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PREFACE 

 This book had its origin in a one-year course that I taught at Yale 

throughout the decade of the 1970’s.  The course was for non-science majors 

who were interested in learning about the major branches of Physics.  In the 

first semester, emphasis was placed on Newtonian and Einsteinian Relativity.  

The recent popularity of the Einstein exhibit at the American Museum of 

Natural History in New York City, prompted me to look again at my fading 

lecture notes.  I found that they contained material that might be of interest to 

today’s readers.  I have therefore reproduced them with some additions, mostly 

of a graphical nature.  I recall the books that were most influential in my 

approach to the subject at that time; they were Max Born’s The Special Theory 

of Relativity, Robert Adair’s Concepts of Physics, and Casper and Noer’s 

Revolutions in Physics.  These three books were written with the non-scientist 

in mind, and they showed what could be achieved in this important area of 

teaching and learning; I am greatly indebted to these authors. 
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1.  INTRODUCTION 

 This brief book is for the inquisitive reader who wishes to gain an understanding of the 

immortal work of Einstein, the greatest scientist since Newton.  The concepts that form the 

basis of Einstein’s Theory of Special Relativity are discussed at a level suitable for Seniors in 

High School.  Special Relativity deals with measurements of space, time and motion in inertial 

frames of reference (see chapter 4).  An introduction to Einstein’s Theory of General Relativity, 

a theory of space, time, and motion in the presence of gravity, is given at a popular level.  A 

more formal account of Special Relativity, that requires a higher level of understanding of 

Mathematics, is given in an Appendix. 

 Historians in the future will, no doubt, choose a phrase that best characterizes the 20th-

century.  Several possible phrases, such as “the Atomic Age”, “the Space Age” and “the 

Information Age”, come to mind.  I believe that a strong case will be made for the phrase “the 

Age of Einstein”; no other person in the 20th-century advanced our understanding of the 

physical universe in such a dramatic way.  He introduced many original concepts, each one of 

a profound nature.  His discovery of the universal equivalence of energy and mass has had, and 

continues to have, far-reaching consequences not only in Science and Technology but also in 

fields as diverse as World Politics, Economics, and Philosophy. 
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The topics covered include: 

a) understanding the physical universe; 

b) describing everyday motion; 

         relative motion, 

         Newton’s Principle of Relativity, 

         problems with light,  

c) Einstein’s Theory of Special Relativity; 

         simultaneity and synchronizing clocks, 

         length contraction and time dilation, 

         examples of Einstein’s world, 

d) Newtonian and Einsteinian mass; 

e)  equivalence of energy and mass, E = mc2; 

f)  Principle of Equivalence; 

g) Einsteinian gravity; 

         gravity and the bending of light, 

         gravity and the flow of time, and 

         red shifts, blue shifts, and black holes. 

2.  UNDERSTANDING THE PHYSICAL UNIVERSE 

 We would be justified in thinking that any attempts to derive a small set of fundamental 

laws of Nature from a limited sample of all possible processes in the physical universe, would 
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lead to a large set of unrelated facts.  Remarkably, however, very few fundamental laws of 

Nature have been found to be necessary to account for all observations of basic physical 

phenomena.  These phenomena range in scale from the motions of minute subatomic systems 

to the motions of the galaxies.  The methods used, over the past five hundred years, to find the 

set of fundamental laws of Nature are clearly important; a random approach to the problem 

would have been of no use whatsoever.  In the first place, it is necessary for the scientist to have 

a conviction that Nature can be understood in terms of a small set of fundamental laws, and 

that these laws should provide a quantitative account of all basic physical processes.  It is 

axiomatic that the laws hold throughout the universe.  In this respect, the methods of Physics 

belong to Philosophy.  (In earlier times, Physics was referred to by the appropriate title, 

“Natural Philosophy”). 

2.1  Reality and Pure Thought 

 In one of his writings entitled “On the Method of Theoretical Physics”, Einstein stated: 

“If, then, experience is the alpha and the omega of all our knowledge of reality, what then is the 

function of pure reason in science?”  He continued, “Newton, the first creator of a 

comprehensive, workable system of theoretical physics, still believed that the basic concepts 

and laws of his system could be derived from experience.”  Einstein then wrote “But the 

tremendous practical success of his (Newton’s) doctrines may well have prevented him, and 

the physicists of the eighteenth and nineteenth centuries, from recognizing the fictitious 

character of the foundations of his system”.  It was Einstein’s view that “..the concepts and 
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fundamental principles which underlie a theoretical system of physics are free inventions of the 

human intellect, which cannot be justified either by the nature of that intellect or in any other 

fashion a priori.”  He continued, “If, then, it is true that the axiomatic basis of theoretical 

physics cannot be extracted from experience but must be freely invented, can we ever hope to 

find the right way?  ... Can we hope to be guided safely by experience at all when there exist 

theories (such as Classical (Newtonian) Mechanics) which to a large extent do justice to 

experience, without getting to the root of the matter?  I answer without hesitation that there is, in 

my opinion, a right way, and that we are capable of finding it.”  Einstein then stated 

“Experience remains, of course, the sole criterion of the physical utility of a mathematical 

construction.  But the creative principle resides in Mathematics.  ...  I hold it true that pure 

thought can grasp reality, as the ancients dreamed.”  

3.  DESCRIBING EVERYDAY MOTION 

3.1  Motion in a straight line (the absence of forces) 

 The simplest motion is that of a point, P, moving in a straight line.  Let the line be 

labeled the “x-axis”, and let the position of P be measured from a fixed point on the line, the 

origin, O.  Let the motion begin (time t = 0) when P is at the origin (x = 0).  At an arbitrary time, 

t, P is at the distance x: 
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                                                                                                                P [x, t]   

    

                 -x                                                O             position, x             +x   

        at time t 

If successive positions of P are plotted, together with their corresponding times, we can 

generate what is called the “world line” of P.  

 Let us observe a racing car moving at high speed along the straight part of a race track 

(the x−axis), and let us signal the instant that it passes our position, x = 0, by lowering a flag: 

An observer, standing at a measured distance D, from x = 0, starts his clock at the instant, t = 0, 

when he sees the flag lowered, and stops his clock at the instant t = T, as the car passes by. 

We can obtain the average speed of the car, v, during the interval T, in the standard way; it is 

 v = D/T (in units of velocity). 

If, for example, D = 1 mile, and T =  20 seconds (1/180 hour), then 

v =  1 (mile)/(1/180) (hour) = 180 miles per hour.  

This is such a standard procedure that we have no doubt concerning the validity of the result. 

3.2  The relativity of everyday events 

 Events, the description of when and where happenings occur, are part of the physical 

world; they involve finite extensions in both time and space.  From the point of view of a 

theory of motion, it is useful to consider “point-like” events that have vanishingly small 

extensions in time and space. They then can be represented as “points” in a space-time 
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geometry.  We shall label events by giving the time and space coordinates: event E → E[t, x], 

or in three space dimensions, E[t, x, y, z], where x, y, z are the Cartesian components of the 

position of the event.  There is nothing special about a Cartesian coordinate system, it is a 

mathematical construct; any suitable coordinate mesh with a metrical property (measured 

distances defined in terms of coordinates) can be used to describe the spatial locations of 

events.  A familiar non-Cartesian system is the spherical polar coordinate system of the lines of 

latitude and longitude on the surface of the earth.  The time t can be given by any device that is 

capable of producing a stable, repetitive motion such as a pendulum, or a quartz-controlled 

crystal oscillator or, for high precision, an atomic clock.   

 Suppose we have an observer, O, at rest at the origin of an x−axis, in the F-frame.  O 

has assistants with measuring rods and clocks to record events occurring on the x-axis: 

                                                        F 

                               -x                                            O                                          +x   

We introduce a second observer, O′, at rest at the origin of his frame of reference, F′.   O′ has 

his assistants with their measuring rods (to measure distances, x′) and clocks (to measure times, 

t′) to record events on the x′-axis.  (The F′-clocks are identical in construction and performance 

to the clocks in the F-frame).  Let O′ coincide with O at a common origin O = O′ (x = x′ = 0), at 

the synchronized time zero t = t′ = 0.  At t = t′= 0, we have   

                                                       F′ 

                             -x′                                            O′                                          +x′ 
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Suppose that the observer O′, and his assistants with rods and clocks, move to the right with 

constant speed V along the common x, x′−axis.  At some later time t, the two sets of observers, 

represented by O and O′, record a common event that they write as E[t, x] and E′[t′, x′], 

respectively.  The relative positions of the two observers at time t is: 

 

 

                                                       F                                 E[t. x]        

                           -x                                               O                  x                                +x 

                                                                                     D        F′⇒           E′[t′, x′] 

                                             -x′                                            O′           x′                           +x′ 

where D = Vt is the distance that O′ moves at constant speed V, in the time t. 

We therefore write the relationship between the two measurements by the plausible equations 

(based on everyday experience): 

   t′ = t (everyday identical clocks tick at the same rate) 

and 

   x′ = x − D = x − Vt. 

These are the basic equations of relative motion according to the concepts first put forward by 

Galileo and Newton.  They are fully consistent with measurements made in our real world (the 

world of experience).  They are not, however, internally consistent.  In the equation that relates 

the measurement of distance x′ in the F′-frame to the measurements in the F-frame, we see that 
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the space part, x′, in the F′-frame, is related to the space part, x, and the time part, t, in the F-

frame: space-time in one frame is not related to space-time in the other frame!  Furthermore, 

the time equation makes no mention of space in either frame.  We see that there is a 

fundamental lack of symmetry in the equations of relative motion, based on everyday 

experience.  The question of the “symmetry of space-time” will lead us to Einstein’s 

philosophy of the “free invention of the intellect”. 

3.3  Relative velocities 

 We have seen that the position of an event, E[t, x], measured by an observer O, is 

related to the position of the same event, E′[t′, x′], measured by an observer O′, moving with 

constant speed V along the common x, x′−axis of the two frames, by the equation 

   x′ = x − Vt . 

 The speed v of a point P[t, x], moving along the x−axis, is given by the ratio of the finite 

distance the point moves, Δx, in a given finite time interval, Δt: 

   v = Δx/Δt . 

We can obtain the speeds v, and v′ of the same moving point, as measured in the two frames, 

by calculating v = Δx/Δt and v′ = Δx′/Δt′, as follows: 

   Δx′/Δt′ = v′ = Δx/Δt − VΔt/Δt (where we have used Δt′ = Δt because   t = t′ in everyday 

experience). 

