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PREFACE

A COMPLETE survey of the theory of sound would lead into

-^^- many fields, physical, physiological, psychological, aesthetic.

The present treatise has a more modest aim, in that it is

devoted mainly to the dynamical aspect of the subject. It is

accordingly to a great extent mathematical, but I have tried to

restrict myself to methods and processes which shall be as

simple and direct as is possible, regard being had to the nature

of the questions treated. I hope therefore that the book may
fairly be described as elementary, and that it may serve as a

stepping stone to the study of the writings of Helmholtz and

Lord Rayleigh, to which I am myself indebted for almost all

that I know of the subject.

The limitation of methods has involved some sacrifices.

Various topics of interest have had to be omitted, whilst

others are treated only in outline, but I trust that enough
remains to afford a connected view of the subject in at all events

its more important branches. In the latter part of the book

a number of questions arise which it is hardly possible

to deal with according to the stricter canons even of mathe-

matical physics. Some recourse to intuitional assumptions is

inevitable, and if in order to bring such questions within the

scope of this treatise I have occasionally carried this license

a little further than is customary, I would plead that this is

not altogether a defect, since attention is thereby concentrated

on those features which are most important from the physical

point of view.

257816



iv PBEFACE

Although a few historical notes are inserted here and there,

there is no attempt at systematic citation of authorities. The

reader who wishes to carry the matter further will naturally

turn in the first instance to Lord Rayleigh's treatise, where

full references, together with valuable critical discussions, will

be found. I may perhaps be allowed to refer also to the

article entitled
"
Schwingungen elastischer Systeme, insbeson-

dere Akustik," in the fourth volume of the Encyclopddie der

mathematischen Wissenschaften (Leipzig, 1906).

I have regarded the detailed description of experimental

methods as lying outside my province. I trust, however, that

no one will approach the study of the subject as here treated

without some first-hand acquaintance with the leading pheno-

mena. Fortunately, a good deal can be accomplished in this

way with very simple and easily accessible appliances; and

there is, moreover, no want of excellent practical manuals.

I have to thank Mr H. J. Priestley for kind assistance in

reading the proof-sheets.

H. L.

January, 1910.
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THE DYNAMICAL THEOEY
OF SOUND
INTRODUCTION

1. Simple Vibrations and Pure Tones.

In any ordinary phenomenon of sound we are concerned,

first with the vibrating body, e.g. a string or a tuning fork or

a column of air, in which the disturbance originates, secondly
with the transmission of the vibrations through the aerial

medium, next with the sensations which the impact of the

waves on the drum of the ear somehow and indirectly produces,

and finally with the interpretation which, guided mainly and

perhaps altogether by experience, we put upon these sensations.

It is in something like this natural order that the subject

will be discussed in the following pages, but the later stages

involving physiological and psychological questions can only be

touched upon very lightly.

As few readers are likely to take up this book without

some previous knowledge of the subject we may briefly re-

capitulate a few points which will be more or less familiar, with

the view of fixing the meaning of some technical terms which

will be of constant occurrence. Many of the matters here

referred to will of course be dealt with more fully later.

The frontier between physics and physiology is reached at

the tympanic membrane, and from the physical standpoint it is

to the variations of pressure in the external ear-cavity that we
must in the last resort look, under normal (as distinguished
from pathological) conditions, for the cause ofwhatever sensations

of sound we experience. These variations may conveniently
be imagined to be exhibited graphically, like the ordinary
variations of barometric pressure, by a curve in which the

abscissae represent times and the ordinates deviations of the

L. 1



2 , DYNAMICAL.THEOKY OF SOUND

pressure on one side or other of the mean, the only difference

being that the horizontal and vertical scales are now enormously

magnified.

The variety of such curves is of course endless, and it is

impossible to suppose that a distinct provision is made in the

ear for the recognition of each, or even of each of the numerous

classes into which they might conceivably be grouped. It is

therefore necessary to analyse, as far as possible, both the

vibration-forms and the resulting sensations into simpler
elements which shall correspond each to each.

As regards the vibration-forms, there is one mode of

resolution which at once claims consideration on dynamical

grounds. The fundamental type of vibration in Mechanics is

that known as "simple-harmonic," which is represented graphic-

ally by a curve of sines (Fig. 3, p. 10). This is met with in

the pendulum, and in all other cases of a freely vibrating body
or mechanical system having only one degree of freedom. It

can moreover be shewn that the most complicated oscillation of

any system whatever may, so far as friction can be neglected, be

regarded as made up of a series of vibrations of this kind, each

of which might be excited separately by suitable precautions.
The reason for the preeminent position which the simple-
harmonic type occupies in Mechanics is that it is the only type
which retains its character absolutely unchanged whenever it

is transmitted from one system to another. This will be ex-

plained more fully in the following chapter.
The analysis of sensations is a much more delicate matter,

and it was a great step in Acoustics when Ohm* in 1843

definitely propounded the doctrine that the simplest and
fundamental type of sound-sensation is that which corresponds
to a simple-harmonic vibration. This implies that all other

sound-sensations are in reality complex, being made up of

elementary sensations corresponding to the various simple-
harmonic constituents into which the vibration-form can be
resolved. The statement is subject to some qualifications, in

particular as to the degree of independence of elementary
* G. S. Ohm (17871854), professor of physics at Munich 184954, known

also as the author of " Ohm's Law "
of electric conduction.
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sensations very near to one another in the scale, but these need

not detain us at present. It may be regarded as in the main

fully established, chiefly in consequence of the labours of

Helmholtz*. The sensation corresponding to a simple-harmonic
vibration is called a "

simple tone
"
or a "

pure tone," or merely
a "tone." The sound emitted by a tuning fork fitted with

a suitable resonator, or by a wide stopped organ pipe, gives the

best approach to it.

Since the form of the vibration-curve is fixed, the distinction

between one simple tone and another can only be due to

difference of frequency or of amplitude. The "
frequency," i.e.

the number of complete vibrations per second, determines the
"
pitch," greater frequency corresponding to higher pitch. The

lower and upper limits of frequency for tones audible to the

human ear are put at about 24 and 24,000 respectively; the

range employed in music is much narrower, and extends only

from about 40 to 4000. As between tones of the same pitch,

the amplitude, or rather its square, determines the rate of

supply of energy to the ear and so the relative "intensity,"

but it will be understood that it is physical rather than

subjective intensity that is here involved. Between tones of

different pitch only a vague comparison of loudness is possible,

and this may have little relation to the supply of energy. Near

the limits of audibility the sensation may be feeble, even though
the energy-supply be relatively considerable.

2. Musical Notes.

From the chaos of more complex sounds there stands out a

special class, viz. that of musical "notes." The characteristic of

such sounds is that the sensation is smooth, continuous, and

capable (at least in imagination) of indefinite prolongation

without perceptible change. The nature of the corresponding
vibrations is well ascertained. If we investigate any contrivance

* Hermann Helmholtz (1821 94), successively professor of physiology

(Konigsberg 1849), anatomy (Bonn 1855), physiology (Heidelberg 1858) and

physics (Berlin 1871). Reference will often be made to his classical work : Die

Lehre von den Tonempfindungen als physiologische Grundlage filr die Theorie der

Musik, Brunswick, 1862. An English translation from the third edition (1870)

was published by A. J. Ellis under the title Sensations of Tone, London, 1875.

12



4 DYNAMICAL THEOEY OF SOUND

by which a note of good musical quality is actually produced,

we find that the vibration can be resolved into a series of simple-

harmonic components whose frequencies stand to one another

in a certain special relation, viz. they are proportional to the

numbers 1, 2, 3, .... Individual members of the series may be

absent, and there is practically a limit on the ascending side,

but no other ratios are admissible. It is evident from the

above relation that the resultant vibration-form is necessarily

periodic in character, recurring exactly at intervals equal to the

period in which the first member of the series goes through its

phases. It must be remembered, however, that the ear has no

knowledge of the periodic character as such, and it must not be

supposed that every periodic vibration will necessarily produce a

sensation which is musically tolerable. The superposition of

simple-harmonic vibrations to produce periodic vibration-forms

is illustrated by some of the diagrams given below in

Chapter III.

One musical note may differ from another in respect of

pitch, quality, and loudriess. The pitch is usually estimated

as that of the first simple-harmonic vibration in the series, viz.

that of lowest frequency, but if the amplitude of this first

component be relatively small, and especially if it fall near the

lower limit of the audible scale, the estimated pitch may be

that of the second component.

By
"
quality

"
is meant that unmistakable character which

distinguishes a note on one instrument from the note of the

same pitch as given by another. Every musical instrument

has as a rule its own specific quality*, which is seldom likely to

be confused with that of another. Everyone recognizes for

instance the difference in character between the sound of a

flute, a violin, a trumpet, and the human voice, respectively.

It is obvious that difference of quality, so far as it is not due to

adventitious circumstances f, can only be ascribed to difference

of vibration-form, and so to differences in the relative amplitudes
and phases of the simple-harmonic constituents. According to

* French timbre ; German Klangfarbe.

f Such as the manner in which the sound sets in and ceases
;
this is different

for instance in the violin and the piano.
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Helmholtz the influence of phase is inappreciable. This has

been contested by some writers, but there can be no doubt that

in most cases the difference of quality is a question of relative

amplitudes alone.

Comparisons of loudness can only be made strictly between

sounds of the same quality and about the same pitch.

It follows from the preceding that, so far as Ohm's law is

valid, the sensation of a musical note must be complex, and made

up of the simpler sensations, or tones, which correspond to the

various simple-harmonic elements in the vibration-form. This

doctrine has to contend with strong and to some extent

instinctive prepossessions to the contrary, and some preliminary

training is usually necessary before it is accepted as a fact of

personal experience. We shall return to this question later; at

present we merely record that that element in the sensation

which corresponds to the gravest simple-harmonic constituent

is called the " fundamental tone," and that the others are termed

its
"
overtones

"
or

"
harmonics."

3. Musical Intervals. Diatonic Scale.

There are certain special relations, familiar to trained ears,

in which two notes or two simple tones may stand to one

another. These are the various consonant and other "intervals."

Physically they are marked by the property that the frequencies

corresponding to the respective pitches are in a definite

numerical ratio, which can be expressed by means of two small

integers. The names of the more important consonant intervals,

with the respective ratios, are as follows :

Unison 1 : 1 Octave 1 : 2

Fifth 2 : 3 Fourth 3 : 4

Major Third 4 : 5 Minor Sixth 5 : 8

Minor Third 5 : 6 Major Sixth 3 : 5.

The ear has of course no appreciation of the numerical

relations themselves
;
but each interval is more or less sharply

"
defined," in the sense that a slight mistuning of either note is

at once detected by the beats, and consequent sensation of

roughness, which are produced. The explanation of these latter

peculiarities must be deferred for the present.
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The names given to the various intervals are in a sense

accidental, and refer to the relative positions of the notes on

the ordinary
"
diatonic scale." This is based on the "

major

chord," which is a combination of three notes forming a Major
and a Minor Third

;
i.e. their frequencies are as 4 : 5 : 6. If we

start from any arbitrary note, which we will call C, as keynote,

the two notes which lie a Fifth above and below it are called

the " dominant" (G) and the " subdominant
"
(F,) respectively.

If we form the major chord from C we get the notes E = f C,

and G = | C. Again if we form the major chord from G we get

the notes B = f G = -1
/- C, and d = f G = f C. The latter falls

outside the octave beginning with C
;
the corresponding note

within the octave is D = f C. Lastly, forming the major chord

from F, we get A, = f F = f x f C = f C, the octave of which is

A =
-| C, and C itself. We thus obtain the scale of seven notes

whose frequencies are proportional to the numbers here given :

C D E F G A B
i I I f f S

24 27 30 32 36 40 45

This is continued upwards and downwards in octaves
;
the same

letters are repeated as the names of the notes, but the various

octaves may be distinguished by difference of type, and by
accents or suffixes. The precise pitch of the key-note is so far

arbitrary; it determines, and is determined by, that of any
other note in the scale. Among musicians the standard has

varied in different places and at different times, the general

tendency being in the direction of a rise. German physical

writers, including Helmholtz, have followed a standard which

assigns to a certain A a frequency of 440*. On this basis we

have the following frequencies for a certain range of the

scale :

-
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V d' J f tf a' V d' d" e" f" g" a" b"

264 297 330 352 396 440 495 528 594 660 704 792 880 990

Underneath the ordinary musical symbols we have placed
the convenient literal notation employed by German writers.

This may be continued upwards by means of additional accents

(c'", c*, ...), and downwards by suffixes (C,, C,,, ...).

If in the construction of the scale we had used, instead of

the major, the minor chord, which consists of a Minor and a

Major Third in ascending order, the frequencies being as

10 : 12 : 15, we should have required three notes not included

in the above scheme. And if, starting from any note already

obtained (other than C) as a new key-note, we proceed to

construct a major or a minor scale, further additional notes are

required. In the case of the violin, or of the human voice, or of

some other wind-instruments which allow of continuous varia-

tion of pitch, this presents no difficulty. But in instruments

like the piano or organ the multiplication of fixed notes beyond
a moderate limit is impracticable. It is found, however, that

by a slight tampering with the correct numerical relations the

requirements of most keys can be fairly well met by a system
of twelve notes in each octave, which are known as

C C* D D* E F F* G GS A A3 B.

This process of adjustment, or compromise, is called "tempera-

ment"; on the usual system of
"
equal

"
temperament the

intervals between the successive notes are made equal, the

octave being accordingly divided into twelve steps for each of

which the vibration-ratio is 2TX Thus the ratio of G to C is

made to be 2T*= T4983 instead of 1-5.



CHAPTEE I

THEORY OF VIBRATIONS

4. The Pendulum.

A vibrating body, such as a string or a bar or a plate,

cannot give rise to a sound except in so far as it acts on the

surrounding medium, which in turn exerts a certain reaction

on the body. The reaction is however in many cases so slight

that its effects only become sensible after a large number of

oscillations. Hence, to simplify matters, we begin by ignoring

it, and investigate the nature of the vibrations of a mechanical

system considered as completely isolated.

The theory of vibrations begins, historically and naturally,

with the pendulum. With this simple apparatus
we are able to illustrate, in all essentials, many
important principles of acoustics, the mere differ-

ences of scale as regards amplitude and period,

enormous as they are, being unimportant from the

dynamical point of view.

A particle of mass M, suspended from a fixed

point by a light string of length I, is supposed
to make small oscillations, in a vertical plane,

about its position of equilibrium. If the inclina-

tion of the string to the vertical never exceeds

a few degrees, the vertical displacement of the

particle may (to a first approximation) be neg-

lected, and the tension (P) of the string may be

equated to the gravity Mg of the particle. Since the horizontal

displacement (x) is affected only by the horizontal component
of the tension, we have

M = - P - = - Ma - m

Fig. 1.
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If we put n*= gll, (2)

d?x
this becomes

rf^
+w2a? = ^' ^

and the solution is

x A cos nt + B sin nt, (4)

where the constants A, B may have any values. That this

formula really satisfies (3) is verified at once by differentiation
;

and since it contains two arbitrary constants A, B, we are able

to adapt it to any prescribed initial conditions of displacement
and velocity. Thus if, when < = 0, we are to have #=o? ,

dxjdt = uQ , we find

Un .

cos nt + sin nt.
n .(5)

It is of course necessary, in the application to the pendulum,
that the initial conditions should be such as are consistent with

the assumed "
smallness

"
of the oscillations. Thus in (5) we

must suppose that the ratios x /l and u /nl are both small. In

virtue of (2) the latter ratio is equal to */(u */gl), so that u

must be small compared with the velocity
" due to

"
half the

length of the pendulum.

5. Simple-Harmonic Motion.

If in 4 (4) we put
A ~D /"I \

as is always possible by a suitable choice of a and e, we get

The particular type of vibration represented by this formula

is of fundamental importance.
It is called a "simple-harmonic,"
or (sometimes) a "simple"
vibration. Its character is best

exhibited if we imagine a

geometrical point Q to describe

a circle of radius a with the

constant angular velocity n.

The orthogonal projection P of

Q on a fixed diameter AOA'
will move exactly according to
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the formula (2), provided it be started at the proper instant.

The angle nt+e(=AOQ) is called the "phase"; and the

elements a, e are called the "
amplitude

"
and the "

initial

phase," respectively. The interval Zir/n between two suc-

cessive transits through the origin in the same direction is

called the "
period." In acoustics, where we have to deal with

very rapid vibrations, it is usual to specify, instead of the

period, its reciprocal the "
frequency

"
(N), i.e. the number of

complete vibrations per second
;
thus

In the case of the pendulum, where n = *J(g/l), the period
is 2ir^/(l/g). As in the case of all other dynamical systems
which we shall have occasion to consider, this is independent
of the amplitude so long as the latter is small (.

The velocity of P in any position is

............(3)

as appears also by resolving the velocity (na) of Q parallel

to OA.

Fig. 3.

In all cases of rectilinear motion of a point the method of

graphical representation by means of a curve constructed with

* The want of a separate name for the angular velocity n in the auxiliary

circle is sometimes felt. In the theory of the tides the term "speed" was
introduced by Lord Kelvin. As an alternative term in acoustics the word

"rapidity" may perhaps be suggested.

f This observation was made by Galileo in 1583, the pendulum being a

lamp which hangs in the cathedral of Pisa.
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the time t as abscissa and the displacement x as ordinate is

of great value. This is called the " curve of positions," or the
"
space-time curve." In experimental acoustics numerous

mechanical and optical devices have been contrived by means

of which such curves can be obtained. In the present case

of a simple-harmonic vibration, the formula (2) shews that the

curve in question is the well-known " curve of sines."

6. Further Examples.
The governing feature in the theory of the pendulum is

that the force acting on the particle is always towards the

position of equilibrium and (to a sufficient approximation)

proportional to the displacement therefrom. All cases of

this kind are covered by the differential equation

and the oscillation is therefore of the type (2) of 5, with

nz = K/M. The motion is therefore simple-harmonic, with

the frequency

determined solely by the nature of the system, and independent
of the amplitude. The structure of this formula should be

noticed, on account of its wide analogies. The frequency
varies as the square root of the ratio of two quantities, one

of which (K) measures the elasticity, or the degree of stability,

of the system, whilst the other is a coefficient of inertia.

Consider, for example, the vertical oscillations of a n
mass M hanging from a fixed support by a helical

spring. In conformity with Hooke's law of elasticity,

we assume that the force exerted by the spring is

equal to the increase of length multiplied by a certain

constant K, which may be called the "stiffness" of

the particular spring. In the position of equilibrium
the tension of the spring exactly balances the gravity

Mg\ and if M be displaced downwards through a

space x, an additional force Kx towards this position

is called into play, so that the equation of motion is of
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the type (1). The inertia of the spring itself is here

neglected*.

Again, suppose we have a mass M attached to a wire which

is tightly stretched between

two fixed points with a ten-

sion P. We neglect gravity
and the inertia of the wire Flg> 5 '

itself; and we further assume the lateral displacement (x) to

be so small that the change in tension is a negligible fraction

of P. If a, b denote the distances of the attached particle

from the two ends, we have

which is of the same form as 4 (3), with n? = P (a + b)/Mab.

The frequency is therefore

ab

This case is of interest because acoustical frequencies can

easily be realized. Thus if the tension be 10 kilogrammes,
and a mass of 5 grammes be attached at the middle, the

wire being 50 cm. long, we find N = 63.

7. Dynamics of a System with One Degree of Freedom.

Free Oscillations.

The above examples are all concerned with the rectilinear

motion of a particle, but exactly the same type of vibration

is met with in every case of a dynamical system of one degree
of freedom oscillating freely, through a small range, about

a configuration of stable equilibrium.

A system is said to have "one degree of freedom" when
the various configurations which it can assume can all be

specified by assigning the proper values .to a single variable

element or "coordinate." Thus, the position of a cylinder

(of any form of section) rolling on a horizontal plane is defined

by the angle through which it has turned from some standard

position. A system of two particles attached at different points
of a string whose ends A, B are fixed has one degree of freedom

* A correction on this account is investigated in 7.
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if it be restricted to displacements in the vertical plane through

A, B, for the configuration may be specified by the inclination

of any one of the strings to the horizontal. Again, the con-

figuration of a steam-engine and of the whole train of machinery

which it actuates is defined by
the angular coordinate of the

flywheel. The variety of such

systems is endless, but if we

exclude frictional or other dis-

sipative forces the whole motion

of the system when started ^7
anyhow and left to itself is

governed by the equation of energy. And in the case of

small oscillations about stable equilibrium, the differential

equation of motion, as we shall see, reduces always to the

type 6 (1).

We denote by q the variable coordinate which specifies

the configuration. As in the case of Fig. 6, this may be

chosen in various ways, but the particular choice made is

immaterial. From the definition of the system it is plain

that each particle is restricted to a certain path. If in

consequence of an infinitesimal variation Bq of the coordinate

a particle ra describes an element Ss of its path, we have

8s = a$q, where a is a coefficient which is in general different

for different particles, and also depends on the particular

configuration q from which the variation is made. Hence,

dividing by the time-element St, the velocity of this particle

is v = adq/dt, or in the fluxional notation *, v = aq.

Hence the total kinetic energy, usually denoted by T, is

T=&(m*) = la#, (1)

where a = 2 (ma
2
), (2)

the summation X embracing all the particles of the system.

The coefficient a is in general a function of q ;
it may be

called the "
coefficient of inertia

"
for the particular configura-

tion q. For example, in the case of the rolling cylinder referred

* The use of dots to denote differentiations with respect to t was revived by

Lagrange in the Mecanique Analytique (1788), and again in later times by
Thomson and Tait. We write q for dqjdt and q for
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to above, it is the (usually variable) moment of inertia about

the line of contact with the horizontal plane, provided q

denote the angular coordinate.

The potential energy of the system, since it depends on the

configuration, will be a function of q only. If we denote it

by V, the conservation of energy gives

%aq*+ F=const., .....................(3)

provided the system be free from extraneous forces. The

value of the constant is of course determined by the initial

circumstances. If we differentiate (3) with respect to t, the

resulting equation is divisible by q, and we obtain

which may be regarded as the equation of free motion of the

system, with the unknown reactions between its parts elim-

inated. In the application to small oscillations it greatly

simplifies.

In order that there may be equilibrium the equation (4)

must be satisfied by q
= const. This requires that d V/dq = ;

i.e. an equilibrium configuration is characterised by the fact

that the potential energy is "stationary" in value for small

deviations from it. By adding or subtracting a constant, we

can choose q so as to vanish in the equilibrium configuration

which is under consideration, whence, expanding in powers of

the small quantity q, we have

F= const. + c
2
+..., ..................(5)

the first power of q being absent on account of the stationary

property. The constant c is positive if the equilibrium con-

figuration be stable, and V accordingly then a minimum*. It

may be called the
"
coefficient of stability."

If we substitute from (5) in (4), and omit terms of the

second order in q, q, we obtain

aq + cq = Q, ........................(6)

where a may now be supposed to be constant, and to have the

value corresponding to the equilibrium configuration.
* In the opposite case the solution of (6) below would involve real exponen-

tials instead of circular functions, indicating instability.
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Since (6) is of the same type as 6 (1), with

n* = c/a, (7)

the variation of q is simple-harmonic, say

q = C cos (nt + e), (8)

with the frequency

AT

Moreover, since the displacement of any particle of the

system along its path, from its equilibrium position, is pro-

portional to q (being equal to aq in the above notation), we see

that each particle will execute a simple-harmonic vibration of

the above frequency, and that the different particles will keep

step with one another, passing through their mean positions

simultaneously. The amplitudes of the respective particles are

moreover in fixed ratios to one another, the absolute amplitude,
and the phase, being alone arbitrary, i.e. dependent on the

particular initial conditions.

The kinetic and potential energies are respectively

T = iof = \ n*aC* sin2 (nt + e), )

V= I c(?
= IcC

2 cos2
(nt + e), j

the sum being
T+ V=\n\iV* = \cG\ ...............(11)

in virtue of (7). Since the mean values of sin2 (w + e) and

cos2
(nt -he) are obviously equal, and therefore each =J, the

energy is on the average half kinetic and half potential.

The application of the theory to particular cases requires

only the calculation of the coefficients a and c, the latter being

(in mechanical problems) usually the more troublesome. In

the case of a body attached to a vertical wire, and making
torsional oscillations about the axis of the wire, a is the moment
of inertia about this axis, and c is the modulus of torsion,

i.e. cq is the torsional couple when the body is turned through
an angle q.

Again in the case of a mass suspended by a coiled spring

(Fig. 4), if we assume that the vertical displacement of any

point of the spring is proportional to its depth z below the
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point of suspension in the unstrained state, the kinetic energy
is given by

.....................(12)

if p be the line-density, I the unstretched length, and q the

displacement of the weight. The inertia of the spring can

therefore be allowed for by imagining the suspended mass to be

increased by one-third that of the spring.

8. Forced Oscillations of a Pendulum.

The vibrations so far considered are
"
free," i.e. the system

is supposed subject to no forces except those incidental to its

constitution and its relation to the environment. We have

now to examine the effect of disturbing forces, and in particular

that of a force which is a simple-harmonic function of the time.

This kind of case arises when one vibrating body acts on

another under such conditions that the reaction on the first

body may be neglected.

For definiteness we take the case of a mass movable in a

straight line, the subsequent generalization ( 9) being a very

simple matter. The equation (1) of 6 is now replaced by

(1)

the last term representing the disturbing force, whose amplitude

F, and frequency p/Zir, are regarded as given*. If we write

f, ..................(2)

we have -j+n?x=fcospt...................(3)

The complete solution of this equation is

x = A cos nt + B sin nt 4-
-~ - cos pt t ...... (4)
7i

2

p
z

as is easily verified by differentiation.

The first part of this, with its arbitrary constants A
} B,

represents a free vibration of the character explained in 5,

* The slightly more general case where the force is represented byF cos (pt + a)
can be allowed for by changing the origin from which t is reckoned.
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with the frequency H/^TT proper to the system. On this is

superposed a "
forced vibration

"
represented by the last term.

This is of simple-harmonic type, with the frequency p/2?r of the

disturbing force, and the phase is the same as that of the force,

or the opposite, according as p $ n, i.e. according as the imposed

frequency is less or greater than the natural frequency.

The above theory is easily illustrated by means of the

pendulum. If the upper end of the string, instead of being

fixed, is made to execute a horizontal motion in which the

displacement at time t is (Fig. 7), the equation of motion (1)

of 4 is replaced by

.(5)

or .(6)

This is the same as if the upper end were fixed, and the bob

were subject to a horizontal force whose accelerative effect is

?i
2
f. If as a particular case we take

acospt, ........................(7)

The annexed Fig. 8 repre-

sents the forced oscillation in the two cases of p < n and p > ny

respectively. The pendulum oscillates as if C were a fixed

L. 2

we get the form (3), with /= ?i
2
ct.
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point, the distance CP being equal to the length of the simple

pendulum whose free period is equal to the imposed period

This example is due to Young*, who applied it to illustrate

the dynamical theory of the tides, where the same question of

phase arises. It appears from this theory that the tides in an

imagined equatorial belt of ocean, of a breadth not exceeding

a few degrees of latitude, and of any depth comparable with

the actual depth of the sea, would be "inverted," i.e. there

would be low water beneath the moon, and high water in

longitudes 90 E. and W. from it, the reason being that the

period of the disturbing force (viz. 12 lunar hours) is less than

the corresponding free period, so that there is opposition of

phase.

The arbitrary constants in the complete solution (4) are

determined by the initial conditions. Suppose, for example,

that the body starts from rest in the zero position at the instant

t = 0. We find

x
-j4 a (cos nt cos pt), ......... . .....(8)

as may be immediately verified.

When the imposed frequency p/2?r is nearly equal to the

natural period, the last term in (4) becomes very large, and it

may be that the assumption as to the smallness of x on which

the equation (1) is usually based (as in the case of the pendulum)
is thereby violated. The result expressed by (4) is then not to

be accepted without reserve, but we have at all events an indica-

tion of the reason why an amplitude of abnormal amount ensues

whenever there is approximate agreement between the free and

the forced period.

In the case (p = ri) of exact coincidence between the two

periods, the solution (4) becomes altogether unmeaning, but an

intelligible result may be obtained if we examine any particular

* Dr Thomas Young (1773 1829), famous for his researches on light, and

other branches of physics. The elementary theory of free and forced oscilla-

tions was given by him in an article on " A Theory of the Tides, including the

consideration of Resistance," Nicholsons Journal, 1813
;
Miscellaneous Works,

London, 1855, vol. n., p. 262.
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case in which the initial conditions are definite. Thus, in the

case of (8), the formula may be written

/ sin \ ( p n) t .

and as p approaches equality with n this tends to the limiting

form

(10)

This may be described (roughly) as a simple vibration

whose amplitude increases proportionally to t. For a reason

just indicated this is only valid as a representation of the earlier

stages of the motion.

The case of a disturbing force of more general character

may be briefly noticed. The differential equation is then of

the form

+ *=/()................... (11)

The method of solution, by variation of parameters, or

otherwise, is explained in books on differential equations. The

result, which may easily be verified, is

x = - sin nt I f(t) cos nt dt cos nt I f(t) sin nt dt. (12)

It is unnecessary to add explicitly terms of the type
A cos nt + B sin nt, which express the free vibrations, since

these are already present in virtue of the arbitrary constants

implied in the indefinite integrals.

If the force f(t) is only sensible for a certain finite range of

t, and if the particle be originally at rest in the position of

equilibrium, we may write

x = - sin nt I f(t) cos nt dt -- cos nt I f(t) sin nt dt, (13)n J -ao n J _QO

since this makes x 0, dx/dt = for t = - oo . The vibra-

tion which remains after the force has ceased to be sensible is

accordingly
x = A cos nt + B sin nt, ...............(14)

where

=--
1 f(t)smntdt, B = -T f(i)cosntdt. (15)

nj -oo nj _aj
4

22
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For example, let

* ..................... <16 >

this represents a force which is sensible for a greater or less

interval on both sides of the instant t = 0, according to the

value of r, the integral amount or impulse being //,*. By
making r sufficiently small we can approximate as closely as

we please to the case of an instantaneous impulse. Since

cosntdt_7r r smntdt_ m~ ~

LL6 **T

we have x= - sin nt...................(18)

The exponential factor shews the effect of spreading out

the impulse. This effect is greater, the greater the frequency
of the natural vibration.

9. Forced Oscillations in any System with One Degree
of Freedom. Selective Resonance.

The generalization of these results offers no difficulty. When

given extraneous forces act on a system with one degree of

freedom, whose coordinate is q, the work which they perform in

an infinitely small change of configuration, being proportional to

8q, may be denoted by QSq. The quantity Q is called the

"force" acting on the system, "referred to the coordinate q."

For instance, if q be the angular coordinate of a body which can

rotate about a fixed axis, Q is the moment of the extraneous

forces about this axis.

It follows that in any actual motion of the system the rate

at which extraneous forces are doing work is Qq. The equation
of energy now takes the form

jt
(T+V)=Qq, .....................(1)

whence, inserting the value of T from 7 (1), we have
'

* The graph of this function is given, for another purpose, in Fig. 14, p. 33.

t The former of these integrals is evaluated in most books on the Integral
Calculus.



THEORY OF VIBRATIONS 21

When dealing with small motions in the neighbourhood of

a configuration of equilibrium we may neglect terms of the

second order as before. Hence, substituting the value of V
from 7 (5), we find

aq+cq = Q.........................(3)

When Q is of simple-harmonic type, varying (say) as cos pt,

the forced oscillation is given by

which is of course merely a generalized form of the last term in

8 W-
Two special cases may be noticed. When p is very small,

(4) reduces to q = Q/c. This may be described as the "equili-
brium" value* of the displacement, viz. it is the statical

displacement which would be maintained by a constant force

equal to the instantaneous value of Q. In other words, it is

the displacement which would be produced if the system were

devoid of inertia (a = 0). Denoting this equilibrium value by

q, we may write (4) in the form

where, as in 7, n denotes the speed of a free vibration.

When, on the other hand, p is very great compared with n,

(4) reduces to

q = -Q/p*a, ..................... (6)

approximately. This is almost the same as if the system were

devoid of potential energy, the inertia alone having any sensible

influence.

When two or more disturbing forces of simple-harmonic

type act on a system, the forced vibrations due to them may be

superposed by mere addition. Thus a disturbing force

Q =/ cos (Plt + d) +/2 cos (pj, + oj +......(7)

will produce the forced oscillation

a2)H-.... (8)

* The name is taken from the theory of the tides, where the equilibrium

tide-height is denned as that which would be maintained by the disturbing

forces if these were to remain permanently at their instantaneous values.
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It will be observed that the amplitudes of the various terms

are not proportional to those of the corresponding terms in the

value of Q, owing to the difference in the denominators.

This is an illustration of a remark made in 1 that the

simple-harmonic type is the only one which is unaltered in

character when it is transmitted, the character of the composite

vibration represented by (8) being different from that of the

generating force. In particular if one of the imposed speeds

plt pz ,
... be nearly coincident with the natural speed n, the

corresponding element in the forced vibration may greatly

predominate over the rest. This is the theory of selective

"resonance," so far as it is possible to develop it without

reference to dissipative forces.

10. Superposition of Simple Vibrations.

The superposition of simple-harmonic motions in the same

straight line has many important applications. For instance,

the height of the tide at any station is the algebraic sum of a

number ofsimple-harmonic com-

ponents, the most considerable

(at many stations) being those

whose periods are half a lunar

and half a solar day, respectively.

The composition of two

simple vibrations may be illus-

trated by the geometrical

method of Fig. 2. If two

points Qlt Q2 describe concentric

circles with the angular velo-

cities TH, n^ their projections

on a fixed diameter will execute simple-harmonic vibrations

of the forms

#! = aj cos (nj + e^, #2
= a2 cos (n + e2), (1)

where Oj ,
a2 are the radii of the two circles, and ej ,

e2 are the

initial inclinations of the radii OQi, OQ2 to the axis of x. The

result of the superposition is

(2)
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and it appears that the value of x is the projection of OR, the

diagonal of the parallelogram determined by OQl} OQ2 .

If Tij
= 7i2 ,

the two component vibrations have the same period,

the angle QiOQ2 is constant, and the resultant vibration is

simple-harmonic of the same period.

But if Wj, 7*2 are unequal, the angle QiOQ2 will vary between

and 180, and OR will oscillate between the values c^ a2 .

In Lord Kelvin's "tidal clock," the "hands" OQl} OQ2 revolve

in half a lunar and half a solar day, respectively, and the sides

QtR, Q2R of the parallelogram are formed of rods jointed to

these and to one another. The projection of R then indicates

the tide-height due to the superposition of the lunar and solar

semidiurnal tides.

If the periods Sir/r^, 27r/nz are very nearly though not

exactly equal, the angle QiOQ2 will vary very little in the course

of a single revolution of OQl or OQ2 ,
and the resultant vibration

may be described, in general terms, as a simple vibration whose

amplitude fluctuates between the limits c^ az . The period
of a fluctuation is the interval in which one arm OQl gains four

right angles on the other, or STT/^ n2). Inverting, we see

that the frequency of the fluctuations is the difference of the

frequencies of the two constituent vibrations. We have here

the reason for the alternation of
"
spring

"
and "

neap
"

tides,

according as the phases of the lunar and solar semidiurnal

tides agree or are opposed. In acoustics we have the important

phenomenon of
" beats

"
between two tones of slightly different

pitch. The contrast between the maximum and minimum

amplitudes is of course greatest when the amplitudes alf a^ of

Fig. 10.

the primary vibrations are equal. We then have

x = o^cos (n^t + ej + a? cos (nj -f e2)

= 2acos {(7*!
-

n^) t + (el
- e2)} cos {J (n^ + w2) t + J (el -I- e2)}. (3)

This may be described, in the same general manner as before,
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as a simple vibration whose period is 27T/-J- (% + w2), and whose

amplitude oscillates between the limits and 2a, in the time

7T/-| (n^ nz). This is illustrated graphically, with x as ordinate

and t as abscissa, in Fig. 10, for the case of n^ : nz
= 41 : 39.

11. Free Oscillations with Friction.

The conception of a dynamical system as perfectly isolated

and free from dissipative forces, which was adapted provisionally

in 4 10, is of course an ideal one. In practice the energy of

free vibrations is gradually used up, or rather converted into

other forms, although in most cases of acoustical interest the

process is a comparatively slow one, in the sense that the

fraction of the energy which is dissipated in the course of a

single period is very minute.

To represent the effects of dissipation, whether this be due

to causes internal to the system, or to the communication of

energy to a surrounding medium, we introduce forces of resist-

ance which are proportional to velocity. The forces in question
are by hypothesis functions of the velocity*, and when the

motion is small, the first power only need be regarded.

The equation of free motion of a particle about a position of

equilibrium thus becomes

,, d zx rr dxM M = - Kx - R
di<

..................< J >

where R is the coefficient of resistance. If we write

k, .................. (2)

weget

The solution of this equation may be made to depend on

that of 4 (3) by the following artifice f. We put

//IX
(4)

* We shall see at a later stage (Chap. VIII) that the resistance of a medium

may introduce additional forces depending on the acceleration. These have

the effect of a slight apparent increase of inertia, and contribute nothing to

the dissipation. It is unnecessary to take explicit account of them at present.

t Another method of solution is given in 20.
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and obtain, on substitution,

We have now three cases to distinguish. If the friction be

relatively small, more precisely if k < 2n, we may put

r^ = 7i
2 -J#, ..................... (6)

and the solution of (3) is

y = A cos n't + B sin n't, ............... (7)

whence x = e
"
**'

(A cos n't + B sin n't).............(8)

Changing the arbitrary constants, and putting

r = 2/&, ........................... (9)

we have x = ae~^
T
cos(n' + e)................(10)

This may be described as a modified simple-harmonic vibration

in which the amplitude (ae
~ ^r

) sinks asymptotically to as t

increases. The time T in which the amplitude is diminished

in the ratio l/e is called the " modulus of decay." The

relation between x and t is exhibited graphically in Fig. 11,

Fig. 11.

where the dotted lines represent portions of the exponential

curves x= ae
~

. For the sake of clearness the rapidity
of decay is here taken to be much greater than it would be in

any ordinary acoustical example.
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We have seen that a true simple-harmonic vibration may
be regarded as the orthogonal projection of uniform motion in

a circle. An analogous representation of the modified type (10)
is obtained if we replace the circle by an equiangular spiral

described with constant angular velocity ri about the pole 0, in

the direction in which the radius vector r decreases*. The

formula (10) is in fact equivalent to # = rcos#, provided

r = ae~ il\ 6 = n't + (11)

Eliminating t we have

r=ae~ f"> (12)

where = (n'r)~
l

,
a. ae^ . This is the polar equation of the

spiral in question. The curve in Fig. 12 corresponds in scale

with Fig. 11.

In most acoustical applications the fraction k/2n, or 1/nr, is

a very small quantity.
In this case, the dif-

ference between n and

ri is a small quantity
of the second order,

and may usually be ig-

nored
;
in other words,

the effect of friction on

the period is insensible.

It may be noted that

the quantityl/nr,whose

square is neglected, is

the ratio of the period

27T/71 to the time 2-7TT

in which the amplitude is diminished in the ratio e~
*
or -^.

If k be greater than 2n the form of the solution of (3) is

altered, viz. we have

*, (13)

Fig. 12.

y

whence

if

Ae -at
(14)

* This theorem was given in 1867 by P. G. Tait (18311901), Professor of

Natural Philosophy at Edinburgh (18601901).
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The particle comes asymptotically to rest but does not oscillate;

in fact we may easily see that it passes once at most through
its zero position. This type of motion is realized in the case of

a pendulum swinging in a very viscous liquid, and in "dead-beat"

galvanometers and other electrical instruments, but it is
'

of

little interest in acoustics.

If k = 2n, exactly, the solution of (3) is of the form

x = (A +Bt)e~
nt

,
.................. (16)

as to which similar remarks may be made.

12. General Dissipative System with One Degree of

Freedom. Effect of Periodic Disturbing Forces.

The effect of dissipation on the free motion of any system

having one degree of freedom is allowed for by the assumption
that there is a loss of mechanical energy at a rate proportional

to the square of the generalized velocity, so that in the notation

of 7

J <#) = -&?, ............... (1)

whence aq + bq + cq
= Q...................(2)

This is of course the same as if we had introduced a frictional

force Q = -
bq in 9 (3).

The equation (1) has the same form as 11 (3), and the

results will correspond if we put

n2 =
c/a, r = 2a/6...................(3)

When the dissipation is small, the rate of decay of the

amplitude can be estimated by an independent method, due to

Stokes*, which we shall often find useful. The period being

practically unaffected by vicosity, a considerable number of

oscillations can be fairly represented by

q = G cos (nt + e), .....................(4)

provided C and e be gradually changed so as to fit the altering

circumstances. The average energy over such an interval will

be Jrc
2a(72

, approximately, by 7 (11); and the rate of dissipa-

tion will be

bcf
= iw

260 2

(1
- cos 2 (nt + e)},

* Sir George Gabriel Stokes (18191903), Lucasian Professor of Mathematics

at Cambridge (18491903).
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the mean value of which is ^ri*bC\ Equating the mean rate of

decay of the energy to the mean dissipation, we get

-ifrtC', ..................(5)

<6 >

or tf=<7 <T t/T
, ........................(7)

if T = 2a/6, as in (3).

When there are given extraneous forces in addition to the

dissipative influences, the equation of energy takes the form

& ............ (8)

whence aq + bq + cq
= Q......................(9)

As in 9 we consider specially the case of a disturbing
force of simple-harmonic type, say

Q = Ccospt......................(10)

A particular solution of (9) is then obtained in the form

q = Fcospt + Gsinpt, ...............(11)

provided the constants F, G are properly chosen. The necessary
conditions are found on substitution to be

--
.

If we put
Rcosa, pb=Rsina, ......... (13)

we find F=cosa, = sina, ...............(14)

c
whence* q = -^

cos (pt a) (15)

The values of R and a are determined by
/nTi

(16)

R is to be taken positively, and a may be assumed to lie

between and TT.

* A more rapid way of obtaining this solution is explained in 20.
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The equation (9) is still satisfied if we add to (15) terms

representing a free oscillation; and these added terms are

necessary in order to constitute a complete solution capable of

adjustment to arbitrary initial conditions. The free vibration

dies out, however, asymptotically, so that after the lapse of a

sufficient time the forced vibration (15) is alone sensible.

The circumstances which affect the amplitude and phase of

this forced vibration require careful attention. The amplitude
is a maximum when R? is least, i.e. when

(-!-. a)
and the maximum amplitude is accordingly

In most cases of interest 62
/oc is a small quantity of the

second order; the maximum is then C/nb, and occurs when

p = n, very approximately.

Again, it appears from (15) and (16) that the phase of q lags

behind that of the disturbing force by an angle a, which lies

between and JTT, or between TT and TT, according as p
2
is less

or greater than c/a, i.e. according as the imposed frequency
is less or greater than the natural frequency. If, keeping p
constant, we diminish the dissipation-coefficient b, a. tends to

the limit or TT, respectively, in accordance with 8, where we
found exact agreement or opposition of phase in the absence

of resistance. But if, keeping b constant, we make p approach
the value n (

=
\/(c/a)) which determines the frequency in the

absence of dissipation, a tends to the limit ^TT, and the phases
of q and Q differ by an amount corresponding to a quarter-period.

This means that the maxima of the disturbing force are now

synchronous with the maxima of the velocity q.

Some light is thrown on these relations if we examine

the case of a pendulum whose bob receives equal positive

and negative instantaneous impulses alternately at regular
intervals. It is seen at once from Fig. 13 that an impulse in

the direction of motion accelerates or retards the phase of an

otherwise free vibration, according as it precedes or follows
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(within the limits of a quarter-period) the instant of maximum

velocity. Thus if when the particle is at P, on its way to 0,

the velocity be increased in the ratio of PQ to PQi, the phase
is accelerated by the angle QOQl} whilst a similar impulse at P'

would retard the phase by the angle Q'OQ\.
In order that no effect may be produced on the phase it

is necessary that the impulse be delivered at the instant of

passing through 0. If we imagine that a small assisting

impulse is given at every such passage, as in the case of the

ordinary clock escapement, we have an illustration of the

circumstances of maxi-

Themum resonance,

period of the disturbing

force is exactly equal to

the natural period, and

the force synchronizes

with the velocity. The

amplitude is deter-

mined by the considera-

tion that the work done

by the impulses must

balance that lost by
friction. The result is

not essentially different

if the impulse be dif-
Fig. 13.

fused symmetrically about 0, as in the case of a simple-

harmonic force, since the acceleration of phase on one side of

is cancelled by the retardation on the other.

Next suppose that the assisting impulses are given

each time the bob passes the symmetrically situated points

P, P' inwards. There is an acceleration of phase at each

impulse, and the period is shortened. This illustrates the case

of a disturbing force whose period is less than the natural

period, and whose maxima and minima precede the maxima and

minima of the velocity. If on the other hand the impulses are

given as the bob passes the points P and P' outwards, there is

a repeated retardation of phase, and the period is lengthened.

This corresponds to the case of a disturbing force whose period
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is greater than the natural period ;
the maxima and minima

of the force now follow those of the velocity. The reader is

recommended to follow out in detail the argument here sketched,

and to examine the effect of substituting a continuous simple-
harmonic force for the series of disconnected impulses. An

explanation may also be found, on the same principles, of the

fact that a small frictional force varying as the velocity has no

sensible effect on the free period.

We return to the analytical discussion. A difference of

phase between the force and the displacement is essential in

order that the disturbing force may supply energy to compensate
that which is continually being lost by dissipation. When, as

in 9, there is complete agreement (or opposition) of phase
between q and Q, the force is, in astronomical phrase, "in

quadrature
"
with the velocity q, that is, the phases differ by \ir,

and the total work done in a complete period is zero. Under

the present circumstances the disturbing force is at any instant

doing work at the rate

Qq = -^D~ sin (pt
~

cos^tf

=g {sin a -sin (2^- a) j,
............(19)

the mean value of which is

(20)

The same expression is of course obtained as the mean value

of bq
2
,
since the energy supplied by the disturbing force must

exactly compensate, on the average, that which is continually

being lost by dissipation, the mean energy stored in the system

being constant.

It follows from (16) and (20) that the dissipation is greatest

when OL^TT, or p = n, i.e. when the imposed frequency coincides

with that of the free vibration in the absence of resistance.

The maximum value is %C*/b, being greater, of course, the

smaller the value of b.
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13. Effect of Damping on Resonance.

The abnormal amplitude and dissipation which ensue

whenever the imposed period is equal, or nearly equal, to the

natural period constitute the phenomenon of "resonance,"

already referred to in 8, of which we shall have many
acoustical examples in the sequel. It may be illustrated

mechanically by giving a slight to-and-fro motion of suitable

period to the point of suspension of a simple pendulum, or

better by means of a double pendulum ( 14), i.e. an arrange-

ment in which two weights are attached at different points to

a string hanging vertically from a fixed point. If the upper

weight (M) be considerable, whilst the lower one (ra) is relatively

small, M will swing almost exactly like the bob of a simple

pendulum, the reaction of ra being slight. Under these

conditions the motion of ra is practically that of a pendulum
whose point of suspension has an imposed simple-harmonic
vibration ( 8), and if the length of the lower portion of the

string be properly adjusted, a violent motion of ra may ensue.

One very important point remains to be mentioned. As the

interval p/n between the forced and the natural frequencies

diverges from unity (on either side), the dissipation falls off

from its maximum the more rapidly, the smaller the value of

the frictional coefficient b. In other words, the greater the

intensity of the resonance in the case of exact coincidence of

frequencies, the narrower the range over which it is approxi-

mately equal to the maximum. For example, a tuning fork, even

when mounted on a "resonance box," requires very perfect tuning
in order that it may be excited perceptibly by the vibrations of

another fork in the neighbourhood, whereas the column of air

in a nearly closed vessel (e.g. a bottle or an organ pipe) will

respond vigorously to a much wider range of frequencies. To

elucidate the point, we notice that the expression (20) of 12

for the dissipation may be written

,,

26
S1

where = %nb/c = I/WT, ........ . ............(2)
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in the notation of 12 (3). The second factor has its maximum
value 1/fi when p = n, and evidently diminishes more rapidly,
as p/n deviates from unity, the smaller the value of 0. The

question may be conveniently illustrated graphically by con-

structing a curve which shall shew the dissipation corresponding
to different frequencies. As regards the abscissa, it would in

strictness be most proper to take, not the ratio p/n, but its

logarithm, since equal intervals (in the musical sense) then

correspond to equal lengths of the axis of x. We might
therefore write

,(3)

but when, as usually happens, the sensible resonance is confined

to a small range of p/n, we may use the simpler formulae

ftHr* 1 .(4)

The curve represented by the latter equation is symmetrical
about the axis of y, and approaches the axis of x asymptotically

as x increases. It is evident that if $ be increased in any

ratio, the new curve is obtained by increasing all the abscissae in

that ratio, and diminishing the ordinates in the inverse ratio,

the area (TT) included between the curve and the axis of x being

L. 3
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unaltered. The intensity sinks to one-half its maximum when

a? = fp, or

-ll (5)n nr

Thus if the damping be such that a free vibration would have

its amplitude diminished in the ratio l/e in 10, 100, 1000

periods*, respectively, the corresponding values of the interval

p/n at which the dissipation would be reduced to one-half the

maximum would be 1 '016, 1 '0016, 1 '00016. The curve

in (4) is shewn in Fig. 14.

The above argument deals with the dissipation, which is the

most important feature. The consideration of the square of the

amplitude, or of the energy stored in the system, leads to very

similar results, especially when the damping is slight.

14. Systems of Multiple Freedom. Examples. The

Double Pendulum.

We approach the consideration of systems having any finite

number of degrees of freedom. A system is said to have ra

such degrees when m independent variables, or
"
coordinates,"

are required and are sufficient to specify the various configura-

tions which it can assume. The notion, first brought into

formal prominence by Lord Kelvin f, has a wide application

in mechanism and in theoretical mechanics. In the case of

the telescope of an altazimuth instrument or of an equatorial

we have m = 2; in the gyroscope, or (more generally) in any
case of a rigid body free to turn about a fixed point, m = 3 ;

for a rigid structure or frame movable in two dimensions

m = 3; for a rigid structure freely movable in space m = 6.

The choice of the coordinates in any particular case can be

made in an endless variety of ways, but the number is always
determinate. Thus in technical mechanics we have the pro-

position that a rigid frame movable in one plane can be fixed by

* In an experiment by Lord Eayleigh, the number of periods for a particular

tuning fork of 256 v.s. was about 5900. When a resonator was used the number
fell to 3300. Theory of Sound, vol. n., p. 436.

t William Thomson, afterwards Lord Kelvin (18241907), Professor of

Natural Philosophy at Glasgow 184699. The matter is explained in Thomson
and Tait's Natural Philosophy, 2nd ed., 195201 (1879).



THEORY OF VIBRATIONS 35

means of three links connecting any three points of it to any
three fixed points in the plane*. Similarly any rigid three-

dimensional structure can be anchored firmly by six links

connecting six points of it with six points fixed relatively

to the earth.

Proceeding to the vibrations of a multiple system about

a configuration of equilibrium, we begin as before with the

examination of a few particular cases.

Take first the oscillations of a particle in a smooth bowl of

any continuous shape. By means of suitable constraints, the

particle may be restricted to oscillate in any given vertical

plane through the lowest point 0, e.g. by confining it between

two frictionless guides infinitely close to one another. In

general there will be a lateral pressure on one or other of these

guides, which will however vanish if the plane in question

passes through either of the principal directions of curvature

at 0. Hence two modes of free simple-harmonic vibration, in

perpendicular directions, are possible, with speeds

nx-Vto/A), n, = ^(g/R,\ (1)

where B^, R2 ,
are the radii of curvature of the principal sections

at 0. On account of the assumed smallness of the motion,

these vibrations may be superposed. The result is, if x, y be

horizontal rectangular coordinates through 0,

x = A l cos ntt + A 2 sin rz^,]

y = Bj cos n^t + B2 sin nj.)

Since this contains four arbitrary constants, we can adjust
the solution to given initial values of x, y, x, y.

This case is very neatly illustrated by Blackburn's pen-
dulum

( (Fig. 15). A weight hangs by a string CP from a point
C of a string ACB whose ends A

,
B are fixed. The strings being

supposed destitute of inertia, the point P will always be in the

same plane with A, B, C. Under this condition the locus of

P is the ring-shaped surface generated by revolving a circle

* Provided the directions of the three links be not concurrent (or parallel).

