where C is an unknown proportionality constant.

Let R be a constant such that

72=2/3(7 x total number of particles = 2N/3C.

Then it follows from Eq. 106 that

PV=RT,
which is precisely the law of Charles and Boyle as derived by
experiment.

Dalton's Law

Total pressure = Sum of partial pressures.

275. This follows at once, since we assume that the particles

are so small as not to interfere with one another
;

hence the

pressure would vary as the total number N of particles in the

vessel, or

PxN.

Avogadro's Hypothesis

276. For any two gases, we may write from our fundamental

equation

A=3*Wi2

and
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Since the temperatures and pressures are the same for each gas,

we have

But these equations can be true simultaneously only when

which is Avogadro's hypothesis.

V. EFFECTS OF HEAT (continued')

2. CHANGE OF MOLECULAR STATE

277. There are probably not many people whose memories

reach back to years so early that they recall their surprise at

first seeing a piece of ice melt in their tiny hands and appar-

ently disappear. The change from water to steam which occurs

in a boiling teakettle is equally familiar. These two instances

of melting and boiling are so typical of many similar cases met

with in nature that they deserve close attention.

Melting

278. (i) In the first place, it is well known that water and

ice have the same chemical composition and practically the same

chemical properties. A similar statement concerning solid and

liquid paraifine would be true.

(ii) In the second place, a glass of water so long as it con-

tains ice and is stirred does not become either hotter or colder

on standing. The ice may melt away; but, so long as there is

any ice left, the water will remain approximately at what we

call "the temperature of melting ice."

(iii) Thirdly, the temperature of melting ice can be changed

by placing the ice under pressure. The most convenient

method of showing this is perhaps the following:

Choose a block of ice having a section of from 100 to 200

square centimeters. Support it, as indicated in the figure, upon
two stools or boxes. Over the ice tie a loop of steel piano wire

about one half millimeter in diameter. Hang a mass of about

25 kilograms on the wire. In this way you can subject the

ice to a pressure of several hundred kilograms per square

centimeter. Compute the area of the wire in contact with the
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ice. The weight of the mass attached divided by this area will

roughly give the pressure. The block of ice will, in general,

be not far from its melting temperature; but the melting will

all occur at the surface until pressure is put on the wire ; it

will then be observed that the ice just underneath the wire

melts also and lets the wire cut its way through the block.

But the water behind the wire freezes at once, so that the ice

remains a solid block although it has just been cut through.
The effect of pressure is,

then, to produce melting,

i.e. to lower the freezing

point of water.

This process of melting
under pressure and again

freezing is known as
"
regelation." In this

FIG. 191. Bottomley's experiment showing principle lies the explana-
effect of pressure on melting point of ice. ti(m of the fact that cold

snow will not "pack" into a good snowball; also of the fact

that glaciers apparently
" flow

" down a mountain side as if

ice were a very viscous fluid. In front of points of great

pressure the ice melts; the pressure being by this means

transferred to some other point, the water again freezes, but

in a new configuration. In this manner the glacier gradually

adapts itself to the shape of the valley as it proceeds
downward.

Our experience with ice and all other solids may be sum-

marized in the following statement :

Experimental Law of Melting

"The pressure remaining the same, there is a definite melting

point for every solid ; and (provided the mass be stirred) however

much heat be slowly applied, the temperature of the whole re-

mains at the melting point till the last particle is melted."

TAIT, Heat, Ch. VIII.

Soiling

279.
(i) In like manner, the chemical composition and the

chemical properties of steam do not differ from those of water.

(ii) However much you boil the water in the teakettle, its

temperature does not change after boiling has once begun.
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One can easily satisfy himself of this with an ordinary mercury
thermometer.

(iii) But the temperature of boiling water is very much

changed by a change of pressure.

This is most easily proved by boiling in a kettle of water a

bottle half filled with water. If this bottle be corked while

still boiling, it may be removed with so little air inclosed in it

that the pressure on the inclosed water soon becomes greatly

less than that of the atmosphere. Under these circum-

stances, the water in the bottle will continue to boil long
after it has reached a temperature not uncomfortable to

the hand.

In the laboratory this phenomenon is most commonly shown

by boiling over a Bunsen flame a Florence flask half filled with

water. Cork the flask while boiling. Remove it at once to a

support previously prepared and cool with cold water. Violent

boiling will occur during the cooling

process. To show that to each dif-

ferent pressure corresponds a definite

boiling point, a very simple method

is that indicated in Fig. 193.

Through the cork of a large-necked
flask insert a thermometer, a U-tube

that can be partially filled with mer-

cury and used as a pressure gauge,
also an escape pipe e.

The escape pipe is fitted with a tip

of rubber tubing and a pinchcock.

By a little manipulation of the pinch-
cock one can produce and maintain

any desired height h in the pressure

gauge. In like manner, to observe the effect of diminished

pressure, one can connect the escape pipe e with an air pump.
For each different A, the thermometer registers a different boil-

ing point. It will thus be seen that the boiling point of water

is much more sensitive to changes of pressure than is the melt-

ing point of ice. Not only so, but the effects of pressure in

these two cases are exactly opposite: the melting point of ice

is lowered by pressure; the boiling point of water is raised

by it.

FIG. 192. Franklin's experi-

ment showing boiling point
lowered by diminution of pres-
sure.
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-100
Our experience concerning boiling-

may be summarized as follows :

"The pressure remaining the same,
\ PINCH- there is a definite boiling point for the

free surface of every liquid; and (pro-

vided the mass be stirred) however much
heat be applied, the temperature of the

whole remains at the boiling point till

the last particle is evaporated."

TAIT, Heat, Ch. IX.

280. It can be shown that liquids are

undergoing evaporation at all tempera-

point
tures. But the region over the free

surface of a liquid may contain so

much vapor from the liquid that con-

densation will occur as rapidly as new vapor is formed.

The atmosphere over the liquid is then said to be saturated.

The process of boiling occurs when the temperature has

reached a point where vapor is formed in the interior of the

liquid, and rises to the top. But unless the pressure of this hot

vapor were equal in pressure to that at the free surface of the

liquid, the bubble of vapor would collapse in the liquid.

The temperature of boiling (what we ordinarily call the boil-

ing point) is then simply that temperature at which the satu-

rated vapor of the liquid exerts a pressure equal to the pressure

at the free surface of the liquid.

PRESSURE OF SATURATED WATER VAPOR

FIG. 193. Boiling
raised by increase of pres-
sure.

TEMPERATURE
CENTIGRADE



THEORY OF HEAT 291

The preceding table, due to Regnault, shows us very clearly

just how the boiling point of water varies with the pressure.

FIG. 194.

Distinction between a G-as and a Vapor

281. With such apparatus as that indicated in Fig. 193,

adapted of course to accurate laboratory measurement, it is

readily shown not only that the

pressure of a saturated vapor of

any given substance depends upon
its temperature, but also that it

depends upon nothing else.

Every student should clearly

grasp the idea that the saturated

vapor pressure does not depend

upon the volume of the vapor.

The simplest and clearest illus-

tration of this is perhaps the

following :

Fill a barometer tube with mer-

cury and invert it over a deep
basin of mercury as shown in

Fig. 194. At the top of the tube there will be a small Tor-

ricellian vacuum. With a penfiller, having its tip bent as

indicated in the accompanying figure, a few drops of sulphuric

ether may be introduced into the bottom of the barometer

tube. The ether at once rises to the surface of the mercury
and the Torricellian vacuum becomes filled with the vapor of

ether. The result is that the mercury column falls from a

height of 76 to a height of perhaps 36 centimeters ; for the

pressure of this vapor is determined by the temperature of the

room, which is probably about 20 C. The entire volume of

the tube above the mercury is filled with saturated ether vapor.

a_ If now the barometer tube be

" raised or lowered in the mer-
FIQ. 195.

cury bath, it will be observed

that the height of the mercury column inside the tube does

not vary, so long as the temperature remains constant. See

Fig. 196, where the same barometer tube is shown in three

different positions. In other words, the vapor pressure does
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not vary with the volume. How does the mass of vapor vary
as the tube is raised and lowered ?

Now take a similar tube, fill it

with mercury, and invert it so as

to form a barometer as before;

but into the Torricellian vacuum
introduce now a few bubbles of

air, instead of ether. The behav-

ior of the mercury column as the

tube is raised and lowered is now

totally different. When the vol-

ume is halved the pressure is now
doubled and so on ; in short, the

gas obeys Boyle's Law and the

vapor does not.

This entire question as to the

FIG. 196. illustrating the fact that difference between a gas and a

vapor pressure is independent of vapor was cleared up about 1869

by Andrews at Glasgow, who
showed that two conditions must be fulfilled in order to con-

dense a gas into a liquid, viz. :

(i) The temperature must fall below a certain critical point,

and

(ii) The pressure must, for

each particular temperature,
rise above a certain definite

value.

He illustrates this by plotting

the pressure as a function of

the volume for a given mass of

carbonic acid '

gas, at various

temperatures. When the com-

pression occurs at a constant

temperature, the curve which

connects pressure and volume

has the form shown in Fig.

197 and is called an "isother-

mal curve." The horizontal

portion such as that indicated .

FIG. 197. Isothermals for carbonic acid

by ab in the figure represents gas.
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a state in which the substance is partly gaseous and partly

liquid. Thus at a the pressure assumes a constant value and

retains it until the condensation reaches the point
b. It is this constancy of pressure which, as we
have seen above, indicates saturation of the vapor.
Now Andrews discovered that after reaching a

certain temperature (in the case of carbonic acid

gas, about 31 C.) the isothermals ceased to have

any region of saturation, i.e. they no longer
showed any horizontal portions.

In other words, when condensation from a gas
to liquid takes place above a certain temperature,
no free surface occurs in the liquid; the change is

a perfectly continuous one.

282. A very satisfactory mode of illustrating

the passage of a liquid from the region below to

the region above the critical temperature is by
use of what is called a " critical tube," that is, a FIG.

thick-walled glass tube a little less than half filled The critical

with ether, and closed at both ends. When this

tube is suspended in a test tube filled with melted paraffin and

is heated still further with a Bunsen burner, it will be observed

that presently the liquid expands very rapidly, the meniscus

flattens, and finally disappears. The ether now fills the whole

tube and has become a gas. When the flame is removed, a

hazy cloud forms in the middle of the tube, a meniscus reappears,

rapid contraction occurs, the critical temperature has again been

passed, and the ether has now returned from a state of gas to a

state of liquid and vapor.

283. The temperature of the isothermal at which the sub-

stance ceases to show a free surface during condensation is

known as the critical temperature. The point on the isothermal

at which the horizontal portion just disappears is called the

critical point. The pressure and the volume corresponding to

this point are called the critical pressure and critical volume

respectively.

We are now in a position to define "vapor" and "gas."
"
Vapor

"
is the name given to a substance in the gaseous condi-

tion when below the critical temperature ; while the term "
gas

"
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is confined to substances in the gaseous condition when above the

critical temperature.

SUBSTANCE
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(ii) A land breeze bringing the moist air of the ocean over

the cooler land ; and

(iii) Convection currents which lift masses of moist air into

higher altitudes and thus allow them to cool by expansion.
Kelvin and Aitken have shown that there is also another

condition for rainfall not dependent upon change of tempera-

ture, namely, the presence in the air of small particles of dust

(or, as we now know, ions) upon which the moisture can con-

dense. The student is now prepared to follow the explanation
of this fact, which he will find discussed in one of the larger

text-books, such as that of Watson, Ames, or Hastings.

285. In the case of geysers, which were first satisfactorily ex-

plained by the great German chemist, Bunsen, in 1847, we have

a crevasse, generally in an old lava bed, the heat of which

is sufficient to raise the temperature of the spring water, which

feeds into this crevasse, above the boiling point. The water

in the lower part of the crevasse (which has usually become

closed up on the sides so as to resemble a tube) is under con-

siderable pressure, owing to the superincumbent water. Its

temperature therefore rises above 100 C. If now any thin,

horizontal layer of water in this tube becomes displaced

tilted perhaps so that a part of it whose temperature is, say,

102 C., gets into a region where the boiling point is only
101 .9 C., the result is that some of the water is transformed

into steam. This steam pushes some of the water out of the

crevasse and thus slightly diminishes the pressure on the water

below. This diminution of pressure is followed by a much

larger conversion of water into steam, which in expanding, ex-

pels a large quantity of water, until the entire mass is cooled

to the normal boiling point or below. Much of the water is

wasted and does not fall back into the tube ; this waste is sup-

plied by springs. The above process of heating and explosion
is then repeated ; and so on, indefinitely, so long as the sources

of heat and water remain. In the geysers of the Yellowstone

Park this period is found to vary from a few minutes to sev-

eral days.

In Fig. 198 is shown a model suggested by Bunsen, consist-

ing of a sheet-iron tube, the upper end of which is soldered into

a basin to catch the water when falling back. Three ther-
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FIG. 198. Bunsen's model of geyser.

mometers, A, B, (7, corked into

the side of the upright tube,

prove that the geyser goes into

action only when the tempera-
ture conditions are those de-

scribed above. A triple or

quintuple Bunsen flame at the

bottom takes the place of hot

lava in nature.

Heat of Fusion

286. It has been found by ex-

periment that a definite amount
of heat is required just to melt

one gram of a substance, i.e. to

change it from a solid to a liquid

without changing its tempera-

ture. This quantity of heat is,

in general, different for each

different substance and is called the Heat of Fusion of the

substance. For the last hundred years this quantity has been

known as the " Latent Heat "
of the substance. This name is,

however, rather misleading ; for, as we shall presently see, it is

exactly during the present century that men have learned that

heat is a form of energy which, when employed to melt a body,

disappears as heat of any kind, and assumes some other form of

energy concerning which we know comparatively little. There

is possibly one justification for the name in the fact that when
a substance freezes, instead of melting, this internal energy is

returned in the shape of heat. Before water at C. can turn

into ice it must give off a very considerable amount of heat.

If H calories be required just to melt in grams of any

substance, the heat of fusion of this substance F is measured

as lOllOWS : -& fT/m Defining equation for heat ~&n -|
no- L/m. Qf fusion-

In the case of ice, the heat of fusion is found to be very

nearly 79 calories per gram.

Heat of Vaporization

287. In a strictly analogous manner, experiment shows that

it takes a definite amount of heat just to change one gram of
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any liquid into vapor without changing the temperature. This

quantity, for any particular substance, is called its Heat of

Vaporization.

In the case of water boiling under standard atmospheric pres-

sure (760 millimeters of mercury), it is found that 536 calories

are required to evaporate one gram without changing its

temperature. The heat of vaporization of water is, therefore^

said to be 536 calories per gram.

VI. THE NATURE OF HEAT

288. In our study of the effects of heat, we have nowhere-

considered the question as to what this something is which

changes the size of a body, alters its temperature, melts and

vaporizes it.

Up to the beginning of the present century it was thought to be

a form of matter somewhat like air, only of much greater tenuity;

for in this way it was easy to explain the fact that, in conduc-

tion, the amount of heat leaving one system of bodies is always

equal to that entering the other. This substance, which was

-given the name of "
caloric," was supposed to be so " thin

"

that it would penetrate solid bodies with the utmost ease. It

was supposed to be without weight because hot bodies do not

weigh any more than the same bodies when cold.

That there is no such substance as " caloric
" and that heat

is a form of energy was established through the efforts of a.

large number of investigators. But the picture will perhaps
be essentially correct if we say that this accomplishment is-

mainly due to the joint labors of Rumford, Davy, and Joule.

Count Rumford (1753-1814), who was by birth an American,
but by residence an Englishman and a German successively,

was greatly impressed by the fact that in the boring of cannon

the metal chips came out very hot. Iii some experiments which

he tried in the arsenal at Munich he found that the heat gen-
erated by a blunt tool was proportional to the time during
which the tool was driven and not proportional to the amount
of abraded metal. The caloricists explained the heat which

made its appearance in the chips by saying that the specific

heat of brass in a finely divided condition was less than that

of solid brass. But Rumford showed by experiment that this

was not true ; and he suggested that this "
something

"
which-
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a system of bodies can continue to furnish in unlimited quan-
tities can hardly be a material substance.

Sir Humphry Davy (1778-1829), the English chemist,

showed that by rubbing together two pieces of ice, in a room

whose temperature was below the melting point of ice, he

could not only melt the ice, but obtain a product of abrasion,

so to speak, namely, water, whose specific heat, so far from

being less, is more than twice as large as that of ice. Rum-
ford's experiments were in this manner thoroughly confirmed.

First Law of Thermodynamics

289. It remained for Mr. James P. Joule (1818-1889), an

English physicist, to discover the exact relation between heat

and mechanical energy. He arranged a paddle wheel in a

vessel of water in such a way that the paddle wheel could be

kept in rapid rotation by means of a descending clock weight.

By placing a thermometer in the water, he found that the

more the water was stirred, the warmer it became. But, what
is more important, he measured the work done by the descending

weight and the corresponding heat produced by the paddle in turn-

ing in the water, and found that in every case the ratio between

these two quantities was the same.

Let us denote by W the work done in raising the mass m
.(Fig. 199) through the height h ; then

W= mgTi.

Barring a slight correction for friction at the bearings, this

is .also the amount of work which the descending weight does

on the paddle wheel.

Let us denote by M the mass of the water stirred, and by

t^ tj
the rise in temperature produced by the stirring.

Then the heat acquired by the water H is

The capital discovery of Joule was that for every unit of

mechanical energy which disappears as the weight descends, a

definite and constant quantity of heat appears in the stirred

water; i.e. IT is proportional to W.

In terms of algebra,

H M(t-t calories
= J= a congtant<
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By the use of this equation, Joule determined the numerical

value of this constant, 7, and found it to be very nearly

42,000,000.

VESSEL OF WATER

FIG. 199. Joule's experiment to determine the mechanical equivalent of heat.

The physical meaning of this constant, which is called the

Mechanical Equivalent of Heat, is as follows, viz. 42 million ergs

of work must be done in order to produce one calorie of heat ; in

like manner, when one calorie of heat disappears, some other form

of energy equivalent in amount to 42 million ergs of work always

appears.

Joule expressed his results in terms of foot-pounds, by saying
that the amount of work which will raise the temperature of a

pound of water one degree Fahrenheit is 772 foot-pounds. It

is in this form that English engineers always use the me-

chanical equivalent of heat. The same result may be expressed
in the metric system by writing

J= 424 gram-meters per calorie.

The inference, then, is, since work disappears as heat appears,

and vice versa, that heat is a form of energy. The principle ex-

pressed in the equation
W= Jff, Eq. 109

is known as the First Law of Thermodynamics. The trans-

formation of heat into forms of energy other than mechanical

will be discussed in following chapters.

Having shown heat to be a form of energy, we see that the

first law of thermodynamics is merely a special case of the Law
of the Conservation of Energy.
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Second Law of Thermodynamics

290. About the middle of the nineteenth century Clausius

and Kelvin established the general principle that it is impos-

sible for a self-acting machine, unaided by any external agency,
to convey heat from a body at one temperature to another body at

a higher temperature. Kelvin showed, by an argument which

must be reserved for advanced study, that it is impossible by
use of the most perfect imaginable heat engine to convert into

mechanical work more than a certain definite fraction of the-

heat in any body. Let us suppose an engine working under

the most favorable circumstances and receiving an amount of

heat H
l
at a temperature of tr Every heat engine disposes

of a part of the heat which it receives to a body at some lower

temperature tv Let us denote by H^ the heat given out by the

engine to the refrigerator whose temperature is tv Then Kelvin

showed that, if temperatures are measured on the ideal gas
scale, the maximum possible value for the ratio between use-

ful work and heat taken in a quantity generally called

"
efficiency" is -^ - Or, putting this same result in terms

h
of algebra, we have

Efficiency = Hl
g
H

* = ^~- Eq. 110

This efficiency equation may be considered as a quantitative

expression for the second law of thermodynamics.

Absolute Scale of Temperatures

291. Still another way of putting this result is to say that

the efficiency of the most perfect heat engine working under

the most favorable conditions is a function only of the tempera-
tures of the source and refrigerator respectively.

One of the important applications of the second law of

thermodynamics is the determination of temperature by a

method which is independent of the particular thermometric

substance employed. Such temperatures are said to be "abso-

lute." An outline of the method by which this is done is as

follows: Eq. 110 may be transformed by simple algebra so

as to read jr +&dri Eq. Ill



THEORY OF HEAT 301

JT
With clear vision, Kelvin saw that the ratio l is independent

^2
of the material, and being a function of the temperature alone,

may be used as a measure of the ratio of two temperatures on a

new and absolute scale.

The experimental determination of the numerical value of
7T

this ratio * for a substance working between the boiling andH
*

freezing points of water was made by Kelvin and Joule, and

373 t
found to be This is, of course, also the value of -l for the

273 t
z &

same two fixed points. In order to definitely determine either

of these two temperatures on the absolute scale, it remained

only to discover another equation between them. This we
have in the universal convention that the difference between

the melting point of ice and the boiling point of water shall be

100, or, calling t
l
the temperature of steam and

2
the melting

point of ice, _

and
373 Eq. 112

*2 273

Eliminating ^ and
2 respectively between these two equations,

we have

Temperature of melting ice = t
z
= 273 on the absolute cen-

tigrade scale, and

Temperature of boiling water = t
l
= 373 on the absolute cen-

tigrade scale.

It thus appears that the zero on the absolute scale is identical

with that on the ideal gas scale.

From Eq. 110 it follows that the absolute zero is simply the

temperature of a refrigerator at which a perfect engine would

convert into mechanical work all the heat supplied to it.

Observe that the size of the degrees here employed is deter-

mined by Eq. 112, and that they are centigrade. If ^ t
2
had

been fixed at 180, the size of the degrees would have been Fah-

renheit and the absolute zero would then have been 461 below

that of melting ice.

Heat Engines

292. We have seen how Joule transformed mechanical

energy into heat by means of his raised weight and paddle.
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The heat engine is a machine devised to accomplish the reverse

operation, viz. to transform heat into mechanical energy. The
most important of these engines are included in the three

following groups :

(i) The reciprocating steam engine. This is the ordinary
steam engine, of which the common railroad locomotive is an

example. Its essential features are the following : boiler, H,
in which heat, furnished by combustion of fuel, is employed to

evaporate water; a cylinder, 0, in which slides a close-fitting

piston head, P, and a piston rod, R, as indicated in Fig. 200 ;

a steam chest, S, containing an automatic valve which admits

FIG. 200.

the steam alternately to one end and to the other of the cylinder.

By means of a connecting rod this to-and-fro motion of the

piston is transformed into a circular motion of the shaft and

pulley in a manner which will be clear from an inspection of

Fig. 200 Us. This

J, /f II ^NX form of engine is

largely

of

the

the
very
creation

Scottish engineer,
James Watt.

In marine en-

FIQ. 200 bis. gines (and in some

others also) the exhaust steam is collected, condensed into

water, and again returned to the boilers. The same water is

thus used over and over again. The steam is not used up, but

is merely a "working substance," a carrier to transfer the

energy of the combining coal and oxygen in the furnace to

the machinery which is doing mechanical work.

The student who would know more of the history or the
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theory of the steam engine should consult the very readable

article of Professor Ewing on this subject in the Encyclopaedia

JSritannica; also the biographical sketch of James Watt there

given.

(ii) The steam turbine. When water escapes from pressure,

its energy becomes kinetic | mv
2

. If a stream of water, say

a slender jet, is directed against a flat surface, such as a door,

it exerts a pressure upon this surface. If the door gives way
and moves in the direction of the force, work is done upon it

Fs and this work is performed at the expense of the kinetic

energy of the moving water. For many years the miners of

the west used a form of water-wheel the hurdy gurdy
made up of flat vanes attached to a shaft. This wheel was

made to run by playing a jet of water on the vanes. The

Pelton water-wheel of the present day employs the same prin-

ciple, but by use of curved vanes is able to utilize a much larger

proportion of the kinetic energy of the water.

When steam escapes from pressure the velocity factor of its

kinetic energy is very great. Consequently a jet of steam

directed against a resisting surface exerts upon it a force simi-

lar to that of the wind, with which we are all familiar ; but the

force due to a jet of steam is likely to be of far greater inten-

sity.

A rough sort of steam engine may be made by running
steam through an ordinary Pelton water-wheel ; while the

De Laval steam turbine is simply the

Pelton wheel properly designed for the

use of a light and expansive medium
steam.

The disadvantage of the De Laval

wheel is that it must run at an exces-

sively high speed in order to absorb a

large fraction of energy from the steam v^
which has freely expanded and has FIG. 201. The De Laval steam

thereby acquired an enormous speed.
turbine.

We have seen that in the ordinary reciprocating steam

engine the steam does work by expanding the volume of the

cylinder in which it is confined.

In the Parsons turbine this principle is also made use of to

some extent in order to absorb the energy from the steam and
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VELOCITY OF STEAM

400 FT. PER SEC.

STEAM PRESSURE
160 LBS. PER J. IN.

M INCH VAOUUM

FIG. 201 bis. Longitudinal section of Parsons turbine.

yet to keep the speed of the steam down to about four hundred

feet per second.

To accomplish this the cylinder (stator), instead of being
fitted with a piston, is provided with a coaxial shaft (rotor)

which is cov-

ered with small

blades inclined

to the axis of
the shaft, on the

same principle

that the blade*

of a windmill

are inclined to

the direction of

its shaft. Cor-

responding to each movable blade on the rotor, there is a fixed
blade on the inside of the stator.

Accordingly we may think of the passage of the particles of

steam between these blades as similar to their passage through
a long rectangular pipe one side of which is constantly reced-

ing from the other and is therefore absorbing energy. The

impulse principle that of the De Laval turbine is also

employed in the Parsons to abstract still another portion of

the energy of the steam.

This type of engine is especially adapted for the smooth run-

ning of steamships and dynamos. The steam turbine owes its

initial development largely to the English engineer, Parsons.

(iii) The internal combustion engine. The two preceding

engines derive their energy from fuel which is burned outside

the cylinder. But there has recently been perfected a type of

machine which burns its fuel (either gas or a spray of oil)

right inside the cylinder. When the proper fuel is used, the

products of combustion are entirely gaseous, so that the cylin-

der easily clears itself. These are the little engines so familiar

to us on automobiles. In most of them there are four steps

through which the "
working substance

"
is taken. These are

indicated in Fig. 202. These four steps constitute what is

known as the "Otto cycle," after the German engineer, Otto,

who did much to perfect the modern gas engine. In these

engines the piston does work only when moving in one direc-
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FIG. 202.

tion ; they are therefore said to be
"
single acting," to distinguish them

from the ordinary reciprocating steam

engine, which does work both on the

forward and on the backward stroke,

and is hence said to be "double act-

ing." The use of intake and exhaust

valves I and E, shown in Fig. 202,

will be sufficiently clear from the dia-

gram. The intake valve admits the

explosive mixture say air and gaso-

line vapor ; compression then occurs ;

explosion is then produced by an elec-

tric spark; the products of combus-

tion, CO2, etc., are then swept out

through the exhaust valve E. These are the four steps in the

Otto cycle. References
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Problems

1. The average reading of the barometer at the top of Mount Hamilton

(the Lick Observatory) is 65 cm. At what temperature, therefore, does

water boil on Mount Hamilton ? Ans. 95 C. approximately.

2. At the top of Pike's Peak water boils at a temperature of 86. What,

therefore, is the average reading of the barometer on Pike's Peak?
Ans. 45.68 cm.
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3. The pressure of the atmosphere is approximate!y 15 Ib. weight to the

square inch. The boiler of an Atlantic liner carries a steam pressure of

300 Ib. to the square inch. What is the temperature of the water in this

boiler? See Regnault's table. Ans. 212.3 C.

4. How do you explain the fact that as a vessel of sap from the maple
tree is boiled away the percentage of sugar in the solution left behind con-

tinually increases?

5. Explain how one can warm his hands by rubbing them together.

6. Explain the fact that a piece of iron is heated by hammering. What
kind of energy is here transformed into heat?

7. Explain the fact that when a piece of copper wire, at any point, is

rapidly bent first in one direction, then in the other, it becomes hot.

8. How is it that when the tire of a bicycle is being pumped up,

(a) the barrel of the pump becomes warm ?

(>) the rubber hose connecting the pump and the tire becomes warm?

9. At a place where the acceleration of gravity is 980, a bullet whose

mass is 8 g. is allowed to fall from a height of 1000 cm. What will be

the kinetic energy of the bullet in ergs just before it strikes the ground?
To what fraction of a calorie will this mechanical energy be equivalent?

. Ans. 7,840,000 ergs = 0.187 calorie.

10. Suppose, in the preceding problem, that when the bullet strikes the

ground one half its kinetic energy goes to heat the bullet, the other half to

heat the ground. Tf the specific heat of lead is -fa, by how much will the

temperature of the bullet be raised? Am. 0.34 C.

11. (a) The height of the American Falls at Niagara is 50 m. How
much kinetic energy will a gram of water acquire in falling through this

distance? (# = 981.) A ns. 4,905,000 ergs.

(6) W'hat will be the equivalent of this energy in heat units?

Ann. 0.117 calorie.

(c) By how much then will the temperature of the water at the bottom

be increased over that at the top ? Ans. 0.l 17 centigrade.

12. To raise a mass of 10 Ib. through a vertical distance of 8 ft. (80

foot-pounds) requires how many ergs of work ?

Ans. 1079 million ergs.

13. Assuming that the specific heat of iron is 0.12, find the number of

heat units required to raise the temperature of 300 g. of iron from 20 C.

to 360 C.

14. Why is it that alcohol or ether poured on one's hand gives him the

sensation of cold?

15. How much heat must be given to 12 g. of water at 40 C., in order

to make it boil ?

16. Why are damp clothes apt to make one chilly ?

17. Ten Ib. of water at C. are mixed with 40 Ib. of water at 50 C.

Find the temperature of the mixture.
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18. Give five illustrations of the transformation of some form of energy
into heat.

19. What is meant by a " land breeze "? By a " sea breeze "
? How do

you explain these?

20. Write an examination paper of five questions on the subject of heat.

21. A harvesting machine, made partly of wood and partly of iron, is

allowed to stand overnight in an open field. In the morning, which parts

will be covered with dew, the iron or the wood? Why ?

22. What are clouds and how are they produced?

23. Why is it that in winter ice which is partly covered with dirt or

ashes melts sooner than clean ice ?

24. Why are teapots often provided with wooden handles ?

25. Fifty cubic centimeters of water are heated from a temperature

15 C. to 35 C. Find the change in volume thus produced.

26. A steel rail 10 m. long will change its length by how many milli-

meters when heated from C. to 50 C. ?

27. Why do you pour hot water on the neck of a bottle when you wish

to loosen the glass stopper ?

28. Explain how the temperature of a greenhouse, not heated artificially,

rises above that of the surrounding air.

29. What is the theoretical efficiency of a steam engine whose boiler is

at a temperature of 160 C. and whose condenser is at 40 C. ?

30. Suppose the temperature of combustion in the cylinder of a gasoline

engine to be 1600 C. and the temperature of the exhaust 350 C. Find the

highest possible efficiency.

31. How would you proceed to graduate an electrical resistance ther-

mometer?

32. Sketch the isothermals of carbon dioxide and show how they differ

in form above and below the critical point.



CHAPTER VIII

MAGNETISM

293. Any body which attracts iron filings is said to be magnet-

ized, and is called a magnet.
One kind of iron ore is found to be already magnetized as it

comes from the earth. If a piece of this ore (which miner-

alogists call magnetite or loadstone) be dipped into a box of

iron filings, it is seen that certain regions of it attract the

filings very strongly, while the remaining parts attract scarcely

at all.

Those parts which attract the iron filings most strongly are

called magnetic poles.

LEADING FACTS OF MAGNETISM

294. The following ten facts, presented in essentially the

order in which they were discovered, are perhaps the most

important phenomena connected with this subject:

1. If a piece of magnetized iron or a piece of loadstone be freely

suspended, it will always set itself so that a certain direction in

it makes a fixed angle with the geographical meridian, i.e. with

the north and south line.

The Mariner's Compass

This fact is illustrated by the ordinary compass and con-

stitutes its fundamental principle. A slender piece of steel is

magnetized by drawing it over a magnet or loadstone, and

is then mounted on a sharp pivot so that it is free to turn in

any direction. This idea of the compass, which dates from a

time certainly not much later than 1200 A.D., is the first im-

portant discovery in the science of magnetism.
In the case of a long, slender magnet, such as is used for a

compass needle, there is, in general, one pole near each end.

That pole which turns toward the north, when the magnet is free

308
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to rotate, is called the north-seeking pole, or simply the north pole ;

that pole which turns toward the south is called the south pole.

The direction of the line joining the poles is called the magnetic
axis of the magnet. This definition of " axis

"
will later need

a slight revision, since the poles have not yet been defined as

mathematical points.

The direction assumed by the axis of a freely suspended mag-
net is called the magnetic meridian.

The angle between the magnetic and geographical meridians is

called the magnetic declination. It is generally expressed in

degrees, minutes, and seconds. In making an accurate determi-

nation of the magnetic declination, one must be careful not to

assume that the magnetic and geometric axes of the needle

coincide.

In actual measurement any uncertainty as to the position of

the pole is eliminated by using a thin flat compass needle and

by observing first with one face up, then with the other. Thus
in Fig. 203, if G-Gr be the first position of the compass needle

MAGNETIC AXIS

G"

FIG. 203. Illustrating the difference in direction between geometric and

magnetic axes.

and Gr'Gr
1
its second position, we shall find that while the magnetic

axis remains fixed in space whichever face of the needle is up,

the geometric axis does not. But the directions of the geometric
axis CrG- and Cr'Gr' are those which are actually read upon the

graduated circle. Hence the difference of the two readings,

before and after the needle is reversed in its bearings, will give

us twice the angle by which the magnetic and geometric axes

diverge. Not only so but the mean of these two readings will

give us the correct direction of the magnetic meridian. One

thus avoids the necessity of locating the magnetic axis as a

mathematical line in the body of the needle.

A little later it will be clear how we may avoid the necessity

of locating the magnetic pole as a mathematical point, situated

on the magnetic axis at a certain distance from the axis of

rotation.
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GEOGRAPHICAL
MERIDIAN

Every student should read, in the Encyclopedia Britannica,

art. "
Compass," the description of a beautiful needle devised by

Lord Kelvin in 1876 and now used on practically all the sea-

going vessels of the world, a simple device which eliminates

practically all divergence between magnetic and mechanical axes.

295. 2. The Discovery of Columbus. Columbus used the

compass on his first voyage to America. Up to this date it

had been supposed by European navi-

gators that while the suspended magnet
in the compass did not always point

exactly north and south, it did always

point in the same direction; i.e. they

supposed the angle between the geo-

graphical and magnetic meridians to be

constant. But Columbus, much to his

own astonishment, and much to the dis-

may of his sailors, found that as he

proceeded west, the needle pointed to a

part of the sky which lay more and

more to the Avest, and thus discovered

that the magnetic declination varies from,

one point to another on the earth's surface.

This we may call the second important discovery in magnetism.
Another way of putting it would be to say that what Colum-

bus discovered is that the general statement contained in 294

is true only for a single geographical location ; or more strictly,

for the locus of all geographical points for which the magnetic
declination is the same.

Curves drawn in such a way that the magnetic declination is

constant for every point on them are called "isogonic curves."

The accompanying map will show the trend of these isogonic
lines in various parts of the world.

MAGNETIC DECLINATIONS (1900)

FIG. 204.

Augusta, Me .16 W.
Boston . . . . . . .

.. 12 W.
New York 9 W.
Cleveland 2 W.
Knoxville, Tenn

Chicago 3E.

New Orleans 5 E.

Kansas City 8 E.

Omaha 10 E.

Denver . . 14 E.

San Francisco 17 E.

Tacoma, Wash 23 E.
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The preceding table shows the values of the declination in

different parts of the United States, to the nearest degree. W.
and E. indicate west and east declinations, respectively.

296.

The Magnetoscope

In the laboratory one has frequently occasion to use a

. compass needle of some sort. A most

convenient and easily prepared form is

the following : A wooden block about

one decimeter square is bored halfway

through by an auger (extension bit)

which has the same diameter as the glass

chimney of an Argand lamp. The chim-

ney is then waxed into the block, and a

FIG. 206. Simple form of small steel magnet is suspended by a
magnetoscope.

an instrument is 'not disturbed by currents of air in the room.

It is called a magnetoscope. Why ?

297. 3. The magnetic dip. Not long after the time of Colum-

bus it was found by Hartman (b. 1489, d. 1564) that if an iron

needle be suspended so as to lie hori-

zontal before magnetization, it takes

up a different position after magnet-
ization. Imagine the needle before

it is magnetized to be horizontal.

After magnetization it is found that

the north end "
dips

" down as if it

had become heavier than the south

end. But Norman (1576), the in-

ventor of the dipping needle repre-

sented in Fig. 207, weighed the iron

needle and found that it was no

heavier after magnetization than be-

fore. As we shall see later, this dip
, IP,, FIG. 207. Dipping needle.

is due to the fact that the earth itself

is a great magnet. Only the direction, therefore, and not the

weight of the needle is changed by magnetization. In the

southern hemisphere it is the south end of the magnet which

"dips."
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FIG. 208. Showing attraction between north and

south poles.

In the Uhited States it is customary to attach a small weight
to the south end of a surveyor's compass needle in order to

counteract the effect of the dip.

The phenomenon of magnetic dip might be called the third

important discovery in this subject.

298. 4. Like poles repel each other ; unlike poles attract each

other. The evidence for this may be shown in a variety of

ways ; perhaps the most convenient method is the following :

Mount two magnets, as shown in Fig. 208. Determine the

north end of each, and

slip bits of paper over

them as indicated.

When one magnet is

brought near the other,

the repulsion between

the two north poles or

between the two south

poles is very evident ; likewise the attraction between a north

and a south pole.

Norman magnetized a sewing needle, and floated it on water.

By bringing into the neighborhood another magnet, he had a

delicate means of

showing attraction

and repulsion of

the poles.

Concerning the

amount of this at-

traction or repul-

sion, it was first

shown by the

French electrician

Coulomb (1736-1806), and afterwards accurately verified by
the German astronomer Gauss (1777-1855), that the attraction

of one pole for another, in air, varies inversely as the square of

the distance separating them and directly as the products of the

pole strengths a quantity which will be defined a couple of

pages hence. If we denote this distance by r, and the pole

strengths by m and m r

, respectively, we may describe Coulomb's

result by writing :

FIG. 209. Floating magnet, and wire for placing it on

the water.



314 GENERAL PHYSICS

mm
Coulomb's Law. Eq. 113

where, for air, k is a mere constant of proportionality which

may be determined later.

The Magnetic Field. Lines of Force

299. If a sheet of white paper be laid over a magnet, and

iron tilings be sprinkled over the paper, one obtains very strik-

ing evidence that the region about the magnet is different from

other parts of space. The iron filings arrange themselves in

curved lines ; and these curved lines remain the same, however

many times we repeat the experiment.

uWe next introduce a method of conceiving and describing magnetic
actions which was invented and much used by Faraday. Since a magnet

acts upon a magnetic needle

placed anywhere in the surround-

. ing space, we call that space the

magnetic field of the magnet.

Neglecting the earth's magnet-

ism, we may map out this field

as follows : Conceive any plane

drawn through the axis of the

magnet and place it so that this

plane shall be horizontal. Then,

at any point in this plane, place

a very small magnetic needle, and

note the direction which its axis assumes under the action of the magnet;
then proceed to move the center of the needle in the direction iu which its

north pole points, and continue the motion so that, at each point, the center

is following the direction indicated by the north pole.
" The line thus traced will at last cut the surface of the magnet at some

point lying toward the

south pole ;
and if we con-

tinue the line backward by

following the direction con-

tinually indicated by the

south pole of the needle, it

will cut the surface of the

magnet at some point ly-

ing toward the north pole.

Such a line is called a line
, .. , , . FIG. 211. Field about a straight magnet.

of magnetic force
;
and since

one such line can be drawn through every point in the plane, and any

FIG. 210. Method of mapping magnetic
fields.
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number of planes can be drawn through the axis of the magnet, we can

conceive the whole magnetic field filled with such lines." CHRYSTAL,

Ency. Brit., art. "
Magnetism."

Figure 210 indicates the process of mapping these fields.

Figure 211 shows the field about a strong bar magnet. The

effect of the earth's field is here negligible.

Figure 212 repre-

sents a small portion

of the field due to the

earth alone.

A magnetic field as

actually mapped in

the laboratory will

always be the result-

ant of the earth's field and the field of the magnet.

FIG. 212. Uniform magnetic field due to earth alone.

Intensity of Magnetic Field

300. So far we have considered only the fact that a magnetic
field has, at every point, a certain definite direction. If, how-

ever, a small horseshoe magnet be brought
into the field of a large one, and held

between the thumb and forefinger, the ob-

server will easily
" feel

"
that the little

magnet experiences a force driving it

toward one pole or the

other of the larger mag-
net, always tending to

move into the strongest

part of the field. Ob-

serve that in those parts

of the field where the

lines of force are nearly

parallel to each other, the

force is very minute.

Suppose now that the little magnet be

mounted upon a sewing needle as a vertical

axis after the manner shown in Fig. 214.

The needle may well be placed in a block of

wood so that the rotating system may be fixed at

FIG. 213. Illustrating

the force which a mag-
netic field exerts upon
a magnet.-

FIG. 214. Illustrat-

ing the torque

which a magnetic
field exerts upon
a magnet.

various
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heights above the poles of the larger magnet. Now the force

of translation is counteracted by the reaction of the needle,

and one can feel in a very convincing manner the torque which

a magnetic field in general exerts upon a magnet placed any-
where within it.

Having determined that a magnetic field exerts both a force

and a torque upon any magnet placed within it, we next inquire

what is meant by a strong or weak magnetic field a question
which can be clearly answered only after the "strength of a

magnetic pole
"
has been defined. For this latter purpose the

law of Coulomb, F = k -, is emploved.
ri

Definition of Unit Magnetic Pole

301. To begin with we assume that the value of the constant

k in Eq. 113 does not depend upon the medium in which the

poles are placed, so long as the medium is the ordinary atmos-

pheric air; in other words, we assume air as our standard

magnetic medium. Next let us assume that the two poles

which are attracting each other are equal and are placed at a

distance of one centimeter apart. If under these conditions the

two equal poles be chosen of such a size that they attract or repel

each other with a force of one dyne, they are said to be unit

magnet poles, or poles of unit strength.

The chief advantage of this definition, which may at first

glance appear rather arbitrary, is that it makes the constant k

disappear from Coulomb's Eq. 113. For having assumed

m = m' = 1 when F = r = 1, it follows that in air k must always
be unity, a unit vector, indeed ; whence follows

Eq. 114
yd

which now becomes not only the law of Coulomb, for air, but

also the defining equation for the unit magnet pole.

Measure of Magnetic Intensity

302. We are now, for the first time, in a position to define what

is meant by the intensity of a magnetic field, namely, the ratio

of the force which a magnet pole experiences in that field to the

strength of the pole.
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Let R denote the intensity of field, and F the force with

which the pole m is urged. Then

P Defining equation for

R = . intensity of magnetic Eq. 115
m field.

Field intensity, being a ratio of a vector to a scalar quantity, is

itself a vector quantity, and is therefore to be resolved and

compounded according to the rules for vector addition. From

Eq. 114 it follows that a field of unit intensity is one which

will act upon a unit magnet pole with a force of one dyne.

By international agreement (Paris, 1900) this unit is called,

after the eminent German astronomer, a "gauss."
We are now provided with a clear and simple definition for

the intensity of field; but since we have as yet no practical

method for measuring pole strengths, Eq. 115 cannot be called

a laboratory equation.

Just how this difficulty is avoided will be cleared up in the

following sections when we come to consider the earth's mag-
netic field.