We therefore find 

          v′ = v − V, 
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the speeds differ by the relative speed of the two frames.  This is consistent with experience:  if 

a car moves along a straight road at a constant speed of v = 60 mph, relative to a stationary 

observer O, and an observer O′ follows in a car at a constant speed of V = 40 mph relative to 

O, then the speed of the first car relative to the occupant of the second car is v′ = 20 mph.   

3.4  The Newtonian Principle of Relativity 

 The Newtonian Principle of Relativity asserts that, in the inertial frames F, F′, the 

following two situations 

       x = x′ = 0 at t = t′ = 0 

            F 

     −x                                                              O                                                                       +x 

               D = Vt       ⇒ +V   F′ (moves to right 
                                                        at speed V) 
                                 O′                                            +x′ 
              D′ = Vt′       F′ 

                    O′                                                                     +x′ 

       −V   ⇐  F (moves to left at speed V) 

      O                                                       +x                                

cannot be distinguished by experiments that involve mechanical systems (classical systems 

that obey Newton’s Laws of Motion). 
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 The speed V has been written in bold face to remind us that here we are dealing with a 

vector quantity that has both magnitude (the speed in mph) and a sense of direction: +V in the 

+x-direction and −V in the −x-direction. 

3.5  Problems with light 

 We are accustomed to the notion that waves propagate through a medium, required to 

support the waves. For example, sound waves propagate as pressure variations in air, and water 

waves propagate as coupled displacements of the water molecules, perpendicular to the 

direction of the wave motion.  In the 19th-century, Maxwell discovered that light waves are 

electromagnetic phenomena.  This great work was based on theoretical arguments, motivated 

by the experimental results of Faraday and Henry.  One of the most pressing questions facing 

scientists of the day was: 

 “what is waving when a beam of light propagates through empty space?” 

It was proposed that the universe is filled with a medium called the aether with the property of 

supporting light waves, and having no other physical attributes.  (For example, it would have 

no effect on the motion of celestial bodies).  In the latter part of the 19th-century, Michelson 

and Morley carried out a famous experiment at the Case Institute in Cleveland that showed 

there is no experimental evidence for the aether.  Light travels through the void, and that is that.  

Implicit in their work was the counter-intuitive notion that the speed of light does not depend 

on the speed of the source of the light. 
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 The Aether Theory was popular for many years.  Non-traditional theories were 

proposed to account for the null-result of the Michelson-Morley experiment.  Fitzgerald 

(Trinity College, Dublin) proposed that the Michelson-Morley result could be explained, and 

the Aether Hypothesis retained, if the lengths of components in their apparatus were “velocity-

dependent” − lengths contract in the direction of motion, and lengths remain unchanged when 

perpendicular to the direction of motion.  He obtained the result 

  L0             =       [1/√(1 − (v/c)2)] L    ≡     γL 

                           ⇑                                                      ⇑ 

      (length of rod at rest)               (length of rod moving at speed v) 

Here, c is the constant speed of light (2.99 … × 108 meters/second). 

All experiments are consistent with the statement that the ratio v/c is always less than 1, and 

therefore γ is always greater than 1.  This means that the measured length of the rod L0 , in its 

rest frame, is always greater than its measured length when moving.   

 At the end of the 19th-century, Larmor introduced yet another radical idea:  a moving 

clock is observed to tick more slowly than an identical clock at rest.  Furthermore, the 

relationship between the clock rates in the moving and rest frames is given by the same factor, 

γ, introduced previously by Fitzgerald.  Specifically, 

          Δt                        =                      γΔt0    

                       ⇑                                                     ⇑ 

     (an interval on a moving clock)     (an interval on a clock at rest) 
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Since the velocity-dependent term γ is greater than 1, the intervals of time Δt (moving), are 

greater than the intervals Δt0 (at rest). 

 Fitzgerald, Larmor, and other physicists at that time considered length contraction and 

time dilation to be “real” effects, associated with minute physical changes in the structure of 

rods and clocks when in motion.  It was left to the young Einstein, working as a junior Patent 

Officer in Bern, and thinking about space, time, and motion in his spare time, to introduce a 

new Theory of Relativity, uninfluenced by the current ideas.  Although, in later life, Einstein 

acknowledged that he was aware of the Michelson-Morley result, and of the earlier work on 

length contraction and time dilation, he neither used, nor referred to, the earlier results in his first 

paper on Relativity. 

4.  EINSTEIN’S THEORY OF SPECIAL RELATIVITY 

 In 1905, Einstein published three great papers in unrelated areas of Physics.  In this 

chapter, we shall discuss his new ideas concerning the relative motion of beams of light, and of 

objects that move at speeds close to that of light.  His independent investigations were based 

upon just two postulates: 

 1. The generalized Principle of Relativity:  no mechanical or optical experiments can 

be carried out that distinguish one inertial frame of reference from another.  (This is a 

development of Newton’s Principle of Relativity that is limited to mechanical experiments, 

involving speeds much less than the speed of light; it applies to experiments in the everyday 

world). 
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 Inertial frames of reference are non-rotating, and move in straight lines at constant 

speed.  They are non-accelerating. 

 2.  The speed of light in a vacuum is a constant of Nature, and is independent of the 

velocity of the source of the light. 

Einstein was not concerned with questions having to do with the Aether; for him, a true theory 

of the physical properties of the universe could not rest upon the mysterious qualities of such an 

unobservable.  As we shall see, Einstein was concerned with the precise meaning of 

measurements of lengths and time intervals.  In his later years, he recalled an interesting 

thought that he had while in school.  It had to do with the meaning of time.  Our lives are 

dominated by “psychological time”; for example, time seems to go by more quickly as we 

grow older.  For the young Einstein, time in the physical world was simply the reading on a 

clock.  He therefore imagined the following:  if the schoolroom clock is reading 3PM, and I 

rush away from the clock at the speed of light, then the information (that travels at the speed of 

light) showing successive ticks on the clock, and therefore the passage of time, will never reach 

me, and therefore, in my frame of reference, it is forever 3PM − time stands still.  He therefore 

concluded that the measurement of time must depend, in some way, on the relative motion of 

the clock and the observer; he was, by any standards, a precocious lad. 

 If we apply the Galilean-Newtonian expression for the relative velocities v, v′, 

measured in the inertial frames F, F′, (moving with relative speed V), to the measurements of 

flashes of light, v = c, the speed of light in F, and v′ = c′, the speed of light in F′, we expect 
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  c′ = c − V (corresponding to v′ = v − V for everyday objects). 

Modern experiments in Atomic, Nuclear, and Particle Physics are consistent with the fact that 

c′ = c, no matter what the value of the relative speed V happens to be. 

 At the end of the 19th-century, a key question that required an answer was therefore: - 

why does the Galilean-Newtonian equation, that correctly describes the relative motion of 

everyday objects, fail to describe the relative motion of beams of light?   Einstein solved the 

problem in a unique way that involved a fundamental change in our understanding of the 

nature of space and time, a change that resulted in far-reaching consequences; these 

consequences are  discussed in the following chapters. 

4.1  The relativity of simultaneity: the synchronization of clocks. 

 It is important to understand the meaning of the word “observer” in Relativity.  To 

record the time and place of a sequence of events in a particular inertial reference frame, it is 

necessary to introduce an infinite set of adjacent “observers”, located throughout the entire 

space.  Each observer, at a known, fixed position in the reference frame, carries a clock to 

record the time, and the characteristic property, of every event in his immediate neighborhood.  

The observers are not concerned with non-local events.  The clocks carried by the observers 

are synchronized: they all read the same time throughout the reference frame.  It is the job of the 

chief observer to collect the information concerning the time, place, and characteristic feature 

of the events recorded by all observers, and to construct the world line (a path in space-time), 

associated with a particular characteristic feature (the type of particle, for example).  “Observer” 
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is therefore seen to be a collective noun, representing the infinite set of synchronized observers 

in a frame of reference.   

 The clocks of all observers in a reference frame are synchronized by correcting them 

for the speed of light (the speed of information) as follows: 

 Consider a set of clocks located at x0, x1, x2, x3, along the x-axis of a reference frame.  

Let x0 be the position of the chief observer, and let a flash of light be sent from the clock at x0 

when it reads t0 (12 noon, say).  At the instant that the light signal reaches the clock at x1, it is set 

to read t0 + (x1/c), at the instant that the light signal reaches the clock at x2, it is set to read t0 + 

(x2/c) , and so on for every clock along the x-axis.  All clocks along the x - axis then “read the 

same time” − they are synchronized:   

            These  4 clocks read the same time “noon + x3/c in their rest frame  

                                                ~~~>                 ~~~>                    ~~~>                     ~~~> 

                                            x0                       x1                          x2                             x3  

                                  noon at x0                  noon + x1/c          noon + x2/c          noon + x3/c  

 

To all other inertial observers, the clocks appear to be unsynchronized. 

 The relativity of simultaneity is clearly seen using the following method to synchronize 

two clocks: a flash of light is sent out from a source, M′ situated midway between identical 

clocks, A′ and B′, at rest in the frame, F′ 
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                                    F′                     c                                               c   

 

                                                 A′                               M′                               B′ 

                             Flash of light from M′, the mid-point between A′ and B′ 

 

The two clocks are synchronized by the (simultaneous) arrival of the flash of light (traveling at 

c) from M′.  We now consider this process from the viewpoint of observers in an inertial 

frame, F, who observe the F′-frame to be moving to the right with constant speed V.  From 

their frame, the synchronizing flash reaches A′ before it reaches B′: 

 

 

                                     F       F′   V         original position of M’ 

                                                     A′     c   V                           V                 c  B′          V 

                                                                                              M′ 
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  They conclude, therefore, that the A′-clock starts before the B′-clock; the clocks are no longer 

synchronized.  This analysis rests on the fact that the speed of light does not depend on the 

speed of the source of light. 

 The relativity of simultaneity leads to two important non-intuitive results namely, 

length contraction and time dilation.   

4.2  Length contraction 

Let a rod be at rest in the F-frame, and let its proper (rest) length be L0.   

 

                         F 

 

                                                                                                                          x 

                                                                                  Lo 

Consider an F′-frame, moving at constant speed V in the +x direction.  The set of observers, at 

rest in F′, have synchronized clocks in F′, as shown 

                           F′         V   All clocks “read the same time” in F′ 

                                                                                                                   V 

                                                                                                                          x′ 

The observers in F′ wish to determine the length of the rod, L′, relative to the F′ frame.  From 

their perspective, the rod is moving to the left (the −x′ direction) with constant speed, V.  We 

define the length of a rod, measured in any inertial frame, in terms of the positions of the two 
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ends of the rod measured at the same time.  If the rod is at rest, it does not matter when the two 

end positions are determined; this is clearly not the case when the rod is in motion.  The 

observers in F′ are distributed along the x′−axis, as shown.  They are told to measure the length 

of the rod at 12 noon.  This means that, as the rod passes by, each observer looks to see if either 

end of the rod is in his (immediate) vicinity.  If it is, the two critical observers A′ and B′ (say) 

raise their hands.  At any time later, the observers in F′ measure the distance between the 

observers A′ and B′, and the chief observer states that this is the length of the rod, in their frame.  