There is a proviso of a more complex character in the case which follows ;
but

such details need not occupy us here.

t H. Blackburn, Professor of Mathematics at Glasgow 184979.

32
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with centre C and radius CP, in the plane ACB, about AB as

an axis; and the principal radii of curvature at the lowest point
are El

-
CO, Rz

= EO, where E is the point of AB vertically

above 0. The corresponding directions of vibration are re-

spectively in and perpendicular to the plane ABO.

Fig. 16.

PC

Fig. 15. Fig. 17.

Another very simple case is that of two equal particles M
attached symmetrically at distances a from the ends of a tense

string, whose total length is, say, 2 (a + 6), so that 26 denotes

the length of the central portion. One obvious mode of

simple-harmonic vibration is that in which the deflections of the

two particles are always equal and of the same sign (Fig. 16).

If P be the tension of the string, the equation of motion of

either particle is then

*5s >?. (8)

and the speed is therefore

(4)

In another mode the two deflections are equal in magnitude
and opposite in sign, so that the middle point of the string is

stationary (Fig. 17). The circumstances are therefore exactly
the same as in 6, and the speed is

'P a + b\

^r)' (5)

greater, as we should expect, than 7^. If we denote the
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deflections of the two particles by x, y, the superposition of

the two modes gives

x =A cos (nj + eO +B cos (n + e2),)
\ (b)

y = A cos (%< 4- 61) B cos (nzt -4- e2),|

where the four constants JL, 5, e1} e2 are arbitrary.

In the case of three attached particles the nature of the

various modes is not so immediately obvious, even in the case

of symmetry. We will suppose that the masses are equal,

and that they divide the line into four equal segments a.

Denoting the deflections by x, y, z, we have

-P
dt~ a a

'
(

dt2 a, a )

If we put, for shortness, fi
= P/Ma, these may be written

.(7)

.(8)

To ascertain the existence of modes of vibration in which

the motion of each particle is simple-harmonic, with the same

period and phase, we assume, tentatively,

x = A cos (nt -f e), y = B cos (nt + e), z C cos (nt -f e). (9)

It appears, on substitution in (8), that the equations will be

satisfied provided

(10)

These three equations determine the two ratios A : B : C
and the value of ri

2
. Eliminating the former ratios we have

............. (11)
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This is a cubic in n\ One root is nf = 2/z, and we find on

reference to (10) that this makes Bl
= 0, A l

= - C1} and there-

fore

x = A l cos (njt 4- 6j), i/=0, z- A 1 cos(n lt + el). ...(12)

This mode might have been foreseen, and its frequency

determined at once, as in the preceding example. The

remaining roots of (11) are

and it appears from (10) that these make

A 2 =C2) B2
= -</2A 2 ,

and A 3 =C3 ,
B3

respectively. The corresponding modes are therefore

x = A 2 cos (n + 62), y = - V2 A 2 cos (n2t + e2),

z A 2 cos (n2t + 62),

and

x A 3 cos (nst + e3), y = V2 A 3 cos (n3t + e3),

^ = J. 3 cos (n3^ + e3).

These are shewn, along with the former mode, in Fig. 18.

The complete solution of the equations is obtained by super-

position of (12), (13) and (14), and contains the six arbitrary

constants A lf A 2 ,
A S) el} e2 , e3 .

.(13)

.(14)

Fig. 18.

We conclude these illustrations with the case of the double

pendulum, where we are entirely dependent on general method.

A mass M hangs from a fixed point by a string of length a,

and a second mass ra hangs from M by a string of length b.

For simplicity we suppose the motion confined to one vertical
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plane. The horizontal excursions x, y of M, m respectively

being supposed small, the tensions of the upper and lower

strings will be (M + m)g and mg, approximately. The equa-
tions of motion are therefore

d*x

m^ = ~m9
x

(15)

To find the possible modes of simple-harmonic vibration we

assume
x = A cos (nt + e), y B cos (nt + e).......(16)

The equations are satisfied provided

...(17)

.(18)where
/ji
=

Eliminating the ratio A : B, we find

.(19)

which is a quadratic in nz
. The condition

for real roots, viz.

r
ab

.(20)

is obviously always fulfilled. It is further

easily seen that both roots are positive, so

that n also is real.

The problem includes a number of inter-

esting special cases, but we will only notice

one or two. If the ratio
/*,
= m/(M 4- m),

be small, the two roots of (19) are nf^g/a,

nf=g/b, approximately. In the former

case M oscillates like the bob of a simple

pendulum of length a, whilst m executes

what may be regarded as a forced oscillation
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of the corresponding frequency ;
this case has already been

referred to in 13. In the second mode the ratio A : B is small,

as appears from the second of equations (17); M is then nearly

at rest, whilst m oscillates like the bob of a pendulum of

length b.

Since the expression on the left-hand side of (20) cannot

vanish, the two frequencies can never exactly coincide, but they

become approximately equal if a = 6, nearly, and
//,

is small.

A curious phenomenon may then present itself. The motion

of each mass, being made up of two superposed simple-harmonic
vibrations of nearly equal period, may fluctuate greatly in

extent, and if the amplitudes of the two vibrations are equal

we have periods of approximate rest, as explained in 10. The

motion then appears to be transferred alternately from m to M,
and from M to m, at regular intervals*.

If, on the other hand, M is small compared with m, p is nearly

equal to unity, and the two roots of (19) are ?i
2 =

g/(a + b) and

n* = mg/M . (a -f b)/ab, approximately. The former root makes

B/A = (a + b)/a, nearly, so that the two masses are always

nearly in a line with the point of suspension, m now oscillating

like the bob of a pendulum of length a + b. In the second

mode the ratio B/A is small, so that m is approximately at

rest
;
the motion of M is then like that of a particle attached

to a string which is stretched between fixed points with a

tension mg (cf. 6).

Another case of interest is obtained if we make a infinite.

One root of (19) then vanishes, and the other is

which makes A/B = - m/M. This indicates that if the support
of a simple pendulum yield horizontally, but without elasticity,

the frequency is increased in a certain ratio which is of course

* The influence of dissipation is of course here neglected. If m be subject
to a frictional resistance, and especially if the modulus of decay be less than

the period of the fluctuation given by the above theory, the phenomena are

modified, and the illustration of the theory of resonance
( 12) is improved.

There is now a continual, though possibly a slow, drain on the original energy
otM.
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smaller the greater the inertia of the support. This is however

more easily seen directly.

15. General Equations of a Multiple System.
The general theory of the small oscillations of a multiple

system can onlybe given here in outline. In the case ofone degree
of freedom ( 7) it was possible to base the theory on the equation
of energy alone, but when we have more than one dependent
variable this is no longer sufficient, and some further appeal
must be made to Dynamics. For brevity of statement we will

suppose that there are two degrees of freedom, but there is

nothing in the argument which cannot at once be extended to

the general case.

We imagine, then, a system such that every configuration

which we need consider can be specified by means of two

independent geometric variables or "coordinates" q l9 q2 . If in

any configuration (ql} q^) the coordinate q 1 (alone) receive an

infinitesimal variation 8qlt any particle ra of the system will

undergo a displacement 881
= a18q1 in a certain direction.

Similarly if qz alone be varied m will be displaced through a

space Bs2
= *q* in a certain direction, different in general from

the former. The resultant displacement Bs when both variations

are made is given by

8s* = Bs,
2 + 2&! &?2 cos 6 + &?2

2

= di
2
Bqi* + 2a1 2 cos 6 8q1 Bq^ + c^

2

fy 2
2
, (1)

where 6 denotes the angle between the directions of 8slt Bs2 .

If we divide by Bt*, we obtain the square of the velocity v

of the particle m, in any motion of the system through the con-

figuration (qlt q2), in terms of the generalized "components of

velocity" qlt q2 ,
thus

vz = ct^
2 + 2^0, cos Oq-fa + a2

2

?2
2

(2)

The total kinetic energy of the system is therefore given by

2T = 2 (mi;
2

)
= autf + 2a12^2 4- o^2

, (3)

where

an = 2, (rav), a12

the summation 2 extending over all the particles m of the
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system. The coefficients an ,
a12 , a^ are in general functions of

qlt q2 ; they are called the "coefficients of inertia" for the par-

ticular configuration considered.

Next, let FI denote the total force acting on m, resolved

in the direction of sly and let F2 have the corresponding meaning
for the direction of Bs2 . The work done on the system in any
infinitesimal displacement will therefore be

2 (FM + F2Ss2)
= 2 (F&)% + 2 (F^) 8q2 . ..... .(5)

If there are no extraneous forces, this work is accounted for

by a diminution in the potential energy V of the system. When
extraneous forces act we have in addition the work due to these,

which we may suppose expressed in the form

The coefficients Qlt Q2 are called, by an obvious analogy, the

generalized "components of (extraneous) force." Hence

. . .(6)

whence

In the application to small oscillations we assume that qlt q2

are small quantities vanishing in the configuration of equi-

librium, and for consistency we must also suppose that the

disturbing forces Qlt Q2 are small. The quantities al9 2 and
therefore also an ,

al2 , a& may now be treated as constants.

The velocity of the particle m is made up of components a^,
a2<?2

in the directions &x and 8s2 , respectively; and if we neglect
the squares of small quantities its acceleration is made up in

like manner of components a^, ,#.,*. Hence resolving in the

direction of Bsi the forces acting on m we have

m (,& + ct2q2 cos 6) = Fl

,|
and similarly m (a^ cos 6 + o^q2)

= F2 .)

* The former of these two quantities is (to the first order) the acceleration

calculated on the supposition that q\ alone varies, and the latter is the accelera-

tion when #2 alone varies. It is only on the hypothesis of infinitely small

motions that the resultant acceleration is obtained by superposition of these.
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If we multiply the former of these equations by ^ and the

second by a^, and sum for all the particles of the system, we

find, with the notation of (4),

dV .

.(9)

and similarly a^ + a&q2
=

5 h Q
oq%

where 021 is of course identical with a12 .

When there are no extraneous forces these equations are by

hypothesis satisfied by q^
= 0, qa

= 0. The configuration of

equilibrium is therefore characterized by the property that

i-
=0' f-- (10)

in other words, the potential energy is stationary for all infini-

tesimal displacements therefrom. Hence if V be expanded in

powers of qlt q2 , the terms of the first order will be absent, and

we may write with sufficient approximation

2V = C-aq? + 2c12<?1 <72 + Ca^jj
2
, (11)

a constant term being omitted. The quantities cu , c12 , c^ are

called the "
coefficients of stability."

Hence (9) may be written

a^i + ^22^2

where c21 = c12 .

If we look back to any of the special problems of 14 we
shall recognize that the equations of motion are in fact of this

type. For example, in the case of the double-pendulum we
have

...(13)

The formulae therefore correspond if we put

ft
=

ar, q*
=

y, \

an = M, 12
= 0, 022 = m, V ...(14)

cn = (M + m) g/a + mg/b, cu = - mg/b, C& = mg/b.J
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The general case of m degrees of freedom hardly differs

except in the length of the formulae. We have then m equations
of the type

a*i?i + a#2 + . - + asmqm + cgl^ + c^ + . . . 4- C8mqm = Qs , (15)

where s is any one of the integers 1, 2, 3,...m.

16. Free Periods of a Multiple System. Stationary

Property.
In the case of free vibrations we have Qi = 0, Q2

=
Q, and

the solution of 15 (12) then follows exactly the same course

as in the particular examples already given. We assume

q1
= A l cos(nt + e), q2

= A 2 cos(nt + e), (1)

and obtain (cu - nzau) A, -f (c12
- n2al2) A 2

= 0,1

(c21
- ?i

2
(A21) A l + (csst

-
n^a^) A^ = 0.)

Eliminating the ratio Al :A 2) we obtain

|

cu -w8an , C12 -/i
2a12

C21 -rc
2a21 , CJB 71*022

~

where (it is to be noticed) the determinant is of the "
sym-

metrical
"
type. This equation gives the two admissible values

of n*. Adopting either of these we obtain a solution in which

the ratio of A l to A 2 is determined by either of the equations

(2). The mode of vibration thus ascertained involves therefore

two arbitrary constants, viz. the absolute value of (say) A 1} and

the initial phase e. The second root of (3) leads to another

solution of like character.

The extension of the method to the general case is obvious,

but it may be well to state the results formally. In any
conservative system of m degrees of freedom there are in

general m distinct
" normal modes

"
of free vibration about

a configuration of stable equilibrium, the frequencies of which

are given by a symmetrical determinantal equation of the mih
order in n2

, analogous to (3), and so depend solely on the con-

stitution of the system. In each of these modes ihe
t system

oscillates exactly as if it had only one degree of freedom, the

coordinates q^,q^, ... qm being in constant ratios to one another,

and the description of 7 therefore applies. The directions of

motion of the various particles and the relative amplitudes are
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in any one mode determinate, though usually different for

different modes, the only arbitrary elements being the absolute

amplitude and the phase-constant.

The equations of motion being necessarily linear, since

products and squares of the coordinates and their differential

coefficients with respect to the time are expressly excluded, it

follows that the different solutions may be superposed by
addition of the corresponding expressions. This has been

sufficiently illustrated in the preceding examples. By super-

posing in this way the m normal modes, each with its arbitrary

amplitude and phase, we obtain a solution involving 2m

arbitrary constants, which is exactly the right number to

enable us to represent the effect of arbitrary initial values of

the coordinates ql} q^, ... qm and velocities qlt qz , ... qm . In

other words, the most general free motion of the system about

a configuration of stable equilibrium may be regarded as made

up of the m normal modes with suitable amplitudes and initial

phases. This principle dates from D. Bernoulli* (1741).

In particular cases it may happen that two (or more) of the

natural periods of the system coincide. There is then a corre-

sponding degree of indeterminateness in the character of the

normal modes. The simplest example is furnished by the

spherical pendulum, or by a particle oscillating in a smooth

spherical bowl. The normal modes may then be taken to

correspond to any two horizontal directions through the position

of equilibrium. From the theoretical standpoint such coinci-

dences may be regarded as accidental, since they are destroyed

by the slightest alteration in the constitution of the system

(e.g. if the bowl in the above illustration be in the slightest

degree ellipsoidal), but in practice they often lead to interesting

results. Cf. 53 below.

An important characteristic of the normal modes, first

pointed out by Lord Rayleigh in 1883, has still to be referred

* Daniel Bernoulli (17001782), one of the younger members of the

distinguished family of Swiss mathematicians. Professor of mathematics at

St Petersburg (172533), and of physics at Bale (175082). His chief work

was on hydrodynamics, on the theory of vibrating strings, and on the flexure

of elastic beams.
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to. If, by the introduction of frictionless constraints which do

no work, the system be restricted to vibrate in a mode only

slightly different from one of these, the period will be altered

only by a small quantity of the second order. In other words

the periods of the several normal modes are "
stationary

" when

compared with those of slightly different constrained modes.

Suppose, for instance, that the normal mode in question is such

that in it the coordinate ql alone varies. We have, then, in (2),

a12
= 0, c12 = 0, and the natural frequency is determined by

n* = cu/a11 . If the constraint be expressed by q2
=

\qi, the

condition that the constraining forces shall do no work, viz.

ftfc + Q2fc
= 0, or ft + XQ2

= 0, leads to

(a11 + Xs

toa)& + (c11 + XscB)g1
= 0, ............(4)

and the speed (p) is accordingly given by

When X is small, this differs from n2

by a small quantity of

the second order. The proof, although limited to two degrees,

is easily generalized. Owing to our liberty of choice of the

coordinates, we can always arrange that ql shall be the only
coordinate which varies in the mode in question, and that

the constraint shall be expressed by a system of relations of

the type q2
= \ql} q3

=
fj,qlf q4

= vqlt ....

For an obvious illustration we may have recourse again
to the particle on a smooth surface. If the constrained path
be a vertical section through the lowest point, the period is

%wJ(Rlg\ where R is the radius of curvature of the section, and

it is known that R is a maximum or minimum for the principal

sections.

The equation (5) shews further that the constrained period is

(as in the particular case) intermediate between the two natural

periods ;
this property can also be generalized.

It follows that even when it is not easy to ascertain the

precise character of a particular normal mode, a close approxi-
mation to the frequency can often be obtained on the assumption
of an assumed type which we can judge on independent grounds
to be a fairly good representation of the true one. And in the
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case of the gravest natural mode the frequency thus obtained

will be an upper limit. Take, for instance, the case of three

equal particles attached at equal intervals to a tense string

( 14), and consider an assumed type of symmetrical vibration

in which x = z \y. The kinetic energy is then given by

2T = M(d? + y*+ &) = M(I + 2\*)f, .........(6)

so that the inertia-coefficient is M(l + 2X2
).

For the potential

energy we have

2
, (7)a a

as is found by calculation of the work required to stretch the

string (as in 22), or otherwise. The coefficient of stability is

therefore P/a . (4\
2 - 4\ 4- 2). For the speed (p) we then have

P 4X*-4X + 2

This is stationary for X = + ^ \/2, and the corresponding speeds

are as in 14. In this case it was evident beforehand that the

assumed type would include the true natural modes of sym-
metrical character.

It is unnecessary for the purposes of this book to discuss in

detail the theory of dissipation in a multiple system. The

general effect is the same as in 12
;

the free vibrations

gradually die out, but if the dissipative forces be relatively

small the periods are not sensibly affected.

17. Forced Oscillations of a Multiple System. Prin-

ciple of Reciprocity.

The theory of forced oscillations is sufficiently illustrated if

in 15 (12) we assume that Qi varies as cospt, whilst (?2
= 0.

The equations will be satisfied if we assume that ql and qt both

vary as cospt, provided

qi + (cv-pdu) ?2
=

ft,ft, I

0. J

These determine the (constant) ratios of q 1 and q2 to Ql ;
thus
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where A (p
2

) is the determinant on the left-hand side of 16

(3), with p
2 written for n2

. The general conclusion is that when

a periodic force of simple-harmonic type acts on any part of

the system, every part will execute a simple-harmonic vibration

of the same period, with synchronism of phase, but the

amplitude will of course be different in different parts. When
the period of the forced vibration nearly coincides with that

of one of the free modes, an abnormal amplitude of forced

vibration will in general result, owing to the smallness of the

denominator in the formulae (2). For a complete account of

this matter we should have to take dissipative forces into

consideration, as in 12.

A remarkable theorem of reciprocity, first provedby Helmholtz

for aerial vibrations, and afterwards greatly extended by Lord

Rayleigh, follows from (2). If we imagine a second case of

forced vibration (distinguished by accents) in which Q/ =

whilst Q2

'

varies as cos pt, we shall have

Comparing with (2), we see that

,:ft = 9,':ft'. .....................(4)

The interpretation is most easily expressed when the "forces"

Q1 and Q2

'

are of the same character, e.g. both ordinary statical

forces, or both couples, in which case we may put Qi = Q2', and

obtain q2
=

qi'.
In words: The vibration of type 2 due to a

given periodic force of type 1 agrees in amplitude and phase
with the vibration of type 1 due to an equal force of type 2.

An example from the theory of strings will be found in 28.

The above proof is easily extended to the general case of

ra degrees of freedom.

18. Composition of Simple-Harmonic Vibrations in

Different Directions.

We recur to the subject of composition of simple-harmonic
vibrations which, though not so important as in Optics, claims a

little further attention. If in a freely vibrating system we fix

our attention on a particular particle, the directions in which it
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oscillates in the several normal modes will in general be different.

The superposition then takes place of course according to the

law of geometrical or vector addition.

It will suffice to consider the case of two degrees of freedom,

where we have independent simple-harmonic vibrations in the

directions corresponding to the Bsl} &s2 of 15. The result is a

plane orbit, usually of a complicated character. For instance,

in the case of Blackburn's pendulum ( 14), we have

x = A cos (nj + ej), y = E cos (nzt + e2), (1)

where x, y are rectangular coordinates. The orbit is here

contained within the rectangle bounded -by the lines x A,

y = E. If nlt HZ are commensurable, the values of x, y and

x, y will recur after the lapse of an interval equal to the least

common multiple of the two periods, and the path will be

re-entrant. The resulting figures, obtained in this and in other

ways, are associated with the name of Lissajous*, who has had

many followers in a region which is very attractive from the

experimental point of view.

The simplest case is that of rij
= n^ If we eliminate t in

(1) we then obtain

s(e1 -e2) + |^
= sm2

(e1
-

2) (2)

This represents an ellipse which, if the initial phases elt e2coincide,

or differ by TT, degenerates into a straight line (Fig. 20). The

simplest mechanical illustration is furnished by the spherical

pendulum. When the relation is that of the octave (r^ 2n?)

we have a curve with two loops, which may degenerate into one

or other of two parabolic arcs (Fig. 21). The curves in these and

in other cases of commensurability are easily traced from the

formulae (1) with the help of tables. A simple geometrical

construction is indicated in Fig. 22, where the circumferences of

the auxiliary circles are divided into segments corresponding to

equal intervals of time in the two simple-harmonic motions

which are to be compounded. If we start at a corner of any
*

J. A. Lissajous (182280). Professor of physics at the Lyce"e St Louis

1850 74; rector of the Academy of Chambe'ry 1874 5, and of Besancon

1875 9. His chief memoir, Etude aptique des mouvements vibratoires, was

published in 1873.

L. 4
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one of the rectangles in the figure, and proceed diagonally, we

pass through a succession of points, equidistant in time, on a

curve of the system.

Fig. 22.

Another conception of these figures, also due to Lissajous,

may be mentioned. If we write 6 for nj, and adjust the origin

of t, the formulae (1) are equivalent, on the hypothesis of

commensurability, to

y -(# a), .(3)

where p/q is a fraction in its lowest terms. These equations,

when combined with

z asinO, ........................ (4)

represent a curve of sines traced on the surface of the circular

cylinder
x* + 2* = a*

........ ................(5)

and going through its period p times in q successive circuits

of the cylinder. The Lissajous curve (3) is the orthogonal

projection of this curve on a plane (z = 0) through the axis of

42



52 DYNAMICAL THEORY OF SOUND

the cylinder. This is illustrated by Fig. 22, where the dotted

branch may be regarded as the projection of that part of the

sine-curve which lies on the rear half of the curved surface. A

change in the relative phase in (1) is equivalent to a change in

the angle a, and may be represented by a rotation of the cylinder

about its axis, of corresponding amount. This, again, may be

illustrated from Fig. 22 by starting the curve one step further to

the right or left. When the ratio of the periods is nearly, but

not exactly, that of two integers, the orbit gradually passes

through the various phases of the commensurable case, in a

recurring cycle*. Thus in the case of approximate unison, or

approximate octave, the cycle includes the phases shewn in

Fig. 21 or 22, followed by the same in reverse order. The same

result is obtained by a continuous rotation of Lissajous'

cylinder.

19. Transition to Continuous Systems.
The space which we have devoted to the study of dynamical

systems of finite freedom is justified by the consideration that

we here meet with principles, in their primitive and most easily

apprehended forms, which run through the whole of theoretical

acoustics. In the subsequent chapters we shall be concerned

with systems such as strings, bars, membranes, columns of air,

where the number of degrees of freedom is infinite. Mathematic-

ally, it is sometimes possible to pass from one of these classes to

the other bya sort of limiting processes when D. Bernoulli (1732)
discussed the vibrations of a hanging chain as a limiting form

of the problem where a large number of equal and equidistant

particles are attached to a tense string whose own mass is

neglected. In any case, there can be no question that the

general principles referred to retain their validity. The main

qualification to be noticed is that the normal modes are now

infinite in number. It is usual to consider them as arranged

* In Lissajous' method the vibrations which are optically compounded are

those of two tuning forks. The figures obtained when the tones sounded by the

forks form any one of the simpler musical intervals give a beautiful verification

of the numerical relations referred to in 3. In the case of unison, when the

tuning is not quite exact, the cycle of changes synchronises with the beats

which are heard ; see 10.
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in ascending order of frequency ;
the mode of slowest vibration

may still be called the "
fundamental," and is generally the

most important.
Before leaving the general theory it may be desirable to

emphasize once more the importance of the simple-harmonic

type of vibration from the dynamical point of view. We have

seen that it is the characteristic type for a frictionless system of one

degree of freedom, or (more generally) for a system oscillating

as if it possessed only one degree, as in the case of the normal

modes. It is also the only type of imposed vibration which is

accurately reproduced, on a larger or smaller scale, in every

part of the system. If a force of perfectly arbitrary type act at

any point, the vibrations produced in other parts of the system
have as a rule no special resemblance to this or to one another;

it is only in the case of a periodic force following the simple-

harmonic law of variation with the time that the induced

vibrations are exactly similar, and keep step with the force.

Moreover it is only in so far as the disturbing force is simple-

harmonic, or contains simple-harmonic constituents, that it is

capable of generating a forced vibration of abnormal amplitude
when a critical frequency is approached. It is in these circum-

stances that Helmholtz found the clue to his theory of audition,

to which we shall have to refer at a later stage.

20. On the Use of Imaginary Quantities.
The treatment of dynamical equations can often be greatly

simplified by the use of so-called "imaginaries." As we shall

occasionally have recourse to this procedure, it may be convenient

to explain briefly the principles on which it rests.

The reader will be familiar with the geometrical representa-

tion of a "complex" quantity a+ ib, where a, b are real and i

stands for \/( I), by a vector drawn from the origin to the

point whose rectangular coordinates are (a, b), and with the

fact that addition of imaginaries corresponds to geometrical
addition (or composition) of the respective vectors. The

symbol a + ib when applied as a multiplying operator to any
vector denotes the same process by which the vector a + ib may
be supposed to have been derived from the vector 1, viz. it
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alters the length in a certain ratio r, and turns it through a

certain angle a. These quantities are defined by

rcosa = a, r sin a. = b, (1)

the quadrant in which a lies being determined by the sign

attributed to cos a or sin a by (1). We have then

a + ib = r (cos a -I- i sin a) (3)

Hence a symbol of the form cos a + i sin a denotes the opera-
tion of turning a vector

through an angle a without

alteration of length; in par-

ticular the symbol i denotes

the operation of turning

through a right angle in the

positive (counter-clockwise)

direction.

The symbol

w = cos + i sin (4)

may be represented by a unit

vector OP drawn from in

the direction 6. If we regard Fig . 23.

this as a function of 0, and if

w + Bw be represented by OP', the angle POP' will be equal

to BO. The vector PP' which represents Bw will therefore have

a length BO, and since it is turned through a right angle

relatively to OP, its symbol will be iBO.w. Hence

.(5)

It is easily shewn that the only solution of this equation
which fulfils the necessary condition that z = 1 for 6= 0, is

w = e, (6)

where eie is to be taken as denned by the ordinary exponential

series. Thus
e* = cos0 + *sin0 (7)

We may add that the "addition-theorem" of the exponential

function can now be derived immediately from the geometrical

representation.
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It has been thought worth while to recapitulate these ele-

mentary matters because they have interesting illustrations in

the present subject. Thus if x, y be rectangular coordinates,

and we write

z = x + iy, ........................... (8)

the equation z = Ceint, ...........................(9)

where C may of course be complex, expresses that the vector C
is turned in a time t through an angle nt in the positive direc-

tion. It therefore represents uniform motion in a circle, with

angular velocity n, in the positive direction. The radius of this

circle is given by the "absolute value" of G, which is often

denoted by |

G
;
thus if C = A + iB, where A and B are real, we

have C
\

= \I(A
Z + -B2). In the same way the equation

z =G'e-int ........................(!0)

represents uniform motion in a circle, with angular velocity n,

in the negative (or clockwise) direction.

We come now to- the application to linear differential

equations with constant coefficients. From our point of view

the simplest case is the equation

of 4. In order that every step of the work may admit of

interpretation, we associate with this the independent equation

0, ................. -....(12)

as in the theory of the spherical pendulum. The two may be

combined in the one equation

-' +*-. .....................<13>

which may indeed be regarded as representing directly, without

the intermediary of (11) and (12), the law of acceleration in the

spherical pendulum and similar problems. To solve (13) we

assume z = Ce**, and we find that the equation is satisfied

provided X2
-f n2 = 0, or X = in. Since different solutions can

be added, we obtain the form

int
, ..................(14)
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with two complex arbitrary constants (7, G f

. These can be

determined so as to identify z and z, at the instant t = 0, with

the vectors which represent the initial position and velocity of

the point (x, y). It appears from (14) that the most general
motion of a point subject to (13) may be obtained by the

superposition of two uniform circular motions in opposite direc-

tions. The same problem (virtually) has been treated in 18,

where the path was found to be an ellipse. This resolution

of an "elliptic harmonic" vibration into two circular vibrations

in opposite directions has important applications in Optics.

The solution of the equation (11) may be derived from (14)

by taking the
"
real

"
part of both sides, i.e. by projecting the

motion on to the axis of x. Since <7, C' are of the forms

C=A+iB, C'=A' + iB', (15)

it might appear at first that the result would involve four

arbitrary constants. These occur, however, in such a way
that they are really equivalent only to two. Thus we find

x = (A+A')cosvt-(B-B')smnt (16)

The kinematical reason for this is that, as regards their

projections on a straight line, right-handed and left-handed

circular motions are indistinguishable. An important practical

corollary follows. We should have obtained equal generality,

so far as the solution of (11) is concerned, if we had contented

ourselves with either solution of (13), for example

z=Ceint
, (17)

and taken the real part

x A cosnt Bsmnt (18)

This conclusion is obviously not restricted to the particular

differential equation (11) with which we started. The use of

an adjunct equation such as (12) has only been resorted to

in order to remove the suspicion of anything that can truly

be called
"
imaginary

"
in the work. Such assistance can

always be invoked mentally, but it is as unnecessary as it

would be tedious always formally to introduce it. If in any
case of a linear differential equation between x and t, with

constant real coefficients, we seek for a solution of the type

x = Cte
xt

,
the imaginary values (if any) of X will occur in



THEORY OF VIBRATIONS 57

conjugate pairs of the form m in, and we may assert that

the part of the solution corresponding to this pair of roots

will be given with sufficient generality if we make use of one

only of these, writing, for instance,

x=Ce(m + in}t
, .....................(19)

and taking the real part.

We may apply these considerations, for example, to the

equation

of resisted motion about an equilibrium position ( 11). If we

put x = Ce , we have

A.
2 + &X + /4

= ......................(21)

Hence \ = -\kiri, .....................(22)

where TO' = VO"-i&2
), .....................(23)

provided k2 < 4//,.
On the above principle a sufficient solution

or, in real form,

x=e~*kt

(Acosn't-Bsmn't\ .........(24)

which is equivalent to 11 (8).

The same method can be followed with regard to the

equation of forced oscillations, say

?SBS/<8jtf.............(25)

Instead of this we take the equation

g + ** + /u.^................(26)

the implied adjunct equation being of the type (25) with

fsinpt instead of /cos pt on the right hand. A particular

solution is

z=Ceipt
, ........................(27)

provided (/z
- p2 + ikp) G =/. ..................(28)

fj pt

Hence * =-^ sr- ...................(29)*
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If we put /ju-p*
= Rcos a, kp = Rsina, (30)

this becomes z = ^e
i(pt

~ a
\ (31)

the real part of which is

x =
^cos(pt-a) (32)

This may be compared, for brevity, with the process of 12.

21. Historical note.

The theory of vibrations has a long and rather intricate

history, in which Pure Mathematics and Mechanics have

reacted on one another with great advantage to the progress

of both sciences. Various special problems of great interest

had been solved by the Bernoullis, Euler*, and other mathe-

maticians, but it is to Lagrange -|-
that we owe the general

theory of the small oscillations of a system of finite freedom

treated by means of generalized coordinates. The work of

Lagrange was purposely somewhat abstract in formj; the

full dynamical interpretation was reserved for Thomson and

Tait (Natural Philosophy, 1867), to whom we also owe the

now current terminology of the subject. The theory has

been very greatly extended by Lord Rayleigh, and systematic-

ally applied to acoustics as well as other branches of physics,

in various writings, most of which (down to the year 1896)

are incorporated in his Theory of Sound .

* Leonhard Eoler, born at Bale 1707, died at St Petersburg 1783. He wrote

extensively on most branches of mathematics and mechanics, and fixed to

a great extent the notations now in use.

t Joseph Louis Lagrange, born at Turin 1736, died at Paris 1813, "the

greatest mathematician since the time of Newton."

J "On ne trouvera point de Figures dans cet Ouvrage. Les m^thodes que

j'y expose ne demandent ni constructions, ni raisonnemens ge'ome'triques ou

me'chaniques, mais seulement des operations alge"briques, assujeties a une

marche reguliere et uniforme." (Preface to the Mecanique Analytique, 1788.)

1st ed. London 1877, 2nd ed. London 1894 6. See also his Scientific

Papers, Cambridge 18991902.



CHAPTER II

STRINGS

22. Equation of Motion. Energy.
We proceed to the more or less detailed study of the

vibrations of various types of continuous systems. Amongst
these the first place must for many reasons be assigned to

the transverse vibrations of a uniform tense string. Historically,

this was the first problem of the kind to be treated theoretically.

The mathematical analysis is simple, and various points of the

general theory sketched in the preceding chapter receive

interesting illustrations, which are moreover easily verified

experimentally. Again, the sequence of the natural periods

of free vibration has the special "harmonic" relation which

has long been recognized as in some way essential to good
musical quality, although the true reason, which is ultimately a

matter of physiology, has only in recent times been investigated.

The mathematical theory has further suggested some remarkable

theorems, as to the resolution of a vibration of arbitrary type
into simple-harmonic constituents, which are of far-reaching

significance. Finally it is to be noted that in the propagation
of a disturbance along a uniform string we have the first and

simplest type of wave-motion.

The string is supposed to be of uniform line-density p,

and to be stretched with a tension P. The axis of x is taken

along the equilibrium position, and we denote by y the trans-

verse deflection at the point x, at time t. It is assumed that

the gradient dy/dx of the curve formed by the string at any
instant is so small that the change of tension may be
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neglected. Under these conditions the equation of motion

of an element Bx is

(1)

where
i|r

denotes the inclination of the tangent line to the

axis of x. The right-hand side is, in fact, the difference of

the tensions on the two ends of the element, when resolved in

the direction of y. In virtue of the assumption just made we

may write sin
\|r
= tan

i/r
=

dy/dx, so that (1) becomes

where c2

=P/p............................ (3)

It is easily seen that the constant c has the dimensions of

a velocity.

The kinetic energy of any portion of the string is given by

T=lpjfdx .....................(4)

taken between the proper limits. The potential energy may
be calculated in two ways. In the first place we may imagine
the string to be brought from rest in its equilibrium position

to rest in any assigned form by means of lateral pressures

applied to it. For simplicity suppose that at any stage of the

process the ordinates all bear the same ratio (k) to their final

values y, so that the successive forms assumed by the string

differ only in amplitude. The force which must be applied to

an element Sx to balance the tensions on its ends is

(P sin
i|r) &c,ox

where sin -^ is now to be equated to kdy/dx', and the displace-

ment when k increases by &k is y 8k. The total work done on

this element is therefore

where the accents indicate differentiations with respect to x.

The potential energy is accordingly

v (5)
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In the alternative method we calculate the work done in

stretching the string against the tension P. The increase in

length of an element &e is

approximately, so that

F=4P/y'=<fo. .....................(6)

The formulae (5), (6) lead to identical results when applied to

the whole disturbed extent of the string. For by a partial

integration we have

-Syy"dx = -[yy
r
l+Sy'*-dx, ...............(7)

where the first term refers to the limits. It vanishes at the

extremities of the disturbed portion, since y is there = 0.

23. Waves on an Unlimited String.

The solution of 22 (2) is

y=f(ct-x) + F(ct + x)................(1)

where the functions /, F are arbitrary. It is easily verified

by differentiation that this formula does in fact satisfy the

differential equation, and we shall see presently that by means

of the two arbitrary functions which it contains we are able to

represent the effect of any given initial distribution of displace-

ment (y) and velocity (y\ It was published by d'Alembert*

in 1747.

The two terms in (1) admit of simple interpretations.

Taking the first term alone, we see that so far as this is

concerned the value of y is unaltered when x and ct are

increased by equal amounts
;
the displacement therefore which

exists at the instant t at the point x is found at a later instant

t 4- r in the position x 4- CT. Hence the equation

y=f(ct-x) ..................... (2)

represents a wave-form travelling unchanged with the velocity

c in the direction of ^-positive. The equation

y = F(ct + x) .....................(3)

represents in like manner a wave travelling with the same

velocity in the direction of ^--negative. And it appears that

*
J. le Kond d'Alembert (171783), encyclopaedist and mathematician ;

he

made important contributions to dynamics and hydrodynamics.
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the most general free motion of the string may be regarded as

made up of two such wave-systems superposed.
The form of the expression \/(P/p) for the wave-velocity is

to be noticed. As in all analogous cases the wave-velocity

appears as the square root of the ratio of two quantities, one

of which represents (in a -general sense) the elasticity, and the

other the inertia, of the medium concerned.

A simple proof of the formula for the wave-velocity has

been given by Prof. Tait*. Imagine a string to be drawn with

constant velocity v through a smooth curved tube, the portions

outside the tube being straight and in the same line. Since

there is no tangential acceleration the tension P is uniform.

Also the resultant of the tensions on the ends of an element

Ss, at any point of the tube, will be a force PSs/R in the

direction of the normal, where R is the radius of curvature.

This will balance the "centrifugal force" p$s.v
2

/R (fvz

=P/p.
Under this condition the tube may be abolished, since it exerts

no pressure, and we have a standing wave on a moving string.

If we now impress on everything a velocity v in the opposite
direction to the former, we have a wave progressing without

change of form, on a string which is otherwise at rest, with the

velocity \/(P/p). It will be noticed that this investigation does

not require the displacements to be small.

The motion of an unlimited string consequent on arbitrary

initial conditions

y=4>(x), y = + (x\ [*
=

0], ............ (4)

may be deduced from (1), but it will be sufficient to write down

the result, viz.

rx+ct

+(z)dz. (5)
J x-ct

This may be immediately verified.

If the initial disturbance be restricted to a finite extent

of the string, the motion finally resolves itself into two

distinct waves travelling without change in opposite directions.

In these separate waves we have

*
Encyc. Brit. 9th ed. Art.

" Mechanics."
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as is seen at once by considering two consecutive positions of the

wave-form. Thus if in Fig. 24 the curves A, B represent the

positions at the instants t, t + St, we have PQ = c&t, RP = ySt,

RP/PQ = y', whence the former

of the relations (6). The same

thing follows of course from

differentiation of (2). Con-

versely, it is easily seen from

(5), or otherwise, that if the

initial conditions be adjusted so that either of the relations (6)

is everywhere satisfied, a single progressive wave will result.

When the string is started with initial displacement, but

no initial velocity, the formula (5) reduces to

y = i((a-c*)+(0 + cO} 00

The two component wave-forms resemble the initial profile, but

are of half the height at corresponding points. It is easily seen

without analysis that this hypothesis satisfies the condition of

zero initial velocity.

It appears from (6) that in any case of a single progressive

wave the expressions (4) and (6) of 22 for the kinetic and

potential energies are equal. Lord Rayleigh has pointed out

that this very general characteristic of wave motion may be

inferred otherwise as follows. Imagine the wave as resulting

from an initial condition in which the string was at rest, and

the energy E therefore all potential, in the manner just

explained. The two derived waves have half the amplitude (at

corresponding points) of the original form, and the potential

energy of each is therefore J E. Since the total energy of each

wave must be ^ E, it follows that the kinetic energy of each

must be \E.
In mathematical investigations it is not unusual to find the

effect of dissipation represented by^jthe hypothesis that each

element of the string is resisted by a force proportional to its

velocity, so that the differential equation takes the form

dt
-

As regards the theory of stringed instruments this particular
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correction has no importance, the direct influence of the air

being quite insignificant; but the solution of (8) when k is

small is of some interest from the standpoint of wave-theory,

and may therefore find a place here. If the square of k be

neglected, the equation may be written

This is of the same form as 22 (2), and therefore

y = e~*
kt

f(ct-x) + e-*
kt

F(ct+a;).......(10)

This represents two wave-systems travelling in opposite

directions with velocity c; but there is now a gradual diminu-

tion of amplitude in each case as time goes on, as is indicated

by the exponential factor. Again, since the functions are

arbitrary, we may replace f(ct x) and F(ct + x) by

e
W-*to

f(ct-x) and e* k(t+xlc)
F(ct+x),

respectively, so that the solution may also be written

y = e
- lkxlc

f(ct-x) + e* lixlc
F(ct + x).......(11)

This form is appropriate when a prescribed motion is maintained

at a given point of the string. Thus if the imposed condition

be that y = (f)(i)
for x = 0, the waves propagated to the right

of the origin are given by

(12)

The exponential shews the decrease of amplitude as the waves

reach portions of the string further and further away from the

origin.

24. Reflection. Periodic Motion of a Finite String.

If a point of the string, say the origin 0, be fixed, we must

have y at this point for all values of t. Hence, in 23 (1),

f(ct) + F(ct) = 0, or F(z) = -f(z).

The solution therefore takes the form

y=f(ct-x)-f(ct + x)................ (1)

As applied for example to the portion of the string which

lies to the left of 0, this indicates the superposition of a direct
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or "incident" wave represented by the first term, and a "re-

flected" wave represented by the second. The amplitude of

the reflected wave is equal, at corresponding points, to that

of the incident wave, so that there is no alteration in the

energy, but the sign of y is reversed. It is otherwise obvious

that if on an unlimited string we start two waves which are

antisymmetrical with respect to 0, in opposite directions, the

|

Fig. 25.

point of the string which is at will remain at rest, even if

it be free. Hence by the crossing of the waves the circum-

stances of reflection at a fixed point are exactly represented.

It will be noticed that a lateral force is exerted on the fixed

point during the process of reflection.

In the case of a finite string whose ends are (say) at the

points x 0, x = I, we have the further condition that

f(ct-l)-f(ct + l)
= (2)

for all values of t. If we write z for ct I, this becomes

/(*)-/(* + SJ) (3)

so that f(z) is a periodic function, its values recurring when-

ever z increases by 2/. It follows that the motion of the string

is periodic with respect to t, the period 2l/c being the time

which a wave would take to travel twice the length. It is

otherwise evident that a disturbance starting from any point

P of the string, in either direction, will after two successive

reflections at the ends pass P again, in the same direction as

at first, with its original amplitude and sign.

L. 5



66 DYNAMICAL THEORY OF SOUND

When the initial data are of displacement only, i.e. with

zero initial velocity, the successive forms assumed by the string

in the course of a period can be obtained by a graphical con-

struction. We suppose the initial form y </> (x), where <f> (as) is

originally defined only for values of x ranging from to I, to be

continued indefinitely both ways, subject to the conditions

4>(_#) = -</>(tf), (Z + aj)
= -(Z-aj) (4)

If we imagine curves of the type thus obtained to travel

both ways with velocity c, and if we take at each instant the

arithmetic mean of the ordinates, in accordance with 23 (7), it

is evident that the varying form thus obtained will represent

Fig. 26.

a possible motion on an unlimited string, in which the points
x = 0, x = I, x = + 21, . . . remain at rest. The portion between

x = and x = I will therefore satisfy all the conditions of the

question. The process is illustrated in the annexed Fig. 26
;

the initial form here consists of two straight pieces meeting at

an angle, and the result after an interval l/8c is ascertained.

In this way we might trace (after Young) the successive

forms assumed by a string excited by
"
plucking," one point of

the string being pressed aside out of its equilibrium position,

and then released from rest, but the actual construction can in

such a case be greatly simplified. It is easily seen that the

form of the string at any instant consists in general of three

portions; the outer portions have the same gradients as the

two pieces into which the string was initially divided, whilst

the gradient of the middle portion is the arithmetic mean of
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these, account being taken of sign. The line of this middle

portion moves parallel to itself, with constant velocity, back-

wards and forwards between the two corners of the parallelogram

of which the initial form constitutes two adjacent sides.

Fig. 27.

In the annexed Fig. 27, which corresponds with Fig. 26, the

plucking is supposed to take place at a distance of one-fourth

the length from one end, and the phases shewn follow one

another at intervals of one-sixteenth of a complete period, the

successive forms being APB, AQ&B, AQ^B, AQ3R3B, AQ4R4B,

and so on. It is evident on inspection of the figure that any

point of a plucked string moves backwards and forwards with

constant velocity between two extreme positions, in which it

rests alternately during (in general) unequal intervals. The

space-time diagrams of the middle point, and of the point

plucked, under the conditions of Fig. 27, are given in Fig. 28.

Fig. 28.

52
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In the latter case one of the intervals of rest vanishes*.

It is of course with the vibrations of a finite string that

we are chiefly concerned in acoustics. The string is usually

stretched with considerable tension between the two points which

limit the vibrating portion. At one at least of these points the

string passes over a bridge resting on a sounding-board, whose

function it is to communicate the vibrations to the surrounding
air. The direct action of the string in generating air-waves

is quite insignificant, but by the alternating pressure on the

bridge the whole area of the sounding-board is set into forced

vibration. This implies of course a certain reaction on the

string itself, which is however, in the first approximation,

usually negligible, for the reason given in 4.

For experimental purposes an arrangement called a " mono-

chord
"

is used. The sounding-board here forms the upper face

of a rectangular
" resonance chamber." The distance between

the bridges can be varied and measured, and the tension, being

produced by a weight attached to one end of the wire, which

passes over a smooth pulley, can be regarded, at all events

approximately, as known. For purposes of comparison one or

more additional wires may be stretched alongside the former,

their tension being adjusted, as in the pianoforte, by means of

pegs at the extremities.

25. Normal Modes of Finite String. Harmonics.

The preceding investigations have been given on account of

their historical importance, and for the sake of the analogies with

other types of wave-motion which we shall meet with later.

From the purely acoustical point of view they are however of

secondary interest. The ear knows nothing of the particular

geometrical forms assumed by the string, and is concerned

solely with the frequencies and intensities of the simple-
harmonic constituents into which the vibration can be resolved.

* The theoretical vibration-forms have been verified experimentally by

Krigar-Menzel and Kaps, Wied. Ann., vol. L., 1893, so far as the initial stages

of the motion are concerned. After a few vibrations the form is seen to be

undergoing a gradual change. This is attributed to a slight yielding of the

supports of the string, in consequence of which the normal frequencies are not

exactly commensurable, and the resulting motion therefore not accurately

periodic. The construction in Fig. 27 is also due to these writers.
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To ascertain the normal modes of vibration of a finite string

we may have recourse to the general procedure explained in

Chapter I. In any such mode y will vary as a simple-harmonic
function of the time, say cos (nt + e). This makes y = ri*y,

and the equation (2) of 22 therefore assumes the form

.(i)

(2)

The solution of this, exhibiting the time-factor, is

/ . nx
-T.

. nx\ f . ^

y = I A cos --1- B sin 1 cos (nt -f e). ...

\ c c /

The fixed ends of the string being at x = 0, # = I, we must

have A=Q, sin (nl/c)
= 0, whence

nl/7rc
= l, 2,3, ......................(3)

This gives the admissible values of n. In any one normal mode

we have, therefore,

n . STTX /STTCt \ ,..
y = C8 sm-- cos(-- + 6j, ...............(4)

where 5 is an integer, and the amplitude Cg and initial phase

s are arbitrary. The gravest, or fundamental mode, which

determines the pitch of note sounded, corresponds to s = l.

The string then oscillates in the form of the curve of sines

between the two extreme positions shewn in the upper part of

Fig. 29. The frequency is
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and so varies inversely as the length and as the square root of

the line-density, and directly as the square root of the tension.

These statements, which were formulated as the result of

experiment long before the mathematical theory had been

developed, are known as Mersenne's laws*. The determination

of absolute pitch by the formula (5) does not admit of very

great accuracy owing to the difficulty in measuring the tension,

which is apt (owing to friction) to be slightly different on the

two sides of a bridge.

The principles that the frequency diminishes with increase

of length and with increase of line-density have a familiar

illustration in the pianoforte, where longer and intrinsically

heavier strings are used for the graver notes. If the relation

of pitch were adjusted by length alone the strings corresponding
to the lower notes would have to be at least 100 times as long
as those belonging to the highest. In order to secure a suffi-

ciently low pitch within practical limits of length, and with

a sufficient degree of tension, the string is loaded with a coil of

wire wrapped closely round it. This has the effect of increasing
the inertia without seriously impairing the flexibility, which is

an essential point. The influence of tension, again, is illustrated

in the process of tuning, which consists in tightening up the

wires when these have stretched, or the pegs have yielded, so

that the instrument has fallen in pitch, or become "
flat."

In the next normal mode after the fundamental the middle

point x \l is at rest (Fig. 29). And in the 5th mode, whose

frequency is by (3) s times that of the fundamental, there are

s 1 internal points of rest, or
"
nodes," in addition to the

ends. Midway between these we have the points of maximum

amplitude, or
"
loops." Each segment into which the string is

divided by the nodes vibrates as in the fundamental mode of a

string of 1/sth the length.

As already stated ( 2) the sequence of simple vibrations

with frequencies proportional to the natural numbers 1,2,3,-...,

which we here meet with, has important properties, musically

* M. Mersenne (15881648), a Franciscan friar, was a schoolfellow and

lifelong friend of Descartes, and maintained an extensive correspondence with

him and other men of science of the day.
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and physiologically. Its occurrence in vibrating systems is of

course quite exceptional. Even in the present case, if the

string deviate appreciably from uniformity or from perfect

flexibility, the above scale of frequencies is at once departed
from *.

We were led in 16 to the conclusion, on physical grounds,

that in any system of finite extent the effect of the most

general initial conditions consistent with its constitution may
be obtained by superposition of the several normal modes, with

suitable amplitudes and phase-constants. We infer that the

most general motion of a finite string can be represented by
the formula

/?x
............ (6)

provided the constants C8 ,
eg be properly determined, the

summation S extending over all integral values of s. An

equivalent form is

STTCt n . S7TCt\ . STTX /h_ x

,cos-j- +4am-j-J sm-p, ......(7)

where A 8
= C8 cose8) B8=-C8 s'm s .............(8)

If the string start from rest in a given position at the

instant = the coefficients B8 will vanish; if it be started

with given velocities from the equilibrium position (y 0)

the coefficients A 8 will vanish.

Since the value of every term in (6) or (7) recurs whenever

t is increased by 2/c, the vibration is essentially periodic, as

already proved in | 24. In all other respects the motion of the

string when started in an arbitrary manner is, from the present

point of view, of a complex character, being made up of an

endless series of simple-harmonic vibrations. The resulting

note is accordingly made up of a series of pure tones, consisting

(in general) of a fundamental, its octave, twelfth, double octave,

and so on.

It is not altogether easy to excite a string in such a way

* The fact that a particular sequence of notes, musically related to one

another, is associated with lengths of string proportional to the quantities
1 i> i> i> was known to the Greeks, and was the origin of the name
"harmonic" as applied to the numerical series.
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that the resulting motion shall be strictly simple-harmonic,

and the sensation accordingly that of a pure tone. But, as

will be shewn more fully in 39, it is possible to suppress

all the tones below any assigned rank (s) by checking the

vibration at a node of the 5th mode, as, for instance, by
contact with a camel-hair pencil. The remaining nodal points

of this constituent are then points of rest, whilst half-way

between them there is vigorous vibration. The experiment,
which is very striking, is easily made with the monochord.

The energy in any normal mode is easily calculated. We
find

......(9)

...(10)

The coefficients are equal, in virtue of 22 (3), and the total

energy in this mode is

T+v

It is further easily proved that the whole energy of the

string is the sum of the energies corresponding to the various

normal modes, viz.

T+V-^-S.*Of-^*f(4*+Bf)
....... (12)

This is a general property of the normal modes of a vibrating

system. The proof, in the present case, depends on the fact

that

[
l

. STTX . STT3C ..''* /-, ox
I sin j- sm = dx = 0, ............ (13)
JO *

'

if s, s be any two unequal integers. See 32 (4).

26. String excited by Plucking, or by Impact.
The relative amplitudes of the various modes is of course

a matter of importance, as on it the quality of the note

depends ( 2). Usually a string is excited in one of three

ways, viz. by plucking (as in the harp, zither, &c.) f by striking

with a hammer (pianoforte), or by bowing (violin, violon-

cello, &c.).



STRINGS 73

If the string be pulled aside through a small space , at

a distance a from the end a? = 0, and then be released, the

values of the coefficients in 25 (7) are found to be

/ ,~ . srra . STHZ? STTC
whence y , y,

-
x 2 - sin =- sin = cos --*- . . . .(2)

7r
2
a(/ a) ,s* I I I

The mode of calculation will be explained in the next chapter

(see 36). We notice that the harmonic of order 8 will be

altogether absent if sin (sirajl) 0, i.e. if the point of plucking
be at one of its nodes; this was remarked by Young (1841).

