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PART	1	

1.	Introduction	to	plasma	dynamics	
	
[Editor’s	note:	In	the	first	 lecture	of	Physics	242A	Kaufman	discussed	the	syllabus	for	
Physics	242A,B,	and	C.	 	Kaufman	used	CGS	units	 throughout	his	notes.	 	The	 textbook	
used	 as	 a	 general	 resource	 for	 the	 class	 at	 that	 time	 was	 P.	 C.	 Clemow	 and	 J.	 P.	
Dougherty,	The	Electrodynamics	of	Particles	and	Plasmas,	Addison-Wesley	(1969).]		
	

1.A	Basic	assumptions,	definitions,	and	restrictions	on	scope	
	
Definition:	An	ideal	plasma	is	a	charged	gas	wherein	no	bound	states	exist	(a	
“mythical	beast”).	
	
Postulate:	We	exclude	the	sufficiently	dense	plasma	that	requires	quantum	effects:	
!→0 	here.	
	
Postulate:	We	further	ignore	special	relativity:	β ≡ v / c <<1 	
	
	 For	 purposes	 of	 an	 introductory	 study	 of	 plasma	 dynamics	 we	 initially	
assume	no	applied	magnetic	field	B=0	and	dispense	with	the	generality	of	Maxwell’s	
equations	 in	 favor	 of	 retaining	only	Coulomb	 interactions.	 	We	 assume	a	 gas	 of	N	
charged	particles.		Then	the	force	on	particle	i	due	to	all	the	other	particles	is	given	
by	

mi
!v i = ei r̂ij

j(≠i )

N

∑
e j
rij
2 	 	 	 	 	 (1.A.1)	

and	there	are	N	such	equations.		We	require	an	approximation	method	to	solve	this	
system	of	nonlinear	equations.	 	 	The	charges	and	masses	are	parameters	that	have	
explicit	 dimensions.	 	 We	 also	 require	 initial	 conditions	 on	 particle	 positions	 and	
velocities,	and	need	a	statistical	approach	because	N	is	large.	
	
Definition:	 ℓ 0 	is	 the	 average	 distance	 between	 nearest	 neighbors;	 n ≈1/ ℓ0

3 	is	 the	
number	density	of	particles;	and	 v 	is	an	average	velocity.		These	define	the	state	of	
the	plasma,	statistically.	
	

1.B	Definition	of	a	plasma	
	
	 Form	the	dimensionless	quantity	e2 /mℓ0v

2 .	 	The	classical	electron	radius	is	
re=e2/mc2;	so	divide	by	another	length	 ℓ 0 	to	form	a	dimensionless	quantity:	
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Definition:	 e2

mℓ0v2
=
e2 ℓ0
mv2

=
avg.	nearest	neighbor	interaction	energy

avg.	kinetic	energy =
1
Λ∗

	

	
Thus,	we	are	comparing	the	interaction	energy	to	the	kinetic	energy	in	the	plasma;	
and	we	 treat	 the	 interaction	 energy	 as	 a	 perturbation.	 	 The	 plasma	 is	 said	 to	 be	
weakly	coupled.	
	
Postulate:	In	our	plasmas	N	and	Λ*	>>1,	equivalently	mv2 ~ kBT >> e2 / ℓ0 	
We	are	not	assuming	that	the	total	kinetic	energy	 NkBT >> N

2e2 / ℓ0 .		[Editor’s	note:	
In	what	follows,	units	are	employed	for	the	temperature	T	such	that	kB≡1.]	There	are	
some	plasmas	in	which	Λ∗ ≤O(1) ,	for	instance	in	a	metal	where	the	interaction	and	
the	Fermi	energies	are	comparable;	and	a	quantum	mechanical	treatment	is	then	
necessary.		In	ionic	crystals	Λ∗ <<1 	is	possible.	
	
Exercise:	 i)	Find	 the	 region	 in	 temperature	T	 and	density	n	 parameter	 space	 such	
that	 Λ*>>1.	 ii)	 Impose	 the	 additional	 constraints	 v/c<<1	 and	
nλdeBroglie3=n(h/mv)3<<1.	
	
Definition:	 The	 collision	 frequency	 is	 ν~nσv	 where	σ~(e2/mv2)2,	 and	 the	 plasma	
frequency	 is	 ωpe~(4πne2/m)1/2	 	 Then	 ν/ωpe~(Λ*)-3/2<<1,	 i.e.,	 the	 relative	
collisionality	of	the	plasma	is	weak.	
	
Definition:	The	Debye	length	λD ≡ v/ω pe = (T / 4πne

2 )1/2 	is	the	characteristic	shielding	
length,	 i.e.,	 the	 effective	 interaction	 distance.	 	 The	 shielded	 potential	 from	 a	 test	
particle	 is	V ~ (e / r)exp(−r / λD ) ,	 and	 the	 number	 of	 particles	 in	 a	 region	 around	 a	
test	 particle	 of	 order	 the	 Debye	 length	 in	 dimension	 is	 then	Λ ~ nλD

3 .	 	 We	 must	
require	that	Λ>>1	for	the	validity	of	a	statistical	approach.		
	
Theorem:	 Λ~(Λ*)3/2	 so	 that	 the	 conditions	 of	 weak	 collisionality	 and	 weak	
interaction	energy	are	closely	related.	 	We	will	use	Λ>>1	exclusively	and	call	it	the	
plasma	 parameter.	 	 [Note:	 Sometimes	 the	 plasma	 parameter	 is	 defined	 as								
Λ ≡ 4πnλD

3 .]		
	
We	note	 it	 is	 a	very	good	assumption	 for	most	plasmas	 to	assume	 that	 the	Debye	
length	 λD	 is	 small	 compared	 to	 the	 plasma	 macroscopic	 dimension	 L,	 so	 that	
N~nL3>>Λ~	nλD	3.	
 

2.	Vlasov-Poisson	equation	formulation	for	a	collisionless	plasma	
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2.A	 Equations	 of	 motion	 in	 phase	 space,	 Poisson	 equation,	 and	 definition	 of	
distribution	function	
	
	
	 Consider	the	group	collective	electric	field	E	and	the	equations	of	motion	

mi
!v i = eiE

i = ei r̂ij
e j
rij
2

j(i≠i )
∑ 	 	 	 	 (2.A.1)	

We	 coarse-grain	 average	 the	 point	 charges	 to	 smear	 and	 smooth	 the	 collective	
electric	field:	
	 	 	 	 mi !vi = eiE

i (ri )→ eiE(ri ) 	 	 	 	 (2.A.2)	
The	six-dimensional	phase-space	equations	of	motion	are	then	

	 	 	
ms !vs = esE(r)
!r = v

⎫
⎬
⎭

d
dt
r,v( ) = v, es

ms

E(r)
⎛

⎝
⎜

⎞

⎠
⎟
	 	 	 (2.A.3)	

This	phase	space	is	not	the	same	as	the	Gibbs	phase	space	in	statistical	mechanics.	
	
	

	
	

Fig.	2.A.1		Flow	in	phase	space	(cartoon)	
	

Theorem:	Poisson’s	equation	is	
∇⋅E=4πρ(r)	 ∇×E(r)=0		where	ρ(r)= ei

i
∑ δ(r−ri ) 	 	 (2.A.4)	

with	 the	 electrostatic	 constraint	 on	 E	 and	 the	 charge	 density	 ρ(r)	 needs	 to	 be	
smoothed.	
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Definition:	 fs(r,v) 	is	the	mean	density	of	particles	of	a	species	s	in	six-dimensional	
phase	space;	then		

ρ(r)≡ es
s
∑ d3∫ vfs(r,v) 	 	 	 	 (2.A.5)	

	
The	smoothed	version	of	Eq.(2.A.4)	for	E 	becomes	
	
	 	 	 ∇⋅E=4π es

s
∑ d3∫ vfs(r,v) ∇×E=0 	 	 	 (2.A.6)	

fs(r,v) 	evolves	 in	 time:	 what	 is	 the	 equation	 of	 evolution	 for	 fs(r,v;t) 	in	 time?	

Introduce	x=(r,v)	and	 d
dt
x ≡X(x,t) 	;	then	 fs(r,v;t)≡ fs(x;t) .	

	
Theorem:	The	number	of	particles	NV	for	any	species	in	a	volume	V	is		
	

	 	 	 	
NV (t)= d6

V∫ xf (x;t)
	 	 	 	 	 (2.A.7)	

Because	 the	number	of	 particles	 in	 the	 volume	 is	 conserved,	 except	 for	net	 fluxes	
into	or	out	of	the	surfaces	bounding	the	volume,	it	follows	that	
	

dNV

dt
= d6x

V∫
∂f (x;t)
∂t

=− dσ̂
surfaces!∫ ⋅Xf =− d6x

V∫ ∇⋅ Xf( )
	 	 (2.A.8)	

where	σ̂ points	out	of	the	volume	and	the	divergence	theorem	has	been	used.		Given	
that	the	volume	integrals	in	Eq.(2.A.8)	are	equal	for	whatever	subdomain	of	phase-
space	 is	 enclosed	 in	V,	 the	 integrands	must	be	 equal;	 and	we	arrive	 at	 the	Vlasov	
equation.	
	
Theorem:	Vlasov	Equation	
	

	 	

∂fs(x;t)
∂t

=−∇⋅ Xfs( )=− ∂

∂r
vfs( )− ∂

∂v
es
ms

E(r,t) fs
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=−v ⋅ ∂
∂r
fs −

es
ms

E(r,t)⋅ ∂
∂v

fs
	 	 	 (2.A.9)	

which	can	be	rewritten	as	
	

∂fs(x;t)
∂t

+v ⋅ ∂
∂r
fs +

es
ms

E(r,t)⋅ ∂
∂v

fs =0
	 	 											(2.A.10)	

In	the	presence	of	volumetric	sources	and	sinks,	e.g.,	ionization	and	recombination,	
and/or	collisions,	the	right	side	of	Eq.(2.A.10)	is	no	longer	zero.	
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2.B	Continuity	equation	in	phase	space	–	Liouville	theorem			
	
	 A	 number	 of	 observations	 can	 be	 made	 immediately	 on	 inspecting	 the	
derivation	of	the	Vlasov	equation.		From	Eqs.(2.A.7),	(2.A.8),	and	dx /dt ≡X(x,t) 	we	
have		

	 	 	

∂f (x;t)
∂t

=−
∂

∂x
⋅ Xf( )=−X ⋅ ∂f

∂x
− f ∂

∂x
⋅X
	 	 	 (2.B.1)	

and	hence,	

	 	

∂

∂t
+ !x ⋅ ∂

∂x

⎛

⎝
⎜

⎞

⎠
⎟ f (x;t)=− f (x;t) ∂

∂x
⋅X =− f (x;t)∇⋅X

	 	 	 (2.B.2)	
Eq.(2.B.2)	is	a	phase-space	continuity	equation.		The	left	side	of	this	equation	is	just	
a	convective	derivative,	and	the	right	side	allows	for	compressibility.		If	∇ ∙ X<0	then	
Df/Dt	>	0,	and	Df/Dt	<	0	if	 ∇ ∙ X>0.		We	note	that	as	an	almost	trivial	consequence	of	
the	independent	phase	space	variables:	
	 	 	

	

∂

∂r
⋅v =0 ∂

∂v
⋅
e
m
E+ v

c
×B

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=0 ⇒∇⋅X = ∂

∂r
⋅v+ ∂

∂v
⋅ !v =0

	 	 (2.B.3)	
	
Theorem:	(Liouville	theorem)	If	∇⋅X =0 ,	then	the	right	side	of	Eq.(2.B.2)	is	zero	and	
(2.8.2)	corresponds	exactly	to	the	Liouville	theorem	for	Hamiltionian	systems:	
	

∂

∂t
+ !x ⋅ ∂

∂x

⎛

⎝
⎜

⎞

⎠
⎟ f (x;t)=0

	 	 	 	 (2.B.4)	
	

In	 this	 limit	 the	 phase-space	 flow	 is	 “incompressible”	 and	 Df/Dt	 =0,	 i.e.,	 f	 is	
conserved	 along	 the	 phase-space	 trajectories.	 	 If	 the	 number	 of	 particles	 per	 unit	
volume	 f	 is	 conserved	 then	so	 is	1/f,	which	 is	 the	differential	volume	element	per	
unit	 particle,	 i.e.,	 the	 phase-space	 volume	 element	 is	 also	 conserved	 (although	 its	
shape	may	deform).			
	

2.C	Nonlinear	Vlasov	equation	with	self-consistent	fields			
	
Theorem:	Vlasov-Maxwell	equations	in	a	plasma	with	self-consistent	fields		
	

	 	 					 ∂
∂t
+v ⋅ ∂

∂r
+
es
ms

E+ v
c
×B

⎛

⎝
⎜

⎞

⎠
⎟⋅
∂

∂v

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ fs(r,v;t)=0 	 	 	 (2.C.1)	

	
∇⋅E=4π es

s
∑ d3∫ vfs(r,v;t)

	 	 	 	 (2.C.2)	
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∇×B−1
c
∂E
∂t

=
4π
c

es
s
∑ d3∫ vvfs(r,v;t)+

4π
c
jext
	 	 (2.C.3)	

∇×E+1
c
∂B
∂t

=0
	 	 	 	 	 	 (2.C.4)	

	
∇⋅B=0 	 	 	 	 	 	 	 (2.C.5)		
	

and	we	can	include	the	gravitational	Poisson	equation:	
	

	 	 	
∇2φg =4πGρm =4πG ms

s
∑ d3v∫ fs

	 	 	 	 (2.C.6)	
where	the	gravitational	field	g=-∇φg,	φg		is	the	gravitational	potential,	ρm	is	the	mass	
density,	and	G	is	the	universal	gravitational	constant.	
	 In	a	Hamiltonian	system	one	can	introduce	the	notation	
	

	 	 	
x = qi ,pi( ) X = ∂H

∂pi
,−∂H
∂qi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	 	 	 	 (2.C.7)	

	
where	H	is	the	particle	Hamiltonian	and	the	i	index	represents	a	phase-space	degree	
of	freedom.		The	Vlasov	equation	then	can	be	written	as	
	
	 	 	

∂f
∂t
+

∂f
∂qi

∂H
∂pi

−
∂f
∂pi

∂H
∂qi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ =

∂f
∂t
+ f ,H{ }=0

	 	 	 (2.C.8)	
	
where	{f,H}	denotes	the	Poisson	bracket.			
	 The	Vlasov-Poisson	equations	can	be	written	as	
	

	 	

E=−∇φ ∇2φ =−4πρc φ(r,t)= d3r∫ 'ρc(r',t)
r−r'

∂fs
∂t

+v ⋅
∂fs
∂r

+
es
ms

∂fs
∂v

⋅ −
∂

∂r

⎛

⎝
⎜

⎞

⎠
⎟ d3r∫ '

4π es'
s'
∑ d3v∫ ' fs(r',v',t)

r−r'
=0

	 (2.C.9)	
	
We	next	consider	the	qualitative	properties	of	 the	nonlinear	self-consistent	Vlasov	
equation	 in	 Eq.(2.C.9).	 	 The	 relative	 orders	 of	 the	 three	 terms	 are	 f/τ	:	
vf/λ	:	f2e2λv2/m.	 	 i)	 Balancing	 the	 first	 two	 terms	 in	 the	 Vlasov	 equations	 yields	
τ~λ/v	or	ω/k~v,	i.e.,	vp~v,	where	vp=ω/k,	ω	is	a	characteristic	frequency	and	k	is	a	
wavenumber.	 ii)	 Balancing	 the	 second	 and	 third	 terms	 yields	 ω~	
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4π(e2/m)fv3λ/v~(4πne2/m)λ/v	which	 using	ωλ~v	 leads	 to	ω2~4πne2/m,	 which	 is	
the	 plasma	 frequency	 squared.	 	 iii)	 With	 λ~v/ω	and	 setting	 v~vth=(T/m)1/2	 the	
electron	 thermal	 velocity,	 then	 λ~λD~(T/4πne2)1/2	 where	 λD	 is	 the	 Debye	 length.		
We	 will	 see	 that	 many	 plasma	 phenomena	 can	 be	 characterized	 in	 terms	 of	
important	 dimensionless	 variables,	 for	 example,	 ω/ωpe,	 λ/λD,	me/mi,	 Te/Ti,	 ω/kv,	
L/λD,	ωps/ωcs,	Δω/ω,	vth/c,	 and	 the	 ratios	 of	E2	 to	B2	 and	 to	 nmv2.		There	 are	 also	
plasma	attributes	and	phenomena	associated	with	nonuniformity	and	anisotropy.	
	

2.D	Moment	equations			

2.D.a	Conservation	of	mass	density,	momentum	density,	energy	density		
	
Rewrite	the	collisionless	Vlasov	equation	in	the	alternative	form	
	

	 	 	 	

∂

∂t
fs +

∂

∂r
⋅(vfs )+

∂

∂v
⋅(afs )=0

	 	 	 (2.D.1)	
where		the	acceleration	a	is	 	 	

	 	 	 	
a=

es
ms

E+1
c
v×B

⎛

⎝
⎜

⎞

⎠
⎟
	 	 	 	 	 (2.D.2)	

and	define	the	number	density	ns	

	 	 	 	
ns(r,t)= d∫

3
v fs(r,v;t) 	 	 	 	 (2.D.3)		

Defintion:			Moments	of	the	velocitiy	distribution	are	constructed	from	
		

A
s
(r;t)≡ d3v Afs(r,v;t)∫

d3v fs(r,v;t)∫ 	 	 	 	 (2.D.4)		
Examples:	
1.		A=1	→	Identity	operation	
2.		A=v	→		u	≡	<v>	the	average	velocity	
3.		A=(v-u)(v-u)		→	nm	<(v-u)(v-u)	>	≡	P(r,t)		the	pressure	tensor	
4.		A=e		then		∑sesns	≡	ρ(r;t)	the	charge	density	using	(2.D.3)		
5.		A=½mv2		→	K(r;t)	≡	∫d3v	½mv2	f	=	n<½mv2	>			the	kinetic	energy	density	
	
Theorem:	A	generalized	moment	equation	can	be	derived	directly	 from	the	Vlasov	
equation	(the	species	index	s	is	understood):	
	

	

∂

∂t
n A⎡
⎣

⎤
⎦= d3v∫ ∂f

∂t
A+ ∂A

∂t
f

⎛

⎝
⎜

⎞

⎠
⎟=n ∂A

∂t
+ d3v∫ A −

∂

∂r
⋅ vf( )− ∂

∂v
⋅ af( )

⎡

⎣
⎢

⎤

⎦
⎥

=n ∂A
∂t

−∇⋅ n Av⎡
⎣

⎤
⎦+n a ⋅ ∂A

∂v 	 (2.D.5)	
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Examples:		
1.		A=1	→	continuity	equation	
	

∂n(r;t)
∂t

=−∇⋅ nu( )
	 	 	 	 	 (2.D.6)	

or		 	 	 	

	 	 	

d
dt
n(r;t)= ∂

∂t
+u ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟n=−n∇⋅u

	 	 	 	 (2.D.7)	
2.		A=mv	→	momentum	conservation	
	

	 	 	

∂

∂t
nmv =

∂

∂t
nmu=−∇⋅ nm vv( )+ne E+1c u×B

⎛

⎝
⎜

⎞

⎠
⎟
		 (2.D.8)	

We	can	use	the	identity	<vv>=<(v-u)(v-u)>+uu,	the	continuity	equation	Eq.(2.D.7),	
and	the	definition	of	the	pressure	tensor	P	in	conjunction	with	Eq.(2.D.8)	to	derive	
the	fluid	momentum	balance	equation:	 	
	

	 	 	
nm d

dt
u=−∇⋅P+ne E+1

c
u×B

⎛

⎝
⎜

⎞

⎠
⎟
	 	 	 	 (2.D.9)	

We	 can	 consider	 the	 Coulomb	 case,	 assume	 there	 is	 no	magnetic	 field,	 sum	 over	
species,	 and	 integrate	 Eq.(2.D.8)	 over	 all	 space	 to	 demonstrate	 the	 total	 particle	
momentum	is	a	constant:	
	

								

d3r ∂

∂t
nsmsv

s
∑

⎡

⎣
⎢

⎤

⎦
⎥∫ = d3r −∇⋅Ps +nsesE( )

x
∑
⎡

⎣
⎢

⎤

⎦
⎥∫ = d3r −∇⋅Ps( )+ρE

x
∑
⎡

⎣
⎢

⎤

⎦
⎥∫

= d3r −∇⋅Ps( )+ 1
4π ∇⋅E( )E

x
∑
⎡

⎣
⎢

⎤

⎦
⎥∫ = d3r −∇⋅Ps( )+∇⋅ EE4π −

E2I
8π

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫

= d3r∇⋅ −Ps −
EE
4π +

E2I
8π

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ = dS!∫ ⋅ −Ps −
EE
4π +

E2I
8π

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

						(2.D.10)	

	 	 	 	 	
where	dS	is	directed	out	of	volume	on	its	surface	and	we	have	used	the	divergence	
theorem	 and	 Gauss’	 law,	 and	 assumed	 the	 fields	 and	 the	 velocity	 distributions	
vanish	 at	 infinity.	 	 We	 can	 include	 field	 stresses	 and	 field	 momentum	 using	
Maxwell’s	equations	as	in	Sec.	6.7	of	Jackson’s	Classical	Electrodynamics	textbook	to	
demonstrate	that	the	total	particle	and	field	momentum	is	conserved.	
	
3.		A=½mv2	→	energy	conservation	
	

∂

∂t
Ks =−∇⋅ns

1
2msv2v +ns esv ⋅E=−∇⋅Ss

K + js ⋅E 		 										(2.D.11)	
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We	note	that	the	magnetic	field	does	no	work	and	Eq.(2.D.11)	can	be	summed	over	
species	to	obtain	the	equation	for	energy	conservation	of	all	particle	species.	K	is	an	
energy	density.	 	Equation(2.D.11)	summed	over	species	 is	extended	to	 include	the	
electromagnetic	field	energy	density	as	follows:	
	

	 ∂

∂t
K + E

2 +B2

8π
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

∂

∂t
K +Ε( )=−∇⋅ SK + c

4π E×B
⎛

⎝
⎜

⎞

⎠
⎟=−∇⋅ SK +SEM( ) 													(2.D.12)	

	
where	 we	 recognize	 SEM	 as	 the	 electromagnetic	 Poynting	 flux	 and	 note	 that	 J⋅E	
terms	 identically	 cancel.	 	 By	 integrating	 Eq.(2.D.12)	 over	 volume,	 using	 the	
divergence	 theorem,	 and	 assuming	 all	 quantities	 vanish	 at	 infinity,	 we	 can	
demonstrate	that	total	energy	is	conserved.	
	
4.		A=mr2	→		moment	of	inertia	
	

	 	 	
I(t)= 12 d3r∫ ms

s
∑ r2ns(r;t)

∂

∂t
I =−12 d3r∫ ms

s
∑ r2∇⋅ nsus( )= d3r∫ msnsus ⋅

s
∑ r

	 											(2.D.13)	

	
I	 is	 a	 global	 scalar	 quantity	 that	 only	 has	 a	 time	 variation.	 	 Equation(2.D.13)	 is	
derived	 using	 the	 continuity	 equation	 	 (2.D.6),	 integrating	 by	 parts,	 and	 using	
u⋅∇r2=2u⋅r.	

2.D.b	Virial	theorem	
	
Virial	theorem:	We	begin	by	deriving	the	electromagnetic	momentum	conservation	
law	from	Maxwell’s	equations:	
	

−
∂

∂t
E×B
4πc

⎛

⎝
⎜

⎞

⎠
⎟= ρE+1

c
j×B− 1

4π ∇⋅ EE−
1
2E

2I+BB− 1
2B

2I( )

= ρE+1
c
j×B− 1

4π ∇⋅P
EM

											(2.D.14)	

	
	
We	 then	 take	 another	 time	 derivative	 in	 Eq.(2.D.13),	 use	 the	 momentum	
conservation	equation		Eq.	(2.D.8),	and	include	the	jxB/c	force	in	(2.D.10).		We	next	
eliminate	ρE+	jxB/c	using	Eq.(2.D.14)	to	obtain	
	

	 	 !!I = d3r∫ r ⋅ ∂
∂t

nsms
s
∑ us = d3r∫ r ⋅ −∇⋅ PK +PEM( )− ∂

∂t
E×B
4πc

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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We	add	the	term	involving	the	electromagnetic	momentum	to	both	sides	of	the	
equation	to	obtain	
		

	 !!I + d
dt

d3r∫ r ⋅ E×B4πc
⎛

⎝
⎜

⎞

⎠
⎟= d3r∫ I : PK +PEM( )= d3r∫ I : 2K +EEM( )>0 																(2.D.15)	

where	 an	 integration	 by	 parts	 has	 been	 performed	 and	 I:	 denotes	 the	 resulting	
double	 dot	 product	 of	 the	 identity	 tensor	 with	 the	 tensor(s)	 following	 it.	 In	 the	
absence	of	the	radiation	flux	SEM,	one	concludes	that	 !!I >0 	because	the	right	side	of	
(2.D.14)	is	positive.		In	this	limit	the	moment	of	inertia	can	only	increase:	the	system	
cannot	 contain	 itself.	 	 	 With	 a	 finite	 radiation	 flux,	 the	 system	 can	 collapse	 and	
radiate	energy	away.	 	An	 important	caveat	 that	 limits	 these	conclusions	 is	 that	we	
did	not	include	gravitation,	which	would	introduce	a	negative	term	on	the	right	side.	
	
Exercise:	Verify	Eq.(2.D.14)	and	the	double	dot	product	in	Eq.(2.D.15).	
	

2.E	Linear	analysis	of	the	Vlasov	equation	for	small-amplitude	disturbances	in	a	
uniform	plasma	
	
	 We	 can	 obtain	 exact	 solutions	 of	 the	 linearized	 Vlasov	 equation	 for	
infinitesimal	amplitude	perturbations.	
	
Definition:	 Static	 solutions	 correspond	 to	∂f/∂t=0.	 This	 situation	 applies	 to	 a	 very	
small,	but	important,	class	of	solutions.		The	time-independent	Vlasov	equation	is	
	

	 	 	 v ⋅ ∂
∂r
f + e

m
E+1

c
v×B

⎛

⎝
⎜

⎞

⎠
⎟⋅
∂

∂v
f =0 	 	 	 	 (2.E.1)	

Uniform	solutions	correspond	to	∂f/∂r=0.			
	

In	 the	 absence	 of	 electric	 and	magnetic	 fields	 there	 exists	 a	 solution	 for	 a	
spatially	uniform	f	(v)	that	can	be	an	arbitrary	function	of	velocity.		For	this	simple	
case	the	solution	of	the	time-dependent	Vlasov	equation	is	that	f	is	a	constant	along	
the	 phase-space	 trajectories	 and	 remains	 fixed	 at	 its	 initial,	 arbitrary	 function	 of	
velocity:	

	 	 	 d
dt
f (v)= dv

dt
⋅
∂

∂v
f (v)=0 	 	 	 	 (2.E.2)	

This	 almost	 trivial	 result	 has	 utility	 in	 that	 we	 now	 add	 a	 small-amplitude	
perturbation	 that	 can	 depend	 on	 time	 and	 space.	 	 For	 simplicity	 we	 restrict	
consideration	to	the	case	of	a	Coulomb	model.	 	The	equation	set	 for	the	 linearized	
system	is	as	follows:	
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fs(r,v;t)= f0s(v)+δ fs(r,v :t) (2.E.3a)
E(r;t)=0+δE(r;t) ∇×E=0 (2.E.3b)
∇⋅E=4πρ(r;t)=4π es

s
∑ d3v∫ fs (2.E.3c)

∂δ fs
∂t

+v ⋅
∂δ fs
∂r

+
es
ms

δE ⋅ ∂
∂v

f0s +δ fs( )=0→

∂δ fs
∂t

+v ⋅
∂δ fs
∂r

=−
es
ms

δE ⋅
∂f0s
∂v

(2.E.3d)

	

The	term	on	the	right	side	of	(2.E.3d)	that	is	nonlinear	in	the	product	of	δE	and	δfs,	is	
dropped	because	of	the	linearization.		One	must	be	careful	with	the	vector	calculus	
in	Eq.(2.E.3d)	when	using	non-Cartesian	coordinates,	and	canonical	coordinates	can	
prove	useful.		We	introduce	the	perturbed	electric	potential	such	that	δE=-∇δφ	and	
follow	 the	 prescription:	 	 1)	 Solve	 for	 δfs	 in	 terms	 of	 δφ	 using	 Eq.(2.E.3d).																					
2)	 Construct	 the	 linearly	 perturbed	 charge	 density	 δρ	 from	 δfs	using	 Eq.(2.E.3c).						
3)	 Solve	 for	 δφ	 using	 Poisson’s	 equation	 derived	 from	 Eq.(2.E.3b)	 using	 suitable	
boundary	conditions.	

2.E.a	Causality,	stationarity,	and	uniformity	in	the	dielectric	kernel				
	

δρ	 depends	 linearly	 on	 δφ.	 	 The	 most	 general	 linear	 relation	 can	 be	
represented	as	

	 	 δρ(r;t)= d3r'∫ dt '∫ χ(r,r';t ,t ')δφ(r';t ') 	 	 	 (2.E.4)	
The	representation	allows	χ		to	 be	 a	 generalized	 function.	 In	 fact,	 it	 can	 have	 some	
unusual	properties,	viz.,	including	being	a	derivative	of	a	delta	function.		However,	χ	
is	subject	to	at	least	three	important	constraints:	 	
1)	Causality:	A	perturbation	in	δφ	will	cause	a	later	perturbation	in	δρ.		
2)	Stationarity:	The	effect	of	δφ	on	δρ	can	depend	only	on	the	time	interval	between	
cause	and	effect	(t-t’)>0,	and	cannot	depend	on	absolute	time.		This	is	a	consequence	
of	the	underlying	unperturbed	system	being	stationary,	i.e.,	time	independent.	
3)	 Uniformity:	 χ	 can	 only	 depend	 spatially	 on	 r-r’	 (isotropy	 would	 imply	 |r-r’|)	
because	 the	 underlying	 unperturbed	 system	 has	 no	 dependence	 on	 spatial	
coordinate.		
	
Theorem:	 We	 introduce	 τ≡t-t’	 and	 s≡r-r’,	 and	 express	 δρ	 in	 terms	 convolution	
integrals.	

		

δρ(r;t) = d 3s dτ χ (s;τ )δφ(r − s;t −τ )
0

∞

∫∫ 								 	 						(2.E.5)	
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2.E.b	Solution	of	the	dielectric	function	via	Fourier	transform	in	time	
	

We	introduce	the	Fourier	transform	in	time.	
	
Definition:	The	Fourier	transform	of	g(t)	is	

	 	 	 g(ω)= dt g(t)exp(iωt)
−∞

∞

∫ 	 	 	 	 	 (2.E.6)	

We	 need	 to	 impose	 initial	 conditions	 on	 the	 linear	 perturbations	 {δφ, δf,	 δρext)	 to	

calculate	 the	 Fourier	 transform:	 g(t)=0	 for	 t<0	 and	 g(ω)= dt g(t)exp(iωt)
0

∞

∫ .	 g(t)	

must	die	out	with	time	in	order	that	g(ω)	converges.		However,	in	general	g(t)	does	
not	 die	 out	 and	may	 even	 grow.	 	 If	 g(t)	 does	 not	 die,	 then	 g(ω)	 can	 be	made	 to	
converge	if	ω is	complex,	i.e.,	ω=ω’+iω”	with	ω”>0.		g(ω)	will	converge	even	if	g(t)	is	
growing	exponentially.	 	For	exponential	growth	ω”≥1/(growth	time).	 	If	g(t)	grows	
faster	 than	exponentially,	no	convergence	 is	possible.	 	The	 integration	contour	 for	
the	Fourier	transform	is	shown	in	Fig.	2.E.1	
	

	
	
Fig.	2.E.1	Fourier	transform	integration	contour	in		
the	complex	ω plane.	
	

We	next	calculate	the	Fourier	transform	of	Eq.(2.E.5)	and	use	the	convolution	
theorem	for	Fourier	transforms	to	obtain:	

	
δρ(r,ω) = d 3∫ sχ (s,ω)δφ(r − s,ω)⇒ δρ(k,ω) = χ (k,ω)δφ(k,ω) 	 	 (2.E.7)	

where	we	have	also	Fourier	transformed	in	space:	 g(k)= d3r g(r)exp(−ik ⋅r)∫ 	
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Theorem:	Inverse	Fourier	transforms	
	 	 	 	

	 g(r) = 1
(2π )3

d 3∫ k exp(ik ⋅r)g(k) g(t) = 1
(2π )

d∫ ω exp(−iωt)g(ω) 	 (2.E.8)	

	
The	Fourier	transformed	Poisson	equation	is	
		
−∇2δφ(r,t) = 4π δρ(r,t)+δρ ext (r,t)⎡

⎣
⎤
⎦⇒ k 2δφ(k,ω) = 4π δρ(k,ω)+δρ ext (k,ω)⎡

⎣
⎤
⎦ 	 (2.E.9)	

and	we	then	use	(2.E.7)	to	obtain	an	equation	for	δφ(ω,k):	
	

	 	 k 2 1− 4π
k 2

χ (k,ω)
⎡

⎣
⎢

⎤

⎦
⎥δφ(k,ω) = 4πδρ ext (k,ω) = k 2δφ ext (k,ω) 	 											(2.E.10)		

Recall	 the	conventional	 formulation	of	Gauss’	 law	in	a	dielectric	medium	with	 free	
(external)	charges	present:	
	

∇⋅D = 4πρ ext D =E+ 4πP = εE ⇒ −∇⋅ ε∇φ( ) = 4πρ ext 																(2.E.11)	

In	a	uniform	plasma	ε	is	spatially	uniform	and	Eq.(2.E.11)	yields	 −ε∇2φ =4πρext
which	combined	with	Eq.(2.E.10)	leads	to	the	following	result.	
	
Theorem:	Poisson’s	equation	and	plasma	dielectric	response	

εk 2δφ(k,ω) = 4πρ ext (k,ω)→ 1− 4π
k 2

χ (k,ω)
⎡

⎣
⎢

⎤

⎦
⎥≡ ε(k,ω)→δφ(k,ω) = δφ

ext (k,ω)
ε(k,ω)

	

											(2.E.12)	
	

Corollary:					ε(k,ω) = k
2δφ ext

k 2δφ
=
δρ ext

δρ tot
=1− δρ(k,ω)

δρ tot (k,ω)
, δρ tot = δρ +δρ ext 	 											(2.E.13)	

	
Fourier	transform	the	linearized	Vlasov	equation:	
	
∂
∂t
+ v ⋅ ∂

∂r
⎛

⎝
⎜

⎞

⎠
⎟δ f (r,v;t) =

e
m
(∇δφ) ⋅

∂f0
∂v

→ −iω + ik ⋅ v( )δ f (k,ω;v) = emδφ(k,ω)ik ⋅
∂f0
∂v

δ f (k,ω;v) =
k ⋅ ∂f0

∂v
(k ⋅ v−ω)

e
m
δφ(k,ω)

	

	 	 	 	 	 	 	 	 	 	 											(2.E.14)	
	
Theorem:	Linear	susceptibility	
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	 	 	 χ (k,ω) = δρ(k,ω)
δφ(k,ω)

=
es
2

mss
∑ d 3v∫

k ⋅ ∂f0
s (v)
∂v

k ⋅ v−ω
	 	 											(2.E.15)	

Definitions:	n0
s = d3∫ vf0

s(v), gs(v)≡ f0s(v)/n0s , d3∫ vgs(v)=1 	
	
	
Theorem:	From	Eqs.(2.E.12-15)	we	obtain	the	linear	dielectric	function		

ε(k ,ω)=1− 4π
k2

χ(k ,ω)=1− ωs
2

k2s
∑ d3v∫

k ⋅ ∂g
s

∂v
k ⋅v−ω

, Imω >0

where	ωs
2 ≡
4πn0ses2
ms

												 	 											(2.E.16)	

From	Eq.(2.E.12)	one	solves	for	δφ(k ,ω)=ε−1(k ,ω)δφ ext(k ,ω) 	from	which	we	obtain	
the	following	using	the	convolution	theorem	

δφ(k ,t)= dτ
−∞

∞

∫ ε−1(k ,τ )δφ ext(k ,t −τ )	where	ε−1(k ,τ )= dωexp(−iωτ )∫ ε−1(k ,ω) 		(2.E.17)	

	

2.E.c	Stable	and	unstable	waves/disturbances			
	

Suppose	 δφ ext(k ,t)=a(k)δ(t) 	for	 a	 pulse-type	 forcing	 function	 without	
specifying	 a(k)	 yet.	 	 Hence,	 δφ(k ,t)=a(k)ε−1(k ,t) .	 	 Consider	 a	 specific	
representation	 for	 a(k)	 so	 that	 the	 external	 forcing	 function	 is	 monochromatic:		
a(k)=aδ(k−k0)(2π )3 		and		δφ ext(r,t)=ae

ik0⋅rδ(t) .				
	
Theorem:	 The	 pulse-response	 solution	 for	 the	 perturbed	 electric	 potential	 using	
Eq.(2.E.17)	is	then		

	 	 δφ(r,t)= 1
(2π )3

d3k∫ eik⋅ra(k)ε−1(k ,t)=aeik0⋅rε−1(k0 ,t) 	 											(2.E.18)	

The	 stability	 or	 instability	 of	 the	 pulse	 response	 is	 determined	 by	ε−1(k ,t) .	 	 The	
contour	 integration	 in	(2.E.17)	 is	 illustrated	 in	Fig.	2.E.2.	 	We	make	use	of	analytic	
continuation	 and	 depress	 the	 integration	 contour:	ω =ω '+ ib 	to	 remove	 the	 line	
integration	and	only	leave	the	poles.		In	so	doing,	we	hope	that	there	are	no	vertical	
branch	cuts.		The	integration	of	the	deformed	contour	integration	becomes	
	

ε−1(k ,t)= dω '
2π−∞

∞

∫ exp(−iω 't −bt)
ε(k ,ω '− ib) −

2πi
2π

exp −iω
ℓ
(k)t( )

∂ε(k ,ω)
∂ω

ωℓ

ℓ

∑ 	 											(2.E.19)	
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Consider	a	perturbative	solution	of	the	zeros	of	the	linear	dielectric	function:	

ε(k ,ω)≈ε(k ,ω
ℓ
)+(ω −ω

ℓ
) ∂ε
∂ω

ωℓ

where ε(k ,ω
ℓ
)=0 	defines	the	pole	at	ω

ℓ
.	 	 	Define	

the	 complex	 frequency	 at	 the	 pole	 as	 ω
ℓ
=Ω

ℓ
+ iγ

ℓ
	so	 that	

exp −iω
ℓ
(k)t( )=exp −iΩ

ℓ
(k)t +γ

ℓ
t( ) .	

	

	
	

Fig.	2.E.2	Contour	integration	for	pulse	response	
showing	the	depressed	contour	and	poles	of	ε-1		
in	the	region	of	analytic	continuation.	

	
Theorem:	A	pole	in	the	upper	half-plane	corresponds	to	instability	γ

ℓ
>0 ,	and	a	pole	

in	the	lower	half-plane	is	a	stable	root	γ
ℓ
<0 .	

	
For	 b>γ	 the	 first	 term	 on	 the	 right	 side	 of	 Eq.(2.E.19)	 damps	 out	 after	 a	 suitable	
length	of	time,	which	leads	to	
	

ε−1(k ,t)⇒−i
exp −iω

ℓ
(k)t( )

∂ε(k ,ω)
∂ω

ωℓ

ℓ

∑ 	 	 	 											(2.E.20)	

Definition:	 g(v)≡ ωs
2

s
∑ gs(v)/ ωs

2

s
∑ 	and	ωp

2 ≡ ωs
2

s
∑ 	

The	linear	dielectric	function	becomes	
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ε(k ,ω)=1−ωp
2

k2
d3v∫

k ⋅ ∂g
∂v

k ⋅v−ω
=1−ωp

2

k2
d3v∫

k̂ ⋅ ∂g
∂v

k̂ ⋅v−ω /k
																		(2.E.21)	

We	 note	 the	 integral	 on	 the	 right	 side	 of	 Eq.(2.E.21)	 can	 be	 simplified	 using	 the	
definition	u≡ k̂ ⋅v so	that	

	 k̂ ⋅ ∂g
∂v

=
∂g(u,v2 ,v3)

∂u
	

This	allows	the	velocity	space	integral	over	two	of	the	three	dimensions	in	(2.E.21)	
to	be	done	immediately:	

				
g(u)= dv2dv3∫ g(u,v2 ,v3) where g(u)≡ d3v∫ g(v)δ(k ⋅v−ω)and	 dug(u)

−∞

∞

∫ =1 	

Eq.(2.E.16)	then	becomes	
	 	 	 	 	

ε(k ,ω)=1−ωp
2

k2
du

−∞

∞

∫ g'(u)
u−vp

, vp =
ω
k 	 	 	 											(2.E.22)	

where	vp=ω/k	 is	 the	phase	velocity;	and	 	 in	the	following	few	expressions	we	drop	
the	“p”	subscript.	
	
Theorem:	The	eigenvalues	of	the	linearized	Vlasov-Poisson	system	are	determined	
by	 the	 roots	 of	 the	 linear	 dielectric	 function	ε(k ,ω

ℓ
)=0→ω

ℓ
(k) ,	 which	 are	 the	

eigenfrequencies.	This	follows	from	ε(k ,ω)φ(k ,ω)=φ ext(k ,ω)=0 	and	corresponds	to	
free,	undriven	oscillations.	
	
Definition:	The	Hilbert	transform	of	g	is	

du
−∞

∞

∫
g
k̂
(u)

u−v ≡ 	Hilbert	transform	of	g≡Ζ
k̂
(v) (Imv>0,	k ≡ k >0) 													(2.E.23)	

	
One	can	differentiate	the	Hilbert	transform	with	respect	to	v	to	obtain:	
	 	

d
dv Ζ k̂

= du
−∞

∞

∫ g
k̂
(u) ∂

∂v
1

u−v ≡ du
−∞

∞

∫
g
k̂
'(u)

u−v , g
k̂
'≡ d
du
g
k̂
(u) 	 											(2.E.24)	

using	(∂/∂v)(u−v)−1 =−(∂/∂u)(u−v)−1 	and	 integrating	 by	 parts.	 	 Equation(2.E.22)	
then	yields	the	following.	
Theorem:	The	dielectric	function	is			 	

ε(k ,ω)=1−ωp
2

k2
Ζ
k̂
'(v) 	 	 																									(2.E.25)	
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2.E.d	Examples	of	linear	dielectrics	for	a	few	simple	velocity	distributions			
	

Table	 2.E.1	 presents	 examples	 of	 five	model	 velocity	 distributions	 and	 the	
corresponding	dielectric	responses.	 	We	note	 that	 the	Cauchy	velocity	distribution	
does	not	exist	in	nature	because	its	energy	moment	diverges.	

	
	
	
	

	
Distribution→ 	

	
Dielectric		
Attributes	↓ 	

COLD	 COLD	BEAM	 SQUARE	 CAUCHY	 2	SPECIES	
hot	e	&	cold	i	

	
g(u)	

δ(u)	
	
	

	

δ(u-u0)	
	

	
	

1
2c ,−c ≤u≤ c 	

	

c
π

1
u2 +c2 	

	
	

hot	electrons	
+	

cold	ions	

	

	
Z(v)	 −

1
v 	
	

−
1
v-u0

	 1
2c ln

c−v
−c−v
⎛

⎝
⎜

⎞

⎠
⎟ 	 −

1
v+ic 	

hot	electrons	
+	

cold	ions	

	
Z’(V)	

1
v2
	 1

(v-u0)2
	 1

v2-c2
	 1

(v+ic)2
	

hot	electrons	
+	

cold	ions	

 
ε(k,ω)	 1−ωp

2

ω2 	 1− ωp
2

(ω −ku0)2
	

1− ωp
2

ω2 −k2c2
	 1− ωp

2

(ω + ikc)2
	

1− ωe
2

ω2 −k2c2
−
ωi

2

ω2

	

ω
ℓ
 

 

ω
ℓ
=±ωp

	
ω
ℓ
=±ωp +ku0

	
ω
ℓ
=± ωp

2 +k2c2

	

ω
ℓ
=±ωp − ikc

	
ω
ℓ
=± ω

ℓ
2 ,ωp

2 = ωs
2

s
∑

ω
ℓ
2 =
1
2 k

2c2 +ωp
2 ± (k2c2 +ωp

2)2 −4ωi
2k2c2⎡

⎣⎢
⎤
⎦⎥

	

v g =
d
dk
Reω

ℓ

	

0	 u0	 c2k/ω 0	 c2k/ω	

	
Table	2.E.1	Examples	of	velocity	distributions	and	resulting	dielectric	responses	

	

2.E.f	Inverse	Fourier	transform	to	obtain	spatial	and	temporal	response	–	Green’s	
function	for	pulse	response	and	cold	plasma	example		
	

From	Eq.(2.E.17)	we	have	an	integral	relation	for	δφ(k ,t) 	,	i.e.,		
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δφ(k ,t)= dτ
−∞

∞

∫ ε−1(k ,τ )δφ ext(k ,t −τ )	
			

In	configuration	space,	Eq.(2.E.17)	becomes	
	 	 	 	

	

δφ(r,t)= d3s∫ dτ
−∞

∞

∫ ε−1(s,τ )δφ ext(r−s,t −τ )	

where	ε−1(s,τ )= d3k
(2π )3∫ dω

2π∫ ε−1(k ,ω)exp(ik ⋅s− iωτ ) 	 											(2.E.26)	

	
Exercise:	Prove	ε-1(k,τ)=0	for	τ<0.	See	Sec.	2.E.c	
	
Exercise:	Simplify	ε(k,ω)	for	hot	electrons	and	cold	ions	in	the	limit	that	ω/k=Vp<<ce.	
Introduce	 the	 definition	 of	 the	 Debye	 length	 λe≡	 ce/ωe.	 	 	 Derive	 the	 dispersion	
relation	for	the	ion	acoustic	wave:	
	 	

	 	
ω2 =

ωi
2

1+ 1
k2λe

2

=
k2cs

2

1+k2λe2
, cs2 ≡

me

mi

ce
2 =
kBTe
mi

	 	 	 											(2.E.27)	
where	cs	is	the	ion	sound	speed	for	cold	ions.		The	ions	provide	the	inertia	while	the	
electrons	 provide	 pressure,	 and	 the	 electric	 field	 binds	 the	 motion	 of	 the	 two	
species.	
	 We	 return	 to	 Eq.(2.E.26)	 to	 calculate	 the	 Green’s	 function	 for	 the	 pulse	
response	 of	 the	 electric	 potential	 in	 a	 cold	 plasma	 with	 dielectric	 function	
ε(k,ω)=1−ωp2/ω2.			If	there	is	no	k	dependence	in	ε(k,ω)	then	

		

ε−1(s,τ )=δ(s) dω
2π∫ exp(−iωτ ) 1+ ωp

2

(ω −ωp)(ω +ωp)
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=δ(s) δ(τ )+ωp
2×{0 τ <0, −

1
ωp

sinωpτ τ >0}
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 																									(2.E.28)	

The	 integral	 over	 ω	has	 poles	 at	 ±ωp	 .	 	 The	 term	 involving	 δ(τ)	 	 is	 the	 vacuum	
response,		and	the	rest	is	associated	with	the	plasma	shielded	response.	
	
Theorem:	Using	Eq.(2.E.28),		Eq.(2.E.26)	becomes	

δφ(r,t) = δφ ext (r,t)− dτ ω p
0

∞

∫ sin(ω pτ )δφ
ext (r,t −τ )

	 				 											(2.E.29)	
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The	 excitation	 in	 δφ(r,t)	 depends	 on	 all	 the	 other	 excitations	 and	 the	 external	
potential	at	r	from	earlier	times.		This	is	partly	due	to	the	absence	of	damping	in	the	
cold	plasma.	
	
Example:	The	impulse	response	for	δφεext=δ(r)δ(t)	is	δφ(r,t)=	-ωpδ(r)sin(ωpt)	for	t	>0.		
For	this	response	ω(k)=ωp	and	dω/dk=0.		The	plasma	response	to	the	δφεext	impulse	
is	negative	over	 the	 first	half	 cycle	of	 the	plasma	oscillation	as	 the	plasma	 tries	 to	
neutralize	δφεext		(Fig.	2.E.3)	
	

	
	

	 	 	 	 Fig.	2.E.3	Impulse	response	δφ(t)	for			 	 	 	
δφεext=δ(r)δ(t)	

	
Example:	δφ(r,t)	due	to	a	moving	test	particle.		Consider	the	external	potential	for	a	
moving	charge:	δφext(r,t)=e0/(r-r0(t))	with	r0(t)=v0t	and	charge	e0>0.		From	
Poisson’s	equation	one	obtains	the	total	charge	density:	
	

δρ(r,t)=− 1
4π
⎛

⎝
⎜

⎞

⎠
⎟∇2δφ(r,t)=− 1

4π
⎛

⎝
⎜

⎞

⎠
⎟∇2 −ωp dτ sin(ωpτ )

e0
r−r0(t −τ )

+δφ ext(r,t)
0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=δ(x)δ( y) −e0ωp

v0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟sin −

ωpz
v0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+e0δ(x)δ( y)δ(z−v0t) 	

											(2.E.30)	
	

A	schematic	of	 the	one-dimensional	charge	density	and	the	 local	charge	under	 the	
curve	 in	 the	wake	of	 the	moving	 test	particle	 is	 presented	 in	Fig.	 2.E.4.	 	 The	 total	
charge	exclusive	of	the	test	particle	is	–e0	as	can	be	shown	from	the	integral	of	δρ 
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lim
λ→0

dz '
−∞

0

∫ −
e0ωp

v0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟sin

ωpz '
v0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟exp(−λz ')=−e0

            (2.E.31) 
Thus,	the	total	charge	is	zero.		We	can	also	calculate	the	dipole	moment		P	of	the	
plasma	response	similarly	by	weighting	the	integrand	in	(2.E.31)	with		z		to	show	
that	P=0.	
	

	
	

Fig.	2.E.4	One-dimensional	charge	density	
in	the	wake	of	a	moving	test-particle	with	charge	e0	

	

Example:	 For	 the	 more	 general	 case	 where	 ε(k,ω)	 has	 k	 dependence,	 we	 use	
Cauchy’s	theorem	and	Eqs(2.E.19),	(2.E.20),	and	(2.E.26)	to	obtain	
	 	

	ε−1(s,τ )=−i d3k
(2π )3∫

exp ik ⋅s− iω
ℓ
(k)τ( )

∂ε(k ,ω)
∂ω

ωℓ(k )

ℓ

∑

		 											(2.E.32)	
However,	 for	 warm	 plasmas	 it	 is	 difficult	 to	 obtain	 explicit	 formulae	 because	 we	
cannot	do	the	integrals	in	most	cases	of	physical	interest.		
	

2.F	Streaming	instabilities		
	
	 Consider	an	infinite	uniform	plasma	with	two	or	more	beams:	
	

fs
0(v)=nsδ(v−us ) and	ε(k ,ω)=1-

ωs
2

(ω −k ⋅us )2s
∑ , with	ωs

2 ≡
4πnses2
ms

	 	

Restrict	this	linear	analysis	to	one	spatial	dimension:	 	kk̂ ⋅us = kus .	 	Then	the	linear	
dielectric	can	be	rewritten	as		
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	 ε(k ,ω)=1− ωs
2

(ω −kus )2s
∑ =1− 1

k2
ωs

2

(V −us )2s
∑ , V ≡ω /k 	 	 						 (2.F.1)	

The	solution	of	ε(k,ω)=0	for	the	normal	modes	ωk	is	then	determined	by	solving	the	
following	order	2N	polynomial	equation	for	V=ω/k:	

	 	 	 	 k2 = F(V )= ωs
2

(V −us )2s=1

N

∑ 	 	 	 	 (2.F.2)	

	
Example:	Consider	the	graphical	solution	of	Eq.(2.F.2)	for	N=3.	
	

	
	

										Fig.	2.F.1	Schematic	of	solution	of	Eq.(2.F.2)	k2=F(V)	for	N=3	
	
There	 are	 resonances	 at	 V=ui,	 i=1,	 2	 and	 3	 and	 three	 branches	 of	 the	 dispersion	
relation	with	Reω~kui±ωs.		For	very	large	values	of	k2	there	are	2N=6	intersections	
of	k2	with	F(V),	i.e.,	6	stable	roots.		If	for	smaller	values	of	k2	there	are	fewer	than	2N	
intersections,	 then	 there	 are	 one	 or	 more	 pairs	 of	 complex-conjugate	 roots.	 The	
complex	root	with	Imω>0	is	the	unstable	root,	and	the	conjugate	root	with	Imω<0	is	
damped	normal	mode.		In	a	finite	plasma,	boundary	conditions	must	be	defined;	and	
there	 is	 a	 lower	 limit	 on	 k	 corresponding	 to	 2π/L,	 where	 L	 is	 the	 length	 of	 the	
plasma.	

2.F.a	Examples	–	two-stream	and	weak-beam	instabilities			
	
Example:	N=2,	two-stream	instability.		Suppose	ω1=ω2	and	select	a	reference	frame	
with	u1=-u2.		The	infinite-medium	normal	modes	are	determined	by	the	solutions	of	
the	dispersion	relation:	
	 	 	 	 	

ε(k ,ω
ℓ
)=1− ω1

2

(ω −ku1)2
−

ω1
2

(ω +ku1)2
=0

→
ω
ℓ
2

ωp
2 =

1
2 1+2

k2u1
2

ωp
2 ± 1+ 8k

2u1
2

ωp
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
with	ωp

2 =ω1
2 +ω2

2 =2ω1
2
	 (2.F.3)	
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Exercise:	 Sketch	ω2	 vs.	k2,	 Reω vs.	k,	 and	 Imω vs.	k.	 	Show	 that	 for	k	 <	kc	 there	 is	
instability;	what	is	kc?	Show	that	max(Imω)=ωp/√8	for	kmax=(3/8)1/2ωp/u1.		Evaluate	
ε-1(x,t)	approximately	and	sketch.		Show	that	ε-1(x,t)=0	for	|x/t|>u1	using	analyticity.	
	
Example:	N=2,	 weak-beam	 instability.	 	 Assume	ω2=ωb<<ω2=ωb<<ω1=ωp	where	 the	
“first”	component	is	the	“plasma.”	Select	the	frame	in	which	the	plasma	component	
is	at	rest.		The	weak-beam	instability	is	diagrammed	in	Figure	2.F.2			The	dispersion		
	

	
	

Fig.	2.F.2	(a)	Schematic	of	the	solution	of	k2=F(V)	for	N=2	and	
ω2=ωb<<ω2=ωb<<ω1=ωp,	weak-beam	instability.	(b)	Schematic	
showing	the	crossing	of	the	plasma	frequency	and	beam	branches.	

	
relation	for	the	normal	modes	is	given	by	the	solution	of			
	

ε(k ,ω)=1−ωp
2

ω2 −
ωb

2

(ω −kub)2
=εp(k ,ω)−

ωb
2

(ω −kub)2
=0 	 	 (2.F.4)	

Where	 the	 beam	 and	 plasma	 wave	 branches	 cross,	 one	 of	 the	 real	 roots	 can	
disappear	 giving	 rise	 to	 a	 pair	 of	 complex-conjugate	 roots	 and	 instability.	 	 If	 the	
plasma	 is	warm,	 the	plasma	branches	acquire	 curvature.	 	 In	general,	 one	uses	 the	
warm	plasma	dielectric	for	εp.		For	ωb2/ωp2<<1	we	solve	Eq.(2.F.4)	perturbatively:	
	

0=ε p(k ,ω)−
ωb

2

(ω −kub)2

=ε p(k ,ω0)+δω
∂ε p
∂ω

ω0 ,k0

+δk
∂ε p
∂k

ω0 ,k0

+
1
2δω

2 ∂
2ε p
∂ω2

ω0 ,k0

+ ...− ωb
2

(ω0 +δω −k0ub −δkub)2
,

ε p(k ,ω0)=0, ω =ω0 +δω , k = k0 +δk

		

(2.F.5)	
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At	resonance	ω0-k0ub=0,	and	Eq.(2.F.5)	becomes		
	

(δω −uδk)2(δωε
ω
+δkεk +O(δ2))=ωb

2 , ε
ω
≡∂ε /∂ω

ω0 ,k0
	 	 (2.F.6)	

i)	For	δk=0:	δω3 +O(δω4 )=ε
ω
−1ωb

2 			For	small	δω	small,	

	   

δω
ω0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

=
ωb

2

ω0
2
1

ω0εω
≡η ≈

1
2
ωb

2

ω0
2 <<1

→
δω
ω0

=η1/3 = η1/3 1,−12± i
3
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   (2.F.7) 

We	note	that	for	a	cold	plasma,	εp=1−ωp2/ω2	and	εω=2/ωp.		There	are	three	solutions	
for	the	frequency	shift	δω	in	Eq.(2.F.7):	the	coupling	of	the	plasma	wave	to	the	weak	
beam	produces	a	small	frequency	shift,		a	damped	mode,	and	a	weak	instability.	
	

ii)	For	δk≠0,	Eq.(2.F.6)	is	solved.		In	the	beam	frame	ω '≡ω −kub =δω −δkub
In	a	cold	plasma	the	solution	for	ω’	is	given	by	

	

	 	

ω '=ωp η1/3 exp i2π3
⎛

⎝
⎜

⎞

⎠
⎟−
1
3
δk
k0
+
1
9
δk
k0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

η1/3 exp −i2π3
⎛

⎝
⎜

⎞

⎠
⎟+O(δk3)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Reω '=ωp −
1
2 η

1/3 −
1
3
δk
k0
−
1
18

δk
k0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

η1/3 + ...
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Imω '=ωp

3
2 η1/3 +

1
9 −

3
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
δk
k0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

η1/3 + ...
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

	 (2.F.8)	

In	 the	 beam	 frame	 there	 is	 a	 small	 negative	 shift	 of	 the	 phase	 velocity	 given	 by	
Reω’/k0		=	 -(1/2)|η|1/3ub			 	There	 is	 also	 a	 shift	 in	 the	 group	 velocity	 of	 the	 plasma	
wave	 due	 to	 the	 coupling	 with	 the	 beam,	 which	 is	 given	 by	 	 	 	 	 dReω’/dk=	
dReω’/dδk=-(1/3)ub,	 which	 is	 also	 negative	 but	 is	 not	 small.	 	 We	 note	 that	 the	
dispersion	 in	 the	 real	 frequency	 of	 the	 instability	 is	 given	 by																				
d2Reω’/dδk2=-(1/9)|η|1/3(ωp/k02),	 which	 is	 small	 in	 |η|1/3.	 	 From	 the	 solution	 for	
Imω’	we	see	that	the	growth	rate	is	peaked	at	a	value	of	(√3/2)η1/3ωp	for	δk=0;	and		

	 	 γkk ≡
d2γ
dk2

=
γ0
k0
2
2
9 η

−2/3 , γ0 =
3
2 ωp η

1/3 	

From	the	square	root	of	the	ratio	of	the	peak	growth	rate	to	-d2Imω’/dδk2	at	k0	we	
can	 estimate	 the	 half-width	 in	 δk1/2	of	 the	 peak	 in	 the	 growth	 rate,	 which	 has	 a	
scaling	δk1/2/k0~|η1/3|<<1.	 	 Thus,	 a	 very	 small	 range	 in	k-space	 is	 involved	 in	 the	
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weak-beam	instability;	and	a	long	wavepacket	can	be	formed	that	remains	coherent	
over	a	long	distance.	
	 All	of	the	results	so	far	in	Sec.	2.F	were	derived	for	a	cold	plasma.		For	a	“hot”	
plasma	 only	 numerical	 coefficients	will	 change	 for	 the	 examples	 considered.	 	 The	
generalization	of	the	results	will	involve	formulae	like	the	following:	

Reω '= k0Vp' +δkVg' +
1
2δk

2 d2

dδk2
ω ' γ ≡ Imω '=γ0 +

1
2δk

2 d2

dδk2
γ 	 	 (2.F.9)	

where	Vp’=ω’(k0)/k0,	Vg’=dω’/dk	at	k0,	and	γ0	is	the	peak	growth	rate	occurring	at	k0.		
Finite-temperature	effects	naturally	lead	to	dispersion,	i.e.,	the	phase	velocity	Vp	is	a	
function	of	wavenumber	k.		Thus,	in	a	hot	plasma	we	expect	that	the	x-t	response	of	
a	growing	disturbance	will	exhibit	a	growing	and	spreading	wave	packet	traveling	at	
the	 group	 velocity	Vg.	 	 The	 x-t	 response	 depends	 on	 the	 content	 of	 Eq.(2.F.9)	 and	
makes	explicit	how	fast	the	growing	wave	packet	spreads	compared	to	its	advection.		
The	next	sub-section	elaborates	the	x-t	response	of	an	unstable	disturbance.	
	

2.F.b	Definition	of	convective	and	absolute	instability	
	
	 How	 fast	 a	 growing	wave	 packet	 spreads	 compared	 to	 how	 fast	 it	 advects	
past	a	fixed	observation	point	is	an	important	distinction.			
	
Definition:	Absolute	vs.	convective	 instability.	 	 	 If	an	unstable	wave	packet	advects	
faster	 than	 it	 spreads,	 an	observer	at	 a	 fixed	observation	point	will	 see	a	growing	
signal	as	the	front	of	the	wave	packet	passes	followed	by	peaking	and	then	decay	of	
the	signal.		As	the	packet	advects	the	peak	signal	continues	to	grow	exponentially	in	
time.	 	The	 foregoing	corresponds	to	a	convective	instability.	 	An	absolute	instability	
corresponds	to	when	the	spreading	of	the	growing	response	exceeds	the	advection	
at	the	group	velocity	Vg	so	that	the	signal	at	a	fixed	observation	point	continues	to	
grow	without	cessation	(until	the	linear	assumption	fails	and	nonlinear	effects	may	
come	into	the	problem).		
	
Exercise:	Sketch	a	growing	and	advecting	pulse	at	two	distinct	times	in	one	spatial	
dimension	 for	 a	 convective	 instability,	 and	make	 the	 corresponding	 sketch	 for	 an	
absolute	instability.	
	
	 The	dielectric	pulse	response	in	one	spatial	dimension	for	an	unstable	root	of	
the	dispersion	relation	follows	from	Eq.(2.E.32):	
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ε−1(x,t) = dk
2π−∞

∞

∫ dω
2π−∞

∞

∫ exp(ikx − iωt)
ε

+ c.c.= −i dk
2π−∞

∞

∫ exp(ikx − iωt)
∂ε
∂ω ωk (k )

+ c.c.

≈ −i 1
∂ε
∂ω

ωk (k0 )

d(δk)
2π−∞

∞

∫ exp ik0x + iδkx − i k0Vp +δkVg +
1
2ωkkδk

2( ) t + γ0 −
1
2 γ kk δk

2( ) t⎡
⎣

⎤
⎦+ c.c.

≈ −i
exp ik0 (x −Vpt)( )expγ0t

εω ωk (k0 )

d(δk)
2π

exp iδk(x −Vgt)⎡⎣ ⎤⎦exp − 1
2δk

2 (γ kk + iωkk )t
⎡
⎣

⎤
⎦

−∞

∞

∫ + c.c.

≈ −i
exp ik0 (x −Vpt)( )expγ0t

εω ωk (k0 )

1

2π

1

(γ kk + iωkk )t
exp

− 1
2 (x −Vgt)

2

(γ kk + iωkk )t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ c.c.

≈ −i
exp ik0 (x −Vpt)( )expγ0t

εω ωk (k0 )

1

2π

1

(γ kk + iωkk )t
exp

− 1
2 (x −Vgt)

2 γ kk

(γ kk
2
+ωkk

2 )t
+ i

1
2 (x −Vgt)

2 ωkk

(γ kk
2
+ωkk

2 )t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥+ c.c.

	
																						 	 	 	 	 	 	 	 	 											(2.F.10)	
We	 note	 that	 the	 spatial	 width	 of	 the	 pulse	 scales	 as	Δx~ t1/2(|γkk |2 +ωkk

2 )1/2/|γkk |

	

	
Hence,	the	larger	(and	steeper)	|γkk|,	the	faster	the	spreading	in	configuration	space.		
To	obtain	the	results	in	Eq.(2.F.9)	we	made	use	of	the	Taylor-series	expansion	of	the	
dispersion	relation	as	given	in	Eq.(2.F.8)	for	small	δk.	 	Because	we	did	the	integral	
with	 respect	 to	δk	 by	 the	method	 of	 steepest	 descents	 and	 took	 advantage	 of	 the	
rapid	 convergence	 of	 that	 integral	 with	 respect	 to	 large	 δk	 due	 to	 the	 term	
exp(− 1

2δk
2 |γkk |t) ,	there	is	no	conflict	between	the	limits	of	the	δk	integration	being		

(−∞,∞) 	and	 Taylor-series	 expansion	 in	 small	 δk.	 	 Because	 the	 pulse	 width	 in	 the	
space-time	 domain	 is	 increasing	 as	 t1/2,	 the	 pulse	 in	 the	 frequency-wavenumber	
dual	domain	 is	decreasing	as	t-1/2;	hence,	 the	wave	packet	 is	 lengthening	 in	space-
time	and	becoming	purer	in	its	spectral	content	as	it	advects	and	grows.	
	 To	 determine	 whether	 an	 instability	 is	 absolute	 or	 convective,	 we	 must	
compare	 the	 spreading	 Dt = (|γkk |2 +ωkk

2 )t /γkk 	and	 the	 exponential	 growth	
exp(γ0t) 	with	 the	 advection	 of	 the	 pulse	 at	 the	 group	 velocity	 Vg.	 	 In	 the	 frame	

advecting	 with	 the	 wave	 packet,	 ε−1(x,t) ∝exp(γ0t − x
2 2Dt) ;	 and	 the	 pulse	 grows	

exponentially	and	spreads.		In	the	plasma	frame	one	obtains		

ε−1(x ,t)∝exp γ0t −
(x−Vgt)2
2Dt

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
≡exp τ −

(ξ −στ )2
2τ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟,ξ ≡

γ0
D
x ,τ ≡γ0t ,σ ≡Vg

1
γ0D

→ ln ε−1(x ,t) ~γ0t −
(x−Vgt)2
2Dt =τ −

(ξ −στ )2
2τ

	

											(2.F.11)	
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Theorem:	For	fixed	ξ,	the	asymptotics	of	 ε−1(x,t) 	in	Eq.(2.F.11)	as	τ→∞	determines	

whether	the	pulse	is	growing	absolutely	or	convectively,	i.e.,		

	 	
τ→∞
lim ln ε−1(x ,t) ~τ − (ξ −στ )

2

2τ
⎡

⎣
⎢

⎤

⎦
⎥→τ(1−σ

2

2 ) 	 	 											(2.F.12)	

For	σ	>	√2,		ln|ε-1|→-∞	as	τ→∞,	i.e.,	the	instability	is	convective;	and	the	disturbance	
grows	at	first	and	then	dies	away.		For	σ	<	√2,		ln|ε-1|→∞	as	τ→∞,	i.e.,	the	instability	
is	absolute	and	continues	to	grow	exponentially	at	any	fixed	position.		The	condition	
for	absolute	(or	convective)	instability	is	then	
	

Vg <(>) 2γ0D = 2γ0
|γkk |2 +ωkk

2

|γkk |
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 	 	 											(2.F.13)	

Exercise:	Show	that	in	the	plasma	frame	the	group	velocity	for	the	weak	beam	in	a	
cold	plasma	instability	is	(2/3)ub	and	the	instability	is	convective	using	Eq.(2.F.13)	
and	the	analysis	in	Sec.	2.F.a.	
	

2.F.c	Peter	Sturrock’s	method	for	analyzing	absolute	instability	(reference)	
	

Stanford	Professor	P.	A.	Sturrock	introduced	a	method	for	analyzing	whether	
a	growing	instability	is	convective	or	absolute.1		Sturrock’s	method	is	reviewed	in	P.	
C.	 Clemow	 and	 J.	 P.	 Dougherty,	 The	 Electrodynamics	 of	 Particles	 and	 Plasmas,	
Addison-Wesley	 (1969)	 and	 was	 assigned	 as	 reading	 but	 not	 covered	 in	 class	
lectures.	

2.F.d	Bers	and	Briggs’	method	for	analyzing	absolute	instability	
	
	 A.	 Bers2	and	 R.	 J.	 Briggs3	derived	 a	 method	 for	 calculating	 the	 impulse	
response	using	contour	integration	and	analytic	continuation,	from	which	absolute	
and	 convective	 instability	 can	 be	 distinguished.	 	 The	 calculation	 begins	 with	
consideration	 of	 Eq.(2.F.9)	 in	 one	 spatial	 dimension	 transformed	 to	 the	 moving	
reference	frame	x=wt:	
	

ε−1(x ,t)= dk
2π∫

dω
2π∫

exp ikx− iωt( )
ε(k ,ω) =

dk
2π∫

dω
2π∫

exp iωwt( )
ε(k ,ωw +kw)

	 											(2.F.14)	

																																																								
1	P.	A.	Sturrock,	Phys.	Rev.	112,	1488	(1958).	
2	A.	Bers,	“Theory	of	Absolute	and	Convective	Instabilities”	in	G.	Auer	and	F.	Cap,	
International	Congress	on	Waves	and	Instabilities	in	Plasma	(Innsbruck,	Austria,	
April	1973),	pp.	B1-B52.	
3	R.	J.	Briggs,	Electron-Stream	Interaction	with	Plasma	(MIT	Press,	Cambridge,	MA,	
1964).	
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where	ωw =ω −kw 	which	 is	 the	Doppler-shifted	 frequency.	 	There	are	 two	contour	
integrals	 to	 perform	 in	 Eq.(2.F.14).	 	 These	 are	 diagrammed	 in	 Fig.	 2.F.1	 for	 a	
convective	instability	and	in	Fig.	2.F.2	for	an	absolute	instability.	 	 In	the	complex	k	
plane	the	locus	of	poles	in	k	of	the	integrand	in	Eq.(2.F.14)	for	fixed	ω	 is	shown	by	
Cω,	and	the	 integration	contour	 is	Ck.	 	 In	the	complex	ω plane	the	 locus	of	poles	 in	
ω of	 the	 integrand	 in	 Eq.(2.F.14)	 for	 fixed	 k	 is	 shown	 by	 Ck,	 and	 the	 integration	
contour	 is	Cω.	Making	 use	 of	 analytic	 continuation,	 the	 integration	 contour	 in	 the	
complex	ω plane	is	depressed	to	lower	values	on	the	imaginary	axis	as	shown	in	Fig.	
2.F.1	until	poles	on	Ck	from	below	the	Cω contour	are	encountered.		The	poles	Ck	in	
the	complex	ω plane	are	parametrized	by	the	complex	value	of	k	swept	out	by	the	Ck	
contour	in	the	complex	k	plane.	In	order	to	depress	the	Cω	contour	to	lower	values	
of	Im	ω,	we	must	move	the	Ck	contour	down	in	the	complex	k	plane.		In	the	complex	
k	plane	there	are	a	loci	of	poles	Cω	above	and	below	the	Ck	integration	contour.	For	
the	 convectively	 unstable	 case,	 the	 Cω	 contour	 in	 the	 complex	 ω plane	 can	 be	
depressed	to	values	of	Im	ω	<	0;	and	ε−1(x ,t) 	decays	(Fig.	2.F.3).		In	the	absolutely		

	
	

Fig.	2.F.3	Convective	instability:	diagrams	of	contour	integral	paths	Ck	
in	 complex	 k	 plane	 (a)	 and	 (c),	 and	 contour	 integral	 paths	 Cω	 in	
complex	ω	plane	(b)	and	depressed	in	(d)	showing	the	loci	of	poles	of	
the	integrand	in	Eq.(2.F.13).	
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unstable	 case,	 the	 Cω	 contour	 in	 the	 complex	 ω plane	 can	 be	 depressed	 and	
deformed	to	lower	values	of	Im	ω	everywhere	except	as	one	approaches	the	pinch	
point	 P	 in	 Fig.	 2.F.4c	 because	 the	 Ck	 integration	 contour	 in	 the	 k	 plane	 becomes	
trapped	(“pinched”)	between	the	Cω	contours	above	and	below	it;	and	part	of	the	Ck	
loci	of	poles	has	some	values	Im	ωk	>	0	in	Fig.	2.F.4d.		The	asymptotic	response	for	
ε−1(x ,t) 	exhibits	exponential	growth	at	the	value	of	Im	ωk	>	0	at	the	pinch	point.	
	

	
Fig.	2.F.4	Absolute	instability:	diagrams	of	contour	integral	paths	Ck	in	
complex	k	plane	(a)	and	(c),	and	contour	integral	paths	Cω	in	complex	
ω	 plane	 (b)	 and	 depressed	 in	 (d)	 showing	 the	 loci	 of	 poles	 of	 the	
integrand	in	Eq.(2.F.13).		A	pinching	of	roots	occurs	at	point	P	in	(c).	

	
Exercise:	Examine	the	conditions	for	absolute	vs.	convective	instability	for	the	cold	
beam	–	cold	plasma	instability	 investigated	in	Sec.	2.F.a	 in	the	(a)	plasma	frame	in	

which	 ε(k,ω) =1−
ω p
2

ω 2
−

ωb
2

(ω − kub )
2

	and	 (b)	 the	 beam	 frame	 in	 which	

ε(k ,ω)=1− ωp
2

(ω +kub)2
−
ωb

2

ω2 	,	and	there	is	absolute	instability.	
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Theorem:	 The	 condition	 for	 absolute	 instability	 is	 equivalent	 to	 obtaining	 two	
pinching	 roots	 for	 (ω,k)	 from	 the	 simultaneous	 solution	 of	 ε(ω,k)=0	 and	
∂ε(ω,k)/∂k=0	with	Im	ω	>	0,	provided	that	∂ε(ω,k)/∂ω≠0.			
Exercise:	Prove	this	theorem.	
	

2.G	Linear	steady-state	response	to	a	fixed	frequency	disturbance		
	
	 We	consider	here	the	response	of	a	plasma	to	a	steady-state	force	at	a	fixed	
frequency.		We	assume	that	the	plasma	is	quiescent	and	non-turbulent.		There	may	
be	 transient	 convective	 instabilities	 but	 no	 absolute	 instability.	 	 We	 implant	 a	
localized	 fixed-frequency	 disturbance	 and	 derive	 the	 plasma	 response.	 	 Let	 the	
implanted	disturbance	by	a	planar	disturbance,	for	example	a	biased	grid	connected	
to	an	oscillator:	

	 	
δφ ext(r,t)= 0 t <0, δ(z)sin(ω0t) t >0{ }

→ δφ ext(k ,ω)=−(2π )2δ(kx )δ(ky )
ω0

ω2 −ω0
2

	 	 	 (2.G.1)	

The	plasma	potential	is	then	given	by	Eqs.(2.E.12)	and	(2.G.1)	
	 	

δφ(k ,ω)= δφ
ext(k ,ω)
ε(k ,ω)

→ δφ(r,t)=− d3k
(2π )3∫ dω

2π∫ expi(kxx+ky y+kzz−ωt)
(2π )2δ(kx )δ(ky )

ω0
ω2 −ω0

2

ε(k ,ω)

→−
dkz
2π∫ dω

2π∫ exp(ikzz− iωt)
1

ε(k ,ω)
ω0

ω2 −ω0
2

	

(2.G.2)	
We	let	any	transients	associated	with	initial	conditions	and	any	instabilities	convect	
or	decay	away.			
	
Theorem:	Given	that	the	dielectric	is	an	even	function	of	z,	then		
ε(−kz ,−ωr + iωi )=ε(kz ,ωr + iωi ) .			
	

2.G.a	Response	for	a	sinusoidally	driven	stable	system	
	

The	 contour	 integrations	 in	 Eq.(2.G.2)	 are	 diagrammed	 in	 Fig.	 2.G.1.	 	 For	
every	value	of	k	the	Ck	contour	in	Fig.	2.G.1b	is	below	the	Re	ω	axis,	which	dictates	
that	 δφ(r,t)	 is	 stable.	 The	ω integration	 in	 Eq.(2.G.2)	 is	 performed	 using	 Cauchy’s	
theorem	to	obtain:	
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δφ(r,t)= i2
dkz
2π∫

exp(ikzz− iω0t)
ε(kz ,ω0)

+c.c. 	 	 	 	 (2.G.3)	

and	transients	that	are	evanescent.		The	kz	integration	is	now	performed.		
	

	
Fig.	 2.G.1	 Steady-state	 response	 to	 a	 fixed-frequency	 disturbance:	
diagrams	of	 the	 contour	 integral	 path	Ck	 in	 complex	k	 plane	 (a)	 and	
the	contour	integral	paths	Cω	in	complex	ω	plane	(b)	showing	the	loci	
of	poles	of	the	integrand	in	Eq.(2.G.2).				

	
	

Consider	 the	 poles	 of	 the	 integrand	 in	 Eq.(2.G.3),	 i.e.,	 the	 solutions	 of	
ε(kz ,ω0 ) = 0 .	 For	 the	example	of	 a	 velocity	distribution	 that	 is	 a	 square	 in	velocity	

space	 (see	 Table	 2.E.1)	 then	ω0
2 =ω p

2 + kz
2c2 → kz = ± ω0

2 −ω p
2 / c ,	 which	 roots	 lie	 on	

the	 real	 kz	 axis.	 	 A	 real	 physical	 system	will	 have	 some	 finite	 dissipation.	 Hence,	
ω(k) = ± ω p

2 + k 2c2 − iν 	and	 (ω + iν )2 =ω p
2 + k 2c2 ,	where	ν	is	a	damping	rate,	e.g.,	due	

to	weak	 collisions,	 so	 that	 free	oscillations	are	damped	and	 transients	will	 indeed	
die	away.		In	this	circumstance	the	solutions	for	kz	become	 kz = ± (ω0 + iν )

2 −ω p
2 / c .		

The	sign	of	kz	is	 selected	based	on	whether	values	of	z	 are	negative	or	positive	 so	
that	 the	 response	 of	 the	 system	 dies	 away	 for	 |z|→∞.	 	 For	 ω0<ωp	 	 kz	 is	 purely	
imaginary,	and	the	plasma	response	is	evanescent;	and	modes	do	not	propagate.			

For	z	>	0	the	contour	integral	in	Eq.(2.G.3)	is	closed	counter-clockwise	in	the	
upper	half-plane	in	Fig.	2.G.1a,	and	we	sum	over	pole	contributions:	
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δφ(r,t) = − 1
2

exp(ikzl
' z − kzl

" z − iω0t)
1

∂ε(kz ,ω0 )
∂kz ℓ

ℓ

∑ + c.c.
	 	 (2.G.4)	

where		kzl=	kzl’+i	kzl”	is	a	solution	of		ε(	kzl,ω0)=0	with	kzl”	>	0.		For	z	<	0	the	contour	
integral	is	closed	clockwise	in	the	lower	half-plane	with	kzl”	<	0;	and	the	overall	sign	
of	 the	 right	 side	 of	 Eq.(2.G.4)	 changes.	 	 For	 z	 positive	 or	 negative	 the	 plasma	
response	is	sinusoidal	in	time	with	frequency	ω0	and	damps	away	from	the	origin	in	
z.	

2.G.b	Response	for	a	sinusoidally	driven	convectively	unstable	system			
	
	 One	 can	 compute	 the	 sinusoidally	 driven	 response	 for	 a	 convectively	
unstable	 system	 in	 the	 same	 manner	 as	 in	 Sec.	 2.G.a.	 Because	 the	 system	 is	
convectively	unstable,	the	integration	contour	Cω can	be	depressed	as	in	Fig.	2.G.1;	
and	 the	 results	 in	 Eqs.(2.G.3)	 and	 (2.G.4)	 pertain.	 	 However,	 the	 solutions	 of	
ε(kz,ω0)=0	 	 for	kz	 can	have	 Im	kz	<	0	 for	z	 >	0	 (and	 Im	kz	>	0	 for	z	 <	0)	 leading	 to	
spatially	growing	solutions	away	from	the	origin	in	in	z.	
	