This procedure can be carried out only if the clocks in F′ are synchronized.  We have seen, 

however, that the synchronized clocks in F′ are not seen to be synchronized in a different 

frame, F, such that F′ moves at speed V, relative to F.  The question is: how does the length L′ 

of the moving rod, determined by the observers in F′, appear to the observers at rest in the F 

frame?  We have seen that the clock A′ starts before clock B′, according to the F observers.  

Therefore “left end of the rod coincides with the A′ clock, reading noon” occurs before “right 

end of rod coincides with B′ clock, reading noon”, according to the F observers: 

 

 

 

 

 

 



 

 

25 

                   F             F′        V            position of left end at t′ = noon 

                                                A′                                    B′         not yet t′ = noon 

 

 

                   F                             F′        V 

                                                                  A′                                   B′   an intermediate position 

 

 

                   F                                           F′         V                   position of right end at t′ = noon 

                                                                               A′            L′     B′        

                                                                                                                  according to observers in F 

                                                                                 L0, in F      

The length of the rod, L′, as determined by observers at rest in F′, shown from the viewpoint of 

observers in the F frame, is less than its proper length, L0. 

 We see that the measurement of length contraction does not involve physical changes 

in a moving rod; it is simply a consequence of the synchronization of clocks in inertial frames, 

and the relativity of simultaneity. 
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4.3  Time dilation 

 The proper time interval between two events is the interval measured in the frame of 

reference in which they occur at the same position.  Intervals that take place at different 

positions are said to be improper. 

 Consider a pulse of light that reflects between two plane mirrors, M1 and M2, separated 

by a distance D: 

 

 

 

                                     D                Pulse of light traveling between M1 and M2, 

                                                         at the invariant speed of light, c 

 

The time interval, Δt, for the light to make the round-trip is Δt = 2D/c. 

Consider a reference frame, F, (the laboratory frame, say), and let the origin of F coincide with 

the location of an event E1.  A second event E2, occurs at a different time and location in F, thus                

                    F 

 

                   O 

                         E1                                 E2   

     1st event at x = t = 0 in F        2nd event at a different place and different time in F 
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Let us introduce a second inertial frame, F′, moving with speed V relative to F, in the +x 

direction: 

 

                  F′   F          V 

      M2 

 

             D 

                          2nd event, at the “same place”, O′, in F′  

      M1      E1                             E2                            x   

                   O′ O                                                                        x′ 

Let F′ be chosen in such a way that its origin, O′, coincides with the first event E1 (in both space 

and time), and let its speed V be chosen so that O′ coincides with the location of the second 

event, E2.  We then have the situation in which both events occur at the same place in F′ (at the 

origin, O′).  The interval between E1 and E2 in F′ is therefore a proper interval. 

The mirrors, M1 and M2, are at rest in F′, with M1 at the origin, O′.  These mirrors move to the 

right with speed V.  Let a pulse of light be sent from the lower mirror when O and O′ coincide 

(at the instant that E1 occurs). Furthermore, let the distance D between the mirrors be adjusted 

so that the pulse returns to the lower mirror at the exact time and place of the event, E2.  This 

sequence of events, as observed in F, is as shown: 
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                 F        V                                                                   V                                                                  V 

     M2 

                        F′                                                                   F′                                                                  F′ 

          D 

                                                                          Distance = V.Δt 

    M1 

               Event E1 ,                                               At time Δt/2, later,                                          Event E2 

              light leaves M1                                       light reflects from M2                     light arrives at M1 

                                                                                                                                              at time Δt 

The sequence, observed in F′ is 

                                F′ 

 

 

                                              D     The mirrors are at rest in F′, and the events 

                           O′                        E1 and E2 occur at the same place, therefore  

                                                        the time interval Δt′ = 2D/c is a proper interval. 

                   E1 and E2, both take place at the origin, O′ 

 The geometry of the sequence of events in the F frame is Pythagorean. 



 

 

29 

Recall, that in a right-angled triangle, we have 

                                                 c                                b 

                                                            a                       a2 + b2 = c2. 

In F, the relevant distances are: 

 

 

                                          cΔt/2                                                                  cΔt/2 

                                                                                       D 

 

                                                      VΔt/2                                      VΔt/2                  

where Δt is the round-trip travel time.  We therefore have 

  (VΔt/2)2 + D2 = (cΔt/2)2, 

or, 

  (Δt)2[c2 − V2] = 4D2, 

so that, on taking the square root, 

  Δt = 2D/√(c2 − V2) = {1/√[1 − (V/c)2]}(2D/c) = γ(2D/c), 

where γ is the factor first introduced, on empirical grounds, by Fitzgerald. In this discussion, we 

see that it emerges in a natural way from the two postulates of Einstein. 
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We can now compare the interval, Δt, between E1 and E2 in F with the interval, Δt′, between 

the same events as determined in F′.  If we look at the sequence of events in F′, in which the 

mirrors are at rest, we have 

   2D = cΔt′, 

and therefore 

  Δt′ = 2D/c. 

Substituting this value in the value for Δt in F, we obtain 

      Δt = {1/√[1 − (V/c)2]}Δt′ 

or 

  Δt = γΔt′ , γ > 1, 

which means that Δt (moving)  >  Δt′ (at rest). 

A moving clock runs more slowly than an equivalent clock at rest. 

Notice that at everyday speeds, in which V/c is typically less than 10-6, (and therefore (V/c)2 is 

less than 10-12, an unimaginably small number), Δt and Δt′ are essentially the same.  Einstein’s 

result then reduces to the classical result of Newton.  However, in Modern Physics, involving 

microscopic particles that have measured speeds approaching that of light, values of γ > 1000 

are often encountered.  The equations of Newtonian Physics, and the philosophical basis of the 

equations, are then fundamentally wrong. 

Although we have used an “optical clock” in the present discussion, the result applies to clocks 

in general, and, of course, to all inertial frames (they are equivalent). 
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 A formal discussion of Einstein’s Theory of Special Relativity is given in the 

Appendix.; it is intended for those with a flair for Mathematics. 

4.4  Experimental evidence for time dilation and length contraction  

 At the top of the Earth’s atmosphere, typically 30,000m above sea-level, various gasses 

are found, including oxygen.  When oxygen nuclei are bombarded with very high energy 

protons from the Sun, and from more distant objects, entities called muons are sometimes 

produced.  These muons are found to have speeds very close to that of light (> 0.999c).  

Experiments show that the life-time of the muon, in its rest frame, is very short, a mere 2 × 10 − 

6 seconds.  After that brief existence, the muon transforms into other elementary particles.  In 

Newtonian Physics, we would therefore expect the muon to travel a distance d = VΔt, where V 

≈ c ≈ 3 x 108 m/s, and Δt = 2 × 10 − 6 s, so that d ≈ 600 m.  We should therefore never expect to 

observe muons on the surface of the Earth, 30,000 m below.  They are, however, frequently 

observed here on Earth, passing through us as part of the general cosmic background.  

Although the lifetime of the muon is 2µs in its rest frame, in the rest frame of the Earth, it is 

moving very rapidly, and therefore the interval between its creation and decay is no longer Δt 

but rather 

  ΔtE =  γΔtµ = 2 x 10 − 6 seconds / √ [1 − (V/c)2  ] 

where V is the speed of the muon relative to Earth, and Δtµ is the lifetime of the muon in its rest 

frame.  ΔtE is its lifetime in the Earth’s frame. 
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We see that if γ ≥ 50, the muon will reach the Earth.  (For then,  ΔtE ≥ 10 − 4 s , and therefore HE 

≥ 30,000m).  A value of γ = 50 corresponds to a muon speed V = 0.9995c, and this is 

consistent with observations. 

The detection of muons on the surface of the Earth is direct evidence for time dilation.   

Alternatively, we may consider the observation of muons at the Earth’s surface in terms of 

length contraction, as follows: 

If we view the Earth from the rest frame of the muon, 30,000m above the Earth, it is moving 

toward the muon with very high speed, V corresponding to a value γ ≥ 50.  According to 

Einstein, the distance to the Earth is contracted by a factor of γ ≥ 50, so that the muon-Earth 

distance from the perspective of the muon is Hµ = 30000/γ ≤ 30000/50  ≤ 600m.  The Earth 

therefore reaches the muon before it decays. 

This is direct evidence for length contraction.  

Schematically, we have: 
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                                    Fµ                                                                                       Fµ 

                                      muon at rest in Fµ, seen to                                           muon at rest in Fµ, 

                                       be rushing toward Earth                                              Earth   rushing up 

                                     V                                                                           FE   

                          FE                  HE    =  30km                                                      V             Hµ  ≤ 600m 

                                                 Earth at rest in FE                           

                      

 

 

 

 

In FE, fixed to the Earth, a muon                                                  In Fµ, fixed to the muon,     

moving at high speed V toward                                                  the Earth is moving 

the Earth, is created at HE = 30km.                                             upwards at very high speed, V, 

                                                                                                           at a contracted distance 

                                                                                                           Hµ = √(1 − (V/c)2) HE.  

                                                                                                                 = HE / 50 for V = 0.9995c. 
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4.5  Space travel 

 The distance between any two stars is so great that it is measured in “light-years”, the 

distance light travels in one year.  In more familiar units: 

 1 light-year = 9.45 × 1015 meters ≈ 6 trillion miles! 

 Alpha Centauri, our nearest star, is 4.3 light-years away; this means that, even if a 

spaceship could travel at a speed close to c, it would take more than 4.3 years to reach the star. 

 Imagine that it were technically possible to build such a near-light-speed craft; we ask 

how long the journey would take to a star, 80 light-years away, as measured by observers on 

the Earth.  Let ELV be the event “craft leaves Earth” and EARR the event “craft arrives at star”.  

To observers in the rest frame of the Earth, it travels a distance 756 × 1015 meters at a speed of 

0.995c, (say), in a time 

    ΔtE =  756 × 1015 (meters) / 0.995 × 9.45 × 1015 (meters per light-year)  

           = 80.4 years. 

Very few passengers would be alive when the craft reached the star.  If the survivors sent a 

radio signal back to the Earth, saying that they had arrived, it would take another 80 years for 

the signal to reach the Earth. (Radio waves travel at the invariant speed of light).   