Thus if the string be plucked at the centre, all the harmonics

of even order will be absent. The formula (1) combined with

25 (12) shews that, apart from a trigonometrical factor which

lies between and 1, the intensities of the successive harmonics

will vary as 1/s
2
. The higher harmonics are therefore relatively

feebly represented in the actual vibration of the string.

The effect of the impact of a hammer depends on the

manner and duration of the contact, and is more difficult to

estimate. The question is indeed, strictly, one of forced

vibrations ( 28); but in the somewhat fictitious case where

the duration is so small that the impact has ceased before

the disturbance (travelling with the velocity c) has had time

to spread over any appreciable fraction of the length, we

may treat the problem as one of free motion with given initial

velocity concentrated on a short length. The result is

where a is the distance from the origin to the point struck,

and //. represents the total momentum communicated by the

impact. Hence

2u _., 1 . Sira . STTX . Sirct

y = -- 2 - sin y- sin = sin = .......... (4)
TTpC Sill

As in the previous problem, the sih mode is absent if the

origin be at one of its nodes. Apart from the trigonometrical

factor on which this circumstance depends, the intensities of
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the successive modes are, according to 25 (12), now of the

same order of magnitude. The unreal character of the pre-

ceding hypothesis betrays itself in this result
;
but we may at

all events infer that in the case of a very brief impact the

higher harmonics are relatively much more in evidence than

in the former problem.
In reality the impact, even in the case of a metallic

hammer, is far from instantaneous, the time of contact, though

very short as measured by ordinary standards, being at all

events comparable with the period of vibration of the string*.

The effect of an impulse of finite duration has been calculated

by Helmholtz, to whom most of the present theory is due, on

the supposition that the pressure begins at the instant t = 0,

and lasts for a time T, during which it rises from zero to a

maximum and falls to zero again, according to the law sin (TT/T).

A somewhat simpler result is obtained if we imagine the law

of pressure to be

where /* represents the time-integral of the force from t = oo

to t + oo . This law, whose graphical representation has the

form of the curve in Fig. 14, p. 33, has the defect that there is

no definite instant of beginning or ending, but as the true law

is in any case unknown, it may serve for purposes of illustration.

The interval of time during which the force is sensible is

comparable with r, and can be made as narrow as we please

by diminishing T. The details of the calculation will more

conveniently find a place in the next chapter ( 38). The

result is

(6)

When T is infinitesimal this agrees with (3). In other cases

the intensities of the higher harmonics vary as e
~ 8irCT

'

,
if we

omit the trigonometrical factor.

Although the pressure is thus rendered less abrupt as

regards its variation with the time, it is still assumed to be

*
Kaufmann, Wied. Ann., vol. LIV. (1896).
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concentrated at a point. If we were to imagine it distributed

continuously over a short length of the string this would

further increase the relative weight of the lower harmonics

(see 38).

According to a general principle, which is here exemplified,

and which will be further referred to in the next chapter,

the higher harmonics are excited in greater relative intensity,

the more abrupt the character of the originating disturbance.

From a musical point of view the harmonics after about the

sixth are to be discouraged, since they come sufficiently

near to one another in the scale to be mutually discordant.

In the pianoforte the hammers are covered with layers of softer

material, so that the variation of pressure during the impact
is rendered more gradual.

The point at which the blow is delivered is also a matter

of importance. To obtain a note of rich musical quality the

lower harmonics should be present in considerable force, and

the middle regions of the string are on this account to be

avoided. On the other hand, the harmonics of higher order

than the sixth are prejudicial, as already stated. Both re-

quirements are met by fixing the striking point at a distance

of about one-seventh of the length from one end. The partial

tones which have nodes at or near this point will then not

be excited at all, or only with comparatively feeble intensity.

27. Vibrations of a Violin String.

The theory of the vibrations of a string when excited by

bowing is somewhat difficult, but the main features have been

elucidated by Helmholtz. Since the pitch is found to be that

natural to the string, the vibrations are to be regarded as in

a sense
"
free," the function of the bow being to maintain the

motion by supplying energy to make up for the losses by

dissipation. In the case of the violin &c., where the strings

are of light material and pass over a bridge resting on a very

sensitive surface (of the resonance cavity), these losses may
be relatively considerable. The mode of action of the bow

appears to be that it drags the string with it for a time by

friction, until at length the latter springs back
;
after a further
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interval the string is carried forward again, and so on*, the

complete cycle taking place in the period of vibration.

In order to obtain data for mathematical analysis Helmholtz

began by an experimental study of the character of the vibration

at various points. The device was an optical one, of the kind

employed by Lissajous ( 18), by which the rectilinear vibration

of the point examined is compounded with an independent
vibration at right angles, whose period is commensurable, or

nearly so, with that of the string. A microscope whose axis is

horizontal is directed to the point to be studied, the string

itself being vertical. The eye-piece of the microscope is fixed,

but the objective is carried by one of the prongs of a tuning
fork and vibrates in a vertical direction. When the fork alone

vibrates the image of a bright point on the string is drawn

out into a vertical line; when the string alone vibrates the

appearance is that of a horizontal line. When both vibrations

coexist the result would be a closed curve if the periods were

exactly commensurable. For example, if the period of the fork

were exactly commensurable with that of the string, and if the

vibration of the point examined were simple-harmonic, the

result would be one of the corresponding series of Lissajous

figures ( 18); whilst if the relation between the periods were

inexact, the curve would pass in succession through the various

phases of the series. In the actual circumstances the forms of

the curves are modified, and it is possible from the result to

make inferences as to the true nature of the vibration studied.

Fig. 30.

The interpretation is facilitated by the ideal representation

of the successive phases as orthogonal projections of a curve

traced on a revolving cylinder. It was found that the space-

* In order that work may be done it is necessary to suppose that the

frictional force is greater in the first stage than in the second. This is

consistent with the known law that friction of (relative) rest is greater than

friction of motion. The remark is due to Lord Rayleigh.
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time diagram of the point of the string

under examination has the simple form

shewn in Fig. 30. The nature of the

modification in the Lissajous figures may
be illustrated in the case of unison

between fork and string. If the portion

of the broken line in Fig. 30 which lies

between A and B be wrapped round a

cylinder whose circumference is equal to

AB
y its projections on planes through

the axis will include such forms as are

here shewn (Fig. 31)*.

The period of vibration of the point

examined is made up of two intervals,

usually of unequal duration, during
which the point moves backwards and

forwards, respectively, with constant but

(in general) unequal velocities. The

ratio of the two intervals is further

ascertained to be equal to that of the

two segments into which the string is

divided by the point. These results have

been confirmed by subsequent observers

who have obtained the space-time dia-

gram in a more direct mannerf. In

order that they may come out clearly

some precautions are necessary. Some-

thing depends on the skill with which

the bow is used, and apparently on the

quality of the instrument. In order, also,

that the diagram should be free from

minor irregularities the bow should be

* In the actual experiments of Helmholtz the

frequency of the string was four times that of the

fork. The circumference of the cylinder in the

above mode of representation then includes four

periods of the zig-zag line in Fig. 30.

t Erigar-Menzel and Raps, Wied. Ann., vol.

XLIV. (1891).
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applied at a node of one of the harmonics, and the point

observed should be at another node of the same.

Except at the two instants in each period when the velocity

suddenly changes, the acceleration of the point (P) examined is

zero. It follows from 22 (2) that the curvature of the string

in the neighbourhood of P vanishes, and that the form of the

string at any instant is accordingly made up of straight pieces.

Fig. 32.

It appears that all the conditions of the problem can be satisfied

if we assume that the form is always that of two such pieces

meeting at a variable point Q. In Fig. 32 let AB (= I) be the

undisturbed position of the string, and let a (= AN) and /3

(= NQ) be the coordinates of Q referred to A as origin and AB
as axis of abscissae. The equations of the two portions of the

string are

yi
=M> y*

= P(i-x)l(i-*), .........(i)

and the difference of the velocities near Q on the two sides

is accordingly

In the time St a length d8t of the string is traversed by the

point Q, so that a mass pd&t has its velocity increased by the

above amount. This is the effect of the transverse force

where P is the tension, acting for the time St. Equating the

change of momentum to the impulse of the force we find

*......................(4)
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The point of discontinuity Q (of the gradient) must therefore

travel right or left with the velocity c.

Let us suppose that Q starts from A at the instant t = 0,

and that & is at first positive. The observations of Helmholtz

shew that the velocity at a point x, viz.

is during an interval x/c constant, whence

= (7a(Z-a), .....................(6)

no additive constant being admissible, since ft must vanish with

a. This is the equation of a parabolic arc passing through A, B.

The conditions of the problem are therefore all fulfilled if we

imagine Q to travel backwards and forwards along two such

arcs, with velocity c, in the manner indicated in Fig. 32. In

terms of the maximum displacement j3 we have G = 4/8 /Z
2
,

and the equations of the two portions of the string at any
instant are therefore

y,-^(i-), -^<l-*> ......(7)

It only remains to resolve this motion into its simple-

harmonic constituents. The details of the calculation are

given in 37. The result is

STTCt

where the summation embraces all integral values of s. Com-

paring with 25 (7) we have

A =
0, B.-3| ...................(9)

These results, and indeed the whole investigation, take no

account of the position of the point to which the bow is applied.

It is plain, however, that the position of the bow must have

some influence on the character of the vibration; and it is

found in fact that those normal modes are absent which have a

node at the point in question. It is for this reason that the

somewhat idealized vibration-form which is adopted as a basis

of calculation is only obtained in its purity at corresponding

nodes.
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28. Forced Vibrations of a String.

The simplest case of forced vibration is where a given

simple-harmonic motion

y = 0coa(pt + a) ..................(1)

is imposed at a point (x = a). The portions of the string on the

two sides of this point are to be treated separately. The

results are

. px
sin

cos (pt -fa) [0 < x < a] ,

sm

sn

for these satisfy the general differential equation 22 (2), they
make y1

= for x = 0, and yz
= for x = I, and they agree with

(1) when x = a. The amplitude of yl or y2 becomes very great,

owing to the smallness of the denominator, whenever pa/c or

p(l a)/c is nearly equal to a multiple of TT, i.e. when the

imposed period 2ir/p approximates to a natural period of a

string of length a or I a, respectively. To obtain a practical

result in such cases we should have to take account of dissipative

forces.

The case is illustrated by pressing the stem of a vibrating

tuning fork on a piano string. The sound swells out powerfully

whenever the portion of the string between the point of contact

and either end has a natural mode in unison with the fork.

This plan is recommended by Helmholtz as a means of producing

pure tones, since the higher modes of the fork, not being
harmonic with the fundamental, are not reinforced.

When a transverse force of amount Y per unit length acts

on the string, the equation (2) of 22 is replaced by

In general Y will be a function both of x and t.

The case of a periodic force F cos (pt + a) concentrated on an

infinitely short length of the wire at x a may be deduced from
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the formulae (2). The value of ft in terms of F is found from

the consideration that the force must just balance the pull of

the string on this point, i.e.

F Cos(pt + ct)=Pyi'-Py2

'

............... (4)

for x = a. This leads to

. px . p(l a)sm sin---
sn

c c

The formula for yz differs only in that the letters x and a are

interchanged ;
we have here an instance of the reciprocal theorem

of 17, according to which the vibration at a point x due to a

periodic force at a must be the same as the vibration at the

point a due to an equal force (of the same period) at x.

The amplitude becomes as a rule great when sm(pljc) is

small, i.e. when the imposed period approaches a natural period
of the whole string. An indeterminate case occurs when
sin (pale) and sin (pile)

=
simultaneously, the point x = a

being then a node.

29. Qualifications to the Theory of Strings.

We have in 26, 27 considered the relative amplitudes of

the different harmonics when a string is excited in various ways,
but we must not assume that the corresponding relative inten-

sities are accurately reproduced in the resulting sound-waves,

which are started indirectly through the sounding board.

If we neglect the reaction on the string, which may for a

considerable number of vibrations be insensible, we may regard
the string as exerting on each bridge a force proportional to

the value of dy/dx there*, as given by the respective formula.

The differentiation introduces a factor s in the coefficient of

the 5th harmonic, and so increases the importance of the

higher modes. On the other hand, the amplitude of vibra-

tion of the sounding board due to a simple-harmonic force

of given amplitude, will vary somewhat with the frequency,

* Thus in the case of the plucked string it appears from Fig. 27 that

the pressure on each end alternates between two constant values of opposite

sign.

L. 6
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on the general principle illustrated in 9*. This is probably
to the relative advantage of the lower modes. The effect of

yielding of the bridges in modifying the natural frequencies

of the string has been discussed by Rayleighf; it is probably
in practice very slight.

Another cause which must be mentioned as affecting our

results to some extent is the imperfect flexibility of the string,

or wire. In the case of the higher normal modes the segments
into which the string is divided may be so short that flexural

couples come into play, and tend to raise the frequency by

increasing the potential energy of a given deformation. This

will be referred to later ( 50). A further point is that the

abrupt forms postulated in the theory of plucked or bowed

strings are not exactly realized, and that such investigations as

those of 26, 27 are to be viewed as approximations, which are

however quite adequate so far as the determination of the ampli-
tudes of the graver and more important harmonics is concerned.

30. Vibrations of a Loaded String.

We conclude this chapter with the discussion of one or two

problems which, besides being of some interest in themselves,

may serve to remind us again that the harmonic scale of fre-

quencies is after all an exceptional phenomenon, even in the

case of strings.

Take first the case of a string, otherwise uniform, loaded

with a mass M at its centre. It is obvious that those normal

modes of the unloaded string which have a node at this point
are unaffected. Leaving these on one side, we consider only
those vibrations in which there is at every instant complete

symmetry with regard to the centre. If the lateral displacement
of M be {3 cos (nt + e), we have, for the first half of the string,

(1)

* Some interesting experiments bearing on these questions have been made

by Barton and Garrett, Phil. Mag. (6), vol. x., 1905. See also Barton, Text-

Book of Sound, London, 1908, 361.

t Theory of Sound, 135.
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The equation of motion ofM is

(2)

where after the differentiations we must suppose x = I. This

gives
nl nl I

2c 2c
=

b' (3)

where b is written for M/p, i.e. b is the length of string whose

mass would be equal to that of the attached particle. The

frequencies are therefore determined by

where x1) #2 ,
xz ,

... are the roots of the transcendental equation

x tan x = l/b (5)

Equations more or less of this character occur in many branches

of mathematical physics, and can often be solved approximately

by graphical construction. Thus in the present instance if we
trace the curves

b
2/
= cot#, y= I

., (6)

the abscissae give the roots. If 6 be relatively small these

fall a little short of JTT, |TT, |TT, ..., respectively, and the

b-l

Fig. 33.

65
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frequencies are therefore slightly lower than in the symmetric
modes of an unloaded string. As b increases the frequencies

all diminish, the physical reason being of course the increased

inertia. Finally, when M is very large compared with the mass

pi of the string, l/b is small, and the lowest root of (5) is given

approximately by a? = 1/b, whence

n =

in agreement with 6 (4).

31. Hanging Chain.

The contrast with previous continuous systems is still more

marked in the case of the small oscillations of a uniform chain

hanging vertically from its upper end, which is fixed. This

has no immediate acoustic importance, but it is interesting

historically*, and is, from the standpoint of general theory,

instructive in various ways.

We take the origin at the equilibrium position of the free

end. The tension at a height x above this point will be

P = gpx, the vertical motion being neglected as of the second

order. Hence if y denote the horizontal deflection, we have

or

a*

3 / dyI*-K(*y\
rat/

1

To ascertain the normal modes we assume that y varies as

cos (nt + e), and obtain

i(x
d

/] +
n
-y = Q................... (3)dx \ dxj g

*

This can be integrated by a series, but the solution assumes

a somewhat neater form if we introduce a new independent
variable in place of as. The wave-velocity on a string having
a uniform tension equal to that which obtains at the point x

would be *J(Plp) or *J(gx). Hence if r denotes the time which

*
It appears to have been the first instance in which the various normal

modes of a continuous system "were determined, viz. by D. Bernoulli (1732).

The Bessel's Function also makes its first appearance in this connection.



STKINGS 85

a point moving always with this local wave-velocity would take

to travel from the lower end to the point x, we have

In terms of r as independent variable the equation (3) becomes

0- ... ...............(5)

For the present purpose we do not require the complete

solution, but only that solution which remains finite when

T = 0. This is

where G is arbitrary, as may be verified by actual differentia-

tion, and substitution in (5). The function defined by the

series in brackets presents itself in many physical problems;
it is called the "Bessel's Function of Zero Order," and is

denoted by JQ (nr)*. Hence, inserting the time-factor,

y = CJ (riT)cos(nt + 6) (7)

The value of T corresponding to the upper end (x I) is

T1
= 2V(%), (8)

and the condition that this end should be fixed gives

Jo (nil)
=

(9)

This determines the admissible values of n. The first few

roots are given by

WTl/7r
= -7655, 1-7571, 2-7546,..., (10)

where the numbers tend to the form s J, s being integral. In

the modes after the first, the values of T corresponding to the

lower roots give the nodes. Thus in the second mode there is

a node at the point T/T,
=

-7655/1-7571, or a;/l
=

T*lTl
* = '190.

The gravest period is 2?r/w
= 5'225 \J(llg\ whereas the period

of oscillation of a rigid bar of the same length is 5130 ^(Ijg).

The comparison verifies a general principle referred to in 16,

* Elaborate numerical tables of the Bessel's Functions, calculated by
Meissel and others, are given by Gray and Mathews, Treatise onBessel Functions,

London, 1895. A convenient abridgment is included in Dale's Five-Figure Tables

of Mathematical Functions, London, 1903.
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according to which any constraint has the effect of quickening the

gravest oscillation. The first two modes are shewn (on different

scales) in Fig. 31, the two nodal points representing the point of

suspension in the two cases.

Fig. 34.



CHAPTER III

FOURIER'S THEOREM

32. The Sine-Series.

The study of the transverse vibrations of strings has

already suggested a remarkable theorem of pure mathematics,

to which some further attention must now be given. The

theory of the normal modes has led us ( 25) to the conclusion

that the free motion of a string of length I, started in any

arbitrary manner, can be expressed by a series of the form

STTCt n . S7TCt\ . STTX
8 cosj-

+ 5f sm
Jsin-j-,

......(1)

where s = 1, 2, 3, ..., provided the constants A 8) B8 be properly

determined. In particular if the string be supposed to start

from rest at the instant t = in the arbitrary form y = f(x), it

should be possible to determine the coefficients A s so that

(2)

for values of x ranging from x = to x = I. This is a particular

case of "Fourier's Theorem*." Since I is at our disposal we

may conveniently replace it (for general purposes) by TT, and

the statement then is that an arbitrary function f(x) can be

expressed, for values of x ranging from to TT, in the form

f(x) = A l sin x + A 2 sin 2# -f . . . + A 8 sin sx + .......(3)

*
J. B. J. Fourier (17681830). The history of the theorem is closely

interwoven with that of the theory of strings, and of the theory of heat-

conduction. Fourier's own researches are expounded in his Theorie de la

Chateur, Paris, 1822. An outline of the history is given in Prof. Carslaw's

book cited on p. 96. The subject is treated most fully by H. Burkbardt in his

report entitled Entwickelungen nach oscillirenden Funktionen..., Leipzig, 1908.
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The reasoning by which we have been led to this result is

of a physical rather than a mathematical nature, and we have

moreover not referred to the restrictions which physical con-

siderations alone would impose on the character of the arbitrary

function f(x). Leaving such points for the moment, and as-

suming the theorem provisionally, we proceed to the deter-

mination of the coefficients. If we multiply both sides of (3)

by sin sx, and integrate from x to x = ir
y
we get on the right

hand a series whose general term is

A r I sin rx sin sx dx
Jo

= %A r l {cos (r s) x cos (r 4- s) x} dx. ...(4)
J o

When the integers r, s are unequal this vanishes, since each

cosine goes through its cycle of values, positive and negative,

once or oftener within the range of integration. But when

r = s, the first cosine is replaced by unity, and the result is

Hence
2 fv

A g
= -\ f(x)$msxdx................(5)

The process may be illustrated by a few examples. Take,

first, the case of

/(*) = (-*), .....................(6)

which is represented by an arc of a parabola. We find, after

a series of partial integrations,

2 Cw 4A 8=-\ x (TT x) sin sx dx = -(1 COSSTT). ...(7)
7T J o TrS"*

This is equal to or 8/?rs
3
, according as s is even or odd. The

theorem therefore becomes

x (TT x)
-

( sin x + sin 3# + - sin 5x + . . .
)

. -(8)
7T \ O O /

If we put x J TT in this we obtain the formula

32"" 33 53 '"' '

which is known on other grounds to be correct. The equality

in (8) may also be tested graphically. It is found that the

discrepancy between the graph of x (TT x) and that of the
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function represented by the first three terms on the right hand

is so slight that it would be barely perceptible on a scale

suited to the pages of this book.

In the next example the graph off(x) consists of two straight

lines through the points x = 0, x = TT, respectively, meeting at

an angle at the point x = a. If we assume the ordinate at the

latter point to be unity, we have

/(*) = #/ [0 <*<],
j

/(#) = (TT
-

at)/(IT -a) [*<*<*].)
We find, after some reductions,

2 f
a 2 f

71
"

A 8 xsinsxdx-\---.
--

^1 (TT x) sin sx dx
Tra.'o 7r(7r-a)J a

1
-sinsa. ...(11)

a(7r-a)V

Fig. 35.
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Thus
2 / 1

f(x) = -j-
I sin a sin x 4- ~-

2
sin 2a sin 2x

+ i
2 sin3asin3#+...y

...(12)

As a check on this result we may put a = JTT, x \ir\ this

gives

which is known to be right. This example is of interest in

connection with the theory of the plucked string ( 26, 36).

Fig. 35 shews the graph of f(x) together with that of the

function represented by the first eight terms of the series on

the right hand of equation (12), in the case of a = f?r. The

fourth and eighth terms contribute nothing to the result in

this case, since they correspond to modes having a node at the

point plucked.

Again, let /(#) = TT a?......................(14)

2 f
77 2

We find A s
= \ (TT #)sins#c& = - ............. (15)

TTJO s

The theorem therefore asserts that

TT - x = 2 (sin x + \ sin 2# -f sin 3# +...). . . .(16)

If we put x \ TT, we obtain

which is Euler's formula for the quadrature of the circle.

The formula (16) also verifies obviously for #=TT; but if we

put x we see that there is some limitation to its validity.

The necessary modification is stated in 34. The series is

moreover much more slowly convergent than in the preceding

case; this is illustrated by Fig. 36, which shews the graph
of TT x together with that of the function represented by
the first eight terms of the series. For any value of x other

than we can obtain an approximation as close as we please,

provided we take a sufficient number of terms, but the smaller

the value of x the greater will be the number of terms required

to attain a prescribed standard.
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Fig. 36.

The preceding illustrations, with the diagrams, afford at

all events a presumption in favour of the theorem in question,

but shew at the same time that it is subject to some restric-

tions. The theorem admits of independent mathematical proof
under certain conditions as to the nature of the "arbitrary"
function f(x). We shall, however, not enter upon this, but

shall content ourselves with the following formal statement :

If we form the sum of the first m terms of the series (2),

and write

fm (#)
= AI sin x + A z sin 2x + ... + Am sin mx, (18)

where A 8
= I f(x)sinsxdx, ............(19)

it may be shewn that, for any assigned value of x in the range
from to TT, the sum fm (x) will tend with increasing m to the

limit f(x), provided the function f(x) is continuous throughout
the above range, has only a finite number of maxima and

minima, and vanishes for x = and x = IT.

It will be noticed that the conditions here postulated are



92 DYNAMICAL THEOKY OF SOUND

fulfilled as a matter of course by any function which it is

natural to assume as representing the initial form, or the

initial velocity, of a tense string. We also see that the

difficulty met with in the case of (16) can be accounted for

by the fact that the function does not vanish for x = 0.

An extension of the statement to meet such cases will be

given presently ( 34).

33. The Cosine- Series.

The theory of the longitudinal vibrations of rods, or of

columns of air, leads, in addition, to a similar theorem relating

to the expansion of an arbitrary function in a series of cosines.

The formal statement is now as follows :

If we write

fm (#)
= A + A l cos x + AZ cos 2% + . . . + Am cos mx, (1)

where

whilst for s >
2= -l f(x)co$sxdx, (3)

it may be shewn that as m increases the sumfm (x) will tend to

the limit /(#), provided f(x) is continuous throughout the

range from to TT, and has at most a finite number of

maxima and minima. There is now no restriction as to the

values of /(O) and /(TT).

If the determination of the effect of special initial conditions

in a longitudinally vibrating bar which is free at both ends

were as interesting a problem as it is in the case of strings

we should have recourse to the cosine-series.

34. Complete Form of Fourier's Theorem. Discon-

tinuities.

The question arises as to what is represented by the

sine-series or the cosine-series, supposed continued to infinity,

when x lies outside the limits and TT. The answer is supplied

by the consideration that both series are periodic functions

of x
}
the period being 2?r, whilst the former is an odd, the
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latter an even function of x*. This is illustrated by the

annexed graphical representations, in which f(x) is given

primarily only for the range TT, but is continued in one

case as an odd and in the other as an even periodic function

of x. It will be noticed that in the former case the stipulation

that f(x) is to vanish for x = and x = TT is necessary if

discontinuities are to be avoided.

Since any function f(x) given arbitrarily for values of x

ranging (say) from TT to TT can be resolved into the sum of an

even and an odd function, viz.

/(*) = i !/(*)+/(-*)} +i {/(*)-/<- *)). -<i)

we derive the more general theorem that the sum

fm (x) A + A! cos x + A z cos 2# + . . . + Am cos mx
4- B! sin x + B2 sin 2x + ... + Bm sin mx, ...(2)

where

* An "odd" function is one which is simply reversed in sign with x,

like x3 or sinx. An "even" function is one which is unaltered in value

when the sign of x is changed, like x- or cos x.
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whilst for s >

If*
1

1 f" \A s
= -

I {/(#) +/( a))}
cos sxdx = I f(x) cos s#cfo,

TTJo
"

TTJ - n I ^
i tw i r*

1

B8 =-\ \f(x) f(- x)} sin s#cfo? = - I /(#) sin s#d#,
TTJo

*

TTJ _ ff

tends with increasing m to the limit /(a?), provided f(x) is

continuous from X TT to # = TT and has at most a finite

number of maxima and minima, and provided also that

/( TT) =/(TT). For values of x outside this range the limit

represents, under these conditions, a periodic function of

period 2?r. This is the complete form of Fourier's Theorem,

and includes the others as special cases.

We should be led directly, on physical grounds, to this form

of the theorem if we were to investigate the "longitudinal"
vibrations of the column of air in a reentrant circular tube.

We have so far supposed the function /(#) to be continuous,

as well as finite, even when continued beyond the original

range as a periodic function. But the theorems hold, with

a modification to be stated immediately, even if f(x) have

a finite number of isolated discontinuities. In such a case

the series fm (x) still converges, with increasing m, to the value

of /(#), except at the points of discontinuity. But if a be

a point where f(x) abruptly changes its value, the sum fm (a)

tends to the limit

where f(a 0) and/(a + 0) represent the values of f(x) at

infinitesimal distances to the left and right, respectively, of the

point a. For example, in the case of the sine-series 32 (3),

if f(x) does not vanish when x = or when X = TT, there is

discontinuity at these points in the periodic function, and

the series /m (0), for example, has the limit 0, which is

the arithmetic mean of the values of the continued function

on the two sides of the point #=0. This is illustrated in

Fig. 36.

35. Law of Convergence of Coefficients.

It remains to say something as to the law of decrease of

the successive terms. It is evident at once that under the
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litions laid down the values of the coefficients A 8 and B8

must ultimately diminish indefinitely as s increases, owing to

the more and more rapid fluctuation in sign of cos so; and
sin sx, and the consequent more complete cancelling of the

various elements in the definite integrals of 32 (5) and

33 (3).

More definite results have been formulated by Stokes.

The following statement must be understood to refer to the

function as continued in the manner above explained; and

care is necessary, in particular cases, to see whether discon-

tinuities of f(x) or its derivatives are introduced at the

terminal points of the various segments:
If f(x) have (in a period) a finite number of isolated

discontinuities, the coefficients converge ultimately towards

zero like the members of the sequence

1,
2> 3> 4>

!

This is exemplified by 32 (16) and Fig. 36.

If f(x) is everywhere continuous, whilst its first derivative

f'(x) has a finite number of isolated discontinuities, the con-

vergence is ultimately that of the sequence

ill 1
'

22 '

32 '

42 '
*

This is illustrated by 32 (12) and Fig. 35.

If f(x\ f(x) are continuous, whilst /"(#) is discontinuous

at isolated points, the sequence of comparison is

l
>

%3> ^3> #>

as in the case of 32 (8). And, generally, if f(x) and its

derivatives up to the order n 1 inclusive are continuous, whilst

the nth derivative has (in a period) a finite number of isolated

discontinuities, the convergency is ultimately as

1 1 1

The nature of the proof, which is simple, may be briefly
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indicated for the case of the sine-series. We have, by a partial

integration,

2 f
77

A s I f(x) sin sx dx

1 F2 "1 2 C
n

= -- -/O)coss# + I f(x)w$sxdx, ...(4)

where the integrated term is to be calculated separately for

each of the segments lying between the points of discontinuity

of/(#), if any, which occur in the range extending from x = to

# = TT inclusively. For example, if as in 32 (14) the only

discontinuity is at x 0, its value is 2/(0)/S7r. In any case

there is, for all values of s, an upper limit to the coefficient of

l/s in the first part of (4); we denote this limit by M. The

definite integral in the second term tends ultimately to

zero, as s increases, owing to the fluctuations in sign of cos sx.

Hence A 8 is ultimately comparable with M/s. If there is no

discontinuity of /(#), even at the points x = 0, x TT, the first

term in the above value of A 8 vanishes, and continuing the

integration we find

A s
= --

\-f O)sin sx\
-

-f- fjT<*) sin ** dx. . . .(5)r \_Tr J s "^J Q

In the first part, regard must be had to the discontinuities of

/'(#), if any. Denoting by M the upper limit of the coefficient

of l/s
2
,
we see that A s is ultimately comparable with M/s*, the

second term in (5) vanishing in comparison, by the principle

of fluctuation. The further course of the argument is now

sufficiently apparent.

36. Physical Approximation. Case of Plucked String.

It has been thought worth while to state Fourier's theorem

with some care, although we do not enter into the details of the

mathematical proof, which is necessarily somewhat intricate,

owing to the various restrictions which are involved*.

From a physical point of view the matter may be dealt with,

and perhaps adequately, in a much simpler manner. To explain

this, it is best to take a definite problem, for instance that of

* The most recent English treatise on the subject is that of Prof.

H. S. Carslaw, Fourier's Series and Integrals, London, 1906.
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the plucked string ( 26). The differential equation, and the

terminal conditions, are satisfied by the finite series

. TTX Tret . fax
y=A l sm -j-

cos
-j-

4- A z sin j-
cos -. \-

. mirct
+ Am sm j-

cos
j

, ...(1)

each term of which represents a normal mode of vibration.

This makes the initial velocity zero, whilst the initial form is

. TTX . fax . rrnrx
y = A 1 sm -j- 4- A9 mn ; + ... + Amsmj . ...(2)II V

The question we now have to consider is, how to determine the

coefficients A lt Az ,
... Am so that (2) may represent, as closely

as may be, a prescribed initial form

y-/().........................(3)

There are many reasons why, from the physical point of

view, we may be content with an approximate solution of the

problem. Leaving aside such questions as the resistance of the

air and the yielding of the supports at the ends of the string, we

have still to remember that in substituting a mathematical line

of matter, capable only of exerting tension, we have considerably

over-idealized the circumstances. In the higher normal modes,

at all events, the imperfect flexibility, and the uncertainty as to

the true nature of the terminal conditions, render this representa-

tion somewhat inadequate, so that a solution which professes to

determine these modes accurately is open to the criticism that

it attempts too much. Again, the assumed initial form in

which two straight pieces meet at a point, is one which can

only be approximately realized ;
if we go too far in this direction

we should produce a permanent bend, or kink, in an actual

wire.

The determination of the coefficients in the finite series

(2) will depend on the kind of approximation aimed at. For

example, we might divide the length of the string into ra + 1

equal parts, and choose the coefficients 'so that the functions (2)

and (3) should be equal at the m dividing points. The curves

represented by these equations will then intersect in m points in

addition to the ends. Another method is to make the sum of

L. 7
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the squares of the errors involved in the substitution of (2) for

(3) as small as possible. Thus if, for shortness, we replace I by

TT, we have to choose the coefficients so as to make the integral

/(#) (A l sin x + AZ sin 2# 4- . . . + A m sin mx)}
z dx (4)

a minimum. If we differentiate with respect to A 8 we get .

)(A 1 smx+A z sin2x+ ...+Amsmmx)}smsxdx=(), (5)

or, by 32 (4),
2 /**'A 8

=-
\ f(x)smsxdx................(6)

TTjQ

Hence this method of least squares, applied to the expression

(2) consisting of a finite number of terms, gives precisely the

values of the coefficients which were obtained by Fourier's

process*. Each coefficient is determined by itself, and the

effect of adding more terms to (2) is to improve the approxima-

tion, without affecting the values of the coefficients already

found. If we revert to general units, the formula (6) is

replaced by
2 l

/ s S7TX
S= ~

In the case of the plucked string, the form to which we

endeavour to approximate is

y = Pxla [0<x<a], y = # (I -x)l(l- a) [a<x<l\ (8)

The result is obtained at once from 32 (11) if we write jrx/l

for x, and therefore irajl for a, I for TT, and introduce the factor fi.

Thus
, 2/9Z

2
. STTO,

as stated in 26 (1). The nature of the approximation is

illustrated in Fig. 35.

37. Application to Violin String.

To apply the method to the problem of the violin string

( 27), we take as origin of t the instant when the point Q in

* This theorem is due to A. Toepler (1876).
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Fig. 32 starts from A to describe the upper parabolic arc. At

this instant we have y = 0, everywhere, whilst

(i)

We therefore begin with the finite series

. 7TX . TTCt .

y A l sm-j-
sin

-j-
+ A^ sm j-

sm
-j

I- ...

. mirx . mirct /sn
4- Ain sm sm . ...(2)

This satisfies the differential equation, and makes y = for t = 0.

It only remains so to determine the constants that the series

. D . D . mirx /ON
1 sm -j-

+ J52 sm j~ + . . . + .OTO sin y , ...(3)

where Bt
=--A s ,

.....................(4)

may represent the initial distribution (1) of velocity, as nearly

as possible. The determination of B8 has virtually been made

in 32 (15). With the necessary modifications of notation we

find

as stated in 27. The graph of the initial velocity, and the

approximation attained by taking the first eight terms of the

series (3), are shewn in Fig. 36.

It will be noticed that our approximation has even an

advantage over the result obtained by carrying the series to

infinity. In the latter case, the initial velocity, as represented

by (1), is discontinuous when x = 0, being zero for # = 0, but

equal to 4y9 c/Z when x differs ever so little from 0. The

idealized representation of the motion in 27 is in this

respect imperfect ;
the parabola in Fig. 32 should be slightly

modified so as to touch the line AB at its extremities.

38. String Excited by Impact.
As a final example we take the case of a string started by

an impact, as in 26. We begin with the case of a force

72



100 DYNAMICAL THEORY OF SOUND

distributed continuously in -space and in time, the differential

equation being

as in 28. Suppose, in the first place, that

y * /*\ rjrx /\ - ^Tne .c *+\ m7nr . .-
=/j (t) sm

-j-
+/, (0 sin

-j-
+ . . . +fm (t) sin

-y- , (2)

the coefficients being known functions of t. The equation (1)

is then satisfied by
7TO) . ?? mirx-- + 772sm-- + ...+7;m sin -

, ...(3)

provided ***/. ................... (4)

The solution of this equation has been given in 8. If we

assume that r)s
= 0, 17,

= for t = oo
,
and that/^ (t) is sensible

only for a finite range of t, the resulting value of rj8 is

57TC^ f
00

,. ,.. . STTCt

If as a particular case we put

we have ^ = e-^^sin, ...........(7)
STTC L

by 8 (18). As a function of t, Y now follows the special law

indicated by the last factor in (6), at every point of the string,

but we have not yet made any special assumption as to the

distribution of the force over the length. Its time-integral is

given by

1 T
00

P J -

TT7 ,
~ . ~ . ^ . mirx

Ydt= Ojsm-y- + O2
sm-

7
- + ... + Cm sm y- . (8)

We may now seek to determine the values of the coefficients

so that this expression may be sensible only in the neighbour-
hood of the point x a. We assume, then, that

PJ -oo
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where
<f> (x) vanishes except between the limits a e and a + e,

say. The formula (7) of 36 then gives

2 [
l

. , N . STTX , 2 f
a+t

, , . . S7TX , ,
.

Cg
= j <f> O) sm r <te = 7 #W sm ~T~ * (10)

& ./ ^ *J a-t

If be small, the series thus obtained converges at first very

slowly, and a great many terms might have to be taken to

secure a reasonable approximation. In the terms of lower

order we have

2 . STra fa+e . . , 2u . sira

0,-jgUi-y-J <0r)<fo=-^sm-y-, ...(11)

/a+c
<f>(x)dx, (12)

a

i.e.
/Lt represents the total impulse. The corresponding term in

the value (3) of y is

2/4 1 .. . STra . STTX . sirct /1Q ,

.- e-*"*11
. sm -j- . sm =- . sm = . . . .(13)

PTTC s III
But however small e may be, so long as it is not evanescent,

the value of G8 given by (10) will ultimately tend to zero with

increasing 5, owing to the more and more complete mutual

destruction of positive and negative elements under the integral

sign. This shews the effect of diffusing the impulse over a

small but finite portion of the string.

The case of an instantaneous local impulse is obtained by

putting r=0(cf. 26).

39. General Theory of Normal Functions. Har-

monic Analysis.

The space which has been devoted to Fourier's theorem is

no more than is warranted by its importance, especially in rela-

tion to the theory of strings, but it is well to remember that

from the standpoint of the theory of vibrations the theorem is only

one out of an infinite number which can be based on the same

kind of physical considerations. Every vibratory system has its

own series of "normal functions," as they are called, which

express the configuration of the system in the various normal

modes. In the case of a uniform string, or of the doubly-open

organ pipe, these functions happen to have he simple form
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sin (STTX/I), or cos (sirx/l), respectively. More complicated forms

will be met with when we come to the theory of transverse

vibrations of bars, and to that of membranes
;
and even in the

cases just mentioned the simplicity of type would at once

disappear if the uniformity of line-density, or of cross-section,

respectively, were departed from. In some problems, indeed,

of considerable interest, e.g. that ofthe vibrations of a rectangular

plate, the precise form of the functions has still to be discovered.

But in any case the functions theoretically exist
;
and on the

principle that any free motion whatever of the system consists

of some combination or other of the various normal modes, it

must be possible to express any arbitrary initial state, and

therefore any arbitrary function of position in the system, by a

series of normal functions. Such preeminence as attaches to

Fourier's theorem is, from the present point of view, due merely
to the fact that in it we have the simplest exemplification of

this principle in the case of a continuous system, and the one

where the physical induction has been most fully corroborated

by independent mathematical proof. It may also be added that

it is only in the case of strings that the calculation of the

effect of particular initial conditions has any great interest.

There is however another point of view from which the

resolution of a function into a series of sines or cosines of the

variable is of peculiar importance, viz. when we are dealing with

functions of the time. The dynamical reason for this has

already been dwelt upon ( 19).

When a function f(t) is known to be periodic, of period T,

its resolution by Fourier's theorem is

/v,x r

j (t)
= A + A l cos --f- A z cos --h A a cos --[- . . .

-f Bl sin - - + J52 sin h B3 sin ^-^ + . . .
, (1)T T T

where A =*(
T

f(t)dt, (2)

whilst for s > 0,

/A pnH fl4 T) / f(t\ oin /O\
^t^ oos ac, xj,

-
i y ^c^ sin . v*5/
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This is of course merely a restatement of the theorem of

34, with the necessary changes of notation. It will be noticed

that A represents the mean value of the function.

We have already been led to formulae of the type (1) as

expressing the motion at any assigned point of a freely vibrat-

ing string, the period r being equal to 2l/c. Another important
acoustical application is to the analysis of a periodic current of

air, as in the siren, or the reed-stops of an organ ( 90). Again,
in the case of electromagnetically driven tuning forks, a periodic

current can powerfully excite, not only a fork in unison with

itself, but also others whose natural frequencies are respectively,

twice, three times, ... as great. This is due to the fact that the

disturbing force is of the type (1), the selective resonance taking

place according to the principles of 9.

Various mechanical contrivances for resolving a given

periodic curve into its simple-harmonic constituents, and

conversely for compounding a number of independent sine-

and cosine-curves whose periods are as 1, , J, ..., have been

devised by Lord Kelvin and others. From the standpoint of

the present subject the most remarkable of these is perhaps
the machine constructed by Prof. A. A. Michelson, in which

provision is made for as many as 80 constituents*.

It is hardly necessary to say explicitly that the resolution

of a periodic function of t in the form (1) can only be effected

in one way, the values of the coefficients as given by (2) and (3)

being determinate. In particular, a series of the above type
cannot vanish for all values of t unless its coefficients severally

vanish. Thus in a freely vibrating string, if the motion at any

given point x be prevented, as by touching with a camel-hair

pencil, the coefficients of cos(s7rct/l) and sin(s7rct/l) in the

general formula (7) of 25 must be zero, i.e. we must have

.
'

. STTX -. . STTX _A 8 smj-
= Q, B8 sm-j-

=
(4)

for all values of s. Unless x be commensurable with I this

requires that A a
= Q, Ba

= Q, and the whole string will be

* Phil. Mag. (5), vol. XLV. (1898) ; this paper contains a number of most

interesting examples of results obtained. The construction is also explained in

his book On Light Waves and their Uses, Chicago, 1903.
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reduced to rest. In the excepted case the conditions (4) are

satisfied independently of the values of A s and Bs whenever

sin (STTX/I)
= 0, i.e. those normal modes remain unaffected

which have a node at the point touched.

A question arises as to the effect of non-periodic forces on

a dynamical system. For the reason already so often insisted

upon, it is convenient, whenever possible, to resolve the force

into a series of terms of the type

A cos pt + B sin pt...................(5)

Each element A cospt or Bsmpt then produces throughout
the system its own effect, viz. an oscillation of the same type
and period, the configuration and its amplitude depending on

the speed p. In some cases the resolution presents itself quite

naturally, as for example in the theory of the tides. The

disturbing effect of the sun and moon, when account is taken

of their varying declinations, and of the inequalities in their

orbital motions, can be sufficiently represented by a series of

terms of the type (5). It follows that the tide-height at any

particular place must be expressed by a series of like character,

in which the values ofp are known. The theoretical determina-

tion of the coefficients is out of the question for the actual

ocean, with its variable depth and irregular boundaries, but

their values can be inferred a posteriori with more or less

accuracy from a comparison of the formula with observation,

and when once ascertained can be used for prediction*.

When the disturbing force is perfectly arbitrary in character,

without any obvious periodic elements, the question is more

complicated. There is a form of Fourier's theorem specially

appropriate to this case, but its application is usually difficult,

and it is simpler to have recourse, as in 38, to the formula (12)

of 8. The objection that this implies a knowledge of the

whole previous history of the system is met if we introduce

the consideration of damping, which is in reality always present.

The equation

.................. (6)

* For an elementary account of the matter see Sir G. H. Darwin, The Tides,

London, 1898.
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may be written

provided n'2 = n2
-JA;

2
......................(8)

Hence, by the formula referred to,

cos n'tdt

~~ **'e~ **' cos n't
je*

kt

f() sin n'tdt. . . .(9)

If we have x 0, x for t oo
, the limits of integration

are oo and t. For instance, the value of x when t =
becomes

x = -l,r e*
kt

f(i)sinn'tdt. (10)

Owing to the presence of the exponential factor it is only for

a certain range of negative values of t that the function under

the integral sign has as a rule an appreciable value. In other

words, the effects of the action of the force prior to a certain

antecedent epoch have practically disappeared.



CHAPTER IV

BARS

40. Elementary Theory of Elasticity. Strains.

We require a few elementary notions from the theory of

elasticity. As regards the purely geometrical study of de-

formations, or "strains," it is usual to begin with the con-

sideration of a body in a state of uniform or "homogeneous"
strain. This is sufficiently defined by the property that any
two lines in the substance which were originally straight and

parallel remain straight and parallel, although their direction

relative to other lines in the substance is usually altered.

A parallelogram therefore remains a parallelogram, and it

easily follows that the lengths of all finite parallel straight

lines are altered in the same ratio
;

this ratio will however

usually be different for different directions in the substance.

It can be shewn that there are three mutually perpendicular

directions in the substance which remain mutually perpen-
dicular after the deformation; these are called the "principal
axes" of the strain. It is unnecessary, for our purposes, to

give the formal proof, as the existence of such axes will be

in evidence in such simple cases as we shall meet with.

It follows from this theorem that any originally spherical

portion of the substance is deformed into an ellipsoid whose

axes are in the directions of the principal strain-axes.

If PQ, P'Q' denote any straight line in the substance,

before and after the strain, the ratio of the increase of length
to the original length, viz.

PQ
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is called the "extension"; it will in general be different for

different directions of PQ. In the theory of elastic solids, e is

always a very minute fraction. We denote by e1} e2 , 68 ,
the

extensions in the directions of the principal axes.

The ratio of the increase of volume to the original volume

is called the "
dilatation." Denoting it by A, and considering

the change of volume of a cubical block whose edges are along
the principal axes, we have

or A =
6! +62 + 63 , (2)

the products of small quantities being neglected.

There are two special types of homogeneous strain which

require notice. First, suppose 6!
= 62 = 63 ,

=
6, say. Any origin-

ally-'^pherical portion of the sub-

stance then remains spherical, and

the extension is therefore the same

in all directions. The strain may
accordingly be described as one of

uniform extension; and we note

that = JA.

Again, take the case of el
= 62 ,

=
6, say, whilst 68 = 0, and therefore

A = 0. A square whose diagonals

AOC, BOD are parallel to the axes

1, 2 is converted into a rhombus A'B'C'D
',
and since

to the first order, the lengths of the sides are unaltered. Also

...(3)tan A'OB' = i-t? = tan (J TT + e),1-e
so that the angles of the rhombus are \ IT 2e. Another view

of this state of strain is obtained if we imagine the rhombus

A'B'C'D' to be moved in its own plane so that A'B' coincides

with AB. This is legitimate, since no displacement of the

body as a whole affects the question. We then see that any
two planes of the substance parallel to AB and the axis 3 are

displaced relatively to one another, without change of mutual
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distance, by an amount proportional to this distance. This

kind of strain is called a "
shear," from the fact that it is of the

type which tends to be set up by the action of the two edges

of a pair of shears. The " amount "
(77) of the shear is specified

by the relative displacement per unit of mutual distance, i.e. by
the ratio DD'/AD, or 2e, in the first part of Fig. 39. Again,

by moving B'C' into coincidence with BC, we might prove that

the strain is also equivalent to a shearing of planes parallel to

BC and the axis 3, in the direction of BC. This is shewn in

the second half of the figure.

D D' C C A A D D

A B B C

Fig. 39.

41. Stresses.

The name "
stress

"
is applied to the mutual action which

is exerted across any ideal surface S drawn in a body, between

the portions of matter immediately adjacent to $ on either side.

We are here concerned with molecular actions sensible only over

an exceedingly short range, so that the portions of matter in

question are confined to two exceedingly thin strata, whose

common boundary is S. The resultant force on a small portion

of either stratum may then be taken to be ultimately pro-

portional to its area, and the intensity of the stress is

accordingly specified by the force per unit area. This force

may be of the nature either of a push or a pull, and may be

normal or oblique, or even tangential to the area.

For simplicity, it is usual to begin with the notion of a

state of uniform or
"
homogeneous

"
stress, i.e. the stress over

any plane is assumed to be uniform, and the same in direction

and intensity for any two parallel planes. It will of course in

general be different for planes drawn in different directions.

It may be shewn that there are then three mutually perpendic-
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ular sets of planes such that across each of these the stress is

in the direction of the normal
;
but for a reason already indicated

we need not stop to prove this theorem. The planes in question

are called the "
principal planes

"
of the stress, and the corre-

sponding stress-intensities are called the "principal stresses."

They are usually reckoned as positive when of the nature of

tensions; we denote them by Pi,p2,p3 .

There are certain special types of stress to be noticed.

First let j91 =j92
=

PS- The stress across every plane is then in

the direction of the normal, and of uniform intensity, as in

hydrostatics.

Next, let^! = pt,=p, say, whilst p3
= 0. Consider a unit

cube whose faces are parallel to the principal planes. The

portion included between the faces represented by AB, DA, in

the figure, and the diagonal plane represented by BD, is in

equilibrium under three forces. Two of these forces are

parallel and proportional to DA and A B, viz. the forces on AB
and DA, respectively. The third force is therefore along and

Fig. 40. Fig. 41.

proportional to BD\ and its amount (CT) per unit area is p.

A similar result holds with respect to the diagonal plane A C.

A cube four of whose faces are parallel to these diagonal planes

is in equilibrium under tangential stresses, in the manner

shewn. This type is accordingly called a "shearing stress."

Its amount (CT) is specified by the tangential force per unit

area on the planes in question.
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In general the states of strain and stress in a body are not

uniform, or
"
homogeneous," but vary continuously from point

to point; but the above notions are still applicable to the

infinitely small elements into which the body may be conceived

to be divided.

42. Elastic Constants. Potential Energy of Defor-

mation.

The theory of strains is a matter of pure geometry ; that of

stresses one of pure statics. When we come to connect the two

we require some physical assumption. The usual hypothesis,

known as
" Hooke's law,"

*
is that the stresses are linear

functions of the strains. This law ceases to hold, even approxi-

mately, when the strains exceed certain values called the

"elastic limits"; but for the purposes of acoustics it may be

adopted without hesitation, on account of the excessive minute-

ness of the varying strains with which we are concerne^f.
In an "isotropic" substance, i.e. one in which there is no

distinction of properties between one direction and another, the

principal axes of strain must evidently coincide with those of

stress. Moreover the principal stress p^ must involve the

principal strains e2 ,
e3 symmetrically, and so on. The most

general assumption consistent with this requirement, and with

Hooke's law, is of the form

(1)

where X, /j,
are constants depending on the nature of the

material]:. It will be noticed that el5 ea ,
e3 are pure ratios and

that the dimensions of \, p are therefore those of stress, or force

* Robert Hooke (1635 1703), professor of geometry at Gresham College

16651703.
t If Hooke's law were sensibly departed from, the frequencies of the normal

modes of a vibrating bar would no longer be independent of the amplitude.

Since the ear is very sensitive to variation of pitch, this would easily be detected.

This remark is due to Stokes.

J There is a great diversity of notation as regards these constants. The
above symbols are those introduced by G. Lame" (1795 1870), professor of

physics at the Ecole polytechnique 1832 44.
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divided by area, viz. [ML^T^] if [M], [L\ [T] denote the units

of mass, length, and time.

There are various combinations of the constants X, p which

are important in physics, as well as in technical mechanics. In

a uniform dilatation we have p1
= p2

= p3 (
=
p, say), l

= e2 = es

(= JA), whence

p = (X + |^)A......................(2)

Hence if we write * = \ + ft, ........................(3)

K will denote the
"
volume-elasticity

"
or "

cubical elasticity
"
of

the substance, i.e. the ratio of the uniform stress to the dilatation

which it involves.

Next suppose that l
= - e2 = e, e3 = 0, and therefore

Pi
= p^=p, p3

= 0, which is the case of a pure shear,

involving a shearing stress. According to the investigations

of 40, 41 the shearing stress is vr = p, and the shear is

rj
= 2e. Hence, from (1),

*r = /"7, ........................... (4)

i.e. fj.
denotes the ratio of the stress to the strain (appropriately

measured) in a pure shear. It is called the "
rigidity

"
of the

substance.