303. 5. The earth itself a great magnet. We have seen that

at any one point on the earth's surface the compass needle

points in a definite direction, generally not far from north.

We have seen that, in the northern hemisphere, the north end

of the needle dips ; while in the southern hemisphere, the south

end dips.

But this is exactly the manner in which a small compass
needle would behave in the presence of a large iron sphere
which had been magnetized. Accordingly Dr. Gilbert* was

led to suggest that the earth itself was a large magnet. And
since his time the theory has been confirmed by navigators who
have located the north magnetic pole of the earth not far from

Baffin's Bay, and the south magnetic pole somewhere between

Australia and the south geographical pole.

If we map the magnetic field of the earth by means of com-

pass and pencil as indicated in the preceding paragraph, we
shall find that the lines of force due to the earth are, in any
limited region, practically parallel to each other.

*Dr. William Gilbert (b. 1540, d. 1603), the leading man of science in

England during the reign of Queen Elizabeth.



318 GENERAL PHYSICS

304. 6. The earth's action a couple. In a preceding section

(15) we have considered the distinction between a motion of

translation and one of rotation. To a system of forces which

produce rotation only the name couple has been given. Norman

offered the following three experiments to show that the earth

does not exert any force of translation upon a magnet, or, as

we might say, three reasons for thinking that the force which

the earth does exert upon a magnet is a couple.

"
First, he weighed several small pieces of steel in a delicate balance, and

then magnetized them, but could not detect the slightest alteration in their

weight,
'

though every one of them had received virtue sufficient to lift up
his fellow.'

"
Secondly, he pushed a steel wire through a spherical piece of cork, and

carefully pared the latter so that the whole sank to a certain depth in a

vessel of water and remained there, taking up any position about the center

indifferently. After the wire was magnetized very carefully, without dis-

turbing its position in the cork, it sank to the same depth as before, neither

more nor less, the only difference being that now the wire set itself per-

sistently in a definite fixed direction parallel to the magnetic meridian, the

north end dipping about 71 or 72 below the horizon.

"Thirdly, he arranged a magnetized needle on a cork so as to float on the

surface of water, and found that, although it set in the magnetic meridian,

there was not the slightest tendency to translation in any direction. .

"He concludes that there is no force of translation on the magnet, either

vertical or horizontal." CHRYSTAL, Ency. Brit., art. "Magnetism."

Recalling the fact that a couple is made up of two parallel

and equal forces acting in

opposite senses, but not in

the same straight line, we
conclude that the earth's

action is a couple precisely

because its lines of force,

throughout the limited re-

gion of any single experi-

ment, are parallel.

If the dish of water, shown
in Fig. 215, be supported
over a rather strong per-

manent magnet, arid if the

magnetic needle be floated on a small cork, it will be seen that

this artificial field exerts both a couple and a force upon the

w.
FIG. 215.
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floating magnet, continually drawing the magnet back toward

the strongest part of the field. The explanation of this lies in

the fact that here the force acting upon the north pole of the

floating needle is not exactly opposite in direction to that acting

upon the south pole. Hence the resultant of these two forces

cannot be zero. The advanced student will find that the

floating magnet here simply moves in such a way as to make
its potential energy a minimum.

Digression on the Measurement of the Earth's Magnetic Field

305. On both historical and scientific grounds the following

problem is one worthy of rather careful study ;
for not only is

it the first problem in which the absolute system of units was

introduced into the science of electricity and magnetism, but it

is a thoroughly typical example of the manner in which physical
science deals quantitatively with phenomena which are very

imperfectly comprehended.
As a preliminary it is necessary to define

Magnetic Moment,

a quantity of frequent use in magnetic measurements. The

magnetic moment of any magnet is defined as the product of

its pole strength m by the distance / between- its poles. This

quantity is generally denoted by M, and is defined by the

following equation :

IT vnl Defining equation for -r?n -\-\aM = ml. magnetic moment. M- *

HORIZONTAL INTENSITY OF THE EARTH'S FIELD

306. We have already learned, in a general way at least,

how the declination and the dip of the compass needle may be

measured. In order to complete the determination of the

earth's field, it remains only to measure the horizontal compo-
nent H oi the total intensity T. See Fig. 216.

Confining our attention now to the parallel field which be-

longs to the earth, let us imagine a magnet suspended in this

field by means of a delicate fiber. The magnet will oscillate

to and fro about its position of equilibrium and will then come

to rest, pointing along the magnetic meridian. If the magnet
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lies in a horizontal plane, the only directive force acting upon
it is the horizontal intensity S.

307. To determine the numerical value of H the two follow-

ing steps are needed :

(i) To obtain the torque, acting upon the needle in terms of its

period. When the suspended magnet is rotated through an

angle 6 about its suspending fiber as an axis,

there will be a force + mH acting upon the

north pole of the magnet, and a force mH
acting upon its south pole.

If we denote by I the distance between the

FIG. 216. Illustrat-

ing the relation

between the four

magnetic elements,

namely, horizon-

tal, vertical, and
total intensities,

and angle of dip 5.

FIG. 217. Illustrating the couple which acts upon
a magnet suspended in the earth's field.

two poles, I sin 6 will be the perpendicular distance between

the lines of action of the two forces + mH and mH. The

couple L acting upon the needle will therefore be mHl sin 6.

And since the sign of the couple which tends to restore the

needle to its position of equilibrium is always opposite to that

of the angular displacement 0, we may write

L = -ml- ffsm = - Mffsin 0. Eq. 117

When is very small, we have with sufficient accuracy

L = -MH6. Eq. 118

Dividing each side of this equation by the rotational inertia

I of the magnet, we obtain for the angular acceleration JL,

^)0. Eq. 119

It thus appears that the angular acceleration of the vibrating

system is, at every instant, proportional to the angular dis-
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EAST

R

placement and opposite in sense. The behavior of the magnet
therefore satisfies the criterion ( 53) for simple harmonic

motion. And since the period of any simple harmonic motion

ig 2
/ _/Disp_lacement\ it follows that the period of vibra-
^

\Acceleratioiiy

tion of this magnet is

r= 2^Sff Ei' 120

Now T and / are easily measurable quantities ; but these data

do not enable us to determine either of the two unknown quan-
tities M and H. Equation 120 merely gives us the product
MH in terms of T and I. Hence the necessity for the second

step, namely,

(ii) To obtain the deflection of the needle in terms ofM and H.

Gauss has shown how this relation may be obtained by a very

simple experiment.

Having suspended another, and much smaller, magnet with

a small mirror rigidly attached

to it, so that the direction of

the magnetic field in which it

is placed may be at once indi-

cated, one takes the magnet MINI !" H MOR

NS (Fig. 218) whose period
he has just measured, and

fixes it as nearly as possible

at right angles to the mag-
netic meridian and at a dis-

tance r east or west of the

suspended needle 0.

Before the deflecting mag-
net NS was brought into the

neighborhood, the suspended
needle pointed north and south

along the magnetic meridian. If there were no magnetic field

due to the earth, the suspended needle would now point east and

west due to the field R of the deflecting magnet ;
but since both

fields are present, the suspended needle sets itself along the

resultant of the two fields as indicated in the figure. Now if

we knew the intensity of each of these fields, we could easily

FIG. 218. Showing the superposition of

an artificial field upon the earth's field,

and the consequent deflection of the

suspended needle.
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compute the direction of the resultant; for, since these two-

fields are at right angles to each other,

, Eq. 121
JJ.

where < is the deflection, i.e. the direction of the resultant

referred to the earth's field.

Conversely, if we know the direction
<f>
and the intensity R

we can compute H. This latter we now proceed to do. The

magnetic field at 0, due to the pole N alone, is by Coulomb's-

law ( 301) ; w^e tne field at due to S alone is

Hence the total field R due to the entire magnet NS

is given by

[-(1)

Or, if we choose r so large that I
2
may be neglected in compari-

son with r2

19f>Eq. 1.22

Substituting this value of R in Eq. 121 and solving for BJM,
one has

= ^ Ea 193M rtan^
Since r and < are easily measured, we have here a laboratory

equation for the ratio H/M. Our second step is now complete.

308. Between Eqs. 120 and 123 it is now possible to elimi-

nate M and obtain the horizontal intensity of the earth's field,

thus

Q Eq. 124
MJ

or to eliminate H, and obtain the moment of the deflecting

magnet, thus

Eq. 125
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It should be observed that this method of Gauss avoids the

necessity of measuring either the pole strength m or the dis-

tance between the poles I. The neat manner in which this is

done is to combine these two quantities into a product M and

then eliminate M by means of a second equation which is ob-

tained, of course, by means of a second (deflection) experiment.
The advanced student will find that some of the approxi-

mations here introduced are not permissible in work of high

accuracy, hence certain corrections must be made to Eqs. 124

and 125; but the philosophy of the subject is not thereby

changed.

Returning from this digression, we now proceed to the next

fundamental fact in the science of magnetism.

309. 7. Magnetic quality disappears at red heat. Any sub-

stance which is attracted or repelled by a magnet is said to

possess magnetic quality. It has been found that the only
substances which exhibit

magnetic quality to any

great extent are iron,

nickel, and cobalt. Iron

is the only really impor-
tant magnetic substance

known. But if a piece of

iron or steel be magnetized
and then heated until red-

hot all over, it will be

found to have lost its mag-
netization. As soon as

FIG. 21J). Illustrating the disappearance of

magnetic quality at red heat.

the iron has cooled again, however, it will be found to have

regained its magnetic quality, for it will now attract either end

of a compass needle. There is, then, a marked difference

between a piece of iron which is magnetized and one which is

not. The iron which is not magnetized still possesses magnetic

quality at all ordinary temperatures ; but it does not possess

any magnetic poles or any magnetization,

The evidence for thinking that magnetic quality disappears
at high temperatures is simply shown as follows :

Mount a. compass needle some five or six inches long on a

single pivot as shown in Fig. 219. Bring near it, in a wood
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clamp, a piece of unmagnetized iron wire, say, five or six inches

long. The compass needle will magnetize the wire and will be

deflected from the magnetic meridian, so that one end of it will

swing about and touch the wire. If now a Bunsen flame be

brought underneath the iron wire until it becomes a bright red,

the compass needle will " let go
" and will swing back into the

meridian, showing that the hot iron has lost its magnetic

quality. On removing the flame, the iron will be seen to cool

and one end of the compass needle to swing around into contact

with the iron, showing that the wire on cooling has regained its

magnetic quality.

310. 8. Magnetization a molecular property. The evidence

furnished by the preceding experiment, together with the fact

that a magnet say
I

N s
l a piece of magnet-

ized watch spring

may be broken into

FIG. 220. A piece of magnetized watch spring broken an Unlimited num-
into fragments, each fragment remaining a complete ^er Q D ie

"

ces (}?{&
magnet.

220), each of which

remains a complete magnet, with north and south pole, leads

us to think that, whatever magnetism may be, it is something
which belongs to the smallest particles of which the body is

made up. The experiment of breaking up the magnetized
watch spring should be tried by each student for himself. The

fragments are easily examined by use of the magnetoscope.
A tube of iron filings, represented in Fig. 221, may be mag-

netized by placing it across the poles of a strong permanent

magnet. It may be

again demagnetized c .J^aj&&y^^
by shaking. And it
. . FIG. 221. A tube of iron filings magnetized.
is not improbable that

when we heat a magnet red-hot we produce such violent motions

in its smaller parts as to continually
" shake out

"
any magnet-

ization that might be introduced.

A long wire of soft iron say 70 centimeters in length and

1 or 2 millimeters in diameter may be strongly magnet-
ized; but if it receive even a slight jar, its magnetization will

almost entirely disappear. This also would lead us to think
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magnetization not a property of the surface of the body, nor of

the body as a whole, but of its innermost structure ; that is, its

molecular structure. This we may call the eighth important

discovery in magnetic science.

In the Philosophical Magazine for September, 1890, Professor

J. A. Ewing, the English engineer, explains, practically all the

phenomena of magnetism and electromagnetism (see 312) in

terms of this molecular hypothesis, and illustrates them with

an exquisite model in which molecules are represented by small

compass needles.

311. 9. The phenomena of magnetic induction. If we bring
a piece of soft iron near a magnet, we shall find that the iron

acquires magnetic poles ;
i.e. it exhibits magnetization as well

as magnetic quality.

A wire nail is made of soft iron, and hence shows this phe-
nomenon very easily, as in-

dicated in Fig. 222.

If the iron nail be tethered

at its lower end, it will re-

main suspended in mid air.

That it is a magnet is at

once shown by the fact that

its lower end will attract
T, ., . /-.,. FIG. 222. A wire nail becomes a magnet

small nails or iron filings. when brought into a magnetic field

A wire nail held near

either end of a magnetoscope will attract the needle. But if

the magnet NS be brought up near the nail, the latter will

attract one pole of the magnetoscope and repel the other.

One of the very best illustrations of magnetic induction is

the following: Take a strip of "tin plate" so called (which is

really sheet iron plated with tin), having dimensions something
like 1 inch by 12.

If this strip has not been magnetized, either end of it will

attract the north pole of the needle in a magnetoscope. Next

hold the strip with one end down and bend it to and fro sharply
between your thumb and forefinger at various points through-
out its length. On examining it with the magnetoscope it is

observed that the end which has been held down in the earth's

field now repels the north pole of the needle. The bending
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apparently gives freedom to the particles of iron, and they prob-

ably arrange themselves in a new way under the influence of

the earth's field. If now the other end of the strip be held

down during the bending process, the poles of the strip will be

reversed. Explain this by a diagram.

To magnetize a piece of iron, therefore, we need not touch it

with a magnet ;
we need only bring it into the neighborhood of

a magnet, i.e. into a magnetic field.

This process is called magnetic induction, more properly mag-
netization by induction.

It is here all-important to note that the original magnet loses

none of its own magnetism by inducing magnetism in another

body.
If we assume that a magnet is made up of small particles,

or molecules, and that each particle is a magnet, then the phe-
nomenon of magnetic induction

is easily explained as follows : A
piece of iron is made up of molec-

ular magnets which are arranged
in no particular order, arranged,

/
'/_! /

\ /

\

\

FIG. 223.-Proable arrangement of .

fo(^ ^ ^ utm t digord
particles in a piece of ordinary iron.

as indicated in Fig. 223. But

when this iron is brought into a magnetic field, when, for

instance, it is brought near a magnet, the north poles of

these little magnets will each tend to point in a definite

direction, and the south poles each

in an opposite direction. The re-

sult will be that the little magnets
will be brought more or less into

line, producing a north pole at Olie FIG. 224. - Probable arrangement of

end of the iron and a SOUth pole particles in a piece of magnetized

at the other, as indicated in Fig.
224. The iron is then said to be magnetized by induction.

All magnets, in fact, are produced by induction.

The Electromagnet

312. One of the most remarkable and fundamental facts of

electrical science is that every electric current is surrounded

by a magnetic field; or in other words, every electric current



MAGNETISM 327

carries with it a magnetic field. Accordingly a piece of iron

brought into the neighborhood of an electric current will in

general become magnetized by induction, just as it would if

brought near a permanent magnet. An arrangement of this

kind, which is called an

"electromagnet," is the most

important case of magnetic
induction. Economic appli-

cations of the electromag-

net, such as occur in the

telegraph, telephone, dy-

namo, and motor, form an

important chapter in the

engineering achievements

of the nineteenth century.
Some of these will be studied

in a later chapter.

313. 10. Iron has great

conductivity for lines of force. When a piece of iron is placed
in a magnetic field, not only does the iron become magnetized,
but the trend of the lines of force in the field becomes greatly

altered. This alteration is

always such as one might

expect if the lines of force

=^^ _, had a decided preference

for the iron. They appear
to go out of their way, so

to speak, for the sake of

passing through the iron.

Figure 225 represents the

field between the two poles

of a horseshoe magnet.

Figure 226 represents the

same field with a small

block of iron placed between the two poles.

If an electric current be passed through a spiral of wire, it

will be found that the interior of the coil will be a magnetic
field. The lines of force will pass from one end of the helix

to the other. But if an iron rod be slipped into the helix, the
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CORE
OF AIR

number of lines of force passing through will be multiplied

many times. In this case many new lines of force are created

by the introduc-

tion of the iron.

If B is the

number of lines

of force passing

through each

unit of area of

the cross section

of the iron rod

and H the num-
ber of lines pass-

ing through the

same unit of area

ooooooooooooooooo
1

ooooooooooooooooo

FIG. 227. Illustrating the great conductivity of iron for

lines of magnetic force.

when the helix was filled with air, then we may describe the

preceding facts by writing

Eq. 126

where /* is a proportionality factor for which Lord Kelvin pro-

posed the name magnetic permeability. This factor /* is, how-

ever, not a constant, but a variable depending upon H, and

in the case of iron ranges in value from 1 to 2000 when meas-

ured on the C.G.S. system.

Magnetic Variations

314. Besides that mentioned in 295 there is another excep-

tion to the general statement that the direction of the magnetic
needle remains fixed. There are several distinct changes con-

stantly taking place. These "
variations," as they are called,

may fairly be reckoned among the most instructive cosmical

phenomena with which we are acquainted. The two most im-

portant of them are perhaps the following :

1. The diurnal variation. In the northern magnetic hemi-

sphere during the early morning hours the north-seeking end

of the needle is found to be swinging to the eastward; this it

continues to do until 7 to 9 A.M., some time during which in-

terval it has in general reached its most easterly position. After

hovering near this extreme for a while, it turns about, and

begins to march westward. About 10 to 11 A.M. it passes
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through the average position for the whole 24 hours, and by
1 to 3 P.M. has reached its extreme westerly position. Then it

once more turns to the eastward, recrosses the mean position in

general sometime between 6 P.M. and midnight, and gradually
returns to the position from which it started in the morning.
The average total change in the course of a year between the

morning and afternoon extremes is greatest in the United

States in northern Minnesota, where it amounts to as much as

14', while in southern Florida it is as low as 4'; these quan-
tities vary with the seasons, being about one third greater in

midsummer and a like amount less in midwinter.

2. The secular variation. In addition to this daily oscilla-

tion, the mean position about which the needle swings is itself

slowly changing. The annual amount of this secular change
varies not only for different localities, but also with time. In

this country the north-seeking end has at the present time (1907)

practically no secular variation for points along a line passing

approximately through the western end of Lake Superior and

the extreme eastern portion of Alabama. For places east of

this line-of-no-change the mean position of the north-seeking
end of the needle is now moving to the westward, and for

places west of the said line, to the eastward. The present an-

nual rate of secular change in the region of the Pacific Coast

states is about 4' and in New England about 3'. This change
is of great importance to surveyors and map makers. If suit-

able corrections are not made for the secular variation, a

boundary line whose direction has been determined by means

of the compass needle will, when resurveyed some years later,

have a direction apparently different from that previously found.
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CHAPTER IX

ELECTROSTATICS

315. If a sheet of dry writing paper held against the wall be

given a few quick flaps with a piece of flannel, the paper will

adhere to the wall quite strongly. The rubber handle of a

fountain pen, when rubbed over the sleeve of one's woolen coat,

acquires the property of attracting small bits of paper or wood;

glass rubbed on silk behaves in the same way.
The substance earliest found to have this property was a

fossil resin (ordinary amber) found on the shores of Greece.*

These facts have been known ever since the time of Thales,

600 (?) B.C.; and for two thousand years following him they
constituted practically the whole of electric science, barring
some knowledge of lightning and of the electric eel, which no

one then imagined to have any connection with the amber

phenomenon.
Bodies that have acquired this property of attracting small

bits of paper are said to be electrified, or to have an electric

charge.

FIRST LAW OF ELECTROSTATICS

316. In more recent times, however, it has been found that

any two different substances when rubbed together, or even

when brought into contact, become electrified.

But before we can, examine the evidence for this statement

it will be necessary for us to devise some means by which we
can detect the presence of an electric charge. One method is

that indicated above, viz. the attraction of bits of thread or

straw, but this is not a very sensitive test ;
much smaller

charges can be detected by the gold leaf electroscope, an instru-

ment which we shall now describe.

* The Greeks called this resin electron (^Xetcrpov). And hence later Dr. Gil-

bert called this phenomenon electric, and gave us our word electricity.

330
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The Electroscope and Proof Plane

This device is essentially a metal rod supported on a cork of

sealing wax or, better still, of sulphur, and carrying two leave's

of aluminium or gold foil suspended from its lower end, the

leaves being inclosed in a glass vessel, as shown in

Fig. 228.

If, now, any electrified body be brought into

contact with the knob K or, as we shall see

presently, even into the near neighborhood of K,

the leaves of gold foil will diverge. If the body
is not electrified, the leaves will not diverge.
We have thus a simple and exceedingly delicate

means for detecting electric charges. The theory
F10 - 228 - Elec-

. , troscope made
of the electroscope we shall consider presently. ofErienmeyer

Try touching the tip of a camel's-hair brush on flask and alu-

the table top and then to the electroscope. Rub
the brush gently over your own hair and again bring it to the

electroscope. Since electrification is produced by such slight

means, we are led to think that any two different substances

brought into contact become electrified. This is possibly the

most fundamental fact of electrostatics, and may be called the

First Law of Electrostatics.

But we sometimes wish to examine the electrification of a

body which is too large to carry to the electroscope, or of

a body which we da not wish to move. In such a case, it is

most convenient to wax a

penny to the end of a glass

or rubber rod (see Fig.

229). We may use the

glass rod as a handle, and

then by touching the penny

alternately to the body and

to the electroscope, we may
FIG. 229.-Proof plane. determine whether or not

the body is charged. Such a device is called a proof plane.

317. Sensitive as is the form described above, the gold leaf

electroscope wag modified by C. T. R. Wilson of Cambridge
in 1901 so as to be much more efficient.

He supports a rigid strip of brass B from a small block of
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sulphur S. On the side of this flat brass rod a narrow strip

of gold leaf is attached by its upper end. The whole system
of sulphur, brass strip, and gold leaf

is suspended by a rod T, which is

rigidly attached to the containing ves-

sel by means of a block of ebonite.

Sulphur is such a superb noncon-

ductor that, in reasonably dry air, an

electroscope of this kind will hold its

charge for several hours. In order

to communicate a charge to the sus-

pended system, a small wire G is

Passed through the hard rubber block

FIQ. 230. c. T.R.Wilson's gold on top of the containing vessel and
leaf electroscope. then bent twice at right angles.

When the gold leaf is once charged, the contact between it

and this wire may be broken by simply rotating the upper end

of a
CONDUCTORS AND NONCONDUCTORS

318. A second great discovery in electrostatics was made by

Stephen Gray in London (d. 1736). He found that when a

glass rod is electrified by rubbing, the electrification " leaks

off
"

if the rod is held in the hand, or if the rod is supported

by cotton thread, or metal, or a moistened string of any kind.

By connecting an electrified glass rod to a distant point by
means of a wet string, he was able to transfer the electrification

through a distance of many meters.

He found also that if a body containing an electric charge
was supported on glass or rubber, or suspended by a dry silk

thread, the charge disappeared very slowly. Those substances

which lead off the charge quickly are called conductors ; those

which prevent the charge from escaping are called noncon-

ductors or insulators. A conductor supported upon a non-

conductor is said to be "insulated." But there are some

substances, such as carbon and most acids, which occupy an

intermediate position, and can hardly be called either conduc-

tors or nonconductors. The following list of substances,

mostly from Perkins's Outlines of Electricity and Magnetism,

p. 12, is arranged in the order of their ability to conduct

electricity.
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SUBSTANCES
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It is important here to observe that the pith ball is always

repelled by the glass rod when it has been charged from the

glass rod, while it is always repelled by the sealing wax if it

PITH BALL CHARGED
FROM GLASS ROD

FIG. 231. Differences in behavior of the two electrifications.

has been charged from the sealing wax ;
in other words, like

electrifications always repel each other.

We now see why it is that the gold leaves of the electro-

scope always diverge when they are charged. For which-

ever of the two electrifications is given to the electroscope,

the leaves will each be charged in the same way, and will,

therefore, repel each other. It is important also to observe

that the uncharged electroscope gives the same indication, i.e. a

divergence, for a positive charge as for a negative one. How,
then, can we determine when we are dealing with a positively

charged body and when with a negatively charged body ?

Experimental Distinction between Positive and Negative Charges

320. First charge the electroscope with a known kind of

electrification, say positive. Then if the positive charge on

the electroscope be increased, the divergence of the leaves will

increase ; if, however, we give to the electroscope a negative

charge, the divergence of the leaves will diminish.

If we know the original charge on the leaves to be positive,

we will then have no difficulty in saying just what the sign of

any other charge is ; for if the unknown charge increases the

divergence, it must be positive ;
but if it diminishes the diver-

gence, it must be negative.

SECOND LAW OF ELECTROSTATICS

321. If we assume now that two different substances when

brought into contact become electrified, and that bodies having

charges of the same sign repel each other, while bodies having
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charges of opposite signs attract, the next inquiry is, How do

these bodies attract (or repel) each other? This question, it

will be observed, is, for electrical charges, exactly the same one

which Newton asked concerning the behavior of pieces of ordi-

nary matter.

The French physicist Coulomb (b. 1736, d. 1806) answered

the question for electricity by a series of experiments which

are somewhat difficult to repeat,

though very simple in idea. He
showed that the experimental facts

are as follows :

(i) The repulsive (or attractive)

force between two quantities of

electrification (Fig. 232) is directly

proportional to the product of the

two quantities. Equal quantities

of electricity can always be ob-

tained by exactly duplicating any

process which produces electrifica-

tion.
FIG-

(ii) The force which one charged particle (or a body acting
as a particle) exerts upon another varies inversely as the square
of the distance separating the bodies.

(Hi) In addition to the above two facts discovered by Cou-

lomb, it was shown by Cavendish and Faraday that the force

which one charged particle exerts upon another depends also

upon the material of the nonconductor which separates them.

This nonconducting material is generally called the medium or

the dielectric.

A summary of these three facts, which we may call the

Second Law of Electrostatics, is

more elegantly made in terms

of algebra, as follows :

Let e and e' (Fig. 233) de-

note the electric charges of the

two particles, r the distance

which separates them, and K
FIG. 233.

a quantity 'which expresses

(measures)' the effect of the nonconducting medium ; then

we know by experiment thitt
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F<x e\ Fxe' ; F <x -
; and F<x> L,

/* -fiT

Hence J7
QC

IT n ee
'

J

J&2 '

Eq. 127

where C is a constant of proportionality. This quantity K is

known as the dielectric constant, and is assumed arbitrarily to

have the value of unity when the dielectric is a vacuum. But

its value for air (1.0005) differs so little from unity, that for

all ordinary purposes we may put I= 1 in air. For various

kinds of glass K ranges from 3 to 10
;
while for ebonite and

paraffin its value generally lies between 2 and 3.

The essential thing here is to understand that the force

which one charged particle exerts upon another depends upon
the medium in which the particles are situated, as well as upon
the distance between the particles.

Definition of Unit Charge

322. Before Eq. 127, which describes the law of inverse

squares discovered by Coulomb, can be of any value for pur-

poses of computation, it will, of course, be necessary to eval-

uate the constant 0. This is done as follows : Let the two

charges indicated in Fig. 232 be taken equal to each other, and

let them be placed at a distance of one centimeter apart in air.

The size of either charge we have still left undetermined. In

terms of algebra, we have assumed only the following :

e = e'; r=l; and K= 1.

If now, in addition to these assumptions, we agree to call e unity
when F = 1, it follows, by substituting these values in Eq. 127,

that 6^=1. And this is precisely the reason for choosing a

unit charge of this size, namely, that the constant of propor-

tionality is thus made to disappear from the equation, giving
us the working form

Eq. 128

A unit charge of electricity is, then, one of such a size that it

will repel with a force of one dyne an equal charge of the same

sign placed at a distance of one centimeter in air.
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Compare this law of force with those which hold for gravita-

tion and magnetism. The fundamental importance of this law

will be realized when it is understood that this is the first

bridge which connects the two great domains of electricity and

mechanics. The connection is, however, only a quantitative

one ;
no light is shed upon the nature of an electric charge by

thus defining, in terms of a force and a distance, a certain

charge with which other charges are to be compared. At the

same time, this is a most essential step toward discovering
various facts which do illuminate the nature of electrical phe-
nomena.

When the consideration of electrical currents is taken up,

we shall find that the unit of electrical quantity employed by

engineers the Coulomb is 3000 million times as large as the

electrostatic unit above defined.

AN ELECTRIC FIELD

323. Since, in general, a force is exerted upon one positively

charged body in the presence of another positively charged

body, it is clear that we shall have to do work upon one of

these charged bodies if we move it nearer to the other one.

And, in general, if we move either body in any direction, either

we shall have to do work upon it, or it will do work for us.

A region in which work must be done to move an electric charge
from one point to another is called an electric field.

The intensity of the field in any direction, at any point, is

measured numerically by the amount of work, in ergs, which

must be done to move a unit quantity of electricity through unit

distance along the given direction in the neighborhood of that

point.

Electric intensity is, of course, to be measured in the same

fundamental units centimeters, grams, and seconds as are

mechanical forces and mechanical work.

In accordance with this definition, a unit electric field is one

in which a unit charge is acted upon with a force of one dyne.

If, therefore, a body carries a charge of e units in an electric

field whose intensity is R, the force F acting upon this body
will be given by

r? ft Defining equation for in- p,, ion:g^
tensity of electric field. **! 15Ki
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which is the defining equation for R, and which is a strict ana-

logue of the equation (115) which defines the intensity of a

magnetic field.

Since F is a vector quantity and e a scalar, it follows that R
is a vector. Hence in order to specify an electric field it is

quite as necessary to state its direction as its intensity.

Lines of Electric Force

324. This fact led Faraday to introduce into electrical sci-

ence the conception of " lines of force," a most helpful mode of

description. He imagines that in any region where there are

charged bodies these " lines of force
" run from the positive

charges to the negative ones. At any point in space the line

of force takes the direction of the electric field at that point.

Not only so, but the closeness (density, if you like) with which

the lines of force are drawn at any point in the field is propor-
tional to the intensity of the field at that point. In this man-

ner, Faraday and Maxwell gave a simple, lucid, and accurate

graphical description of an electric field.

As one of the simplest possible illustrations consider a posi-

tively charged metal sphere placed on a table in a room. Here

the negative charge lies, as we shall

presently learn, upon the walls of the

room. If now the region about the

charged sphere be tested by a bit of linen

thread, say 2 inches long, supported at its

middle point by a silk fibre, it will be

found that the bit of linen acts as a com-

pass needle for the electric field and that
FIG. 234. Lines of force

, .,-.. T -,-

representing the electric the electric field is radially distributed

field about a charged about the sphere. Hence the lines of

force are to be drawn in a radial direc-

tion as in the accompanying figure.

As another illustration consider two equal parallel plates,

A and B, Fig. 235, one charged positively, the other holding
an equal negative charge. In such

an arrangement, the electric field is

limited almost exclusively to theJ -w/MMMmm- '"<w\
~

region between the plates ;
hence .

FIG. 23o. Showing distribution of

also are the lines of force. And charges over parallel plates.
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since the field is also uniform, it

follows that its representation

must be very like that indicated

in Fig. 236. The analogy be- FIG. 236. Showing electric field be-

tween electric and magnetic
tween parallel plates in terms of lines

, .
,,

. T of force.
lines ot lorce is obvious.

CAUTION

The student is here warned not to imagine that electrical

forces differ in any respect from the other forces which he has

studied and will study. They produce the same effects upon
bodies as gravitational forces, they are measured in the same

units (dynes) as gravitational forces, and they are no more

mysterious than gravitational forces. An electrical force of 13

dynes acting upon a charged body will produce the same accel-

eration in the body as any other force of 13 dynes.

A SECOND METHOD OF PRODUCING AN ELECTRIC CHARGE.
ELECTROSTATIC INDUCTION

325. For charging bodies there are other methods besides

friction. One of the most interesting of these is the following,

which appears to have been discovered by Stephen Gray.
1 He

found that one may charge a body, provided this body be a

conductor, by simply bringing it into the field of another

charged body.
Let A (Fig. 237) be a charged body. A tin can on a block

of paraffin, or a hollow brass sphere supported on a glass

stem, will answer

well. Let B indi-

cate an insulated

conductor which is

not charged. A
block of wood cov

ered with lead foil

and supported on a

glass or rubber stem
FIG. 237. The phenomenon of electrostatic induction, will answer well.

Bring B into the neighborhood of A say within three or four

1 Poggendorff, Geschichte Her Physik, p. 839.
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centimeters of it and examine B with the proof plane and

electroscope (316) as follows :

1. Touch the proof plane to the charged body A. Carry
this charge to the electroscope. You will get a distinct separa-

tion of the gold leaves.

2. Touch the proof plane to the end of B which is nearest

A, and carry the charge to the electroscope while the leaves

still diverge. The divergence of the leaves diminishes, show-

ing that the charge on this part of B is opposite to that

on A.

Repeat the process until the leaves have completely collapsed

and have again diverged. They are now charged with the same

kind of electrification that is on the near end of B.

3. Touch the proof plane to the end of B that is most remote

from A. The leaves begin to collapse again, showing that the

two ends of B have charges of different signs.

This experiment should always be repeated until the evidence

is perfectly clear for thinking that when an uncharged conductor

is brought into the field of a charged body, the uncharged body
becomes electrified exactly as indicated in Fig. 237 above.

The charges on B are said to be induced, and the phenomenon
is called electrostatic induction.

At this point it is all-important to note that the induced charge

FIG. 238. Charging by induction.

on B does not at all diminish the charge on A. It is produced

by means of the charge on A, but not at the expense of the

charge on A.

326. Up to this point we have considered each of the con-

ductors, A and B, insulated. Imagine now the body B to be
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connected with the earth, which we know to be a good con-

ductor. We have then

AN INTERESTING SPECIAL CASE. CHARGING BY INDUCTION

Our conductor B (Fig. 238) has now been very much en-

larged ; indeed, it includes the earth itself, so that B is at

least 8000 miles long. There is, therefore, only one end of B
which is near enough for us to examine, and at this end we

find, as before, an electrification which is opposite that on A.

Suppose now we remove the wire. Ths body B is again
reduced to its former size ; but it will now be charged nega-

tively while A is charged positively. We have thus learned

how to charge a body without using friction and without dimin-

ishing the original charge on A.

The Electrophorus

327. A simple illustration of the foregoing principle as well

as one of the most convenient instruments in the laboratory for

producing electric charges quickly and easily is the electro-

phorus invented by the Italian physicist, Volta. It consists of

a plate of hard rubber, rosin, or some substance which can be

electrified by friction and a metal disk (7, which is provided
with an insulating handle jET, and which is called a "carrier."

The rubber plate P generally rests upon a sheet of metal S,

which is called the "sole plate."

Suppose the plate to have been rubbed with catskin and there-

fore to be negatively electrified. Then when the carrier is made
to approach the plate of ebonite the induced charges will be

distributed as shown in Fig. 239. When the carrier is placed

upon the plate, it will be supported by

slight rugosities so that it does not re-

ceive a charge from the plate. If now
the finger be touched to the carrier, the

negative charge will run off to earth

and the positive charge remains bound. FIG. 239. - Electrophorus

,
of Volta.

When, however, the carrier is removed,

by the handle, to a distance from the plate, the bound charge
becomes free, and available for charging other bodies.

Evidently this process may be repeated as many times as

one likes.
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Machines have been recently perfected by the joint labors of

Holtz, Toepler, and Wimshurst by means of which one can

start with an indefinitely small charge on a body A, and pro-
duce an indefinitely large charge on B. These machines are

based on the simple principles which we have just been study-

ing ; but they are somewhat complicated in their action, and

the student beginning physics is advised to first observe the

structure and behavior of one of these machines and then con-

sult some of the larger text-books or encyclopedias for its

description and explanation.

THIRD LAW OF ELECTROSTATICS

328. Let us now modify the electroscope, described 316,

either by fitting it with a hollow metal vessel, as indicated in

Fig. 240, or by connecting it, by use of a

light wire, to a hollow insulated vessel, as

diagrammed in Fig. 241.

Any charged body introduced into this

can will affect the gold leaves even more

than if it were brought up near to the

electroscope itself ; for, indeed, the can is

now a part of the electroscope. And,
what is most remarkable, it matters not

in what part of the can the charged body
is placed, the effect on the gold leaves is

just the same.

We are now prepared to try the follow-
FIG. 240. Equality of . r , ,

, . ^ i

positive and negative
in fundamental experiment: Take two

charges. nonconducting glass rods, A and B, Fig.

242. About the end of one of them fasten a short pocket or

tube of woolen goods so that it will not easily slip off. On the

side of this pocket sew another similar pocket of woolen cloth

into which the second glass tube will slide with gentle friction.

By merely inserting the glass rod into the pocket and

twisting it about, one is easily able to electrify the lower end

of the free glass rod positively and the woolen pocket

negatively.

Observe then that

(i) No effect is produced upon the electroscope so long as

both the rods are held in the can. When they are electrified
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by twisting the glass rod in the pocket, no divergence of gold
leaves follows.

(ii) But if either the free rod or the one that carries the

woolen cloth be removed,
the gold leaves diverge,

showing that both the

cloth and rod are charged.

(iii) The charge on the

glass is opposite in sign
to that

cloth.

on the woolen
FIG 241.

The same series of experiments may be tried with a piece of

silk and a glass rod.

In each case we have two oppositely charged bodies such

that their combined effect on the electroscope is zero. The
same phenomenon is observed, indeed, whatever two bodies are

rubbed together. The infer-

ence is, therefore, that when-

ever we produce by friction a

certain electric charge, we al-

ways produce at the same time

an equal charge of opposite

sign. This is also true in the

case of induction. If we induce

two opposite charges on a con-

ductor and then remove the

inducing charge, we find that the induced charges will just neu-

tralize each other ; all evidence of electrification disappears,

showing that the two induced charges are equal and opposite.

This general truth, expressed as follows, may be called the

Third Law of Electrostatics :

When electrification is produced by friction, by induction, or

by any other means, the positive and negative charges so pro-

duced are always equal.

FOURTH LAW OF ELECTROSTATICS

329. It is also interesting to examine, by means of a proof

plane and electroscope, the various parts of the surface of an

irregularly shaped conductor, such as that represented in

Fig. 243.

Fro. 242.
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The proof plane, after being brought once into contact with a

flat portion of the body, does not produce nearly so great a

divergence of the gold leaves as when touched once to either

end of the body. The sharper the end (i.e. the greater the

curvature of the 'surface), the greater the charge which the

proof plane carries away.
We see from experiments of this kind that the electrification

is not uniformly distributed over a conductor. The sharper any
end or point, the more the charge tends to collect there. When

FIG. 243. Electric charge accumu-

lates near sharp end of body.

FIG. 244. Charge resides on

outside of conductor.

we examine the inside and outside of a tin cup, in the same

manner, we find that practically all of the charge resides on the

outside.

In general, it has been found that the manner in which

electrification distributes itself upon a conductor depends only

upon the shape of the body and upon the presence of sur-

rounding charges.

To describe each of these various distributions would be an

infinite task ; but we may always be certain that the charge on

the outside of any closed conductor is distributed in such a way
that it will produce no electric field no electric force inside

the closed conductor.

Even in the case of a conductor such as a tin pail which is

not quite closed, the electrification is very nearly all on the

outside, and the intensity of the electric field inside is very
small.

Accordingly, if we wish to protect any instrument from elec-

trical disturbances, we have only to place it inside an electrical

conductor which is closed or nearly closed.
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FIG. 245. Electroscope protected

by a network of wires.

Take a small electroscope and

place it inside a roll of wire

screen, as shown in Fig. 245.

If the meshes of the screen are

reasonably fine, there is scarcely

any electrical disturbance you can

produce outside the screen which

will affect the sensitive gold leaves

inside.

This great fact that any electrical

disturbance outside a closed conduc-

tor has no effect on the region inside

the closed conductor was thoroughly established by Faraday.
We may call it the Fourth Law of Electrostatics.

330. With this principle in mind, Maxwell suggested that

the best method for protecting houses from lightning is to

place them in a network

of conductors (Fig. 246),

which shall be as nearly

as possible equivalent to a

closed conductor. Ben-

jamin Franklin, in 1760,

first suggested the use of

single metallic rods, con-

nected with the earth, as a

means of protection against

lightning.

FIG. 246. Maxwell's method of protection

against lightning.

The Idea of Electric Potential

331. One of the principal ambitions of every student of

physics should be to obtain a simple and unitary view of the

entire subject and likewise of each subdivision of it. Few con-

ceptions perhaps none have ever been introduced into the

treatment of electricity that have been more helpful, in the way
of simplification, than that of "

potential," an idea which is due

to the celebrated French astronomer, Laplace. The name is

due to the English physicist, Green.
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Definition of Electric Potential

The difference of potential between any two points in an elec-

tric field, say P and 8 in Fig. 247, is defined as the work required

to carry a unit of positive electricity from P to 8 against the elec-

trical forces in the field.

It is important to observe that in this definition all forces,

such as friction, which are always opposed to the direction of

motion are especially ruled out ; the only force considered is

an electrical one, which, as Coulomb has shown, depends upon
the distance only. Since this is true, a little consideration will

show that the work done on the unit charge in passing from P
to JS is independent of the path pursued between these two

points. For, suppose that less work is done when the charge
is carried along the route A than along the route B; and

imagine the charge to be carried along the entire circuit

PASBP. If the work done along the path PAS is positive,

that along the path SBP will be negative ;
in other words the

field will do work upon the charge as it passes from S to P
along B. And since more work is

done along the path B than J., it

follows that we shall, by going

through this cycle, get more work
\) AV ^ out of the field than we have spent

upon it ; and every time this cycle

-is repeated we shall gain a definite

amount of energy. But since it is

impossible to create energy ( 100), we must conclude that

our hypothesis is wrong and that the same amount of work
will be required to carry a charge from P to S along any

path whatsoever.

Potential Difference a Scalar Quantity

332. From the definition just given it will be seen that dif-

ference of potential is a ratio between a certain amount of

work and a certain electric charge. Its defining equation, if

we denote potential difference by P.Z>., work by W, and charge

by Q, is W Defining equationP.D.= ;
for difference of Eq. 130

Q potential.

/""IZ^V

) . \
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and since W and Q are each scalar quantities it follows that

potential difference is also a scalar.

Special Case

333. Find the difference ofpotential between any
two points P and S ivhen the electric field is due to

a charge Q on a small sphere at 0.

For the sake of simplicity we may assume (what
will not detract from the generality of the result)

that the three points 0, P, and *S\ all lie in the

same straight line, as indicated in Fig. 248. Let

us now suppose the distance PS to be divided into

a large number, say n, of small equal parts,

rprr r
x
r
2 , r2rg , . . . rn^rs . Remembering that elec-

tric intensity is the force on unit positive charge,
we have ~

Electric intensity at P =
,

Electric intensity at r
1
= -*-,

Electric intensity at r
2
=

-^-,

FIG. 248.

r2' o

etc.

Electric intensity at S= -^-.

Hence

Average intensity over distance rpr, = very approximately.
r/rj

Average intensity over distance r
x
r2 = ^- very approximately.

etc.

Hence the work in carrying the positive unit

from rP to r, = ^- (rp /,) = $( ),

rprl \r^ rPJ j.?, o

from r, to r
2
= -S-

(r
- r ) = Q (L - i\

r
i
r
2 Vr2 rj/

etc.

, Q nfl 1 \
from rn_j to rs = Z

(rn_ x
- rs) = Q (

_ .

/* /* \ 7* 7* /
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Let us now take the sum of these small quantities of work,
and it will be observed that all the intermediate terms cancel

out, and we have for the total work done in carrying a unit

charge from P to $, the quantity

which is the solution of the problem.