Exercise:	 Consider	 the	 beam-plasma	 system	 in	 the	 plasma	 reference	 frame	 (Sec.	
2.F.a)	which	is	convectively	unstable.		Solve	ε(kz,ω0)=0	based	on	Eq.(2.F.4)	for	kz	and	
evaluate	Eq.(2.G.4).		Contrast	this	to	the	stable	case	of	a	beaming	plasma:	

	 ε(k ,ω)=1− ωp
2

(ω + iν −ku)2
=0 	

	
Exercise:		Consider	an	external	driving	potential	that	is	a	spherical	waveform,	

	

δφ ext(r,t)= 0 t <0, δ(r)sin(ω0t) t >0{ }
	in	 the	 rest	 frame	 of	 a	 cold	 plasma.	 	 Find	 the	 response	 for	ω0	 >	ωp	 and	ω0	 <	ωp.		

Contrast	 this	 to	 the	 case	 of	 a	 mono-energetic	 velocity	 distribution:	 f0=δ(|v|-
v0)/norm.	

	

2.H	Linear	stability	or	instability	for	a	few	simple	velocity	distributions			
		 	
	 We	 return	 to	 the	 consideration	 Vlasov	 stability	 for	 more	 general	 velocity	
distributions	based	on	Eq.(2.E.25):	

	 	 	 ε(k ,ω)=1−ωp
2

k2
Ζ'(v)=1−ωp

2

k2
du
g
k̂
'(u)

u−v∫
	 	 	 (2.H.1)	

where	 v=ω/k	 and	 ∫du	g(u)=1.	 	 	 In	 Fig.	 2.H.1	 are	 shown	 four	 examples	 of	 velocity	
distributions.	 	 Figure	 2.H.1a	 depicts	 two	 warm	 beams,	 which	 is	 always	 linearly	
unstable.	 	 A	 single-humped	 velocity	 distribution	 is	 shown	 in	 Fig.	 2.H.1b,	which	 is	
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stable.	 	 The	 velocity	 distribution	 function	 shown	 in	 Fig.	 2.H.1c	 can	 be	 stable	 or	
unstable	depending	on	the	relative	heights	b	and	a.	 	 In	 the	 limit	b→0,	 the	velocity	
distribution	is	single-humped	and	stable.		In	the	limit	b→a,	the	velocity	distribution	
corresponds	to	two	counter	propagating	warm	beams	and	is	unstable.		Figure	2.H.d	
depicts	a	double	Cauchy	beam.		When	the	thermal	spread	c	is	larger	than	the	beam	
centroid	velocity	u0,	 the	plasma	 is	 stable;	and	when	c	<	u0,	 the	plasma	 is	unstable.		
The	 results	 of	 these	 examples	 give	 one	 a	 hint	 toward	 a	 more	 general	 stability	
condition.		A	general	condition	is	that	it	is	necessary	for	g(u)	to	have	a	minimum	for	
instability.			

	
Fig.	2.H.1		Four	examples	of	finite-temperature		
velocity	distribution	functions.	

	
Exercise:	Show	that	ω(k,c)= ω(k,0)-ikc	for	the	double	Cauchy	beam,	which	illustrates	
the	stabilizing	influence	of	the	thermal	spread.	
	

2.I	General	analysis	of	the	dielectric	response			

2.I.a	Perturbative	expansion	for	a	fast	wave	
	
	 Equation	(2.H.1)	can	be	evaluated	easily	when	thermal	effects	are	weak.		For	
a	“fast”	wave,	V>>vthermal,	one	can	expand	

1
u−v =−

1
v

1
1− uv

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=−
1
v 1+ uv +

u2

v2
+
u3

v3
...

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 	 	 (2.H.2)	
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Theorem:		From	Eqs.(2.E.23)	and	(2.H.2)	the	first	thermal	correction	to	Z(v)	is	then	

	 	 	 	 Z(v)=−1v 1+ vth
2

v2
+O

vth3
v3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 	 	 	 	 (2.H.3)	

where	v=ω/k	and	[1,	0,	vth2]=∫du	[1,	u,	u2]	g(u),	and	

	 	 	 	 Z '(v)= 1
v2
+
3vth2
v4

+ ... 	 	 	 	 	 (2.H.4)	

Hence,		

	 	 	 	 ε(k ,ω)=1−ωp
2

ω2 −
ωp

23k2vth2

ω4 +O(ω−5) 	 	 	 (2.H.5)	

and	the	Bohm-Gross	dispersion	relation	for	the	electron	plasma	wave	results	from	
ε(k,ω)=0	:	

	 	 	 	 ω2 =ωp
2 +
3k2vth2
ω2 ωp

2 + ...≈ωp
2 +3k2vth2 	 	 	 (2.H.6)	

With	 the	 inclusion	 of	 thermal	 effects	 the	 electron	 plasma	 wave	 has	 acquired	
dispersion.			
	
Theorem:	 The	 product	 of	 the	 phase	 and	 group	 velocities	 for	 the	 electron	 plasma	
wave	is	given	by	vpvg=3vth2	for	kvth<<ωp,	 i.e.,	kλD<<1,	where	λD=vth/ωp	is	the	Debye	
length.		With	vp>>	vth	the	group	velocity	satisfies	vg<<	vth.	
	

2.I.b	Use	of	the	Hilbert	transform	in	deriving	the	dielectric	function	
	

We	return	to	the	consideration	of	Z(v),	Eq.(2.E.23),	
	

Ζ(v)= du
−∞

∞

∫
g
k̂
(u)

u−vR − iv I
= du

−∞

∞

∫
g
k̂
(u)

(u−vR )2 +v I2
u−vR + iv I⎡
⎣

⎤
⎦, v = vR + iv I , v I >0

→ ReΖ(v)= du
−∞

∞

∫
g
k̂
(u)

(u−vR )2 +v I2
u−vR( ) , ImΖ(v)= v I du

−∞

∞

∫
g
k̂
(u)

(u−vR )2 +v I2
	 (2.I.1)	

One	notes	that	Re	Z(v)	has	odd	symmetry	with	respect	to	u-vR	and	goes	to	zero	for	
vI=0	and	for	vR→±∞.			
	
Theorem:	As	vI→0	there	is	a	near	singularity	 in	Re	Z(v)	at	vR=0	while	 	 	 	 	 Im	Z(v)∝	
vI→0.		In	the	limit	vI→0,		Z(v)	takes	on	the	following	special	forms:	

	 	
Z vR( )=P du g(u)

u−vR
∫ + i dug(u)∫ πδ(u−vR ) 	 	 	 	 (2.I.2)	
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where	P	denotes	the	principal	value	of	the	integral	that	immediately	follows	it.			The	
development	of	Eq.(2.I.2)	has	a	basis	in	distribution	theory:4	

y→0±
lim 1

x+ iy
=P 1

x

⎛

⎝
⎜
⎞

⎠
⎟∓ iπδ(x) 	 	 	 	 	 (2.I.3)	

Corollary:	Hilbert	transform	

		 	 Z v( )= i dsexp(ivs
0

∞

∫ ) dug(u)exp(−ius)= du
−∞

∞

∫
−∞

∞

∫ g(u)
u−v 	 	 (2.I.4)	

where	the	first	 integral	 is	a	Laplace	transform	and	the	second	integral	 is	a	Fourier	
transform.			
	
Exercise:	Invert	the	Hilbert	transform	to	obtain	g(u)	given	Z(v).	
	
Theorem:	Relation	of	the	dielectric	function	to	Z’(v)	from	Eq.(2.H.1)	

ε(k ,ω)=1−ωp
2

k2
Ζ'(v)=1−ωp

2

k2
du
g
k̂
'(u)

u−v∫

=1−ωp
2

k2
dug

k̂
'(u) P

u−v + iπδ(u−v)
⎡

⎣
⎢

⎤

⎦
⎥∫ , v ≡ω

k
	 	 (2.I.5)	

	
Exercise:	Show	that	ε’=Re	ε	is	an	even	function	of	ω	and	ε”=Im	ε	is	an	odd	function	of	
ω.	

2.I.c	Dispersion	relation	for	weak	damping	or	growth	rate	compared	to	the	real	part	of	
the	frequency			
	
	 Consider	ω=ωR+iγ	 and	 conditions	 such	 that	 |γ|=|Im	ω|<<|Re	ω|	 and	Taylor-
series	expand	ε(k,ω)=0	for	small	γ:	

ε(k ,ωk )=ε '(k ,ωk )+ iε"(k ,ωk )+ iγ
∂

∂ω
ε(k ,ω)

ωR

+O(γ 2)=0

→ ε '(k ,ωk )−γ
∂

∂ω
ε"(k ,ω)

ωR

+O(γ 2)=0 ε"(k ,ωk )+γ
∂

∂ω
ε '(k ,ω)

ωR

+O(γ 2)=0 	

	 	 	 	 	 	 	 	 	 	 	 (2.I.6)	
	
Theorem:	For	weak	damping	or	weak	growth	rates	the	solution	of	ε(k,ω)=0	yields	
solutions	for	ωR(k)	and	γ(k):	

																																																								
4	M.	J.,	Lighthill,	Introduction	to	Fourier	analysis	and	generalised	functions,	New	York:	
Cambridge	University	Press,	(1958).	ISBN	0-521-05556-3.	
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ε ' k ,ωR( )=0→ωR = ... γ(k)=−

ε" k ,ωR( )
∂
∂ω

ε ' k ,ω( )
ωR

	 	 	 (2.I.7)	

The	ratio	of	the	damping	rate	to	the	frequency	γ(k)/ωR(k)	is	a	measure	of	the	ratio		
of	the	dissipation	(negative	or	positive)	to	the	wave	energy:	
	

	 	 	
γ(k)
ωR

=−
π g'(v)

ωR

k
P du g"(u)

u−v∫
=−

π g'(v)
vZ"R(v) 	 	 	 (2.I.8)	

	
Exercise:	Derive	the	derivative	of	the	principal	part	of	the	Hilbert	transform.	
	

2.I.d	Maxwellian	velocity	distribution	function	–	electron	Landau	damping	in	fast	and	
slow	waves			
	
	 We	next	construct	the	dispersion	relation	for	a	Maxwellian	electron	velocity	
distribution	function:	

	
g(u)= 1

2πvth2
exp −

u2

2vth2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, g'(u)=− u

vth3 2π
exp −

u2

2vth2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, vth2 =

Te
me 	 (2.I.9)	

Waves	in	a	warm	plasma	can	be	classified	in	three	categories:	fast,	intermediate,	and	
slow	depending	on	the	ratio	of	the	phase	velocity	to	the	thermal	velocity.		For	a	fast	
wave	v=ω/k>>vth,	γ∝exp(-v2/2vth2)	is	exponentially	small.	 	For	intermediate	waves	
v~vth,	γ∼ωk;	and	γ is	relatively	large,	which	invalidates	the	Taylor	series	expansion	in	
Eq.(2.I.6)	 leading	 to	Eqs.(2.I.7)	 and	 (2.I.8).	 	 For	 slow	waves	v<<vth,	 γ∝v/vth		 and	 is	
linearly	small.	
	
Example:	Electron	plasma	wave.	For	a	fast	wave	in	a	Maxwellian	plasma,	the	phase	
velocity	 falls	 far	 out	 on	 the	 high	 energy	 tail	 of	 the	 velocity	 distribution	 function.		
From	Eqs.(2.I.7-2.I.9)	one	obtains	

ε '→1−ωp
2

ω2 , ω
∂ε '
∂ω

≈2ωp
2

ω2 ≈2,
γ(k)
ωR

=−
π
8

v
vth

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

exp −
v2
2vth2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 												(2.I.10)	

The	damping	rate	given	 in	Eq.(2.I.10)	 is	 the	Landau	damping	rate	 for	 the	electron	
plasma	wave	in	a	Vlasov	plasma	(collisionless).		Equation	(2.H.6)	gives	the	thermal	
correction	to	the	real	part	of	the	frequency	for	the	electron	plasma	wave.	For	small	
kλD<<1,	the	phase	velocity	v=ω/k→∞	as	k→0,	while	vg→0;	and	γ/ω→0	because	the	
number	of	resonant	particles	in	the	tail	is	exponentially	small.		For	increasing	k,	the	
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wave	 frequency	 increases	while	 the	phase	velocity	decreases,	which	 increases	 the	
damping	rate	and	ultimately	invalidates	the	fast-wave	assumption.			
	
Example:	 Ion	acoustic	wave.	For	a	slow	wave	 in	a	Maxwellian	plasma,	v<<vthe,	 the	
phase	 velocity	 falls	 near	 the	 peak	 of	 the	 electron	 velocity	 distribution	 at	 low	
velocities.	 	We	assume	that	 the	 ions	are	singly	charged	and	relatively	cold,	Ti<<Te,	
and	 vi<<	 v<<vthe.	 	 In	 these	 limits	 v=cs=(Te/mi)1/2,	 ion	 Landau	 damping	 is	
exponentially	small,	and	the	electron	Landau	damping	is	linearly	small.		In	this	two-
species	plasma	g(u)=∑sωs2gs(u)/ωp2.		For	cold	ions	the	ion	acoustic	wave	dispersion	
relation	is	derived	from	

	 	

ε ' k ,ω( )=1−
ωpi

2

ω2 +
1

k2λe
2 =0→ωk

2 =
k2λe

2ωpi
2

1+k2λe2
=

k2cs
2

1+k2λe2

ω
∂ε '
∂ω

ωk

=2 1+ 1
k2λe

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

γ(k)
ω(k) =−

π
8
me

mi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2
1

1+k2λe2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3/2
												(2.I.11)	

The	electron	Landau	damping	for	the	ion	acoustic	wave	is	small	for	all	values	of	kλe.			

2.I.e	Bump-on-tail	velocity	distribution	and	resonant	instability					
	
	 The	bump-on-tail	velocity	tail	velocity	distribution	is	diagrammed	in	Fig.	2.I.1		
This	velocity	distribution	is	obviously	related	to	the	weak	beam	case	studied	in	Sec.	
2.F.	 However,	 here	 both	 the	 plasma	 and	 the	 beam	 have	 acquired	 finite	 thermal	
spreads.		If	the	phase	velocity	of	an	electron	plasma	wave	falls	on	an	interval	of	the	
velocity	 distribution	 of	 the	 beam	 with	 positive	 slope	 there	 can	 be	 instability.			
Equations	(2.I.7)	and	(2.I.8)	can	be	used	to	compute	the	growth	or	damping	rate	for						
	

	
Fig.	2.I.1	Velocity	distribution	function	for		
the	bump-on-tail	instability		
	

the	bump-on-tail	distribution:		
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γ
ωk

≈
ωp

2

k2
π g'(v)
2 	 	 	 												(2.I.12)		

where	 we	 have	 used	 ωk∂ε’/∂ω=2ωp2/ωk2~2,	 which	 is	 good	 for	 a	 relatively	 small	
bump	on	the	tail.		If	g’(v)>0	then	γ>0,	i.e.,	there	is	instability.			
	
Definition:	 Resonant	 instability	 or	 damping.	 	 When	 there	 are	 particles	 whose	
unperturbed	velocity	is	coincident	or	nearly	coincident	with	the	phase	velocity	of	a	
wave	(velocity	resonance),	the	particles	can	resonantly	interact	with	the	wave	and	
exchange	energy.		In	the	wave	frame,	ω-k⋅v=0,	the	resonant	particle	sees	a	constant	
phase	 and	 can	 be	 steadily	 accelerated	 or	 decelerated	 by	 the	wave’s	 electric	 field.		
When	 there	 are	 more	 resonant	 particles	 giving	 energy	 to	 the	 wave	 due	 to	
deceleration	than	particles	extracting	energy	from	the	wave	due	to	acceleration,	the	
wave	 can	 grow;	 and	 there	 is	 resonant	 instability.	 	 The	 slope	 of	 the	 velocity	
distribution	dictates	whether	there	are	more	or	fewer	particles	faster	or	slower	than	
the	wave	phase	velocity.	 	 	 If	 the	slope	of	 the	velocity	distribution	 is	negative,	 then	
there	are	more	particles	with	velocities	slower	than	the	wave	phase	velocity	that	are	
accelerated	by	the	wave;	and	the	wave	experiences	resonant	(Landau)	damping.	
	
	 We	 can	 consider	 the	 resonant	 particle	 interaction	 with	 a	 wave	 from	 the	
quantum	mechanical	perspective.	 	Suppose	there	are	exchanges	of	momentum	and	
energy	with	the	wave	given	by	∆! = ±ℏ	k	 	and	∆ℇ = ±ℏ!	that	are	small	compared	
to	 the	 particle’s	momentum	 and	 energy	 (h	 is	 Planck’s	 constant,	 and	 the	 over	 bar	
indicates	h/2π).		Then	∆ℇ = !! ∙ Δ!= ! ∙ !",	and	substituting	the	expressions	for	∆!	
and	∆ℇ	one	immediately	obtains	ω=k⋅v,	which	is	the	resonance	condition.	

3.	Vlasov-Maxwell	plasma	formulation	
	
	 In	 this	 section	 the	 totality	 of	 Maxwell’s	 equations	 are	 introduced	 in	 the	
context	of	a	collisionless	Vlasov	plasma	theory.		

3.A	Wave	energy	and	Poynting	theorem	
	
	 Maxwell’s	equations	in	a	plasma	take	the	form	
	 	 	 ∇×B−1

c
∂E
∂t

=
4π
c
j ∇×E+1

c
∂B
∂t

=0 	 	 	 (3.A.1)	

where	the	current	j	is	the	sum	of	externally	applied	currents	and	the	currents	due	to	
free	 charges	 in	 the	 plasma.	 	We	will	 ignore	 gravity	 here	 but	 otherwise	will	 be	 as	
general	as	possible.	 We	 introduce	 a	 notation	 to	 emphasize	 that	 the	 wave	
phenomena	are	spatially	and	temporally	varying	perturbations	δB,	δE,	and	δj.		If	we	
compute	the	dot	product	of	cδE	with	the	perturbed	Ampere’s	law	and	combine	with	
the	dot	product	of	cδB	with	Faraday’s	law,	we	obtain	
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	 	 −∇⋅
c
4π δE×δB
⎛

⎝
⎜

⎞

⎠
⎟=

∂

∂t

δE
2

8π +
δB

2

8π

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+δj⋅δE 	 	 	 	 (3.A.2)	

The	left	side	of	Eq.(2.A.2)	is	the	divergence	of	the	Poynting	flux.		The	last	term	on	the	
right	 is	 the	 rate	 of	 work	 done	 by	 the	 electromagnetic	 fields	 on	 the	 particles.	 	 In	
obtaining	Eq.(2.A.2)	only	terms	that	are	bilinear	in	the	perturbed	fields	and	currents	
are	 retained,	 and	 linear	 terms	 like	δB⋅B0	 are	dropped	because	 they	have	no	 finite	
average	value	when	time	averaged	over	the	cycle	of	the	perturbed	fields.	
	 Compute	the	volume	integral	of	Eq.(2.A.2)	with	vanishing	surface	terms	at	∞	
to	obtain	

	 	 	 d
dt

d3r∫
δE

2
+ δB

2

8π =− d3r∫ δj⋅δE 	 	 	 	 (3.A.3)	
Equation	(3.A.3)	describes	a	balance	between	the	change	of	stored	electromagnetic	
field	energy	and	work	done	by	the	electric	field	on	the	plasma.			

3.B	Conductivity	tensor	
	
	 The	 conductivity	 tensor	 relates	 the	 perturbed	 current	 δj	 to	 the	 perturbed	
electric	 field	 δE.	 	 This	 is	 a	 linear	 relation.	 	 The	 analytic	 construction	 of	 the	
conductivity	 tensor	 typically	 begins	 with	 the	 assumption	 that	 the	 unperturbed	
system	 is	 stationary,	 but	 there	 are	notable	 exceptions,	 e.g.,	when	 there	 are	 slowly	
varying	background	 fields	as	 in	 the	solar	wind	and	 the	 ionosphere,	or	when	 there	
are	rapidly	oscillatory	finite-amplitude	fields	as	in	laser-plasma	interactions.	 	As	in	
the	 development	 of	 the	 dielectric	 response	 in	 Sec.	 2.E,	 we	 begin	 by	 employing	
causality	and	writing	down	the	general	expression	

	 	 	 δj(r ,t)= dτ d3r' !σ(r;r';τ )∫
0

∞

∫ ⋅δE(r',t −τ ) 	 	 	 (3.B.1)	

Next	we	assume	that	perturbed	electric	field	can	be	represented	as	a	superposition	
of	normal	modes:	
	 	 	 δE(r,t)= exp(−iω

ℓ
ℓ

∑ t)E
ℓ
(r,t) 	 	 	 	 (3.B.2)	

where	ωl	is	real,	El is	slowly	varying	in	time,	ω−l=-ωl,	and	E−l=-El.			Use	of	Eq.(3.B.2)	in	
(3.B.1)	yields			

δj(r ,t)= exp(−iω
ℓ

ℓ

∑ t) dτ d3r' !σ(r;r';τ )∫
0

∞

∫ ⋅E
ℓ
(r',t −τ )exp(iω

ℓ
τ )

= exp(−iω
ℓ

ℓ

∑ t) dτ d3r' !σ(r;r';τ )∫
0

∞

∫ ⋅ E
ℓ
(r',t)−τ ∂

∂t
E
ℓ
(r',t)+O(τ 2!!E

ℓ
)

⎡

⎣
⎢

⎤

⎦
⎥exp(iωℓτ )

= exp(−iω
ℓ

ℓ

∑ t) d3r' !σ(r;r';ω
ℓ
)⋅E

ℓ
(r',t)+ i ∂

!
σ(r;r';ω)
∂ω

ωℓ

⋅
∂

∂t
E
ℓ
(r',t)+ ...

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫

	

	 	 	 	 	 	 	 	 	 	 	 (3.B.3)	
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where	we	have	made	use	of	the	following	definition	and	identity.	
	
Definition:	The	Fourier	transformed	conductivity	tensor	is	given	by	
!
σ(r,r';ω)= dτ

0

∞

∫
!
σ(r,r';τ )exp(iωτ ) with	 !σ(r,r';τ <0)=0 		

Theorem:	
∂

∂ω
F
τ→ω

g(τ )( )= Fτ→ω
iτ g(τ )( ) where	Fτ→ω

g(τ )( ) is	the	Fourier	transform	from	τ 	to	ω. 	
	 	
	 The	 conductivity	 is	 a	 three-dimensional	 tensor	 and	 a	 kernel,	 but	 it	 is	 not	
Hermitian	 in	 general.	 	 One	 can	 decompose	 any	 tensor	 into	 Hermitian	 and	 anti-
Hermitian	parts:	
	
Theorem:	 A =Aι + iAιι A

µν
ι =

1
2 A

µν
+ A

µν
∗( ) A

µν
ι = A

νµ
ι( )

∗

A
µν
ιι = A

νµ
ιι( )

∗

For	 real	 ω,			

σ
µν
ι (r,r';ω)≡ 12 σ

µν
(r,r';ω)+σ

νµ
(r',r;ω)( ) 	

	
	 Use	of	Eq.(3.B.3)	in	Eq.(3.A.3)	yields										

d
dt

d3r∫
δE

2
+ δB

2

8π =− d3r∫ δj⋅δE

=− d3r d3r' exp(iω
ℓ
t)E

ℓ
*

ℓ

∑ (r,t)∫∫ ⋅ exp(−iω
ℓ't)

ℓ'
∑ "

σ(r;r';ω
ℓ' )⋅Eℓ'(r',t)+ i

∂
!
σ(r;r';ω)
∂ω

ωℓ'

⋅
∂

∂t
E
ℓ'(r',t)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

	 	
	
	 	 	 	 	 	 	 	 	 	 	 (3.B.4)	
	
If	we	 perform	 a	 coarse-grain	 time	 average	 of	 Eq.(3.B.4),	 i.e.,	 we	 average	 over	 the	
characteristic	time	scales	~1/ωl	,	but	retain	the	slow	time	scale	variations,	and	make	
use	of	

exp −i(ω
ℓ
−ω

ℓ' )t( ) =δ
ℓℓ' 	

we	can	delete	the	sum	over	l’ and	set	l=l’.	Thus,	Eq.(3.B.4)	simplifies	to	
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d
dt

d3r∫
δE

2
+ δB

2

8π =− d3r∫ δj⋅δE

=− d3r d3r' E
ℓ
*

ℓ

∑ (r,t)⋅∫∫
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)⋅E

ℓ
(r';t)+ i ∂

!
σ(r;r';ω)
∂ω

ωℓ

⋅
∂

∂t
E
ℓ
(r',t)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=− d3r d3r' E
ℓ
*

ℓ

∑ (r,t)⋅∫∫
!
σ '(r ,r ';ω

ℓ
)⋅E

ℓ
(r';t)− ∂

!
σ "(r;r';ω)

∂ω
ωℓ

⋅
∂

∂t
E
ℓ
(r',t)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=− d3r d3r' E
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ℓ
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σ '(r ,r ';ω

ℓ
)⋅E
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+
1
2
d
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d3r d3r' E
ℓ
*

ℓ

∑ (r,t)⋅∫∫ ∂
!
σ "(r;r';ω)

∂ω
ωℓ

⋅E
ℓ
(r',t)

	

(3.B.5)	
where	σ  =	σ ’	+	iσ”	
	
Exercise:	Prove	Eq.(3.B.5)	using	 the	hermiticity	of	σ ’	 and	σ”,	 and	 the	 right	 side	of	
(3.B.5)	is	necessarily	real.	

	

3.C	Energy	conservation	
	
Theorem:	 Eq.(3.B.5)	 can	 be	 rewritten	 in	 the	 form	 that	 expresses	 energy	
conservation	between	the	electromagnetic	field	energy	and	the	plasma	

d
dt

U
ℓ

ℓ

∑ (t)=− Q
ℓ

ℓ

∑ →
d
dt
U
ℓ
(t)=−Q

ℓ 	 	 	 	 (3.C.1)	
using	mode	by	mode	equivalence.		Equation	(3.B.5)	becomes	
	

d
dt

d3r∫
E
ℓ

2
+ B

ℓ

2

8πℓ

∑ −
1
2 d3r d3r' E

ℓ
*

ℓ

∑ (r,t)⋅∫∫ ∂
!
σ "(r;r';ω)

∂ω
ωℓ

⋅E
ℓ
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⎡

⎣

⎢
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⎢

⎤

⎦

⎥
⎥
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=− d3r d3r' E
ℓ
*

ℓ

∑ (r,t)⋅∫∫
!
σ '(r ,r ';ω

ℓ
)⋅E

ℓ
(r';t)

	 	 (3.C.2)	

and	the	equality	also	holds	in	a	mode	by	mode	sense.	 	The	left	side	of	Eq.(3.C.2)	is	
the	 time	 derivative	 of	 the	 stored	 energy	 summed	 over	 the	 electromagnetic	 field	
energy	 and	 the	 plasma	 kinetic	 sloshing	 energy	 in	 the	 waves.	 	 The	 right	 side	 of	
Eq.(3.C.2)	is	the	rate	of	energy	lost	or	gained	due	to	resistive	effects	(loss	in	stable	
plasma).	The	 imaginary	part	of	 the	conductivity	σ”	 is	 the	reactive	component,	and	
the	real	part	σ ’	is	the	resistive	component.	
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Theorem:	In	a	uniform	medium	Eqs.(3.C.1)	and	(3.C.2)	can	be	Fourier	transformed	
to	k-space:	

d
dt

d 3k
(2π )3∫ Uℓ

ℓ

∑ (k,t) = − d 3k
(2π )3∫ Qℓ (k,t)

ℓ

∑ 	 	 												(3.C.3a)	

	
where	

U
ℓ
(k ,t)=

E
ℓ

2
+ B

ℓ

2

8π −E
ℓ
*(k ,t)⋅ ∂

!
σ "(k;ω)
2∂ω

ωℓ(k )
⋅E
ℓ
(k ,t)

Q
ℓ
(k ,t)=E

ℓ
*(k ,t)⋅ !σ '(k;ω

ℓ
(k))⋅E

ℓ
(k ,t)

	 											(3.C.3b)	

	
Ul(k,t)	 is	 the	 wave	 energy	 ,	 which	 can	 be	 positive	 or	 negative	 depending	 on	 the	
particle	energy	contribution.		Ql(k,t)	can	be	positive	or	negative.		
	 The	 continuity	 equation	 (2.D.6)	 relates	 the	 charge	density	 and	 the	 current,	
while	 the	 charge	 density	 and	 the	 electric	 field	 are	 related	 in	 Eq.(2.E.5).	 	 The	
susceptibility	χ(k,ω)	is	related	to	the	dielectric	function	ε(k,ω)	in	Eq.(2.E.16).		Using	
these	relations	the	dielectric	function	and	the	conductivity	are	related	as	follows:	

	 	
!
ε (k,ω) =

!
I + i 4π

ω

!
σ (k,ω) = !ε '+ i!ε " =

!
I + i 4π

ω
(
!
σ '+ i

!
σ ")

!
ε ' =
!
I − 4π

ω

!
σ " !

ε " = 4π
ω

!
σ " ∂

∂ω
ω
!
ε '( ) =

!
I − 4π ∂

∂ω

!
σ "

	 											(3.C.4)	

Theorem:	Eqs.(3.C.3)	and	(3.C.4)	can	be	combined	to	yield	the	following	alternative	
form	for	Ul(k,t)	in	terms	of	the	real	part	of	ε(k,ω):	

	 	 U
ℓ
(k ,t)=

B
ℓ

2

8π +

E
ℓ
*(k ,t)⋅ ∂

∂ω
ω
!
ε '(k;ω)( )

ωℓ(k )
⋅E
ℓ
(k ,t)

8π 	 											(3.C.5)	
	
	

3.D	Coulomb	model	examples	–	cold	plasma,	Vlasov	plasma,	beam	in	hot	
plasma	
	
	 In	this	section	we	simplify	the	analysis	to	the	Coulomb	model	and	analyze	a	
few	examples.		In	a	Coulomb	model	the	waves	are	longitudinal,	i.e.,	the	electric	field	
is	given	by	the	gradient	of	a	scalar	potential:	

																																	
E=−∇φ E(k ,ω)=−ikφ(k ,ω) ∇×E=0

U
ℓ
(k ,t)= k

2

8π
∂

∂ω
ωk̂ ⋅ !ε '(k;ω)⋅ k̂( )

ωℓ(k )
φ
ℓ
(k ,t)2 	 	 											(3.D.1)	

Definition:	ε L(k ,ω)≡k ⋅ε̂ ⋅k 	
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Exercise:	Prove	εL	is	equivalent	to	ε(k ,ω) 	in	Sec.	2.E	
	
Corollary:		

			U
ℓ
(k ,t)=

k2 φ
ℓ
(k ,t)2

8π
∂

∂ω
ωε '( )

ωℓ(k )
Q
ℓ
(k ,t)=

ωk2 φ
ℓ
(k ,t)2

8π ε"(k;ω
ℓ
(k)) 											(3.D.2)	

	
Theorem:	For	Ul ∝exp(2γl(k)t)	then	γl(k)	is	determined	by	the	ratio	of	the	
dissipation	to	the	wave	energy:	

	 	 γ
ℓ
(k)=−12

Q
ℓ
(k)

U
ℓ
(k) =−

ωε"
∂
∂ω

ωε '( )
=−

ε"
∂ε '

∂ω

, ε '(ω
ℓ
(k))=0 	 											(3.D.3)	

Example:	 In	 a	 Vlasov	 plasma	 ε '(k ,ω)=1−ωp
2

k2
Z '(v)≡1− F(v)

k2
v ≡ω

k
.	 	 The	

eigenfrequencies	are	determined	by	ε’=0,	 i.e.,	F(v)=k2	 introduced	in	Eq.(2.F.2).	 	We	
also	have	the	following	useful	relations	

	 	 						
∂ε '
∂ω

= −
1
k 3
dF
dv

dF
dv

= 2k dk
dv

∂ε '
∂ω

= −
2
k 2

dv
dk
⎛

⎝
⎜

⎞

⎠
⎟

−1

γ =
−ε"
∂ε '

∂ω

= −
π
2
ω p
2g '(v) dv

dk
dv
dk

=
1
k
vg − v( ) vg ≡

dω
dk

											 	 (3.D.4)	

	
Theorem:	Examination	of	Eq.(3.D.1)	–	 (3.D.4)	 shows	 that	 the	wave	energy	Ul	 	 and	
the	 growth/damping	 rate	 γ	 are	 independent	 of	 reference	 frame	 under	 Galilean	
transformation	(vg-v	is	invariant	under	Galilean	transformation).			
	
Usually	vg<v,	which	is	referred	to	as	normal	dispersion,	and	then	!!

!

!" > 0	so	that	the	
wave	energy	is	positive.		We	next	summarize	some	results	for	a	few	examples.	
	
Examples	
1. Electron	 plasma	 wave	 (Langmuir	 wave):	 	! !!!

!" = 2 	and,	 hence,	 U=2|E|2/8π.	
Energy	 is	 partitioned	 equally	 between	 the	 field	 energy	 and	 the	 plasma	 kinetic	
sloshing	energy.	

2. Ion-acoustic	 wave:	 	! !!!
!" = 2 1+ !

!!!!!
→ ∞	for	!!!!! → 0.	 	 The	 electrons	 and	

ions	 are	 in	 phase	with	 one	 another,	 and	 the	 plasma	 kinetic	 sloshing	 energy	 is	
much	larger	than	the	field	energy.	
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3. Cold	beam:		! = 1− !!!/(! − !!!)!	and			! !!!
!" = ±2!!!/!! .		The	two	branches	

of	the	dispersion	relation	are	the	fast	wave	(positive	energy	wave)	and	the	slow	
wave	(negative	energy	wave).	

4. Beam	 through	 a	 hot	 plasma:	 	! = 1− (!!! !!)!′(v) −!!!/(! − !!!)! .	 	 For	
kub>>ωp,	 there	 are	 fast	 and	 slow	 beam	 modes	 with	 approximate	
eigenfrequencies	! = !!! ± !!	and	v = !! ± !!/!.	The	beam	component	is	a	δ	
-function	 in	 velocity,	while	 the	plasma	 component	 is	 a	Maxwellian	 centered	 at	
zero	velocity.		The	slope	of	the	velocity	distribution	for	the	plasma	component	is	
negative	 at	ub±ωb/k	 and	 the	 resonant	particles	damp	 the	 fast	wave.	 	However,	
the	 wave	 energy	 for	 the	 slow	 mode	 is	 negative;	 and	 the	 resonant	 particles	
destabilize	 the	 slow	mode	 in	 consequence	of	Eq.(3.B.13).	 	The	dissipation	ε”	 is	
positive	 for	both	 the	 fast	and	slow	mode,	but	dissipation	 further	decreases	 the	
wave	 energy	 for	 negative	 energy	waves	which	 increases	 the	magnitude	 of	 the	
slow-wave	amplitude.	
	

3.E	Penrose	criterion	for	instability	and	examples			
	
	 We	 note	 that	 F(V)=k2	 in	 Eq.(2.F.2)	 generalized	 to	 (2.H.2)	 depends	 on	 the	
principal	value	integral	of	g’;	and	the	expression	for	γ	in	Eq.(3.B.14)	depends	directly	
on	g’(v):	

	

ε(k,ω) = 0 → k 2 =ω p
2Ζ '(V) ≡ F (V) =ω p

2 du g '(u)
u−V∫ , ImV>0

γ (k)=-π
2
ω p
2 dV
dk
g '(V) 															 (3.E.1)	

	
	We	 have	 analyzed	 the	 stability	 of	 several	 examples	 of	 Vlasov	 plasmas	 in	 the	
Coulomb	model,	e.g.,	two	stream,	plasma	beam,	beam	and	plasma,	bump	on	tail,	and	
Maxwellian	 plasma.	 	 Can	we	 look	 at	g(u)	 and	 decide	whether	 there	 is	 instability?		
Penrose	answered	this	question	in	the	affirmative.5	
	
Theorem:	(Penrose	criterion)	The	condition	for	instability	is	that	as	one	varies	k,	for	
some	real	k>0,	Im(ω/k)>0	
	 	 	

	 Examine	 Eq.(3.E.1)	 in	 the	 complex	 V	 plane.	 	 We	 are	 looking	 for	 unstable	
solutions	 for	 the	complex	phase	velocity	V	as	a	 function	of	k2	with	 Im	V>0.	For	 Im	
V>0,	F	in	Eq.(3.E.1)	is	well	behaved	and	cannot	go	to	infinity	for	any	value	of	k2.		As	
k2→∞,	there	are	no	roots	for	Im	V	>	0,	i.e.,	there	are	no	unstable	roots	for	k=±∞;	and	
F	 goes	 to	 zero	 for	k=±∞.	 	 Now	 consider	 solutions	 of	 Eq.(3.E.1)	 for	 V	with	 finite	k	
where	V	crosses	the	real	V	axis	from	below	as	we	vary	k.	Label	the	point	as	k0	where	
γ0(k0)=0,	 which	 implies	 g’=0	 from	 Eq.(3.E.1).	 	 Consider	 a	 positive	 energy	 wave	
																																																								
5	O.	Penrose,	Phys.	Fluids,	3(2),	258–265	(1960).		
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dV/dk<0.	 As	 k	decreases	 differentially	 from	 k0,	V	 increases	 differentially	 from	 its	
finite	value	at	k0;	and	γ	transitions	from	γ<0	to	γ=0,	i.e.,	dγ/dk<0	at	k0	is	required	for	
instability.		In	consequence	of	dγ/dk<0	and	Eq.(3.E.1),	g’	must	increase	and	become	
positive	 as	 k	 is	 reduced	 below	 k0	 to	 support	 instability,	which	 requires	 that	 g”>0	
where	 g’=0	 at	 k0,	 i.e.,	 g	 must	 have	 a	minimum	with	 respect	 to	 V.	 	 For	 a	 negative	
energy	wave	dV/dk>0,	and	V	decreases	differentially	from	its	finite	value	at	k0	as	k	is	
reduced	 below	 k0.	 	 However,	 dγ/dk∝-(dV/dk)2g”	 	 remains	 negative	 if	 g”>0,	 as	
required	 for	 instability.	 	 We	 note	 that	 with	 dγ/dk<0	 for	 either	 sign	 of	 dV/dk,	 a	
differential	increase	in	k	from	k0	leads	to	γ<0.	
	
Theorem:	A	necessary	condition	for	instability	is	a	minimum	in	g(u).		Penrose	shows	
sufficiency	as	well	if	i)	g’=0,	ii)	g”>0,	and	iii)	 !" !′(!) (! − !)>0.		The	implication	
of	this	is	that	a	weak	minimum	may	not	be	unstable,	but	a	deep	minimum	probably	
will	be	unstable.	

[Editor’s	note:		There	are	good	discussions	of	the	Penrose	criterion	in	textbooks	such	as	
in	Sec.	9.6	of	  Nicholas	A.	Krall                                                                                                                                      	and	Alvin	W.	Trivelpiece ,	Principles	of	Plasma	Physics,	
McGraw-Hill,	 1973,	 and	 in	 Sec.	 5.3	 of	 P.	M.	 Bellan,	 Fundamentals	 of	 Plasma	Physics,	
Cambridge	 University	 Press,	 2008	 where	 a	 nice	 mathematical	 argument	 is	 given	

making	use	of	Nyquist’s	theorem.]                                                                                                                                     	

Examples:	
i.	A	single-hump	velocity	distribution	is	always	stable.	
ii.	A	double	Cauchy	beam	(Sec.	2.H)	can	be	unstable	if	the	beam	velocity	u0	exceeds	
the	thermal	spread	vth.	
iii.	Several	cold	beams	are	always	unstable.	
iv.	A	cold	beam	in	a	hot	plasma	is	unstable.	
v.	 An	 isotropic	 single-hump	 distribution	 of	 speed	 is	 stable.	 	 Some	 spherical	 shell	
distributions	of	speed	are	stable.	
vi.	 Electrons	 and	 ions	 with	 a	 finite-temperature	 Maxwellian	 velocity	 distribution	
and	 a	 relative	 drift	 between	 the	 species	 can	 be	 unstable	 if	 the	 relative	 drift	 is	
sufficiently	large	(ion	acoustic	instability).	

Example:	The	velocity	distributions	for	the	ion	acoustic	instability	are	diagrammed	
in	Fig.	3.E.1			The	electrons	have	a	finite	temperature	Te,	and	the	ion	temperature	is	
Ti.		The	singly	charged	ions	have	a	drift	ud	relative	to	the	electrons.		In	order	to	have	
a	minimum	in	the	composite	distribution	g(u),	 	! ! = !!!!!(!)! / !!!! ,	 there	is	
some	 minimum	 value	 of	 ud.	 	 The	 condition	 !" !′(!) (! − !)>0 requires	 an	 even	
larger	value	of	ud,	which	we	define	as	ud,crit	which	is	a	function	of	Te,	Ti,	and	me/mi.			
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Fig.3.E.1	 Hot	 electron	 and	 ion	 velocity	
distributions	with	a	relative	drift	ud.	

Calculations	published	by	Bernstein	and	Kulsrud6	and	Fried	and	Gould7	obtained	the	
following	results:	

	 (3.E.2)	

ud,crit	/vi	as	a	function	of	Ti/Te	steadily	increases	from	a	value	equal	to	4	for	Ti/Te=0	
with	ud,crit		saturating	at	a	value	O(ve)	for	Ti/Te=O(1),	and	the	instability	evolves	into	
a	warm	two-stream	instability.	
	

3.F	Wave	momentum			
	
	 In	Sec.	3.A	a	Poynting	 theorem	was	derived	 that	describes	 the	dynamics	of	
field	 and	plasma	energy	 exchange.	 	Here	we	examine	 the	 exchange	of	momentum	
between	 fields	and	plasma.	 	The	starting	point	 is	Eq.(2.D.9)	summed	over	species,	
which	we	then	coarse-grain	time	average	over	high	frequencies	having	decomposed	
all	 fluid	 quantities	 and	 fields	 in	 a	 linear	 superposition	 of	 modes	 as	 in	 Eq.(3.B.2).		
Only	bilinear	 terms	 survive	 the	 averaging,	 and	we	determine	 that	 the	 irreversible	
momentum	transfer	from	waves	to	plasma	per	unit	time	and	per	volume	is	given	by		
	

																																																								
6 I. B. Bernstein and R. M. Kulsrud, Phys. Fluids 3, 937 (1960).  
7	B.	D.	Fried	and	R.	W.	Gould,	Phys.	Fluids	4,	139	(1961).	
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	 (3.F.1)	

	
in	 a	 mode	 by	 mode	 sense,	 and	 we	 have	 made	 use	 of	 Faraday’s	 law	– i!"! =
−!i!×!!	and	the	continuity	equation	– !"#$ = −i! ∙ !!.	
	
Theorem:	The	irreversible	momentum	transfer	from	waves	to	the	plasma	is	given	by	
!
!	times	the	irreversible	energy	transfer,	i.e.,	8	

	 	 	 	 	 	 	 (3.F.2)	

There	is	an	analogy	here	to	quantum	mechanics	wherein		U =N!ω and	 g =N!k .	
	
Theorem:	 (Uwave,gwave)	are	related	as	 (E,p),	 i.e.,	 these	are	 four-vectors.	 	Thus,	 if	we	
consider	a	transformation	to	a	reference	frame	translating	with	relative	velocity	w,	
then	 ω(1)=ω(0)-k⋅w,	 Uwave(1)=	 Uwave(0)-w⋅g,	 and	 ! !" !"

(!)
= ! !" !"

(!)
1−

! ∙!
!(!) ,	where	the	dielectric	function	ε	is	an	invariant	scalar.	

	
	
	
	

4.	Magnetic	fields	
	
	 In	 this	 section	 we	 examine	 the	 solution	 of	 the	 Vlasov-Maxwell	 system	
including	 both	 externally	 applied	 magnetic	 fields	 and	 perturbed	 magnetic	 fields	
associated	with	electromagnetic	waves.	

4.A	Response	tensor	for	Vlasov-Maxwell	system	and	general	dispersion	relation	
	
	 We	 Fourier	 transform	 Faraday’s	 law	 and	 Ampere’s	 equations	 in	 space	 and	
time	to	obtain	the	following	relations:	
	

																																																								
8	R.	Dewar,	Phys.	Fluids	13,	2710	(1970).	

δρδE +
1
c
δj×δB = δρδE +

1
ω
δj×(k×δE)

= δρδE +
1
ω
k(δj⋅δE)− 1

ω
δE(k ⋅δj) = δρδE +

1
ω
k(δj⋅δE)− 1

ω
δE(ωδρ)

=
k
ω

δj⋅δE

gwave
Uwave

=
k
ω

→
d
dt
gwave =

k
ω
d
dt
Uwave
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	 	 	 	 	 	 	 	 	 	 	 (4.A.1)	
Theorem:	 From	 Faraday’s	 law	 the	 transverse	 (divergence-free)	 component	 of	 the	
linearized	 electric	 field	 δET	 satisfies	!!! = − !

! !×δ!	where 	is	 the	 wave	
phase	velocity.		For	slow	waves	V/c<<1,	the	transverse	waves	are	mostly	magnetic,	
|δB|/|δE|>>1.	
	
Theorem:	
	

		
ik×(n×δE)+ iω

c

!
I + 4π

−iω
!
σ(k ,ω)

⎡

⎣
⎢

⎤

⎦
⎥⋅δE= ik×(n×δE)+ iω

c
!
ε(k ,ω)⋅δE= 4π

c
δjext

→
!
ε(k ,ω)⋅δE+n×(n×δE)= 4π

iω
δjext →

!
ε(k ,ω)−n2

!
I − k̂k̂( )⎡

⎣
⎤
⎦⋅δE=

4π
iω

δjext
				(4.A.2)	

	
Definition:	 	projects	out	the	transverse	part	of	the	vector	field.			
	
Definition:	The	response	tensor	is	defined	by	Eq.(4.A.2):	 	 	and	hence,
!
κ ⋅δE(k ,ω)≡(4π / iω)δjext(k ,ω) 	
	
Theorem:	(i)	Normal	modes	are	determined	by	the	solution	of	Eq.(4.A.2)	with	jext=0.	
From	 one	 can	 make	 some	 statements	 regarding	 polarization.	 	 The	
dispersion	 relation	 for	 normal	 modes	 is	 obtained	 from	

.			
(ii)	With	an	external	source		!jext,	 is	determined	by	matrix	inversion:	

	 	 δE(k ,ω)≡ 4π
iω
!
κ −1 ⋅δjext(k ,ω) !κ −1 =

!
κ A

D(k ,ω) 		 	 	 (4.A.3)	

where	 	 is	 the	 adjoint	 of	 the	 response	 tensor.	 	 To	 compute	 the	 inverse	 Fourier-
Laplace	 inverse	 transform	 of	 Eq.(4.A.3)	 we	 will	 need	 to	 know	 the	 poles	 of	 the	
integrand,	i.e.,	the	roots	of	D(k,ω)=0.	
	 So	 far	 the	 discussion	 was	 completely	 general	 until	 we	 introduced	 the	
conductivity	tensor	and	certain	simplifying	assumptions	(see	Sec.	3.B).		In	the	rest	of	
Sec.	 4	 we	 will	 include	 an	 externally	 applied	 magnetic	 field	 and	 analyze	 particle	
motion	and	waves	 in	a	magnetized	plasma,	and	 introduce	 the	 study	of	waves	 in	a	
nonuniform	 medium.	 	 Topics	 such	 as	 magnetic	 confinement	 of	 a	 plasma,	 macro-
instabilities,	and	drift	waves	are	addressed	in	Sec.	8.	

Faraday's	law:				∂δB
∂t

=−c∇×δE → − iωδB=−ick×δE → δB(k ,ω)=n×δE(k ,ω) n≡ kc
ω

Ampere's	law:	∇×δB−1
c
∂δE
∂t

=
4π
c

δj+δjext( )→ ik×δB+ iω
c
δE= 4π

c
δj+δjext( )= 4πc

!
σ(k ,ω)⋅δE+δjext( )

V ≡ k̂ω /k

!
IT ≡
!
I − k̂k̂

!
κ ≡
!
ε −n2

!
IT(k̂)

!
κ ⋅δE(k ,ω)=0

D(k ,ω)=det | !κ |=0 → ω
ℓ
(k)or	k

ℓ
(k̂ ,ω)
δE(k ,ω)

!
κ A
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4.B	Waves	propagating	parallel	to	a	magnetic	field	in	a	cold,	uniformly	
magnetized	plasma	with	collisions		
	
	 Consider	 the	 linearized	 fluid	 equations	 for	 cold	 electrons	 in	 a	 uniform	
magnetic	field:	

	
m !v = e δE+1

c
δv×B0

⎛

⎝
⎜

⎞

⎠
⎟−mνcδv⇒− i ω + iνc( )δv(ω)= emδE(ω)∓ δv×Ω( ) 	 (4.B.1)	

where	 νc	 	 is	 the	 collision	 frequency	 and	 .	 	 Negatively	 charged	
electrons	 gyrate	 counterclockwise	 around	 the	 magnetic	 field,	 and	 ions	 gyrate	
clockwise.		
	
Definition:	(Circular	polarization	eigenvectors)	For	a	general	vector	field	define	

	 (4.B.2)	

The	 linear	eigenmodes	of	any	 field	can	be	decomposed	by	using	 the	definitions	 in	
Eq.(4.B.2).			In	this	representation	A⋅B=A+B-+A-B++A0B0.	
	
Theorem:	−i ω + iνc −ℓΩ( )δvℓ = emδEℓ , ℓ=0,±1 	in	ω space	and	this	is	diagonal	in	this	
representation.		The	conductivity	is	

	 	 σ
ℓℓ
=
δ j
ℓ

δE
ℓ

=

nsesδvℓs
s
∑

δE
ℓ

= i
nses

2δv
ℓ
s

mss
∑ 1

ω + iνcs −ℓΩs

	 	 														(4.B.3)	

	
We	 note	 that	 for	 electrons	 and	 ℓ=+1 	with	 Ωe>0,	 then	 σ	 can	 diverge	 when	
ω + iνce −Ωe =0 .	 	 With	 E±∝exp −iΩet( )= cos(Ωet)− isin(Ωet)∝Ex − iE y 	and	 ℓ=+1 	
corresponds	 to	 right-circular	 polarization.	 	 For	 ions	 and	 ℓ=−1 	with	 Ωi<0,	 σ	 can	
diverge	for	ω + iνci +Ωi =0 	and	 ℓ=−1 corresponds	to	left-circular	polarization.	
	
Theorem:	The	dielectric	function	resulting	from	the	conductivity	in	Eq.(4.B.3)	is	
	

	 	 εℓ (ω) ≡1+
4πi
ω

σ ℓ (ω) =1−
ωs
2

ω(ω + iνcs − ℓΩs )s
∑ 	 	 	 (4.B.4)	

	
Example:	For	a	two-species	plasma	with	ne=ni	and	ν=0, then	!!! = !!! + !!!	and	 	

	 	 ε
ℓ
(ω)=1− ωp

2

(ω −ℓΩe )(ω −ℓΩi )
	 	 	 	 												 (4.B.5)	

We	examine	Eq.(4.B.5)	in	two	limits,	viz.,	low	and	high	frequency:	

Ω=−eB0ẑ/mc

A0 = Az A
±
≡
1
2
Ax ∓ iAy( ) ê

±
≡
1
2
êx ∓ iê y( ) ê0 ≡ êz Al ≡ êl

* ⋅A êl
* ⋅ ê j =δlj
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	 	 	ε
±
(ω =0)=1− ωp

2

ΩeΩi

=1+ 4πρc
2

B0
2 =ε

⊥
and ε(ω=∞)=1 	 											 (4.B.6)	

	
	 At	this	point	we	recall	certain	definitions	and	expressions	derived	earlier.	
	
Definitions:	 !ε(k ,ω)≡

!
I + 4πi

ω

!
σ(k ,ω) and

!
IT(k)=

!
I − k̂k̂ 	 	 	 (4.B.7)	

	
Plasma	electrodynamics:	
	 	

	 	

K(k ,ω)= !ε(k ,ω)−n2(k ,ω)
!
IT(k)

K(k ,ω)⋅δE(k ,ω)= 4π
iω

jext(k ,ω)

D(k ,ω)=det K(k ,ω) =0

	 	 	 	 	 (4.B.8)	

An	analysis	of	Eqs.(4.B.7)	and	(4.B.8)	in	a	cold	plasma	will	elucidate	the	directional	
and	ω	dependence	of	n(k ,ω)= kc /ω⇔ v

φ
	and	n(θ ,ω)where	θ	 is	the	angle	between	

k	and	B0.	 	 In	a	cold	plasma	the	 frequencies	ωps
2 =4πnse2 /ms 	and	Ωs = esB0 /msc 	are	

independent	 of	 energy,	 which	 simplifies	 the	 frequency	 dependence	 in	 the	 linear	
dielectric	 functions	and	dispersion	relations.	 	 In	addition,	 the	Debye	 length	 is	zero	
and	 the	 wavenumber	 dependences	 of	 the	 dielectric	 tensor	 and	 the	 dispersion	
relation	are	further	simplified.		When	the	phase	velocity	of	a	wave	in	the	presence	of	
a	 beam	 is	 comparable	 to	 the	 beam	 velocity,	 the	 physics	 becomes	 sensitive	 to	
thermal	 effects.	 	 The	 cold-plasma	 limit	 removes	 the	 electron	 pressure	 and	 ion	
waves;	 and	 resonant	 particle	 effects	 vanish	 (Landau	 damping	 and	 cyclotron	
damping).		Cyclotron	harmonics	are	also	gone.	
	
Example:	 Consider	 wave	 propagation	 parallel	 to	 an	 applied	 magnetic	 field,	
k̂ = B̂0 = ẑ= ê0 .		Using	

!
IT = ê

+
ê
+

∗ + ê
−
ê
−

∗ 	to	project	field	vectors	onto	a	plane	transverse	
to	the	magnetic	field,	one	can	show	that	
	

		

K(k ,ω)= !ε(k ,ω)−n2(k ,ω)
!
IT(k) → K = ε

+
−n2⎡

⎣
⎤
⎦ê+ê+

∗ + ε
−
−n2⎡

⎣
⎤
⎦ê−ê−

∗ +ε0ê0ê0
D(k ,ω)=det K(k ,ω) =0 → D= ε

+
−n2( ) ε− −n2( )ε0 =0

	

(4.B.9)	

4.B.a	Right-hand	circularly	polarized	waves:	whistler,	magnetosonic	and	extraordinary	
waves		
	 Consider	a	right-circularly	polarized	wave,	l =+,	with	ω >0 and	no	collisions	
ν=0: the	dispersion	relation	is		

	 	 nR
2(ω)=ε

+
(ω)=1− ωp

2

(ω −Ωe )(ω + Ωi )
		 	 	 											(4.B.10)	
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Definitions:	There	is	a	resonance	at	ω =Ωe	where	n=∞	and	vφ=0.		As	a	function	of	
frequency	there	is	an	abrupt	change	at	ω =Ωe	from	propagation	(ω <Ωe)	to	
evanescence	(ω >Ωe).		There	is	a	cutoff	where	n=0,	vφ=∞,	and	

ω =ωRC =
Ωe

2 +
Ωe

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ωp
2 	(ignoring	ion	contributions	to	Eq.(4.B.10)).	

	
Figures	4.B.1	and	4.B.2	sketch	solutions	for	the	dispersion	relation	for	right	-
circularly	polarized	waves	propagating	parallel	to	a	uniform	applied	magnetic	field	
in	a	cold	plasma.	

	
Fig.	4.B.1	Schematic	of	the	solutions	of	Eq.	(4.B.10)	for	waves	
right-circularly	polarized	wave	propagating	parallel	to	B0.	

	
A.Hirose,	Physics	862	lecture	notes,	Chapt.	6,	University	of	Saskatchewan;	
	http://physics.usask.ca/~hirose/P862/notes.htm	
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Exercise:	 Include	 a	 finite,	 but	 small	 collision	 frequency	 in	 Eq.	 (4.B.10).	 	 Consider	
frequencies	of	the	order	of	Ωe.		Sketch	the	real	and	imaginary	parts	of	ε+.		Calculate	
and	sketch	the	real	and	imaginary	parts	of	k	for	real	ω.  Calculate	Im(ω)	as	a	function	
of	real	k.	
	

4.B.b	Left-hand	circularly	polarized	waves:	Alfvén,	ion	cyclotron,	and	ordinary	
	
	 Consider	left-circularly	polarized	waves	propagating	parallel	to	the	magnetic	
field.	Equation	(4.B.5)	yields	the	following	dispersion	relation.	
	
Theorem:	Left-circularly	polarized	waves,	l =-,	with	ω >0 and	no	collisions	
ν=0,	resonate	with	ions	and	satisfy the	dispersion	relation		

	 	 nR
2(ω)=ε

−
(ω)=1− ωp

2

(ω +Ωe )(ω − Ωi )
		 	 	 											(4.B.11)	

Figures	4.B.3	and	4.B.4	sketch	the	solutions	of	the	dispersion	relation	in	Eq.	(4.B.11).	
	

	
Fig.	4.B.3	Schematic	of	the	solutions	of	Eq.	(4.B.11)	for	waves	
left-circularly	polarized	wave	propagating	parallel	to	B0.	
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A.Hirose,	Physics	862	lecture	notes,	Chapt.	6,	University	of	Saskatchewan;	
http://physics.usask.ca/~hirose/P862/notes.htm	

	
	

4.B.c	Electron	plasma	waves	
	
	 With	 l =0	 the	 solution	 of	 Eq.	 (4.B.5)	 yields	 longitudinal	 waves	 with	 	
δE||B0 ,k 	and	ε0(ω)=0=1−ωp

2 /ω2 → ω =±ωp ,	i.e.,	electron	plasma	waves.	

4.C	Waves	propagating	at	an	angle	with	respect	to	the	magnetic	field		
	
	 Here	we	 generalize	 the	 consideration	of	waves	propagating	 at	 an	 arbitrary	
angle	with	respect	to	an	applied	magnetic	field.	Define	a	polar	angle	θ	between	the	
vector	k	and	B0	with	an	azimuthal	angle	φ	with	respect	to	the	magnetic	field	aligned	
with	 z.	 	 Then	 k̂ = cosθẑ+sinθ cosφx̂+sinφŷ( ) ,	 and	 we	 express	 this	 in	 terms	 of	
ê
±
= x̂± ŷ( )/ 2	and	ê0 = ẑ 	to	evaluate	 k̂k̂ 	in	Eqs.(4.B.7)	and	(4.B.8).			The	dispersion	

relation	determined	by	Eq.(4.B.8)	becomes		
	
	 	 det

!
K( )=D ω ,n2 ,θ( )=n4A ω ,θ( )−n2B ω ,θ( )+C ω( ) 	 	 	 (4.C.1)	

which	does	not	depend	on	 the	angle	φ.	 	We	recall	 the	definitions	of	ε0,	ε+	and	ε-	 in	
Sec.	4.B	and	introduce	ε1 ≡ 1

2(ε+ +ε−)=1− ω '
ω

s
∑ ωs

2

ω '2−Ωs
2 ,ω '=ω + iν 	to	obtain		
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A(ω ,θ )=ε1(ω)sin2θ +ε0(ω)cos2θ
B(ω ,θ )=ε

+
ε
−
sin2θ +ε1ε0(1+cos2θ )

C(ω ,θ )=det(!e)=ε
+
ε
−
ε0

n2(ω ,θ )= B± B2 −4AC
2A

		 	 	 (4.C.2)	

	
Exercise:	With	ν=0	 show	 that	B2-4AC>0	which	 implies	 that	Eqs.(4.C.1)	 and	 (4.C.2)	
have	real	roots	for	ω. 
 
 We	can	examine	the	solutions	of	Eq.(4.C.1)	for	n2	as	a	function	of	ω for	finite	
θ,	which	 is	 just	 a	quadratic.	 	 First	one	 looks	 for	 resonances	 (n2→∞).	 	One	 class	of	
resonances	corresponds	to	A→0,	for	which	n+2→∞	and	n-2=C/B.	 	We	introduce	the	
following	useful	definitions.	
	
Definitions:	The	upper	and	lower	hybrid	frequencies	are		

	 	 	 ωuh
2 =ωpe

2 +Ωe
2 and		ωlh

2 =
ωpi

2 +Ωi
2

1+ωpe
2 /Ωe

2 	 	 	 (4.C.3)	

In	 many	 laboratory	 experiments	 Ωi2<<ωpi2	 in	 the	 lower	 hybrid	 frequency.	 	 	 A	
schematic	 of	 the	 resonances	 determined	 by	 the	 solutions	 of	A=0	 as	 a	 function	 of	
angle	 θ 	 for	 ωpe>Ωe	 is	 shown	 in	 Fig.	 4.C.1.	 Figure	 4.C.2	 is	 a	 schematic	 of	 the	
dispersion	relation	n2	vs.	ω	 for	θ	≠ 0	determined	by	solutions	of	Eq.(4.C.1).	 	Figure	
4.C.2	is	a	schematic	for	the	solution	of	n2	vs.	k	for	θ	≠0, and Fig. 4.C.3 is a schematic 
for the	solution	of	ω	vs.	k.	

	
	

Fig.	4.C.1	Schematic	of	the	solutions	of	A=0	in	Eq.(4.C.2)		
for	frequencies		ω 	vs.	angle	θ where	resonances	n-2→∞	
occur.	
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Fig.	 4.C.2	 Schematic	 of	 the	 solutions	 of	 Eq.(4.C.1)	 for	 n2	 vs.	ω 	 with								
θ	≠0. 

 
 

Fig.	4.C.3	Schematic	of	solutions	of	Eq.(4.C.1)	for	ω	vs.	k		with	θ	≠0. 
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Theorem: In a cold plasma at low frequencies ε
±
⇒1+4πρc2 /B02 , ε0 = 1 −ωp

2 /ω2 , 

n
+

2→ε
⊥
sec2θ  and n−

2 →ε
⊥

. For	 any	 k	 there	 are	 five	 branches	 for	 ω.	 	 There	 are	
cutoffs,	 n2=k=0,	 when	 C=0,	 i.e.,	! = !!"  where	!! = 0,	! = !!"  where	!! = 0,	 and	
! = !!"  where	!! = 0.	 	 Resonances	 are	 determined	 by	n=k=∞	which	 derive	 from	
the	 poles	 of	 ε±.	 	 The	 polarization	 of	 the	 waves	 is	 determined	 by	 the	 solutions	 of	
Κ•δE=0	and	detΚ=0	for	the	eigenvectors	
	 	
Examples:	i.	What	distinguishes	the	Alfvén	from	the	magnetosonic	wave?		An	Alfvén	
wave	can	be	viewed	as	a	plucked	magnetic	field	line.		The	tension	in	the	field	line	is	
given	 by	 B02/4π.	 	 The	 dispersion	 relation	 is	! = !!!!"#$ = !!!!,	 and	 the	 group	
velocity	!! = !" !! = ! !!.	 	 The	 oscillation	 propagates	 along	 the	 field	 line.	 	 The	
magnetosonic	 wave	 is	 a	 solution	 of	!!! = !! :	 	! = !!! .	 	 In	 a	 cold	 plasma	 the	
magnetosonic	wave	is	dispersionless:	the	phase	and	group	velocities	are	equal	to	VA,	
and	the	wave	is	isotropic.			ii.	The	ordinary	(O)	and	extraordinary	(X)	modes	exhibit	
characteristic	 birefringence,	 i.e.,	 their	 index	 of	 refraction	 n	 depends	 on	 their	
polarization.		At	low	plasma	density,	the	O	and	X	modes	become	light	waves.		
	
Exercise:	How	does	n2	depend	on	θ	for	fixed	ω?		Look	at	textbooks	such	T.	J.	M.	Boyd	
and	 J.	 J.	 Sanderson,	 Plasma	 Dynamics	 (1969)	 or	 T.	 H.	 Stix,	 The	 Theory	 of	 Plasma	
Waves	(1962).	Of	particular	interest	is	the	concept	of	the	ray	velocity	surface	(wave	
normal	 surface)	 and	 the	 Clemmow-Mullaly-Allis	 (CMA)	 diagram.	 	 At	 resonances	
n=k=∞	 show	 that	 δE	 is	 parallel	 to	 k.	 	 Consider	 the	 dispersion	 relation	 for	 the	
whistler	wave	in	the	frequency	range	Ω! ≪ ! << !!" ,Ω! 	in	a	cold	plasma,	which	is	
!! !,! = !!!!/!! = !!"! (!Ω! !"#$).		Calculate	the	group	velocity	Vg=dω/dk	and	
plot	 it	as	a	 function	of	θ.  The	group	velocity	Vg	makes	and	angle	γ with	respect	 to	
the	 phase	 velocity	 Vφ=ω/k.	 	 Show	 that	tan! = (! /!")ln!(!,!).	 	 Show	 that	 the	
energy	in	a	whistler	wave	is	within	a	20°	angle	with	respect	to	B0.		Make	a	polar	plot	
of	the	phase	velocity	Vφ,	as	a	function	of	θ,	which	when	rotated	around	the	axis	of	
symmetry	is	the	so-called	wave	normal	surface	in	Fig.	4.C.4a		 	The	refraction	index	
surface	 is	shown	in	Fig.	4.C.4b	[figure	and	caption	due	to	R.	D.	Blandford	and	K.	S.	
Thorne,	http://www.pmaweb.caltech.edu/Courses/ph136/yr2012/,	Sec.	21.7;	K.	S.	
Thorne	 and	 R.	 D.	 Blandford,	Modern	Classical	Physics	 (Princeton	 University	 Press,	
2017),	Fig.	21.6].	
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Fig.	4.C.4	(a)	Wave	normal	surface	for	a	whistler	mode	propagating	at	an	angle	θ	with	respect	to	the	
magnetic	 field	 direction.	 	 The	 phase	 velocity	!!! = !/! !	as	 a	 vector	 from	 the	 origin,	 with	 the	
direction	of	the	magnetic	field	chosen	upward.	When	we	fix	the	frequency	ω	of	the	wave,	the	tip	of	
the	phase	velocity	vector	sweeps	out	the	figure-8	curve	as	its	angle	θ	to	the	magnetic	field	changes.		
This	curve	should	be	thought	of	as	rotated	around	the	vertical	(magnetic	field)	direction	to	form	the	
figure-8	“wave-normal”	surface.		Note	that	there	are	some	directions	where	no	mode	can	propagate.		
(b)	 Refractive	 index	 surface	 for	 the	 same	 whistler	 mode.	 Here	 we	 plot	!!/!	as	 a	 vector	 from	 the	
origin,	 and	 as	 its	 direction	 changes	with	 fixed	ω,	 this	 vector	 sweeps	 out	 the	 two	 hyperboloid-like	
surfaces.	 	Since	the	length	of	the	vector	is	!!! = !,	this	figure	can	be	thought	of	as	a	polar	plot	of	the	
refractive	 index	n	 as	 a	 function	 of	 the	wave	 propagation	 direction	 θ	 for	 fixed	ω;	 hence	 the	 name	
“refractive	index	surface”.		The	group	velocity	Vg	is	orthogonal	to	refractive-index	surface.		Note	that	
for	 this	whistler	mode,	 the	 energy	 flow	 (along	Vg)	 is	 focused	 toward	 the	direction	of	 the	magnetic	
field	[from	R.D.	Blandford	and	K.S.	Thorne,	ph136/yr2012;	K.S.	Thorne	and	R.D.	Blandford,	Modern	
Classical	Physics	(Princeton	University	Press,	2017),	Fig.	21.6].	

4.D	Energy	transport		
	
	 Consider	 the	 energy	 transport	 associated	 with	 waves	 in	 a	 magnetized	
plasma.			
	
Definition:	Let	U	be	defined	as	the	energy	density	of	a	wave	packet	and	! = !!!	is	
the	energy	flux	density.			
	
Theorem:	It	can	be	shown	that		
	 	 	 	 S = − ω

8π
δE∗ ⋅

∂K
∂k

⋅δE 		 	 	 	 (4.D.1)	

given	 U =
δB

2

8π +
ωδE* ⋅ ∂K

∂ω
⋅δE

8π ,	K = !ε -n2
!
I − k̂k̂( ) ,Vg = ∂ω∂k ,K ⋅δE=0 	and	 Maxwell’s	

equations.	
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Theorem:	It	then	follows	from	the	definition	of	K	and	Maxwell’s	equations	that		
	 	 	
	 	 S = c

4π
ReδE∗ ×δB− ω

8π
δE∗ ⋅

∂
!
ε
∂k

⋅δE 	 	 	 	 (4.D.2)	
We	 note	 that	 the	 first	 term	 on	 the	 right	 side	 of	 (4.D.2)	 is	 the	 electromagnetic	
Poynting	flux	and	the	second	term	is	the	energy	flux	density	associated	with	particle	
motion.	
 
Exercise:	 In	 a	 Coulomb	 plasma	 evaluate	 the	 dielectric	 function	 ε(k,ω)	 and	 S,	 and	
apply	in	a	few	limiting	cases.	
	

4.E	Wave	propagation	in	an	inhomogeneous	cold	plasma	
	
	 Consider	 small-amplitude	 waves	 in	 an	 inhomogeneous	 plasma.	 	 We	 begin	
with	the	Maxwell	equations	and	 linearize	 the	 fields	and	currents	with	respect	 to	a	
field-free	and	current-free	unperturbed	system:	
	

∇×B−1
c
∂E
∂t

=
4π
c
j ∇×E+1

c
∂B
∂t

=0 ⇒

∇×δB−1
c
∂δE
∂t

=
4π
c
δj ∇×δE+1

c
∂δB
∂t

=0 ∂

∂t
→−iω

	 (4.E.1)	

Theorem:	 	 Upon	 Fourier	 transforming	 the	 time	 dependence	 we	 obtain
∇× ∇×δE(x,ω)( )−ω

2

c2
δE(x,ω)=4π iω

c2
δj(x,ω) δj(x,ω)= !σ(x,ω)⋅δE(x,ω)

∇× ∇×δE(x,ω)( )=ω
2

c2
!
ε ⋅δE(x,ω) !

ε =
!
I + 4πi

ω

!
σ 		 	 (4.E.2)	

in	 which	 we	 have	 introduced	 the	 conductivity	 and	 dielectric	 tensors.	 	 In	 some	
special	 cases	 the	 physical	 system	 may	 possess	 sufficient	 symmetry	 to	 allow	
separation	 of	 the	 dependence	 of	 the	 fields	 on	 the	 spatial	 variables.	 	 In	 the	 most	
general	 circumstances	 one	 cannot	 separate	 the	 spatial	 variables	 and	 approximate	
methods	are	employed.	

	

4.E.a	WKB	eikonal	method	
	
	 In	 the	 WKB	 (Wentzel–Kramers–Brillouin	 or	 Wentzel–Kramers–Brillouin-
Jeffreys)	 method,	 all	 of	 the	 field	 quantities	 are	 decomposed	 in	 terms	 of	 a	 slowly	
varying	amplitude	and	a	rapidly	varying	phase	factor:	
	
Definitions:	
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δE(x)= A(x)ê(x)exp iΦ(x)( )
i.				ê(x)	is	the	complex-valued	polarization	vector	and	is	slowly	varying
ii.			A(x)	is	a	slowly	varying	amplitude
iii.	exp iΦ(x)( ) 	is	a	phase	factor	that	is	a	rapidly	varying	function	of	x
iv.	The	slowly	varying	spatial	scale	is	L>> λ 	the	rapidly	varying	spatial	scale.

(4.E.3)		 	

	
	 Using	the	definitions	above	we	obtain	
	

∇×δE ≈ i∇Φ×δE= ik(x)×δE(x)
∇×∇×δE=∇ ∇⋅δE( )−∇2δE ≈ i∇Φ× ik×δE( )

=−k×k×δE=−k k ⋅δE+k2δE

	 	 	 	 (4.E.4)	

Theorem:	Using	Eqs.(4.5.2),	(4.5.3),	and	(4.5.4),	it	follows	that	
	
	 !

ε(ω ,x)−n2(x)
!
I − k̂(x)k̂(x)( )⎡

⎣
⎤
⎦⋅δE(x)≡

!
K ω ,k(x),x( ) ⋅δE(x)=0 	 	 (4.E.5)	

where	!! ≡ !!!! !!	and	we	require	that	!(!,! ! , !) ≡ det ! =0.	
	
Theorem:	!(!, i!"(!), !)=0	is	a	differential	equation.	
	
Example:	In	a	plane-stratified	medium	with	!!!(!)	and	B0=0,	! = 0 → !! = !!! ! +
∇! !!!	and	! = ∇!.	 	!	is	 parallel	 to	!,	 and	 both	 are	 normal	 to	 constant	 phase	
surface.	 Given	 the	 solution	!(!, !)	to	 D=0,	 wave	 packets	 convect	 at	 the	 group	
velocity	!! = !"(!,!)

!! |! = !!
!" =

!
! !

! = ! 1− !!!
!! .	 	 In	 the	 atmosphere	 the	 electron	

charge	density	 increases	with	vertical	altitude	going	up	 into	 the	 ionosphere	above	
85	km	and	then	decreases	above	300	km.		If	a	wave	is	launched	into	the	ionosphere	
at	a	fixed	frequency	ω0	then	the	equation	D=0	can	be	solved	for	k(x).		The	wave	will	
exhibit	reflection	when	ωp(x)= ω0	and	will	refract	where	the	wave	is	not	evanescent.	
	

Introduce	 a	 variation	 in	 the	 transverse	 direction	 x	 in	 the	 example	 of	 the	
plane-stratified	medium	considered	 above.	 	 Fourier	 analyze	 in	x	 and	 introduce	kx.			
From	the	eikonal	dispersion	relation	one	obtains	

	 	

dz
dt

=
∂ω
∂kz

=
kz(z)c2
ω

= c 1−ωp
2(z)
ω2 −

kx
2c2

ω2

dx
dt

=
∂ω
∂kx

=
kxc

2

ω
= c 1−ωp

2(z)
ω2 −

kz
2c2

ω2

dz
dx

=
kz(z)
kx

	 	 	 	 (4.E.6)	
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Theorem:	The	eikonal	dispersion	relation	!(!,!(!), !)=0	is	equivalent	to	! !, ! =
!!	and	one	can	insist	the	total	time	derivative	of	ω vanishes:	

	
0= dω(k ,x)

dt
=
∂ω
∂k

⋅
dk
dt

+
∂ω
∂x

⋅
dx
dt

→
∂ω
∂k

⋅ −
dω
dx

⎛

⎝
⎜

⎞

⎠
⎟+
∂ω
∂x

⋅
∂ω
∂k

≡0

if		 dx
dt

=
∂ω
∂k

	and	 dk
dt

=−
dω
dx

, the	WKBJ	wave-packet	equations.
	 	 (4.E.7)	

	

For	only	z	dependence,	 dk
dt

=
dkz
dt

k̂ =−dω
dz
k̂ .		Because	 dω

dx
=0 	then	 dkx

dt
=0 ,	i.e.,	kx	is	a	

constant.	 	 The	 equations	 in	 (4.E.7)	 are	 Hamilton’s	 equations.	 	 We	 note	 that	 by	
multiplying	 the	 wave	 packet	 equations	 of	 motion	 through	 by	 h 	we	 have	 the	
equations	 of	 motion	 for	 quantum	 mechanical	 wave	 packets.	 	 If	 we	 identify	 the	

Hamiltonian	H = !ω ,	we	note	that	
dH
dt

=
∂H
∂t

= !∂ω(k ,x,t)
∂t

.		There	is	a	nice	discussion	

of	the	WKBJ	wave-packet	equations	in	T.	H.	Stix,	The	Theory	of	Plasma	Waves,	1962.		
	 Consider	 an	 infinite-length	wave	 train	 in	 the	 absence	 of	 sources	 and	 sinks.		
Then	energy	flux	conservation	dictates:			
	 	 	 ∂

∂t
U(z)=− ∂

∂z
Sz =0, Sz = const.=U(z)

∂ω
∂k
(z) 	 	 (4.E.8)	

where	U(z)	 is	 is	 the	wave	 energy	 density,	 and	Sz	 is	 the	 z-component	 of	 the	wave	
energy	flux.		In	consequence	of	Eq.(4.E.8),	the	square	of	the	wave	packet	amplitude	
scales	as	!!~!(!)~!/ !" !!! ~const/

!" !!! 	;	 thus,	!(!)~1/
!" !!! ,	which	

is	useful	up	to	a	reflection	point	where	Sz	and	!" !!!	vanish.	
	

4.E.b	Reflection,	refraction,	turning	points,	Bohr-Sommerfeld	quantization	
	
	 In	 WKB	 either	 reflection	 or	 refraction	 only	 can	 occur.	 	 Partial	 reflection,	
refraction,	 and	 transmission	 at	 a	 sharp	 boundary	 like	 a	 glass	 plate	 cannot	 be	
described	 by	WKB.	 	 How	 good	 is	WKB?	 	WKB	 can	 be	 applied	 to	 a	 medium	with	
spatial	 variation	 that	 is	 slow	 on	 the	 scale	 of	 the	 characteristic	 wavelength	 of	 the	
wave.	 	 Consider	 a	 one-dimensional	 example	 (ref.	 Landau	 and	 Lifschitz,	 Quantum	
Mechanics,	 Sec.	 23,	 Problem	 3)	wherein	 there	 is	 a	 transition	 in	 the	 square	 of	 the	
index	of	refraction	from	a	higher	value	n0	to	a	lower	value	n1	over	a	length	scale	L.		
Assume	 the	 dispersion	 relation	 for	 an	 electromagnetic	 wave	 in	 an	 unmagnetized	
spatially	varying	plasma	dielectric	varies	as		

	 	 	 	 ε(x)= n0
2 +n1

2ex/L

1+ex/L
	 	 	 	 	 (4.E.9)	
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Theorem:	For	a	wave	packet	incident	from	+∞	in	the	profile	in	(4.E.9),	the	reflection	
coefficient,	 defined	as	 the	 reflected	power	divided	by	 the	 incident	power,	 is	 given	
by9		

	 	 	 R =
sinh2 π L

λ
n0 −n1( )

⎡

⎣
⎢

⎤

⎦
⎥

sinh2 π L
λ
n0 +n1( )

⎡

⎣
⎢

⎤

⎦
⎥

, λ ≡
c
ω
	 	 	 											(4.E.10)	

The	 WKB	 limit	 corresponds	 to	! ≫ ! ,	 and	! → !!!!"/! ;	 so	 the	 reflectivity	 is	
exponentially	 small	 in	 this	 limit.	 	 In	 the	 sharp-boundary	 limit,	! ≪ !,	! → !! −
!! !/ !! + !! !;	and	the	WKB	estimate	is	a	very	poor	approximation.		
	 There	are	many	treatments	of	reflection	of	waves	in	spatially	varying	media.		
There	are	elegant	discussions	 in	 J.	Heading,	 Introduction	to	Phase-Integral	Methods	
(Methuen,	1962);	K.	G.	Budden,	Radio	Waves	in	the	Ionosphere		(Dover,	1961);	and	E.	
R.	Tracy,	A.	J.	Brizard,	A.	S.	Richardson,	and	A.	N.	Kaufman,	Ray	Tracing	and	Beyond:	
Phase-space	Methods	in	Plasma	Wave	Theory	(Cambridge	University	Press,	2014).		A	
simpler	approach	 is	presented	 in	 J.	Mathews	and	R.	Walker,	Mathematical	Methods	
of	Physics,	2nd	ed.	(Benjamin,	1970).			Here	we	follow	the	treatment	in	Mathews	and	
Walker.		Consider	the	one-dimensional	limit	of	Eqs.(4.E.4)	and	(4.E.5):	

∇× ∇×δE(x)( )=ω
2

c2
!
ε(x)⋅δE(x)=∇∇⋅δE(x)−∇2δE 	 											(4.E.11)	

Consider	 a	 purely	 transverse	 wave	∇ ∙ !! = 0	in	 one	 dimension	 and	 introduce	 a	
specific	polarization	to	obtain	a	scalar	wave	equation:	

	 	 −
d2

dz2
δE(z)=ω

2

c2
ε(z)δE(z)→k(z)= 2π

λ(z) =
ω
c

ε(z) 											 											(4.E.12)		

Figure	4.E.1	illustrates	an	electromagnetic	wave	incident	from	the	right	in	a	spatially	
varying	medium	with	plasma	cut-off	at	z=0.		Regions	away	from	z=0	are	accurately	
described	 by	 WKB.	 	 Near	 z=0	 if	 the	 dielectric	 ε	 goes	 through	 zero	 linearly	 in	 z,	
solving	the	differential	equation	in	Eq.(4.E.12)	yields	an	Airy	function	solution,	and	
the	 Airy	 function	 is	 related	 to	 Bessel	 functions	 and	 modified	 Bessel	 functions	 of	
fractional	order	1/3.	
	