Again, suppose we have a bar stretched lengthways, but free

from lateral stress. We put, then, in (1), p%
= 0, p3

= 0. This

leads to

pi
= Eel9 .............. . ............(5)

where ^ ................
X-f p

This ratio of the longitudinal stress to the corresponding
extension is called "Young's modulus" of elasticity; its

technical importance is obvious. We also find

2
= e8

= -o- 1 , ........................(7)

Where

This fraction accordingly measures the ratio of lateral con-

traction to longitudinal extension under the circumstances

supposed ;
it is known as

"
Poisson's ratio." *

*
8. D. Poisson (17811840). His chief contributions to acoustics relate to

the vibrations of membranes and plates, and to the general theory of sound-

waves in air.
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By solving the equations (1) we can express el} e2 ,
e3 as linear

functions ofplt pz , pa . It is obvious, however, that the formula

for el must involve pz and ps symmetrically; and from this

consideration, and from the physical meanings of the constants

E and cr, it follows immediately that the result must be

equivalent to

E t*>pl-#(pt+pt), ;

...............(9)

Of the various elastic constants and their combinations,

one or other may appear specially important, according to the

nature of the question in view, and this may account for the

great diversity of notations which has arisen. In any case two

independent quantities are necessary and sufficient to define the

elastic behaviour of an isotropic substance. From a physical

standpoint K and p, might appear to be the most fundamental
;

whilst as regards facility of direct measurement preference may
be given to E and

//,,
whence K and cr can be derived by the

formulae

fiE E
" =

9P -3E' ^V" 1
'

............ (1

which follow easily from (3), (6) and (7). On a particular

hypothesis as to the ultimate structure of an elastic solid

Poisson was led to the conclusion that the two elastic constants

are not independent, but are connected by an invariable relation,

which in our notation is expressed by X =
/JL.

This makes

=/*, E=ln, cr = J ................(11)

On experimental grounds Wertheim (1848) proposed the

relation X = 2/A, which makes

* = fft E= K, <r = J ................(12)

More accurate methods of measurement, introduced by
Kirchhoff* and others, support the view, which has been con-

sistently held by English physicistsf that there is no necessary
* G. E. Kirchhoff (182487), professor of physics at Heidelberg 185475,

at Berlin 1875 87
;
famous for his share in the discovery of spectrum analysis,

but the author also of important memoirs on the theory of elasticity and its

applications to the vibrations of bars and plates.

t Notably by Green (17931841), Stokes, and Lord Kelvin.
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definite relation between X and
fj,,

and consequently no universal

value of cr. We may note that in an absolutely incompressible

medium we should have

* = oo, E=%n, <r = i (13)

The following table gives the results of a few determinations

by Everett (1867). The second column gives the volume-

density in grammes per cubic centimetre. The next three

columns give the respective elastic constants, in dynes per

square centimetre. These are followed in the last column by
the corresponding values of a. The last two rows illustrate the

fact that the elastic constants may vary appreciably in different

specimens of nominally the same substance.
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The potential energy (W) per unit volume of a strained

isotropic substance may be found by calculating the work done

by the stresses on the faces of a unit cube, on the hypothesis

that the strains increase from zero to their final values keeping
their mutual ratios unchanged. The average stresses are then

one-half the final stresses.

Thus in the case of a uniform dilatation A we have

In the case of a pure shear 77,

Tr=4^ = J^................... (16)

In the extension of a bar, with freedom of lateral con-

traction,

W=Jfte,
= itf,'......... . .........(17) i

In the general case we have

, + 2 + 3)
2 + p (ef + 62

2 + 63
2
)

+ J /* {(e2
- 63)

2 + (e3
-

6l) + (et
- 62)

2

).
. . .(18)

This shews that in order that the potential energy may be

a minimum in the unstrained state K and p must be positive.

It is otherwise obvious from the meaning of the symbols that

if either of these were negative the unstrained state would be

unstable.

43. Longitudinal Vibrations of Bars.

We take the axis of x along the bar, and denote by x + f

the position at time t of that cross-section whose undisturbed

position is a?, so that f denotes the displacement. An element of

length is then altered from Sac to S(#+ f), or (1 + ')Sa;, where

the accent denotes differentiation with respect to x. Equating
this to (1 + e) 8x, we have

.-!* ............................CDdx

The tension across the sectional area (&>) is therefore Eeco.

The acceleration of momentum of the mass included between

the two cross-sections corresponding to x and x + Sx is p&Sx . %.
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Equating this to the difference of the forces on the two ends,

we have

If the section be uniform, this reduces to

^-^ (3)~**
where c* = E/p........................... (4)

It will be noticed that in this investigation it is not

necessary to assume the substance of the bar to be isotropic,

provided the proper value of the Young's modulus be taken*.

The result is also unaffected if the bar, or wire, be subject

to a permanent longitudinal tension, since by Hooke's law

the stress due to the extension (1) may be superposed on the

permanent tension, so long as the limits of perfect elasticity

are not transgressed.

As in 23 the general solution of (3) is

g = f(ct-x) + F(ct+x), ...............(5)

representing two wave-systems travelling unchanged in opposite

directions with the velocity c given by (4). In terms of the

length-modulus, we have by 42 (14)

c = V(<?); ........................(6)

this is the velocity due to a fall from rest through a height J L.

Some numerical values of c are given in the last column of the

table on p. 119.

The application to particular problems may be treated very

briefly. The various cases that arise present themselves in

a more interesting form when we come to the vibrations of

columns of air.

In the case of a rod or wire fixed at both ends, we have

f = for x = and x = I (say) ;
and the mathematical theory

* In an "aelotropic" or crystalline solid the values of E will be different for

bars cut in different directions from the substance.

82
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is exactly the same as in the case of the transverse vibrations of

a string. The frequencies of the various modes are given by

N =
sc/2l, 00

where s = l, 2, 3, .... The result is unaffected by permanent
tension in the wire.

When the rod is free, the condition of zero stress at the

ends gives f
' = for x = and x = I. Introducing this condition

in (5) we find

F' (ct)
=f (ct), F'(ct + l)=f(ct-l), (8)

for all values of t. The former of these gives on integration

F(ct)=f(ct), (9)

no explicit additive constant being necessary since it may be

supposed included in the value of f(ct). The second relation

then gives

f(ct + l)=f(ct-l)+C. (10)

The constant G is connected with the total momentum of the

bar in the direction of its length. We have, from (9) and (10),

ff dx=c \\f\ct
-

x) +f(ct + x)} dx = cC. . . .(11)
Jo Jo

Since nothing essential is altered if we superpose any uniform

velocity in the direction of the length, we may assume the

mass-centre to be at rest, in which case (7=0. The formula

(10) then shews that the residual motion is periodic, since

everything recurs when t increases by 2l/c.

In the analytical process for ascertaining the normal modes

we assume that f varies as cos (nt -f e), whence

and (WIT
W 'T'N

4 cos +sin
)
cos (nt + e) (13)c c /

The conditions that 9j-/3a?
= for x and x = I require B 0,

sin (nl/c)
= 0, whence

nJ/c
=

6-7r, (14)

where 5 = 0, 1, 2, 3, ..., the scale of periods being harmonic.

The nodes (f = 0) are given by cos (sirx/l)
= 0, and the loops,
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or places of zero stress, by sin (STTX/I)
= 0. In the gravest mode

(s 1) we have a node at the centre*.

On the principles explained in 16, 32 the most general

free motion of the bar, under the present conditions, may be

expressed by a series

STTCt D . S7TCt\ S7TX
cos j- + B8 sin =- \ cos

-y-,
......(15)

where 5 = 0, 1
, 2, 3, .... Thus if the bar be started from rest

in the state of strain defined by

= /<*) [
=

0], ..................(16)

we have B8
= Q; and we infer that it must be possible to

determine the coefficient A a so that

^ / A= 2,(A a

(17)

for values of x ranging from to /. This is the result referred

to by anticipation in 33.

The longitudinal vibrations of bars or wires have hardly

any practical application of importance, except in some primitive
forms of telephone. As regards bars, the pitch is very high

compared with that of the transverse vibrations, which it is

difficult to avoid exciting simultaneously. Again, if we compare
the frequencies of longitudinal vibration of a tense wire with

those of the corresponding transverse modes, the ratio will be

that of the wave-velocities, i.e. of *J(E/p) to ^(P/pco), where P
denotes the permanent tension. If e be the extension due

to P, we have P = Ee .(o, and the ratio is l/\/e ,
which is

usually very greatf. Longitudinal vibrations may be elicited

on the monochord by rubbing the wire lengthwise with a piece

of leather sprinkled with resin
;

the resulting note is very
shrill.

It is assumed in the preceding theory that the extension

and the accompanying stress are at any instant uniform over

the cross-section
;

in other words, we have assumed that the

* The case * = needs, in strictness, separate examination. It leads to

= AQ (l + at), which may be interpreted as an oscillation of infinitely long

period. If the mass-centre be at rest we have A =0.

t This comparison is due to Poisson (1828).
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lateral contraction adjusts itself instantaneously through the

thickness. This is not quite exact, as there is a certain degree

of lateral inertia, but the error is insignificant so long as the

wave-length is large compared with the diameter. In the

modes of very high order it might become sensible, but these

are in any case of no importance from the point of view

of acoustics.
~~A correction has been investigated by Lord

Rayleigh.

44. Plane Waves in an Elastic Medium.

The theory of plane waves in an unlimited isotropic elastic

medium is so closely analogous to that of longitudinal waves

in a rod that it may be briefly noticed here. It is assumed

that the state of things is at any instant uniform over any

plane perpendicular to the direction of propagation (#).

Such waves may be of two types, which are distinguished
as

"
dilatational

"
or

"
longitudinal," and "

distortional
"

or
"
transversal," respectively. In the former class the displace-

ment is wholly in the direction of propagation. Denoting it

by f, we have, in the notation of 42,

6!
=

dg/diK, 62 = 0, 3
=

0,

and therefore pl
= (\ + 2/i) l

=
(K + f /*) d/dx..........(1)

Considering the portion of matter corresponding to unit area

of a stratum of thickness 8x, we have

whence =
<2>

if tt = (* + iri)lp...................... (3)

Some numerical values of the wave-velocity a are given on

the next page, and it will be observed that they are in all

cases greater than the corresponding values of c, as was to be

expected, since the potential energy due to a given extension

8f/3# is now greater owing to the absence of lateral yielding.

In the second type of plane waves the displacement is

everywhere at right angles to the direction of propagation.
It may be resolved into two components parallel to y and z,

respectively, which may be treated separately. Considering
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the former component (17) alone, we see that the strain at

any point consists in a shear of amount drj/dx. The consequent
stress across any plane perpendicular to Ox is parallel to Oy,

and its intensity is fidrj/dx. Hence forming the equation of

motion of a portion of matter defined as before we have

or

if V=dp (5)

Some values of the wave-velocity b are tabulated below.

Wave-velocities (metres per second).
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of the cross-section. But even in the other extreme, when all

the dimensions of the body are large compared with the wave-

length, the circumstances may be profoundly modified by the

existence of a free boundary. A new type of waves, called

after the discoverer the "
Rayleigh waves

"
(1885), make their

appearance, and under some conditions may become, from the

observational point of view, predominant. These are surface

waves in which the agitation penetrates only to a relatively

small depth. Their velocity is somewhat less than that of

the distortional waves
;

thus for an incompressible solid it

is *9554 b, whilst on Poisson's hypothesis (cr
=

J) it is '91946.

In modern observations of the tremors due to distant earth-

quakes three phases of the disturbance are often recognized.
The first is interpreted as due to the arrival of the dilatational

waves, propagated directly through the substance of the earth,

the second as due to that of the distortional waves, also

propagated directly, and the third to that of the Rayleigh

waves, which have travelled over the surface and are therefore

delayed more than in proportion to the difference of wave-

velocity*. The latter waves as they spread over the surface

are less attenuated than the former, which diverge in three

dimensions. It has even been attempted to deduce estimates

of the volume-elasticity and rigidity of the materials of the

earth from the various wave-velocities, as inferred from the

seismic records f.

45. Plexural Vibrations of a Bar.

We proceed to the transverse jv&F
vibrations of a bar naturally straight.

To avoid unnecessary complications
we will suppose that the bar has a

longitudinal plane of symmetry, and

that the flexure takes place parallel

to this plane. We will also assume

for the present that the total longi-

tudinal stress on any section is zero.

The resultant stress at a section there- Fig. 42.

* E. D. Oldham, Phil. Tram. A, 1900.

t Prof. A. E. H. Love, Phil. Trans. A, vol. ccvu., p. 215 (1908).

^-%
( M+bN
^

*r
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fore reduces to a, transverse
"
shearing force

"
F, and a couple

or "
bending moment "

M. These will be functions of x, the

longitudinal coordinate. If rj denote the lateral displacement,

parallel to the plane of symmetry, then, resolving transversally

the forces acting on an element Sx of the length, we have

Y)

or P &) o^ = o~ ......................(1)
dtz dx

Again, if K denote the radius of gyration of the area of the

cross-section G> about an axis through its centre of gravity,

normal to the plane of flexure, the element of mass is

ultimately a disk of area o>, thickness 8x, and moment of

inertia pwSx . K2
*. Since the axis of this disk has been turned

through a small angle drj/dx from the position of equilibrium,

the equation of angular motion is

whence pmK = + F. ..................(2)

Tf we eliminate F between (1) and (2) we have

provided the sectional area 6> be uniform.

We have next to express M in terms of the deformation

of the bar. Consider in the first instance the case of a bar

uniformly bent, so that its axis becomes an arc of a circle.

It is evident from symmetry that the shearing force F now

vanishes, and it hardly needs calculation to shew that the

strain in any part of the cross-section will be proportional to

the curvature. Hence by Hooke's law the resultant couple M
will also vary as the curvature, or

M=WIR, ........................(4)

where R is the radius of curvature, and 23 is a constant

depending on the shape and size of the cross-section, and on

the elastic properties of the material.
* The symbol K is not required at present in its former sense as an elastic

constant.
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J J

The value of 23 is found as follows. We take rectangular

axes Gy, Gz in the plane of a

section, the origin being at the

centre (i.e. the centre of gravity

of the area), and the axis of z

normal to the plane of flexure.

Assuming the axis of the bar,

i.e. the line through the centres

of the sections, to be unex-

tended, we see that if R denote

the radius of the circle into

which it is bent, the length

of a longitudinal linear element

whose distance from the plane

xz is y is altered in the ratio

of R + y to R, and that the

extension is accordingly y/R.

The corresponding stress per

unit area of the section is JEy/R,

where E is the appropriate Young's modulus. The total

longitudinal tension is therefore

E

Fig. 43.

This justifies the provisional assumption that the axis (as

above defined) is on the present hypothesis unextended. For

the bending moment we have, taking moments about Gz,

E

Except in the special case just considered, viz. that of a bar

bent statically into an arc of uniform curvature, there will be

a shearing of cross-sections relative to one another, and also

a warping of the sections so that these do not remain accurately

plane. An exact investigation is out of the question, but

enough is understood of the matter to warrant the statement

that the additional sfam'rcs thus introduced are as a rule small

compared with those taken account of in the preceding calcula-

tion. We therefore adopt the formula (5) as sufficiently
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accurate in all cases, provided R denote the radius of curvature

at the point considered.

In the present application drj/dx is a small quantity, so that

we may put R~* = &rj/dx?, and therefore

(6)

Substituting in (3) we obtain

(7)

For most purposes this equation may be simplified by the

omission of the second term, as we shall see immediately.
The kinetic energy of the bar is

The second term, which represents the energy of rotation of the

elements, is usually negligible.

The potential energy is found, in accordance with 42 (16),

by integrating the expression %Ee
z
, =\Ey'

i
lJ&, first over the

area of the cross-section, and then over the length; thus

. .............. .(9)

Consider for a moment the propagation of a system of waves

of simple-harmonic profile along an unlimited rod, assuming

v)=Ccosk(ct-x)...................(10)

Since everything here recurs whenever # is increased by 2-Tr/fc,

the constant k is connected with the wave-length A. by the

relation

fc=27T/X.........................(11)

On substitution the equation (7) is found to be satisfied

provided

This gives the wave-velocity c, which is seen not to be a definite

quantity fixed by the constitution of the rod, but to depend also

on the wave-length. To trace the progress of a wave of any

type other than (10), it would be necessary to resolve the wave-
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form into simple-harmonic functions of x. Each of these would

travel with its own velocity, so -that the resultant wave-profile

would continually alter. For this reason it would be hopeless
to look for a general solution of (7), or even of the modified

form (13) below, of the same simple character that we met

with in the theory of strings ( 23), and again in that of the

longitudinal vibrations of rods.

A further remark is that when we substitute from (10)

in (7), the second term is of the order &V as compared with

the first. When the wave-length is large compared with the

dimensions of the cross-section this is a very small quantity,

and the term in question, which arose through taking account

of the rotatory inertia of the elements of the bar, viz. in

equation (2), may be neglected. It is easy to see, and it may
be verified a posteriori, that the same simplification is legitimate
in discussing the vibrations of a finite bar, at all events so long
as the distance between successive nodes is large compared
with K. We accordingly take the equation

P

as the basis of our subsequent work, together with the formulae

M = E**%{, FW-E^. ...(14)3#a
doc W

46. Free-Free Bar.

To ascertain the normal modes of a finite bar we assume as

usual that 77 varies as cos (nt + e). The equation (13) of the

preceding section then reduces to

where m* = ri
i

p/K
2E. ........................(2)

It is to be noted that m is of the nature of the reciprocal of

a line. The solution of (1) is

77
= A cosh mx + B sinh mx -f- C cos mx + D sin mx, (3)

the time-factor being for the present omitted. The three ratios

A:B:C:D, and the admissible values of m, and thence of n\
are fixed by the four terminal conditions, viz. two for each end.
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Take first the case of a perfectly free bar, of length I, say.

If we take the origin at the middle*, these conditions are, by

45(14),
," = 0, ,'"=0 [c-i<] (4)

The normal modes fall naturally into two classes
;

in one of

these 77 is an even, in the other an odd function of x. For the

symmetrical vibrations we have

77
= A cosh mx + C cos mx, (5)

with the terminal conditions

A cosh J ml G cos ^ml = 0,
j

A sinh ^ml + Csin |w = 0,J

whence tanh ^ml= tan ^ml (7)

+ 1

-1

Fig. 44.

The roots of this equation are easily found approximately by

graphical construction, viz. as the abscissae of the intersections

of the curves y = tan #, y = tanh x, the latter of which is

* This improvement on the ordinary procedure is due to Sir A. G. Greenhill,

Mess, of Math. vol. xvi., p. 115 (1886).
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asymptotic to the line y = 1. The figure shews that we have

approximately
)

..................(8)

where 6? = 1, 2, 3, ..., and as is small. It follows from (2) that

the frequencies of the successive normal modes of symmetrical

type are approximately proportional to 32
,
7 2

, II 2
,

.... For a

more exact computation of the roots we have

_ __ m _ia*---
where s

= e~
sir

......................(10)

Hence a8
= ten-> (&'

2a
>)
=

ŝe~^-^e~^+ .... (11)

Since ?g is small, even for s = 1 (viz. & = "00898), this is easily

solved by successive approximation.
In the asymmetric modes we have

rj
= Bsinhnuc + Dsmmx, ...............(12)

with the terminal conditions

B sinh Jml D sin \ml 0,j

cosh imJ-D cos JmZ = 0,J

whence tanh \ml = tan \ml...................(14)

The roots of this are given by the intersections of the curves

y = tan x, y = tanh X, the latter of which is asymptotic to the

line y = 1
;

see Fig. 44. It appears that

JmJ = ( + J)ir-&, .................. (15)

where 5 = 1, 2, 3, ..., and ft is small. The corresponding

frequencies are approximately proportional to 52
,
92

,
132

,
....

For the more exact calculation we have

1+ tan mn. tanh

where ^ = e~
2s7r ~ i7r

........ , .......... ...(17)

Hence ft = tan-1(^2ft
)= ?^8-K^~ 6^ + ....... (18)

Since i
= "00039, the approximation is very rapid, even for
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Combining the results for the two classes it is found that

wZ/7T = 1-50562, 2*49975, 3'50001, ..., ...(19)

where the values for the symmetric and asymmetric types

alternate. The subsequent numbers are adequately represented

by s + |. The fact that the frequencies are approximately

proportional to 32
,
5a

, 72
,

... was ascertained, from observation

alone, by Chladni*.

To examine the form assumed by the bar in any normal

mode, we require the ratio of the arbitrary constants, as deter-

mined by (6) or (13). Thus in the case of symmetry we have

rj
= C (cos | ml cosh mx + cosh ml cos mx) cos (nt + e), (20)

where m is a root of (7). The curve may be traced with the

help of a table of hyperbolic functions, and the positions of the

nodes found by interpolation. The form assumed in the

gravest mode is shewn in Fig. 45. The nodes here are at a

distance of '224 of the length from the ends.

Fig. 45.

The corresponding formula for the asymmetric modes is

77
= G (sin J ml sinh mx + sinh ml sin mx) cos (nt 4- e), (21)

where m is determined by (14).

47. Clamped-free Bar.

The next most interesting case is that of a bar clamped at

one end and free at the other. Here also there is an advantage
in taking the origin at the middle point of the length )-.

The

terminal conditions then are

^=0, v = o [* = -jq (i)

* E. F. F. Chladni, born at Wittenberg 1756, died at Breslau 1827.

Distinguished by his experimental researches in acoustics. These are recorded

in his book Die Akustik, Leipzig, 1802.

t Greenhill, 1. c.
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at the clamped end, and

," = 0, ,'" = O =
JZ] (2)

for the free end. In one class of vibrations we have

77
= A cosh mx -f D sin mx, (3)

with the conditions

A cosh \ml D sin \ml 0,^1 ...

A sinh ^ml + Dcos ^ ml = 0, 1

whence coth \ml = tan \ml (5)

This is solved graphically by the intersections of the curves

y tan cc, y = coth x, the latter of which has y 1 as an

asymptote ;
see Fig. 44. We have, approximately,

iwiZ = (* + i)7r + a; (6)

where s = 0, 1, 2, 3, ..., and a/ is small. This leads to

tana/^- 2
"'', (7)

where ff = e~
2"- iir

, (8)

whence a/= ^~ 2a<!

'-i ?.'*~
6 ; + , (9)

which can easily be solved by successive approximation, except
in the case of the first root (s

=
0). For this special methods

are necessary*. In the remaining type of vibrations we have

77
= B sinh mx + Ccosmx, (10)

with Bsinh ml +
.(11)

B cosh \ ml + C sin | ml = 0, 1

whence coth \rnl- tan \ml................ (12)

The intersections of the curves y = tan ,r., y = coth x are also

shewn in Fig. 44. The roots of (12) are given by

imJ = (*-i)9T-&', ............... (13)

where s = 1, 2, 3, .... Hence

?s 6
2
^, .................. (14)

where f.
= e"" ir

,
.................. (15)

and therefore

A' = &*' - J ?.
w + .............(16)

* One such method will be indicated later in connection with the radial

vibrations of air in a spherical vessel
( 84). Another very powerful method is

explained in Rayleigh's treatise.
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The frequencies of the whole series of normal modes, after the

first, are approximately proportional to 32
,
52

, 7 2
,

. . .
, as found

experimentally by Chladni. The accurate solution gives, to

five places,

ml/7r
= -59686, V49418, 2-50025, (17)

In the modes which follow the first we have respectively one,

two, three, ... internal nodes. The annexed figure shews the

gravest mode.

Fig. 46.

Other problems, which are however of less interest, may be

obtained by varying the terminal conditions. We will only
notice the case where both ends are

"
supported," i.e. fixed in

position but free from terminal couples. The conditions then

are, by 45 (14),

77
=

0, 7/"=o |>=iq (is)

In the symmetrical class we have

77
= G cos mx . cos (nt -f e), (19)

with cos ^ml = 0, whence

mll7r
=

l, 3, 5, (20)

In the asymmetric class

77
= G sin mx . cos (nt + e), (21)

with raZ/7r
=

2, 4, 6, (22)

The frequencies are, by 46 (2), proportional to the values of

m2
, and so to the squares of the natural numbers.

The foundations of the theory of the transverse vibrations

were laid by D. Bernoulli (1735) and Euler (1740). The
latter also gave the numerical solution of the period equation
in a few of the more important cases. In more recent times

L. 9
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the calculations, including the determination of the nodes &c.,

have been greatly extended by Lissajous (1850), Seebeck* (1848)

and Lord Rayleigh.

48. Summary of Results. Forced Vibrations.

In any one of the preceding cases, and in any particular

mode, ra varies inversely as I, and therefore, by 46 (2), the

period 27r/n will for bars of the same material vary as Z
2

//c.

Hence for bars which are in all respects similar to one another

(geometrically) the period will vary as the linear scale. For

bars of the same section the period is as the square of the

length. As regards the shape and size of the cross-section,

everything depends on the radius of gyration K\ thus for bars of

rectangular section the frequency varies as the thickness in the

plane of vibration, and is independent of the lateral dimension.

This latter statement needs, however, some qualification ;
it is

implied that the breadth is small compared with the length of

the bar, or (more precisely) with the distance between con-

secutive nodes. When this condition is violated the problem
comes under the more complex theory of plates ( 55).

It is of interest to compare the frequencies of transverse and

longitudinal vibration of a bar in corresponding cases. For a

bar free at both ends we have, in the gravest transverse mode,

?i
2 = /

^(m0
4 =^/

^x(l-50562)
4
, (1)

whilst in the gravest longitudinal mode

(2)

Hence -, = 7'122y (3)
71 I

This explains the relative slowness of the transversal modes.

The comparison is due to Poisson.

We pass over the question of determining the motion

consequent on arbitrary initial conditions, by means of the

normal functions. In the case of the free-free bar, for example,
these are given by the expressions in brackets in equations (20)

and (21) of 46.

* L, F. W, A, Seebeck (180549), professor of physics at Leipzig.
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The theory of forced vibrations again, is of little acoustical

interest, although it has some technical importance. A simple

example is furnished by the coupling rod which connects the

wheels of a locomotive. Attending only to the vertical com-

ponent of the motion, and treating the bar as uniform, we have

to solve the equation (13) of 45 subject to the conditions

where n is the angular velocity of the wheels, and & is the

vertical amplitude. The forced oscillation is evidently of

symmetrical type, and we therefore assume

rj
=

(A cosh mx + C cos mx) cos (pt + a) (5)

This satisfies the differential equation, provided

m*=p*p/K*E', (6)

whilst the terminal conditions give

A cosh^ml + Ocosra =
/8,

) ^
A cosh \ml-G cos \ml = 0, J

the latter equation expressing the absence of terminal couples

(" = 0). Hence

2 cosh ml'

The oscillations would become dangerously large if c

were small, i.e. if the imposed frequency (>/2?r) were to ap-

proximate to that of one of the symmetrical free modes of the

bar when "
supported

"
at the ends ( 47 (20).

49. Applications.

The use of transverse vibrations of bars in music is re-

stricted by the fact that the overtones are not harmonic to the

fundamental. If a flat bar, otherwise free, be supported at the

nodes of the fundamental (Fig. 45), and struck with a soft

hammer, the production of overtones is, however, in some

measure discouraged, and musical instruments of a kind (such

as the "
glass harmonica ") have been constructed on this plan.

The most important application is in the tuning fork.

92
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Theory and observation alike shew that the effect of curving

a bar is to lower the pitch of the gravest mode and to make the

nodes approach the centre. It was found by Chladni that

when the bar takes the form of an elongated U, the nodes are

very close to the bend. The amplitude of vibration at the

centre of the bend will therefore be small compared with that

at the end of the prongs. The circumstances are somewhat

modified by the attachment of the stem, but the transmission

of energy is comparatively slow, and the vibrations have con-

siderable persistence. A fork may also be compared to a couple

of bars each clamped at one end, and the formula (2) of 46,

with ml/7r
= '59686, may be used to estimate the frequency

theoretically. If this analogy were exact there would of course

be no loss of energy of the kind just referred to.

Massive forks are usually set into vibration by means of

a violoncello bow applied to one prong near the free end. The

production of overtones having nodes in this neighbourhood is

thus discouraged. The fundamental is further reinforced re-

latively to the other modes if the stem be screwed into the

upper face of a resonance box of suitable dimensions.

When a fork is excited in this or in other ways, it often

happens that the motion is not in the first instance symmetrical
with respect to the medial plane. In that event the vibration

may be regarded as made up of a symmetrical and an unsym-
metrical component. These will in general have slightly

different frequencies, and beats may be produced. But unless

the stem be very firmly fixed the vibrations of the latter class

are rapidly dissipated by being communicated to the support,

since they involve an oscillation of the centre of mass of the

fork.

The first overtone of a fork may be elicited in considerable

intensity by bowing one of the prongs near the bend
;
the note

produced is very shrill.

50. Effect of Permanent Tension.

In the theory developed in 45 it was assumed that the

longitudinal tension, when integrated over the area of the

cross-section, vanishes. It is easy to see that the effect of
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a permanent tension P is merely to add a term P?/' to the

equation (13) of 45, so that

where c
z

-P/pa> (2)

This equation has been employed to estimate the effect of

stiffness of a piano-wire on the sequence of proper tones, but

the matter is complicated by the uncertainty as to the nature

of the terminal conditions. A wire, where it passes over a

bridge, cannot be quite accurately regarded either as merely

"supported" or as "clamped." The question will perhaps be

sufficiently illustrated if we consider a wave-system

7]
= Ccosk(ct-x) (3)

on an unlimited wire. We find, on substitution in (1)

c
2 = c

2 +cr (4)

E
where c^ = .kz

/c', (5)

i.e. Cj is the velocity of transverse waves of length 2-7T/& on a bar

free from tension. We have seen that in the case of a piano-

string E/p is large compared with c
2

;
on the other hand K is

usually an exceedingly minute fraction of the wave-length. In

the graver modes of a piano-string this second influence pre-

dominates, and (Cj/Co)
2
is small

;
the wave-velocity is practically

unaffected by stiffness, and the harmonic sequence is not

disturbed. It is only in the case of the modes of very high

order, where the length is divided into a large number of

vibrating segments, that a sensible effect could be looked for.

It has already been stated that in the pianoforte such modes are,

so far as may be, discouraged on independent grounds. In any
case it appears from (4) that the effect of stiffness is relatively

less important, the greater the value of c
,
i.e. the tighter the

wires are strung.

51. Vibrations of a Ring. Flexural and Extensional

Modes.

The theory of the vibrations of a circular ring is important
as throwing light on some later questions which can only be
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dealt with imperfectly in this book, owing to the difficulties of

an exact investigation. As various points of interest arise, we

treat the matter somewhat fully.

The ring is supposed to be uniform, and the section is

assumed to be symmetrical with respect to a plane perpen-
dicular to the axis. We further consider only vibrations

parallel to this plane. Let u, v be the displacements of an

element of the ring along and at right angles to the original

radius vector, so that the polar coordinates of the element are

changed from (a, 0) to (a + u, 6 +- v/a). We require expressions

for the extension, and for the change of curvature. In con-

sequence of the assumed smallness of the displacements, we

may calculate the instalments of these quantities which are due

to u and v separately, and add the results. The radial displace-

ment by itself changes the length of an element from a&O to

(a + u) 80, and so causes an extension u/a. The transverse

displacement obviously contributes dv/adO. The total extension

is therefore

.(1)

Again, in consequence of the radial displacement alone the

normal to the curve is rotated backwards so as to make an

angle du/adO with the radius, and the mutual inclination of the

normals at the ends of an element a BO is accordingly diminished

by fru/adfr . S0. Dividing the angle between the normals by
the altered length (a + u) BO we get the altered curvature, thus

(BO- -Tr^e>0)-Ma
a a2

\80
2

Since the transverse displacement v by itself contributes

nothing, the increase of curvature is

a?

The resultant stress across any section may be resolved into

a radial shearing force P, a tangential tension Q, and a bending
moment M. On the principles of 43, 45 we have
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the bending moment being now proportional to the increase of

curvature.

Resolving along and perpendicular to the radius vector the

forces on a mass-element pwaSO, we have (see Fig. 47)

Pa>aS0. u = SP- QSe, pvaW.v = BQ + PS0
;

and, taking moments about a normal to the plane of the ring,

the rotational inertia being neglected as in the case of a straight

bar ( 45). Thus

82w 8P n
a*

=
;S|-C. P^a^ =

dt* 80 .(4)

and
80

= Pa. -(5)

P+bP
These, together with (3), are

the equations of our problem.
It is easily seen that they cannot

be satisfied on the assumption
that the tension Q vanishes, and

that accordingly some degree of

extension is involved in any
mode of vibration. This is

readily accounted for, a stress

of this kind being necessarily

called into play by the inertia of

the different portions swinging
in opposite directions. It may be shewn however that in the
"
flexural

"
modes to be referred to presently the corresponding

strains are small compared with those involved in the change of

curvature.

Eliminating P, Q, M between (3), (4), and (5), we find

E ( dv

(6)

Fig. 47.

,** +

_ L _ u

pa
2

+ ~ + =

To ascertain the normal modes we assume that u and v vary
as cos (nt + e). Again, the ring being complete, u and v are
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necessarily periodic functions of 6, the period being 2?r, and

can accordingly be expanded by Fourier's theorem in series of

sines and cosines of multiples of 6
;

moreover it is easily

proved that the terms of any given rank in the expansion must

satisfy the equations separately. We find, in fact, that a

sufficient assumption for our purpose is

u = A cos s6 . cos (nt + e), v = B sin sB . cos (nt + e), (7)

where 5 is integral or zero. This leads to

(8)

- 2)5 = 0,

/

where {3
=

ri*a?p/E. (9)

Hence

Since tc/a is small, the sum of the roots of this quadratic in ft is

s2 + 1, approximately, whilst the product s2

(s
2

I)
2

/c
2
/a

2
is small.

The two roots are therefore

<?2 / Q2 _ 1 \2 ,.2

0-*+i, *-'-^J, ............(ID

approximately.
On reference to (8) we see that the former root makes

B = sA nearly. The corresponding modes are closely analogous
to the longitudinal modes of a straight bar, the potential

energy being mainly due to the extension
;
and the frequencies,

which are given by
2 =

(*
2 + l)

/

. ..................(12)

are, for similar dimensions, of the like order of magnitude. The
case s = is that of purely radial vibrations.

The vibrations corresponding to the second root are more

important. We then have, from (8), A + sB = 0, nearly ;
thus

A

u = A cos s& . cos (nt + e), v = -- sin s& . cos (nt + e), (13)
s

with n'--. ...(14)2 4
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It follows from (1) that the extension is negligible, and the

energy mainly flexural. The frequencies are in fact comparable
with those of transverse vibration of a bar. In the mode of

order s there are 2s nodes, or places of vanishing radial motion,

but these are not points of rest, the tangential motion being

there a maximum*. In the case 5=1 the circle is merely

displaced as a whole, without deformation, and the period is

Fig. 48.

accordingly infinite. The most important case is that of s = 2,

where the ring oscillates between two slightly elliptical extreme

forms. The arrows in the annexed figure shew the directions of

motion at various parts of the circumference at two epochs,

separated by half a period, when the ring passes through its

equilibrium position. The dotted lines pass through the nodes

of the radial vibration.

One farther point is to be noticed. Owing to the assumed

uniformity of the ring the origin of 6 is arbitrary, and other

modes, with the same frequencies, are obtained by adding a

constant to 0. In particular we have the flexural mode

u = A sin sO . cos (nt + e), v = cos sd . cos (nt + e), (15)
s

with the same value of n2 as in (14). We have here an instance

of the kind referred to in 16, where two distinct normal modes

* This point is illustrated by the vibrations of a finger-bowl when excited by

drawing a wetted finger along the edge. The point of rubbing is a node as

regards the radial vibration, and the crispations on the contained water are

accordingly most conspicuous at distances of 45 on either side, where the radial

motion is a maximum.



138 DYNAMICAL THEOKY OF SOUND

have the same frequency, and the modes themselves accordingly
become to some extent indeterminate. The case would be

altered at once if the ring were not quite uniform, e.g. if it were

slightly thicker at one point. The normal modes in which

there is a node or a loop respectively, of radial vibration, at

this point would differ somewhat in character, and have slightly

different frequencies. Accordingly when both modes are excited

we should have beats between the corresponding tones. This

is a phenomenon often noticeable in the case of bells (and

finger-bowls), the inequality being due to a slight defect of

symmetry.
The vibrations of a ring in its own plane were first investi-

gated by R. Hoppe (1871) ;
a simplified treatment of the flexural

modes was subsequently given by Lord Rayleigh. The theory
of vibrations normal to the plane is more intricate, since torsion

is involved as well as flexure. The problem has been solved by
J. H. Michell (1889), who finds, in the case of circular cross-

section,

s2 + 1 + a-
'

pa
4 '

where a is Poisson's ratio.



CHAPTER V

MEMBRANES AND PLATES

52. Equation of Motion of a Membrane. Energy.
The vibrations of membranes are not very important in

themselves, and the conditions assumed for the sake of mathe-

matical simplicity are, moreover, not easily realized experi-

mentally. The theory is however, for a two-dimensional system,

comparatively simple, and the results help us to understand in

a general way the character of the normal modes in other cases

where the difficulties of calculation are much greater, and

indeed often insuperable.

The ideal membrane of theory is a material surface such that

the stress across any line-element drawn on it is always in the

tangent plane. We shall consider only cases where the surface

in its undisturbed state is plane, and is in a state of uniform, or

"homogeneous," stress; i.e. it is assumed that the stresses across

any two parallel and equal lines are the same in direction and

magnitude. We further suppose, for simplicity, that the stress

across any line-element is perpendicular to that element. It

follows, exactly as in hydrostatics, from a consideration of the

forces acting on the contour of a triangular area, that the stress

(per unit length) is the same for all directions of a line-element.

This uniform stress is called the "
tension

"
of the membrane ;

we denote it by P. Its dimensions are those of a force divided

by a line, or [MT~*].

We take rectangular axes of x, y in the plane of the

undisturbed membrane, and denote by f the displacement
normal to this plane. The surface-density (i.e. the mass per
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unit area) is assumed to be uniform, and is denoted by p. To

form the equations of motion we calculate the forces on the

sides of a rectangular element BxSy having its centre at (x, y).

In the displaced position, the gradient of a line parallel to x is

3?/da?, and that of a line parallel to y is d/dy. Hence the stress

across a line through the centre of the element parallel to By,

when resolved in the direction of the normal to the plane xy, is

Pd^/dx . Sy. The corresponding components of force on the two

edges % of the rectangle are

where the upper signs relate to the edge whose abscissa is

x + -J&z?,
and the lower to the edge x ^x. The sum of these

gives P9
2

f/3#
2

. SxSy. A similar calculation for the two edges &z?

gives Pd*/dy
2

. &x$y. The resultant force on the rectangle is

therefore

<

The above may be compared with the investigation by

which, in the theory of Capillarity, the tensions across the

boundary of an element 8S of a soap-film are shewn to be

equivalent to a normal force

where Blf R2 are the principal radii of curvature of the surface.

It is shewn in books on solid geometry that, if f denote distance

from the plane xy, we have

R, R, 8#2

a^
2

at points where the inclination of the tangent plane to xy is

small.

Equating the expression (1) to the acceleration of momentum
of the element, viz. p&xSy .

,
we obtain the equation of motion

This is due to Euler (1766).
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The kinetic energy is given by

taken over the area of the membrane.

The potential energy is found most easily as the work

required to stretch the membrane. As in the theory of

capillarity this is equal to the tension P multiplied by the

increase of area. Now if a prism be constructed on a rectangular
element Sx&y of the plane xy as base, this will cut out from the

displaced membrane a nearly rectangular portion whose sides

are
~

VK-S'h
and whose area is therefore, to the second order,

The same expression is obtained by calculating, from the

expression (1), the work done by normal pressures applied

(as in 22) to deform the membrane into its actual shape, the

ratio of f to its final value being, at any stage of the process,

the same all over the membrane. The result is

The reader who is familiar with the theory of attractions will

recognize that this is equal to

where in the first term the integration extends over all the

elements Ss of the contour, and 8n is an element of the normal

to &s drawn inwards, in the plane of the membrane. Since

at a fixed edge f = 0, the formula agrees with (5).
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53. Square Membrane. Normal Modes.

To ascertain the normal modes of a limited membrane we

assume as usual that f varies as cos (nt 4- e), so that

where k* = n*p/P......................... (2)

At a fixed boundary we must have f= 0. It is found that

the solution of (1) subject to this condition is possible only

for a series -of definite values of k, which determine, by (2), the

corresponding frequencies.

In the case of a rectangular membrane, we take the origin

at a corner, and the axes of x, y along the edges which meet

there. The equations of the remaining edges being, say,

x = a, y = b, the equation (1) and the boundary condition

are satisfied by

f=0sin sin^cos(ri$ + e), ......... (3)
CL (J

where s, s' are integers, provided

It may be shewn, by an easy extension of Fourier's theorem,

that (3) is the only admissible type of solution in the present

case ;
it was given by Poisson in 1829.

In any normal mode for which s or s' > 1, we have nodal

lines parallel to the edges. It appears from (4) that if the

ratio a? : b2
is not equal to that of two integers, the frequencies

are all distinct, and the nodal lines are restricted to these

forms. But if a2
: 62

is commensurable, some of the periods

coincide, and the corresponding modes may be superposed
in arbitrary proportions ( 16). The nodal lines may then

assume a great variety of forms. The simplest instance is

that of the square membrane (a = 6), when

)......................(5)



MEMBKANES AND PLATES 143

Thus by superposition of the modes for which s = 2, s' = 1 and

s = 1, s' = 2, respectively, we get

oe sin
.Try . irx .

sm - -- + X sin sm
a a a a

. TTX . iry ( TTX Try\ , .

sm sm - - cos h Xcos -1 , (6)a a \ a a J

where X may have any value. For example, in the cases X= 1

the diagonals a; + y = a, x y = 0, respectively, are nodal lines.

The figure shews the cases X = 0, X =
,
X = 1, which

give a sufficient indication of the various forms that may
arise.

A"i

Fig. 49.

Again, by superposition of the cases s = 3, s
f = 1 and s

s' = 3, we get

. OTTX . fry . TTX . tTrysm sm -
-f X sm sm

a a a a

a a
(

a V a ))

'

The cases X = 0, X = J, X = + 1 are shewn in Fig. 50
;

intermediate forms are readily supplied in imagination.
A still greater variety is introduced by the fact that a

number which is the sum of two squares can sometimes be

so resolved in more than one way. For example, the modes

for which
s = 4, 7, 1,

8,|
s = 7, 4, 8, 1,}

respectively, have all the same frequency.
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Fig. 50.

54. Circular Membrane. Normal Modes.

In the case of the circular membrane we naturally have

recourse to polar coordinates, with the origin at the centre.

The differential equation may be obtained by transformation

of 52 (3), but a more direct process is preferable.

Take first the case of the symmetrical vibrations where

is a function of r, the distance from 0, only. The stress across

a circle of radius r has a resultant P . ZTTT . 9f/9r normal to the

plane of the undisturbed membrane, and the difference of the

stresses on the edges of the annulus whose inner and outer

radii are r and r + Sr gives a force

,
Equating this to p . 2?rr5r . f, which is the acceleration of

momentum of the annulus, we get

If f varies as cos (nt -f e), this reduces to

where &2 = n2

p/P, as before.

(2)
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If we assume, as is necessarily the case when the origin is

included within the region to which (2) applies, that f can be

expanded in a series of ascending powers of r, the coefficients

(after the first) may be found by substitution in (2), and we
obtain

(3)

provided 22 .42 .(4)

This is the Bessel's Function* of zero order, "of the first kind,"

which we have already met with in 31 ;
it is represented

graphically in Fig. 51. If a be the radius of the boundary,

Fig. 51.

supposed fixed, the admissible values of k and thence of n are

determined by the equation

J (ka) = 0,_ ,...(5)
viz. we have

kal-n-
= 7655, 17571, 2'7546, 3'7534, (6)

the numbers tending to the form ra J, where m is integral.

The first of these roots corresponds to the gravest of all the

normal modes of the membrane. In the rath mode there are

in 1 nodal circles, in addition to the edge, whose radii are

given by the roots of lower order. Thus in the case of the

second root we have for the nodal circle kr/7r
= '7655, whence

r/a = *4356. The characters of the various normal modes will

be understood from Fig. 51, which may be taken to represent

a section through the centre, normal to the plane of the

membrane.

* F. w.
181046.

I*.

(17841846), director of the observatory at Konigsberg

10
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The complete solution of the differential equation (2),

which is of the second order, would consist of the sum of

two definite functions of kr, each multiplied by an arbitrary

constant; but the second solution, which is called a Bessel's

Function "
of the second kind," becomes infinite for r = 0, and

is therefore inapplicable to a complete circular area. In the

case of an annular membrane, however, bounded by concentric

circles, both solutions would be admissible, and both would be

required in order to satisfy the conditions at the two edges*.
The theory of the symmetrical vibrations of a circular

membrane was given by Poisson (1829), who also calculated

approximately a few of the roots of the period-equation (5).

When the vibrations are not symmetrical we may begin by

calculating the forces on a quasi-rectangular element of area

bounded by two radii vectores and two concentric circles, the

sides being accordingly $r and rB0. The stresses on the

curved sides give a resultant

normal to the plane, whilst the stresses on the straight sides

produce

Equating the sum of these expressions to pr$0Sr .
,
we obtain

p^pJil^U- 8^ (7)p tf (r9rV 8rJ r2 902

j'

or, in the case of simple-harmonic vibrations,

with the same meaning of &2 as before.

* On account of the frequent occurrence of the Bessel's Functions in

mathematical physics, especially in two-dimensional problems, great attention

has been devoted to them by mathematicians. The difficulty in investigating

their properties is much as if we had to ascertain all the properties of the

cosine-function from the series

and were ignorant of its connection with the circle.
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Since f is a periodic function of 0, of period 2-Tr, it can be

expanded (for any particular value of r) in a series of sines and

cosines of multiples of 0, thus

f= RQ + Rl cos 6 + $ sin + ...

+ .RsCoss0-f &sms0+ ...-, ...(9)

by Fourier's theorem; and this formula will apply to the

whole membrane if the coefficients be regarded as functions

of r. Moreover on substitution in (8) it appears that each

term must satisfy the equation separately. Thus we have

a typical .solution

.cos(nt+e), ............(10)

provided + i ! + *_ fi. _0. ...(11)2 zr

The solution of this, which is finite for r = 0, can be found in

the form of an ascending series. In the accepted notation we

have R8
= A 8J8 (kr), where the function /, is defined by

This is known as the Bessel's Function of the sth order, of the

first kind. As in the case of (2) there is a second solution

which becomes infinite for r = 0, but in the case of the complete
circular membrane this of course is inadmissible. We have then

the normal modes

=AJs (kr)coss0.cos(nt + e), ......... (13)

where k is determined by

J9 (ka)=0......................(14)

Similarly, taking a term 8g sin sO from (9) we should have been

led to the modes

=BJ8 (kr)sms0.cos(nt + e), .........(15)

with the same determination of k. Owing to the equality of

periods the normal modes are to some extent indeterminate.

Thus, for any admissible value of k, we may combine (13)

and (15) in arbitrary proportions, and obtain

?= CJ, (kr) cos (80 + a) . cos (nt + e).......(16)

102
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We have here s nodal diameters, given by

s0 + a= \ir, f?r, ...,

and accordingly arranged at intervals of TT/S. Again for every
value of k after the lowest we have one or more nodal circles

whose radii are given by the roots of lower order. In the case

s = l, where there is one nodal diameter, we have

ka/7r= 1-2197, 2'2330, 3'2383, 4'2411, (17)

the numbers tending to the form ra + J . The characters of

the corresponding modes may be gathered from the annexed

10

10

Fig. 52.

graph of the function Jl (z) ;
this may be supposed to represent

a section through the centre, normal to the nodal diameter. In

the second of the above modes, the radius of the nodal circle is

given by
r/a = 1-2197/2-2330 = '546.

Fig. 53 shews in plan the configuration of the nodal lines

in the first three modes of the types s = 0, 5 = 1, s 2, re-

spectively. The + and signs distinguish the segments
\vhich are at any instant in opposite phases of vibration.

Whatever the form of the boundary, the value of f in the

neighbourhood of any point of a membrane must admit of

expression in the form (9), with

R8
= A 8 J.(kr), S8

= B8J8 (kr), (18)

the factor cos (nt + e) being of course understood. If be on

a nodal line we must have f= for r = 0, and therefore A = 0.

The form of the membrane near is then given by

^ = (A 1 cosO + B1 sme)Jl (kr), (19)

ultimately, and the direction of the nodal line at is accord-
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ingly given by tan 6 = A l/Bl . If all the coefficients of order

less than s vanish, we have, for small values of r,

(20)

The node has then s branches passing through 0, making equal

angles TT/S with one another, their directions being given by
tan s0 = AgjBg. This is illustrated in the preceding diagrams ;

for instance the cases s = 2, s = 3, s = 4 all occur in Fig. 50.

Fig. 53.

According to a general theorem stated in 16 it must be

possible by combination of the various normal modes of a

membrane in suitable proportions, and with proper relations

of phase, to represent the effect of arbitrary initial conditions.

We do not enter into this; and the theory of the forced vibrations

must also be passed over except fora simple example.
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When a force Z per unit area acts on a circular membrane,

the equation (1) is replaced by

it being supposed, for simplicity, that there is symmetry as

regards the distribution of Z and the consequent displacements

If, further, Z vary as cos (pt + a), we have

Z

(23)

If Z be independent of r, so that the impressed force is

uniform over the membrane, the solution of (22) is obviously

t=-lp + CJt (kr), ............... (24)

and determining the constant C so that f=0 for r = a, we find

(25)
(ka)

The amplitude becomes very great whenever fca approximates
to a root of (5), i.e. whenever the imposed frequency approaches
that of one of the symmetrical free modes. When, on the

other hand, the imposed vibration is relatively slow, ka is

small, and we have by (4)

(26)

approximately. This is the statical deflection corresponding to

the instantaneous value of the disturbing force.

55. Uniform Flexure of a Plate.

The theory of the transverse vibrations of plates stands in

the same relation to that of bars as the theory of membranes

to that of strings. The reader will understand from this com-

parison that the mathematical difficulties are considerable, arid

will not be surprised to learn that some of the most interesting

and, at first sight, simple problems remain unsolved. On the

other hand the subject readily admits of experimental illustra-

tion. If the plate be horizontal, and fixed at one point, the
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configuration of the nodal lines can be exhibited by means

of a little sand previously strewn on the surface. When any

particular normal mode is excited, the sand is shaken away
from the places of vigorous motion, and accumulates in the

neighbourhood of the nodal lines. Usually the plate is set

into vibration by bowing at right angles to the edge, and the

desired mode is favoured by touching the edge with the fingers

at one or more nodal points. If, as in the case of a rectangular

plate fixed at the centre, the point of support is a nodal point

>f several normal modes, a great variety of beautiful figures

nay be obtained. An extensive series of diagrams of results

obtained in this way were given by Chladni; many of these are

eproduced in the current manuals of experimental acoustics.

In the theoretical treatment it is assumed that one of the

principal axes of strain and stress is normal to the faces of the

plate, and that the corresponding stress vanishes. Putting,

then, ps
= in the formulae (9) of 42, we find, for the

remaining principal stresses,

)> p>
= E'( > + aei) t .........(1)

where E f = E/(l
- <r

2
)......................(2)

If Rl ,
R2 be the principal radii of curvature at any point of the

plate, when bent, we have, by an investigation similar to that

of 45,

C^Z/R!, e2 = z/R2 , ..................(3)

where z denotes distance from the medial plane. If we consider

a rectangular element of the plate bounded by lines of curvature,

and denote by h the half-thickness, this leads to bending
moments

per unit length of the respective edges, in the planes of the two

principal curvatures.

The potential energy per unit volume is

ef)..........(5)
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If we substitute from (3), and integrate over the thickness, we

find for the potential energy per unit area of the plate

The formulae (4) may be applied to the case of a flat bar of

rectangular section, uniformly bent by two opposing couples

MJ), where b denotes the breadth. Along the free edges we

have M2
= 0, and therefore

JZr' = -rJZr' (7)

The bending moment is accordingly

M1b=%Ebh3

/Rl) (8)

by (4). This agrees, as it must, with 45 (5), since o> = 2bh,

K* == *h?. The formula (7) shews that when a bar of rectangular

section is bent in a plane parallel to one pair of faces, an opposite

or
"
anticlastic

"
cur-

vature is produced in

the plane of the cross-

section, the ratio of

the curvatures being
identical with Pois-

son's ratio &. This

circumstance has

been made the basis

of practical methods Fig. 54.

of determining <r, by
Cornu* (1869) and Mallock (1879), the curvatures being
measured by optical or other means.