Potential at any Point

334. Let the initial point P be chosen at such a great dis-

tance (say at infinity) from the charge Q that =
; then

the intensity at P is also zero, and we have an expression for

the amount of work done in bringing the positive unit from an

infinite distance to the point S, namely .

rs

The potential at any point in an electric field is accordingly de-

fined as the amount of work which must be done in carrying a

positive unit charge from an infinite distance to that point. This

quantity may be denoted by Vs ,
and for a single charged par-

ticle may be defined algebraically as follows:

^8=5.. Eq. 131

It is important to observe that the theorem just proved applies

not only to a field produced by a charged particle, but also to a

body which acts as if its charge were all concentrated in a

single point. A charged sphere acts in this way, namely, as if

its entire charge were Qoncentrated at the center of the sphere.

If there be several charges in the field, then the total poten-

tial at any point S is obtained by adding the separate potentials

at the point S due to each separate charge. Potentials, it must

be remembered, are scalar quantities. Hence follows the gen-
eral theorem that the potential at any point S, in an electric field,

is obtained by adding the quotients of each charge divided by its

distance from the point S.

For purposes of computation, the following algebraic expres-

sion of this theorem is convenient:

VS = 2(Q\ Eq. 132
\rs j
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When this expression is positive, it means that work must be

done upon the positive unit to bring it from infinity to the

point S\ but when negative, the meaning is that work will be

done by the positive unit in coming from an infinite distance to

the point S.

Zero of Potential

335. Ordinarily it is not necessary to go to infinity in order

to reach a point where the electric intensity is zero. For the

earth is such a tremendous body that its potential is not appre-

ciably affected by any operations which we may carry on in our

laboratories and factories. Hence the earth is chosen as a body
of zero or standard potential on exactly the same principle that

the mean sea level is chosen as a surface of zero or standard

height.

Equipotential Surfaces

336. One of the best methods for describing an electric field

is simply to join together all those points in it which have the

same potential as any selected point P. In general the locus

of these points will be a surface ; and this surface is said to be
"
equipotential."

Accordingly an equipotential surface is defined as one on which

the potential has the same value at every point.

Thus if the charge which produces the field is situated on a

single particle, and if the charge remains constant, the poten-
tial at any point S will depend only upon the distance of S
from the particle; and hence, for all points which lie on the

surface of a sphere drawn about the charged particle as a center,

= constant.
r

Any one of the circles shown in Fig. 249 represents, therefore,

a section, by the plane of the paper, of an equipoteutial
surface (a sphere) due to a point charge at Q.

Since there is no change of potential over any one of these

surfaces, it follows, from the definition of potential, that no

work will be done in carrying a unit charge from any one point
to any other point on the same equipotential surface. But in

taking a positive unit from the surface passing through P to

the surface passing through $, one must do V8 VP units of
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work. The simplicity of this expression for work shows the

convenience and importance of the idea of potential.

When the charge resides upon
a body other than a particle or a

sphere, the equipotential surfaces

become, of course, more complicated
than those shown in Fig. 249.

The work done in carrying a unit

charge from one point to another in

an electric field may also be regarded
as the product of the average in-

FIG. 249. Equipotential surfaces tensity of the field R and the dis-

due to a point charge. tance 8 between the two points.

Therefore
Va -VP = Rs, Eq. 1321

where s is the distance between P and S. See Fig. 249.

From this it follows that between any two equipotential sur-

faces the intensity R will be greatest in the direction in which

the distance s is least.

337. And this leads us back again to the idea of

Lines of Force

For " the direction of an electric field
"
at any point is merely

the direction in which the electric intensity is greatest, that is,

the direction in which the distance between any two equipoten-
tial surfaces drawn near that

point is least. The direction

of the electric intensity at any
point is therefore normal to the

equipotential surface passing

through that point. This

result would also follow im-

mediately from the definition

of an equipotential surface as

one along which no work is

required to carry an electric

charge.

When, therefore, a field has T
u j -i- j T-

G ' Illustrating the i-elation between
once been described by draw- iines of force and equipotential surfaces.
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ing its equipotential surfaces, it becomes a matter of great ease to

also describe it in terms of lines of force. For we have merely
to draw the normals to these surfaces at every point. Thus in

Fig. 250 the equipotential surfaces are indicated by dotted

lines; the normals which are shown solid are, therefore, the

lines of force.

Surfaces of Conductors are ^Equipotential

338. A little consideration will show that when a conductor

is insulated and charged it will be an equipotential surface as

soon as the electric charge comes to rest, which it does almost

instantaneously. For if the component of the electric intensity

along the surface of the conductor had, at any point, a value

other than zero, the electricity at this point would move in the

direction of the force exerted upon it. But, by hypothesis, the

charge is at rest. Any conductor holding a charge at rest is

therefore an equipotential surface. Indeed, this is the one prac-

tical method for "manufacturing" equipotential surfaces in the

laboratory.

At this point the student will find it helpful to show by-

means of a diagram just how one can arrange a conductor

(i) so that it will have a positive charge while it remains at

zero potential, and (ii) so that it will have zero charge while it

is at positive potential.

The advanced student will discover that the entire science of

electrostatics reduces itself almost to a special case of the poten-
tial theory.

Measurement of Potential

339. The simplest means for obtaining a quantitative indica-

tion of potential difference is perhaps the gold leaf electroscope.
But why, some one asks, does not the divergence of the gold
leaves measure quantity instead of potential ? For it is evident,

at once, that the force which drives the gold leaves apart is

directly proportional to the amount of charge on the leaves.

The reply to this query is that if the electroscope be isolated

and entirely disconnected from any other body, the divergence
of the leaves does measure the quantity of charge on the instru-

ment as well a its potential. If, however, the electroscope be

connected, by means of a rather long wire, with another and
much larger body, it is clear that the amount of work done in
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bringing up a unit charge from infinity (or from the earth) to

the instrument will depend, not at all upon the charge of the

second body, but only upon the quantity of electricity on the

electroscope; in other words, the potential of the system made

up of the electroscope, the wire, and the second body is shown

directly by the divergence of the gold leaves.

Wherever the electroscope be placed, the connecting wire

insures that its potential shall be the same as that of the body;
for this wire renders the entire system a single metallic con-

ductor.

If while the electroscope be still connected with, say, the tin

cup in Fig. 251, another electrified body or conductor be

brought into the immediate neighborhood of the instrument, its

FIG. 251. Illustrating the use of the electroscope to measure potential.

divergence may change very much, but its potential will remain

constant. The reason the divergence may change is precisely
because the potential of the gold leaves does remain constant.

For if a unit charge be now carried up to the electroscope from

infinity, the charge on the neighboring body B, in Fig. 252r

will either aid or oppose the motion ; and hence the charge on

the leaves will need to be either larger or smaller, respectively,

than before, in order to maintain their potential at the same

value.

Therefore, in order to use an electroscope as an instrument

for measuring potentials, it is only necessary to connect the

body and the electroscope by a wire which is long in compari-
son with the dimensions of the body, and to see that no third

body influences the gold leaves.

It need hardly be added that the size of the electroscope

must be small in comparison with that of the body whose poten-
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tial is to be measured, otherwise the original charge on the

body would be appreciably diminished and its potential thereby
reduced.

FIG. 252. Illustrating the effect of a neighboring body on the reading of an

electroscope.

The Idea of Electrical Capacity

340. Having a clear understanding of what is meant by elec-

trical quantity Q and electrical potential V, the meaning of

electrical capacity becomes a very simple matter ; for the elec-

trical capacity of any conductor is denned as the ratio of its

charge to its potential when all other conductors in the neighbor-

hood are connected to earth.

The capacity of a conductor is not, therefore,
" the amount of

electricity it will hold when it is full," but its numerical value

is the same as the amount of electricity which the conductor

holds when its potential is unity ; in other words, it is the

constant ratio which experiment shows to exist between the

charge arid the potential of the conductor.

If capacity be denoted by C, its definition may be given
in algebra as follows :

i~l TlA-finincr minattrtn

Eq. 133
Defining equation

for electrical

capacity.

This equation will be found exceedingly useful in computing

any one of the three quantities involved, and may indeed be re-

garded as the fundamental equation of electrostatics.

Capacity of a Sphere

341. As will be learned by the advanced student, the capacity
of a body depends entirely upon its geometrical form and upon
the dielectric constant ( 321) of the medium. To compute
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the capacity of a conductor from geometrical data is in general
a rather difficult task ; but in the case of some simpler forms

the process is easy. Thus in the case of the sphere let us as-

sume for electrical forces what Newton proved for gravitational

forces, namely, that in the case of a spherical shell the forces at

all points, except on the inside, are the same as if the entire

charge were concentrated at the center of the sphere. For the

potential of any point on the surface of a sphere of radius R
and charge Q, we may then write

where q denotes any small element of the charge.

And since in all cases we have V= ~ , it follows that in the
C

case of a sphere, in air,

O=R. Eq. 134

This result serves to illustrate what is meant by saying that

capacity is a purely geometrical quantity.

CAPACITY OF Two CONCENTRIC SPHERES

342. With very little trouble it may be proved that in the

case of concentric spheres, such as diagrammed in Fig. 253,

the capacity O of the system is

/*y *^ i*> T^ ^ o r6= . Ji<q.
loo

*+

Such an arrangement is frequently called

an electrical "condenser." One of the

most common forms of condenser is a

bottle which is lined both inside and

outside with tin foil. This device, first

FIG. 2o3._ Con denser used in Leyden, is called a "Leydenmade up of two concen- .

trie spheres. 3
ar *

Capacity of Two Parallel Plates

343. With equal >

_
'v

ease it may be shown

that in the case of y-o
two parallel plates,

in air each of area FIG. 254. Condenser made up of two parallel plates.
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A and separated by a small distance , the capacity of the

system is

0= . Eq. 136

EFFECT OF MEDIUM ON CAPACITY

344. If the medium between the two spheres or between two

plates has a dielectric constant K which is different from that

of air, then these expressions for capacity become

n KRR'
, n KA

G = - and C= -
, respectively,

equations which are useful in determining the value of K by

experiment.

Energy of a Charged Conductor

345. If for a moment we define recent science as dating from

the middle of the nineteenth century, one might, perhaps with

fairness, say that the all-important problem in recent physical

science is the determination of the amount and transformation

of energy involved in its various phenomena.
In the earlier periods of science, stress was laid mainly upon

the forces involved ; but, in view of the fact that the energy of

any isolated system electrical as well as mechanical or thermal

remains constant, the energy expression is now a matter of

the utmost importance.
To obtain the energy of a charged conductor is not a diffi-

cult matter ; for, by the law of the conservation of energy, we
have only to measure the amount of work done in bringing the

charge up and putting it on the conductor.

Suppose we start with an insulated conductor whose potential
is zero ; let it be charged by conduction from some source.

We may think of any finite charge which is given the conduc-

tor as brought up in very minute charges, one at a time ; each

one of these will slightly increase the potential of the conductor,

so that when the charge is complete the final potential of the

conductor will be, say, V.

Had the potential of the conductor remained at its initial

value (zero), the work required to bring up any small charge
would have been vanishingly small, since the potential of any
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conductor is the amount of work required to bring up a unit

charge from the earth to that conductor.

If, on the other hand, the conductor had been at potential V
during the whole of the charging process, then the amount of

work required to bring up any small charge q would have

been qV.

But, as a matter of fact, the potential of the conductor varied

directly as the amount of charge placed upon it, so that

the mean value of the potential during the charging process was

V
-T. If then the total charge be called Q, the amount of work re-
a

quired to charge the conductor is ^ Q V\ and this by the principle

of the conservation of energy represents the energy of the charged

conductor. In virtue of the defining equation for capacity,

Q =. CV, this energy expression may take any one of the three

following forms, each of which is useful, namely :

Energy of
] _ _ Q* Fn1 o7

rci. j r\ i f <2 V ' 9 ^ V s* 9 "77* *Q' -1-" '

Charged Conductor
j

O

When (7, Q, and Fare each measured in C.G.S. units, it fol-

lows, of course, that Eq. 137 gives the energy in terms of ergs.

When a Leyden jar or other conductor is discharged, this ex-

pression gives us a measure of the heat which is produced in

the spark gap and in the wires which lead to it. The first to

measure this heat was Dr. Kinnersley (contemporary and

friend of Franklin), who inclosed two knobs between which the

discharge took place in a glass bulb which was essentially the

bulb of an air thermometer. The lead wires from the two coat-

ings of the jar passed through the glass walls of the bulb.

The Oscillatory Discharge

346. It was first observed by Joseph Henry (1842) that,

when a Leyden jar is discharged through a coil of wire so as to

magnetize a sewing needle placed inside the coil, sometimes

the needle is magnetized in one way, sometimes in the opposite

way, even though the inner coating of the jar be always charged
with electricity of the same sign and the coil connected in the

same way. See Fig. 255.

This fact Henry explained by supposing that the charge
oscillated from one coating to the other, but became a little
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smaller at each oscillation. Accordingly the last discharge

which was strong enough to reverse the magnetization of the

needle was the one which determined which end of the needle

would be the north pole and which the south.

Later (1857) Feddersen examined the spark of a Leyden jar

discharge by means of a rotating mirror, such as that which is

used for viewing a mano-

metric flame ( 219), only

turning much more rapidly,

and found that in this mir-

ror the image of the spark
looked something like a

String of beads, thus fur- FIG. 255. Illustrating Henry's experiment.

nishing irrestistible evidence that the spark was, under his

conditions, a periodic phenomena.
In more recent times, C. V. Boys and many others have

photographed this oscillatory discharge.
The advanced student will be interested in following Lord

Kelvin's beautiful prediction of this periodic phenomenon, made
in 1855 before Feddersen had proved it by experiment. For

this see Ency. Brit., art "Electricity," p. 81. Here Kelvin

proves, what has since been verified by experiment, that the

period of the discharge is

T= 27r\-= 27r^/TC Eq. 138
1/6

where is the capacity of the jar and L a quantity which rep-

resents the electrical inertia of the circuit and which is known
as self-inductance. The reciprocal of capacity represents there-

fore, by analogy with the pendulum, spiral spring, and other

vibrating systems, the electrical elasticity of the circuit. But

this is a matter which can be cleared up only by more advanced

study.

Electrical Resonance

347. If two Leyden jars which are alike in size and shape
so as to have practically the same period of oscillation be pro-

vided each with a wire frame such as that shown in Fig. 256,

then one of them can be set into electrical vibration by means

of a discharge at the other. The wire frame serves to make
the period definite and the same for each jar.
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FIG. 256. Lodge's experiment.

The spark gap Q- in the circuit B is very small, say milli-

meter ; while that in A is larger, say inch. When the spark
of the electric machine passes across /S, a periodic disturbance

is produced which
sets up surgings of

electricity in B, on

the same principle
that one pendulum
will set into motion

another of equal

period, if there be any
elastic connection be-

tween the two.

When these surgings become sufficiently large, the charge
"
slops over," so to speak, and a small spark is seen at Cr. The

effect of the discharge in the first jar is to send through the me-

dium which separates the jars a properly timed electrical im-

pulse, first in one direction and then in the other ; this impulse

separates the two electricities and produces the spark. The
disturbance in the medium is made up of electric waves such

as are used in wireless telegraphy. This form of the experi-

ment is due to Sir Oliver Lodge.

Problems

1. An insulated conducting sphere whose radius is 7 is charged until

its potential is 5. Find the amount of its charge. Ans. 35.

2. Two insulated conducting spheres whose radii are 3 and 8 respec-

tively are charged so that their potentials are 5 and 10 respectively. Find

the common potential which these two spheres will assume when connected

by a wire whose capacity may be neglected. Ans. 8^-.

3. In the preceding problem find the energy of each of the two charges

before the spheres are connected. Then compute the energy of the final

charge. Explain the difference.

4. A small sphere of rosin carries a charge of 2 electrostatic C.G.S.

units and is placed in an electric field whose intensity is 25 C.G.S. units.

Find the force in dynes with which the sphere will be urged.

5. Find the attraction between two small balls, 4 cm. apart in air, one

of them having a positive charge of 12 units, the other a negative charge

of 5 units.

6. At each of two corners of an equilateral triangle whose sides are

60 cm. is placed a charge of 40 C.G.S. units of electricity. Find the in-

tensity of the electric field at the third corner.
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7. A conducting sphere of 20 cm. radius carries a charge of 80 units.

If it be made to share its charge with another insulated sphere
whose radius is 5 cm., what will be the ratio of the charges on the

two spheres ?

8. Find the electric potential at a point 40 cm. distant from the cen-

ter of a hollow sphere of 4 cm. radius charged with 60 C.G.S. units of

electricity.

Suppose the radius of the hollow sphere to be 100 cm., how will the

result be affected?

9. Find the " dimensions "
of electrical quantity, electrical potential,

and electrical capacity.

10. Find the capacity of a condenser made up of two concentric spheres

having radii of 100 and 98 respectively, and separated by air.

11. Two condensers of the same dimensions as in the preceding problem
are exactly alike except that in one case the space between the spheres is

filled with an oil whose dielectric constant is 2. How will a charge of 100

units divide itself between these two condensers ?

12. Which will require the greater work; to charge a condenser

of capacity 10 to a potential 5, or a condenser of capacity 30 to a

potential 3 ?

13. A charged insulated disk is connected with a gold leaf electroscope.

Describe and explain the change of divergence in the leaves as a second

disk held in the hand is made to approach the first.

14. Explain the difference between joining up Leyden jars
" in series

"

and " in parallel."

15. A parallel plate condenser in air has its plates separated by a dis-

tance of \ mm. What change in its capacity will be produced if the plates

are separated to a distance of 2 mm. and the intervening space filled with

an oil whose dielectric constant is 3?

16. Draw the lines of force which represent the distribution of elec-

tricity on a Leyden jar, the outer coating of which is connected to

earth.

17. How much power would be required to charge a condenser having
3000 C.G.S. units of capacity to a potential 200 C.G.S. units in second?

18. A condenser whose capacity is C is charged with a quantity Q.

What diminution of energy will occur when one half this charge is led

off to earth?

19. What must be the radius of a sphere in order that a charge of 80

units may raise its potential 16 units?

20. How would you proceed to find the difference of potential between

two points, knowing their distance apart and the average intensity of the

field between them ?
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21. Prove that an equipotential surface can intersect neither itself nor

any other equipotential surface.

22. What is the curve which exhibits the relation between the charge
and the potential of an insulated conductor?

23. What is the intensity of field between two plane condenser plates

which are ^ cm. apart and differ in potential by 200 C.G.S. electrostatic

units?



CHAPTER X
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the galvanometer in connection with the sole plate. Then,

when the electrophorus has been electrified by friction, place

the carrier, by means of its handle, upon the plate. The carrier

now contains two

charges, a negative
one on top which is

free to run off as
GALVANOMETER

soon as connection

is made with the

ground or sole plate,
FIG. 258. Showing the current which is produced

'

when au electrophorus is discharged.
an(* a positive One

which is held bound

by the negative charge on the ebonite. When the second ter-

minal of the galvanometer is now connected to the carrier, this

negative charge passes to earth via the galvanometer and sole

plate, giving a deflection of the galvanometer in one direction.

When, however, the carrier is lifted off the plate, the positive

charge will become free and will flow off through the galva-

nometer, giving a deflection in the opposite direction. Either

of the two preceding experiments will suffice to illustrate the

connection between the subject we have just left and the one

we are just approaching.
As we shall presently see, there are many other and more

convenient ways in which electric currents may be produced
in wires.

METHOD OF STUDYING ELECTRIC CURRENTS

349. It will be remembered that, in taking up the study of

magnetism, we examined a number of magnetic phenomena,
and employed a compass needle, a magnetoscope, as it is some-

times called, to detect the presence of a magnet. It is thus

not difficult to say whether or not any particular piece of steel

is a magnet ; but it is very difficult to say just what "magnet-
ism

"
is.

It is precisely so with electrification ; we were able to detect

its presence very readily by means of the gold leaf electroscope,

though no one has yet been able to find out what "
electricity

"

is. What copper or iron is no one knows, although very much
else is known about copper and about iron. "

Electricity
"

is,

then, just as mysterious as copper, but no more so.
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We shall now consider some of the phenomena connected with

electric currents ; but, as before, we shall first need some ready
method of detecting the presence of an electric current in a wire.

This once obtained, we shall be in a position to study some of

those remarkable properties of electric currents which have

proved so useful during the nineteenth century.
These will be grouped under three heads, viz. :

I. The Production of Electric Currents.

II. The Measurement of Electric Currents.

III. Some Effects of Electric Currents.

PRELIMINARY CONCERNING THE GALVANOMETER

350. As we have already seen and shall see many times again,

every wire conveying an electric current is surrounded by a

magnetic field, which is just like that surrounding a magnet,

only the lines of force about the wire have a direction different

from those about the magnet.
This magnetic field is such that, if the wire be placed parallel

to a compass needle, the needle will be deflected so that it will

not remain parallel to
-, _ CURRENT _

the wire. This is the

fundamental discovery
made by the Danish

physicist Oersted, in

1820. buch an mstru- FIG- 059. A galvanoscope in which the magnet

ment is the one most is movable, while the wire conveying the cur-

-, j , j rent is fixed.

commonly used to de-

tect the presence of a current, and is called a galvanometer.*

Almost immediately after a current ceases to flow in the wire,

the magnetic field about the wire ceases to exist, and the wire

no longer affects the compass needle. But practically as soon

as the current begins to flow the needle tends to set itself at right

angles to the direction of the current. This type of current indi-

cator is therefore called a "
moving magnet

"
galvanometer.

But if the compass needle is fixed and the wire movable, then

the wire tends to set itself at right angles to the compass
needle. The student will observe that this is merely another

*The first galvanometer was a freshly prepared frog's leg, which twitched

whenever a current passed along the sciatic nerve and muscles of the hind leg.
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instance of the great general fact that action and reaction are

equal and opposite.

In practice a compass needle is not so convenient as the

U-shaped magnet shown in Fig. 260. The movable wire is a

coil which can rotate about

a vertical axis. This de-

vice, first used by Kelvin

and D'Arsonval, is called

a "moving coil" galvanom-
eter.

We have seen ( 299)
that a magnet is surrounded

by lines of force, leaving
its north pole and running
to its south pole. A sim-

pler and much more useful

statement of the funda-

mental principle of the gal-

FIG. 260. A galvanoscope in which a part
of the wire conveying the current is

movable, while the magnet is fixed.
vanometer is this : Consider

any closed electric circuit, i.e. a series of conductors, joined

end to end so as to form a closed path.

(i) The principle of the moving magnet galvanometer, then, is

that whenever an electric current flows through any circuit, a

compass needle in the neighborhood tends to set itself so that the

greatest possible number of its lines of force will pass through

the circuit;

(ii) While the principle of the moving coil galvanometer is

that the portion of the circuit which is movable sets itself always
so as to include as many as possible lines of force from the

magnet. In either case, the electric current announces its pres-

ence by producing a rotation, i.e. an angular displacement.

From what precedes, it will be clear that each of these two

forms of galvanometer indicates a current by the fact that, in

general, the current exerts a turning moment on the magnet,

or, what amonnts to the same thing, the magnet exerts a turn-

ing moment upon a part of the circuit conveying the current.

The advanced student will discover that this behavior of the

compass needle and the moving coil is merely a special case of

the general principle that a body at rest tends to move into a

position where its potential energy is a minimum.
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I. METHODS OF PRODUCING ELECTRIC CURRENTS

351. We now proceed to consider the three most important
methods of producing electric currents, viz. :

(a) The method of Galvani and Volta the so-called Voltaic

cell.

(5) The method of Faraday cutting lines of magnetic
force.

(c) The method of Seebeck the thermoelectric couple.

(a) THE VOLTAIC CELL

352. The simple and well-established facts of the Voltaic cell

are as follows :

At the very close of the eighteenth century (1799) it was

discovered by the Italian physicist Volta that all conductors

of electricity can be di-

vided into two classes.

This division is based

upon the following experi-

ments :

If we make a closed cir-

cuit out of several differ-

ent metals, i.e. if we make
an endless chain in which

each link is composed of a

different simple substance,

such as zinc, copper, or

iron, we see that no elec-

tric Current is produced.
Fl - 261 Circuits made up entirely of con-

ductors of the first class.

All substances which when

joined together at the same temperature in any order, as in Fig.

261, produce no current, are called conductors of the first class.

Volta found, however,

that if into a circuit such

as the above he intro-

duced one link composed
of a compound substance,

such as brine (a solution

of table salt) or dilute
. Combination of conductors of first . .

'

and second class producing a current. sulphuric acid or copper
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sulphate, he then always obtained an electric current. Conduc-

tors of this kind, which Volta called conductors of the second

class, always undergo chemical decomposition when introduced

into a circuit containing two different metals and always yield a

current. The modern name for a conductor of the second class

is electrolyte, i.e. any substance which is decomposed when a

current passes through it. Conductors of the first class practi-

cally include only carbon and the various metals.

Definition of a Voltaic Cell

353. It has been found by experiment that no two conductors

when joined together will produce a current so long as they are

at the same temperature. We may use any of the three com-

binations indicated in Fig.

263, but no current will thus

be obtained. But the follow-

ing combination, suggested by
Volta and named after him

U ^ faQ uv itaic Cell," will always
' v

give a current :

The Voltaic cell is defined as

three or more conductors in

series, each conductor being

made of a different substance,

and not all belonging to the

same class.

SOLUTION OF ZINC SULPHATE

SOLUTION OF COPPER SULPHATE

FIG. 263. No two conductors can act as

a Voltaic cell.

A Typical Voltaic Cell

354. One of the simplest forms of these cells is the following :

Take a strip of sheet copper, say one centi-

meter by ten ; solder it, end to end, to a

similar strip of zinc. Take a small beaker

of dilute sulphuric acid, say one part strong

sulphuric acid to ten parts of water. Com-

plete the circuit by bending the copper-zinc

strip into a U-shape and dipping the ends

into the acid, as shown in Fig. 264. Bub-

bles of gas are given off from each metal,

but much more freely from the copper.

FIG. 2(!4. Typical Vol-

taic cell.
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Here the zinc and copper are the conductors of the first class :

the dilute sulphuric acid is a conductor of the second class. On

dipping the metals into the acid, what evidence presents itself

that the acid undergoes decomposition and hence belongs to

conductors of the second class?

Now take two strips, one of zinc and one of copper ; immerse

them in dilute sulphuric acid and connect them by wires to a

galvanometer, and determine whether or not an electric current

is flowing while the gas is being given off. If the strip of zinc

be well cleaned and have a little mercury rubbed over it until

it is thoroughly amalgamated, the gas will no longer be given off

from the zinc. But under these circumstances it is found that

the zinc is still "eaten up" by the acid. Zinc sulphate is

formed and dissolved in the solution, which becomes less and

less acid. The copper remains intact, while hydrogen gas is

set free at the copper strip. The amalgamation has merely the

effect of preventing a local waste of energy, and thus secures

the transformation of a larger per cent of chemical energy into

electrical energy.

These phenomena are summarized by the chemist as follows :

Zn + H.jSO 4
= ZnSO4 + H2

.

The student who is familiar with the elements of chemistry will trans-

late this equation into words as follows: The changes in this cell take place
in the following proportion, viz. : 65 grains of zinc unite with 98 grams of

sulphuric acid to form 161 grams of zinc sulphate and liberate 2 grams of

hydrogen.

SOME DEFINITIONS

355. Closed circuit. A series of conductors joined end to end

so as to form an endless chain is said to be a closed circuit It

may or may not have an electric current passing through it.

Open circuit. When a closed circuit is cut or interrupted at

any point, it is then called an open circuit.

Poles. If there be a Voltaic cell in the circuit, the two ends

thus left free by opening the circuit are called the poles of the

cell. The pole which is connected with the copper plate, or

with the plate whose electrical behavior is like that of copper
toward zinc, is called the positive pole. That pole which is

connected with the zinc plate, or with a plate whose electrical

behavior is like that of zinc toward copper, is called the nega-

tive pole.
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Direction of Current. When the circuit is closed by a wire

joining the positive and negative poles, the direction of the

current in this

wire is said to be

from the positive

to the negative

pole. We may
hereafter, there-

fore, speak of the

current as leaving

the positive pole

and entering the

negative pole. It

may be shown by
the following ex-

periment, due to

Volta, that the

direction of the

current as above

defined is the di-

rection in which the positive electrification travels. Take an

adjustable parallel plate condenser such as that shown in Fig.

265 and join the positive pole of a Voltaic cell to one plate,

the negative pole to the other plate. Connect one pole, say the

negative, to earth also. Place

an electric key between the

copper pole and the movable

plate of the condenser. Then,
if an electroscope be joined to

the movable plate, it will be

observed that this plate always

acquires a positive charge when
the key is depressed. In order

to make the charge as large as

possible the condenser plates

should be brought very close

FIG. 265. Illustrating the reason for calling the copper

pole of a cell positive.

NEGATIVE POLE

f- POSITIVE POLE
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poles of the cell are reversed, the charge on the electroscope is

also reversed.

Electrodes. We have already seen that at least one member
in the chain of conductors which makes up the circuit of a Vol-

taic cell must be an electrolyte, practically always a solution.

The two conductors which connect with this liquid are called

electrodes.

The electrode by which the current enters the electrolyte is

called the anode ; and that electrode by which the current

leaves the electrolyte is called the cathode. In the typical cell

which we have just studied the zinc plate is the anode and the

copper plate the cathode. Etymology of these two words?

Very often a current from some outside source is passed through
a cell containing an electrolyte ;

in such a case both electrodes

may be made of the same substance.

Battery. A number of Voltaic cells connected together is

called a battery.

The eight definitions just given are so frequently and so

continually used in all departments of electrical science, that

the student should master them here and now, once for all.

THREE PRACTICAL FORMS OP THE VOLTAIC CELL

356. 1. The Gravity Cell. This cell is composed of a copper

plate immersed in a saturated solution of copper sulphate, and

a zinc plate immersed in a solution of zinc

sulphate, generally arranged essentially as

indicated in Fig. 267.

The copper sulphate is somewhat denser

than zinc sulphate, and hence remains in

the lower half of the jar, while the zinc

sulphate, when carefully poured in, floats

on top. Hence the name, "
gravity

"
cell.

One of the chief merits of this cell is,

that so long as the circuit is open there is

not much waste of material taking place
FIG. 267. A gravity cell,

in the cell. When, however, the circuit is closed and the elec-

tric current begins to flow, we observe that the zinc plate

grows smaller, that the copper sulphate grows less and less,

while the zinc sulphate increases and the copper electrode be-

comes covered with a coating of fresh metallic copper.
2n
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In the shorthand of chemistry these phenomena are described quantita-

tively as follows :

Zn + ZnSO4 + CuSO
4 + Cu = 2 ZnSO4 + 2 Cu.

The metallic zinc has disappeared ;
the metallic copper has increased, at

the expense of the copper sulphate. Accordingly, if such a battery is to

furnish a current continuously, it must now and then be supplied with a

new zinc plate and with a fresh solution of copper sulphate.

The source of energy is here evidently the zinc, which is

oxidized " burned "
if you like to form zinc sulphate.

This cell is well adapted to work in which small currents are

needed very frequently or for a long while at a time.

357. 2. The Leclanche Cell. In this cell the two conductors

of the first class are zinc and carbon ; the electrolyte is a solu-

tion of ammonium chloride, sometimes called "sal ammoniac."

With the carbon is mixed some dioxide of manganese, and both

are held in a porous jar or small canvas bag. The current

easily passes through the pores of the jar or the meshes of the

bag. The carbon plate here evidently

corresponds to the copper plate of the grav-

ity cell. Here again the zinc is used up
whenever the poles are joined and the cur-

rent flows. The sal ammoniac also dimin-

ishes. Accordingly, from time to time, the

zinc and sal ammoniac must be renewed.

The student has probably already asked

himself why the oxide of manganese is

mixed with the carbon. The answer is

found in the fact that, if carbon alone

is used, the carbon becomes covered with a

layer of hydrogen gas soon after the circuit

is closed; because the ammonium chloride (NH4C1) breaks up,

giving off ammonia (NH3) and depositing free hydrogen (H)
at the carbon electrode. The chlorine unites with the zinc.

This coating of hydrogen makes the carbon plate cease to

act as a carbon plate and to behave like a metallic plate ; it

also offers more resistance than carbon to the passage of the

current. This is called polarization, which may be defined as a

tendency to send a current in a direction opposite to that fur-

nished by the cell.

FIG. 268. A Leclanche

cell.



ELECTRIC CUKKENTS 371

The effectiveness of a cell is always diminished when polari-

zation occurs. The manganese dioxide, however, uses up the

hydrogen and keeps the carbon plate clean. The purpose of

the manganese dioxide is, then, to prevent polarization. It does

this by furnishing oxygen which unites with the hydrogen to

form water ; and once in union with oxygen the hydrogen is

harmless.

In the language of chemistry, the action of the Leclanche cell is de-

scribed as follows :

Zn + 2 NH
4
C1 + 2 MuO2

= ZnCl2 + 2 NH3 + Mn 2O3 + H 2O.

This same equation also describes what goes on in the so-called "
dry

cell
" now in such common use.

The Leclanche cell is excellently adapted to furnishing a

current for a small time, or for intermittent use, as in the case

of a door bell or call bell. It will remain on open circuit with

still less waste than occurs in the gravity cell.

358. 3. The Storage Cell. In this cell the electrodes are of

lead and lead peroxide, respectively ; the electrolyte is dilute

sulphuric acid. The lead plate is the negative one ; the lead

oxide is the positive one.

When the circuit is closed,

the lead peroxide plate gives

up a part of its oxygen, while

the lead plate, the negative

electrode, becomes oxidized,

until finally the two elec-

trodes become very much

alike, and the current there-

fore becomes less and less,

other things being the same.

The battery is now said to be

discharged. For, as we have already seen ( 353), two elec-

trodes which are alike never give a current when immersed in

any one electrolyte.

But in order to put the cell again in good working shape, it

is necessary only to pass an electric current through the cell in

a direction opposite to that obtained when the cell was in use.

This process of regeneration is known as charging. The charg-

ing simply restores the oxygen to the positive plate, and

FIG. 269. A storage cell.
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removes the oxygen from the negative plate, leaving it spongy
metallic lead. When the cell is used as an electric generator, the

process is known as discharging.

The following two features distinguish the storage battery
from most other Voltaic cells :

(a) The fact that the plates are prepared, i.e. made chem-

ically different, by electrical means.

(i) The fact that they are capable of yielding currents

which are enormous compared with those from other forms of

batteries.

The chemical behavior of the lead storage cell is essentially as follows :

(i) During the charge, at the anode or "
positive grid,"

PbSO4 + SO4 + 2 H
2O = PbO2 + 2 H

2SO4
.

(ii) During the charge, at the cathode or "
negative grid,"

PbSO4 + H2
= Pb + H2SO4

.

- +
The ion SO4 of the first equation and the ion H 2 of the second result from

the decomposition of the sulphuric acid by the charging current,

(iii) During the discharge, we have at the positive plate,

PbO2 + H2SO 4 + Ho = PbS0
4 + 2 H

2O.

(iv) During the discharge, at the negative plate,

Pb + SO
4
= PbSO4

.

Observe that while the effect of the charging current is to deliver hydro-

gen at the negative plate, the effect of the discharging current is to produce

hydrogen at the positive plate.

Edison has recently devised a storage cell in which the anode is spongy

iron, the cathode nickel peroxide, and the electrolyte caustic potash.

In charging, the iron salt is reduced
;
in discharging, oxidized.

A storage cell is often spoken of as an accumulator, not be-

cause it stores up electricity but because it stores up chemical

energy, just as the mainspring of your watch stores up mechan-

ical energy in order to give it out again as needed.

It will be observed that all three forms of cells just described

have this one common feature, viz., they consist of two differ-

ent conductors of the first class, joined in series with one or

more different conductors of the second class.

THE COMMUTATOR

359. In most of our work with batteries, whether in the

classroom or in the laboratory, we shall need to change the

direction of the current in some part of the circuit. This can
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FIG. 270. A typical commutator.

be done in many ways ; but the device represented in Fig. 270

is typical of them all. The block ABCD is made of wood and

has four holes bored about halfway through it. These holes,

placed one at

each corner of a

square, act as

cups to hold

mercury. Into

the sides of the

block are in-

serted four

wires E, F, Gr,

S. Each of

these wires con-

nects with the

mercury in the cup nearest it. The poles of the battery are

joined to two diametrically opposite cups, say B and D ; the

wires from the rest of the circuit, say from a galvanometer, are

joined to the remaining two cups A and O.

For closing the circuit, two short thick copper conductors,

P and Q, are mounted on a movable block, as shown in the fig-

ure. These conductors P and Q may be placed in the mer-

cury cups in such a way as to connect B with A, and hence O
with D ; or they may be placed so as to connect B with (7, and

hence A with D.

In the one case, the current flows from E to G- through the

galvanometer ; in the other case, from Gr to E through the gal-

vanometer. To change the direction of the current in the

galvanometer circuit, we have, therefore, only to lift the top
block and rotate it through 90 in either direction. An instru-

ment which may be thus used to reverse the direction of a cur-

rent is called a commutator. To " break the current
" we have

merely to lift off the top block. Any device which is thus em-

ployed to interrupt a current is spoken of as a key or switch.

(6) INDUCTION OF ELECTRIC CURRENTS

360. We return from this digression on the. commutator to

consider the second of the three important methods mentioned

above ( 351) for producing electric currents.

The reader has already seen ( 299) that the region about
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a magnet is endowed with properties totally different from

other portions of space. This magnetic field, as it is called,

does not appear to the naked eye to be different from any other

portion of space ; but we know that it is different, for a magnet

brought into such a field behaves in a manner peculiar to this

magnetic field. As has been pointed

out, Faraday described such a mag-
netic field by conceiving it to be filled

with lines of force ;

purely imagi-

nary lines drawn, at each point in

the field, in the same direction in
LJ

FIG. 271. Resolution of the which the axis of a magnet would set

Earth's Magnetic Field
itgelf if place(i at that point . The

into two components. ,.', .

earth itself being a great magnet, the

whole of the space inhabited by the human race is a magnetic
field. In these fields the lines are distributed just far enough

apart to make the number which passes through unit area,

drawn perpendicular to the direction of the field, numerically

equal to the intensity of the field.

The lines of force which describe a magnetic field being

directed, i.e. vector, quantities, they can be resolved into com-

ponents. We accordingly speak of the vertical component and

the horizontal component of the earth's field, as represented in

Fig. 271, where T represents in direction and in amount the

total magnetic force of the earth on any magnet pole ; V
represents in direction and amount the vertical component of

T on the same pole ; and H the horizontal component of T on

the same pole.

361. If the preceding is clear, we are now in a position to

consider the beautifulty simple method by which Faraday, in

the autumn of 1831, first succeeded in producing currents

without the use of the Voltaic cell and without the use of heat.

If we consider any closed circuit (say a piece of copper wire

bent into the form of a circle or square) placed in a magnetic

field, we may think of it as containing or inclosing a certain

number of lines of force, just as a fence might inclose a group
of trees.

In Fig. 272 six lines of force are represented as being inclosed

by the wire circle. If by any means the magnetic field were
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FIG. 272. Magnetic lines of force in-

closed by an electric circuit.

made twice as strong, we should represent this change by
drawing the lines of force twice as close together, so that now
the circle would inclose twelve

instead of six lines. Or, if the

copper circle were carried par-

allel to itself to another region
where the magnetic field is

not so strong, then we should

describe this change by draw-

ingfewer lines of force through
the circle.

Faraday's discovery may then be described in a quantitative
mariner as follows: When, by any means whatever, the total

number of lines of force passing through any circuit is changed,

an electric current is produced in that circuit. Such a current is

called an induced current.

Various Illustrations of Induced Currents

362. Experiment 1. Connect the terminals of a D'Arsonval

galvanometer* with a copper wire, so that with the suspended
coil a closed circuit is formed.

Take a single loop in this cir-

cuit, and thrust through it one

pole of a permanent magnet.
Such a magnet carries its mag-
netic field (i.e. its lines of force)
about with it. And when these

invisible lines are thrust through
the loop, we observe that for

the instant a current passes in

the galvanometer. See Fig.

273. Now remove these lines

by removing the magnet ;
a cur-

rent passes, but now in the op-

posite direction. Observe that in either case the current lasts

only so long as the motion of the magnet continues.

*In the presentation of the phenomena of induced currents a fairly sensitive

D'Arsonval galvanometer, costing from 820 to $40, is great economy of time and

energy. The Rowland form answers nearly every purpose for which a galva-

nometer is required in the laboratory or in demonstration work.

FIG. 273. An electric current pro-
duced by thrusting lines of force

through a circuit.
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363. Experiment 2. Now support the magnet on some con-

venient stand, and slip the loop of wire over one end of the

magnet. See Fig. 274.

A current is again ob-

served. If we slip the

coil off, the direction of

the current is reversed.

If the loop of wire be

slipped on and off quickly,

a current will be produced
which flows first in one di-

rection, then in the other.

FIG. 274. An electric current produced by mov-

ing a coil in a magnet field.

(i) A current which changes its direction in a regular and continuous

manner is called an "alternating" current.

(ii) But if the current, during certain intervals of time, ceases entirely,

it is said to be " intermittent."

(iii) Currents which flow continuously in one direction are said to be
" direct."

From these two experiments, it is evident that it makes no

difference whether it is the loop of wire or the lines of force

that are moved. The relative motion of the wire and the mag-
netic field changes the number of lines of force inclosed, and

hence produces the current.

364. Experiment 3. Since we live on the surface of a large

magnet, it becomes interesting to see how we must move a

closed circuit in the earth's magnetic field in order to produce
an electric current.

If a large loop of wire be

made in one part of a closed

circuit containing a galva-

nometer, we have only to

hold this loop alternately in

an east-and-west and in a

nOrth-and-SOllth Vertical I / / GALVANOMETER

plane. When the plane of

the loop is Vertical and north- FIO- 275. An electric current produced by
j ,1 , T capsizing a coil of wire in the earth's

and-south, no magnetic lines m
*

eti

*

fie]d

from the earth pass through

it; they pass along each side of it. But if the coil be suddenly
rotated about a vertical axis so as to lie in an east-and-west
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plane, the earth's lines of force will thread through it, and we
observe in the circuit an induced current. If we rotate the coil

of wire back into a north-and-south plane, the current is in the

opposite direction. If in either of the preceding experiments we
leave the total length of wire unchanged and take twb turns

of wire instead of one, the deflection of the galvanometer is

observed to be twice as great as before.

If a coil of wire which lies flat on the table (Fig. 275) be

quickly turned over, the lines of force passing through it will be

changed by twice the original number. For if in the first case

there were Klines passing through in, say, a positive direction,

when the coil is turned over there will be N lines passing in a

negative direction, i.e. the change will be

365. Experiment 4. But there are still other ways in which

we may alter the number of lines of force passing through a

circuit. We have seen that a wire conveying a current is

surrounded by a

magnetic field. If

we bring a loop of
BATTI

our galvanometer
circuit near such a

battery current, we
shall find that the

< ^' ^ e^ect"c current produced in a loop of wire

by making or breaking a battery circuit in the neigh-

borhood of the loop.

magnetic lines from

the battery current

will in general
thread through the galvanometer circuit, and will thus produce
an induced current. In Fig. 276 lines of force marked 3, 4, 5,

and 6 each pass through the galvanometer circuit as well as the

battery circuit. When the motion ceases the current ceases.

If instead of bringing the loop and the battery current near

together, we simply place the circuits side by side and suddenly

open or close the battery circuit, we observe in each case an

induced current in the galvanometer circuit. To interrupt or

break the battery current is equivalent to carrying it off to a

very great distance. To close the battery circuit is electrically

equivalent to bringing it suddenly into the neighborhood of

the galvanometer circuit. Indeed, anything which increases the
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battery current as, for instance, shortening the wire in the

circuit is equivalent to moving it nearer to the galvanometer
circuit ; while anything which diminishes the battery current

has the effect of motion in the opposite direction.