 Let us calculate the time of the trip from the perspective of the travelers.  The 

spacecraft-fixed frame is labeled FSC  In this frame, the two events, ELV and EARR occur at the 

same place, namely the origin of FSC.  The trip-time, ΔtSC, according to the travelers is a 
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“proper” time interval, and is less than the trip-time according to Earth-fixed observers by a 

factor  √(1 − (V/c)2), where V = 0.995c.  We then find 

  ΔtSC = ΔtE√(1 − (0.995)2) = ΔtE × √(0.01) 

          = 80.4 × 0.1 

          = 8.04 years. 

To the travelers on board, the trip takes a little more than 8 years. 

The passengers and crew of the spacecraft would have plenty of time to explore their new 

environment.  Their return trip would take another 8.04 years, and therefore, on arrival back on 

the Earth, they would have aged 16.08 years, whereas their generation of Earth-bound persons 

would have long-since died. (The society would have aged 160 years).   

 This discussion assumes that the biological processes of the travelers take place 

according to time on the spacecraft clocks.  This is certainly reasonable because heart-beats 

represent crude clocks, and metabolic rates of life processes are clock-like.  According to 

Einstein,  all “clocks” are affected by the motion of one inertial frame relative to another. 

 The twin paradox is not a paradox at all.  Consider a twin, A, in the rest frame of the 

Earth, and let A observe the round-trip of his twin, B, to a distant star at near-c speed.  A 

concludes that when B returns to Earth, they are no longer the same age; B is younger than A.  

According to the Principle of Relativity, B can be considered at rest, and the Earth, and twin A, 

travel  away and return, later.  In this case, B concludes that A has been on the trip, and 

therefore comes back younger.  This cannot be!  The paradox stems from the fact that the twin, 
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B, who leaves the Earth, must accelerate from the Earth, must slow down at the star, turn 

around, accelerate away from the star, and slow down on reaching Earth.  In so doing, the B-

twin has shifted out of inertial frames and into accelerating frames. Special Relativity does not 

hold throughout the entire journey of the twin in the spacecraft.  The A-twin is always at rest in 

the inertial frame of the Earth.  There is a permanent asymmetry in the space-time behavior of 

the twins. 

 The time in which a space traveler is in non-inertial frames can be made very short 

compared with the total travel time. The principles of Special Relativity are then valid, and the 

discussion given above, in which a spacecraft travels to a distant star, 80 light-years away, is 

essentially correct. 

5.  NEWTONIAN DYNAMICS 

. . . for the whole burden of (natural) philosophy seems to consist of this 

—from the phenomena of motions to investigate the forces of nature, and then from these 

forces to demonstrate the other phenomena. 

                                                                                                                   NEWTON, the PRINCIPIA 

 Although our discussion of the geometry of motion has led to major   advances in our 

understanding of measurements of space and time in different inertial systems, we have yet to 

come to the real crux of the matter, namely, a discussion of the effects of forces on the motion 

of two or more interacting particles.  This key branch of Physics is called Dynamics.  It was 

founded by Galileo and Newton and perfected by their followers, notably Lagrange and 
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Hamilton.  The Newtonian concepts of mass, momentum and kinetic energy require 

fundamental revisions in the light of the Theory of Special Relativity.  In spite of the conceptual 

difficulties inherent in the classical theory, its success in accounting for the dynamical behavior 

of systems, ranging from collisions of gas molecules to the motions of planets has been, and 

remains, spectacular. 

5.1  The law of inertia 

 Galileo (1564-1642) was the first to develop a quantitative approach to the study of 

motion of everyday objects.  In addition to this fundamental work, he constructed one of the 

first telescopes and used it to study our planetary system.  His observation of the moons of 

Jupiter gave man his first glimpse of a miniature world system that confirmed the concepts put 

forward previously by Copernicus (1473 -1543). 

 Galileo set out to answer the question:  what property of motion is related to force?  Is it 

the position of the moving object or its velocity or its rate of change of velocity, or what?  The 

answer to this question can only be obtained from observations, this is a basic feature of 

Physics that sets it apart from Philosophy proper.  Galileo observed that force Influences 

changes in velocity (accelerations) of an object and that, in the absence of external forces (e.g. 

friction), no force is needed to keep an object in motion that is traveling in a straight line with 

constant speed.  This observationally based law is called the Law of Inertia.  It is, perhaps, 

difficult for us to appreciate the impact of Galileo's new ideas concerning motion.  The fact that 

an object resting on a horizontal surface remains at rest unless something we call force is 
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applied to change its state of rest was, of course, well-known before Galileo’s time.  However, 

the fact that the object continues to move after the force ceases to be applied caused 

considerable conceptual difficulties to the early Philosophers.  The observation that, in practice, 

an object comes to rest due to frictional forces and air resistance was recognized by Galileo to 

be a side effect and not germane to the fundamental question of motion.  Aristotle, for example, 

believed that the true or natural state of motion is one of rest.  It is instructive to consider 

Aristotle's conjecture from the viewpoint of the Principle of Relativity:  is a natural state of rest 

consistent with this general Principle?  First, we must consider what is meant by a natural state 

of rest; it means that in a particular frame of reference, the object in question is stationary.  

Now, according to the general Principle of Relativity, the laws of motion have the same form 

in all frames of reference that move with constant speed in straight lines with respect to each 

other.  An observer in a reference frame moving with constant speed in a straight line with 

respect to the reference frame in which the object is at rest, would conclude that the natural state 

of motion of the object is one of constant speed in a straight line and not one of rest.  All inertial 

observers, in an infinite number of frames of reference, would come to the same conclusion.  

We see, therefore, that Aristotle's conjecture is not consistent with this fundamental Principle. 
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5.2  Newton’s laws of motion 

 During his early twenties, Newton postulated three laws of motion that form the basis 

of Classical Dynamics.  He used them to solve a wide variety of problems, including the 

motion of the planets.  They play a fundamental part in his famous Theory of Gravitation.  The 

laws of motion were first published in the Prlncipia in l687; they are: 

1.  In the absence of an applied force, an object will 

     remain at rest or in its present state of constant 

     speed in a straight line (Galileo's Law of Inertia) 

2.  In the presence of an applied force, an object will 

     be accelerated in the direction of the applied force 

     and the product of its mass by its acceleration is 

     equal to the force. 

and, 

3.  If a body A exerts a force of magnitude |FAB| on a body 

     B, then  B exerts an equal force of magnitude |FBA| on 

     A.  The forces act in opposite directions so that 

     FAB  =  FBA . 

The 3rd. Law applies to “contact interactions”.  For non-contact interactions, it is necessary to 

introduce the concept of a “field-of-force” that “carries the interaction”. 
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 We note that in the 2nd law, the acceleration lasts only while the applied force lasts.  

The applied force need not, however, be constant in time; the law is true at all instants during 

the motion. We can show this explicitly by writing: 

  F(t) = ma(t)  

where the time-dependence of the force, and the resulting acceleration, is emphasized. 

 The "mass" appearing in Newton's 2nd law is the so-called inertial mass.  It is that 

property of matter that resists changes in the state of motion of the matter.  Later, in discussions 

of Gravitation, we shall meet another property of matter that also has the name "mass"; it is that 

property of matter that responds to the gravitational force due to the presence of other 

"masses"; this "mass" is the so-called "gravitational mass".  The equivalence of inertial and 

gravitational mass was known to Newton.  Einstein considered the equivalence to be of such 

fundamental importance that he used it as a starting point for his General Theory of Relativity, 

one of the greatest creations of the human mind. 

 In 1665 - 66, Sir Isaac Newton, the supreme analytical mind to emerge from England, 

deduced the basic law governing the interaction between two masses, M1 and M2.  The force 

depends on the product of the two masses, and the square of the distance between them, thus 

                              Mass, M1                                                 Mass, M2 
 
 
                                           Distance between centers, R 
 
 
The gravitational force between the masses is given by: 
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                                     M1 × M2 
                     Fgrav  ∝    
                                         R2    
 
If the masses are initially 1 meter apart, and we increase the separation to 2  
 
meters, the force decreases by 1/(2)2 = 1/4. 
 
(It took Newton many years to prove that the distributed mass of a sphere  
 
can be treated as a “point” mass at its center.  The problem involves a three- 
 
dimensional integral using his newly-invented Calculus). 
 
5.3  General features of inverse square-law forces 
 
 In the early 1700’s, Coulomb deduced the law of force that governs  
 
the interaction between two objects that possess the attribute of “electric  
 
charge”.  He found the following: the force between two charges Q1 (at rest)  
 
and Q2 depends on the product of the two charges, Q1 and Q2, and on the  
 
square of the distance between them: 
 
         Charge Q1                     Charge Q2 
 
 
 
 
            Distance between centers, R 
 
                Q1  ×  Q2 
                       Felect   ∝     
                                   R2   
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In the 19th-century, experiments showed that charges in motion, relative to an observer, 

generate an additional component of the force called the Magnetic Force.  The complete force 

between moving charges is therefore known as the Electromagnetic Force.   

 We see that there is a remarkable similarity between the forms of the Gravitational and 

the Electromagnetic forces.  They both depend on the symmetries M1 × M2 and Q1 × Q2, and 

they both vary as the inverse square of the distance between the objects.  This latter feature is 

not by chance.   

Let us introduce a model of these interactions in which we postulate that the force between one 

object and another is “carried”, or mediated, by entities, generated by their sources; let them 

travel in straight lines between the objects.  The mediators are capable of transferring 

momentum between the interacting objects.  Consider the case in which a stationary charge Q 

is the source of mediators that travel, isotropically, from the charge at a uniform rate: 

 
 
 
 
                             Area. A at 1m. 
 
                                    Charge  Q  
                                  Area. 4A at 2m. 
 
 
 
 
 
                  1m 
 
                 2m   
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It is a property of the space in which we live that the shaded area, A, situated 1 meter from the 

charge Q, projects onto an area 4A at a distance 2 meters from Q.  Therefore, the number of 

mediators passing through the area A at 1 meter from Q passes through an area 4A at a 

distance 2 meters from Q.  If the force on a second charge Q′, 1 meter from Q, is due to the 

momentum per second transferred to the area A as a result of the mediators striking that area, 

then a charge Q′, 2 meters from the source, will experience a force that is 1/4 the force at 1 

meter because the number of mediators per second passing through A now passes through an 

area four times as great.  We see that the famous “inverse square law” is basically geometric in 

origin. 

 Not surprisingly, the real cases are more subtle than implied by this model.  We must 

recognize a fundamental difference between the gravitational and the electromagnetic forces, 

namely: 

 the gravitational force is always attractive, whereas the electromagnetic force can be 

either attractive or repulsive.  This difference comes about because there is only “one kind” of 

mass, whereas there are “two kinds” of charge, which we label positive and negative.  (These 

terms were introduced by the versatile Ben Franklin).  The interaction between like charges is 

repulsive and that between unlike charges is attractive.   