It follows from the above that a perfectly free rectangular

plate cannot vibrate after the manner of a bar, with nodal lines

parallel to one pair of opposite edges, since couples would be

required, about the remaining edges, to counteract the tendency
to anticlastic curvature.

56. Vibrations of a Plate. General Results.

In a vibrating plate the directions and amounts of the

principal curvatures will in general vary from point to point.

* A. M. Cornu (1841 1902), professor of physics at the Ecole Polytechnique
1871 1902. Famous for his experimental determination of the velocity of light,

and for other important contributions to optics.
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Shearing forces will also be called into play normal to the plane
of the plate. The circumstances are somewhat complicated,

but the deduction of the equation of motion for the body of the

plate is a straightforward matter, and presents no real difficulty.

A more serious question arises when we come to the conditions

to be satisfied at a free edge. It appears that the simple
condition of strain which has been postulated as the basis of

the formulae (4) of 55 cannot be assumed to hold, even

approximately, right up to the edge. In the immediate neigh-
bourhood of the edge, i.e. to a distance inwards comparable
with the thickness, a peculiar state of strain in general exists,

one remarkable result of which is a shearing force on sections

perpendicular to the edge, of quite abnormal amount.

For the further development of the subject reference must

be made to other works*. We merely quote a few of the more

important results which have been obtained, relating chiefly to

plates whose edges are free.

It is found that for a plate of given lateral dimensions the

frequency (n/2?r) of any particular normal mode is given by

*-'.#.*, (1)

where, as in 46, m is a constant, of the nature of the reciprocal
of a line, given by a certain transcendental equation, and p
denotes the volume-density. For plates with geometrically
similar boundaries the frequency accordingly varies as the

thickness, and inversely as the square of the lateral dimensions.

In the case of a perfectly free circular disk the nodal lines

are circles and equidistant

diameters. In the symmetrical

modes, which were investigated

to some extent by Poisson

(1829), we have nodal circles

alone. Thus in the gravest
mode of this type we have a

nodal circle of radius '678a, where a is the radius of the disk
;

in the next mode there are two nodal circles of radii '392a

* See Lord Kayleigh. Theory of Sound, chap. 10 ; Love, Theory of Elasticity,

Cambridge, 1906, chap. 22.
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and '842a, and so on, the numbers varying slightly however

with the value adopted for or. According to Poisson, the

values of m for the above modes are given by

ra2a2 = 8-8897, 38-36, (2)

on the hypothesis that a- = J.

The complete theory of the free circular plate was worked

out by Kirchhoff in a celebrated memoir (1850). It appears
that the gravest of all the normal modes has two nodal

diameters, and no nodal circle. Its frequency is

5234. /(-

according as we adopt the value cr \ or a = % of Poisson's

ratio. The figure shews the

configuration of the nodal lines

in the simplest cases of one and

two nodal diameters.

The theory of a circular

plate clamped at the edge has

been treated by Poisson and

others. In the first two symmetrical modes it is found that

ra2a2 = 10-2156, 39'59, (3)

respectively. In the second of these modes there is a nodal

circle of radius '38la. The theory has been applied by Lord

Rayleigh to calculate the natural frequencies of a telephone

plate.

Fig. 56.

Fig. 57.

In the case of a square plate we have to depend almost

wholly on observation, there being at present no exact theory.

As in the case of the square membrane ( 53), the nodal lines
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may assume a great variety of forms, owing to the superposition

of different modes having the same frequency. The gravest

mode of a free plate is that in which the nodal lines form a

cross through the centre, with arms parallel to the sides.

The figure shews other cases in which possible forms can be

assigned to the nodal lines from considerations of symmetry.

57. Vibrations of Curved Shells.

When we proceed to the vibrations of curved plates, or

shells, we meet with further complications due to the fact that

no absolutely sharp line can be drawn between flexural and

extensional modes. This has been already exemplified in the

case of the ring ( 51). It appears, however, that as the thick-

ness is (in imagination) reduced the normal modes tend to fall

into two distinct categories. In one of these the frequencies

tend to definite limits, the deformations being mainly

extensional, and so analogous to the longitudinal vibrations

of a bar, where the dimensions of the cross-section were found

to be immaterial. In the second category the frequencies

diminish without limit, being ultimately proportional to the

thickness, as in the flexural vibrations of a bar or plate.

It will be understood that, acoustically, the flexural vibra-

tions are alone of real interest. When the shape is one of

revolution about an axis, the nodal lines will evidently be

parallels of latitude and equidistant meridians. As in the case

of 51 these are not lines of absolute rest, the tangential motion

being there relatively at its greatest. This has an application
to bells. A theoretical calculation of the frequencies of an

actual bell is of course out of the question ;
but it is somewhat

remarkable that no systematic experimental study appears to

have been made until the subject was taken up by Lord

Rayleigh in 1890. Some unexpected results were obtained.

To quote a typical case, the normal modes of a particular bell,

when arranged in ascending order of frequency, were found to

have the following numbers of nodal meridians and parallels,

and the pitches indicated :

(4,0) (4,1) (6,?) (6,?) (8,?)

e c" f" + &"(,
d'".
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Of these the only one which has any relation to the nominal

pitch (d"} of the bell is the fifth in order, and this is out by an

octave. A mistake of an octave in judging pitch is not

uncommon, for physiological reasons, but it is surprising that

the presence of the lower dissonant tones should be so easily

disregarded. It is conceivable that the mode of striking may
be in some degree unfavourable to the production of the more

discordant elements.

The vibrations of an elastic solid whose dimensions are all

of the same order of magnitude are from our present point of

view of subordinate interest. The only case which has been

worked out is that of the sphere. In the most important
mode one diameter extends and contracts whilst the perpen-
dicular diameters simultaneously contract and expand, respec-

tively. The frequency of this mode is, for such values of a- as

are commonly met with,

(1)

about, where a is the radius. This is the lowest of all the

natural frequencies. For a steel ball one centimetre in radius,

this makes N= 136000.



CHAPTER VI

PLANE WAVES OF SOUND

58. Elasticity of Gases.

In any fluid there is a definite relation between the pressure

p, the density p, and the temperature 0, and any two of these

quantities accordingly serve to specify the physical state of

the substance. It is often convenient to use in place of p its

reciprocal v, the volume of unit mass.

In thermodynamical investigations the two quantities

usually chosen as independent variables are p and v. In

Watt's
"
indicator diagram

"
these are taken as rectangular

coordinates, p being the ordinate and v the abscissa. Any

particular state is then represented by a point on the diagram,

and any succession of states by a continuous line. We may
imagine the unit mass of the fluid to be enclosed in a deform-

able envelope, and that an infinitesimal change of volume is

produced by a displacement of the boundaiy in the direction

of the normal, whose amount is (say) v for any given surface-

element 8S. The work done by the contained gas in this

process is 2 (p&S . v), or pSv, since 2 (v8S) = Sv. Hence the

work done in any succession of changes, represented by a curve

on the diagram, will be given by fpdv, i.e. by the area included

between the curve, the axis of abscissae, and the first and last

ordinates. This area is of course to be taken with its proper

sign, according as the work is positive or negative.

There are two kinds of successions of states which are

specially important. In the first of these the temperature does

not vary, and the representative lines are therefore called
"
isothermals." By means of a system of isothermal lines

drawn at sufficiently small intervals the properties of the
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substance can be completely mapped out. The other suc-

cessions referred to are those in which there is no gain or loss

of heat to the substance, as if it were enclosed in a vessel (o:

variable volume) whose walls are absolute non-conductors. The

corresponding lines are therefore called
"
adiabatics."

In a perfect gas we have

p = RP0, or pv = R0, ............... (1)

where 6 is the absolute temperature on the gas thermometer

and R is a constant depending on the nature of the gas. The

isothermal lines pv = const, are therefore rectangular hyperbolas

asymptotic to the coordinate axes. As regards the adiabatics

the heat required to increase the pressure by &p when the

volume is constant will be given by an expression of the form

PSp. If c denote the specific heat (per unit mass) at constant

volume, this must be equal to c&0, where $0 is the corre-

sponding change of temperature. Now when $v = we have

Sp/p = $0/0, whence, comparing, P =
c0/p. Again, the heat

required to' augment the volume by Iv when the pressure is

constant- may be denoted by QSv, which must be equal to c'&0

where c' is the specific heat at constant pressure. Since, when

fy = we have &v/v
=

$0/0, we find Q = c0/v. The heat ab-

sorbed when both pressure and volume are varied infinitesimally

is therefore

...............(2)

and the differential equation of the adiabatics is therefore

$M* = 0. ...(3)
p c v

The ratio c'/c. of the two specific heats is practically constant.

Denoting it by 7, .we have

\ogp 4- 7 log v = const.,

or pv? = const., ........................ (4)

as the equation of the adiabatic lines. The value of 7 as found

by direct experiment is about 1*41 for air, oxygen, nitrogen,

and hydrogen. The figure shews the isothermal and adiabatic

lines through a point P of the diagram, the latter curve being

the steeper.
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When the pressure and volume vary in any connected

manner, the ratio of

the increment &p of

the pressure to the
"
compression," i.e. the

negative dilatation

Sv/v, may be called

the
"
elasticity of

volume." Its value

will depend not only

on the particular state,

but on the manner in

which the variations

from that state are

supposed to take place,

i.e. on the direction

of the corresponding

p.
curve on the diagram.

If the tangent at the

point P meet the axis of p in U, and NU be the projection of

PU on this axis, we have

dv .(5)

this projection therefore represents the elasticity under the

particular condition. On the isothermal hypothesis, to which

these letters refer in the figure, the elasticity is equal to the

pressure p, as follows at once from (1), or from the fact that

the tangent to a rectangular hyperbola is bisected at the

point of contact. If the variations are subject to the adiabatic

law, the elasticity, as deduced from (4), is yp, and so greater

than in the former case. This is represented by NU' in the

figure. Even in the case of solid and liquid bodies we ought,

in strictness, to discriminate between isothermal and adiabatic

coefficients of elasticity, but the differences happen not to be

very important.

The work done by unit mass of a gas in expanding between

any two adjacent states is easily read off from a diagram as

o-v), or Po(v -v) + %(p-p )(v -v), (6)
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correct to the second order of small quantities.

states are a finite distance apart we

require, to know the manner of transi-

tion. For changes along an isothermal

line pv = p v we have

When the two

dv=pQv \og ...(7)

For variations along an adiabatic

V %

Fig. 59.

59. Plane Waves. Velocity of Sound.

The theory of plane waves of sound is very similar to that

of the longitudinal vibrations of rods ( 43). We assume that

the motion is everywhere parallel to the axis of x, and is the

same at any given instant over any plane perpendicular to this

axis. We denote displacement from the equilibrium position

by f. The symbols p, p, % are supposed to refer at the time

t to that plane of particles whose undisturbed position is

x] they are therefore functions of the independent variables

x and t. The constant equilibrium values of p, p are dis-

tinguished as PQ, p .

The dilatation A was defined in 40 as the ratio of the

increment of volume to the original volume, viz.

(1)

In the present branch of the subject it is usual to introduce

a symbol s to denote the "
condensation," i.e. the ratio of the

increment of density to the original density ;
thus

(2)

Since v=l/p, we have

.(3)

The stratum of air which was originally bounded by the

planes x and#+& is at time t bounded by the planes x+% and
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x + f -t- &B+ Sf,
and its thickness is therefore changed from 8x

to &c -f 8f , or (1 + 9f/9#) 8#, and the dilatation is accordingly

-

'

A - *= ...................... <*>

Hence, in the case of infinitely small disturbances, we have,

by(3)>

In forming the equation of motion we assume that the

pressure varies with the density according to some definite law.

We have then, for small values of s,

p=pQ + KS, ........................(6)

where K is a coefficient of cubic elasticity. t Considering the

acceleration of momentum of unit area of a stratum originally

bounded by the planes x and x -f &c, we have

where 8p represents the excess of pressure on the anterior face.

Hence, by (5) and (6),

**-*** (7)
dP'^da?'

where c = V(*/?o).........................(8)

The solution of (7) is as in 23, 43

%=f(ct-x) + F(ct + x), ............... (9)

and represents two systems of waves travelling in opposite

directions with the velocity c*.

If we assume, as Newton
-f- did, that, the expansions and

contractions of a gas, as a sound-wave passes, take place

isothermally, i.e. without variation of temperature, the relation

between p and p is given by Boyle's law, viz. p/pQ
= p/p = 1 4- s,

whence K=p ,
as already proved. This makes

Now for air at C. we may put, as corresponding values,

p = 76 x 13-60 x 981, p9
= '00129,

* The analytical theory of plane waves of sound is due to Euler (1747) and

Lagrange (1759).

t The investigation is given in Prop. 48 of the second book of the Principia

(1726).

L. 11
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in absolute centimetre-gramme-second units, whence c = 280

metres per second. This is considerably less than the observed

velocity.

The discrepancy was first fully accounted for by Laplace
and Poisson*. When a gas is rarefied or condensed the

temperature tends to fall or rise, except in so far as the

process is mitigated by the supply or abstraction of heat. In

ordinary sound-waves the condensation s changes sign so fre-

quently, and the temperature consequently rises and falls so

rapidly, that there is no time for sensible transfer of heat

between adjacent portions of the gas. The flow of heat has

hardly set in from one element to another before its direction is

reversed, and the conditions are therefore practically adiabatic.

The formula

becomes, for small values of $,

p=pQ (I+ys), .....................(12)

whence K = yp0) as in 58, and

c = V(7po/Po)......................(13)

Putting 7=1*41 we find that the Newtonian velocity of sound

in air must be increased in the ratio 1'187, whence c = 332

metres per second at 0C. This is in good agreement with

direct observation.

As there is now no question as to the soundness of this

explanation, and as the direct determination of 7 is a matter

of considerable difficulty, the formula (13) is often used in the

inverse manner, as a means of deducing the value of 7 for

various gases from the observed velocities of sound-waves in

them. For example, it was in this way that in 1895 the value

of 7 for the newly discovered gas argon was found by Lord

Rayleigh to lie between 1'6 and 1-7. The experimental method

(due to Kundt) is referred to in 62 below.

Since p /p
= R6

,
the velocity of sound as given by (13) is

independent of the actual density, but will vary as the square
root of the absolute temperature. Also, so far as 7 has the

same value, the velocity of sound in different gases will vary
*

About, or before, the year 1807.
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inversely as the square root of the density, provided the com-

parison be made at the same pressure. These conclusions are

in agreement with observation.

The formula (8) will of course apply to any fluid medium,

provided the proper value of K be taken. In liquids the

difference between the isothermal and adiabatic elasticities

3 may be neglected. For water at 15 C. we may put
K = 2-22 x 1010

, p = l, in C.G.S. units, whence c = 1490 metres

; per second. The number found by Colladon and Sturm (1826)

I by direct observation, in the water of the lake of Geneva, was

! 1435, at a temperature of about 8 C.

Another formula for the velocity of sound may be noticed.

IfH denote the height of a "
homogeneous atmosphere," i.e. of

bi column of uniform density pQ whose weight would produce the

actual pressure p per unit area, we have p = gpoH, and the

Newtonian formula (10) becomes

c = V(<7#); .....................(14)

cf. 43 (6). The velocity is accordingly that due to a fall from

rest through a height %H. It appears from 58 (1) that for

a given gas, and at a given place, H depends only on the

temperature. The corresponding adiabatic formula is

(15)

60. Energy of Sound-Waves.

The kinetic energy of a system of plane waves is, per unit

area of the wave-fronts,

where the integration extends over the space which was occupied

by the disturbed air in the equilibrium state.

The work done by unit mass in expanding through a small

range was found in 58 to be given accurately, to the second

order, by the expression

where the suffix refers to the final state. If we form the sum
of the corresponding quantities for all the mass-elements of the

system, the first term disappears whenever the conditions are

such that the total change of volume is zero. Again, in the

112
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second term we may put, with sufficient accuracy, pp = KS,

VQ V = VOS, and obtain ^KS
Z .VO . The expression %/cs* is there-

fore to be integrated over the volume occupied in the undis-

turbed state. So far nothing is stipulated as to the hypothesis
to which K relates; but it is only in the case of adiabatic

expansion that the result can be identified with the potential

energy in the strict sense of this term. We then have

V = ^ Kfs
2dx

}
.....................(3)

where K = <yp0) per unit area of wave-front. If K refer to the

isothermal condition, the expression on the right hand is what

is known in thermodynamics as the "
free energy."

It is unnecessary to repeat what has been said in 23 as to

the resolution of an arbitrary initial disturbance into two

wave-systems travelling in opposite directions. In a single

progressive wave-system, say

?=/((*-), ..................... (4)

we have by 59 (5)
=

cs, ........................... (5)

where denotes the particle-velocity in the direction of propa-

gation. Since f has the same sign as s, an air-particle moves

forwards (i.e. with the waves) as a phase of condensation passes

it, and backwards during a rarefaction. It appears moreover,

from (1), (3), and (5), that the total energy is half kinetic

and half potential. This also follows independently from the

general argument given in 23.

The case of a simple-harmonic train of progressive waves is

specially important. The formula

..................(6)

represents a train of amplitude a, frequency n/2?r, and wave-

length X = 27rc/ft. We find

n (t
- -]sin2 n t - - dx

(7)

The mean value of the second term under the integral sign is

zero, and the average kinetic energy per unit volume is therefore

and the average value of the total energy
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Since iia is the maximum particle-velocity, we see that the

energy in any region including an exact number of wave-lengths
is the same as the kinetic energy of the whole mass when
animated with the maximum velocity of the air-particles. If sl

be used to denote the maximum condensation, we have 81
=

na/c,

and the average energy per unit volume may therefore also be

expressed by ^potfsf.

We can also estimate, incidentally, the nature of the approxi-
mation involved in the derivation of the equation of motion 59

(7). The approximation consisted in neglecting the square of s,

or 9f/9a?. Since 81
=

27ra/\, this means that the amplitude a is

assumed to be small compared with X/27T, a condition which is

abundantly fulfilled in all ordinary sound-waves.

So far we have traced the course of waves regarded as

already existent, without any reference to their origin. As an

example, though a somewhat artificial one, of the manner in

which waves may be supposed to be generated, imagine a long

straight tube, of sectional area , in which a piston is made

to move to and fro through a small range, in any arbitrary

manner. The origin of x being taken at the mean position

of the piston, the forced waves in the tube, to the right,

due to a prescribed motion

?=/(*) (8)

of the piston, will evidently be given by

In particular, if % = acosnt, (10)

we have = acosnU
) (11)

The rate at which work is being done by the piston on the au-

to the right is

4f/i 2/Y2

= p9 <ona sm nt -\
-- o>sm*nt. ......(12)

c

The mean value of the first term is zero, whilst that of the

second is

(13)



166 DYNAMICAL THEORY OF SOUND

This is exactly the mean energy contained in a volume we of

the space occupied by the wave-train (11). The result may

perhaps at first sight appear to be a mere truism. It may be

argued that in each unit of time fresh waves are generated

which occupy a length c of the tube, and that the piston must

as a matter of course supply the corresponding amount of

energy. It must be remembered, however, that an infinitely

long train of waves of the type (11) would take an infinite time

to establish, and that in the case of a finite train the suggested
line of argument would require us to examine into what is

taking place at its front. In the present instance the result

would, it is true, be unaffected, but the case would be altered

if the wave-velocity were different for different wave-lengths,
as it is for example in dispersive media in optics, in deep-water
waves in hydrodynamics, and in the case of flexural waves on a

long straight bar ( 45). There is then a distinction between

the wave-velocity (for a particular wave-length) and the "group-

velocity" which determines the rate of propagation of energy.
In the above problem force must be applied to the piston in

order to maintain the vibration (8) against the reaction of the

air. If the piston be free, the store of energy which it origin-

ally possessed will be gradually used up in the generation of

air-waves. Suppose, for example, that the piston is attached

to a spring, and that in the absence of the air the period of its

free vibrations would be ^TT/U. Under the actual conditions,

its equation of motion will be of the form

M(Z + n^) = -(p- Po)co, (14)

where the variable part of the pressure alone appears, since the

constant part merely affects the equilibrium position. From
the general theory of progressive waves we have

p-p^KS^tcg/c, (15)

and the equation (14) becomes

5 + ?+^ = o (16)

This is of the form discussed in 11, and the solution is

f .-=(7<?-'/
T
cos(rc'+ e), (17)
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provided T = ZMc/tca = ^Mjp^c, n' z = n*-l/r*. i..... (18)

When nr is large the effect on the period may be neglected.

The condition for this is that 2M* must be large compared
with p o>X/27r, where \ is the wave-length. The inertia of the

piston must therefore be great compared with that of the air

contained in a length X/2-n- of the tube. The same law of

decay would be given also by the indirect method explained

in 12.

We have seen in (13) that the rate of propagation of energy
across unit area of wave-front in a progressive system of waves

of simple-harmonic type is Jp ri
2aa

c, or J/^oC
3^2

,
if sl denote the

maximum condensation. The result was obtained for plane

waves, but will hold for all kinds of wave at a sufficient distance

from the source. Consequently if W denote the total emission

of sonorous energy per second from a source near the ground,

the value of sa ,
at a distance r, will be given by the relation

W=i/3 c
351

2 x 27rr2 =
7rp c

3r251
2.......... (19)

This formula was applied by Lord Rayleigh to estimate the

limit of audibility of a sound of given pitch. The value of W,

as inferred from the power spent in actuating the source

(a whistle), is the product of the current into the pressure, and if

r be the distance at which the sound is just audible, the formula

will give a value of slf which is necessarily, however, greater

than the true limit, since the value of W is too high, not all

the energy being spent in sound. In this way it was ascer-

tained that sounds could be heard in which Sj_ was certainly less

than 4 x 10~8
. The corresponding amplitude as deduced from

the formula ncu cs^ was 8 x 10~8 cm. By an independent

method, in which the above source of uncertainty was avoided,

the limit of audibility was fixed at about sl
= 6 x 10"9

. Subse-

quent experiments by Wien (1903) and Rayleigh f indicate an

increase of sensitiveness with rise of pitch, for tones near the

middle of the ordinary musical scale.

* The factor 2 would disappear if the piston were supposed to generate waves

on both sides.

t Phil. Mag. (6), vol. xiv. (1907).
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61. Reflection.

When there is a fixed barrier at the origin the general

solution is replaced, as in 24, by

g = f(ct-a;)-f(ct + x) (1)

Considering, for example, the region to the left of the origin,

the first term may be interpreted as representing a primary

wave-system approaching the barrier; the second term then

represents the reflected system. The latter has the same

amplitude at corresponding points ;
the velocity j is reversed,

but the condensation s (= di~/dx) has its sign unchanged. We
have here, in its simplest form, the explanation of echoes.

There is another case of reflection which it is important to

consider. Suppose that at one point (say x = 0) the condition

of unvarying pressure (s
= 0) is imposed. We must have then,

in 59 (9),

F'(et)=f(ct), (2)

which shews that the functions f, F must differ only by
a constant. Since this constant would merely represent a

displacement common to the whole mass, which is without

influence on the question, it may be ignored. We have then

f = f(ct"x)+f(ct + x) t (3)

where as before the first term may be taken to represent an

incident, and the second a reflected wave-system, in the region

lying to the left of 0. The velocity f is here reflected un-

changed, but the sign of s is reversed. The conditions would

be realized if the air were in contact at the plane as = with

a medium capable of exerting pressure, but destitute of inertia.

This is of course an ideal case, but the condition of invariable

pressure is approximated to in some degree at the open end of

a pipe. The present investigation has also an application to

the reflection of longitudinal waves at the free end of a rod

( 43).

The general problem of (direct) reflection at the common

boundary of two distinct fluid media is hardly more complicated.
The origin being taken in the boundary, a wave-system ap-

proaching from the left will give rise to a reflected wave on the

left and a transmitted wave on the right. We distinguish



PLANE WAVES OF SOUND 169

quantities relating to the incident and reflected wave by the

suffixes 1 and 2, respectively, whilst those relating to the

transmitted wave are indicated by (grave) accents. Since the

velocity and the pressure must be the same for the two media

at the origin, we have

?i + ?2
=
i\ *s1 + *s2

= *Y [>=0], .........(4)

the equilibrium pressure p being necessarily the same. Now

^ = 0$!, J2
= cs2 , c> whence

c(sl s2)
= cs\ ic (! + *2)

= *V [# = 0].......(5)
^

Hence S"

These formulae relate in the first instance to the state of

things at the origin, on the two sides; but it is easily seen that

they will also represent the ratios of amplitudes at correspond-

ing points in the respective waves. If the inertia of the second

medium were infinite, we should have c = 0, and therefore

$2
=

$!, as in the case of reflection at a rigid barrier. On the

other hand, if the inertia of the second medium were evanescent,

we should have c = oo and s2 = i, as above.

The energies of corresponding portions of the various waves

are proportional to KS^C, KSC, #W, since the lengths occupied

by these portions will vary as the respective wave-velocities.

The conservation of energy therefore requires

KSi*C = KS2*C + KS"*C', .................. (7)

this is easily verified from (6).

If we put K = p c
z
,
K =

poC*, we have, from (6),

*i A> c + p c

As an example, take the case of air-waves incident normally
on the surface of water. We have p /p

x = '00129, c/c'
= '222,

about; whence sz/sl
= '99943. There is therefore almost com-

plete reflection, with hardly any transmission.

In the case of two gaseous media having the same ratio of

specific heats, and therefore the same elasticity (K = yp ), the

formulae simplify ;
thus

* =^, S-=^ (9)
S, C + C 5X C + C
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These are identical with Fresnel's formulae for the amplitudes
of reflected and transmitted light in the case of normal inci-

dence on the common boundary of two transparent media.

62. Vibrations of a Column of Air.

When we come to the free oscillations of the air contained

in a pipe of finite length, the question definitely arises as to the

condition to be satisfied at an open end. There is here a

transition, more or less rapid, from plane waves in the tube

to diverging spherical waves in the external space, which it is

difficult to allow for exactly. In the usual rudimentary theory,
which dates from D. Bernoulli, Euler, and Lagrange, it is

assumed that the variation of pressure in the tube, at the open
end, may be neglected. As already stated, this would be

accurately the case if the external air were replaced by a

substance capable of exerting pressure (p ) but devoid of

inertia. There would then be no loss of energy on reflection

at the open end ( 61), and the vibrations in the tube, once

excited, would be persistent. The hypothesis is obviously
an imperfect representation of the facts

;
the condition s =

can only be approximately fulfilled, and energy must con-

tinually be spent in the generation of waves diverging outwards

from the mouth, so that the vibrations if left to themselves will

be sensible only for a very limited time
;

this may however

cover hundreds of periods. We shall return to these questions
later (Chapter IX) ;

at present we content ourselves with

tracing out the consequences of the approximate theory.

The periodic character of the motion in a finite pipe can be

inferred from the theory of waves, exactly as in the case of

strings ( 24). Suppose for example that a wave ,of limited

extent is started in either direction from a point P of a tube

AB. After two reflections, at A and B, the wave will pass P
again in the same direction as at first. If both ends be closed,

the sign of s is unaltered at either reflection, whilst that of j is

twice reversed. Hence after the interval 2l/c, where l AB,
the initial circumstances are exactly reproduced. The same

result holds if both ends be open, since there have now been
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two reversals of s and none of f in the interval in question.

But if one end be closed and the other open, the signs of s and

f at P have each undergone one reversal only in the interval

2l/c, and a further interval of like duration must elapse before

the original state of things at P is restored.

The foregoing theory explains one or two important points

in the theory of organ-pipes. Thus the frequency, in the

gravest mode, is inversely proportional to the length, and is

lower by an octave for a "stopped" pipe, i.e. a pipe closed

at one end, than for an "
open

"
pipe, i.e. one open at both ends,

of the same length. It is, again, directly proportional to the

velocity of sound, and so increases with rise of temperature.
In the analytical method for determining the normal modes

we assume as usual that f varies as cos (nt + e). The equation
59 (7) then becomes

the solution of which is

/ . nx D . nx\ /ONt=\A cos h B sin cos (nt + e), (2)
\ c c J

as in 25. The corresponding wave-length of progressive waves

in free air is X = 2?rc/n. Hence in any system of standing waves

there is a series of nodes (
= 0) at intervals of X, and a series

of loops, or places of zero condensation, (df/dx
=

0), half-way
between these.

For a tube closed at both ends (x = 0, x = I) we have

-4=0, sin(y/c) = 0, (3)
and therefore

~ . rmrx frmrct \
I f = w sm j- cos!-^ + m ), (4)

\ 6 /

where m 1, 2, 3, ..., the normal modes forming a harmonic

series.

For a pipe open at both ends, the condition that s=d^/dxQ
for x = and x = I gives

= 0, sin(^/c) = 0, (5)

and the typical solution is

n mirx frmrct \= Gm cos
-j

cos
j

+ em , (6)
t \ 6 /



172 DYNAMICAL THEORY OF SOUND

where ra = l, 2, 3, .... Here, again, the sequence of normal

modes is harmonic. The figure illustrates the cases m=l,
m = 2. The arrows shew the direction of motion at the loops,

whose position is indicated by the dotted lines, in two opposite

phases ;
the nodes are indicated by the full transverse lines.

Fig. 60.

In the case of a pipe closed at # = and open at x=l,

we have

.4=0, cos(ttZ/c)
= 0, ..................(7)

whence nl/c ^mjr, the integers m being odd. We thus obtain

~ mirx (rmrct=----
where m= 1, 3, 5, .... The absence of the harmonics of even

Fig. 61.

order determines the characteristic
"
quality

"
of stopped pipes

( 91). The figure shews the cases m = 1, m = 3.

The formula (2) can be applied also to the case of forced
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vibrations of given frequency (n/27r). Thus if a prescribed
vibration

f = J. cos(nt + e) .................. (9)

be maintained at x = 0, and if the tube be closed at x = I, the

motion of the gas is given by

sin
-

cos (nt + e). . . .(10)
c

The amplitude becomes abnormally great, even when we take

account of dissipative forces, if sin (nl/c)
= 0, or I = %m\, where

m is integral. This is the principle of a method due to Kundt

(1868) by which the velocity of sound in various gases can be

compared by small-scale experiments. The wave-lengths are

found by measuring the distances between the nodes, whose

position is indicated by the heaping up of lycopodium powder

previously scattered in the tube. The vibrations are excited

in the two tubes (containing the two gases to be compared) by
disks fitted to the two ends of a longitudinally vibrating rod.

If the end x= I is open, the formula (10) is replaced by

g= ^008^=^ 008 (lit + 6), ,..(11)cos (nl/c) c

and the condition of strongest resonance is cos (nl/c)
= 0, or

/ = Jm\, where m is an odd integer.

The preceding investigations would apply also to the

vibrations of a column of water, or other liquid, contained

in a tube, provided the material of the tube were absolutely

rigid. In practice, however, the yielding of the walls has

an appreciable effect; the potential energy corresponding to

a given strain (dg/dx) of the fluid is diminished, and the wave-

velocity is lowered. The fact was observed by Wertheim (1847),

but the true explanation is due to Helmholtz (1848). The

question has been further investigated by Korteweg (1878)

and the present writer. Owing to the much greater velocities

( 44) of elastic waves in solids such as glass or steel, as

compared with the sound-velocity in water, the stresses in

the walls adjust themselves so rapidly that it is legitimate

to assume that the deformation of the tube has the statical

value corresponding to the instantaneous distribution of
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pressure in the liquid. If c be the theoretical velocity of

sound in the liquid, as given by 59 (8), c the actual velocity,

it is found that in the case of a tube of small thickness h

...(12)

where a is the internal radius, K is the volume-elasticity of

the liquid, and E is the value of Young's modulus for the

material of the tube. Thus in the case of water (K = 2'22 x 1010

)

contained in a glass tube (^=6*03 x 1011

) whose thickness is

one-tenth of the radius, we find c '759c . Even in the other

extreme, when the walls are very thick, it is found that

where /A is the rigidity. The value of
/z,

for glass is, roughly,
about 10 times the value of K for water; this would give

a diminution of about 5 per cent, in the wave-velocity.

63. Waves of Finite Amplitude.
The laws of sound propagation, as they are investigated in

this and succeeding chapters, are subject to some qualifications

which may best be considered in relation to plane waves, where

the theory is simplest.

In the first place, it has been assumed that the conden-

sation s may be treated as infinitely small. This hypothesis
is adequate for most purposes, but there are certain "second

order
"

effects which are of some theoretical importance.
It is easy to shew that a progressive wave of finite (as

distinguished from infinitely small) amplitude cannot be pro-

pagated without change of type, except on the hypothesis

of a certain special relation between pressure and density.

Assuming, for a moment, that a wave of permanent type is

in progress, we may in imagination impress on the whole

mass of air a velocity equal and opposite to that of the

wave. In this way we obtain a condition of "
steady motion

"

as it is called, in which the velocity, pressure, and density at

any point of space are constant with respect to the time.

For definiteness we may fix our attention on the air contained

in a long straight tube of unit sectional area. The velocity u
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being now a function of the space-coordinate x only, the

acceleration of the air-particles will be given by udu/dx as

in ordinary dynamics. Hence, considering the acceleration of

momentum of the mass which at the instant considered lies

between the planes x and x + 8x, we have

du dp
pu-r =

-/- ......................(1)dx dx

Also, since the same amount of matter crosses each section in

unit time, we have

pu = const. =??i, ..................... (2)

say. Hence mdu/dx dp/dx, and

p= C mu, ........................(3)

or p-p = m(u -u) = m* ---, .........(4)
\Po pJ

where the symbols pQ , p ,
u refer to the parts of the medium

which in the original form of the question were undisturbed.

This gives the special relation referred to. In terms of the

volume per unit mass we have

p-p =m*(vQ -v), ..................(5)

which is the equation of a straight line on the indicator

diagram. A relation of this type does not hold for any
known substance, whether under the adiabatic or the iso-

thermal condition, and could in any case only apply to a

limited range, since the volume would otherwise shrink to

nothing under a certain finite pressure.

If, however, the range of density be small, the equation (5)

can be identified with 59 (6) provided mz

=Kp . Since m=p ^o>

where u is the wave-velocity in the original form of the problem,
this gives uQ

2 =
ic/p ,

in agreement with 59 (8). The process
is equivalent to choosing m so that the straight line (5) shall

be a tangent at the point (v , p ) to the curve which on the

indicator diagram gives the effective relation between p and v.

The condition (5) was obtained in different ways by
Earnshaw (1860) and Rankine* (1870).

To ascertain the character of the continual change of type
* W. J. M. Rankine (1820 72), professor of engineering at Glasgow,

185572.
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which must take place in sound-waves propagated in actual

fluids, we must have recourse to accurate equations of motion.

On the plan of 59 we have

and P = po/(l + A) = p /(l -f ^ (7)

Hence, on the adiabatic hypothesis that

P/Po
~

(p/po)
7

> (8)

we find by elimination ofp and p

2\Y+1
, (9)

where c2 =
ypo/po as before.

For illustrative purposes it is sufficient to consider the

isothermal case, which is derived from the above by putting

7=1, so that

We have seen in 60 that on the hypothesis of infinitely

small vibrations there is a definite relation between particle-

velocity and condensation in a progressive wave. Following

Earnshaw, we assume (tentatively) that the same thing holds

in the general case, and write accordingly

(11)

where the form of the function is to be determined. From this

we deduce

da?'

and therefore = f ................(IS)

Hence (10) is satisfied provided
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no additive constant being necessary if we assume that f =
in the parts of the medium not affected by the wave. This

may also be written

?= + clog(l+s), ..................(16)

by 59 (3). Another form is

P/P*
= e^'

c
......................(17)

When s is infinitesimal the formula (16) reduces to f = + cs, in

agreement with 60.

To find the rate at which any particular value of s is

propagated, in either of these cases, we note that the value of

9f/9a? which is associated with the particle x at the instant t

will have been transmitted to the particle x + $>x at the instant

t + $t, provided

|f 8M.ga.-o,oxdt da?

i.e. by (12) and (14),
&c c(l+s)& = ................(18)

The phase s is therefore propagated with the velocity

J = + c(l + S) ..................(19)

relative to the undisturbed medium. To find the rate of

propagation in space we have to take account of the total

variation of x + ,
which is

The required velocity is therefore

('+DM S ........

;

The lower sign relates to a wave travelling in the direction of

#-positive. It appears from (16) that positive values of f are

then associated with positive values of s, as in the approximate

theory of 60
;
but the formula (20) shews that the velocity

of propagation is greater, the greater the value of s. The parts

of the wave where the density is greater therefore gain con-

tinually on those where it is less. Thus if the relation between

s and x be exhibited graphically, the curve A in the annexed

L. 12
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figure takes after a time some such form as B*. The wave

becomes, so to speak, continually steeper in front, and slopes

more gradually in the rear, until a time arrives at which the

gradient at some point becomes infinite. After this stage the

analysis ceases to have any real meaning.

Fig. 62.

The adiabatic hypothesis leads to results of the same

general character. The reader will find no difficulty in verifying

the following statement. The formula (16) is replaced by

and the velocity of propagation of a particular value of s is

Tc(l+*)*
(7 + 1)

..................(22)

relative to the undisturbed medium, or

in space. In the latter formula the particle-velocity is added

to the velocity of sound proper to the actual density, which is

on the adiabatic hypothesis dependent on the degree of con-

densation and consequent change of temperature. The general
conclusions are as before.

*
It is not very important here whether the coordinate x be supposed (as in

the previous part of this investigation) to refer to the undisturbed medium, or

to be an ordinary space-coordinate. In either case the tendency is the same.
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It must be remembered that since the equation of motion

(9) is not linear, distinct solutions, such as those representing

waves travelling right and left, respectively, which we have

just been considering, cannot be superposed by mere addition.

It may however be remarked that, as a result of a more

complete investigation, Riemann* found (1860) that a localized

arbitrary initial disturbance does eventually resolve itself into

two waves of the above kinds, travelling in opposite directions.

To follow exactly the career of waves of finite amplitude

generated in any given manner is a problem of considerable

difficulty; but some indications may be obtained by methods

of approximation. This procedure was adopted by Airy f (1845)
in his work on the dynamical theory of the tides, where similar

questions arise with respect to tides in shallow seas and

estuaries.

Suppose, for instance, we have a long straight tube in which

a piston (at x = 0) is made to move in an arbitrary manner

?=/(<)....................... ..(24)

The equation (9) becomes, if we neglect terms of the third

order in the derivatives of f,

If we omit the last term, we have as in 60 the first

approximation

(26)

Substituting this value of f in the small term of (25) we

obtain

The solution of this which is consistent with (26) is

.......<2S>

as is easily verified. The correction to the first approximation
* Bernhard Riemann (1826 66), professor of mathematics at Gottingen

185766.
t Sir George Biddell Airy (1801 92), Plumian professor of astronomy at

Cambridge 182835, astronomer royal 183581.

122
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(26) is proportional to x, and to the square of the ratio of the

velocity of the piston to the velocity of sound. This latter ratio

may in practice be exceedingly small, but as we travel to the

right the correction continually increases in importance, until at

length the neglect of terms of the third and higher orders

would no longer be justified. This is what we should expect

from the results of Earnsnaw's investigation.

When the motion of the piston is simple-harmonic, say

/(0 = acosnt, (29)
the formula (28) gives

g = a cos n (t- -} + (v + V n9a*

% \ _ Cos2rc (t- -}l. (30)
\ C/ oC \ C/j

The displacement of any particle is no longer simple-harmonic,

but consists of a part independent of t together with two

simple-harmonic terms, one having the frequency of the

imposed vibration (29), and the other a frequency twice as

great. This illustrates the implied limitation to infinitely

small motions in the usual theory of forced oscillations ( 17).

Again, if the given vibration of the piston be made up of

two simple-harmonic components, say

f(t) = ! cos nj + a2 cos n2t, (31)
we find

f = ttj cos nj (t - -
j
+ a2 cos nz (t

-J

f 1 ( / #\
- x \ n?a? + n2

2a2
2

nfaf cos 2wx It
kr

( V cj

n2W cos 2n2 (t
V c

-f 2/1^2 Oi az cos (/*! n2) {
t -

2n1n2a1o2 cos (^ + ^2) It
JY

.

.(32)

We thus learn that in addition to the vibrations of double

frequency, other simple-harmonic vibrations whose frequencies
are respectively the difference and the sum of the primary

frequencies now make their appearance. In acoustical language,
two simple vibrations of sufficient amplitude may give rise not
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only to the corresponding pure tones, but to their octaves, as

well as to certain "combination-tones," whose occurrence

reminds us again, that the principle of superposition is no

longer valid. We shall have occasion to refer to this investi-

gation at a later period (Chap. X).

The analogous phenomenon in tidal theory is the production
of "over-tides," which are in fact appreciable, and have to be

provided for in the Harmonic Analysis referred to in 39.

We have seen that the main effect of finite amplitude is

that in a progressive wave the gradients, both of pressure and

of density, tend to become infinite. This has suggested the

question whether a wave of discontinuity might not finally be

established, analogous to a "bore" in water-waves. To examine

into the possibility of such a wave we take the question in its

simplest form, and assume that the circumstances are everywhere

uniform, except for the sudden transition at the plane of dis-

continuity. Further, by the superposition of a certain uniform

velocity, we reduce the problem to one of steady motion in

which the plane in question is fixed.

The symbols p , p ,
u will then be supposed to refer to the

region to the left of this plane, whilst the values of the corre-

sponding quantities on the

right are denoted by p, p, u.

Since in every unit of time

the same mass (m) of fluid

crosses any unit area normal

to the direction of flow, we have

pu = p u =m, or u = mv, uQ
= mv (33)

Again, since in unit time a mass m has its velocity changed from

UQ to u, the momentum of the portion of air included between

two planes in the positions indicated by the dotted lines in

Fig. 63 is increasing at the rate m (u
- u

),
whence

p -p = m(u-uQ\ (34)

or, in virtue of (33),

p p = m?(v v ), (35)

in agreement with (5). If we now superpose a uniform velocity
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MO, we get the case of a wave advancing into a region

previously at rest. The wave-velocity is given by

VQ -V p-p po

as first found by Stokes (1848), and afterwards independently

by Earnshaw, Riemann, and Rankine. A difficulty, first pointed
out by Lord Rayleigh, arises, however, as to the conservation of

energy. The rate at which work is being done on the portion
of air above considered is p uQ pu, whilst that at which the

kinetic energy is increasing is \m (u? u<?). The difference is

p u -pu-\m (u
2 -

uf) = \m ( p + p)
-

v). . . .(37)

If the two points (v, p), (v , p ) on the indicator diagram be

denoted by P, P , respectively, the expression (37) is m times

the area of the trapezium bounded by the straight line P P,

the axis of v, and the ordinates p0) p. If the transition be

effected without gain or loss of heat, the points P ,
P will lie

on the same adiabatic, and the gain of intrinsic energy will be

represented by the area included between this curve, the axis

of v, and the same two ordinates. Since the adiabatics are con-

cave upwards, the latter area is (in absolute value) less than the

former. It appears on examination of the signs to be attributed

to the areas that if v > v the work done is more than is accounted

for by the increase of the kinetic and intrinsic energies, whilst if

VQ < v the work given out would be more than is equivalent to

the apparent loss of energy.

It is evident that no complete theory of waves of discon-

tinuity can be attempted without some reference to viscosity

and to thermal conduction, since at the point of transition

the gradients of velocity and temperature are infinite.

It does not appear probable that under ordinary conditions

the modifications due to finite amplitude are of serious im-

portance. In equation (30), for instance, the ratio of the

amplitude of the vibration of the second order to that of the

primary vibration is comparable with tfax/c
2
,
or with n*a/g . x/H,

where H is the height of the homogeneous atmosphere. With

ordinary amplitudes a, and ordinary distances x, this ratio will

be very small. In three dimensions the effect must be very
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much less, owing to the diminution of amplitude by spherical

divergence.

64. Viscosity.

The essence of viscosity is that in a moving fluid the stresses

differ from a state of pressure uniform in all directions about a

point, by quantities depending on the rates of deformation. It

is usually assumed that these quantities are linear functions of

the rates of strain
;

from our present standpoint this is

sufficiently justified by the fact that the strain-velocities are

regarded as infinitely small. As in 40 there will at any

instant, and at any given point, be three principal axes of the

deformation which is taking place, and these will naturally be

the principal axes of the corresponding stress. We therefore

write, by analogy with 42 (1),

............... (1)

where lt e2 > *s are the principal strain-velocities, and

A =
1 + 2 + 3 ......................(2)

By the same kind of proof as in 41, // is recognized as the

coefficient of viscous resistance to a shearing motion in parallel

planes; viz. if TJ denote the rate of shear, and TS the corre-

sponding stress, we have
r = //i).........................(3)

The value of // has been determined with considerable accuracy
for a number of fluids, gaseous as well as liquid.

It will be noticed that the meaning of the symbol p, and

consequently the value of V, is so far indeterminate, since

nothing is altered in the shape of the formulae (1) if we

incorporate in p any constant multiple of A. In the case of

liquids it is in fact usual so to incorporate the second terms in

(1). In the application to gases it is convenient to regard p as

defined by the gaseous laws (p
=

DpO). There is at present no

experimental evidence as to how far the mean stress about a

point, viz.

i (Pi +p* +p,) = -P + (*' + I A*') A,
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differs, in a moving gas, from p, as thus fixed
;
but from

considerations based on the kinetic theory of gases Maxwell*

inferred (1866) that the two things are identical, and that

accordingly
V }/*' W

As we are interested chiefly in the order of magnitude of

the effects, the precise determination of X' is not of much

consequence to us; accordingly Maxwell's view is adopted for

simplicity in what follows.

The dimensions of // are those of a stress multiplied by
a time, or [ML~ 1T~ 1

].
It is found that /*' is independent of

the density, but (in gases) increases with rise of temperature.
Its value for air at C. is about '000170 in absolute c.G.s.

units. It will appear however immediately that the effect of

viscosity in modifying motion depends not so much on the

value of fA as on its ratio to the inertia of the fluid. This

ratio

v = p/po (5)

is therefore called by Maxwell the
" kinematic

"
coefficient of

viscosity; its dimensions are [L
2T~~ 1

].
For air at C. its value

is about '132 c.G.s.

The rate at which the stresses on the faces of a unit cube

are doing work in changing its size and shape is given by

X'A2 + 2fl' (tf + 62
2 + 63

2
)

'

{( 2
- 63)

2 + (63
-

<0
2 + (^ - 62)

2

}.
. . .(6)

The term p& represents the rate at which the intrinsic

energy is increasing. The remaining terms, which are essenti-

ally positive, indicate a dissipation of energy at the rate

f/{fe-*s)
2 + (- *0

2 + (, -<U2

} (7)

per unit volume. The mechanical energy thus lost is converted

into heat. It will be noticed that (7) vanishes in the case of

uniform expansion (et
= e2

= 63) ;
this is a necessary consequence

of our previous assumption as to the value of the constant X'.

* James Clerk Maxwell (1831 79), professor of experimental physics at

Cambridge (187179) ; author of the electromagnetic theory of light.



PLANE WAVES OF SOUND 185

In the case of a pure shearing motion (17), the formula (6)

takes the shape
w^ = /*V.........................(8)

In plane waves of sound we have e2
= 0, e3 = 0, and therefore

from (1) and (4)

pl ^-p-\-^fJi l
= -p -KS + ^fJL

/

l ..........(9)

Moreover, in the notation of 59,

2- *- ...............<'>

The equation of motion, viz.

o^- 9^ (11)*!*- ..................... l
"

J

therefore becomes

*
To obtain a solution appropriate to the case of free waves

we put
f=Pcosfcp, .....................(13)

where P is a function of t, to be determined. We find that

(12) will be satisfied, provided

<">

This has the form of 11 (3), and the solution is therefore

P = ta-<<'
T
cos(7tf-He), ...............(15)

provided r = 3/2i/&
2
,

n? = &2c2 -
1/r

2............. (16)

In all cases of interest cr is a considerable multiple of the

wave-length (X = 2?r/A?), so that n = kc, practically, the friction

having as usual no appreciable effect on the period. Thus

f = Ce~tir cos (kct + e) . cos kx..........(17)

This represents a system of standing waves with fixed nodes

and loops. There is a similar solution in which cos kx is

replaced by sin&#, and by superposition of the two we can

construct a progressive wave-system

% = Ce-*lr wak(ct-x)................(18)

Putting i/ = -132 for the case of air, we find T = '288X2
, the

units being the second and the centimetre.
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The solution of (14) may also be effected concisely by means

of imaginary quantities. Thus in investigating forced simple-

harmonic vibrations of prescribed frequency we assume that

fc _
ftgi

nt+mx (19)

whence, on substitution,
n2

(20)
c
2

-I- 1 ivn

The ratio vn/c* is usually very small; thus for n = 1500 its value

is, with previous data, about 1*8 x 10~7
. Hence

Taking the lower sign, which corresponds to waves travelling in

the direction of ^-positive, and rejecting the imaginary part of

(19), we find

...............(22)

provided l=3(?/2vn*...................... (23)

This represents a system of waves generated to the right of

the origin by a prescribed motion f = a cos nt at this point (as

by a piston in a tube if we neglect the friction at the sides).

The waves advance, with (sensibly) the usual velocity c, but

diminish exponentially in amplitude as they proceed*. The

linear magnitude I measures the distance over which the waves

travel before the amplitude is diminished in the ratio \\e. In

terms of the wave-length we have

I = (Sc/STr
2
!/) . X2

,
.................. (24)

or, with previous data, I = 9'56X2 x 103
. The effect of viscosity

in stifling the vibrations is therefore very slight except in the

case of sounds of very high frequency and consequently short

wave-length. Even for \ = 10 cm. the value of / is nearly 10

kilometres. When we come to the discussion of three-

dimensional waves it will be clear that the effect of viscosity

may for most purposes be ignored in comparison with the

diminution of intensity due to spherical divergence. It is,

however, of some interest to observe that there is a physical

* This calculation was first made by Stokes (1845).
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limit to the frequency of vibrations which are capable of

propagation for more than a very moderate distance.

The viscosity being small, the rate at which work is done

per unit area by the piston in maintaining the wave-system

(22) must have sensibly the value |p n2a2c found in 60. Since

the energy in the medium to the right is now finite and on the

average constant, this must be equal to the rate of dissipation

of energy by viscosity. The equality is easily verified. The

dissipation is, by (7),

= J// ^rfV** cos2

"(*-*)
dx, . . .(25)

approximately, if we keep only the most important term.

Writing

and taking the mean value with respect to the time, we obtain

by (23).

65. Effect of Heat Conduction.

A further cause of dissipation of energy is to be found in

the thermal processes consequent on the alternate expansions
and rarefactions of the air. If indeed these succeed each other

with sufficient rapidity, the variations are almost accurately

adiabatic, as explained in 59
; but, as was first pointed out by

Kirchhoff (1868), the residual conduction of heat is in any case

of equal importance with viscosity. On the kinetic theory of

gases the coefficients of
" thermometric

"
conductivity (v) and

of kinematic viscosity are in fact of the same order of magnitude ;

according to Maxwell the relation is v=-^v. For this reason

the preceding calculations of the effect of viscosity on air-waves

must not be looked upon as more than illustrative. A complete

investigation, in which both influences are taken into account,

shews that the effect is equivalent to an increase in the

kinematic viscosity, but the order of magnitude is unaffected.
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If on the other hand the alternations of density were to

take place with extreme slowness, as in the case of very long
waves of simple-harmonic type, there would be time for

practical equalization of temperature, and the dissipative

influence of conduction as well as viscosity would again be

insignificant. Since the expansions are here nearly isothermal,

the wave-velocity will approximate to the Newtonian value

(I 59 (10))-

In intermediate cases the theory shews that the wave-

velocity would no longer be constant, but perceptibly dependent
on the frequency. Since no such effect is observed, we infer

that in all ordinary cases the conditions are practically adiabatic.

It appears also that in such intermediate cases the dissipation

would be very greatly increased. The investigation of Stokes

(1851), which is here referred to, relates to the effect of

radiation
;
the extension to conduction was made independently

by Kirchhoff and Lord Rayleigh. It is probable that the

effects of radiation alone are of subordinate importance.
The detailed calculation must be passed over, but the

general explanation of the manner in which thermal processes

may operate to produce dissipation of energy has been stated

with such admirable clearness by Stokes that it is worth while

to reproduce the passage in question. The explicit reference is

to radiation, but the same principles are involved in the case of

conduction also.