Primary and Secondary Current

366. The two circuits of which we have just been speaking
are so frequently used in physics that special names have been

given to them. The circuit whose current furnishes the magnetic
lines of force is called the primary circuit ; the one in which the

current is induced is called the secondary circuit.

The facts of the case may be stated more generally still by
saying that any variation of the primary current will, in general,

induce a current in the secondary. For as the amount of cur-

rent iii any circuit varies, the number of lines of force about

that circuit also varies.

It has been found that when the primary circuit is wrapped
about a core of iron, it furnishes an enormously greater number
of magnetic lines of force than would be furnished if the wire

were wound on, say, wood or glass tubing. This is the electro-

magnet which was invented and so named by Sturgeon in 1822,

and which has proved to be an all-important factor in modern

electrical machinery.

The Transformer

367. Experiment 5. Take an iron ring such as that shown in

Fig. 277; wrap it with two coils of wire; pass an alternating

current through one of them.

It will then be observed

perhaps by means of an in-

candescent lamp that a

current is passing through
the other coil. A pair of

electric circuits, each insulated

from the other, but having the
FIG. 277. A transformer.

region between them filled

with iron, is called a transformer. Whenever the current in

the primary circuit P is made to vary, an induced current

appears in the secondary circuit S. Conversely, if a current be

passed through the circuit S and made to vary, a current will
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FIG. 278. Transformer cores are made
of a pile of iron plates having this

shape.

be induced in the circuit P. An instrument of this kind is in

wide use for lighting houses by means of alternating currents.

The coil P consists, in this case,

of many turns of fine wire, while

the coil S consists of a few turns

of heavy wire. The result is

that a small alternating current

of high pressure passed through
P induces a large current of

low pressure in S.

A particular kind of transform-

er called an "induction coil"

is one in which both coils are

wound, one on top of the other,

on a cylindrical bundle of iron wires. This instrument has a

wide variety of uses in the laboratory and in medical practice.
For description see 406.

The Dynamo

368. Experiment 6. Take an electromagnet such as that rep-
resented in Fig. 279. Between the poles of this magnet mount

a single turn of wire so that

it can be rotated about an

axis which is perpendicular
to the magnetic lines of

force. When the terminals

of this single turn of wire

are joined to the terminals

of a galvanometer, it is ob-

served that during each ro-

tation of the wire loop a

current passes through the

galvanometer, first in one

direction, then in the other.

An instrument of this kind

FlG 279. is called an " electric gener-
ator." When 48" portion of

the current in the loop is shunted off as shown in Fig. 279

so as to supply the electromagnet, the machine is called a

"
dynamo."
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The dynamo is then a machine consisting of a strong electro-

magnet which we may call the primary, and a movable coil

which we may call the secondary. This movable coil is rotated

by some mechanical means, such as a steam engine, so that the

number of lines of force passing through the coil is continually

altered. The distinguishing feature of this machine the de-

tails of which must be left for the engineering student is that

it furnishes its own primary current.

The coil A (Fig. 279) which is rotated in the magnetic field

is called the "armature"; the electromagnet NS, which consti-

tutes almost the entire weight of the modern dynamo and which

furnishes the magnetic field, is called the "field magnet." The
current produced by the armature is, in general, an alternating

current, i.e. one which flows first in one direction, then in the

other, changing, per-

haps a hundred times a

second. But sometimes

this armature is fitted

with a device (7, which

changes the connections

of the armature coils

with the using circuit

whenever the direction

of the current in these

coils changes. The re-

sult is that the current

in the using circuit is

direct, although the current in any armature coil is alternating.

This device is essentially a commutator, such as we have already
studied ( 359), only here the commutator is automatic. A
machine in which the armature is not provided with a commu-

tator, but has two collector rings, as shown in Fig. 280, is

called an alternating current generator.

Engineers find it frequently more convenient to rotate the

field magnet and allow the armature to remain stationary. But
this is a mere mechanical variation and does not in any way
change the electric problem. For a brief general theory of

Dynamo and Motor see 410.

FIQ. 280. Collector rings of alternating current

generator.
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(V) THERMOELECTRIC CURRENTS

369. The two methods just described for producing electric

currents are practically the only ones employed in the industries.

But there is a third method which deserves notice, partly on

account of its wide application in science and partly because of

its simplicity and directness, namely, the method in which the

energy of the electric current is obtained directly from heat.

This mode of generating electric currents was discovered by
Seebeck and reported to the Berlin Academy of Sciences in

1822. We have already learned that the essential feature of a

Voltaic cell is that it will maintain at a different potential the

two conductors of the first class which have their respective

ends immersed in a conductor of the second class. It has also

been noted ( 352) that, when two conductors are joined to-

gether so as to form a circuit at uniform temperature, whatever

tendency there is at one junction to produce a current is exactly
counterbalanced by an opposite tendency at the other junction.

See Fig. 263.

But Seebeck discovered that when one of these junctions is at a

different temperature from the other, the equilibrium is destroyed

and a direct continuous current flows in the circuit so long as this

difference is maintained. From this it appears that when a

metal is heated, its electrical properties are changed just as

definitely as if its chemical composition were altered. Not only

so, but different metals are differently affected by the same

change of temperature. These thermoelectric currents, as they
are called, are in general very minute ; but the modern gal-

vanometer is so extraordinarily sensitive that even these

small effects are easily observed and measured. As noted

above ( 249) the thermocouple is already a standard instru-

ment for measuring temperatures. The reason for this is that

the strength of the thermoelectric current depends, other things

remaining the same, upon the difference of temperature between

the heated and the cooled junction.
The important fact appears to be that at any sing^junction a

change of temperature produces a change of potential difference.

And the important constant connected with any particular

couple is its thermoelectric power, which is defined as the rate at

which this potential difference changes with temperature.



382 GENERAL PHYSICS

The radiomicrometer devised by Professor C. V. Boys and

the thermogalvanometer of Duddell ( 400) are instruments

of such great interest that they should be looked up in some of

the larger text-books.

Leaving this brief, superficial, and merely qualitative de-

scription of electric currents, we pass to their quantitative con-

sideration. The electrical properties which we have just been

studying were mainly discovered in the first half of the nine-

teenth century ;
but the electrical measurements to which we

now proceed were chiefly perfected during the second half of the

last century.

II. THE MEASUREMENT OF ELECTRICAL QUANTITIES:
ELECTRO-MAGNETISM

370. Electrical measurement is almost a complete and inde-

pendent science by itself, so well established are its standards

and methods. Yet the entire structure is built essentially upon
two fundamental principles, one of which connects the difference

of potential in any circuit with the rate at which the magnetic
field in this circuit is varying, while the other connects the cur-

rent strength with the strength of the magnetic field produced

by the current. The advanced student will find that these two

principles can be described in a general and quantitative way
only by the two fundamental equations of Maxwell and Hertz.

Here, however, we are not seeking after the utmost generality,

but rather after a clear grasp of a few special and concrete but

exceedingly important cases. For these particular cases lead nat-

urally to a clear understanding of the two fundamental'principles.

The Idea of Electromotive Force

371. The essential feature of the Voltaic cell is that it will

maintain a difference of potential either between its terminals

if the circuit be open, or between any two points on a circuit

which is closed.

But Faraday showed that, without touching the closed battery

circuit, it was possible to exactly counteract this potential

difference and make the current disappear by simply thrusting

lines of magnetic force through the circuit in the proper sense

and at the proper rate. The introduction of the lines of force

is therefore equivalent to the introduction of a potential differ-
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ence ; the effect is in each case to make the electric current

flow ; and in each case the effect is said to be produced by an
" electromotive force," just as the motion of a stream of water

might be said to be due to a "hydromotive force." And just
as in the case of a basin of water one can make the water flow

around in the pan by dragging a towel in a circle over the bottom,
without any difference of level, so also in the case of an electric

circuit one can make the current

flow, without any difference of po-

tential, by merely introducing lines

of force. In other words, while a

difference of potential always acts

as an electromotive force, it does not

follow conversely that all electro-

motive forces are differences of po- Flo . 281. -Showing potential

tential. Electromotive force, which difference of a battery may

we shall hereafter write E.M.F.,"
*e

^""^baianced
by in-

troducing lines of force.

is the more general term.

Concerning the E.M.F. which is produced by magnetic

induction, the three following experimental facts should be

verified by each student for himself in the laboratory :

(i) Other things being the same, the amount of E.M.F. varies

directly as the number of lines, say N, introduced into the circuit.

(ii) Other things remaining the same, the E.M.F. varies

inversely as the time occupied by their introduction.

(iii) To produce a current in any given sense, lines of force

must be thrust through the circuit in a sense which is just op-

posite to that of the lines produced by this current. Thus in

Fig. 281 the lines of force due to the current i would be directed

downward; and hence any lines of force which are thrust

downward through the circuit will produce an induced current

which is opposite in sense to i and may be made to just annul i.

372. In 1845 F. E. Neumann formulated these facts in the

following simple manner : Let JVj and N% denote the total

number of lines of force threading any given circuit at the

instants t and
2 respectively, and k a constant of proportion-

ality. Then for this circuit

E.M.F.=-k*=. ; Eq. 139
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This brief expression, which says that the E.M.F. of any in-

duced current is to be measured by the rate at which lines of force

are cut, is the first of the two general principles mentioned at the

outset. In a modified form it is also the engineer's formula for

computing the E.M.F. of a dynamo which he is designing.
The negative sign means that the sense of the induced E.M.F.

and the sense of the lines thrust through the circuit are related

as the rotation of a left-handed nut to its direction of travel

on the screw.

Unit of Electromotive Force

373. About one half a century ago it was agreed by the

British Association for the Advancement of Science and as-

sented to by the remainder of the scientific world that we should

take as unit E.M.F. that which is produced in any closed cir-

cuit when it cuts one line of force per second. This definition

has the effect of making k = 1 in Eq. 139, so that the defining

equation for E.M.F. is

F M F - f~\ Defining equation ^ -,_,JL.M.l^. _ I I, forE<M-F> Uq- 1
\ * /

where -ZVis the number of lines of force added during the inter-

val t. We have already learned how to measure the number of

lines passing through unit area, i.e. the intensity If of a mag-
netic field; and N is, of course, simply the product of H by an

area.

This unit of E.M.F. is called the electromagnetic C.G.S.

unit; but it is entirely too small for practical purposes. Hence

the International Electrical Congress has agreed to adopt the

following
"
practical unit," which is called the " volt

"
in honor

of the Italian physicist Volta.

The "international volt" is defined as that electromotive force

which is induced in any closed circuit cutting lines of magnetic

force at the rate of one hundred million per second.

Or in terms of arithmetic,

1 volt = 108
electromagnetic C.G.S. units of E.M.F.

Standard of Electromotive Force

374. In order to measure electromotive forces in practice, it

remains only to establish a standard E.M.F. with which others

may be compared. This was much facilitated by the discovery
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of Latimer Clark that a Voltaic cell made up of zinc rod in zinc

sulphate for the cathode and mercury adjoining mercurous

sulphate for the anode gave a remarkably constant E.M.F.

when properly used. Accordingly the International Electrical

Congress at Chicago in 1893 adopted i of the E.M.F. be-

tween the poles of Clark's cell as representing the volt " suffi-

ciently well for practical use." In other words, the E.M.F.

of the Clark cell is 1.434 legal volts. For rough work one may
consider the gravity cell as having an E.M.F. of one volt; and

the Leclanche as giving a volt and a half.

The Definition of Unit Current

375. The second great principle in the accurate study of elec-

tric currents rests upon the fundamental discovery of Oersted

that about every electric current there is a magnetic field of

force.

In the same year in which Oersted

found that a current will deflect a

magnet, Biot and Savart showed

that, in the case of a very long

straight wire,

(i) The magnetic field at any

point about the wire varies inversely

as the distance r of that point from

the wire. See Fig. 282.

(ii) The intensity R of this mag-
netic field varies directly as the cur-

rent strength i.

(iii) The direction of the current

and the direction of the lines of force are related as the direction

of translation and rotation in a right-handed screw. See Fig. 282.

The facts may be summarized by writing

FIG. 282. Illustrating Biot and

Savart's Law.

Biot and Savart's
Law. Eq. 141

376. But a much more convenient form of circuit is ofre

where the wire is bent into the form of a circle. In this case,

it can be shown, by the apparatus indicated in Fig. 283, that

(i) the magnetic field R at the center of the circle varies

directly as the current strength in the wire.

2c
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(ii) The magnetic field at the center of the circle varies in-

versely as the radius of the circle.

(iii) The direction of the field at the center of the circle and

the direction of the current in the wire are related in the manner

of the right-handed screw.

These facts are illustrated by Poynting as follows : Wind on

a frame three circles of insulated wire such as those marked 1,

2, and 3 in Fig. 283. Make the radii of
" 2

" and " 3
"
just twice that of " 1." If

the same current be passed through each

of the three circles, but so that the sense

of the current in the small circle is op-

posed to that in the two larger circles,

then there will be no effect upon the

magnetic needle suspended at the center.

For the larger radius of the outer circle is

iust compensated by the fact that there is
FIG. 283. Poyntmg's

J

apparatus.
here just twice as large a current acting

upon the needle. Let us denote the cur-

rent by t, the magnetic field at the center of the coil by H, and

the radius of the circle by r, then a summary of the above facts

becomes

E = k
l

. Eq. 142
r

Now it has been agreed by the scientific world to give the con-

stant k an arbitrary value of 2 TT, and then call this the defining

equation for the electric current, namely,

,->
2 TTI Defining equation TT<^ 1 4 o

JT" for current.

This is equivalent to saying that unit current is one which when

passing about a circle of unit radius will produce at the center

of the circle a magnetic field of intensity 2 TT. This definition of

unit current makes the constant K in Biot and Savart's Law
2i

(Eq. 141) equal to 2; so that for a long straight wire Jt =

When the centimeter, gram, and second are used as fundamental

units, this current is called the "electromagnetic C.G.S. unit

of current."

The "international ampere," which is the practical unit of

current, is one tenth of the C.G.S. unit.
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377. Suppose now that one takes a positive unit magnet pole
and carries it once around (i.e. along) one of the circular lines of

force which surround a long straight wire and which are depicted
in Fig. 282. The force acting upon the unit will be numerically

equal to the magnetic intensity R. The work done in taking
the unit pole once around the circuit may be indicated by W\
then,

W=27rr. = 47n. Eq. 144
r

This is the general form (although here demonstrated only
for a special case) of the second great principle mentioned above,

namely, the electromagnetic measure of any current is the work

done by carrying a unit magnet pole once about the entire cur-

rent ; and the amount of work done is 4 IT times the strength of

the current inclosed by the path of the pole.

Standard Current

378. The international ampere that is, the ordinary unit

of current used in commerce has been specified by the Inter-

national Electrical Congress at Chicago in 1893 to be a current

which when passed through a solution of silver nitrate will de-

posit silver on the cathode at the rate of 0.001118 of a gram per
second. This description of the standard current will be clear

to the student after he has mastered Faraday's Laws of Elec-

trolysis. See 394.

OHM'S LAW

379. Assuming that the student is now more or less familiar

with the manner in which currents and electromotive forces are

measured, let us consider a par-
ticular case where a definite and

measurable electromotive force E (

is producing a definite and meas- I /

urable current i in a circuit such, (+) \

say, as that represented in Fig. Fra^^T
284. The following query now
arises, How does the strength of the current i in any circuit

depend upon the electromotive force in that circuit?

The answer to this question is contained in the discovery

of the German physicist Ohm, in 1827, namely, for any given.
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circuit the current varies directly as the total E.M.F. in the

circuit. In other words, the ratio of the E.M.F. to the current

is a constant for any given circuit. This general fact is known
as Ohm's Law. The proportionality constant of the circuit

which represents the ratio of the E.M.F. to the current strength
is called the " resistance

"
of the circuit.

Let us denote this resistance by R, then we may obtain an

algebraic expression for Ohm's law by writing

]jj Ohm's Law, defin-

-7-
= !>/ ing equation for Eq. 145

* resistance.

But if, instead of considering the entire circuit, we consider

only a portion of it, such as that

between the points a and b (Fig.

285), then it is found that Ohm's
Law holds in the same way for

this portion of the circuit as for

the whole circuit, always providedFIG. 285. Ohm's Law applied to a

portion of a current. there is between a and b nothing of

the nature of a battery or dynamo,
i.e. no source of electromotive force.

The Unit of Resistance. The Ohm

380. To obtain the unit of resistance one employs the same
method which is used in the other departments of physics,

namely, takes the denning equation and gives the other vari-

ables such values as will make the desired quantity unity.
Thus in Eq. 145, if we make E = i = 1, then R = 1. A circuit

is therefore said to contain one unit of resistance when one unit

of E.M.F. will produce in it one unit of current.

The electromagnetic C.G.S. unit of resistance thus defined

is entirely too small for laboratory use and hence a practical

unit called an "ohm "
has been defined as one which is a

thousand million times the C.G.S. unit :

1 Ohm = 109
electromagnetic C.G.S. units of resistance.

Standard of Resistance

381. By international convention agreed upon in Chicago in

1893, the ohm is represented sufficiently well by the resistance

of a column of mercury of uniform cross section, at C., when
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its length is 106.3 centimeters and its mass is 14.4521 grams.
When a wire is said to have a resistance of three ohms it is

meant that a given E.M.F. applied to the ends of this wire

will produce exactly one third as much current as when the

same E.M.F. is applied to the above described mercury column.

Resistivity

382. Having discovered that the ratio between E.M.F. and

current is a constant for any given circuit, we now proceed
to inquire what

physical fea- ^GALVANOMETER

tures of the cir-

cuit determine

the value of this

proportionality \ CU.NO.:** * / ti_ AJ.S* . ti _ n*T/"v . k.i _ Oft* . ki Oft

constant to

which the name
resistance has

been given. Up- FIG. 286. Illustrating Ohm's Law.

on what physical

properties of the circuit does its resistance depend? The most

direct experimental answer is obtained, perhaps, by taking a

circuit such as that shown in Fig. 286.

Pass through this circuit a small steady current from any
source. Now since i is constant and since E = iR it is clear

that we may study the variations of R by observing the varia-

tions of E. To measure the E.M.F. between any two points

such as C and D on this circuit, one has only to attach to these

points the terminals of a sensitive galvanometer whose resist-

ance is high compared with that portion of the battery circuit

which lies between and D. A branch circuit such as that

from C to D via the galvanometer is generally called a

"shunt."

To each pair of points on the main circuit will correspond
a certain deflection of the galvanometer and this deflection

will measure (in arbitrary scale divisions) the E.M.F. between

that pair of points.

The length of each section in Fig. 286 is the same ; that is,

the linear distance between each point and its next door neigh-
bor is constant.
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GALVANOMETER

FIG. 286, Illustrating Ohm's Law.

Now it is observed that the E.M.F. between B and C is

just twice that between A and B, No. 24 wire having just

twice as large a cross section as No. 27. This illustrates the

general fact that the resistance between any two points on a

conductor varies inversely as the area of the cross section of the

conductor.

This rule may again be verified by measuring the E.M.F.

between the points C and .Z), which are connected by No. 30

wire, which has

just half the

cross section of

No. 27. Here

also it is found

that the deflec-

tion correspond-

ing to the inter-

val CD is just

twice that due

to BC.
Next measure the potential difference between C and E\ it

will be found just twice that between 6Y and Z>, which illus-

trates the general fact that for any uniform conductor the re-

sistance varies directly as the length.

The last section of the wire, that between F and 6r, is the

same in length and cross section and is carrying the same

current as the section CD. But the material is different, the

chemical composition of the wire is not the same. Comparing
the deflection between F and 6r with that between C and Z>,

the former is found to be many times greater ; from which one

may infer that, other things being equal, the resistance of

German silver wire is many times greater than that of copper ;

and in general, that the resistance of any conductor depends

upon the chemical composition of the substance from which it is

made.

This property of a conductor which determines how its

resistance depends upon its chemical composition is called its

"
resistivity" a quantity which we may denote by p and may

measure as follows :
-

Let the cross section of a wire be , and its length I. We
may then summarize the preceding results by writing
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Hence R&P- and R = &-, where k is a proportionality constant.
s

But it has been agreed to call the resistivity of a substance

unity when its length, cross section, and resistance are each

unity, from which it follows that k is always unity, and hence

n _ pl Defining equation p -i

fi~ '

for resistivity.
^ ^

The resistivity or, as it is frequently called, specific resist-

ance of any substance is therefore numerically equal to the

resistance in ohms between two opposite faces of a centimeter

cube of that substance.

The conductivity of any substance is defined as the reciprocal

of its resistivity. In like manner the conductance of a body is

defined as the reciprocal of its resistance.

383. Indeed, it has been adopted as a general principle in electrical no-

menclature that specific properties, properties of substances as distinguished
from bodies, shall be denoted by nouns ending in -ity ; while properties

which belong only to particular bodies shall be described by nouns ending
in -ance. The advantage of this is that terms such as "

impedance
" and

"
inductance," which may be unfamiliar to the reader, carry on their face a

part of their meaning.

384. As a matter of fact the resistance of any conductor de-

pends slightly upon its temperature. This fact is, indeed, the

basis of one of the best methods of measuring moderately high

temperatures, namely, the electrical resistance thermometer,

suggested by Siemens, perfected by Callendar. See 249, above.

Practically all metals increase in resistivity as their tempera-
ture rises. But this is a question which must be left for the

more advanced student. So also the slight variation of resist-

ance which a conductor suffers when placed in a magnetic field.

The student who pursues the subject farther will find this latter

effect the basis of one of the most convenient modes of measur-

ing the intensity of the magnetic field in a dynamo.
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TABLE OF RESISTIVITIES

SUBSTANCE
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and hence standard condensers which are made for the purposes

of measuring capacities are generally graduated in terms of a

unit which is one millionth of a farad and is called a " micro-

farad." Sometimes a third of a microfarad is used because

this represents approximately the capacity of a mile of Atlantic

Cable.

SUMMARY

387. A bird's-eye view of the entire subject of electric meas-

urements may be obtained by recalling that what we have done

in the
'

preceding discussion is to demonstrate five important

laws of nature and to describe them in terms of the following

five equations :

E=- > Eq. 140
t

W=47ri. Eq. 144

i=^- Eq. 145,

Q = it. Eq. 14T

Q=CE. Eq. 148

In these equations appear five, and only five, unknown quan-

tities, namely, the electromotive force E, the current e, the

resistance R, the quantity Q, and the capacity 0. These un-

known quantities are expressed in terms of the three known

quantities, namely, the time , the number of magnetic lines

N, and the work TF". By elimination, then, one is enabled to

express any of the five electrical quantities in terms of known
or directly measurable quantities.

Problems

1. A current of 1 ampere and an E.M.F. of 50 volts are required to feed

an incandescent lamp. What is the resistance of CELL

the lamp in ohms? Iw ^^mi.
2. A Leclanche cell is used to ring a door bell, f \

*
-^

The resistance of the wire in the bell is 2 ohms, / \

the resistance of the line is \ an ohm, and the re- \ J
sistance of the cell is 1 ohm. The E.M.F. of the ^ JL_ ^
cell is 1.5 volts. What current will be produced FlG 2g6 A
when the circuit is closed ? Ans. 0.429 ampere.

3. The E.M.F. of a single gravity cell is 1.1 volts; the resistance of each

cell is 3 ohms. If three of these cells be joined up in series as indicated in*
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Fig. 286, B, and the poles of the battery be connected by a resistance of 1

ohm, what current will flow in the circuit? Ans. 0.33 ampere.

4. A telegraph sounder has a resistance of 70

ohms, and it requires a

current of 0.2 ampere
to work it. Will 20

gravity cells such as

described in the pre-

ceding example be suf-

ficient? Will 40 cells

suffice? Be able to

describe your reasons at the blackboard.

5. Two wires R
l
and R%, alike in all respects, and having each a resist-

ance of 20 ohms, are joined
" in parallel

"
as shown in Fig. 286, C. What

is the sum of their resistance, i.e. what is the resistance of that part of the

circuit which lies between the points A and ? Use equation for resistance

given in 382, viz.,

R = 1 OHM

FIG. 286, B. FIG. 286, C.

One might imagine the two wires fused into one of equal length ;
the

numerical value of s would then be doubled, but as an electrical conductor

the large wire would be equivalent to the two smaller ones.

6. What is the total resistance of the two wires R
l
and R2

when joined
"in series" as indicated in Fig. 286, D?

A Ri c RS B
7. A gravity cell of 1.1 volts is joined

up in opposition to a storage cell of 2.1

volts, i.e. their positive poles are con-

nected. What is the resultant E.M.F. of

the two cells? Ans. 1 volt.

FIG. 286, D.

8. Three gravity cells, each having a re-

sistance of 3 ohms and an E.M.F. of 1.1

volts, are joined "in parallel" as indicated

in Fig. 286, E, and then connected to a coil

of wire having a resistance of 8 ohms. Find

the current in the coil. How much current

passes through each cell ?

Ans. 0.122 ampere; 0.041 ampere.

9. Siemens proposed a unit of resistance

equivalent to that of a column of mercury 1

m. in length and 1 mm.2 in cross section. Find the value of this unit in

terms of the ohm.

10. What magnetic field will be produced at the center of a circle of wire

conveying a current of 2 amperes, when the radius of the circle is 9 cm. ?

11. A small circular wire inclosing an area of 3 cm.2 is brought into a

magnetic field in such a way that 106 lines of force are uniformly added

to the circuit in 2 sec. Find the average E.M.F. generated. If the

R = 8 OHMS

FIG. 286, E.
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resistance of the circuit is jj^ ohm, what current will be produced during
the 2 sec. ?

12. Which will affect a magnetic needle at the center more strongly,

a current 8 amperes in a circle of 8 cm. or a current of 100 amperes in a

circle of 1 in. radius ?

13. The armature of a dynamo cuts lines of force at the rate of 1.2 x 1010

per second. What is its total voltage ? Suppose the resistance of the arma-

ture between the brushes is ^ ohm, what will be the voltage between the

brushes when carrying a current of 40 amperes ?

14. A room is illuminated by 40 incandescent lamps joined up in parallel.

Each lamp has a resistance of 200 ohms when hot and requires a voltage of

110. Find the current necessary to light the room.

15. Taking the resistivity of copper as 1.6 x 10~ 6
,
find the resistance of a

pair of lead wires whose diameter is 3 mm. and whose joint length is 40 m.

16. A storage cell whose resistance is ^ ohm and whose electromotive

force is 2 volts sends a current through a wire of 3 ohms joined in series

with a wire of \ an ohm. Find the potential difference between the ter-

minals of each of the two wires.

17. The E.M.F. of a gravity cell on open circuit is 1.12 volts. But when
the circuit is closed with an external resistance

"

of 20 ohms, the voltage

between the terminals of the cell drops to 1.00. Find the internal resistance

of the cell.

18. Ten cells are arranged so as to have five in series and two of these

series in parallel. The E.M.F. of each cell is 1.5 volts; the resistance 1

ohm. Find the E.M.F. and resistance of the combination.

19. The terminals of a cell are joined by three parallel wires whose

resistances are rv r
2,
rs, respectively. Prove that the current passing through

the cell will be distributed among these three conductors inversely as their

resistances.

20. Explain by means of diagrams the difference between an ammeter

and a voltmeter.

III. EFFECTS OF AN ELECTRIC CURRENT

A. CHEMICAL EFFECTS. ELECTROLYSIS

388. Every one has heard of plating spoons with silver, and

bicycles and skates with nickel, even if he has never seen the

process. All of these are instances of the general fact, largely

established by Sir Humphry Davy, that when a current is

passed through a solution, that solution is, in general, broken

up into two other substances.

In the first year of the nineteenth century, the same year in

which Volta described the Voltaic cell, it was found by Carlisle
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and Nicholson that a current passing through water breaks the

water up into hydrogen and oxygen. Hydrogen is given off

at the cathode and oxygen at the anode.

389. Experiment 1. In order to pass a current through
water it is necessary to dissolve some salt or acid in it to make
the liquid a good conductor. The most convenient thing is to

add 10 or 15 per cent of strong sulphuric acid.

Take a Wolff's bottle half full of the dilute acid ; through
two of the holes in the bottle insert two strips of sheet platinum

soldered to cop-

per wires, as in-

dicated in Fig.
287

; connect

these to a source

of electromotive

force which will

send five to ten

amperes through
the acidulated

rio. 287. The decomposition of water by an electric

current. water. Gas will

be given off from

each electrode, and the mixture may be collected for examina-

tion by attaching one end of a rubber tube to the remaining
neck of the bottle, and immersing the other end of the tube in

a soap solution. The escaping gas will thus blow a series of

soap-bubbles which may be exploded by a lighted taper ; for it

has been shown that the gases are evolved in just the right

proportion to explode, without leaving behind any oxygen or

any hydrogen, i.e. the proportions of hydrogen and oxygen

present are chemically equivalent. It is safer, of course, to

remove the glass nozzle from the soap solution before applying
the taper.

390. Experiment 2. By using a U-tube with electrodes, one

sealed into each branch, the gases can be collected before they
have a chance to mix. If the arms of the tube are graduated,
one can measure directly the volume of hydrogen set free, and

also the volume of oxygen. Accurate measurements of this

kind show that when the gases are collected under equal pres-

sures, the volume of hydrogen is exactly double that of oxygen.
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But chemists tell us that

these are exactly the vol-

umes of hydrogen and

oxygen that unite to form

water, and that the density HYOROGEN' -\

of oxygen is sixteen times

as great as that of hydro-

gen. What then will be

the mass of oxygen set

free as compared with the

mass of hydrogen?

391. ^Experiment 3.

Instead of acidulated

water, we may use a solu-

tion of lead acetate as an

electrolyte. The phenom-
enon is most conveniently

FIG. 288. Electrolysis of water, m which the

hydrogen and oxygen are collected in

separate vessels.

seen or projected when the solution is placed in a flat vessel

such as is represented in Fig. 289.

If we use a pair of plati-

num wires as electrodes, it

will be seen that the lead

acetate, which is a clear

transparent solution, is

broken up so as to yield

dark metallic lead at the

negative pole of the bat-

tery, i.e. at the same pole
where the hydrogen ap-

peared in the preceding

experiment. In general,

hydrogen and all the

metals behave as if they
rode through the electrolyte on the current, i.e. they collect at

the same pole at which the current leaves the electrolyte.

392. Experiment 4. Moisten a strip of filter paper with a

strong solution of phenol phthalein
* and sodium chloride, table

* This is a substance which chemists very commonly use to detect the pres-

ence of an alkali. The phenol phthalein is colorless
;
but a drop of it in an

alkaline solution will yield a red color.

FIG. 289. Electrolysis of lead acetate.
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CATHODE
RED

ANOOe
CLEAR

FIG. 290. Illustrating the chemical

reactions which sometimes occur

at the electrodes.

salt. If the positive pole of a battery be connected with one

end of the strip, the negative pole will, when drawn over the

strip, cause an electric current to pass along the strip, for the

moistened paper is a conductor. This current will deposit

sodium at the negative electrode, the sodium will unite with

the water in the strip and produce caustic soda, i.e. a strong

alkali, which, in the presence

of the phenol phthalein, turns

a brilliant red. The conse-

quence is that a brilliant red

line may be traced when the

negative electrode is moved
over the strip of filter paper.

A more easily visible method

of demonstrating this phenom-
enon is to take a U-tube as

shown in Fig. 290 and provide
it with a pair of platinum elec-

trodes. If now the salt solution (NaCl) be placed in this tube

and a few drops of phenol phthalein be added, it will be found

that as soon as the current begins to pass, the solution in the

immediate neighborhood of the cathode turns red. This indi-

cates the presence of an alkali in that region and in no other
;

in other words, the metallic sodium which the current deposits

upon the cathode unites at once with the water to form sodium

hydroxide. The chlorine which is set free at the anode dis-

solves in the water and

forms a bleaching solu-

tion. The result of this

is that when the current

is reversed there is suf-

ficient chlorine water

about what is now the

cathode to immediately
bleach out the red due to

the phenol phthalein.

Accordingly it is neces- Fia. 291. The copper voltameter,

sary for the current to

flow some little while after reversal before the red color

remains about the cathode.

ANODE
LOSES iN WEIGHT^ -

CATHODE
- 4- -4- GAINS IN WEIGHT



ELECTRIC CURRENTS 399

393. Experiment 5. If we immerse two copper plates in a

solution of copper sulphate and pass a current from one plate

to the other, the mass of the plate by which the current enters

will diminish, while the mass of the plate by which the current

leaves will grow larger ;
but the copper solution remains prac-

tically unchanged. By accurately weighing the plates before

and after the passage of the current, and noting the duration

of the current, one can determine just how much copper any

given current will deposit in one second of time. A cell fitted

with electrodes and electrolyte in this manner is called a vol-

tameter. The copper thus deposited is very pure, and this

process is now largely employed for refining copper.

394. Experiment 6. When several voltameters are con-

nected in series, after the manner shown in Fig. 292, the same

current will pass through each of them. But on weighing the

electrodes it is found that

the amount of element de-

posited upon any particular

electrode, by a given current

flowing for a given time,

varies directly as the atomic

weight of the element and

inversely as the valency of

the element. Thus silver is

univalent and has an atomic

weight of 108, while copper
is bivalent and has an atomic weight of 63. Accordingly in

the arrangement described in Fig. 292 the amount of silver

deposited will always be 108/^3., or a little over three times as

great as that of copper. The ratio of the atomic weight of an

element to its valency is generally known as its "chemical

equivalent."

Faraday made a very careful study of many phenomena such

as we have just been considering, and he summarized his

results as follows :

Cu Cu
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FARADAY'S LAWS OF ELECTROLYSIS

First Law

The amount by weight (i.e. the mass) of an electrolyte which

is decomposed by an electric current is proportional to the current

flowing and to the time during which it flows.

In order to express this law in terras of algebra let us denote

by i the current in amperes, by t the time in seconds, and by w
the increase in mass of cathode measured in grams. Then

w = dt, Eq. 149

where e is a proportionality constant which is called the
" electrochemical equivalent

"
of the element deposited.

/Second Law

When an electrolyte, or a series of electrolytes, is decomposed

by an electric current, the components into which it is separated

are always chemically equivalent, i.e. they are set free in just

such amounts as may recombine and form a chemical compound
without any left-over material.

For purposes of computation it is often convenient to put
this law in terms of symbols as follows: Let subscripts "1"
and "2" refer to two different electrolytic cells. Then if

atomic weights be denoted by TW, valencies by v, and electro-

chemical equivalents by e, we have

_
e
2

~~ m
2i\

'

Eq. 150

395. These two laws of Faraday would seem to indicate that

there is associated with each atom of matter a certain definite

charge of electricity which is the same for all atoms of the

same valency and is quite independent of the "atomic weight."
The charge associated with each unit of valency would then

appear to be a natural unit of electricity.

The atom with its associated charge is called an " ion." But

the charge alone, this natural electrical unit, is called an " elec-

tron," a name which we owe to the Irish physicist Dr. John-

stone Stoney. If we assume that each unit valency carries

with it one electron, then the passage of the current through
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the electrolyte would be accomplished by the positively charged
ions delivering up their positive charges to the cathode and the

negatively charged ions giving theirs to the anode at the same
time. This view affords us not only a simple explanation of

both of Faraday's laws, but also gives us a helpful working

hypothesis for electric currents as consisting of this double

procession of charges dragging the atoms through the elec-

trolyte.

The electrochemical equivalent e is numerically equal to the

mass of any element deposited by the passage of one coulomb of

electricity through the electrolyte, while the reciprocal of e is the

amount of electricity associated with one gram of the element

in question.

TABLE OF ELECTROCHEMICAL EQUIVALENTS

SUBSTANCE
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Between the years 1840 and 1843 the English physicist

Dr. Joule made a very careful study of the heat produced by

+ an electric current. He found that for any
one piece of wire the amount of heat pro-

duced by any current depends upon two

things only :

1. Upon the amount of current flowing,
i.e. upon the number of amperes, and

2. Upon the time during which it flows.

By use of a calorimeter containing a coil

of wire, it was shown that when the current

in the coil of wire was doubled, the heat was
FIG. 293. Calorimeter

for measuring the developed four times as rapidly as before
;

rate at which heat and when the current was trebled, the heat
is produced by an . , , .

electric current was imparted to the water nine times as

fast as before.

But if any particular current was allowed to flow first for

five minutes, then for ten minutes, it was found that the

amounts of heat (calories) developed in these two intervals

were in the ratio of 1:2. And Joule found that in general
he could describe the results of his experiments as follows :

Joule's Laws of Heating

1. In any given conductor, the heat developed by an electric

current in any given time varies directly as the square of the

current.

2. In any given conductor, the heat developed by any given
current is directly proportional to the time during which the cur-

rent flows.

397. Hitherto we have

been considering the effect

of a current upon a single

conductor. Suppose, how-

ever, we take a series of

different conductors and

join them end to end, and

pass one current through the entire chain. Will the heating
effect be the same on each link of the chain? An experi-

mental answer to this question may be obtained as follows :

FIG. 294. Amount of heat produced by an

electric current depends upon length,

diameter, and material of wire.
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Join together four wires as represented in Fig. 294,

where

AB is 10 cm. of iron wire; 0.25 mm. diam.

SO is 20 cm. of iron wire; 0.25 mm. diam.

CD is 20 cm. of copper wire ; 0.25 mm. diam.

DE is 20 cm. of iron wire; 1.00 mm. diam.

Through this series passes current sufficient to heat the part

AB red-hot. This will require about four amperes. Observe,

then,

(1) That the part BC (which is exactly similar to AB ex-

cept in length) is just as hot as AB, and consequently is giving
off twice as much heat as AB ;

(2) That the copper wire CD (which is exactly like

BC except in chemical composition) is very much cooler than

BC-,

(3) That DE (which is exactly like BC except that

its area of cross section is larger) is also much cooler than

BC.
From experiments of this kind, in which, however, all the

quantities involved were accurately measured, Joule concluded

that the amount of heat which any given current develops
in any conductor in a given time depends upon the following
three factors :

(1) The length of the conductor, the amount of heat being

directly proportional to the length;

(2) The chemical composition, i.e. the kind of material of

which the conductor is made ; thus we have seen that the iron

wire becomes much hotter than copper wire of the same size ;

in like manner a carbon filament becomes much hotter than an

iron wire of the same size, other things being equal. In a

chain made of alternate links of silver and platinum wire each

of the same size, a current will heat the platinum red-hot while

the silver remains comparatively cool.

(3) The area of cross section, the amount of heat being in-

versely as this area. For this reason the insurance companies

require copper wire of not less than a certain diameter to be

used in leading a current to a given number of incandescent

lamps. If the wire be too small, there is danger of its getting
hot and setting fire to the building.
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These results we may summarize as follows :

Let H= heat developed by any current ;

i = strength of current in C.G.S. units;

t = duration of current in seconds ;

I = length of the conductor in centimeters ;

8 = area of cross section of conductor in square centi-

meters ;

p = a constant depending upon the material of which

the conductor is made.

Then the most careful experiments by Joule and his successors

show that

Jr/>-t%ergs, Eq. 151
s

provided the constant p for each different substance has the

same numerical value which we have already found for the

resistivity of that substance. This being so, the factor p- is
O

simply the resistance of. the conductor. See Eq. 146. Ac-

cordingly Joule's results assume the form,

H= Rfit ergs, Joule's Law. Eq. 152

where the resistance R as well as the current i and the time

t is measured in C.G.S. units. We may, therefore, write as

the third and last of Joule's laws,

3. In any conductor, the heat developed by a given current

flowing for a given time is directly proportional to the resistance

of the conductor.

If, however, the current be measured in amperes, the resist-

ance in ohms, the time in seconds, and the heat in calories,

then we have the following laboratory equation :

H= ~Mft calories. Eq. 153
\4.2/

In the laboratory it is practicable to measure any three of

the four quantities in this equation, so that we can employ the

equation to determine the remaining quantity. By measuring

J5T, (7, and t we may thus determine R.

The whole story of the heating effect of an electric current

is contained in the above equation.
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THE INCANDESCENT LAMP

398. We may increase the heat either by increasing the cur-

rent or by increasing the resistance. Heat is developed wher-

ever resistance of any kind is located. It is for this reason

that long slender carbon filaments of high resistance are used

LOW PRESSURE MAINS

TRANSFORMER

ALTERNATING

FIG. 295. The alternating current system.

in incandescent lamps. The heat is located almost entirely in

the filament, scarcely at all in the wires which lead the current

to the filament.

Note also that it is the heat, not the electric current, which

makes the filament luminous. If the carbon filament were

raised to the same temperature by any other means, it would be

just as bright.

Figs. 295 and 296 indicate the manner in which incandescent

DIRECT CURRENT
DYNAMO

TTT

FIG. 296. The direct current system.

lamps are usually connected in the alternating and direct cur-

rent systems respectively.

The Theory of Electric Heating

399. Before leaving this brief outline of the heating effect it

is well for the student to see that Joule's Law follows as an

immediate consequence of Ohm's Law and the definition of

potential difference.
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Consider any electric circuit, say that represented in Fig.

294. Between any two points such as B and (7 which include

between them no source of E.M.F. there is a difference of

potential E which is given
J *

$ *L by Ohm's Law, namely, E=
C 4 iR-, where R is the resist-

^-M_ji__^-_A_ft-H|i|
SUL-*-^&~

f~M~*^**^
ance between B and G. If

the current i flows for a
FIG 294 -Amount of heat produced by an

{ quantity of elec-
electric current depends upon length, *

diameter, and material of wire. tricity it will pass from B
to (7. By definition of po-

tential difference, E (or iR) is the amount of work done in

carrying one unit of electricity from B to (7. The amount of

work done in carrying it units will therefore be ftRt. If we
assume that all this work which is done in transferring elec-

tricity from B to Q is spent in heating the conductor, then it

follows that

which is Joule's law. Now since experiment shows that this

equation is true, we have good reason to think that all the

work of the battery between the points B and C is transformed

into heat.

If an electrolytic cell, a storage battery, or an electric motor

be inserted into the circuit between B and (7, Ohm's Law no

longer holds for this part of the circuit where the work of the

current is partly spent in overcoming the counter E.M.F. of

the cell, the battery, or the motor.

Joule's equation thus shows us that with any given current

the heat will be distributed throughout the circuit in exactly
the same ratio as the resistance. It is for this reason that in

incandescent electric lamps the resistance of the circuit is con-

centrated in the carbon filament of the lamp. An ordinary
16-candle power 110-volt lamp has about 200 ohms resistance.

For this same reason fine wires for protecting electric circuits

are made of a material which has high resistivity as well as a

low melting point.

400. Joule's equation also shows us that, since the amount of

heat developed in- any given conductor depends upon the-

square of the current, heating effect is independent of the



ELECTRIC CURRENTS 407

i

direction of the current ; the energy transformed into heat is the

same for a current + i as for i. Hence the heating effect

offers an excellent method for measuring alternating currents.

An exquisite illustration of this is to be seen in

the thermogalvanonieter recently devised by
the English physicist Duddell for the measure-

ment of small alternating currents. A minute

closed circuit composed of one piece of bismuth

and one of antimony is suspended between the

poles of a permanent magnet in such a position

as to include as few lines of force as possible.

Just below the lower junction of the bismuth

and antimony is placed a short but exceedingly
fine wire, one which has therefore a high resist-

ance. The alternating current to be measured

is passed through this wire J2, Fig. 297. A
certain fraction of the heat generated in R is

communicated to the lower junction of the sus-

pended circuit and thus produces a thermo-

electric current, and causes the suspended
circuit to rotate through a certain angle in the

magnetic field. This deflection is read off by
means of a mirror ra attached to the suspension
fiber. The scale is calibrated by passing through the instru-

ment a direct current of known intensity.