Example:	 Consider	! ! = 1− !!!(!)/!! 	and	 assume	 for	 a	 model	 that	 the	 WKB	
dispersion	relation	is	!!! = −!!!tanh !

! !! + !!		For	the	moment	select	units	such	
that	!! = 1 	and	 recall	 that	 the	 WKB	 solution	 for	 the	 phase	 function	 satisfies	
!Φ/!" ≡ !(!).		The	WKB	solutions	of	Eq.(4.E.12)	are	then	given	by	

	 	 W
±
(z)= 1

ε1/4(z)
exp ±i dz ' ε(z ')

0

z

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 	 	 	 											(4.E.13)	

																																																								
9	C.	Eckart,	Phys.	Rev.	36,	878	(1930). 
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Fig.	4.E.1	(a)	Schematic	of	the	dielectric	function	as	function	of	position	z	for	a	wave	
incident	 from	 the	 right	with	 cutoff	 at	 z=0.	 (b)	 Schematic	 of	 electromagnetic	wave	
amplitude	for	wave	incident	from	the	right	with	cutoff	at	z=0.	
	
The	asymptotic	WKB	solutions	for	the	wave	amplitude	and	phase	far	from	z=0	are	
given	by		

	 	
z ≥ λ : δE(z)= β

ε1/4(z)
cos ω

c
dz ' ε(z ')−α

0

z

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

z ≤−λ : δE(z)= 1
ε1/4(z)

exp −
ω
c

dz ' |ε(z ')|
z

0

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

	 	 											(4.E.14)	

The	 constants	 α and	 β	 are	 to	 be	 determined.	 	 The	 normalization	 of	 the	 wave	
amplitude	is	arbitrary.		We	rewrite	the	differential	equation	(4.E.12)	as	

−
d2

dz2
+
ω2

c2
−ε(z)( )

⎡

⎣
⎢

⎤

⎦
⎥δE(z)=0

		 	 	
	 										(4.E.15)	 	

which	is	analogous	to	the	quantum	mechanical	problem:	

	 	 H⎡⎣ ⎤
⎦ψ = K +V⎡

⎣
⎤
⎦ψ =0

 
	 	 	 	 	 										(4.E.16)	 	

With	V∝-ε,	Fig.	4.E.1a		can	be	used	as	a	diagram	for	V(z)	(with	the	sign	flipped	from	
that	of	ε(z)).		With	total	energy	E=0,	the	kinetic	energy	K	is	positive	for	z>0;	and	
there	is	a	turning	point	at	z=0	for	V(0)=0.		We	return	to	the	WKB	solution	of	
Eq.(4.E.12)	with	units	such	that	! ! = 1.		Assume	that	

δE(z)= A
+
(z)W

+
(z)+ A

−
(z)W

−
(z)

W
±
∝exp∓ dz 'ε

0

z

∫
1/2 	 	 	 											(4.E.17)	

W+	 is	 exponentially	 large	 in	 the	 evanescent	 region	 z<0,	 and	W+	 is	 exponentially	
small	 in	 the	evanescent	 region.	 	A±	are	rapidly	varying	 in	 the	neighborhood	of	 the	
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turning	point.		We	constrain	A+’W++	A-’W-=0	so	that	(d/dz)δE(z)=	A+W+’+	A-W-‘	Now	
substitute	Eq.(4.E.17)	into	Eq.(4.E.12)	to	obtain	

	 	

dA
+

dz
=−

i
2
Δ(z)
ε1/2(z)

A
+
+ A

−

W
−

W
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
and dA−

dz
=
i
2
Δ(z)
ε1/2(z)

A
−
+ A

+

W
+

W
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where	Δ(z)2 ≡ 14
d2ε /dz2

ε
−
5
16

dε /dz
ε

⎛

⎝
⎜

⎞

⎠
⎟

2 								(4.E.18)	

Consider	integration	of	the	first-order	differential	equations	in	Eq.(4.E.18)	in	
the	complex	z	plane	making	use	of	analytic	continuation.	Far	from	the	turning	point	
at	z=0	in	the	evanescent	region	select	a	point	#1	on	the	real	z	axis	where	A+=0	and	A-
=1,	while	in	the	propagation	region	z>0	far	from	z=0,	select	a	point	#2	where	A+=1	
and	A-=0.	 	We	can	 integrate	dA+/dz	from	#1	on	an	arc	approaching	 the	 imaginary	
axis,	 and	 it	 remains	 exponentially	 small.	 	 	 However,	dA-/dz≈iΔ/(2ε1/2(z))	 is	 small,	
but	not	exponentially	so.		Near	the	imaginary	z	axis,	z=i|z|,	ε~z	and	W±~exp(±z3/2)~	
exp(±i3/2|z|3/2).	 	Thus,	W+	is	exponentially	small	near	the	imaginary	axis;	and	W-	is	
exponentially	large	near	the	imaginary	axis.		The	ratio	W-/W+	remains	exponentially	
large	until	the	real	axis.		We	can	examine	the	integration	of	(4.E.18):	
dA

+

dz
=−

i
2
Δ(z)
ε1/2(z)

A
+
(starts	small)+ A

−
(~1)W−

W
+

(exponentially	large)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
																			(4.E.19a)

dA
−

dz
=
i
2
Δ(z)
ε1/2(z)

A
−
(~1)+ A

+
(exponentially	small)W+

W
−

(~exponentially	small)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	(4E.19b)

	
The	coefficient	in	front	of	the	bracket	in	Eq.(4.E.19a)	is	small	and	A+	starts	small,	but	
has	a	growth	rate	that	is	the	product	of	a	small	quantity	and	an	exponentially	large	
quantity;	 so	A+	 becomes	 finite,	 and	 a	more	 careful	 analysis	 is	 required.	 	A-	 has	 a	
small	 growth	 rate	 and	 remains	 near	 unity	 in	WKB.	 	 	 To	 resolve	 this,	 we	 pick	 an	
integration	contour	 from	#1	 to	#2	 following	a	half-circle	 in	 the	upper	z	half-plane	
back	to	the	real	axis	where	there	is	a	branch	cut	and	a	jump	condition	(rf.	Heading).		
Mathews	and	Walker’s	treatment	gives	the	following.		In	the	evanescent	region,	the	
solution	for	wave	amplitude	is	δE~W-(z),	while	in	the	propagation	region	the	wave	
amplitude	is	the	sum	of	the	incident	and	reflected	wave:	δE~W-(z)+A+W+(z).		In	the	
propagation	 region,	 the	 incident	 wave	 amplitude	 physically	 is	 |A+|=1;	 and	 the	
reflected	wave	amplitude	should	be	the	same,	but	the	phase	needs	to	be	determined.		
The	 expressions	 for	 δE	 coming	 from	 either	 direction	 must	 match	 where	 the	 arc	
crosses	the	imaginary	z	axis:	

e
− dz '|ε|1/2(z ')
0

|z|
∫

eiπ/4 ε
1/4(z)

→
e
−i dz 'ε1/2(z ')

0

z

∫
+ A

+
e
+i dz 'ε1/2(z ')

0

z

∫

ε1/4(z)
	 	 	 											(4.E.20)	
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We	multiply	both	sides	of	Eq.(4.E.20)	by	eiπ/4	
	

e
−
ω
c

dz '|ε|1/2(z ')
0

|z|
∫

ε
1/4(z)

→
eiπ/4e

−iω
c

dz 'ε1/2(z ')
0

z

∫
+ A

+
eiπ/4e

+iω
c

dz 'ε1/2(z ')
0

z

∫

ε1/4(z)
→

2cos ω
c

dz 'ε1/2(z ')−π /4
0

z

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε1/4(z)
												

	 	 	 	 	 	 	 	 	 	 											(4.E.21)	
Because	the	left	side	of	(4.E.21)	is	real,	the	two	terms	in	the	intermediate	expression	
must	be	complex	conjugates,	which	 leads	 to	 the	 final	expression	on	 the	right	side.		
We	 see	 that	 the	 phase	 factor	 π/4	 has	 emerged.	 	 Figure	 4.E.1b	 captures	 the	
qualitative	 behavior	 of	 the	 solution	 in	 Eq.(4.E.21)	 characteristic	 of	 single	 turning-
point	behavior.		The	peak	of	the	wave	at	relative	value	of	2	occurs	at	z≈(π/2)c/ω.	
	
Exercise:	For	a	dielectric	 function	ε	with	 linear	variation	 in	z,	 show	 that	 the	exact	
solution	of	Eq.(4.E.15)	is	given	by	the	Airy	function	and	compare	the	Airy	function	to	
the	WKB	solution	in	Eq.(4.E.21).	
	
	 If	the	variation	of	the	dielectric	function	is	such	that	propagating	waves	can	
be	 trapped	between	 two	 turning	points,	 the	 analysis	 corresponding	 to	Eq.(4.E.21)	
leads	to	an	eigenvalue	problem	for	the	frequency	ω.	 	Given	a	length	L	between	the	
turning	points,	only	particular	values	of	ω	will	allow	the	wave	forms	from	either	side	
to	 link	 up.	 	 Imagine	 picking	 a	 value	 of	 z	 and	 reflecting	 the	 solution	 for	 δE(z)	
symmetrically	 in	 Figure	 4.E.1b	 so	 that	 δE(z)	 and	 its	 spatial	 derivative	 are	
continuous.	 	This	can	only	be	satisfied	if	 the	spatial	derivative	of	δE(z)	vanishes	at	
the	mirror	point,	which	quantizes	 the	relationship	between	 the	values	of	ω	 and	L.		
For	the	two-turning-point	problem	we	take	the	solution	for	the	wave	amplitude	on	
the	right-side	of	Eq.(4.E.21)	associated	with	the	turning	point	at	z0	and	match	it	to	
the	corresponding	mirror	image	waves		associated	with	the	turning	point	at	z1	and	
introduce	constant	C:	

C

2cos ω
c

dz 'ε1/2(z ')−π /4
z

z1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε1/4(z)
=

2cos ω
c

dz 'ε1/2(z ')−π /4
0

z

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε1/4(z)
																						(4.E.22)		

For	the	left	and	right	sides	of	Eq.(4.E.22)	to	be	equal,	the	arguments	of	the	cosines	
must	be	equal	or	the	negative	of	one	another	so	that	C=1	or	C=-1.		Hence,	we	arrive	
at	the	relations:	
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ω
c

dz 'ε1/2(z ')−π /4
z

z1

∫ =−
ω
c

dz 'ε1/2(z ')−π /4
0

z

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+2πℓ, C =1, ℓ=0,1,2,...

→
ω
c

dz 'ε1/2(z ')=π /2
0

z1

∫ +2πℓ

or		ω
c

dz 'ε1/2(z ')=π /2
0

z1

∫ +(2ℓ+1)π , C =−1

⇒ 	 ω
c

dz 'ε1/2(ω ,z ')= ℓ+ 1
2( )π

0

z1

∫ 	or	ω
c

dz 'ε1/2(ω ,z ')!∫ = 2ℓ+1( )π

												(4.E.23)	

The	 final	 integral	 in	 Eq.(4.E.23)	 is	 from	 the	 turning	 points	 ε=0	 z=0	 to	 z=z1	 and	
return.	 	We	recognize	this	expression	as	the	Bohr-Sommmerfeld	quantization	rule.	
Eq.(4.E.23)	is	an	eigenequation	that	determines	the	eigenvalue	ω	for	each	value	of	l	.	
	
Example:	Consider	an	unmagnetized	plasma	with	dielectric	function:											
	! !, ! = 1− !!!(!)/!(! + !")	and	!!! = !!!!	where	 z=0	 is	 a	 reference	 altitude.		
Then	Reε=0	has	two	symmetric	turning	points	in	z,	and	the	eigenequation	obtained	
from	Eq.(4.E.23)	is	

	 π
ω
c

α

ω(ω + iν )
ω(ω + iν )

α2 =π
ω
c

ω(ω + iν )
α

=(2ℓ+1)π 	 	 											(4.E.24)	

For	! → 0, !ℓ = 2ℓ+ 1 !", ℓ = 0,1,2,…		
	
WKB	breaks	 down	near	 resonances	 as	well	 as	 near	 turning	 points.	 	 At	 resonance	
! = !" ! → ∞,	 i.e.,	 k→∞	 and	v! ≡ !/! → 0		 To	 resolve	 the	 difficulties	 posed	 by	
resonances	we	will	 abandon	 the	 cold	plasma	 restriction	 and	 include	warm	or	hot	
plasma	effects.		
	

4.F	Vlasov-Maxwell	equations	–	linear	electrodynamics	
	

In	this	section	we	return	to	the	examination	of	the	Vlasov-Maxwell	equations	
including	 consideration	 of	waves	 and	 instabilities	 in	 a	warm,	magnetized	 plasma,	
e.g.,	Bernstein	waves,	a	general	dispersion	relation	and	survey	of	waves,	the	Harris	
instability,	and	the	effects	of	gyro-resonance.	

4.F.a	Bernstein	waves	(electrostatic	model)	
	
	 Bernstein	waves	 named	 after	 Ira	 Bernstein	 are	 an	 example	 of	 a	wave	 in	 a	
warm	magnetized	 plasma.	 	 The	 simplest	 dispersion	 relation	 for	 Bernstein	 waves	
satisfies	the	electrostatic	approximation,	i.e.,	the	perturbed	electric	field	is	oriented	
parallel	 to	 the	wave	vector	and	 there	 is	no	magnetic	perturbation	associated	with	
the	wave.	 	Most	 generally	we	 can	always	 represent	 the	perturbed	electric	 field	 as	
follows.	
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Definition:	!! = !!!!+ !!! 	where	 “L”	 indicates	 the	 “longitudinal”	 component	
which	is	parallel	to	the	wave	vector	!	and	“T”	indicates	the	“transverse”	component	
relative	to	the	wave	vector.		[Note	that	“perpendicular”	will	mean	at	right	angles	to	
the	applied	magnetic	field	B0.]	
	
	 The	general	linear	dispersion	relation	derived	in	Sec.	4.B	Eq.(4.B.8)	is	

	 	 	 	 !
ε −n2

!
I T( ) ⋅δE=0, n2 = k

2c2

ω2 	 	 	 	 (4.F.1)	

What	 are	 the	 conditions	 such	 that	!!! ≫ !!!?	 	 Consider	 a	 nonrelativistic	 plasma	
with	! ≡ !!!

! ≪ 1.		If		!/! ≪ !	so	that	n>>1	and	ε~O(1),	then		
	 	 																		 !!

!

!!! ≈ !
!! =

!!
!!!! ≪ 1	 	 	 	 	 (4.F.2)	

The	 electrostatic	 dispersion	 relation	 for	 electron	 Bernstein	 waves	 propagating	
perpendicular	 to	a	uniform,	applied	magnetic	 field	 in	a	warm	plasma	 ignoring	 ion	
motion	is	shown	in	Fig.	4.F.1	below.10		Here	Ωe	 is	 the	electron	cyclotron	frequency	
and	ωuh=(Ωe2+ωpe2)1/2	is	the	upper	hybrid	frequency.		In	the	example	shown	in	Fig.	
4.F.1,	 ωpe≈2.4Ωe.	 	 For	 the	 higher	 harmonics	 of	 the	 electron	 cyclotron	 frequency	
inevitably	!/! > !, 	and	 the	 electrostatic	 approximation	 fails,	 invalidating	 the	
solution	 of	 the	 dispersion	 relation.	 	 	 We	 recall	 the	 solution	 of	 the	 cold	 plasma	
electromagnetic	dispersion	relation	plotted	in	Fig.	4.B.1	

	
Fig.	4.F.1		Electron	Bernstein	waves	!/Ω! 	vs.	!!	
[ref.	R.	Fitzpatrick,		U.	Texas	Austin11]	
	

																																																								
10	I.	Shkarofsky,	Phys.	Fluids	9,	570	(1966).	
11		https://farside.ph.utexas.edu/teaching/plasma/lectures1/node91.html;	R.	
Fitzpatrick,	Introduction	to	Plasma	Physics	(CRC	Press,	2014),	Chapt.	5.	
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The	longitudinal	dielectric	function	for	perpendicular	propagation	in	a	warm	
plasma	is	derived	in	many	textbooks,	e.g.,	Eq.(9.36)	of	Clemow	and	Dougherty:	

0=ε ω ,k
⊥( )=1−

ωp
2

Ωe
2

e−λIn(λ)/λ
ω
nΩe

−1n=−∞

∞

∑ , λ ≡ k
⊥
re( )

2 , re ≡
vth
Ωe

=
Te
meΩe

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

	 (4.F.3)	

where	In	are	Bessel	functions	of	complex	argument	and	have	limiting	forms	

	 	 In(λ) λ<<1⎯ →⎯
1
n!

1
2λ
⎛

⎝
⎜

⎞

⎠
⎟

n

and In(λ) λ>>1⎯ →⎯
eλ

2πλ
	 	 	 (4.F.4)	

For	 frequencies	 near	 a	 particular	 cyclotron	 harmonic	! = !! 	the	 sum	 over	
harmonics	in	Eq.(4.F.2)	can	be	reduced	to	the	one	“resonant”	term	in	the	series;	then	

	 	 	 	 ωn −nΩe

nΩe

=
ωp

2

Ωe
2
e−λIn(λ)

λ
	 	 	 	 (4.F.5)	

Example:	Consider	launching	a	Bernstein	wave	by	inserting	a	grid	attached	to	power	
supply	 driven	 at	 a	 given	 frequency	 near	 the	 3rd	 electron	 cyclotron	 harmonic.	
Furthermore,	 assume	 that	 ∇B0<0	 for	 increasing	 x	 propagating	 into	 the	 plasma.			
Because	the	cyclotron	frequency	is	decreasing,		ω/Ωe		and	k	increase;	and	the	group	
velocity	v! ∝ !"/!!

!!!
>0.	 	 As	 x	 continues	 to	 increase,	 k	 continues	 to	 increase	 on	 the	

branch	and	ω/Ωe	reaches	a	maximum	where	 the	group	velocity	vanishes,	at	which	
point	the	wave	packet	must	turn	around.		This	is	akin	to	ionospheric	reflection	of	an	
electromagnetic	 wave	 (see	 Secs.	 4.E.a	 and	 4.E.b).	 	 These	 considerations	 are	
significantly	 relevant	 to	 applications	 such	 as	 wave	 heating	 of	 a	 magnetically	
confined	plasma.	
	

4.F.b	Instabilities,	e.g.,	beam-cyclotron	instability,	ion	acoustic,	Dory-Guest-Harris	
	
	 In	the	preceding	subsection	the	electron	Bernstein	wave	had	a	real	frequency	
for	a	given	!!.		How	might	the	Bernstein	wave	be	destabilized?		Consider	injection	of	
a	beam	resonating	with	an	electron	Bernstein	wave.	For	 this	example	consider	an	
injected	ion	beam.		Because	the	ion	cyclotron	frequency	is	so	low	Ωi<<	Ωe,	ω,	γ,	the	
unperturbed	 ion	 motion	 can	 be	 treated	 as	 unmagnetized.	 	 	 As	 a	 matter	 of	
consistency	with	 the	 assumption	 that	 the	 ions	 are	 unmagnetized	 the	 ions	 should	
satisfy	!! ≡ !!

!!
≫ 1/!.		 	 Where	 the	 beam	 velocity	 ui	 equals	 the	 Bernstein	 phase	

velocity	ω/k,	we	expect	the	possibility	of	complex	conjugate	roots	of	the	dispersion	
relation,	i.e.,	one	of	the	roots	is	unstable.		Solution	of	the	dispersion	relation	yields	

	 	 δω + iγ
ω(0) = η1/3 −

1
2+ i

3
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟, η =

ωb
2

ωp
2

1
ω(0) ∂ε

∂ω

	 	 	 (4.F.6)	

in	analogy	to	the	weak	beam	instability	analysis	in	Sec.	2.F.a.		Here	!!	is	the	plasma	
frequency	for	the	beam	ions.	
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Exercise:	Provide	the	details	in	deriving	Eq.(4.F.6)	and	show	that	

	 η =
ωb

2nIn(λ)

λeλΩe nΩe +
nωp

2

Ωe

e−λIn(λ)
λ

⎛

⎝

⎜
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=
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⎜⎜

⎞

⎠
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1/2

		 (4.F.7)	

Exercise:	 (Magnetized	 ion	acoustic	 instability)	Consider	 ions	with	velocity	 relative	
to	 the	 electrons	 ui	 satisfying	 the	 inequalities	!! < !! < v!!! 		 The	 beat	 of	 the	 ion	
acoustic	 wave	 with	 the	 beam	 modes	 produce	 fast	 and	 slow	 beam	 modes	!! ± !!	
From	the	general	analysis	leading	to	Eq.(2.I.7)	evaluate	the	expression		

	 	 γ(k)=−
ε" k ,ωR( )
∂
∂ω

ε ' k ,ω( )
ωR

~ πωp
2

2πk2vthe2
ωp

2

Ωe

nIn(λ)
λeλ

	
where	in	the	numerator	we	use	the	contribution	from	the	unmagnetized	beam	ions	
and	the	electron	Bernstein	formula	is	used	in	the	denominator.	
	 	
Example:	 (Dory-Guest-Harris	 modes12)	 Suppose	 the	 velocity	 distribution	!(v!)	is	
not	 a	 Maxwellian.	 	 What	 happens	 to	 the	 Bernstein	 modes?	 	 Consider	 a	 family	 of	
velocity	 distributions:	 	!~ v!! !!!!!! /!!!! 		 Analysis	 of	 the	 electrostatic	 dispersion	
relation	yields	the	following	results:	

1. ! = 1,2 remains	stable	
2. ! = 3		unstable	if	!!!! > 28	and	purely	growing	(Reω=0)	
3. ! = 4		unstable	if	!!!! > 11	and	purely	growing	(Reω=0)	
4. ! = 6		unstable	if	!!!! > 10	and	purely	growing	(Reω=0);	also	unstable	at	

Reω=1.2Ωe.	
5. ! = ∞  ! → !(v! − v!)			

Example:	!~δ(v! − v!)	For	a	δ-function	the	longitudinal	dielectric	is13	

	 	 	 ε ω ,k
⊥( )=1−

ωp
2

Ωe
2

1
b
d
db

Jn
2(b)

ω
nΩe

−1n=−∞

∞

∑ , b≡ k⊥v0
Ωe

	 	 	 (4.F.8)		

with	solution	to	ε=0	for	ω	near	a	cyclotron	harmonic:	

	 	 	 ω −nΩe

nΩe

=
ωp

2

Ωe
2
1
b
d
db

Jn
2(b) 	 	 	 	 	 (4.F.9)		

We	note	that	the	wave	energy	is	∝ ! !" !"	can	have	either	sign	depending	on	the	
nearest	harmonic	n	 and	 the	wavenumber.	 	As	 the	 left	 side	of	 (4.F.9)	departs	 from	
																																																								
12	R.A.	Dory,	G.E.	Guest,	E.G.	Harris,	Phys.	Rev.	Lett.	14,	131	(1965).	
13	F.W.	Crawford	and	J.A.	Tataronis,	J.	Appl.	Phys.	36,	293	(1965).	
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zero	 so	 that	 the	n	 and	n-1	neighboring	branches	 can	merge	 into	one	another,	 and	
complex	 conjugate	 roots	 appear.	 	 A	 very	 strong	 interaction	 can	 take	 place,	
particularly	 if	 the	 wave	 energies	 have	 opposite	 signs,	 which	 leads	 to	 instability.		
Increasing	the	plasma	density	increases	!!!/Ω!!	and	the	magnitude	of	the	right	side	
of	Eq.(4.F.8),	which	exacerbates	the	tendency	to	instability.	 	
	
Example:	Ordinary	mode	destabilized	by	anisotropy	–	Consider	an	electromagnetic	
mode	propagating	across	the	magnetic	field	with	electric	field	perturbation	parallel	
to	 a	 uniform,	 applied	 magnetic	 field.	 	 With	 Maxwellian	 electrons	 the	 solution	 of	
Eq.(4.F.1)	is	
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(4.F.10)	

The	dispersion	relation	in	Eq.(4.F.10)	is	solved	numerically.		One	can	assume	that	ω	
is	complex	and	solve	for	τ	:	

	 	 τ =
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∑
	 																									(4.F.11)	

for	!! → −!!,	a	non-resonant,	absolute	 instability.	 	 	Furth	analyzed	this	 instability	
from	 the	 perspective	 of	 the	 self-pinching	 of	 perturbed	 currents,	 calling	 the	
instability	the	“prevalent	instability.”14	

4.F.c	Additional	examples	of	waves	in	a	plasma	
	
	 Here	we	return	to	the	subject	matter	introduced	earlier	in	Sec.	4	and	present	
a	few	additional	examples	of	waves	in	a	warm	plasma.	Small	amplitude	waves	in	a	
plasma	are	either	longitudinal	(∇×!" = 0)	or	not	longitudinal	(∇×!" ≠ 0).	
	 The	 dispersion	 relation	 for	 longitudinal	waves	 in	 a	 uniform	magnetic	 field	
was	previously	derived	in	Secs.	2,	3,	and	4.		Using	!! ≪ 1,	!! ≪ !,	and	!||!",	the	roots	
of	the	dispersion	relation	!(!∥, !!)	are	determined	by	the	solution	of		
	
	 	 	 ε ≡ k̂ ⋅ !ε ⋅ k̂=1+ χ s

s
∑ (k ,ω)=0 	 	 	 	 									(4.F.12a)		
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	 									(4.F.12b)	

with	 !! v! v∥, v! = 1 .	 	 It	 is	 often	 assumed	 that	 g	 is	 separable:	 	! v∥, v! =
! v∥)!( v! ,	 e.g.,	! v! = 2!v!! !!!"# −v!!/2v!!! 	a	 Gaussian,	 or	 v! 		 a	 non-
Gaussian	as	in	the	Dory-Guest-Harris	instability.	
																																																								
14	H.P.	Furth,	Phys.	Fluids	6,	48	(1963).	
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	 For	non-longitudinal	waves,	k	and	!"	are	not	parallel.	 	Much	of	 the	existing	
analysis	in	the	literature	treats	the	plasma	as	cold	with	thermal	corrections.		There	
are	many	 interesting	 examples.	 	 Calculations	 have	 established	 a	 relation	 between	
either	whistler	or	ordinary	waves	and	pinching	instabilities,	and	a	relation	between	
Alfvèn	waves	and	the	firehose	instability.			
	 For	 g	 a	 separable	 velocity	 distribution	 function	 and	! v! 	a	 Gaussian,	 the	
susceptibility	χs	can	be	partially	evaluated	and	reduced	to	
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	 											(4.F.13)	

where	 ! = !!v!!! ! = !!!! ! .	 	 We	 see	 the	 cyclotron	 resonance	 in	 the	
denominator	on	the	right	side	of	Eq.(4.F.13).	 	 	Recalling	that	! ! = !!!!∥ / !! −
! 	then	Eq.(4.F.13)	becomes	
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	 											(4.F.14)	

Some	 useful	 asymptotic	 forms	 for	 further	 evaluation	 of	 Eq.(4.F.13)	 are	 given	 in	
Eq.(4.F.3)	 for	 In(b)	 and	 in	 Eqs.(2.H.3)	 and	 (2.H.4)	 for	 ReZ’(V)	 and	 ReZ(V)	 for	
V/vth>>1.			
Examples	

i. For	Maxwellian	g||		and	no	drift,	V/vth→0,	ReZ(V)	→0	and	ReZ’(V)	→-1/vth2.	
ii. As	Ω→0	for	weak	magnetic	fields,	we	recover	the	results	in	Sec.	2.E	
iii. As	 the	 temperature	 goes	 to	 zero,	 the	 cold	 plasma	 limit	 of	 the	 longitudinal	

susceptibility	is	recovered:		

	 	 	 χ s ≡ k̂ ⋅
!
χ s ⋅ k̂=-

ωs
2

ω2
ω −Ωs

2 cos2θ
ω2 −Ωs

2 	 	 																									(4.F.15)	

iv. For	ion	waves	or	other	very	low	frequency	waves	ω→0,	the	limit	in	which	the	
electron	susceptiblility	is	!! = 1/!!!!!		can	be	recovered	with	some	labor.	

v. In	 the	 strong	 field	 limit,	Ω ≫ !.		 In	 this	 limit	with	V	 large,	 the	 ℓ=0 	term	 is	
dominant	in	the	infinite	sum	in	Eq.(4.F.14);	and	one	obtains	
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Exercises:	
i. Derive	 the	 dispersion	 relation	 for	 the	 electron	 plasma	 wave	 in	 the	 strong	

magnetic	field	limit:		!! = !!!!"#!! + 3!!!v∥!!! 	
ii. Derive	 the	 electron	 plasma	 wave	 dispersion	 relation	 for	 a	 finite	 magnetic	

field	with	!~Ω	for	Te→0	and	compare	to	electron	Bernstein	wave	dispersion	
relation.	

iii. Derive	 the	 dispersion	 relation	 for	 the	 ion	 acoustic	 wave	 in	 the	 strong	
magnetic	field	limit	using	the	low-frequency	limit	for	!! = 1/!!!!!:			

	 	 	 ω2 =ωi
2 1+ 1

k2λe
2
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⎝
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⎞

⎠
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−1

cos2θ 	

iv. Derive	 the	 dispersion	 relation	 for	 longitudinal	 ion	 cyclotron	 waves	!~ℓΩ! 	
using	the	low-frequency	limit	for		!! = 1/!!!!!.		Assume	that	the	wave	phase	
velocity	!ℓ ≫ v!!,! 	to	obtain	

	 	 	 ω −ℓΩi

ℓΩi

=
Te
Ti
e−bi I

ℓ
(bi )

	
	
	
	
	
	

	



	 78	

LECTURES	ON	THEORETICAL	PLASMA	PHYSICS	
–	PART	2	
Allan	N.	Kaufman	

5.	Miscellaneous	topics	
	 	
	 In	 this	 section	 six	 miscellaneous	 topics	 are	 covered,	 some	 of	 which	 were	
introduced	 earlier:	 (i)	 the	 Nyquist	 method	 for	 solving	 dispersion	 relations,	 (ii)	
analytic	 continuation	 in	 applications	 to	 solving	 for	 the	 plasma	 response	 to	 an	
electric	 field,	 (iii)	 the	 plasma	 dispersion	 function,	 (iv)	 nonanalytic	 velocity	
distribution	functions,	(v)	initial-value	problems	–	linear	response	function,	and	(vi)	
Van	Kampen	modes.	

5.A	Nyquist	method	for	solving	dispersion	relations			
	
	 One	is	frequently	faced	with	the	task	of	solving	for	the	roots	of	a	dispersion	
relation:		! ! = 0,	 	which	may	 be	 a	 complicated	 function	 of	ω.	 	 Sometimes	 it	 is	
sufficient	just	to	determine	that	there	are	no	roots	!ℓ	with	Im !ℓ > 0.	 	The	Nyquist	
stability	 criterion	 is	 a	 graphical	 methodology	 that	 only	 requires	 evaluating	 the	
dispersion	 function	 D	 as	 a	 function	 of	 complex	 ω.	 	 Figure	 5.A.1	 illustrates	 the	
Nyquist	stability	criteria.		In	Fig.	5.A.1(a)	there	is	a	contour	in	the	complex	ω	plane	
that	is	closed	in	the	upper	half-plane	enclosing	the	possible	roots	of		! ! = 0.		The	
corresponding	contour	! !  is	drawn	in	Fig.	5.A.1(b).		In	this	example	any	value	of	
D	in	the	region	of	the	complex	D	encircled	by	just	one	loop	that	encircles	the	origin	
maps	 to	 just	one	value	of	 complex	ω	within	 the	ω	contour.	 	Any	value	of	D	 in	 the	
region	 encircled	 by	 two	 loops	 maps	 to	 two	 values	 of	 complex	 ω	 within	 the	 ω	
contour.			
	
Theorem:	(Nyquist	criteria)	The	number	of	complex	ω	roots	in	the	upper	half-plane	
equals	the	number	of	times	the	origin	 is	encircled	by	 loops	in	the	D	plane.	 	This	 is	
the	number	of	unstable	roots.	
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Figure	5.A.1		(a)	Contour	in	the	complex	ω	plane	encircling	all	roots	!ℓ	with	
Im !ℓ > 0 .	 	 (b)	 Corresponding	 contour	 D(ω)	 in	 the	 complex	 D	 plane	
encircling	the	origin	twice.	
	

5.B	Analytic	continuation	

			 Analytic	continuation	was	introduced	in	Sec.	2E	in	the	context	of	analyzing	
the	electrostatic	plasma	response:	
	 	

ε(k ,ω)=1−ωp
2

k2
Z '(v) v ≡ω /k( )

Z(v)= du
−∞

∞

∫ g(u)
u−v Imv=Im	ω /k>0( )

ε−1(k ,t)= dω
2π∫

e−iωt

ε(k ,ω)

	 	 	 	 (5.B.1)	

	
Figure	 2.E.2	 displays	 the	 contour	 integration	 for	 the	 pulse	 response	 showing	 the	
depressed	 contour	and	poles	of	ε-1	in	 the	 region	of	 analytic	 continuation.	 	When	v	
descends	in	the	lower	ω	half-plane	we	depress	the	integration	contour	in	u	down	to	
loop	around	the	pole	in	the	region	of	analyticity	to	calculate	Z(v).		g(u)	must	be	given	
as	an	analytic	 function.	 	There	are	 three	cases	 to	consider:	 (i)	v	 in	 the	upper	half-
plane	for	which	the	integration	contour	remains	on	the	real	u	axis;	(ii)	v	on	the	real	
u	 axis	 for	which	 the	 integration	contour	 takes	a	semi-circular	 loop	below	the	pole	
and	picks	up	a	!"#(v)	contribution	in	addition	to	the	principal	value	of	the	contour	
integral;	 (iii)	v	below	the	real	u	 axis	 for	which	 the	 integration	contour	 takes	a	 full	
circular	loop	around	the	pole	(as	in	Fig.	2.E.2)	and	picks	up	a	!2!"(v)	contribution	in	
addition	to	the	contour	integral.	
	
Exercise:	Show	that	for	g(u)	a	rational	function,	one	can	calculate	Z(v)	in	the	upper	
ω	half-plane	and	then	analytically	continue	to	the	lower	half-plane.			
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5.C	Plasma	dispersion	function	–	Fried-Conte	function	
	
			 Consider	the	 longitudinal	dielectric	response	when	the	velocity	distribution	
is	 a	 Gaussian.	 Fried	 and	 Conte	 treated	 this	 subject	 in	 their	 1961	 book.15	We	
introduce	the	following	notation	and	equations:	

													
g(u)= 1

2π vth
e
−
u2

2vth2 =
1
π c

e−η
2 , η =

u
2vth

=
u
c
, c = 2vth , ζ =

v
c
						

								
(5.C.1)	

	
The	Fried-Conte	function	or	plasma	dispersion	function	z(ζ)	is	then	given	by	

	 	 z(v)= 1
c

1
π

dη
−∞

∞

∫ e−η
2

η−ζ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
1
c
z(ζ ) 	 	 	 	 (5.C.2)	

Limiting	expressions	are	as	follows:	

	 	

For	real	ζ :	 Im	z= πe−ζ
2 Imz'=−2 πζe−ζ

2

Rez= 1
π
P dη e

−η2

η−ζ−∞

∞

∫

→−2ζ 1− 2
3ζ

2 + ...( ) , ζ→0

→−
1
ζ
1+ 1

2ζ 2 + ...
⎛

⎝
⎜

⎞

⎠
⎟, ζ→∞

Rez'= 1
π
P dη −2ηe

−η2

η−ζ−∞

∞

∫

→−2+4ζ 2 , ζ→0

→
1
ζ 2 1+

3
2ζ 2 + ...

⎛

⎝
⎜

⎞

⎠
⎟, ζ→∞

	 	 	 (5.C.3)	

	
	

5.D	Non-analytic	velocity	distribution	functions	
	
	 Here	we	consider	two	examples	of	velocity	distribution	functions	that	are	not	
analytic.	
	
Example:	Consider	a	warm	plasma	with	sharp	cut-offs	in	velocity	(Fig.	5.D.1).		

																																																								
15	B.	D.	Fried	and	S.	D.	Conte,	The	Plasma	Dispersion	Function	-	The	Hilbert	Transform	
of	a	Gaussian	(Academic	Press),	1961.	
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g(u)= 3
4c3

c2 −u2( ) , u < c
= 0, , u > c

g'(u)=− 3u
2c3

, u < c

= 0, , u > c

	 	 	 	 (5.D.1)	

	
The	plasma	dielectric	response	then	derives	from	

ε(k ,ω)=1−ωp
2

k2
Z '(v)

Z'(v)= du
−∞

∞

∫ g'(u)
u−v =−

3
2c3

du
−c

c

∫ u
u−v =−

3
2c3

2c+vln c−v
−c−v

⎡

⎣
⎢

⎤

⎦
⎥

	 	

(5.D.2)	

	

	
	 	 	 	 	
	 	 	 Figure	5.D.1	Warm	velocity	distribution	function	

with	sharp	cutoffs.	
	
The	dielectric	function	in	Eq.(5.D.2)	has	singularities	at	v=±c	and	is	symmetric	with	
respect	to	changing	the	sign	of	v=ω/k.		The	pulse	response	derives	from	

ε−1(k ,t)= dω
2π∫

e−iωt

ε(k ,ω) 	 	 	 	 (5.D.3)	

The	contour	integral	in	Eq.(5.D.3)	is	depicted	in	Fig.	5.D.2	where	we	show	how	the	
contour	is	depressed	in	the	complex	ω	plane.		The	contributions	on	the	depressed	
horizontal	contour	segments	contribute	negligibly	because	they	rapidly	damp,	
which	leaves	the	contributions	from	the	branch	cuts	and	the	two	poles	
corresponding	to	roots	of	! !ℓ, ! = 0.	
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Figure	5.D.2	Diagram	of	contour	integration	in	
Eq.(5.D.3)	after	depressing	the	contour.	

	
Example:	Consider	a	relativistic	distribution	function	that	is	a	Gaussian	in	energy:	

g(u)∝exp −βmec
2

1−u2 /c2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
.	 	 	 This	 distribution	 function	 has	 an	 essential	 singularity	 at	

u=c.	
	

5.E	Initial-value	problem	–	response	function	
	
	 Consider	 the	 linear	 response	 to	 an	 external	 charge	 density	 perturbation	
!!"#(!, ! > 0) 	given	 the	 initial	 condition	 on	 the	 velocity	 distribution	 function	
!" !, !; ! = 0 . 	We	 calculate	!" !, !; ! > 0 	from	 the	 solution	 of	 the	 linearized	
Vlasov	equation:	

∂

∂t
δ fs(k ,v;t)+ ik ⋅vδ fs =

es
ms

iφ(k;t)k ⋅ ∂f0,s
∂v

	 	 	 	 (5.E.1)	

Definition:	The	Laplace	transform	is	defined	as	! ! = !" !!"#! ! , Im!
! ! > !!"# .	

The	inverse	Laplace	transform	is	! ! = !
!! !" !!!"#! ! , Im ! > !!"#	integrated	

along	a	contour	C	in	the	upper	ω	half-plane.	
	

Theorem:	Integrating	by	parts	and	Laplace	transforming	the	Vlasov	equation,	

eiωtd(δ f )=
0

∞

∫ eiωtδ f( ) 0
∞

− δ f
0

∞

∫ d(eiωt )⇒

−δ f (k ,v;t =0)− iωδ f (k ,v;ω)+ ik ⋅vδ f (k ,v;ω)=− e
m
δE(k ,ω)⋅ ∂f0

∂v

			(5.E.2a)	
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												⇒δ f (k ,v;ω)= iδ f (k ,v;t =0)
ω −k ⋅v

−
e
m
φ(k ,ω)

k ⋅
∂f0
∂v

ω −k ⋅v

	 	 											

(5.E.2b)	

If	!!"# = 0	then	Poisson’s	equation	is	
	 	 	 k2φ(k ,ω)=4πe d3∫ vδ f (k ,v,ω) 	 	 	 	 (5.E.3)	
We	combine	Eqs.(5.E.2b)	and	(5.E.3)	to	obtain	

	 	 ε(k ,ω)φ(k ,ω)= i 4πe
k2

d3v∫ δ f (k ,v;t =0)
ω −k ⋅v

, Imω >0 				 						 (5.E.4)	

The	solution	of	Eq.(5.E.4)	 for	φ(k,ω)	 is	obtained	by	dividing	 through	by	ε;	 and	 the	
solution	 for	 φ(k,t)	 is	 obtained	 by	 taking	 the	 inverse	 Laplace	 transform	 of	 φ(k,ω).		
The	contour	 integration	 for	 the	 inverse	Laplace	 transform	involves	depressing	 the	
integration	contour	and	looking	for	poles	inside	the	integral,	e.g.,	 from	the	roots	of	
ε(k,ω)	in	Eq.(5.D.3).	
	
	
Examples:	
1. !"(!,!; ! = 0) 	an	 entire	 function	 of	 u,	 for	 example,	!!!!!/!!! 		 The	 velocity	

integral	in	Eq.(5.E.4)	yields	a	principal	value	contribution	and	a	residue	from	the	
simple	 pole	 at	! − !v = 0.	 	 In	 the	 inverse	 Laplace	 transform	 the	 contour	 is	
depressed	so	that	the	dominant	contributions	arise	from	the	residues	due	to	the	
poles	corresponding	to	roots	of	ε(k,ω).	

2. !"(!,!; ! = 0)~!(! − !!)		The	velocity	integral	in	Eq.(5.E.4)	yields	1/(! − !!!)	
which	 is	a	simple	pole	on	 the	real	ω	 axis	and	never	decays.	 	We	also	note	 that	
!"(!,!; ! = 0)~!(! − !!)e!!∙!	Thus,	how	a	disturbance	is	initially	excited	can	be	
essentially	 important,	 because	 in	 this	 example	 the	 initial	 condition	 does	 not	
decay;	it	persists	forever.		The	inclusion	of	collisions	is	very	effective	in	causing	
otherwise	undamped	modes	to	die	off.	

3. !"(!,!; ! = 0)	is	 a	 square	 function	 of	 u	 extending	 from	 u=u1	 to	 u=u2.	 	 In	 the	
complex	 ω	 plane	 there	 are	 two	 branch	 cuts	 extending	 vertically	 down	 from	
ω=ku1	and	ω=ku1	that	affect	φ(k,t),	and	the	contour	integration	must	go	along	the	
branch	cuts.	

	
We	note	that	the	inverse	Laplace	transform	of	Eq.(5.E.2b)	has	the	following	

form:	

										

δ f (k ,v;t)= e−ik⋅vtδ f (k ,v;t =0)+ e−iωℓt

ω
ℓ
−k ⋅v

ωp
2

k2

k̂ ⋅
∂f0
∂v

duδg(k ,u;t =0)
u−ω

ℓ
/k−∞

∞

∫

∂ε(k ,ω)
∂ω

ωℓ

+ ...

					

(5.E.5)	

plus	 terms	 arising	 from	 initial	 conditions	 and	 oscillatory	 terms.	 	 	 If	 there	 are	
unstable	 roots	!ℓ ,	 the	 second	 term	 in	 (5.E.5)	 will	 overtake	 the	 first	 term	 and	
dominate	after	a	short	time.		In	contrast,	damped	roots	will	cause	the	second	term	to	
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decay	exponentially	in	time;	and	undamped	oscillatory	terms	associated	with	initial	
conditions	will	survive.	

Consider	 the	 second	 moment	 of	!"(!, v; !)	for	 the	 example	 of	!" !, v; ! =
0 = v!!!!/!!!:	
							 	 												 dv

−∞

∞

∫ v2e−ikvtve−
v2
2a2 ∝tne

−k
2a2t2

2 	 	 	 	 (5.E.6)	

As	time	progresses	the	exponential	in	Eq.(5.E.6)	dies	off	faster	than	does	any	power	
of	t.	 	This	result	demonstrates	that	oscillatory	terms	when	integrated	over	velocity	
or	 k	 fall	 off	 faster	 than	 do	 terms	 coming	 from	 Landau	 poles	which	 lead	 to	 terms	
!!  !	that	evidence	Landau	damping.		This	result	is	referred	to	as	phase	mixing	and	
destructive	 interference.	 	 These	 oscillatory	 terms	 can	 be	 observed	 through	
nonlinear	effects	as	in	the	echo	phenomenon.16	

5.F	Van	Kampen	modes	
	
	 Van	Kampen	modes	are	a	special	class	of	normal	modes	in	a	plasma.	Consider	
distribution	functions	and	electric	fields	satisfying	the	linearized	Vlasov	and	Poisson	
equations:	

δ f (k ,v :t)=δ f
ω
(k ,v)e−iωt E(k :t)=E(k)

ω
e−iωt =−ikφ

ω
e−iωt 	 	 (5.F.1)	

From	the	Vlasov-Poisson	equations	for	a	single	species,	e.g.,	electrons	with	infinitely	
massive	ions,		

	 	 																							
ω −k ⋅v( )δ f (k ,ω ;v)=− emφ(k ,ω)k ⋅

∂f0
∂v

(5.F.2a)

k2φ(k ,ω)=4πe d3v∫ δ f (k ,ω ;v) (5.F.2b)
	

We	assume	that	ω is	not	real	and	divide	(5.F.2a)	by		! − ! ∙ ! ≠ 0	to	obtain	
					 δ f (k ,ω ;v)=(P) 1

ω −k ⋅v
−
e
m

⎛

⎝
⎜

⎞

⎠
⎟φ(k ,ω)k ⋅ ∂f0

∂v
+λ(k ,ω)δ ω −k ⋅v( ) 		 (5.F.3)	

where	(P)	denotes	the	principal	value.		Note	that	the	inclusion	of	the	δ-function	term	
still	 satisfies	 the	 Vlasov	 equation	 because	 	! ! − ! ∙ ! ! ! − ! ∙ ! = 0.		 This	 is	 a	
singular	solution	for	the	distribution	function	that	violates	linearization.	 	However,	
superposition	of	these	ω	Fourier	components	can	eliminate	the	singularity.				

We	 next	 substitute	 (5.F.3)	 in	 (5.F.2b,	 integrate	 over	 the	 two	 velocity	
directions	perpendicular	to	k,	and	go	to	one	spatial	dimension:			

					k2φ(k ,ω)=−4πe
2

m
φ(k ,ω)(P) dv∫

k
∂f0
∂v

ω −kv +4πeλ(k ,ω) dv∫ δ ω −kv( ) 		 (5.F.4)		
	
The	integral	of	the	δ-function	gives	 !v! ! − !v = 1/!.		We	then	solve	for	!(!,!):	

																																																								
16	R.	W.	Gould,	T.	M.	O'Neil,	and	J.	H.	Malmberg,	Phys.	Rev.	Lett.	19,	219	(1967).	
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																				 		 (5.F.5)	

Using	Eqs.(5.F.3)	and	(5.F.5)	we	obtain	the	distribution	function	for	the	Van	Kampen	
modes:	

	 δ f (k,ω ;v)= k3

4πeφ(k ,ω) Reε(k ,ω)δ ω −kv( )−
ωp

2

k2
(P) g'(v)

ω −kv
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 	 (5.F.6)	

for	 real	 ω.	 	 	 We	 note	 that	 there	 is	 no	 eigenvalue	 for	ω; all	 real	 values	 of	 ω	 are	
allowed.		Moreover,	k	is	just	a	parameter.		We	can	arbitrarily	assign	the	amplitude	of	
a	 specific	 Fourier	 component	 of	! !,! = 1 .	 	 The	 Van	 Kampen	 modes	 are	 a	
continuous	 spectrum	 in	 ω	 of	 singular	 normal	 modes	 described	 by	 Eq.(5.F.6).	 A	
superposition	of	Van	Kampen	modes	 can	be	non-singular	 and	damp	due	 to	phase	
mixing	and	destructive	interference.	
	 Consider	the	special	case	that	ω	is	complex.		In	this	case	! ! − ! ∙ ! = 0	;	we	
can	 set	!(!,!)=0	 and	 from	 the	 right	 side	 of	 Eq.(5.F.5)	 we	 recover	 the	 familiar	
dielectric	function	and	dispersion	relation	for	Imω >0:		

	 	 1−ωp
2

k2
(P) dv∫ g'(v)

v-ω/k
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1−ωp

2

k2
ReZ '(v)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=0 	 	 (5.F.7)	

For	 Imω <0	 there	 are	 difficulties	 with	 analytic	 continuation	 in	 the	 lower	 half	
ω plane,	and	there	is	no	proper	dielectric	function.	 	For	Imω >0	we	have	a	discrete	
set	of	normal	modes	!ℓ	as	a	function	of	k.	

6.	Nonlinear	Vlasov	plasma	

6.A	Vlasov-Poisson	system	in	one	dimension	

6.A.a	Stationary	nonlinear	solutions	–	BGK	modes			
	
	 Our	consideration	of	nonlinear	phenomena	begins	with	the	Coulomb	model,	
i.e.,	the	Vlasov-Poisson	equations	model.			The	 Vlasov-Maxwell	 equations	 system	 is	
significantly	more	complex.			
	
Definition:	The	velocity	distribution	function	is	!(!,!, !, v!, v!, v!)	
	
Theorem:	The	Vlasov-Poisson	equations	are	

λ(k ,ω)= k3

4πeφ(k ,ω) 1−
ωp

2

k2
(P) dv∫ g'(v)

v-ω/k
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
k3

4πeφ(k ,ω) 1−
ωp

2

k2
ReZ '(v)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
k3

4πeφ(k ,ω)Reε(k ,ω)
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∂

∂t
+v ⋅∇x +

e
m
E ⋅∇v

⎛

⎝
⎜

⎞

⎠
⎟ f (x,v;t)=0 (6.A.1a)

E=−∇φ ∇2φ =−4π d3v∫ es fs(x,v;t)
s
∑ (6.A.1b)

	

The	second	step	of	simplification	 is	 to	reduce	 the	number	of	variables	by	going	 to	
one	dimension:	

					

∂

∂t
+v x

∂

∂x
+
e
m
Ex

∂

∂v x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ f (x ,v x ;t)=0 (6.A.2a)

Ex =−
∂

∂x
φ

∂2

∂x2
φ =−4π dv x∫ es fs(x ,v x ;t)

s
∑ (6.A.2b)

	

where	we	have	integrated	over	the	ignorable	velocity	dimensions	vy	and	vz.		This	is	
the	nonlinear	system	we	hope	to	solve.			

We	 cannot	 solve	 Eqs.(6.A.2)	 analytically	 for	 arbitrary	 initial	 conditions.		
However,	there	are	some	specific	examples	where	analytic	solutions	do	exist.	 	One	
such	 example	 is	 due	 to	 Bernstein,	 Greene,	 and	Kruskal	 (BGK).17		 BGK	 constructed	
solutions	 of	 the	 one-dimensional	 nonlinear	 Vlasov-Poisson	 equations	 that	 are	
stationary	 in	 time:	 	! !, ! = !(! − !") .	 	 In	 the	 wave	 frame	 ! − !" = !′ 	the	
solutions	 for	 f	 and	Φ	 are	 stationary.	 	 Solution	 of	 the	 nonlinear	Vlasov	 equation	 is	
obtained	by	the	method	of	characteristics.	 	 In	 the	wave	 frame	the	Vlasov	equation	
becomes	

							 v x
∂

∂x
+
es
ms

Ex
∂

∂v x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ fs(x ,v x ;t)=0 (6.A.3) 	

A	constant	of	 the	particle	motion	 is	! = !
!!v

! + !".	 	The	most	general	solution	of	
the	Vlasov	equation	is	any	function	of	the	constants	of	the	motion:	!! x, v = !±! ! .		
The	±	 subscript	 in	F±

s	denotes	velocity	directionality.	 	For	 trapped	particles	(H<0)	
there	 is	 only	 one	 solution	 for	 F,	 while	 there	 are	 two	 solutions	 for	 untrapped	
(passing)	particles	(H>0).		The	Poisson	equation	becomes	
				

∂2

∂x2
φ =−4π dv x∫ es fs(x ,v x ;t)

s
∑ =−4π es dH

F
±

s(H)
2ms H−esφ(x)( )eφ(x )

∞

∫
±
∑

s
∑ 	 (6.A.4a)

where		dH
x	const

=mvdv					and					dv=dH
mv =

dH

2ms H−esφ(x)( )
(6.A.4b)

	

	 We	now	limit	ourselves	to	a	periodic	potential	over	a	length	λ.	 	Our	Fourier	
representation	 will	 retain	 all	 harmonics	 of	! = 2!/! .	 	 The	 frequency	 in	 the	
laboratory	 (L)	 frame	 is	 related	 to	 the	 frequency	 in	 the	wave	 (W)	 frame	by	!(!) =
																																																								
17	Ira	 B.	Bernstein,	 John	 M.	Greene,	 and	 Martin	 D.	Kruskal.	 Phys.	 Rev.	 108,	 546	
(1957).	 
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!(!) + !".		In	the	notation	used	here	! ≡	the	charge	of	the	electron=-4.8×10-10	esu,	
and	 singly	 charged	 ions	 have	 the	 opposite	 sign	 charge.	 	 The	 number	 density	 is	
computed	by	integrating	and	summing	over	±	to	obtain:	

	 	 	 	 ns = dH F s(H)
2ms H−esφ(x)( )eφ(x )

∞

∫ 	 	 	 (6.A.5)	

Example:	Consider	a	velocity	distribution	function	that	is	constant	in	a	defined	band	
of	energy,	!±! ! = !,!! ≤ ! ≤ !!for	electrons	(flip	order	H1	and	H2	for	ions),	and	
select	the	electron	energy	band	so	that	the	electrons	are	untrapped.	For	the	density	
computation,	!! = !±!± ,	and	we	obtain	

	 	 	 	 ns(φ)=C
dH

2m H−eφ(x)( )H1

H2

∫
	

	 	 	 (6.A.6)	

with	x	fixed	so	that	the	number	density	is	a	function	of	electric	potential	φ(x):		

	 	 	 d2φ
dx2

=−4πρ(φ) ρ(φ)≡ esns
s
∑ (φ) 	 	 	 	 (6.A.7)	

At	 this	 point,	 we	 identify	 the	 potential	 φ	 as	 the	 pseudo-position	 X	 and	 x	 as	 the	
pseudo-time	T	for	a	pseudo-particle	in	a	pseudo-potential	U:	

	 	 	 d2X
dT 2 =−4πρ(X )=−

dU
dX

	 	 	 	 	 (6.A.8)	

Definition:	The	pseudo-potential	is	! ! = 4! !"′!(!!)=4! !"′!(!!)	
We	solve	Eq.(6.F.8)	by	introducing	the	energy		

	Ε = !
!

!"
!"

!
+ !(!),			 	 	 	 (6.A.9)		

solving	 algebraically	 for	 dX/dT=dφ/dx,	 separating	 variables,	 and	 integrating	 to	
obtain	

	 	 T = dX '
2 Ε−U(X ')( )

X

∫ x = dφ '
2 Ε−U(φ ')( )

φ

∫ 	 	 											(6.A.10)	

What	is	the	physical	significance	of	Ε?		The	term	!!
!"
!"

!
= !

!
!"
!"

!
	is	the	square	of	

the	electric	field.		The	second	term	
! ! = 4! !"#(!)

!!! !" !
!!!" ∝ − 4! !"# !

!!! ! − !" ∝
− !v!! !, v !v ∼ −!! 		which	is	the	pressure	or	kinetic	energy	density,	if	we	
recall	our	earlier	consideration	of	the	moment	equations	in	Sec.	2.D	and	Eqs.(2.D.10-
12).			
	
Theorem:	 	 	 !!! =

!!
!! − !"# = !!

!! − !(!)	 	 	 											(6.A.11)	
	
Example:	 Consider	 a	 situation	 in	 which	 the	 particles	 are	 relatively	 cold	 and	 the	
potential	 is	 weak	 so	 that	 in	 the	 wave	 frame	!! = !

!!!!! + !"#$% and	 	!! ! =
!! 2!!!!!(! − !!) 	.	 	 The	 electrons	 are	 untrapped.	 Then		
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!! ! = !"
!! !!!!!

2 ! − !!! ! ! ∝ 2!!! !!(!! − !!!) ,	 while	 the	 species	
number	 density	 is	 given	 by	 !! ! = !"

!! !!!!!
! ! ∝ !!! !!/(!! − !!!)		

There	are	 integration	constants	 in	Eqs.(6.A.9)	and	 (6.A.10),	which	are	 resolved	by	
boundary	and	initial	conditions,	and	physical	arguments.12	 	For	small	φ	we	expand	
ps(φ)	and	ns(φ)	in	power	series	in	esφ	through	φ2.		Because	es	changes	sign	between	
ions	and	electrons,	 the	coefficient	of	 the	 linear	 term	 in	esφ	in	ns	must	vanish	 (and,	
hence,	in	ps	also)	to	guarantee	overall	charge	density	neutrality,	which	constrains	an	
integration	constant.	
	
Theorem:	 Using	 ! ! = −4!" ! + !"#$%. it	 can	 be	 shown	 that	
! ! = !

!
!!
!

!
!! + ! !! + !"#$%.		 	 With	 U	 a	 quadratic	 in	 φ,	 Eq.(6.A.8)	 is	 the	

equation	 for	 a	 simple	 harmonic	 oscillator	 with	 pseudo-frequency	 Ω	 given	 by	
Ω=ωp/V	 in	 the	 wave	 frame,	 which	 corresponds	 to	 a	 period	 (pseudo	 wavelength)	
λ=2π/Ω=2πV/ωp	or	k=2π/λ=ωp/V.		The	Doppler-shifted	frequency	in	the	laboratory	
frame	 is	 then	! = !" = !!	regardless	 of	 wavelength	 because	 the	 solution	 of	 the	
Poisson-Vlasov	 equation	 was	 stationary	 in	 the	 wave	 frame.	 This	 recovers	 the	
standard	result	for	a	small	amplitude	wave	in	a	cold	plasma	and	lays	the	foundation	
for	using	the	same	machinery	for	the	fully	nonlinear	problem.	
	

6.A.b	Nonlinear	electron	wave			
	

Consider	 the	 case	 of	 a	 nonlinear	 electron	 wave.	 	 To	 simplify,	 consider	
infinitely	massive,	 stationary	 ions:	 	!! ⟶ ∞	and	 finite	mass	 electrons.	 	 	 Although	
the	ions	are	stationary,	they	are	charged	and	contribute	to	U(φ):		! ! = 4!!!!" −
8!"! !!(!! − !") , ! = −4.8×10!!" esu.		We	next	introduce	a	change	of	variables:	

	 	 	
Φ≡

eφ
He

ψ ≡1−Φ σ ≡ ψ τ ≡1+σ

α ≡
8πn0
meV

2 E'=E/α E"=E'-1
	 	 											(6.A.12)	

We	substitute	(6.A.12)	into	(6.A.10)	and	integrate	to	obtain	an	elementary	integral	
whose	result	is:	
	

x(φ)= 2
α

He

e
E"-τ 2 +sin−1 τ

E"
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		 	 											(6.A.13)	

where	 E	 is	 the	 energy	 integral	 of	 the	 pseudo	 particle	 above	 the	 bottom	 of	 the	
minimum	in	U	as	a	function	of		!" and	is	chosen	so	that	at	eφ=He,	E=U(eφ=He).		The	
amplitude	of	eφ	is	limited	by	He,	i.e.,	Φ≤1.		Near	Φ=1	for	this	choice	of	E,	the	variation	
of	Φ	as	a	function	of	x	is	cusp-like,	!Φ~− !" !/!.	
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Exercise:		From	Eq.(6.A.13)	calculate	the	periodicity	length	λ(Δφ) 	for	V	as	Δφ→0	and	
recover	 the	 earlier	 result	 in	 the	 laboratory	 frame	 ω=ωp	 independent	 of	 wave	
amplitude.	In	a	one-dimensional	cold	plasma	with	charge	sheets,	there	is	no	change	
in	the	characteristic	oscillation	frequency	from	ω=ωp	as	long	as	there	is	no	crossing	
of	the	sheets.		Sort	out	the	units	in	Eqs.(6.A.8-6.A.13).			
	
	 Again	consider	a	velocity	distribution	 function	 that	 is	 constant	 in	a	defined	
band	of	energy,	!±! ! = !,!! ≤ ! ≤ !!for	electrons	and	zero	otherwise	(with	cold,	
infinitely	massive	ions).		The	electric	potential	is	small,	but	finite;	and	the	electrons	
are	untrapped.		For	the	density	computation,	!! = !±!± ;	and	we	determine	U	from	
Eqs.(6.A.5-6.A.8).		On	expanding	in	a	Taylor	series	in	powers	of	φ	we	obtain	
	 	 	

	 	 	 U φ( )= 12Ω0
2φ2 +

1
3αφ

3 +
1
4βαφ

4 + ... 	 	 	 											(6.A.14)	

where	the	coefficients	in	the	power	series	are	

	 	 							 	

Ω0
2 =
2πn0e2

H1H2

(6.A.15a)

α =
πn0e

3

2 H1H2( )
3/2 H1 +H2 + H1H2( ) (6.A.15b)

β =
πn0e

4

4 H1H2( )
5/2 H1

2 +H1H2 +H2
2 + H1 +H2( ) H1H2( ) (6.A.15c)

		

The	 presence	 of	 higher	 order	 terms	 in	 φ	 means	 that	 the	 pseudo	 potential	 U	 is	
anharmonic.	 	The	solutions	for	the	anharmonic	oscillator	are	still	given	in	terms	of	
elliptic	functions.		From		Landau	and	Lifschitz,	Mechanics,	3rd	Edition,	Eq.(28.13),	the	
characteristic	frequency	is	given	by		

	 	 	 	 	 Ω=Ω0 +
3
8
β
Ω0

−
5
12

α2

Ω0
3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟φ0

2 	 	 	 											(6.A.16)	

where	 the	 turning	 points	 are	 approximately	 -φ0	and	 φ0.	 	 In	 the	 laboratory	 frame	
! = !" = !!

! = Ω! 	where	 we	 let	!!!!!! = !
!!!!! 	assuming	 that	Δ! ≡ !! − !! =

!"Δ! ≪ !.	 	 Finally,	 we	 obtain	 the	 frequency	 of	 the	 BGK	mode	 in	 the	 laboratory	
frame	

	 	 	 	 ω2 =ωp
2 1+ k

2Δu2

4ωp
2 1+52

eφ0
meV

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
	 					 											(6.A.17)	

Recall	 that	 the	 linear	 dispersion	 relation	 for	 an	 infinitesimal	 amplitude	 electron	
wave	with	a	square	velocity	distribution	of	electrons	from	u=-c	to	u=c	is	!! = !!! +
!!!!		 	 Different	 frequency	 shifts	 in	 the	 dispersion	 relation	 in	 Eq.(6.A.17)	 will	 be	
produced	 depending	 on	 the	 distribution	 of	 particles	 relative	 to	 the	 bottom	 of	 the	
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periodic	 potential	 wells.	 	 For	 example,	 trapped	 electrons	 in	 the	 wave	 potential	
produce	a	negative	frequency	shift.			
			 	 	

6.A.c	Nonlinear	ion	wave	and	solitary	pulse	solutions	
	
	 Consider	the	case	of	a	nonlinear	ion	wave.	 	We	model	the	electrons	to	be	in	
thermal	 equilibrium	 and	 responding	 adiabatically	 to	 the	 low	 frequency	 ion	wave.		
We	further	assume	! ≲ !! 		We	recall	that	from	linear	theory	!! = !!!!!/ 1+ !!!!! 	
where	 	!!! = !!/!! 	for	Ti<<Te	 and	!!! = !!/4!"!!.	 	 Here	 we	 adopt	 the	 convention	
that	the	electron	charge	is	–e	and	the	ion	charge	is	+e.		One	can	show	that	

	 	 	
p(φ)=n0 Teeβeφ +2 Hi Hi −eφ( )⎡

⎣⎢
⎤
⎦⎥

U φ( )= const +αφ2 +βφ3 + ...
	 	 	 											(6.A.18)	

In	 the	 acoustic	 range  !!!!! ≪ 1 	with	 	 |!"/!!|!!!!! ≪ 1 ,	 then	 from	 Eq.(6.A.18)	
following	the	same	methodology	as	in	the	nonlinear	electron	wave	one	obtains	the	
nonlinear	dispersion	relation	for	the	ion	wave:	

	 	 	 	 ω2 k ,φ0( )= k2cs2 −56ωi
2 eφ0
Te

2

	 	 	 											(6.A.19)	

	
Example:	Consider	a	potential	pulse	moving	at	a	velocity	near	the	ion	sound	speed,	
with	φ→0	for	x=±∞	in	the	frame	moving	with	the	pulse	and	a	maximum	φ=φ0	at	x=0.			
Compute	U(φ)	as	in	Eqs.(6.A.18).		From	Eq.(6.A.10)	one	can	compute	an	elementary	
integral	leading	to	the	results		

	 	 	

φ x( )=φ0 sech2 x / x0( ) with	x0 = λD
3Te
eφ0

V 2

cs
2 =1+

2
3
eφ0
Te

>1
	 	 											(6.A.20)	

Definition:	 This	 corresponds	 to	 a	 small-amplitude	 solitary	 pulse,	 called	 a	 small-
amplitude	soliton.		This	is	a	particular	limiting	case	of	a	wave	train	with	λ→∞.	
	
[Editor’s	note:	At	the	time	of	these	lectures,	there	had	not	been	much	attention	given	to	
electromagnetic	BGK	modes.]	
	

6.B	Nonlinear	Landau	damping	

6.B.a	Phase-space	dynamics		
	
	 We	assume	 there	 is	 a	 very	weakly	damped	 small-amplitude	 electron	wave,	
! ≪ ! 	and	 !"/!! ≪ 1 .	 	 In	 the	 wave	 frame	 we	 also	 assume	 the	 wave	 is	 a	
stationary	 BGK	 mode.	 	 At	 very	 small	 amplitude	 the	 wave	 is	 close	 to	 sinusoidal.		
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Particles	with	velocities	close	to	the	phase	velocity	of	the	wave	are	Landau	damped.			
We	 focus	 attention	 on	 these	 resonant	 particles.	 	 A	 schematic	 of	 the	 (x’,v’)	 phase-
space	particle	orbits	for	both	trapped	and	untrapped	particles	in	the	wave	frame	is	
shown	in	Fig.	6.B.1	For	an		arbitrarily	small-amplitude	wave	the	trapped	particle		

	
	

Figure	 6.B.1	 Phase-space	 orbits	 in	 the	 wave	 frame	 for	 untrapped	
(! > !!!)	and	 trapped	(! < !!!)	orbits,	 where	W	 is	 the	 particle	
energy.	 	 The	 “separatrix”	 denotes	 where	 the	 particle	 energy	! =
!!!.		
	

orbits	are	elliptic.		Finite-amplitude	effects	introduce	anharmonic	effects	that	distort	
the	ellipses.	

6.B.b	Quasilinear	analysis	–	linear	waves	and	nonlinear	particle	orbits		
	
	 Consider	a	particle	with	energy	near	the	top	of	the	wave	trough,	i.e.,	!~!!!	
for	x~x0	where	! !! = −!!.	 	The	range	of	velocities	around	v=V	in	the	laboratory	
frame	in	which	particles	interact	strongly	with	the	wave	scales	as	Δv~ !!!/!.		We	
note	that	along	any	orbit	segment	in	which	the	magnitude	of	v	grows	the	particle	is	
extracting	energy	from	the	wave,	but	there	is	a	compensating	loss	of	energy	as	the	
magnitude	 of	 v	 decreases.	 	 In	 consequence,	 there	 is	 no	 net	 energy	 exchange	 in	 a	
stationary	wave	over	time	to	leading	order.		We	proceed	with	a	direct	calculation	of	
the	energy	exchange	of	a	particle	with	a	wave:	
	

	

Δv(t)= dt ' !v
0

t

∫ (t ')dt '= e
m

dt 'E(x ')=
0

t

∫ e
m
kφ0 dt 'sinkx ', x '≡ x(t ')

0

t

∫

x '= x0 + dt"v
0

t '

∫ (t")dt"= x0 + dt" v0 +
e
m
kφ0 dt '"sinkx '"

0

t"

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t '

∫

x '"≈ x0 +v0t"'

							 (6.B.1)	
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After	making	substitutions,	performing	the	nested	time	integrations,	and	expanding	
for	 small	 values	of	 the	electric	 field	as	 it	 influences	x’	 in	 sin(kx’),	we	average	with	
respect	to	x0	over	a	wavelength	to	obtain	

	 	 Δv(t)
x0
=
1
2
e
m
E0

⎛

⎝
⎜

⎞

⎠
⎟

2 1
k2v03

2 coskv0t −1( )+kv0tsinkv0t⎡
⎣

⎤
⎦ 	 	 	 (6.B.2)	

In	 the	 limit	!v!! ≪ 1,	 the	 expression	 in	 the	 square	 bracket	 on	 the	 right	 side	 of	
Eq.(6.B.2)	 […]	 →	− !

!" !v!! ! ;	 and	 ∆v !! ∝ −v!!! 		 Thus,	 in	 the	 wave	 frame	 a	
resonant	 particle	 moving	 faster	 than	 the	 wave	 (v! > 0) 	is	 decelerated;	 and	 a	
resonant	 particle	 moving	 slower	 than	 the	 wave	 (v! < 0)	)	 is	 accelerated	 at	 early	
times.	Recall	 that	 for	a	stable	velocity	distribution	 that	damps	 the	wave,	 there	are	
more	particles	 slower	 than	 the	wave	phase	 velocity	 than	particles	 faster	 than	 the	
wave.	 The	 wave	 tends	 to	 drag	 resonant	 particles	 to	 its	 velocity	 irrespective	 of	
whether	the	particle	is	trapped	or	untrapped.			
	
Exercise:	Verify	the	calculation	leading	to	Eq.(6.B.2).	
	
	 Next	 consider	 the	 time	 dependence	 of	 the	wave	momentum	density.	 	 	 The	
momentum	density	PW	of	the	wave	is	related	to	the	energy	density	EW	of	a	wave:	

	 	 PW =
k
ω
EW = k

∂ε
∂ω

E
2

8π
x

=
k
ωp

E0
2

8π ε =1−ω
2

ωp
2 	 	 	 (6.B.3)	

in	 the	 laboratory	 frame.	 	The	derivation	of	 the	expression	 in	Eq.(6.B.3)	 is	Galilean	
invariant	 and	 valid	 in	 any	 frame.	 	 If	 the	 wave	 is	 exponentially	 damped,	!! ! =
!! ! !!" , ! < 0;	and	 the	 wave	 momentum	 and	 energy	 densities	 inherit	 this	 time	
dependence.	 	 At	 early	 time	!!" ≈ 1+ !",	 and	 the	 wave	 momentum	 and	 energy	
densities	vary	linearly	in	time:	
	 	 	 ΔPW (t)≈ PW (0)2γt 	 	 	 	 (6.B.4)	
	 We	 now	 calculate	 whether	 the	 sum	 of	 the	 wave	 and	 particle	 momentum	
densities	 is	 conserved.	 	 	 We	 integrate	 over	 all	 possible	 initial	 velocities	 of	 the	
resonant	particles	in	the	wave	frame:	
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ΔP |resonant= dv0
resonant
∫ f0(v0)m Δv(t)

x0

= dv0
resonant
∫ f0(0)+v0 f0 '(0)+ ...⎡

⎣
⎤
⎦m Δv(t)

x0

=
m
k2

dv0
resonant
∫ 1

v03
f0(0)+v0 f0 '(0)+ ...⎡
⎣

⎤
⎦
1
2
e
m
E0

⎛

⎝
⎜

⎞

⎠
⎟

2

2 cosη−1( )+ηsinη⎡
⎣

⎤
⎦

≈
m
k2
1
2
e
m
E0

⎛

⎝
⎜

⎞

⎠
⎟

2

dv0
1
v03
v0 f0 '(0) 2 cosη−1( )+ηsinη⎡

⎣
⎤
⎦

−∞

∞

∫

=
m
k2
1
2
e
m
E0

⎛

⎝
⎜

⎞

⎠
⎟

2

f0 '(0)kt dη 1
η2 2 cosη−1( )+ηsinη⎡
⎣

⎤
⎦

−∞

∞

∫ =−
π
2
m
k2

e
m
E0

⎛

⎝
⎜

⎞

⎠
⎟

2

f0 '(0)kt

where	η = kv0t

(6	.B.5)	

We	 can	 evaluate	 the	 γ	 in	 Eq.(6.B.4)	 using	 	 !!! =
!
!

!!
!

!
!! v = !

!
!!
!

! !!(!)
!!

.		

Substituting	this	into	Eqs.(6.B.3)	and	(6.B.4)	we	deduce	that	
	 	 	 ΔPW +ΔP |resonant=0 	 	 	 	 (6.B.6)	
	

6.B.c	Trapped	and	untrapped	particles	–	evolution	of	the	distribution	function		
	
	 We	 next	 consider	 the	 trajectories	 of	 the	 trapped	 and	 untrapped	 (passing)	
particles.		In	the	wave	frame,	if	particle	trajectories	are	localized	to	a	small	excursion	
distance	relative	to	the	bottom	of	the	potential	well,	! !! = −!!, then	the	potential	
can	be	expanded	around	!!:	

	 	
eφ(x)= eφ0 coskx→eφ0 −1+12k

2δx2 + ...
⎛

⎝
⎜

⎞

⎠
⎟

→ H = 12mv
2 +eφ0

1
2k

2δx2 +const

	 	 	 (6.B.7)	

Equation	 (6.B.7)	 is	 the	 Hamiltonian	 for	 a	 simple	 harmonic	 oscillator	 whose	
characteristic	oscillation	frequency	(bounce	frequency	ωB)	is		

	 	 	 	 ωB =
k2eφ0
m

	 	 	 	 (6.B.8)	

with	the	restriction	that	the	electric	field	amplitude	temporal	variation	is	negligible	
on	the	time	scale	1/ωB,	 i.e.,	γ/ωB<<1.	 	We	recall	that	our	analysis	also	requires	that	
!!! ≪ !	and,	 hence,	Δv ≪ v!!	and	!! ≪ !v!! .	 	 Initially	 the	 wave	 tranfers	 energy	
and	momentum	to	the	resonant	particles,	but	a	little	later	(on	the	time	scale	of	the	
trapped	particle	bounce	motion),	energy	and	momentum	are	transferred	back	from	
the	 particles	 to	 the	 wave.18		 The	 general	 solutions	 of	 the	 equations	 of	 motion	

																																																								
18	T.	O’Neil,	Physics	of	Fluids	8,	2255	(1965);	G.	J.	Morales	and	T.	M.	O'Neil,	Phys.	
Rev.	Lett.	28,	417	(1972).	
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resulting	from	Eq.(6.B.7)	for	!" ! = !!!cos!"	are	given	in	terms	of	Jacobi	elliptic	
functions.		A	useful	reference	for	elliptic	functions	is	Byrd	and	Friedman.19				
	 For	 untrapped	 particles,	 H≥eφ0,	 the	 solution	 of	 the	 equation	 of	 motion	 is	
given	by		

	 	 v(t)=± 2
m
H+eφ0( )dn ωBt

κ
,κ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, where	κ ≡ 2eφ0

H+eφ0
<1 		 (6.B.8)	

without	 being	 precise	 about	 the	 initial	 conditions	 for	 the	 velocity	 of	 the	 particle.		
The	passing	particle	velocity	has	a	periodic	variation	with	period	given	by	

	 	 	 	 	 	 τ t =
2κK(κ )
ωB

	 	 	 (6.B.9)	

where	K	is	one	of	the	Jacobi	elliptic	functions:		

	 	 	
K(κ ) → ln 4

1−κ 2
, 	for	κ→1

→
π
2 ,	for	κ→0

	 	 											(6.B.10)	

The	Jacobi	elliptic	function	dn !!!
! , ! = 1	for	t=0	and	is	bounded	by			

	 	 	 	 1− !! ≤ dn !!!
! , ! ≤ 1	 	 											(6.B.11)	

	 For	 trapped	particles	H<eφ0,	the	solution	of	 the	equation	of	motion	 is	given	
by		

	 	 v(t)=± 2
m
H+eφ0( )cn ωBt ,κ( ) , where	κ ≡ H+eφ0

2eφ0
<1 	 	 											(6.B.12)	

The	trapped	particle	velocity	has	a	periodic	variation	with	period	given	by	

	 	 	 	 τ t =
4K(κ )
ωB

→
2π
ωB

	for	κ→0 	 	 											(6.B.13)	

The	Jacobi	elliptic	function	cn !!!, ! 		is	bounded	by		±1.			A	distribution	of	particles	
sharing	the	same	energy,	but	distributed	in	space,	will	have	different	relative	phases	
in	 the	 wave	 frame:	 	 ! → ! − !! .	 	 A	 distribution	 of	 particle	 energies	 can	 be	
parameterized	 in	 velocity	 by	 their	 distribution	 of	 initial	 speeds	 (initial	 conditions	
are	trivial	constants	of	the	motion).	
	 Figures	6.B.2,	6.B.3,	and	6.B.4	illustrate	the	particle	orbits	and	time	evolution	
of	quantities	associated	with	the	particles	and	the	wave.		We	know	from	Eqs.(6.B.5)	
and	 (6.B.6)	 that	 the	 momentum	 in	 the	 resonant	 particles	 initially	 grows	 at	 the	
expense	of	the	wave	amplitude.		Thus,	the	evolution	of	the	wave	amplitude	shown	in	
Fig.	 6.B.3	 and	 the	 momentum	 in	 the	 resonant	 particles	 mirror	 one	 another.	 The	
wave	amplitude	decreases	and	then	increases,	but	not	back	to	its	initial	amplitude;	
and	the	momentum	in	resonant	particles	first	increases	and	then	decreases,	but	not	
back	to	its	initial	amplitude.		The	period	of	the	oscillations	is	approximately	given	by	
																																																								
19	P.	F.	Byrd	and	M.	D.	Friedman,	Handbook	of	Elliptic	Integrals	for	Engineers	and	
Physicists,	(Springer-Verlag,	1971	&	Springer,	2013).	
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the	trapped	particle	bounce	period,	Eq.(6.B.13).		The	oscillations	in	the	damping	rate	
are	 at	 the	 bounce	 frequency	 and	 phase	mix	 to	 zero,	 while	 the	 oscillations	 in	 the	
frequency	 shift	 are	 at	 twice	 the	bounce	 frequency	and	asymptote	 to	 a	 finite	 value	
(Fig.	6.B.4).				
	
[Editor’	 note:	 	 There	 were	 several	 other	 contemporaneous	 papers	 in	 the	 literature	
addressing	the	nonlinear	frequency	shift	of	an	electron	plasma	wave	in	addition	to	the	

work	of	Morales	and	O’Neil,	e.g.,	R.	L	Dewar	(1972),	Manheimer	and	Flynn	(1971),	and	

Lee	and	Pocobelli	(1972).]	

	
	
	

	 	 Fig.	6.B.2		Initial	particle	orbits	in	phase	space	in	
	 	 wave	frame	(ref.	Fig.	6.14	in	D.	R.	Nicholson,		
	 	 Introduction	to	Plasma	Theory	(Wiley,	1983)).	
	
Theorem:	 Consider	 a	 velocity	 distribution	 function	 f	 that	 is	 initially	 uniform	 in	
position	x	 and	decreasing	 in	 |v|.	 	!⟶ !± ! 	where	! = !

!!v! + !" ! 	is	 a	 contant	
of	the	motion.			Hence,	f	will	be	a	constant	of	the	motion	on	the	phase-space	orbits.			
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	 	 Fig.	6.B.3	Langmuir	wave	amplitude	versus	time		
	 	 (ref.	Fig.	6.17	in	D.	R.	Nicholson,	Introduction	
	 	 to	Plasma	Theory	(Wiley,	1983)).	
	