 We can develop our model of forces transmitted by the exchange of entities between 

objects that repel each other in the following way: 
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Consider two boxes situated on a sheet of ice.  Let each box contain a person and a supply of 

basketballs.  If the two occupants throw the balls at each other in such a way that they can be 

caught, then a stationary observer, watching the exchange, would see the two boxes moving 

apart.  (This is a consequence of a law of motion that states that the linear momentum of a 

system is conserved in the absence of external forces): 

 
 
 
 
 
 

               
 
If the observer were so far away that he could see the boxes, but not the balls being exchanged, 

he would conclude that an unexplained repulsive force acted between the boxes. 

The exchange model of an attractive force requires more imagination; we must invoke the 
 
 exchange of boomerangs between the occupants of the  
 
boxes, as shown 
 
 
 
 
 
 
 
 
 
           Boxes move together 
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 These models are highly schematic.  Nonetheless, they do indicate that models based 

on the exchange of entities that carry momentum, can be constructed.  Contemporary theories 

of the Nuclear Force, and the Quark- Quark Force of Particle Physics, involve the exchange of 

exotic entities (mesons and gluons, respectively). 

 Newton deduced the inverse square law of gravitation by combining the results of 

painstaking observations of the motions of the planets (Brahe and Kepler), with an analysis of 

the elliptical motion of a (terrestrial) object, based on his laws of motion.  This was the first time 

that the laws of motion, discovered locally, were applied on a universal scale. 

6.  EQUIVALENCE OF MASS AND ENERGY: E=mc2    

6.1  Relativistic mass 

 In Newtonian Physics, the inertial mass of an object is defined, operationally, by the 

second law: 

  m = F/a, 

where a is the acceleration of the mass m, caused by the force F.  For a given particle, the mass 

is constant; it has the same value in all inertial frames.   

 In Einsteinian Physics, the inertial mass, m, of an object depends on the speed of the 

frame in which it is measured.  If its mass is m0 in its rest frame then its mass m in an inertial 

frame moving at constant speed V is 

  m (the relativistic mass) = γm0 (the rest mass), 
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where γ is the same factor found in discussions of length contraction, and time dilation.  The 

validity of this equation has been demonstrated in numerous modern experiments. 

 The structure of atoms has been understood since the early 1930’s.  An atom consists of 

a very small, positively charged nucleus, surrounded by electrons (negatively charged).  The 

nucleus contains protons (positively charged) and neutrons (electrically neutral) bound together 

by the nuclear force.  The diameter of a typical nucleus is less than 10-–12 centimeters.  The 

electrons orbit the nucleus at distances that can be one hundred thousand times greater than the 

size of the nucleus.  The electrons are held in orbit by the electromagnetic force.  The total 

positive charge of the nucleus is exactly balanced by the total negative charge of the planetary 

electrons, so that the atom is electrically neutral.  An electron can be removed from an atom in 

different ways, including ionization in an electric field and photo-ionization with light.  A free 

electron has the following accurately measured properties: 

 

                  mass of the electron  = 9.1083 x 10–31 kilograms (kg), 

and 

 electric charge of the electron  = 1.60206 x 10–19 Coulomb. (C). 

Here, “mass” refers to the mass measured in a frame of reference in which the electron is at 

rest; it is the “rest mass”. 

In 1932, a particle was observed with the same mass as the electron and with a charge equal in 

magnitude, but opposite in sign, to that of the electron. The particle was given the name 
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“positron”; it is the “anti-particle” of the electron.  The concept of anti-particles was introduced 

by Dirac, using purely theoretical arguments, a few years before the experimental observation 

of the positron. 

In the 1940’s, it was found that an electron and a positron, when relatively at rest, may form a 

“positronium atom” that consists of a bound state of an electron and a positron, orbiting about 

their center-of-mass.  Such an “atom” exists for a very short interval of time, namely 10-–10 

seconds.  It then spontaneously decays into two gamma-rays (high energy electromagnetic 

radiation).  The two gamma-rays are observed to travel back-to-back.  (This observation is 

consistent with the law of conservation of linear momentum; the total momentum is zero 

before the decay (the particles are initially at rest), and therefore it must be zero after the decay).  

Each gamma-ray has a measured energy of 0.511 MeV (Million electron-volts).  

In Modern Physics, it is the custom to use the electron-volt (eV) as the unit of energy.  An 

electron-volt is the energy acquired by an electron when accelerated by a potential difference of 

one volt.  Pictorially, we have: 

                                                                                                  (back-to-back) 

                      +  −                                                           0.511 MeV    0.511 MeV 

                                                             ∗                    <∼∼  ∼∼> 

   Matter – Anti-matter     ⇒     Annihilation        ⇒         Radiation 



 

 

48 

Electron-positron annihilation is a prime example of the conversion of matter into 

electromagnetic radiation.  (This is the basic process in PET scanning [Positron Emission 

Tomography] in Nuclear Medicine ). 

From the measured electron and positron masses, and the measured energies of the two 

gamma-rays, we can obtain one of the most important results in our on-going quest for an 

understanding of the laws of Nature, and the associated workings of the physical universe.  We 

begin by noting one of the standard results of Classical (Newtonian) Physics, namely, the 

expression for the kinetic energy (energy of motion), E, of an object of mass m, moving with a 

velocity v: 

  E = (1/2)mv2. (A result derived in standard texts on Mechanics). 

We note that the ratio, energy/mass is 

  E/m =(1/2)v2, (the ratio is proportional to (velocity)2). 

We are therefore led to study the ratio: 

  gamma-ray energy/electron mass, 

to obtain the resulting velocity-squared. 

The gamma-ray energy is: 

    energy, E  = 0.511 x 106 (eV) x 1.602 x 10–19 (Joule/eV) 

                                    = 0.8186 x 10–13 Joule. 

(A note on “units”:  in the Physical Sciences, units of measured quantities are often given in the 

MKS system, in which lengths are given in meters, masses are given in kilograms, and time is 
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given in seconds.  In this system, the unit of energy is the Joule (named after James Prescott 

Joule, a Manchester brewer and distinguished scientist of the 19th-century)). 

Our required conversion factor is:  1 electron-volt = 1.602 x 10–19 Joule. 

In the MKS system, the ratio gamma-ray energy/ electron mass is therefore 

  E/m = 0.8186 x 10–13 Joule / 9.1083 x 10–31 kilogram, 

                        =  0.89874 x 1017 (meters/second)2, 

a velocity, squared. 

We can find the velocity by taking the square root of the value of E/m, thus: 

  √(8.9874 x 1016) = 2.9974 × 108 meters/second. 

This is a truly remarkable result; it is the exact value of the measured velocity of light, always 

written, c. 

We therefore find that the ratio 

  E (gamma-ray)/m (electron) = c2 

or, 

  E = mc2. 

This is Einstein’s great equation that shows the equivalence of energy and mass.  (Here, m is 

the “relativistic mass” equal to γm0).  It is important to note that Einstein derived this 

fundamental relation using purely theoretical arguments, long before experiments were carried 

out to verify its universal validity.  The heat that we receive from the Sun originates in the 

conversion of its central, highly compressed mass into radiant energy.  A stretched spring has 
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more mass than an unstretched spring, and a charged car battery has more mass than an 

uncharged battery!  In both cases, the potential energy stored in the systems has an equivalent 

mass.  We do not experience these effects because the mass changes are immeasurably small, 

due to the 1/c2 factor.  However, in nuclear reactions that take place in nuclear reactors, or in 

nuclear bombs, the mass (energy) differences are enormous, and certainly have observable 

effects. 

7.  AN INTRODUCTION TO EINSTEINIAN GRAVITATION 

7.1  The principle of equivalence 

 The term “mass” that appears in Newton’s equation for the gravitational force between 

two interacting masses refers to 

 “gravitational mass”; Newton’s law should indicate this property of matter 

          FG = GMGmG/r2, where MG and mG are the gravitational masses of the 

interacting objects, separated by a distance r. 

 The term “mass” that appears in Newton’s equation of motion,          F = ma, refers to 

the “inertial mass”; Newton’s equation of motion should indicate this property of matter: 

       F = mIa, where mI is the inertial mass of the particle moving with an 

acceleration a(r) in the gravitational field of the mass MG.  

 Newton showed by experiment that the inertial mass of an object is equal to its 

gravitational mass, mI = mG to an accuracy of 1 part in 103.  Recent experiments have shown 

this equality to be true to an accuracy of 1 part in 1012.  Newton therefore took the equations 
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        F = GMGmG/r2 = mIa 

and used the condition mG = mI to obtain 

        a = GMG/r2. 

 Galileo had previously shown that objects made from different materials fall with the 

same acceleration in the gravitational field at the surface of the Earth, a result that implies mG ∝ 

mI.  This is the Newtonian Principle of Equivalence.   

 Einstein used this Principle as a basis for a new Theory of Gravitation.  He extended the 

axioms of Special Relativity, that apply to field-free frames, to frames of reference in “free 

fall”.  A freely falling frame must be in a state of unpowered motion in a uniform gravitational 

field .  The field region must be sufficiently small for there to be no measurable gradient in the 

field throughout the region.  The results of all experiments carried out in ideal freely falling 

frames are therefore fully consistent with Special Relativity.  All freely-falling observers 

measure the speed of light to be c, its constant free-space value.  It is not possible to carry out 

experiments in ideal freely-falling frames that permit a distinction to be made between the 

acceleration of local, freely-falling objects, and their motion in an equivalent external 

gravitational field.  As an immediate consequence of the extended Principle of Equivalence, 

Einstein showed that a beam of light would be deflected from its straight path in a close 

encounter with a sufficiently massive object.  The observers would, themselves, be far 

removed from the gravitational field of the massive object causing the deflection. 
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 Einstein’s original calculation of the deflection of light from a distant star, grazing the 

Sun, as observed here on the Earth, included only those changes in time intervals that he had 

predicted would occur in the near field of the Sun.  His result turned out to be in error by 

exactly a factor of two.  He later obtained the “correct” value for the deflection by including in 

the calculation the changes in spatial intervals caused by the gravitational field. 

7.2  Rates of clocks in a gravitational field 

Let a rocket be moving with constant acceleration a, in a frame of reference, F, far removed 

from the Earth’s gravitational field, and let the rocket be instantaneously at rest in F at time t = 

0.  Suppose that two similar clocks, 1 and 2, are attached to the rocket with 1 at the rear end and 

2 at the nose of the rocket.  The clocks are separated by a distance .  We can choose two light 

sources, each with well-defined frequency, f0, as suitable clocks.  f0 is the frequency when the 

rocket is at rest in an inertial frame in free space. 