Other Forms of Joule *s Law

401. In virtue of Ohm's Law it is clear that we may write

Eq. 152 in either of the three following forms :

BUIIlSb.

R

FIG. 297. Dud-
dell's thermo-

galvanometer.

H= PRt = iEt = -=- 1 ergs, Eq. 152

ffcc R
;
the last form shows that when E is a constant,

where E is the E.M.F. between the extremities of the resist-

ance R. The first form shows us that when i is a constant,

1
R'

The importance of clearly distinguishing the conditions under

which an experiment is performed and of taking account of

them in our equations will be seen from the following experi-

ment :
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Join in series two pieces of wire, about No. 36, having each

approximately the same length and diameter, but one made of

copper, the other of iron. If now a current be passed through
these two wires, the value of i will be the same for each.

Cu. Fe.

r- CONSTANT: IRON MELTS

Cu.

Fe.
t."CON8TANTJ COPPER MELTS

PIG. 298. Interpretation of Joule's Law under different experimental conditions.

Hence -ZToc-R, and since the resistance of the iron is much

greater than that of copper, the heat is localized mainly in the

iron, so that as the current is increased the iron is the first to

become red-hot and fuse.

When, however, these two wires are placed in parallel, the

-current is no longer the same in each; it is now the E.M.F.

that is constant as we pass from one wire to the other. Hence

-ffoc , and we may now expect the heat to be concentrated
Jet

mainly in the good conductor, that is, in the copper. As the

current is increased this expectation is justified, for we now
observe that the copper wire is the first to turn red and melt.

In the laboratory it is well to remember this principle ;
for

when a set of resistance coils is joined to a source of constant

E.M.F., such as a storage battery, the low resistances are apt

to be burned out if put in circuit alone. But if the coils are

joined to a source of constant current, it is the high resistances

which are in danger.

C. MAGNETIC EFFECTS OF AN ELECTRIC CURRENT

402. The student who has employed a galvanometer to detect

electric currents already knows that a wire conveying an elec-

tric current is surrounded by a magnetic field. But it is not

sufficient to know merely that the region about a current is a

magnetic field, we want to know what kind of a field it is, what

its direction is at any point, and where the field is most intense.
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Perhaps as good a way as any to obtain a view which is at

once sound and general is to follow some half dozen experi-

mental illustrations of this magnetic effect, such as the

following :

403. Experiment 1. To
illustrate the field about a

straight portion of an electric

Circuit pass a current through
FIG. 299. -Iron filings arrange themselves

in rings about an electric current.

a bare copper wire of small

diameter. The copper wire should be just large enough not to

melt. On dipping this wire into a box of fine iron filings, we
observe that the filings, which, by
induction, become temporary mag-
nets, arrange themselves in circles

about the wire, and as the wire is

lifted out these rings of filings

remain clinging about it, as indi-

cated in Fig. 299. But when the

current is interrupted they fall

off, showing that these circular

lines of force disappear with the

current.

The magnetic field about a straight wire conveying a cur-

rent is then represented by a series of circles drawn about the

wire as center and in

planes perpendicular to

the wire, as illustrated in

Fig. 300. As an experi-

mental fact it is observed

that the direction of these

lines of force is related to

the direction of the cur-

rent, as indicated in Fig.

300, that is, in the right-

handed screw relation. But this is exactly the state of affairs

described by Biot and Savart's Law, Eq. 141, which takes the

following form when the C.G.S. unit of current is employed :

H= '.. Eq. 154

Fia. 300. Showing right-handed
screw relation between current

and lines of force due to that

current.

FIG. 301. Lines of force about a single loop

conveying a current.
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If the wire be bent into a loop, as in Fig. 301, lines of force

will pass through the loop in a direction perpendicular to the

plane of the loop. These are the lines of force which we have

already ( 365) used for the induction of currents.

404. Experiment 2. If a current be passed through a coil of

wire (i.e. through a pile of loops), the lines of force distribute

themselves about the coil

very much as indicated in

Fig. 302. Such a coil is

called a "helix." And by
use of a compass needle

we easily satisfy ourselves

that such a helix behaves

as a magnet one end re-

pelling the north pole, the

other end attracting it.

Remembering that the

arrow on a line of force

indicates the direction in

which a north pole would

travel if left free at that point in the field, it follows that the

north pole of a helix is that in which the current appears to

circulate in a counter-clockwise direction when viewed from out-

side the helix.

Observe that here the magnetic lines

of force in the helix are straight,

while the path of the current is circu-

lar, the two being connected by the

right-handed screw relation. No ex-

ception, indeed, has ever been discovered

to the general principle that about every
electric current, whatever its path, there

are linked lines of force in the right-

handed screw relation.

FIG. 302. Lines of force about a helix.

FIG. 303. Illustrating the

right-handed screw rela-

tion between lines of

force and currents.

The Electromagnet

405. Experiment 3. A helix which is wound upon a rod of

iron is cabled an "
electromagnet." Such a device enormously

increases the number of lines of force passing through the



ELECTRIC CURRENTS 411

helix. The behavior of the electromagnet is well illustrated

in the ordinary telegraph sounder. Here the operator at a

distant station closes

the circuit ; the elec-

tromagnet furnishes

a strong magnetic

field, attracting to its

FIG. 304. Representing the key at the sender's end

anc* ^e soun^er at ^e receiver's end of the tele-

graph line.

poles a small piece

of iron A, called an

"armature." This

armature is pivoted at B, and hence can rotate slightly about

an axis through B. When the circuit is closed, the armature

hits a stop which gives the sharp metallic click familiar to

every one who has ever been

in a telegraph office. When
the circuit is broken, the arma-

ture is pulled back against
another stop by means of a

spiral spring S. The details

~i of the "sounder" are shown
I [

FIG. 305.
in Fig' 305 '

The electric door bell, which

makes and breaks the circuit automatically, is very much like

the telegraph sounder, only here when the circuit is first closed,

by pushing the button at K (Fig. 306), the current runs

through the armature;
but the iron core of the

magnet immediately
becomes magnetized ;

the armature is pulled

away from the metallic

stop on which it rested,

and the current is thus interrupted ;
but as soon as the current

is broken the electromagnet ceases to attract, the armature falls

back by means of a spring into its initial position, and the

circuit is again closed.

In this manner the armature is kept in continual vibra-

tion, and may, therefore, be employed as a bell clapper, the

bell continuing to ring so long as the push button is held

down at K.

FIG. 306. The electric door bell.
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406. Experiment 4. The induction coil is merely an electro-

magnet provided with an automatic circuit breaker, and wound
with a second and entirely independent coil of wire. The wire

which contains the auto-
' matic interrupter and

which is usually thick and
short so as to carry large
currents is called "the

primary." The other cir-

cuit which is usually very

long and made of com-

paratively fine wire is

known as "the second-
FIG. 307. Diagram of induction coil.

ary." This secondary is so long that it is wrapped many times

about the lines of force which pass through the primary. The
result is that when the primary is quickly broken, an enormous

number of lines of force N are suddenly removed from the

secondary. And since the electromotive force induced in the

secondary is given by
AT

Eq. 140E.M.F. = -
>

it is clear that the voltage between the terminals of the second-

ary may become enormous, so large, indeed, as to discharge

through a very considerable gap of air or other insulator. It

is for this purpose, namely, to produce a high electromotive

force starting with a source of low electromotive force that in-

Fio. 308. Longitudinal section of induction coil.



ELECTRIC CURRENTS 413

duction coils are mainly used. As will be seen from Neu-

mann's equation (140), it is quite as important to make t, the

duration of break, small as it is to make N large.

Accordingly, for the purpose of reducing , it is customary to

join one terminal of a condenser to each side of the break in

the primary as indicated in Fig. 307. The effect of this con-

denser is to hasten the break very much, by receiving the

charge which would otherwise pile up at each terminal of the

primary gap and thus prolong the primary current.
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Two phenomena are observed when a strong bar magnet is

brought near this floating coil, viz. :

(1) If the N pole of the

magnet be extended toward

the coil, the circuit will al-

ways rotate so as to present
that face in which the cur-

rent is flowing in a clockwise
FIG. 311. Movable circuit is translated so sense, i.e. the SOUth face of

as to include as many lines of force as , ,
-i

possible
the coil is attracted by the

north pole of the magnet.

(2) But this motion of rotation is not the whole of the

phenomenon. For if the magnet be held in a fixed position,

end on in front of the coil, it is observed that the coil is also

translated as a whole, moving so as to include more lines of

force.

And, in general, it has been proved that an electric current al-

ways sets itself so as to include as many lines of force as pos-

sible in the right-handed screw direction. A slack wire of gold
tinsel carrying a current shows the same tendency to wrap
itself about a straight magnet, that lines of force have to wrap
themselves about a straight wire conveying a current.

The advanced student will discover that this general electro-

dynamical principle is merely a special case of the general dy-
namical principle that any body tends to move from rest into

such a position as to make its potential energy a minimum.

The D'Arsonval Galvanometer

408. Experiment 6. A still simpler and more elegant illus-

tration of this behavior of a current in a magnetic field is the

following:
Mount a Weston magnet upon a block of wood, as indicated

in Fig. 312. Between the poles suspend a coil of half a dozen

turns of No. 20 copper wire, using for the suspension a spiral

of, say, No. 30 wire. Connect the coil by means of another

spiral below to a single cell and key. If the plane of the cop-

per coil be set parallel to the magnetic lines of force, as indi-

cated, the coil will rotate whenever the circuit is closed ;

because by rotating it can set itself so as to include a much

larger number of lines of force. This experiment (which can
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FIG. 312. A galvanoscope in which a part

of the wire conveying the current is

movable, while the magnet is fixed.

be prepared in ten minutes) should be thoroughly examined,

repeated, and mastered by every student.

This is essentially the instrument which Lord Kelvin devised

in 1867 for receiving mes-

sages over the Atlantic

Cable. The suspended coil

is connected with the cop-

per wire inside the cable,

and whenever a current is

sent over the line, the sus-

pended coil turns itself so

as to include more lines of

force. When the current

ceases, the coil returns to

its position of equilibrium.

The angular deflection of

the coil is indicated by the

motion of a spot of light;

and the operator reads the message by the motion of this spot.

In later instruments the coil is also provided with a fountain

pen so that it records its own deflections on a moving strip of

paper.

Nearly all the voltmeters and ammeters which are seen on

the switchboards of electric light stations and power houses

are constructed on this same principle, only here the movable

coil is wound on a rigid frame which is pivoted between a pair

of jeweled bearings. The ammeter is merely a galvanometer
whose resistance is very small compared with the rest of the

circuit in which it is placed ; while a voltmeter is a galvanom-
eter whose resistance is very high compared with the resistance

lying between the two points whose potential difference is

desired.

The Electric Motor

409. Experiment 7. The electric motor is also a suspended
coil of this kind. Here the coil is generally wrapped about an

iron core on a horizontal steel shaft which is suspended in bear-

ings so that the coil rotates with very little friction. This coil

is called the armature and is placed between the poles of an

electromagnet so as to be in a strong magnetic field. If a
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current is now passed through any one coil of wire on the

armature coil, the coil will tend to rotate so as to include more
lines of force ; but when it has once set itself in a position

where it includes as many lines as possible, the commutator

(simply a split ring fas-

tened on the shaft and

insulated from it)

changes the direction

of the current in the

coil, so that now the

wire tends to rotate

180 farther so as to

include more lines of

force in the right-
FIG. 313. Electric motor, showing commutator.

handed direction. Each turn of wire on the armature behaves

in the same way, so that there is a continual moment of force

acting upon the armature. By means of a belt and pulley a

large part of the energy furnished to the motor may be trans-

mitted to other machines and there employed to do work.

It should be clearly grasped that the electric motor is not

in itself a source of energy, but merely transforms into mechan-

ical energy the electrical energy which is given to it. At the

same time, by allowing us to utilize the energy of distant

lakes and mountain streams where this source of power would

not otherwise be available, the electric motor has had the prac-

tical effect of adding largely to our available resources. So

influential have been the dynamo and the motor in modern

civilization and so much have they done for the advancement

of electrical science, that we here append a brief outline of

THE THEORY OF THE DYNAMO AND MOTOR

410. The cardinal discovery of the dynamo was made by

Faraday in 1831. His machine consisted merely of a copper
disk mounted on an axle so as to rotate between the two poles

of a horseshoe magnet as shown in Fig. 314. The brushes

make contact, one at the periphery, the other at the axle, of

the disk. The radius CP is continually cutting lines of force

in such a direction as to produce a current in the direction

indicated by the arrow on the lead wire.

A motor operating upon the inverse of this principle had
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FIG. 314. Faraday's disk machine, the earliest type of

electromagnetic generator.

some years previously (1823) been invented by Barlow. But
the general principle that an efficient dynamo will make an

efficient motor

when supplied
with current

the principle of

reversibility
was enunciated

l)y the Italian,

Pacinotti, as

late as 1864.

Between this

date and 1876

Gramme, Wilde, Siemens, Wheatstone, and others showed how
a part or all of the current generated by the machine might be

led around the arms of the magnet
and thus convert it into a powerful

electromagnet, which in turn would

enormously increase the output of

current, and which gave to the ma-

chine the advantage of being able to

start itself from the residual mag-
netism retained by the iron.

In Fig. 315 is seen a dynamo
whose magnetic field is produced by

passing the entire current about the

iron. Such machines are said to be

The machine shown in Fig. 316 is the type
Here only a part of the

FIG. 315.

" series wound."

used for lighting incandescent lamps,
current from the armature is

diverted to excite the field.

These dynamos are said to be

"shunt wound." When both

methods are combined on one

machine, the winding is said to

be "compound."

411. When it comes to a

quantitative consideration of

the dynamo, the engineering

equations upon which the machine is designed and operated
2s

FIG. 316.
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are nothing else than the two fundamental equations (139 and

144) upon which are based nearly the whole of electrical

science the first of these describes Faraday's great discov-

ery ; the second, Oersted's ; the first is Neumann's equation ;

the second, Lenz's Law.

Consider any single straight copper wire on the armature of

a dynamo. Suppose it to lie parallel to the axis of rotation so

that its motion as well as its direction is nearly everywhere

perpendicular to the lines of force magnetic flux, as it is

called which run from one pole piece to the other through
the armature. Let us call this single straight wire an " induc-

tor
"

; then if

L = length of the inductor in centimeters ;

V= linear velocity of inductor in centimeters per second, and

H= intensity of magnetic field lines per square centimeter

in the air gap, between pole piece and armature,

the rate at which the inductor cuts lines of force will be HL V,

and the electromotive force E generated in this inductor will be

J=.#LFxlO- 8 volts. Eq. 155

The various inductors are laid on the armature in such a way
that all their electromotive forces are added together ; and it is

the sum of these E.M.F.'s which make

up the voltage of any particular

machine.

The above equation gives us the

E.M.F. of the dynamo in terms of its

speed.

We next proceed to derive the second

equation, which will give us, in terms

of the current, the force required to

drive the inductor through .the field.

From Joule's Law and from the defi-

nition of E.M.F. we have already learned that the rate at which

a current does work between any two points is the current

strength i, multiplied by the E.M.F. between those two points.

Neglecting friction, the rate of work the power which

must be exerted upon the inductor is IE. But we also know

from mechanics that the power used in moving any body is the

SPEED OF INDUCTOR

FIG. 317. Three factors

which determine E.M.F.

of dynamo.
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product of the force F exerted upon the body, and the velocity

V with which the body is moved.

Hence
= iE,

or, substituting for E its value from Eq. 155, we have

F= HLi dynes

as the mechanical force required to drive the inductor through
the field. If i be measured in amperes instead of C.G. S. units,

then
F = HLi x 10-1

dynes, Eq. 156

which is the second fundamental equation of the dynamo.
The student of electric engineering will find that in practice

these equations call for certain corrections and modifications

depending upon whether the inductors are wound upon a ring
or upon a drum ; but he will also find that they, together with

Ohm's Law, cover essentially the entire electrical theory of the

dynamo and the motor, for the motor is merely a reversed

dynamo. The magnetic behavior of iron is also a vital factor

in dynamo design.

412. Experiment 8. An exceedingly valuable illustration of

electromagnetic induction is found in the telephone, which was
invented by Graham Bell and Elisha Gray in 1876.

The instrument consists merely of a thin

iron diaphragm, underneath which is sup-

ported a permanent magnet, carrying on the

end, near the diaphragm, a helix of fine

wire. See Fig. 318. The lines of force

which spread out from the upper end of the

magnet tend to pass along the iron disk and

keep within it as much as possible. Con-

nect the two ends of the helix to a moder-

ately sensitive D'Arsonval galvanometer.
It is observed that when one pushes the disk

with his finger a little nearer to the end of

the magnet, a current shows itself on the

galvanometer; and when the diaphragm is

released and springs back into its position
of equilibrium, a current in the opposite

FIG. 318. The BelL

telephone.



420 GENERAL PHYSICS

direction is seen. Evidently the distribution of the lines of

force which pass through the helix is, in each case, changed in

such a way that the total flux through the helix is altered, thus

producing an E.M.F. in the helix. When for the push of a

finger one substitutes the vibrations of the air caused by the

human voice he has the "Bell transmitter." When the two

ends of the helix are connected to a pair of line wires having a

similar telephone at the distant end, the currents induced in

the transmitter will pass through the helix at the distant end

and will alternately magnetize and demagnetize to some ex-

tent the magnet at the receiving end. The effect of these

variations in the magnetism of the receiving telephone is to set

into vibration the diaphragm of the receiver and reproduce the

voice which is talking into the transmitter. Such was the early

telephone, the transmitter being practically an alternating cur-

rent dynamo, the receiver being a motor.

In 1877 it was discovered by Berliner that the efficiency of

the transmitter could be vastly improved by allowing the vibra-

tions of the diaphragm merely to vary the resistance of a bat-

tery circuit. The battery thus furnishes the energy for the

induced current and the voice merely controls

its distribution. A form of this instrument,

which is due to Blake and which has been

widely used in ^he United States, is shown in

Fig. 319. The diaphragm D presses a small

platinum point against a carbon disk 0; this

diminishes the resistance and hence increases

the current in a local battery circuit ; the va-

riations of the local current, acting through a

small transformer coil, send out over the line

the induced currents, which reproduce at the

receiver each vibration of the transmitter disk.

The essential principle which the world owes to Graham Bell

and to Elisha Gray is that the successful reproduction of human

speech requires a continuously varying, instead of an intermit-

tent, current.

413. With this brief outline, we must leave the vast domain

of electrical science, only reminding the student that before

him lie many beautiful fields of inquiry into which we have

FIG. 319. The
Blake transmitter.
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not yet taken even a hasty glance. Among these is the prob-
lem of alternating currents, of which direct currents are, as

it were, a mere special case. Telephone engineering perhaps
the most difficult of all the applied sciences is based upon a

study of alternating currents. We have passed over the entire

question of electrical waves, an exquisite science, created by
Maxwell and Hertz, utilized by Marconi and others for the pur-

pose of wireless telegraphy. To one side also we have left the

discharge of electricity in gases, a most attractive study, which

bids fair to give us a unitary view of the entire subject in terms

of the electron theory.

Problems

1. How long will it take a current of one ampere to deposit a gram of

pure silver? Ans. 14 m. 55 sec.

2. An ampere is 10"1 C.G.S. units; a volt is 10 8 C.G.S. units. Find the

heat in ergs developed by a current of one ampere flowing for one second

between two points whose potential difference is one volt.

3. How much power in watts (see 107) will be required to keep up a

current of 40 amperes charging a storage battery at 55 volts?

4. The resistance of a 50-volt lamp is 50 ohms. How much heat in

joules will be developed in the filament in 10 seconds? What power in

watts is required to feed such a lamp? If the lamp is 16-candle power,
how many watts per candle power are required ?

5. How many amperes will be required to deposit 0.75 gram of copper
in 2 hr. ?

6. Suppose the current in the preceding problem to be furnished by a bat-

tery of gravity cells. How much zinc will be used up in the battery while

the 0.75 gram of copper is being deposited ?

7. A chain is made of alternate links of platinum and silver. If the

links are identical in all other respects, find the ratio of the heat developed
in two adjacent links.

8. What weight of water will be decomposed by a current of 10 amperes

flowing for 1 hr. ?

9. Suppose the earth is used as the return wire on a direct current light-

ing circuit. If the ground connection is made by use of two iron plates,

and if 100 lights each using \ ampere are employed for 4 hours each day,
find the loss of weight at the iron anode in the course of one year.

10. A dynamo supplies a circuit of 600 incandescent lamps. Each lamp
requires 100 volts and \ ampere. What must be the resistance of the leads

and the armature in order that the energy loss in them shall amount to 5%
of the total electrical output of the machine?
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11. Explain what is meant by a "
watt," a "

kilowatt," and a " kilowatt-

hour."

12. A waterfall is situated 10 mi. from a certain town which is lighted

by electrical energy derived from this fall. The power required to light

the town is 150 kilowatts. Will it be more economical to transmit this

power, using 1500 amperes and 100 volts, or by employing a voltage of

10,000 to transmit 15 amperes? Suppose the resistance of the 10 miles of

line wire to be 40 ohms; compute the loss on the line in these two cases.

13. Taking the atomic weight of silver as 108 and the electrochemical

equivalent of hydrogen as 0.0000104, find the electrochemical equivalent of

silver.

14. A copper wire of given length is replaced by one of aluminum.

What cross section must the aluminum wire have in order that a given
current will produce no more heat in it than in the copper ?

15. Two cells are joined in series with a given resistance and produce a

current of 1.5 amperes. One of the cells is now reversed, its poles being

interchanged with their previous position. The current is now 2 amperes.
Find the ratio of the E.M.F.'s of the two cells.



CHAPTER XI

LIGHT

414. A very large proportion of all that we know concerning
the external world is obtained from an examination and com-

parison of our sensations of sight.

As under the head of Sound we considered those phenomena
which produce the sensation of hearing, so now, under the

head of Light, we proceed to consider those phenomena which

are recognized by our visual sense. And just as in the case of

sound we did not consider either the physiological or psycho-

logical side of the question, so here the discussion is limited to

light as an external physical process giving us the sensation of

sight. There may be in a room objects to be seen, also an eye
to see them ; but until light from some source is supplied there

is no seeing.

415. Following the method used in previous chapters of this

volume, we shall begin and end with a study of some of the

fundamental phenomena of light, accompanying the discussion

with certain definitions and applications, hoping thus to learn

something of modern views concerning the "nature of light."

Of these fundamental phenomena the following seven are

selected as being perhaps the more important for our purpose :

I. Rectilinear Propagation.
II. Finite Speed.

III. Diffraction and Interference.

(Light a wave motion.)
IV. Polarization.

V. Reflection.

VI. Refraction and Dispersion.

VII. Interference and Diffraction.

Neither in thought nor in practice are these phenomena

separated by water-tight bulkheads. On the contrary, they

are, indeed, intimately connected, from which it follows that

423
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any grouping of facts such as that indicated above is purely a

matter of convenience. For the sake of orienting ourselves

and starting together, we shall now take a hasty and rather

qualitative glance at the first four of these fundamental facts,

and shall then proceed to take up the other three in a more

quantitative way.

Some Preliminary Definitions

416. When we are looking at the various objects in a room,

it is not difficult, in general, to select those which we might
still be able to see in case no light were admitted to the room

from the outside. If the room were completely shut off from

any outside light, the chairs and tables in it would become

quite invisible, while a burning match, a red-hot coal in the

fireplace, a lighted gas jet, or an incandescent lamp would each

illuminate the room, and at the same time be seen by its own

light. Bodies of this latter class which shine by their own light

are said to be self-luminous; while bodies of the former class,

being seen only by reflected or diffused light, are described as

non-luminous. Luminous bodies are generally, but not always,
hot. A phosphorescent clock face is easily seen at night, but

can hardly be called a hot body. The student who recalls his

daily duties will find that most of his work is performed by the

aid of borrowed, or diffused, light. For instance, you are now

reading this page by light which is reflected from the white

paper to the eye. Some substances, such as water, air, thin

layers of gelatine, many kinds of glass, and some crystals,

permit us to see with distinctness other objects through them.

But there are other substances, such as iron, wood, ink, through
which bodies cannot ordinarily be seen.

Bodies through which one can see other objects distinctly are

said to be "
transparent "; bodies through which vision is impos-

sible are said to be "
opaque." But every one will recall certain

other substances, such as milk in thin layers, thin tissue paper,

lightly ground glass, even ink in thin layers, thin shavings of

wood, through each of which objects are faintly or indistinctly

seen. These bodies form a class intermediate between trans-

parent and opaque bodies. Substances which transmit some

light, but not enough for distinct vision, are said to be

"translucent."



LIGHT 425

If bodies are taken in layers of proper thickness, it may be

easily shown that there is no sharp line between the most

opaque and the most transparent substances. For metals, such

as gold and silver, which are very dense and ordinarily very

opaque, become translucent, and even transparent, when taken

in sufficiently thin layers, as may be easily shown by depositing-

a thin film of silver on glass; while, on the contrary, what we-

call "
perfectly clear

"
water, when taken in sufficiently thick

layers, permits almost no light to pass through it. Thus geogra-

phers who have studied the bottom of the sea have found that

those parts of the ocean which lie at a depth of several kilo-

meters are in almost complete darkness. No substance is

either perfectly transparent or perfectly opaque.

I. LIGHT MOVES IN STRAIGHT LINES

417. An object behind an opaque screen is invisible to a per-

son in front of the screen. As every one knows from experi-

ence, the reason of this is that the light proceeding from any
part of, say, a man behind the tree cannot pass through the

opaque tree, cannot take a curved path around the tree, and r

therefore, cannot reach the eye of the observer. Evidence of

this kind, such as we have all been collecting since early child-

hood, shows us that if light does not travel in straight lines, it

travels in lines which are very nearly straight.

One of the simplest illustrations of the rectilinear propaga-
tion of light is obtained by placing a naked arc light in front

of a white screen. Intercept the light which falls on the screen

by means of a sheet of lead foil, placed rather close in front of

the arc. If now this sheet of foil be punctured with a pin, an

inverted image of the arc will appear upon the screen. Each
new puncture will create a new image. The image thus pro-
duced is, as regards both size and position, what we should

expect if it had been traced by a straight line, always passing

through the pin hole, one end tracing out the arc while the

other end traces out the image on the screen.

In order to test the matter in another way in the laboratory
one may proceed as follows :

As a source of light, use a lamp, either gas or oil, provided
with a tin chimney in which has been drilled, at a point on a

level with the flame, a hole from one to two millimeters in



426 GENERAL PHYSICS

u

diameter. This round hole, near the flame, may be considered

as a luminous point, and not only for this, but for many other

purposes in the study of optics, is a most excellent source of

light. At some distance, say one meter, in front of this point-

source clamp a sheet of cardboard with a pin hole in it. The

pin hole P (Fig.

320) and the source

of light S are two

points which serve

to define a straight

line. We might
think of this line

as represented by
a thread stretched

FIG. 320. Light travels in straight lines. tightly between
these two points. Now place your eye behind the pin hole, and

look toward the hole in the opaque lamp chimney. You will

find that any opaque object placed on this straight line, PS,
will render the luminous point invisible. This means that the

light from the luminous point can reach the pinhole in the card

only along the straight line joining these two points.

418. But from the following it will be seen that this state-

ment is not quite true as it stands. Suppose that we place in

this straight line an ordinary spectacle lens, as represented in

Eig. 321, so that an

image of the luminous

point is produced upon
the pin hole on the

cardboard. To do this

we have placed the

spectacle lens so that

the straight line SP
passes approximately

through the Center of FIG. 321. If a medium is not homogeneous, light

the lens. Let US now ^oes not travel through it in straight lines.

interpose a coin somewhat smaller than the lens immediately
in front of the lens so that the straight line passes through the

center of the coin. We observe that this coin does not prevent
all the light from the luminous point reaching the pin hole. The
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FIG. 322.

image still remains at the pin hole, the only difference being
that it is now not quite so bright as before. The path of the

light from the source to the pin hole is no longer a straight

line. All the light

which forms the image
now passes around the

edge of the coin. But

the reason of this is

very evident, for we
have now interposed
a piece of glass in the

path of the light, and,

indeed, it has been

found that, in general,

when light has to pass through materials of different kinds, it does

not travel in the same straight line through them all.

If now we remove the spectacle lens and allow the penny to

remain, in Fig. 322, we shall find that the coin prevents any

light from the source reaching the hole in the cardboard. The
entire path of the light is here through air alone.

Definition. A body such as the air in a room, or a piece of

pure glass, every part of which is like every other part, is said to

be homogeneous.

Accordingly we may say that when the medium is not homo-

geneous light does not travel through it in straight lines.

419. But there are certain circumstances in which light does

not move in straight lines, even when the medium is perfectly

homogeneous. If a luminous object be viewed through a very
narrow aperture, it will in general be found that the image is

distorted. This experiment is most easily realized perhaps by

making a narrow slit in the tin lamp chimney represented in

Fig. 320. Viewed by the naked eye the slit appears to have a

certain width. But now examine it through a narrow slit

a single cut made with a pocket knife in a visiting card.

The card should be held in the hand very close in front of

the eye. The slit S appears now very much diminished in

brightness, but very much wider than to the naked eye. This

phenomenon is still better seen if we substitute for the visiting

card a single straight cut made on the opaque film of an ordi-
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OPAQUE
SCREEN

nary photographic plate. A small piece of a lantern-slide is

best ;
for it is difficult to cut a slit in the film of a " fast

"
plate

without making the edges ragged. The effect of a small hole

on a bundle of rays

passing through it is

then to spread the

rays out, so that the

slit iS appears to have

a width CD. For the

source S would not

appear to have the

width CD unless the

rays were spread out.

The ray PH, pro-

FIQ. 323. A luminous line appears widened when seen longed backward,,
through a small aperture. gives US One edge of

the apparent slit ; the ray QK, prolonged backward, gives us

the other. For it is a general fact that we appear to see any

object, not in the direc-

tion in which the rays P*---._

leave the object, but in

the direction in which ^
the rays enter the eye. Q"""

The light from the gas FIG. 324. Horizontal section through preceding

flame does not, there- figure,

fore, pass in straight lines through the small opening HK*
From the preceding experiments, it is evident that light

travels in straight lines:

(i) When the medium is homogeneous ;
and

(ii) When the rays are not compelled to pass through any very
small openings.

The most accurate evidence for this general conclusion is
r

however, derived from the computation of lenses, mirrors, and

other optical instruments. Predictions which rest upon the

assumption that light travels in straight lines through homo-

geneous media and large openings have always been verified by
the experimental result.

OPAQUE
SCREEN
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II. LIGHT TRAVELS WITH FINITE SPEED

420. Passing now to the second fundamental fact of optics,

it is not surprising that the ancients should have considered

the velocity of light as infinite. For every part of a landscape
illuminated by a flash of light is seen apparently at the same

instant as the flash. It is evident that if light did not travel

at an enormous speed, this would not be the case. If, for in-

stance, light traveled with the same speed as sound, it would

be a full second after the flash of lightning before we could see

points as far away as 1200 feet; and four seconds later we
could see points a mile away. It was such evidence as this*

perhaps, that led the ancients to think that light traveled with

an infinite speed.

421, But Galileo suspected that the velocity of light was not

infinite, and proposed to measure it as follows : Two observ-

ers, each provided with dark lanterns, were to be stationed on.

two distant hilltops at night. When the first observer, at A
(Fig. 325), sent a flash of light from his lantern, the second

observer, at B, was to make a similar signal as soon as the first

flash was perceived. The interval between sending the first

signal and receiving the answer might be supposed to be the

time taken by the light in making one round trip between the

hills. This experiment was tried by the Florentine Academy.

FIG. 325. Galileo's plan for measuring the speed of light.

The conclusion was that the time required was not appreciable,

We now know, however, that the time lost by the second ob-

server in perceiving the first flash and deciding to send a

return signal would occupy more time than is required for

light to make a trip around the world.

422. But the following most ingenious method was dis-

covered and tried by the Danish astronomer, Ole Roemer, dur-

ing the years 1675-1676 at the Paris Observatory.

Jupiter has seven moons, one of which is larger and brighter
than any of the others, and is called the "first satellite.'

1
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Every time this moon M revolves about Jupiter J it is

eclipsed to an observer on the earth, i.e. it passes into the

shadow of Jupiter, as indicated in Fig. 326. Roemer measured

the period of this first moon very carefully, i.e. determined very

exactly the average interval of time between two of its succes-

sive eclipses. Knowing this, he could of course predict the

time of future eclipses. This he did ; but on comparing the

predicted times with the observed times, he found that when-

ever the earth was in that half of its orbit next to Jupiter

ABO (Fig. 326), these eclipses occurred each a little earlier

than the predicted time. But when the earth was in that half

of its orbit away from Jupiter, i.e. in the half marked ADC,
the eclipses were each a little tardy in their appearance. And
in particular when the earth was at the point B, nearest to

Jupiter, the eclipse occurred about eight minutes earlier than

C
FIG. 326. Roemer 's method for measuring the speed of light.

the predicted time ; while at Z), a point most remote from

Jupiter, the eclipse took place about eight minutes late. From
this Roemer concluded that eight minutes is the time required
for light to travel from the point B, or the point D, to the

center of the earth's orbit, i.e. from the sun to the earth. This

distance is 154 million kilometers. Hence, for the speed of

light S he obtained approximately

CY 154 x 109 meters Onn -n- jS= = 309 million meters per second.
498 seconds

This, of course, is the rate at which light travels in a vacuum ;

for the region between the earth and sun is probably a very

perfect vacuum. But experience shows that the speed in air

is only about one part in four thousand less than that in a

vacuum. Such a speed as this, which would carry a point

seven times around the earth's equator in one second, is practi-

cally beyond the grasp of the imagination.
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423. Roemer's measurements remained unconfirmed for half

a century, until, in 1729, Bradley, then Professor of Astronomy
at Oxford, discovered that each of the " fixed

"
stars during the

course of a year appears to describe a small ellipse in the sky.

This he explained by assuming that the apparent position of a

star depends not only upon its actual direction from the earth,

but also upon the velocity of light and upon the velocity of the

observer. The matter will be clear to one who considers how
he would have to hold a straight tube in order that raindrops

might fall axially through it without touching the sides.

Let us assume that the rain is falling vertically ;
then if the

observer is at rest, the tube must be held vertical. But if the

observer is traveling with a speed v in any direction, the bot-

tom of the tube must be held back toward the observer by an

amount just equal to the distance which the observer would

travel while the raindrop is passing through the tube.

If Fbe the speed of the raindrop and v that of the observer,

it will be clear from Fig. 327 that the angle at which the

tube must be inclined is given by

tan 6 =
:. Eq. 157

The velocity of the earth in its orbit about the sun is approxi-

mately nineteen miles a second. This stupendous speed, which

would carry one across

the American continent

in less than three minutes, o

is the speed of every one

who observes a star from

the earth. Accordingly,
if we imagine the path of

the raindrop to be re-

placed by a ray of light

from a fixed star, and the

tube to be replaced by a

telescope, provided with

cross hairs in the eye-
* * -

i n i n FIG. 327. Aberration of a raindrop.
piece, we shall have all

the conditions for observing the aberration of light. Bradley
found that in looking at a star whose rays fall perpendicularly

upon the plane of the earth's orbit, as indicated in Fig. 327,
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he had to incline the telescope at an angle of 20" with the mean
direction of the star.

Knowing and v, it became a simple matter to substitute

these values in Eq. 157, and thus determine the value of F", that

is, the speed with which light travels down the tube of the

telescope. The numbers which he obtained were 308,300,000

meters per second. The velocity of light thus measured by
Bradley coincided so nearly with the value obtained by Roemer
as to leave little doubt that each of these men had correctly ex-

plained the phenomena which they observed.

424. More than a century elapsed before any one succeeded

in measuring the speed of light along a path confined to the

surface of the earth. This was first done by the French physi-
cist Fizeau, in 1848. He employed essentially the method sug-

gested by Galileo, only, instead of placing a second observer on a,

distant hill, he placed there a mirror so arranged as to send back

to the first observer any flashes of light which he directed upon it.

These flashes of light were obtained by rapidly rotating a,

toothed wheel at a known rate, and in such a way that each

successive tooth intercepted a beam of light directed steadily-

towards the mirror. Since the wheel was rotated at a measured

rate, the time required for any one tooth to pass from its-

present position to the position occupied by its predecessor was-

a known quantity. Call this T. When the wheel was rotated

at a certain critical speed, it was observed that while the beam,

was traveling from the source to the mirror and back again an

open space between two teeth through which the beam had

passed out to the mirror had been replaced by its successor, so-

that an observer looking along the path of the beam would see

the reflected beam. At other critical speeds the reflected beam

was eclipsed by an opaque tooth, so that the observer looking
in the direction of the reflected beam saw nothing.

If we call the distance from the wheel to the mirror L, and

denote by T the interval between two successive flashes, so-

timed that the light which passes out just before any particular

tooth is reflected back just after that tooth has passed, then we

may write, for the speed of light

2L
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In this manner Fizeau obtained a value of 315,000,000 meters

per second. But his method has been greatly improved, es-

pecially by Cornu and by Michelson. These improvements,

together with the advantages and disadvantages of various

methods, are clearly set forth in Edser's Light for Students.

The best of these modern measurements make it practically
certain that the velocity of light does not differ from the round

number, 300 million meters per second, by as much as one part
in three thousand.

III. LIGHT is A WAVE MOTION

425. We have already seen ( 195) that energy is, in gen-

eral, transmitted in one of two ways, viz. either by currents or

l)y waves. From the time of Aristotle until the time of

Huygens, and even later, men believed that light consisted in

the motion of small particles corpuscles emitted either from

the eye or from the luminous body, with great speed. In other

words, they believed light to be propagated by currents rather

than waves.

This hypothesis is, indeed, recommended by the ease with

which it explains the rectilinear propagation of light through
a vacuum ;

but it involves other difficulties which, as we shall

presently see, are insuperable. Newton made a masterly

attempt to avoid these difficulties ; but the hypotheses which

Tie was compelled to introduce led to consequences which con-

tradicted the experimental facts.

426. The first decisive evidence which led men to consider

light a wave motion was given by Dr. Thomas Young (1773-

1829), a London physician. He argued that if light is a wave

motion, we ought to be able to add two trains of light waves to-

gether and produce darkness, just as ( 193) we add together
two trains of waves in strings and thereby produce rest. If,

however, light consists of currents of matter emitted by the

luminous body, as Newton had suggested, one cannot obtain

darkness by adding two currents together. On the contrary,
the two currents would produce more disturbance than either

one alone, i.e. more light than either one alone.

The manner in which Dr. Young added two rays of light is

very simple and clear to any one who has examined the manner
2F
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FIG. 328. Diffraction of light through a single

opening.

in which a beam of light is flared out diffracted on passing

through a narrow aperture. This phenomenon has already
been described in 419. We there found that a beam of

light on passing through
a small slit was spread
out into a wedge of light.

This spreading apart

which a bundle of rays

experiences on passing

through a narrow aperture
is called diffraction.

An eye placed anywhere
between the pointsA and

A' (Fig. 328) will receive upon its retina, as upon a screen,

one single series of disturbances through the opening at 0.

The small cone of rays
which leaves the luminous

point S and passes through
the opening behaves

very much as a series

of water waves striking

against an opening in a

breakwater.

Let SAC (Fig. 329) be

a wall separating the quiet
water from the open sea.

The crests of the waves,

B

FIG. 329. The effect produced upon water

waves by a small opening in a breakwater.

before they enter the open-

ing at A, are straight;

when they strike the wall

SO only a small portion of the wave enters at A. And it is

observed that this small portion of the wave front does not

proceed in one straight line, but spreads out so that the succes-

sive crests are nearly circular lines, as shown in Fig. 329. The
line which is normal to the crest or front of a wave at any point
indicates the direction in which that wave is traveling at that

point. This normal is analogous to a "ray" of light, which is a

line indicating the direction in which the light travels at any

point. This spreading apart of the wave normals in water is

also called diffraction.
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FIG. 330. A is a large opening in a break-

water. Waves do iwt pass a small opening
in this manner.

427. If, in the case of the breakwater, the opening at A be

large, the wave crests proceed through it and remain straight,

as shown in Fig. 330 ; so also it is found, if we use a large

opening in the visiting card (Fig. 323), the light rays pro-
ceed straight through without change of direction, i.e. the

apparent size of the opening in the lamp chimney is not ap-

preciably changed by view-

ing it through a large hole

in- the visiting card.

"Some few years ago a

powder hulk exploded on

the river Mersey. Just

opposite the spot there is

an opening of some size in

the high ground which

forms the watershed be-

tween the Mersey and the

Dee. The noise of the

explosion was heard

through this opening for many miles, and "great damage was
done. Places quite close to the hulk, but behind the low hills

through which the opening passes, were completely protected,

the noise was hardly heard, and no damage to glass and such

like happened. The opening was large compared with the

wave length of the sound." GLAZEBROOK, Physical Optics,

p. 149.

428. What is really seen under the circumstances of Fig.

328 is the image of S produced by the small opening at (9, and

by the lens in the eye. Remember, the whole of the region in-

cluded in the angle AOA' is filled with light.

But if two pin holes, instead of a single slit, be made side by
side in the opaque
screen, each will fur-

LUMINOUS nish a cone of light,
p011"" as represented in

Fig. 331. These
two cones, A OA' and

FIG. 331. Showing how diffraction allows two rays BO'B', will overlap
in the region between

OPAQUE
SCREEN

to interfere.
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JS and A'. An eye placed anywhere in this region will receive

upon its retina two different series of disturbances, one from

0, and another from 0'.

Under these circumstances one sees

in the region between B and A' an

image of the opening at S\ and the

image is filled with an alternation of

bright and dark bands. These bands

are symmetrically placed on each side

of a bright central band.

It will be observed also that as the

opaque screen of cardboard is rotated

FIG. 332.- Showing "that the in its own Plane > these bright and dark

dark bands depend upon the bands also rotate, remaining always at
two pin holes.

pight angleg tQ^ Hne
j
oining tne two

pin holes, as indicated in Fig. 332.

429. Accordingly (Dr. Young argued), if light consists in a

wave motion, we may expect to find that at any point P (Fig.

333) where the respective distances of the two openings P and

PO differ by one half a wave length, these two trains of waves

annul one another and produce darkness
;
but at any other point

Q, where the two paths QO and QO differ by one whole wave

length, or any whole number of wave lengths, there the bright-

ness will be greater than that due to either train alone. And
this is exactly what he found to be the fact. Light from a

bright point shining through two small openings in a card be-

haves like water waves from the sea rushing through two small

openings in a breakwater. Two
trains of waves which combine

with each other to produce

alternately bright and dark

bands in this manner are said

to interfere; and the phenome-
non which is called interfer-

ence of light appears to be

strictly analogous to the inter-

ference of waves in strings and
FIG. 333. Showing the conditions which

Of waves in air which we have determine whether an interference band

already observed and studied. is bright or dark.
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These and other similar experiments seem to furnish irrefuta-

ble evidence for thinking light to be a wave motion.

IV. LIGHT WAVES ARE TRANSVERSE

430. We have already learned ( 191) that there are in gen-
eral two fundamental types of wave motion, namely, transverse

and longitudinal. If we accept the evidence which has just been

adduced for thinking light a wave motion, the next pertinent

inquiry is, are these light waves transverse or longitudinal ?

Are they similar to the waves which run along a stretched

clothesline when struck with a stick, or do they resemble

sound waves ?

To answer this question it is necessary to first establish a

criterion which will distinguish between these two wave types.