	

	
Fig.	6.B.4	Figures	1	and	2	from	G.	J.	Morales	and	T.	M.	O'Neil,	
Phys.	Rev.	Lett.	28,	417	(1972)	illustrating	the	self-consistent		
effects	of	nonlinear	Landau	damping	on	the	total	damping	rate	
	and	frequency	shift	of	the	electrostatic	wave.	
	

Exercise:	 Read	 O’Neil’s	 and	 Morales	 and	 O’Neil’s	 seminal	 papers,	 Ref.	 13.	 The	
Morales	and	O’Neil	paper	has	an	illuminating	discussion	of	the	relationship	between	
the	nonlinear	increments	in	the	damping	rate	and	frequency,	and	the	excursions	in	
the	momentum	and	energy	in	the	wave	and	the	particles.	
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6.B.d	Effects	of	trapped	particles	on	longitudinal	plasma	waves	and	saturation	of	
intstabilities		
	
	 The	interaction	of	a	finite-amplitude	wave	with	a	velocity	distribution	that	is	
decreasing	with	respect	to	velocity	in	the	neighborhood	of	the	velocity	equal	to	the	
phase	velocity	of	 the	wave	 is	depicted	 in	Fig.	6.B.5	Particles	 traveling	 slower	 than	
the	 wave	 are	 accelerated,	 while	 particles	 traveling	 faster	 than	 the	 wave	 are	
decelerated.		Because	there	are	more	particles	slower	than	the	phase	velocity,	there	
is	net	momentum	and	energy	transferred	from	the	wave	to	the	particles.		The	region	
of	flattening	in	velocity	is	centered	at	the	phase	velocity	of	the	wave	and	the	width	of	
the	 region	 is	 associated	 with	 the	 trapping	 width	∽ !!!/!.	 An	 estimate	 of	 the	
asymptotic	field	amplitude	of	the	electron	plasma	wave	can	be	computed	from	

	 	 	 E0(t)=E0(0)exp dt 'γ(t ')
0

t

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟~E0(0) 1− γL τT( ) 	 	 											(6.B.14)	

where	γ	is	the	total	growth	rate	(γ<0	due	to	Landau	damping,	!! < 0)	and	is	given	by	
! = !! + !Γ	with	!Γ	given	 in	Fig.	6.B.4,	 	!!~

!!!
!!

!!!
!!

, and	 	!!~ !/!!! 1/! .	 	The	
sign	 of	! 	is	 opposite	 the	 sign	 of	 the	 time	 derivative	 of	 the	 resonant	 particles,	
Eqs.(6.B.5)	 and	 (6.B.6).	 	 Thus,	 the	wave	 settles	 down	 to	 a	 BGK	mode	 of	 constant	
amplitude	over	a	few	bounce	times.	
	
	

	
	 	 	 Fig.	6.B.5		Schematic	showing	flattening	of	the		
	 	 	 velocity	distribution	function	due	to	particle	trapping.	
	
	 The	interaction	of	an	unstable	wave(s)	with	resonant	particles	is	expected	to	
evolve	as	follows.		Consider	a	bump-on-tail	velocity	distribution	function	(Fig.	2.I.1).	
The	 velocity	 inversion	 in	 the	 distribution	 function	 is	 a	 source	 of	 free	 energy	 to	
destabilize	a	wave	with	phase	velocity	v.		There	are	more	resonant	particles	with	u>	
vph		 than	for	u<	vph,	which	allows	the	wave	to	grow	at	the	expense	of	the	energy	in	
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the	 resonant	 particles	 which	 decreases	 (more	 particles	 are	 decelerated	 than	 are	
accelerated).		Thus,	wave-particle	interactions	lead	to	a	flattening	of	the	distribution	
function	near	the	phase	velocity	of	the	wave.		In	contrast	to	Fig.	6.B.3,	the	plot	of	the	
logarithm	of	the	wave	energy	vs.	time	for	the	unstable	case	shows	linear	growth	in	
time	until	 there	 is	sufficient	 flattening	of	 the	velocity	distribution	 function	(due	 to	
mixing)	 stabilizes	 the	 plasma.	 	 The	wave	 energy	 no	 longer	 grows,	 but	 we	 expect	
decaying	oscillations	similar	to	those	in	Fig.	6.B.3.		If	the	wave-particle	interaction	is	
relatively	coherent	because	the	wave	spectrum	is	dominated	by	a	single	wave,	then	
the	 relative	 peaks	 in	 the	 oscillations	 of	 the	wave	 energy	will	 be	 separated	 by	 the	
characteristic	trapped	particle	bounce	time	!! .			
	 We	expect	that	the	growing	wave	will	approach	saturation	when	the	trapped	
particles	accumulate	π	radians	of	phase	in	the	growing	wave:	

π = ω(t)dt = k e
m0

tsat

∫
dφ0

dφ0 /dt =γ(φ0)φ00

φsat

∫ φ0
1/2 t( )= k e

m
dφ0

φ0
1/2γ(φ0)0

φsat

∫ ≈2k e
m
φsat
1/2

γL
	(6.B.15)	

	
Hence,	

	 	
ωT φ0

sat( )
γL

≈
π
2 and eφ0

sat =m π
2
γL
k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

	 															 											(6.B.16)	

Eq.(6.B.15)	is	derived	assuming	the	growth	rate	γ	is	well	approximated	by	the	linear	
growth	 rate	 γL	 up	 to	 the	point	 of	 saturation.	 	 This	 assumption	 is	 reasonably	 good	
until	the	last	e-folding	or	two	of	the	growing	wave,	when	the	growth	rate	starts	to	
decrease	to	zero.		Research	by	Fried,	Liu,	Means,	and	Sagdeev20	showed	numerically	
that	for	a	broad	range	of	parameters	!!(!!!"#)/!! ≈ 3.2			We	note	that	this	analysis	
has	 assumed	 that	 a	 single	 wave	 grows	 up	 to	 dominate	 the	 spectrum	 so	 that	 the	
wave-particle	interaction	is	coherent.	 	This	assumption	has	eliminated	the	noise	of	
other	waves	that	might	otherwise	be	expected	to	grow.	
	
Exercise:	Using	energy	conservation,	derive	a	relation	between	the	width	in	velocity	
over	 which	 the	 velocity	 distribution	 is	 flattened	 and	 the	 wave	 amplitude	 at	
saturation;	 and	 using	 Eq.(6.B.16)	 and	 the	 results	 in	 Sec.	 2.F.a	 relate	 the	 velocity	
width	 to	 the	 linear	 growth	 rate	 and	 the	 plasma	 parameters	 for	 the	 weak	 beam-
plasma	 instability.	 	 Show	 for	 the	 bump-on-tail	 velocity	 distribution	 subject	 to	
flattening,	that	the	distance	∆v	between	the	two	locations	where	!! = 0	scales	as	

	 	 	
vT
Δv ~

nbump
n0

V
vth

V
Δv
⎛

⎝
⎜

⎞

⎠
⎟

2

	 	 	 											(6.B.17)	

where	V	 is	 the	phase	velocity	and	vT=(eφ/me)1/2	 is	 the	 trapping	velocity.	 	We	note	
that	nbump/n0<<1,	V/vth>1,	and	(V/∆v)2>>1,	which	leaves	a	good	deal	of	freedom	in	
determining	vT/∆v	in	Eq.(6.B.17).			
																																																								
20	B.	D.	Fried,	C.	S.	Liu,	R.	W.	Means,	R.	Z.	Sagdeev,	“Nonlinear	Evolution	and	
Saturation	of	an	Unstable	Electrostatic	Wave,”	UCLA	Plasma	Physics	Technical	
Report,	1971;	http://www.dtic.mil/get-tr-doc/pdf?AD=AD0730123.	
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	 The	nonlinear	Landau	damping	of	an	ion	wave	ought	to	be	similar	to	that	of	
the	damping	of	an	electron	wave	considered	already.		However,	in	the	case	of	the	ion	
wave	one	should	consider	the	resonant	interactions	of	both	electrons	and	ions.	
	
	 There	are	many	calculations	and	simulations	of	the	saturation	of	instabilities	
in	a	collisionless	plasma.			Here	is	brief	list	(circa	1971):	
	

1. Bump-on-tail,	which	leads	to	a	BGK	mode	
2. Weak-beam-instability	(linear	evolution	discussed	in	Sec.	2.F.a),	which	leads	

to	a	BGK	mode21	
3. Electron-ion-two-stream	instability,	which	leads	to	a	chaotic	state22	
4. Two-stream	instability	(equal	beams),	which	leads	to	a	chaotic	state23	
5. Ion-acoustic	instability24	
6. Cyclotron	instability25	

	
The	references	given	here	are	only	representative	and	by	no	means	complete.	
	
Example:	Weak-beam	instability	--		We	 can	 derive	 additional	 results	 for	 the	
saturation	 of	 the	 weak-beam	 instability.	 	 The	 linear	 attributes	 of	 the	 weak-beam	
instability	were	 presented	 in	 Sec.	 2.F.a	 .	 	 In	 the	weak-beam	 instability	 there	 is	 an	
approximate	resonance	between	the	beam	velocity	ub	and	the	unstable	wave	phase	
velocity	v! .	However,	 a	 careful	 analysis	 shows	 that	 	v! <  !!	for	 instability.	 	 The	
results	for	the	dispersion	relation	of	the	weak-beam	instability	in	Eq.(2.F.7)	are		

	 	 	 δω
ω0

=η1/3 = η1/3 1,−12± i
3
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, 								η ≈ 12

ωb
2

ωp
2 		 									(6.B.18)	

where	 ω0=k0ub	 and	 ω=ω0+δω,	i.e.,	 the	 unstable	 wave	 frequency	 is	 slightly	
downshifted.		The	wave	energy	and	the	wave	momentum	densities	are	given	by	

	 	 Ew =ω
∂ε
∂ω

E
2

8π =ω
2
ωp

E
2

8π Pw = k
2
ωp

E
2

8π 	 	 	 									(6.B.19)	

where	v! = !/! .	 	 The	 wave	 momentum	 density	 grows	 at	 the	 expense	 of	 the	
momentum	density	 in	 the	weak	beam,	 and	 the	wave	 energy	density	 grows	 as	 the	
momentum	 density	 grows.	 	 Consider	 a	 single	 wave	 with	 k=k0	 the	 most	 unstable	
wave	such	that	

																																																								
21	T.	M.	O’Neil,	J.	H.	Winfrey,	J.	M.	Malmberg,	Phys.	Fluids	14,	1204	(1971).	  
22	A.	Hirose,	Plasma	Phys.	20,	481	(1978).	 
23	J.	P.	Freidberg	and	B.	M.	Marder,	Phys.	Rev.	A	4,	1549	(1971).	
24	K.	Nishikawa	and	C.	S.	Wu,	Phys.	Rev.	Lett.	23,	1020	(1969).		
25	R.	E.	Aamodt	and	S.	E.	Bodner,	Phys.	Fluids	12,	1471	(1969). 
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	 φ(x ,t)=φ0(t)e
ik0x +c.c. φ0(t)=φ0(0)exp −i dt 'ω(t ')

0

t

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 														(6.B.20)	

The	beam	can	be	represented	as	a	sum	of	particles:	

	 	
xi(t) i =1,...,NB nB(x ,t)= δ x− xi(t)( )

i=1

NB

∑

nB(k0 ,t)≡ dxe−ik0xnB(x ,t)∫ = e−ik0xi (t )
i=1

NB

∑
		 	 										(6.B.21)	

The	particle	simulation	then	solves	the	nonlinear	equations	of	motion	given	by	
	 	 	 m!!xi(t)= e(−ik0)φ(xi ,t) 					 	 	 	 										(6.B.22)	
and	the	Poisson	equation	to	determine	the	electric	potential	φ0	self-consistently:	

	 	 k0
2φ(k0 ,t)=

4πenb(k0 ,t)
ε(k0 ,ω)

ε(k0 ,ω)=1−
ωp

2

ω2 −
ωB

2

ω −k0ub( )
2 															(6.B.23)	

In	the	beam	frame	the	dielectric	function	becomes	
	 	 	

	 	 	 ε(k0 ,ω)=1−
ωp

2

ω +k0ub( )
2 −

ωb
2

ω2 ≈2
ω
ωp

	 	 	 										(6.B.24)	

at	 resonance	 using	 ωb2<<ωp2.	 	 If	 we	 use	 Eq.(6.B.24)	 in	 the	 Poisson	 equation,	
Eq.(6.B.23),	and	Fourier	transform	from	ω	to	t,	one	obtains	that	the	wave	amplitude	
grows	as	the	beam	density	perturbation	grows:	

	 	 	 ik0
2 dφ0(x0 ,t)

dt
=−

1
2ωp4πenb(k0 ,t) 	 	 	 										(6.B.25)	

	
The	 simulation	 then	 advances	 the	nonlinear	 equations	of	motion	Eqs.(6.B.21)	 and	
(6.B.22),	and	the	Poisson	equation	(6.B.25).			A	plot	of	lnφ0	vs.	time	from	simulations	
shows	 initial	 linear	 growth	 consistent	 with	 (6.B.18)	 and	 then	 saturation	 with	
amplitude	 oscillations	 having	 a	 period	 consistent	 with	 the	 trapping	 frequency	
ωT=k0|eφ0/m|1/2.	 	 	 The	 saturation	 amplitude	 and	 saturation	 time	 observed	 in	 the	
simulations	scale	as	

	
E0
sat

2

8π ≈ nbmub
2 η1/3 ω0t

sat ≈η−1/3 >>1 	 	 										(6.B.26)	

	
This	scaling	of	the	saturation	amplitude	for	the	weak-beam	instability	in	Eq.(6.B.26)	
differs	significantly	from	the	scaling	in	Eq.(6.B.16)	for	the	bump-on-tail	instability.	
	
[Editor’s	 note:	 There	 is	 a	 discussion	 of	 the	 saturation	 of	 the	 weak-beam	 instability	
based	 on	 particle	 simulations	 in	 Section	 5-11	 of	 C.	 K.	 Birdsall	 and	 A.	 B.	 Langdon,	

Plasma	Physics	via	Computer	Simulation	(McGraw-Hill,	New	York,	1985).]	
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6.C	Stability	of	electrostatic	BGK	modes	–	sideband	instability	of	Kruer,	Dawson,	and	
Sudan	
	
	 Kruer,	Dawson,	and	Sudan26	proposed	a	theory	to	explain	the	observation	of	
satellite	frequencies	in	an	experiment27	in	which	a	large	amplitude	electron	plasma	
wave	trapped	electrons.	 	The	 instability	grows	up	from	noise	and	results	 from	the	
interaction	 of	 the	 trapped	 particles	 and	 the	 large-amplitude	 primary	 wave.	 	 The	
derivation	 considers	 particles	 trapped	near	 the	 bottom	of	 the	wave	 troughs.	 	 The	
electrons	 oscillate	 back	 and	 forth	 at	 the	 trapping	 frequency	 ωT=ωB=k0|eφ0/m|1/2.		
Consider	the	electron	equation	of	motion	 in	one	spatial	dimension	for	the	trapped	
electrons	as	perturbed	by	a	small-amplitude	disturbance:	

	 	 !!x j =
e
m
δE(x j ,t)−ωB

2x j 	 	 	 	 	 	 (6.C.1)	

whose	Fourier	transform	from	time	to	frequency	is	

	 	 −ω2x j(ω)=
e
m
δE(x j ,ω)−ωB

2x j(ω) 	 	 	 	 	 (6.C.2)	

and		

	 	 x j(ω)=
1

ωB
2 −ω2

e
m
δE(x j ,t) 	 	 	 	 	 	 (6.C.3)	

	
The	charge	density	for	the	trapped	electrons	and	the	resulting	Poisson	equation	are	

	 	 nT(x ,t)= δ x− x j(t)( )
j
∑ Nj ikδE(k ,ω)= 4πeδnT(k ,ω)

ε(k ,ω) 	 	 (6.C.4)	

where	Nj	is	the	number	of	trapped	electrons	in	the	jth	equally	spaced	wave	trough.	
The	spatially	averaged	unperturbed	trapped	particle	number	density	is	then	
!!! = !!

!!
.		The	Fourier	transform	of	nT(x,t)	from	x	to	k	space	is	

nT(k ,t)= λonTo dxe−ikx∫
j
∑ δ x− x j(t)( )= λonTo e−ikx j (t )

j
∑ ≈ λonT

o e−ikx j
o(t )

j
∑ 1− ikδx j(t)⎡

⎣
⎤
⎦ 	(6.C.5)	

where	 x j(t)= x jo +δx j(t) 	has	been	linearized	for	small	oscillations.		From	Eqs.(6.C.4)	
and	(6.C.5)	

δE(k ,ω)=− 4πe
ε(k ,ω)

2π
k0
nT
o e−ikx j

o

δx j(ω)
j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 	 	 	 	 (6.C.6)	

from	which	one	obtains	

																																																								
26	W.	L.	Kruer,	J.	M.	Dawson,	and	R.	N.	Sudan,	Phys.	Rev.	Lett.	23,	838	(1969).	
27	C.	B.	Wharton,	J.	H.	Malmberg,	and	T.	M.	O’Neil,	Phys.	Fluids	11,	1761	(1968).	
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δE(k ,ω)= 4πnT

oe2

m
1

ω2 −ωB
2( )ε(k ,ω)

2π
k0

e−ikx j
o

j
∑ dk '

2π∫ δE(k ',ω)eik 'x j
o

	 	 (6.C.7)	
where	 	 the	 “plasma	 frequency”	 associated	 with	 the	 trapped	 electrons	 is	!!"! ≡
4!!!!!!/! ≪ !!! .	 	 Equation	 (6.C.7)	 can	 be	 rewritten	 using	 the	 identity	
!!!! !!(!!!!)!!ℓ/!!ℓ = δ k! − k− ℓk!!

ℓ!!! :	

	
ω2 −ωB

2( )δE(k ,ω)= 4πnT
oe2

m
1

ε(k ,ω) dk '∫ δE(k ',ω)δ(k '−k −ℓk0)
ℓ=−∞

∞

∑
		 (6.C.8)	

One	 k	 mode	 is	 coupled	 to	 all	! + ℓ!!	where	ℓ	is	 an	 integer	 and	!!	is	 the	 effective	
lattice	constant.		The	integral	on	the	right	side	of	Eq.(6.C.8)	is	trivial,	and	one	obtains	

ω2 −ωB
2( )

ωpT
2 δE(k ,ω)= 1

ε(k ,ω) δE(k+ℓk0 ,ω)
ℓ=−∞

∞

∑

⇒ δE(k+ℓ'k0 ,ω)
ℓ'
∑ =

ωpT
2

ω2 −ωB
2( )

1
ε(k+ℓ'k0 ,ω)

δE(k+ℓk0 ,ω)
ℓ

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ℓ'
∑

⇒ 1= ωpT
2

ω2 −ωB
2( )

1
ε(k+ℓ'k0 ,ω)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ℓ'
∑

	 (6.C.9)	

An	example	of	a	warm	fluid	dielectric	function	in	Eq.(6.C.9)	in	the	laboratory	frame	
is		

ε(L)(k ,ω)=1− ωp
2

ω2 −3k2vth2
	 	 	 	 											(6.C.10)	

In	the	wave	frame	this	fluid	dielectric	becomes	
	

	 	 	 ε(W )(k ,ω)=1− ωp
2

ω +kV0( )
2
−3k2vth2

	 	 	 											(6.C.11)	

	 The	 dispersion	 relation	 for	 the	 sideband	 instability	 is	 given	 by	 the	 last	
expression	in	Eq.(6.C.9),	which	can	be	rewritten	as	
	 	 	

	 	 	
ω2 −ωB

2( )
ωpT

2 =
1

ε(k+ℓk0 ,ω)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ℓ

∑ 	 	 	 	 											(6.C.12)	

The	left	side	of	Eq.(6.C.12)	has	a	small	divisor;	thus,	we	look	for	terms	in	the	sum	on	
the	right	side	that	are	near	resonant,	i.e.,	values	of	k	and	ℓ	such	that	! ! + ℓ!!,! =
0. 	For	! = !! + ℓ!! = !! + !",−!! + !" 	and	!" 	small,	 the	 two	 terms	ℓ = 0,−2 	
dominate	the	sum	on	the	right	side	of	(6.C.12):	
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ω2 −ωB

2( )
ωpT

2 =
1

ε(k ,ω)+
1

ε(k −2k0 ,ω)
	 	 	 											(6.C.13)	

The	dispersion	relation	in	Eq.(6.C.13)	using	Eq.(6.C.11)	in	the	wave	frame	is	a	cubic,	
which	we	 expand	 for	 small	ω	 and	δk	 to	 quadratic	 order	 in	 small	 quantities	!/!! 	
and	!"/!!:	
	

	 	 ω
ωp

=±
δk
k0

−1+
λ 1+λ( ) 2β +4( )+1⎡
⎣

⎤
⎦± i λ λ +2( ) 2β +3( )

1+λ( )
2 2β +4( )−1
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⎨
⎪

⎩
⎪

⎫

⎬
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⎭
⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
									(6.C.14)		

where	 ! ≡ !!!/!!"! ≫ 1 ,	 ! ≡ !!! − !! /!! = 3v!!! /2!!! <<1,	 and	 !!! 	is	 the	
frequency	 of	 the	 large-amplitude	 wave	 in	 the	 laboratory	 frame	 (the	 Bohm-Gross	
frequency	 in	 this	case).	 	λ	must	be	small,	else	 the	primary	wave	and	 its	sidebands	
are	strongly	Landau	damped.	 	Continuing	the	expansion	of	(6.C.14)	for	 large	!	and	
small	!,	we	obtain	the	simpler	expression:	
	 	 	

	 	 	 ω
ωp

=±
δk
k0

−1+λ ± i λ
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 	 	 	 											(6.C.15)	

In	the	laboratory	frame:	

	 ω(L) =ω(W )+ k0 +δk( )V0 ≈ω0(k0)+δkVgo 1+
1
2β

⎛

⎝
⎜

⎞

⎠
⎟+ ivth δk

3
4β 	 											(6.C.16)	

The	symmetric	satellite	waves	in	k	grow	in	time	and	modulate	the	envelope	of	the	
large	 amplitude	wave.	 	 The	 growth	 rate	 scales	 as	 !!! .	 	 The	 publication	 of	 Kruer,	
Dawson,	 and	 Sudan	 presents	 numerical	 solutions	 of	 the	 dispersion	 relation	
Eq.(6.C.13)	for	parameters	motivated	by	the	Wharton	et	al.	experiment.	
	
Exercise:	 Why	 is	 the	 sideband	 instability	 equivalent	 to	 unstable	 amplitude	
modulation?	 	Motivated	 by	 the	 structure	 of	 Eq.(6.C.16)	 consider	 a	 traveling	wave	
with	growing	noise	superposed	on	the	wave:	
	
	
φ(x ,t)=φ0 e

i(k0x−ω0t ) + dkA(k)eγ(k )tei(k0+δk )x−(ω+δω )t∫⎡
⎣

⎤
⎦

=φ0e
i(k0x−ω0t ) 1+ dkA(k)eγ(k )tei(δkx−δωt )∫⎡

⎣
⎤
⎦=φ0e

i(k0x−ω0t ) 1+ dkA(k)eγ(k )teiδk(x−Vg
ot )∫⎡

⎣⎢
⎤
⎦⎥

=φ0e
i(k0x−ω0t )a(x ,t)

	

	
	

6.D	Example	of	the	saturation	of	the	two-stream	instability	due	to	trapping	
	



	 104	

A	 two-stream	 instability	 for	 the	 simple	 case	 of	 two	 streams	 of	 the	 same	
charge	and	mass	is	a	strong	instability	with	growth	rate	comparable	to	the	plasma	
frequency.	 	The	wave	and	center-of-mass	 frames	coincide.	 	 For	a	one-dimensional	
periodic	 simulation	model	with	a	 system	 length	such	 that	only	 the	 fundamental	 is	
unstable,	we	 expect	 that	 the	 single	 unstable	mode	will	 grow	 to	 a	 large	 amplitude	
such	that	the	wave	can	trap	the	beams:	 !!! ~ !

!!v!
!.	This	estimate	is	borne	out	in	

direct	 kinetic	 simulations	 that	 illustrate	 the	 growth	 and	 saturation	 of	 the	 linearly	
unstable	 fundamental.	 The	 second	 harmonic	 is	 linearly	 stable	 but	 is	 excited	
nonlinearly.	 	 The	 evolution	 of	 the	 phase	 space	 in	 a	 particle	 simulation	 of	 the	
relativistic	 two-stream	 instability	 is	 illustrated	 in	 Fig.	 6.D.1	 Berk	 and	 Roberts28	
employed	a	simplified	“water-bag”	model	of	the	two-stream	instability,	followed	the	
motion	of	phase-space	boundaries,	and	observed	that	a	large-scale	nonlinear	wave	
evolves	accompanying	the	condensation	of	holes	in	phase	space.	

	
Fig.	6.D.1	The	evolution	of	the	relativistic	two-stream	instability	in	the	frame	
of	 the	unstable	wave	 is	shown	 from	a	simulation	with	OSHUN	produced	by	
Michail	Tzoufras,	UCLA	Particle-in-Cell	(PIC)	and	Kinetic	Simulation	Software	
Center	(PICKSC),	https://picksc.idre.ucla.edu	

6.E	Quasi-linear	theory	of	wave-particle	interaction	
	

Consider	the	evolution	of	the	bump-on-tail	instability	(see	Sec.	2.I.e	and	Fig.	
2.I.1).	 	There	 is	a	range	of	unstable	wave	numbers	corresponding	to	an	 interval	of	
phase	velocities	with	resonant	velocities	falling	on	the	velocity	distribution	function	
where	the	slope	is	positive,	i.e.,	

ωp

k2
Δk = Δ

ωp

k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ = Δu →

Δk
k
~ Δu

u
	 	 	 	 (6.E.1)	

Concentrate	on	waves	that	grow	to	appreciable	amplitude:	waves	with	finite	growth	
rates	!! > 0.	 	 As	 a	 matter	 of	 convention,	 consider	 only	 positive	 frequencies	 for	
positive	or	negative	wavenumbers	so	that	the	sign	of	the	wavenumber	determines	
the	sign	of	the	phase	velocity	Vk.			The	electric	potential	can	be	represented	by	

																																																								
28	H.L.	Berk,	K.V.	Roberts.	Methods	Comput.	Phys.,	9,	88	(	1970).	
	



	 105	

	 	 φ(x ,t)= φ j
j=1

N

∑ cos k jx−ωk , jt +α j( ) 		 	 	 	 	 (6.E.2)	

What	is	the	evolution	of	the	particle	velocity	in	the	presence	of	a	spectrum	of	waves	
with	initial	condition	 !!, v! ?		To	answer	this	question	we	compute	 ∆v !!, v!; ! ! 	
at	fixed	x0.		Particles	interact	weakly	with	each	wave	component,	but	none	can	trap	
because	of	the	competition	with	the	other	waves.		We	will	show	that	a	random	walk	
in	velocity	space	occurs	with	attributes:	

	 	 Δv
x0
=0 Δv( )

2

x0

v0;t( )∝t 	 	 	 	 	 (6.E.3)	

Definition:	 The	 linear	 growth	 in	 time	 of	 the	 variance	 in	 the	 velocity	 perturbation	
defines	this	as	a	“diffusion”	process.	
	
[Editor’s	 note:	 Allan	 Kaufman	 published	 two	 fundamental	 papers	 on	 quasilinear	
diffusion	in	plasmas	in	1972.29]	
	

	

6.E.a	Diffusion	equations,	e.g.,	Fick’s	law		
	
	 The	 mathematical	 characterization	 of	 a	 diffusion	 process	 as	 defined	 in	
Eq.(6.E.3)	 shares	many	 of	 the	 same	 results	 as	 random	walk	 processes	 associated	
with	Brownian	motion.	 	Brownian	motion	 in	 a	 colloidal	 suspension	with	diffusion	
into	a	less	dense	region	has	the	property	that	the	diffusive	flux	density	of	particles	is	
proportional	to	the	gradient	in	the	density.	
	
Theorem:	 (Fick’s	 law	 of	 diffusion)	

!
Γ=−Dx∇n 	and	 the	 conservation	 of	 particle	

number	is	embodied	in	the	continuity	equation	

	 	 ∂

∂t
n(x;t)=−∇⋅

!
Γ=∇⋅ Dx∇n( )→Dx∇

2n 	 	 	 (6.E.4)	

if	Dx	is	a	constant,	and	Dx	is	given	by		!! = lim∆!→!
∆! !

!∆! 	where	 ∆! ! 	is	a	function	
of	Δt.	
	

Definition:	The	velocity	diffusion	coefficient	can	be	defined	analogously	
	 	 	 	

		!! = lim∆!→!
∆! !

!∆! 		 	 	 	 (6.E.5)	
This	is	the	diffusivity	in	velocity	space.			
	

																																																								
29	A.	 N.	 Kaufman,	 J.	 Plas.	 Phys.	 8,	 1	 (1972);	 A.N.	 Kaufman,	 Physics	 of	 Fluids	15,	
1063	(1972).	
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Theorem:	 (Velocity-space	diffusion	equation)	The	diffusive	 flux	density	 in	velocity	
space	is	

	 	 	 	
!
Γ(v)

x
=−Dv

∂ f (v)
x

∂v 	 	 	 	 (6.E.6)	

and	the	velocity-space	continuity	equation	yields	the	kinetic	diffusion	equation:	

	 	 	
∂ f

∂t
=−

∂ Γv
∂v =

∂

∂v Dv
∂ f

∂v
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
	 	 	 	 (6.E.7)	

The	 velocity	 space	 diffusion	 in	 Eq.(6.E.7)	 will	 deform	 a	 bump-on-tail	 velocity	
distribution	 function	 asymptotically	 to	 a	 uniform	 plateau	 over	 the	 interval	 in	
velocity	space	that	is	resonant	with	the	unstable	phase	velocities.			
	 The	 wave-particle	 interaction	 with	 a	 spectrum	 of	 waves,	 absent	 particle	
trapping,	has	the	property	that	 ∆v !! ≅ 0	but	only	to	 lowest	order	 in	φ	and	not	to	
second	order.		The	phase	average	with	respect	to	x0	of	∆v!	is	finite	and	determines	
the	velocity	diffusion.		Let	us	calculate	the	diffusion	coefficient	from	consideration	of	
∆v:	 	 	 	

Δv(x0 ,v0 ,t)=
e
m

dt '
0

t

∫ kφk
k
∑ sin k x0 +v0t '( )−ωkt '+αk

⎡
⎣

⎤
⎦

=
e
m

dt '
0

t

∫ kφk
k
∑ sin kv0 −ωk( )t '+kx0 +αk

⎡
⎣

⎤
⎦

=
e
m

kφk
k
∑

cos kv0 −ωk( )t +kx0 +αk
⎡
⎣

⎤
⎦−cos kx0 +αk

⎡
⎣

⎤
⎦

− kx0 −ωk( )

		 	 (6.E.8)	

From	 the	definition	of	 the	diffusion	coefficient	 in	Eq.(6.E.5)	and	using	 the	 identity	
1− !"#$ = 2!!"! ! 2,	then	

	 	

Δv2
x0
=
e
m

⎛

⎝
⎜

⎞

⎠
⎟

2 k2φk
2 1
2+

1
2−cos kv0 −ωk( )t( )

⎛

⎝
⎜

⎞

⎠
⎟

kv0 −ωk( )
2

k
∑

=
e
m

⎛

⎝
⎜

⎞

⎠
⎟

2 k2φk
22sin2 12 kv0 −ωk( )t( )

kv0 −ωk( )
2

k
∑

	 	 	 (6.E.9)	

Theorem:	The	velocity	diffusion	coefficient	is	then	
	 	

	 D(v0)=
t→∞
lim

Δv2
x0

2t =
1
2t

e
m

⎛

⎝
⎜

⎞

⎠
⎟

2 k2φk
22sin2 12 kv0 −ωk( )t( )

kv0 −ωk( )
2k∑ 	 											(6.E.10)	

The	evaluation	of	 the	 limit	with	 respect	 to	 large	 t	 in	Eq.(6.E.10)	 is	 clarified	 in	 the	
next	several	equations.		The	numerator	of	the	diffusion	coefficient	of	 ∆v! 	grows	at	
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t2	for	 small	 argument	 of	 the	 sin	 function,	 i.e.,	 for	 resonant	 particles	!! − !v! ≈ 0,	
and	otherwise	is	oscillatory.	
	 We	next	pass	to	the	limit	of	a	continuum	of	modes.		In	a	box	with	length	L	and	
with	periodic	boundary	conditions:		! = !!

! !,! = ±1,±2,…	 In	an	infinite	plasma	
! → ∞	and	n	goes	to	a	continuum.		Then	
	 	

k
∑ ≡

n=−∞

∞

∑ → dn
−∞

∞

∫ =
L
2π dk = L

−∞

∞

∫ dk
2π−∞

∞

∫ 	 	 	 											(6.E.11)	

The	average	energy	density	of	the	electric	field	becomes	

	 	
Field	Energy	Density =

E2

8π =
1
8π k2φk

2 cos2θkk∑

=
1
8π

k2φk
2

2 →
L

16πk∑
dk
2π−∞

∞

∫ k2φk
2

	 											(6.E.12)	

Definition:	Ε(k)≡ 12Lk
2φk

2 ,	 the	 energy	 density	 per	 unit	 k	 interval,	 i.e.,	 the	 spectral	

density;	and	 E2

8π =
1
8π

dk
2π−∞

∞

∫ Ε(k) .	

Hence,	

	 	 D(v)=
t→∞
lim

1
t
e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dk
2π−∞

∞

∫
Ε(k)2sin2 12 kv−ωk( )t( )

kv−ωk( )
2 	 																									(6.E.13)	

We	define	  ! ≡ !
! !v− !! 	and	use	the	relation		 dx sin

2 x
x20

∞
∫ =π to	demonstrate	that	

	 	 	 	 	
t→∞
lim sin2βt

β2t
=πδ(β) 	 						 				 											(6.E.14)	

The	diffusion	coefficient	becomes	

	 	 	 D(v)= e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dk
2π−∞

∞

∫ Ε(k)πδ(kv−ωk ) 	 	 	 											(6.E.15)	

The	 quasilinear	 diffusion	 coefficient	 in	 (6.E15)	 describes	 resonant	 diffusion	 in	
velocity	 space	 driven	 by	 a	 spectrum	 of	 waves	 and	 is	 used	 in	 the	 velocity-space	
diffusion	 equation	 (6.E.7).	 	 The	 result	 is	 valid	 to	 lowest	 order	 in	 the	 perturbed	
electric	potential	and	only	for	weak	growth	and	damping	rates.			
	

6.E.b	Irreversibility	and	the	H	theorem		
	
	 We	 introduce	 the	 concept	 of	 the	 entropy	 associated	 with	 the	 velocity	
distribution	as	a	function	of	time	S(t):	
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Definition:	 Entropy	 (Boltzmann)	 ! ! ≡ − !v ! v; ! !" ! (v; !) 		 and	 (Gibbs)	
! ! ≡ − !v !" ! x, v; ! !" ! (!, v; !).	
	
Irreversibility	is	a	macroscopic	property	and	requires	coarse-grained	averaging.		We	
associate	irreversibility	with	dS/dt	>	0.	
	
Theorem:		(H	Theorem)	The	time	derivative	of	the	coarse-grained	entropy	is	

		

d
dt
S =− dv

∂ f

∂t
ln f +

f

f

∂ f

∂t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫ =− dv

∂ f

∂t
ln f −

∂

∂v Γ
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫

=− dv −
∂

∂v Γ
⎛

⎝
⎜

⎞

⎠
⎟ln f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ =− dv 1
f

∂ f

∂v Γ
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫ = dv D(v)

f

∂ f

∂v
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∫ >0
				(6.E.16)	

using	 Eqs.(6.E.6)	 and	 (6.E.7),	 and	 integrating	 by	 parts.	 	 That	 the	 right	 side	 of	
Eq.(6.E.16)	 is	 positive	 is	 clear	 given	 that	 D>0	 from	 Eqs.(6.E.13-15),	 ! >0,	 and	
! ! /!v ! > 0.			

The	entropy	S	is	always	increasing,	but	is	bounded	from	above	using	energy	
conservation.	 	 Hence,	 S	 has	 an	 asymptotic	 steady	 state	 at	 its	maximum	 value.	 	 In	
consequence,	the	integrand	on	the	right	side	of	Eq.(6.E.16)	must	vanish	everywhere	
in	 velocity	 space	 asymptotically	 in	 time.	 	 This	 implies	 that	 the	 velocity	 derivative	
! ! /!v	vanishes	 asymptotically	 over	 the	 range	 of	 resonant	 velocities,	 i.e.,	 the	
velocity	 distribution	 flattens.	 	 With	 the	 use	 of	 the	 relations	 ! !v− !! ! !v−
!! =    !" ! ! − !!

!  (or	generally	! !(!) = ! ! − !! !"
!"

!!where	xr	is	 a	 root	of		

u)	and	! !!!!!
!" = v− !!!

!" 	,	 an	alternative	 form	 for	 the	velocity	diffusion	coefficient	
Eq.(6.E.15)	is		

	 	 	D(v)= e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dk
2π−∞

∞

∫ Ε(k)π
δ(k −ωk

v )

v-dω
dk

=
1
2
e
m

⎛

⎝
⎜

⎞

⎠
⎟

2 Ε(ωk

v )
v-Vg(k)

		 											(6.E.17)	

	 We	note	 that	 the	waves	 evolve	 as	 linear	waves	while	 the	particles	 interact	
with	 the	waves	 quadratically	 in	 the	wave	 amplitudes.	 	 Thus,	 the	 spectral	 density	
Ε(k)	grows	or	damps	linearly.	
	
Theorem:	Recalling	Eq.(2.I.7)	the	linear	evolution	of	the	spectral	density	is	

∂Ε(k;t)
∂t

=2γ(k;t)Ε(k;t)where	γ(k;t)=− ε"
∂ε '
∂ω

=
e2

mk
4π
∂ε '
∂ω

dv
∂ f

∂v−∞

∞

∫ πδ(ωk −kv) 						(6.E.18)	

and	<f	>	evolves	according	to	Eq(6.E.7)	in	the	presence	of	the	quasilinear	diffusion	
from	the	wave-particle	interactions.			
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6.E.c	Validity	of	the	quasi-linear	treatment	and	conservation	of	energy	and	
momentum	
	 The	conditions	 for	 the	validity	of	quasilinear	 theory	are	 that	 the	waves	are	
linear,	 i.e.,	 small	 amplitude	 with	 no	 trapping	 of	 particles	 and	 no	 mode	 coupling.		
Energy	and	momentum	conservation	tells	us	nothing	new	but	affords	a	check	that	
things	have	been	done	right.		The	total	energy	density	is	a	sum	of	the	particle	kinetic	
energy	and	the	field	energy	densities.			
	
Theorem:		The	total	energy	density	is	given	by	

U = dv12∫ mv2 f v;t( )+ 1
8π

dk
2π∫ Ε(k)ωk

∂ε '
∂ω

|
ωk
	 	 											(6.E.19)	

The	 second	 term	 on	 the	 right	 side	 of	 Eq.(6.E.19)	 contains	 both	 the	 electric	 field	
energy	 density	 (if	 	!! !!

!

!" |!!=1)	 and	 the	 mechanical	 or	 sloshing	 energy	 of	 the	
particles	in	the	wave	(if		!! !!

!

!" |!!>1).			
	
Theorem:	Energy	conservation	is	demonstrated	by	calculating	the	time	derivative	of	
Eq.(6.E.19)	and	using	expressions	derived	in	Sec.	6.E.b:	

d
dt
U = dv12∫ mv2 ∂

∂v D
∂ f

∂v
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+
1
8π

dk
2π∫ 2γΕ(k)ωk

∂ε '
∂ω

|
ωk

=− dv∫ mv e2

m2
dk
2π∫ Ε(k)πδ(ωk −kv)

∂ f

∂v
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+
dk
2π∫

e2

mk
1
∂ε '
∂ω

dv
∂ f

∂v−∞

∞

∫ πδ(ωk −kv)Ε(k)ωk

∂ε '
∂ω

|
ωk
=0

										(6.E.20)	

	
Theorem:	The	total	momentum	density	is	given	by	the	sum	of	the	particle	and	wave	
momentum	densities	

	 	 	 P = dv∫ mv f v;t( )+ 1
8π

dk
2π∫ Ε(k)k ∂ε '

∂ω
|
ωk
		 											(6.E.21)	

Theorem:	 Momentum	 conservation	 is	 demonstrated	 by	 calculating	 the	 time	
derivative	of	Eq.(6.E.21)	and	using	expressions	derived	in	Sec.	6.E.b:	
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d
dt
P = dv∫ mv ∂

∂v D
∂ f

∂v
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+
1
8π

dk
2π∫ 2γΕ(k)k ∂ε '

∂ω
|
ωk

=− dv∫ m e2
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2π∫ Ε(k)πδ(ωk −kv)

∂ f
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⎝

⎜
⎜

⎞
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⎟
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2π∫
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∞

∫ πδ(ωk −kv)Ε(k)k
∂ε '
∂ω

|
ωk
=0

												(6.E.22)	

	 We	 return	 to	 a	 discussion	 of	 the	 validity	 of	 the	 quasilinear	 diffusion	
equations.		We	consider	three	issues:	

(a) How	 large	 should	 Δt	 be	 in	 the	 definition	 of	 the	 diffusion	 coefficient	
Eq.(6.E.5)?	

(b) How	small	must	Ε	be	so	that	Δv	can	be	calculate	just	to	O(φ)?	
(c) How	small	must	γΔt	be	in	order	that	the	growth	or	damping	of	waves	during	

Δt	 is	 negligible	 so	 that	 the	 diffusion	 coefficient	 can	 be	 calculated	 to	 lowest	
order?	

(a)	Δt	is	long	on	a	microscopic	time	scale	of	the	wave-particle	resonant	interaction,	
but	short	on	the	macroscopic	time	scale	over	which	the	spectral	density	changes	by	
a	 finite	amount.	 	The	 limit	 taken	 in	Eq.(6.E.5)	must	converge	 for	γΔt<<1.	 	Examine	
the	 integral	 in	 the	 expression	 for	 D	 in	 Eq.(6.E.13).	 	 Assume	 that	Ε~Ε !! !"# −
!!!! !

!!"! 	and	expand	! ≡ !! − !v ≈ !!! − !!v + !"
!" − v ! − !! ≈ !"

!" − v ! −
!! = !",	then	

D(v)∝
Δt→∞
lim

e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dk
2π−∞

∞

∫ Ε(k)sin
2βΔt
β2Δt

≈
e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dk
2π Ε(k)−∞

∞

∫ πδ(β) 										(6.E.23)	

where	 	Δt >>1/ δβ =1/ δk dω
dk
−v( ) 	to	 obtain	 the	 result	 in	 (6.E.23),	 which	 can	 be

	
restated	as	the	time	Δt	must	be	long	compared	to	the	time	required	by	the	particles	
to	experience	phase	decorrelation	δkδx>1.				The	particles	have	to	see	many	waves.		
If	the	particles	are	phase-correlated	to	one	wave,	they	can	get	trapped.	
(b)	The	spectral	density	Ε	should	be	so	small	that	there	is	no	trapping	over	the	time	
step	Δt.	 	There	will	be	no	 trapping	 if	 the	 trapping	 time	τT is	much	 longer	 than	 the	
correlation	time	of	the	particle	with	a	single	wave:	

τT ≡ k eφ
m

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

>>
δx
v =

1
kδv⇒

m
eφ

>>
1
δv 		 	 	 											(6.E.24)	

In	the	example	of	the	bump-on-tail	instability,	the	condition	(6.E.24)	implies	that	the	
electric	 potential	must	 be	weak	 and	 the	 bump	 relatively	 broad	 in	 order	 to	 avoid	
particle	trapping.	
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(c)	There	needs	 to	be	weak	growth	or	damping	 in	 the	 time	over	which	 the	wave-
particle	diffusion	coefficient	converges,	i.e.,	the	growth	time	is	long	compared	to	Δt	
which	is	long	compared	to	the	diffusion	and	correlation	time.	

1
γ
>>Δt >> δxv 		 	 	 	 											(6.E.25)	

The	 validity	 conditions	 for	 quasilinear	 diffusion	 can	 be	 summarized	 as	
follows:	

eφ <<mv2 small-amplitude	waves
γ << vδk = kδv weak	growth	or	damping
1
k

m
eφ

>>
1
vδk =

1
kδv no	trapping

	 	 											(6.E.26)	

	
In	Eq.(6.E.26),	we	have	assumed	that	Landau	growth	or	damping	is	weak,	!!!!" ≪ v,	
and	from	consideration	of	the	resonance	conditions	 !"! = |!!|

! .	
	
Example:	 The	 two-stream	 instability	 is	 not	 amenable	 to	 a	 quasilinear	 diffusion	
treatment	because	!v = 0,	and	we	cannot	satisfy	the	validity	conditions.	
	
Example:		Bump-on-tail	instability	
Consider	 the	 descriptions	 in	 Secs.	 2.I.e	 	 and	 6.B.d	 	 The	 validity	 conditions	 for	 the	
application	of	quasilinear	diffusion	theory	are	as	follows.	
(1)	Weak	growth	–	Define	the	interval	of	positive	slope	g’(v)	>	0	to	be	!v.		Then	the	
condition	for	weak	growth	is		

γ
ωk

≈
ωp

2

k2
π g'(v)
2 →

γ
ωp

≈O(1)Δg
g0

v
δv

v
vth

<<
kδv
ωp

⇒
δv
v

⎛

⎝
⎜

⎞

⎠
⎟

2 vth
v >>

Δg
g0
												(6.E.27)	

(2)	No	trapping	–	The	trapping	time	must	be	long	compared	to	the	correlation	time:	

	 	
ωT

ωp

~
k eφ

m
ωp

~O(1)γ
ωp

<<
kδv
ωp

⇒
δv
v

⎛

⎝
⎜

⎞

⎠
⎟

2 vth
v >>

Δg
g0
	 	 											(6.E.28)	

where	 we	 have	 used	 as	 an	 estimate	 of	 the	 wave	 amplitude	 at	 saturation	
ωT~O(1)γ	based	 on	 the	 considerations	 in	 Sec.	 6.B.d.	 	 Thus,	 the	 conditions	 in	
Eqs.(6.E.27)	and	(6.E.28)	are	identical.	
(3)	Linear	waves	–	That	the	wave	amplitude	is	small	eφ	<<	mv2	is	easily	satisfied:	

	 	 eφ /m<< v2⇒ vT2
v2

≈
ωT

2

ωp
2 =

O(1)γ 2
ωp

2 <<1 	 	 	 											(6.E.29)	

Example:	For	the	bump-on-tail	instability	and	representative	plasma	conditions,	one	
might	find	very	approximately	
Δg/ g0 ~10−4 ,δv / v~10−1 , v / vth~10,γ /ωp ~10−2 ,ωT /ωp ~10−1.2 	
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Exercises:	 Check	 the	 validity	 of	 quasilinear	 theory	 for	 the	 (i)	 weak-cold-beam	
instability	and	(ii)	the	ion	acoustic	instability.	
	

	
One	can	make	some	general	comments	and	estimates	regarding	the	growth	

and	 saturation	of	 instabilities	based	on	quasilinear	 theory.	 	 	The	electric	potential	
grows	at	first	exponentially	at	a	growth	rate	that	begins	at	the	linear	value	and	then	
evolves	 in	time	until	 it	saturates.	The	 instantaneous	growth	rate	γ(t)	remains	very	
close	to	the	linear	growth	rate	until	that	last	e-folding	or	two	before	saturation:

	

		

φ(t sat )=φ0 exp dt 'γ(t ')
0

t sat

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⇒
φ sat

φ0
=exp dt 'γ(t ')

0

t sat

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⇒ lnφ
sat

φ0
= dt 'γ(t ')

0

t sat

∫ ⇒ t sat ~ 1
γL

1
2ln

k2 φ sat
2

k2 φ0
2 ~

1
2
1
γL
ln turbulent	wave	energythermal	wave	energy

	

(6.E.30)	

The	ratio	of	the	turbulent	wave	energy	to	the	thermal	wave	energy	is	typically	very	
large.	 	An	estimate	 for	the	thermal	wave	energy	can	be	obtained	by	assuming	that	
the	thermal	wave	energy	 is	set	by	discreteness	effects	and	that	the	ratio	of	kinetic	
energy	 to	 field	 energy	 is	 determined	 by	 plasma	 parameter,	 i.e.,	 the	 ratio	 of	 the	
electric	 field	 energy	 to	 kinetic	 energy	 is	 ~	 nT/Λ	 where	 Λ~nλD3	 	 Based	 on	
observational	experience	(experiments,	simulations,	and	analytical	theories)	we	can	
estimate	the	turbulent	wave	energy	at	saturation	as	~	nT/µ,	where		µ	>>	1.		Hence,

	

	 	 	 	
t sat ~ 1

2γL
lnΛ− lnµ( ) 									 	 																									(6.E.31)	

In	 typical	 plasma	 conditions	we	 find	 that	 10	 <	 lnΛ	 <	 20	 and	 5	 <	 lnµ	 <	 8,	 so	 that	
t sat ~ 2	to	15( )/2γL .	
	 Quasilinear	 theory	 has	 been	 extended	 in	many	 directions.	 	 Here	 are	 a	 few	
examples	of	extensions:	

1.	Three	dimensions	instead	of	one	
2.	The	inclusion	of	a	finite	applied	magnetic	field	
3.	Inclusion	of	magnetic	as	well	as	electric	field	perturbations	(an	
electromagnetic	theory)	
4.		Inhomogeneous	medium	
5.		Formal	derivation	of	quasi-linear	diffusion	theory	
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6.E.d	Formal	derivation	of	quasi-linear	theory	using	canonical	variables	and	the	
Liouville	equation	
	

Here	we	present	 a	 formal	derivation	of	 quasi-linear	 theory	using	 canonical	
variables	that	satisfy	Hamilton’s	equations.		The	value	of	this	formulation	is	that	the	
resulting	equations	capture	the	physics	in	a	more	efficient	and	elegant	manner	that	
retains	mathematical	 rigor.	 	 In	 this	 formulation	 for	 a	 three-dimensional	 Coulomb	
plasma	 with	 no	 applied	 magnetic	 field,	 the	 phase-space	 variables	 become						
!,!, !, !,!, ! → !!, !!, !!,!!,!!,!! 		With	 a	 finite	B0	 one	might	 employ	 canonical	
momentum		! = !!+ !

! !	.	However,	we	will	not	use	the	canonical	momentum	and	
instead	express	the	independent	phase-space	variables	in	terms	of	invariants	of	the	
motion	as	much	as	possible.			

A	constant	of	the	motion	p	is	determined	by	the	absence	of	dependence	of	the	
Hamiltonian	on	the	variable	q	conjugate	to	p,	i.e.,	

	 	 H0(q,p)=H0(q,p) !p=−
∂H0
∂q

=0 	

	For	 example,	 in	 a	 uniform	 magnetic	 field	 in	 the	 z	 direction,	 with	 no	 zero	 order	
electric	 fields,	v!! , v||	are	 invariants	as	well	as	 the	guiding-center	positions	X	and	Y.			
In	 this	 situation,	 the	 conjugate	 variables	 to	v!!  and	v||	are	 the	 gyrophase	φ	and	 the	
position	z,	respectively.		The	guiding-center	positions	X	and	Y	are	conjugates	to	one	
another.			If	{p1,p2,p3}	are	three	invariants	of	the	zero	order	motion	corresponding	to	
{v||, v!! ,!}	then	we	 can	 construct	 the	 zero-order	 phase-space	 distribution	 function	
from	 f0(v||, v!! ,!).	 	 Because	 Y	 is	 also	 a	 constant	 of	 the	 zero-order	 motion,	 then	
!!!
!!!

= 0	and	!!(!) → !!(!!,!!).	
	 Quite	generally,	the	phase-space	distribution	function	will	be	a	function	of	all	
of	the	canonical	variables	and	time:	

f p1 ,p2 ,...,q1 ,q2 ,...;t( ) and ∂f
∂t
+
∂

∂p1
!p1 f( )+ ...+ ∂

∂q1
!q1 f( )+ ...=0 	 											(6.E.32)	

in	 the	 collisionless	 limit.	 	 A	 formal	 average	 of	 f	 over	 qj	 can	 be	 performed	 by	
integrating	the	kinetic	equation	in	(6.E.32).	
	
Theorem:	Using	 the	property	of	 the	perfect	differential	 and	appropriate	boundary	
conditions	 (either	 zero	 at	 ±∞	 or	 periodic	 on	 0	 to	 2π),	
!!! !

!!!
!!! = !!! |!!,!!!,!! = 0,		the	kinetic	equation	for	 ! (!; !)	becomes	

								
∂ f p;t( )

∂t
=−

∂

∂p
!p f( ) !p=−∂H

∂q
=−

∂δH
∂q

H =H0 p( )+δH p,q;t( ) 												(6.E.33)	

where	we	have	used	 !p f = !p f =0 .			Thus,	
	 f q,p;t( )= f

q
(p;t)+δ f q,p;t( ) and !pf = !pδ f 	 								 											(6.E.34)	

We	use	the	Liouville	equation	form	of	the	Vlasov	equation	(6.E.32)	to	obtain	
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	 0= df (p,q;t)
dt

=
d f

dt
+
dδ f
dt

→
dδ f
dt

=−
∂ f

∂t
+
∂ f

∂p
⋅ !p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
	 	 											(6.E.35)	

Given	 the	 Hamiltonian	 H=p2/2m+eδφ(x,t)	 with	 eδφ	 identified	 as	 a	 first-order	
perturbing	field,	the	first	term	on	the	right	side	of	the	last	expression	in	Eq.(6.E.35)	
is	 second	 order	 and	 the	 second	 term	 is	 first	 order.	 	 Then	 to	 first	 order	 in	 the	
perturbed	electric	potential	

	 	 	 	 dδ f
dt

=−
∂ f

∂p
⋅ !p 	 	 	 	 											(6.E.36)	

We	 next	 integrate	 Eq.(6.E.36)	 from	 t-Δt	 to	 t	 along	 the	 particle	 phase-space	
characteristics	to	first	order	using		

	 	 	 ∂

∂t
+ !q ⋅ ∂

∂q
+ !p⋅ ∂

∂p

⎡

⎣
⎢

⎤

⎦
⎥δ f ≈

∂

∂t
+ !q ⋅ ∂

∂q

⎡

⎣
⎢

⎤

⎦
⎥δ f 	 	 											(6.E.37)	

because	 !p is	first	order	and	 !p⋅ ∂
∂p
δ f 	is	second	order.		Hence,	

dt '
dδ f q,p;t( )

dtt−Δt

t

∫ =δ f qt ,pt ;t( )−δ f qt−Δt ,pt−Δt ;t −Δt( ) ≈δ f qt ,pt ;t( )−δ f qt−Δt ,pt ;t −Δt( )

⇒δ f qt ,pt ;t( )=δ f qt−Δt ,pt ;t −Δt( )− dt '
t−Δt

t

∫ !p⋅
∂ f

∂p
(6.E.38)

	
We	average	the	Liouville	equation,	use	Eqs.(6.E.35),	use	Eq.(6.E.38)	to	evaluate	δf(t),	
and	subtract	off	the	first	order	terms	to	identify	second-order	terms:	

∂ f

∂t
+
∂

∂p
⋅ !pδ f =0→

∂ f

∂t
=−

∂

∂p
⋅ !p(t)δ f (t) =

−
∂

∂p
⋅ !p(t)δ f (t −Δt){ }+ ∂

∂p
⋅ dt ' !p(t)!p(t ') ⋅

∂ f

∂p
t '( )

t−Δt

t

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

																(6.E.39)	

It	can	be	shown	that	the	 first	 term	on	the	right	side	of	Eq.(6.E.39)	 falls	off	with	Δt	
and	is	negligible	compared	to	the	second	term	for	Δt	>>	δx/v	(the	correlation	time).		
	
Theorem:	Eq.(6.E.39)	leads	to	a	quasilinear	diffusion	equation	for	the	slowly	varying	
average	distribution	function	where	we	have	defined	! − ! = !′:		
	 	

	 	 	
∂ f

∂t
=
∂

∂p
⋅ dτ !p(t)!p(t −τ ) ⋅

∂ f

∂p
t −τ( )

0

Δt

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	 											(6.E.40)	

Definition:	The	quasilinear	diffusion	tensor	is	

	 	 	 D(p,t)≡ dτ !p(t)!p(t −τ )
0

Δt

∫ 	 	 	 	 											(6.E.41)		
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The	 integrand	 on	 the	 right	 side	 of	 Eq.(6.E.41)	 is	 the	 two-time	 momentum	
correlation	function	which	is	largest	for	small	τ	and	falls	off	for	large	τ		compared	to	
the	correlation	time	δx/v.		If	we	expand	

		 	
∂ f

∂p
(t −τ )=

∂ f

∂p
(t)−τ ∂

∂p

∂ f

∂t
(t)≈

∂ f

∂p
(t)+O(τ 2) 		

and	 just	 keep	 the	 lowest	 order	 first	 term	 for	 use	 in	 Eq.(6.E.40),	 then	 Eq.(6.E.41)	
becomes	 	

	 	 	
∂ f

∂t
=
∂

∂p
⋅ D p;t( ) ⋅

∂ f p;t( )
∂p

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	 	 	 											(6.E.42)	

	

6.E.e	Diffusion	tensor	
	

We	have	derived	the	diffusion	tensor	in	Eq.(6.E.41).		For	a	uniform	magnetic	
field	parallel	to	the	z	axis,	the	generalized	momentum	vector	in	canonical	variables	
is	p=(mv z , 12

mv⊥2
Ω
, eB0
c
Y ) .		One	of	the	components	of	the	diffusion	tensor	is	then	

D
⊥
(p,t)≡ dτ !p

⊥
(t) !p

⊥
(t −τ )

0

Δt

∫ 	 	 	 										(6.E.43)	

Theorem:	The	standard	form	for	a	diffusion	coefficient	is	 	

D
⊥
(p,t)≡

Δt→∞
lim

Δp
⊥( )

2

2Δt =
Δt→∞
lim

dt !p
⊥
(t)

0

Δt

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2Δt =
Δt→∞
lim

dt dt '
0

Δt

∫ !p
⊥
(t) !p

⊥
(t ')

0

Δt

∫
2Δt 				(6.E.44)	

Only	near	t=t’	is	the	integrand	in	the	double	integral	finite	on	the	right	side.		Hence,	

D
⊥
(p,t)≈

dt dτ
−∞

∞

∫ !p
⊥
(t) !p

⊥
(t −τ )

0

Δt

∫
2Δt ≈

2Δt dτ
0

∞

∫ !p
⊥
(t) !p

⊥
(t −τ )

2Δt = dτ
0

∞

∫ !p
⊥
(t) !p

⊥
(t −τ )

	
	 	 	 	 	 	 	 	 	 	 											(6.E.45)	
as	long	at	Δt	is	large	compared	to	the	correlation	time.		We	note	that	the	integrand	is	
an	even	function	of	τ  which	is	justified	by	microscopic	reversibility	arguments.	
	
Example:	For	a	Coulomb	model	,	

H =
pz
2

2m+p
⊥
Ω+eδφ(r,t) ρ(x |r)≡ eδ(x−r)

δH(p,q;t)= d3xδφ(x,t)∫ ρ(x |r)
r(p,q) q=(z ,φ , eB0

c
Y ) R =(x , y ,z) 										 											(6.E.46)	

With	a	continuum	of	waves	present	
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δφ(x,t)= d3k∫
2π( )

3 δφ(k ,t)e
ik⋅x δH =

d3k∫
2π( )

3 δφ(k ,t) d3x∫ eik⋅x
⊥
ρ(x |p,q)

d3x∫ eik⋅xρ(x |p,q)= ρ(k |p,q)= e d3x∫ eik⋅xδ(x−r)= e eik⋅r(p ,q)

= e exp ikzz+ ikx X +r⊥ cosθ( )+ ik y Y +r⊥ sinθ( )⎡
⎣

⎤
⎦

= e eik⋅Reik⊥r⊥cos(θ−α ) = e eik⋅R iℓ
ℓ=−∞

ℓ=∞

∑ J
ℓ
(k

⊥
r
⊥
)eiℓ(θ−α )

											(6.E.47)	

Hence,	

	 	

δH = e
d3k∫
2π( )

3 δφ(k ,t)e
ik⋅R iℓ

ℓ=−∞

ℓ=∞

∑ J
ℓ
(k

⊥
r
⊥
)eiℓ(θ−α ) and

!p
⊥
=−e

d3k∫
2π( )

3 δφ(k ,t)e
ik⋅R iℓ+1ℓJ

ℓ
(k

⊥
r
⊥
)eiℓ(θ−α )

ℓ=−∞

ℓ=∞

∑
	 	 											(6.E.48)	

using	 !p
⊥
=−∂δH

∂q
⊥

=−∂δH
∂θ
.	

Theorem:	The	integrand	in	the	right	side	of	Eq.(6.E.45)	becomes	

!p
⊥
(t) !p

⊥
(t −τ ) =< e2 d3k∫

2π( )
3

d3k '∫
2π( )

3 δφ(k ,t)δφ
∗(k ,t −τ )eik⋅Rt eik'⋅Rt−τ

× ℓℓ'(−i)ℓ'
ℓ'=−∞

ℓ'=∞

∑ iℓ J
ℓ
(k

⊥
r
⊥

t ) J
ℓ'(k⊥ 'r⊥t−τ )eil(θ

t−α )e−il'(θ
t−τ−α ')

ℓ=−∞

ℓ=∞

∑ >

								(6.E.49)	

	
We	use	the	zero-order	orbit	for	!!!! = !! − v!!	and	average	over	phases:	

L→∞
lim1

L
dz exp i kz −k 'z( )z⎡

⎣
⎤
⎦

−L/2

L/2

∫ =
2π
L
δ(kz −k 'z )  and	similarly	in	x,	y,	and/or	θ	to	obtain	

the	following:	

!p
⊥
(t) !p

⊥
(t −τ ) = e2 dτ

Vol0

∞

∫
d3k∫
2π( )

3 δφ(k ,t)δφ
∗(k ,t −τ )eik⋅Rt eik'⋅Rt−τ ℓ2 J

ℓ
(k

⊥
r
⊥
)2 < eik⋅ΔR(τ )+iℓΔφ(τ )

ℓ=−∞

ℓ=∞

∑ >

	
	 	 	 	 	 	 	 	 	 	 											(6.E.50)	
	
We	limit	the	ensemble	of	waves	to	only	normal	modes:	
	 δφ(k ,t)=δ !φ(k ,t)e−iωkt δφδφ∗ =δ !φ(k ,t)δ !φ∗(k ,t −τ )e−iωkτ 																													(6.E.51)	
and	 ignore	 the	 slow	 temporal	 variation	 of	 the	 mode	 amplitudes	δ !φ(k ,t) .	 	 Use	 of	
(6.E.50),	(6.E.51),	(6.E.45)	and	the	definition	of	the	spectral	density	
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S
φ
(k ,t)≡

Vol→∞
lim

δ !φ(k ,t)
Vol

2

	 	 	 																									(6.E.52)	

yields	the	expression	for	the	diffusion	coefficient	

	

D
⊥
≈ e2 d3k

2π( )
3∫ S

φ
(k ,t) ℓ2

ℓ

∑ J
ℓ
2 dτe−iωkτ+ikzvzτ+iℓΩτ
0

∞

∫

= e2 d3k

2π( )
3∫ S

φ
(k ,t) ℓ2

ℓ

∑ J
ℓ
2 πδ(kzv z +ℓΩ−ωk )+

P
i(ωk −kzv z −ℓΩ)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

						(6.E.53)	

Exercise:	 Show	 that	 the	 imaginary	 part	 of	 the	 diffusion	 coefficient	 in	 Eq.(6.E.53)	
vanishes	using	the	convention	ω

−k =−ωk 	and	summing	over	k	in	the	integral.	
Exercise:		i.	Show	that	the	other	important	terms	in	the	diffusion	tensor	satisfy	

Dzz Dz⊥
D
⊥z D

⊥⊥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∝
kz
2 kzℓ

kzℓ ℓ
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

ii.	Derive	the	diffusion	tensor	for	electromagnetic	waves,	δφ→δA .	

6.E.f	Self-consistent	quasi-linear	diffusion	equation	and	energy	conservation	
	
	 Here	quasi-linear	theory	is	further	elaborated.		In	terms	of	momentum	
variables	(pz,p⊥)	the	diffusion	tensor	is	

					
!
D= e2 d3k

2π( )
3∫ S

φ
α(k ,t) J

ℓ
2

ℓ

∑ k
⊥
r
⊥( )πδ(kzv z +ℓΩ−ωk

α )kk , k
α

∑ = kzê1 +ℓê2

								

(6.E.54)	

where	 α	 indicates	 the	 branches	 of	 the	 dispersion	 relation,	 e.g.,	 for	 electrostatic	
waves	 propagating	 parallel	 to	 the	 magnetic	 field	 this	 corresponds	 to	 electron	
plasma	waves	and	ion	acoustic	waves.		The	diffusion	equation	for	the	slowly	varying	
distribution	function	for	a	specific	branch	is	then	
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										(6.E.55)	

Definition:	We	can	define	an	 invariant	 I	 for	a	wave	with	characteristics	 (k,l,ωk,)	 as	
follows:	

	 	 	 	 I =
pz −m

ω
kz

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

2m +Ωp
⊥
		 	 	 									(6.E.56a)	

with	momentum-space	gradient		
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∇I = ê1 v z −
ω
k

⎛

⎝
⎜

⎞

⎠
⎟+ ê2Ω 	 	 	 									(6.E.56b)	

From	Eqs.(6.54)	and	(6.E.56b)	one	concludes	the	following	inner	product	vanishes:	

	 	 	 	 k ⋅∇I = kz v z −
ω
kz

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ℓΩ=0 	

as	a	consequence	of	the	resonance	condition.		Hence,	k	and	∇I	are	perpendicular:	∇I	
is	directed	across	 the	 invariant	contours,	and	k	 is	 in	 the	direction	of	 the	 invariant	
curve.	 	k ⋅∇f 	should	become	uniform	because	particles	diffuse	along	 the	 invariant	
curves	until	∇k ⋅ f =0 .	
	 At	 this	point	we	return	 to	consideration	of	 the	development	of	Eqs.(6.E.50-
6.E.53).	 	 In	 this	derivation	 there	was	an	assumed	 limitation	on	 the	 rapidity	of	 the	
temporal	variation	of	slowly	varying	coefficients:	 	 !φ k ,t( ) !φ∗ k ,t −τ( ) ≈ !φ k ,t( ) !φ∗ k ,t( ) .			
Inclusion	of	the	next	term	in	a	Taylor	series	looks	like		

!φ∗ k ,t −τ( ) ≈ !φ∗ k ,t( )−τ ∂
∂t
!φ∗ k ,t( )+ ... ,	 where	 τ	 is	 the	 order	 of	 the	 correlation	 time.		

The	linear	correction	term	in	the	Taylor	series	 is	clearly	small	 if	γ <<1/τcorr ,	 i.e.,	 if	
the	 correlation	 time	 is	 assumed	 short	 compared	 to	 the	 linear	 growth	 time.	 	 This	
does	 not	 imply	 that	 !φ k ,t( ) !φ∗ k ,t −τ( ) ≈ !φ k ,t( ) !φ∗ k ,t( ) is	 time	 independent:	 slow	
variations	are	explicitly	included,	and	the	growth	or	damping	rate	of	!!! 	is	2γ	to	good	
approximation.	 Hence,	 the	 quasilinear	 diffusion	 equation	 includes	 slow	 temporal	
variations	in	both	 f = f0 + f2 	and	D:		

	 	 	 		
∂ f

∂t
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∂

∂p
⋅ D⋅

∂ f

∂p

⎛

⎝

⎜
⎜

⎞
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⎟
⎟
	 	 	 	 											(6.E.57)	

The	 temporal	 variation	 in	 f 	is	 a	 second-order	 resonant	 perturbation.	 	 We	 can	
construct	 a	 closed	 set	 of	 equations	 based	 on	 the	 diffusion	 equation	 and	 energy	
conservation	 as	 follows.	 	 	 The	partial	 time	derivative	 of	 f 	is	 proportional	 to	Sφ,	
and	 the	 spectral	 density	 evolves	 to	 lowest	 order	 according	 to	 “linear	 theory”	
determining	the	growth	or	damping	rate	γ	but	using	the	total	perturbed	distribution	
function	that	evolves	in	time.			
	
Theorem:	Self-consistent	quasilinear	theory	

	 	 	

∂ f

∂t
=
∂

∂p
⋅ D⋅ ∂

∂p
f

⎛

⎝
⎜

⎞

⎠
⎟ D= ...S

φ
(k ,t)

∂S
φ
(k ,t)
∂t

=2γ(k ,t)S
φ
(k ,t) γ(k ,t)= ... f

																									(6.E.58)	
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Theorem:	Energy	conservation	
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											(6.E.59)				

We	integrate	the	first	term	in	Eq.(6.E.59)	and	use	Eqs.(6.E.54)	and	(6.E.55)	to	obtain	
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											(6.E.60)	

where	 we	 have	 divided	 out	 a	 common	 volume	 factor.	 	 We	 note	 that	!! ! ! →
! ! = !! ! 	and	 !!! ! ! = 1.		Equation	(6.E.60)	can	then	be	used	to	solve	for	γ	
inside	the	integral	over	k	space	(and	the	spectral	density	Sφ	divides	out):	

γ(k)= 1
∂ε '
∂ω

ωk

4πes2n0s
msk

2 d3∫
s
∑ v J

ℓ
2

ℓ

∑ k
⊥
r
⊥( )πδ(kzv z +ℓΩ−ωk )msK ⋅

∂

∂p
g

=
1

∂ε '
∂ω

ωk

ωs
2

k2
d3∫

s
∑ v J

ℓ
2

ℓ

∑ k
⊥
r
⊥( )πδ(kzv z +ℓΩ−ωk ) kz

∂

∂v z
+
ℓΩ
v
⊥

∂

∂v
⊥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ g (v z ,v⊥)

	

											(6.E.61)	
In	 Eqs.(6.E.60)	 and	 (6.E.61),	 K ≡ kzê1 +ℓê2 .	 Now	 we	 can	 refer	 to	 the	 relation	
Eq.(2.I.7)	

	 	 	 	

γ(k)=− ε"
∂ε '(ω ,k)
∂ω

ωk 	
to	obtain	an	explicit	formula	for	ε”,	use	the	Kramers-Kronig	relation	to	determine	ε’,	
and	 can	 compare	 to	 the	 results	 derived	 in	 Sec.	 2.I.e	 .	 	 Equations	 (6.E.58-6.E.61)	
provide	a	formalism	based	on	quasi-linear	theory	for	evolving	both	the	distribution	
function	and	the	amplitudes	of	the	waves	self-consistently.	
	

6.F	Particle	subject	to	gyroresonance		--	instabilities	and	diffusion,	invariants	of	the	
motion,	loss-cone	effects	
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	 In	 the	 presence	 of	 an	 applied,	 static,	 uniform	 magnetic	 field,	 the	 wave-
particle	resonance	is	generalized	from	Landau	resonance	to	the	cyclotron	resonance	
that	appears	mathematically	in	the	denominator	of	the	susceptibility	in	Eq.(4.F.12).		
The	physics	of	the	cyclotron	resonance	is	that	the	Doppler-shifted	frequency	of	the	
wave	matches	a	cyclotron	harmonic	so	that	a	cyclotron	harmonic	component	of	the	
wave	 can	 steadily	 accelerate	 or	 decelerate	 the	 particle:	 in	 the	 particle	 frame	
!! = ! − !!v!=ℓΩ.		It	is	important	to	take	into	account	the	physical	effects	of	a	finite	
spatial	 variation	 of	 the	 wave	 field	 in	 the	 plane	 of	 the	 gyro-motion.	 	 Consider	 for	
example	 the	special	case	of	!!!~!/2	where	! = v!/Ω.	 	 In	Fig.	6.F.1	 is	diagrammed	
the	cyclotron	orbit	of	a	charged	particle	in	its	zero-order	drift	frame	and	the	phase	
of	 the	 electric	 field	 it	 sees.	 	 The	 resonance	 condition	 is	 such	 that	 the	 particle’s	
perpendicular	 velocity	 vector	 is	 co-aligned	 with	 the	 linearly	 polarized,	 perturbed	
electric	 field	δEy	at	both	0	and	2,	and	so	can	continue	 to	be	accelerated,	while	 the	
particle’s	velocity	vector	is	perpendicular	to	δE	at	points	1	and	3.		
	

	
Fig.	 6.F.1	 A	 particle	 with	!! = ! − !!v!=2Ω	and	 with	
!!! = !/2	will	rotate	around	the	gyro-radius	from	0	to	
2	in	one-half	a	cyclotron	period	and	see	an	electric	field	
δEy	whose	 phase	 has	 advanced	 in	 time	 by	 2!	and	 in	 x	
by !.		
	

	 We	 will	 describe	 the	 gyro-resonant	 wave-particle	 interaction	 in	 terms	 of	
increments	 to	 the	 particle	 energy,	 momentum,	 and	 angular	 momentum.	 	 We	 use	
canonical	variables.		In	a	quantum	mechanical	picture	when	a	photon	interacts	with	
a	 particle,	 the	 change	 in	 energy	 satisfies	Δ! = ℏ! ;	 the	 change	 in	 momentum	
satisfies	Δ!v! = ℎ!;	and	the	change	in	angular	momentum	satisfies	Δ!! = ℓℏ.	 	We	
calculate	 the	 analogous	 classical	 changes	 in	 energy	 and	 in	 linear	 and	 angular	
momenta	in	the	following	analysis.	
	
Theorem:	For	a	gyrating	particle,	

	 	 	 H = 12mv z
2 +
1
2mv⊥

2 =
1
2mv z

2 +p
⊥
Ω, p

⊥
=

1
2mv⊥

2

Ω
ΔH =mv zΔv z +ΩΔp⊥

	 														(6.F.1)	
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Definition:	Canonical	variables	and	guiding-center	coordinates	(see	Sec.	6.E.d)	

	 	
x , y ,z ,px ,py ,pz{ } px =mv x +

e
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0 , 	etc.
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,φ ,X ,aY
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⎨
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⎫
⎬
⎪

⎭⎪

	 	 														(6.F.2)	

	
Theorem:	We	describe	the	particle	gyration	in	terms	of	canonical	variables:	
	

	 	 	 	

x = X +r
⊥
cosφ

y =Y +r
⊥
sinφ

!x =−Ωr
⊥
sinφ

!y =Ωr
⊥
cosφ

p
⊥
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1
2mv⊥2
Ω

r
⊥
≡
v
⊥

Ω

	 	 	 														(6.F.3)	

In	Eq.(6.F.3)	X	and	Y	are	guiding	center	positions	with	the	magnetic	field	oriented	in	
the	z	direction.		 p

⊥
,φ( ) 	is	a	canonically	conjugate	pair.			 X ,aY( ) 	is	also	a	canonically	

conjugate	 pair	 if	! = !"/!,	 which	 choice	 is	 consistent	 with	 the	 conditions	 on	 the	
canonical	variables:		 !! , !! = !!" 	and	 !! , !! = 0	where	{f,g	}	is	the	Poisson	bracket.	
	 We	next	extend	the	equations	in	Eq.(6.F.1-6.F.3)	to	describe	gyro-resonance	
in	the	presence	of	a	longitudinal	wave.		The	gyro-resonance	condition	is	
	 	 	 	 ω −kzv z = ℓΩ 	 	 	 	 	 														(6.F.4)	
where	ℓ	is	 an	 integer.	 	ℓ = 0	corresponds	 to	 Landau	 resonance	 analyzed	 earlier.		
Gyro-resonance	can	occur	for	 ℓ > 0	for	!! ≠ 0.	 	From	a	quantum	physics	point	of	
view,	 when	 a	 particle	 interacts	 with	 a	 photon,	 the	 conservation	 of	 energy,	
momentum,	and	angular	momentum	leads	to	the	following	relations,	and	implies	an	
invariant	I:	

	
ΔH = !ω Δpz = !kz Δp

⊥
= ℓ!

Δ kzH−ωpz( )= !ωkz −!kzω =0 ⇒ I ≡ kzH−ωpz = invariant
	 														(6.F.5)	

We	now	construct	a	quantity	Iw	related	to	the	particle	kinetic	energy	in	the	frame	of	
a	wave:	

	 	 	 Vz ≡
ω
kz

Iw =
1
2m v z −Vz( )

2
+
1
2mv⊥

2 −
1
2mVz

2 	 	 														(6.F.6)	

However,	 Iw	needs	 to	 include	 the	potential	 energy	due	 to	 the	wave	 to	be	useful	 in	
constructing	 the	 classical	 particle	 Hamiltonian	 and	 deducing	 an	 invariant	 of	 the	
motion.		The	classical	Hamiltonian	including	a	longitudinal	wave	is		

		
H =

pz
2

2m+p
⊥
Ω+eφ0 sin kzz+k⊥x−ωt⎡

⎣
⎤
⎦=

pz
2

2m+p
⊥
Ω+eφ0 sin kzz+k⊥ X +r

⊥
cosφ( )−ωt⎡

⎣
⎤
⎦ 	

	 	 	 	 	 	 	 	 	 	 	 (6.F.7)	
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Theorem:	Using	Hamilton’s	equations	and	H	in	Eq.(6.F.7)	

	 	
!H = ∂

∂t
H =−ωeφ0 cos kzz+k⊥ X +r

⊥
cosφ( )−ωt⎡

⎣
⎤
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⎣
⎤
⎦

	 	 													(6.F.8)	 	

It	 follows	 from	Eq.	 (6.F.8)	 that	 there	 is	 an	 invariant	 I	 that	 is	 analogous	 to	 that	 in	
Eq.(6.F.5):	

	 	 I =H− ω
kz
pz , !I = !H−

ω
kz
!pz =0 	 	 	 	 														(6.F.9)	

In	 the	 wave	 frame	!! = ! − !
!!
!,	there	 is	 no	 explicit	 time	 dependence	 in	H(W),	 i.e.,	

! = 0;	and	H(W)	is	then	a	constant	independent	of	time.			
	 Particles	 follow	 trajectories	 on	 families	 of	 curves	 in	 the	 phase	 space	 of	
(v! , v!) determined	by	I=constant.	 	The	curves	are	half	ellipses	 (v⊥>0)	displaced	 in	
vz		by	Vz	 from	 the	origin,	 for	 infinitesimal	wave	amplitude.	 	 Finite	wave	amplitude	
distorts	the	invariant	curves	from	exact	ellipses.		Particles	with	velocities	
	 	 	 	v!! = !!ℓ!

!!
= !! − ℓ!

!!
			 	 	 	 											(6.F.10)	

are	resonant	with	the	wave.	 	Non-resonant	particles	have	an	adiabatic	response	to	
the	wave.		Resonant	particles	can	have	an	irreversible	response.		A	trapped	particle	
will	 oscillate	 around	 the	 resonant	 velocity	v!! 	with	 characteristics	 that	 depend	 on	
the	 finite	amplitude	of	 the	wave.	 	Nearly	 resonant	velocities	vz	whose	magnitudes	
are	 less	 than	|v!!| 	will	 gain	 energy	 from	 the	 wave	 and	 accelerate,	 and	 nearly	
resonant	velocities	whose	magnitudes	are	greater	 than	|v!!|	will	 lose	energy	 to	 the	
wave	 and	 decelerate.	 	 Depending	 on	 the	 sign	 of	 the	 slope	 of	 the	 distribution	
function,	 which	 determines	 if	 there	 are	 more	 or	 fewer	 particles	 with	 velocities	
greater	 or	 less	 than	 the	 resonant	 velocity	 to	 exchange	 energy	with	 the	wave,	 the	
resonant	 wave-particle	 interaction	 will	 lead	 to	 growth	 or	 damping	 of	 the	 wave	
similar	to	that	discussed	earlier	in	Secs.	2	and	3.	
	