                                     F   (an inertial frame, no gravitational field) 

                             y                 2             constant acceleration, a, relative to F 

                                                                Clocks at rest in rocket 

                                     

                                                 1              Pulse of light emitted from 1 at t = 0 

                                   acceleration begins at t ≥ 0  

                                                                                                              x 



 

 

53 

Let a pulse of light be emitted from the lower clock, 1, at time t = 0, when the rocket is 

instantaneously at rest in F.  This pulse reaches clock 2 after an interval of time t, (measured in 

F) given by the standard equation for the distance traveled in time t: 

  ct = ( + (1/2)at2), 

where (1/2)at2 is the extra distance that clock 2 moves in the interval t. 

Therefore, 

  t = (/c) + (a/2c)t2  , 

    ≈ (/c) if (at/2) << c 

At time t, clock 2 moves with velocity equal to v = at ≈ a/c, in F. 

An observer at the position of clock 2 will conclude that the pulse of light coming from clock 1 

had been emitted by a source moving downward with velocity v.  The light is therefore 

“Doppler-shifted”, the frequency is given by the standard expression for the Doppler shift at 

low speeds (v << c): 

  f′ ≈ f0[1 − (v/c)] 

     = f0[1 − (a/c2]. 

The frequency f′ is therefore less than the frequency f0.  The light from clock 1 (below) is “red-

shifted”.  Conversely, light from the upper clock traveling down to the lower clock is measured 

to have a higher frequency than the local clock 1; it is “blue-shifted”. 
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 The principle of equivalence states that the above situation, in a closed system, cannot 

be distinguished by physical measurements, from that in which the rocket is at rest in a uniform 

gravitational field.  The field must produce an acceleration of magnitude |a|, on all masses 

placed in it.  

                   y′      G is a non-accelerating frame with a uniform gravitational field present 

                            G                  2                                          

                                                                    Blue shift 

                                   Red shift                                 Rocket at rest in G 

                                                   1                           Gravitational field 

                                                                                                                 Massive body 

                                                                                                                         x′ 

The light from the lower clock, reaching the upper clock will have a frequency lower than the 

local clock, 2, by f0g/c2, (replacing |a| by |g|), where g ≈ 10 m/s2, the acceleration due to gravity 

near the Earth.  The light sources are at rest in G, and no oscillations of the pulses of light are 

lost during transmission; we therefore conclude that, in a uniform gravitational field, the actual 

frequencies of the stationary clocks differ by f0g/c2.  Now, g is the difference in the 

“gravitational potential” between the two clocks.  It is the convention to say that the upper 

clock, 2, is at the higher potential in G.  (Work must be done to lift the mass of clock 1 to clock 

2 against the field).   
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 Consider the case in which a light source of frequency fS (corresponding to clock 1) is 

situated on the surface of a star, and consider a similar light source on the Earth with a 

frequency fE (corresponding to clock 2).  Generalizing the above discussion to the case when 

the two clocks are in varying gravitational fields, such that the difference in their potentials is 

Δφ, we find 

  fE = fS(1 + Δφ/c2) 

                (g = Δφ, is the difference in gravitational potential of the clocks in 

                              a constant field, g, when separated by ). 

For a star that is much more massive than the Earth, Δφ is positive, therefore, fE > fS, or in terms 

of wavelengths, λE and λS, λS > λE.  This means that the light coming from the distant star is 

red-shifted compared with the light from a similar light source, at rest on the surface of the 

Earth. 

 As another example, radioactive atoms with a well-defined “half-life” should decay 

faster near clock 2 ( the upper clock) than near clock 1.  At the higher altitude (higher potential), 

all physical processes go faster, and the frequency of light from above is higher than the 

frequency of light from an identical clock below.  Einstein’s prediction was verified in a series 

of accurate experiments, carried out in the late 1950’s, using radioactive sources that were 

placed at different heights near the surface of the Earth. 
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7.3  Gravity and photons 

 Throughout the 19th-century, the study of optical phenomena, such as the diffraction of 

light by an object, demonstrated conclusively that light (electromagnetic in origin) behaves as a 

wave.  In 1900, Max Planck, analyzed the results of experimental studies of the characteristic 

spectrum of electromagnetic radiation emerging from a hole in a heated cavity (so-called 

“black-body radiation”).  He found that current theory, that involved continuous frequencies in 

the spectrum, could not explain the results.  He did find that the main features of all black-body 

spectra could be explained by making the radical assumption that the radiation consists of 

discrete pulses of energy E proportional to the frequency, f.  By fitting the data, he determined 

the constant of proportionality, now called Planck’s constant; it is always written h.  The 

present value is: 

  h = 6.626 × 10−34 Joule-second in MKS units. 

Planck’s great discovery was the beginning of Quantum Physics. 

 In 1905, Einstein was the first to apply Planck’s new idea to another branch of Physics, 

namely, the Photoelectric Effect.  Again, current theories could not explain the results.  Einstein 

argued that discrete pulses of electromagnetic energy behave like localized particles, carrying 

energy E = hf and momentum p = E/c.  These particles interact with tiny electrons in the 

surface of metals, and eject electrons in a Newtonian-like way.  He wrote  

  EPH = hfPH and EPH = pPHc 

The rest mass of the photon is zero. (Its energy is all kinetic). 
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 If, under certain circumstances, photons behave like particles, we are led to ask: are 

photons affected by gravity?  We have 

  EPH = mPH
I c2 = hfPH, 

or 

  mPH
I = EPH /c2 = hfPH /c2. 

By the Principle of Equivalence, inertial mass is equivalent to gravitational mass, therefore 

Einstein proposed that a beam of light (photons) should be deflected in a gravitational field, just 

as if it were a beam of particles.  (It is worth noting that Newton considered light to consist of 

particles; he did not discuss the properties of his particles.  In the early 1800’s, Soldner actually 

calculated the deflection of a beam of “light-particles” in the presence of a massive object!  

Einstein was not aware of this earlier work). 

 Let us consider a photon of initial frequency fS, emitted by a massive star of mass MS, 

and radius R.  The gravitational potential energy, V, of a mass m at the surface of the star, is 

given by a standard result of Newton’s Theory of  Gravitation; it is 

  V(surface) = − GMSm/R. 

It is inversely proportional to the radius of the star.  The negative sign signifies that the 

gravitational interaction between MS and m is always attractive. 

 Following Einstein, we can write the potential energy of the photon of “mass” hfPH/c2 at 

the surface as 

  V (surface) = − (GMS /R)(hfPH /c2). 
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The total energy of the photon, ETOTAL is the sum of its kinetic and potential energy: 

  ETOTAL = hfPH
STAR  +  (−) GMShfPH

STAR /Rc2 , 

            = hfPH
STAR (1 − GMS /Rc2). 

At very large distances from the star, at the Earth, for example, the photon is essentially beyond 

the gravitational pull of the star.  Its total energy remains unchanged (conservation of energy).  

At the surface of the Earth the photon has an energy that is entirely electromagnetic (since its 

potential energy in the “weak” field of the Earth is negligible compared with that in the 

gravitational field of the star), therefore 

  hfPH
EARTH = hfPH

STAR (1 − GMS /Rc2) 

so that  

  fPH
EARTH/fPH

STAR = 1 − GMS /Rc2, 

and 

  Δf/f ≡ (fPH
STAR − fPH

EARTH) /fPH
STAR = GMS/Rc2 . 

 We see that the photon on reaching the Earth has less total energy than it had on leaving 

the star.  It therefore has a lower frequency at the Earth.  If the photon is in the optical region, it 

is shifted towards the red-end of the spectrum.  This is the gravitational red-shift.  (It is quite 

different from the red-shift associated with Special Relativity) 

Schematically, we have: 
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                                                                fPH
STAR                            To Earth      fPH

EARTH 

                            Radius R 

 

                                  Mass MS           Blue light emitted                                Light red-shifted  

                               Massive Star                                                                        far from field of star 

  7.4  Black holes 

 In 1784, a remarkable paper was published in the Philosophical Transactions of the 

Royal Society of London, written by the Rev. J. Michell.  It contained the following discussion: 

 To escape to an infinite distance from the surface of a star of mass M and radius R, an 

object of mass m must have an initial velocity v0 given by the energy condition: 

        initial kinetic energy of mass ≥ potential energy at surface of star, 

or 

           (1/2)mv0
2 ≥ GMm/R (A Newtonian expression). 

This means that 

                                                   v0 ≥ √(2GM/R). 

Escape is possible only when the initial velocity is greater than (2GM/R)1/2 .   

On the Earth, v0 ≥ 25,000 miles/hour. 
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For a star of given mass M, the escape velocity increases as its radius decreases.  Michell 

considered the case in which the escape velocity v0 reaches a value c, the speed of light.  In this 

limit, the radius becomes 

  RLIMIT = 2GM/c2     

He argued that light would not be able to escape from a compact star of mass M with a radius 

less than RLIMIT; the star would become invisible.  In modern terminology, it is a black hole. 

 Using the language of Einstein, we would say that the curvature of space-time in the 

immediate vicinity of the compact star is so severe that the time taken for light to emerge from 

the star becomes infinite.  The radius 2GM/c2 is known as the Schwarzschild radius; he was 

the first to obtain a particular solution of the Einstein equations of General Relativity.  The 

analysis given by Michell, centuries ago, was necessarily limited by the theoretical knowledge 

of his day.  For example, his use of a non-relativistic expression for the kinetic energy (mv2/2) 

is now known to require modification when dealing with objects that move at speeds close to 

c.  Nonetheless, he obtained an answer that turned out to be essentially correct. His use of a 

theoretical argument based on the conservation of energy was not a standard procedure in 

Physics until much later.  

 A star that is 1.4 times more massive than our Sun, has a Schwarzschild radius of only 

2km and a density of 1020 kg/m3.  This is far greater than the density of an atomic nucleus.  For 

more compact stars (RLIMIT < 1.4 MSUN), the gravitational self-attraction leads inevitably to its 

collapse to a “point”.   
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 Studies of the X-ray source Cygnus X-1 indicate that it is a member of a binary system, 

the other member being a massive “blue supergiant”.  There is evidence for the flow of matter 

from the massive optical star to the X-ray source, with an accretion disc around the center of 

the X-ray source.  The X-rays could not be coming from the blue supergiant because it is too 

cold.  Models of this system, coupled with on-going observations, are consistent with the 

conjecture that a black hole is at the center of Cygnus X-1.  Several other good candidates for 

black holes have been observed in recent studies of binary systems.  The detection of X-rays 

from distant objects has become possible only with the advent of satellite-borne equipment. 