" Conceive a mass of air contained in a cylinder in which an

air-tight piston fits, which is capable of moving without friction,

and which has its outer face exposed to a constant atmospheric

pressure ;
and suppose the air alternately compressed and

rarefied by the motion of the piston. If the motion take place

with extreme slowness, there will be no sensible change of

temperature, and therefore the work done on the air during

compression will be given out again by the air during expansion,
inasmuch as the pressure on the piston will be the same when
the piston is at the same point of the cylinder, whether it be

moving forwards or backwards. Similarly, the work done in

rarefying the air will be given out again by the atmosphere as

the piston returns towards its position of equilibrium, so that
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the motion would go on without any permanent consumption
of labouring force. Next, suppose the motion of the piston

somewhat quicker, so that there is a sensible change of tempera-

ture produced by condensation and rarefaction. As the piston

moves forward in condensing the air, the temperature rises, and

therefore the piston has to work against a pressure greater than

if there had been no variation of temperature. By the time

the piston returns, a good portion of the heat developed by

compression has passed off, and therefore the piston is not

helped as much in its backward motion by the pressure of the

air in the cylinder as it had been opposed in its forward motion.

Similarly, as the piston continues its backward motion, rarefying

the air, the temperature falls, the pressure of the air in the

cylinder is diminished more than corresponds merely to the

change of density, and therefore the piston is less helped in

opposing the atmospheric pressure than it would have been had

the temperature remained constant. But by the time the

piston is returning towards its position of equilibrium, the cold

has diminished in consequence of the supply of heat from the

sides of the cylinder, and therefore the force urging the piston

forward, arising, as it does, from the excess of the external over

the internal pressure, is less than that which opposed the piston
in moving from its position of equilibrium. Hence in this case

the motion of the piston could not be kept up without a

continual supply of labouring force. Lastly, suppose the piston

to oscillate with great rapidity, so that there is not time for any
sensible quantity of heat to pass and repass between the air and

the sides of the cylinder. In this case the pressures would be

equal when the piston was at a given point of the cylinder,

whether it were going or returning, and consequently there

would be no permanent consumption of labouring force. I do

not speak of the disturbance of the external air, because I am
not now taking into account the inertia of the air either within

or without the cylinder. The third case, then, is similar to the

first, so far as regards the permanence of the motion; but there

is this difference
; that, in consequence of the heat produced by

compression and the cold produced by rarefaction, the force

urging the piston towards its position of equilibrium, on
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whichever side of that position the piston may happen to be, is

greater than it would have been had the temperature remained

unaltered.

"Now the first case is analogous to that of the sonorous

vibrations of air when the heat and cold produced by sudden

condensation and rarefaction are supposed to pass away with

great rapidity. For we are evidently concerned only with the

relative rates at which the phase of vibration changes, and the

heat causing the excess of temperature passes away, so that

it is perfectly immaterial whether we suppose the change of

motion to be very slow, or the cooling of heated air to be very

rapid. The second case is analogous to that of sound, when we

suppose the constants q* and n comparable with each other; and

we thus see how it is, that, on such a supposition, labouring force

would be so rapidly consumed, and the sound so rapidly stifled.

The third case is analogous to that of sound when we make the

usual supposition, that the alternations of condensation and

rarefaction take place with too great rapidity to allow a given

portion of air to acquire or lose any sensible portion of heat by
radiation. The increase in the force of restitution of the piston,

arising from the alternate elevation and depression of tempera-

ture, is analogous to the increase in the forces of restitution

of the particles of air arising from the same cause, to which

corresponds an increase in the velocity of propagation of

sound."

66. Damping of Waves in Narrow Tubes and Crevices.

A somewhat greater effect of viscosity may be looked for

when the air is in contact with a solid body, as at the walls of

a pipe or resonator, owing to the practically infinite resistance

which the surface opposes to the sliding of the fluid immedi-

ately in contact with it. It seems in fact to be well-established

that the relative velocity vanishes at the surface, whereas in

our theoretical investigations we assume for the most part that

sliding takes place quite freely. A closer examination shews

however that in the case of rapid vibrations, such as we are

concerned with in acoustics, the effect is mainly local, being
*

[q is a constant of radiation.]
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confined, practically, to a very thin layer of air near the

surface, and is except in very narrow spaces unimportant.
The matter may be sufficiently illustrated by a very simple

case. Suppose that the fluid above the plane y = is acted on

by a periodic force

X = fcosnt, (1)

per unit mass, parallel to Ox, the plane forming a rigid

boundary. The consequent motion being everywhere parallel

to Ox and independent of the coordinate x, there is no variation

of density, and the deformations which are taking place are of

the nature of shearing motions parallel to y = 0. Denoting the

velocity f by u, the rate of shear will be

and the shearing stress on a plane parallel to y is accordingly

pdu/dy. The stratum bounded by the planes y and y + By
therefore experiences a resultant force

a

per unit area, parallel to x, and the equation of motion is of the

form
du d*u

We have to solve this under the condition that u = Q for

y = 0. For conciseness we put X = fe
int

,
and reject (in the

end) the imaginary part of our expressions. The equation is

then satisfied by

u = (ln + Ae'y)e
i

', .................. (4)

provided m2 =
in/v, or

m=(l+0& .....................(5)

where = vW2")......................... (6)

Since we are looking for a solution which shall be finite for

y = oo we take the lower sign. Also, the condition that a =
for y = requires that A =

f/in. Hence
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or, keeping only the real part,

(8)
Tl fit

a result which is easily verified. When fty is moderately large

the value of u reduces practically to the first term, which is

the same as if there had been no friction. The rigid boundary

accordingly acts as a drag only on a thin stratum
;
for example

when y Sir/ft the velocity falls short of its value at a great
distance from the surface by about one part in 535.

In actual problems of acoustics (relating for example to

vibrations in pipes) the force pX per unit volume is replaced

by the negative pressure-gradient dp/da, and we have of course

changes of density to take into account, but the results have

a similar interpretation. The linear magnitude

h = 2ir/l3
=

)/(4eirp.2irln) ............... (9)

may be taken to measure the extent to which the dragging
effect penetrates into the fluid. With the previous data its value

in centimetres is about 1'29/N*, where N is the frequency; thus

for N= 256 we find h = "80 mm.
We may apply the above investigation to obtain an estimate

of the effect of viscosity on the wave-velocity in a tube, on the

supposition that the diameter is small compared with the

wave-length but large compared with the quantity h. The

tangential stress on the fluid at the boundary y = is, in the

case of (7),

by (9), the time-factor e
int

being understood. The total tan-

gential force exerted by the walls of a cylindrical tube of radius

a on the contained air may therefore be equated to

per unit length, where p denotes the mean pressure over the

section (?ra
2
).

Hence if u be the mean velocity, we have,

calculating the forces on the air contained in an element Bx

of the length,

9 du -dp . /n ., , dp
7rp a? = - ira? + $(I-i)ha^-,r

dt dx * ^ dx
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1 dp L ,- ~ h,- ~
or ^ = -- f 11 (!-{)-= }

.............(11)
dt

'

To this we must add the relations

.....................(12)

The elimination ofp and s between these equations leads to

.............<14>

It is already assumed that the time enters through a factor

eint
;
and the solution of (14) is therefore of the type

u=Ceint+mx, ...(15)

with ra2 =

or m

approximately, on account of the assumed smallness of h/a.

For waves propagated in the direction of ^-positive we take

the lower sign, and write

m = in/c' a, (18)

where c'

and a = nh/4s7rac (20)

We have, then u=Ce-* .&<- xlc
'\ (21)

or, in real form, u Ce""* cos n It
>j

(22)

The wave-velocity is therefore diminished in the ratio given

by (19). The exponential factor in (22) expresses the law of

decay of the waves as they advance. If I be defined as in

64 (23) it will be found that al is of the order \*/ah. The

rate of decay is therefore much greater under the present

conditions than in the case of sound waves in the open.

A formula equivalent to (19) was published without demon-

stration by Helmholtz in 1863. The above proof is a variation

of that given by Lord Rayleigh in his Theory of Sound.

L. 13
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A more complete investigation was instituted by Kirchhoff

(1868) in which thermal processes are considered, as well as

viscosity. The effects are thereby increased, as already explained,

but remain of the same order of magnitude.
As already stated, it is implied in the above calculation that

the diameter of the tube greatly exceeds the quantity h. When
on the other hand the diameter is comparable with, or less

than h, the walls have relatively a much greater hold on the

vibrating mass, and the character of the motion is entirely

altered by the friction. In particular, when h is large com-

pared with the width the mere inertia of the fluid ceases to

have any appreciable influence, the mean velocity over a

cross-section being determined by an approximately statical

equilibrium between the pressure-gradient (in the direction of

the length) and the friction of the walls. We have, then,

(23)

where R is a coefficient of resistance, depending on the nature

of the fluid, and on the shape and size of the cross-section.

Again, by Boyle's law,

=.pb(l + 5), .....................(24)

the isothermal hypothesis being adopted as now the most

appropriate, since, owing to the assumed narrowness of the

tube, transfer of heat can take place freely. Eliminating p and

s between (13), (23), and (24), we find

du_p d*u

dt~RW
This has the same form as the equation of linear conduction of

heat. Assuming that

u=Ceint+rn
^, .................. (26)

we have m* = inR/p ,
and therefore

m=(l+*). ..................(27)

if ^ = ^nR/Po................... (28)

Taking the lower sign we obtain

M-Ck-ws+^ne-wa^ ...............(29)

or, in real form, u = Ce~wx cos (nt ^x).............(30)
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The value of R will be sensibly the same as if the fluid were

incompressible. Its determination is therefore the same as in

the case of the steady flow of a liquid under pressure through
a capillary tube. In this case, if the section be circular, the

shearing stress per unit length on a coaxial cylindrical surface

of radius r is 27n* . ^"dujdr, and the resultant of the longitudinal
forces on the two curved faces of a cylindrical shell of thick-

ness 8r is therefore

per unit length. The sectional area of the shell being Zirrdr,

the requisite pressure-gradient is

, (31)
drj

which is independent of x. There being no radial motion, we
have dp/dr

= 0, so that p, and therefore dp/dx, is also independent
of r. The equation (31) is then satisfied by u = A+Br!t

t

provided B be properly determined. The constant A is fixed

by the consideration that there is no slipping at the wall

(r = a) of the tube. In this way we find

The mean velocity over the area of the section is therefore

?ra2
.' o 9# &P>'

'

Hence, for a circular section,

12 = V/a (34)

The formula (33) contains Poiseuille's* law of efflux of liquid

through a capillary tube, viz. that the discharge per second

varies as the pressure-gradient and as the fourth power of the

diameter. It may be made the basis of an experimental method

of determining p.

*
J. L. M. Poiseuille (1799 1869), a practising physician in Paris, who was

interested in the capillary circulation of the blood. The date of the memoir
referred to is 1844.

132
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The case of an elliptic section can be solved in a similar

manner. The result, first given by Boussinesq (1868), is

E = V(a2 + 62
)/a

2&2
, (35)

where a, b are the semi-axes. If we put a = oo we get the

case of a narrow crevice, bounded by parallel planes, the

breadth being 26, viz.

E = V/62
(36)

This can of course be obtained more easily by an independent

process.

The formula (30), when combined with (34) or (36), agrees

with the result of the more complete investigation given by
Lord Rayleigh (1883). It appears that u goes through its

cycle of phases in a distance 27r/r, but that within this space

the amplitude is diminished in the ratio e~2n = 1/535. In the

case of circular section we have

OT2 =
ifi'n/pda*, (37)

by (28) and (34). Hence when the circumstances are such that

the ratio v/na? is large, the distance in question is small com-

pared with the wave-length (X = ^TTC/U) in the open ;
for we

have

(Xs7/27r)
2 - *7

2
c
2

/tt
2 =

4>v/na
2

(38)

Hence in a sufficiently narrow tube the waves are rapidly

stifled, the mechanical energy lost being of course converted

into heat.

The investigation has been employed by Lord Rayleigh to

illustrate the absorption of sound by porous bodies. When
a sound-wave impinges on a slab which is permeated by a large

number of very minute channels, part of the energy is lost, so

far as sound is concerned, by dissipation within these channels,

in the way just explained. The interstices in hangings and

carpets act in a similar manner, and it is to this cause that the

effect of such appliances in deadening echoes in a room is to be

ascribed, a certain proportion of the energy being lost at each

reflection. It is to be observed that it is only through the

action of true dissipative forces, such as viscosity and thermal

conduction, that sound can die out in an enclosed space, no mere

modification of the waves by irregularities being of any avail.



CHAPTER VII

GENEKAL THEORY OF SOUND WAVES

67. Definitions. Flux. Divergence.
In respect of notation it is convenient now to take a point

of view somewhat different from that adopted in the preceding

chapter. We denote by u, vy w the component velocities,

parallel to rectangular axes, considered as functions of position

(x, y, z) and of time t. With each point of space there is

accordingly associated, at any given instant, a vector (u, v, w),

and the whole assemblage of such vectors gives an instantaneous

picture of the distribution of velocity*. On the other hand

the variations of u, v, w with the time, for given values of

x, y, z, give the history of what goes on at a particular place f,

but supply in the first instance no information as to the

careers of the various particles which (so to speak) successively

cross the scene.

When we proceed to calculate the component accelerations

of the particle which at the instant t is in the position (x, y, z)

we have to take account of the fact that after the lapse of a

time however short its velocities u, v, w will be given by the

respective functions of the altered position as well as the altered

epoch. Suppose that at two successive instants ^, ^ a particle

occupies the positions P and P', respectively, and that the

corresponding values of the ^-component of the velocity are

* M. Marey and others have taken photographs, of short exposure, of a two-

dimensional current of water carrying suspended motes. The image of each

mote is drawn out into a short line, which indicates the direction and magnitude
of the corresponding velocity.

t As if we were to view the surface of a stream through a narrow tube,
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ul} u2 at P and w/, u% at P'. The as-component of the

acceleration of this particle will be the limit of

The limit of the first term on the right is du/dt, the rate of

change of u at P. Again u% uz is the difference of simul-

taneous velocities at the points P, P', so that, ultimately,

*,), ............(2)

where du/ds is a space-differentiation in the direction PP', and

q is the resultant velocity \/(u
2 + v* + wz

).
The final expression

for the acceleration parallel to x is therefore

du du ,

Similar values are obtained in like manner for the other

components. If (I, m, n) be the direction-cosines of PP',

we have
du du dx du dy du dz

ds dx ds dy ds dz ds

j
du du du= t^+ra + 7i

, (4)dx dy dz

Philst

u=lq, v = mq, w = nq (5)

!ence we may write (3) in the form

du du du du ._.

dt*
U
dx
+V

ty+
W

3z>

which is familiar to students of Hydrodynamics.
It has been thought worth while, as a matter of principle,

to accentuate the changed point of view, but in the application

to motions which are treated as infinitely slow the distinction

loses its importance. The second term in (3) is then of the

second order in the velocities, and the component particle-

accelerations may be identified with du/dt, dv/dt} dw/dt. The

extent of the error here involved, in acoustical questions, may
be estimated as in 60 by a reference to plane waves of sound.

If

= a cos k (ct x), (7)
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the ratio of the maximum value of udu/dx to du/dt is ka. The
restriction to

"
infinitely slow

"
motions therefore means that

the amplitude must be small compared with X/2-7T.

If we fix our attention on any geometrical surface, open or

closed, drawn in the region occupied by the fluid, the expression

(lu + mv + nw) BS . Bt,

where (/, m, n) is the direction of the normal drawn from an

elementary area BS of the surface, towards one side, measures

the volume which in the infinitely short time Bt crosses BS.

The coefficient of Bt in this expression is called the "flux"

across BS, and its integral

(lu + mv + nw) dS, . (8)

taken over the surface, is called the total flux across the latter

towards the side on which the normals are supposed drawn. It

measures the rate at which fluid is being carried across the

surface, expressed in terms of volume per unit time.

To calculate the flux outwards across the boundary of an

elementary rectangular region BxByBz having its centre P at

the point (x, y, z), we note that the average velocities parallel

to x, over the faces ByBz, being equal to the values of u at the

centres of these faces, will be

respectively. The difference of the fluxes, from left to right,

across these faces is accordingly du/dx .BxByBz. Adding the

corresponding terms for the other pairs of faces, we obtain the

result

Cr
(c

ou dv dw\ ~ .
~- + 5- + )Ba:ByBz (9)

dy oz

The expression in brackets gives a sort of measure of the rate

at which the substance in the neighbourhood of P is on the

whole flowing away from P. It is therefore called the
"
divergence

"
of the vector (u, v, w), and is denoted by

div (u, v, w) ; thus
. du dv dw

, W)
= + + (10)
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By dividing any finite region into rectangular elements we
see that the total flux outwards across the boundary must be

equal to the volume-integral of the divergence, or

This can of course be proved mathematically without attributing

any kinematical meaning to the symbols.

68. Equations of Motion.

To form the dynamical equations, we fix our attention on

that portion of matter which at the instant t occupies the

rectangular space &xyz. On the hypothesis of infinitely

slow motion its acceleration of momentum parallel to x is

p Sx&y$z .du/dt, where p is the density. The mean pressures

on the respective faces may be taken to be the pressures at the

centres of those faces, and the total pressures on the two faces

perpendicular to x are therefore

The difference gives a force dp/dx. Sx&y&z in the direction of

^-positive. Equating this to the acceleration of momentum, we

obtain the first of the following system of equations :

du _ dp dv _ dp dw _ _dp ,-.

p dt~~d~x' p
dt~~dy'

p ~dt~~dz'

Since the variations of p when multiplied by du/dt, ..., ... may
be neglected, we may replace p by its equilibrium value p ,

but

it will not always be necessary to preserve the suffix.

As in 59 we write

}
........................ (2)

where s denotes the condensation (p po)/po, and K is the cubic

elasticity of the fluid. If we further write

c
2 =

*/po, ........................(3)
as before, we obtain

du_ 8s dv_ _
8s <^__ c2

ds
( ft

dt~ dx> dt~ d' dt~ dz
.......W
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If A denote the dilatation of volume of the fluid which at

the instant t fills the space SasSySz, as compared with its

equilibrium condition, we evidently have

-^-
= div (u, v, w\ (5)

or since, in the case of small motions, s = A,

The equations (4), (6) are fundamental in the present branch of

our subject. The purely kinematical relation (6) is sometimes

called the "
equation of continuity."

69. Velocity-Potential.

If we integrate the equations (4) of 68 with respect to t

we obtain

,1
OX j || v_i/ j u i / 1 \

where UQ ,
v0t WQ are the values of u, v, w at the point (a?, y, z) at

the instant t = 0. In a large class of cases, these initial values

of u, v, w can be expressed as the partial differential coefficients

of a single-valued function of (x, y, z), thus

Throughout any region to which this statement applies, the

values of u, v, w at any subsequent instant t can be similarly

expressed; thus, from (1),

- ' .........

rt

where
<^>
= c

2
I sdt+fa...................(4)
J o

This function
<f> is called a "

velocity-potential," owing to its

analogy with the potential-function which occurs in the theories

of Attractions, Electrostatics, &c. It was introduced into

hydrodynamics by Lagrange.
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The instantaneous configuration of the "
equipotential sur-

faces"
</>
= const, indicates at once the distribution of velocity,

as regards both magnitude and direction.

Suppose two consecutive surfaces to be

drawn, for which the values of < differ by
S<. Let PP' be drawn normal to these, and

PPl parallel to x\ and let PP'=v. Ac-

cording to (3) the velocity at P, resolved Flg< 64 '

in the direction PPly is

3 PP' 8

ultimately, if I denote the cosine of the angle which the normal

PP' makes with Ox. From this, and from the analogous forms

of v, wt it is seen that the velocity at P is normal to the equi-

potential surface passing through that point, and is equal in

magnitude to the limiting value of
</>/*/.

Hence if a system
of surfaces be drawn corresponding to values of

<f>
which differ

by equal infinitesimal amounts, the velocity is everywhere

orthogonal to these, and inversely proportional to Sv, the distance

between consecutive surfaces. More precisely, the velocity is

everywhere in the direction in which < decreases* most rapidly,

and is equal in absolute value to the gradient of <.

If we draw a linear element PQ (= Bs) in any other direction,

the velocity resolved in the direction of PQ is equal to the limit of

-. ...............(6)

or - d(f>/ds.

The cases in which a velocity-potential exists include all

those where, in the region considered, the fluid was initially at

rest, for we may then put </>
= 0, simply, and the subsequent

value is

4>=c
2 f sdt........................ .(?)
J o

This will hold whenever the motion has been originated by the

vibration of solid or other bodies.

*
It should be mentioned that in many books is taken with the opposite

sign; thus u= d<J>jdx, &c.
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The real meaning of the property which differentiates the

present type of motion from all others is most clearly expressed
in terms of the "circulation" round a closed curve. If we divide

the curve into infinitesimal linear elements, and multiply the

length of each element by the tangential component of the

velocity, estimated always in the same direction round the

curve, the result is the "circulation" referred to. It may be

denoted by

\(
u-^-

+v -^ -\-w-j-Jds,
or \(udx + vdy + wdz). ...(8)

On the present hypothesis the tangential velocity is d<f>/ds,
and

the integral of this, taken round the circuit, is zero, the first and

last values of < being the same. The circulation is therefore

zero in every circuit which can be drawn in the region in

question. For a reason which may be understood by reference

to the case of an infinitesimal circuit, the type of motion now

under consideration is called "irrotational." The name has the

advantage of calling attention to a geometrical property rather

than to an analytical form of expression.

A dynamical interpretation can also be given to the

velocity-potential. The equations (3), when written in the

forms

p u = pfi^/dx, p v = -
pdd<f>/dy, p w = pfifydz, (9)

shew that < is the potential per unit mass of a system of

extraneous impulsive forces which would generate the actual

motion of the fluid instantaneously from rest.

The theorem as to the persistence of the irrotational character

is most important; but it is necessary to observe the restrictions

under which it has been proved. It was implied, in the first

place, that the fluid was frictionless, and this is essential.

Again the medium has been supposed free from extraneous

forces, but the restriction is easily removed in the case of forces

which, like gravity, have a potential (per unit mass). Finally,

the assumption has been made that the motion is infinitely

small. This simplifies the proof, and covers most cases which are

of interest in acoustics. A more rigorous investigation would

shew that the circulation is (under the above condition) still
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constant round any circuit, provided we imagine the circuit to

move with the fluid. If initially zero for every circuit which

can be drawn in a finite portion of the fluid, it will remain zero

for every such circuit.

70. General Equation of Sound Waves.

We postulate henceforth the existence of a velocity potential,

at all events in the case of a uniform medium, to which we

confine ourselves for the present. We have then, from

68 (6)

This symbol V 2
is called the "Laplacian operator," from its

constant occurrence in the analytical theory of attractions as

first developed by Laplace. Again, by differentiation of 69 (4)

with respect to t we get

Finally, by elimination of s,

w
This may be regarded as the general differential equation of

sound waves in a uniform medium. If a solution can be

obtained which gives prescribed initial values to
</>

and s

(or dQ/dt), and satisfies the other conditions of the problem, the

subsequent value of s is given by (3), and the values of u, v, w

by 69 (3).

We may stop for a moment to notice the form assumed by
the equations when the fluid is incompressible. This may be

regarded as an extreme case, in which c is made infinite, whilst

s is correspondingly diminished, in such a way that c2s, which

= (p p )/p ,
remains finite. The equation of continuity, 68

(6), takes the form

(5)
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which is otherwise obvious from the meaning of "divergence."

In the case of irrotational motion, this becomes

V2
< = 0, ...........................(6)

which is identical with "Laplace's equation" in the theory of

attractions. The same equation occurs in the theory of steady

electric (or thermal) conduction in metals. If, for example, $
denote the electric potential, the formulae (3) of 69 give the

components of current, provided the specific resistance of the

substance be taken to be unity. This analogy will be found

useful in the sequel.

The theory of the motion of incompressible fluids is capable

of throwing more light, occasionally, on acoustical phenomena
than might at first sight be anticipated. We are apt to forget

that the velocity with which changes of pressure are propagated
in water is after all only four or five times as great as in air,

and that the visible (or at all events easily imaginable) motions

of water, under circumstances where the compressibility has

obviously little influence, may supply a valuable hint as to the

behaviour of a gaseous substance under similar conditions. This

remark will have frequent illustration in the following chapters.

The kinetic energy of a system of sound waves is

.

The potential energy, as given by the argument of 60, is

...(8)

The integrations extend over the region affected.

71. Spherical Waves.

In the case of plane waves with fronts perpendicular to Ox
the equation (4) of 70 reduces to

**-<-** m
dt*~*dtf'

whence
<f> -f(ct x) + F(ct + x)................(2)

This need not be further discussed.
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The case which comes next in importance is that of

symmetrical spherical waves. If
<j>

be a function of the

distance r from the origin and of t, only, the velocity is d<t>/dr

outwards, in the direction of the radius, and is uniform over

any spherical surface having the origin as centre.

Instead of applying the general equation to the present

circumstances it is simpler to form the kinematical relation

corresponding to TO (1) de novo. The flux outwards across

a sphere of radius r is d<f>/dr . 4-Trr
2
,
and the difference of flux

across the outer and inner surfaces of a spherical shell of thick-

ness Br is accordingly

The volume of the shell being 47rr2
8r, this must be equal to

A . 4?rr2Sr or s . 47rr2
Sr, whence

dt c

bmce c2s== ^i (4)
dt

i i.
<P& c

2 d / 96\
as usual, we have :

= -
5- r2

^- (5)
dc r dr \ d/*/

This may also be written

The solution of this equation, viz.

represents the superposition of two wave-systems travelling

outwards and inwards, respectively, with the velocity c. In

the case of a diverging wave-system

r<t>=f(ct-r) (8)

we have, by (4), crs=f(ct r) (9)

Any value of rs is propagated unchanged ;
the condensation A-

therefore diminishes in the ratio l/r as it proceeds, and the

potential energy per unit volume diminishes as l/r
2
. For the

particle-velocity we have

3JL 1 1

-r) (10)
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The law of dependence on distance is here more complicated,

but as the wave spreads outwards the first term ultimately

predominates ;
the velocity at corresponding points of the wave

then varies as 1/r, and the kinetic energy per unit volume

as 1/r
2

.

In a diverging wave-system we have, from (9),

an = -l(r+), ..................(11)

and similarly, in a converging wave-system.

These relations correspond to (5) of 60, which is indeed a

particular case, since as r increases our spherical waves tend to

become ultimately plane.

The general argument of 23 can be adduced to prove that

in a diverging (or a converging) wave-system by itself the

energy is half kinetic and half potential.

The solution (7) can be applied to a region included

between concentric spheres, or to a region having only one

finite spherical boundary, internal or external. In any case,

the conditions to be satisfied at the boundaries, whether finite

or infinite, must be given in order that the problem may be

determinate. In particular, even when the region is otherwise

unlimited, the point r = is to be reckoned as an internal

boundary ; .
this point might for instance be occupied by a

"
source

"
of sound ( 73). When there is no source there, the

flux across a small spherical surface surrounding must vanish,

i.e. we must have

(13)
r=0 \ v

When applied to (7) this condition gives

f(ct) + F(ct) = 0, ..................(14)

for all values of t, and the general solution therefore takes the

shape

r$ = F(ct + r)-F(ct-r).............(15)

This formula may be used to determine the motion con-

sequent on arbitrary initial conditions which are symmetrical



208 DYNAMICAL THEOKY OF SOUND

about 0, in an unlimited medium. Suppose that when t =
we have

(16)

The former of these functions determines the initial distribution

of velocity, and the latter that of condensation. The function

F must now satisfy the conditions

F(r)-F(-r)=r^(r)................(IV)

(18)

It is to be noted that the variable r is essentially positive ;
this

explains why two equations are necessary to determine F for

positive and negative values of the argument.

Suppose, for example, that there is no initial velocity

anywhere, but only an initial condensation, so that
</> (r)

= 0.

From (17) and (18) we deduce

F' (r)=-J"( -r)= \

r
-
x.(r).......... (19)

The condensation at time t is given by

Ity F'(ct+r)-F'(ct-r)=
c*tt- ~^r

This takes different forms according as ct is less or greater than

r. In the former case

-<*)), ...(21)

and in the latter

As a particular case, suppose we have an initial condensation

which is uniform (
= s ) throughout the interior of a sphere of

radius a, and vanishes for r > a
;
and let us examine the

subsequent variations of s at points outside the originally

disturbed region. Since % (r) vanishes by hypothesis for r > a,

the first part of the solution (21) or (22) disappears in the
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present case. So long as ct < r - a, the second part of (21) will

also vanish, but when ct lies between r a and r we shall have

(23)

When ct > r, the "second formula (22) applies, and we find

that, so long as ct < r + a, the result (23) will still hold.

Finally, when ct > r + a we have again 5 = 0. The results

are shewn graphically in the following figure which exhibits

the variation of s with t at a particular point, and the space-

cb-a,

ct+a

Fig. 65.

distribution of s at a particular instant, respectively. It

appears that after the lapse of a certain time (2a/c) we have a

diverging wave in the form of a spherical shell of thickness 2a,

and that s is positive through the outer half, and negative

through the inner half of the thickness. The changes in the

velocity may be inferred by means of the formula q
=

d<j>/dr.

For values of t between (r a)/c and (r + a)/c, i.e. during the

time of transit of the wave across the point considered, we find

.........(24)

whilst for other values of t we have
<f>
= 0. Hence within the

aforesaid limits of time we have

(25)

When r is large compared with a this changes sign for t = r/c,

approximately, the velocity being directed outwards in the

outer half, and inwards in the inner half of the shell. At the

boundaries of the disturbed region, where r = ct a, we have

q = + cas /2r. As the diverging wave reaches any point the

velocity suddenly rises from zero to the former of these values,

and as it leaves it the velocity falls suddenly from the latter

(negative) value to 0, The origin of the discontinuities in this

L. 14
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solution is to be sought of course in the discontinuity of the

initial distribution of density. Any difficulty which may be

felt on such grounds may in general be removed by substituting

in imagination an initial distribution in which the discontinuity

is replaced by a very rapid but continuous transition.

The solution of (6) in terms of the general initial con-

ditions (16) may be investigated in a similar manner, but it

must suffice to quote the results. It may easily be verified

that they satisfy all the conditions of the question. They are

n/>
= i (r + ct) fa(r + ct) + $(r- ct) fa (r

-
ct)

1 fr+ct
+ il %<*)<* -(26)

&&J r-ct

for ct < r, and

r$ = | (ct + r) fa(ct + r)-(ct- r) fa(ct-r)
1 rct+r

+
2-J -()*...(27)
*C J ct-r

for ct > r.

Since the origin evidently occupies an exceptional position

in the theory of spherical waves it is desirable to calculate the

value of
(f> there, more especially as the result will be of service

presently when we come to the solution of the general equation
70 (4) of sound waves. The result may be deduced from

(27), or more directly from (15). We find

...(28)

and therefore from (17) and (18)

(29)

For example, in the special problem above considered, where

fa (r)
= 0, whilst % (r) c\ or according as r a, we find

$ = c\t or according as t a/c. The consequent value of

s at is s for t < a/c and zero for t > a/c, whilst at the instant

t = a/c it is negative infinite. To escape this result we must

slightly modify the data, replacing the original distribution

of density by a continuous one. The figure is an attempt to



GENERAL THEOEY OF SOUND WAVES 211

shew an initial distribution of s which varies rapidly but

continuously from s to in the neighbourhood of r = a,

together with the consequent time-variation of s at 0.

cb

Fig. 66.

The problem which we have discussed exhibits a marked

contrast with the theory of plane waves, in that the wave

resulting from an arbitrary disturbance contains both con-

densed and rarefied portions, even when there is no initial

velocity and the initial disturbance of density has everywhere
the same sign. The statement is easily generalized by means

of equations (1) of 69. If we take the integral of the value

of s at any point P over a time which covers the whole transit

of the wave, so that the values of u, v, w vanish at both limits,

we find that its space-derivatives are all zero. The integral

has therefore the same value for all positions of P. And by

taking P at an infinite distance, so that s becomes infinitely

small by spherical divergence, we see that the value is in fact

zero, i.e.

sdt = 0. .(30)

The mean value of s at any point is therefore zero. This result

is of course not limited to the case of spherical waves.

142
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72. Waves resulting from a given Initial Disturbance.

We have next to trace the effect of initial conditions in an

unlimited region, in the general case. We suppose that at the

instant t = we have

where the functions are arbitrary. To deduce the effect at any

subsequent instant, at any assigned point P, we consider in the

first instance the average value of < over a sphere of radius

r described with P as centre. This will be denoted by

(2)

if So> represent the elementary solid angle (SS/r
2

) subtended at

P by any elementary area $S of the sphere. In the same way
we write

*
47T//* (3)

This, like (2), will be a function of the variables r and t only.

If in 70 (3) we multiply both sides by 8&)/4?r, and integrate

over the aforesaid sphere of radius r, we find

It is also evident that the average normal velocity over the

sphere will be
d(j>/dr. The argument by which the rate

of change of s was in 71 inferred from the consideration

of the total flux out of the region bounded by the spheres
r and r + &r can then be applied to prove that in the present
case

_
B; t*Sr

Eliminating s, we have

Sf-^
dt'

which is identical in form with (5) of 71. We recognize then

that < is the velocity-potential of the system of spherical waves
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which would result from initial distributions of velocity and

condensation expressed by

. ...............(7)

these functions of r being the average values of < (a, y, z) and

^o (x, y, z) taken over the aforesaid sphere. It follows from

71 (29) that the value of
<f>

at P is given by

(8)

This gives a rule for calculating the value of < for a point P at

any given instant t. It may be stated in words as follows :

To find the part of < due to the given initial distribution

of condensation, we describe about P a sphere of radius ct, and

calculate the average of the given initial values of
d<f>/dt,

i.e. of

the function ^o (#> y> z\ at the points of space through which

this surface passes, and multiply by t. To find the part due to

the initial velocities we replace the average of the given values

of d<f>/dt by the average of the given initial values of <, i.e. of

the function < (x, y, z), and differentiate the result, as thus

modified, with respect to t.

The theorem contained in (8) was given by Poisson (1819);

the actual form (8) and the interpretation are due to Stokes

(1850). It will be seen that the result, as thus stated, is in

reality very simple, if regard be had to the great generality of

the circumstances which are taken into account.

To trace the sequence of events at P we employ a series of

spheres whose radii (ct) increase continually from zero. If P
be external to the region which is the locus of the initial

disturbance, no effect is produced so long as the spheres do

not encroach on this region. If rlt r2 be the least and greatest

distances of P from the boundary, the disturbance at P will

begin after a time r^c, will last for a time (r2 rj/c, and will

then cease.

If with the various points of the boundary of the originally

disturbed region as centres we describe a series of spheres of

radius ct, the outer sheet of the envelope of these spheres will

mark out the boundary of the space which has been invaded by

\
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the disturbance up to the instant t. The envelopes corre-

sponding to successive values of t will form a series of what are

known in geometry as "parallel surfaces"; in other words, the

boundary of the disturbed region spreads everywhere normal

to itself with the constant velocity c.

As a simple application of the formula (8) we may take the

problem already discussed in 71, where an initial uniform

condensation s was supposed to extend throughout the interior

of a sphere of radius a

having the origin as

centre. When a spherical

surface of radius ct, de-

scribed with P as centre,

intersects the boundary of

the originally disturbed

region, as in the figure,
,1 P ,1 ,. Fig. 67.
the area of the portion

included within the latter is 2?r . PQZ

(1
- cos OPQ), and the

average of the given initial values of s over the whole surface

(47r . PQ2

) is therefore

where r = OP. Hence, by the rule,

in agreement with 71 (24).

73. Sources of Sound. Reflection.

The very useful conception of a "point-source" was
introduced into the subject by Helmholtz. We may imagine
(with Maxwell and Lord Rayleigh) that at such a point fluid

is introduced or abstracted at a certain rate, and that the

"strength" of the source is measured by the volume thus

introduced per unit time. The wave-train due to a source of

strength f(t) at the origin is accordingly represented by

(1)
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since this makes

If we differentiate the general equation of sound waves ((4)

of 70) with respect to x or y or z, we recognize that if
<j>

is a

solution so also is d<t>/dx,
or d(j>/dy,

or d<f>/dz. Thus from (1) we

derive the solution

which satisfies the general differential equation except at the

singular point r = 0. The value of
<f>

thus obtained may be

interpreted as the velocity-potential of a " double source
"
due

to the juxtaposition of two simple sources which are always in

opposite phases. This will be explained more fully in 76, in

the particular case where the variation with time is simple-

harmonic.

The problem of reflection of sound by a rigid infinite plane

is readily solved by the method of "images." If with every

source P of sound on the near side of the boundary we associate

a similar source at the geometrical image P' of P with respect

to the plane, it is obvious that the condition of zero normal

velocity over the plane would still be fulfilled if the boundary
were abolished. Hence, in the actual case, the motion on the

near side will be made up of that due to the given sources P
and of that due to the images P'. It may be mentioned that

the present case of a rigid plane boundary is the only one where

the physical
"
image

"
of a point-source is itself accurately a

point-source.

The problem of reflection at the plane boundary of two

distinct fluid media has been discussed in 61, in the case of

direct incidence. The case of oblique reflection was solved by
Green (1847). The results are chiefly of interest for the sake

of the optical analogies, but one curious point, noticed by
Helmholtz, may be mentioned. Owing to the greater velocity

of sound in water, the conditions for total reflection may occur

when the waves are incident from air on water (in fact when-

ever the angle of incidence exceeds about 13), but not in the

converse case. This is of course the reverse of what holds with

regard to light.
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74. Refraction due to Variation of Temperature.

Questions relating to wave-propagation in heterogeneous
media can only be discussed in a general way, and with the

help of conceptions borrowed from geometrical optics. If at

any surface there is an abrupt change of properties the law of

propagation is of course altered. If the dimensions of the

surface, and its radii of curvature, are large compared with

the wave-length, we have phenomena of regular reflection and

refraction, as in optics. Cases of absolute discontinuity are of

course not met with in the atmosphere, but the theory would

be practically unaffected if the change of properties were

effected within a space which is small compared with the

wave-length.
When on the other hand we have a continuous variation

such that the change of properties within a wave-length is

negligible, the case is analogous to that of atmospheric
refraction of light, which is discussed in books on optics and

astronomy. In an atmosphere of the same gas, at rest, a

variation in the velocity of sound can only arise through a

variation of temperature ( 59). The refraction due to varia-

tion of temperature with altitude was first discussed by Osborne

Reynolds (1876). Suppose that, as usually happens, the

temperature diminishes upwards. Since the velocity of sound

varies as the square root of the absolute temperature, the lower

portions of a wave-front will be propagated faster than the upper

ones, so that a front which was originally vertical gets tilted

upwards more and more as it proceeds. The sound will there-

fore, for the most part, pass over the head of an observer at

a sufficient distance, such residual effects as he perceives being
referable to diffraction. On the other hand, whenever the

temperature increases upwards the waves will be tilted down-

wards, and the effect at a distance will be greater than if the

temperature had been uniform. This latter condition of the

atmosphere sometimes prevails on a clear night following a

warm day, when, owing to the cooling of the ground by

radiation, the lower strata of the atmosphere are reduced in

temperature relatively to the upper ones.

The theory has been further developed by Lord Rayleigh,

by means of the conception of rays of sound. The surfaces of
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equal wave-velocity being supposed to be horizontal, each ray

will travel in a vertical plane. The cur-

vature of a ray may be calculated directly

by a method due to Prof. James Thomson*.

If R be the radius of curvature, the two

wave-fronts passing through the extremities

of an element 8s of the path will be

inclined at an angle 8s/R, and if 8s be the

length intercepted on an adjacent ray in

the same vertical plane, we have

are

(2)

.(3)

where 8n denotes the distance between

the two rays, the standard case being
that shewn in the figure. Since the elements

described in the same time we have

8s _ 8s

iT+8c"~"c'

whence, by comparison with (1),

1 1 dc

IR
~
~cdn'

When the temperature diminishes upwards, 9c/9n is negative
and the curvature l/R is positive, as in the figure, and the rays

are curved upwards. But if the temperature increase upwards,
the curvature is downwards, so that an observer at the level of

the source may hear sounds which would otherwise have been

intercepted by obstacles.

The formula (3) leads to the ordinary law of refraction. If

>Jr
be the inclination of the ray to the horizontal we may write

dc dc dc dc .

5
=

-j- cos y, =
-j-sm-\lr, (4)

on dy ds dy

if y be the vertical coordinate. Hence, along the course of

a ray,
i?*lr 1 1 tJ.r.

.(5)ds

1

^DR
Idc

-y-cds

* James Thomson (1822 92), professor of engineering at Belfast 1857 72,

and at Glasgow 1872 89.
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or c sec
-Jr
= const., ..................... (6)

which is the law in question. Conversely, from (6) we can

derive the formula (3). When c is known as a function of y
the equation (6) determines the paths.

The simplest hypothesis is that the temperature decreases

(or increases) upwards with a uniform gradient. This includes

the particular case of an atmosphere in
"
convective equili-

brium
"
under gravity, where the gradient is

- 7 " 1 - (7)
'IP

H being the height of the homogeneous atmosphere ( 59)

corresponding to the temperature 6*. This is at the rate of

about 1C. per 100 metres. If a law of uniform decrease were

to hold without limitation, we should at a certain altitude

meet with a zero temperature (absolute). If for a moment
we take the origin at this level, and draw the axis of y

downwards, the temperature will be proportional to y t
and the

wave-velocity c to y?. Hence by (6) we have, along any ray,

......................(8)

The paths are therefore cycloids, the generating circles of which

roll on the under side of the line y = 0. If on the other hand

the temperature increases upwards with a uniform gradient, the

paths are the cycloids whose generating circles roll on the upper
side of the line which corresponds to the zero of temperature.
In any practical case we are concerned only with the portions
of the curves near the vertices. The arcs may therefore be

taken to be circular, with a radius double the distance below

(or above) the level of zero temperature. In the extreme case

of upward diminution to which the formula (7) refers, this

radius will therefore be (roughly) 2 x 273 x 100 = 54600 metres,

for a temperature of C.

*
It was pointed out by Lord Kelvin (1862) that this is the condition into

which the atmosphere would be brought by the free play of convection currents

alone, without conduction or radiation. It is therefore one of neutral equilibrium.

If the temperature diminish upwards at a greater rate the equilibrium becomes

unstable.
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75. Refraction by Wind.

Another interesting question is that of refraction by wind.

A uniform motion of the medium introduces of course no

complication, the relative motion of the sound waves being

exactly the same as if the medium were at rest. Usually,

however, the wind-velocity near the ground is less than above,

the motion of the lower layers of air being obstructed. Hence

when a wave-front travels with the wind, the upper portions

are propagated (in space) somewhat faster than the lower, the

velocity of the wind being superposed on that of sound. The
front is therefore continually being tilted downwards. For a

similar reason a wave-front travelling against the wind gets

tilted upwards, so that the sound tends to pass over the

head of an observer at a distance. This explanation of the

familiar fact that sound can be heard better, and further from

the source, when this lies to windward than when it is to

leeward of the observer, was first given by Stokes (1857).

The only previous suggestion had been that a sound which

has travelled a certain distance with the wind has really

traversed a shorter length of air. and has consequently become

less attenuated by spherical divergence, than if the wind had

been absent. Owing to the smallness of wind-velocities in

comparison with that of sound, this cause is quite inadequate
to explain the very marked effects which are observed. The
true theory was discovered independently by Reynolds (1874),

and confirmed by a number of interesting experiments.
If we proceed to apply optical methods to the question,

it is necessary to dis-

tinguish, as in the theory
of aberration, between the

direction of a ray and that

of a wave-normal. Let Sl

represent the position of a

wave-front at time t, S'

the position at time t + 8t

of those particles which

were on Sl} and 82 the

new position of the wave-
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front. Let Pl be any point on Si, and P' the corresponding

point on S f

,
so that P-f is the path of a particle of the

medium in the time Bt. On the principles of optics, the new

position $2 of the wave-front is obtained as the envelope of

a system of spheres of radius c$t, described with the various

points P' of S' as centres. If P2 be that point on the

envelope which corresponds to P', P^PZ will be an element of

a ray, and P'PZ an element of the wave-normal. Also since

Pf U8t, where U is the velocity of the medium, the "
ray-

velocity" (PiPJfo) is the resultant of the wave-velocity and

the velocity of the medium.

In the present question the velocity U is horizontal, and

a function of the altitude (y) only. If
i/r,

< denote the

inclinations to the horizontal of the ray and the wave-normal,

respectively, we have

n V9 T)~
c

s Q r> ()

or <f> = T|T H simjr, (2)
c

if U/c be small, as will usually be the case.

To ascertain the law governing
the change of direction of the ray,

consider first the case of refraction at

the common horizontal boundary of

two uniform currents U, U'. If <, <'

be the inclinations of the wave-normal

on the two sides of the plane of

discontinuity, we have

c sec < 4- U = c sec
</>' + U', (3)

each side expressing the horizontal velocity of the trace of

the wave-front on the plane in question. Since a continuous
variation of U can be approximated to by a series of small

discontinuities, we infer that (3) will still hold if <, U and

<f>',
U' refer to any two positions on the same ray. This gives

the altered law of refraction. Lord Rayleigh points out that

since sec $ <%. 1, <f>'
will become imaginary if

(U'- Z7)/c> sec
</>

- 1
(4)
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There is therefore total reflection, at the stratum to which the

accents refer, of all wave-fronts whose initial inclination (0) to

the vertical falls short of a certain limit.

Along any one ray we have

sec < H = const., (5)
c

or, by (2), sec
i/r + sec2^ = const., ....(6)

provided ^ be not too great. If we differentiate this with

respect to the arc s, and put d-^/ds
=

1/R, dy/ds = sin
i|r,

we

find

1 /, 20" .\ IdU
/lyx

r. 1 + -- sec \Ir =__ (7)E\ c
r
J c dy

The ray is therefore curved downwards or upwards, according

as dU/dy is positive or negative, i.e. according as the ray is

travelling with or against the wind. If the gradient dU/dy
be uniform, the rays have

all the same uniform curva- ri
ture, approximately, owing
to the smallness of U/c,

unless indeed the inclination
Fig 71

vjr
becomes considerable. It

will be noticed that in this problem the path of a ray is

not reversible.

This is a convenient place for a reference to what is

known as
"
Doppler's principle

"
*. Suppose, for instance,

that a periodic source of sound is approaching a stationary

observer. The number of maxima of (say) the condensation s

which strike the ear of the latter in a second is increased, and

the pitch is therefore raised. The diminution in the period is

to the period when the source is at rest in the ratio of the

velocity of approach to the velocity of sound. When the

source recedes from the observer, this ratio is negative, and

the pitch is lowered. When the motion of the source is

oblique to the rays by which the sound is heard, the com-

* Christian Doppler (1803 54), an Austrian mathematician, professor of

physics at Vienna 1851.
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ponent of its velocity in the direction of the ray is alone

effective. Analogous effects are produced when the source is at

rest and the observer in motion. The principle is exemplified

in the apparent change of pitch of the whistle of a locomotive

as a train dashes through a station
;
but its most striking and

fruitful applications are met with in the theory of radiation.



CHAPTER VIII

SIMPLE-HARMONIC WAVES. DIFFRACTION

76. Spherical Waves. Point-Sources of Sound.

From this point it is convenient to consider specially the

case of simple-harmonic vibrations. In problems relating to

the impact of sound waves on obstacles, or their transmission

by apertures in a screen, and so on, the results will vary in

character with the pitch, the determining element being the

relation between the wave-length and the linear dimensions of

the obstacles, &c.

It will be desirable, for the sake of conciseness, to use

imaginary quantities somewhat more freely than in the pre-

ceding chapters. Thus we assume that the velocity-potential

< varies as e
int

,
or eikct, where

.....................(1)

if X be the wave-length of plane waves of the same period 2?r/n.

The general equation of sound waves ( 70 (4)) therefore be-

comes

Vty + Afy = ...................... (2)

In the case of plane waves whose fronts are perpendicular
to the axis of x, we have

+"*-<> ..................... <3>

the solution of which may be written

<f>
= Ae-ikx + Beikx

,
..................... (4)

or
<f>
= C cos kx + D sin kx, ...............(5)
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the time-factor eint being understood. Thus a train of simple-
harmonic waves travelling in the direction of ^-positive is

represented by

When we proceed to calculations of energy it is of course

necessary to revert to real forms. Thus, taking the real part
of (6), we have

<I>
= A cos k(ct x). '. .................(7)

The mean energy per unit volume, as given by 70 (7), (8),

is ^pk*A
2
,
and the mean energy transmitted per unit time,

per unit area of the wave-front, is

%pk
2cA 2

,
or $pn*/c.A*................(8)

We may call this the
"
energy-flux

"
in the wave-system (7).

The equation of symmetrical spherical waves, 71 (6), now
takes the form ^ + *W)-0, .............. ....(9)

and the solution is

r<t>
= Ae~ikr + Beikr

,
.... ..............(10)

or r<f>
G cos kr + D sin AT, ............ (11)

the time-factor being understood as before. The two terms

in (10) correspond to waves diverging from, or converging to,

the origin, respectively. In particular, the diverging waves

due to a source Aeikct at the origin are represented by

(12)

or, in real form, <t>
= ~

A oosnff -] ............(13)
\ c)

This is of course a particular case of 73 (1).

The maintenance of such a source in an unlimited medium

requires a certain expenditure of energy. The work done per
unit time at the surface of a sphere of radius r, on the fluid

outside, is the product of the pressure, the area, and the

outward velocity, or

. (14)
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It is evident that p contributes nothing to the average effect,

since the mean value of d<f>/dr at any point is zero. If we
substitute from (13) we find that the average of the remaining

part is

This quantity W is independent of r, as was to be anticipated,

since the mean energy in the space included between two

concentric spheres is constant. It measures the emission of

energy (per unit time) by the source. The formula may also

be inferred from the consideration that at a great distance the

waves may be regarded as plane. If in (8) we replace A by
the A/4>7rr of (13), and multiply by 4nrr*, we obtain the result

(15).

It must be remembered that this calculation of the energy
emitted applies only to an isolated source in free space. A
source placed in an enclosure with rigid walls does no work on

the whole, since the energy of the gas is constant. Even in an

open space the emission of energy may be greatly modified by
the neighbourhood of an obstacle. Thus in the case of a source

P close to a rigid plane boundary the amplitude of vibration at

any point is doubled by the reflection as from the image P'

( 73); the intensity is quadrupled, and the emission (on one side)

is therefore twice that of an equal source in free space.

The equation -j^ ****>, ..................(16)

7? / v\
or, in real form, </>= ^ - cos n U + -),

^rirT \ c/

may likewise be interpreted as representing a " sink
"
of sound,

i.e. a point where energy is absorbed, under similar conditions,

at the rate ri
2

pB*l&Trc. This conception is however of no great

assistance in acoustics.

The notion of a simple source, valuable as it is for theoretical

purposes, is seldom realized even approximately in practice.

A vibrating body such as a membrane, or either prong of a

tuning fork, is tending at any instant to produce a condensation

of the air in contact with it on the one side and a rarefaction

L. 15
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on the other, and is therefore more adequately represented, in

the simplest cases, by a combination of two simple sources near

together but in opposite phases. Idealizing this a little further

we are led to the mathematical conception of a "double source."

We begin with a simple source of strength m at a point 0,

and a simple source of strength -f m at an adjacent point 0',

the signs indicating the oppo-

sition of phase. If we next

imagine m to become infinitely

great, whilst the distance 00'

becomes infinitely small, in such

a way that the product m.OO'
remains finite, we have the ideal

" double source
"
of theory. The

direction 00' is called the
"
axis," and the limit of m.OO'

is called the "
strength." The resulting motion is evidently

symmetrical about the axis.

If the direction 00' be that of the axis of x
t
and be

taken as origin, the velocity-potential at P due to simple
sources + m at

'

and 0, respectively, will be given by

p-ikr\-
V)'

where r= OP, r' = O'P. If we draw PP' equal and parallel to

O'O, we have /= OP', and the expression in brackets is equal
to the change of value of the function e~ikr/r caused by a

displacement of P to P'. Hence, ultimately, if P'P = 8x,

Putting m&x=I, we deduce the formula for a unit double

source at 0, having its axis along Ox, viz.

(20)

this is a particular case of 73 (3). When x alone is varied,

whilst y and z are constant, it appears from the figure that
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Sr = cos &c, where 6 denotes the inclination of OP to Ox.