Theorem:	 i.	 If	 Vz>0	 and	 vz>0,	 then	 linear	 exponential	 growth	 γ>0	 is	 expected	 if	
∂f/∂pz>0;	and	linear	exponential	damping	γ<0	is	expected	if	∂f/∂pz<0.		ii.		If	Vz>0	and	
vz<0,	 then	 linear	 exponential	 growth	 γ>0	 is	 expected	 if	 ∂f/∂pz<0;	 and	 linear	
exponential	damping	γ<0	is	expected	if	∂f/∂pz>0.			
	
Definition:	In	mirror	machines	there	is	a	“loss	cone”	determined	by	the	ratio	of	the	
axial	magnetic	 field	at	 its	maximum	to	 its	value	at	 its	minimum	(the	mirror	ratio),	
i.e.,	particles	at	 the	mid-plane	with	 v!/v! ≥ cotan(!!)	will	not	be	confined	by	 the	
magnetic	 mirror.	 The	 loss	 cone	 establishes	 velocity	 gradients	 of	 the	 distribution	
function,	 and	 the	 stability	 theorem	 then	 indicates	 that	 instabilities	 arise.	 	 The	
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instabilities	 produce	 velocity-space	 diffusion	 into	 the	 loss	 cone	 that	 exacerbates	
particle	loss	out	of	the	mirror,	i.e.,	loss-cone	instability.30	
	
Exercise:	Use	conservation	of	energy	and	magnetic	moment	to	derive	the	loss-cone	
condition	on	 v!/v! 	in	a	simple	magnetic	mirror	configuration.	
	
	 Consider	a	set	of	waves	such	that	Vz ≡ω(k⊥ ,kz )/kz 	is	the	same	for	the	range	
of	 kz	 and	 k⊥	 in	 the	 set.	 	 Consider	 particles	with	 a	 broad	 distribution	 of	 v⊥	 values	
extending	 to	 v⊥=0	 and	 a	 narrow	 band	 of	 resonant	 velocities	 in	 vz	 satisfying	
Eq.(6.F.10)	with	ℓ = −1,	i.e.,		

	 	 	 Δv zR =ΩΔ
1
kz

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, v zR =Vz −

Ω

kz
		 	 	 											(6.F.11)	

	On	 any	 invariant	 curve	 there	 can	 be	 quasi-linear	 diffusion	 in	 the	 vicinity	 of	 the	
resonance	 (assuming	 the	 presence	 of	 a	 decorrelation	 mechanism)	 that	 manifests	
itself	 by	 a	 random	 walk.	 The	 random	 walks	 can	 occur	 throughout	 the	 band	 of	
resonant	 particles.	 	 The	 net	 result	 of	 the	 diffusion	 is	 uniformity	 of	 the	 velocity	
distribution	in	the	resonant	band.		If	there	is	a	loss	cone	present,	then	the	resonance	
band	can	cross	the	loss-cone	boundary	at	v! = v!!/cotan(!!);	and	the	diffusion	can	
drive	particles	 into	 the	 loss	 region.	 	An	 increase	 in	 the	amplitude	of	 the	 turbulent	
waves	will	increase	the	diffusion	rate	into	the	loss	region.			
	 If	 we	 consider	 other	 cyclotron	 harmonics	ℓ,	 there	 are	 additional	 resonant	
bands	 for	 the	 same	 Vz;	 and	 there	 will	 be	 more	 resonant	 bands	 in	 phase	 space.		
Furthermore,	if	the	wave	spectrum	contains	waves	with	more	than	one	value	of	Vz,	
the	 likelihood	of	diffusion	increases.	 	For	every	value	of	Vz			and	infinitesimal	wave	
amplitude,	 there	 is	 a	 new	 family	 of	 invariant	 curves	 that	 are	 displaced	 in	 vz	 by	 a	
unique	value	of	Vz.	 	A	resonant	particle	can	diffuse	 in	 its	resonant	band	associated	
with	 one	 value	 of	 Vz,	 encounter	 an	 invariant	 curve,	 and	 then	 move	 along	 the	
invariant	curve	a	short	distance	before	encountering	another	unique	resonant	band	
in	which	it	diffuses.			
	
[Editor’s	 note:	 The	 preceding	 picture	 is	 significantly	 altered	 for	 a	 spectrum	 of	 finite	
wave	amplitudes	because	the	independence	of	the	invariant	curves	for	distinct	values	

of	 the	phase	velocity	Vz	becomes	 invalid.	 	The	solution	of	 the	 invariant	curves	should	

come	from	Eqs.(6.F.7-6.F.9)	summing	over	all	waves	with	finite	amplitude.	 	However,	

the	 solution	 for	 “independent”	 invariant	curves	 for	each	wave	 in	a	 set	of	waves	with	

distinct	 phase	 velocities	 and	 infinitesimal	 amplitudes	 should	 be	 valid	 and	 useful	 for	

understanding	 the	 dynamics	 in	 the	 near	 vicinity	 of	 where	 an	 invariant	 curve	 for	 a	

distinct	 phase	 velocity	 crosses	 a	 resonant	 velocity	 band	 for	 the	 same	 phase	 velocity.			

																																																								
30	M.	N.	Rosenbluth	and	R.	F.	Post,	Phys.	Fluids	8,	547	(1965). 
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Resonant	wave	diffusion	was	an	active	area	of	research	by	Kaufman	and	his	students	

and	post-doctoral	researchers	in	the	next	ten	years	after	these	lectures.31]	
	
	 With	a	wave	spectrum	of	multiple	distinct	phase	velocities	there	are	bands	of	
resonant	velocity.	 	The	width	of	the	resonant	bands	increases	with	increased	wave	
amplitudes.	 	 The	 possibility	 of	 resonance	 overlap	 occurs.	 The	 consequence	 of	
resonance	 overlap	 is	 increased	 velocity-space	 transport.	 	 If	 the	 particle	 ends	 up	
farther	from	the	origin	in	(v! , v!), then	heating	has	occurred	(cooling	if	the	particle	
ends	 up	 closer	 to	 the	 origin).	 	 For	 many	 waves,	 more	 of	 phase	 space	 becomes	
accessible	to	diffusion,	and	f(v)	tends	to	uniformity	in	the	diffusive	regions	subject	
to	 the	 constraint	 that	 the	 overall	 energy	 is	 bounded.	 	 As	 uniformity	 of	 f	 is	
approached,	i.e.,	f	flattens,	the	growth	or	damping	rate	γ	tends	to	zero;	and	waves	no	
longer	exchange	energy	with	 the	particles.	 	The	velocity	distribution	also	 tends	 to	
isotropy.			The	resulting	modifications	to	f	render	the	system	increasingly	stable.	
	

6.G	Gardiner’s	theorem	for	stability	of	a	Vlasov	plasma	–	sources	of	instability	and	
examples	
	
	 In	 a	 plasma	 described	 by	 the	 Vlasov-Poisson	 system	 of	 equations	 it	 is	
possible	to	make	a	general	statement	on	the	stability	of	the	plasma.	
	
Theorem:	 (Gardiner’s	 theorem)	For	 the	Vlasov-Poisson	 system	of	 equations,	 if	 f	 is	
isotropic	and	the	derivative	of	f	with	respect	to	energy	∂f /∂ε <0 ,	 then	the	Vlasov-
Poisson	system	is	linearly	and	nonlinearly	stable.		A	spatially	uniform,	isotropic	and	
monotonic	velocity	distribution	function	(no	relative	drifts,	of	course)	is	stable.		
	
	 Sources	that	drive	instability:	

1. Nonuniformity	 –	 instability	 derives	 energy	 from	 redistributing	 plasma	 in	
space	

2. Anisotropy	–	instability	derives	energy	from	redistributing	plasma	in	velocity	
space,	as	in	magnetic	mirror	devices	

3. Non-monoticity	 –	 like	 bump	on	 tail,	 energy	 becomes	 available	 as	 a	 plateau	
forms	in	velocity	space	

4. Relative	drift	–	ordered	drift	motion	can	contribute	kinetic	energy	to	waves	
A	 common	 feature	 in	 the	 preceding	 list	 is	 that	 instability	 is	 driven	 by	 some	
redistribution	 of	 the	 plasma	 in	 configuration	 or	 velocity	 space,	 which	 allows	 the	
conversion	 of	 kinetic	 energy	 in	 the	 plasma	 into	 wave	 energy	 while	 relaxing	 the	
source	 of	 free	 energy.	 	 We	 have	 already	 encountered	 a	 few	 examples	 of	 this	 in	
earlier	lectures,	e.g.,	Secs.	2.F	and	6.B.	
	
																																																								
31	G.	R.	Smith	and	A.	N	Kaufman,	Phys.	Rev.	Lett.	34,	1613	(1975);	G.	R.	Smith	and	A.	
N.	Kaufman,	Phys.	Fluids	21,	2230	(1978);	G.	R.	Smith	and	N.	R.	Pereira,	Phys.	Fluids	
21,	2253	(1978);	G.	R.	Smith	and	B.	I.	Cohen,	Phys.	Fluids	26,	238	(1983). 
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Example:	The	dispersion	 relation	 in	 the	 ion	 frame	 for	 a	 longitudinal	 ion-cyclotron	
wave	is	

	 	 ω =Ωi 1+τe
−bi I1(bi )⎡

⎣
⎤
⎦, τ =Te /Ti , bi = k

⊥
r
⊥

i( )
2
																																							(6.G.1)	

The	 ions	 are	 assumed	 to	 be	 a	 Maxwellian,	 and	 the	 electron	 response	 is	 close	 to	
adiabatic	in	the	low-frequency	limit	with	!!! ≪ 1.	 	We	further	assume	that	the	ion	
damping	 is	weak,	 i.e.,	! − Ω! ≠ !!v!! 	and	!! ≪ !!!!

!!!!
∼ ! !!

!!!!
= !

!!!
~!!.	 	Thus,	k	 is	

nearly	 perpendicular	 to	B.	 	 	 The	 conditions	 for	 electron	 resonance	 are	! − ℓΩ! =
!!v!!	which	requires	ℓ = 0	and	admits	the	possibility	of	a	simple	Landau	resonance:	
!/!! = v!! ≫ Ω!!!!~v!"! .		It	is	difficult	for	the	resonant	electron	velocity	to	fall	in	the	
heart	 of	 the	 electron	 velocity	 distribution.	 	 Does	 the	 electron	 Landau	 resonance	
contribute	Landau	damping	or	growth?		Using	the	methods	in	Sec.	2	one	obtains:	

							

γ(kz ,k⊥)=
1

∂ε '
∂ω

ωk

ωe
2

k2
dv z

−∞

∞

∫ 2πv
⊥
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∞
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⊥
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⎝
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=
1
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∂ω

ωk

ωe
2
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2πv

⊥
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∞
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⊥
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⊥
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2λe
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2

k2
π
∂g(v z ,v⊥)

∂v z vz=
ωk
kz

≅Ωivthe2
∂g(v z ,v⊥)

∂v z vz=
ωk
kz

															(6.G.2)	

where	!!!! ≪ 1	and	!!! !!!! ≈ 1 because	 the	 electron	 Larmor	 radius	 is	 so	 small	
and	we	have	assumed	! = ! v! ! v! .	 	If	!"(v!)/!v!	< 0	everywhere	in	v!	there	is	
electron	damping.		If	there	is	an	electron	drift	vde	in	the	ion	frame	and	the	electron	
velocity	distribution	is	symmetric	about	vde	in	the	ion	frame	and	peaked	at	vde,	then	
!"(v!)/!v!  > 0 	for	0 < !

!!
< v!" 	;	 and	 the	 electrons	 are	 destabilizing.	 	 For	 net	

instability,	the	electron	destabilizing	effects	must	overcome	ion	damping.		This	is	the	
Drummond-Rosenbluth	instability,32	with	condition	for	instability:	vde>5τ	vthi,	which	
is	not	difficult	to	achieve.		For	this	instability	one	can	readily	construct	a	theory	for	
quasi-linear	diffusion	 following	 the	procedure	 in	Sec.	6.E,	and	one	expects	plateau	
formation	in	!! v! 	driven	by	the	ion	cyclotron	wave	turbulence.	
	
Exercise:	 Consider	 a	 wave	with	Ω! , ! ≪ ! ≪ Ω! 	driven	 unstable	 by	 an	 anisotropic	
ion	 velocity	 distribution.	 	 Treat	 the	 ions	 as	 unmagnetized	 and	 ignore	 electron	
Landau	 damping.	 	 Consider	 oblique	 propagation	 with	!! ≪ !! .	 Project	 the	 ion	
velocity	 distribution	 onto	 k	 to	 render	 the	 analysis	 one-dimensional.	 	 Instability	
results	 from	 the	 projected	 velocity	 distribution	 having	 an	 interval	 with	 positive	
slope.		Qualitatively	examine	quasi-linear	diffusion.	
																																																								
32	W.	E.	Drummond,	and	M.	N.	Rosenbluth,	Phys.	Fluids	5,	1507	(1962).	 
	



	 126	

	

6.H	Nonlinear	three-wave	interactions		
	
	 Energy	transfer	between	modes	is	dominated	by	resonant	three-wave	decay	
in	a	non-turbulent	plasma,	i.e.,	a	plasma	in	which	the	energy	in	waves	is	still	small	
compared	to	the	particle	kinetic	energy.		From	a	quantum	mechanical	point	of	view,	
three-wave	decay	can	be	described	efficiently	in	terms	of	conservation	laws:	

	 	
energy	conservation:	 !ω1 = !ω2 +!ω3

momentum	conservation:	 !k1 = !k2 +!k3
	 	 	 (6.H.1)	

	
	 A	few	examples	of	three-wave	decay	processes	are	as	follows.	 	 	An	electron	
plasma	wave	(Langmuir	wave)	can	decay	into	another	electron	plasma	wave	and	an	
ion	acoustic	wave.		A	transverse	wave	can	decay	into	another	transverse	wave	and	
either	an	electron	plasma	wave	or	an	ion	acoustic	wave.		In	special	circumstances	a	
transverse	wave	 can	 decay	 into	 two	 electron	 plasma	waves.	 	 An	Alfvén	wave	 can	
decay	 into	 another	 Alfvén	 and	 an	 ion	 acoustic	 wave.	 	 	 There	 are	 many	 other	
examples	that	have	been	identified	experimentally	and	studied	theoretically;	and	a	
rich	literature	exists.	

6.H.a	Resonance	conditions	derived	from	phase	matching	
	
There	 is	 more	 than	 one	 approach	 to	 analyzing	 nonlinear	 three-wave	

interactions.	 	 There	 are	 direct	 methods	 using	 perturbation	 theory	 to	 solve	 the	
Maxwell	 equations	 and	 either	 the	 Vlasov	 equations	 (e.g.,	 Davidson33)	 or	 fluid	
equations	 (e.g.,	 Tsytovich34,	 Drake	 et	 al.35,	 Forslund	 et	 al.36)	 to	model	 the	 plasma	
response.	 	Some	of	 these	approaches	 involve	a	good	deal	of	analytical	brute	 force.		
There	 are	 more	 elegant	 theories	 based	 on	 a	 formal	 Hamiltonian	 theory	 for	 the	
plasma	fluid	response	(e.g.,	Davidson)	and	very	powerful	Lagrangian	theories	for	a	
fluid	or	Vlasov	plasma	response	(e.g.,	Dewar,	Dougherty,	Suranlishvili,	Galloway,	and	
others).		
	
[Editor’s	note:	In	the	more	than	forty	years	since	these	lectures	the	literature	on	three-
wave	interactions	in	plasmas	has	grown	immensely.		A	literature	survey	is	beyond	the	

scope	of	these	lecture	notes.]	
	 	
	 To	 understand	 how	 quadratic	 nonlinearities	 in	 the	 plasma	 dynamical	
equations	lead	to	three-wave	coupling	and	to	illustrate	how	three-wave	resonance	

																																																								
33	R.	C.	Davidson,	Methods	in	Nonlinear	Plasma	Theory	(Academic	Press),	1972.	
34	V.	N.	Tsytovich,	Sov.	Phys.	Uspekhi	9,	805–836	(1967)	
35	JF	Drake,	PK	Kaw,	YC	Lee,	G.	Schmidt,	CS	Liu,	and	MN	Rosenbluth,	Phys.	Fluids	17,	
778	(1974).	
36	D.	W.	Forslund,	J.	M.	Kindel,	and	E.	L.	Lindman,	Phys.	Fluids	18,	1002	(1975).		
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conditions	are	derived	from	phase		matching,	consider	the	fluid	continuity	equation	
in	one	dimension:	

	 	 	 	 	 ∂n
∂t
=−

∂

∂x
nu( ) 		 	 	 	 (6.H.2)	

where
	

n(x ,t)= !nj
j=1

3

∑ (t)cos k jx−ω jt +α j(t)( )=Re !nj
j=1

3

∑ (t)exp i k jx−ω jt( )⎡
⎣

⎤
⎦ and	 !nj = !nj exp iα j(t)( )

	
	 	 	 	 	 	 	 	 	 	 	 (6.H.3)	
We	assume	that	u	has	the	same	form	as	n.		We	expand	in	the	wave	decomposition		in	
Eq.(6.H.3)and	look	for	the	beating	of	distinct	waves	on	the	right	side	of	Eq.(6.H.2)	to	
couple	to	the	remaining	of	the	three	waves	on	the	left	side:	

eik2x−iω2t −iω2 +
∂

∂t

⎛

⎝
⎜

⎞

⎠
⎟ !n2(t)=−

∂

∂x
!n1 !u3e

ik1x−iω1te−ik3x+iω3t + !n0 !u2e
ik2x−iω2t( ) 	 	 (6.H.4)	

We	 introduce	 a	 power-series	 expansion	 in	 the	 wave	 amplitudes	 for	 n	 and	 u	 to	
facilitate	the	bookkeeping	in	the	coupling	of	terms:	
	 	 nj(x ,t)= εk

k
∑ njk =nj0 +εnj1 +ε

2nj2 + ... 	 	 	 	 (6.H.5)	

There	 is	an	equilibrium	density	n0	with	no	 fast	phase	variation.	 	The	 lowest-order	
wave	terms	are	at	first	order	in	ε.		Thus,	there	is	a	first-order	(linear)	contribution	to	
n21	 from	 n0u21	 on	 the	 right	 side	 of	 Eq.(6.H.4)	 and	 a	 second-order	 (quadratic)	
contribution	to	n22	from	the	beat	of	bilinear	quantities	n11u31.			From	the	continuity	
equation	we	see	that	there	is	a	linear	relation	for	all	three	waves:	
	 	 	 −iω jnj =−n0ik juj 	 	 	 	 	 	 (6.H.6)	
Using	 Eq.(6.H.6)	 in	 (6.H.4)	 and	 assuming	 perfect	 phase	matching,	we	 deduce	 that	
there	is	a	second	order	contribution	to	(∂	/∂t)n2	

	 	 	
∂

∂t
n22 =−

ik2ω3
k3n0

n1n3
∗
	 	 	 	 	 	 (6.H.7)	

We	 note	 that	 the	 quadratic	 nonlinearity	q(E+v×B/c)⋅∂f /∂v 	in	 which	 the	 fields	
beat	with	 the	perturbed	velocity	distribution	 function	 f	 	has	 the	same	structure	as	
the	 quadratic	 term	 in	 the	 continuity	 equation	 (and,	 for	 that	matter,	 the	 quadratic	
terms	 in	 the	 fluid	momentum	balance	equation).	 	 If	 the	 fast	phase	variation	of	 the	
quadratic	 beat	 on	 the	 right	 sides	 of	 Eq.(6.H.4)	 does	 not	 match	 the	 fast	 phase	
variation	on	the	left	side,	then	the	nonlinear	interaction	will	be	nonresonant.		If	we	
divide	out	the	phase	factor	on	the	left	side,	the	average	of	the	right	side	over	a	few	
wavelengths	 in	space	or	a	 few	wave	periods	 in	 time	will	phase	mix	 to	zero	unless	
there	is	good	phase	matching,	i.e.,	
	 	 	 ω1 =ω2 +ω3 k1 =k2 +k3 	 	 	 	 	 (6.H.8)	
Exercise:	 Recover	 the	 three-wave	 phase-matching	 conditions	 Eq.(6.H.8)	 by	
considering	Bragg	scattering	by	a	moving	grating.	
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	 We	 return	 to	 the	 one-dimensional	 analysis	 leading	 to	 Eq.(6.H.7)	 and	 use	
Poisson’s	 equation	 to	 relate	 the	 linear	 quantities,	 ik jE j1 =4πqnj1 	so	 that	 the	
following	equation	coupling	electric	field	amplitudes	results:	

	 	 	 	 ∂

∂t
E22 = g2E1E3

∗
	 	 	 	 	 (6.H.9)	

If	we	systematically	reduce	the	fluid	equations	or	the	Vlasov	equation	in	conjunction	
with	 the	 Poisson	 equation	 in	 the	 same	 manner	 as	 is	 done	 for	 obtaining	 linear	
dispersion	relations	but	retaining	all	bilinear	nonlinearities,	one	obtains	

ε(ω)E(ω)= ε(ω2)+(ω −ω2)
∂ε
∂ω

ω2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
E(ω2)	= ε(ω2)+

∂ε
∂ω

ω2

i ∂
∂t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
E(ω2)=nonlinear	driving	 	

	 	 	 	 	 	 	 	 			 	 											(6.H.10)	
Given	the	inherent	symmetries	in	the	dynamical	equations,	the	composite	coupled-
mode	equations	for	three-wave	interactions	can	be	shown	to	take	the	form	

∂

∂t
E1 =−

g
∂ε
∂ω

ω1

E2E3
∂

∂t
E2 =

g
∂ε
∂ω

ω2

E1E3
∗ ∂

∂t
E3 =

g
∂ε
∂ω

ω3

E1E2
∗ 																							(6.H.11)	

where	g	is	real.	

	

6.H.b	Conservation	laws	–	wave	action	
	

	 When	photons	scatter	there	is	a	quantum	mechanical	conservation	law	that	
the	number	of	photons	is	conserved,	although	the	outgoing	photon	may	be	shifted	in	
frequency.		The	number	of	photons	Nj	of	a	given	frequency	is	given	by	the	energy	Wj	

divided	by	!ω j ,	Nj =Wj /!ω j ;	and	the	action	Jj	is	defined	by	the	product	 J j = !Nj 	

i.e.,	! 	is	 the	quantum	mechanical	unit	of	action.	 	The	classical	wave	action	has	 the	
same	definition:	 J j =Wj /ω j .				
Definition:	The	classical	wave	energy,	momentum,	and	wave	action	densities	are	

	 	 Wj =
ω jε j
8π E j

2 K j =
k jε j
8π E j

2 J j =
Wj

ω j

		 	 																								(6.H.12)	

where	ε ≡∂ε /∂ω .		We	will	omit	the	factor	of	8π	in	the	denominators	in	Eq.(6.H.12)	
in	the	following	to	reduce	clutter	in	the	equations.	
	
Theorem:	 (Action	 Conservation)	 Using	 the	 definitions	 in	 Eq.(6.H.12)	 and	 the	
coupled-mode	equations	in	Eq.(6.H.11)	one	can	show		
	 I2 ≡ J1 + J2 = const.								I3 ≡ J1 + J3 = const.			⇒ 		!J1 =−	!J2 =−	!J3 	 											(6.H.13)	
	



	 129	

Theorem:			(Energy	and	Momentum	Conservation)	Using	Eqs.(6.H.12)	and	(6.H.13),	
and	frequency	and	wavenumber	matching	Eq.(6.H.8)	

d
dt

W1 +W2 +W3( )=ω1
!J1 +ω2

!J2 +ω3
!J3 = ω1 −ω2 −ω3( ) !J1 =0

d
dt

K1 +K2 +K3( )=k1 !J1 +k2
!J2 +k3 !J3 = k1 −k2 −k3( ) !J1 =0

	 											(6.H.14)	

Definition:	 Introduce	 the	 slowly	 varying	wave	 phase	 θj	 with	 definition	E j = E j e
iθ j 	

and	the	interaction	energy	H’,	and	use	the	definitions	in	Eq.(6.H.12):	

	 	
H '≡ 2g

ε1ε2ε3( )
1/2 J1 J2 J3 sin(θ1 −θ2 −θ3)

=2g E1E2E3 sin(θ1 −θ2 −θ3)=2gIm E1E2
∗E3

∗( )
	 	 											(6.H.15)	

	
Theorem:	 Using	 Eqs.(6.H.11)	 and	 (6.H.15)	 the	 interaction	 energy	 is	 a	 constant	 in	
time	

	 	

!H '=2gIm !E1E2
∗E3

∗ +E1 !E2
∗E3

∗ +E1E2
∗ !E3

∗( )
=2gIm −

g
ε1
E2

2
E3

2
+
g
ε2
E1

2
E3

2
+
g
ε3
E1

2
E2

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟≡0

	 											(6.H.16)	

because	Im(Real)≡0.	
	
Definition:	The	total	electric	field	is	given	as	E(x ,t)= E j

j
∑ cos k jx−ω jt +θ j(t)( ) 	

From	this	definition	and	Eq.(6.H.11)	we	calculate	the	following	relations:	
!J1 =ε1E1

∗ !E1 +c.c.=−gE1∗E2E3 +c.c.=−g E1E2E3 e−iθ1+iθ2+iθ3 +eiθ1−iθ2−iθ3( )
=−g

J1 J2 J3
ε1ε2ε3

2cos(θ1 −θ2 −θ3)≡−g J1 J2 J3 cos(θ1 −θ2 −θ3)
											(6.H.17)	

and	we	have	introduced	the	definition	of	! = 2!/ !!!!!!.  We	note	that	the	action	Jj	
is	 defined	 so	 that	 it	 always	 has	 the	 same	 sign	 as	ε j ,	 and	 the	 square	 roots	 in	
Eq.(6.H.17)	 can	 be	 considered	 to	 have	 strictly	 positive	 arguments.	 	 Given	
Eqs.(6.H.15)	 and	 (6.H.17)	we	 can	 construct	 the	 square	of	 the	 time	derivative	of	 J1	
and	identify	a	pseudo-potential:	

	 	 1
2
!J1
2 = 1

2 g
2 J1 J2 J3 1−

H '2
g2 J1 J2 J3

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= 1

2 g
2 J1 J2 J3 −

1
2H '2 	 	 											(6.H.18)		

	
Definition:	Define	a	pseudo-potential	Φ,	

Φ( J1)=− 1
2 g

2 J1 J2 J3 =−
1
2 g

2 J1(I2 − J1)(I3 − J1) 		 	 											(6.H.19)	
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Theorem:	 Given	 that	 H’	 is	 a	 constant	 in	 time,	 Eq.(6.H.18)	 leads	 directly	 to	 an	
equation	 of	 motion	 for	 the	 pseudo-particle	 action	 J1,	 subject	 to	 an	 action	
conservation	law:			

														 12 !J1
2 +Φ( J1)=− 1

2H '2 	 	 	 	 											(6.H.20)	
	

Figure	6.H.1	illustrates	Eq.(6.H.20).		Initial	conditions	determine	I2,	I3	and	H’.		
The	solution	of	 J1	as	a	 function	of	 time	can	be	expressed	 in	terms	of	 Jacobi	elliptic	
functions.		J1	is	a	periodic	function	of	time.	The	larger	the	value	of	g,	the	faster	is	the	
oscillation.	 	The	exchange	of	action	among	 the	 three	waves	continues	unabated	 in	
the	absence	of	damping.	

	
	

	
	

Fig.	6.H.1	Schematic	of	action	conservation	in	three-wave	interactions.		(a)	
Pseudo	potential	Φ(J1)	vs.	J1..	(b)	Three-wave-interaction	actions	vs.	time.	

	
	

6.H.c	Parametric	and	explosive	instabilities	
	

In	 this	 section	 we	 discuss	 two	 special	 three-wave	 interactions	 cases	 of	
interest.		In	both	examples	the	initial	conditions	are	comprised	of	a	finite-amplitude	
high-frequency	 wave	 and	 two	 lower-frequency	 waves	 with	 infinitesimal	 initial	
amplitudes.	

	
Example:	 (Parametric	 Instability)	Assume	 that	wave	#1	 is	 a	 transverse	wave	with	
frequency	very	close	to	the	plasma	frequency,	but	somewhat	larger.	 	Wave	#1	(the	
pump	wave)	can	decay	into	a	Langmuir	wave	(wave	#2)	and	an	ion-acoustic	wave	
(wave	 #3):	 ω1

t ≈ωpe +ωion acoustic 	This	 is	 called	 parametric	 decay	 and	 provides	 a	
mechanism	for	anomalous	absorption	of	the	transverse	wave	in	a	plasma.		Given	the	
initial	conditions	that	the	decay	product	waves	have	infinitesimal	initial	amplitudes	
compared	 to	 the	pump	wave,	we	can	use	 the	coupled-mode	equations	Eq.(6.H.11)	
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with	E1	approximately	constant	early	in	time	to	derive	the	exponential	growth	of	the	
decay	product	waves:	

	 	 	

∂

∂t
E2 =

g
ε2
E1E3

∗ ∂

∂t
E3 =

g
ε3
E1E2

∗ 	 	 	 											(6.H.21)	

If	 we	 assume	 exponentially	 growing	 solutions	 E2,3 =E2,3(0)eγt 	then	 Eq.(6.H.21)	
admits	the	solution	for	the	growth	rate	of	the	parametric	instability:	

	 	 	 	 γ =
g E1
ε2ε3

	 	 	 	 	 											(6.H.22)	

Of	course	this	derivation	is	only	formal	and	schematic	as	we	have	not	given	explicit	
expressions	for	g	and	ε j ≡∂ε /∂ω |ω j 	
[Editor’s	 note:	 	 In	 a	 plasma	 with	 no	 applied	 magnetic	 field,	 three	 of	 the	 classic	
references	on	parametric	 instabilities	are	Drake,	 et	al.,	37	Liu,	 et	al.38	and	Kruer.39		 In	

the	 presence	 of	 an	 applied	 magnetic	 field,	 some	 representative	 references	 on	

parametric	instability	theory	are		by	Porkolab,40	Kaw,41	Cohen,42	and	Stefan,	et	al.43]	
	
Example:	(Explosive	Instability)	Here	we	consider	the	decay	of	wave	#1	into	waves	
#2	 and	 #3	 where	 wave	 #1	 is	 a	 negative	 energy	 wave	 and	 all	 three	 waves	 have	
infinitesimal	 initial	amplitude.	 	 In	 this	 case	all	 three	waves	can	grow	 in	amplitude	
while	 the	 total	 energy	 remains	 infinitesimal.	 	 The	 frequency	 and	 wave	 number	
relations	 Eq.(6.H.8)	 and	 action	 conservation	 Eq.(6.H.13)	 are	 unchanged,	 but	ε3 <0 		
and	 J1<0.	 	 	Thus,	as	all	 three	waves	grow	in	amplitude,	ΔJ1 =− ΔJ1 =−ΔJ2 =−ΔJ3 	and	

ΔW1 +ΔW2 +ΔW3 =− ΔW1 +ΔW2 +ΔW3 ≈0 .		We	return	to	the	relation	for	the	pseudo-
potential	for	the	three-wave	interaction	in	Eq.(6.H.19):	

	 	 Φ( J1)=− 1
2 g

2 J1 J2 J3 =−
1
2 g

2 J1 (I2 + J1 )(I3 + J1 )≈ − 1
2 g

2 J1
3

							(6.H.23)	
for	I2,I3<<|J1|	and	the	conserved	total	pseudo-energy	on	the	right	side	of	Eq.(6.H.20)	
is	likewise	small	as	the	instability	develops.			In	this	limit	Eq.(6.H.20)	simplifies	to		

																																																								
37	JF	Drake,	PK	Kaw,	YC	Lee,	G.	Schmidt,	CS	Liu,	and	MN	Rosenbluth,	Phys.	Fluids	17,	
778	(1974).	
38	C.	S.	Liu	and	P.	K.	Kaw,	Advances	in	Plasma	Physics,		Vol.	6,	Part-I,	p.83	(1976).  		
39	W.	L.	Kruer,	The	physics	of	laser	plasma	interactions,	(AddisonWesley	Publishing	
Co.,	Reading,	MA),		1988.	
40	M.	Porkolab,	Phys.	Fluids	17,	1432	(1974).	
41	P.	K.	Kaw,	Advances	in	Plasma	Physics,		Vol.	6,	Part-I,	p.179	(1976);	P.K.	Kaw,	
Advances	in	Plasma	Physics,		Vol.	6,	Part-I,	p.207	(1976).  		
42	B.I.	Cohen,	Physics	of	Fluids	30,	2676	(1987).	
43	V.	Stefan,	N.	A.	Krall,	and	J.	B.	McBride,	Physics	of	Fluids	30,	3703	(1987).	
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!J1
2
= g2 J1

3 		⇒ 		
d J1

J1
3/2 = gdt 		⇒ 		 J1

−1/2
=−

1
2 g(t +const)

⇒ 		 J1 (t)=
1

1
2 g( )

2
1

(t −t0)2
t0
2 =

1
J1(0)

2
1
2 g( )

2

	 											(6.H.24)	

The	 solution	 for	 the	 growth	 of	 the	 action	 amplitude	 in	 Eq.(6.H.24)	 approaches	
infinity	 at	 a	 finite	 time	 t0,	 i.e.,	 the	 amplitude	 “explodes”.	 	 This	 is	 a	 mathematical	
singularity	and	not	physically	realizable:	other	physics	will	come	into	play	at	 large	
amplitudes	to	saturate	the	instability	at	finite	amplitude.	

6.H.d	Including	damping	and	frequency	mismatch		
	

The	 inclusion	 of	 damping	 in	 the	 three-wave	 interactions	 can	 significiantly	
change	the	dynamics	from	that	in	the	undamped	limit.	 	 	Equations(6.H.11)	acquire	
additional	terms	to	model	dissipation:	

			 ∂

∂t
E1 =−

g
ε1
E2E3 −γ1E1

∂

∂t
E2 =

g
ε2
E1E3

∗ −γ2E2
∂

∂t
E3 =

g
ε3
E1E2

∗ −γ3E3 									(6.H.25)	

The	 inclusion	 of	 damping	 breaks	 all	 of	 the	 conservation	 laws	 in	 Eq.(6.H.13)	 and	
(6.H.14).				

Consider	 the	 simple	 example	 in	 which	 γ3	 is	 large	 and	!!, !! → 0.	 	 	 Such	 a	
circumstance	 can	 apply	 to	 the	 stimulated	 scattering	 of	 a	 transverse	 wave	 by	 a	
longitudinal	 plasma	 wave	 into	 another	 transverse	 wave,	 ! → ! + ! ,	 where	 the	
longitudinal	wave	is	heavily	damped.			In	this	limit	Eqs.(6.H.25)	become	

					E3 =
g
γ3ε3

E1E2
∗ ∂

∂t
E1 =−

g
ε1
E2E3 =−

g2

γ3ε3ε1
E2

2
E1

∂

∂t
E2 =

g
ε2
E1E3

∗ =
g2

γ3ε3ε2
E1

2
E2 	

	 	 	 	 	 	 	 	 	 	 											(6.H.26)	
From	Eqs.(6.H.26)	one	concludes	that		
	 	 								 !J1 =− !J2 J1 + J2 = I2 = const 	 	 	 	 									(6.H.27a)	

												 	 !J1 =−GJ1 J2 =−GJ1 I2 − J1( ) G = 2g2
γ3ε1ε2ε3

	 															 								(6.H.27b)	

	 	 J1 =
I2

1+exp(I2Gt ')
J2 = I2

exp(I2Gt ')
1+exp(I2Gt ')

t '= t −t0 	 	 									(6.H.27c)	

where	at	! = !!	  !! =  !! = !
!!!.		Wave	action	and	energy	feed	steadily	from	the	high-

frequency	 pump	wave	with	 action	 J1	 to	 the	 lower	 frequency	wave	with	 action	 J2,	
conserving	I2.		One	can	displace	the	time	axis	to	allow	for	any	desired	ratio	of	J2/J1	at	
a	given	“initial”	 time.	 	Thus,	beat-wave	heating	or	stimulated	Raman	scattering,	or	
parametric	instability	can	be	modeled.	
	 Consider	a	second	example	 in	which	E1	 is	 large	and	E2,	E3	are	 initially	small	
and	 have	 finite	 damping	 rates	 γ2,	 γ3.	 	 We	 assume	 that	 E2,E3~!!!	and	 E1~const	 in	
Eqs.(6.H.25)	to	obtain	
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	 	 	 Γ=
1
2 −(γ1 +γ2)+ (γ1 −γ2)2 +4G E1

2⎡

⎣
⎢

⎤

⎦
⎥ G ≡ g2

ε2ε3
	 											(6.H.28)	

From	 the	 expression	 for	 Γ	 we	 determine	 that	 the	 amplitude	 E1	 must	 exceed	 a	
threshold	value	to	overcome	the	damping	in	the	decay	product	waves	in	order	that	
Γ>0,	i.e.,		

Γ>0 → E1
2
> E1 c

2
=
γ2γ3
G

=
ε2ε2γ2γ3
g2

	 	 											(6.H.29)	

We	next	 consider	 an	 example	 in	which	 there	 is	 negligible	damping	but	 the	
three-wave	 resonance	 condition	 is	 subject	 to	 a	 finite	 frequency	mismatch.	 	Action	
remains	conserved,	i.e.,	 J1 + J2 = I2 = const J1 + J3 = I3 = const .			The	total	Hamiltonian	
is		

H = ω j J j
j=1

3

∑ + g J1 J2 J3 sin θ1 −θ2 −θ3( ) 	 	 											(6.H.30)	

From	H	in	Eq.(6.H.30)	and	Hamilton’s	equations	we	deduce	

			

!H = ∂

∂t
H =0

!J1 =−
∂H
∂θ1

=−g J1 J2 J3 cos(θ1 −θ2 −θ3), !J2 =−
∂H
∂θ2

=− !J1 , !J3 =−
∂H
∂θ3

=− !J1

!θ1 =
∂H
∂J1

=ω1 +
1
2 g

J2 J3
J1

sin(θ1 −θ2 −θ3)

!θ2 =
∂H
∂J2

=ω2 +
1
2 g

J1 J3
J2

sin(θ1 −θ2 −θ3)

!θ3 =
∂H
∂J3

=ω3 +
1
2 g

J1 J2
J3

sin(θ1 −θ2 −θ3)

							(6.H.31)	

The	equations	of	motion	in	Eq.(6.H.31)	admit	oscillatory	solutions	in	terms	of	Jacobi	
elliptic	functions,	and	we	can	derive	the	following	equation	for	a	pseudo-particle:	

	

1
2
!J1
2 +Φ( J1)=−

1
2(H− I2ω2 − I3ω3)2

Φ=−
1
2 g2 J1 J2 J3 − J1

2(Δω)2 +2 J1Δω H− I2ω2 − I3ω3( )⎡
⎣

⎤
⎦

Δω =ω1 −ω2 −ω3

	 	 											(6.H.32)	

	
Exercise:	Compare	the	structure	of	Eqs.(6.H.30-6.H.32)	to	(6.H.18-6.H.20).	
	
Example:	 Explosive	 instability	 with	 finite	 mismatch	 can	 be	 deduced	 from	
Eq.(6.H.32).	 	 Consider	 J1<0	 and	 J2,J3>0	 all	with	 infinitesimal	 amplitudes	 at	 t=0.	 	 In	
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this	 case	 !!!! + !!!! 	and	 H	 are	 negligible	 in	 Eq.(6.H.32).	 	 For	 no	 frequency	
mismatch	 Δω=0,	 Φ = −!

!!! !!!!!! ≈ −!
!!! !! ! ,	 i.e.,	 Φ	 is	 negative	 and	 can	

monotonically	increase	in	magnitude	while	the	magnitudes	of	all	three	actions	and	
their	 time	 derivatives	 increase:	 12 !J1

2 = −Φ ≈ !
!!! !! ! .	 	 With	 a	 finite	 frequency	

mismatch,	Φ = −!
!!! !!!!!! + ∆!!!!! ≈ −!

!!! !! ! + ∆!!!!! ,	 and	 Φ	 is	 positive	 for	
small	values	of	 !! 	before	turning	negative	at	large	values	of	 !! .	Thus,	the	value	of	
the	action	|J1|	can	remain	trapped	for	values	of	|J1|	less	than	some	critical	value,	i.e.,	
a	 threshold	 value	 |J1|c,	 above	which	Φ	 is	monotonically	 decreasing	 and	 the	 quasi-
particle	can	accelerate	downhill	in	Φ	and	grow	explosively.		The	threshold	value	for	
explosive	instability	corresponds	to	the	value	of	|J1|	at	the	peak	of	Φ,	which	is	given	
by	 |J1|c=!!

∆!!
!! .	 	 	 The	 difference	 between	 the	 two	 cases,	 with	 and	 without	 the	

frequency	mismatch,	 is	 that	 the	 frequency	mismatch	degrades	 the	 strength	 of	 the	
coupling	leading	to	a	threshold	condition.	
	
Example:	 Here	 we	 consider	 parametric	 instability	 including	 a	 finite	 frequency	
mismatch	 by	 analyzing	 Eq.(6.H.25)	 for	 infinitesimal	 E2,E3	 and	 E1	 approximately	
constant:	

∂

∂t
E2 =

g
ε2
E1E3

∗e−iΔωt ∂

∂t
E3 =

g
ε3
E1E2

∗e−iΔωt 	 	 											(6.H.33)	

We	 assume	 a	 time	dependenceE2 ,E3 ~e−iΩt 	where	Ω	 is	 complex.	 	With	 this	 ansatz	
Eq.(6.H.33)	yields	a	quadratic	dispersion	relation	for	Ω	with	solution:	

	 	 	 Ω= 1
2Δω ± i

g2 E1
2

ε2ε3
− 1

2Δω( )
2
	 	 	 											(6.H.34)	

The	frequency	mismatch	reduces	the	growth	rate	by	reducing	the	effective	strength	
of	 the	 coupling	 and	 leads	 to	 an	 amplitude	 threshold	 for	 instability
E1 >E1c = Δω /2g ε2ε3 .	
	 If	 there	is	damping	in	the	parametric	decay	product	waves	and	a	frequency	
mismatch,	 the	 solution	 procedure	 for	 solving	 Eq.(6.H.25)	 is	 not	 so	 simple	 as	 that	
used	 in	 obtaining	 Eq.(6.H.34).	 	 The	 coupled	 nonlinear	 differential	 equations	 have	
time-dependent	 coefficients,	 and	Mathieu	 equations	 result.	 	 Nishikawa	 addressed	
such	a	case.44		Both	damping	and	frequency	mismatch	conspire	to	reduce	instability	
growth	rates	and	introduce	a	threshold.	

6.H.e	Extension	to	many-wave	system	with	three-wave	interactions	–	wave	kinetic	
equation		
	

	 Here	we	extend	 the	 analysis	of	nonlinear	wave-wave	 interactions	 to	 a	 sum	
over	 many	 waves	 supporting	 three-wave	 and	 four-wave	 interactions	 (at	 least	

																																																								
44	K.	Nishikawa,	J.	Phys.	Soc.	Jpn.	24,	1152	(1968).	



	 135	

formally).	 	We	postulate	 random	phases	and	employ	a	 statistical	approach	and	an	
action-angle	 representation.	 	 We	 specify	 initial	 conditions	 with	 !! 	given	 and	 !! 	
unknown.		We	extend	the	Hamiltonian	in	Eq.(6.H.30)	to	

	
H = ω j

j
∑ J j +H '(

!
J ,
!
θ )= ω j

j
∑ J j + gijk

ijk
∑

±

∑ Ji J j Jk cos ±θi ±θ j ±θk( )

+ gijkl
ijkl
∑

±

∑ Ji J j Jk Jl cos ±θi ±θ j ±θk ±θl( )
												(6.H.35)	

which	 includes	 resonant	 and	 off-resonant	 three-wave	 and	 four-wave	 interactions.		
Four-wave	 interactions	 can	 satisfy	 the	 frequency	 matching	 condition	!! + !! =
!! + !!.			The	equations	of	motion	for	the	action-angle	pairs	are	
	 	 !Ji =−

∂H
∂θi

=O(g) !θi =
∂H
∂Ji

=ωi +
∂H '
∂Ji

=ωi +O(g) 	 					 										(6.H.36)	

	
Definition:	 In	 keeping	with	 taking	 a	 statistical	 approach,	we	 introduce	 a	 Liouville	
probability	distribution	in	

!
J ,
!
θ{ } 	space:	

	 	
ρ(
!
J ,
!
θ )= ρ0(

!
J ;t)+δρ(

!
J ,
!
θ ;t), δρ << ρ0 	 	

	 											
(6.H.37)

	

	
We	recall	the	derivation	of	the	theory	of	quasilinear	diffusion	in	canonical	variables	
in	 Sec.	 6.E.d,	 Eqs.(6.E.40-6.E.42).	 	 in	 the	 weak	 turbulence	 limit	 the	 probability	
distribution	satisfies	the	equations:	

	 	 ∂

∂t
ρ0(
!
J ;t)= ∂

∂
!
J
⋅ D⋅

∂ρ0
∂
!
J

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ D(

!
J )= dτ

0

∞

∫
!"J t( )
!"J t −τ( ) !

θ
			 											(6.H.38)	

This	 equation	 describes	 the	 diffusion	 of	 the	 probability	 distribution	 function	 in	
action	 space.	 	 The	 averaging	 bracket	 <	 	 >θ	 denotes	 averaging	with	 respect	 to	 the	
phase	 angles	 at	 the	 specified	 time	 t.	 	 Double	 bracket	 averaging	 <<	 	 >>	 denotes	
averaging	with	respect	to	ensembles	of	all	possible	initial	phases.		Hence,	
	 	 	

!
J (t)≡ dN J∫ ρ0( J;t)

!
J 	 	 	 	 											(6.H.39)	

	We	can	calculate	the	 ∂
∂t

!
J (t) 	using	Eqs.(6.H.38)	and	(6.H.39):	

	 	

∂

∂t

!
J (t)= dN J

!
J ∂
∂
!
J∫ ⋅ D⋅

∂ρ0
∂
!
J

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=− dN J I∫ ⋅D⋅

∂ρ0
∂
!
J

=− dN J∫
∂ρ0
∂
!
J
⋅D= dN J∫ ρ0

∂

∂
!
J
⋅D(
!
J )= ∂

∂
!
J
⋅D(
!
J )

					(6.H.40)	

Note	that	D	is	symmetric.	
	 Because	the	θi	are	each	cyclic,	we	can	expand	H '(

!
J ,
!
θ ) 	in	a	Fourier	series	 in	

θi:	
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			H '(
!
J ,
!
θ )= H!l

l=−∞

∞

∑ (
!
J )exp(i

!
l ⋅
!
θ ),

!
l = {li }, H!l (

!
J )≡ dNθ

(2π )N∫ H '(
!
J ,
!
θ )exp(−i

!
l ⋅
!
θ ) 			(6.H.41)	

We	 note	 that	 for	cos(θ1 −θ2 −θ3) 	one	 has	 l1 =1, l2 =−1, l3 =−1, l4 =0 .	 	 The	 values	 of	
li{ } 	control	the	couplings	that	are	included.		We	use	Eqs.(6.H.36)	and	(6.H.38),	and	
the	Fourier	series	representation	to	evaluate	D:	

	 D
!
J( )= dτ −i

!
l( )!

l
!
l '
∑

0

∞

∫ (i
!
l ') Hl(

!
J t )Hl'

∗(
!
J t−τ )exp(i

!
l ⋅
!
θ t − i

!
l '⋅
!
θ t−τ ) !

θ
								 											(6.H.42)	

The	 time	 dependences	 of	
!
θ and	

!
J 	are	 determined	 by	 Hamilton’s	 equations	

Eqs.(6.H.36).	 	 To	 the	 lowest	 order	 needed	 in	 Eq.(6.H.42),	 J t−τ ≈ J t ,
!
θ t−τ =

!
θ t −τ

!"θ ≈
!
θ t −τ

!
ω ,	 and	 exp(i

!
l ⋅
!
θ t − i

!
l '
!
θ t−τ )≈ exp(i

!
l ⋅
!
θ t − i

!
l '⋅
!
θ t + i

!
l '⋅ !ωτ ) .	 	 Hence,	

the	following	results	are	obtained.	
	
Theorem:		

	 	

∂

∂t
ρ0(
!
J ;t)= ∂

∂
!
J
⋅ D⋅

∂ρ0
∂
!
J

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D(
!
J )= dτ

0

∞

∫
!"J t( )
!"J t −τ( ) !

θ
= dτ

0

∞

∫
!
l
!
l

!
l
∑ H!l (

!
J )2ei

!
l ⋅ !ωτ

=
!
l
!
l

!
l
∑ H!l (

!
J )2 πδ(

!
l ⋅ !ω)− 1

il

⎡

⎣
⎢

⎤

⎦
⎥=

!
l
!
l

!
l
∑ H!l (

!
J )2πδ(

!
l ⋅ !ω)

		[↑even	in	l 		odd	in	l↑ 									 H!l (
!
J )2 	is	Hermitian]

∂

∂t

!
J (t)=

!
l ⋅ ∂
∂
!
J
⋅ H!l (

!
J )2

!
l
∑

!
lπδ(
!
l ⋅ !ω)

										(6.H.43)	

	
Example:		For	

!
l =[1,−1,−1,0,...] 	then	

!
l ⋅ !ω =ω1 −ω2 −ω3 =0 	is	the	resonance	condition.	

	

	 We	note	 that	 H!l (
!
J )2∝ g2 	is	 the	 coupling	 term	 representing	 the	 strength	 of	

the	 interaction.	 	 Consider	 the	 case	 in	 which	 there	 are	 resonant	 three-wave	
interactions.		From	Eq.(6.H.43)	one	obtains	

		

	

∂

∂t

!
J (t)=

!
l ⋅ ∂
∂
!
J
⋅ H!l (

!
J )2

!
l
∑

!
lπδ(
!
l ⋅ !ω)

→
∂

∂t
J1 =−

∂

∂t
J2 =−

∂

∂t
J3 =πδ(ω1 −ω2 −ω3)

∂

∂J1
−
∂

∂J2
−
∂

∂J3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟g123

2 J1 J2 J3

=πδ(ω1 −ω2 −ω3)g1232 J2 J3 − J1 J3 − J1 J2( )

		(6.H.44)	
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We	 next	 introduce	 a	 decomposition	 of	 each	 of	 the	 wave	 actions	 in	 terms	 of	 an	
integral	over	wavenumber	space.	 	We	assign	k	 to	<J1>(k),	k’	 to	<J2>(k’),	and	k”	 to	
<J3>(k”).		Then	Eq.(6.H.44)	becomes	a	wave	kinetic	equation:	
	
∂

∂t
J1 =

d3k '
(2π )3

d3k"
(2π )3∫∫ πδ(ω1

k −ω2
k' −ω3

k" )

× g123
2 k ,k ',k"( )δ k−k '−k"( ) J2(k ') J3(k") − J1(k) J3(k") − J1(k) J2(k ')( )

⇒
d3k '
(2π )3

d3k"
(2π )3∫∫ πδ(ω1

k −ω2
k' −ω3

k" )

× g123
2 k ,k ',k"( )δ k−k '−k"( ) J2(k ') J3(k") − J1(k) J3(k") − J1(k) J2(k ')( )

	
	 	 	 	 	 	 	 	 	 	 											(6.H.45)	
	
In	obtaining	Eq.(6.H.45)	we	have	made	assumptions	 that	many	waves	are	present	
and	statistical	independence:		 J2(k ') J3(k") = J2(k ') J3(k") .	
	 Consider	a	quantum	mechanics	perspective	on	three-wave	interactions.		The	
equation	for	the	time	derivative	of	the	number	of	quanta	N1	generated	by	stimulated	
scattering	 into	N1	from	N2	and	N3,	and	stimulated	scattering	 into	N2	and	N3	from	N1	
takes	the	form:	
					 !N1 = g

2 N2N3 N1 +1( )−N1 N2 +1( ) N3 +1( )⎡
⎣

⎤
⎦= g

2 N2N3 −N1N3 −N1N2 −N1
⎡
⎣

⎤
⎦ 									(6.H.46)	

after	cancellations.		The	number	of	quanta	is	related	to	the	wave	action	through	the	
relation	Nl = Jl /! .		Hence,	the	last	term	in	Eq.(6.H.46),	which	is	purely	spontaneous,	
is	O(h) 	smaller	than	the	others	and	can	be	thrown	away	with	result	

!J1 =
g2

"
g2 J2 J3 − J1 J3 − J1 J3⎡
⎣

⎤
⎦ 	 	 	 	 											(6.H.47)	

	We	see	that	Eq.(6.H.47)	has	the	same	form	as	Eq.(6.H.45).	
	
Theorem:	 Eqs.(6.H.44-6.H.45)	 and	 the	 frequency	 and	 wavenumber	 resonance	
conditions	give	rise	to	the	following	conservation	laws.	
	

(i)	Action	conservation				 ∂
∂t

< J1 >+< J2 >( )= ∂

∂t
< J1 >+< J3 >( )=0 	 									(6.H.48a)	

(ii)	Energy	conservation			U ≡ d3k

2π( )
3∫

l
∑ Jl(k)ωl(k), !U =0 	 	 								(6.H.48b)	

(iii)	Momentum	conservation	K ≡ d3k

2π( )
3∫

l
∑ Jl(k)k , !K =0 	 	 									(6.H.48c)	
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	 We	next	introduce	a	reasonable	definition	of	the	wave	entropy	and	show	that	
in	the	absence	of	phase	correlations	there	is	entropy	production	and	irreversibility.		
Definition:	Wave	entropy	 S = ln Πl Jl( )= ln Jl

l
∑ 	 	 	 																								(6.H.49)	

We	 then	 use	 the	 definition	 of	 the	wave	 entropy	 Eq.(6.H.49)	 and	 Eq.(6.H.45),	 sum	
over	the	three	modes,	and	integrate	over	k-space	to	evaluate	the	time	derivative	of	
the	entropy:	
	
∂

∂t
S = d3k

2π( )
3∫

l
∑

!Js(k)
Js(k)

=
d3k

2π( )
3∫

l
∑ d3k '

(2π )3
d3k"
(2π )3∫∫ πδ(ω1

k −ω2
k' −ω3

k" )

× g123
2 k ,k ',k"( )δ k−k '−k"( ) J2 J3 − J1 J3 − J1 J2( ) 1

J1
−
1
J2
−
1
J3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= J1 J2 J3

1
J1
−
1
J2
−
1
J3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

	

	 	 	 	 	 	 	 	 	 	 											(6.H.50)	
The	 right	 side	 of	 Eq.(6.H.50)	 is	 non-negative,	 ∂S /∂t ≥0 ,	 and	 tends	 to	 zero	
asymptotically	in	time	with	the	asymptotic	state	satisfying	∂S /∂t =0 :	

	 	 	 	 1
J1
=
1
J2
+
1
J3
	 	 	 	 	 											(6.H.51)	

	 We	 next	 introduce	 a	 quantity	 analogous	 to	 the	 Helmholtz	 free	 energy,	 i.e.,	
S −βU .	 	 Consider	 the	 variation	 of	 this	 quantity	 about	 the	 asymptotic	 steady	 state	
determined	in	Eq.(6.H.51):	

	 	 δ ln Jl −βωl Jl( )
l
∑ = δ Jl

1
Jl
−βωl

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

l
∑ =0 ⇒

1
Jl
= βωl 	 											(6.H.52)	

If	 we	 substitute	 the	 result	 in	 Eq.(6.H.52)	 into	 the	 asymptotic	 condition	 in	
Eq.(6.H.51),	we	recover	the	three-wave	frequency	resonance	condition	ω1 =ω2 +ω3 .		
Furthermore,	if	we	use	the	result	in	Eq.(6.H.52)	in	the	wave	energy,	we	deduce	that	
the	asymptotic	wave	energy	satisfies	a	Rayleigh-Jeans	law,	i.e.,	

	 	 	 U j =ω j J j =
1
β
≡Twave−kinetic 	 		 	 	 											(6.H.53)	

Thus,	all	modes	have	the	same	asymptotic	energy,	which	implies	that	this	classical	
theory	can	lead	to	an	ultra-violet	catastrophe.	
	
Example:	 Explosive	 instability	 –	 If	 the	 three-wave	 interaction	 involves	 J1<0	 and	
J2,J3>0	as	in	Sec.	6.H.c,	then	Eq.(6.H.51)	is	never	satisfied,	

	 	 	 	 1
J1
≠
1
J2
+
1
J3
	 	 	 	 	 											(6.H.54)	

and	|J1|,	J2,	J3,	and	S	can	all	continue	to	grow	without	bound.	
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LECTURES	ON	THEORETICAL	PLASMA	PHYSICS	
–	PART	3A	
Allan	N.	Kaufman	

7.	Plasma	collisional	and	discreteness	phenomena	
	 	
	 This	 section	 examines	 plasma	 collision	 processes	 and	 discreteness	
phenomena.	 	 This	 includes	 test-particle	 theory	 of	 single	 particles	 and	 many	
particles,	 radiation	 transport,	 and	Dupree’s	 theory	of	phase-space	granulation	and	
clump	formation.		

7.A	Test-particle	formulation	in	the	electrostatic	limit			
	
	 We	 begin	with	 a	 theoretical	 treatment	 based	 on	 a	 Coulomb	model.	 	 In	 the	
Coulomb	model	we	recall	that	

	 	 	 	 φ(k ,ω)= φ0(k ,ω)
ε(k ,ω) 	 	 	 	 	 (7.A.1)	

To	 support	 self-consistent	 electromagnetic	 fields	 within	 the	 context	 of	 Maxwell’s	
equations	 the	 longitudinal	 dielectric	 ε	→	 K,	 the	 conductivity	 tensor.	 	 Consider	
Poisson’s	equation	for	a	single	charged	particle:	

	 	 	 	

ρ0(r,t)= e0δ r−r0(t)( )
ρ0(k ,ω)≡ d3r e−ik⋅r∫ dt eiωtρ0(r,t)∫
k2φ0(k ,ω)=4πρ0(k ,ω)

	 	 	 (7.A.2)	

Using	 the	 lowest-order	 particle	 trajectory	r0(t)= r0(0)+v0t + ... 	we	 can	 evaluate	 the	
Fourier-transformed	charge	density	in	Eq.(7.A.2):	

	 	
ρ0(k ,ω)≡ d3r e−ik⋅r∫ dt eiωtρ0(r,t)∫ = e0 dt eiωt∫ e−ik⋅r0(t )

= e0e
−ik⋅r0(0) dt eiωt−ik⋅v0

−∞

∞

∫ = e0e
−ik⋅r0(0)2πδ(ω −k ⋅v0)

	 	 (7.A.3)	

We	substitute	the	expression	in	Eqs.(7.A.3)	into	Eqs.(7.A.1)	and	(7.A.2)	to	obtain	
	 	

									
φ(k ,ω)= 4π

k2
1

ε(k ,ω)2πe0δ(ω −k ⋅v0)e
−ik⋅r0(0) 	 	 	 (7.A.4)	

whose	inverse	Fourier	transform	is	
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φ(r,t)= dω
2π∫

d3k
(2π )3∫ eik⋅r−iωtφ(k ,ω)

=
dω
2π∫

d3k
(2π )3∫ eik⋅r−iωt 4π

k2
1

ε(k ,ω)2πe0δ(ω −k ⋅v0)e
−ik⋅r0(0)

=
d3k
(2π )3∫ e

ik⋅ r− r0(0)+v0t( )⎡
⎣

⎤
⎦ 1
ε(k ,k ⋅v0)

4πe0
k2

≡
d3k
(2π )3∫ eik⋅s 1

ε(k ,k ⋅v0)
4πe0
k2

	 (7.A.5)	

where	 s= r− r0(0)+v0t( ) ,	 the	 spatial	 coordinate	 in	 the	 particle	 frame	 to	 lowest	
order.		To	proceed	further,	one	choose	a	form	for	the	velocity	distribution	function	
g(u)	 as	 in	 Sec.	 2.E.d	 with	 which	 to	 calculate	 the	 dielectric	 response	 ε.	 	 	 One	 can	
obtain	analytic	results	for	square	distributions	and	Cauchy	distributions,	but	not	for	
a	Maxwellian.		We	note	that	Reε(−k)=Reε(k)and Imε(−k)=−Imε(k) .	
	
	
Exercise:	From	Eq.(7.A.3)	and	the	machinery	in	Eq.(7.A.5)	calculate	ρ(s) 	and	show	
that	the	total	charge	and	dipole	moment	are	both	zero,	i.e.,		
	 	 etotal = d3s ρ(s)∫ =0 p= d3s sρ(s)∫ =0 	 	 	 	 (7.A.6)	

However,	 the	 quadrupole	 moment	 is	 finite:	 Q ~e0λD2(v0 / ve )2 	Pick	 a	 specific	
velocity	distribution	function	g	and	calculate	Q.	

7.A.a	Dynamic	friction	and	wave	emission	at	long	wavelengths	
	
	 We	 return	 to	Eq.(7.A.5)	 and	examine	 its	properties.	 	We	expect	 that	 if	 v0	>	
ω/k	there	will	be	a	Cerenkov	effect.			What	is	the	shielded	force	on	a	single	particle	
in	the	frame	of	the	lowest-order	particle	trajectory	(an	inertial	frame)?	

	 	 F= e0E(s =0)= e02
d3k

2π( )
3∫ 4π

−ik( )
k2

1
ε k ,k ⋅v0( )

1
ε
=
ε '− iε"
ε
2 	 (7.A.7)	

We	note	that	ε’	is	even	with	respect	to	changing	the	sign	of	k,	while	ε”	and	k /k2 	are	
odd.		Thus,	Eq.(7.A.7)	yields	the	following	result.	

Theorem:		(Dynamic	friction)		F= e0E(s =0)=−e02
d3k

2π( )
3∫ 4π k

k2
ε"
ε
2 			 	 (7.A.8)	

	
The	 dynamic	 friction	 has	 different	 characteristics	 for	 long	 and	 short	

wavelengths.		(i)	For	k<kD	(λ>λD),	waves	are	weakly	damped	and	weakly	emitted	by	
the	 Cerenkov	 effect	k ⋅v0 =ωk .	 	 There	 is	 a	 radiation	 reaction,	 i.e.,	 particles	 lose	
energy	 in	 emitting	 waves.	 (ii)	 For	 k>kD	 (λ<λD),	 shielding	 is	 insufficient	 and	
ineffective.		Binary	interactions	(Coulomb	collisions)	produce	friction.			We	consider	
the	long	and	short	wavelength	limits	separately,	make	appropriate	approximations,	
and	obtain	analytic	results	to	evaluate	the	dynamic	friction	and	wave	emission.	
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We	examine	Eq.(7.A.8)	in	the	long	wavelength	limit:	

		 	 		FW =−F= e0
2

k<kD

d3k

2π( )
3∫ 4π k

k2
dω δ(∫ ω −k ⋅v0)Im

1
ε(k ,ω) 		 (7.A.9)	

where	the	force	on	the	waves	due	to	the	particle	is	opposite	in	sign	to	the	force	of	
the	waves	on	the	particle.			We	make	use	of		

	 	 	 	 γk =−
ε"

ωk

∂ε '
∂ω

ωk

	

for	small	k	and		

	 	 	 y lim! "!! 0 1
x+ iy

=P 1
x

⎛

⎝
⎜
⎞

⎠
⎟− iπδ(x)sgn( y) 	

Hence,	if	 ε" << ω∂ε /∂ω ,	then		

	

	 Im 1
ε '+ iε" =−πδ(ε ')sgn(ε") δ(ε ')=δ(ε '(k ,ω))= δ(ω −ωk

l )
∂ε '
∂ω

ωk
l

l
∑ ε '(k ,ωk

l )=0 	

Thus	Eq.(7.A.9)	leads	to	the	following	result	for	long	wavelengths.	
	

Theorem:										FW =−e0
2π k<kD

d3k

2π( )
3∫ 4π k

k2
1

∂ε '
∂ω

ωk
l

l
∑ δ(ωk

l −k ⋅v0)sgn(ωk
l )

											(7.A.10)	
	
We	next	derive	the	rate	of	energy	loss	by	the	particle,	which	is	equal	to	the	rate	of	
energy	in	wave	emission:	

	 	 !W =−FW ⋅v0 = e0
2π k<kD

d3k

2π( )
3∫ 4π
k2

ωk
l

∂ε '
∂ω

ωk
l

l
∑ δ(ωk

l −k ⋅v0) 	 											(7.A.11)	

The	rate	of	energy	in	wave	emission	is	positive	for	either	stable	or	unstable	waves.		
With	no	loss	of	generality	we	can	limit	the	sum	over	l	in	Eq.(7.A.11)	to	branches	for	
which	ω	>0	and	introduce	a	factor	of	2	to	account	for	the	negative	frequencies.			
	
Definition:		The	rate	of	energy	in	wave	emission	per	unit	volume	as	a	function	of	k	
for	a	particular	branch	l	(with	positive	frequency	--	summing	over	both	positive	and	
negative	frequencies	for	the	branch	will	introduce	another	factor	of	2)		
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!Wl k( )= 4π
2e0

2

k2
ωk

l

∂ε '
∂ω

ωk
l

δ(ωk
l −k ⋅v0) 	 	 	 											(7.A.12)	

We	 integrate	 Eq.(7.A.12)	 	 over	 the	 velocity	 distribution	 functions	 and	 sum	 over	
species	to	obtain	the	wave	emission	power	density	per	unit	volume	in	k	space	for	all	
particles	 ignoring	 particle-radiation	 correlations	 (restriction	 to	 incoherent	
radiation):	
	

	 	

!Wl k( )= d3v gs(∫
s
∑ v)ωs

2

k2
2πms ωk

l

∂ε '
∂ω

ωk
l

δ(ωk
l −k ⋅v0)

=
2π
k3

ωk
l

∂ε '
∂ω

ωk
l

gs(
s
∑ u=Vk

l )smsωs
2

	 	 											(7.A.13)	

where	Vk
l =
ωk

l

k
.	 	Equation	 (7.A.13)	 is	 the	 spontaneous	emission	power	density	per	

unit	volume	 in	k	 space.	 	 	 [Editor’s	note:	At	this	point	Kaufman	commented	that	this	
derivation	seems	to	be	 in	error	 for	negative	energy	waves	 for	which	∂ε '/∂ω <0 .	 	He	
did	not	explain	the	nature	of	 the	error	and	 left	 the	remediation	of	 the	derivation	 for	
negative	energy	waves	unresolved.]	
	

The	 total	 time	derivative	of	 the	 energy	density	per	unit	k	 volume	 is	 a	 sum	
including	 the	 spontaneous	 emission,	 Landau	 damping	 or	 growth,	 and	 nonlinear	
effects:	

Theorem:														 d
dt
W l k( )= !Wk

l +2γklWk
l +nonlinear 	 	 	 											(7.A.14)	

	
If	 the	 wave	 amplitudes	 are	 small,	 then	 nonlinear	 effects	 can	 be	 ignored.	 	 If	 we	
further	assume	that	the	plasma	is	stable,	i.e.,	γk

l <0 ,	then	Eq.(7.A.14)	admits	a	simple	
steady-state	relation	for	the	energy	density	per	unit	k	volume	in	branch	l:	

	 	 	 	 	 Wk
l =
!Wk
l

−2γkl
	 	 	 	 											(7.A.15)	

If	we	use	the	relation	for	γk
l =

π

k2
1

∂ε '
∂ω

ωk
l

ωs
2

s
∑ g

k̂
s '(Vkl ) 	in	Eq.(7.A.15),	we	obtain		
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	 	 	 	 Wk ,s
l =

Vk
l ms gk

s (Vkl )
−gk

s '(Vkl )
	 	 	 	 											(7.A.16)	

for	a	single	resonant	species.	
	
Example:	For	a	Maxwellian	plasma	 g(u)= const exp(−mu2 /2T ) ,	then								

g'(u)=−(mu/T )g 		 	 	 	 									(7.A.17a)	
and		

Wl(k)=Ts 		 	 	 	 	 									(7.A.17b)	
for	 a	 single	 resonant	 species.	 	 	 This	 is	 the	 Rayleigh-Jeans	 law	 for	 a	 plasma	
(equipartition	law	in	statistical	mechanics).		This	is	only	valid	for	weak	damping,	i.e.,	
k < kD = λD

−1 .	 	 	 	We	 integrate	Eq.(7.A.17)	over	wavenumbers	 to	compute	 the	energy	
density	W	in	a	quiescent	plasma:	

	 	 	 W =
d3k
(2π )3k<kD

∫ Wl

l
∑ (k)≈2T kD3 ~T /λD3 	 	 											(7.A.18)	

An	estimate	of	 the	kinetic	energy	density	 in	 the	plasma	 is	 the	pressure,	 i.e.,	K~nT.		
Hence,		

	 	 W
K
~ T
λD
3
1
nT

~ 1
nλD

3 ≡
1
Λ
<<1 	 	 	 											(7.A.19)	

We	note	that	the	plasma	parameter	Λ	is	typically	large,	e.g.,		Λ~104-108.	
	
Example:	In	a	non-Maxwellian	plasma	we	define	an	effective	temperature	Teff	so	that	
in	analogy	to	Eq.(7.A.17a)	one	has		

g'(u)=− mu/Teff (u)( )g 		 	 	 									(7.A.20a)	

and		
Wl(k)=Ts ,eff (Vkl ) 		 	 	 	 									(7.A.20b)	

Equation	 (7.A.20b)	 retains	 the	 form	of	 the	Rayleigh-Jeans	 formula.	 	 The	 results	 in	
this	sub-section	can	be	believed	as	long	as	the	wave	energies	are	not	so	large	as	to	
invalidate	 our	 ignoring	 the	 nonlinear	 terms	 in	 Eq.(7.A.14).	 	 The	 extension	 of	
Eq.(7.A.19)	to	the	non-Maxwellian	limit	gives	

	 	 	 W
K
~Teff
λD
3
1
nT

~ 1
Λ

Tres
Tavg

~10−5 ×103 ~10−2 <<1 	 											(7.A.21)	

At	this	relative	amplitude	the	wave	energy	density	should	be	quite	measurable.	
	
Exercises:	 (i)	 Examine	 the	 generalization	 to	 the	 electromagnetic	 wave	 energy	
densities	based	on	Maxwell’s	 equations.	 	 (ii)	Calculate	 the	wave	energy	density	 in	
ion	 acoustic	waves	 for	Te>>Ti.	 	 Show	 that	 for	 ion	waves	 one	 can	 deduce	 that	 the	
plasma	 parameter	 has	 to	 be	 quite	 large,	 i.e.,	Λ >(mi /me )2 ,	 in	 order	 that	 the	wave	
energy	density	be	 small	 enough	 to	 avoid	 trapping	 electrons.	 	 Electron	 trapping	 in	
ion	waves	invalidates	the	neglect	of	nonlinearities	in	the	theory.				
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7.A.b	Superthermal	radiation	–	Cerenkov	radiation	and	radiation	reaction			
	
	 In	Eq.(7.A.10)	we	calculated	the	radiation	reaction	FW 	to	a	test	particle	based	
on	the	linear	plasma	response	for	 long	wavelengths	modes.	 	 If	we	assume	that	the	
plasma	 is	 isotropic	 and	 unmagnetized	 (B=0),	 then	 we	 can	 project	 the	 radiation	
reaction	force	onto	the	preferred	direction	of	the	test-particle	velocity:	 	

	 	 v̂0 ⋅FW =−
2e02ωp

2

2v0
k2dk
(2π )3k<kD

∫ 4π 2

k2
2π dµ δ(ωp −kv0µ)

−1

1

∫ =−
e0
2ωp

2

v02
dk
k0+

kD

∫ 									(7.A.22)	

where	we	only	include	electron	plasma	waves	for	which	 ∂ε '/∂ω
ωk
=2/ωp ,	µ ≡ cosθ 	

due	 to	 the	 projection	 of	 k	 on	 v0,	 there	 are	 two	 branches	 of	 waves	 (positive	 and	
negative	 frequencies),	 and	 δ(ωp −kv0µ)=(1/kv0)δ(µ −ωp /kv0) .	 	 The	 Cerenkov	
resonance	 between	 the	 wave	 and	 the	 particle	 is	 embodied	 in	 the	 relation	
v0µ =ωp /k ,	which	can	only	be	satisfied	if	µ =ωp /kv0 <1→ωp / v0 < k .		This	implies	
the	following	result.	
	
Theorem:	Wave-particle	resonance	and	emission	can	exist	if		

	 	
ωp

v0,res
< k < kD ⇒

ωp

v0,res
< kD or					vthe =

ωp

kD
< v0,res 	 	 											(7.A.23)	

Hence,	only	superthermal	particle	particles	can	emit	waves;	and	the	 lower	 limit	of	
the	integral	with	respect	to	k	in	Eq.(7.A.22)	is	ωp/v0.	
	
Theorem:	The	magnitude	of	the	resonant	radiation	reaction	force	is	

v̂0 ⋅FW =−
e0
2ωp

2

v02
dk
kωp

v0

kD

∫ =−
e0
2ωp

2

v02
ln v0
vthe

v̂0 ⋅FW ≈
e0
2

λD
2
vthe
v0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

ln v0
vthe

	 											(7.A.24)	

	

7.A.c	Dynamic	friction	and	wave	emission	at	short	wavelengths	
	

We	return	to	Eq.(7.A.9)	in	the	short-wavelength	limit:	

FD =−e0
2

k>kD

d3k

2π( )
3∫ 4π k

k2
ε"(k ,k ⋅v0)

|ε |2
	 	 											(7.A.25)	

where	

	 	 ε =1− ωs
2

k2s
∑ du g

k̂
s '∫ (u) P

u− k̂ ⋅v0
+ iπδ(u− k̂ ⋅v0)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 	 									(7.A.26a)		
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	 	 ε"=−π ωs
2

k2s
∑ du g

k̂
s∫ '(k̂ ⋅v0) Im1

ε
=−

ε"
|ε |2

g
k̂
s '≡ ∂

∂u
g
k̂
s (u) 							(7.A.26b)	

For	short-wavelength	modes,	e.g.,	electron	plasma	waves,	the	phase	velocities	fall	in	
the	 bulk	 of	 the	 electron	 velocity	 distribution,	 which	 gives	 rise	 to	 strong	 Landau	
damping.		Thus,	the	normal	mode	frequencies	ωk

l 	have	large	imaginary	parts	so	that	

ε(Reωk
l )≠0 	and	ε =1+O 1

k2λD
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .					

Theorem:	For	k > kD 	we	assume	|ε |2→O(1) ,	in	which	limit	the	dynamic	friction	is		

FD =4π
2e0

2 ωs
2

k>kD

d3k

2π( )
3∫ k
k4
g
k̂
s '(k̂ ⋅v0)s∑ 	 	 											(7.A.27)	

We	next	assume	that	g	is	isotropic.		Then	the	only	preferred	direction	is	the	velocity	
v0.		Hence,	Eq.(7.A.27)	becomes		

	 				 v̂0 ⋅FD
s =−4π 2e0

2ωs
2

k>kD

k2dk

2π( )
3∫ 2π
k3

dµ
−1

1

∫ µg
k̂
s '(v0µ) µ ≡ cos(k̂ , v̂0) 												(7.A.28)	

The	lower	limit	of	the	k-integral	in	Eq.(7.A.28)	is	kD.		The	upper	limit	cutoff	is	set	by	
physical	 considerations.	 	 Classical	 considerations	 become	 invalid	 and	 quantum	
mechanics	must	be	applied	for	wavelengths	shorter	than	the	deBroglie	wavelength,	
viz.,	k >mv /! .	 	 Another	 constraint	 is	 set	 by	 the	 assumption	 of	 small-amplitude	
electric	fields	so	that	linear	theory	is	valid:	e2 /r <<mv2 	or	r > e2 /T → k <T /e2 .			
Hence,	we	obtain	

	 	 	 	 kmax =
mv
!
, T
e2

⎛

⎝
⎜

⎞

⎠
⎟
<

	 	 	 	 										(7.A.29)	

where	the	former	condition	is	set	by	quantum	mechanics	and	prevails	for	T	>	10	eV,	
and	the	latter	condition	is	set	by	nonlinearity	and	prevails	for	T	<	10	eV.		For	k	>	kmax	
one	 must	 employ	 the	 quantum	 mechanical	 Boltzmann	 equation.	 	 In	 terms	 of	
interaction	 distances,	 Eq.(7.A.28)	 pertains	 to	 interaction	 distances	 r	 satisfying	
rmin ~1/kmax < r < λD 	where	kmax	is	given	in	Eq.(7.A.29).			
	 The	results	here	capture	simultaneous,	superposable,	small-angle	collisions.		
There	are	no	waves	here	and	no	zeroes	of	ε.		The	lower	limit	of	the	integral	over	k	in	
Eq.(7.A.28)	 is	 kD,,	 so	 that	 the	 k	 integral	 dk /k = ln(kmax∫ /kD) .	 	 In	 the	 low-
temperature	classical	limit	for	kmax,	Eq.(7.A.28)	yields	

							
v̂0 ⋅FD

s =−
e0
2ωs

2

2π
dk
kkD

kmax

∫ 2π dµ
−1

1

∫ µg
k̂
s '(v0µ)=−e02ωs

2 lnkmax
kD

dµ
−1

1

∫ µg
k̂
s '(v0µ)

lnkmax
kD

= lnTλD
e2

= ln4πnTλD
4πne2

= ln4πnλD3 = lnΛ+ ln4π
										(7.A.30)	
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10%	corrections	to	the	upper	and	lower	limits	on	the	k-integration	are	possible	but	
are	 not	 important	 because	 collisions	 are	 already	 a	 minor	 effect	 compared	 to	
collective	effects	for	nλD

3 >>1 .			Hence,	we	approximately	evaluate	Eq.(7.A.30)		 							

															 v̂0 ⋅FD
s ≈ −e0

2ωs
2 lnΛ dµ

−1

1

∫ µg
k̂
s '(v0µ)= FDs(v0)~

e0
2ωs

2

vth,s2 lnΛ~ e0
2

λDs
2 lnΛ 												(7.A.31)		

We	compare	the	result	in	Eq.(7.A.31)	with	the	result	in	Eq.(7.A.24)	for	the	radiation	
reaction	force:	FW ~e2 /λD2 << FD ~lnΛ e2 /λD2 .		FD	is	dominant.	
	
Example:	Consider	a	Maxwellian	velocity	distribution	function		

	 gs(u)= 1
2π v s

exp −
u2

2v s2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ λs ≡

v s
ωs

v s ≡
Ts
ms

	 	 											(7.A.32)	

Then	the	dynamic	friction	is		

	 	 FD
s(v0)≈ −

e0
2

λs
2 lnΛ

v0
v s

1
2π

dµ
−1

1

∫ µ2exp −
µ2

2µ02
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ µ0 ≡

v s
v0
			 											(7.A.33)	

The	integral	in	Eq.(7.A.33)	can	be	evaluated	analytically	in	two	opposite	limits:	
	

dµ
−1

1

∫ µ2exp −
µ2

2µ02
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ → dµ

−1

1

∫ µ2 =
2
3 for	v0 << v s , µ0 >>1

→µ0
3 dx x2

−
1
µ0

1
µ0

∫ exp(− 1
2 x

2)≈ µ03 dx x2
−∞

∞

∫ exp(− 1
2 x

2)= 2πµ03 for	v0 >> v s , µ0 <<1

	
Thus,	Eq.(7.A.33)	is	evaluated	asymptotically	as	

						FD
s(v0)≈

e0
2

λs
2 lnΛ

2
3 2π
⎧
⎨
⎪

⎩⎪

v0
v s
≈0.25v0v s

for	v0 << v s ,
v s
v0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

for	v0 >> v s
⎫

⎬
⎪

⎭⎪
									(7.A.34)	

	
Exercise:	Sketch	FDs	using	Eq.(7.A.34))	and	FW	based	on	Eq.(7.A.24)	as	 functions	of	
v0.	
	