 I have discussed some of the great contributions made by Einstein to our understanding 

of the fundamental processes that govern the workings of our world, and the universe, beyond.  

He was a true genius, he was a visionary, and he was a man of peace. 
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                 Appendix 

                 The following material presents the main ideas of Einstein’s Special Relativity in a mathematical 

form.  It is written for those with a flair for Mathematics. 

A1.  Some useful mathematics: transformations and matrices 

 Let a point P[x, y] in a Cartesian frame be rotated about the origin through  an angle of 

90°; let the new position be labeled P′[x′, y′] 

                                                                  +y 
 
                                              P′[x′, y′]                     
                                                                                               P[x, y] 
 
                                      -x                                                               +x 
 
 
                                                                    -y 
 
We see that the new coordinates are related to the old coordinates as follows: 

    x′ (new) =              −y (old) 

and 

    y′ (new) =  +x (old) 

where we have written the x’s and y’s in different columns for reasons that will become clear, 

later. 

Consider a stretching of the material of the plane such that all x-values are doubled and all y-

values are tripled: 
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                                                                            3y                               P′[x′, y′] = P′[2x, 3y] 
 
 
 
              y                   P[x, y] 
 
                                                                                                         
 
                                                                                                                             x       2x 

 
The old coordinates are related to the new coordinates by the equations 

    y′ =          3y 

and 

    x′ =  2x 

Consider a more complicated transformation in which the new values are combinations of the 

old values, for example, let 

    x′ = 1x  +  3y 

and 

    y′ = 3x  +  1y 

We can see what this transformation does by putting in a few definite values for the 

coordinates: 

  [0, 0] → [0, 0] 

  [1, 0] → [1.1 + 3.0, 3.1 + 1.0] = [1, 3] 

  [2, 0] → [1.2 + 3.0, 3.2 + 1.0] = [2, 6] 
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  [0, 1] → [1.0 + 3.1, 3.0 + 1.1] = [3, 1] 

  [0, 2] → [1.0 + 3.2, 3.0 + 1.2] = [6, 2] 

  [1, 1] → [1.1 + 3.1, 3.1 + 1.1] = [4, 4} 

  [1, 2] → [1.1 + 3.2, 3.1 + 1.2] = [7, 5] 

  [2, 2] → [1.2 + 3.2, 3.2 + 1.2] = [8, 8] 

  [2, 1] → [1.2 + 3.1, 3.2 + 1.1] = [5, 7] 

and so on.  

Some of these changes are shown below 

 
                                y 
 
 
                                               y′   
 
 
 
                                                   New axes and grid-lines are oblique 
 
 
                x′ 
 
             x 
 
 
This is a particular example of the more general transformation 

   x′ = ax + by 

and 

   y′ = cx + dy 
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where a, b, c, and d are real numbers. 

In the above examples, we see that each transformation is characterized by the values of the 

coefficients, a, b, c, and d: 

For the rotation through 90°: 

a = 0, b = −1, c = 1, and d = 0; 

for the 2x3 stretch: 

a = 2, b = 0, c = 0, and d = 3; 

and for the more general transformation: 

a = 1, b = 3, c = 3, and d = 1. 

 In the 1840’s, Cayley recognized the key role of the coefficients in characterizing the 

transformation of a coordinate pair [x, y] into the pair [x′, y′].  He therefore “separated them 

out”, writing the pair of equations in column-form, thus: 

 
       x′              a    b          x      
             = 
     y′              c    d          y    
   
This is a single equation that represents the original two equations.  We can write it in the 

symbolic form: 

     P′ = MP , 

which means that the point P with coordinates x, y (written as a column) is changed into the 

point P′ with coordinates x′, y′ by the operation of the 2 x 2 matrix operator M. 
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The matrix M is  

                                                        a       b   
   M  =                     . 
     c       d    
 
The algebraic rule for carrying out the “matrix multiplication” is obtained directly by noting 

that the single symbolic equation is the equivalent of the two original equations.  We must 

therefore have 

   x′ = a times x + b times y 

and 

   y′ = c times x + d times y. 

We multiply rows of the matrix by columns of the coordinates, in the correct order. 

2 x 2 matrix operators will be seen to play a crucial role in Einstein’s Special Theory of 

Relativity. 

A2.  Galilean-Newtonian relativity revisited 

 The idea of matrix operators provides us with a useful way of looking at the equations 

of classical relativity, discussed previously.  Recall the two basic equations: 

   t′  =  t  

and 

   x′  =  x − Vt  .   

where, the event E[t, x] in the F-frame has been transformed into the event E′[t′, x′] in the F′-

frame.  We can write these two equations as a single matrix operator equation as follows 
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    t′               1    0         t     
           =                               , 
   x′            −V   1         x     
 
or, symbolically 
 
   E′  =  GE, 
 
where  
 
                    1    0    
   G   =                       , the matrix of the Galilean transformation. 
                  −V   1    
 
 If we transform E → E′ under the operation G, we can undo the transformation by 

carrying out the inverse operation, written G−1, that transforms E′ → E, by reversing the 

direction of the relative velocity:  

 
   t  =  t′ 
 
and 
   x  = x′ + Vt′   
 
or, written as a matrix equation: 
 
   t               1      0         t′    
           =                     
   x            +V     1       x′   
 
where 
 
      1    0    
   G−1 =               
     +V   1    
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is the inverse operator of the Galilean transformation.  Because G−1 undoes 
 
 the effect of G, we have 
 
   G−1G = “do nothing” = I , the identity operator, 
 
where 
    1      0       
   I =                      .  
    0      1       

 We can illustrate the space-time path of a point moving with respect to the F- and F′-

frames on the same graph, as follows 

 
        x - axis                               E[t, x] and E′[t′, x′] 
                            x′ - axis 
     x 
          D = Vt 
 
     x′                             t′ - axis 
                  (the world line  
                    of O′ relative to O) 
   
                          t′          
                                                 D = Vt 
        O, O’                                                                                          t - axis 
             t 
 
 The origins of F and F′ are chosen to be coincident at t = t′ = 0.  O′ moves to the right 

with constant speed V, and therefore travels a distance D = Vt in time t.  The t′ - axis is the 

world line of O′ in the F-frame.  Every point in this space-time geometry obeys the relation      

x′ = x − Vt; the F′-frame is therefore represented by a semi-oblique coordinate system.  The 
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characteristic feature of Galilean-Newtonian space-time is the coincidence of the x-x′- axes.  

Note that the time intervals, t, t′ in F and F′ are numerically the same (Newton’s “absolute 

time”), and therefore a new time scale must be chosen for the oblique axis, because the lengths 

along the time-axis, corresponding to the times t, t′ of the event E, E′ are different.  

A3.  Is the geometry of space-time Pythagorean? 

 Pythagoras’ Theorem is of primary importance in the geometry of space.  The theorem 

is a consequence of the invariance properties of lengths and angles under the operations of 

translations and rotations.  We are therefore led to ask the question − do invariants of space-

time geometry exist under the operation of the Galilean transformation and, if they do, what are 

they?  We can address this question by making a simple, direct calculation, as follows.  The 

basic equations that relate space-time measurements in two inertial frames moving with 

relative speed V are 

  x′ = x − Vt  and  t′ = t. 

We are interested in quantities of the form x2 + t2 and x′2 + t′2.  These forms are inconsistent, 

however, because the “dimensions” of the terms are not the same; x, x′ have dimensions of 

“length” and t, t′ have dimensions of “time”.  This inconsistency can be dealt with by 

introducing two quantities k, k′ that have dimensions “length/time” (speed), so that the 

equations become 

  x′ = x − Vt (all lengths) and k′t′ = kt (all lengths). 

(Note that kt is the distance traveled in a time t at a constant speed k).  We now find 
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  x′2 = (x − Vt)2 = x2 − 2xVt + V2t2, and k′2t′2 = k2t2,  

so that  

      x′2 + k′2t′2 = x2 − 2xVt + V2t2 + k2t2. 

              ≠ x2 + k2t2 unless V = 0 (no motion!). 

Relative events in an semi-oblique space-time geometry therefore transform under the Galilean 

operator in a non-Pythagorean way. 

A4.  Einstein’s space-time symmetry: the Lorentz transformation 

 We have seen that the classical equations relating the events E and E  ́are  

         E  ́= GE, and the inverse E = G–1E  ́where 

 

                                                                      1    0                                      1      0        
                                                    G  =                            and   G–1  =                       .   
                                         –V    1                                     V      1        
 
These equations are connected by the substitution V ↔ –V; this is an algebraic statement of 

the Newtonian Principle of Relativity.  Einstein incorporated this principle in his theory (his first 

postulate), broadening its scope to include all physical phenomena, and not simply the motion 

of mechanical objects.  He also retained the linearity of the classical equations in the absence of 

any evidence to the contrary.  (Equispaced intervals of time and distance in one inertial frame 

remain equispaced in any other inertial frame).  He therefore symmetrized the space-time 

equations (by putting space and time on equal footings) as follows:  
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                                                                                     −V replaces 0, to symmetrize the matrix 

                                                t́                   1   –V           t              
                                                         =                                       .      
 
                                               x  ́                –V     1          x               
 
Note, however, the inconsistency in the dimensions of the time-equation that has now been 

introduced: 

                           t́  =  t – Vx. 

The term Vx has dimensions of [L]2/[T], and not [T].  This can be corrected by introducing the 

invariant speed of light, c (Einstein's second postulate, consistent with the result of the 

Michelson-Morley experiment): 

                                   ct́  = ct – Vx/c     (c′ = c, in all inertial frames) 

so that all terms now have dimensions of length.  (ct is the distance that light travels in a time t) 

 Einstein went further, and introduced a dimensionless quantity γ instead of the scaling 

factor of unity that appears in the Galilean equations of space-time.  (What is the number “1” 

doing in a theory of space-time?).  This factor must be consistent with all observations.  The 

equations then become 

                                   ct́  =      γct –  βγx  

                                    x  ́=  –βγct +    γx , where β=V/c. 

These can be written 

                                  E  ́ = LE,        
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where 

                                                                        γ   –βγ         
                                                        L =                       , 
                                          –βγ      γ          
 
and                                                 E = [ct, x] . 

L is the operator of the Lorentz transformation. (First obtained by Lorentz, it is the 

transformation that leaves Maxwell’s equations of electromagnetism unchanged in form 

between inertial frames).  

 The inverse equation is E = L−1E′ , where  
 
                                                                         γ    βγ            
                                                       L–1 =                        . 
                                                                       βγ      γ            
 
This is the inverse Lorentz transformation, obtained from L by changing β → –β (V →  –V); it 

has the effect of undoing the transformation L.  We can therefore write 

                                                    LL–1 = I, the identity. 