Hence d/dx = cos 6 9/9r, and

(21)

Performing the differentiation, we find

(22)

For small values of kr, i.e. within distances from which are

small compared with X/2w, this becomes

......................(23)

On the other hand, for large values of kr,

,,-ikr

tfc- -
cos0, (24)r

so that along any one radius vector the condensation (s
=

varies ultimately as 1/r. The radial and transverse components
of the velocity are to be found by the formula (6) of 69

;

viz. they are 9$/9r and 9</>/r90, respectively. It appears
that near the origin these are of the same order of magnitude,
whilst at a great distance the lateral velocity is less than the

radial in the ratio 1/Ar.

Introducing the factor Ceint in (24), and taking the real

part, we find that the velocity-potential due to a double source,

of strength G cos nt
y
at a great distance, is

bC! / r\
-- -sin n (*-- cos .............(25)

4?rr \ cj

The waves sent out in any direction are therefore ultimately

plane, of the type (7), provided A=kCcos6/4<7rr, the mere

difference of phase being disregarded ;
and the flux of energy

(across unit area) will therefore be pk*cC
2 cos* ^/32?r

2r2
. Multi-

plying by 27rrsin 6. rSO, which is the area of a zone of a

spherical surface of radius r bounded by the circles whose

angular radii are and 6 -f 0, and integrating from 6 to

6 = TT, we find that the total emission of energy by the double

source C cos nt is

<>
152
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It will be noticed that as the wave-length X is increased,

and k accordingly diminished, the fundamental equation (2)

tends to assume the form

W> = ........................(27)

which is met with in the dynamics of incompressible fluids, and

in the theories of attractions and of electric and thermal con-

duction. This assimilation may come about in two ways, either

through a diminution in the frequency (n/Zir), or by an increase

in the elasticity of the medium and consequently in the wave-

velocity. Under the same condition the formula (12)

approximates to the form

which is the expression for the potential of a magnetic pole, or

for a source of electricity, and so on
;
whilst in the case of the

double source (21) the limiting form is (23), which is recognized

as the potential of an infinitely small magnet.
A further remark of great importance is that within any

region, free from sources, whose dimensions are small compared
with X, the configuration of the equipotential surfaces <= const.

is at any instant sensibly the same as if the fluid were incom-

pressible. For the value of
</>
due to an external source differs

from its value in the case of incompressibility chiefly by a

factor e~ ikr
,
where r denotes distance from the source. If

6 denote the greatest breadth of the region, this factor can at

most vary in the ratio e~ ikb
, which differs very little from unity

when kb is small.

77. Vibrating Sphere.

By means of the fiction of a double source, of suitable

strength, at the centre, it is possible to calculate the waves

generated in the surrounding air by a vibrating solid sphere of

any radius. As this is almost the only problem of the kind

which can be completely solved we devote some space to it. The
work is simple, and the results throw a good deal of light on

other cases.

For reasons just referred to, it is instructive to look first at

the case where the fluid is incompressible. We take the origin
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at the mean position of the centre of the sphere, and the axis of

x along the line of its vibration
;
and we denote its velocity

by U. The velocity of the fluid in contact with the sphere at

any point P, resolved in the direction of the normal, must be

equal to the normal component of the velocity of the point P of

the sphere itself, i.e. to UcosO, where is the angle POx.

This gives

- d

^=Ucos0 [r=a], ................(1)

if a be the radius. The velocity due to a double source at in

an unlimited mass of incompressible fluid is of the form

sfl; .....................(2)

and in order that this may be consistent with (1) we must have

C=27ra*U. ........................(3)

With this determination of C the effect of the sphere on the

fluid is exactly that of the double source, and the solution of

our problem is

*=g-
3

cos0. .....................(4)

This depends only on the instantaneous value of U, as we should

expect, since under the present hypothesis disturbances are

propagated with infinite velocity. It should also be noted that

there is so far no assumption that U is small.

The directions of motion at various points of the field may
be shewn by tracing the "

lines of motion," which are lines

drawn from point to point, always in the direction of the

instantaneous velocity. In the case of small vibratory motion,

which we have especially in view, each particle oscillates

backwards and forwards through a short distance along the line

on which it is situate. If Sr, rS0 be the radial and transverse

projections of an element of such a line, these quantities must
be proportional to the radial and transverse components of

velocity, viz. d<f)/dr and -d<l>/rd6, respectively. Hence

Sr rS0

cose Jsinfl'
'

the integral of which is

........................(6)
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where 6 is a parameter which varies from one line of motion

to another. The curves, which are identical in form with the

lines of force due to a small magnet, are shewn in Fig. 73.

Fig. 73.

To calculate the reaction on the sphere we divide the surface

into zones by planes perpendicular to Ox. The area of a zone

being 27ra2
sin0S0, the resultant force on the sphere in the

direction of ^-positive is

(7)

The constant part of the pressure contributes nothing to the

resultant. The variable part is, if terms of the second order in

the velocities be neglected,

.(8)
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since t enters only through U. Substituting we find

(9)

The remarkable point here is that the force is independent
of the velocity, and depends only on the acceleration of the

sphere. If the mass of the sphere be M, and if it be subject to

other extraneous force X, its equation of motion will be

(10)

or (*+f/^~Z................... (11)

This is the same as if the fluid were abolished, and the inertia

of the sphere were increased by Trpa
3
, i.e. by half that of the

fluid which it displaces. It was shewn by Stokes (1843) that

this conclusion is accurate even when the restriction to small

motions is abandoned.

There is, as we shall see ( 79), nothing peculiar to the

sphere in the general character of the above result, but the

apparent addition to the inertia will vary of course with the

shape as well as the size of the solid, and will usually be

different for different directions of motion, as e.g. in the case of

an ellipsoid. The theory here touched upon has had a great

influence on recent physical speculations, and is responsible

ultimately for the suggestion that the apparent inertia of

ordinary matter may be partly or even wholly due to that of a

surrounding aetherial medium.

Turning now to the acoustical problem, let the velocity of

the sphere be expressed symbolically by

U = Ae int......................(12)

The surface-condition will have the same form (1) as before.

The velocity-potential of a double source Cein* at is

by 76 (21), the time-factor eint
being omitted. The ratio of C

to A is then determined by (1).
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The most interesting case is where the radius a of the

sphere is small compared with X/2?r, where X is the wave-length.

In the immediate neighbourhood of the sphere kr will then be

small, and the formula (13) is, for this region, practically

identical with (2). It follows that

<7=2iraM, ..................... (14)

nearly, and further that the lines of motion near the sphere

will have sensibly the configuration shewn in Fig. 73. The

apparent addition to the inertia of the sphere has very

approximately the same value f Trpa? as before. On the other

hand, at distances r which are comparable with, or greater

than, X, the motion of the fluid is altogether modified by the

compressibility. At sufficiently great distances we have, by

(13) and (14),

<t>
=
^ika

s A e

^cos0, ............... (15)

or, in real form,

S ff, .........(16)

corresponding to a velocity

U = Acosnt ..................... (17)

of the sphere. The amplitude now varies ultimately as 1/r,

instead of 1/r
2

,
as in the case of (4).

The investigation so far discloses nothing analogous to

a frictional resistance, whereas we know that owing to the

generation of waves travelling outwards a continual abstraction

of energy must take place. To calculate either the dissipative

resistance, or the work done, at the surface of the sphere, we
should have to use the complete formula (13); but the emission

of energy may be ascertained independently from the formula

(26) of 76. The strength of the equivalent double source

being given approximately by (14), we find

W = %7rpk*a
6cA 2

................... (18)

If p' denote the mean density of the sphere, its energy when

vibrating under the influence of (say) a spring will be
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If, following a procedure explained in 11, we equate the rate

of decay of this energy to W, we find

and therefore A = A e- T
, ..................... (20)

8 o
provided T= /y ...- ...................(21)

p

The ratio (nr/^Tr) of the modulus of decay to the period is

therefore usually very great.

78. Effect of a Local Periodic Force.

Corresponding results can, with the help of more or less

intuitive considerations, be obtained for other forms of vibrating

solid, but the work is much simplified by a preliminary theorem,

which has also an independent interest. This relates to the

effect of a periodic extraneous force concentrated about a point
in a gaseous medium.

An elementary proof can be derived at once from the pre-

ceding investigation. The result will obviously be the same if

the force be imagined to act on an infinitely small sphere

having the same density as the surrounding fluid. The effect

is therefore that of a double source
;
and if we now denote the

concentrated force, supposed acting parallel to x, by Peint
,
we

find, putting M =
f Trpa

3 in 77 (11),

P=2i7rpkca
3
A, ..................... (1;

and therefore, by 77 (15), for large values of kr,

p p-ikr

<t>
= T~ -cos<9...................(2)

4f7TpC T

The following investigation is of a more formal character;

but it involves mathematical processes more intricate than

those which are employed in other parts of this book. The

work depends on the solution of the equation

V0+#* =
<l>, ..................... (3)

where < is a given function of x, y, z which vanishes outside a

certain finite region R. In the theories of attraction, and of

thermal and electric conduction, we meet with the equation

*, ........................(4)
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where <I> represents a distribution of density (p
=

<l>/47r), or

of sources of heat, &c. The solution of (4) appropriate to

infinite space (when there are no sources at infinity) is known,

viz. it is

where 4>' denotes the value of <3> at (of, y', z
/

),
r denotes distance

from this point to the point P, or (x, y, z), for which the value

of < is required, and the integration extends over all space for

which <E> differs from 0. For example, if we put <!>' = 4-Trp',

we get the ordinary expression for the gravitation potential of

a continuous distribution of matter.

The analogous solution of (3) is

(6)

This represents a distribution of simple sources through R, the

strength per unit volume being 4>, and it is therefore obvious

at once that the equation V 2
< + A^ = is satisfied at all points

P external to R. The only question of any difficulty arises

when P is inside R. We then divide R into two regions Rl

and R2) of which R2 encloses P and is ultimately taken to be

infinitely small in all its dimensions. The parts of at P due to

the sources in Rl and R% , respectively, may be denoted by fa and

< 2 - Since P is external to ^ we have V2^ + A;
2^ = as before.

Within R2 we may ultimately put e~ikr l
t
and

<f>2
then

approximates to the gravitation potential of matter of density

4>/47r restricted to the space R2 . We have then, ultimately,
on known principles, V

2
< 2
= <I> and < 2

= 0. Hence (1) is satisfied

by <f>
=

</>!
+

</>2
. It is further evident that (6) is the solution

of (1) consistent with the condition that there are no sources of

sound except at the points to which <l> refers.

When forces X, Y, Z per unit mass act at the various

points of a gaseous medium, the equations (4) of 68 are

replaced by

9 <> +z , g = _ c,^ + r, *?__<-* + *. ...(7)
dt dx dt dt dt dz
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If we eliminate u, v, w by the kinematical relation (1) of 70

we obtain

(8)

If X, Y, Z, s all vary as e ikct
, this becomes

V*s + k*s = \div(X, Y,Z), ............(9)
c

in the notation of 67. This is of the form (3), and the

solution is therefore

1 niftX' ar dZ'\e-ik'
,, ,,,

8 = - A ; -*-T + -5-7 + *-i)
- dxdy dz'

4>7rc
zJJj\dx dy dz J r

The transformation is effected by partial integration of the

several terms, the integrated portions vanishing at infinity if

X', Y7

,
Z' do so. Also, since

r = J[(x
- xj +(y- yj + (z-

we have

whence

- <>
From this the value of ^> follows by the relation

(12)

As a particular case, suppose that Y' = 0, Z' 0, and that

X' differs from only in a small region about the origin,

and put

pjjjX'dx'dy'dz'
= P................(13)

We have < = -

r^- j-(} ,
............... (14)dx\ r J

or, for large values of kr,
P p-ikr

cos(9, ...............(15)r

as before. Comparing with 76 (24) we see that a concentrated

force Peint has the effect of a double source of strength iP/pkc.
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79. Waves generated by Vibrating Solid.

We return to the problem of investigating the waves

generated by a vibrating body. In order not to complicate the

question too much we will assume that the body has some sort

of symmetry with respect ta an axis
;
thus it may be a form

of revolution about this axis, or it may have two mutually

perpendicular planes of symmetry meeting in this axis, or

(again) a single plane of symmetry perpendicular to the axis.

In any case this axis is taken to be the direction (Ox) of

vibration.

The dimensions of the solid being supposed small in com-

parison with \/2-7r, the motion of the fluid in the immediate

neighbourhood will be sensibly the same as in the case of

incompressibility, and the principal effect on the body will there-

fore be equivalent to an increase of inertia. To establish this

latter point in a general manner, we note that the (irrotational)

motion of a frictionless liquid due to the motion of a solid in it

will have the velocity at every point in a determinate ratio

to the velocity U of the solid, and that the total kinetic energy
of the fluid may therefore be expressed by ^pQ'U

2
,
where Q' is

a constant, of the nature of a volume, depending only on the

size and shape of the solid and the direction of its vibration.

Hence if M be the mass of the body, the equation of energy
takes the form

(l)

where the right-hand member represents the rate at which

work is being done by the extraneous force X. Thus

X, ..................(2)

which shews that the inertia of the body is apparently increased

by the amount pQ'. An equivalent statement is that the

reaction of the liquid is equivalent to a force pQ'dU/dt.
In the actual case of the gaseous medium, it is plain that if

the solid were removed, and its place supplied by fluid, the

motion at a distance would be very approximately the same as

would be produced by a suitable periodic force from without,
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acting on the substituted matter. Since this force has to

produce an acceleration of momentum pQdU/dt, where Q is

the volume displaced by the solid, as well as to balance the

reaction just referred to, its amount would be

, ......(3)

if U=Aeint
.........................(4)

By 78 (2), the velocity-potential at a great distance r will

therefore be

cos 6 = Ae-^ cos 6. ...(5)-

4-TT/oc
r 4-Trr

Comparing with 76 (24) we see that the effect of the vibrating
solid is equivalent to a double source of strength C= (Q+ Q')A,
and that the emission of energy is accordingly

(6)

by 76 (26). In the case of the sphere we have Q = %7ra?,

Q'= iQ, and the result accordingly agrees with 77 (18). It

can be shewn that for a circular disk of radius a, moving
broadside on, Q' = ^ira

3
,
whilst Q of course =0.

80. Communication of Vibrations to a Gas.

The circumstances which govern the efficiency of a vibrating

body in generating sound waves, and the comparative effects in

different gases, were elucidated by Stokes in a classical memoir
" On the Communication of Vibrations from a Vibrating Body
to a surrounding Gas*." The starting point of the investigation

was an observation by Prof. J. Leslie (1837), who found that the

sound emitted by a bell vibrating in an atmosphere of hydrogen
was extremely feeble as compared with the effect in air. No

satisfactory explanation of this phenomenon was forthcoming

up to the time of Stokes' paper. The essence of the matter is

conveyed in the following quotation :

" When a body is slowly moved to and fro in any gas, the

gas behaves almost exactly like an incompressible fluid, and

* Phil. Trans. 1868. The passage which follows below is from the
'* abstract

" in the Proc. Roy. Soc.
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there is merely a local reciprocating motion of the gas from the

anterior to the posterior region, and back again in the opposite

phase of the body's motion, in which the region that had been

anterior becomes posterior. If the rate of alternation of the

body's motion be taken greater and greater, or, in other words,

the periodic time less and less, the condensation and rarefaction

of the gas, which in the first instance was utterly insensible,

presently becomes sensible, and sound waves (or waves of the

same nature in case the periodic time be beyond the limits of

audibility) are produced, and exist along with the reciprocating

flow. As the periodic time is diminished, more and more of the

encroachment of the vibrating body on the gas goes to produce
a true sound wave, less and less a mere local reciprocating flow.

For a given periodic time, and given size, form, and mode of

vibration of the vibrating body, the gas behaves so much the

more nearly like an incompressible fluid as the velocity of

propagation of sound in it is greater ;
and on this account the

intensity of the sonorous vibrations excited in air as compared
with hydrogen may be vastly greater than corresponds merely
with the difference of density of the two gases."

These remarks are exemplified in the results of 77 (13),

(14). If we fix our attention on a point at a distance from the

sphere, supposed vibrating with the velocity

U=Acoant, (1)

the motion there is given, when the period is sufficiently long,

by the formula
Aa3

<f> Y7 cos Q . cos nt, (2)

as if the fluid were incompressible. But when the frequency is

increased until the wave-length is small compared with the

distance r from the centre, the appropriate formula is

ka?A / r?A A . f.r\ /ox
cos . sin n(t

j
, (3)

and the amplitude is accordingly greater than in the former

case in the ratio kr, or 2irr/\. For the same frequency, the

amplitude, which depends on k/c or n/c
2
,
will in different gases
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now vary inversely as the square of the wave-velocity. Again,
the emission of energy is, by 77 (17),

W= lirpkWcA* = lirpnW/c?.A*, (4)

and so varies (for the same gas) as the fourth power of the

frequency. The emission in different gases will (for the same

frequency) vary inversely as the fifth power of the wave-

velocity, if we assume ( 59) that the latter varies inversely as

the square root of the density. For instance it will be about

1000 times less in hydrogen than in oxygen.
In order further to illustrate the effect of the lateral motion

of the gas, near the surface of the sphere, from the hemisphere
which is at the moment moving outwards to that which is

moving inwards, in weakening the intensity of the waves

propagated to a distance, we may calculate what the emission

would be if this lateral motion were prevented. For this

purpose we may (after Stokes) imagine a large number of fixed

partitions to extend radially outwards from near the surface.

In any one of the narrow conical tubes thus formed, the motion

will be of the same character as in the case of symmetrical

spherical waves. Now a uniform radial velocity C cos nt over

the surface of a sphere would be equivalent to a simple source

4-Tra
2 C cos nt, and the corresponding emission per unit area

would be %tfa?pc C*, by 76 (15). If we now put G= A cos 6,

and integrate over the surface, we get the total emission in our

system of conical tubes. The result is

W ' =
1-rrlcWpcA*, (5)

since the average of cos2 6 for all directions in space is J . If

we compare this with (4), we see that the effect of the lateral

motion is to diminish the emission in the ratio J&
2a2

.

When, as for example in the case of a plate or a bell, the

surface is divided by nodal lines into a number of compart-
ments vibrating in opposite phases, the opportunity of lateral

motion is increased, and the emission of energy correspondingly
weakened. For facility of calculation Stokes took the case of

a spherical surface, with various symmetrical arrangements of

nodal lines. In the problem of the oscillating sphere we have

one such line, viz. the great circle 6 = \ TT, and the emission, as
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we have just seen, is diminished by the lateral motion in the

ratio k'
2
a?. For a spherical surface with two nodal great circles

meeting at right angles the effect is much greater, the ratio

being -fakta*. And as we increase the number of compartments
into which the sphere is divided, the ratio, already very small,

decreases with enormous rapidity.

For the sake of simplicity it has been assumed in the

preceding statements that the perimeter 2-n-a of the sphere is

small compared with X. The influence of lateral motion is

however not confined to this case, but will make itself felt

whenever the dimensions of the compartments referred to are

small compared with X. In the case of the oscillating sphere

there is no difficulty in working out the result without any
restriction to the value of ka, starting from the formula (13) of

77.

Stokes has also investigated mathematically the case of a

cylinder vibrating at right angles to its length, where the same

cause is of course operative. In this way an estimate is

obtained of the direct effect of a vibrating string in generating
air-waves. This involves the ratio of the perimeter of the

cross-section of the string to the length of the air-waves, and

is in any practical case extraordinarily minute. As explained

in 24, almost the whole of the sound given out when a piano

string is struck comes from the sounding board.

81. Scattering of Sound Waves by an Obstacle.

We have next to consider the disturbance produced in a

train of sound waves by a rigid obstacle whose dimensions are

small compared with the wave-length. The scattered waves

which are sensible at a distance are due mainly to two causes.

If the obstacle were absent the space which it occupies would

be the seat of alternate condensations and rarefactions. The

effect of the obstacle in refusing to execute the corresponding
contractions and expansions of volume is, at a distance,

approximately the same as if in a medium otherwise at rest its

volume were to undergo a periodic change of just the opposite
character. The result is equivalent to a simple source. On
the disturbance thus produced there is superposed a second
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wave-system, which is due to the immobility of the obstacle.

If the latter were freely movable, and if it had moreover the

same density as the surrounding air, it would swing to and fro

with the air-particles, and the second wave-system would be

absent. This system is accordingly the same as would be

produced if the obstacle were constrained to oscillate with

a motion exactly equal and opposite to that of the air in the

primary waves when undisturbed. The effect is, as we have

seen in 79, that of a double source. It might appear, at first

sight, that the former of these disturbing influences would be

much less important than the second, but in its effect at a

distance it becomes comparable, owing to the greater attenuation

by lateral motion of the waves proceeding from a double source.

If Q be the volume of the obstacle, the strength of the

simple source due to the first cause is

where s, <f>
refer to the primary waves. In the case of a system

of plane waves

incident on a small obstacle at 0, this gives a velocity-potential

As regards the second cause, we will assume for simplicity
that the obstacle has the degree of symmetry postulated in

79 with respect to the direction (Ox) of the vibration in the

air-waves. If the wave-system (2) were undisturbed, the

velocity of the air-particles at would be represented

symbolically by ikC, and the strength of the double source due

to the obstacle moving with this velocity reversed would be

ik(Q + Q') (7, in the notation of 79. The scattered waves at

a distance, due to the immobility, are therefore represented by

(4)

by 76 (24). The complete result is given by < =
fa + < 2 .

It follows that the amplitude of the scattered waves at any
L. 16
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distant point is, for similar forms, directly proportional to the

volume of the obstacle and inversely proportional to the

square of the wave-length. This latter particular might have

been foreseen without calculation. The ratio to the original

amplitude must necessarily vary directly as the volume Q,

and inversely as the distance r, and in order that the result

may come out a pure number we must divide by X2
,
since X

is the only other linear magnitude involved. The emission

of energy, being proportional to the square of the amplitude,
will therefore vary as X~ 4

. This law of the inverse fourth

power holds also in optics, and for a similar reason, with respect

to the scattering of light by particles whose dimensions are

small compared with the dimensions of the light-waves. The

blue of the sky, for instance, is attributed to the relative

preponderance of the shorter waves in the light scattered by
the molecules of air, and possibly by other particles ;

in the

transmitted light, on the other hand, the longer waves pre-

dominate. The theory is due to Lord Rayleigh, who has also

pointed to an acoustic illustration in what are called
" harmonic

echoes." If a composite musical note, consisting of a funda-

mental tone with its octave, &c., be sounded near a grove
of trees, for example, the ratio of the intensity of the octave to

that of the fundamental will in the scattered sound be 16 times

what it was in the original note. The scattered sound may
therefore appear to be raised in pitch by an octave.

The actual scattering of energy is found by adding the

results due to the simple and the double source. This may be

proved by calculating the work done at the surface of a sphere
of large radius r. The terms due to the combined action of the

two sources contain a factor cos 9, and so disappear when

integrated over the surface. Hence, by 76 (15), (26),

The energy-flux in the primary waves being %pk
2cC2

, by
76 (8), the ratio which the energy scattered per second bears

to this is

(6)
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In the case of the sphere we found Q
/ = JQ = | 7ra3

, and the

expression (6) therefore reduces to

J(*a).iro'.........................(7)

In other words, the sphere scatters only the fraction | (&a)
4 of

the energy which falls upon it. For example, if the wave-

length be a metre (which corresponds to a frequency of about

332), and the diameter of the sphere 1 mm., the fraction is

roughly 7 '6 x 10~n. In the case of the circular disk, where

Q' = f Tra
8
, Q = 0, the ratio of the scattered to the incident

energy is ^(Ara)
4
.

The mathematical theory of the scattering by cylindrical

obstacles is more difficult. We will merely quote the result,

based on Lord Rayleigh's calculations, that when plane waves

are incident on a circular cylinder of radius a the fraction of the

incident energy which is scattered is f Tr^&a)
3
, approximately,

it being assumed as usual that ka is small. For a wire of

diameter 1 mm., and a wave-length of a metre, this

= 1-15 x 10- 7
.

It is to be observed however that in the case of very minute

obstacles the order of magnitude of the results may be con-

siderably modified by viscosity. The determining element here

is the ratio of the diameter of the obstacle to the quantity
h which was introduced in 66 as a measure of the thickness of

the air-stratum, at the surface of the obstacle, whose motion

is appreciably affected by the friction. When the ratio in

question is moderately large the influence of viscosity on the

results will be very slight.

The distribution of velocity in the immediate neighbourhood
of the obstacle will be sensibly the same as in the case of a

uniform current of incompressible fluid flowing past the body.
In the case of the sphere it can be determined completely, but

the following approximation will be sufficient. We assume

(8)

where the first term represents the incident waves, and the

162
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second is the form which the velocity-potential of a double

source assumes ( 76) when kr is small. This makes

-ikr + cos0, .........(9)

and the condition of zero normal velocity for r = a is therefore

approximately satisfied provided B= l%ika?C. Hence in the

neighbourhood of the sphere we have

(10)

nearly. The velocities are therefore nearly the same as if the

fluid were incompressible. The pressure is given by

p=p + p<j>=p + inp(f>............. (11)

This differs from the pressure (p + inpG) which would obtain

at the origin if the obstacle were absent by a term which

is small, of the order kr, in comparison. At points whose

distance r is a moderate multiple of a, whilst still small

compared with X, the pressure approximates even more closely

to that due to the incident waves alone.

82. Transmission of Sound by an Aperture.
In discussing the transmission of sound waves by an aperture

in a thin screen we will suppose, in the first instance, that the

dimensions of the aperture are small compared with the wave-

length. This is of course the most interesting case from an

acoustical point of view.

The screen being supposed to occupy the plane x 0, and

the origin being taken in the aperture (S), let a wave-train

represented by

be incident from the left. If we distinguish the functions

relating to the two sides of the screen by the suffixes 1 and 2,

we should have, if the screen were complete,

fr^Ce-^ + Ce^*, < 2
= o, ............ (2)

the second term in
<f>1}

which represents reflected waves, being
chosen so as to make dfa/da;

= for x = 0.

In the actual problem the disturbance due to the aperture
will be confined mainly to the immediate neighbourhood of S,

and may be taken to be very small at distances from which,
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though large as compared with the linear dimensions of S,

are small compared with X. Let two surfaces be drawn, on

the two sides, at some such distance from 0, each abutting
on the screen in the manner indicated by the dotted lines

in the figure. Within the region thus bounded, the fluid

oscillates backwards and forwards almost as if it were in-

compressible, and the total flux ( 67) through the aperture
will therefore bear a constant ratio to the difference of the

velocity-potentials at the two surfaces. This will perhaps be

understood more clearly if we have

recourse to the analogy of electric

conduction. Suppose we have a /
large metallic mass, severed almost /
in two by a non-conducting parti- /
tion occupying the place of the

;,'

screen. If this mass form part of \

an electric circuit, there will be \
little variation of potential in it \

x

except in the neighbourhood of the
Xv

narrow neck which connects the two

portions. The electric potentials Fig" 74
at a distance on the two sides being

<>! and <f>.2 ,
the current through the neck will be

*(*.-&)......................... (3)

where K may be called the "
conductivity

"
of the neck, the

specific conductivity of the substance being taken to be- unity.

In the hydrodynamical question, also, the quantity K may
appropriately be called the conductivity of the aperture. It is

easily seen that it is of the nature of a length.

At the two surfaces shewn in the figure we have ^ = 2(7,

<f>2 0, approximately, and the total flux through the aperture

is therefore 2KC. If an equal flux were directed symmetrically
from the aperture on the left-hand side, the combination would

be equivalent, in an unlimited medium, to a simple source of

strength 4>KC. Hence, by 76 (12),
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The corresponding velocity-potential on the near side is

evidently

e- ikr
. .-.(5)

The energy ( W) transmitted by the aperture per second is

by the above reasoning one-half that due to a simple source

at 0, whence, by 76 (15),

W = fccKWir...................... (6)

The energy-flux in the primary waves (1) being %pk*cC'
2
,
the

ratio of W to this is 2^T 2

/7r- ^ ^s t be n ted that this is

independent of the wave-length X, so long, of course, as X is

large compared with the linear dimensions of S.

The exact calculation of K for various forms of aperture is

naturally a matter of some difficulty. For a circular aperture

of radius a it is found that K = 2a
;

for other forms differing

little from a circle the value is sensibly the same as for a

circular aperture of the same area, the circle being evidently

a "
stationary

"
form, in the sense in which this term is used

in the theory of maxima and minima. It appears then that

a circular (or nearly circular) aperture transmits the fraction

8/7T
2
,
or '816, of the energy propagated across an equal area

(?ra
2

) in the primary waves. This is, under the present
limitation as to size, very great compared with the energy

intercepted by a disk of the same dimensions ( 81). The

figure opposite gives the shapes of the surfaces of equal

pressure (<
=

const.), drawn for equidistant values of
</>,

in the

immediate neighbourhood of a circular aperture, and shews

how rapidly these tend to assume the spherical form. The

directions of vibration of the air-particles are of course normal

to these surfaces.

With regard to further problems of the kind we must

content ourselves with a few statements of results. In the

case of an aperture in the shape of a long narrow slit, whose

breadth is small compared with X, the energy transmitted is

again comparable with, and may even considerably exceed,

that corresponding to an equal area of wave- front in the

primary waves. In the case of a grating composed of equal,
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parallel, and equidistant slits in a thin screen, the fraction of

the total incident energy which is transmitted is found to be

1/(1 + A?/2
),
where k = STT/X, as usual, and

, a + b , TrbU __,ogsec
___

(7)

where a denotes the breadth of an opening, and b that of each

intervening portion of the screen. As a numerical example,

Fig. 75.

suppose the wave-length to be ten times the interval a + 6

between the centres of successive apertures ;
then even if the

apertures form only one-tenth part of the whole area of the

screen, 88 per cent, of the sound will get through. In the
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case of a grating formed by equidistant bars of circular section,

the corresponding value of / is

l=7rb*/a, (8)

where b is the radius of the section, and a the distance between

the axes of consecutive bars. It is implied, however, that the

ratio b/a must not exceed (say) J.

83. Contrast between Diffraction Effects in Sound and

Light. Influence of Wave-Length.
In the investigation of 82 an aperture was found to act as

a simple source from which sound diverges on the farther side

uniformly in all directions. This is in striking contrast with

what is usually observed in the case of light. We have so far

no indication of anything of the nature of beams or rays of

sound, just as when sound waves were incident on an obstacle

we found nothing of the nature of a sound-shadow. The

difference in the results is due to the fact that the dimensions

of the aperture (or obstacle) have been supposed small in

comparison with the wave-length, whereas with light the

relation is usually the reverse.

We have avoided trespassing on the domain of Optics, but

as the dynamical conditions are in the present subject perfectly

definite, it may be permissible to examine this question of the

influence of wave-length a little more fully.

Consider the region of space lying to the right of the plane
x = 0. If this plane were a fixed boundary, and if there were

no sources of sound in the region, any disturbance would

ultimately pass away. Any steady periodic motion in the

region must therefore in the absence of internal sources be due

to motion of the boundary, and will be determinate when the

value of the normal component of the velocity at every point of

the latter is given. It can, moreover, be expressed in terms of

this distribution of normal velocity, as follows. The flux out-

wards from an element 8$ of the plane is d<f>/dn . &S, if &n

denote an element of the normal drawn inwards from &S, and

if in imagination we associate with this an equal flux in the

opposite direction on the other side, the result is equivalent
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to a source -
29</3n . 8S in infinite space. The corresponding

velocity-potential at a point P is

where r denotes the distance of 8S from P. Integrating over

all the elements &S of the plane, we have

1 rr^^ a-ikr

which is the required formula.

The motion to the right of the plane x = is also determinate

when the value of
</>

at every point of the plane, and thence

the pressure, is given, these two quantities being connected by
the relation p p + p<j>

=pQ + ikcp<f>. Suppose for a moment
that in an otherwise unlimited medium we have a thin massless

membrane occupying the plane x = 0, and that on each element

of this a normal force X per unit area is exerted, which is

adjusted so as to produce the actual periodic pressure, and

therefore the actual value of $, on the positive face of the

membrane. By the theorem of 78 (15), the effect for an

element BS, will be equivalent to a double source, and the

corresponding velocity-potential at a point P will be

(2)

The variable parts of the pressures on the two faces of the

membrane, viz. +
p(f>

=
ikcp<f>, must balance the force X, so

that X =
%ikcp$. Substituting in (2), and integrating over the

plane x = 0, we obtain

* *

The structure of the integrals in (1) and (3) recalls the

process by which "
Huygens' principle

"
is applied in optics to

find the disturbance at any point P in terms of "secondary waves"

supposed to issue from the various elements of a wave-front.

There was at one time much discussion as to the exact character

to be assigned to these secondary waves, more especially as to

the law of intensity in different directions. We now recognize
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that the problem has mathematically more than one solution
;

either of the above formulae will lead to an exact result, and

we might even use a combination of the two, in any arbitrary

proportions. This resolution of a historic controversy is due to

Lord Rayleigh.

As a verification of (3), suppose that the value of
<j>

at x =

is that due to a train of plane waves
<f>
= e~ikx . Let OT denote

the distance of BS from the orthogonal projection of the point

P on the plane x 0, so that r5 = #2
4- w2

. For the aggregate

of elements 88 forming a certain annulus of the plane we

may write 27ror&nr = 27rr&r. We have also dr/dx
=

a;/r.
The

formula (3) therefore gives

r 9 fe~ikr\-x ^
e

)dr
= e-ik*. ...(4)

In the case of waves transmitted by an aperture in a plane

screen (x
=

0), we have, in (1), 3</>/3n
= except over the area of

the aperture. If, further, the dimensions of the aperture S are

small compared with X, then at a point P whose distance r is

large compared with X, the function e~ikr/r will have sensibly

the same value for all the elements of S, and we may write

(5)

where the first factor represents the total flux through S.

Under these circumstances the aperture acts like a simple

source, as in 82.

It is understood of course that the expression d<f)/dn in

(1) or (5) represents the normal component of the velocity, as

modified by the action of the screen. When as in the case just

considered the aperture is relatively small, the distribution of

normal velocity over it will differ considerably from that due to

the primary waves alone. This distribution can be ascertained

approximately, in the case of plane waves incident directly on

a circular opening, from the electrical analogy of 82. The

lines of flow have the same configuration as the lines of force
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due to an electrified disk*, and the normal velocity has the

distribution

_d$ = B
dn V(

2-^2
)'

where tn- denotes the distance of any point of the aperture from

its centre. The velocity becomes very great near the edge, and

is mathematically infinite
(

at the edge itself (r = a), but it

appears on integration that the parts of the area near the edge
contribute little to the total flux, which is

(7)

If the incident waves be represented by

(8)

the same flux will as in 82 be expressed by 2KC, or 4a(7.

Hence, comparing,

In the other extreme, where the wave-length is only a

minute fraction of the dimensions of the aperture, the effect of

the screen in modifying the distribution of normal velocity over

the latter is practically confined to a distance of a few wave-

lengths from the edge, and the corresponding part of the integral

in (1) is quite unimportant. In this case, the incident waves

being still expressed by (8), we can put d(f>/dn
= ikC with

sufficient accuracy over the whole area of the aperture, whence

*-(f^ .-do)

For the methods of approximating to the value of this integral,

by the use of Huygens' or Fresnel's
"
zones," or otherwise, we

must refer to books on Optics. It is found that the amplitude
is nearly uniform within the space bounded by a cylindrical

surface whose generators are normal to the screen through the

edge of the aperture, and is nearly zero in the surrounding

region. Near the cylindrical boundary, on either side, we have

* See Fig. 75, p. 247, which represents the configuration of the equipotential

surfaces.

f The awkwardness of this conclusion may be avoided by giving the screen

a certain thickness, and rounding the edges.



252 DYNAMICAL THEOKY OF SOUND

the diffraction effects which are especially studied in the theory

of Light.

The question of the impact of waves on a plane lamina can

be treated in a similar manner. For this purpose the formula

(3) is most convenient. The lamina being in the plane x = 0,

and the primary waves being represented by (8), we may write

<t>
= Ce~ik* + x ,

..................... (11)

where % is the velocity-potential due to a vibration of the

lamina normal to its plane with the velocity ikC, equal and

opposite to that in the primary waves. It is evident that the

values of this function at any two points which are symmetric-

ally situated with respect to the plane x = will be equal in

magnitude but opposite in sign. We have then, to the right

of the lamina

This only requires a knowledge of the value of % at the positive

face of the lamina, the value at all other points of the plane

x = being obviously zero. The case where the dimensions of

the lamina are small compared with X has been noticed in

81
;
the scattered waves have then a much smaller intensity

than those transmitted by an aperture of the same size and

shape. In the opposite extreme, the value of % near the

positive face is, except near the edge, the same as in the case

of an infinite vibrating plate, viz. % = Ceikx
,
so that we have

with sufficient accuracy

A detailed study of this integral would indicate, in the complete
solution expressed by (11), the existence of a sound-shadow to

the right of the lamina. For large values of kr the formula

(13) may be replaced by
ikr

............(14)

and for small obliquities 6 we may further put cos 6 = 1. The
formula then becomes, except as to sign, identical with (10),

shewing that the disturbance produced by the lamina is, under
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the conditions postulated, exactly opposite to that transmitted

by an aperture of the same dimensions. This is a familiar

fact in Optics ;
but the preceding considerations shew that it

may be utterly wide of the mark when the wave-length is no

longer small compared with the linear dimensions concerned.

It need hardly be said that there are acoustical phenomena

where, as in the case of large reflecting or obstructing surfaces,

optical relations are approximated to. The results are then

analogous, the resemblance being more complete the higher
the pitch of the note sounded. By the use of a source of very

high pitch, and of a sensitive flame as a detector, Lord Rayleigh
has succeeded in imitating some of the most delicate phenomena
of physical optics.

In the above theoretical investigation we have been obliged

to rely to some extent on intuitive considerations, as e.g. in the

assumed distribution of velocity over the area of an aperture
when the wave-length is relatively small. It is therefore

desirable that such assumptions should be tested if possible by
exact calculation. The only instance, at present, where this has

been successfully carried out is that of waves incident on a

plane screen with a straight edge. The reflection by the screen,

the transmission past the edge, the formation of a shadow

behind the screen, and the diffraction phenomena near the

boundaries of the respective regions, all come out in practical

accordance with the usual theory. The investigation was

published by Sommerfeld in 1895*.

* A simplified version is given in the Proc. Lond. Math. Soc. (2), vol. iv.

(1906).



CHAPTER IX

PIPES AND RESONATORS

84. Normal Modes of Rectangular and Spherical
Vessels.

The main object in this chapter is to develop the laws of

vibration of air contained in cavities, such as those of resonators

and organ pipes, which are in communication with the external

atmosphere. A little space may however be devoted in the

first instance to some problems relating to the vibrations of air

in spaces which are completely enclosed by rigid walls. These

will at all events supply some interesting examples of the

general theory of normal modes ( 16).

The analytical process consists in finding solutions of the

equation
V 2

</>
+ #ty = ........................ (1)

consistent with the condition

which expresses that the component of the fluid velocity in

the direction of the normal (n) vanishes at the boundary. It

appears that, as in former analogous problems, this is only

possible for a certain sequence of values of k, which determine

the nature and the frequency of the respective normal modes.

In the case of a rectangular cavity we take the origin at a

corner, and the coordinate axes along the edges which meet

there. If the lengths of these edges be a, b, c, the condition

(2) is fulfilled by
TTTZ

</>= (7 cos- cos -j. cos --
d G
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where p, q, r are any integers; and the equation (1) is also

satisfied provided

(4)

If we put <?
= 0, r = 0, the case degenerates into that of the

doubly closed pipe ( 62).

A more interesting case is that of a spherical cavity. The

symmetrical radial vibrations come under the methods of 71,

76. The formula (15) of 71, which implies that there is no

source at the origin, gives, in the case of simple-harmonic

vibrations,
^Ller ttr

(5)

...(6)

_

or, say,

sin kr
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The condition (2) requires that d(f>/dr
= for r a, the radius of

the cavity. Hence
tankaka......................... (7)

This is a transcendental equation to find k, and thence n (= kc).

The roots are obtained graphically (see Fig. 76) as the abscissae

of the intersections of the lines y = tan x, y=-x y
the zero root

being of course excepted as irrelevant. We have, approximately,

&a=(ra+i)7r, where m= 1, 2, 3, .... More accurate values of

the first three roots are

ka/ir
= 1-4303, 2-4590, 3*4709............. (8)

The numbers give the ratio of the diameter 2a of the cavity to

the wave-length. In the modes after the first there are internal

spherical nodes (i.e. surfaces of zero velocity) whose relative

positions are indicated by the roots of inferior rank. In the

higher modes the nodal surfaces tend, as we should expect, to

become equidistant, since the conditions, except near the centre,

approximate to those of plane waves.

Equations of somewhat similar structure to (7) occur (as

we have seen) in various parts of our subject, as well as in

other branches of mathematical physics, and processes of

numerical solution have been de-

vised by Euler, Lord Rayleigh
and others. There is one method,

of very general application, which

is so elegant, and at the same

time so little known, that it may
be worth while to explain it. It

is given by Fourier in his Theorie

de la Chaleur (1822). Starting

with a rough approximation, say
=

0?!, to a particular root of (7),

we calculate in succession the

quantities xz ,
xs ,

0?4 ,
... determined

by the relations

#2
= tan"1

0?i ,
#3
= tan"1 #2

The figure illustrates the manner in which these converge
towards the desired root as a limiting value, no matter from

Fig. 77.

tan"1

(9)
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which side we start. Some fairly obvious precautions are

necessary in using the method, and it is easily seen that the

convergence will be slow if the two curves have nearly the

same inclination (in the same or in opposite senses) to the axis

of x. Expressed as multiples of TT, the successive approximations
obtained in this way to the first root of (7) are*

1-5, 1-433435, T430444, 1-430304, 1*430297, ....

The same analysis can obviously be applied to the theory of

vibrations in a conical pipe whose generating lines meet in 0.

If the tube extend from the origin to r = a, the usual approxi-

mate condition (s
= 0) to be satisfied at the open end gives

sin&a = 0, (10)

the same as for a doubly open pipe of length a ( 62). For the

case of a tube extending from r = a to r = b, and open at both

ends, we require the complete solution

r<f>
= A cos kr + B sin kr. (11)

The conditions give

Acoska + Bsinka = Q, Acoskb + Bsinkb = Q, (12)

whence sin k (b a) = 0, (13)

as in the case of a doubly open pipe of length b a.

If x be any solution of the general equation (1), it appears
on differentiation throughout with respect to x that the equation
is also satisfied by </>

= d%/3#. We have already had an example
of this in the general double source of 73. From (6) we

derive in this way the solution

d /sinferX
(

.

*=GWx()> (14)

or, if x = r cos 6,

ri d/smkr\ - C ,, , 7 \ Q /- ~\6 = C=- - - cos 6 -
(kr cos kr sin kr) cos 6. (lo)

or \ T / r1

This leads to another series of normal modes of the air con-

* In calculations of this kind, and for the purposes of mathematical physics

generally, trigonometrical tables based on the centesimal division of the

quadrant are most convenient. A four-figure table of this type is included in

J. Hoiiel's Eecueil des Formules et des Tables Numfriques, 3rd ed., Paris, 1885.

L. 17
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tained in a spherical cavity. The condition 3</>/3r
= is satisfied

for r = a, provided

tan ka =
2 - ,(16)

The solution can be carried out as in the case of (7). The

annexed diagram of the curves y = cot x, y = (2 #2

)/2#, shews

that the roots tend after a time to the form mnr. Approximate

values of the first few roots are

5, 1-891, 2'930, 3'948, 4*959, ...(17)

Fig. 78.

the first of which alone gives any trouble. This root corresponds

to the gravest of all the normal modes of the cavity. The air

swings from side to side, much as in the case of a doubly closed

pipe, and the wave-length is X = 2-7T/A;
= T509 x 2a. The

forms of the equipotential surfaces, to which the directions of

vibration of the air-particles are orthogonal, are shewn in Fig. 79.

In the next mode the radial velocity vanishes over the sphere

r/a= '6625/1-891 ='350.

The study of the more complicated normal modes of vibra-

tion in a spherical vessel would lead us too far. The problem
is fully discussed in Lord Rayleigh's treatise.
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Fig. 79.

85. Vibrations in a Cylindrical Vessel.

The theory of the purely transversal vibrations of the air

enclosed by a circular cylinder is very similar. As in 54, the

equation
v (p (Z> j i f\ /-i \

-^- -j- fcP(p
=

( 1 )

03j Vll

where x, y are Cartesian coordinates in the plane of a cross-

section, becomes in polar coordinates

and the typical solution, when there is no source at the

origin, is x

GJm (kr) cos W0.+<k
)
...............(3)

The admissible values of k are determined by the condition that

d<f>/dr
= for r = a, or

Jm'(ka)=0.........................(4)
For the radial vibrations (ra

= 0) the earlier roots are given by

ka/ir
= 1*2179, 2-2330, 3-2383,..., .........(5)

172

j
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the limiting form being integer + J. In the case m =
1, which

includes the gravest mode,

&a/7r=-586, 1-697, 2717,..., ............(6)

the limiting form being integer J .

The purely longitudinal modes of a closed circular cylinder

come under 62. There remain the vibrations of mixed type.

The equation (2) has now to be modified by the inclusion of

a term 92

</>/d

2
,
where z is the longitudinal coordinate. It is

found that the equation is satisfied by

(7)

provided k* = /3
2 + m'V2

/^, ..................(8)

the origin being taken at the centre of one end. The condition

of zero normal velocity (d(f>/dz) at the other end (z
=

I) is

satisfied if m' be integral. The corresponding condition at the

cylindrical surface requires that /3 should be a root of

Jm'(l3a) = ...................... (9)

86. Free Vibrations of a Resonator. Dissipation.

The foregoing examples are of theoretical rather than

practical interest, since the vibrations of a mass of air enclosed

by rigid walls would be completely isolated. For acoustical

purposes the vibrating mass must have some communication

with the external atmosphere ;
on the other hand it is essential

that the communication should be so restricted that the frac-

tion of the energy which is used up in a single period in

the generation of diverging waves shall still be very small.

Otherwise the free vibrations could hardly be regarded as

approximately simple-harmonic, and might even resemble

the "dead-beat" type (11).
The theory is simplest in the case of

"
resonators

"
such as

were employed by Helmholtz in his researches on the quality
of musical notes. These are nearly closed vessels, with an

aperture, and are used to intensify, by sympathetic vibration of

the enclosed air, the effect of a simple tone produced in the

neighbourhood. The precise form is not important; it may
be spherical or cylindrical, or almost any shape, so long as
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the least diameter considerably exceeds the dimensions of

the aperture. In his synthetic work on the vowel sounds

Helmholtz used cylindrical resonators having a circular opening
at the centre of one end. When the object was to detect and
to isolate a particular overtone in a complex sound, he used

the more convenient form shewn in Fig. 80. The small open
nipple opposite the mouth is inserted into the ear cavity, so

that the tympanic membrane becomes part of the internal wall

of the resonator.

Fig. 80. Fig. 81.

The theory of resonators was treated mathematically for the

first time by Helmholtz in 1860, and was afterwards greatly

simplified by Lord Rayleigh (1871). Suppose in the first place

that we have a vessel with a narrow cylindrical neck which is

occupied by a plug or piston freely movable to and fro (Fig.

81). Let Q denote the capacity of the vessel, I the length of

the neck, o> its sectional area, p the density of the piston. We
will assume that the period of vibration is so long that the

corresponding wave-length (X) in air is large compared with

the diameter of the vessel. Under this condition the con-

densation s will at any instant be almost uniform throughout
the interior, and we may put s = cox/Q, where x denotes the

small displacement of the piston outwards from its mean

position. The resulting excess of pressure on the base of the

piston is
/5C

2
so), or pc

2
(0

2
x/Q, and the equation of motion of

the system is, approximately,

(1)



DYNAMICAL THEORY OF SOUND

The motion is accordingly simple-harmonic, with a period 27r/n,

provided

The nature of the piston is of little importance, provided

its mass be sufficiently small. We may even replace it by air,

if the length I be small compared with X, for under this

condition the column of air in the neck will behave almost as if

it were incompressible. We have then p'
=

p, and

(3)

Even in the case of a resonator whose mouth consists of

a mere opening in the wall, without a neck, the theory is not

very different. It is only a question of obtaining a proper
measure of the inertia of the mass of air in the immediate

neighbourhood of the mouth, inside and outside, which takes

the place of the piston in the above problem. The flow

through the aperture at any instant is still regulated, ap-

proximately, by the same laws as that of an incompressible

fluid, or of electricity in a uniform conductor. There being
little motion in the interior, the

value of $ there will be sensibly

uniform
;
we denote it by fa. Out-

side, at a short distance beyond the

mouth, we shall have
<j>
= 0, nearly.

If q denote the volume of air which

has passed through the aperture
outwards up to time t, the current,

or flux, outwards at this instant will

be q, and we have, by the electric analogy,

........................ (4)

where K is the "
conductivity

"
( 82), which depends, of course,

on the shape and size of the aperture and the configuration of

the wall in its neighbourhood. It is to be observed that this

relation (4) is purely kinematical
;
from the point of view of the

generalized dynamics of a system of one degree of freedom
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( 7), it expresses the momentum (which may be symbolized by

pfa) in terms of the velocity q. The dynamical equation

c
2s=<i ...........................(5)

of 70 (3) may in like manner be interpreted as expressing

the relation between change of momentum and force. If the

zero of q correspond to the equilibrium state, we have

s = -q/Q.........................(6)

Eliminating s and <, between (4), (5), and (6), we obtain

The motion is therefore of the type

q = Ccos(nt + e), ..................... (8)

provided n* = Kc?/Q............ . ............(9)

If we write n = kc, this gives

t? = K/Q, X = 2nV(Q/#)................ (10)

The wave-length depends, as we should expect, solely on the linear

dimensions of the resonator and its aperture. For resonators

which are geometrically similar in all respects, it varies directly

as the linear dimension. This is in accordance with a general

principle which may be inferred from the differential equation

(2) of 76, or otherwise. The formula (9) indicates further that

the pitch of the resonator is lowered by contracting or partially

obstructing the aperture, whilst it is raised by diminishing the

internal capacity.

The kinetic energy, being mainly resident in the neighbour-
hood of the mouth, may be calculated from the principles

applicable to an incompressible fluid. If the actual motion

were generated instantaneously from rest, the work required

would be the sum of half the products of the impulses into

the corresponding velocities. The equations (9) of 69 shew

that the requisite impulsive pressure is p^ hence

The potential energy is, by 70 (8),

F=4 />cVQ = |(/>cVQ).3
2.............(12)

The coefficients in these expressions being known, the speed

n of the oscillations can be inferred at once by the general
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formula (7) of 7. It was under this form that the theory was

presented by Lord Rayleigh. It is to be noticed that the

inertia-coefficient is proportional to the "
resistance

"
of the

aperture (in the electrical sense), whilst the coefficient of

stability, or elasticity, varies inversely as the capacity Q.

The preceding theory applies only to the gravest mode of the

resonator. In the higher modes the internal space is divided

into compartments by one or more "
loop surfaces

"
(i.e. surfaces

of constant pressure, where
<j>
=

0), and the frequencies are

much greater. The wave-length is then at most comparable
with the linear dimensions, as in the problems of 84.

As already stated ( 82) the calculation ofK is usually difficult.

For a circular aperture in a thin wall K is equal to the

diameter, and for any form differing not too much from a circle

we may put K=2 V(w/7r), approximately, where to is the area.

The frequency, as determined by (9), will then vary as a^/Q .

It is remarkable that this law was arrived at empirically by
Sondhauss at a date (1850) anterior to the theory. When the

aperture is fitted with a cylindrical neck, the conductivity is

limited mainly by the neck itself, and we may put K =
w/l,

approximately, where I is the length. The formula (9) then

agrees with (3). It is implied that I is small compared with X,

and at the same time large compared with the diameter of the

channel.