7.A.d	Calculation	of	classical	collisional	resistivity	
	

In	 Eq.(7.A.34)	 we	 calculated	 the	 dynamic	 friction	 on	 a	 test	 particle	 as	 a	
function	of	the	test	particle	speed	v0	due	to	its	collisional	interaction	with	the	plasma	
for	a	Maxwellian	electron	distribution.	 	 	Consider	 ions	and	electrons	subject	 to	an	
electric	field,	and	the	ions	and	electrons	collisionally	drag	on	one	another.		Newton’s	
law	for	each	particle	is	
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d
dt
msv = esE+FD

s' 	 	 	 	 											(7.A.35)	

For	singly	charged	ions	and	a	quasi-neutral	plasma	ne ≈ ni =n ,	the	fluid	current	is	

	 	 j=ne ui −ue( )≡neuD ≡σE 	 	 	 							 											(7.A.36)	

where	 we	 have	 introduced	 the	 conductivity	 σ	 which	 will	 be	 evaluated	 in	 the	
following	analysis,	σ =neuD /E 	and	uD	is	a	drift	of	the	ions	relative	to	the	electrons	.		
The	 ions	 are	 cold,	 and	 uD>0	 is	 assumed	 small	 compared	 to	 the	 electron	 thermal	
speed	 so	 that	 the	 ions	 are	 essentially	 at	 rest	 compared	 to	 the	 electrons.	 	 Due	 to	
Newton’s	third	law	there	is	no	drag	force	of	the	ion	fluid	on	itself.	 	The	equation	of	
motion	for	the	ion	fluid	is		

d
dt

nimiui( )= eniE−|Fie |ni 	 	 	 	 											(7.A.37)	

There	are	more	electrons	slower	than	the	 ions	than	faster,	so	that	 the	 ion	drag	on	
the	electrons	decelerates	the	ions.			The	equation	of	motion	for	the	electron	fluid	is	

	 	 		 d
dt

nemeue( )=−eneE+| Fei |ne 	 	 	 											(7.A.38)	

and	in	consequence	of	Newton’s	third	law,	 	|Fie |=|< Fei >| .	 	At	steady	state,	D/Dt =0 	
in	both	Eqs.(7.A.37)	and	(7.A.38).	 	 	The	force	of	the	electrons	on	the	ions	at	steady	
state	if	uD << ve 	is	

	 	 |FDs(v0)|=
2
3

1
2π

v0
v s
e0
2

λs
2 lnΛ =

2
3

1
2π

uD
ve
e2

λs
2 lnΛ = eE 		 											(7.A.39)	

where	Λ≡nλe
3 , ve = Te /me , and	λe ≡ Te /4πne2 .		Hence,	from	Eq.(7.A.38-7.A.39)	

the	conductivity	is	

	 	 	 σ =
neuD
E

=
3n 2π veλe3
2λe lnΛ

=
3 2π
2

Λ

lnΛωp 	 	 											(7.A.40)	

Definition:	The	resistivity	is	defined	as		

	 	 	 	 η ≡
1
σ
=
1
ωp

1
3

2
π
lnΛ
Λ

		 	 	 											(7.A.41)	

We	note	that	the	conductivity	is	nearly	independent	of	density	except	for	lnΛ,	

	 	 σ =
3 2π
2

4πne2
me

nTe
3/2

(4π )3/2n3/2e3
1
lnΛ =

3 2
8 π

ve
Te
e2

1
lnΛ 	 											(7.A.42)	

7.A.e	Definition	of	collision-dominated	parameter	regime			
	

We	can	introduce	the	concept	of	the	collision	frequency	ν	using	the	analogy	



	 148	

			
!v=-eE

m
−νv=0 ⇒0= -eE

m
−νv⇒0= -eE

m
−νuD ⇒σ =

neuD
E

=
ne2

mν
=

ωp
2

4πνe
											(7.A.43)	

From	Eqs.(7.A.42)	and	(7.A.43)	we	can	evaluate	the	collision	frequency:	

	 	 σ =
ωp

2

4πνe
⇒νe =

ωp

Λ
lnΛ 1

6π 2π
=
8
3

π
2
nee

4 lnΛ
me
1/2Te

3/2 	 	 											(7.A.44)	

An	alternate	heuristic	derivation	of	Eq.(7.A.44)	is	as	follows:	

ν =n(cross	section)vlnΛ =n e2

T

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

v lnΛ = nee
4 lnΛ

me
1/2Te

3/2 	 											(7.A.45)	

where	we	have	used	the	Rutherford	cross-section	in	Eq.(7.A.45)	and	have	recovered	
Eq.(7.A.44)	except	for	the	numerical	factors	out	in	front.		The	characteristic	slowing-
down	time	due	to	electron	collisions	is	νe

−1 ~Λωp
−1 .			

Definition:	The	characteristic	mean-free-path	is		

	 	 	 ℓcoll ~
ve
νe
~ Λ

lnΛ
ve
ωp

=
Λ

lnΛ λD 	 	 	 	 											(7.A.46)	

The	strong	interaction	distance	(in	the	classical	sense)	is		

	 	 	 	 r0 =
λD
Λ
≈
e2

T
	

The	collisionless	Vlasov	approximation	is	so	good	because	νe <<ωp 	by	 lnΛ /Λ .			

7.A.f	Anomalous	dynamic	friction	due	to,	for	example,	instabilities			
	

We	recall	the	steady-state	relation	used	to	reduce	Eq.(7.A.38):	

eE = Fi
e <E0 ≡0.22

e2

λD
2 lnΛ 	 	 	 	 											(7.A.47)	

for	uD≤ve.		If	E	>	E0	there	can	be	no	balance,	and	the	electrons	can	runaway	because	
the	electrons	will	continue	to	accelerate.			E0	is	the	runaway	electric	field	limit.45	
	 In	 Sec.	 7.A.e	 we	 calculated	 collisional	 friction	 due	 to	 Coulomb	 field	
interactions	 between	 test	 particles	 and	 shielding	 clouds	 given	 a	 relative	 drift	 uD	
between	 ions	and	electrons.	 	A	 relative	drift	 can	be	 the	source	of	 free	energy	 that	
excites	collective	modes	of	instability,	which	in	turn	provide	an	anomalous	friction	
that	can	relax	the	drift.		Here	we	describe	some	of	the	instabilities	that	can	arise	as	a	
function	of	uD.		For	uD>ve	electron	plasma	waves	are	destabilized	by	a	modified	two-
stream	 instability	 or	 Buneman	 instability.46		 At	much	 smaller	 drift	 velocities,	 ion-
acoustic	waves	can	be	destabilized.		For	uD>5vi	ion-acoustic	waves	are	unstable	only	
if	 Te>>Ti,	 else	 Landau	 damping	 can	 stabilize	 the	 modes.	 	 For	 velocities	
uD>cs=(Te/mi)1/2	 there	can	be	a	 strong	 ion-acoustic	 instability	 if	Te>>Ti.	 	The	wave	
																																																								
45	H.	Dreicer,	Phys.	Rev.,	115,	238	(1959).	
46	O.	Buneman,	Phys.	Rev.	Lett.,	10,	285	(1963).	
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turbulence	 due	 to	 the	 instabilities	 can	 produce	 quasilinear	 diffusion	 and	 dynamic	
friction	that	affect	 the	particle	velocity	distributions	(see	Sec.	6.E).	 	As	the	velocity	
distributions	evolve	due	to	quasilinear	diffusion	(for	example,	heating),	the	Landau	
resonance	effects	and	Coulomb	collisions	are	changed.		The	self-consistent	evolution	
of	the	turbulent	fields	and	the	velocity	distributions	are	closely	coupled.			

Consider	the	following	model	problem.		Assume	there	is	a	given	relative	drift	
uD	and	a	driving	electric	field	at	t=0.	At	t=0	let	E=0	and	turn	on	the	electric	field	until	
it	 exceeds	 the	 runaway	 threshold	 in	 magnitude.	 An	 approximate	 power	 balance	
relation	for	the	electrons	can	be	expressed	as		

	 	
eEuD =

∂

∂t
1
2m uD

2 +ve2( )
⎡

⎣
⎢

⎤

⎦
⎥≈

∂

∂t
1
2m2uD

2⎡

⎣
⎢

⎤

⎦
⎥≈

∂

∂t
muD

2⎡
⎣

⎤
⎦

⇒ eE =2m !uD ⇒uD ≈uD(0)+
eEt
2m

	 	 											(7.A.47)	

We	have	assumed	that	collisional	 friction	between	the	electrons	and	 ions	deposits	
energy	 into	 electron	 thermal	 energy.	 	 We	 further	 assume	 that	 the	 thermal	 and	
directed	energy	grow	in	equal	amounts	in	Eq.(7.A.47).	 	There	is	no	steady	current,	
only	acceleration.	 	 In	 this	model	 the	 ions	do	not	do	much.	 	The	electron	heating	 is	
dominantly	 parallel	 to	 the	 drift,	 and	 T||	 grows.	 	 The	 heated	 distribution	 function	
develops	an	anisotropy	(T||>	T⊥)	 that	can	excite	an	electromagnetic	 instability	 like	
the	Weibel	instability.47	

7.B	Extension	of	test-particle	theory	to	many-particle	phenomena			

7.B.a	Incorporating	dynamic	friction	into	Vlasov	quasilinear	theory	to	extend	the	
Vlasov	equation	to	the	Boltzmann	equation			
	
	 Here	we	extend	our	 earlier	 treatment	of	quasi-linear	diffusion	 (Sec.	 6.E)	 to	
include	 the	 dynamic	 friction	 also	 due	 to	 collisions.	 	 Recall	 the	 Vlasov	 equation	
extended	to	include	velocity	diffusion:	

	 	 ∂

∂t
f (r,v;t)+ ∂

∂r
( !rf )+ ∂

∂v
( !vf )=0⇒ ∂

∂v
⋅ D(v)⋅ ∂f

∂v

⎛

⎝
⎜

⎞

⎠
⎟ 		 	 (7.B.1)	

This	 analysis	 will	 ignore	 large-angle	 (Boltzmann)	 collisions	 and	 quantum	 effects.		
The	 diffusion	 tensor	D(v)	 was	 derived	 in	 Sec.	 6	 based	 either	 on	 a	 random-walk	
argument	or	by	iterating	the	Vlasov	equation.			In	a	Coulomb	model,	

	 	 !v = e
m
E → D(v)= e

m

⎛

⎝
⎜

⎞

⎠
⎟

2

dτ E(rt ,t)E(rt−τ ,t −τ )
0

∞

∫ 	 	 (7.B.2)	

The	 electric	 field	 in	 the	 theory	 of	 quasilinear	 diffusion	 is	 the	 Vlasov	 electric	 field	
associated	with	macroscopic	waves	and	collective	effects.		In	collisional	diffusion	the	
electric	 field	 is	 the	 “noise”	 electric	 field	 associated	with	a	microscopic	picture.	 	Of	
course,	the	particles	just	respond	to	the	total	electric	field.		The	relative	field	energy	
																																																								
47	E.S.	Weibel,	Phys.	Rev.	Lett.	2,	83	(1959).	
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in	 microscopic	 noise	 fields	 is	W/nT≈O(Λ-1)~10-6,	 for	 example.	 	 The	 relative	 field	
energy	in	saturated	turbulent	fields	might	be	W/nT~10-2,	for	example.		We	note	that	
one	 does	 not	 put	 the	 same	 electric	 field	 in	 both	 the	 diffusion	 tensor	 and	 in	 the	
acceleration	term	on	the	left	side	of	Eq.(7.B.1),	which	would	double	count	its	effects.	

7.B.b	Correlation	functions,	Bogoliubov	approximation,	and	irreversibility			
	

We	want	to	calculate	the	two-point	auto-correlation	function	for	the	electric	
field	used	in	D(v)	in	Eq.(7.B.2).		It	is	useful	from	a	pedagogic	perspective	to	reduce	
the	 two-point	 auto-correlation	 tensor	 in	 Eq.(7.B.2)	 to	 a	 scalar	with	 respect	 to	 the	
electric	potential:	

φ(r,t)φ(r',t ') = φ(r,t)φ(r−s,t −τ ) 	 	 	 (7.B.3)	

What	 is	meant	by	 the	 average	 in	Eq.(7.B.3)?	 	 For	 s >> λD 	we	 are	 looking	 at	 effects	

due	 to	 waves	 (collective	 effects).	 	 If	 s << λD ,	 then	 discrete	 particle	 effects	 are	

dominant.	 	 Similarly,	 τ >>1/ωp 	corresponds	 to	 waves,	 while	 τ >>1/ωp 	is	
dominated	by	discrete	particle	effects.	
	
Definition:	The	two-point	auto-correlation	function	for	the	electric	potential	is	
	 	 	 C

φ
≡C

φ
(s,τ )≡ φ(r,t)φ(r−s,t −τ )

r ,t
		 	 	 (7.B.4)	

and	C
φ
(s=0,τ =0)≡ φ(r,t)2 	is	related	to	the	field	energy	density.	

	
Averaging	 in	 Eqs.(7.B.3)	 and	 (7.B.4)	 over	 position	 only	 makes	 sense	 in	 a	

uniform	plasma,	L>>λD.		Time	averaging	makes	sense	only	if	the	system	is	stationary	
in	 time,	 T>>ωp-1.	 	 However,	 if	 the	 system	 is	 uniform	 and	 stationary	 on	 the	
microscopic	 scales,	 time	and	space	averaging	over	 the	 fast	 scales	 is	 allowed	while	
accommodating	 variations	 in	 space	 and	 time	 that	 are	 much	 slower	 than	 the	
microscopic	 scales.	 	 	 We	 assume	 that	 the	 fast	 and	 slow	 time	 scales	 are	 well	
separated	(Bogoliubov	approximation).			

	
Definition:	 (Truncated	 Fourier	 transforms)	 We	 define	 the	 following	 truncated	
Fourier	transforms	

	 	 φ k ,ω ;r,t;V ,T( )≡ d3s
V
∫ dτ

−T/2

T/2

∫ φ r+s,t +τ( )exp(−ik ⋅s+ iωτ ) 	 (7.B.5)	

Later	we	will	let	V ,T→∞ 	and	will	average	with	respect	to	r	and	t.		We	construct	
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V ,T→∞
lim φ k ,ω ;r,t;V ,T( )φ∗ k ',ω ';r,t;V ,T( )

r ,t

V ,T→∞
=lim d3s d3s' dτ dτ '∫∫∫∫ φ r+s,t +τ( )φ∗ r+s',t +τ '( )exp(−ik ⋅s+ iωτ )exp(+ik '⋅s'− iω 'τ ')

r ,t

V ,T→∞
=lim d3s d3s' dτ dτ '∫∫∫∫ φ r+s,t +τ( )φ∗ r+s',t +τ '( )

r ,t
exp(−ik ⋅s+ iωτ )exp(+ik '⋅s'− iω 'τ ')

=
V ,T→∞
lim d3s d3s' dτ dτ '∫∫∫∫ C

φ
s−s',τ −τ '( )exp(−ik ⋅s+ iωτ )exp(+ik '⋅s'− iω 'τ ')

V ,T→∞
=im d3s d3s" dτ dτ "∫∫∫∫ C

φ
s",τ "( )exp(−ik ⋅s+ iωτ )exp(+ik '⋅(s−s")− iω '(τ −τ "))

	
	 	 	 	 	 	 	 	 	 	 	 (7.B.6)	
Note	that	because	we	let	V ,T→∞ 	there	is	no	problem	with	the	limits	of	integration	
when	changing	the	variables.		We	next	make	use	of	the	following	identities	
	 d3∫ s exp −ik ⋅s+ ik '⋅s( )=(2π )3δ k−k '( ) dτ exp iωτ − iω 'τ( )∫ =2πδ ω −ω '( ) 	
to	reduce	Eq.(7.B.6)	to		

V ,T→∞
lim φ k ,ω ;r,t;V ,T( )φ∗ k ',ω ';r,t;V ,T( )

r ,t

=(2π )4δ(k−k ')δ(ω −ω ') d3∫ s dτ C
φ
(s,τ )exp(−ik ⋅s+ iωτ )∫

=(2π )4δ(k−k ')δ(ω −ω ')S
φ
(k ,ω)

	 	 (7.B.7)	

Definition:	 In	 Eq.(7.B.7)	 we	 have	 identified	 the	 spectral	 density	 Sφ	 which	 is	 the	
Fourier	transform	of	the	auto-correlation	function	for	the	electric	potential	
	 	 	 S

φ
(k ,ω)= Fs ,τ Cφ(s,τ )( ) 	 	 	 	 	 (7.B.8)	

Equation	 (7.B.8)	 is	 a	 statement	 of	 the	 Wiener-Khinchin-Einstein	 theorem.	 	 The	
implication	 of	 (7.B.8)	 is	 that	 space-time	 averaging	 is	 equivalent	 to	 phase-space	
(ergodic)	averaging.			
	

The	analysis	leading	to	the	results	in	this	section	employs	the	linear	plasma	
response	and	stationarity	assumptions.		This	requires	a	stable	plasma	(an	unstable	
plasma	 violates	 the	 stationarity	 assumption).	 	 Large-amplitude	 phenomena	 and	
trapping	invalidate	the	analysis.		Moreover,	we	have	also	assumed	that	the	plasma	is	
uniform.	 	 Consider	 the	 shielded	 field	 (Coulomb	 model)	 of	 a	 collection	 of	 bare	
particles:	

φ(k ,ω)= φ i(k ,ω)
i
∑ =

1
ε(k ,ω)

4π
k2
ei2πδ(ω −k ⋅v i )exp(−ik ⋅ri ) 	 	 (7.B.9)	

The	rigorous	methods	to	calculate	(7.B.9)	are	difficult.	 	We	have	taken	an	intuitive	
test-particle	point	of	view.		From	Eq.(7.B.9)	we	calculate		
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φ(k ,ω)φ∗(k ',ω ')

=
1

ε∗(k ',ω ')
1

ε(k ,ω)
4π
k ' 2j

∑
i
∑ 4π

k2
e jei (2π )2δ(ω '−k '⋅v j )exp(ik '⋅rj )δ(ω −k ⋅v i )exp(−ik ⋅ri )

	
	 	 	 	 	 	 	 	 	 	 											(7.B.10)	
We	make	a	critical	assumption	in	(7.B.10)	that	the	particle	positions	are	statistically	
independent	of	one	another.	 	However,	 the	particle	position	and	its	corresponding	
shielding	cloud	are	correlated	with	one	another.	
	
Theorem	(Ergodic	Theorem)			

	 exp(−ik ⋅ri )exp(ik '⋅rj ) = exp(−ik ⋅ri ) exp(ik '⋅rj ) =0 												(7.B.11)	
unless	ri = rj .	
	
	 So	far	the	irreversibility	associated	with	the	Bogoliubov	hypothesis	has	been	
buried.		The	goal	of	the	analysis	here	is	the	derivation	of	the	diffusion	tensor	and	the	
kinetic	 equation	 including	 dynamic	 friction	 and	 diffusion	 associated	 with	 the	
shielded	 plasma	 fluctuations	 linked	 to	 the	 test	 particles.	 	 The	 resulting	 diffusion	
equation	 implies	 irreversibility	 (Sec.	6.E).	 	To	continue	 the	derivation	we	consider	
disturbances	 that	 are	 turned	 on	 at	 t=0	 and	 restrict	 the	 Fourier	 transforms	 to	 the	
positive	ω	half-plane.			From	Eqs.(7.B.7),	(7.B.9),	(7.B.10),	and	(7.B.11)	we	obtain	
						
φ(k ,ω)φ∗(k ',ω ')

=
1

ε∗(k ',ω ')
1

ε(k ,ω)
4π
k2

4π
k ' 2

ei
2

i
∑ (2π )2δ(ω '−k '⋅v i )δ(ω −k ⋅v i ) exp −i(k−k ')⋅ri( )

=
1

ε∗(k ',ω ')
1

ε(k ,ω)
4π
k2

4π
k ' 2

ei
2

i
∑ (2π )2δ(ω '−k '⋅v i )δ(ω −k ⋅v i )

1
V

d3r∫ exp −i(k−k ')⋅ri( )

=
1

ε∗(k ',ω ')
1

ε(k ,ω)
4π
k2

4π
k ' 2

ei
2

i
∑ (2π )2δ(ω '−k '⋅v i )δ(ω −k ⋅v i )

(2π )3
V

δ(k−k ')

=
1

ε∗(k ,ω ')
1

ε(k ,ω)
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2

ei
2

i
∑ (2π )2δ(ω '−ω) δ(ω −k ⋅v i )

(2π )3
V

δ(k−k ')

=
1

|ε(k ,ω)|2
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2

ei
2

i
∑ (2π )2 δ(ω −k ⋅v i )

(2π )3
V

δ(ω '−ω)δ(k−k ')

=(2π )4δ(k−k ')δ(ω −ω ')S
φ
(k ,ω)

	

	 	 	 	 	 	 	 	 	 	 											(7.B.12)	
Hence,	
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S
φ
(k ,ω)= 1

|ε(k ,ω)|2
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2 2π
V

ei
2

i
∑ δ(ω −k ⋅v i )

=
1

|ε(k ,ω)|2
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2

2π ns
s
∑ es

2 d3v∫ gs(v)δ(ω −k ⋅v)

= ns
s
∑

4πes
k2ε(k ,ω)

2
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		 											(7.B.13)	

If	there	is	no	shielding,	i.e.,	no	polarization	correlation,	then	ε=1	in	Eq.(7.B.13).			
	 We	recall	the	expression	for	the	velocity-space	diffusion	Eq.(7.B.2)	which	we	
can	relate	to	the	analysis	in	Eqs.(7.B.3-7.B.13):	
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	 	 	 	 	 	 	 	 	 	 											(7.B.14)	
	
owing	to	the	symmetries	of	the	integrals	and	integrand	in	(7.B.14).		We	note	that	the	
field	fluctuations	arise	from	the	test	particles	satisfying	the	resonance		ω =k ⋅v' ,	and	
the	 fluctuations	 then	 interact	 with	 the	 other	 particles	 satisfying	 the	 resonance	
ω =k ⋅v .	 Hence,	k ⋅(v−v')=0 .	 	 	 Given	 that	 the	 spectral	 density	 in	 Eq.(7.B.13)	 is	
additive	 over	 species,	 so	 also	 is	 the	 diffusion	 tensor,	 which	 we	 rewrite	 for	 the	
diffusion	of	the	momenta	in	terms	of	the	un-normalized	distribution	function	fs:	

Ds
s'(p)= es2

d3k
(2π )3

dω
2π Sφ

s'(k ,ω)kkπδ(k ⋅v−ω)∫∫

=
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4πeses '
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2

d3∫ p'πδ(k ⋅v−k ⋅v')kk fs'(p')
	 			 										(7.B.15)	
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Only	the	1/|ε|2	evidences	the	plasma	shielding.			 We	also	note	that	Sφ	and	D	diverge	
at	large	k	where	linear	theory	breaks	down.					
	

7.B.c	Derivation	of	the	Lenard-Balescu	equation			
	
	 In	this	section	we	derive	the	extension	of	the	Vlasov	equation	to	a	collisional	
kinetic	 equation	 that	 includes	 both	 dynamic	 friction	 and	 velocity-space	 diffusion.		
We	recall	the	expression	for	the	dynamic	friction	

	 Fs(v)= es2
d3k
(2π )2∫ 4π

k2
k Imε−1 k ,k ⋅v( )=−es2 d3k

(2π )2∫ 4π
k2
k Imε
|ε |2

	 											(7.B.16)	

and	we	can	sum	over	species	assuming	that	the	dynamic	friction	is	simply	additive	
in	 the	other	particle	species.	 	We	can	express	 the	dynamic	 friction	 in	 terms	of	 the	
momentum	and	evaluate	 the	 imaginary	part	of	 the	dielectric	 response	 in	 terms	of	
the	species	distribution	functions	as	follows:	

Fs
s'(p)= d3k

(2π )3∫
4πeses'

k2ε k ,k ⋅v( )

2

d3p'πδ∫ (k ⋅v−k ⋅v')kk ⋅ ∂
∂p' fs'(p') 										(7.B.17)	

We	 now	 return	 to	 the	 Vlasov	 equation	 including	 friction	 Eq.(7.B.17)	 and	
diffusion	Eq.(7.B.15)	terms	on	the	right	side.	

	
Theorem:	The	Lenard-Balescu	equation	is	

				 d
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	 	 	 	 	 	 	 	 	 	 											(7.B.18)	
Definition:	Js	is	defined	as	a	flux	density	in	momentum	space:	

	 	 	 Js(p)≡Fs(p) fs −Ds(p)⋅
∂

∂p
fs 	 	 	 	 											(7.B.19)	

The	second	term	on	the	right	side	of	Eq.(7.B.19)	is	Fick’s	law	in	momentum	space.	
	
Theorem:	From	Eqs.(7.B.15-7.B.19)	one	derives	
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(7.B.20)	

where		
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and	the	collisional	flux	on	the	right	side	of	Eq.(7.B.20)	is	in	the	Landau	form.48		We	
note	that	Qss’	is	symmetric	in	v	and	v’	owing	to	the	symmetry	of	the	effective	force	
between	 two	 particles,	 and	 is	 also	 symmetric	 in	 species	 s	 and	 s’.	 	 	 However,	 the	
difference	in	momentum	derivatives	in	Eq.(7.B.20)	does	not	identically	vanish.	
	 We	 return	 to	 the	 analysis	 leading	 to	 Eqs.(7.B.12)	 and	 (7.B.13)	 to	 provide	
some	additional	details.		Consider	the	auto-correlation	function	for	the	electric	field	
used	in	the	diffusion	tensor	in	Eq.(7.B.14):

		 			 E(rt ,t)E(rt−τ ,t −τ ) = d3k
(2π )3

dω
2π exp i(k ⋅s−ωτ )( )kkSφ(k ,ω)∫∫ 	 											(7.B.22)	

	
From	Eq.(7.B.22)	it	follows	that	
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	 	 											(7.B.23)				

	 	 	 	 	 	 	 	 	 	 												
Let	us	discuss	the	behavior	of	Sφ.		We	note	that	|ε |2=ε '(k ,ω)2 +ε"(k ,ω)2 .		For	k	>	kD,	
the	 linear	normal	modes	are	not	weakly	damped	 in	general;	and	ε =1+O(1/k2λD2) .			
For	k	 <	kD,	 there	 are	weakly	damped,	 linear	normal	modes	 such	 that	ε '(k ,ωk )≈0 ,	
ε"(k ,ωk ) 	is	small;	and	the	growth	rate	or	damping	rate	is	deduced	from	γk =−ε"/ ∂ε '

∂ω
.		

However,	these	formulae	are	only	good	for	a	stable	plasma:	so	γk ≤0 .		In	general,		
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		(7.B.24)	

For	velocity	distributions	that	are	Gaussian	we	can	sketch	Sφ	based	on	Eqs.(7.B.23)	and		
(7.B.24),	 and	 the	 foregoing	 discussion.	 	 For	 k	 >	 kD,	 Sφ(ω)	 vs.	 ω	 for	 fixed	 k	 is	
approximately	 a	 Gaussian	 centered	 at	ω=0.	 	 For	 k	 <	 kD,	 Sφ(ω)	 vs.	ω	 for	 fixed	 k	 is	
approximately	a	Gaussian	centered	at	ω=0	for	small	ω		with	Lorentzian	peaks	at	±ωk,	
and	the	width	of	the	peaks	scales	as	γk .			

From	Eqs.(7.B.23)		and	(7.B.24)	we	can	derive	

																																																								
48	L.D.	Landau,	Zh.	Eksper.	i	Teoret.	Fiz.		7,	203	(1937)	
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S
φ
(k)= dω

2π∫ S
φ
(k ,ω)≈ dω

2π∫
1

|ε(k ,ω)|2
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2

2π es
2

s
∑ d3v∫ fs(v)δ(ωk −k ⋅v)

=
π
|γk |

1

∂ε
∂ω

ωk

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2

es
2

s
∑ d3v∫ fs(v)δ(ωk −k ⋅v)

			(7.B.25)	

With	the	use	of	Eqs.(7.B.23)	and	(7.B.25)	we	can	evaluate	the	wave	energy	and	its	
time	derivative.			Recall	that	

W(k)= ωk
ℓ

4π
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ℓ −k ⋅v)nsgs(v)
s
∑ 									(7.B.26)	

The	correlation	energy	density	is	the	electric	field	energy	density	minus	the	
electric	 field	 energy	 of	 the	 vacuum	 (ε=1),	 which	 scales	 as	!"/Λ	times	 a	 number.			
Thus,	 the	 Vlasov	 approximation	 is	 very	 good	 if	Λ ≫ 1	because	 particle-particle	
correlations	can	be	ignored.		However,	we	note	that	as	!! → 0 from	below	(	!! < 0),	
correlations	 become	 very	 important;	 and	 the	 approximations	 in	 our	 derivations	
break	down.	

7.B.d	Consideration	of	large-angle	collisions	and	the	Landau	equation			
	
	 We	 now	 focus	 on	 large-angle	 collisions,	which	 corresponds	 to	! > !! .	 	We	
ignore	! < !!	in	
	 	
	 	 Ds

s'(p)= d3p' fs'∫ (p')Qss'(v,v') 	 	 	 	 											(7.B.27)	
where	
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πδ(k ⋅w), w ≡ v−v' 	 											(7.B.28)	

For	! > !!	! → 1,	and	we	integrate	the	right	side	of	Eq.(7.B.28)	from	kD	to	kmax:	
	

	 	 	 Qss'(v,v')≡2 eses'( )
2
d3k kk

k4
∫ δ(k ⋅w) 	 																									(7.B.29)	

	 	
We	 note	 that	! ⋅ ! = 0	and	! !∥! = ! !∥ /!	where	!∥	is	 parallel	 to	w.	 	 Thus,	we	
can	 express	Q(w)=Q(

!
I − ŵŵ)and	Tr ! ! = 2 Q(w).	 	 Given	 this	 representation	 of	

! ! 	we	can	evaluate	Eq.(7.B.29)		
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I − ŵŵ( )

Q ≈ 1
22es2es'2 dk||2πk⊥dk⊥∫ 1

k
⊥

2 +k||
2

δ(k||)
w

→
2πes2es'2
w

dk
⊥

k
⊥

kD

kmax∫ =
2πes2es'2
w

lnkmax
kD

=
2πes2es'2
w

lnΛ
	

	 	 	 	 	 	 	 	 	 	 											(7.B.30)	
	
Note:		The	following	identity	is	useful	in	dealing	with	the	tensor	Q(w)=Q(

!
I − ŵŵ) ,	

	
	 	 	

!
I − ŵŵ =w ∂

∂w
∂

∂w
w 	 	 	 											(7.B.31)	

Given	Q	we	can	evaluate	D	in	Eq.(7.B.27)	and	the	dynamic	friction	

	 	 	 Fs
s'(p)= d3p'Q∫ ss'

(v,v')⋅ ∂
∂p' fs(p') 	 	 	 											(7.B.32)	

If	the	scatterers	are	isotropic,	i.e.,	if	fs’	is	isotropic,	then	D	only	depends	on	the	vector	
information	 in	 p:	 D=D1(v)I+D2(v)v̂v̂ .	 	 We	 take	 traces	 and	 work	 with	 scalar	
equations.	
	
Theorem:	For	fs’	a	Maxwellian	then	Eq.(7.B.27)	yields	
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																					(7.B.33)	

where	 x ≡ v/ 2v s' 	,		 v s' ≡ Ts' /ms' ,	and		
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	 											(7.B.34)	

[use	tables	for	the	error	function	at	intermediate	values	of	x].		The	dynamic	friction	
Eq.(7.B.32)	becomes	
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We	summarize	the	asymptotic	forms	for	the	diffusion	tensor:	

i. v << v s Ds' =
8
3

π
2
ns'es

2es'
2 lnΛ
v s '

I velocity	independent	and	isotropic

For	s'=electrons	Ds' =(meve )2νeI
											(7.B.36)	

ii. v>>v s , x→∞,w = v−v'≈ v in		Q Ds'→ns'Q(v)=ns'
2πes2es'2 lnΛ

v I− v̂v̂( )
The	faster	the	particle,	the	weaker	is	the	diffusion.

						(7.B.37)	
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Exercise:	 Fill	 in	 the	 intermediate	 steps	 in	 the	derivations	of	Eqs.(7.B.33),	 (7.B.36),	
and	(7.B.37).	
	 	
	 These	 simplified	 asymptotic	 forms	 Eqs.(7.B.32-7.B.37)	 for	 the	 dynamic	
friction	and	diffusion	derived	in	the	 large-k	approximation	(large-angle	scattering)	
transform	 the	 Lenard-Balescu	 to	 the	 Landau	 equation.	 	 The	 Lenard-Balescu	
equation	in	Sec.	7.B.c	is	good	up	to	some	kmax	with	a	~10%	error	by	ignoring	large-
angle	collisions.		In	the	Landau	equation	derivation	there	is	no	1/ ! !	and	Q	is	given	
in	 Eq.(7.B.30).	 	 Equations	 (7.B.18-7.B.20)	 still	 describe	 the	 collisional	 kinetic	
equation.	 Using	 Eq.(7.B.31),	 Eq.(7.B.27),	 and	 Eq.(7.B30)	 we	 obtain	 the	 following	
alternative	form	for	D	in	the	Landau	limit:	

	
Ds
s'(p)= d3p' fs'∫ (p')Qss'(v,v')=2πes2es'2 lnΛ d3p' fs'∫ (p') ∂

2

∂v∂v
v−v'

=2πes2es'2 lnΛ
∂2

∂v∂v
d3p' fs'∫ (p') v−v'

							(7.B.38)	

	
	

7.B.e	Derivation	of	the	Fokker-Planck	Equation	from	the	Landau	equation	and	model	
for	Brownian	motion	
	

	 For	 electron	 speeds	 v<<ve	 the	 electron	 diffusion	 tensor	 was	 given	 in	
Eq.(7.B.36),	De =(meve )2νeI ;	 and	 the	dynamic	 friction	of	 electrons	 on	 electrons	 for	
v<<ve	is	given	by	Fe =−meνeve .		The	corresponding	Fokker-Planck	equation	is	then	

	 	

d
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fe =−
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⎟
	 	 	 											(7.B.39)	

This	model	for	Brownian	motion	of	electrons	assumes	that	the	asymptotic	forms	are	
good	for	all	cases.	 	This	permits	analytic	solution	of	the	Fokker-Planck	equation	in	
closed	form.	
	
Theorem:	(Brownian	motion	model)		

	 	

d
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⎟
																																																															(7.B.40)	

If	 fe ~exp(−p2 /2meTe ) 	then	dfe /dt =0 ,	i.e.,	the	collisions	preserve	a	Maxwellian.	
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7.B.f	BGK	(Bhatnagar-Gross-Krook)	model	–	simplest	collision	model	that	conserves	
particles,	momentum,	and	energy		
	
	 The	 simplest	 collision	 operator	 that	 conserves	 particles,	 momentum,	 and	
energy	was	introduced	by	Bhatnagar,	Gross,	and	Krook49	

	 	 	 	 	 ∂

∂t
f

⎛

⎝
⎜

⎞

⎠
⎟
c

=−ν( f − f0) 	 	 	 											(7.B.41)	

The	 simplicity	 of	 the	 BGK	 collision	 model	 lends	 itself	 to	 quickly	 obtaining	 some	
general	idea	as	to	the	influence	of	collisional	relaxation	on	the	velocity	distribution.		
However,	it	omits	all	velocity	dependence	of	the	collision	frequency	and	large-angle	
scattering.		It	also	cannot	treat	delicate	things	like	the	effect	of	collisions	on	resonant	
phenomena.	
	

7.B.g	Generalizations	and	applications	of	plasma	collision	theory,	e.g.,	fast	processes	
involving	waves,	slow	processes,	resonance	broadening	due	to	collisions		

	
	 In	 this	 section	we	 touch	 on	 a	 collection	 of	 topics	 associated	with	 collision	
theory.	 	For	some	 topics	only	a	brief	 commentary	 is	given,	and	 for	others	 there	 is	
significant	analysis.	
	
i.		Collision	theory	in	a	magnetized	plasma	
	 Norman	 Rostoker	 published	 a	 treatment	 of	 collisions	 in	 a	 plasma	 with	 a	
constant	 applied	magnetic	 field	 in	 1960.50		 Consider	 a	 Landau	 collision	model	 for	
electrons	with	impact	parameter	b	and	Larmor	radius	rg	less	than	the	Debye	length	
λD.	 	 If	 the	 impact	 parameter	 b	 exceeds	 the	 Debye	 length,	 then	 the	 collision	 is	
shielded	 and	 the	 electron	 does	 not	 experience	 a	 collisional	 Coulomb	 force.	 	 If	 the	
magnetic	field	is	strong	and	rg	is	less	than	the	impact	parameter,	the	electron	stays	
on	its	field	line	and	does	not	undergo	the	collision.		Only	if	b<	rg	can	a	collision	take	
place.		Hence,	we	can	take	max(b)→rg	and	lnΛ = ln!!/!! → ln!!/!!	where	!! ≡ !!/!	
instead	of	using	Rostoker’s	formulae.		If	!! > !!	the	magnetic	field	is	weak;	so	weak	
that	with	 respect	 to	 collision	 theory,	 it	 is	 as	 if	 there	 is	 no	magnetic	 field	 at	 all,	 in	
which	case	there	are	no	changes	in	the	collision	theory	from	the	unmagnetized	case.		
However,	if	there	are	shielding	effects	included,	e.g.,	as	in	Eq.(7.B.28),	the	dielectric	
function	is	modified	in	the	presence	of	the	magnetic	field.	
	
ii.	Collisions	including	electromagnetic	effects	

																																																								
49	P.	L.	Bhatnagar,	E.	P.	Gross,	and	M.	Krook,	Phys.	Rev.	94,	511	(1954)		 
50	N.	Rostoker,	Phys.	Fluids	3,	922	(1960).		 
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	 When	 discrete	 charged	 particles	 interact,	 the	 most	 general	 treatment	 is	
based	 on	 Maxwell’s	 equations. 51 		 For	 short-range	 collisions	 (b< !! ),	 an	
electromagnetic	 treatment	 is	 needed	 instead	 of	 electrostatic.	 	 However,	 if	 the	
plasma	 is	 non-relativistic,	 the	 electromagnetic	 corrections	 to	 the	 electrostatic	
collision	 theory	 are	 small	 in	 v!/!! ;	 and	 the	 electromagnetic	 corrections	 are	
insignificant.	 	Electromagnetic	effects	are	significant	 for	charged-particle	collisions	
in	 a	 relativistic	 plasma,	 e.g.,	 consider	 bremsstrahlung.	 	 Theory	 based	 on	 Lienard	
Wiechert	 potentials	 is	 commonly	 employed,	 and	 the	 collision	 of	 two	 charged	
particles	 is	 sometimes	 described	 in	 terms	 of	 photon	 exchange.	 	 In	 any	 case,	 the	
hotter	 the	 plasma	 the	 weaker	 the	 collisional	 effects;	 and	 collisions	 in	 a	
relativistically	hot	plasma	may	not	be	important	in	many	contexts.	
	
iii.	Large-angle	scattering	
	 In	 the	 foregoing	 we	 have	 developed	 collision	 theories	 for	 small	 and	 large	
angle	scattering.	 	The	Lenard-Balescu	 theory	 is	valid	 for	 larger	 impact	parameters	
b>ro.	The	Lenard-Balescu	theory	is	accurate	to	approximately	10%.		For	ro<b<!!	the	
Landau	 collision	 operator	 is	 useful	 and	 is	 accurate	 to	 approximately	 15%.	 	 A	
Boltzmann	collision	model	ignoring	plasma	shielding	effects	is	appropriate	for	b<!!	
absent	quantum	mechanical	effects.		Figure	7.B.1	diagrams	the	regimes	for	the	three	
classical	collision	theories.	
	

	
	

Fig.	 7.B.1	 Diagram	 of	 ranges	 in	 collisional	 impact	
parameter	b	for	classical	collision	theories	in	plasmas	

	
The	region	of	overlap	and	 the	ranges	of	applicability	 invite	 the	 following	practical	
recipe:	

	 	 ∂

∂t
f

⎛

⎝
⎜

⎞

⎠
⎟
c

=
∂

∂t
f

⎛

⎝
⎜

⎞

⎠
⎟
Len−Bal

+
∂

∂t
f

⎛

⎝
⎜

⎞

⎠
⎟
Boltz

−
∂

∂t
f

⎛

⎝
⎜

⎞

⎠
⎟
Landau

	 	 											(7.B.42)	

	
The	 Lenard-Balescu	 theory	 cancels	 with	 either	 the	 Boltzmann	 or	 the	 Landau	
theories	in	the	intermediate	zone	where	the	theories	overlap.	
																																																								
51	J.D.	Jackson,	Classical	Electrodynamics	(3rd	ed.).	New	York:	John	Wiley	&	Sons	
(1999).		
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iv.	Quantum	mechanical	effects	
	 For	b≤ ! dB ≡ !/µv 	quantum	mechanical	 effects	 affect	 the	 collisions.	 	 	When				
T	>	1	Rydberg	=	13.6	eV,	then	! dB > e

2 /T .			This	parameter	regime	is	very	important	
in	 astrophysics.	 	 Consideration	 of	 quantum	 mechanical	 effects	 on	 collisions	 in	
plasmas	 is	beyond	the	scope	of	 these	 lectures.	 	Some	of	 the	researchers	who	have	
worked	in	this	area	are	DeWitt,	Gould,	Lampe,	and	Del	Rio.	
	
v.	Applications	–	slow	processes	involving	collisons	
	 If	 the	 electron	 velocity	 distribution	 has	 finite	 temperature	 but	 is	 a	 non-
Maxwellian,	 then	 electron-electron	 collisions	 will	 relax	 the	 velocity	 distribution	
toward	a	Maxwellian	on	a	time	scale	τMaxw

e ~1/νe .	 	Similarly,	a	non-Maxwellian	ion	
velocity	distribution	will	be	relaxed	by	ion-ion	collisions	on	a	time	scale	τMaxw

i ~1/ν i 	
For	 singly	 charged	 ions,	ν! 	is	ν! 	with	!! → !! and	!! → !! .	 	 We	 note	 that	 the	
characteristic	 frequencies	 or	 rates	 fundamentally	 scale	 as	ν~nσv,	 where	 n	 is	 the	
number	density	of	 field	particles,	σ~ !!/! !	is	 the	Coulomb	cross	section,	and	v	 is	
the	relative	speed	v~ !/!.		Electron	collision	frequencies	are	generally	faster	than	
ion	collision	frequencies	due	to	the	1/ !	scaling.	
	 When	 there	 are	 two	 charged	 species	 present	 with	 different	 temperatures,	
collisions	will	 relax	 the	 two	velocity	distributions	 to	have	a	common	temperature.		
Among	 collisional	 relaxation	 processes,	 temperature	 relaxation	 is	 very	 slow.		
Consider	 ions	 and	 electrons	 with	 Maxwellian	 velocity	 distributions	 such	 that	
initially	Te>Ti.	 	Electrons	will	cool,	and	ions	will	heat.	 	The	kinetic	equation	for	the	
ions		(assumed	singly	charged,	so	ne=	ni=n)	is		
∂f i(p;t)
∂t

=−
∂

∂p
⋅ Ji
e(p;t), where f i(p;t)= const 	exp −

p2

2miTi(t)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

→ d3p∫ p2

2mi

∂f i(p;t)
∂t

=
∂

∂t
n32Ti(t)
⎡

⎣
⎢

⎤

⎦
⎥=− d3p∫ p2

2mi

∂

∂p
⋅ Ji
e(p;t)= d3p∫ v ⋅ Ji

e(p;t)

= d3p∫ v ⋅ Fi
e fi −Di

e(p)⋅ ∂ fi
∂p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=−meνe d3p∫ v2 fi +meνe

Te
Ti

d3p∫ v2 fi =3
me

mi

νen(Te −Ti )

→
dTi
dt

=2me

mi

νe(Te −Ti )

	

	 	 	 	 	 	 											(7.B.43)	
	
Equation	(7.B.43)	describes	the	temperature	relaxation	process.		The	integration	of	
Eq.(7.B.43)	yields	
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dTi
dt

=2me

mi

νe(Te −Ti )=−
dTe
dt

→
d(Te −Ti )
Te −Ti

=−4me

mi

νedt

→Te −Ti =(Te0 −Ti0)exp −4me

mi

νe(t −t0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	 											(7.B.44)	

	
vi.	Applications	–	fast	collision	processes	involving	waves		
	 In	 Sec.	 4.B	we	 constructed	 a	model	 for	 collisional	 damping	 of	waves.	 	 In	 a	
simple	 relaxation	 model	 we	 made	 the	 replacement !! → ! ! + !" 	in	 the	 linear	
dispersion	relations.		For	Langmuir	waves	the	imaginary	part	of	the	mode	frequency	
due	 to	collisions	 is	!! = − !

! !! .	 	 For	a	 transverse	wave	 in	an	unmagnetized	plasma	
!! = − !

! !!
!!
!

!
	

	 Collisional	 diffusion	 alters	 the	 wave-particle	 resonance.	 	 In	 Sec.	 7.B.b	 we	
derived	 velocity	 diffusion	 in	 a	 Coulomb	 model.	 In	 a	 one-dimensional	 model	 the	
velocity	diffusion	is	given	by	

			
D(v)= e

m

⎛

⎝
⎜

⎞

⎠
⎟

2

dτ CE
0

∞

∫ s(τ ),τ( ) , CE s(τ ),τ( )= dkdω
(2π )2∫∫ k2S

φ
(k ,ω)exp(iks− iωτ )

→D(v)= e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dkdω
(2π )2∫∫ k2S

φ
(k ,ω) dτ

0

∞

∫ exp(−iωτ )exp(iks(τ ))
	(7.B.45)	

What	 is	 the	 spatially	 averaged	 velocity	 diffusion?	 The	 average	 of	 Eq.(7.B.45)	with	
respect	to	the	particle	position	is	
	

D(v) = e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dkdω
(2π )2∫∫ k2S

φ
(k ,ω) dτ

0

∞

∫ exp(−iωτ ) exp(iks(τ )) , s(τ )= vτ+s'(τ )

→ D(v) = e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dkdω
(2π )2∫∫ k2S

φ
(k ,ω) dτ

0

∞

∫ exp(−iωτ + ikvτ ) exp(iks'(τ ))
			

	 	 	 	 	 	 													(7.B.46)	
where	 s’(τ)	 is	 the	 perturbed	 particle	 displacement.	 	 For	 fixed	 τ	 consider	 the	
perturbed	displacement	and	its	probability	of	occurring	!(!!|!).	 	 If	! ≡ !!!

!!! 	and	
if	 the	 xi	 are	 independent,	 then	 in	 the	 limit	! → ∞,	 X	 will	 be	 distributed	 normally	
(Central	Limit	Theorem).	
	

Theorem:		 P s'|τ( )= 1
2πσ 2(τ )

exp
s'− s' (τ )⎡
⎣

⎤
⎦

2σ 2(τ )

2⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	 	 													(7.B.47)	

Returning	 to	 Eq.(7.B.46),	 consider	 the	 time	 integral.	 	 If	 s’=0,	 then	 the	 Landau	
resonance	integral	results:	
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	 R =Re dτ exp −i(ω −kv)τ( ) exp iks'(τ )→0( )
0

∞

∫ →πδ(ω −kv) 	 													(7.B.48)	

Instead	with	s’	distributed	as	a	Gaussian,	as	in	Eq.(7.B.47),	one	has	

exp iks'(τ )( ) ≡ ds'
−∞

∞

∫ exp iks'( )P(s'|τ )=exp ik s' (τ )−12k
2σ 2(τ )

⎡

⎣
⎢

⎤

⎦
⎥

and

R(ω ,k ,v)=Re dτ exp −i(ω −kv)τ + ik s' (τ )−12k
2σ 2(τ )

⎛

⎝
⎜

⎞

⎠
⎟

0

∞

∫

	 													(7.B.49)	

The	term	!" < !! > !  inside	the	exponential	in	Eq.(7.B.49)	contributes	a	frequency	
shift,	which	we	will	 ignore,	 but	 it	 can	 be	 evaluated	 easily.	 	 Next	 consider	 the	 last	
term	inside	the	exponential:	

	 	 σ 2 ≡ s'−< s'>⎡
⎣

⎤
⎦
2
=< s'2 >−< s'>2≈< s'2 > >> < s'>2 	 													(7.B.50)	

and	
	 		

s'(τ )≡ dtδv
0

τ

∫ (t)= dt dt '
0

t

∫ !v
0

τ

∫ (t)

s'(τ )⎡
⎣

⎤
⎦
2
= dt1 dt2

0

τ

∫ dt1 '
0

t1

∫ dt2 '
0

t2

∫ !v(t1 ')!v(t2 ')
0

τ

∫ ≡ dt1 dt2
0

τ

∫ dt1 '
0

t1

∫ dt2 '
0

t2

∫ C !v
0

τ

∫ t1 '−t2 '( )
		

	 	 	 	 	 	 													(7.B.51)	
where	 C !v 	is	 the	 two-time	 auto-correlation	 function	 for	 the	 velocity	 derivative.		
Examining	the	innermost	area	integral	with	respect	to	t1’	and	t2’	over	the	rectangle	0	
to	 t1	 and	 0	 to	 t2,	C !v 	is	 significant	 only	 over	 the	 diagonal	 where	 t1 '−t2 ' 	is	 small	
because	of	the	randomness	of	the	perturbing	fields.		Hence,	

	 s'(τ )⎡
⎣

⎤
⎦
2
= dt1 dt2

0

τ

∫ t1 ,t2( )
<
dτ '

−∞

∞

∫ C !v
0

τ

∫ τ '( )= 13τ
3 dτ '
−∞

∞

∫ C !v τ '( ) 	 													(7.B.52)	

However,	from	Eq.(7.B.2)	D(v)= dτ !v(t)!v(t −τ )
0

∞

∫ = dτ C !v(τ )
0

∞

∫ .		Hence,	

			σ 2(τ )= 23D(v)τ
3 and R(ω ,k ,v :D)= dτ exp −

1
3k

2D(v)τ 3
⎛

⎝
⎜

⎞

⎠
⎟

0

∞

∫ cos (ω −kv)τ⎡
⎣

⎤
⎦ 		(7.B.53)	

In	Eqs.(7.B.45-7.B.53)	D	is	the	diffusion	in	velocity	space	and	not	momentum	space:	
	 	 	 De

e(v)= ve2νe 	 	 	 													(7.B.54)	
It	then	follows	that	
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k2Dτ 3 =(kve )2νeτ 3 =
τ
τ
ν

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

, τ
ν
−3 ≡(kve )2νe = k2D

→τ
ν
≡D−1/3k−2/3 =νe

−1/3(kve )−2/3 ~(kDve )−2/3νe−1/3 =νe−1
νe
ωp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2/3 																	(7.B.55)	

for	k~kD,		where	!! 	is	a	characteristic	time	for	collisions.			For	νe ~ωp /Λ then	
τ
ν
−1 ~νeΛ2/3 	or		τ

ν
−1 ~ωp /Λ1/3 		 	 Hence,	 the	 relative	 frequency	 broadening	width	 for	

an	electron	plasma	wave	is	 	τ
ν
−1 /ωp ~1/Λ1/3 .		We	return	to	Eq.(7.B.53):	

R(ω ,k ,v;τ
ν
)= dτ exp −

1
3k

2D(v)τ 3
⎛

⎝
⎜

⎞

⎠
⎟

0

∞

∫ cos (ω −kv)τ⎡
⎣

⎤
⎦=τν dx exp −

1
3 x

3⎛

⎝
⎜

⎞

⎠
⎟

0

∞

∫ cos(λx)
	 	 	

	 	 	 	 	 	 													(7.B.56)	
where	λ ≡(ω −kv)τ

ν
	and	 x ≡τ /τ

ν
.			The	integral	in	Eq.(7.B.56)	is	not	an	elementary	

integral.		We	recall	from	Eq.(	7.B.48)	that	as	! → 0	! → !" ! − !v .		For	small	λ<<1	
the	 integral	 on	 the	 right	 side	 of	 Eq.(7.B.56)	 is	 dominated	 by	 the	 exponential	 and	

converges	 quickly	 to	 a	 number	 of	 O(1).	 [Note	 that	 dx exp(−xµ )= 1
µ

0

∞

∫ Γ( 1
µ
) ].	 	!/!! 	

peaks	as	a	 function	of	λ at	λ=0	at	a	value	O(1)	and	decreases	 for	 increasing	λ.	 	At	
large	 λ the	 integral	 in	 Eq.(7.B.56)	 can	 be	 approximated	 using	 steepest	 descents	
yielding	R/τ

ν
~exp(−λ3/2)sin(λ3/2) .	

	
Exercise:	Evaluate	the	integral	in	Eq.(7.B.56)	for	large	λ using	steepest	descents.	
	
	 We	see	that	as	D	 increases	the	resonance	 integral	R	 spreads.	 	However,	 the	

area	 under	 the	 curve	 R	 vs.	ω,	 	 dω R =π
−∞

∞

∫ 	is	 conserved,	 which	 can	 be	 verified	 by	

integrating	R	with	respect	to	ω in	Eq.(7.B.56)	to	obtain	!"(!)	and	then	doing	the		!	
integral.	 	 We	 note	 that	 R	 peaks	 at	!!!(1)	and	 has	 a	 full	 width	 at	 half-maximum	
~O(1)!!!!.	We	also	observe	that		

	 	 λ =
ω −kv
ω

ν

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

v-ω/k
ω

ν
/k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, ω

ν
≡1/τ

ν
	 	 													(7.B.57)	

Thus,	 the	broadening	of	the	resonance	can	be	considered	in	the	frequency	domain	
for	fixed	velocity	or	in	the	velocity	domain	for	fixed	frequency.	
	
Theorem:	The	width	in	velocity	space	is		

	 w ≡
ω

ν

k
=
D
k

⎛

⎝
⎜

⎞

⎠
⎟

1/3

=
ve2νe
k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/3

= ve
νe
kve

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/3

~ ve
νe
ωp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/3

= ve /Λ1/3 	 													(7.B.58)	
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Similarly,	 for	 fixed	 frequency	and	velocity	 there	 is	a	resonance	 in	k;	and	there	 is	a	
corresponding	width	due	to	the	collisional	broadening:	

	 	 λ =
ω −kv
ω

ν

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

ω/v-k
ω

ν
/ v

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟→ for	v~ve kν ~

kD
Λ1/3 	 													(7.B.59)	

Thus,	 the	 scaling	 of	 the	 collisional	 spreading	 of	 the	 resonances	 in	 the	 frequency,	
velocity,	and	wavenumber	domains	is	1/Λ!/!.	
	
	 Collisions	are	just	one	cause	of	resonance	broadening.		The	relative	width	of	
the	 resonance	 in	 frequency	 or	 velocity	 is	 !!/!!

!/! 	for	 collisional	 diffusion.		
Quasilinear	 diffusion	 in	 the	 presence	 of	 a	 spectrum	 of	 resonant	waves	 is	 another	
cause	 of	 resonance	 broadening.	 	 The	width	 in	 velocity	 space	 (particle	 velocity	 or	
phase	 velocity)	 scales	 as	 !!!"#/!.	 	 Particle	 trapping	 in	 a	monochromatic	 wave	
broadens	 the	 resonance	 in	 velocity	 space	 by	 O(vtrap)~ !"/! .	 	 The	 adiabatic	
interaction	 of	many	 non-resonant	waves	 can	 broaden	 the	 resonance	 of	 a	 particle	
with	 a	 specific	 wave.	 	 In	 general,	 the	 time	 interval	 for	 a	 resonant	 interaction	 is	
limited	 by	 the	 amount	 of	 time	 it	 takes	 for	 diffusion	 to	 drive	 the	 interaction	 off	
resonant;	define	it	as	!! .			
	 For	 collisional	 diffusion,	 the	 resonance	 is	 detuned	 when	 the	 rms	 diffusion	
displacement	is	comparable	to	the	wavelength	of	the	wave:	

	 	
< s'(τD)2 >~λ→< s'(τD)2 >~λ2 ~

1
k2

< s'(τD)2 >~(DτD)τD2 →DτD
3 ~ 1

k2
→k2DτD

3 ~O(1)
							 											(7.B.60)	

which	is	when	the	exponential	begins	to	limit	the	integrand	in	Eq.(7.B.56)	and	τν	in	
Eq.(7.B.55).	
	 In	quasilinear	diffusion	driven	 resonance	broadening,	 the	 estimates	 for	 the	
diffusion	time	and	the	scaling	of	the	resonance	width	proceed	as	follows:	

	 	

!v= e
m
E→<(v')2 >= e

m

⎛

⎝
⎜

⎞

⎠
⎟

2

<E2 >τD
2

s'~ v'τD→< s'2 >~ e
m

⎛

⎝
⎜

⎞

⎠
⎟

2

<E2 >τD
4 ~λ2→ e

m
ErmsτD

2 ~λ

→
e
m
k2φrms ~

1
τD
2 ~δω

2→
e
m
φrms ~w2 =

δω2

k2
→

e
m
φrms ~w

										(7.B.61)	

Example:	Resonance	broadening	due	to	quasilinear	diffusion	for	a	discrete	spectrum	
of	 waves.	 For	 quasilinear	 diffusion	 we	 earlier	 derived	 the	 velocity	 diffusion	
coefficient	in	Sec.	6.E	

	 	 D(v)= e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dk
2π∫

dω
2π∫ SE(k ,ω)R(ω −kv,δω) 	 	 											(7.B.62)	
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In	 Eq.(7.B.62)	 the	 resonance	 function	 is	 ! = !" ! − !v 	in	 the	 absence	 of	
broadening.	 	With	broadening,	 the	 resonance	 function	 acquires	 a	 finite	width	 and	
height	with	 respect	 to	 frequency.	 	 Consider	 a	 discrete	 spectrum	of	 normal	modes	
such	that	

	 	 SE(k ,ω)=2πS(k)δ(ω −ωk ) SE(k)= Si2π
i=1

N

∑ δ(k −ki ) 	 											(7.B.63)	

Despite	 the	 discrete	 spectrum,	 there	 are	 no	 infinities	 in	 the	 integrand	 in	D(v)	 in	
Eq.(7.B.62),	and	 Si

i
∑ =<E2 >= k2φrms

2

i
∑ 	if	 there	is	broadening.	 	 In	velocity	space	the	

structure	of	D	acquires	finite-width	resonances	for	each	value	of	ωk(ki )/ki .		Thus,	D	
is	a	smooth	function	of	velocity	with	no	singularities,	which	is	useful	for	evaluating	
∂f
∂t
=
∂

∂v D∂f
∂v

⎛

⎝
⎜

⎞

⎠
⎟ .	
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LECTURES	ON	THEORETICAL	PLASMA	PHYSICS	
–	PART	3B	
Allan	N.	Kaufman	
	

7.C	Radiation	transport			
	

	 In	 this	 section	 we	 consider	 the	 emission	 of	 electromagnetic	 waves	 in	 a	

plasma.		We	include	the	effects	of	gyration	in	a	magnetic	field	and	particle	collisions	

on	wave	emission.		We	also	examine	the	scattering	of	waves	in	a	plasma	and	derive	

a	 general	 theory	 for	 the	 scattering	 of	 particles,	 fluctuations,	 and	waves,	 including	

nonlinear	 Landau	 damping.	 	We	 summarize	 the	 important	 processes	 in	 radiation	

transport	in	a	plasma	and	conclude	with	a	discussion	of	WKB	theory	in	the	context	

of	 radiation	 transport.	 	 The	 consideration	 of	 radiation	 transport	 here	 does	 not	

include	 any	 processes	 associated	 with	 atomic	 physics,	 and	 the	 theory	 is	 purely	

classical	and	excludes	quantum	mechanical	effects.	

7.C.a	Calculation	of	emission	from	Maxwell’s	equations	with	arbitrary	current	sources			
	

	 We	 recall	 from	Sections	3	and	4	 that	 the	 linearized	Vlasov-Maxwell	 system	

yields	 the	 following	 relation	 for	 the	 electromagnetic	 response	 of	 a	 plasma	 to	 an	

arbitrary	current	density:	

	 K(k ,ω)⋅E(k ,ω)= 4π
iω
j0(k ,ω) where K =

!
ε −n2(

!
I − k̂k̂)	and	n= kc

ω
															(7.C.1)	

When	 the	electric	 fields	do	work	on	 the	plasma	currents,	energy	comes	out	of	 the	

electromagnetic	fields:	

	 	 − !W = d3x∫ E(x,t)⋅ j0(x,t)=
d3k
(2π )3∫ j0

∗(k ,t)⋅E(k ,t) 	 	 	 (7.C.2)	

If	we	invert	the	relation	in	Eq.(7.C.1)	to	solve	for	the	electric	field	then	

	 	 	 E(k ,ω)= 4π
iω
K−1(k ,ω)⋅ j0(k ,ω) 	 	 	 	 (7.C.3)	

from	which	one	obtains	

			 	 	 	E(k ,ω)= dτ G
−∞

∞

∫ (k ,τ )⋅ j0(k ,t −τ ) 		 	 	 														(7.C.4)	

where	

	 	 	 G(k ,τ )= dω
2π∫ exp(−iωτ )4π

iω
K−1(k ,ω) 	 	 	 (7.C.5)	

We	assume	that	there	are	no	poles	of	the	integrand	in	Eq.(7.C.5)	in	the	upper	half	of	

the	complex	ω	plane	(no	exponentially	growing	linear	modes),	and	we	use	analytic	
continuation	 to	 depress	 the	 integration	 contour	while	 keeping	 the	 contour	 above	
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poles	on	the	real	ω	axis.	 	 	Causality	 insures	 that	G=0	 for	τ	<	0.	 	We	use	Eqs.(7.C.3-
7.C.5)	in	Eq.(7.C.2)	to	obtain	

	 	 	 − !W(t)= d3k
(2π )3∫ dτ

−∞

∞

∫ j0
∗(k ,t)⋅G(k ,τ )⋅ j0(k ,t −τ ) 	 	 (7.C.6)	

	 Consider	 the	 product	 of	 the	 plasma	 currents	 in	 Eq.(7.C.6)	 and	 posit	 a	

sufficient	number	of	sources	to	average	over	so	that	we	can	calculate	the	two-time	

correlation	tensor	for	the	plasma	currents	.	

	

Definition:	C=C(k ,τ )≡ j0
∗(k ,t)j0(k ,t −τ ) .	 	 We	 assume	 that	 C	 is	 not	 a	 function	 of	

time,	i.e.,	it	is	statistically	stationary.	

	

Hence,	from	Eq.(7.C.6)		

							− !W =
d3k
(2π )3∫ dτ

−∞

∞

∫ Cj0
∗ (k ,τ ):G(k ,τ )= d3k

(2π )3∫ dω
2π−∞

∞

∫ Sj0∗(k ,ω):K−1(k ,ω)4π
iω

				(7.C.7)		

	

We	take	the	limit	that	there	are	no	linearly	unstable	waves,	Im	ω	→	0.		We	note	that		
K=K’+iK”	 where	 K’	 is	 the	 reactive	 part	 and	 K”	 is	 the	 dissipative	 part.	 	 K	 is	 not	
Hermitian,	and	K-1	=	K-1’+iK-1”	where	K-1’	is	the	Hermitian	part	and	iK-1”	is	the	anti-
Hermitian	part.	

	

Theorem:	S*	=	S’	is	Hermitian	which	follows	from	C	being	independent	of	time.	
	

Exercise:	Prove	that	S*	is	Hermitian.	

		

Sj0∗ = dτ C
j0
*

−∞

∞

∫ = dτ j0(k ,t)j0∗(k ,t −τ )
−∞

∞

∫ =− dτ j0(k ,t)j0∗(k ,τ −t)
−∞

∞

∫

=− dτ lim
T→∞

1
2T dt j0(k ,t)j0∗(k ,τ −t)

−T

T

∫
−∞

∞

∫ =−lim
T→∞

1
2T dτ dω e−iωτ j0(k ,ω)j0∗(k ,ω)

−∞

∞

∫
−T

T

∫

=−lim
T→∞

1
2T dτ dω e−iωτ j0

∗(k ,ω)j0(k ,ω)
−∞

∞

∫
−T

T

∫ ⇒ S∗ =ST
	(7.C.8)	

where	ST	is	the	transpose	of	S.	
	

	 In	Eq.(7.C.7)	K-1	appears,	which	we	evaluate	as	follows:	
	

				K−1 =
Kadj

det |K |=
Kadj

D(k ,ω) =
Kadj

D'(k ,ω)+ iD"(k ,ω) =K
adj P 1

D'− iπδ(D')sgnD"
⎛

⎝
⎜

⎞

⎠
⎟ 		 (7.C.9)

	

for	small	D”.		Substituting	Eq.(7.C.9)	in	Eq.(7.C.7),	we	obtain	
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!W =
d3k
(2π )3∫ dω

2π−∞

∞

∫ Sj0∗(k ,ω):Kadj(k ,ω)4π
ω
πδ(D'(k ,ω))sgnD" 	 											(7.C.10)

	

where	

	 	

πδ(D(k ,ω))= δ(ω −ωk
ℓ )

∂D'(k ,ω)/∂ω
ωk
ℓℓ ,±

∑ 	 	 	 	 											(7.C.11)

	

and	 the	 sum	 is	 over	 l	 branches	 and	 ±|ω|.	 	 In	 the	 absence	 of	 an	 applied	 external	

magnetic	field	there	are	three	electron	branches	(immobile	ions):	two	branches	for	

transverse	modes	and	one	branch	 for	 longitudinal	modes.	 	With	mobile	 ions	 there	

are	 additional	 branches,	 and	with	 an	 applied	magnetic	 field	 there	 are	 even	more	

branches.		Equation	(7.C.10)	becomes	

	 									(7.C.12)	

We	next	eliminate	Kadj	using	the	following	relations:	

															

K−1 =
Kadj

D
K−1 ⋅K = I=K ⋅K−1 Kadj(k ,ωk

ℓ )⋅K(k ,ωk
ℓ )=DI=K ⋅Kadj

∂

∂ω
Kadj(k ,ωk

ℓ )⋅K(k ,ωk
ℓ )⎡

⎣
⎤
⎦=

∂Kadj

∂ω
⋅K+Kadj ⋅

∂K
∂ω

=
∂D
∂ω

I 												(7.C.13)	

and	the	matrix	 identity	det(Kadj)=det(K)n-1=D2	where	n=3	is	the	rank	of	the	matrix	
K.	Thus,	as	D→0,	det(Kadj)	goes	to	zero	even	faster.	We	recall	that	the	linear	normal	
modes	satisfy	the	following	relations:	

	 	

	

K ⋅E=0⇒D(k ,ωk
ℓ )=0

K(k ,ωk
ℓ )⋅ êkℓ =0⇒ polarization

∴ K(k ,ωk
ℓ )=K êkℓ∗êkℓ and Kadj(k ,ωk

ℓ )=K êkℓ êkℓ∗
	 											(7.C.14)

	
using	that	to	lowest	order	K	is	Hermitian.	Given		Eq.(7.C.14)	then	from	Eq.(7.C.13)	

								 	

ê∗ ⋅ ∂K
adj

∂ω
⋅K ⋅ ê+ ê∗ ⋅Kadj ⋅

∂K
∂ω

⋅ ê= ê∗ ⋅Kadj ⋅
∂K
∂ω

⋅ ê= ∂D
∂ω

ê∗ê= ∂D
∂ω

⇒K = ∂D/∂ω
ê∗ ⋅ ∂K

∂ω
⋅ ê

	 											(7.C.15)

	

We	can	now	return	to	our	evaluation	of	Eq.(7.C.12)	using	Eqs.(7.C.14)	and	(7.C.15)	

for	Kadj,	and	Eq.(7.C.8)	for	S:		

!W =
d3k
(2π )3∫ 2π

ωk
ℓ

ℓ ,±
∑ Sj0∗(k ,ωk

ℓ ):Kadj(k ,ωk
ℓ )sgnD"
∂D
∂ω

ωk
ℓ

≡
d3k
(2π )3∫ !W ℓ(k)

ℓ ,±
∑

!W ℓ(k)= 2π
ωk
ℓ
Sj0∗(k ,ωk

ℓ ):Kadj(k ,ωk
ℓ )sgnD"
∂D
∂ω

ωk
ℓ
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!W ℓ(k)= 2π
ωk
ℓ
sgnD" dτ exp(−i

−∞

∞

∫ ωk
ℓτ )

j0
∗(k ,t)⋅ êkℓ êkℓ∗ ⋅ j0(k ,t −τ )

êk
ℓ∗ ⋅
∂K
∂ω

ωk
ℓ

⋅ êk
ℓ

	 											(7.C.16)

	

	

Definition:	Define	the	scalar	current	density	as	the	projection	of	the	current	density	

onto	the	unit	vector	for	the	electric	field	polarization	determined	in	Eq.(7.C.14):	

	 																																						 j0
(k ,ℓ) ≡ êk

ℓ∗ ⋅ j0(x,t) 				 		 													(7.C.17)	

	

Using	 the	 scalar	 current	 density	 we	 can	 construct	 the	 spectral	 density	 for	 the	

current	density	from	

	 dτ exp(−iωk
ℓ

−∞

∞

∫ τ ) j0(k ,ℓ)∗(k ,t) j0(k ,ℓ)(k ,t −τ ) ≡ dτ exp(−iωk
ℓ

−∞

∞

∫ τ )C
jk
ℓ

∗ ≡ S
jk
ℓ 								(7.C.18)		

We	note	that	the	spectral	density	for	the	scalar	current	is	real	so	that	the	conjugate	

can	be	dropped.		With	Eqs.(7.C.17)	and	(7.C.18),	Eq.(7.C.16)	can	be	rewritten	as	

	 	 !W ℓ(k) = 4π
ωk
ℓ

S jk ,ℓ(k ,ωk
ℓ )

êk
ℓ∗ ⋅
∂K
∂ω

ωk
ℓ

⋅ êk
ℓ

, ωk
ℓ >0 	 	 													(7.C.19)	

where	 we	 have	 dropped	 sgnD”	 and	 introduced	 a	 factor	 of	 2	 in	 the	 numerator	
because	ωkl>0.			A	useful	relation	for	Sj	is	given	by	
	 	 j0

(k ,ℓ)(k ,ω) j0(k ,ℓ)∗(k ',ω ') =(2π )4δ(ω −ω ')δ(k−k ')S jkℓ 		 													(7.C.20)	

	

7.C.b	Emission	by	a	particle	gyrating	in	a	magnetic	field			
	

	 We	 illustrate	 the	 results	 in	 the	 previous	 sub-section	 by	 calculating	 the	

electromagnetic	 wave	 emission	 from	 a	 gyrating	 particle	 in	 an	 externally	 applied	

magnetic	field.		The	current	density	from	a	single	particle	is	

	
j(r,t)= ev0(t)δ(r−r0(t)) → j(k ,t)= ev0(t)exp −ik ⋅r0(t)( )
jx(k ,t)= ev x(t)exp −ikxx(t)− ik y y(t)− ikzz(t)( )

	 											(7.C.21)	

where	 the	 equations	 of	 motion	 for	 the	 charged	 particle	 in	 a	 field	B=B0ẑ 	in	 the	
absence	of	any	other	fields	yield	

								 x(t)= X +r
⊥
cosφ(t) y(t)=Y +r

⊥
sinφ(t) z(t)= v||t + z0 v x =−v⊥ sinφ 							(7.C.22)	

The	wave	number	is	represented	generally	by	

		kx = k⊥ cosα ky = k⊥ sinα kz = k|| 	 	 	 																									(7.C.23)	

We	substitute	Eqs.(7.C.22)	and	(7.C.23)	into	Eq.(7.C.21)	and	use	the	Bessel	function	

identity	 for	 a	 cosine	 inside	 the	 exponential	 to	 obtain	 an	 expression	 for	 Sj	 from	
Eq.(7.C.8):			
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S j(k ,ω)∝ Jℓ2(k⊥r⊥)δ(ω −k||v||−ℓΩ) 			 	 	 	 											(7.C.24)	

ignoring	 collisional	 resonance	 broadening.	 	 The	 expression	 in	 Eq.(7.C.24)	 is	

averaged	over	the	initial	gyro	phase,	X,	Y,	and	z0,	and	summed	over	particles.	
	

Exercise:	Work	out	the	details	in	Eq.(7.C.24).	

	

	 Having	 calculated	 the	 spectral	 density	 for	 the	 current	 from	Eq.(7.C.24)	 one	

can	then	evaluate	the	right	side	of	Eq.(7.C.19).		To	make	progress	one	must	evaluate	

the	 denominator,	 which	 depends	 on	 the	 wave	 characteristics	 (response	 tensor,	

dispersion	 relation,	 and	 polarization).	 	 For	 k ||B0 then	 êk
ℓ = 1

2
(x̂± ŷ) ,	 and	 as	

examples	one	can	consider	whistlers,	Alfvén	waves,	or	other	waves	as	described	in	

Sec.	 4.B.	 	 For	k ⊥B0 and	 k||=0	 one	 might	 consider	 ordinary	 modes	 (electric	 field	
polarized	 parallel	 to	 B0),	 extraordinary	 modes	 (electric	 field	 polarized	

perpendicular	to	B0),	or	other	modes	described	in	Sec.	4.C.		An	important	parameter	
influencing	 the	 intensity	 of	 the	 electromagnetic	wave	 emission	 is	 the	 ratio	 of	 the	

particle	 energy	 to	 its	 rest	mass	 energy.	 	 	 The	more	 relativistic	 the	 particle	 is	 the	

stronger	 the	emission.	 	 	Relativity	affects	 the	equations	of	motion	 for	 the	particles	

doing	 the	 emission,	 and	 relativity	 also	 affects	 the	 response	 tensor.	 	 Synchrotron	

radiation	 is	 an	 interesting	 example	 that	 has	 received	 much	 attention.	 	 By	

considering	the	emission	of	a	particular	electromagnetic	wave	and	the	kinetic	linear	

damping	of	the	same	mode,	as	in	Sec.	7.A.a	for	electrostatic	modes,	one	can	arrive	at	

a	balance	equation	between	emission	and	damping,	and	recover	the	Rayleigh-Jeans	

relation	that	each	wave	has	energy	W=T	where	W	is	the	energy	per	unit	Δ3kΔ3x .	
	

Exercise:	Outline	and	sketch	the	details	of	one	or	two	of	the	example	calculations	in	

the	 preceding	 paragraph.	 Try	 some	 of	 the	 algebra.	 	 Recover	 the	 Rayleigh-Jeans	

relation	for	electromagnetic	emission	and	damping.	

	

At	this	point	we	digress	to	consider	the	question	of	the	influence	of	including	

collisions	on	electromagnetic	wave	emission	in	the	presence	of	an	applied	magnetic	

field.	 	 We	 will	 conclude	 that	 the	 magnetic	 field	 effectively	 weakens	 collisional	

diffusion	of	the	particle	trajectories.	We	sketch	what	the	analysis	would	be	with	the	

inclusion	of	 collision-induced	perturbations	 to	 the	 zero-order	particle	 trajectories.	

The	analysis	includes	the	following	relations:	

	 	

jx(k ,t) jx∗(k ,t −τ ) →exp −ik ⋅r(t)+ ik ⋅r(t −τ )( )
≡exp −ik ⋅s(τ )( )=exp −ikxΔx(τ )+ ...( )

Δx(τ )=ΔX(τ )+r
⊥
cosφ(t)−cosφ(t −τ )⎡
⎣

⎤
⎦ Δy = ... Δz = ...

Δφ(τ )≡φ(t)−φ(t −τ )=Ωτ +Δφ '(τ )

	 											(7.C.25)	

After	Δx	is	substituted	into	the	exponential	and	the	Bessel	function	identity	is	used,	
the	following	expression	emerges	

	 exp(iℓΔφ '(τ ) →exp −ℓ2σ
φ
2(τ )( ) σ

φ
2(τ )≡ (Δφ)2(τ ) 	 	 											(7.C.26)	
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Recall	 the	 analysis	 of	 collision-induced	 resonance	 broadening	 and	 the	 use	 of	 the	

central	limit	theorem	in	Sec.	7.B.g.			In	fact	collisions	produce	diffusive	changes	to	all	

of	the	terms	in		

	 x(t)= X + v⊥
Ω
cosφ(t) ⇒ δx(t)=δX +δv⊥

Ω
cosφ(t)− v⊥

Ω
δφ sinφ(t) 										(7.C.27)	

We	can	estimate	(perhaps	naively)	the	electron	velocity	diffusion	and	the	diffusion	

of	the	various	terms	in	Eq.(7.C.27):	

	 (δv)2 = (δv x )2 + (δv y )2 + (δv z )2 =3 (δv x )2 =2Dvτ 	 	 											(7.C.28)	

and	similarly	for	 (δx)2 	and	 (δφ)2 :	

	 	 (δx)2 = r
⊥

2νeτ (δφ)2 =2νeτ νe =De
e / ve2 		 	 											(7.C.29)	

The	first	expression	in	Eq.(7.C.29)	is	just	the	classical	collisional	diffusion	across	the	

magnetic	 field,	 which	 scales	 as	 the	 square	 of	 the	 electron	 Larmor	 radius.	 The	

collisionless	 magnetized	 resonance	 morphs	 into	 a	 resonance	 function	 with	

collisions:	

	 	 δ(ω −k||v||−ℓΩ)⇒ R(ω −k||v||−ℓΩ),
δω
ω
~ νe
ω
(k

⊥
r
⊥
)2 	 											(7.C.30)	

The	 magnetic	 field	 significantly	 reduces	 the	 collisional	 resonance	 broadening	

because	 of	 the	 linear	 scaling	 in	νe 	(rather	 than	νe
1/3
)	 and	 typically	(k

⊥
r
⊥
)2 <<1 	for	

electrons.	 	 We	 conclude	 that	 the	 effect	 of	 collisions	 on	 electron	 cyclotron	 and	

synchrotron	radiation	is	significantly	weakened	by	the	applied	magnetic	field.	

	

7.C.c	Emission	due	to	collisions	-	Bremsstrahlung			
	

	 In	this	section	we	calculate	collision-induced	electromagnetic	wave	emission,	

i.e.,	 bremsstrahlung,	 in	 the	absence	of	 an	applied	magnetic	 field.	 	This	amounts	 to	

calculating	 the	 two-time	 correlation	 function	 for	 the	 plasma	 current	 density	

including	the	 influence	of	collisions.	 	The	analysis	builds	on	the	earlier	material	 in	

Secs.	7.C.a	and	7.C.b.	

	

Definitions:			ε ≡ωk
ℓ ê∗ ⋅ ∂K

∂ω
⋅ ê

ωk
ℓ

=
Total	wave	energy
Electric	field	energy =O(1) 	 																								(7.C.31)	

From	Eq.(7.C.20)				

	 êk
ℓ∗ ⋅ j(k ,ωk

ℓ )êkℓ ⋅ j∗(k ',ωk
ℓ ') =(2π )4δ(ω −ω ')δ(k−k ')S j(k ,ω) 	 											(7.C.32)	

Then	Eq.(7.C.19)	becomes	

	 	 	 !W ℓ(k) = 4π
ε
S j(k ,ωk

ℓ ), ωk
ℓ >0 	 	 	 											(7.C.33)	

	 		

	

The	current	density	in	Eq.(7.C.32)	is	a	sum	over	the	particles:	
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	 j(x,t)= ei
i
∑ v i(t)δ(x−ri(t)) → j(k ,t)= ei

i
∑ v i(t)exp −ik ⋅ri(t)⎡

⎣
⎤
⎦ 												(7.C.34)	

where	ri=r0+si.	The	time	derivative	of	the	current	density	is	

	
∂

∂t
j(k ,t)= ei

i
∑ !v i(t)− i k ⋅v i(t)( )v i(t)⎡

⎣
⎤
⎦exp −ik ⋅ri(t)⎡

⎣
⎤
⎦ 	 													(7.C.35)	

We	 restrict	 our	 calculation	 of	 bremsstrahlung	 to	 long	 wavelength,	 non-resonant	

modes:	 	! ≪ !/v	(dipole	 approximation).	 	 Thus,	 the	 second	 term	 in	 the	 square	
bracket	 in	Eq.(7.C.35)	 is	negligible;	and	the	particle	displacement	compared	to	 the	

wavelength	is	small	inside	the	exponential	in	Eq.(7.C.35),	i.e.,	

	 − iωj(k ,ω)≈ ei
i
∑ !v i(ω)exp −ik ⋅r0i( ) ≈ exp −ik ⋅r0( ) ei

i
∑ !v i(ω) 	 													(7.C.36)	

and	we	further	assume	that	the	spread	of	scattering	centers	is	small	compared	to	a	

wavelength.		We	next	introduce	some	additional	notation.	