Such a test is found in the symmetry which accompanies longi-

tudinal waves and the asymmetry which is characteristic of

transverse waves. When a spherical raindrop is viewed along

the direction of its path, its appearance is precisely the same

however the eye or the raindrop may be turned about its path
as an axis ; so also, in hearing a sound the same sensation is

produced however the ear or the sounding body be rotated

about the direction of the sound as an axis. In general, a lon-

gitudinal wave is symmetrical about its direction of propagation.
With transverse waves such as those in a stretched string,

the matter is quite otherwise. Let two boys stand holding a

rope stretched between them, each boy holding one end. If

one boy shakes his end of the rope transversely in a single

direction it is an easy matter for the other boy to tell what this

direction is merely from the wave pulses which strike his hand.

In other words, the waves in the string are not symmetrical
with respect to the direction of their propagation, i.e. with

respect to the direction of the string. If a third boy were to

stand between the other two and hold a slotted board so as to

allow the string to pass through the slot, the vibrations may
or may not be stopped. If the direction of the slot is parallel

to the motion of the particles of the rope, the vibrations will

pass through the slot undisturbed; but if the slot is held per-

pendicular to the motion of the particles of the rope, the vibra-

tions will be at once stopped in that part of the rope behind the

slot; no waves can pass through the slot.
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431. In 1669 it was discovered by Bartholinus, a Danish

philosopher, that a single ray of light on passing through a

crystal of calcium carbonate (calcite) is split up into two sepa-

rate rays traveling in different directions. So that if one lays

a piece of transparent calcite over an ink spot on a piece of

white paper, he will in general see two images of the spot.

This phenomenon, which is called double refraction, now con-

cerns us only because a few years later Huygens (1629-1695)
discovered that each of these two rays refracted by the calcite

exhibits precisely the phenomenon which we have seen in the

stretched string. In other words he found that, on looking

through one piece of calcite at a beam of light which had just

passed through another, piece of calcite, the intensity of the

light which reaches the eye depends very much upon the

angular position of the crystal about the ray of light as an axis.

The ray of light is not therefore symmetrical about its direc-

tion of propagation,

432. An experiment due to the French physicist Biot illus-

trates this fact in an even simpler way. Biot discovered that

tourmaline, unlike
most other crystals,

gives only a single

refracted ray, the

second ray being ab-

sorbed by the sub-

FIG. 334. Biot's experiment with the crossed stance of the crystal,
tourmalines.

through one tourmaline and then examined through a second

tourmaline, it is found that the light may be completely

extinguished by rotating either tourmaline, with reference to

the other, about the ray as an axis (see Fig. 334). Here

again light waves exhibit asymmetry with reference to their

direction of propagation.

433. Another illustration of this asymmetry was discovered

in 1808 by Malus, a French army officer, who found that light

which has been reflected from a surface of water or from glass

or from any polished surface, when viewed through a tourma-

line, has its intensity changed in a marked manner as the-

tourmaline is rotated in front of the eye. He showed also that
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for each substance there is a certain angle at which, if the light

be reflected, it may be completely extinguished by the tourma-

line. In other words he discovered that reflected light presents
this same lack of symmetry which had already been observed by

Huygens and Biot in the case of transmitted light.

Maius in 1811 introduced the word "polarized" to describe

light which exhibits different properties in different directions at

right angles to the line of propagation. This peculiar asym-

metry he called polarization. Common light, such for instance

as that by which you are reading this page, does not possess

this peculiarity. The explanation of this must be taken up
later.

As might have been predicted from Malus's discovery, polar-

ization can be detected, as well as produced, by reflection.

This is best shown perhaps by a pair of glass mirrors, such as

those drawn in Fig. 335. The incident ray is so directed as to

make an angle of 57

with the normal to the

mirror. In the left-

hand figure the mirrors

are parallel, the vertical

beam is polarized by
reflection at the lower

mirror; the upper mir-

ror reflects it along the

direction BO. In the

right-hand figure the

mirrors are crossed, i.e. at right angles to each other, the

vertical ray is polarized precisely as before, but the upper mirror

in this position is unable to reflect any ray.

434. From evidence such as the foregoing a brilliant young
French engineer, Fresnel, was led to the conclusion that light

waves are transverse. For more than a century following the

publication of Newton's Optics, in 1704, his corpuscular theory
had held undisputed sway. But between the years 1812 and

1826 Fresnel produced and coordinated such a mass of cogent
evidence for thinking that light consists of transverse waves

that there has since been almost as little doubt concerning
this principle as concerning any of the principles of ordinary
mechanics.

335. Polarization produced and detected by
reflection.
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Summarizing, then, we may consider it a fact, well established

by such evidence as the four fundamental phenomena just

studied, that light is a transverse wave motion propagated

through what we sometimes call a " vacuum "
sometimes the

"free ether" with a velocity closely approximating 300

million meters per second.

Upon this assumption, if you prefer, and with this general
view of the entire subject, we proceed to examine some of the

other fundamental facts of optics. As will be seen later, many
of these facts might have been deduced as mere inferences from

the four which precede.

V. THE REFLECTION OF LIGHT

435. We have just been considering the behavior of light

when it has a free path in which to travel. Suppose, however,
a beam of light strikes upon some body lying in its path.

If the body has a very smooth surface, it will generally hap-

pen that a large part of the light which falls upon it from any
direction is sent off in some one other direction. This is called

reflection. If the body is a rough one, such as ground glass or

a piece of newspaper, the light which falls upon it is scattered

in all directions. Such light is said to be diffused; and the

process is called diffuse reflection.

But some of the light which is incident upon a body will

penetrate the body ; this we know because objects can be seen

through all substances if only the body is made thin enough.
The rays which pass through a body are said to be transmitted.

If, however, the body is so thick as to be opaque, then those

rays which enter the body never leave it. Such rays are said

to be absorbed
;
and the process is called absorption.

Reflection

436. The simplest and most elegant manner of studying the

reflection of light is perhaps the following. A cross is made

of two pieces of pine wood mortised together, as indicated in

Fig. 336. One piece is slotted so as to receive a strip of plate

glass G-.

If a pin or an incandescent lamp be placed at P, this strip of

glass will act as a mirror. To an eye placed somewhere in

front of the glass, say at E, the image of the pin or lamp will



LIGHT 441

\

FIG. 336. A convenient device for studying
the laws of reflection.

appear at P'. We can now easily place a second pin or lamp at

the point P', so that it coincides with the image of the first pin.
The second pin at P' should be viewed over the top of the glass

strip. The glass strip may
well be ground or greased
on the rear surface so that

the reflection from the first

surface only is seen.

The first pin now locates

the position of an object ;

while the second pin locates

the position of its image,

produced by a plane mirror.

Concerning this image it is

important to note the four following facts:

1. On observing this image from various points of view, it

is seen that the image does not change position as the eye

changes position. The image has a fixed position in space quite

independent of the observer.

2. If, however, either the object or the reflecting surface be

moved, the image also moves.

3. If now we draw a straight line from P to P', we find by
use of a square that the reflecting surface is at right angles to

H this line.

4. Not only so, but on

measuring the perpen-
dicular distance P' from

the image to the reflect-

ing surface, and also the

perpendicular distance

PO from the object to

the reflecting surface, it

is found that these dis-

tances are equal.

These facts, which are

familiar to nearly every one, may be summarized by saying that

the image of a point in a plane mirror lies on the perpendicular let

fall from the point to the mirror, and lies as far behind the mirror

as the point lies in front of the mirror.

90

V////////////////X REFLECTING

FIG. 337. P'0 = PO.
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THE LAW OF PLANE REFLECTION

437. The general fact may be more simply described as

follows :

The point P is sending out rays of light in all directions.

Let 0' (Fig. 338) be a point at which one of these rays strikes

the mirror. Then the two

right-angled triangles
P' 0' and PO'O are equal,

for they have one common

side, 00', and the sides OP'
and OP are equal. Hence

the angles O'POand O'P'O
are equal.

Draw the line NO1

per-

pendicular to mirror at 0' .

Then the angles NO'E and

NO'P are equal, since they
are respectively equal to

O'P'O and O'PO.

FIG. 338. Illustrating the law of reflection

at plane surfaces.

Definitions

The angle between the normal to the reflecting surface and

the incident ray NO'P is called the angle of incidence. The

angle between the normal and the reflected ray NO'E is

called the angle of reflection.

But these are the angles which we have proved to be equal*,

in the case of the ray PO'; the same evidently is true of any
other ray. Not only so, but this experiment shows that the

reflected ray lies in the plane of the normal NO' and the inci-

dent ray PO'.

Accordingly, if we denote the angle of incidence by i and the

angle of reflection by r, we may state the laws of reflection as

follows:

(i) At each point of the reflecting surface the angle of reflec-

tion is equal to the angle of incidence.

(ii) The reflected ray lies in the plane defined by the normal
and the incident ray.

Or, in terms of algebra
i = r. , Eq. 158
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But this is precisely the manner in which we have found

( 183) water waves behaving. When a wave coming from

any direction strikes a solid pier at a definite angle of incidence,

the reflected wave leaves the pier at the same angle on the

other side of the normal. If we employ Professor Hastings'

FIG. 339. Reflection of water waves.

excellent definition of a mirror as "a barrier to the further

progress of the waves which does not destroy their motion," it

is clear that the rigid pier is a mirror for water waves quite as

truly as plate glass for light waves.

Huygens' Explanation of the Laws of Reflection

438. The first man who was able to reduce the reflection of

light to anything simpler and. more general was Huygens, who,

in his Treatise on Light, published in 1690, enunciated a general

principle which has proved to be of the utmost fertility in

almost every branch of

optics.

The principle is de-

rived from a considera-

tion of what must happen

according to the princi-

ples of ordinary dynam-
ics if a wave motion

started by any luminous

particle is propagated

through any material

medium, including the

free ether. Let A denote '* FlG> 340. Illustrating Huygens' Principle.
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a luminous particle, and DCUFthe position of the front of a

spherical wave at any instant t. Let 5, 5, 6, b denote particles

of the medium through which this wave has passed on its

way from A to its present position. Then at some instant

earlier than ,
each of these particles b must be considered as a

source of disturbance sending out spherical wavelets of its own.

This being true, we must consider the disturbance at any point

on the wave front CE as the resultant of a large number of

disturbances arising from all the particles of the medium over

which the wave has passed.

Huygens' Principle consists, then, in the statement that the

wave front in a train of light waves is a surface of disturbance

which results from and envelops (i.e. is tangent to) the secondary
waves sent out by each particle lying in the wave front at an ear-

lier instant.

439. Let us now apply this principle to determine the image
of a luminous point in a plane mirror, the case which we have

already solved in 436. If P be the luminous point, and AOB
a plane mirror, a series of spherical waves will be emitted by

FIG. 341. Reflection of a spherical wave in terms of Huygens' Principle.

the point P and will proceed toward the mirror with the speed
of light. The first point on the mirror which will be struck by
this advancing wave is the point which is nearest P. Call this

point 0. Then becomes, according to Huygens' Principle, a

source of light at the instant when the wave first touches the
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mirror. At immediately succeeding instants, the successive

points between and A on the mirror will be reached by the

incident wave front and they will in turn become sources of

secondary waves. If there had been no mirror at AS, the inci-

dent wave would have gone on and occupied the position AIB.
As it is, the spherical wavelets emitted by each successive point
on the mirror have for their envelope the spherical surface

whose trace is ARB. This envelope is therefore the reflected

wave surface. By symmetry the center of curvature P' of

ARB is at the same distance behind the mirror that the source

P is in front of the mirror. To an observer in front of the

glass the reflected light appears to come from the point P';
this point is therefore the image of P.

In this manner Huygens derives from his principle the laws

of reflections at plane surfaces. The student will find it profit-

able to draw a diagram, corresponding to Fig. 341, but showing
the particular case in which the luminous point P is at an

infinite distance, thus giving rise to a plane wave which is re-

flected at a plane surface.

The Reflection of Spherical Waves at Spherical Surfaces

440. This is the most general case of reflection met with in

ordinary optics, inasmuch as spheres are the only surfaces which

can be accurately ground with ordinary machinery. The posi-

tion of the image can here be easily determined by means of

Huygens' Principle; but the method which depends upon the

use of rays is more generally useful and practical, for which

reason we here adopt it.

In Fig. 342 let SP indicate a spherical mirror whose center

of curvature is at (7. Let L denote a source of light a lumi-

FIG. 342. Reflection at a spherical mirror.

nous point and L '

its image in the mirror. In general we
shall denote points by capital letters and distances by small let-

ters. The line joining the apex of the surface S and the center
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of curvature C is call the axis of the mirror. We shall consider

only that case in which the luminous point is situated some-

where on the axis of the mirror.

The center (or apex) of the mirror 8 is chosen as the origin;

and, as in ordinary geometry, distances measured to the right

will be called positive, and those measured to the left,

negative.

Let us now consider any ray of light LP leaving the source

L and incident upon the mirror at P. The mirror surface at

P is normal to the radius OP. The reflected ray will therefore

cross the axis of the mirror at some point L' , such that the

angle of reflection L'PO is equal to the angle of incidence

LPO.
Let LP = s, L'P = s', CP = r, and the angle PCS^fa

then if < be small, OL = s r and GL' = r s', approximately.

By geometry,
s __ sin <

and
r sin i i

sin z= sin r, Eq. 157, it follows that

s _s r

s' r

Since, however,

Eq. 159

an equation which gives us ', the distance of the image from

the mirror, as soon as we know the radius of the mirror and the

position of the source. Clear of fractions and then divide each

term in the equation by
-4 /-I

Eq. 160

441. Thus if one be^asked-^-ftfid the image of a luminous

point placed 50 cm. in front of a convex mirror having a 20 cm.

radius of curvature, he has merely to substitute the following
values in Eq. 160 :

FIG. 343. Reflection at a convex mirror.

8 = + 50 cm.,

r = 20 cm.
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From which it follows that s' = 8^ cm.; that is, the image
lies 8^ cm. to the left of the mirror

;
in other words, the re-

flected rays appear to come from an image 8^ cm. behind the

mirror.

An image of this kind from which rays merely appear to pro-

ceed, but do not actually proceed, is called a virtual image. But
when a mirror so changes the direction of a group of rays coming
from one point so as to make them intersect at another point and

actually proceed from that point, this second point is said to be a

real image of the first.

442. The case of reflection at a plane mirror is also included

in Eq. 160; for a plane mirror is described by writing r=oo,
whence

, i? 1^1
8 = s'. Eq. 161

In other words, the image is just as far behind the mirror as

the object is in front of it, a conclusion which we have already

( 436) derived from experiment. The two positions L and U
,

defined by 8 and sf in the general equation, are sometimes

spoken of as "conjugate points."

Focal Length of Mirror

443. If the source L be at an infinite distance, i.e. if the

incident rays be all parallel to the axis of the mirror, this state

of affairs may be described by writing

s =00

from which it follows that

Eq. 162

The length /, defined by this equation, the distance from the

mirror to the image when the incident rays are parallel, is called

the focal length of the mirror. The advanced student will find

that this definition of focal length is a very special case of a

much more general and better definition. See Drude, Theory

of Optics, p. 21. Introducing this definition into the general

equation (160), we may write,

1 +
11

Eq.163
* J
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from which we may always obtain the position of the image in

terms of the focal length of the mirror. From the symmetry
with which the two variables and ' enter this general equa-
tion, it is evident that, when the object is shifted so as to

occupy the position of its former image, the image will shift to

the former position of the object. Values of and '

being in-

terchangeable, the positions of object and image are inter-

changeable.

Size of Image produced by Mirror

444. So far we have considered only the position of the

image of a luminous point situated on the axis. We now pass
to a body of finite size situated on or near the axis. The posi-

tion of the image of each point of this object will be found

exactly as before. But in order to determine the size of the

image as compared with that of the object, it will be necessary
to first observe two very convenient facts, namely:

(i) An incident ray which passes through the center of cur-

vature of the mirror has its direction unchanged by reflection.

(ii)
An incident ray which is parallel to the axis of the mirror

passes, on reflection, through the principal focus of the mirror;

and vice versa, an incident ray which passes through the princi-

pal focus will be reflected in a direction parallel to the axis of

the mirror.

With these two rules in mind, we can see at once, from Fig.

344, that the object and the image each subtend the same angle
at the center of curvature of the mirror, from which it follows

that their sizes are

L proportional to their

respective distances

from the center.

For let LP
l
be an

incident ray from

\ the point of the
FIG. 344. Showing how to determine size of image. arrow parallel to the

axis ;
the reflected ray must pass through the principal focus

F ; and hence the image of the arrow point must lie somewhere

on the line P^.
Let LPZ represent an incident ray passing through the cen-

ter, then the image of the point L must lie also on this line
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P
2 C. And since it lies on both P-^F and P

2 (7, it must lie at

their intersection, U . If the angle /SCP
2

is not very large, we

may equate LC to s r, and L ! to r ', which enables us to

describe the size of the image, as follows:

/ Size of Image r s' -^ i /= - = . Eq. 164
Size of Object sr

Or, in virtue of Eq. 159,

L= 81
s'

The student will find it an interesting problem to show that

this construction holds as well for convex mirrors as for

concave ; only in the case of a convex mirror it is the prolon-

gations backward of the two incident rays which pass through
the center and focus respectively.

Problems on Reflection

1. An incandescent lamp is placed 40 ft. in front of a concave mirror

whose radius of curvature is 8 ft. Find the position of the image.

2. A candle placed 7 cm. in front of a concave mirror gives an image at

21 cm. behind the mirror. Prove that the radius of curvature of the mirror

is 21
cjn.

3. Find the focal length of a concave mirror required to produce at a dis-

tance of 20 cm. from the mirror an image of an object which is located

40 cm. in front of the mirror.

4. Where must an object be placed in front of a concave mirror in order

to give an image which shall be erect and of the same size as the object?

5. Where must an object be placed in front of a concave mirror in order

that the image may be inverted and of the same size as the object?

6. An object 6 in. high is placed 12 ft. in front of a concave mirror

whose focal length is 2 ft. Find the size of the image.

7. Prove that when an object lies between a concave mirror and its

principal focus, the image is* always erect and virtual.

8. An object lying 16 cm. in front of a convex mirror gives an image
at a distance of 3 cm. behind the mirror. Find the radius of the mirror

and then the size of the image.

9. Why do convex surfaces such as polished door knobs and the rounded

wooden knobs on furniture give such "
high lights

" when photographing
" interiors

"
?

10. If you were required to project an arc light upon a screen and to

magnify it three times, what kind of a mirror would you use and where

would you hold it?

2 a
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11. Show that, in the case of a plane mirror, the image will move away
from the object twice as fast as the mirror moves away from the object.

Show also that when the mirror is rotated the reflected beam will rotate

twice as fast as the mirror.

12. Two plane mirrors are hinged together and placed so that their

polished surfaces include an angle of 90. Prove that a candle placed any-
where within this right angle will give three images in the two mirrors.

13. Interpret Eq. 159 to prove that, while the size of the image bears to

the size of the object the same ratio as their distances from the center, the

ratio of their sizes is also the same as the ratio of their distances from the

mirror.

14. Prove that when an object is placed midway between a mirror and

its principal focus the image is twice as large as the object.

15. Assume the sun to be 1 million mi. in diameter and 100 million mi.

distant. Find the size of the sun's image produced by a concave mirror

having a focal length of 52.8 ft.

16. Explain how it is that a man standing in front of a plane mirror

can see his complete image by use of a portion of the mirror which is only
half as high as he is.

17. Two plane mirrors are placed with their polished surfaces parallel

and facing each other. An incandescent lamp placed between them is 6

inches from one mirror and 8 inches from the other. Locate the positions

of the first two images in each of the mirrors.

18. An incandescent lamp is moved from a position which is 120 cm. to

one which is 80 cm. in front of a convex mirror of radius 10 cm. Find

through what distance the image is shifted by this motion of the object.

19. Show that when an arc is shining obliquely on a mirror an object

in front of the mirror may cast two shadows instead of one.

20. Two concave mirrors, each of 12 cm. radius, stand facing one

another. The distance from the apex of one mirror to the apex of the

other is 36 cm. A himinous object is placed 12 cm. in front of the first

mirror. Prove that its image in the second mirror after one reflection

occupies the same position as the image in the second mirror after two re-

flections, i.e. after being reflected once in the first mirror and again in the

second.

VI. THE REFRACTION OF LIGHT

445. The first man who succeeded in measuring the speed of

light in any medium other than air or "vacuum" was the

French physicist Foucault, who in 1850 proved beyond all

doubt that light travels at a much slower rate in water than in

air or vacuum. Since then Michelson has measured the ratio

of the velocity in air to that in water and finds it 1.33. The
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ratio of the velocity in carbon bisulphide to that in air is 1.77.

Each of these results are for white light.

All experiments show that light travels more slowly in any
kind of ordinary matter than it does in a vacuum. Kundt,

Drude, and others have proved that there are exceptions to this

statement under certain highly special conditions. See 469.

We are now prepared to trace some of the consequences of this

general result.

Indians in spearing fish show themselves very familiar with

the fact that the fish is not exactly where he appears to be in

the water, but is always a little lower down. Boys in wading
a creek generally learn that they have to roll their trousers

higher than at first they thought necessary ; for the creek is

always deeper than it appears to be. A lead pencil placed in

a tumbler of water and looked down upon from one side ap-

pears to be sharply bent at the point where the pencil enters

the surface of the water.

446. One explanation of

these three, and of all simi-

lar, phenomena is easily

obtained by an experiment
which is described by Lord

Bacon, but which probably

belongs to a century still

earlier than his. He places

a small piece of metal, say
a coin, in the bottom of an

opaque bowl; and then

gives his eye such a posi-

tion E that he just cannot

see any part of the coin P
(Fig. 345). If now water

be carefully poured into the

bowl while neither the posi-

tion of the eye nor that of

the coin is changed, it will

be seen that the Coin is
Fi- ^- -Coin is lifted iuto view by the water.

lifted into view, as indicated in Fig. 346. The change in

direction of the ray PS, when it leaves the water and passes
into air, is called refraction.

FIG. 345.
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In general, it is found that the ray emerging from water to air

is bent away from the normal NS, while a ray which enters the

water from the air is always bent toward the normal. The same

phenomenon happens when a ray enters the air from glass, as

may be easily seen by

making a straight
scratch BC on a small

piece of plate glass.

If this glass be laid on

a sheet of white paper
in such a way that the

scratch lies in the pro-
FIG. 347. -Refracted ray is bent away from the

longation of a straight
normal on emerging from glass into air.

pencil mark Af, the

observer who views the scratch through the glass will see it

appear to shift position to the right or left of the pencil mark

according as the scratch is viewed from the left or from the

right, i.e. the emergent ray is bent away from the normal.

And what/ha^apens in the case of water and glass happens in

general wiie^V ray passes from any one medium to any other

medium.

447. She man who first described all these phenomena in a

simple manner was Willebrord Snell (1591-1626), a Jftitch

mathematician. His description is as follows :

Let AS (Fig. 348) be

any bounding surface

sep&rating two different

^qaedia, say water and

vair. Take any point S
on this surface and de-

scribe a circle about it

as a center. Let QS be

any ray incident at $;
the problem is to find

the direction of the re-

fracted ray SP. Snell
FIG. 348. Snell's description of the refracted ray.

discovered that this could always be done as follows ; viz. from

Q let fall a perpendicular QL on the line NS, which is drawn
normal to the surface at 8. Then, if we define PM as the per-
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pendicular distance of P from this same normal, the ratio of QL
to PM is constant for any two media. This constant is usually

indicated by w, and is called the index of refraction.

QL /PM constant = n = index of refraction.

For water and air this constant is about 1.33; for ordinary

glass and air its value is about 1.52. Experiment shows also

that the refracted ray SP lies in the same plane with the

normal NS arid the incident ray Q8.

Definitions. The angle Q/SL, between the incident ray and

the normal, we have called the angle of incidence; it is gener-

ally denoted by i. The angle PSM, between the refracted ray
and the normal, is called the angle of refraction; it is generally

denoted by r.

The Two Laws of Refraction

Accordingly we may summarize these two results as fol-

lows:

(i) The angle of refraction r bears to the angle of incidence

i the relation nT . .

-3Li =^J = n = constant. Eq . 165PM sin r

(ii) The refracted ray lies in the same plane with the incident

ray and the normal to the refracting surface.

Explanation of Refraction

448. Assuming a fair familiarity with the phenomena of re-

fraction, we proceed to inquire whether it is like any other phe-

nomenon which we have already studied; whether there is any

simpler class of facts to which we can refer it as a special case;

whether, in short, we can "
explain

"
the phenomenon of the

bending of the rays.

An Illustration of Refraction

Let us suppose that a regiment of soldiers is marching over

a country interspersed with plowed fields ;
and suppose also

that the regiment moves with a speed of 3 miles an hour over

the smooth ground and 2 miles an hour over the plowed ground.
LetAB (Fig. 349) represent the line which separates the smooth

ground from the plowed. The arrows indicate the line of

march, i.e. the arrows are at every point perpendicular to the

front of the ranks.
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SMOOTH GROUND ' B
SPEED = 3 Ml. PER HR.

PLOWED FIELD

SPEED -= 2 Ml. PER HR1

Consider any rank, say No. 8, which is just entering upon
the rough ground. Evidently the right-hand end will be

slowed up, for the left

end is now traveling
1 mile an hour faster

than the right the

front will now form a

slightly bent line, un-

til the whole rank

has crossed into the

plowed region ; and

then the rank will

again be straight, but

it will be headed in a

direction slightly dif-

ferent from that which
FIG. 349. Refraction due to change of speed. j^ previously had It

will, in fact, be "refracted." Not only so, but the line of

march will be refracted toward the normal to the line BA.
We have already seen ( 445) that light travels more slowly

in water than in air. The refraction of rays of light is there-

fore strictly analogous to the refraction of the line in march,

each depending upon a change of speed in passing from one

medium to another.

Another Instance of Refraction

449. We have already found ( 182) by experiment that the

speed of water waves depends

upon the depth of the water in

which they travel the deeper
the water the faster the wave

travels. If now we consider a

series of waves., whose crests

are represented by the straight

lines in Fig. 350, it is evident

that when these waves cross

the boundary line AS into

more shallow water, they will

be deflected just as the Sol- DEW WATER B SHALLOW WATIR

, . ... . FIG. 350. Refraction of water waves due
diers are, and just as the rays to change of speed.
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of light are. This analogy between waves and light is essen-

tially due to Huygens.
From what precedes it will be evident that the amount of

bending (refraction) which a

ray undergoes in passing from

one medium to another depends

upon the ratio of the speeds of

light in these two media. If

the speed is the same in each,

there is no change in the direc-

tion of the ray.

From Fig. 351 it is evident

that, if CA represents the dis-

tance which light travels in air,

during the time required for it

to travel from B to D in glass, we have

FIG. 351. The physical meaning of

refractive index.

Speed in air CA sin i
* = - = = n,

Speed in glass BD sin r
Eq. 165

as defined in 447. For all transparent liquids and solids n is

greater than unity.

450. Since n for any particular medium varies inversely as

the speed of light in that medium, we may generalize the above

equation by writing the refractive index for a ray passing from,

say, water to glass, thus,

Speed in water _ sin i _ n

Speed in glass sin i'
jj_

where n is the refractive index for air and water and n' the

index for air and glass; i is the angle of incidence and i' the

angle of refraction.

A more significant way of writing this equation is the fol-

lowing:
n sin i = n' sin i' = optical invariant. Eq. 166

Total Reflection

451. Up to this point we have been considering the passage
of a ray of light from a medium where it travels with a certain

speed to one where it travels less rapidly. Let us now reverse
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the sense in which the light moves so that the incident ray
travels along the path of what was formerly the refracted ray.
The angle of refraction will in this case, by Huygens' construc-

tion, Fig. 352, always be greater than the angle of incidence,

But the maximum value of r is . Hence the maximum value
25

of i is given by
sin

Sm
2

= sin i = -,
TT n Eq. 167

REFRACTING
SURFACE

where n is the refractive index of the first medium with

respect to air or vacuum.

We now proceed to consider what happens when the angle
of incidence is greater than the maximum value indicated

above. The phenomena
which occur under these cir-

cumstances are familiar to

every one who has examined

minutely a freshly fallen

snowflake and found it to be

made up of small but trans-

parent crystals of ice. How
does transparent ice acquire
the brilliant whiteness of

snow ? The same phenomenon has been observed by every one

who has ever broken up a piece of clear ice with a hammer.

The moment the ice is broken into small pieces it appears white.

The same is true of finely broken glass. To explain this phe-

nomenon, let us consider any point in the interior of a solid piece

of glass. Suppose a ray of light to leave the point P1
and pass

on through the surface AS. The angle of incidence is P^M^.
The incident ray has the direction P^, but is refracted in the

direction SQV Imagine another ray to start from the point

FIG. 352. Refraction away from the

normal.

P2 ; the angle of incidence now becomes the angle of

refraction increases to, say, Q2
SLr As the angle of incidence

increases still farther, the refracted ray finally takes the direc-

tion SQy that is, the refracted ray just grazes the refracting

surface. The perpendicular from Q1
let fall upon the vertical

line NM
1
has now its largest possible value. What will hap-
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pen, then, if we increase the angle of incidence to PSM
l
? If

refraction now occurs, the ratio -5-- can no longer remain con-

stant. It is observed that, under these circumstances, refraction

does not occur. But if the angle of incidence ever exceeds the

FIG. 353. The phenomenon of total reflection.

limit P3SM, the ray is reflected back at S into the glass.

This phenomenon is called total reflection. There is then a

certain limiting angle of incidence called the critical angle

for any ray in glass, defined by the fact that if this angle of

incidence be exceeded, the ray will not escape from the glass but

will be sent back into it. This is the angle defined by Eq. 167.

The following table gives the critical angles for a few of the

more important substances :

TABLE OF CKITICAL ANGLES

Diamond

Ruby
Rock Salt

Crown Glass

Turpentine
Water

24 C

36 C

41 C

42

43 C

48 C

452. A test tube containing only air and held in a tumbler

of water shows total reflection very nicely. Much of the light

attempting to pass from the water through the test tube fails,

because the angle of incidence in the glass is greater than 42.
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FIG. 354. Total reflection in a tumbler

of water.

A tumbler of water held a little above the level of one's eyes,

as in Fig. 354, readily shows total reflection from the lower

surface of water.

We now see how snow

appears so white. Any stray

ray of light which enters a

body of snow will, in general,

penetrate only a few of the

transparent crystals before it

will strike some refracting sur-

face at an angle greater than

the critical angle. It will then

be totally reflected, and will

finally find its way out into the air again. A large propor-
tion (not all) of the rays of light which fall on snow will

therefore, be sent back. But this is all that we mean by a

white body, viz. one which reflects a large portion of all the

light which falls upon it. From the preceding table it is

clear also why rubies and diamonds are more brilliant than

glass bodies of the same size, shape, and polish.

CASE I. Refraction at a Single Spherical Surface. Axial Rays

453. Up to the present we have been considering the gen-
eral law of refraction, which we now proceed to apply to some

particular cases which are highly important in the arts.

In Fig. 355 let PS denote a spherical surface separating two
media whose refractive indices are n and n' respectively. We

Fio. 355. Case of refraction at a single spherical surface,

proceed to determine the position of the image produced by
refraction at this surface, for which purpose we adopt the

following nomenclature:
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Let r = radius of curvature of refracting surface positive

when convex side of surface is toward incident ray,

C= center of curvature,

L = luminous point, source on axis,

Z (7= axis of refracting surface, an unlimited straight line,

L' = point at which refracted ray crosses the axis, image
of i,

8= apex of refracting surface,

s = distance from apex of surface to luminous point ;

negative to left, positive to right,

s' = distance from apex to image L' ; negative to left,

positive to right,

c = s r,

$ = angle subtended at C by the arc

i = angle of incidence,

i' = angle of refraction.

Starting now with the optical invariant, Eq. 166,

n sin i = n' sin i
1

,

divide each side by sin
</>,

whence

n sin i n' sin i

sin
(f>

sin
<f>

But for axial rays, that is, for those which make a small angle
with the axis, we have, by geometry,

sin i s r s r

and
sin 9 p s

sin i' s' r s' r
very approximately,

sin
</> p' s'

where the meanings of p and p' are evident from Fig. 355.

/s _ r\ /s
' _ r\

Hence n( )
= n'( -, ]

= optical invariant.
\ s J \ s' J

Dividing through by r, we have

/I 1Y ,/l 1\ Laboratory equa-

n(
= n'l tion for spher- Eq. 168

\r sJ \r s'/ ical surface.

As soon as s, the position of the source, is given, this equation

enables one to determine s', the position of the image.
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SPECIAL CASE II. First Medium, Air ; Second Medium, Glass,

Water, etc.

454. Here n = 1 and n' = /*, whence Eq. 168 becomes

^ - - = ^^- Eq. 169
s' 8 r

Illustration. Let it be required to find the image of a lumi-

nous point, placed 10 cm. to the left of a block of glass

(/n = 1.5) bounded by a convex surface of 12 cm. radius as

shown in the figure.

FIG. 35G.

Here /*
= 1.5

r= +12 cm.

8= 10 cm. Find '.

1.5
,

1 0.5

-^
+
Io
=
T2"

Or ' = - 25.7 cm.

Accordingly the image is virtual, and lies 25.7 cm. to the left of

the surface of the glass.

SPECIAL CASE III. Incident or Refracted Rays Parallel.

Focal Lengths

455. Let 8 = oo, then the incident rays are parallel to each

other, and our general equation (169) becomes

8
' = SF' = -^ =f = second focal length,

/x,
1

Or if, instead of making * = oo, we make ' =* oo,

8 = SF= r
=/= first focal length.

/*-!

Observe that the second focal length, i.e. the one in the glass,

is p times greater than the first focal length. Note also that
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these focal lengths have opposite signs, and that the sign of

each depends upon the sign of r.

The advanced student will learn a more practical and general definition

of focus, introduced by Gauss. In a qualitative way, Gauss' idea of a focus

is that of a point such that when the object passes through it, a discontinu-

ity occurs in the position of the image, i.e. the image shifts from a position

infinitely distant on the right, say, to another position infinitely distant on

the left, without passing through the intermediate positions.

Employing the first focal length/, we may write, Eq. 169,

-l=-l Eq. 170

SPECIAL CASE IV. Refraction at a Plane Surface

456. To describe a plane refracting surface in algebraic terms

we have merely to write r = ao. On introducing this condition

into our general equation (169) we obtain,

*' = /is. Eq. 171

From this it follows that the image in the glass or in the water

is p times as far from the surface as the object is. A fish swim-

ming in the water and looking at a fishing rod above the sur-

face sees it 1.3 times as far away as it really is.

s'

Conversely, since s =
,
an Indian spearing a fish sees it only

-, or - as far below the surface as it really is. In Harper s

Weekly for November 16, 1907, will be found an entertaining

account, by Professor R. W. Wood, of how that portion of the

world above the surface of the water appears to a fish. The

photographs were obtained by means of a camera and plate

totally immersed in water.

SPECIAL CASE V. Reflection

457. By placing //,= !, and again measuring r from the

origin according to the rules of ordinary geometry, we may
obtain the entire theory of reflection at plane and spherical

mirrors ; for then our general equation (169) becomes,

1 1 _ 2 Equation of spherical g^ JJ2
J mirror.



462 GENERAL PHYSICS

If, in addition, we put r = oo, we have the description of a plane

mirror ' i-'-V. Eq. 173

Special Case II in Terms of the Wave Theory

458. In the preceding demonstration we have assumed only

that light travels in straight lines in a homogeneous medium

and that n sin i is an optical invariant from one medium to

another. We shall now assume that light consists in waves

which travel in each medium with a speed which is inversely

as the refractive index p for that medium, and we shall show

that this assumption leads to results the same as those obtained

above. As before let L (Fig. 357) be the luminous point whose

image is sought. Let AIP be the position which any spherical

wave front starting from L would have assumed at an instant

,
if the glass had not been there. Owing to the presence of

A

FIG. 357. Refraction in terms of the wave theory.

the glass, however, the speed of the wave has been very much
slowed up. That portion which has been most retarded is the

part which has been longest traveling in the glass, i.e. the

center of the wave which was incident at S.

Now on the wave theory the focus which is conjugate to L,

that is, the image of L, is simply that point where the disturb-

ances due to each element of the wave front meet in the same

phase. In other words the image L' of i is a point such that

the light occupies the same time in traveling from L to L1

',

whatever be the path. Evidently this point is identical with

the center of curvature of the wave surface in the second

medium.

Let ARP denote this wave surface in the glass. Draw the

chord AOP perpendicular to the axis LS. Then if a denote
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half this chord, we may, by simple geometry, write for SO,
which is called the "

sagitta
"

of the refracting surface,

2

SO = ~^ for refracting surface.

And in like manner,

a2R0 =
, for the refracted wave front ;

2s'

az10 = , for the incident wave front.
2s

With these preliminaries, let us now equate the time occupied

by the outer edge of the wave in traveling over the path LAL'
to the time consumed by the central portion of the wave in

going over the route LSOL'. If we call the speed of light in

air unity, this gives us

LA + fjiAL' = LS+ pSL', Eq. 174
or

LA + i*AIJ = LI- (SO + 01) + /*(*SB + EL').

But since LA = LI s

and All = RL' = + *',

we have, on substituting and canceling in the above equation,

= _SO- 01+ n(SO -RO).
Using the sagitta,

A a2
,
a2 . /a2------ -

2s
A ,

.

U = ------f- uA
2r 2s

P
\2r

o

Dividing by , and transposing, one obtains

, which is Eq. 169

This equation which we have just obtained by two different

methods is perfectly general and holds equally well for concave,

convex, and plane refracting surfaces.

Problems

1. Find the refractive index when the angles of incidence and refraction

at a plane surface are 45 and 30, respectively.

2. The critical angle for a certain medium is 45. Find it's refractive

index.
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3. A pebble lies at the bottom of a pool of water -which is four feet

deep. How far below the surface will this pebble appear to a man looking

vertically down through the water? Ans. 3 ft.

4. An air bubble imprisoned in a piece of glass appears to lie ^ cm.

below the surface of the glass, which has a convex surface of 20 cm. radius.

If the refractive index of the glass is 1.5, what is the real distance of the

air bubble below the surface ? A ns. 0.3 cm.

5. In what direction must an incident ray strike a spherical glass surface

in order that this direction may not be changed by refraction?

6. A luminous point is placed 6f cm. to the left of a surface of glass of

which the refractive index is 1.6. The image which is virtual lies 16 cm.

to the left of the surface. Find the radius of curvature of the glass

surface. Ans. + 12 cm.

7. Show from the general equation (169) that there are two positions

on the axis at which a luminous point may be placed such that, after

refraction at a single spherical surface, the image will coincide with

the object.

8. What refractive index will be required in a glass ground with a concave

surface of 40 cm. radius in order that a point situated in air 25 cm. to the

left of the concave surface may be brought to focus at a distance of 90 cm.

to the right of the surface? Ans.
p.
= 1.8.

9. A microscope is focused upon a scratch on the upper surface of a flat-

bottomed glass beaker.
-

Liquid is now poured into the beaker to the depth
of y cm., when it is found that the microscope must be lifted through
a distance h in order to remain focused upon the same scratch. Prove that

the refractive index of the liquid fj.
is given by the following equation,

y

*-7^'
10. From the general equation (169) find the two principal foci for a

refracting surface S, such as that indicated in Fig. 858.

11. Referring to Fig.

358, the block of glass,

instead of being left un-

finished at the right hand,
is ground to a plane per-

pendicular to the axis and
is silvered. A small in-

candescent lamp is placed
48 cm. to the left of the

FIG. 358. surface S. Find the posi-

tion of its image after

refraction at S and reflection at the silvered surface.

Ans. 10 cm. to right of S.
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CASE VI. Refraction of a Spherical Wave Surface at Two

Refracting Surfaces in Succession. Lenses

459. DEFINITION. A portion of a refracting medium which

is limited by two curved surfaces is called a lens.

The only surfaces which can be ground in lathes with

accuracy and ease are spherical surfaces, hence all lenses,

practically, are made with

spherical surfaces, i.e. the

shape of a lens may be con-

sidered as the shape of a

figure bounded by two spheres.

DEFINITION. The line join-

ing the centers of curvature of

the two refracting surfaces is

called the axis Of the lens. FIG. 359. A converging lens.

If one face of the lens is a plane, we may consider this plane
as a portion of a sphere of infinite radius. The axis of such

a lens is the line throughB (Fig. 360) normal to the plane surface.

FIG. 360. A converging lens FIG. 361. A diverging lens,

with one plane surface.

It will be observed that the axis of a lens is normal to each

surface of the lens at the point where it passes through the

surface.

We proceed now to trace the history

of a wave surface through a lens defined as

above. And for the purpose of obtaining
a general solution, we shall choose a lens

limited by two spheres of radii r
t
and r2

which are each positive, as indicated in
FIG. 362. -A diverging M ggg F &g before we shall con .

lens with one plane
'

surface. sider the radii positive, when the convex
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surface is turned toward the incident light. Here also we shall

use the same nomenclature as before, following the conventions

of ordinary geometry and allowing the subscript
" 1

"
to refer

to the first surface, and the subscript "2" to the second surface.

The first problem is to obtain the position of the image L'

due to a luminous source L ;
in other words to find ' in terms

A

FIG. 363. Illustrating refraction through a medium bounded by two spherical
surfaces.

of s, rv rv and /*. This is most simply accomplished as in

458, by equating the times occupied by two different parts

of the wave surface in passing from L to L'. For this purpose
the most convenient portions of the wave surface are the center

and the extreme edge. Again calling the speed of light in air

unity, we have

LA + AL' = LI- SJ+ fiS^ + S3
L' Eq. 175

But since LA = LI = -
j imatel for sraall pencils

and AL' = RL' = +s')
J

we have = - 8^-01+ p^O- #
2 0) + SZ

0- R0<

Introducing now the value of the sagitta, 458,

- a2 _ i_ _i_ (
aZ a2 \ a2 a2

"$rx ; 2f"\*rv ^r,/ --IBr, 2^'

a2

Dividing by and transposing, we obtain
Z

'
*

i

Eq.176
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which is a perfectly general equation for pencils of small aper-

ture coming from points near the axis and incident upon thin

lenses. If r is positive and rz negative, we have a double convex

lens; but if r
l
is negative while r2 is positive, we have a double

concave lens. Eq. 176 describes completely all the following

special cases, which need therefore be merely indicated.

SPECIAL CASE VII. Incident rays parallel. Focal length

460. Let 8 = 00.

Hence s' =
( J1^

)
=

/, say = second focal length.

Let

Then s = - -L ( -^^-
j

= -/ = first focal length.

In terms of /, the general equation (176) becomes

4-- = v Eq. 177
s s j

The point at which the refracted ray cuts the axis when the in-

cident ray is parallel to the axis is called the principal focus.

The power of a lens, which we may denote by P, is then defined

as the reciprocal of the focal length. For, the shorter the focal

length of a lens, the greater the change it produces on the di-

rection of rays passing through it; hence its power is said to

vary inversely as its focal length.

1 Defining equation _, _
Jr = for power of a Jiiq. J. < o

J lens.

A lens whose focal length is 1 meter is said to have a power
of 1 dioptric. The dioptric is the unit of power for lenses. A
lens whose focal length is \ meter has a power of 2 dioptrics ;

and so on. The power of a lens is simply its ability to change
the divergence or convergence of rays incident upon it.

SPECIAL CASE VIII. One Refracting Surface Plane

461. Let rj
= GO, and r

2
be negative, then we have a plano-

convex lens, for which -
-i V

i_i= :L=_:. Eq. 179
*' 8 rz

When, however, r
1
is positive and r

z
= GO, we have a convexo-

plane lens, for which 11 i

4 - - = E^i Eq . 180
y s T*
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G-raphical Construction of Image

462. So far we have concerned ourselves only with the posi-
tion of the image produced by a lens. Before we attempt to

determine its size, it will be convenient to add one more term

to our optical vocabulary.