We have in the above theory allowed for the inertia of the

external atmosphere, but not for its compressibility, and the

vibrations as given by (8) are accordingly persistent. In other

words, we have neglected the apparent* dissipation of the

energy of the resonator due to air-waves diverging outwards

from the neighbourhood of the mouth. This will have, in

general, no appreciable influence on the period, but will

manifest itself by a gradual decay of the amplitude.
The effect can be estimated with sufficient accuracy in-

directly. The flux outwards at the mouth is, by (8),

q=-nCsm(nt + e) (13)

* True dissipative influences such as viscosity and thermal conduction are

ignored in the present investigation. They probably play as a rule a wholly
subordinate part.
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If the resonator were practically isolated in space, then on

account of the assumed smallness of its dimensions as com-

pared with \, the effect of the flux at a distance would be that

of a simple source of strength nC, and the rate of emission of

energy would accordingly be

W=n4

pC*/Sirc, .....................(14)

by the formula (15) of 76. The energy E of the motion,

being equal to the potential energy at its maximum, is,

approximately,

(15)

by (12). Equating, on the principles of 11, the rate of decay
of this energy to the emission W, we find

and therefore q = G e~tlr cos (nt + e), ...............(17)

provided r = $7r(?/n'Q
= S-rrQ/K^ ............(18)

in virtue of (9). The ratio of the modulus of decay to the

period (%7r/kc) is given by

(19)

Since K is at most comparable with the mean breadth of the

aperture, this ratio is usually very great, and the preliminary

assumptions implied in the above process are amply justified.

If the mouth of the resonator were furnished with an

infinite flange, i.e. one whose breadth is large compared with X,

the equivalent source would, as explained in 82, have double

the strength above assumed, and the emission of energy, now

operative in one half of the surrounding region, would be twice

as great. The modulus (18) would accordingly be halved.

As a numerical illustration of the theoretical results, take

the case of a spherical vessel 10 cm. in diameter, with a circular

aperture 1 cm. in radius, so that Q = 523*6, K 2. The wave-

length, calculated from (10), is 101*6
;
and the frequency there-

fore about 327. The modulus of decay, as given by (18), is

about one-tenth of a second.
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87. Corrected Theory of the Organ Pipe.

The same principles can be applied to obtain a correction

to the imperfect theory of the open pipe which was given in

62. We may begin by a brief examination of the slightly

simpler problem of reflection at an open end of an infinitely

long pipe ( 61).

Fig. 83.

Near the open end there is a certain region, whose dimensions

are small compared with the wave-length, within which the

transition takes place from plane waves within the tube to

diverging spherical waves outside*. We take the origin inside

the tube, near the mouth, but in the region of plane waves, and

the positive direction of the axis of x along the tube. For the

region of plane waves we may write

<f>
= Ae ik* + Be-ik

*, ....(1)

where the first term may be taken to represent a train of waves

approaching the end, from the right, whilst the second term
* The figure, which is based on formulae given by Helmholtz in another

connection, relates to the two-dimensional form of the problem. In three

dimensions the transition to a state of uniform radial flow outwards from the

mouth would be still more rapid.
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represents the reflected waves. The outward velocity at is

therefore represented by ik (A -
B), and the flux is

q = ika>(A-B\ ..................... (2)

where a> is the sectional area. The velocity-potential at is

A + B. The "
resistance

"
between the section x = and the

external region to the left may be specified as equivalent to

that of a certain length a of the pipe, and is accordingly

denoted by a/to. Hence, by the electrical analogy,

to
(3)

u ^ lika ,whence = -- ...................... (4)A I+ika.

If we put ka tan &fi, ..................... (5)

this may be written B/A = - e
-*kt......................(6)

Hence < = A {e
ikx - e~* ***>

)
................ (7)

The reflected train is therefore equal in amplitude to the

incident one, as was to be expected, since the inertia only of the

external air is so far taken into account
;
but there is a difference

of phase. In the theory of 61 the condition to be satisfied at

an open end was s = 0, or
<f)
= 0. Hence if we write (7) in the

form
= 4*^ {***> -e-*^} ............ (8)

we recognize that the circumstances are the same as if the pipe
were prolonged to the left for a length ft, and the reflection at the

mouth were to take place according to the rudimentary theory.

The wave-length being assumed to be large compared with the

diameter of the pipe, ka. will usually be small, so that ft
=

a,

nearly. But if the pipe be very much contracted or obstructed

at the mouth, ka may be considerable, and k/3 will in that case

approach \ir. We then have B = A, nearly, and the circum-

stances approximate to those of reflection at a closed end.

The actual determination of a is a problem in electric

conduction which has at present only been solved, even

approximately, in a very few cases. Lord Rayleigh estimates

that for an accurately cylindrical tube fitted with an infinite

flange the value of a is about "82 of the sectional radius. For
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an unflanged cylindrical tube experiment seems to indicate a

value of about '6 of the radius.

We will next suppose the pipe to be of finite length, and to

be closed at x = I, the origin being chosen as before, near the

mouth, in the region of plane waves. For this latter region we

may assume

<f>
= A cos k(l x), ..................(9)

since d<f>/dx must vanish for x = l. The flux outwards at

the mouth is therefore

q = codcj>/dx
= kcoA sin kl, ..................(10)

and the potential at is A cos kl. Hence with the same

meaning of a as before we have

A coskl-x kcoA sin kl,
CO

or cotkl = ka...................... (11)

This equation determines the wave-lengths (^Tr/k) of the

various normal modes. Usually, ka. is small, and the solution

of (11) is then

kl = (m + J) TT ka,

or fc(/ + )
= (w + 4)9r, ............... (12)

where m is integral. The character of the normal modes is there-

fore the same as on the rudimentary theory ( 62), provided we

imagine the length of the pipe to be increased by the quantity
a. In particular, the frequencies are as the odd integers

1, 3, 5, ... , so long as the wave-length remains large compared
with the diameter.

If the aperture be contracted the value of a is increased,

and the result tends to become less simple. In particular, the

harmonic relation of the successive frequencies is violated, as

may easily be seen from a graphical discussion of the equation

(11). When the pipe is almost closed, a is relatively great, and

the solution of (11) is kl = 1/ka, or k* = 1
/la. This agrees with

the formula (10) of 86, if we put col = Q, co/a
= K.

In the case of a pipe open at both ends the period equation
is found to be

tan &Z =-( + '), ...............(13)

where a, a' are the corrections for the two ends, but the calcula-
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tion implies that ka. and ka! are small. It is, however, only on

this condition that the conductivities at the two ends can, as a

rule, be estimated independently of one another. The equation
is then equivalent to

sin &( + + a
7

)
= 0, ...............(14)

and the frequencies are therefore those which are assigned to

a pipe of length I + a + a! by the rudimentary theory. The

harmonic relation between the various normal modes is pre-

served, but it must be remembered that the approximation is

the more precarious, the higher the order of the harmonic.

The wave-lengths of the proper tones are in all cases fixed

by the linear dimensions, but the frequencies, which vary as

the velocity of sound, will rise or fall with the temperature.
An "open" organ pipe is tuned by means of a contrivance

which increases or diminishes the effective aperture at the open

end, i.e. the end remote from the " mouth "
proper. The pitch

of a "
closed

"
pipe is regulated by adjusting the position of a

plug which forms the barrier.

To calculate the rate of decay of the free vibrations it will

be sufficient to take the case of the stopped pipe. The kinetic

energy corresponding to

(f)
= A cos k (I x) cos nt ...............(15)

is given with sufficient accuracy by

T = Ipto dx = pk*c0l . A* cos2 nt t . . .(16)

if ka. be small, since cos kl = 0, nearly. A more careful calcula-

tion, taking account of the transition region between the plane
and the spherical waves, replaces I by I + a, approximately, in

this formula, but the correction is not important. The total

energy, being equal to the kinetic energy at its maximum, is

accordingly
E =

\pteu>lA'>......................(17)

If the mouth be unflanged it acts, in relation to the external

space, as a simple source of strength kcoA sin kl, or kaA, nearly,

and the consequent emission of energy per second is accordingly

W=
pfrco'cAt/STr, ..................(18)
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by 76 (15). Equating the rate of decay of the energy to W,
we are led to the equation

dA k*a>c A _
"3*

+

and the modulus of decay is therefore

r = 47rZ/A;
2
6>c......................(20)

The ratio of this to the period (2?r/A;c) is 21/kco, or (in the

gravest mode) ffi/ira), nearly. Since the moduli of the various

normal modes are proportional to the squares of the respective

wave-lengths, the decay is the more rapid the higher the order.

For a flanged pipe the result (20) would be halved.

88. Resonator under Influence of External Source.

Reaction on the Source.

The theory of forced vibrations due to an external source

of sound, to which we now proceed, involves some rather

delicate considerations, and is often misunderstood. That

the mass of air contained in a resonator or an organ pipe
should be set into vigorous vibration by a source in approxi-

mate unison with it is intelligible enough; but it is further

desirable to have some estimate of the amplitude of the forced

vibration, and in particular to understand why the sound which

is apparently emitted by the resonator should under certain

conditions enormously exceed that which would be produced

by the original source alone.

For simplicity we will suppose that this source is main-

tained at constant amplitude by a suitable supply of energy,
so that the vibration of the air is everywhere steady. It is

evident at once that under this condition no work is done,

on the average of a whole period, at the mouth of a resonator

on the contained air, the energy of the latter being constant,

and consequently that no work can in turn be done by the

reaction of this mass on the external atmosphere. Any
increased propagation of sound to a distance must be due to

the changed conditions which the action of the resonator has

introduced in the neighbourhood of the original source. If

this source be not maintained constant, but merely started

with an initial fund of energy (as in the case of a tuning
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fork), this fund will under the influence of the resonator be

more rapidly consumed.

In order to treat the question in a form free from unessential

details, which may vary from one case to another, we take the

case of a resonator of the type considered in 86, whose

dimensions are small compared with the wave-length.
The theory is simplest when the frequency of the source

is very nearly equal to the natural frequency of the resonator,

as determined by 86 (9), so that the forced vibration in the

latter is at its strongest. It will perhaps make the matter

clearer if we imagine in the first instance that the resonator

has a short cylindrical neck in which a thin massless disk,

almost exactly fitting it, can be made to move to and fro by
a suitable application of force. Suppose then that the disk

is made to execute a vibration such that the volume swept
over by it outwards up to time t is

q = C cos nt
; (1)

and let the extraneous force which must be applied to the

disk to compensate the difference of the air-pressures on the

two sides be denoted by

A cos nt + B sin nt, (2)

this expression being (say) positive when the force is outwards.

The component Acosnt which keeps step with the displace-

ment is required to control the inertia of the air. From the

general theory of forced vibrations ( 9, 12) it appears that the

coefficient A can be made to have one sign or the other

by adjusting the value of n, the sign being the same as that

of C when the imposed vibration is relatively slow, and the

opposite when it is relatively rapid. We may therefore

suppose n to be so adjusted that A = 0. The circumstances

are then very nearly those of a free vibration, and the required

value of n is given by
n* = Kc*/Q, (3)

very approximately. The second component of the force (2),

which keeps step with the velocity (q), is required to maintain

the emission of energy outwards, which is, by 76 (15),

(4)
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This must be equal to the mean value of pq, where p is the

pressure at the outer face of the disk. Hence by comparison
we find that p must have the form

p = p + D cos nt -r sin nt............. (5)

The corresponding pressure on the inner face will be

p = pQ + D cos nt, ..................... (6)

simply, since no work is done, on the whole, on the air

contained in the resonator.

We may now invoke the action of the external source.

If this be such as would produce the pressure

P = P<> + ~A~ s^n nt ..................CO

at the mouth of the resonator if the disk were at rest, then

in the motion which is compounded of that due to the source

and that due to the disk no extraneous force will be required,

and the disk may therefore be annihilated without causing

any appreciable change in the conditions. If
</>2

be the

velocity-potential due to the source alone, at the mouth of

the resonator, we must have, in this case,

since (7) must be identical with p =pQ + p^.
The hypothesis of a rigid disk vibrating in a cylindrical

space was merely introduced for facility of conception, and

is in no way essential to the argument. The disk may, if

we please, be replaced by a flexible and extensible membrane

enclosing the aperture of the resonator, and abutting on the

external wall in the region of diverging waves.

Comparing (1) with (8) we see that to a disturbing potential

whose value at the mouth is

< 2
= Jcos(nt-e) .................. (9)

will correspond a vibration
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under the condition of maximum resonance, when n is given

by (3) approximately. The corresponding flux is

g = -g-sin(?rt-e)
...................(11)

The emission of energy is best calculated from a con-

sideration of the circumstances at a great distance. The

velocity-potential will be compounded of that due to the

original source and that due to the flux q, and under certain

conditions the latter component may greatly preponderate.
The emission of energy is then

W=27rpcJ*, .....................(12)

approximately, by 76 (15).

Thus if < 2 be due to a simple source A cos kct at a distance b

from the aperture, we have

&)................(13)

Hence J=A/4nrb,

and q =
j-j

sin k (ct b) ...................(14)

This is equivalent to a source whose amplitude is to that of

the primary source in the ratio l/kb. If b be small compared
with X/27T this ratio is large ;

and the emission of energy
exceeds that due to the original source in the ratio l/k?b

z
.

In the case of a double source B cos kct we may write,

if kb be small,
D

< 2
= 7 Tg

c s a cos k(ctb), ............(15)

by 76 (23), if a denote the angle which the axis of the source

makes with the line drawn from it to the aperture. Hence

/ = B cos a/4?r6
2
,
and the emission, as given by (12), is

TF = pc JB2 cos2

a/87r&
4................(16)

The emission due to the original (double) source alone would

be ptfcIP/ZiTr, by 76 (26). The ratio in which the emission

is increased is therefore 3 cos* a/fab*. Since the mean value

of cos2 a is J, the mean value of this ratio, for all directions

of the axis of the double source, is 1/frb
4
. That the ratio

L. 18
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should, under the given conditions, be so much greater than

in the preceding case is due to the relatively smaller efficiency

of a double source, as compared with a simple one, in propagating

energy outwards ( 80).

It may be well to insist again that the increased output

of energy is an indirect consequence of the presence of the

resonator, which itself does no work. The whole energy is

supplied by the original source, where the motion takes place

against an augmented component of pressure in the same phase

with the velocity. The velocity-potential due to the flux q

outwards from the resonator, as given by (11), is

<>, = sin (nt kr e), (17)
kr

and the resultant pressure is

P=PQ-\ cos (nt kr e). (1$)r

In the case of a simple primary source we had J=A/4>7rb )

e = kb; hence, putting r = b, we find that the consequent

pressure in the neighbourhood of this source is

(19)

Since the imposed outward flux is A cos nt, the mean rate of

work against this part of the pressure is

The output is therefore greater than it would be in the

absence of the resonator, in the ratio cos 2kb/k
2b2

. This agrees
with the former result, obtained on the hypothesis that kb is

small.

The energy stored in the resonator under the conditions of

maximum vibration is, by 86 (15),

E = 8

This varies directly as the capacity Q, and is for apertures of

similar form inversely proportional to the area.

The effect of a resonator under the influence of a distant
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source in unison with it may be sufficiently illustrated on the

assumption that the incident waves are plane. If

fa
= Jcosk(ct-x), ...............(22)

the ratio of the energy scattered by the resonator, which is

given by (12), to the energy-flux in the primary waves, viz.

JpAr'cJ"
2
,

is 47T/&
2
,
or X2

/7r. The energy diverted per second,

at its maximum, is therefore equal to '318 of that which in

the primary waves is transmitted across a square area whose

side is the wave-length. It may be added that a similar

law is met with in the theory of selective absorption of

light.

When approximate agreement between the frequency

(n/2?r) of the source and the natural frequency (w /27r) of the

resonator is no longer assumed, the external pressure which is

required to maintain a steady vibration (1) through the aperture

will consist of two parts. In the first place we have a component

keeping step with the displacement, which is required in order

to control the inertia of the air. This is easily found by an

extension of the method of 86. If $1 denote the velocity-

potential in the interior of the resonator, </>2
that at a short

distance outside the aperture, in the region of approximately

spherical waves, we have

q-Kfa-M ..................(23)

in accordance with the electrical analogy. In the interior we

have 5 = q/Q, c2s = ^, as before. Hence

q + n<?q
= -K<f>2 ,

..................(24)

where n 2 = ^Tc2
/Q......................(25)

This gives, for the external pressure,

(26)

The second part, which is in the same phase as q, is needed in

order that there may on the average be no gain or loss of energy
to the air contained in the resonator, and is accordingly given

by (7). Hence we have, altogether,

-smnt); ...(27)

182
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and the complete expression for the disturbing velocity-potential

near the mouth must be

kK
\

.

nt --^ cosnt
\

....... (28)

In the problem as it actually presents itself the value of
</>2

at the mouth is prescribed, say

</>2
= Jcos(nJ-e); ............... (29)

and in order to identify this with (28) we must have

TcK nC r . /- n 2
\ nC_._, /sin =

(l-_j)^. (30)

Hence

This determines C in terms of J. If r denote the modulus of

decay of free vibrations, as given by 86 (18), the formula may
also be written

7"2 1 ( f n 2\2 A M2^

^_2
= J_|h

_M +JL.1LI (32)

Except in the case of approximate synchronism the second

term within the brackets will be small compared with the

first. Hence for a given value of J, the value of nC (which is

the amplitude of the flux q) will be greatest when n = n
,

approximately. Moreover, for a given deviation of the ratio n/n
from unity the intensity of the resonance falls short of the

maximum in a greater proportion the greater the value of WOT,

i.e. the greater the ratio of the modulus of decay to the free

period. In other words, the smaller the damping of free

vibrations, the more sharply defined is the pitch of maximum
resonance. This is in accordance with the general theory

of 13.

The vibrations of a resonator under the influence of an

internal source of sound are discussed in 90 with special

reference to the theory of reed-pipes.

89. Mode of Action of an Organ Pipe. Vibrations

caused by Heat.

Although the loss of energy in a single period may be small,

the free vibrations of the column of air contained in an organ
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pipe are practically dissipated in a fraction of a second
;
this is

owing to the small inertia as compared with that of a piano-
wire. For musical purposes some device for sustaining the

note is required. In the ordinary
"
flute pipe,"

the lower part of which is shewn in section in

Fig. 84, a thin stream of air is driven by pressure
from a wind-chest so as to strike against the

bevelled lip of the aperture. Under these cir-

cumstances a very slight cause will make the jet

pass either wholly inside or wholly outside the

pipe. The precise mode of action is obscure, but

there can hardly be any doubt that in its main

features it is analogous to that of a clock-escape-

ment. Periodic impulses are given by the jet,

alternately inwards and outwards, to the air near

the mouth, always in the direction in which the

air is tending ;
whilst the vibrating column itself

mainly determines the epochs at which these impulses shall

occur. The circumstances are accurately periodic, so that

the driving force can be resolved by Fourier's theorem into

a series of harmonic components whose frequencies are as

1, 2, 3, .... The relative amplitudes with which these are

reproduced in the vibrating column will depend on the

closeness of their frequencies to the natural frequencies. Thus

in a "
closed

"
pipe, i.e. one closed at the upper end, the

harmonics of odd order are alone excited. Again the theory
of 87 indicates that in a sufficiently wide pipe the natural

frequencies may deviate sensibly from the harmonic relation,

in which case only the lower harmonics (after the funda-

mental) will be sensible; in particular, a wide closed pipe

gives almost a pure tone. On the other hand a pipe which is

narrow in comparison with the length may give a note rich in

harmonics. Indeed, if such a pipe be blown with sufficient

force, the fundamental is not sounded at all, the period becoming
that of the first harmonic; if the strength of the blast be

further increased the note may jump to the next member of

the series, and so on. An explanation is probably to be found

in the sort of dynamical elasticity possessed by the jet.
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Metal pipes are richer in harmonics than wooden pipes of

the same dimensions. This may be partly due to the greater

fineness of the lip, which introduces a greater degree of abrupt-

ness in the action of the jet, and so favours the amplitude of

the terms of higher order in the Fourier series which expresses

the driving force. Another source of the contrast in quality

may be found in the smaller rigidity and imperfect elasticity

of the walls of a wooden pipe, which may tend to absorb the

energy, especially in the case of the higher harmonics.

The "
speaking

"
of a resonator of any kind, when a jet of

air is blown across its mouth, is to be explained on the same

principles. In a resonator of the usual type the normal modes

after the first are far removed in pitch from the fundamental,

and are not sensibly excited by the essentially periodic impulse.

The note obtained is therefore a pure tone.

The vibrations of a column of air may also be excited by the

periodic application of heat, as in the well-known experiment
of the

"
singing flame," where a jet of hydrogen burns within an

open cylindrical pipe. For the maintenance of the vibration it

is necessary that heat should be supplied at a moment of con-

densation, or abstracted at a moment of rarefaction. To explain

how the adjustment is effected, it would be necessary to take

account of the fact that the vibrating system includes the gas
contained in the supply tube of the jet, as well as the column

of air in the pipe. The matter is thus somewhat intricate,

but a satisfactory theory has been made out, which accounts

clearly for the several conditions under which the experiment
is found to succeed or to fail*.

90. Theory of Reed-Pipes.
The mechanism of the reed stops of the organ is quite

different. The current of air issuing from the wind-chest is

made intermittent by its passage through a rectangular

aperture in a metal plate, which is periodically opened and

closed (partially) by a vibrating metal tongue, or
"
reed." The

period is accordingly determined mainly by the elasticity and

inertia of the tongue itself. The vibrations of the latter were

* Lord Rayleigh, Theory of Sound, 322 h.
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found by Helmholtz, by direct observation, to be of the simple-
harmonic type, but the fluctuations in the current of air are

necessarily of a more complex character. If the periodic
current be expressed by a Fourier series

C + Cicos(n -{-!)+ C2 cos(2nt + 2) + ..., ...(1)

the coefficients Cz , G3 , ... are usually by no means insensible

as compared with Clt and accordingly if the sound is heard

directly it has a very harsh and nasal character. In practice,

the reed is fitted with a suitable resonator, or
"
sound-pipe,"

which specially reinforces one or more of the lower elements in

the harmonic series (1).

For the purposes of mathematical treatment we may
idealize the question somewhat, and imagine that at a given

point in the interior of the resonator we have a simple source

of the type corresponding to one of the terms in (1). It

appears from the elementary theory of 62 that in the case of

a cylindrical pipe, with the source at one end, the frequencies
of maximum resonance are very approximately those of the

free vibrations when that end is closed. Hence a reed fitted

with a cylindrical sound-pipe of suitable length will emit

a series of tones whose frequencies are proportional to the odd

integers 1, 3, 5, .... In a conical pipe, on the other hand, with

the source near the vertex, we have the complete series of

harmonics with frequencies proportional to 1, 2, 3, 4,... (see

84). But in either case the harmonics of high order are

discouraged by the increasing deviation of the frequencies of

maximum resonance from the harmonic relation which neces-

sarily holds in the expression for the essentially periodic current

of air.

As the question is instructive in various ways it may be

worth while to examine more in detail the case of a cylindrical

sound -pipe (of any form of section), applying the correction

for the open end, and allowing for the dissipation due to the

escape of sound outwards. The plan of the investigation is

similar to that of 87, the difference being that we now have

a source Ceint (say) at the end x = I. For simplicity we will
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assume this source to be distributed uniformly over the cross-

section, so that

Let us suppose for a moment that we have a flux

2= A cos nt ........................(3)

outwards from the mouth. The pressure at will consist of

two components. We have first the part necessary to control

the inertia of the 'air near the mouth
;
the corresponding part

of the velocity-potential just inside is

6 -
q = cos nt, ..................(4)

CO
*

ft)

where a has the same meaning as in 87. Next we have the

part which is effective in generating diverging waves outside.

On the principles of 88 this is found to be

7 A cos nt, ..................... (5)

kA
corresponding to 4>-^r~ sm nt

>
..................... (6)

since k = n/c. The total velocity-potential at 0, corresponding
to (3), is therefore

............. (7)

Generalizing this, we may say that to a flux

q
= Aeint

........................(8)

corresponds <f> = o - - eint
,

. ...(9)
\ 47T/ ft)

the expression (7) being in fact the real part of (9), when A
is real. The correspondence will hold even if A be complex,
since this is merely equivalent to a change in the origin of t.

We now assume, for the region of plane waves,

<t>=r~ {B cos k (I
-

x)
- C sin k (I

-
x)}e

int
,

. . .(10)
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where the constants have been adjusted so as to satisfy (2).

Comparing with (8) and (9) we find

j, -vn- *.

Hence

B = A {sin -H (
ka - -

)
cos kl\ ,

(12)

!/ ik2
(o\ )

cos &
(
&a

)
sin &Z

[
.

V 47T/ J
/

The latter equation gives A in terms of C. Considering only

absolute values we have

=
(cos kl - ka sin kVf + (^)*

sin2 kl - -(13)

Since fcco is usually a small fraction, the emission of energy,
which varies as \A*\, will be greatest for a given source (7cosn

when
cos kl = kassmkl, (14)

nearly, i.e. when the imposed frequency approximates to that

of one of the normal modes of the pipe when closed at x = I,

as determined by 87 (11). In the case of the reed-pipe,

therefore, the tones which are specially reinforced consist of

the fundamental and the harmonics of odd order.

When (14) is satisfied, we have by (12)

C

This determines the relation between the flux outwards at the

mouth, and that constituting the source. The former now greatly
exceeds the latter in amplitude, and the factor i shews that it

differs in phase by a quarter-period.

Again, from (10) and (11) we have

</>
= T- \ sin kx + ka cos kx cos kx ! eint. . . .(16)



282 DYNAMICAL THEOEY OF SOUND

When (14) holds, this reduces to

x) -r sin kl cos kx eint

'kcoSmkir 47T

{ l"i

,*"? 011 \ cos A; (Z
-

a)
-V- sin M cos^ re

* n
'- (17)

)
2 sm2^[

y
4?r

j

The real part gives

<f> = = -T =-;
-^ cos k(l x) sin w^ : sin &Z cos ^a? cos w^ [ ,

A^<w2 sm2
A;Z

(
4?r

j

(18)

corresponding to a source Ccosnt. The variable part of the

pressure at the source (x
=

I) is

-r sin H cos

The first part of this is by far the more considerable
;

it is,

moreover, the only part which is effective in doing work. The
mean rate of work done at the source, i.e. the mean value of

pCcosnt, is

ZTTpcC*
"Jfc"Bin"'

It may easily be verified that this is equal to the work spent in

generating waves at the mouth, where, by (15),

tf................(21)7
k*o> sin kl

It appears further from (19) that the maximum of pres-

sure at xl synchronises almost with the maximum influx

of air, following it however by a short interval. There is

therefore a tendency slightly to lower the pitch of the reed,

which is, in the instruments here referred to, of the "
in-

beating type," i.e. the passage is opened when the reed swings

inwards, towards the wind -chest. The fact that the resultant

force on the reed is approximately in the same phase with the

displacement indicates that the reed is vibrating with a

frequency somewhat less than that natural to it ( 12).
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The reed-stops of an organ fall in pitch as the temperature

rises, owing to the diminished elasticity of the metal tongues ;

this is the opposite of what happens with regard to the flute-

pipes ( 62). A reed-pipe is tuned by a contrivance which

alters the effective length of the vibrating tongue.
It should be mentioned that there is another class of

instruments in which the " reed
"
has a much smaller elasticity

and is mainly controlled by the reaction of the resonant

chamber, its own natural frequency being relatively low. The

reed is then of the "out-beating type," the aperture being
widest when the reed swings outwards, i.e. with the wind.

The human larynx comes essentially under this class.



CHAPTER X

PHYSIOLOGICAL ACOUSTICS

91. Analysis of Sound Sensations. Musical Notes.

The vibrations of elastic bodies and the propagation of

waves through the atmosphere are subject to well-ascertained

mechanical laws, and the inferences drawn from these can be

controlled by more or less decisive experiments. But when

we approach the field where the human mechanism comes into

play, we are met by the peculiar difficulties which are inherent

in the observation and study of subjective phenomena. In

particular, when we endeavour to analyse a familiar complex
sensation into its elements, we are attempting a task for which

the experience of daily life has peculiarly unfitted us. Thus

we may have been accustomed to interpret the sensation in

question as indicating the presence of a particular object, or

the occurrence of a particular kind of event, in a particular

place. The elements of which it is made up give individually

little or no information; it is the combination which is significant,

and attention to the details would only distract from what is of

immediate practical interest. To use a rough and indeed an

utterly inadequate illustration, it is as if we were to insist upon

spelling every word we read.

The theory of sense-perception, especially in relation to

optics and acoustics, is a fascinating subject, but it cannot be

dealt with here. The student who is unversed in it may be

referred to the writings of Helmholtz*.

* The theory is explained in its acoustical bearings in the Tonempfindungen,

already cited (p. 3). It is also discussed from the optical point of view in his

Handbuch der physiologischen Optik, 2nd ed., Hamburg and Leipzig, 1896.

Elementary expositions will be found in the two volumes of his Vortrage und

Reden, Brunswick, 1884, of which there is an English translation by E. Atkinson,
with the title: Popular Lectures on Scientific Subjects, 2nd ed., London, 1893.
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There are one or two questions, however, relating principally

to Ohm's Law ( 1), to which some reference is necessary. The

first point on which the student should satisfy himself is that

the various simple-harmonic vibrations which are as a rule

combined in the production of a musical note are really

represented by independent elements in the resulting sensation
;

that the latter can in fact be resolved into a fundamental tone

and a series of harmonics. For this a slight course of education

is necessary. A series of resonators of the type shewn in

Fig. 80, p. 261, tuned to the overtones which it is desired to

detect, are of great service for this purpose*. But such

assistance is not indispensable, and a good deal can be effected

with the piano or monochord. Take for instance the note c,

whose harmonics are c', g
f

, c", e", g ', If on the piano one

of these, say g' }
be gently sounded, and the key then released,

so that the vibration is stopped, and if immediately afterwards

the note c be struck with full intensity, it is not difficult to

recognize in the compound sensation the presence of the

element previously heard. This is often more perceptible as

the sound dies away, the overtones being apparently extinguished

more slowly than the fundamental. A more immediately

convincing series of experiments can be made with the

monochord, or with a piano whose strings are horizontal and

therefore easily accessible. If a string be set into vibration

whilst damped at a nodal point of one of the harmonics by
contact with a hair-pencil, the fundamental tone and all the

harmonics of lower rank may be reduced in intensity or

altogether extinguished, according to the degree and duration

of the pressure applied. In this way a whole series of types
of vibration can be produced in which the harmonic in question
is accompanied by a varying admixture of the fundamental, &c.

The occurrence throughout of the corresponding sensation as

an independent element in the resulting sound is in this way
easily appreciated. The piano also lends itself readily to the

* It may be noted that the external ear-cavity is itself a resonator,

responding most intensely to a certain tone, which varies for different

individuals but is usually in the neighbourhood of ff* g
ir

. The aperture

being relatively large, the damping and consequently the range of resonance

is considerable.
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analysis of compound notes by resonance. If the string c', for

example, be freed from its damper by holding down its key,

whilst c is sounded for a moment, the harmonic c is taken up
and continued by the first-mentioned string. If on the other

hand, the string c be free from its damper, whilst c is sounded

for a moment, the tone c' is taken up as a harmonic of the

lower string. These simple experiments, which (with others)

are recommended by Helmholtz, can of course be varied in

many ways. Again, when the ear has learnt to distinguish the

partial tones in a complex note, it is easy to note the absence

of a particular tone of the series when the corresponding simple-

harmonic vibration is not excited. For instance, when a string

is struck at its middle point, the harmonics of even order are

wanting ( 26).

92. Influence of Overtones on Quality.

The quality of a musical note is determined ( 2) by the

number and relative intensities of the various tones which

compose it. The kind of influence which overtones of different

ranks exercise on the quality is summarised by Helmholtz,

somewhat as follows:

1. Pure tones like those of tuning forks with resonance

boxes, or of wide stopped organ pipes, are soft and pleasing,

smooth, but wanting in power.

2. Notes which contain a series of overtones up to the

fifth or sixth in rank are richer and more musical, and are

perfectly smooth so long as no higher overtones are sensible.

The notes of the piano and of open organ pipes are examples,

whilst those of the flute, and of the flute-stops on the organ
when softly played, approximate more to the character of pure
tones. In the "mixture" stops of the organ the lower

harmonics are expressly provided in greater intensity by

auxiliary pipes which are played automatically along with that

which gives its name to the note.

3. When the harmonics of even order are absent, as in the

case of a stopped organ pipe, or a piano string struck at the

middle point, the note has a hollow, and even a nasal character,

if the odd harmonics are numerous.
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4. The sound may farther be described as "full," if the

fundamental tone be predominant, and as "empty" if it be

relatively feeble. This is exemplified in the difference of

quality between the sound of a piano-wire when struck with

a soft or a hard hammer, respectively ( 26, 38).

5. When harmonics beyond the sixth or seventh are

present in considerable intensity, the sound is harsh and

rough, owing to the discords which these higher overtones

make with one another. If, however, the higher harmonics,

though present, are relatively weak, as in the case of the

stringed instruments of the orchestra, reed-pipes, and the

human voice, they are useful as giving character and expression

to the sound. Brass instruments, on the other hand, with

their long series of powerful overtones, are as a rule only

tolerable in combination with others, or for the sake of

particular effects.

The analysis of the sounds of the human voice is naturally

a more difficult matter. In particular, the constitution of the

vowel sounds has been much debated, without any very definite

conclusion. The same vowel may be sung on a wide range of

notes, but preserves its peculiar character throughout ;
and the

question arises, does this special quality depend solely on the

relative intensities of the various partial tones, or on the

predominance of one or more overtones of, or near to, a

particular pitch ? It will be remembered that the vibration of

the larynx is periodic, and that particular harmonics may be

reinforced by the resonance of the mouth-cavity, as in the case

of a reed-pipe ( 90). The balance of authority appears to

incline, though not very decisively, to the "
fixed-pitch

"
theory,

which is the second of the two alternatives above stated. A
review of the subject down to the year 1896 will be found in

the concluding chapter of Lord Rayleigh's treatise.

93. Interference of Pure Tones. Influence on the

Definition of Intervals.

It has so far been assumed that the sensations due to

two coexistent simple-harmonic vibrations are produced quite

independently of one another. This appears to be in fact the
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case when the interval between the two tones is sufficiently

great ;
but when the interval is small we have "

interference,"

as we should expect from the analysis of 10, and the sensation

is in whole or in part intermittent. The phenomenon of" beats"

hardly needs description ;
it is often met with in mistuned pairs

of piano-wires, in the vibrations of finger-bowls, and so on. For

methodical study two pure tones are required of equal intensity,

as e.g. from two tuning forks (with resonators), or two stopped

organ pipes, which can be made to differ in pitch by a variable

amount. As unison is departed from, the beats (whose

frequency is always equal to the difference of the frequencies

of the primary tones) are at first slow and easily counted. As

the interval widens they become more rapid, and a sensation of

roughness or discord is experienced ; moreover, the primary
tones are now heard along with the beats. Finally, as the

interval is continually increased, the beats and the consequent

roughness gradually cease to be perceptible.

The intervals at which roughness begins and ceases, vary in

different parts of the scale. For the same interval the rough-
ness is less, the higher the pitch ;

on the other hand for a given
number of beats per second the roughness is greater in the

higher octaves.

In the case of two (or more) compound musical notes, we

may have beats and eventual roughness between any constituent

tones which are sufficiently near in the scale. We may even

have interference between the higher overtones of the same

note ;
and it is for this reason that harmonics of higher order

than the sixth are prejudicial to good musical quality.

It is through the interference of pairs of overtones that

deviations from the consonant intervals ( 3) usually make
themselves felt. Thus in the case of the Octave cc' we have

tones with the frequencies

c = 132, 264, 396, 528, 660, 792, ...,

c' = 264, 528, 792, ...,

and if this be mistuned all the harmonics of c' are interfered

with by the even harmonics of c.
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In the case of the Fifth eg we have

c = 132, 264, 396, 528, 660, 792, ...,

g= 198, 396, 594, 792, ...,

and if this be mistuned the second tone of g beats with the

third tone of c, and so on. When the ratio of the vibration

numbers of the fundamentals is less simple, the harmonics

which can interfere are of higher order. Thus in the case of

the Major Third, where the ratio is 4:5, the first pair of

interfering overtones consists of the fifth tone of the lower note,

and the fourth of the higher. Since in many musical instruments

the fifth tone is very feeble, this consonance is less well defined

than the preceding ones. On the other hand the fundamentals

may fall, in the lower parts of the scale, within beating distance

(for example c= 132, e 165), so that this consonance is to be

reckoned also as less perfect than the former ones. Similar

remarks apply with greater force to such cases as the Minor

Third (5 : 6) and the Minor Sixth (5 : 8).

94. Helmholtz Theory of Audition.

The connection between primary sensations and simple-

harmonic vibrations has still to be accounted for. The problem
is a physiological one; but the theory which Helmholtz has

framed to explain Ohm's law, so far as it holds, and the various

deviations from it, is in its essentials so simple, and is so

successful in binding together the facts of audition into a

coherent system, that a brief statement of it may be attempted.

In its simplest form the theory postulates the existence,

somewhere in the internal ear, of a series of structures each

of which has a natural period of vibration, and is connected

with a distinct nerve-ending. For brevity we will speak of

these structures as "resonators," since that is their proper
function. A particular resonator is excited whenever a

vibration of suitable frequency impinges on the ear; the

appropriate nerve is stimulated
;
and the sensation is com-

municated to the brain. In this way the resolution of a

musical note into its constituent tones is at once accounted

for.

It is necessary to suppose that the resonators are subject

L. 19
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to a considerable amount of damping. If it were not so,

each resonator would go on vibrating, and the corresponding
sensation would persist, for an appreciable time after the

exciting cause had ceased. A similar interval of time would

elapse before the sensation reached its full intensity when the

cause first sets in. The effect would be that the sensations

due to a sufficiently rapid succession of distinct notes would

not be altogether detached from one another in point of time.

From considerations of this kind Helmholtz estimated that

the degree of damping must be such that the intensity (as

measured by the energy) of a free vibration would sink to

one-tenth of its initial value in about ten complete vibrations.

It follows, as explained in 13, that each resonator will

respond to a certain range of frequencies on each side of

the one which has maximum effect. It is assumed, further,

that the difference of pitch of adjacent resonators is so small

that the same simple-harmonic vibration will excite a whole

group, the intensity falling off from the centre on either side.

This is illustrated by the annexed figure, repeated from 13,

which may now serve to exhibit the distribution of intensity

over a continuous series of resonators under the influence of

a given simple-harmonic vibration. The abscissa is p/n 1,

where p is now taken to represent the natural frequency of a

resonator, and n that of the imposed vibration. The horizontal

scale depends on the value of fi, or 1/rw, where r is the
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modulus of decay of a free vibration. On the above estimate

of Helmholtz we shall have

whence = '018. The intensity is therefore one-half the

maximum for

2 = 1+ -018.

It will be observed that on the above view we ought in

strictness to speak of "simplest" rather than of "simple"
sensations of sound, absolutely simple sensations, in the strict

physiological meaning, being impossible to excite.

When two simple-harmonic vibrations, sufficiently far apart
in the scale, are in operation, the two groups of resonators

which are affected will be practically independent, and the

two sensations (of pure tones) will coexist. But when the

interval between the frequencies is sufficiently small, the two

groups will overlap, and the energy of vibration of those

resonators which are common to them will fluctuate in the

manner explained in 10. The excitation of the corresponding

nerve-endings will therefore be intermittent, with a frequency

equal to the difference of those of the two originating vibrations.

This is, on the theory, the explanation of beats. As the interval

is increased, the beats become more rapid. The "
roughness

"

which is ultimately perceived, in spite of the diminishing

amplitude of the fluctuations, has a more remote physiological

explanation. According to Helmholtz, there is here an analogy
with the painful effect produced by a flickering light, and in

other cases where a nerve is stimulated repeatedly at intervals

of time which are neither too great nor too small. When the

intervals are sufficiently long, the nerve has time to recover

its initial sensibility, and so experiences the full effect of each

recurring stimulus. When on the other hand the intervals

are sufficiently short, the sensation tends to become continuous.

It is for this reason that beats exceeding, say, 132 per second

cease to produce the sensation of roughness, even although
the interval between the beating tones be such as would be

perceptibly discordant in a lower part of the scale.

192
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The student of dynamics cannot fail to admire the beauty
of a theory which lends itself readily to the explanation of so

many complicated relations; but it is with the physiologist

and the anatomist that in the last resort it lies to decide

whether a mechanism of the kind postulated is really to be

found in the internal ear. In the original form of the theory

(1862) the resonators were identified with the structures known

as "Corti's rods," which are found arranged, some 3000 in

number, along the basilar membrane in the spiral cavity

of the cochlea. A disturbing discovery by Basse that these

structures do not occur in the ears of birds, to whom we can

hardly deny the perception of pitch, led to a modified form

of the theory. In the third edition of the Tonempfindungen

(1870) Helmholtz propounded the view that the resonators

consist of the various parts of the basilar membrane itself.

This membrane varies in breadth from one end to another,

like a very acute-angled triangle, and the tension appears to

be very much less in the direction of length than in that

of breadth. On this view the different parts could be set

into sympathetic vibration, much as in the case of a series

of strings of variable length placed side by side, except that

the independence of adjacent parts would be approximate
instead of absolute. For a full description of the complicated
structure of the internal ear, and for further speculations as

to the functions performed by its various parts, we must refer

to books on physiology.

95. Combination-Tones.

In one important respect the theory as so far developed
is inadequate. The explanation of consonant intervals outlined

in 93 assumes that one at least, and generally both, of the

notes concerned is complex, and contains one or more overtones

in addition to the fundamental. It was in fact through the

interference of two tones, one at least of which is an overtone,

that departure from the exact relation of pitch was stated to

make itself manifest. When both tones are pure this means

of definition is wanting, and on the theory of audition sketched

in the preceding section there appears to be no reason why
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the octave (for example) should be distinguished by any
character of smoothness from adjacent intervals on either

side, the two groups of sensations being in any case quite

independent. Since the more consonant intervals at all events

are as a matter of fact easily recognized by the ear, even in

the case of apparently pure tones, and are thoroughly well

defined, the difficulty is a serious one. To meet it, Helmholtz

developed his theory of "combination-tones," which are assumed

to supply the function of the missing overtones.

In most of our investigations it has been assumed that the

amplitude of the vibrations may be treated as infinitely small,

so that disturbances due to different sources may be super-

posed by mere addition. In the theory now in question this

assumption is abandoned
;

the vibrations are regarded as

small, but not as infinitely small, and the interaction of the

disturbances due to different causes is, to a certain degree of

approximation, investigated.

We have already had an indication in 63 of the manner

in which two imposed simple-harmonic disturbing forces of

small but finite amplitude, with frequencies Nlf N2 respectively,

may generate in the air other simple-harmonic vibrations

whose frequencies are

2Nlt 2#2 , Ni-N,, Ni + N*,

and whose amplitudes involve the squares or product of the

amplitudes of the two primaries. If the approximation were

continued we should meet with further vibrations whose fre-

quencies are of the type plNl piN^ where plt p2 are integers.

In acoustical language, two simple-harmonic vibrations can, if

of sufficient intensity, give rise not only to the pure tones

usually associated with them, but also to a series of other pure
tones of higher order. The fact that a single harmonic vibration

can by itself give rise to a pure tone together with its octave, &c.

is itself of some importance, but the most interesting result is

due to the interaction, viz. the " difference-tone
"

(N-^ N9).

The existence of difference-tones was observed, apart from

all theory, by Sorge (1745) and Tartini (1754). The "sum-

mation-tone
"

(Ni + N2) is more difficult to hear, and its
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existence has even been denied. It has however been objectively

demonstrated by Riicker and Edser*, by its effect on a tuning
fork of the same frequency.

Difference-tones due to the causes just considered are most

easily perceptible where we have a mass of air which is subject

to the joint and vigorous action of the primary vibrations, as

in the harmonium and the siren; they can then, like other

tones, be reinforced by suitable resonators.

There is however a way in which combination tones may
conceivably be originated in the ear itself. To explain this

it is necessary briefly to consider the forced vibrations of an

unsymmetrical system. When a particle, or any system having

virtually one degree of freedom, receives a displacement x, the

force (intrinsic to the system) which tends to restore equilibrium

is a function of x, and may be supposed expressed, for small

values of x, by a series

An example is furnished by the common pendulum, where

the force of restitution is proportional to g sin 6, or

but here, on account of the symmetry with respect to the

vertical, the force changes sign with 6, so that

only odd powers of 6 occur. The correction for

small finite amplitudes depends therefore on the

term of the third order in 6. But if the system
be unsymmetrical, as in the case of a pendulum

hanging from the circumference of a horizontal

cylinderf, the term of the second order comes in,

and the correction is more important. Helmholtz Fi

lays stress on the fact that in the slightly

* Phil. Mag. (5), vol. xxxix. (1895).

f If a be the radius, and I the length of the free portion of the string when

vertical, the potential energy is

where .9 is the arc described by the bob from the lowest position. The restoring
force is therefore

dV_mg a lmga^ t
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funnel-shaped tympanic membrane and its connections we
have precisely such an unsymmetrical system, the restoring

force being somewhat greater for inward than for outward

displacements of the same extent*. If we keep only the first

two terms in (1), the equation of motion is of the type

x+/juc = -auc*+X, ..................(2)

where X represents the disturbing force f. The joint action

of two simple-harmonic forces will be represented by

X =f1 cosnlt+fz cosnj................(3)

Neglecting, for a first approximation, the square of #, we have

x = l

..
cos nj -\

-- - cos n2t, .........(4)
/n-n,* fjL-nJ

the terms which represent the free vibrations being omitted,

since these are rapidly destroyed by dissipation. If we sub-

stitute this value of x on the right hand of (2), and write for

shortness

AAfc-%*)** /2/(/*-^
2)=#2 ,

.........(5)

we obtain the differential equation

x + x = X - a + 2
2 - af cos 2nJ - a. 2 cos

-
<*9i92 cos (HJ

-O t - ag,gz cos fa + w2) t, . . .(6)

correct to the second order of /i,/2 - The terms written in full

on the right hand may be regarded as a correction to the

disturbing force X. The solution of (6) gives, in addition to

(4), the terms

The first term merely indicates a shift of the mean position

*
It may be noted that the same element of asymmetry is present in the

investigation of 63. When we proceed to the second order of small quantities,
the changes of pressure due to condensations s are no longer equal in

amount.

f It is unnecessary to take account of the variability of inertia, since this

can be got rid of by a proper choice of the coordinate x. In any case

it will not alter the general character of the results obtained in the second

approximation.
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about which the oscillations take place. For the rest, we have

octaves of the primary tones, together with a difference- and

a summation-tone. If the approximation were continued we
should obtain combination-tones of higher order, as in the

former case.

When, as in the case of the tympanic membrane, the

free period 2?r/\//A is relatively long, the most important
combination-tone is the difference-tone (n^ n 2),

on account of

the relative smallness of the corresponding denominator in (7).

The theory of combination-tones here reproduced has not

been accepted without question. The difference-tones, as

already mentioned, were known as a fact since the time of

Tartini, and a plausible explanation had been given by
Thomas Young (1800). According to this view the beats

between the two tones, as the interval increases, ultimately

blend, as if they were so many separate impulses, into

a continuous tone having the frequency of the beats. The

difficulty of this explanation is that the actual impulses

during a beat are as much positive as negative, so that

it does not appear how any appreciable residual effect in

either direction could be produced, if the vibrating system
be symmetrical. It is true that if we turn to the figure on

p. 23, it is apparently periodic, with the period of the in-

termittence
;
but from the point of view of Fourier's theorem

the lower harmonics are all wanting, and the only two which are

present are precisely the two which are used in constructing the

figure. On the Helmholtz theory of audition the intermittent

excitation of a particular resonator m times a second is a wholly
different phenomenon from the excitation of an altogether

distinct resonator whose natural frequency is m. Young's
view appears indeed to be inadmissible on any dynamical

theory of audition, at least in the case of infinitely small

vibrations. On the other hand it is true, as we have seen,

that given a finite amplitude, and an unsymmetrical system,
a vibration of the type shewn in Fig. 10, p. 23, does actually

generate (among others) a vibration whose period corresponds
to the fluctuations there shewn. The distinction between the

two theories might therefore, from a merely practical point of
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view, be held to be almost verbal, were it not that Young's

theory fails to give an explanation of combination-tones other

than the first difference-tone.

96. Influence of Combination-Tones on Musical In-

tervals.

A brief indication of the way in which combination-tones

may assist in defining the consonant intervals is all that can be

attempted here. Take first the case of (primarily) pure tones.

In the case of a slightly mistuned Octave, say ^ = 100,

N9
= 201, we have Nz N1

= 101, which gives a difference-tone

making 1 beat per second with Nl9

For the Fifth, let N, = 200, N2 =301. We have

giving combination-tones with 2 beats per second.

For the Fourth, let ^ = 300, N2
= 401. Then

2^-^=199, 2^-2^
and the corresponding tones make 3 beats per second.

For the Major Third, let ^=400, JV2 = 501. We have

2^-2^ = 202, 3^-2^=198, giving 4 beats per second.

We might proceed further in the list, but it will already

have been remarked that combination-tones of increasingly

high order are being invoked. This is quite in conformity
with the observed fact that the beats are, in all cases after the

octave, very faint unless the primaries be especially vigorous.

A more effective part is played by the combination-tones

when the notes concerned have one or two overtones, but not a

sufficient range of them to account for the definition on the

principles of 93. Take for instance the case of the Fifth,

when each note has a first harmonic in addition to the

fundamental. If the interval be slightly mistuned, we have say

the primary tones: 200, 400; 301, 602. These give the two

difference-tones 301 - 200 = 101, 400 - 301 = 99, which inter-

fere with one another.

The combination-tones have an influence again, in the case
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of consonant triads, especially of simple tones, but enough
has been said to shew their importance from the musical point

of view. For further developments reference must be made to

the work of Helmholtz*.

97. Perception of Direction of Sound.

One important question of physiological acoustics in which

dynamical principles are involved remains to be mentioned.

An observer, even when blindfolded, and with no adventitious

circumstances to guide him, is in general able to indicate with

great accuracy the direction from which a sound proceeds. In

the case of pure tones the discrimination between back and

front is indeed lost, as was to be expected, considering the

symmetry with respect to the medial plane of the head, but

right and left are clearly distinguished. For tones of small

wave-length this may be accounted for by the difference of

intensity of the sensation in the two ears, since the head acts

to some extent as a screen, as regards the further ear. But

when the wave-length of the sound much exceeds the peri-

meter of the head the investigation given near the end of 81

shews that this difference must be very slight. According to

the most recent investigations of Lord Rayleigh^, the in-

terpretation depends on the relative phase of the sounds as they
reach the two ears, a difference of even a fraction of a period

being effective. He found that if the same tone be led by
different channels to the two ears, and all extraneous dis-

turbances be excluded, the sound can be made to appear to

come from the right or left at will, by adjusting the relative

phase. The origin of the sound was always attributed to that

side on which the phase is in advance (by less than half a

period). The result, which has been arrived at independently

by other observers, is at present unexplained. It has been

suggested that the phenomena may really be due to a differ-

ence of intensity. A fraction of the sound may be transmitted

from each side to the opposite internal ear, through the bones of

* See also Sedley Taylor, Sound and Music, London, 1873.

t Phil. Mag. (6), vol. xm. (1907).
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the head, in which case the original difference of phase would

produce a slight difference of intensity on the two sides owing
to interference between the direct and transmitted vibrations*.

It is impossible to suppose, however, that this difference could

be other than exceedingly minute.

*
Myers and Wilson, Proc. Roy. Soc. vol. LXXX. A, p. 260 (1908). This

hypothesis is discussed by Lord Kayleigh, Proc. Roy. Soc. vol. Lxxxm. A, p. 61

(1909).
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normal modes of a finite, 68
forced vibrations of a, 80

String excited by plucking, 66, 72, 98

by impact 73, 99

by bowing, 75, 98

Superposition of vibrations, 22, 48

Temperament, equal, 7

Temperature, effect of unequal, on
propagation of sound, 216

Tension, effect of permanent, on the
vibrations of a bar, 132

Tones, pure, 1

interference of, 287
Transmission of sound by an aperture,

244

by a grating, 247
Transverse vibrations, of strings, 59

of bars, 120
of membranes, 139
of plates, 152

Tuning fork, 132

Velocity of sound, 161, 162
in a narrow pipe, 193

'Velocity-potential,' 201

Violin-string, 75, 98

Viscosity, 183
effect of, on air-waves, 185, 186,

190
on waves in a narrow pipe, 193, 194,

196

Water, velocity of sound in, 163
vibrations of a column of, 173

Watt's indicator diagram, 157

Waves, on a string, 61, 64
in a bar, 115, 123
in an elastic medium, 118. See

also Sound waves

Wind, influence of, on sound propa-
gation, 219

Young's modulus, 111
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