Carrying out the matrix multiplication, and equating elements gives 

                                               γ2 – β2γ2 = 1 

therefore,  

                                                            γ = 1/√(1 – β2) (taking the positive root). 

As V → 0, β → 0 and therefore γ → 1; this represents the classical limit in which the Galilean 

transformation is, for all practical purposes, valid.  In particular, time intervals have the same 
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measured values in all Galilean frames of reference, and acceleration is the single Galilean 

invariant.  

A5.  The invariant interval 

 Previously, it was shown that the space-time of Galileo and Newton is not Pythagorean 

under G.  We now ask the question: is Einsteinian space-time Pythagorean under L ?  Direct 

calculation leads to 

                       (ct)2 + x2 = γ2(1 + β2)(ct́ )2 + 4βγ2x´ct́  

                                         +γ2(1 + β2)x 2́ 

                                       ≠ (ct́ )2 + x 2́ if β > 0. 

Note, however, that the difference of squares is an invariant: 

                        (ct)2 – x2 = (ct́ )2 – x 2́ 

because 

                        γ2(1 – β2) = 1. 

Space-time is said to be pseudo-Euclidean.  The “difference of squares” is the characteristic 

feature of Nature’s space-time.  The “minus” sign makes no sense when we try and relate it to 

our everyday experience of geometry.  The importance of Einstein’s “free invention of the 

human mind” is clearly evident in this discussion. 

 The geometry of the Lorentz transformation, L, between two inertial frames involves 

oblique coordinates, as follows: 
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                    x -axis        tan−1 β 

                                      x′  - axis   

                           X                                                                   E[cT, X] and E′[cT′, X′] 

                                         X′ 

                                                                                                  (cT)2 − X2 = (cT′)2 − X′2  

                                                                                                                                    ct′ - axis 

                                                                                                               angle = tan−1 β                  

     Common O, O′                                               cT′                                           ct - axis 

                                                                                           cT                             

The symmetry of space-time means that the ct - axis and the x - axis fold through equal angles.  

Note that when the relative velocity of the frames is equal to the speed of light, c, the folding 

angle is 450, and the space-time axes coalesce. 

A6.  The relativity of simultaneity: the significance of oblique axes 

 Consider two sources of light, 1 and 2, and a point M midway between them.  Let E1 

denote the event “flash of light leaves 1”, and E2 denote the event “flash of light leaves 2”.  The 

events E1 and E2 are simultaneous if the flashes of light from 1 and 2 reach M at the same time.  

The oblique coordinate system that relates events in one inertial frame to the same events in a 

second (moving) inertial frame shows, in a most direct way, that two events observed to be 

coincident in one inertial frame are not observed to be coincident in a second inertial frame 
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(moving with a constant relative velocity, V, in standard geometry).  Two events E1[ct1, x1] and 

E2[ct2, x2], are observed in a frame, F.  Let them be coincident in F, so that t1 = t2 = t, (say).  The 

two events are shown in the following diagram: 

          x - axis 

                   x1                                             E1        

 

                                                                                          Coincident events in F 

                    x2                                            E2 

 

                  O       F - frame 

                                                          ct1 = ct2 = ct                       ct - axis 

 

Consider the same two events as measured in another inertial frame, F′, moving at constant 

velocity V along the common positive x - x′ axis.  In F′, the two events are labeled E1′[ct1′, x1′] 

and E2′[ct2′, x2′].  Because F′ is moving at constant velocity +V relative to F, the space-time 

axes of F′ are folded inwards through angles tan−1(V/c) relative to the F axes, as shown.  The 

events E1′ and E2′ can be displayed in the F′ - frame: 
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             inclined at tan−1(V/c) relative to the x - axis of F 

                                                    x′ - axis 

                                                       x1′                        E1′[ct1′, x1′] in F′ 

                                                                                                                 Not coincident in F′ 

                                                                                    E2′[ct2′, x2′] in F′ 

                                  x2′ 

                                                                                                   ct′ - axis inclined at tan−1(V/c) 

                                                                                                           relative to the ct - axis of F 

                    O’             ct1′             ct2′ 

                                             t1′<  t2′ in F′      ct1 = ct2 (E1 and E2 are coincident in F) 

 

We therefore see that, for all values of the relative velocity V > 0, the events E1′ and E2′ as 

measured in F′ are not coincident; E1′ occurs before E2′. 

(If the sign of the relative velocity is reversed, the axes fold outwards through equal angles). 

A7.  Length contraction: the Lorentz transformation in action 

 The measurement of the length of a rod involves comparing the two ends of the rod 

with marks on a standard ruler, or some equivalent device.  If the object to be measured, and 

the ruler, are at rest in our frame of reference then it does not matter when the two end-positions 

are determined - the “length” is clearly-defined.  If, however, the rod is in motion, the meaning 
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of its length must be reconsidered.  The positions of the ends of the rod relative to the standard 

ruler must be “measured at the same time” in its frame of reference. 

 Consider a rigid rod at rest on the x′-axis of an inertial reference frame F .́  Because it is 

at rest, it does not matter when its end-points x1́  and x2́  are measured to give the rest-, or 

proper-length of the rod, L0́  = x2́  – x1́ .  

Consider the same rod observed in an inertial reference frame F that is moving with constant 

velocity –V  with its x-axis parallel to the x -́axis.  We wish to determine the length of the 

moving rod;  We require the length        L = x2 – x1 according to the observers in F.  This means 

that the observers in F must measure x1 and x2 at the same time in their reference frame.  The 

events in the two reference frames F, and F  ́are related by the spatial part of the Lorentz 

transformation: 

           x  ́= –βγct + γx  

and therefore  

            x2́  – x1́  = –βγc(t2 – t1) + γ(x2 – x1). 

where  

                        β = V/c and γ = 1/√(1 – β2). 

Since we require the length (x2 – x1) in F to be measured at the same time in F, we must have t2 

– t1 = 0, and therefore 

          L0́  = x2́  – x1́  = γ(x2 – x1) , 

or 
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         L0́ (at rest) = γL (moving).  

The length of a moving rod, L, is therefore less than the length of the same rod measured at 

rest, L0 , because γ > 1. 

A8.  Time dilation: a formal approach 

 Consider a single clock at rest at the origin of an inertial frame F ,́ and a set of 

synchronized clocks at x0, x1, x2, ... on the x-axis of another inertial frame F.  Let F  ́move at 

constant velocity +V relative to F, along the common x -, x -́ axis.  Let the clocks at xo, and xó  

be synchronized to read t0 and t0́  at the instant that they coincide in space.  A proper time 

interval is defined to be the time between two events measured in an inertial frame in which 

they occur at the same place.  The time part of the Lorentz transformation can be used to relate 

an interval of time measured on the single clock in the F  ́frame, and the same interval of time 

measured on the set of synchronized clocks at rest in the F frame.  We have 

            ct = γct́  + βγx  ́

or 

             c(t2 – t1) = γc(t2́  – t1́ ) + βγ(x2́  – x1́ ). 

There is no separation between a single clock and itself, therefore x2́  – x1́  = 0, so that  

 c(t2 – t1)(moving) = γc(t2́  – t1́ )(at rest) , 

or 

       cΔt (moving) = γcΔt′ (at rest). 

Therefore, because γ > 1, a moving clock runs more slowly than a clock at rest.  
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A9.  Relativistic mass, momentum, and energy 

 The scalar product of a vector A with components [a1, a2] and a vector B with 

components [b1, b2] is 

  A⋅B = a1b1 + a2b2. 

 In geometry, A⋅B is an invariant under rotations and translations of the coordinate 

system.   

 In space-time, Nature prescribes the differences-of-squares as the invariant under the 

Lorentz transformation that relates measurements in one inertial frame to measurements in 

another.  For two events, E1[ct, x] and E2[ct, −x], the scalar product is 

  E1⋅E2 = [ct, x].[ct, −x] 

             = (ct)2 − x2 = invariant in a space-time geometry, 

where we have chosen the direction of E2 to be opposite to that of E1,thereby providing the 

necessary negative sign in the invariant. 

In terms of finite differences of time and distance, we obtain 

      (cΔt)2 − (Δx)2 ≡ (cΔτ)2 = invariant, 

where Δτ is the proper time interval.  It is related to Δt by the equation 

                Δt = γΔτ. 

 In Newtonian Mechanics, the quantity momentum, the product of the mass of an object 

and its velocity, plays a key role.  In Einsteinian Mechanics, velocity, mass, momentum and 
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kinetic energy are redefined.  These basic changes are a direct consequence of the replacement 

of Newton’s absolute time interval, ΔtN, by the Einstein’s velocity-dependent interval 

  ΔtE = γΔτ. 

 The Newtonian momentum pN = mNvN = mNΔx/ΔtN is replaced by the Einsteinian 

momentum 

  pE
+ ≡ m0vE = m0Δ[ct, x]/Δτ 

       = m0[cΔt/Δτ, Δx/Δτ] 

       = m0[γc, (Δx/Δt)(Δt/Δτ] 

       = m0[γc, γvN]. 

We now introduce the vector in which the direction of the x-component is reversed, giving 

            pE
−  = m0[γc, −γvN]. 

Forming the scalar product, we obtain 

      pE
+⋅pΕ− = m0

2(γ2c2 − γ2vN
2) 

      = m0
2c2, 

because    vE
+⋅vE

− = c2. 

Multiplying throughout by c2, and rearranging, we find 

                     m0
2c4 = γ2m0

2c4 − γ2m0
2c2vN

2 . 

We see that γ is a number and therefore γ multiplied by the rest mass m0 is a mass; let us 

therefore denote it by m: 

               m = γm0, the relativistic mass. 



 

 

81 

We can then write 

  (m0c2)2 = (mc2)2 − (cpE)2. 

The quantity mc2 has dimensions of energy; let us therefore denote it by the symbol E, so that  

            E = mc2, Einstein’s great equation. 

The equivalence of mass and energy is seen to appear in a natural way in our search for the 

invariants of Nature. 

The term involving m0 is the rest energy, E0, 

           E0 = m0c2. 

We therefore obtain 

          E0
2 = E2 − (pEc)2 = E′2 − (pE′c)2, in any other inertial frame. 

It is the fundamental invariant of relativistic particle dynamics.  

 This invariant includes those particles with zero rest mass.  For a photon of total energy 

EPH and momentum pPH, we have 

            0 = EPH
2 − (pPHc)2,  

and therefore 

         EPH = pPHc.  

 No violations of Einstein’s Theory of Special Relativity have been found in any tests of 

the theory that have been carried to this day.  
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