Definition. A ray of light falling upon any point of a lens

may have such an angle of incidence that after refraction in the

lens it will emerge in a direc-

tion parallel to the direction of

incidence. If we draw a tan-

gent plane to the front surface

of the lens at the point of inci-

dence, and then draw another

plane, tangent to the back sur-

face and parallel to the first

tangent plane, we may at once

FIG. 364. illustrating the optical cen- construct the ray in the glass;
terofaiens. for jts path win be the line

joining these two points of tangency. Indeed, the lens will

behave as a plate of plane parallel glass for a ray which is

incident at A and emergent at B in Fig. 364.

That point where an undeviated ray in passing through the

substance of a lens crosses the axis is called the optical center

of the lens.

In any actual lens, that is in any lens of finite thickness, the

emergent portion of an undeviated ray is more or less shifted

at right angles to the direction of the incident ray while it

remains parallel to the incident ray. But in thin lenses, such

as we are now discussing, this shift is negligible. The advanced

student will find this part of the subject beautifully simplified

by the consideration of "principal points" and "nodal points,"

whose interesting properties would here lead us too far afield.

To construct the optical image of a point (or of any aggre-

gation of points) we have therefore only to employ any two of

the three following general principles :

(i) An incident ray parallel to the axis passes, on emergence,

through the principal focus.

(ii) Or, conversely, an incident ray which passes through the

principal focus will emerge in a direction parallel to the axis.
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(iii) An incident ray which passes through the optical center

emerges without change of direction.

Just how these principles are applied will be clear from a

careful consideration of Figs. 365 and 366. From Fig. 365

FIG. 365. Illustrating the construction of an image in a double convex lens.

will be seen how the three typical incident rays are drawn
when the lens is double convex and when the object is placed
at a distance from the lens which is greater than the focal

length. F'rom Fig. 366 will be seen the behavior of a double

concave lens.

In each case the top ray, being parallel to the axis, emerges
in a direction which passes through the focus. The middle

ray, being directed

toward the optical Q
center, emerges with-

out change of direc-

tion. The lowest of

the incident rays

passes through the

focus and hence

Axis

FIG. 366. Illustrating the construction of an image
in a double concave lens.

emerges parallel to the axis. In the particular cases here cited,

it will be observed that the double convex lens gives an image
which is real but inverted ;

while the double concave gives an

image which is virtual but erect.

Magnification

463. Definition. The ratio between the linear magnitude of

an image and the corresponding linear magnitude of the object,

both measured at right angles to the axis of the lens, is called

the linear magnification of the lens. As will be seen from the

typical Fig. 367, this ratio A'L'/AL is identical with the ratio

'/s, as will be seen by comparing the two similar triangles

ANL and A'NL'.
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FIG. 367. Illustrating magnifying power of lens.

Spherical and Chromatic Aberration

464. It would be interesting if time permitted to consider a

more general case in which the incident ray makes a larger

angle with the axis of the lens, and in which the luminous

point is at some distance from the axis. The lens would then

begin to show an imperfection known as "
spherical aberration."

The image of a point would no longer be a point.

Up to this point we have assumed that p is a constant, but if

we use light of more than one color we find that /* varies from

color to color and that the image of a luminous point on the

axis is drawn out into a string of images each of a different

color. The table illustrates this variation of refractive index.

n
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Definitions, (i) The angle of the prism is the dihedral angle
between the inclined planes which bound the refracting
medium. This angle a is represented by BAG in Fig. 368.

The line in which these inclined planes meet is called the

refracting edge of the prism.
A

'

B

FIG. 368. Refraction through a prism.

(ii) Consider an incident ray DE falling upon one surface

of the prism and, after two refractions as indicated in Fig. 368,

emerging from the second surface as the ray F&. The angle
between the incident and emergent rays, which we here denote

by S, is called the angle of deviation.

If we denote angles of incidence by i and angles of refrac-

tion by r, and distinguish between the first and second surfaces

by subscripts as before, it is evident from the figure that the

angle of the prism = = r
}
+ rv Eq. 181

and that the

angle of deviation = 8 = (ij r^) + (i'2
r
2), Eq. 182

To derive these two equations we have merely to recall that the

exterior angle of any triangle is equal to the sum of the op-

posite interior angles. These two equations enable us to deter-

mine the deviation of a ray as soon as we know iv /A, and a.

Angle of Minimum Deviation

466. As has already been pointed out, it is a consequence of

the law of refraction that when any emergent ray is replaced by
an incident ray which has the same direction and the same

position, but an opposite sense, the path of the reversed ray
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through the prism is identical with that of the direct ray. In

other words, if we consider, in Fig. 368, CrF as the incident ray,

then ED will be the emergent ray.

By applying this principle of reversibility to a prism it may
be shown that the angle of deviation is a minimum when the

path of the ray inside the prism is symmetrical with respect to the

two refracting surfaces.

For since the ray is reversible, it follows that corresponding
to any one angle of deviation there are two possible angles of

incidence, namely i
1

and i
2 (see Fig.

368). But it is an

experimental fact

that there is only one

angle of incidence at

which the deviation

is a minimum; and

the only way in

which this single
value for the angle
of incidence can be

FIG. 369. Refraction through a prism of small angle, obtained IS by mak-

ing ij
= i'2 ; from which it follows that r

l
= r

z
and hence that

the ray inside the prism is symmetrical with respect to the

two refracting surfaces.

The position of minimum deviation is one of great usefulness

in work with the spectroscope, as well as in the accurate

measurement of refractive indices.

SPECIAL CASE X. Prism of Small Refracting Angle

467. We have already seen ( 465) that in general

HORMAL

and

By definition,

But when
j
and i2

are small, as indicated in Fig. 369, we may,

approximately, write

p =
l
.i = b.. Eq. 183
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Eliminating ij
and i

z
from these equations, we have

8 = (/* !)(/*! + ?Y)
=

(A*
~~

-Oa ^^ 1^

a very convenient expression for computing the effect of thin

prisms such as are used in spectacles and stereoscopes.

Determination of Refractive Indices

468. When any transparent material can be obtained in the

form of a prism, the principle of .

minimum deviation enables one

to measure the refractive index of

the material with considerable

ease. For since the path of the

ray inside the prism is sym-
metrical, we need consider only
one half of it, as shown in Fig.

370. The conditions described

are as follows :

i
1
= i

z
and r

Hence Eqs. 181 and 182 become

a=2r
and 8 = 2 (\

FIG. 370. The measurement of

refractive indices.

Hence

and

Accordingly,

i =
2

a+B

sin I

-

snr . a
Sm

2

Eq. 185

which is the laboratory equation for the measurement of
//..

The problem then reduces itself to the measurement of the two

angles a and 8. These measures can be made by use of a pro-
tractor and a few pins; but they can be carried out with a very

high degree of accuracy by means of a divided circle and a pair

of telescopes.

Dispersion. Color

469. In tracing wave surfaces through various prisms and

lenses we have hitherto tacitly assumed that the ratio of the

speed of light in air to the speed in, say, glass was constant ;
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but experiment shows that this assumption is not allowable ex-

cept for a single color. Michelson has proved this directly;

for in measuring the speed of red light he found it 1.4 per cent

greater in water and 2.5 per cent greater in carbon bisulphide
than that of the blue. In a vacuum such as that which prob-

ably exists between us and the moon it appears to be rigidly

true that rays of all colors travel with the same speed; for

when a white star is occulted by the moon, all the various colors

in the star's light disappear at once; and when the star emerges
from behind the moon, it flashes out instantly and perfectly

white. If in the medium between us and the moon there were

as much difference between the speed of red and blue light as

there is in flint glass (see 464), the red rays from the

emerging star would reach us y
1
^ second earlier than the blue

rays. This interval of time might be too small to detect. Ac-

cordingly the eclipse of the bright component of the star Algol
has been adduced as much stronger evidence for the view that

lights of all colors travel with the same velocity in free space.

The star Algol is a rapid variable star supposed to be double,

but with one component dark. Every three days the bright

component is eclipsed. But On reappearance it does not show

the various colors in succession, as it certainly would at that

enormous distance, if the speed of light varied from one color

to another.

The advanced student will discover, indeed, that the velocity

of light in vacuo 300 million meters per second is one of

the fundamental constants of optics and of electromagnetism
as well.

In all other media the variously colored rays travel at rates

which differ not only from that in vacuo but also from each

other. Indeed, the wave theory of light is so well established

that the speed of any colored ray in any medium may be con-

sidered as determined when the refractive index of that medium
has been measured. Thus in the following table are given re-

fractive indices for certain metals which are ordinarily opaque.
But Kundt prepared prisms of these substances which were so

thin as to be transparent, and thus discovered that there are

certain substances for which the refractive index is less than

unity, which is interpreted to mean that the speed of light in

each of these bodies is greater than in vacuo.
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SUBSTANCE
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dispersion in one prism undergoes no further change of this

kind on passage through a second prism.

Newton succeeded also in compounding or adding together

these various colors which he had found in sunlight, thus ob-

taining again white light ; in this manner he demonstrated in

a synthetic way the composition of ordinary daylight, a fact

which he had already proved by analysis.

The majestic phenomenon of the rainbow he showed to be

merely a case of refraction in raindrops.

Another Illustration of .Refraction

471. The laws of refraction may be illustrated by means of

the "optical disk," one form of which is shown in Fig. 371.

Half of a circu-

lar disk of glass

A is mounted

on a wooden
base B. A hor-

izontal beam of

light from the

sun or from a

projecting lan-

tern falls on the

mirror M and is

reflected thence

to a second mir-
FIG. 371. TatnalPs form of optical disk. -.T . r ,

ror N. After

leaving JV, the beam is incident on the upper plane face of the

glass disk A.

The surface of the mirror N, with

the exception of a narrow strip, is

covered with black paper, as shown
in Fig. 372. By means of this dia-

phragm, the light incident on the

refracting surface is restricted to a

narrow beam. This beam falls upon
the whitened face of the plate B at

a small angle, so that the course of

the incident ray in air and the re-

fracted ray in glass may be plainly

B

FIG. 372.
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FIG. 373.

seen. The frame which carries the two mirrors may be revolved

around the pivot by which it is attached to the base .B, and in

this way the angle of incidence may be varied at will.

If the mirror N be placed in the position shown in Fig. 373,

the refraction will take place on passing from glass into air.

The incident beam GrD, the re-

fracted beam DE, and the reflected

beam DF are now all seen at the

same time. The refracted beam is

bent away from the normal, while

the incident and reflected beams

make equal angles with the normal.

By moving the mirror N toward

the right, in Fig. 373, the angle
of incidence is increased ; but the

angle of refraction increases more

rapidly than the angle of incidence.

When the critical angle of inci-

dence is reached, the angle of re-

fraction has become a right angle, and the beam DE just

grazes the refracting suriace. On increasing the angle of

incidence beyond this critical value, it will be found that

there is no refracted beam, the light being now totally

reflected.

Problems

1. Find the focal length of a thin double convex lens made of glass

whose mean refractive index is 1.50, the radius of curvature of the first sur-

face being + 25 cm. and that of the second being 30 cm.

2. An object is placed on the axis of a double convex lens whose

focal length is + 20 in. The object is placed 50 in. to the left of the lens.

Find the position and size of the image.

3. The projection lens of a lantern (Fig. 392)

has a focal length of 1 ft. and is used to throw

a picture upon a screen which is 24 ft. away.
How far back of the lens must one place the glass

slide ?

4. A 45-degree prism is used as a totally

reflecting mirror in the manner indicated in Fig.

374. What is the least value of refractive

index which the glass can have?

5. A gas flame placed in front of a thick glass mirror silvered on the back

gives a series of images. Explain the relative intensity and position of these.

4o

FIG. 374.
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U

6. How far in front of a double convex lens must an object be placed

in order to give an inverted image of the same size as the object ?

7. A simple pocket magnifying glass has a focal length of 2 in.

Find the size and position of the image when the object is placed between

the lens and the focus at a distance of in. from the focus.

8. Locate and describe the image produced by two thin lenses situated

as shown in Fig. 375,

fo- +80 cm.,

fs = + 4 cm.,

s - - 1000 cm.,

where the subscripts indicate

the lenses referred to.

9. Locate and describe the image produced by the combination of thin

lenses shown in Fig. 376.
"

f = + 6 in.

/,= -2 in.

sa = 2 mi.

-----IOOO-CM7 90-CM7

2~M1hB8

V
o

FIG. 376.

10. What must be the refracting angle of a prism of ordinary glass

(ft,
= 1.52) in order that its minimum deviation should be 15?

11. Prove that if p = 1.333 for water and 1.5 for glass, the focal length
of a glass is increased four times by immersing it in water.

12. Prove that in the case of the ordinary pocket lens double convex

magnifying glass the magnification is D/f, where D is the distance of

distinct vision.

13. Two parallel walls are 20 ft. apart. It is desired to project upon
one wall, with a magnification of 6, an object situated on the other wall.

Where must the lens be placed and what must be its focal length?

VII. INTERFERENCE AND DIFFRACTION

472. Up to the present we have been considering the conse-

quences of only two fundamental facts, namely (i) the recti-

linear propagation, and (ii) the finite, but variable, speed of

light.
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But there is a large group of important phenomena which

find their explanation in the fact that the light waves producing
them are compelled to pass through apertures which are small

when measured in terms of a wave length of light. These

beautiful phenomena were first cleared up by the brilliant

young French physicist Fresnel (1788-1827), whose particular

achievements in optics are

(i) The introduction of the idea that light consists in

transverse vibrations, and

(ii) The combination of the principle of Huygens with that

of interference ;
in other words, the union of the principles of

Huygens and Young. Just how this second idea is employed
to explain what happens when light passes through small

apertures will be clear from the following illustrations.

CASE I. Passage of Plane Waves through a Narrow Slit: Effect

upon a Distant Screen

473. When the glower of a Nernst lamp or any other nearly

linear source of light is viewed through a narrow slit, held par-

allel to the source and close to the eye, a series of colored bands

separated by dark bands something like those shown in Fig.

377 are seen. If monochromatic light is used, the spaces in

the figure represented as white are colored. The central space

FIG. 377. Image of a linear source produced by a narrow slit.

is always broader and brighter than any of those on either side.

For this experiment a single ruling having a breadth of from

2^ to
-^Q millimeter, made upon the back of a piece of silvered

mirror, is well adapted.
It is often convenient also to observe this phenomenon by

viewing a small brilliant source through the narrow opening
between two fingers of one's hand. These bands were called by

Fraunhofer, who was one of the earliest to study them,
"
spec-

tra of the first class."

Fresnel's explanation is as follows : Let AB (Fig. 378) be a

horizontal section across a vertical slit. Let w indicate the
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successive incident wave fronts, and MM' the screen illu-

minated by the light passing through the slit.

FIG. 378. Diffraction through a slit.

Two queries now demand answer: (i) what happens at

various points along the screen, the width of the aperture *

remaining constant? and (ii) what happens at any one point on

the screen, say P, while the width of the aperture varies ?

474. (i) Taking these questions in order, let us consider any
wave front passing through the slit as divided up into narrow

vertical strips such that when viewed from any given direction,

say AD (Fig. 379), the edges
of each strip will differ by
half a wave length in their

distance from the line AC,
which is drawn perpendicu-
lar to this given direction.

These strips differing by half

a wave length in their dis-

tance from AC are called,

after their inventor,
" Fresnel

zones."

If the screen MM' (Fig.

378) be at a sufficient distance

from the slit, the arc of a circle drawn through A and (7, with P
as a center, will differ inappreciably from the straight line AC.
Under these circumstances the different Fresnel zones in the

aperture will each, on Huygens' Principle, send out light to

every point of the screen and will each produce a luminous dis-

turbance (displacement of the ether) at P, with a phase which

FIG. 379. Fresnel zones.
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is exactly 180 different from that produced by its next door

neighbor. The rays of light which reach the point P from the

various zones will differ in phase at P exactly as they differ in

phase at the line AC.
When the incident wave (w in Fig. 378) is plane, the phase

of each zone on reaching P increases in arithmetic progression
from A to B. It is then an easy matter to compute the effect

of all the Fresnel zones at any point P, provided we assume

what is here practically true, namely, that the effect of every
zone at P is the same except in phase : in other words, we shall

assume that so far as regards distance, direction, etc., the zones

are similarly situated.

Let PQ represent that point on the screen which is nearest the

central point of the incident wave, and let 5 denote the distance of

this point P from the center of the slit 0. Consider now the

total illumination at any point of the screen P distant x cm.

from P . Let n denote the number of Fresnel zones in the slit

with respect to the point P. Note that "number of Fresnel

zones" has no meaning except with reference to some one

point. Since the triangles ABC and OPP are similar, it fol-

lows that

x BC BO
AC

X _D U _O L/ . ,
-,

T = -j-^
=

, approximately,

where s is the width of the slit ; and since there are n zones in

the slit, it is evident from the definition of the zones that

,

where X is the wave length of the incident light. Hence

x = *?*.\ Eq. 187
* 2

This equation tells us just how n varies as the point P moves

along the screen, while 5, s, and X remain constant.

For any given position of P, either one of two things may
happen, according as n is an odd or even number.

(<z) When n is even, it is clear that all the zones of the slit

(1, 2, 3, 4, w, Fig. 380) will just annul each other in pairs.

Suppose w=2; then .5(7= X; and the aperture may accord-

ingly be divided into two parts, any point of one of which will

2i
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be in exactly opposite phase to the corresponding point in the

other. The effect at P will therefore be nil. If P move

further away from the center of the screen, so that n = 4,

then BC=2\. Now each half of the aperture may again be

broken up into two parts, each of which will interfere with the

other, since they differ in phase by _ Hence they produce no

displacement of the ether no light at P. The condition

for darkness (black band) at any point P then is that the slit

shall comprise an even number of Fresnel zones with respect to

P; or, in terms of algebra, n shall be even in Eq. 187.

(6) When n is odd, the zones of the slit will interfere in pairs

as before ; but there will always be one left over which will

produce a disturbance in the ether at P. And hence the con-

dition that P shall lie on a bright band is that the slit width be

an odd number of Fresnel zones, i.e. n in Eq. 187 shall be odd.

Thus, at the center of

the screen P , the aper-

ture will contain at

most one Fresnel zone ?

n = 1 ; the light from

every part of the slit

reaches P in nearly
FIG. 380. the same phase. Hence

the center of the screen is nearly always bright. If rc= 3,

BC = | \. The aperture may therefore be divided into three

zones, two of which will exactly annul one another, while the

third will remain to illuminate the screen at P. This condi-

tion gives rise to the first bright band on either side of the

center. For the second bright band n=%\; for the third,

n = X, etc.

Under the above conditions which we have assumed in this

case, the plane wave, narrow slit, and distant screen, it is clear

that with respect to P , which is the middle of the geometrical

image, the slit will contain in general less than one Fresnel

zone. There is, therefore, no chance for interference between

different zones, and the center of the screen is always bright.
But as one recedes from the center to either side, the zones

increase in number, and as n passes from odd to even and back

again, the illumination passes from bright to dark and back
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again in the manner shown in Fig. 377 and described in Eq.
187.

475. (ii) Let us ntiw take up the second query asked above.

What happens at any one point 011 the screen when the slit width

is varied, other conditions remaining constant ? As one jaw of

the slit is made to approach the other it must cut off one

Fresnel zone after another. As the zones diminish in number,
n in Eq. 187 will become alternately odd and even ; which, in

turn, means that the fixed point on the screen becomes alter-

nately bright and dark. This prediction is easily verified by

viewing the filament of an incandescent lamp through a cut in

a visiting card which can be bent so as to make the slit wider

or narrower. In this case the eye acts as a telescope, receiv-

ing the parallel rays which come through the slit and bringing
them to focus on the retina.

We pass now to another case of diffraction through a narrow

slit, namely,

CASE II. Incident Wave Plane: /Screen near Aperture.

476. Let the aperture be again divided into Fresnel zones

such that the center of any one is half a wave length further

away from P than its next door neighbor. The zones will now
differ in size, direction,

in

and distance, making the

problem too difficult for

any treatment more ele-

mentary than that of the

integral calculus. But if

we confine our attention to

the center of the screen,

i.e. to the point P , the ?o

solution becomes simple

again. For we have now only to consider each half of the slit:

divide these up into Fresnel zones with respect to P
Q

. If

either half contains an even number of zones, they will very

nearly annul each other so far as the effect at P .is concerned,

and darkness will result. But if each half contains an odd

number of zones, they may interfere in pairs, but there will

always be one zone uncompensated, and this will illuminate P ,
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LINEAR
SOURCE

making it bright. As P approaches or recedes from the

center of the slit, the number of zones in the half slit will pass

alternately from even to odd, and the illumination will change

alternately from darkness to

brightness. This effect is

easily observed by placing a

FIG. 382,-Fresnei's diffraction phenome-
narrow aperture, say

-
2V milli-

non. meter, at a distance of, say,
1 meter from a linear source. If then a compound microscope
be focused upon a region lying within the first millimeter

from the slit, the alternations of bright and dark centers

will be easily seen.

Intensity of Diffracted Light

477. Heretofore we have been concerned mainly with the

positions of the maxima and minima of intensity upon the

illuminated screen. But the late Professor Cornu (1841-1902),
a distinguished French physicist, has given us a method of

great simplicity and elegance for graphically measuring the

intensity at any point on the screen so soon as we know the

phase and displacement due to each of the various elements of

the wave surface illuminating the slit.

To obtain the resultant effect of any number of disturbances

at the point P, we have merely to lay off on any diagram

(Fig. 383), beginning with as origin, the various displace-

ments, each with a length which

shall measure the amount of the

displacement and each at an angle
to the axis of X which shall measure

its phase. We know that the re-

sultant of any number of vector

quantities laid off in this manner is

represented by the side which closes

the polygon, in this case by the Q
dotted line OP. Any element in FIG. 383. illustrating the con-

.1 , ., T, i struction of Cornu's spiral.
this spiral represents the amplitude
of the vibration transmitted by the corresponding element of

the wave surface passing through the slit.

If we consider the illumination at the center of the screen, we

may divide the wave front into two symmetrical halves, each
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of which will give rise to a spiral like that in Fig. 383. The
resultant amplitude then, in a case of this kind, will be given

by joining the two extremities of the spiral as indicated by the

dotted line in Fig. 384. If we consider a point on the screen

which is at one side of the center, then the number of elements

in one branch of the spiral will, of course, be larger than in the

FIG. 384. Cornu's spiral.

other, and the resultant amplitude will vary accordingly. To
obtain the effect of the first Fresnel zone it will be necessary to

lay off elements of the wave surface, starting from any given

point, until one reaches a point where the total phase differ-

% ^
ence from the starting point is 180 or -. This point is

indicated in Fig. 384 by Mv at which point the tangent is

parallel to OX, but is drawn in the opposite sense. At M
2

the phase difference is 360 or 2(-J. Hence the vector OMZ

represents the amplitude resultant from the first two Fresnel

zones ; and so on.

Since the intensity of light at any point is measured by the

luminous energy which falls upon unit area in unit time at

that point, we must next find how to derive the intensity from

the amplitude. The energy of a particle m moving with a

simple harmonic motion is ^ mv 2
. And since the velocity at
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the center varies as the amplitude, the energy of any simple

harmonic disturbance will vary as the square of the amplitude.

To obtain the intensity at any point of the screen we have

therefore only to square the amplitude as given by Cornu's

spiral.

CASE III. Diffraction of a Plane Wave at a Pair of Narrow

Slits. Spectra of the Second Class

478. Imagine two narrow slits, such as the one which we

have just been studying, ruled side by side about ^ millimeter

apart. On viewing, through this pair of apertures, any linear

source such as a Nernst filament or even an ordinary gas jet

turned low, a series of

1
|

I w alternately bright and

dark bands are seen to

occupy the center of

the field, i.e. the re-

gion covered by the

broad central bright

band due to either slit

alone. We assume

that the source is suf-

ficiently distant from

the apertures to make

the incident waves

practically plane, and

that the screen, which

may be the retina of the- eye, is sufficiently distant to

permit us to consider the arc AC, described about P as a

center, as a straight line. To each element of the incident

wave surface in the aperture A will correspond an element in

the aperture B. The effect at any point P on the screen will

be obtained when we add up the effects of all the elements in

these two slits. Use red glass so as to make the incident light

monochromatic. It is at once seen by the method of Case I

that, if P is so chosen as to make BC = -, we shall have dark-

ness at P ; for each element in the aperture A will reach P
with a phase which is just 180 ahead of the corresponding
element in B ; the resultant amplitude at P will therefore be

FIG. 385. Diffraction through a pair of slits.
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zero. The same thing will happen if P be moved along the

screen to any position, say #, where BC is any odd number of

half wave lengths, i.e. when BC= (%n + 1)- , n being the series
Zi

of natural numbers, beginning with zero. The triangles ABC
and OPP are similar ; therefore if we denote the distance

between the slits by a + d, and the distance of the screen by 5,

we have

~ sin 0,

where d is the angle of diffraction P
Q
OP. The condition that

P shall lie on a dark band is therefore

Eq. 188

The condition for a bright band is obtained in the same

only now the difference of path between two corresponding
elements one from each slit must be an even number of

half wave lengths. For two rays of light which are any whole

number of wave lengths apart will reenforce each other and, if

their amplitudes are equal will, produce an intensity four times

as great as that of either one alone. The position x of a bright
band on the illuminated screen is accordingly expressed as fol-

lows in terms of algebra :

(a + d) sin 6 = 2n -. Condition for
gq. 189

2 bright band.

Let us now remove the red glass and view these bands in

white light. It is then seen that the bright bands are colored,

bluish green on the side toward the center of the field and red

on the side away from the center of the field. Each of these

bands is in fact a spectrum of the source. Fraunhofer called

these "
spectra of the second class

"
to distinguish them from

those which are seen through a single slit.

The advanced student will find the distribution of intensity

among these various spectra an enticing problem. In a case

such as the present, where both the incident and diffracted

waves are plane, it may be easily shown that Cornu's spiral

becomes a circle.
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VIEW

TELESCOPE

CASE IV. Diffraction through a Large Number of Equidistant
Parallel Slits. The Plane Diffraction Grating

479. Here again we shall consider the incident and diffracted

wave fronts as plane, since this is the case principally used in

spectroscopy.
Let AE (Fig. 386) represent an opaque screen in which have

been cut a large number of equidistant parallel apertures. Let

a be the width of each

aperture and d the width

of the opaque portion

between any two con-

secutive apertures.
Then a + d will be what

is called "the grating

space," that is, the dis-

tance between any two

corresponding elements

of the wave surface in

two consecutive aper-

tures.

If the source of light

is placed in the principal

focus of the collimator

lens '
the emergent wave

fronts wv wv etc., will be

plane. In like manner, the diffracted wave AD will reach the

principal focus of the view telescope without any change of

phase in its various parts ; for the "
optical distance

"
to the

principal focus P is the same for all parts of AD it being

supposed that the axis of the telescope is perpendicular to AD.

Hence, the phase difference with which rays from the various

apertures reach the plane AD is precisely the phase difference

with which they will reach the focus P. We need, therefore,

to consider only the phase in which the light reaches the plane

AD.

480. Two principal questions now arise: (i) what angle
must the axis of the view telescope make with the normal to

the grating in order that, for any one wave length X, the point

P may be a maximum of intensity? and (ii) what is the inten-

FIG. 386. The diffraction grating.
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sity of light at any point P, in terms of the intensity of the

light incident upon any one of the n apertures? The first

only of these queries will be here considered ; the answer to

the second will be found in Eq. 196.

It is evident from previous cases that when the telescope is

directed normally upon the grating, the light from each aper-

ture will reach P in the same phase and we shall have the

greatest possible intensity. This bright band is called the

"central image." As P moves to the left, say, the field will

remain more or less bright until the distance DE (which is the

retardation of the ray at one end of the grating over that at

the other end) becomes equal to one wave length. When this

occurs, the light from the aperture A will be just 180 out of

phase with the light from the middle of the grating ;
in like

manner the light from B will be just 180 out of phase with

that from the ruling next to the middle, and so on, the effect

being that" the light from one half the grating is annulled by
the light from the other half. When DE = 2 A,, the point P
will again be dark

;
for then the grating will interfere by quar-

ters, the light from each quarter being 180 out of phase with

the light from the adjoining quarter, giving absolute darkness

at P. At points between these there will be slight illumina-

tion ; for instance, at the point where DE = 3-; for now the

first third of the grating will interfere destructively with the

second third, leaving the last third to illuminate the point P.

A slight maximum, due to light from one fifth of the grating,

will also occur when DE = 5
; and so on.

z

The student who is interested will do well to read Professor

Wood's simple, clear, and clever discussion of these maxima

(called secondary maxima, or "spectra of third class," by

Fraunhofer) in the Philosophical Magazine for October, 1907.

But the first intense illumination on either side of the cen-

tral image will occur when DE is equal to as many wave

lengths as there are spaces on the grating; for then OB will

be equal to one wave length, and the light from each aperture
will reach the surface AD in precisely the same phase. The

light which is thus concentrated at P is called the "
spectrum

of the first order." If the difference of phase between corre-
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spending elements in two successive apertures is n\, the light

which then reaches P in maximum intensity is said to be the

"spectrum of the wth order." So long, therefore, as the inci-

dent wave front is parallel to the grating, the condition that P
shall be bright is that CB shall be equal to a whole number of

wave lengths, or, in terms of algebra,

(a + d} sin 6 = 2 n -,
JB

Eq. 190

where 6 is the angle of diffraction, DAE.
. If, however, the angle of incidence i is not zero (as in Fig.

386) but is an angle HAE such as indicated in Fig. 387, then

the retardation of the extreme ray, between the two wave fronts

AH and AD, is HE + ED. Hence, the general condition that

P shall be bright becomes

(a + 6 + sin i) = 2 n -
Eq. 191

A grating of the kind just

described, in which the dif-

fracted light passes through

parallel apertures, is called a

transmission grating.

Reflection Gratings

481. The opaque regions

of a transmission grating are

generally produced by ruling

glass surfaces with a diamond

point. But the diamond point

deteriorates very rapidly dur-

ing this work and hence it is

customary to employ highly

polished speculum metal for the ruled surface. The speculum
metal is softer than the glass and will permit the diamond point
to cut many more lines upon it than upon glass. A grating ruled

upon a polished opaque surface behaves exactly as a transmis-

sion grating in which the incident wave is the image of the actual

wave falling upon the opaque grating. Thus, in Fig. 388, where

the grating is supposed to be one of speculum metal, the effect

is precisely the same as if the incident wave AH were replaced

by its image AH1 and the grating were at the same time made

FIG. 387.
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transparent. In either case the retardation of the extreme ray
is HE + DE, and the position of the spectrum of the nth order

is given by

O + <f)(sin i + sin 0) = 2 TO*, Eq. 191

where, as above, i = angle JSAff, and 6 = angle EAD. Ruled

surfaces at which the reflected wave front is diffracted are

called reflection gratings.

The best gratings of the world are ruled on Rowland's en-

gine at Baltimore, and on Michelson's at Chicago. In most

cases they contain some-

where between five and

twenty thousand lines to

the inch ; so that in many
cases the polished surface

between two adjacent rul-

ings becomes vanishingly
small. Notwithstanding
this fineness Wallace,

Thorpe, and Ives have

shown that it is possible, by
means of transparent cellu-

loid, tO make a "cast" of a FIG. 388.- The reflection grating.

reflection grating and to mount this cast upon a piece of plane

glass in such a way as to give a very perfect spectrum. A
transmission grating produced in this way, by using an opaque

grating as a mould, is called a replica.

The Angstrom Unit

482. The numerical value of a wave length of light is usually expressed,

not in terms of centimeters, but in terms of a much smaller unit introduced
o o

by the Swedish physicist Angstrom, and called the "Angstrom unit." Its

value is the hundred-millionth of a centimeter. But by action of the Inter-

national Solar Union at Paris in 1907 this unit is now defined as
6438.4696

of the wave length of the red cadmium ray in air at normal pressure and

15 C.
;
and is called the "

angstrom."

Resolving Power of a G-rating

483. A general answer to the question raised above ( 480)
as to intensity which a grating will yield in any one direction
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must be postponed for advanced study. But it is not difficult

to show that the sharpness of the image of any linear source of

light, such as the illuminated slit of a spectroscope ( 500),

viewed through a grating, varies directly as the number of lines

on the grating. The same source presents very different ap-

pearances according to the number of apertures through which

it is viewed. If ordinates represent intensities and abscissas

wave lengths, (a) in Fig. 389 will illustrate the broad diffuse

appearance of line when seen

through a very short grating :

(5) and (V) show the same line

through gratings which contain

more lines. The reason for this

(6)

"

'(<0~ is as follows : suppose the spec-

FIG. 389. illustrating the effect of trum of the wth order to be
small and large resolving power. seen in any direction 6 ; then if

the incident ray be normal to the grating, we have

O+ d) sin 6 n\. Eq. 190

If N be the total number of lines in the grating, we have

N(a + d~) sin 6 = Nn\ = retardation of last ray over the first

ray. This retardation would amount toJZDin. Fig. 386. Sup-

pose now that the direction of view be changed from to #', a

very small amount, so that

N(a + d) sin & = Nn\ + X = Nn\',

in other words, so that the retardation of the last ray becomes

one wave length greater than before. We shall then have de-

structive interference between the light from the two halves

of the grating. If it contain one thousand lines, the light

from the first aperture will be just half a wave length ahead of

that from the 501st aperture : in like manner the second aper-

ture interferes with the 502d; and so on.

From the two preceding equations, it follows that

(a + rf)(sin & - sin 0) = n(\' -\) = , Eq. 192

which means that for any given wave length the angular dis-

tance from a point of maximum intensity 6 to the next mini-

mum 9' is inversely proportional to the total number of lines

N on the grating and to the spacing of the lines.



LIGHT 493

The ability of a grating to separate the images of a single

source, emitting two nearly equal wave lengths X and X', is

called its resolving power. The numerical value of the resolv-

ing power is measured by the following expression :

Resolving power = = nN, Eq. 193
X X

where X X' is the difference of wave length between the

closest images which the grating will show as double. As will

be seen from Eq. 192, this resolving power depends (if the grat-

ing be perfect in other respects, which it seldom is) upon the prod-

uct of the total number of rulings on the grating N by the

order of the spectrum n.

The phenomena which are seen when a source of light emit-

ting more than one wave length is viewed through a grating
will be taken up under the head of the spectroscope.

CASE V. Rectilinear Propagation of Light

484. When, on a clear night, one observes a star with the

naked eye, why is it that the plane wave front which strikes

him in the face, so to speak, gives the impression of light com-

ing from a single direction? How is it possible to screen off all

of this wave front except a small portion immediately bounding
the direction of the star without appreciably affecting the light

which reaches the eye from the star ? This is the great prob-
lem of the rectilinear propagation of light which even one

hundred years ago was still demanding explanation.
The simple and direct answer which Fresnel gave, and which

was perfected by Stokes near the middle of the nineteenth cen-

tury, is based upon the principles of diffraction and interference

which we have just been studying. The time at our disposal

will not permit of the reproduction of their argument here ;

but the interested student will find himself easily able to fol-

low the discussion of this subject in some of the larger com-

pendia of physics. The same remark might be made concerning
diffraction in the case of light passing a straight edge, a circu-

lar aperture, or a narrow wire.

Problems

1. A linear aperture whose width is ^ff
cm. is placed parallel to and

60 cm. in front of a screen. If this aperture be illuminated with a beam
of parallel rays whose angle of incidence is zero, and whose wave length is
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-STJ^QV cm., what will be the distance between the central image and the first

dark band of the diffraction image on the screen? Am. 1.5+ cm.

2. A glass grating is ruled with 4250 lines to the centimeter. When a

plane wave of yellow light strikes this grating at perpendicular incidence, it

is observed that the spectrum of the second order is deviated (diffracted)

through an angle of 30. What is the wave length of the yellow light?

Ans. X = 0.00005880 cm.

3. A source of light emits two colors. When examined through a grat-

ing, it is found that the spectrum of the 4th order for one color is seen in

the same direction as that of the 5th order for the other color. What is

the ratio of the wave lengths for these two colors ?

4. A certain spectrum of the 2d order is produced by a grating which is

ruled with 400 lines to the millimeter. Another spectrum of the same

source but of the 4th order is produced by a grating which contains 300

lines to the inch. Compare the lengths of these two spectra.

5. Two point sources of light, each in the same phase, are situated at a

distance of ^ mm. apart. If the wave length of the light which they emit

is 6500 A, how far apart will be the spectra of the second class on a screen

one meter away from the sources and parallel to the line joining the sources?

6. How much will the phase of a ray of light be retarded by inserting in

its path a cover glass one millimeter thick having a refractive index of 1.6?

Assume the light to be that of the yellow sodium flame for which X = 5893 A. ,

7. Prove that, if the opaque spaces are exactly equal to transparent spaces
in a transmission grating, spectra of the fourth order will be missing.



CHAPTER XII

OPTICAL INSTRUMENTS

I. The Photographic Camera

485. A photographic camera, which is perhaps the simplest

and best known of all optical instruments, is merely a box fitted

at one end with a converging lens and at the other end with a

device for holding a plate which is sensitive to light. Ety-

mology of camera ? The sides of this box are usually made of

folded leather so that the distance of the plate P (Fig. 890)
from the lens L may be varied at will.

The rear end of the camera is fur- p

nished also with a ground glass which

may be placed in the same position

that the sensitive plate is to occupy
later.

The first step in taking a photograph FIG. 390. Section of photo-

consists in placing this ground glass in graphic camera,

such a position that the lens will produce upon it a sharp image
of the object whose photograph is desired. This is called

"focusing."
The second step is to cover the lens so that no light can

enter the camera ; then put the sensitive plate in the position

formerly occupied by the ground glass and "
expose

"
the plate

by again uncovering the lens for the proper length of time.

The third step is to "
develop

" and " fix
"

the plate. The

lights and shadows are now just reversed from what they are in

the subject. The plate in its present condition is therefore

called a "negative."
The fourth step, called "

printing," again reverses the lights

and shadows and gives the finished picture, which is called the

"positive."
A good photographic lens is one :

(a) Which has the same focal length for yellow as for violet

light ; yellow rays being those which are principally used in

495
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focusing on the ground glass, violet rays being those which

most affect the sensitive plate. In other words, the lens must

be corrected for chromatic aberration, 464.

(6) Which has the same focal length for the edges as for the

center of the lens. When this is so, the whole of the lens can

be used, and the photograph taken with a short exposure.
Such lenses are said to be "quick"; they are corrected for

spherical aberration.

(c) Which produces an image distinct, not only at the center,

but clear out to the edges of the sensitive plate for which it is

intended. Such a lens is said to have a "flat field."

(t?) Which gives the same magnifying power at the center

and at. the edge of the photographic plate. If the lens is not

carefully corrected so as to give this result, buildings and geo-
metrical figures will be distorted. A lens so corrected is said

to be "rectilinear."

For special purposes, such as portrait or landscape photog-

raphy, it is obviously unnecessary that the lens should possess

all of these four qualities.

II. The Human Eye

486. The eye, from an optical point of view, is a camera in

which the sensitive photographic plate is replaced by a sensitive

membrane, called the retina. This retina is connected with a

nerve called the optic nerve, which conveys the impression to

the brain.

In the front part of the eye is placed a converging lens ;

this is called the crystalline lens. This lens projects upon the

retina an image of external objects. The distance between this

lens and the retina remains practically constant. How, then,

can the eye see objects which lie at different distances from the

eye ? For it is evident from

Fig. 365 that the distance of

the image from the lens

ordinarily varies with the

distance of the object from

the lens. The answer to

FIG. 391. Longitudinal section of the this question lies in the fact
human eye. that the muscleg of the eye

are able to change the focal length of the crystalline lens at
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will. The power of this lens is thus varied automatically to

suit the distance of the object. This process of changing the

focal length of the eye to suit the distance of the object is

called accommodation.

In front of the eye hangs a dark-colored diaphragm, in the

center of which is an opening called the pupil. This aperture

varies with the amount of light falling upon the eye. As the

light grows brighter, the pupil contracts; as the light grows

weaker, the pupil enlarges. Examine the pupil of your own

eye in a mirror after remaining for a few minutes in a dark

room ; in a moment after coming into the light the pupil con-

tracts again to its natural size.

Every student should examine carefully one of these little

pasteboard models, called "
skiascopic eyes

"
; nothing will

make the structure of the eye so plain. The model is provided
with a lens which enables one to easily examine its retina with

the ophthalmoscope of Helmholtz, and to try the effect of various

spectacle lenses.

III. The Projection Lantern

487. This instrument consists essentially of three parts,

namely:

(i) A brilliant source of light A, Fig. 392.

(ii) A pair of large short focus lenses (7, of large aperture,

which shall distribute this strong light uniformly over the

object S which is to be projected, and

.W

FIG. 392. The projection lantern.

(iii) A fairly well corrected lens P, which throws upon the

screen or wall W an enlarged image of the picture on the

glass slide. This second lens is generally of the rectilinear type
and is called the "

projection
"
or "

focusing
"

lens.

2K
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All that here needs special mention is the function of the

condensing lens (7, which has nothing to do with producing the

picture on the screen, except to deflect towards the axis those

rays which would otherwise pass through the edge of the slide

and never enter the projection lens. If the condenser is re-

moved, the effect is to diminish the area of the slide which is

visible on the screen. Evidently the slide and the screen must

be in conjugate foci of the projection lens. If the object to be

projected is opaque, the light A and the lens P must of course

both be on the same side of the object.

IV. The Simple Microscope

488. This instrument consists usually of a single converging
lens of short focal length. The distinguishing feature of the

simple microscope is that the lens is always placed at a distance

from the object which is less than its focal length. Now, if the

object (Fig. 393) were placed exactly at the focus, the power

FIG. 393. The simple microscope.

of the lens would be just sufficient to flatten out the curved

wave front wfv so that it would emerge as a plane wave front.

But if the object be placed between the focus and the lens, as

in this case, wf-^ will be too convex for the lens to overcome its

curvature entirely ;
the emergent wave front wf2 will therefore

still be convex on its advancing side. The image I will there-

fore lie on the same side of the lens as the object 0. The

image will, therefore ( 441), be virtual and erect. Since the

image and the object subtend the same angle 6 at the center

of the lens, it is evident that the image will be larger than the

object in the following ratio :

Size of image _ Distance of image from lens

Size of object Distance of object from lens

But since the lens is always held very near the eye, the dis-

tance of the image is practically the distance of distinct vision,

say 10 inches ; and since the object is always held very near
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EYE OF
O3SERVER

the principal focus of the lens, its distance from the lens is

practically the focal length. Denote this focal length by f,

and the distance of distinct vision by v ; then the magnifying

power of the simple microscope may be described in terms of

algebra as follows : T
^__^ Equation of simple p -in A

Q -f' microscope.

where is a linear dimension of the object, and / the corre-

sponding linear dimension of the image.
We might, of course, bring an object up close to the eye so

that it would subtend an angle as large as that of the image
seen through the microscope, but unfortunately the human eye
cannot accommodate for these short distances. The necessity
for the microscope arises then from our limited power of ac-

commodation.

Distinguish carefully between the "power" of a lens

( 460), which is the reciprocal of its

focal length measuring its ability to

change the curvature of a wave sur-

face, and its "
magnifying power,"

which is the ratio of image to object.

V. The Compound Microscope

489. The compound microscope is

an instrument which is rendered nec-

essary by the fact that the magnify-

ing power of the simple microscope
cannot be pushed very far. As indi-

cated in Fig. 394, the essential fea-

tures of this instrument are:

(i) A very perfect, but highly com-

plex, lens placed close to the object

and giving a magnified real and in-

verted image of the object. From its

proximity to the object, this lens is

called the objective.

(ii) The other essential of the com-

pound microscope is a simple micro-

scope with which to examine the real

image produced by the objective.