	

Definition:			Si(t)≡b+v(t −t0) Π(t)≡ ei
i
∑ Si(t) !!Π(t)= ei

i
∑ !v i(t)≡ !!Πi

i
∑ 												(7.C.37)	

where	b	is	the	impact	parameter	and	is	perpendicular	to	v.			
	

Hence,	

	 	 − iωj(k ,ω)=exp −ik ⋅r0( ) !!Π(ω) 	 	 													(7.C.38)	

We	note	that	e-i	collisions	produce	dipole	radiation.		However,	e-e	collisions	do	not	

result	 in	 a	 net	 dipole	moment	 in	 the	 collision;	 but	 the	 e-e	 collisions	 can	 produce	

quadrupole	radiation.		We	will	only	consider	the	bremsstrahlung	from	electron-ion	

collisions.		We	calculate	the	Coulomb	force	on	an	electron	colliding	with	an	ion:	

	 	 	 !!Πi =−e !v i =
e2

me

Ee
i =
e2eion

me

Si(t)
Si
3(t)

	 	 													(7.C.39)		

and	Fourier	transforming		

	 	 !!Πi(ω)=
e2eion

me

exp(iωt0) dt 'exp(iωt ')
−∞

∞

∫ b+vt '
b2 +v2t '2( )

3/2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 													(7.C.40)	

This	expression	 is	valid	 for	small-angle	scattering.	 	For	smaller	b	and	 large	angles,	
the	electron	trajectory	is	hyperbolic	(see	Panofsky	and	Phillips),	but	we	will	ignore	

this	correction.		We	scale	the	variables	inside	the	integral	in	Eq.(7.C.40)	as	follows:	

	 	 τc ≡
b
v ωc ≡

1
τc
=
v
b

τ '= t '
τc

ω '≡ ω
ωc

=
ωb
v 	 	 													(7.C.41)	

Using	Eq.(7.C.41),	Eq.(7.C.40)	becomes	

	 													 !!Πi(ω)=
e2eion

me

exp(iωt0)
τc
b2

dτ 'exp(iω 'τ ')
−∞

∞

∫ b̂+ v̂τ '
1+τ '2( )

3/2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 													(7.C.42)	

Lemmas:	
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	 dτ '
−∞

∞

∫ exp(iω 'τ ')
1+τ '2( )

3/2 =2ω 'K1(ω ') dτ '
−∞

∞

∫ τ 'exp(iω 'τ ')
1+τ '2( )

3/2 =2iω 'K0(ω ') 														(7.C.43)	

where	K0	and	K1	are	modified	Bessel	functions	of	the	second	kind.			The	asymptotic	
forms	for	K0	and	K1	are	

	 	 	

K0(ω ')≈ ln
1
ω ' ω '<<1

K1(ω ')≈
1
ω ' , ω '<<1

Kn(ω ')≈
π
2ω ' exp(−ω '), ω '>>1

	 	 													(7.C.44)	

Equation	(7.C.42)	becomes	

	 	 !!Πi(ω)=
e2eion
1
2mev2

exp(iωt0) b̂ω 'K1(ω ')+ v̂iω 'K0(ω ')⎡
⎣

⎤
⎦ 	 													(7.C.45)	

We	introduce	the	definition	b0 ≡ e
2 /(12mev2) 	and	use	Eqs.(7.C.38-7.C.45)	to	obtain	

													

j(k ,ω) j∗(k",ω") = e2eion
1
2mev2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2π( )
4

VT
δ(k−k")δ(ω −ω")

× ê∗ ⋅ b̂K1(ω ')+ ê∗ ⋅ v̂iK0(ω ')⎡
⎣

⎤
⎦
2

b̂ ,v̂

	 													(7.C.46)		
	 	 	 	 											(7.C.46)		

	 In	 deriving	 Eq.(7.C.46)	we	made	 use	 of	 the	 independence	 of	 the	 averaging	

with	respect	to	r0	and	t0	which	leads	to	the	following	reductions:	 	

					

exp −i(k ⋅r0 −ωt0)+ i(k '⋅r0 −ω 't0)( )
r0 ,t0

= exp −i(k−k ')⋅r0 + i(ω −ω ')t0( )
r0 ,t0

= exp −i(k−k ')⋅r0( )
r0
exp i(ω −ω ')t0( )

t0

exp −i(k−k ')⋅r0( )
r0
=
1
V

d3r∫ ei(k−k')⋅r = (2π )
3δ(k−k ')
V

exp i(ω −ω ')t0( )
t0
=
1
T

d3t∫ ei(ω−ω ')t = (2π )
3δ(ω −ω ')
T

(7.C.47)		

	 We	 use	 Eqs.(7.C.20)	 and	 (7.C.47),	 and	 sum	 over	 the	 collisions	Nc	 that	 take	

place	in	the	volume	V	and	time	period	T	with	identical	values	of	b	and	v	to	deduce		

																		

S j(k ,ω)= e2eion
1
2mev2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2
Nc(V ,T )
VT

ê∗ ⋅ b̂K1(ω ')+ ê∗ ⋅ v̂iK0(ω ')⎡
⎣

⎤
⎦
2

b̂ ,v̂b̂ ,v̂
														(7.C.48)

	

	

We	now	replace	Nc/(VT)	with	ncdvdb	 in	Eq.(7.C.48)	and	integrate	over	v	and	b.	 	 In	

doing	this	integral,	we	make	use	of	two	identities:	
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ê∗ ⋅ b̂ ê⋅ b̂∗ =
1
3 ê∗ ⋅ b̂ ê⋅ v̂∗ =0 	 	 													(7.C.49)

	

Exercise:	 Verify	 the	 relations	 in	 Eq.(7.C.49).	 	 Note	 that	 b	 and	 v	 are	 always	

perpendicular	to	one	another,	and	b	has	no	preferred	direction.	

	

Hence,	

	

S j(k ,ω)= dv∫ db∫ e2eion
1
2mev2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

nc(v,b)
1
3K1

2(ω ')+13K0
2(ω ')

⎡

⎣
⎢

⎤

⎦
⎥ 	 													(7.C.50)	

	 The	 number	 of	 collisions	 per	 unit	 volume	 per	 unit	 time	with	 speed	 v	 and	

impact	parameter	b	in	intervals	dv	and	db	is	determined	by	the	collision	rate	and	is	
given	by:		

				

ncdvdb=niσv =niv2πbdb
⇒ db∫ d3v∫ fe(v)niv2πb= db∫ d3v∫ ge(v)neniv2πb= db∫ dv4πv2∫ ge(v)neniv2πb

	

	 	 	 	 	 	 	 													(7.C.51)	

where	we	have	then	integrated	over	velocities	and	impact	parameters.		With	the	use	

of	Eq.(7.C.41)	and	(7.C.51),	Eq.(7.C.50)	becomes	

	

S j(k ,ω)= 323 π 2 (e2eion)2
me

2 neni
dv
v∫ bdb∫ K1

2(ω ')+K0
2(ω ')⎡

⎣
⎤
⎦

=
32
3 π 2 (e2eion)2

me
2 neni

dv
v∫ ω '

ω 'max

ω 'min
∫ dω 'v2 K1

2(ω ')+K0
2(ω ')⎡

⎣
⎤
⎦
	 													(7.C.52)

	

	 	 	 	 																

We	use	the	identity:	

	 	 	 K0
2 +K1

2 =−
1
ω '

d
dω ' ω 'K0K1( ) 	 	 													(7.C.53)	

to	 do	 the	!! integral	 in	 Eq.(7.C.53)	 and	 include	 the	 effects	 of	 Debye	 shielding	 to	
restrict	 the	 upper	 bound	 of	 the	 integral	 to	! < !! ,	 i.e.,	!! < !

! !! .	 	 For	 large	!
!	we	

have	 	 	

	 	 	 	 Kn~
π
2ω 'e

−ω ' <<1 	
The	upper	limit	!!"#!

of	the	!! integral	 in	Eq.(7.C.52)	(minimum	impact	parameter)	
is	determined	by	either	the	bound	electron	limit	!~!!/!v!	or	quantum	mechanics
b~!~!/mv 	whichever	 is	 larger.	 	 For	 temperatures	 less	 than	 1	 Rydberg	 (~13.6	
eV)	the	former	limit	pertains,	and	for	higher	temperatures	the	deBroglie	wavelength	

sets	 the	 minimum	 impact	 parameter.	 	 For	 high-temperature	 plasmas,	 quantum	

mechanics	sets	the	lower	limit	on	b:	hence,	
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1

ω 'min
~ v
ω
mv
!
=
mv2
!ω

>>1 	 	 													(7.C.54)		

	

For	small	!!	the	small	argument	limits	in	Eq.(7.C.44)	determine	that	the	upper	limit	
of	the	!! integral	in	Eq.(7.C.52)	is	dominant:	
	 	 S j(k ,ω)= 323 π 2 (e2eion)2

me
2ω2 neni vdv∫ ge(v)ln

mv2
!ω

	 													(7.C.55)	

We	 see	 that	 the	 integral	 over	 impact	 parameter	 is	 insensitive	 to	 the	 maximum	

impact	parameter	cutoff;	thus,	the	plasma	shielding	is	irrelevant.	

	 	

Example:	For	a	Maxwellian	plasma	we	evaluate	the	integral	in	Eq.(7.C.55)	as	follows	

	

ge(v)=
m
2πTe

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3/2

e
−
mv2
2Te ⇒ ε ≡

1
2mv2
Te

dε e−ε
0

∞

∫ ln ε
2Te
!ω

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= dε e−ε lnε + ln2Te

!ω

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

∞

∫ =−0.577+ ln2Te
!ω

= ln 2Te
1.781!ω ≈ ln Te

!ω

	

	 	 	 	 	 	 	 													(7.C.56)	

We	note	that	0.577	is	Euler’s	constant.		Equation	(7.C.55)	then	becomes	

	

	 S j(k ,ω)= 1
2π νeTe

ωp
2

ω2

ln Te
!ω

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

lnΛ νe ≡
4
3 2π

ni ee
ion( )

2
lnΛ

meTe
3/2

	 													(7.C.57)	

In	this	treatment	we	see	that	Bremsstrahlung	involves	radiation	of	high-frequency,	

long-wavelength	modes	in	order	that	the	radiation	is	weakly	damped	by	the	plasma.	

Given	Eq.(7.C.57)	the	wave	emission	is	

	 	 	 	 !Wk
ℓ =
4π
ε
S j(k ,ωk

ℓ ) 	 	 													(7.C.58)	

where	ε 	is	given	by	Eq.(7.C.31).		For	emission	of	longitudinal	waves	ε →ω ∂ε /∂ω .	
	

Example:	The	Langmuir	wave	(electron	plasma	wave	=	EPW)	emission	 just	due	 to	

collisions	(ignoring	Landau	emission	for	the	moment)	is:	

	 	 	 !Wk
EPW ≈

ωp
4

ω4 νeTe

ln Te
!ωp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

lnΛ 	 	 													(7.C.59)	

where	ε →ω ∂ε /∂ω ≈2ωp
2 /ω2 ≈2 ,	! ≈ !!, and	Λ ≈

λD
!
=

Te
4πnee2

2meTe
!2

≈
Te
!ωp

.	

Hence,		
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	 	 	 !Wk
EPW ≈

ωp
4

ω4 νeTe ≈νeTe 	 													 	 													(7.C.60)		

If	resonant	effects	are	negligible,	i.e.,	! v = !
! ≪ 1,	then	the	wave	damping	is	solely	

due	 to	 collisions:	 	 !! ≈ !
!!!;	 and	 collisional	 damping	 of	 the	 Langmuir	 waves	 can	

balance	emission	giving	a	Rayleigh-Jeans	law	

	 	 	 Wk =
!Wk

2γk
=
!Wk

νe
≈Te 	 	 	 													(7.C.61)	

Exercise:	Calculate	the	ratio	of	the	collisional	wave	emission	for	Langmuir	waves	to	

the	corresponding	Cerenkov	emission	(see	Sec.	7.A.a).	

	

Example:	For	transverse	waves	in	a	cold	plasma	

	 	

K→ε −
k2c2

ω2 =1−ωp
2

ω2 −
k2c2

ω2 =1−ωp
2 +k2c2

ω2

→ω
∂K
∂ω

=2ωp
2 +k2c2

ω2 =2
	 	 													(7.C.62)		

The	ratio	of	the	wave	energy	to	electric	field	energy	for	transverse	waves	is	two,	the	

same	 as	 for	 Langmuir	 waves;	 and	 this	 ratio	 is	 also	 two	 in	 a	 vacuum	 where	 the	

electric	field	energy	and	the	magnetic	energy	are	the	same.	 	 In	the	plasma	there	is	

finite	mechanical	energy	in	the	particles,	but	the	magnetic	energy	in	the	transverse	

wave	decreases.		The	transverse	wave	emission	is	given	by	

		 	 	 !Wk
trans ≈

ωp
2

ωk
2 νeTe

ln Te
!ωk

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ln Te
!ωp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	 	 												(7.C.63)	

If	we	amend	our	definition	of	the	collision	frequency	in	Eq.(7.C.59)	as	follows:

	

	 	

	

νe(ωk )≡νe
ln Te
!ωk

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

lnΛ = ln Te
!ωp

=
4
3 2π

ni ee
ion( )

2
ln Te
!ωk

meTe
3/2

	 												(7.C.64)	

Then	 by	 adjusting	 the	 logarithmic	 factors	 the	 collisional	 wave	 damping	 can	 be	

written	compactly	as	

	 	 	 γk
coll =

1
2νe(ωk )

ωp
2

ωk
2 	 	 	 													(7.C.65)	

and	one	recovers	the	Rayleigh-Jeans	law:	

	 	 0= dWk

dt
= !Wk − 2γk Wk → Wk =Te 	 	 													(7.C.66)	
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Exercise:	Calculate	the	collisional	wave	emission	in	a	magnetized	plasma	and	check	

whether	the	Rayleigh-Jeans	law	is	recovered	once	again.	

	

Example:	 Generalization	 to	 non-Maxwellian	 velocity	 distribution	 functions	 –	 In	

going	 from	 Eq.(7.C.51)	 to	 (7.C.56),	 there	 is	 a	 velocity-space	 integration	 over	 an	

isotropic	distribution	function:	 	

	

S j(k ,ω)∝ d3v∫ ge(v)ln
mv2
!ω

~ dv∫ vge(v)ln
mv2
!ω

~ d3v∫ 1
v ge(v)ln

2Te
!ω

~ln2Te
!ω

1
v 	 													(7.C.67)	

Hence,	 the	 generalization	 of	 Bremsstrahlung	 to	 a	 non-Maxwellian	 velocity	

distribution	is		

	 	 	 !WBremss =
!WBremss( )

Maxw v−1

v−1
Maxw

	 													(7.C.68)		

How	is	the	collisional	damping	of	the	emitted	waves	modified	by	a	non-Maxwellian	

velocity	distribution?		For	Coulomb	collisions	

	 	

γcoll∝νei ≈ ni σv ∝ni
1
v4
v ∝ni v−3

→γcoll∝νei = νei( )
Maxw v−3

v−3
Maxw

	 	 													(7.C.69)	

The	<v	-3>	moment	would	be	logarithmically	divergent	at	its	lower	limit	were	it	not	

for	being	cutoff	at	vth/Λ instead of 0:	

					

v−3 =4π v2dv v−3ge(v)
0

∞

∫ =4π dv v−1 ge(v)
0

∞

∫ →4π dv v−1ge(v)
vth/Λ

∞

∫ ~lnΛ 							(7.C.70)
	

We	then	use	the	results	of	Eqs.(7.C.68)	and	(7.C.69)	to	obtain	

	 	

Wk =
!WBremss

2|γcoll |
=
v−1

v−3
v−1

Maxw

v−3
Maxw

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1

Te 	 	 												(7.C.71)

	

Thus,	Wk		cannot	differ	significantly	from	Te.			
	 We	return	to	Eqs.(7.C.63)	and	(7.C.64)	to	calculate	the	integrated	

Bremsstrahlung	transverse	radiation:	
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!WBremss =
d3k

2π( )
3∫ !Wk =

d3k

2π( )
3∫ νe(ω)

ωp
2

ω2Te ×2(polarizations)=

=
ωp

2

2π( )
3 2Te

4πk2dk
ω2∫ νe(ω)=

1
π 2 νeTe

ωp

c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3
dω
ω

∫ ω2

ωp
2 −1

ln ω
!

ω

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ln ω
!

ωp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

				(7.C.72)

	

where	 we	 have	 made	 use	 of	 ω2 = k2c2 +ωp
2
	and	 the	 quantum	 cutoff	 at	 high	

frequencies:	!ω
!
≡Te

ω
!

ωp

=Λ =
λD
"
.		Ordinarily,	ωh >>ωp .		Introducing	the	notation		

!WBremss ≡ dω∫ !WBremss(ω) ,	 we	 see	 from	 Eq.(7.C.72)	 that	 !WBremss(ω) 	is	 zero	 below	
! = !!	because	 the	 transverse	waves	are	evanescent,	becomes	positive	 for	higher	
frequencies,	 and	 then	 is	 relatively	 flat	 until	 it	 cuts	 off	 at	ω

!
.	 	 For	 the	 frequencies	

near	 the	 cutoff	 a	 Bethe-Heitler	 calculation	 is	 needed.52		 To	 do	 the	 integral	 in	

Eq.(7.C.72)	we	note	that	

	 			 									
dΩ
Ω1

Λ

∫ Ω2 −1 1− lnΩlnΛ
⎡

⎣
⎢

⎤

⎦
⎥≈

Λ

lnΛ , Λ >>1, Ω≡
ω
ωp

			 													(7.C.72)	

	

Finally,	the	Bremsstrahlung	transverse-wave	emission	rate	can	then	be	expressed	as	

	 	 	 !WBremss ≈
neniTe

1/2e4(eion)2
!me

3/2c3
	 	 													(7.C.73)

	

times	a	numerical	factor	due	to	important	quantum	mechanical	corrections	that	we	

have	ignored.			For	 an	 optically	 thin	medium	 one	 can	 observe	 the	 Bremsstrahlung	

spectrum.		For	a	thick	medium,	quantum	mechanics	takes	over,	and	one	gets	black-

body	radiation	and	the	Stefan-Boltzmann	law.		

	

7.C.d	Dawson-Oberman	theory	of	resistivity	including	scattering	due	to	waves	and	
particle	discreteness		
	

	 The	calculation	of	the	frequency	dependence	of	the	plasma	resistivity	in	the	

presence	of	electric	fields	must	include	wave	scattering	by	discrete	fluctuations	and	

particles.	 	We	 follow	 the	 theory	 of	Dawson	 and	Oberman.53		 Consider	 a	 very	 long	

wavelength	wave:	

	 								E(x,t)=E0 sin(k0 ⋅x−ω0t +θ )≈E0 sin(ω0t), k0 << kD 	 	 											(7.C.74)	

																																																								
52	H.	A.	Bethe	and	L.	C.	Maximon,	Phys.	Rev.	93,	768	(1954).	
53	J.	M.	Dawson	and	C.	Oberman,	Phys.	Fluids	5,	517	(1962).	



	 180	

All	 of	 the	 electrons	 oscillate	 together	 in	 the	 field,	 and	 the	 ions	 oscillate	 the	 other	

way.		Define	the	oscillatory	frame	of	the	electrons	by	the	velocity	coordinate	w(t):	

	 	 w(t)= e
meω0

E0 cosω0t me
!w =−eE0 sinω0t 	 	 	 											(7.C.75)	

The	 electron	 acceleration	 in	 the	 oscillatory	 frame	 will	 see	 the	 real	 forces	 and	 a	

pseudo	force:	

	 	 me
!v =−me

!w−eE0 sinω0t −eE
other =−eEother 	 	 	 											(7.C.76)	

For	the	ions	we	have	

			

mi
!v =−mi

!w+eE0 sinω0t +eE
other

→ !v =− !w+
e
mi

E0 sinω0t +
e
mi

Eother = e
me

E0 sinω0t +
e
mi

E0 sinω0t +
e
mi

Eother

≈
e
me

E0 sinω0t +
e
mi

Eother +O
me

mi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(7.C.77)	

	

In	the	laboratory	frame	of	reference	the	equations	of	motion	for	the	electrons	

yield	

	 	 me
!!re =−eE0 sinω0t → re(t)=

e
meω0

2 E0 sinω0t 	 	 											(7.C.78)	

while	the	ion	motion	in	the	oscillatory	frame	of	reference	is	

	 	 	 ri(t)=−
e

meω0
2 E0 sinω0t 	 	 	 	 											(7.C.79)	

absent	 “other	 fields”	 and	 microscopic	 fields.	 	 The	 “other	 fields”	 satisfy	 Maxwell’s	

equations	combined	with	the	Vlasov	or	Lenard-Balsescu	equations.		In	the	electron	

oscillating	 frame	 the	 ions	 move	 up	 and	 down,	 with	 a	 dipole	 moment	 that	 is	

2(e2E0/meω02).	 	 	 There	 is	 dipole	 radiation	 in	 all	 directions,	 but	 due	 to	 the	
randomness	of	positions	(say)	the	radiation	is	incoherent.	 	Thus,	the	original	wave	

has	been	scattered	or	partially	scattered	into	dipole	radiation	in	the	random-phase	

approximation.	

	 Suppose	one	ion	wave	is	present.		Then	over	and	above	graininess	there	is	a	

density	 correlation.	 	 Thus,	 there	 is	 some	 coherence	 and	 enhancement	 of	 the	

radiation.	 	An	electron	wave	can	scatter	off	 the	 ion	wave	 into	a	scattered	electron	

wave.	 	 If	 instead	there	 is	 turbulence	(due	to	an	 instability	or	other	mechanism)	so	

that	 there	 are	many	waves	 present,	 there	will	 be	multi-enhanced	 scattering	 in	 all	

directions.		This	is	observed	in	laboratory	and	ionospheric	experiments.	

	 We	 return	 to	 the	 ion	 motion	 in	 the	 oscillating	 frame,	 Eq.(7.C.79),	 and	

construct	the	Fourier-transformed	charge	density	of	a	singly	charged	ion:	

	 	 	 ρ0(k ,t)= e exp −ik ⋅ri(t)( ) ≈ e 1− ik ⋅ri(t)( ) 	 	 											(7.C.80)	

where	we	 have	 expanded	 the	 exponential	 for	kri<<1	 in	 the	 dipole	 approximation.		
For	 electrostatic	modes,	 the	 shielded	 electric	 potential	 can	be	 calculated	 from	 the	

test-particle	charge	density	using	Poisson’s	equation:	
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	 φ(k ,ω)= 4π
k2

ρ0(k ,ω)
ε(k ,ω) =

4π
k2

e2

2meω0
2
k ⋅E0
ε(k ,ω)2π δ(ω +ω0)−δ(ω −ω0)⎡

⎣
⎤
⎦ 										(7.C.81)		

The	electric	field	at	the	ion	position	is	then	

	 	

E r0(t),t( )= d3k
(2π )3∫ dω

2π∫ eik⋅r0(t ) e−iωt(−ik)φ(k ,ω)

≈
d3k
(2π )3∫ dω

2π∫ 1+ ik ⋅r0(t)( ) e−iωt(−ik)φ(k ,ω)

≈
4πe2
2meω0

2
d3k
(2π )3∫ −i k̂ k̂ ⋅E0( ) eiω0t

ε(k ,−ω0)
−

e−iω0t

ε(k ,ω0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

								(7.C.82)	

We	 assume	 that	 the	 unperturbed	 plasma	 is	 isotropic	 in	 order	 to	 simplify	 and	

combine	terms	in	Eq.(7.C.82).		Then	! !,−!! = ! −!,−!! = !∗ !,!! .		Hence,	

		

E r0(t),t( ) ≈ − 4πe
2

meω0
2

d3k
(2π )3∫ k̂ k̂ ⋅E0( )Im e−iω0t

ε(k ,ω0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=−
4πe2
meω0

2
d3k
(2π )3∫ 1

3 I⋅E0( )Im e−iω0t

ε(k,ω0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
4πe2
3meω0

2
d3k
(2π )3∫ E0 Im

e−iω0t

ε(k,ω0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
			

(7.C.83)	

The	work	done	on	the	plasma	by	the	fields	is	

	 − !W ≡ eE(r0(t),t)⋅ !r0(t)⇒ !W =−
2πe4
3me

2ω0
3 E0

2 d3k
(2π )3∫ Im 1

ε(k,ω0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		 											(7.C.84)	

The	 resonant	 part	 in	 Eq.(7.C.84)	 is	 interpreted	 as	 the	 wave-emission	 part	

(normal	 modes),	 while	 the	 non-resonant	 part	 is	 interpreted	 as	 the	 resistive	

component.		We	first	examine	the	resonant	contribution:	

	 Im 1
ε(k ,ω0)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Im 1

ε '+ iε"
⎡

⎣
⎢

⎤

⎦
⎥=−πδ(ε ')signε"=−πδ(ε '(k ,ω0)) 	 											(7.C.85)	

taking	the	positive	signε”	for	stable	modes.		The	integral	over	wavenumber	space	in	
(7.C.84)	can	be	performed	by	using	the	relations:	

		δ(ε '(k ,ω0))=
δ(k −k(ω0))
∂ε '(k ,ω)

∂k k(ω0 )

and ω0
2 =ωp

2 +3k2ve2⇒ k(ω0)=
1
3ve

ω0
2 −ωp

2
			(7.C.86)	

Hence,	 the	 energy	 radiated	 into	 the	 weakly	 damped,	 resonant	 radiation	 fields	

derived	from	Eqs.(7.C.84-7.C.86)	is	

	 	 !Wrad =
1

18 3
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⎟
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−1 veE2 , ω0 ≥ωp 	 	 											(7.C.87)	

In	the	oscillating	 frame	we	have	radiated	waves	travelling	out	 in	all	directions.	 	 In	

the	limit	of	small	amplitude	fields,	the	response	field	and	the	radiated	waves	can	be	

superposed.			
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7.C.e	Scattering	cross-sections	for	waves	calculated	from	Dawson-Oberman	theory			
	

	 The	 scattering	 cross-section	 for	 the	 incident	 waves	 scattering	 into	 the	

emitted	radiation	can	be	defined	and	calculated	as	follows:	

	 	 σ ≡
energy	radiated	per	unit	time
incident	energy	flux	density =

!Wrad

1
2
E0
2

8π εVg
inc

	 	 											(7.C.88)	

where	 the	½	 in	 the	denominator	 takes	 into	account	a	 time	average	of		 (E0sinω0t)2	

and	 !! = 3!!"#v!!/!! 	for	 incident	 Langmuir	 waves	 	 and	 	 !! = ! 1− !!!

!!!
	for	

transverse	waves.			

The	scattering	cross-section	for	transverse	waves	scattered	into	longitudinal	

waves	is			

																																					 σ t→ℓ(ω0)=
4π
9 3
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ve
c
	 	 	 											(7.C.89)	

For	longitudinal	waves	scattered	into	longitudinal	wave	the	cross-section	is	

	 	 	 		σ t→ℓ(ω0)=
4π
27
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	 	 	 	 											(7.C.90)	

In	 order	 that	 the	 scattered	 longitudinal	 wave	 be	 weakly	 damped	
!!
! ≈ ! 1 .		 We	

note	 that	 for	 comparison	 the	 cross-section	 for	 particle	 scattering	 in	 a	 plasma	 is	

!(1)(!!/!!)!lnΛ.	
The	 cross-section	 for	 transverse	waves	 scattering	 into	 transverse	waves	 is	

calculated	with	the	help	of	the	formalism	presented	in	previous	lectures	yielding	the	

Thomson	cross-section:	

	 	 	 σ t→t(ω0)=
8π
3

e2

mec
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

	 	 	 	 											(7.C.91)	

The	cross-section	for	scattering	of	longitudinal	waves	into	transverse	waves	is	

	 	 	 	

	 	 	 σ
ℓ→t(ω0)=

8π
3

e2

mec
2
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⎞

⎠
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2
c
3ve

ωp

ω0
	 	 	 											(7.C.92)	

	 We	return	to	Eq.(7.C.84)	and	consider	the	non-resonant	contributions:	
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							(7.C.93)	

From	Eq.(7.C.93)	we	can	immediately	deduce	the	cross-section	for	absorption	from	

Eq.(7.C.88):	

	 	 	 σ abs =
!W

1
2
E0
2

8π εVg
inc

=
νe(ω)
nVg

inc

ωp
2

ω2 	 	 	 	 											(7.C.94)	

where	Vg
inc
	is	the	group	velocity	of	the	incident	longitudinal	or	transverse	wave	and	

we	 have	 specialized	 to	 the	 case	 of	 a	 singly	 charge	 ion	 in	 an	 approximately	 quasi-

neutral	 plasma.	 	 We	 note	 that	 the	 cross-section	 for	 collisional	 absorption	 is	

dominant	over	the	other	cross-sections	by	a	 term	of	order	 lnΛ.	 	The	damping	rate	
for	the	incident	wave	energy	flux	for	either	longitudinal	or	transverse	waves	is	

	 	 	 2γ =nσ absVg
inc =νe(ω)

ωp
2

ω2 	 	 	 	 											(7.C.95)	

This	calculation	has	ignored	correlations	of	the	ions	due	to	ion	waves	present,	which	

Dawson	and	Oberman	have	examined.	

7.C.f	More	general	derivation	of	scattering	theory	for	particles,	fluctuations,	or	waves			
	

	 Here	we	develop	a	more	general	theory	of	the	scattering	of	an	incident	wave	

by	particles,	shielding	clouds,	fluctuations,	or	waves,	including	wave	turbulence.			If	

the	scattering	involves	an	outgoing	wave	we	have	a	formalism	for	wave	emission:54	

	 !Wb(k)= 4π
ε
S j⋅ê

* (k ,ωk
b ), j(x,t)= es

s
∑ nsv s = es

s
∑ d3v∫ vFs(x,v;t) 									(7.C.96)	

where	b	denotes	a	branch	of	the	dispersion	relation	for	the	emitted	waves.		We	use	
the	 Klimontovich	 representation	 for	 the	 velocity	 distribution	 function	 assembled	

from	the	particles:	

	 	 	 Fs(x,v;t)= δ x−x i
s(t)( )

i
∑ δ v−v i

s(t)( ) 	 	 											(7.C.97)	

which	satisfies	the	Vlasov	equation.		The	time	derivative	of	the	current	is	then	

	

																																																								
54	T	D.	A.	Tidman	and	T.	H.	Dupree,	Phys.	Fluids	8,	1860	(1965).	
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∂
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	 	 	 	 	 	 	 	 	 	 											(7.C.98)	

We	next	Fourier	transform	Eq.(7.C.98)	in	time	and	space:	

−iωj(k ,ω)=−ik ⋅ es
s
∑ d3v∫ vvFs(k ,v;ω)

+
es
2

mss
∑

d3k1dω1
(2π )4∫

d3k2dω2
(2π )4∫ ns(k2 ,ω2)E(k1 ,ω1)(2π )4δ(k1 +k2 −k)δ(ω1 +ω2 −ω)

	

	 	 	 	 	 	 	 	 	 	 											(7.C.99)	

The	first	term	on	the	right	side	of	Eq.(7.C.99)	is	of	order	 i(k ⋅v)j ,	and	for	ω >>k ⋅v
this	 term	 is	 negligible	 compared	 to	 the	 second	 term.	 	 If	ω /k >> v 	is	 not	 satisfied	
then	one	must	consider	nonlinear	Landau	damping.55	

	 We	 recall	 the	development	 in	Eqs.(7.C.20	–	7.C.34)	 to	obtain	 an	expression	

for	 the	 wave	 emission.	 	 Given	 the	 relations	−iωj(k ,ω)⋅ ê* =−iωê* ⋅ j(k ,ω) 	and	 from	
Eq.(7.C.20)	

	 	 ê* ⋅ j(k ,ω)ê⋅ j∗(k ',ω ') =(2π )4δ(ω −ω ')δ(k−k ')S ê*⋅j(k ,ω) 	 									(7.C.100)		
The	analysis	 can	be	simplified	 in	special	 cases.	 	For	example,	 there	are	no	density	

perturbations	 for	electric	 fields	due	to	transverse	waves.	 	 	Hence,	 the	electric	 field	

and	 the	 density	 perturbations	 are	 uncorrelated;	 and	 following	 ensemble	 average	

can	be	simplified:	

	

ê⋅E(k1 ,ω1)ê⋅E*(k1* ',ω1 ')ns(k2 ,ω2)ns'*(k2
* ',ω2 ') =

ê⋅E(k1 ,ω1)ê⋅E*(k1* ',ω1 ') ns(k2 ,ω2)ns'*(k2
* ',ω2 ')

	 									(7.C.101)	

Then	 using	 Eqs.(7.C.99-7.C.101)	 with	 the	 assumption	 ω >>k ⋅v 	we	 obtain	 the	
following	relation	after	doing	the	integrations	and	making	use	of	the	three	four-fold	

delta-functions:	

	 S
⌢e*⋅j(k ,ω)∝ d3k1dω1

(2π )4∫ SE⋅
⌢e* (k1 ,ω1)S

nsns' (k2 =k−k1 ,ω2 =ω −ω1) 	 									(7.C.102)	

	 The	electron	clouds	surrounding	ions	constitute	scattering	centers.		When	an	

electron	wave	comes	by,	the	ions	cannot	keep	up;	and	the	oscillating	electron	clouds	

induce	 positive	 electron	 holes	 that	 oscillate	 with	 the	 electron	 clouds.	 No	 net	

oscillating	 dipole	moment	 results.	 	 However,	 ion	 fluctuations	 are	 accompanied	 by	

electron	 cloud	 oscillations;	 and	 there	 is	 a	 net	 oscillating	 dipole	 moment	 that	

radiates.	

	

																																																								
55	Last	chapter	in	R.	C.	Davidson,	Methods	in	Nonlinear	Plasma	Theory		(Academic	
Press,	New	York,	1972).	
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Example:	Consider	 the	 scattering	of	 transverse	waves	by	a	 longitudinal	wave	or	 a	

fluctuation.	 	The	transverse	waves	have	no	accompanying	density	perturbation	(at	

small	 amplitude).	 	 In	 an	 unmagnetized	 plasma	 the	 wave	 emission	 given	 in	

Eq.(7.C.96)	is	

	 	 !W ê(k)= 4π
ε
S j⋅ê(k ,ω), j(x,t)= es

s
∑ ns(x,t)us(x,t) 	 									(7.C.103)	

Here	 ê= ê*and	

								 ê⋅ j(k ,ω)= es
d4k1
(2π )4∫

s
∑

d4k2
(2π )4

δ (4)(k1 +k2∫ −k)ns(k2
(4))ê⋅us(k1(4))(2π )4 					(7.C.104)	

where		

					d4k1 ≡d
3k1dω1 , 	δ (4)(k1 +k2 −k)≡δ(k1 +k2 −k)δ(ω1 +ω2 −ω), and k1(4) =(k1 ,ω1). 	

	 	 	 	 	 	 	 	 	 	 									(7.C.105)	

Using	Eq.(7.C.104)	we	can	now	form	
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	 	 	 	 	 	 	 	 	 	 									(7.C.106)	

The	 ensemble	 averages	 ns(k2
(4))ns(k2

(4) ') 	and	 ê⋅us(k1(4))ê⋅us(k1(4) ') 	force	

k1
(4) =k1

(4) ' 	and	k2
(4) =k2

(4) ' ,	 which	 when	 combined	 with	 the	 two	 delta	 functions	 in	
Eq.(7.C.106)	 constrain	 k(4) =k(4) ' .	 	 Hence,	 all	 but	 one	 of	 the	 integrations	 in	
Eq.(7.C.106)	can	be	performed	yielding	

				 ê⋅ j(k(4))ê⋅ j*(k '(4)) = eses'(2π )4δ (4)(k−k ')
d4k1
(2π )4∫

s ,s'
∑ Snsns' (k−k1)S

ê⋅usê⋅us' (k1) 	

	 	 	 	 	 	 	 	 	 	 									(7.C.107)	

Now	we	can	evaluate	the	wave	emission	rate	in	Eq.(7.C.103):	

	 	 !W ê(k)= 4π
ε

eses'
d4k1
(2π )4∫

s ,s'
∑ Snsns' (k−k1)S

ê⋅usê⋅us' (k1) 																								(7.C.108)	

Because	the	basic	nonlinearity	in	the	current	has	been	incorporated	in	terms	of	the	

bilinearity	in	n	and	u,	we	can	use	linear	theory	to	evaluate	n	and	u.		The	velocity	in	
the	transverse	wave	is	

	 	 	 −iω1u
s =

es
ms

E ê⋅us =
1

−iω1

es
ms

ê⋅ ê1E 	 	 									(7.C.109)	
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Because	 of	 the	 inverse	 mass	 dependence	 in	 the	 velocity,	 only	 the	 electron	

contribution	to	the	scattering	is	important.		Hence,	Eq.(7.C.108)	becomes	

	 	

!W ê(k)= 4π
ε
e2

d4k1
(2π )4∫ Snn(k−k1)S

ê1⋅uê1⋅u(k1)

=
4π
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2 d3k1dω1

(2π )4∫ Snn(k−k1)
1
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2 S
E(k1)

	 									(7.C.110)	

Suppose	the	incident	wave	“1”	has	a	sharp	frequency	distribution:	

	 SE(k1 ,ω1)=π SE(k1)δ(ω1 −ωk1)+SE(−k1)δ(ω1 +ωk1)⎡
⎣

⎤
⎦ 	 	 									(7.C.111)	

which	delta	 functions	are	a	good	representation	for	weak	damping	!/!!!<<1.	 	We	
can	then	perform	the	integral	over	frequency	in	(7.C.110)	to	obtain	
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						(7.C.112)	

The	first	 term	in	the	square	bracket	 in	Eq.(7.C.112)	describes	the	scattering	of	 the	

transverse	wave	with	wavenumber	k1	being	scattered	by	a	density	fluctuation	with	
wavenumber	k2		into	a	scattered	transverse	wave	with	wavenumber	k,	satisfying	the	
matching	 condition	 k=k1+k2	 Waves	 “1”	 and	 “2”	 can	 be	 considered	 as	 incoming	
waves	 in	a	 three-wave	 interaction	with	 the	outgoing	wave	having	wavenumber	k.		
The	second	term	in	the	square	bracket	in	Eq.(7.C.112)	describes	the	relatively	rare	

process	 of	 induced	 emission	 of	 the	 wave	 with	 wavenumber	k	 in	 the	 presence	 of	
transverse	wave	“1”	mediated	by	a	density	fluctuation	with	wavenumber	k2=k1+k.		
Thus,	the	first	term	in	the	square	bracket	is	assumed	dominant.	

	 In	terms	of	an	action	representation:	
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ê1(k1) 									(7.C.113)	

where		

	 	 	 	 J ê1(k1)= 2π( )
3
δ(k1 −k inc ) Jinc 	 	 	 									(7.C.114)	

	

Theorem:	The	macroscopic	cross-section	for	scattering	of	a	transverse	wave	into	a	

scattered	transverse	wave	is	defined	
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!J ê
ê
∑ (k)
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∫ Sne(k2 ,ω2) 								(7.C.115)	

The	 sum	 is	 over	 two	 polarizations.	 	 For	 transverse	 waves	 in	 an	 unmagnetized	

plasma	 ωk
2 =ωp

2 +k2c2 	and	 ε =2 .	 	 The	 quantity	 !"!!!!
= ! 1 . 		 We	 note	 that	 the	

macroscopic	 cross-section	 as	 defined	 here	 does	 not	 have	 the	 units	 of	 area,	 but	

instead	 has	 units	 of	 inverse	 length,	 i.e.,	 like	 the	 product	 of	 a	 density	 and	 a	
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microscopic	cross-section	having	units	of	area.		This	result	is	discussed	in	Sec.	12.9	

of	Clemmow	and	Dougherty.56	

	

Exercise:	Modify	the	result	for	σ t→t 	to	obtain	σ t→ℓ 	

	

Example:	Scattering	off	bare	electrons,	i.e.,	for	situations	in	which	the	Debye	length	

!!	is	so	large	that	shielding	can	be	ignored.			
	

ne(k ,ω)= 2πδ(ω −k ⋅v)e−ik⋅ri
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∑ ⇒ Sne
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For	 a	 Maxwellian	 g
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	for	 outgoing	 waves.	 	 Thermal	

effects	 produce	 a	 spread	 in	 frequencies	 of	 the	 scattered	 radiation	 of	 order:	

Δω /ω1 ~k2ve /ω1 ,	 which	 is	 small	 in	 a	 non-relativistic	 plasma	 for	 which	

ve /(ω1 /k1)~ ve /c <<1 .	 	We	note	that	for	!! ≈ !,	!! = 2!!sin (!/2)	where	!	is	the	
angle	between	k1	and	k.		From	Eqs.(7.C.115)	and	(7.C.116)	one	obtains	
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=ne
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		(7.C.117)	

Example:	Scattering	off	shielded	particles	

	 We	 use	 the	 linearized	 Vlasov	 equation	 to	 calculate	 the	 response	 of	 the	

electron	shielding	cloud	and	the	ion	perturbations:	

	 	

ne
cloud(k ,ω)= neee

me

Ze
' (v)φ(k ,ω) Zs(v)= du

g
k̂
s (u)
u−v−∞

∞

∫

φ(k ,ω)= 4π
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esns
0(k ,ω)

s
∑
ε(k ,ω) ε =1+ χe + χ i χ s ≡−

ωs
2

k2
Zs
' (v)

			(7.C.118)	

The	total	electron	charge	density	perturbation	is	the	sum	over	bare	electrons,	their	

shielding	 clouds,	 and	 the	 electron	 shielding	 clouds	 surrounding	 the	 ion	perturbed	

charge	density:	

																																																								
56	P.	C.	Clemmow	and	J.	P.	Dougherty,	Electrodynamics	of	Particles	and	Plasmas	
(Perseus	Books,	New	York,	NY,	1989).	ISBN:	9780201515008. 
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			(7.C.119)	

We	 assume	 that	 the	 bare	 ion	 and	 bare	 electron	 charge	 density	 perturbations	 are	

uncorrelated	and	obtain	from	Eqs.(7.C.116)	and	(7.C.120)	
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					 	 									(7.C.120)	

where	!! ≡ !!"
! !.	 	We	can	compare	ge	and	gi	as	a	 function	of	 the	phase	velocity	v.		

First	we	recall		

	 	 	 gs =
1
2π v s

e
−
v2
2ve2 	

For	v~vi<<ve,	then	ge<<gi	in	Eq.(7.C.120)	and	!! = !
!!!!!

. 	Hence,	 Sne / Sni ≅(1+k
2λe

2)−2 .		
Thus,	the	electron	and	ion	fluctuations	are	comparable	in	this	limit.		For	v~ve>>vi		

and	! ≫ !!"then	gi	is	exponentially	small,	gi<<ge,	and	 !! ≪ 1	.		Hence,	 Sne / Sni >>1 	
for	high	frequencies.	

		 Our	 calculations	 of	 scattering	 so	 far	 have	 assumed	 that	 the	 underlying	

plasma	 is	 an	 isotropic,	 non-drifting	Maxwellian	 and	 there	 is	 no	 externally	 applied	

magnetic	 field.	 	With	the	 inclusion	of	a	drift,	 the	approach	of	 instability	thresholds	

alters	the	dielectric	response	and	the	dispersion	relations,	which	modify	the	density	

correlation	 functions.	 	 If	 there	 is	 an	 applied	magnetic	 field,	 then	 particle	 gyration	

must	be	included,	and	the	more	general	K	response	tensor	must	be	used	instead	of	
the	scalar	longitudinal	dielectric	function.	

	

Example:	Wave-wave	 scattering.	 	 Consider	 an	 incident	 transverse	wave	 scattering	

off	a	longitudinal	wave	into	a	scattered	transverse	wave.		We	recall	Eq.(7.C.114)	for	

the	time	derivative	of	the	scattered	transverse	wave	action	rewritten	as	

	 !J ê(k)=
!W ê(k)
ωk

=
1
n2

d3k1
(2π )3∫

ωp
4

ωkωk1

ê⋅ ê1
2

εkεk1
Sne(k2 ,ω2) J

ê1(k1) 	 							(7.C.121a)	

where		
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Sne(k2 ,ω2)=π Sne(k2)δ(ω2 −ωk2
)+Sne(−k2)δ(ω2 +ωk2

)⎡
⎣

⎤
⎦
	 	 						(7.C.121b)	

For	an	electron	longitudinal	wave	present	

						4πeδne = ik2 ⋅E→ Sne(k2)=
k2
4πe
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

SE(k2)→
8π
ε2
W(k2)→ωk2

J eℓ(k2) 											(7.C.122)	

Hence,	from	Eq.(7.121a)	

	

!J ê(k)= d3k1
(2π )3∫

d3k2
(2π )3∫ (2π )2δ(k1 +k2 −k)δ(ω1 +ω2 −ω)8π 2 e

me

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
k2
2ω2
ωω1

ê⋅ ê1
2

εkεk1
εk2

J ê1(k1) J eℓ(k2)

	

	 	 	 	 	 	 	 	 	 	 									(7.C.123)	

The	 inverse	 process	 is	 the	 induced	 decay	 of	 the	 transverse	wave	with	(ω ,k) 	into	
decay	 product	 waves	(ω1 ,k1) 	and	(ω2 ,k2) .	 	 	 We	 include	 the	 additional	 induced	
decay	terms	to	obtain	

		
!J ê(k)= d3k1

(2π )3∫
d3k2
(2π )3∫ (2π )2δ(k1 +k2 −k)δ(ω1 +ω2 −ω)8π 2 e

me

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
k2
2ω2
ωω1

ê⋅ ê1
2

εkεk1
εk2

× J ê1(k1) J eℓ(k2)− J ê(k) J eℓ(k2)− J ê(k) J
ê1(k1)⎡

⎣
⎤
⎦

		(7.C.124)	

The	expression	in	the	square	bracket	is	the	coupling	coefficient	we	did	not	know	in	

Sec.	6.H	for	three-wave	coupling	in	the	random-phase	limit.	

	

7.C.g	Nonlinear	Landau	damping			
	

	 Nonlinear	Landau	damping	 is	 the	name	given	to	 the	nonlinear	scattering	of	

an	 incident	wave	by	particles.	 	 [Note	 that	 this	 is	not	 the	nonlinear	modification	of	

Landau	 resonance	 due	 to	 particle	 trapping.]	 	 In	 this	 example	 the	 incident	 and	

scattered	waves	are	transverse	waves.		Recall	the	expression	in	Eq.(7.C.120)	

	

	 Sne(k2 ,ω2)=
1

ε(k2)
2 Sne

0 1+ χ i
2
+Sni

0 χe
2⎡

⎣⎢
⎤

⎦⎥
	 	 									(7.C.125)		

where	 Sns
0
	is	given	in	Eq.(7.C.116).	 	Then	from	Eq.(7.C.121a)	one	obtains	

	

		

!J ê(k)= d3k1
(2π )3∫ 2π

ε(k−k1 ,ω −ω1)
2
1
n2

ωp
4

ωkωk1

ê⋅ ê1
2

εkεk1

× d3v∫ δ ω −ω1 −(k−k1)⋅v( ) 1+ χ i
2
fe(v) J

ê1(k1)+ χe
2
fi(v) J

ê1(k1)
⎡

⎣⎢
⎤

⎦⎥

(7.C.126)	

The	quantum	mechanics	conservation	laws	for	momentum	and	energy	that	describe	

wave	scattering	by	a	particle	are	
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p+!k1 =p'+!k ⇒ p'−p≡Δp= ! k1 −k( )
p2

2m+!ω1 =
p'2
2m+!ω ⇒ Δ

p2

2m
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≈ v ⋅Δp= !(ω1 −ω)

	 				 									(7.C.127)	

for	 differential	 changes	 in	 the	 particle	 energy	 due	 to	 the	 scattering.	 	 These	

conservation	laws	directly	lead	to	the	condition	

	 	 	 ω1 −ω = k1 −k( ) ⋅v 	 	 	 	 	 									(7.C.128)	

which	we	recognize	as	the	Landau	particle	resonance	condition	for	wave	scattering	

by	a	particle.	 	The	 inverse	 (not	 reverse)	 scattering	process	has	 the	 same	coupling	

due	to	hermiticity	and	detailed	balance.	

	 In	 the	 quantum	mechanics	 calculation	 the	 time	 derivative	 of	 the	 quanta	 is	

given	by	

	

d
dt
N(k)=Ckk1s f (p)N(k1) 1+N(k)⎡

⎣
⎤
⎦− f (p')N(k) 1+N(k1)⎡

⎣
⎤
⎦{ }

																																		↑ 															↑ 						↑ 																													↑ 			
																											#	scatters				spont.		induced	in									scattering	out	

=Ckk1s N(k1)N(k) f (p)− f (p')
⎡
⎣

⎤
⎦+N(k1) f (p)−N(k) f (p'){ }

					(7.C.129)	

where	N ≡ J /! 	and	 the	 rules	 of	 Bose	 statistics	 apply.	 	 We	 use	 Eq.(7.C.127)	 and	
linearly	expand		

	 	 	 f (p)− f (p')≈ (p−p')⋅ ∂f
∂p

= ! k−k1( ) ⋅ ∂f
∂p
	 	 									(7.C.130)	

	

Hence,	

	

1
!
d
dt
J(k)=Ckk1s

J(k1)
!

J(k) k−k1( ) ⋅ ∂f
∂p

+
J(k1)
!

f (p)− J(k)
!

f (p')
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

∝ J(k1) J(k) k−k1( ) ⋅ ∂f
∂p

+ J(k1)− J(k)⎡
⎣

⎤
⎦ f (p)+O (p'−p)⋅

∂f
∂p

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

×δ !ω + p'
2

2m−(!ω1 +
p2

2m)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟δ !k+p'−(!k1 +p)( )

							(7.C.131)	

We	integrate	Eq.(7.C.131)	over	the	spectrum	of	waves	k1	and	over	the	distribution	
function	of	momentum	p	 to	get	an	expression	for	dJ(k)/dt.	 	Given	Eq.(7.C.126)	the	
coefficient	Ckk1s can	be	evaluated:	

								Ckk1s =
2π

ε(k−k1 ,ω −ω1)
2
1
n2

ωp
4

ωkωk1

ê⋅ ê1
2

εkεk1
1+ χ i

2 electrons,	 χe
2 	ions⎡

⎣⎢
⎤

⎦⎥
						(7.C.132)	

where	k2=k-k1.			
	 The	 scattering	 considered	 here	 involves	 small	 changes	 in	 the	 particle	

momentum	 consistent	 with	 Eq.(7.C.127)	 and	 the	 linear	 expansion	 in	 (7.C.130).		
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Combined	with	 the	 assumption	 of	 random	phases	 in	 the	 scattering	processes,	 the	

momentum	scattering	satisfies	the	conditions	for	a	Fokker-Planck	description:	

	 	
∂f s(p;t)

∂t
=−

∂

∂p
⋅ F(p) f (p)( )+ ∂

∂p
⋅ D(p)⋅ ∂ f (p)

∂p

⎛

⎝
⎜

⎞

⎠
⎟ 	 	 									(7.C.133)	

The	first	momentum	moment	of	the	Fokker-Planck	equation	summed	over	species	

yields	the	time	derivative	of	the	total	particle	momentum	in	the	plasma:	

	 	
d
dt
Pparticles =

d
dt

d3p∫
s
∑ pfs(p;t)= d3p∫

s
∑ Ff −D⋅ ∂f

∂p

⎡

⎣
⎢

⎤

⎦
⎥ 	 									(7.C.134)	

where	an	integration	by	parts	has	been	performed.		The	time	derivative	of	the	total	

wave	momentum	(fields	and	particle	sloshing	in	the	wave)	is	

	 	
d
dt
Pwaves =

d
dt

d3k
(2π )3

k J ê(k;t)+ d3k1
(2π )3

k1 J
ê1(k1;t)∫∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 									(7.C.135)		

The	 right	 side	of	Eq.(7.C.135)	 is	 evaluated	using	Eqs.(7.C.131)	and	 (7.C.132).	 	One	

can	show	that	the	conservation	of	the	total	number	of	quanta	implies	that	the	total	

wave	 action	 is	 conserved.	 	 Conservation	 of	 total	 momentum	 is	 dictated	 by	

Eq.(7.C.127)	 and	 built	 into	 the	 equations.	 Thus,	 one	 can	 sum	 Eqs.(7.C.134)	 and	

(7.C.135)	and	assert			

	 	 	 	
d
dt

Pparticles +Pwaves( )=0 	 	 	 									(7.C.136)		

from	 which	 we	 infer	 F(p)	 and	 D(p)	 consistent	 with	 conservation	 of	 total	
momentum:	

	 									

					

Ds(p)= d3k
(2π )3

d3k1
(2π )3∫∫ k−k1( )Ckk1s J

ê1(k1) J ê(k)δ ω −ω1 −(k−k1)⋅v( ) k−k1( )

Fs(p)= d3k
(2π )3

d3k1
(2π )3∫∫ k−k1( )Ckk1s J

ê(k)− J ê1(k1)( )δ ω −ω1 −(k−k1)⋅v( ) k−k1( )
	

	 	 	 	 	 	 	 	 	 	 									(7.C.137)	

Exercise:	Derive	Eq.(7.C.137)	filling	in	the	intermediate	steps.	

	

	

7.C.h	Radiation	transport:	summary	of	important	processes			
	

	 This	 lecture	 serves	 as	 a	 summary	 of	 the	 important	 processes	 in	 radiation	

transport.	

	

Emission	processes	

1. Bremsstrahlung	 (discreteness)	 	 –	 Particles	 scatter	 off	 one	 another	 or	
particles	scatter	off	 fluctuations,	and	 in	so	doing	produce	a	 time-dependent	

dipole	moment	and	current,	which	lead	to	emission	of	radiation.	

2. Cerenkov	 (resonance)	 –	 A	 particle	 with	 velocity	 satisfying	 wave-particle	
resonance	ω =k ⋅v 	can	emit	a	wave.	
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3. Beat	resonance	(scattering)	–	The	beat	of	an	incident	and	scattered	wave	are	
resonant	 with	 particles	 ω1 −ω2 =(k1 −k2)⋅v ,	 which	 can	 enhance	 the	

scattering.	

4. Gyro-resonance	 (cyclotron	 emission)	 –	 The	 classical	 acceleration	 of	 a	
charged	 particle	 gyrating	 in	 a	magnetic	 field	 emits	 radiation	 satisfying	 the	

gyro-resonance	condition:	ω −k||v|| = ℓΩ .	
5. Three-wave	(or	more)	scattering	–	An	incident	wave	is	scattered	by	another	

wave	 into	 a	 third	 wave	 subject	 to	 the	 three-wave	 resonance	 conditions:	

ω1 =ω2 +ω3 k1 =k2 +k3 		
6. Induced	 emission	 –	 Wave	 emission	 (single	 wave	 and	 two	 waves)	 by	 the	

plasma	can	reinforce	itself	leading	to	an	instability.	

7. Radiation	emission	due	to	atomic	transitions	(not	covered	in	these	lectures)	
	

Conditions	affecting	propagation	

1. Damping	or	instability		
a. Anisotropy	in	velocity	space	
b. Non-monotonicity	in	energy	
c. Inhomogeneity	in	space	
d. Non-stationarity	due	to	time	dependence,	e.g.,	parametric	instability	

2. Refraction	in	a	plasma	with	weak	inhomogeneity	! ≫ !	
3. Reflection	in	a	plasma	with	sharp	inhomogeneity	! ≪ !	or	sudden	change	in	

polarization	of	the	wave	

4. Diffraction	when	!~!	
	

Absorption	processes	

1. Wave	scattering	
2. Three	or	more	wave	interactions	
3. Mode	conversion	from	one	branch	to	another	
4. Inverse	Cerenkov	effect,	i.e.,	Landau	damping	
5. Collisional	absorption,	i.e.,	inverse	Bremsstrahlung	
6. Atomic	transitions	
7. Gyro-resonant	absorption	
8. Two-wave	absorption	

A	complication	in	most	of	the	resonant	processes	is	resonance	broadening.		Particle	

trapping	is	a	particularly	important	nonlinear	effect	and	influences	the	saturation	of	

many	instabilities.	

	

7.C.i	WKB	theory	in	the	context	of	radiation	transport	
	
	 We	return	to	the	WKB	theory	to	include	WKB	wave	propagation	in	a	general	

theory	 of	 wave	 emission	 and	 absorption.	 	 Our	 WKB	 theory	 uses	 the	 following	

representation:	
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E(x,t)= !E(x,t)eiΦ(x ,t ) Φ= k ⋅dx−ωdt( )
x

∫ 	 	 	 							(7.C.138a)	

and	

	 k(x,t)= ∂Φ
∂x

ω(x,t)=−∂Φ
∂t

⇒
∂

∂t
k(x,t)=− ∂

∂x
ω(x,t) 		 						(7.C.138b)	

	

We	use	Maxwell’s	equations	to	obtain	the	local	linear	dispersion	relation:	

	 	 D(ω ,k;x,t)=D(−∂Φ
∂t
,∂Φ
∂x
;x,t)→ω k(x,t);x,t( ) 	 	 									(7.C.139)	

Equation	(7.C.140)	is	a	first-order	quasilinear	partial	differential	equation	which	is	

solved	by	the	method	of	characteristics.		The	equation	of	motion	for	the	wave	packet	

characteristic	determined	from	Eq.(7.C.138b)	is	

dx
dt

=
∂

∂k
ω(k;x,t) 	 	 	 	 	 									(7.C.140)	

and	there	is	the	companion	equation:	

	

d
dt
k = ∂

∂t
+
∂ω
∂k x ,t

⋅
∂

∂x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟k =−

∂ω(x,t)
∂x

+
∂ω
∂k x ,t

⋅
∂k
∂x

=−
∂ω(x,t)
∂x k ,t

−
∂ω(x,t)
∂x x ,t

⋅
∂k
∂x

+
∂ω
∂k x ,t

⋅
∂k
∂x

=−
∂ω(x,t)
∂x k ,t

	 									(7.C.141)	

If	 there	 is	no	emission	or	absorption,	 then	 there	should	be	an	action	conservation	

theorem.		This	is	entirely	analogous	to	the	conservation	of	photons	or	plasmons	in	

quantum	mechanics	if	there	is	no	absorption	or	emission.		Recall	that	the	number	of	

photons	 or	 plasmons	 is	 related	 to	 the	 action	 by	 the	 relation	N = J /! .	 	 Dougherty	
used	a	covariant	treatment	to	develop	a	classical	theory	of	wave-action	conservation	

for	small-amplitude	waves	based	on	a	Lagrangian.57	

	 The	total	action	 is	derived	 from	the	sum	over	branches	of	 the	 integral	over	

configuration	and	k	space	of	the	action	density	in	x	and	k	space:	

	 	 	 Jtot = Jα(x,k;t)d
3x d3k
(2π )3α

∑ 	 	 	 	 									(7.C.142)	

The	Liouville	theorem	for	action	density	is	

			

∂Jα(x,k;t)
∂t

+
∂

∂x
⋅ !x Jα( )+ ∂

∂k
⋅ !k Jα( )= ∂J

α(x,k;t)
∂t

+
∂

∂x
⋅
∂ω
∂k

Jα
⎛

⎝
⎜

⎞

⎠
⎟+

∂

∂k
⋅ −

∂ω
∂x

Jα
⎛

⎝
⎜

⎞

⎠
⎟

=
∂Jα(x,k;t)

∂t
+ Jα ∂

∂x
⋅
∂ω
∂k

−
∂

∂k
⋅
∂ω
∂x

⎛

⎝
⎜

⎞

⎠
⎟+ !x ⋅ ∂

∂x
+ !k ⋅ ∂

∂k

⎛

⎝
⎜

⎞

⎠
⎟ Jα

=
∂

∂t
+ !x ⋅ ∂

∂x
+ !k ⋅ ∂

∂k

⎛

⎝
⎜

⎞

⎠
⎟ Jα(x,k;t)= d

dt
Jα(x,k;t)=0

(7.C.143)	

																																																								
57	J.	P.	Dougherty,	J.	Plasma	Phys.	4,	761	(1970).		
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Equation	 (7.C.143)	 describes	 the	 advection	 of	 the	 action	 density	 along	 the	

characteristics	in	(x,k)	space	determined	by	the	WKB	equations	of	motion.			
The	 generalization	 of	 Eq.(7.C.143)	 to	 include	 emission,	 absorption,	 and	

independent	damping	effects	(but	do	not	double	count)	is	then																																																																				

	 							
d
dt
Jα = !Jα(emission-absorption)−2γdpg(k;x,t) 		 																						(7.C.144)	

The	damping	rate	γdpg 	is	a	function	of	wave	amplitude	if	particle	trapping	effects	are	

included.		Otherwise,	γdpg 	may	be	independent	of	wave	amplitude	in	many	instances.		

However,	we	note	 that	diffraction,	coherent	effects,	and	departures	 from	WKB	are	

all	lost	in	this	formulation.	

	 What	about	polarization	effects?		To	include	polarization	effects	we	must	go	

back	to	the	response	tensor:	

							K(ω ,k;x,t)⋅E=0⇒det K ≡D=0 ⇒ωα(k;x,t) K(ω ,k;x,t)⋅ êα(x,t)=0 	(7.C.145)	
As	we	track	a	wave	packet,	we	solve	continuously	for	the	frequency,	wavenumber,	

and	polarization	evolution.	

	 In	 a	 non-uniform	 plasma,	 solutions	 of	 the	 dispersion	 relation	 for	 the	

wavenumber	as	a	 function	of	 frequency	can	exhibit	 resonances	 in	some	 instances,	

i.e.,	 the	 solution	 for	 the	 index	 of	 refraction	 exhibits	 a	 singularity,	!! !,! =
!!!!/!! → ∞ 	(see	 Chapter	 10	 in	 Stix’	 book). 58 		 The	 resonant	 frequency	!!"#	
typically	 depends	 on	 the	 local	 values	 of	 the	 cyclotron	 frequency,	 the	 plasma	

frequency,	 and	 the	 angle	 of	 the	wave	 number	with	 respect	 to	 the	magnetic	 field.	

Consider	 the	 special	 case	 of	 a	 stationary	 medium.	 	 For	 a	 given	 frequency	! and	
location	 x	 such	 that	 the	 solution	 for	 n2	 is	 finite,	 the	 wave	 simply	 propagates.		
Propagation	continues	until	the	solution	for	!!"#(!)=!	at	which	location	!! !,! →
∞	and	the	wave	suffers	either	strong	absorption	or	 is	evanescent.	 	 Including	 finite	
temperature	 and	 collisional	 effects	 in	 the	 dispersion	 relations	makes	 the	 complex	

parts	 of	n2	 non-negligible	 and	 removes	 the	 infinities.	 	 Because	 finite	 temperature	
effects	 introduce	 significant	 analytical	 complexity,	 here	we	will	 illustrate	 how	 the	

inclusion	of	collisionality	resolves	resonances.		Clearly	WKB	theory	is	no	good	near	a	

resonance	because	k	is	not	slowly	varying	in	space	as	it	diverges.		
	 Consider	a	simple	model	equation	for	the	index	of	refraction	in	a	plasma	with	

spatially	varying	resonance	frequency	with	resonance	at	x=0:	

	 n2(ω ,x)= k
2c2

ω2 =
c1

ωres(x)−ω
→

c1

ω +
dωres

dx
x=0

x− iν −ω
=

c1
dωres

dx
x=0

x− iν
					(7.C.146)	

for	c1>0.			Because	WKB	theory	is	invalid	near	resonance	we	require	a	field	equation,	
e.g.,	a	Helmholtz	equation	with	a	singular	point	at	x=0:	

																																																								
58	T.	H.	Stix,	The	Theory	of	Plasma	Waves	(McGraw-Hill,	New	York,	NY)	1962.	
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d2E
dx2

+k2(x)E(x)= d
2E
dx2

+
c1

dωres

dx
x=0

x− iν

ω2

c2
E(x)=0 	 	 									(7.C.147)	

The	 collision	 rate	 is	 assumed	 small	 and	 is	 important	 only	 in	 the	 neighborhood	 of	

x=0.		WKB	is	good	for	! ≠ 0:		

	 	

k2(x)= c1
ωR 'x− iν

c2

ω2 ≡
µ2

x− iν ' , ν '≡ ν
ωR '

, µ2 ≡
c1
ωR '

c2

ω2

d2E
dx2

+k2(x)E(x)=0 E(x)= c
±

±

∑ 1
k
e±i kdx∫

	 									(7.C.148)	

Let	! ≡ ! − !"′	so	that	Eq.(7.C.146)	becomes	
	 	 	

d2E
dz2

+
µ2

z
E(z)=0 	 	 	 	 	 									(7.C.149)	

which	has	solutions	in	terms	of	Bessel	functions:	

	 E~ z1/2 J1(2µz1/2), z1/2Y1(2µz1/2)→ c1z
1/2 J1(2µz1/2)+c2z1/2Y1(2µz1/2) 		(7.C.150a)	

Although	these	forms	are	good	for	z<0,	there	is	some	ambiguity	because	of	the	z1/2.		
Therefore	we	introduce	Bessel	functions	of	imaginary	argument:	

E(z <0)=−c1(−z)1/2I1(2µ(−z)1/2)+c2(−z)1/2 iI1(2µ(−z)1/2)−
2
π
K1(2µ(−z)1/2)

⎡

⎣
⎢

⎤

⎦
⎥(7.C.150b)	

I1	 grows	 exponentially	 for	 large	 argument	 while	 K1	 decays	 exponentially.	 	 For	
simplicity	assume	that	there	are	no	other	propagating	regions	for	x<0.		Then	the	two	
factors	with	 I1	must	 cancel	 one	 another	 at	 large	negative	z,	which	 leaves	only	 the	
factor	involving	K1:	

	 	 	 E(x <0)= 2i
π
(−z)1/2K1(2µ(−z)1/2) 	 	 	 									(7.C.151)	

	For	 large	 negative	 x,	 the	 solution	 in	 (7.C.151)	 matches	 nicely	 onto	 the	 decaying	
WKB	solution:	

	 	 	 E(x <0)→ i
π

1
k
1/2 e

− k
1/2
dz

0

|z|
∫

	 	 	 	 									(7.C.152)	

	

In	the	propagating	region	we	have	the	solution	in	Eq.(7.C.149),	which	for	 !!!/! <<1	
has	the	following	limiting	forms	

									 z1/2 J1(2µz1/2)∝µz z1/2Y1(2µz1/2)∝
1
πµ

−1+µ2z ln(µ2z)+2γ −1( )⎡
⎣

⎤
⎦, γ =0.5772 	

	 	 	 	 	 	 	 	 	 	 									(7.C.153)	

We	use	these	limiting	forms	in	Eq.(7.C.150)	and	then	assert	continuity	of	E	at	x=0	to	
evaluate	constants	by	equating	Eqs.(7.C.150)	and	(7.C.151)	 (note	 that	 there	 is	one	

free	constant	fixing	the	amplitude	of	the	 incident	wave	from	positive	x).	 	For	 large	
positive	x,	there	is	only	an	incoming	wave	and	no	outgoing	wave:	
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	 	 E(x→∞)~ z1/2[− J1 − iY1]→
1
πk

exp− i kdz+ π40

z

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 									(7.C.154)	

From	the	constructed	solutions	we	see	that	there	is	an	incoming	wave	from	positive	

x	 that	 propagates	 through	 x=0	 (without	 reflection)	 to	 negative	 x	where	 it	 decays.		
The	 absorption	 length	 is	 set	 by	Δ!~!! = ! !!!/!" !!.	 	 The	 weaker	 the	 collision	
rate	the	narrower	the	absorption	length	near	resonance.	 	This	 is	 in	contrast	to	the	

effect	of	collisions	on	absorption	far	from	resonance	for	which	Im !~ !
!!
~ !
!!	so	that	

the	absorption	length	increases	with	decreasing	collision	rate.		Stix’s	book	has	more	

to	say	on	the	subject	of	resonances.	

	

7.D	Dupree’s	theory	of	phase-space	granulation	and	clump	formation	
	
	 Trapped	particles	moving	with	velocity	near	the	phase	velocity	of	the	wave	in	

which	they	are	trapped	tend	to	move	as	a	clump.		If	there	are	many	waves	present	

with	 sufficient	 amplitude	 to	 produce	 trapping,	 the	many	waves	 can	 dissipate	 this	

clump.	 	 The	 particles	 can	 radiate	 in	 going	 from	 trapped	 to	 untrapped.	 The	 clump	

does	 not	 travel	 together	 for	 a	 long	 enough	 time	 to	 radiate	 at	 a	 sharp	 frequency.		

However,	there	is	sufficient	coherence	in	the	clump	to	produce	some	enhancement	

of	 the	 radiation.	 	 Some	 of	 the	 early	 important	work	 on	 clump	 theory	was	 due	 to	

Dupree59,60	and	Kadomtsev	and	Pogutse.61		Radiation	produced	by	one	clump	tends	

to	form	other	clumps,	i.e.,	clumps	tend	to	be	“self-sustaining.”		Waves	can	form	and	

sustain	a	clump,	while	other	waves	tend	to	diffuse	and	destroy	the	clump.		Dynamic	

friction	and	velocity	diffusion	due	to	the	waves	are	clearly	present.		One	must	use	a	

finite-width	 resonance	 function	 in	 the	 theory	 and	 not	!(! − ! ∙ !) .	 	 The	 theory	
includes	 wave	 emission	 by	 clumps,	 Landau	 damping	 (stable	 plasma),	 clump	

formation	by	wave	trapping,	and	clump	destruction	by	other	waves.	

	 The	clump	phenomena	depend	on	the	auto-correlation	time	and	the	trapping	

time.	 	 The	 auto-correlation	 time	 is	 the	 time	 required	 for	 phase-mixing	 to	 become	

complete:			

	 	 	 	 τac ~
δx
V ~ 1

δkV 	 	 	 	 							 (7.D.1)	

where	!"	is	 the	 spectral	width	and	V	 is	 the	phase	velocity	~	 the	 resonant	particle	
velocity.	 	 Because	 the	 spectral	 width	!" 	induces	 a	 spread	 of	 phase	 velocities:	
!"/! = !"/!,	then	!!"~1/!"#	alternatively.		The	broader	the	spectrum,	the	shorter	
is	 !!" . 		 We	 expect	 that	 the	 coherence	 of	 the	 clump	 radiation	 to	 scale	 as	
Δ!~ !

!!"
.  Consider	three	regimes	of	behavior	for	clumps:	

																																																								
59	T.	H.	Dupree,	Phys.	Rev.	Lett.	25,	789	(1970).	
60		T.	H.	Dupree,	Phys.	Fluids	15,	334	(1972).	
61		B.	B.	Kadomtsev	and	O.	P.	Pogutse,	Phys.	Rev.	Lett.	25,	1155	(1970).	
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(1)	 !!" ≪  !! ≡ 2!/!! 	where	 !! = ! !"/! .	 The	 fields	 experienced	 by	 the	

particles	 are	 changing	 so	 fast	 that	 there	 is	 no	 trapping.	 There	 is	 only	 quasi-linear	

diffusion.	

(2) !!"~ !! .	 	There	is	a	diffusion	in	velocity	space	with	a	tendency	to	trap.	 	Clumps	
are	short	lived.	

(3)	!!" ≫  !! .	There	 is	 well-defined	 trapping.	 Eventually	 trapping	 is	 destroyed	 by	
diffusion	in	waves.		Clumps	are	long	lived	(long-lived	eddies).	

	 The	 velocity	 distribution	 function	 can	 be	 decomposed	 as	 the	 sum	 of	 the	

unperturbed	 lowest-order	 distribution	 plus	 a	 second	 term	 comprising	 the	 linear	

coherent	perturbation	and	the	quasi-linear	perturbation	and	a	third	term	that	is	the	

nonlinear	 perturbation	 due	 to	 trapping.	 	 We	 can	 make	 the	 following	 scaling	

arguments.		The	velocity	diffusion	due	to	scattering	by	waves	is	given	by	

	 	 	 	 D~ δv
2

τ
		 	 	 	 	 	 (7.D.2)	

where	!v	is	the	change	in	velocity	during	a	time	!	due	to	scattering	by	all	the	waves.	
Over	 the	 lifetime	 of	 the	 clump	!!"#$%,	 there	 is	 a	 change	 in	 velocity	  !~!v!"# ≅
(!!!"#$%)!/!.		As	derived	earlier	the	spatial	diffusion	due	to	velocity	diffusion	grows	
as	!′!~!!!.	 	 When	 the	 displacement	 is	 comparable	 to	 a	 wavelength	 of	 the	 wave,	
!!~!′!,	 then	 the	 clump	 has	moved	 out	 of	 the	 trap	 terminating	 the	 clump.	 Hence,		
!!"#$%! = !′!/!~!!/!	and	

	 	 	 τclump ~
w2

D
~ λ2

D

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/3

→w~(Dλ)1/3 	 	 	 	 (7.D.3)	

where	w	is	the	clump	width	in	velocity	if	the	spatial	and	velocity	diffusion	times	are	
equal.			In	general,	if	the	spatial	diffusion	determines	!!"#$%,	then	! ≅ (!!!"#$%)!/!.		
Given	 an	 estimate	 for	 w,	 we	 can	 then	 estimate	 the	 corresponding	 velocity	
distribution	 function	 perturbation	!"~ !!!

!! ! .	 	 We	 now	 use	 the	 the	 Liouville	
theorem	to	calculate	the	perturbed	velocity	distribution	in	more	detail:	

df
dt

=
d
dt

f0 +
!f( )=0→ d!f

dt
=−

df0
dt

=−
∂f0
∂t

− "v ∂f0
∂v =−

"v ∂f0
∂v →

!f ~− dt "v ∂f0
∂v∫ 	 (7.D.4)	

because	 f0	 is	 assumed	 time	 independent.	We	 can	 now	 form	 an	 expression	 for	 the	
two-time	correlation	function	for	the	perturbed	velocity	distribution	function:	

					 !f (1) !f (2) ~w2 ∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

Δ
x1 − x2
λ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Δ

v1 −v2
w

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, Δ( y)≡ 1 | y |<1, 0 | y |>1{ } 	 (7.D.5)	

Although	 it	does	violence	 to	 the	detailed	physics,	 the	 following	 simplifications	are	

adequate	for	subsequent	integrations:	

Δ
x1 − x2
λ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟→λδ(x1 − x2) Δ

v1 −v2
w

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟→wδ(v1 −v2) 	 	 (7.D.6)		

Using	Eqs.(7.D.3)	-	(7.D.6)	we	can	estimate	that	
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	 	 !f (x1 ,v1) !f (x2 ,v2) ~λ2D
∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

δ(x1 − x2)δ(v1 −v2) 	 						 (7.D.7)	

and	hence,	

	 	 !n(x1)!n(x2) ~λ2δ(x1 − x2) dv∫ D(v) ∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

	 	 	 (7.D.8)	

Next	we	Fourier	 transform	 from	!! − !! → !	and	make	use	 of	 !"!!"# ! ! = 1	to	
obtain	the	spectral	density	for	density	fluctuations:	

				 S !n(k)~ !n !n (k)~
1
k2

dv∫ D(v) ∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

	 	 	 	 (7.D.9)	

We	note	 that	 the	correlation	 functions	were	derived	earlier	 to	be	evaluated	at	 the	

same	time.		If	instead	they	involve	two	times	t1	and	t2,	then	

	 !f (x1 ,v1) !f (x2 ,v2) ~λ2D
∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

δ(x1 − x2)δ(v1 −v2)Δ
t1 −t2
τclump

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 	 											(7.D.10)	

If	we	allow	for	diffusion	and	resonance	broadening	then	!(! − !v) → !(! − !v;!).		
The	generalization	of	Eq.(7.D.9)	is	then	

	 S !n(k ,ω)~ !n !n (k ,ω)~
1
k2

dv∫ D(v) ∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

R(ω −kv;D) 	 	 											(7.D.11)	

Now	use	 S !ρ(k ,ω)= e2S !n(k ,ω) 	and	Poisson’s	equation	with	plasma	shielding	φ =
4π !ρ
k2ε

	

to	obtain	the	field	spectral	density	dropping	various	numerical	constants	along	the	

way	 	

						 SE(k ,ω)= k2Sφ(k ,ω)~
4π
k2

⎛

⎝
⎜

⎞

⎠
⎟

2
e2

ε
2 dv∫ D(v) ∂f0

∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

R(ω −kv;D) 	 											(7.D.12)	

From	our	earlier	development	of	quasi-linear	theory	of	diffusion	

	 	 Dwaves(v)=
e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dkdω
(2π )2

SE(k ,ω)∫∫ R(ω −kv;D) 	 	 											(7.D.13)	

The	equations	are	not	closed	without	equations	for	f0	and	!!!!" :	

																	 	 		
∂f0
∂t

=−
∂

∂v(Ff0)+
∂

∂v D(v)∂f0
∂v

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 	 	 											(7.D.14)	

where	 F	 is	 the	 dynamic	 friction	 (in	 this	 case	 the	 friction	 per	 unit	 mass,	 or	
deceleration)	 and	 Eq.(7.D.14)	 is	 the	 Fokker-Planck	 equation	 for	 the	 quasi-linear	

diffusion	of	the	clumps.			

	 We	return	to	Eq.(7.D.12)	and	(7.D.13)	to	obtain	a	consistency	relation	for	f0.		
Approximate	the	resonance	function	with	a	δ	function.	Then	
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D(v)= e
m

⎛

⎝
⎜

⎞

⎠
⎟

2
dkdω
(2π )2

SE(k ,ω)∫∫ δ(ω −kv)

=
dkdω
(2π )2

4πe2
k2m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

dv'∫ D(v')
ε(k ,ω)2

∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
1
k∫∫ δ(v'−ω

k
)δ(ω −kv)

~ 4πe2
m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
dk
2π∫

1
k5

D(v'=ω
k
= v)

ε(k ,ω = kv)2
∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

				(7.D.15)	

We	 define	!! = !!! 	and	 divide	 both	 sides	 of	 Eq.(7.D.15)	 by	 D(v)	 to	 obtain	 a	
consistency	relation	for	g:	

	 1~ωp
4 dk

k5
∫ 1

ε(k ,ω = kv)2
∂g
∂v
⎛

⎝
⎜

⎞

⎠
⎟

2

≈ωp
4 ∂g
∂v
⎛

⎝
⎜

⎞

⎠
⎟

2
dk
k5
∫ 1

∂ε '
∂ω

⎛

⎝
⎜

⎞

⎠
⎟

2

(kv−ωk )2 +γk2⎡
⎣

⎤
⎦
2
							(7.D.16)	

where	 we	 used	 ε
2
=ε '2+ε"2 ≈ ∂ε '

∂ω

⎛

⎝
⎜

⎞

⎠
⎟

2

(kv−ωk )2 +γk2⎡
⎣

⎤
⎦
2
	and	 expanded	 around	

resonance.		For	Langmuir	waves	Eq.(7.D.16)	yields	

	 	

1~ωp
6 1
v2

∂g
∂v
⎛

⎝
⎜

⎞

⎠
⎟

2
dk
k5
∫ 1

(k −ωp

v )
2 +

γk
2

v2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 ~ωp
6 1
v2

∂g
∂v
⎛

⎝
⎜

⎞

⎠
⎟

2 1
k5
π
v
γk

~ωp
6 1
v2

∂g
∂v
⎛

⎝
⎜

⎞

⎠
⎟

2 v
ωp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

5

π
v
γk
~ωpv4

γk

∂g
∂v
⎛

⎝
⎜

⎞

⎠
⎟

2

	 											(7.D.17)	

In	 Sec.	 2.I	 we	 derived	 the	 relation	γk ~
ωp
3

k2
g'(v =ω /k)= ωp

3

(ωp / v)2
g'(v =ω /k) 	aside	

from	 numerical	 factors.	 	 Introduce	 the	 definition	 A≡−v2dg/dv 	where	 A	 is	 a	
number.		Then	dg/dv=A/v .			

Finally	we	can	calculate	the	radiation	in	Langmuir	waves	due	to	clumps.	