Fio. 394. The compound
microscope.
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From its proximity to the eye, this lens is called the

eyepiece.

If we denote by F the focal length of the objective and by T
the length of the tube of the microscope, the magnification
which the objective produces is practically T/F\ for T and F
are the respective distances of image and object from the ob-

jective. As we have seen above ( 488), the magnification
which the simple microscope here the eyepiece produces is

the distance of distinct vision divided by its focal length v/f.

Consequently the magnifying power of the compound micro-

scope may be described as follows:

____^y Equation of com- p -jqr
Q Pf' pound microscope.

The perfection of the modern compound microscope is due

very largely to the late Professor Abbe of the University of

Jena, working in conjunction with the optician Carl Zeiss.

Its complete theory forms several of the most beautiful chapters
in geometrical and physical optics.

VI. The Astronomical Telescope

490. The astronomical telescope is an instrument used for

viewing very distant objects. The rays of light which fall

upon the telescope are, therefore, generally parallel.

The purpose of the telescope is twofold :

(1) To gather a large amount of light and condense it into

a small bundle of rays, so that these can all enter the pupil

of the eye and thus make any luminous point appear much

brighter than it would be to the naked eye.

(2) To magnify the angle subtended by two luminous points,

and thus make them appear farther apart than when seen by
the naked eye.

These purposes are accomplished most simply by two con-

verging lenses, L and E. The lens L is called the object lens,

or simply the objective; the lens E is called the eye lens, or,

more frequently, the eyepiece.

The wave front wf^ sent out by a star is practically plane when
it strikes the objective, as is indicated in Fig. 395. The effect

of the objective is to turn this plane wave front into a spherical

one wf Let F denote the center of curvature of the wave
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front wfv This is called the principal focus of the telescope.

The eye lens is so adjusted that its principal focus also lies at

F. Therefore the rays which emerge from the eye lens are again

parallel.

The effect, therefore, of a large telescope, such as that at the

Lick Observatory or at the Yerkes Observatory, is to take

a bundle of parallel rays forming a cylinder a yard or so in

diameter and condense it into a small cylinder of parallel rays

FIG. 395. The astronomical telescope.

just large enough to enter the pupil of the eye. So that a star

(which is practically a luminous point) appears immensely

brighter when viewed through a telescope than it does to the

naked eye.

491. If two stars close together, say a double star, be viewed

through a telescope, each will send a beam of parallel rays

through the instrument, as indicated in Fig. 396. But the two

parallel beams which emerge from the eye lens make with each

other a much larger angle than do the two parallel beams which

enter the objective. The telescope thus magnifies the angular

distance between two

stars. It thus en-

ables us to recog-
nize certain stars as

double when to the L

naked eye they ap-
Fl - 396-~ The telescope as used to magnify an angle.

pear single. For we can only distinguish two luminous points

as separate when they subtend at the eye an angle which is

greater than about two minutes of arc.

VII. The Opera Glass

492. The earliest telescopes did not employ a converging

eyepiece such as those represented in Figs. 395 and 396 ; but

instead they used a double concave eye lens, the power of which

was equal to and opposite in sign to that of the human eye.
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The telescope with which Galileo discovered four satellites of

Jupiter is shown in Fig. 397. On account of its compactness
and because it gives an upright image, this same principle is

employed in the modern opera glass.

FIG. 397. The opera glass.

If we assume what is nearly true, namely, that the eyepiece

produces a curvature of the incident wave front, which is ex-

actly equal and opposite that produced by the human eye, then

by placing the objective of the opera glass at such a distance

that its principal focus lies on the retina, we shall see the ob-

ject distinctly ; and since the image is much larger than that

produced by the naked eye, we shall see the object magnified.
In short, the eyepiece and the eye act together, as if they con-

stituted a piece of plane glass. The ordinary opera glass here

described has been immensely improved in recent years by the

introduction of a pair of prisms between the eyepiece and the

objective. Just how this serves to improve the definition,

magnification, and uniformity of field forms a problem well

worthy the attention of the advanced student.

VIII. The Interferometer

493. The interferometer is an instrument devised by Michel-

son (1881) for the study of aberration ; it is now employed
for a great variety of purposes, but its fundamental use is

perhaps the accurate measurement of small distances. As the

name would imply, the principle involved is that of the inter-

ference of light waves. But, as we shall see presently, the

interference is not between two single point sources or two

single linear sources, as in 428, but between pairs of corre-

sponding points which, taken together, constitute two extended

wave surfaces.

494. Just what is meant by this will be clearer after the

student has repeated the following experiment : Take two
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small strips of ^-inch plate glass and clamp them together at

one end, as shown in section in Fig. 398. At the other end
DB place a single thickness

of tissue paper between the

plates. Now examine these

plates in the light reflected

from some monochromatic

Source, Such as a sodium Fl - 398- A simple interference experiment.

flame or mercury arc. The region between the two plates
will be seen filled with a large number of alternately bright
and dark lines. The explanation of these "interference

bands," as they are called, is perhaps most simply given in

terms of Fig. 399, which is taken from an article by Dr.

Henry G. Gale in the American Machinist, July 11, 1901.

Imagine AB and CD
to be the two glass sur-

faces inclosing the

wedge-shaped air film

in Fig. 398. The fine

parallel lines in Fig.
399 are drawn ^ wave

length apart so that

one can estimate the

thickness of the film at

any point to within a

small fraction of a

wave length, by merely

looking at the diagram.
Next imagine a ray of

light coming from the

right and incident upon
the surface AB (the
inner surface of the

FIG. 399. Illustrating interference between two glass), at the point e ;

large wave fronts.
part of th(J Hght wiu be

reflected from AB and part of it will be refracted into the air

film, and there reflected from the surface CD. These two

rays are now in a condition to interfere; for they each have

their origin in the same luminous particle.

Let us choose the point e such that the thickness of the film



504 GENERAL PHYSICS

.at that point is just one half wave length, and then ask what
the retardation of the second train of waves is when compared
with the first. It follows that the total retardation due to the

air film is X, where X is the wave length of the light employed.
The same thing happens, of course, at points such as <?, i, k,

etc., where the thickness of the air film is 2, 3, 4, etc., any
whole number of half wave lengths. So far, therefore, as the

difference in path between the two rays is concerned, they
would be in the same phase, and hence reenforce each other,

whenever the air was any whole number of half wave lengths
in thickness. But consider what happens at jT, where the air

film has a thickness of f X. Here the retardation due to one

round trip across the film is f X ; in the same manner it will

be seen that at h and j the difference in phase is f X and | X,

respectively ;
in other words, the two trains here differ by an

odd number of wave lengths, and ought therefore to interfere

destructively, giving rise to a dark band. We are thus led to

expect exactly such a series of alternate bright and dark bands

as those observed with the two pieces of plate glass in Fig. 398.

495. But oddly enough, experiment shows that the black

band occurs at exactly the position where the above view would

lead us to expect a bright band. The one consideration which

is here needed to complete the theory, is very clearly set forth

by Professor Michelson in terms of Kelvin's wave model, as

follows :
" This discrepancy is due to the assumption that both

reflections took place under like conditions, and that the phase
of the two trains of waves would be equally affected by the act

of reflection. This assumption is wrong, for the first reflection

takes place from the inner surface of the first glass, while the

second occurs at the outer surface of the second glass. The
first reflection is .from a rarer medium the air; while the

second is from a denser medium the glass. A simple exper-
iment with the Kelvin wave apparatus ( 177) will illustrate

the difference between the two kinds of reflection. The upper
end of this apparatus is fixed while the lower end is free

;
the

fixed end, therefore, represents the surface of a denser medium,
the free end that of a rarer medium. If now a wave be started

at the lower end, by twisting the lowest element to the right,

the twist travels upward till it reaches the ceiling, whence it
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returns with a twist to the left, i.e. in the opposite phase.

When, however, this left twist reaches the lowest element, it is

reflected, and returns as a twist to the left so that the reflec-

tion is in the same phase.
" There is thus a difference of phase of one half a period be-

tween the two reflections, and when this is taken into account,

experiment and theory fully agree." Light Waves and Their

Uses, p. 16.

Accordingly we see that destructive interference occurs when
the thickness of the film is any even number of quarter wave

lengths; reenforcement occurs when the thickness of the film is

any odd number of quarter wave lengths.

496. Now, instead of thinking of these two surfaces AB
and GD (Fig. 399) as made of glass, let us imagine them pro-

duced as follows: A Bunsen flame containing sodium is placed
in the principal focus of a converging lens L. A certain lumi-

nous particle S in this flame emits a spherical wave. The
lens L transforms this spherical wave into a plane wave, as

indicated in Fig. 400.

This plane wave strikes a fixed plane parallel plate of glass

R at an angle of 45. The rear surface of this plate is thinly

silvered. Part of the

light, indicated by
solid lines, is there-

fore transmitted; part
of it, indicated by
dotted lines, is re-

flected. The trans-

mitted wave front

proceeds next through
a plane parallel plate

C and is reflected

from a plane silvered

mirror F. It now . ,

retraces its path to \^_^
the silvered surface of ^IG ' *^' Diagram of Michelson's interferometer,

the mirror R, where it is reflected to the eye as shown in Fig.
400. The reflected wave front proceeds to a movable mirrorM
which is carried on the nut of a screw, whose axis lies in the
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direction joining the mirrors M and M. From the mirror M
the wave front is reflected normally and is transmitted by R so as

to enter the eye from the same direction as the other wave front.

In brief the incident wave front from the source S is split up

by the mirror R into two wave fronts which enter the eye in a

condition for interference. The wave front from the fixed

mirror F behaves exactly as if it came from its image in the

mirror jR, i.e. from a position indicated by the dotted line F' .

Any wave front leaving M and the corresponding wave front

from F may therefore be regarded as a pair of wave fronts re-

placing the two which were reflected from AB and CD in Fig.

399; only these two surfaces are not fixed as were AB and CD.

Here the mirror M can be moved with the screw so as to make
these two surfaces coincide, or so as to put either one in ad-

vance of the other. Not only so, but one observes that as the .

mirrorMadvances the fringes (interference bands) move across

the field at the rate of one fringe for each half wave length of

advance in the position of the mirror.

FIG. 401 . Michelson's interferometer.

In this manner Michelson has succeeded in using the wave

length of light as a new unit of length for the accurate

measurement of very minute distances. In 1892 he, in con-

junction with Benoit, measured the standard meter at Paris in

terms of the wave length of the red cadmium ray and found,

with an error probably not greater than one part in ten million,

that the meter is equal to 1553163.5 such wave lengths. The



OPTICAL INSTRUMENTS 507

moral effect of this determination was to render the red cad-

mium wave length our standard of length.

1
Wave length of red cadmium ray = meter

1553163.5

= 6438.4722 x 10- w meter.

IX. The Spectroscope

497. If one observes a Bunsen flame through an ordinary

glass prism held close to the eye, he sees a succession of colored

images of the flame. This series of colored images is called

the spectrum of the flame.

An instrument such as the prism which will separate the

various radiations emitted by any source of light is called

a spectroscope. Accordingly we may define spectroscopy as

that branch of physics which has for its object the determina-

tion and description of the various radiations which bodies emit,

reflect, and absorb.

Sources of Radiation

498. In practice we are limited to two artificial sources upon
which we can experiment flames and electric currents. In

addition to these there are a number of natural sources whose

occurrence is so far beyond our control that we can only observe

them. The following classification may be used to summarize

these facts :

Lightning
Stars, including the Sun
Comets

Auroras

Meteors

Glowworms

Candle

Alcohol

Bunsen

Oxyhydrogen

SOUECES

Natural

Artificial

Flames

Electric [
Arc

Spai
Brush discharge

Spark
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The Bunsen flame, devised by the German chemist of that

name in 1856, has three marked advantages as a spectroseopic

source, namely :

(i) It is simple in construction and operation.

(ii) Its outer mantle is almost totally devoid of any charac-

teristic spectrum of its own.

(iii) It possesses a high temperature, not less probably than

1788 C.

The electric arc, with a temperature lying probably between
3500 and 3900 C., is exceedingly efficient as a source because

it easily volatilizes any substance placed in it.

The electric spark, obtained by the use of the induction coil,

is the source of radiation which is most generally convenient

and is most widely employed. In general, the electric spark

produces two spectra, namely, the spectrum of the electrodes

and the spectrum of the air or other gas between the two elec-

trodes. But it was discovered by the German mathematician

Pliicker, in 1858, that the spectrum of the electrodes may be

avoided by inclosing them in a partial vacuum. Accordingly,
the universal method of studying the spectra of gases is now to

seal platinum electrodes into a glass tube and then fill the

tube under low pressure with the gas to be studied. The con-

verse problem of getting the spectrum of the electrodes without

that of the air between them has recently been solved by Schus-

ter and Hemsalech, who have proved that the air ceases to

become luminous when a sufficient amount of inductance has

been placed in the circuit through which the spark passes.

Separation of Radiations

499. Let us suppose now that we have before us one or more

of the above-mentioned sources which we wish to examine.

The next step will be to separate the rays of various wave

lengths so that we may examine them individually. For the

student may here assume, what is the experimental fact, that

each different chemical element introduced into the flame or

arc gives a different spectrum, and one which is peculiar to

itself.

The Prism Spectroscope

500. If the source of light be small or linear, and if it is

necessary to make only a hasty visual examination, the most
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convenient plan is to view the source through a prisin placed

immediately in front of the eye, as indicated in Fig. 402. The
chief difficulty in the naked prism is that the source, however

small, is still so large that the successive colored images formed

by the prism will overlap each other, leaving the separation

incomplete. To avoid this difficulty a small astronomical tele-

scope called a collimator is placed between the prism and

FIG. 402. A simple form of spectroscope.

the source, as shown in Fig. 403. In the principal focus of its

objective is placed a narrow straight slit with movable metal

jaws. The source is now placed immediately back of this slit,

or a real image of the source is focused upon the slit by meana
of a lens called the image lens. When the slit is properly placed
and illuminated, each point of it will emit through the lens of

the collimator a beam of nearly parallel light, whose cross.

FIG. 403. A prism spectroscope adjusted to view one particular color.

section is the effective aperture of the objective. If now this1

emergent beam be examined through a prism by the naked ey&
as before, a series of colored images of the slit will be seen,,

each appearing to be at an infinite distance from the observer;

and if the slit is narrow, these images will be sharp and fine and

easily separated. But they will not in general appear very

bright, because the human eye is too small to admit more than
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a fraction of the emergent beam. Accordingly, these colored

images, each at an infinite distance, are viewed through an-

other small telescope called the view telescope. This serves to

condense the entire beam which emerges from the prism
and reduce it to another parallel beam just large enough to

fill the aperture of the average human eye.

Tlie Spectrograph

501. When it is desired to photograph a spectrum, the view

telescope is removed and is replaced by a camera provided with

a photographic objective. Such an instrument is known as a

spectrograph, a convenient form of which is shown in Fig. 404.

FIG. 404. Hilger's form of spectrograph.

The Spectrometer

502. When the typical spectroscope represented in Fig. 403

is provided with a graduated circle and so arranged that the

view telescope and* the prism can rotate about the axis of the

circle, the instrument is known as a spectrometer, and can be

employed for the measurement of prism angles ( 468) and

wave lengths ( 481) as well as for the examination of spectra.

In the prism spectroscope it is nearly always necessary for

the sake of good definition to place the prism in such a position

that it will produce a minimum deviation for the pencil of rays
under observation. For it may be shown by geometrical optics

that, if the prism be placed in any other position, the image of

a point source will not be a point, but a line.

The Grating Spectroscope

503. So far as auxiliary parts are concerned, this piece of

apparatus is very like the prism spectroscope ; but as regards
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its essential feature, the dispersing piece, the two instruments

are radically different. For the dispersion which is produced

by a prism rests ultimately upon the fact that waves of longer

length travel through glass with a higher speed than those of

shorter length ; while the dispersing effect of a grating is due

to the fact that when waves of different length are forced to

pass through a narrow opening, they are all spread out like

a fan, diffracted, the longer waves being more spread out,

however, than the shorter ones.

If a gas flame, turned low, or the filament of an incandes-

cent lamp be viewed through a single narrow slit in a visiting

card, a number of spectra are seen on each side of the bright
central image. These have been called by Fraunhofer "

spec-

tra of the first class." They are not used in spectroscopy.

If, however, the same source be viewed through two or more

fine parallel equidistant slits placed close together, say less

than
g
1
^ inch apart, another series of spectra will be observed.

These are the combined effect of light passing through several

openings ; they -are known as "
spectra of the second class

" and

are practically the only ones used in the grating spectroscope.

These narrow equidistant parallel slits were first prepared by
the German optician Fraunhofer, at Munich, in 1821. He made
them by wrapping fine wire over the threads of two parallel screws,

then soldering the wire to the screws, and afterwards cutting

away one entire side of the little cage thus formed. Such a

device he called a grating. The modern grating is made by

ruling straight lines with a diamond point on a flat plate of

highly polished speculum metal. Here the light is reflected

from the unruled surface between two furrows made by the

diamond
; and diffraction occurs exactly as if the light had

passed through a narrow aperture of the same width. Such a

device is called a reflection grating, and when placed where the

prism stands in an ordinary prism spectroscope, we have what

is known as a grating spectroscope. The student should now
review 472 to 481, dealing with the passage of light through
narrow apertures.

When a beam of parallel light emerges from the collimator

and falls upon a grating placed with its rulings parallel to the

slit of the collimator, part of the light is reflected according to

the laws of ordinary reflection, and forms in the focal plane of
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the view telescope what is known as the central image. The
remainder of the light, however, is spread out on either side of

this central image, the blue light being deviated least and the

red light (longer waves) being deviated most. Unlike the

prism, the grating yields several spectra, distributed on each

side of the central image.
If monochromatic light be viewed with such an instrument, a

series of bright lines sharp maxima each an image of the

slit, will be seen on each side of the central image. The image
nearest the central, on either side, is said to be the "

spectrum
of the first order," the next is called the " second order spec-

trum," etc.

The properties of these images and of diffraction spectra in

general are most briefly described by the following three equa-
tions:

(a + d)(sin i+ sin 0) = n\. Eq. 190

This equation which has been already derived in 480, tells us

in what direction 6 to look for the spectrum of the nth order

when the incident light makes an angle of incidence, i and has

a wave-length X, the distance between two consecutive rulings
of the gratings being a + d.

Eq. 193

This equation, which has been derived in 483, tells us the

smallest difference of wave length, X Xj, which two lines can

have and yet be recognized as double, when N is the total

number of lines on the grating employed and n is the order of

the spectrum.
The third equation, which tells one how bright any particular

spectrum will be, is here given, but its derivation must be left

for the advanced student.

If I is the intensity, in any given direction, of the spectrum
of a monochromatic source of wave length X, produced by a

grating which lias N lines ruled upon it at the uniform dis-

tance of a-\- d cm. apart, then

a +
sin

2

Sin2 ?(* + <*)' Eq. 196
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where /' is the intensity which a single aperture would give in

the same direction. The "given direction" is here denned by
/*, whose value is ~

p = *L
(sin i + sin 0), Eq. 197

A

where the algebraic symbols have the same meaning as in Eq.
190.

All the best gratings of the world up to the present time

(1907) have been ruled on Rowland's dividing engine at Johns

Hopkins University. Most of these gratings carry from five

to twenty thousand lines per inch. Within the current year,

however, Michelson at the University of Chicago has produced

gratings which appear to be superior in resolving power to the

best of the Rowland gratings.

504. In 1883 Rowland invented a concave grating spectroscope

the distinguishing feature of which is that it requires neither

collimator nor view telescope, consisting as it does of a grating
ruled upon a concave spherical mirror of speculum metal. If

one has regard both to convenience and resolving power this

instrument, for general spectroscopic purposes, is probably
unexcelled.

The Echelon Spectroscope

505. Measured by resolving power the echelon spectroscope

devised by Michelson in 1898 is a still more effective instru-

ment. This is essentially a grating with only a few rulings, in

which, however, the form of the ruling or groove is given a

perfectly definite form. The result is obtained by using a pile

of from ten to thirty plane parallel glass plates of equal thick-

ness, the edge of each plate being slightly displaced over that

of its neighbor. The high resolving power is here obtained

by the use of spectra of high orders, even as high as twenty or

thirty thousand.

PRINCIPLES OF SPECTROSCOPY

506. The science of spectroscopy is a large and independent

subject which must be left for later study. But it may be here

stated that the entire structure is built upon a foundation con-

sisting of something like the following principles:

(i) Spectra of G-ases. The emission spectrum of a gas is

practically always a spectrum of bright lines ; while the emis-

2 1,
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sion spectra of solids and liquids are practically always con-

tinuous.

(ii) Kirchhojfs Laws. (1) The ratio of the emission to the

absorption of a body depends upon the temperature only ; and

(2) this ratio is numerically equal to the emission of an abso-

lutely black body at the same temperature.

(iii) Doppler's Principle, The effect of motion in the line

of sight is to apparently shorten the wave length when source

and observer approach each other ; and to lengthen wave length
when source and observer recede from eath other. See 194.

It is by use of this principle that the rate of approach of the
" fixed

"
stars is measured.

(iv) Principle of Humphreys and Mohler. Effect of

increased pressure about the source is, in general, to slightly

increase the wave length.

(v) The Zeeman Effect. When a source of light is placed
in a strong magnetic field, each individual line in its spectrum
will, in general, become a triplet, or a still more complex line.

(vi) Temperature Effects. (1) The maximum radiation of

a solid body varies as the fifth power of its absolute tempera-
ture. (2) The wave length of the maximum radiation from a

solid body varies inversely as the absolute temperature of that

body. See 261.

(vii) Law of Spectral Series. It has been shown by Kayser
and Runge and others that, in the case of many chemical ele-

ments, nearly all their spectral lines are arranged in series, and

that their respective wave lengths, X, may be computed from

the following formula :

- =A + Bm~* + (7m-4
, Eq. 198

A,

in which A, B, and G are constants for each series and m
denotes the natural numbers beginning with 3. Each chemical

element has its own different characteristic values for these three

constants. This fact is the foundation of spectrum analysis.

507. In conclusion the student is warned not to think of the

preceding outline of optics as anything but a very incomplete
sketch. For instance, the entire subject of color vision and

color mixture has been omitted
; likewise the subject of

photometry, important in electrical engineering. The pressure
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which a ray of light exerts, measured with admirable precision

by E. F. Nichols and G. F. Hull, has not even been mentioned.

The phenomena of polarized light and astrophysics have scarcely
been touched upon. These and many other interesting topics

are discussed in the following books :

References on Light

S. P. THOMPSON. Light, Visible and Invisible (Macmillan Co.). Price, $ 1.50.

A course of six lectures addressed to beginners. The language is simple
and clear; the important facts are emphasized. The book is one of

great value to students and to teachers.

LOMMEL. The Nature of Light (Int. Sci. Series). Price $2.00. Written

by an eminent German scholar. Elementary, clear, reliable.

NEWTON. Opticks. London, 1704. Price, approx., $ 5.00.

TAIT. Encyclopaedia Britannica, Art. "
Light."

RAYLEIGH. Encyclopaedia Britannica, Art. "
Optics."

CARPENTER. Encyclopaedia Britannica, Art. "
Microscope."

EDSER. Light for Students (Macmillan Co.).

MICHELSON. Light Waves and Their Uses (Univ. Chicago Press, 1902).

HASTINGS. Light, a Consideration of the More Familiar Phenomena of

Optics (Scribners, 1901).

WOOD. Physical Optics (Macmillan).
SCHUSTER. The Theory of Optics (Arnold; London, 1904).

SCHEINER. Astronomical Spectroscopy . Translated by Frost (Ginn).
LUMMER. Photographic Optics. Translated by Thompson (Macmillan).
DERR. Photography for Students of Physics and Chemistry (Macmillan,

1906).

KAYSER. Handbuch der Spectroscopie (Leipzig, 1900). Three volumes

already (1907) published. The standard work on spectroscopy.



LIST OF TABLES

NUMBERS REFER TO PAGES

Acceleration of gravity at various points
on the earth's surface, 87.

Boiling points, 256.

Bulk moduli, 134.

Coefficients of linear expansion, 274.

Conductivity for electricity, 392
;

for

heat, 264.

Critical angles, 457.

Critical data, 294.

Density of water at different tempera-
tures, 280.

Dynamics, summary of, 137.

Electrochemical equivalents, 401.

Friction, coefficients of, 123.

Gravity, acceleration of, 87.

Kinematics, summary of, 42.

Magnetic declinations, 310.

Melting points, 256.

Pressures of saturated water vapor at
different temperatures, 290.

Refractive indices, 475.

Resistivities, 392.

Rigidity moduli, 135.

Specific heats, 260.

Speed of sound, 224.

Thermal conductivities, 264.

Water, expansion with temperature,
280.

Young's moduli, 133.

616



INDEX

NUMBERS REFER TO PAGES

Proper names are in italics

Abbe, Professor Cleveland, 170.

Aberration, of light, 431
; spherical and

chromatic, 470.

Absolute temperatures, 300.

Acceleration, angular, 34
; linear, 32

;

of gravity, 82-91; of S.H.M., 49;
unit of, 33.

Accommodation of human eye, 497.

Addition and subtraction of angular
acceleration, 40

;
of forces, 71

;
of

vectors, 14
;

of velocities, 29.

Ames, J. S., 295.

Amplitude of S.H.M., 47.

Anaximenes, 1.

Andrews, Thomas, 292.

Angle, critical, 457
;

of incidence, 442
;

of minimum deviation, 471
;

of re-

flection, 442
;

of refraction, 453.

Angstrom unit, 491.

Angular acceleration, 34; unit of, 41.

Angular displacement, 17.

Angular momentum, 64.

Angular speed, 26.

Angular velocity, 27.

Anticyclones, 170.

Antinode, 201.

Aperture, effective, 509.

Arc, electric, 508.

Archimedes, 3, 116; principle of, 144.

Area, unit of, 11.

Astronomy, defined, 4.

Atmosphere of earth, 166.

Atomizer, theory of, 151.

Atwood's machine, 88.-

Avogadro's hypothesis, 284.

Axis, magnetic, 309.

Bach, 241.

Bac,on, Francis, 451.

Balance, principle of, 101.

Balanced forces, 80.

Ball, curved, 151,

Barometer, mercurial, 165.

Bartholinus, 438.

Bams, Carl, 180.

Battery, 369.

Beats, 236.

Bell, Graham, 419.

Bemouilli, Daniel, 148.

Bernoulli's Theorem, 149.

Bicycle pump, 173.

Bicycle wheel, 77.

Biot, 438.

Biot and Savart's Law, 385.

Black, 259.

Body, definition of, 6.

Boiling, 288.

Bolometer, 270.

Boyle, Robert, 177.

Boyle's Law, 177.

Boys, C. V., 100, 269, 357.

Bradley, 431.

B.T.U., 258.

Bulk modulus, 134.

Bunsen flame, 508.

Bunsen, Robert, 295.

Buoyancy, center of, 144.

Burgess, G. K., 257.

Buys-Ballot's rule, 169.

Caloric, 258, 297.

Calorimetry, 257.

Camera, photographic, 495.

Capillarity, 152.

Cavendish, 100.

Celsius scale, 255.

Center, of buoyancy, 144
;

of gravity,
93

;
of mass, 62. .

Centimeter, defined, 11.

Centrifugal force, 76.

Centripetal force, 76.

Chemistry, defined, 4.

Chromatic aberration, 470.

Chrystal, George, 318.

Circle of reference, 47.

Circular motion, 38.

Circulation of earth's atmosphere, 167.

Clark cell, 385.

Coefficient of friction, 123.

Collimator, 509.

Color, 473.

Columbus, 310.

Commutator, 372, 380.

Compass, mariner's, 308.

Components, 15, 29.

Compressibility, defined, 134.

517



518 INDEX

Condenser, electric, 354.

Conduction, electric, 332, 391
;

of heat,
260.

Conservation of energy, 109, 299.

Convection of heat, 264.

Coordinates, polar, 7, 10; rectangular,

7, 8, 9.

Copernicus, 99.

Cornu, A., 484.

Cornu's spiral, 485.

Coulomb, 313.

Couple, the, 75.

Criterion of S.H.M., 51.

Critical angle, 457.

Critical temperature, 293.

Crystalline lens, 496.

Curved ball, 151.

Cyclones, theory of, 169.

Czapski's Theory of Optical Instruments,
470.

Dalance, 254.

Dalton's Law, 283.

Darwin, Sir George, 56.

Davy, 297, 395.

Davy's safety lamp, 262.

Declination, magnetic, 309.

Deflection to right, 167, 170.

Degrees of freedom, 18.

De Laval steam turbine, 303.

Democritus, 1.

Density, definition of, 61.

Derived units, 60.

Derr, Louis, 515.

Descartes, 3, 7.

Deviation, angle of, 472.

Dielectric constant, 336, 355.

Differential pulley, 119.

Diffraction grating, 488.

Diffraction, of light waves, 434, 478 ;
of

sound waves, 228.

Dimensions of units, 60.

Dip, magnetic, 312.

Dispersion, optical, 473.

Displacement, angular, 17; of S.H.M.,
48.

Displacement law, 271.

Doppler's principle, 205, 514.

Drude, 447, 451.

Duddell, W., 407.

Dufay, 333.

Dynamics, summary of, 137.

Dynamo, 379, 416.

Dyne, denned, 72.

Earth's gravitational field, 91.

Earth's magnetic field, 319.

Edser's Light for Students, 433, 470.

Effective aperture, 509.

Efflux, speed of, 147.

Elasticity, 127
; coefficients of, 129.

Electrical capacity, 353.

Electric conduction, 332.

Electric potential, 346, 351.

Electrochemical equivalent, 400.

Electrodes, 369.

Electrolysis, 395.

Electromotive force, 382.

Electron, 400.

Electrophorus, 341.

Electroscope, 331.

Electrostatic induction, 339.

Energy, 104; conservation of, 109, 299;
definition of, 107

; dissipation of, 108
;

kinetic, 108
;

of electric charge, 355
;

of rotation, 111; potential, 108, 112.

Epoch of S.H.M., 48.

Equilibrium, 74, 113.

Equipotential surfaces, 349.

Erg, the, 106.

Ewing, J. A., 325.

Expansion, of gases, 281
;

of liquids,

277; of solids, 273. ,

Eye, human, 496.

Eyepiece, 500.

Fahrenheit scale, 252, 254.

Farad, the, 392.

Faraday, 335, 338, 374, 400, 417.

Feddersen, 357.

Field, electric, 337; gravitational, 91;
magnetic, 315.

Fixed points of thermometer, 251.

Fizeau, 432.

Floating bodies, stability of, 145.

Fluid, definition of, 128.

Focal length, definition of, 447
;
of spher-

ical mirror, 447.

Foot, defined, 11.

Foot-pound, 106.

Force and torque, 67.

Force, centrifugal and centripetal, 76
;

definition of, 69; introduced by Gali-

leo, 2
;
moment of, see Torque; unit

of, 72.

Forced vibrations, 194.

Force pump, 172.

Forces, addition of, 71
; balanced, 80.

Fourier, 263.

Fraunhofer, 479, 487, 489, 511.

Free surface, 143.

Fresnel, 479, 493.

Fresnel zones, 480.

Friction, coefficient of, 123 ; work of,

122.

Frost, E. B., 515.

Gale, Henry G., 503.

Galileo, 2, 56, 69, 81, 82, 110, 148, 164,

253, 429, 502.

Galvanometer, 364.

Galvanoscope, 363.

Gas, definition of, 129.

Gas engine, 304.



INDEX 519

Gases, properties of, 163
; spectra of,

513.

Gas temperatures, 283.

Gauss, C. F., 158, 313.

Geissler-Toepler pump, 175.

Generator, electric, 379.

Geology, defined, 4.

Gerstner, Franz. 186.

Geryk pump, 175.

Gevser, theory of, 295.

Gilbert, Dr. William, 317.

Glazebrook, R. T., 435.

Gram, definition of, 59.

Grating, diffraction, 488, 511.

Gravitation, 82
; universal, 99

; Reyn-
old's theory of, 101.

Gravity, acceleration of, 82-90
;

center

of, 93.

Gravity cell, 369.

Gray, Elisha, 419, 420.

Gray, E. W
.,

85.

Gray, Stephen, 332, 339.

Guitar, 244.

Gyroscope, 77.

Hall, E. H., 264.

Barker, J.A., 257.

Harmonic curve, 51.

Harmonics, 234.

Hartmann, G., 312.

Hastings, C. S., 295, 515.

Heart, human, 172.

Heat engines, 301.

Heat, of fusion, 296 ;
of vaporization, 296.

Helmholtz, 5, 110.

Hemsalech, G. A., 508.

Henry, Professor Joseph, 356.

Heraclitus, 1.

Herschel, Clemens, 151.

Hertz, H., 382.

Holtz machine, 342.

Homogeneous body, definition of, 427.

Hooke, Robert, 132, 254.

Hooke's Law, 132.

Horse power, the, 116.

Hull, G. F., 270, 515.

Human heart, 172.

Humphreys, W . J ., 514.

Huygens, 91, 110, 438.

Huygens' principle, 443.

Huygens' zones. See "Fresnel zones."

Hydraulics, 146.

Hydrostatics, 139.

Image, construction of, 448, 468.

Image lens, 509.

Incandescent lamp, 405.

Inclined plane, 120.

Inductance, 357.

Induction of electric currents, 373.

Inertia, moment of, see Rotational

inertia; rotational, 64.

Ingersoll, L.R., 257.

Intensity of magnetic field, 317.

Interference, of light waves, 433, 478,
503

;
of waves in strings, 199.

Interferometer, Michelson's, 502.

Interval, musical, 238.

"Inyar,"274.
Invariants, 179.

Inversion, 200.

Isothermal curves, 292.

Jets, liquid, 158.

Joule, J. P., 110, 297, 402.

Joule, the, 106.

Joule's Laws of Heating, 402.

Jurin's Law, 160.

Kayser and Runge's series, 514.

Kayser, H., 515.

Kelvin, Lord, 110, 130, 184, 283, 295,
357.

Kepler's Laws, 99.

Kinematics, summary of, 42.

Kinetic energy, 108.

Kinnersley, Dr., 356.

Konig, Rudolph, 225.

Krakatoa explosion, 224.

Kundt's tube, 214.

Lambert, 255.

Lami's theorem, 74.

Langley, Professor S. P., 270.

Lantern, projection, 497.

Laplace, 221.

Latent heat, 296.

Lavoisier, 166.

Law, of Avogadro, 284; of Boyle,
177, 282; of Charles, 281; of Jurin,
160.

Laws, of falling bodies, 87
;

of Kepler,

99; of motion, Newton's, 66, 79.

Lebedew, 270.

Leclanche cell, 370.

Length, unit of, 11.

Lens, crystalline, 496
;

definition and

theory of, 465
; rectilinear, defined,

496.

Lever, 116.

Leyden jar, 354.

Lift pump, 173.

Lines, of electric force, 350; of mag-
netic force, 314.

Liquid, definition of, 129.

Lodge, Sir Oliver, 358.

Mach, 213.

Mackenzie, John. See Preface.

Magie, W. F., 157.

Magnetic permeability, 328.

Magnetic quality, 323.

Magnetic variations, 328.

Magnetometer, theory of, 320.
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Magnification, optical, 448, 469, 498, 500.

Major chord, 238.

Major scale, 239.

Malus, 438.

Manometric flame, 225.

Marconi, 421.

Mariotte, 179.

Mass, definition and comparison of, 57
;

unit of, 59.

Matter, general properties of, 54.

Maxwell, J. C., 5, 81, 129, 382.

Mechanical equivalent of heat, 299.

Melloni, 268, 269.

Melting, 287.

Melting points, 256.

Mendenhall, C. E., 257.

Mersenne, 91.

Metacenter, 146.

Meteorology, defined, 4.

Meter, defined, 11
;

in terms of light

waves, 506.

Michelson, A. A., 433, 450, 474, 491,

502, 513, 515.

Microscope, compound, 499
; simple, 498.

Mirror, plane, 442
; spherical, 445.

Moduli of elasticity, 131.

Mohler, J. F., 514"

Moment of force. See Torque.
Moment of inertia. See Rotational

inertia.

Momentum, angular, 65 ; definition of,

63.

Motion, circular, 38.

Motor, electric, 416.

Miinsterberg, 4.

Musical interval, 238.

Musical scale, 237.

Natural science, defined, 3.

Neumann, F. E., 383.

Newton, 3, 61, 64, 99, 104, 110, 220, 254,

268, 439, 475.

Newton's Laws of Motion, 66.

Nichols, E. F., 269, 515.

Node, defined, 201.

Norman, Robert, 312.

Objective of microscope, 499.

Octave, 238.

Oersted's experiment, 363, 385.

Ohm's Law, 387.

Ohm, the, 388.

Opera glass, theory of, 501.

Optical disk, 476.

Order of spectra, defined, 489, 512.

Organ pipes, 242.

Oscillatory discharge, 356.

Otto cycle, 304.

Overtones, 234.

Parson's turbine, 303.

Particle, definition of, 6.

Pascal, Blaise, 253.

Pascal's Theorem, 140.

Pendulum, physical, 97
; reversible, 97

;

simple, 91
; torsion, 135.

Perfect gas, definition of, 180, 283.

Period of S.H.M., 47.

Perkins, C. A., 332.

Perversion, 200.

Phase of S.H.M., 49.

Physical pendulum, 97.

Physical science, defined, 3.

Physics, definition of, 4.

Piano, 245.

Pitch of sound waves, 231.

Plateau's mixture, 154.

Pliicker tube, 508.

Polar coordinates, 7, 10.

Polarization of light waves, 437.

Poles of a battery, 367.

Polygon, of forces, 73
;
of vectors, 15.

Position, change of, 14
;

of a body, 10
;

of a particle, 6, 8.

Position vectors, 8.

Potential electric, 346, 351.

Potential energy, 108, 112.

Pound, definition of, 60, 73.

Poynting, J. H., 100, 386.

Power, mechanical, 115; unit of, 116;
of a lens, 467.

Pressure, definition of, 140.

Primary current, 378.

Principle, of Archimedes, 144
;

of Huy-
gens, 443.

Prism spectroscope, 508.

Prism, theory of, 470.

Projection lantern, 497.

Properties of matter, 54.

Pulley, 117.

Pump, 171.

Pure rotation, 16.

Pure translation, 16.

Pyrometry, 255.

Quality of sound waves, 233.

Radian, defined, 12.

Radiation, of heat, 267
;
sources of, 507.

Radiometer, 269.

Radiomicrometer, 269.

Rain, 294.

Rayleigh, Lord, 515.

Real image, defined, 447.

Rdaumur scale, 252.

Rectangular coordinates, 7, 8, 9.

Rectilinear lens, defined, 496.

Rectilinear propagation of light, 425,
493.

Reflection, of light waves, 440; of sound

waves, 218
;
of water waves, 189.

Refraction, of light waves, 450; of

water waves, 188.

Refractive index, 453, 473.
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Regelation, 288.

Regnault, H. V., 255, 277, 291.

Renaissance, 2.

Resistance, unit of, 388.

Resistivity, 389.

Resolving power of a grating, 491, 512.

Resonance, sympathetic, 194, 202.

Resultant, 15, 29, 71.

Reversible pendulum, 97.

Rey, Jean, 253.

Reynolds, Osborne, theory of gravita-

tion, 101.

Richmann's rule, 258.

Rigid body, definition of, 127.

Rigidity modulus, 134.

Ripples, 190.

Roerner, Ole, 429.

Rolling friction, 124.

Rotational inertia, 64.

Rotation, pure, 16.

Rowland, H. A., 491, 513.

Rubens, H., 269.

Rumford, Count, 297.

Runge, C ., 514.

Scalar quantities, 9.

Schuster, A., 508, 515.

Secondary circuit, 378.

Self-inductance, 357.

Shearer, J. S., 90, 181.

Shearing modulus. See Rigidity modulus.

Simple harmonic motion, 45.

Simple pendulum, 91.

Sine curve, 52.

Siphon, 176.

Sliding friction, 122.

Slug, definition of, 60.

Snell, Willebrord, 452.

Solid, definition of, 128.

Sounder telegraph, 411.

Sound waves, 211.

Spark, electric, 508.

Specific heat, 259.

Spectra, of first class, 479, 511; of sec-

ond class, 486, 511
;
of third class, 489.

Spectrograph, 510.

Spectrometer, 510.

Spectroscope, 507.

Spectroscopy, principles of, 513.

Spectrum analysis, principle of, 514.

Speed, definition of, 22; of light, 429;
of sound, 220

;
unit of, 23.

Spherical aberration, 470.

Spherica surfaces, reflection at, 445
;

refraction at, 458.

Sprengel pump, 174.

Stability of floating bodies, 144.

Statics, 72, 73.

Stationary waves, in strings, 200; in

water, 190.

Steam engine, 302.

Steam turbine, 303.

Stefan's Law, 256, 270.

Stewart-Kirchhoff Law, 271.

Stokes, Sir George, 133, 229, 493.

Stoney, Dr. Johnstone, 400.

Storage cells, 371.

Strain, definition of, 127, 130.

Stress, definition of, 130.

Sturgeon, William, 378.

Summary, of dynamics, 137
; of kine-

matics, 42.

Surface tension, 152, 190.

Sympathetic resonance, 194.

Tatnall's optical disk, 476.

Telephone, 419.

Telescope, astronomical, 500.

Temperature, 247.

Tempered scale, 241.

Thales, 1.

Theorem, of Bernouilli, 149
;

of Torri-

celli, 147.

Thermodynamics, first law of, 298
;

second law of, 300.

Thermoelectric currents, 381.

Thermoelectric power, 381.

Thermogalvanometer, 407.

Thermometry, 249.

Tides, 192.

Time, unit of, 21.

Topler, 213.

Torque, 67, 70.

Torricelli, 165.

Torricelli's theorem, 147.

Torsion pendulum, 135.

Total reflection, 455.

Transformer, 378.

Translation, pure, 16.

Translucent, defined, 424.

Transmitter, telephonic, 420.

Transversality of light waves, 437.

Turbine, steam, 303.

Uniplanar motion, 19.

Unit charge of electrification, 336.

Unit magnet pole, 316.

Unit, of acceleration, 33
;

of angle, 12
;

of angular acceleration, 41
;

of angu-
lar speed, 26

;
of area, 1 1

; of current,

386; of electrical capacity, 392; of

electrical resistance, 388
;

of electri-

cal quantity, 392; of E.M.F., 384;
of force, 72

;
of length, 11; of mass,

59; of speed, 23; of time, 21; of

velocity, 23
;
of volume, 12

;
of work,

106.

Units, dimensions of, 60.

Universal gravitation, 99.

Van der Mensbrugge, 154.

Vapor, 291.

Vectors, addition and subtraction of,

14; position, 8.
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Velocity, 20; and speed, distinction be-

tween, 25 ; definition of, 23.

Venturi, 151.

Virtual image, 447.

Volt, the, 384.

Volta, 341.

Voltaic cell, 365.

Voltameter, 399.

von Guericke, Otto, 165.

Waidner, C. W ., 257.

Wallace, R. J., 491.

Watson 's Text-book of Physics, 295.

Watt, James, 116.

Watt, the, 116.

Wave model, Kelvin 'a, 184.

Waves, 183
;
in strings, 196

; tidal, 192
;

solitary, 197
; stationary, 190.

Wave theory of light, 433, 443, 462.

Weight, definition of, 94, 102.

White light, composition of, 475.

Wilberforce, Professor, 203.

Wilson, C. T. R., 331.

Wood, R. W., 461, 489, 515.

Work, definition of, 105.

Yard, defined, 11.

Young, Dr. Thomas, 157, 220, 433.

Young's modulus, 131, 275.

Zeeman effect, 514.
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