!W(k)= S "j(k ,ωk )=
ω
k

⎛

⎝
⎜

⎞

⎠
⎟

2

S "ρ(k ,ωk )=
ωp

2e2

k5
D(v =ωk

k
) ∂f0
∂v
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
ωk
k

2

													(7.D.18)	

The	 expression	 in	 Eq.(7.D.18)	 can	 be	 integrated	 over	 k	 and	 weighted	 by	!/!! 	to	
calculate	the	growth	of	wave	momentum	to	conserve	momentum	with	the	dynamic	

friction:	
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dk
2π∫

k
ωk

!W(k)= dvmF∫ f0

→
dv
2π∫

k
v2
!W(k =ωk

v )= dvmF∫ f0→mF f0 =
1
2π

k
v2
!W(k =ωk

v )
	(7.D.19)	

Equating	 the	 integrands	 in	 the	 integrals	 over	 velocity	 and	 using	 Eq.(7.D.18)	 we	

deduce	

	 	 	 !v=F(v)=−v2D(v)(g')
2

g(v) 	 	 	 	 											(7.D.20)	

Before	 returning	 to	 the	 Fokker-Planck	 equation	we	 compare	 the	 dynamic	 friction	

calculated	 in	Eq.(7.D.20)	 to	 the	deceleration	due	 to	 collisions	using	 the	 resonance	

width	due	to	clumps	!~(!")!/!:	
																			

							
!v
v ~ ν ~ωp

Λ
due	to	collisons, ωp

w
v

⎛

⎝
⎜

⎞

⎠
⎟

3

due	to	dynamic	friction	from	clumps
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	

	 	 	 	 	 	 	 	 	 	 											(7.D.21)	

The	 dynamic	 friction	 is	much	 larger	 than	 collisional	 deceleration	 if	 the	 resonance	

width	is	sufficiently	large.	

	

Exercise:	 Fill	 in	 the	 numerical	 factors	 in	 this	 section	 and	 extend	 the	 formalism	 to	

three	dimensions	in	velocity	and	configuration	space.		

	

	 The	 derivation	 in	 Sec.	 7.D	 yields	 a	 steady	 state	 for	 f0,	 i.e.,	∂f0 /∂t =0 .	 	 For	
whatever	 value	 of	 A	 introduced	 after	 Eq.(7.D.17)	 is	 used,	 the	 plasma	 is	 stable.		
Nowhere	have	we	established	 the	 turbulence	 level.	 	We	have	only	determined	 the	

velocity	 range	 where	 resonant	 waves	 are	 strong	 enough	 to	 give	 clumps.	 	 In	 this	

range,	g~A/v.		The	characteristic	rate	for	the	wave	dynamics	(for	Langmuir	waves)	
is	~!!.	 	The	characteristic	rate	for	clump	evolution	is	~!!!/v.	 	The	characteristic	
rate	of	evolution	for	g	is		~!!(!/v)!.			
	 Ion	 acoustic	 waves	 can	 clump	 electron	 and	 ions	 more	 so.	 	 Both	 ion	 and	

electron	 clumps	 have	 dynamic	 friction.	 	 Dupree	 calculated	 anomalous	 resistivity	

associated	with	clumps	and	obtained	σ ~10ωp /kλD 	where	k	is	the	dominant	wave	
number	of	the	ion	acoustic	instability	responsible	for	the	waves.59	
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LECTURES	ON	THEORETICAL	PLASMA	PHYSICS	
–	PART	4A	
Allan	N.	Kaufman	
	

8.	Non-uniform	plasmas:	adiabatic	invariance,	local	instabilities	driven	by	
nonuniformity,	and	configurational	instabilities		
	
	 In	Sec.	8	we	address	non-uniform	plasmas.		We	present	a	theory	of	adiabatic	
invariance,	 a	 Lagrangian	 approach	 to	 guiding-center	 drifts,	 guiding-center	 theory	
and	hydromagnetic	equations,	and	an	 introduction	 to	 the	 theory	of	 the	stability	of	
drift	waves.	
	
8.A	Adiabatic	invariance	
	
	 Consider	 the	adiabatic	 invariance	of	 the	magnetic	moment	using	 the	model	
problem	of	a	one-dimensional	harmonic	oscillator.		Then	we	extend	the	model	to	a	
nonlinear,	anharmonic	oscillator.		The	approach	taken	here	is	due	to	R.	L.	Dewar.62		
The	equation	of	a	harmonic	oscillator	with	a	time-dependent	restoring	force	in	one	
dimension	is	

	 	 	 !!x(t)+Ω2(t)x(t)=0, !Ω /Ω<<Ω 	 	 	 	 (8.A.1)	

Definition:	Action	 J ≡ H
Ω
=

1
2 !x

2 + 1
2Ω

2x2

Ω
	with	the	mass	! ≡ 1.				

	 J	 is	 an	 approximate	 invariant.	 In	what	 sense	 is	 this	 true?	 	 This	 is	 a	 classic	
Rayleigh-Lorentz	pendulum	problem	posed	by	Lorentz	and	solved	by	Einstein	at	the	
beginning	 of	 the	 20th	 century	 at	 a	 Solvay	 Conference.	 	 	 The	 WKB	 solution	 to	
Eq.(8.A.1)	is	

	 	 	 x(t)≈ a
Ω(t)

sin dt 'Ω(t ')+α
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 	 	 	 (8.A.2)	

Using	 the	 definition	 of	 J	 in	 the	 preceding,	 one	 concludes	 that	 J =Ω< x2 >≈ a
2

2 is	 a	
constant	in	time.				Now	suppose	we	introduce	a	WKB	form	for	x(t)	in	terms	of	a	new	
unknown	frequency	!(!)	so	that	

	 	 x(t)≈ a
ω(t)

sin dt 'ω(t ')+α
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≡

a
ω(t)

sinθ(t) 	 	 	 (8.A.3)	

																																																								
62	R.	L.	Dewar,	http://people.physics.anu.edu.au/~rld105/Dewar_Docs/RLD-
Publications.html	
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We	use	Eq.(8.A.3)	to	evaluate	the	first	and	second	time	derivatives	of	x	and	then	the	
equation	of	motion	Eq.(8.A.1)	to	obtain	

	 	 −a 34ω
−5/2 !ω2 −

1
2ω

−3/2 !!ω +ω−1/2 Ω2 −ω2( )
⎡

⎣
⎢

⎤

⎦
⎥=0 		 	 											(8.A.4a)	

or	 	 	

3
4ω

−2 !ω2 −
1
2ω

−1 !!ω + Ω2 −ω2( )=0→ω2 −Ω2(t)=ω1/2 d2

dt2
(ω−1/2) 							(8.A.4b)	

which	is	just	as	difficult	to	solve.		However,	what	is	gained	is	that	Eq.(8.A.4b)	gives	a	
recipe	for	an	iterative	solution:	

	 	 	 ω2 =Ω2(t)+Ω1/2 d2

dt2
(Ω−1/2)+ ... 	 	 	 														(8.A.5)	

We	see	the	first	correction	to	 ω2 ≈Ω2(t) 	on	the	right	side	of	Eq.(8.A.5),	which	is	an	
asymptotic	 series.	 	Unfortunately	 the	 series	diverges.	 	 In	what	 sense	 is	 this	 result	
useful?		We	answer	in	an	example.		Consider	the	action	

	 	 	 ω(t)x2(t)
θ
=a2 sin2θ(t)

θ
=
a2

2 	 	 	 	 (8.A.6)	

If	we	use	a	linear	expansion	of	Eq.(8.A.5)	for	!(!),	which	is	just	a	function	of		!,	

	 	 	 ω ≈Ω(t) 1+12Ω
−3/2 d2

dt2
(Ω−1/2)+ ...

⎡

⎣
⎢

⎤

⎦
⎥ 	 	 	 	 (8.A.7)	

and	divide	both	sides	of	Eq.(8A.6)	by	this	expression,	we	obtain	an	auxiliary	action	
I0(t):	

	 	 I0(t)= Ωx2(t)
θ
≈
a2

2 1−12Ω
−3/2 d2

dt2
(Ω−1/2)+ ...

⎡

⎣
⎢

⎤

⎦
⎥ 	 	 	 (8.A.8)	

The	second	term	on	the	right	side	of	Eq.(8.A.8)	is	useful	in	providing	a	quantitative	
estimate	of	the	relative	constancy	of	the	lowest-order	expression	for	the	action.		We	
note	that		

						 lnI0(t)= ln
a2

2 −
1
2Ω

−3/2 d2

dt2
(Ω−1/2)+ ...→

!I0
I0
=−

d
dt

1
2Ω

−3/2 d2

dt2
(Ω−1/2)+ ...

⎡

⎣
⎢

⎤

⎦
⎥<<

!Ω
Ω
	 (8.A.9)	

Thus,	the	relative	rate	of	change	in	the	action	is	much	smaller	than	the	relative	rate	
of	change	in	Ω.	
	
Exercise:	 	 Assume	Ω(t)=Ω0(1+εeγt ) 	and	! ≪ Ω!.	 	 Evaluate	 Eq.(8.A.9)	 and	 confirm	
its	conclusion.	
	
Example:	An	example	of	an	asymptotic	series.		At	this	point	we	pause	to	discuss	an	
example	of	a	potentially	divergent	asymptotic	power	series.				Useful	references	for	
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this	and	related	matters	are	Erdelyi	et	al.,63	Dwight,64	and	Abramowitz	and	Stegun.65		
Consider	the	function	f(x)		

	 	 	 f (x)= dt exp(−t)1+ xt0

∞

∫ , Re(x)≥0 	 	 	 											(8.A.10)	

At	 x=0,	 f(0)=1;	 and	 f	 is	 monotonically	 decreasing	 for	 increasing	 x.	 	 For	 x>>1,	

f (x >>1)≈ ln(x−γ )
x

exp(−x), γ =0.577(Euler's	constant). Note	 that	

1
1+ xt =1− xt + x

2t2 − x3t3 + ... ,	 which	 converges	 only	 for	 xt<1.	 	 Also

exp(−x)= gn = (−1)n x
n

n!n
∑

n
∑ .			The	power	series	representation	for	f(x)	is	then	

	 	 f (x)= fn
n
∑ (x)=1− x1!+ x22!− x33!+ ...(−1)n xnn!+ ... 	 	 											(8.A.11)	

The	 ratio	of	 the	nth	 term	 to	 the	 (n-1)th	 term	 is	 (-1)nx,	 the	magnitude	of	which	 is	
greater	 than	 unity	 for	n>1/x.	 	 The	 series	 is	 clearly	 oscillating	 and	 diverging.	 	 The	
power	series	expansion	of	f(x)	only	makes	sense	for	x<<1.			However,	the	truncated	
asymptotic	power	series	has	an	error	 that	 is	 less	 than	 the	next	successive	 term	 in	
the	 truncated	series.	 	For	example,	 if	we	retain	 four	 terms	 in	Eq.(8.A.11),	 the	next	
term	 is	 x44!.	 	 By	 choosing	 n	 and	 x	 carefully,	 we	 can	 minimize	 the	 error	 in	 the	
truncated	power	series.		Consider	x=0.1	for	which	f(0.1)=0.91563		The	partial	sums	
are		

S0 =1, S1 =0.9, S2 =0.92, S3 =0.914, S4 =0.9164, S5 =0.9152, S6 =0.91592,
S7 =9158700, S8 =0.9158736, S9 =0.9158700, S10 =0.9158736

	

Definition:	TheError ≡| f (x)−SN |<| fn+1 |=|xnn!| 	
	 In	 this	 series	 the	 error	 due	 to	 truncation	 is	 minimal	 when	 the	 ratio	 of	
successive	terms	is	O(1),	i.e.,	nx=1.		Hence,	for	x=0.1,	we	truncate	the	series	at	n=10,	
for	which	xnn!=0.00036	is	the	error	bound.			The	actual	error	is	0.00024	Thus,	there	
is	 always	 an	 error,	 but	 the	 error	 can	be	made	 tolerably	 small	 for	 a	wide	 range	of	
argument.			
	

																																																								
63	A.	Erdélyi,	W.	Magnus,	F.	Oberhettinger,	and	F.	Tricomi,	Tables	of	Integral	
Transforms,	Vols.	1	and	2,	McGraw-Hill,	New	York,	(1954).	
64	H. B. Dwight, Tables of Integrals and Other Mathematical Data, Fourth 
Edition (Macmillan), (1964). 
65	Milton	Abramowitz	and	Irene	Ann	Stegun,	eds.	Handbook	of	Mathematical	
Functions	with	Formulas,	Graphs,	and	Mathematical	Tables.	Washington	D.C.;	New	
York:	United	States	Department	of	Commerce,	National	Bureau	of	Standards	(1964);	
reprinted	by	Dover	Publications. 
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8.A.a	Harmonic	oscillator	model	–	use	of	WKB	eikonal	theory,	asymptotic	theory,	and	
action-angle	variables	to	derive	an	approximate	constant	of	the	motion	
	
	 Consider	the	following	model	problem	with	a	time-dependent	magnetic	field	
and	a	Lagrangian	description	with	a	particular	choice	of	gauge:	

												B=B(t)ẑ Bz =
∂

∂x
Ay A =B(t)x ŷ ET =−1

c
∂

∂t
A =−1

c
∂

∂t
!B x ŷ 	 											(8.A.12)	

Motion	in	z	is	ignored.		The	Lagrangian	per	unit	mass	for	this	system	is	

										

L
m
=
1
2
!x2 +12

!y2 + e
mc

v ⋅A− eφ(x ,t)
m

=
1
2
!x2 +12

!y2 + eB(t)x !y
mc

−
eφ(x ,t)
m

=
1
2
!x2 +12

!y2 +Ω(t)x !y− eφ(x ,t)
m

											(8.A.13)	

Definition:	The	canonical	momentum	is	

	 py ≡
∂L/m
∂!y

= !y+Ω(t)x .	 	 	 	 											(8.A.14)	

From	the	Lagrangian	equations		

	 	
d
dt
py =

∂L
∂y

=0→ py = constant ≡Ω<x>=Ωxg.ctr . 	 	 									(8.A.15a)	

	 	 px = !x !!x =
∂L
∂x

=Ω(t) !y− e
m
∂φ
∂x

=Ω(t)[py −Ω(t)x]−
e
m
∂φ
∂x
	 									(8.A.15b)	

The	evaluation	of	py=constant	 in	Eq.(8.A.15a)	 follows	from	time	averaging	the	two	
oscillatory	terms	on	the	right	side	of	Eq.(8.A.14)	which	obviously	sum	to	the	same	
constant	 and	 using	 ! = 0	so	 that	 only	 the	 average	 of	 the	 second	 term	 remains.		
Hence,	one	arrives	at	the	following	equation	of	motion:	

	 	 !!x+Ω2(t)x =Ω(t)py −
e
m
∂φ
∂x

⇒ !!x+Ω2(t)x =0 		 	 											(8.A.16)	

by	choosing	the	guiding	center	on	the	y	axis	(py=0)	and	with	no	perturbing	electric	
potential	(! = 0).		With	arbitrary	initial	conditions	for	the	guiding	center	position	
	 	 	 	 !!x+Ω2(t)x = λ(t)=Ω(t)py 	 					 	 											(8.A.17)	

This	is	a	linear	inhomogeneous	differential	equation	with	non-constant	coefficients.			
	 One	 possible	 solution	 of	 Eq.(8.A.17)	 can	 be	 constructed	 iteratively:	

										
Dt
2 +Ω2(t)( )x =Ω(t)py → x = Dt

2 +Ω2(t)( )
−1
Ω(t)py =Ω−1(t)py(1+ ...)

→ x = λ(t)
Ω2(t)

−
!!x

Ω2(t)
=
λ(t)
Ω2(t)

−
1

Ω2(t)
d2

dt2
λ(t)
Ω2(t)
⎛

⎝
⎜

⎞

⎠
⎟+ ...

	 											(8.A.18)	

Example:	 Consider	 a	 perturbing	 electric	 potential	! !, ! = !! ! cos!"	and	 kx<<1	
so	that	Eq.(8.A.16)	becomes	
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!!x+Ω2(t)x = ek
m
φ0(t)sinkx ≈

ek2

m
φ0(t)x

⇒ !!x+ Ω2(t)− ek
2

m
φ0(t)

⎡

⎣
⎢

⎤

⎦
⎥x = !!x+ Ω2(t)−ωB

2(t)⎡
⎣

⎤
⎦x =0

	 											(8.A.19)	

where	!! 	is	the	bounce	frequency	associated	with	trapping.		We	recall	Eq.(8.A.7)	

	 	 	 ω(t)≈Ω(t) 1+12Ω
−3/2 d2

dt2
(Ω−1/2)+ ...

⎡

⎣
⎢

⎤

⎦
⎥ 	 	 										(8.A.20)	

which	is	an	asymptotic	series.		For	 !Ω/Ω 	small,	the	size	of	the	nth	term	is	small;	and	
if	 the	series	 is	asymptotic	we	can	prescribe	an	error	 limit	and	how	many	terms	to	
retain	in	the	series	for	ω(t) .	
	
Definition:	 A	 power	 series	 is	 formally	 asymptotic	 if	 it	 satisfies	

| f (x)−Sn(x)|< Sn+1(x)−Sn(x) .			The	series	can	be	converging	or	diverging.	
	
Example:	Ω(t)=Ω0(1+εeγt ), εeγt <<1, γ <<Ω0 .		Then	analogous	to	Eq.(8.A.8)	

	 	 	 I0(t)= I0(0) 1+
ε
4

γ
Ω0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

eγt
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ 	 	 	 	 											(8.A.21)	

Thus,	 the	 action	 is	 not	 conserved:	 there	 is	 a	 small,	 exponentially	 growing	
perturbation.	
	
Example:	 	 Consider	 a	Ω(t) 	that	 is	 initially	 constant	 and	 then	 grows	 smoothly	 and	
slowly	on	the	time	scale	T>>Ω0

−1 	and	saturates	at	some	higher	constant	value.	 	The	

expression	for	I0	from	Eq.(8.A.8)	is	

	 	

I0(t)= Ωx2(t)
θ
≈
a2

2 1−12Ω
−3/2 d2

dt2
(Ω−1/2)+ ...

⎡

⎣
⎢

⎤

⎦
⎥
	

and	shows	that	the	action	remains	essentially	constant,	although	at	first	order	there	

is	 a	 small	 correction	 that	 is	 at	 first	 negative	 and	 then	 positive	 before	 relaxing	 to	

zero.		There	is	an	adiabatic	transition	of	the	action	from	one	stable	asymptotic	state	

to	another.		In	Clemow	and	Dougherty’s	book	it	is	shown	that		

	 	 	 	

I0(∞)− I0(−∞)
I0

~e−
ΩT
2π 	 	 	 											(8.A.22)	

Thus,	 there	 is	 an	 exponentially	 small	 change	 in	 the	 action.	 	 In	 fact,	 the	 action	 is	
conserved	 to	all	powers	 in	2!/Ω!	(we	showed	only	 through	the	 first	correction	 in	
I0).		In	the	(x , !x)phase	space,	the	particle	orbit	is	an	ellipse	with	radius	!~1/ Ω	in	x	
from	 Eq.(8.A.2)	 and	 radius	Ω!~ Ω	in	 !x ,	 but	 the	 area	 of	 the	 ellipse	!Ω ! !!	is	 a	
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constant.	 	 Hence,	 as	Ω(t) 	varies	 the	 particle	 rides	 on	 an	 evolving	 ellipse	 whose	
eccentricity	changes,	but	the	area	remains	invariant.	
	

8.A.b	Phase-space	dynamics	for	trapped	and	passing	particles	in	a	single	electrostatic	
wave	
		

Consider	 a	 perturbing	 electric	 potential	! !, ! = !! ! !"#$%		 in	 the	 wave	
frame	with	no	applied	magnetic	field.		For	kx<<1	the	analysis	in	Eqs.(8.A.20-8.A.22)	
shows	 that	 the	 phase-space	 orbits	 for	 the	 trapped	 particles	 lie	 on	 ellipses.	 	 For	
particle	energies	such	that	the	particle	excursion	in	the	wave	is	 larger,	 the	electric	
potential	cannot	be	expanded	for	small	kx;	and	the	orbits	distort	from	ellipses.		For	
sufficiently	 large	 energies,	 the	 particles	 are	 no	 longer	 confined	 in	 the	 potential	
trough;	and	the	particle	trajectories	are	unconfined	(untrapped).	 	The	Hamiltonian	
for	particles	in	the	wave	frame	is		

	 	 	 	 H = 12
!x2 +

eφ0(t)
m

coskx 	 	 	 											(8.A.23)	

	 For	slowly	varying	potential	amplitudes	relative	to	the	bounce	time,	there	is	
a	conserved	action.		For	trapped	particles	the	action	can	be	constructed	from	
	 	 	 J ≡ 1

2π !x(x;H ,φ0)dx = J(H!∫ ,φ0) 	 	 	 											(8.A.24)	

With	J	an	invariant,	as	!!	varies,	then	H	must	also	vary.		For	an	untrapped	particle,	
we	define	the	action	based	on	one	pass	across	the	change	in	the	electric	potential:	

	 	 	 J ≡ 1
2π

!x(x;H ,φ0)dx
0

2π/k

∫ 	 	 	 																									(8.A.25)	

We	use	Eq.(8.A.23)	to	solve	for	 !x 	and	then	evaluate	the	actions	in	Eqs.(8.A.24)	and	
(8.A.25).		The	untrapped	particles	have	action		
	

	 	 J(H ,φ0)=
4
πk

mH+eφ0
2m E(κ ), κ =

2eφ0
mH+eφ0

≡
1
µ
		 											(8.A.26)	

! = 0	corresponds	 to	 infinite	 energy,	while	! = 1	corresponds	 to	 a	 particle	 on	 the	
separtrix	between	passing	and	trapped,	and	E	is	the	complete	elliptic	integral	of	the	
second	 kind.	 	 For	 ! ≪ 1,! ≈ !

! 1− !!
! +⋯ . 		 For	

! → 1, ! ≈ 1+ !
! (1− !

!)(ln !
!!!! −

!
!).		The	trapped	particles	have	action	

	 	 J(H ,φ0)=
8
πk

eφ0
m

E(µ)−(1−µ2)K(µ)⎡
⎣

⎤
⎦ 	 	 	 											(8.A.27)	

The	 argument	 of	 the	 complete	 elliptic	 integrals	 of	 the	 first	 and	 second	 kind	 in	

Eq.(8.A.27)	are	 the	 inverse	of	 that	 in	Eq.(8.A.26).	 	For	! = !
! → 0,	 corresponding	 to	

the	 bottom	 of	 the	 potential	 well,	!(!) ≈ !
! (1+

!!
! +⋯ )	and	!(!) ≈ ln !

!!!!	.	 	 The	

action	 is	 a	 linearly	 increasing	 function	 of	 H	 for	 the	 trapped	 particle	 region,	
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− !!!
! < ! < !!!

! ,	 until	 approaching	 the	 separatrix	 at	! = !!!	where	 J	 swings	 up	
sharply.	 	 For	! ≫ !!!	the	 action	 increases	with	H	 asymptotically	 as	 !.	 	We	note	
that	 at	 the	 bottom	of	 the	 potential	well,	 the	 particle	motion	 is	 that	 of	 a	 harmonic	
oscillator	and	! = !/Ω.				We	also	note	the	following	relations:	
	 	 ω = !θ = ∂H

∂J
=ω( J) !J =−∂H

∂θ
=0 τ ≡

2π
ω( J) =2π

dJ
dH

	 	 											(8.A.28)	

As	the	separtrix	is	approached,	! → ∞	and	!"/!" → ∞.	
	 We	 can	 prove	 conservation	 of	 action	 quite	 generally.	 	 Consider	 a	 particle	
Hamiltonian	 in	 terms	 of	 canonically	 conjugate	 variables	 with	 a	 slowly	 varying	
parameter	!(!):	
	 	 	 H(q,p;λ(t)), p(q,H;λ(t)) 	 	 	 	 											(8.A.29)	
We	define	the	action	J	as	
	 	 	 J ≡ dqp(q,H;λ)!∫ 	 	 	 	 	 											(8.A.30)	

Then	the	time	derivative	of	J	is	calculated	as	follows:	 	

	 !J = ∂J
∂H
!H+ ∂J

∂λ
!λ , dH

dt p ,q
=
∂H
∂t

=
∂H
∂λ
!λ ⇒ !J = 1

ω
∂H
∂λ

+
∂J
∂λ

⎛

⎝
⎜

⎞

⎠
⎟ !λ 	 											(8.A.31)	

At	this	point	the	following	lemma	is	helpful:	

	 	 	 	
∂p
∂λ q ,H

=

−
∂H
∂λ p ,q

∂H
∂p q ,λ

	 	 	 	 											(8.A.32)	

We	can	then	evaluate	∂J /∂λ |H 	

	 	

∂J
∂λ H

=
1
2π dq!∫

∂p(q,H ,λ)
∂λ q ,H

=−
1
2π

dq
!q(q,p,λ)!∫

∂H
∂λ p ,q

=−
τ
2π

dt
τ!∫
∂H
∂λ p ,q

=−
1
ω

∂H
∂λ

(H ,λ)
	 											(8.A.33)	

where	 the	 average	 on	 the	 right	 side	 of	 Eq.(8.A.33)	 is	 over	 the	 orbit.	 	 We	 then	
substitute	the	result	of	Eq.(8.A.33)	in	Eq.(8.A.31)	to	obtain	

	 	 !J =
!λ
ω

∂H
∂λ

−
∂H
∂λ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ → !J ≈

!λ
ω

∂H
∂λ

−
∂H
∂λ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=0 	 											(8.A.34)	

for	 !λ /ωλ <<1 .		Thus,	 !J
orbit

=0 ,	although !J ≠0 	due	to	slow	variations	in	!	and	H.	
	
Example:	For	 the	Hamiltonian	 in	Eq.(8.A.23),	as	!!(!)	changes,	H	 changes;	and	 the	
separatrix	in	(x,v)	phase	space	changes	its	width.		A	particle	will	tend	to	remain	on	a	
curve	of	constant	action.	 	Although	the	average	of	the	time	derivative	of	the	action	

over	the	phase	 in	Eq.(8.A.34)	 is	zero,	 the	time	(not	orbit)	averaged	 dJ /dt =O( !λ) 	
from	Eq.(8.A.31)	is	not	zero.		As	a	parameter	is	slowly	changed	causing	an	adiabatic	
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transition	 from	 one	 stable	 orbit	 to	 another	 stable	 orbit,	 there	 is	 an	 exponentially	
small	 change	 in	 J.	 	When	 a	 particle	 crosses	 the	 separatrix,	 the	 change	 in	 J	 is	 still	
perturbative.66	
	
Example:	 	 The	 examples	 considered	 here	 have	 implications	 for	 the	 saturation	 of	
instabilities.	 	 Consider	 a	 weakly	 growing	 bump-on-tail	 instability.	 	 The	 phase	
velocity	of	 an	unstable	wave	 falls	 on	 a	 region	of	 the	 velocity	distribution	 function	
f(v)	with	 positive	 slope	 due	 to	 the	 bump	 on	 the	 tail.	 	 As	 the	 growing	wave	 traps	
resonant	particles,	there	are	more	particles	with	velocities	faster	than	the	wave	than	
slower.	 	 Hence,	 the	 resonant	 particles	 lose	 momentum;	 and	 the	 non-resonant	
particles	 that	account	 for	 the	wave	momentum	must	gain	momentum	 to	 conserve	
total	 momentum.	 	 The	 net	 deceleration	 of	 resonant	 particles	 and	 acceleration	 of	
non-resonant	particles	does	not	continue	indefinitely:	the	resonant	momentum	loss	
and	non-resonant	momentum	gain	reach	limits.		A	more	careful	analysis	shows	that	
the	energy	of	 the	resonant	particles	changes.	 	Conservation	of	energy	 implies	 that	
the	wave	energy	must	evolve	in	consequence.		However,	in	the	wave	frame	the	wave	
frequency	and	energy	would	be	zero	were	it	not	for	the	fact	that	trapping	leads	to	a	
frequency	 shift	!".67	Dewar68	shows	 that	 the	 wave	 continues	 to	 grow	 until	 the	
trapping	frequency	exceeds	the	linear	growth	rate	by	a	certain	amount:	

	 	 	 ωB ≡
k2eφ0
m

=
256
9π 2 γL =2.88γL 	 	 	 											(8.A.35)	

B.	D.	Fried,	C.	S.	Liu,	R.	W.	Means,	and	R.	Z.	Sagdeev	found	in	numerical	simulation	a	
factor	of	3.2	rather	than	2.88	in	the	saturation.69		
	
Exercise:	 Suppose	 that	 the	 parameter	 in	 the	 Hamiltonian	 !(!) 	has	 variation	
! ! = !! + !!sinΩ!! 	with	 !! ≪ !! 	and	 consider	 three	 interesting	 situations	 in	
which	 the	particle	Hamiltonian	has	a	 sinusoidal	electrostatic	wave	with	 frequency	
!:	
1.	 Ω! ≈ !	parametric	resonance	
2.		Ω! ≈ ! ℓ

!	rational	relation	
3.	 Ω! ≪ !	adiabatic		
	
Example:	Anharmonic	oscillator	–	Consider	a	Hamiltonian		

	 	 H = 12
!x2 +V(x)= 12

!x2 +a0 +
1
2a1(t)x

2 +
1
4a2x

4 		 	 											(8.A.36)	

with	a1(t)<0	and	|a1|	increases	in	magnitude.		With	a1(t)=0	there	is	a	single	potential	
well	 that	 is	 symmetric	 about	 x=0.	 	 For	 finite	 |a1|	 there	 are	 two	 wells	 symmetric	
																																																								
66	C.S.	Gardner,	Phys.	Review	115,	791	(1959).	
67	R.L.	Dewar	and	J.	Lindl,	Phys.	Fluids	15,	820	(1972).	
68	R.L.	Dewar,	Phys.	Fluids	16,	431	(1973).	
69	B.	D.	Fried,	C.	S.	Liu,	R.	Z.	Sagdeev,	and	R.	W.	Means,	Bull.	American	Phys.	
Soc.	15,	1421	(1970). 
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about	x=0	that	become	deeper	as	|a1|	increases	in	magnitude.			With	the	inclusion	of	

a	term	
1
3a3x

3 	in	V,	there	is	no	longer	symmetry	with	respect	to	x=0.		There	can	still	

be	 two	 potential	 wells	 that	 can	 trap	 particles,	 but	 the	wells	 are	 asymmetric.	 The	
probability	of	 trapping	 in	one	or	 the	other	well	 is	proportional	 to	 the	phase-space	
area	 encompassed	by	 each	well.	 	 Under	 adiabatic	 changes,	 the	 total	 probability	 is	
conserved.	
	 	

8.A.c	Magnetic	mirror	geometry	and	derivation	of	adiabatic	invariant	using	canonical	
transformations	
	
	 Consider	particle	motion	in	a	simple	magnetic	mirror	configuration	with	two	
degrees	of	 freedom,	 i.e.,	 the	magnetic	 field	has	x	and	z	components	and	varies	 in	x	
and	z	(no	y	variation).	The	Lagrangian	for	a	charged	particle	in	this	case	is	

	 	 	 	 L= 12
!x2 +12

!y2 +12
!z2 + e

mc
v ⋅A 	 	 											(8.A.37)	

The	magnetic	field	is	represented	by	

	 		B=∇×A A = ŷA(x ,z)= ŷ xB0(z) Bz =
∂A
∂x

Bx =−
∂A
∂z

=−x
∂B0
∂z

											(8.A.38)	

Assume	 that	 B0(z)=	 B0(1+z2/L2).	 	 Because	 the	 Lagrangian	 in	 Eq.(8.A.37)	 has	 no	
dependence	on	y,	py	is	a	constant	of	the	motion:	

	 	 py ≡
∂L
∂!y

= !y+ e
mc

A(x ,z)= !y+Ω(z)x , Ω(z)≡ eB0(z)
mc

	 											(8.A.39)	

py	specifies	which	field	line	the	particle	is	gyrating	around	and	transiting	on.	Energy	
conservation	is	determined	by	

	 	 E = 12
!x2 +12

!y2 +12
!z2 = L= 12

!x2 +12(py −Ω(z)x)
2 +
1
2
!z2 	 											(8.A.40)	

We	choose	py=0	and	obtain	

	 	 H(x ,z;px ,pz )=E =
1
2
!x2 +12Ω

2(z)x2 +12v||
2 ≡
1
2v⊥

2 +
1
2v||

2 	 											(8.A.41)	

E	is	clearly	a	constant	of	the	motion	because	H	has	no	explicit	time	dependence.		In	
consequence,	 only	 three	of	 the	 four	 variables	(!, !;!! ,!!)		 are	 independent,	which	
defines	a	volume	in	the	4D	phase	space.		From	Eqs.(8.A.40)	and	(8.A.41)	
	 	 	 px

2 +Ω2(z)x2 =2E −pz2 ≤2E 	 	 	 	 											(8.A.42)	

The	 surface	 defined	 by	 px
2 +Ω2(z)x2 =2E acts	 as	 a	 bounding	 surface	 in	(!, !,!!)		

space,	which	contains	the	particle	trajectory.		The	particle	trajectory	may	be	a	closed	
curve	 (it	 is	exactly	periodic)	or	 it	may	 fill	 the	bounded	volume	eventually,	 i.e.,	 the	
orbit	 may	 be	 ergodic.	 	 We	 define	 the	 orbit	 to	 be	 ergodic	 if	 for	 any	 point	 in	 the	
volume	one	can	construct	a	small	neighborhood	around	the	point	and	 the	particle	
trajectory/orbit	will	eventually	intersect	the	volume.	
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	 Let	 us	 construct	 a	 conserved	 action	 from	 the	particle	motion	 in	 the	 simple	
mirror.	 	Assume	that	 the	gyroradius	 is	much	smaller	 than	the	axial	scale	 length	of	
the	magnetic	well:	 	! ≪ !.	 	Now	 freeze	(!,!!).	 	 From	Eq.(8.A.30)	we	 construct	 the	
action		
		 	 	 	 JX ≡ dxpx(x;H ,z ,pz )→µ!∫ 	 	 	 	 											(8.A.43)	

which	is	the	magnetic	moment	except	for	factors	of	e,	m,	and	c.		Consider	!!!/!":	
									 	 	 	 !Jx =

∂Jx
∂z
!z+

∂Jx
∂pz
!pz 	 	 	 	 											(8.A.44)	

and	
	 	 	 	 	 	 		

∂Jx
∂z

= dx!∫
∂px
∂z

x ,H ,pz

= dx!∫
−
∂H
∂z x ,px ,pz

∂H
∂px x ,z ,pz

= dx!∫
"pz
"x
≡τ x !pz x−orbit

∂Jx
∂pz

= dx"∫
∂px
∂pz x ,z ,H

= dx"∫
−
∂H
∂pz x ,z ,px

∂H
∂px x ,z ,pz

=− dx"∫
!z
!x
≡−τ x !z x−orbit

									(8.A.45)	

Hence,	!!!/!"	from	Eq.(8.A.44)	becomes	

	 	
!Jx =

∂Jx
∂z
!z+

∂Jx
∂pz
!pz =τ x !z !pz x−orbit

− !pz !z x−orbit

⎡
⎣

⎤
⎦

⇒ !Jx x−orbit
=0

	 	 											(8.A.46)	

The	 average	 over	 x	 orbits	 is	 equivalent	 to	 an	 average	 over	 many	 particles	 with	
different	 phases	 in	 their	 orbits	 within	 the	 accessible	 volume	 of	 orbits.	 	 As	 in	
Eqs.(8.A.31-8.A.34)	 the	 orbit	 average	 over	 phases	 is	 zero	 but	 the	 time	 average	
< !!!/!" >= 0+ !(!!),	 where	! = !!/!!	is	 the	 ratio	 of	 the	 Larmor	 radius	 to	 the	
axial	scale	length	of	the	magnetic	field.			
	 We	 return	 to	 Eq.(8.A.43)	 to	 calculate	 the	 action.	 We	 use	

px = 2E −pz2 −Ω2(z)x2( )
1/2
	and	integrate	 Jx = dxpx!∫ 	for	fixed	z	and	pz.			One	obtains	

							

Jx(H ,z ,pz )= dx 2E −pz2 −Ω2(z)x2( )
1/2

!∫ = dx 2(12mv⊥2 )−Ω2(z)x2( )
1/2

!∫

= dx 2W
⊥
−Ω2(z)x2( )

1/2

!∫ ≈ 2W
⊥

dx 1−Ω
2(z)x2
2W

⊥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

!∫

=
2W

⊥

Ω
dθ sin2!∫ θ =2πW⊥

Ω
∝
W

⊥

Ω
≡µ

	 										(8.A.47)	
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where	W
⊥
is	 approximately	 constant	 over	 the	 gyro	 orbit,	dx =−

2W
⊥

Ω
sinθdθ ,	 and	

the	integration	is	over	the	gyro	orbit.		Action	and	energy	conservation	constrain	the	
particle	 orbit	 in	 the	 (x,px)	 plane	 to	 be	 an	 ellipse	 with	 radii	
(2E −pz2)1/2 /Ω(z)=(2 Jx /Ω(z))1/2 	in	x	and	(2E −pz2)1/2 =(2 JxΩ(z))1/2 	in	px.	
	 How	well	is	the	magnetic	moment	conserved	over	the	bounce	motion	of	the	
particle	in	the	magnetic	well?		Suppose	! = !!/!!~10!!.		An	estimate	of	the	relative	
change	in	the	action	! = !! ≡ !!	over	a	bounce	is	

	 									
Δ Jg
J

~τbounce
!Jg
J

=O
τ g
ε

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

!Jg
J
~O(ε

2)
ε
~O(ε)~10−2 	 											(8.A.48)	

If	the	drift	time	is	one	order	longer	in	!!!`,	i.e.,	100	bounces	in	this	example,	then	the	
relative	 change	 in	 the	 action	 is	 O(1).	 	 Thus,	 a	 detailed	 calculation	 is	 needed	 to	
quantify	the	change	in	action	over	many	bounces.	
	 The	Hamiltonian	in	Eq.(8.A.41)	is	

	 	 H(x , !x ,z , !z)→H(x ,px ;z ,pz )=
1
2px

2 +
1
2Ω

2(z)x2 +12pz
2 		 											(8.A.49)	

We	 introduce	 a	 canonical	 transformation	 to	 represent	 the	 system	 using	 the	 old	
coordinates	but	with	new	momentum	variables,	so	that	the	new	Hamiltonian	will	be	
written	 in	 terms	 of	 action-angle	 variables:	 (x ,px ;z ,pz )→(θg , Jg ;Z ,Pz ) .	 	 The	
generating	function	for	the	canonical	transformation	is	

										

S(x ,z; Jg ,Pz )= dx ' 2 JgΩ(z)−Ω2(z)x '2
0

x

∫ + zPz

→ θg =
∂S
∂Jg

Z = ∂S
∂Pz

= z

px =
∂S
∂x

= 2 JgΩ(z) cosθg

pz =
∂S
∂z

=Pz +O(ε)=Pz + dx ' JgΩ'−ΩΩ'x '2

2 JgΩ(z)−Ω2(z)x '20

x

∫ =Pz +
Ω'
2Ω Jsin2θg

(8.A.50)	

where	Ω'=dΩ/dz =O(ε)Ω 	and	 x ≡
2 Jg
Ω(z) sinθg 	from	 the	 action	 orbit	 in	 the	 (x,px)	

plane.		The	Hamiltonian	in	the	new	coordinates	is	

	 	 H(θg , Jg ,Z ,Pz )=Ω(z) Jg + 1
2[Pz +

Ω'
2Ω Jg sin2θg ]2 	 	 											(8.A.51)	

From	 the	 Hamiltonian	 in	 Eq.(8.A.51)	 we	 can	 evaluate	 the	 time	 derivative	 of	 the	
action:	
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	 !Jg =−
∂H
∂θg

=−[Pz +
Ω'
2Ω Jg sin2θg ]

Ω'
Ω
Jg cos2θg +O(ε2)=O(ε) 	 																									(8.A.52)	

We	 see	 that	 the	 time	 derivative	 of	 the	 action	 has	 a	 small	!(Ω!/Ω) = !(!)	rapid	
variation.	 	 To	 lowest	 order	 the	 time	 integral	 of	 Eq.(8.A.52)	 ignoring	 other	
derivatives	yields	

	 					ΔJg =−Pz
Ω'
2Ω2 Jg sin2θg +O(ε

2)=O(ε) !θg =
∂H
∂Jg

=Ω+O(ε) 	 											(8.A.53)	

We	define	a	new	approximately	conserved	quantity	
	 	 	 Ig ≡ Jg −ΔJg ⇒ !Ig ≡ !Jg −Δ!Jg =O(ε2) 	 	 											(8.A.54)	

We	 next	 introduce	 a	 new	 canonical	 transformation	 to	 remove	 the	 high-frequency	
jitter	in	Eq.(8.A.52):		(θg , Jg ;Z ,Pz )→(Θg ,Ig ;Ζ,Ρz ) 	using	

							 	 				

S(θg ,Z ;Ig ,Ρz )= Igθg +Ρz
Ω'
4Ω2 Ig cos2θg +ZΡz

→ Jg =
∂S
∂θg

= Ig −Ρz
Ω'
2Ω2 Ig sin2θg

Ζ =
∂S
∂Ρz

= Z + Ω'
4Ω2 Ig cos2θg

Pz =
∂S
∂z

= Ρz 1+
d
dz

Ω'
Ω2

⎛

⎝
⎜

⎞

⎠
⎟
Ig
4 cos2θg

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Θg =
∂S
∂Ig

=θg +Ρz
Ω'
4Ω2 cos2θg

	 	 											(8.A.55)	

With	this	new	canonical	transformation	the	Hamiltonian	can	be	rewritten	in	terms	
of	the	new	variables:	

	 	
H = Ig 1−Ρz

Ω'(Z)
2Ω2(Z)

sin2θg
⎛

⎝
⎜

⎞

⎠
⎟Ω(Z)+12 Ρz 1+ ...( )+ ...⎡

⎣
⎤
⎦
2

Ω(Z)=Ω(Ζ−Ω'(Z)
4Ω2 Ig cos2θg)=Ω(Ζ)+O(ε)

	 											(8.A.56)	

We	expand	the	terms	in	Eq.(8.A.56)	for	H	and	find	that	the	O(ε)	terms	cancel	leaving	

	 	 H(Θg ,Ig ,Ζ,Ρz )= IgΩ(Ζ)+
1
2Ρz

2 +O(ε2) 	 	 		 											(8.A.57)	

In	 terms	 of	 these	 action-angle	 variables	 the	 following	 equations	 of	 motion	 are	
obtained:	

	 	

!Ig =−
∂H
∂Θg

=0+O(ε2) !Ρz =−
∂H
∂Ζ

=−Ω'(Ζ)Ig +O(ε2)

!Θg =
∂H
∂Ig

=Ω(Ζ)+O(ε2) !Ζ = ∂H
∂Ρz

= Ρz +O(ε2)
	 											(8.A.58)	
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The	finite	time	derivative	of	Pz	represents	the	mirroring	forces	on	particles	as	they	
transit	or	bounce	back	and	forth	along	the	field	line.			
	 Through	second	order	in	!	the	Hamiltonian	in	terms	of	action-angle	variables	
is	

	

H(Θg ,Ig ,Ζ,Ρz )= IgΩ(Ζ)+
1
2Ρz

2 −
Ω'2
4Ω2 Ig

2 cos2θg +
1
8
Ω'2
Ω2 Ig

2 sin22θg

+
1
4 Ρz

2Ig
d
dz

Ω'
Ω2

⎛

⎝
⎜

⎞

⎠
⎟cos2θg −

Ω'2
Ω3 sin

22θg
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	 											(8.A.59)	

where		

	 	

θg =Θg −Ρz
Ω'
4Ω2 cos2θg z =Ζ− Ig

Ω'
4Ω2 cos2θg 	 	 											(8.A.60)	

	The	correction	terms	in	!!	and	z	only	contribute	! !! 	and	! !! 	terms	in	H,	so	they	
are	superfluous	through	second	order	in	! in	affecting	H.	We	note	that	
	 IgΩ(Ζ)=

mc
e
µ
eB(z)
mc

=µB(z)= 12mv⊥
2 → H(0) =

1
2
!z2 +µB(z)

	 											(8.A.61)	
The	second	term	in	H(0)	gives	the	standard	bouncing	motion	along	the	field	lines	in	a	
magnetic	mirror	configuration.	
	
Example:	 Quadratic	 magnetic	 well	 –	 We	 make	 an	 explicit	 assumption	 about	 the	
magnetic	field:	

	 	
B(z)=B0 1+

1
2
z2

L2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ → Ω(Ζ)=Ω0 1+

1
2
Ζ2

L2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	 	 											(8.A.62)	

In	this	magnetic	well	the	equations	of	motion	yield	 	 	

	 	
!Ig =−

∂H
∂Θg

=O(ε2) !Ρz =−
∂H
∂Ζ

=O(ε)
	 	 																									(8.A.63)	

and	

	 	
H(0) = IgΩ0 +

1
2 IgΩ0

Ζ2

L2
+
1
2Ρz

2 	 	 	 	 	 											(8.A.64)	

where	the	axial	motion	in	the	quadratic	well	satisfies	

	 	 Ζ =
2 Jb
ωb

sinφb Ρz = 2 Jbωb cosφb ωb ≡
IgΩ0

L
	 	 											(8.A.65)	

We	introduce	yet	another	canonical	transformation	

	 	 	 Ig ,Θg ;Ρz ,Ζ( )→ µ ,φg ; Jb ,φb( ) 	 	 	 	 											(8.A.66)	

with	the	generating	function	

	 													 S(Θg ,Ζ;µ , Jb)= dz '
0

Ζ

∫ 2 Jbωb(µ)−ωb
2(µ)z '2 +µΘg 																														(8.A.67)	

The	transformation	from	old	to	new	variables	is	then	
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Ig =
∂S
∂Θg

=µ Ρz =
∂S
∂Ζ

= 2 Jbωb cosφb φb =
∂S
∂Jb

φg =
∂S
∂µ

=Θg +
Jb
2µ sin2φb Ζ =

2 Jb
ωb

sinφb
									 											(8.A.68)	

	 	 	 	 	 	 	 	 	 	 	
We	then	rewrite	the	Hamiltonian:	

	 	 H Ig ,Θg ;Ρz ,Ζ( )=µΩ0 + Jbωb(µ)−
Ω'2
4Ω2 µ

2 cos2θg + ... 		 											(8.A.69)	

We	 substitute	 for	!,	!!, and !g	 in	 Eq.(8.A.69)	 and	 expand	 terms.	 	 To	 make	 some	
estimates,	 we	 simplify,	 and	 use	 a	model	 Hamiltonian	 for	 certain	 quantities.	 	 	We	
have	
	 						

												

ωb =
µΩ0

L
!µ =− ∂H

∂φg
=O(ε2) !φg =

∂H
∂µ

=Ω0 1+
1
2

Jb
µL

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+O(ε

2) (8.A.70a)

!Jb =−
∂H
∂φb

=O(ε2) !φb =
∂H
∂Jb

=ωb(µ)+O(ε2) (8.A.70b)
						

	

We	 note	 that	 !φg = Ω(z)
b
	and	 !Θg =Ω(z) 	with	!(!!)	corrections.	 	 We	 can	 select	

units	 so	 that	! = 1,!! = 1, and ! = 1 .	 	 Hence,	 the	 Larmor	 radius	! = !!
! ~1 ,	

!~1,!!~1,!!~!, !!~ !
! , and ! ≡ !

! .	 	 Generally,	 the	 second	 order	 terms	 in	 the	
Hamiltonian	can	be	represented	as	

	 	 H(2)(µ , Jb ;φb ,φg)= H
ℓb ,ℓ g

(µ , Jb)e
i(ℓbφb+ℓφg )

ℓb ,ℓ g
∑ 	 	 	 											(8.A.71)	

The	Hamilton	has	the	following	orderings	through	!(!!):	

	 H =µ+ Jb
µ
L
−
Ω'2
4Ω2 µ

2 cos2θg +
1
4 Ρz

2µ ...⎡⎣ ⎤
⎦+
1
8
Ω'
Ω

⎛

⎝
⎜

⎞

⎠
⎟

2

sin22θg 			 											(8.A.72)	

and	after	 	 cancellations	H
ℓb ,ℓ g

~ 1
32ε

2 .	 	 Consider	a	model	Hamiltonian	with	a	 typical	

! !! 	term:	

	

H =µ+ Jbωb +
1
32ε

2 sin2θg =µ+ Jbωb +
1
32ε

2 sin2(φg −
Jb
2µ sin2φb)

=µ+ Jbωb +
1
32ε

2 Im ei2φge
−i
Jb
µ
sin2φb

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=µ+ Jbωb +

1
32ε

2 Im ei2φg J
ℓ

Jb
µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟e

−ℓ2φb

ℓ=−∞

ℓ=∞

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 	

	 	 	 	 	 	 	 	 	 				 											(8.A.73)	
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where !ℓ is the Bessel function with argument !!/!. Thus, at ! !!  the Hamiltonian 
in Eq.(8.A.73) has a phase factor 

   sin2θg = J
ℓ

Jb
µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ℓ=−∞

ℓ=∞

∑ sin2 φg −ℓφb( )               (8.A.74) 

We use the model Hamiltonian in Eq.(8.A.73) with Eq.(8.A.74) to construct the 
equations of motion: 

   

!µ =− ∂H
∂φg

=−
2ε2
32 J

ℓ
ℓ

∑ cos2(φg −ℓφb)

!φg =
∂H
∂µ

=ωg(µ , Jb)+O(ε2)

!φb =
∂H
∂Jb

=ωb(µ)+O(ε2)

              (8.A.75) 

To lowest order Eq.(8.A.75) implies: 
   !µ =− ε

2

16 J
ℓ

ℓ

∑ cos2(ωg −ℓωb)t 	 	 	 											(8.A.76)	

Given	 Eq.(8.A.76)	 we	 ask	 under	 what	 circumstances	 there	 are	 oscillatory	 or	
systematic	variations	in	!.					
Theorem:	 If	 for	 some	 integer	ℓ!,	!! − ℓ!!! = 0	then	Δµ~− ε

2

16 Jℓ0t ,	 i.e.,	 there	 is	 a	
systematic	 secular	 variation	 in	 the	magnetic	moment.70		 	 If	 	ℓ! =	!!/!!~1/!,	 e.g.,	
ℓ! = 100,	then	!ℓ!

!!
! ~!!/! 1/! ~!!/!		From	Eq.(8.A.73)	!(!) → !

!"!!/!	
	
Corollary:	For	situations	close	to	resonance	but	not	at	precise	resonance,		

	 	 	 Δµ =−
ε2

16 J
ℓ

ℓ

∑
sin[2(ωg −ℓωb)t]
2(ωg −ℓωb)

	 	 	 											(8.A.77)	

	
Example:	For	the	model	Hamiltonian	with	many	possible	resonances	

	 				

H(µ ,φg ; Jb ,φb)=H(0)(µ , Jb)+H(2)(φg ,φb)

H(0)(µ , Jb)=µ+ Jbωb(µ), ωb(µ)=ε µ , ε ≡
1
L

H(2)(φg ,φb)=
ε7/3

32 sin[2(
ℓ

∑ φg −ℓφb)]≈
ε7/3

32 sin[2(
ℓ

∑ ωgt −ℓωbt)]

Ω0 =1 ωg ≡
!φ = ∂H

∂µ
=1+ ε Jb

2 µ

												(8.A.78)	

																																																								
70	R.	H.	Cohen,	G.	Rowlands,	and	J.	H.	Foote,	Phys.	Fluids	21,	627	(1978).	
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We	 select	 a	 fixed	 energy	E=1,	 so	 that	H(0)~1.	 	 Then	 the	 choice	 of	!	approximately	
fixes	the	action	Jb.		Hence,	for	E=1	

										 	 	 	 ε Jb ≈
1−µ
µ
=O(1) 	 	 	 	 											(8.A.79)	

As	 a	 function	of	!, ! ∈ [0,1],	!!!=1	 for	! = 0;	 and	!!!	drops	 	monotonically	 to	0	 as	
! → 1,	 while	!! 	increases	 as	 ! 	but	 is	 O(!)	compared	 to	!! 	which	 is	 O(1)	and	
decreases	as	! → 1.		Examine	the	resonance	condition	in	H(2):			

	 	 	 	 ωg = ℓωb ⇒ 2ℓε =
1+ 1

µ

µ
	 	 	 											(8.A.80)	

For	example,	if	! = 1/100	and	we	choose	< ! >≈ 1/2	then	the	resonance	occurs	for		

	 	 	 ℓε = 3 2
2 ≈2.12 → ℓ ≈212 	 	 	 											(8.A.81)	

For	a	small	change	in	the	integer	ℓ	the	resonance	occurs	at	a	slightly	different	value	
of	!	obtained	by	calculating	the	differential	of	both	sides	of	Eq.(8.A.80):	

	 2εδℓ=− 7
µ
δµ → δµ =−

2 µ
7 εδℓ= ∓ 2

7 ε→ ∓0.00202, δℓ=±1 									(8.A.82)		

in	 this	 example.	 	 Thus,	 the	 resonances	 are	 fairly	 dense	 with	 respect	 to	!.  If	 the	
change	 in	 magnetic	 moment	!	from	 a	 single	 near-resonant	 term	 in	 Eq.(8.A.77)	 is	
large	 enough	 to	 overcome	 the	 spacing	 to	 the	 next	 resonance	 in	!	and	ℓ	based	 on	
Eq.(8.A.82),	 then	 one	 can	 expect	 a	 significant	 diffusive	 change	 in	!.  This	 is	 an	
example	of	Chirikov’s	resonance	overlap	criterion;	if	not	satisfied,	then	the	magnetic	
moment	is	conserved:	

1
2 µℓ −µℓ±1 ~

µ
ℓ

7 ε > Δµ(t) = ε
7/3

16

sin[2(
ℓ

∑ ωgt −ℓωbt)]

2(ωg −ℓωb)
~ ε

7/3

32
1
1
2ωb

~ ε
7/3

32
1

1
2ε µ

										

	 	 	 	 	 	 	 	 	 	 											(8.A.83)	
Hence,	for	this	example,	the	magnetic	moment	is	conserved	for	

	 	 	 	 	 1> 7
16

ε1/3

µ
→
7
8ε

1/3 	 	 	 											(8.A.84)	

We	 note	 that	 the	 pre-factor	 of	 ½	 out	 front	 of	 the	 left	 side	 of	 Eq.(8.A.83)	 is	 not	
precise.	 	 If	 the	 factor	 were	 1/3	 instead,	 then	 the	 factor	 7/8	 on	 the	 right	 side	 of	
(8.A.85)	 would	 become	 21/16.	 	 If	!	is	 small	 then	 the	 condition	 in	 Eq.(8.A.84)	 is	
readily	satisfied.	
 
Example:	 For	 the	 model	 Hamiltonian	 in	 Eq.(8.A.78)	 with	 a	 single	 resonance	 the	
change	in	magnetic	moment	and	action	can	be	calculated	from	

	 	 !µ =−ε
7/3

16 cos2ψ
!Jb =
ℓε7/3

16 cos2ψ ψ ≡φg −ℓφb 	 	 											(8.A.85)	
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We	note	that	for	a	single	resonance	there	is	an	invariant	! = ℓ! + !!	with	zero	time	
derivative	 based	 on	 Eq.(8.A.85).	 	 Hence,	 the	!! 	and	!! 	degrees	 of	 freedom	 are	
reduced	 to	 the	 single	degree	of	 freedom	!	by	using	 the	 invariant	 I.	 	We	 introduce	
another	canonical	transformation	for	the	variables	and	the	Hamiltonian:	
	 	 	 S(φg ,φb ;µ ',I)=(µℓ +µ ')φg −ℓµ 'φb 	 	 	 											(8.A.86)	
from	which		

					

ωg(µℓ )= ℓωb(µℓ ) µ '≡µ −µ
ℓ
µ =

∂S
∂φg

=µ
ℓ
+µ ' ψ =

∂S
∂µ ' =φg −ℓφb µ

ℓ
= const

	
	 	 	 	 	 	 	 	 	 	 											(8.A.87)	
Now	add	 Iφb 	to	S	in	Eq.(8.A.86)	so	that	

	 	 	 Jb =
∂S
∂φb

= I−ℓµ ' and χ ≡
∂S
∂I
=φb 	 	 	 											(8.A.88)	

Then	

	 	 H(0) =µ
ℓ
+µ '+(I−ℓµ ')ε µ

ℓ
+µ ' ≈ const− 74µ '

2 	 	 											(8.A.89)	

and		 	 	

	 	 	 	 H(2) =
ε7/3

32 sin2ψ 	 	 	 	 											(8.A.90)	

for	!ℓ = 1/2 	and	ℓ! = 3 2/2 	from	 Eqs.(8.A.78),	 (8.A.79),	 (8.A.80),	 and	 (8.A.81).		
With	this	Hamiltonian	the	variables	!	and	!′	are	conjugate	and	satisfy	
	 	 	 !µ '=−ε

7/3

16 cos2ψ
!ψ =−

7
2µ '→

!!ψ =
7
32ε

7/3 cos2ψ 															(8.A.91)	
	 Recall	the	physics	in	the	definition	of	the	phase	variable	!.		We	are	following	
the	motion	in	phase	space	over	many	gyrations.	 	The	equation	for	the	second	time	
derivative	 of	!	is	 identical	 to	 the	 equation	of	motion	 for	 a	 quasi-particle	 in	 a	well	
defined	by		

	 	 	 	 U(ψ)=− 764ε
7/3 sin2ψ 	 	 	 											(8.A.92)	

Quasi-particles	can	be	trapped	in	the	periodic	wells	of	!(!),	or	with	more	“energy”	
the	 quasi-particles	 are	 untrapped	 and	 pass	 over	 the	 wells.	 	 If	 passing,	 then	 the	
excursions	 in	!	grow	 in	 time	 without	 bound.	 	 The	 trapped	 quasi-particles	 have	
limited,	periodic	excursions	in	!.			Given	the	definition	of	!	in	Eq.(8.A.87)	then		
																																			 	 Δψ =Δφg −ℓΔφb 	 	 	 	 											(8.A.93)	

For	 changes	 in	 the	bounce	phase	 corresponding	 to	 an	 integer	number	 of	 bounces	
and	 for	ℓ	an	 integer,	 then	Δψ =Δφg 	modulo	2!.	 	Hence,	 in	 the	median	plane	of	 the	
mirror	Δψ =Δφg =Δθg .				

	 We	note	 that	 in	 the	phase	space	(!!,!)	the	periodic	excursion	of	 the	quasi-
particle	 in	!′	in	Eq.(8.A.91)	 is	Δ! = !!/!/4.	 	 The	 separation	between	 resonances	 in	
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!ℓ	and	!ℓ±!	for	!ℓ ≈ 1/2	from	Eq.(8.A.83)	is	 !ℓ − !ℓ±! = 2 !ℓ /7~!/5.	Then	!	will	
be	conserved	if	the	excursion	in	!	is	less	than	the	separation	between	resonances:	
	 	 	Δ! < !ℓ − !ℓ±!  →   !

!
!/4 <  !/5 →   !

!
! < 4/5	 	 											(8.A.94)	

A	more	careful	calculation	yields	0.77	instead	of	4/5,	from	which	one	concludes	that	
if	! < 0.77! = 0.21~1/5	the	magnetic	moment	is	conserved.		If	all	possible	rational	
resonances	 are	 included,	 the	 resonances	 are	more	 densely	 packed;	 and	!	must	 be	
smaller	 to	 conserve	 the	 magnetic	 moment.	 	 For	 example,	 if	 the	 spacing	 of	

resonances	in	Eq.(8.A.94)	were	a	factor	of	two	smaller,	then	!
!
! < 0.4	and	! < 0.004	

to	conserve	magnetic	moment.	
	 Consider	a	slightly	different	model	 to	explain	 the	adiabatic	 invariant	!.	 	We	
postulate	a	Hamiltonian	evaluated	in	median	plane	of	the	mirror		

						

H µ ,φg ; J ,φb( )= Jωb +
1
2µ

2 +λ cos(φg
ℓ=−∞

ℓ=∞

∑ −ℓφb)

= Jωb +
1
2µ

2 +λ2π cosφg δ(φb −2πn)
n=−∞

n=∞

∑

!φb =
∂H
∂J

=ωb
!µ =− ∂H

∂φg
= λ2π sinφg δ(φb −2πn)

n=−∞

n=∞

∑ !φg =
∂H
∂µ

=µ

	 											(8.A.95)	

where	! = !!/!/32 for	example.		We	integrate	the	equations	of	motion	from	bounce	
to	bounce	through	the	median	plane,	Δ!! = !2!/!!:	

	 	 	

µn+1 =µn +
2πλ
ωb

sinφg(n)

→ µ 'n+1 =µ 'n+Λsinφg(n)
φg ,n+1 =φg ,n +µ 'n+1

µ '=µ 2π
ωb

Λ≡
2π
ωb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

λ

	 	 	 											(8.A.96)	

The	 equations	 in	 Eq.(8.A.96)	 are	 mapping	 equations	 for	 any	 point	 in	 the	(!!, !′)	
plane	 into	 another	 point	 on	 the	 next	 crossing	 of	 the	median	 plane	 of	 the	mirror.		
This	 is	 an	 area-preserving,	 standard	 mapping	 known	 as	 the	 Chirikov-Taylor	 or	
Chirikov	standard	map.		The	map	is	periodic	in	both	!!	and	!′	with	periodicity	equal	
to	2!.  For	small	values	of	Λ	the	mapping	populates	the	phase	space	with	a	periodic,	
regular	 pattern	 that	 is	 not	 chaotic.	 	 When	Λ approaches	 unity	 the	 phase	 space	
acquires	 regions	 in	 which	 the	mapping	 is	 chaotic,	 which	 ergodic	 regions	 become	
relatively	 larger	with	 increasing	Λ.	 	 	From	the	dependency	of	the	ergodicity	on	the	
value	of	Λ,	we	can	deduce	the	corresponding	value	of	!.	
	
Exercise:	 	 A	 fixed	 point	 for	 the	mapping	 in	 Eq.(8.A.96)	 is	 a	 point	 that	maps	 onto	
itself.	 	(i)	Find	two	fixed	points	for	Eq.(8.A.96).	 	(ii)	Linearize	the	mapping	about	a	
fixed	point	and	compute	the	ratio	of	increments	to	!!	and	!′	on	successive	steps	to	
show	stability	for	Λ<4.	
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8.A.d	Perturbation	of	motion	in	a	magnetic	mirror	due	to	an	electrostatic	wave	–	
Rosenbluth’s	concept	of	superadiabaticity	and	resonance	overlap	leading	to	
stochasticity	
	
	 In	a	seminal	paper,	Marshall	Rosenbluth	analyzed	adiabatic	invariance	of	the	
magnetic	 moment	 for	 particle	 orbits	 in	 a	 magnetic	 mirror	 configuration	 in	 the	
presence	 of	 an	 electrostatic	 wave. 71 	Rosenbluth	 introduced	 the	 concept	 of	
superadiabtaticity	 to	 describe	 the	 circumstance	 in	 which	 the	 amplitude	 of	 the	
perturbing	electrostatic	wave	modifies	 the	magnetic	moment	but	does	not	 lead	 to	
random	changes	and	particle	 loss.	 	For	larger	wave	amplitudes	chaotic	motion	can	
ensue,	 and	 the	magnetic	moment	 is	no	 longer	 conserved.	 	Here	only	 an	outline	of	
Rosenbluth’s	calculation	is	given,	and	details	are	left	as	an	exercise.	
	 Consider	the	Hamiltonian	of	a	charged	particle	in	a	magnetic	mirror	field	as	
in	Sec.8.A.c	but	ignore	O(!!)	effects.		Include	an	oscillating	electric	field	perturbation	
with	frequency	near	the	cyclotron	frequency.		Is	there	a	new	invariant?		The	outline	
of	the	calculation	is	as	follows:	

1) Add	to	the	Hamiltonian	!" !, ! = !!! sin !!! − !!! , !! = Ω(±!!)	
2) Transform	to	gyro-variables	!,!!	
3) Expand	!" !, ! 	in	Bessel	functions	using	the	Bessel	function	identity	
4) Extract	the	resonant	term	from	the	series,	sin !! − !!! ~ sin Ω(!)! − !!! 	
5) Define	a	canonical	 transformation	S	 similar	to	that	 in	Eqs.(8.A.86-8.A.90)	to	

introduce	! = !! − !!!	and	find	the	new	Hamiltonian	such	that	

	 	 	 K =H+ ∂S
∂t
, ∂H
∂t

≠0, ∂K
∂t

=0 	 	 											(8.A.97)	

6) In	analogy	 to	Eqs.(8.A.95-8.A.96),	 find	 the	mapping	of	!,!	from	one	bounce	
through	 the	median	 plane	 of	 the	mirror	 to	 the	 next	 and	 obtain	 the	 new	Λ.		
Investigate	 the	 stability	 of	 the	 mapping.	 	 Stability	 corresponds	 to	
superadiabaticity,	 while	 instability	 is	 associated	 with	 ergodic	 orbits	 and	
diffusion	of	the	magnetic	moment.	

	
[Editor’s	note:	Diffusion	of	the	magnetic	moment	in	the	presence	of	cyclotron	resonant	
electrostatic	turbulence	has	received	considerable	attention.72,73,74		The	study	by	Smith	
and	Cohen74	employed	a	Hamiltonian	approach	much	like	that	in	Kaufman’s	lectures	
and	research.]	
	
	
8.B	Lagrangian	theory	of	guiding-center	drifts	
	
																																																								
71	Marshall	N.	Rosenbluth,	Phys.	Rev.	Lett.	29,	408	(1972).	
72	D.	E.	Baldwin,	H.	L.	Berk,	and	L.	D.	Pearlstein,	Phys.	Rev.	Lett.	36,	1051	(1976).	
73	H.	L.	Berk	and	J.	J.	Stewart,	Phys.	Fluids	20,	1080	(1977).	
74	G.	R.	Smith	and	B.	I.	Cohen,	Phys.	Fluids	26,	238	(1983).	
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	 In	this	section		is	presented	a	Lagrangian	theory	of	guiding-center	drifts.		Bob	
Dewar’s	 methodology	 making	 use	 of	 Whitham	 averaging	 is	 used.75		 Equations	 of	
motion	and	approximate	constants	of	the	motion	are	derived.			

8.B.a	Dewar’s	Lagrangian	theory	relying	on	Whitham	averaging	
	
	 Dewar	 systematically	 derived	 the	 guiding-center	 Lagrangian76 	from	 the	
particle	Lagrangian.		The	particle	Lagrangian	is	

	 	 L(x, !x;t)= 12
!x
2
−
eφ(x,t)
m

+
e
mc
!x×A(x,t) 	 	 	 	 (8.B.1)	

x(t)	 is	 the	 particle	 location;	R(t)	 	 is	 the	 guiding-center	 location;	 and	 r=R-x.	 	 The	
displacement	r	is	related	to	the	Larmor	radius	according	to	
	 	 r(t)= ρ(t) ê2 cosθ(t)+ ê1 sinθ(t)⎡

⎣
⎤
⎦+O(ε2) 	 	 	 	 (8.B.2)	

The	time	derivative	of	Eq.(8.B.2)	is	

	 !r = ρ !θ −ê2 sinθ + ê1 cosθ⎡
⎣

⎤
⎦+ε

∂ρ
∂(εt) ê2 cosθ + ê1 sinθ

⎡
⎣

⎤
⎦+O(

d
dt
ê1 ,

d
dt
ê2) 	 (8.B.3)	

The	unit	vectors	 ê1and ê2 change	if	 the	direction	of	the	magnetic	 field	changes,	but	
this	 leads	 to	 unnecessary	 complications	 in	 the	 analysis	 and	 adds	 no	 new	physics.		
The	analysis	makes	use	of	

	 φ(x)=φ(R+r)= er⋅∇φ(R) r ⋅∇= ρ cosθ ê2 ⋅∇+sinθ ê1 ⋅∇⎡
⎣

⎤
⎦ 		 	 (8.B.4)	

If	!	varies	spatially	as	exp (!! ∙ !)	then		
	 r ⋅∇= ρcos(θ −ψ) ∂1

2 +∂2
2 = ik

⊥
ρcos(θ −ψ), tanψ =

∂1
∂2
→
k1
k2
	 	 (8.B.5)	

and	

	 	 er⋅∇ = eik⊥ρcos(θ−ψ ) = J
ℓ

ℓ=−∞

ℓ=∞

∑ (k
⊥
ρ)eiℓ(θ−ψ+π/2) 	 	 	 	 (8.B.6)	

Then	the	gyro-average	of	!(!)	is	
															 	 φ(x)

θ
= er⋅∇

θ
φ(R) 		 	 	 	 	 (8.B.7)	

and	only	the	ℓ = 0	term	in	Eq.(8.B.6)	survives	when	used	in	Eq.(8.B.7).			
	 We	can	return	to	the	Lagrangian	in	Eq.(8.B.1)	and	calculate	the	gyro-average:	

	 	 L =
1
2
!x
2
−
e φ(x,t)

m
+
e
mc
!x×A(x,t) 	 	 	 	 (8.B.8)	

Given	 !x = !R+ !r 	then	

							 !x
2
= !R

2
+ !r

2
+2 !r ⋅ !R = !R

2
+ ρ2 !θ 2 +2 !r ⋅ !R = !R

2
+ ρ2 !θ 2 +O(ε2) 	 (8.B.9)	

																																																								
75	G.	B.	Whitham,	Linear	and	Nonlinear	Waves	(John	Wiley	&	Sons,	1974).	
76	J.	B.	Taylor,	Phys.	Fluids	7,	767	(1964).	
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The	 surviving	Bessel	 function	can	be	expanded	as	!! !!! ≈ 1− !
! !!! !.		The	 last	

term	on	the	right	side	of	Eq.(8.B.8)	is	evaluated	with	the	help	of	

	

!x ⋅A(x)=( !R+ !r)⋅A(R+r)=( !R+ !r)⋅ A(R)+r ⋅∇A(R)+12(r ⋅∇)
2A(R)+ ...

⎡

⎣
⎢

⎤

⎦
⎥

!x ⋅A(x) = !R ⋅A(R)+ !rr :∇A(R)+12 (r ⋅∇)2 A(R)⋅ !R
	(8.B.10)	

Consider	 rr :∇A = rr :(∇A)S 	where	(∇A)s 	is	 the	symmetric	part	of	∇A ,	because	the	
asymmetric	 part	 of	∇A 	does	 not	 contribute	 when	 taking	 the	 double	 dot	 product.		
The	time	derivative	of	rr :∇A is	

	
d
dt

rr :∇A( )=2!rr :(∇A)s +rr : ∇ ∂A
∂t

+ !R ⋅∇A
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s

, ∂A
∂t

=−cET 	 											(8.B.11)	

and	hence,	

	 	 2!rr :(∇A)s = d
dt

rr :∇A( )−rr : ∇ −cET + !R ⋅∇A⎡
⎣

⎤
⎦( )
s
	 	 											(8.B.12)	

Upon	 calculating	 the	 time	 average	 over	 the	 cyclotron	 period	 and	 using	 periodic	

boundary	 conditions	 on	 the	 gyro-phase,	 the	 first	 term	 on	 the	 right	 side	 of	

Eq.(8.B.12)	 will	 not	 contribute	 to	 the	 averaged	 Lagrangian.	 	 We	 also	 need	 the	
contribution	from	 !rr :(∇A)a 	in	Eq.(8.B.10):	

	 	 !rr :(∇A)a = 12 r× !r( ) ⋅B → !rr :(∇A)a = 12ρ
2 !θB 	 	 											(8.B.13)	

The	 remaining	 terms	 in	 Eq.(8.B.10)	 and	 (8.B.11)	 are	rr :∇ ∇(A ⋅ !R)+cET − !R ⋅∇A⎡
⎣

⎤
⎦ ,	

which	after	a	little	more	algebra	leads	to		 	

						

L (ρ; !θ ;R, !R;t)= 12
!R
2
+
1
2ρ

2 !θ 2 −
eφ(R ,εt)

m
+
e
mc
!R ⋅A(R ,εt)− e

2mc ρ
2 !θB

+
e
4mρ2

!
I⊥ :∇ ET +EL +1

c
!R×B

⎛

⎝
⎜

⎞

⎠
⎟ 												(8.B.14)	

The	 “T”	 and	 “L”	 in	 Eq.(8.B.14)	 are	 transverse	 (divergence-free)	 and	 longitudinal	

(curl-free)	vector	field	components.		
!
I⊥ ≡
!
I − b̂b̂ ;	hence,	

!
I⊥ ⋅∇=∇

⊥
.		The	last	term	on	

the	right	side	of	Eq.(8.B.14)	 is	O(!!).	 	Large-amplitude	fields	are	allowed,	but	they	
must	be	slowly	varying.	
	
Definition:	We	introduce	two	momentum-like	variables:	

	 	 											

p
ρ
≡
∂< L>
∂ !ρ

=0+O(ε2) (8.B.15a)

p
θ
≡
∂< L>
∂ !θ

= ρ2 !θ − e
2mc ρ

2B = ρ2 !θ −12Ω
⎛

⎝
⎜

⎞

⎠
⎟ (8.B.15b)
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From	the	definition	in	Eq.(8.B.15a)	we	have	!! = 0 and,	hence,	from	the	Lagrangian	
equation:	

	 	 	 0= !p
ρ
=
∂ L

∂ρ
= ρ !θ 2 −

e
mc

ρ !θB(R;t) 	 	 	 											(8.B.16)	

which	we	divide	by	ρ !θ 	to	obtain	

	 	 	 !θ = eB(R;t)
mc

≡Ω+O(ε2) 	 	 	 	 											(8.B.17)	

With	the	use	of	Eq.(8.B.17)	in	Eq.(8.B.15b)	one	obtains	

					 			 p
θ
≡
∂< L>
∂ !θ

= ρ2 !θ −12Ω
⎛

⎝
⎜

⎞

⎠
⎟=
1
2Ωρ

2∝µ~12
mv

⊥

2

B
!p
θ
=
∂

∂θ
L =0 	 											(8.B.18)	

which	is	a	constant	of	the	motion	through	! ! .	
	

8.B.b	Orderings,	forces,	mirroring,	drifts,	definition	of	flux	tubes	
	
	 We	now	introduce	a	set	of	orderings	as	chosen	by	Dewar.	
	
Postulate:	Orderings		

	 	 	 	

O(ε−1): e,c
O(1): m,v,φ ,E

⊥
,L

O(ε): ρ ,E||
	 	 	 	 											(8.B.19)	

With	these	orderings	<L>	is	

			

L (ρ; !θ ;R, !R;t)= 12
!R
2
+
1
2ρ

2 !θ 2 −
eφ(R ,t)
m

+
e
mc
!R ⋅A(R ,t)− e

2mc ρ
2 !θB+O(ε2)

O(1) O(1) O(ε−1) O(ε−1) O(1) 					(8.B.20)	

We	note	that	<L>	has	no	! ! 	term.		We	also	note	that	the	term	ρ2 !θ 2 /2 	involves	the	
product	of	1/B2	and	B2,	which	cancel	and	leaves	only	constants,	i.e.,	this	term	in	the	
averaged	Lagrangian	 is	 independent	of	R	and	t;	and	we	can	set	 it	aside.	 	From	the	
Lagrangian	 equations,	 Eqs.(8.B.16-8.B.18),	we	 deduced	 the	 constancy	 of	 the	 gyro-
frequency	Ω	and	the	magnetic	moment	! through	! ! .			
	
Definition:	 Based	 on	 the	 orderings	 and	 Eq.(8.B.20),	 we	 define	 the	 guiding-center	
Lagrangian	

	

Lgc = L(ε−1)+L(1)=−
eφ(R ,t)
m

+
e
mc
!R ⋅A(R ,t)+12

!R
2
−

e
2mc ρ

2 !θB

=−
eφ(R ,t)
m

+
e
mc
!R ⋅A(R ,t)+12

!R
2
+µB 			 											(8.B.21)	
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We	recognize	the	!"	term	as	a	potential	energy	−! ∙ !,	where	!=−µb̂ 	the	magnetic	
dipole	moment	of	a	gyrating	particle	in	a	magnetic	field.	
	
	 From	the	Lagrangian	equations	applied	 to	 the	guiding	center	Lagrangian	 in	
Eq.(8.B.21)	 one	 can	 derive	 the	 properties	 of	 the	 guiding	 center	motion	 at	! !!!  	
and	! 1 .	
	

Definition:	P(ε
−1 ) =

∂L(ε
−1 )

∂ !R
=
e
mc

A(R ,t) !P(ε
−1 ) =

e
mc

∂

∂t
A+ !R ⋅∇A

⎛

⎝
⎜

⎞

⎠
⎟ 	 	 											(8.B.22)	

Theorem:			From	the	Lagrangian	equation	at	! !!! 				
			 	 	 !P(−1) = ∂L

(−1)

∂R
=
e
m
EL + e

mc
∇A ⋅ !R 	 	 	 											(8.B.23)	

Equating	expression	for	 !P(−1) 	in	Eqs.(8.B.22)	and	(8.B.23)	leads	to	
	

	
The	 results	 for	 the	 perpendicular	 and	 weaker	 parallel	 vector	 components	 of	 the	
electric	 field	 in	 Eq.(8.B.24)	 are	 consistent	 with	 the	 orderings	 in	 Eq.(8.B.19).				
Particles	move	more	freely	along	the	magnetic	field	lines	and	can	neutralize	strong	
parallel	electric	fields.		Solving	Eq.(8.B.24)	for	the	perpendicular	velocity	 	 	

	 	

	 	

V
⊥
= cE(R ,t)× b̂

B
+O(ε) 	 			 																									(8.B.25)	

The	leading	term	in	Eq.(8.B.25)	is	O(1),	which	is	the	ExB	drift	velocity	uE.	
	 To	next	order,	

	 	 	 	 P= ∂L
∂ !R

=
e
mc

A(R ,t)+ !R 										 	 											(8.B.26)	

We	 take	 the	 time	 derivative	 of	 Eq.(8.B.26)	 and	 equate	 it	 to	 !P=∂Lgc /∂R 	through	
O(1)	to	obtain	

	 	 	

1
c

∂

∂t
A+ !R ⋅∇A

⎛

⎝
⎜

⎞

⎠
⎟+
m
e
!!R =EL +1

c
(∇A)⋅ !R−m

e
µ∇B

⇒ 0= e
m
E+1

c
!R×B

⎛

⎝
⎜

⎞

⎠
⎟− !!R−µ∇B

	 											(8.B.27)	

The	 last	 two	 terms	 on	 the	 right	 side	 of	 Eq.(8.B.27)	 are	 perturbations.	 As	 a	
consequence	of	the	orderings,	

	 	 	 !R = !R(1)+ !R(ε ) , !R(1) = v||b̂+uE , !R(ε ) = vd 	 	 											(8.B.28)	

Hence,	 to	 the	 lowest	 required	 order	 !R(1) = v||b̂+uE 	can	 be	 used	 in	 the	 !!R term	 in	
Eq.(8.B.27).			
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Theorem:	 	 The	 guiding-center	 drifts	 result	 from	 Eqs.(8.B.27)	 and	 (8.B.28),	 and	
(8.B.27)	 naturally	 decouples	 into	 components	 parallel	 and	 perpendicular	 to	 the	
applied	magnetic	field:	

	 	 	 	

b̂ : m!v|| = eE||−µb̂⋅∇B−mb̂⋅ !uE (8.B.29a)

b̂
⊥
: v

⊥
=uE +vd , vd =

1
Ω

−
µ∇B
m

−v||
!̂b− !uE + ...

⎛

⎝
⎜

⎞

⎠
⎟× b̂ (8.B.29b)

														

The	second	term	on	the	right	side	of	Eq.(8.B.29a)	 is	 the	mirroring	 force.	 	The	 first	
term	on	the	right	side	of	vd	 is	the	∇!	drift;	the	second	term	is	the	centrifugal	drift;	
the	third	term	is	the	polarization	drift;	and	the	remaining	terms	could	accommodate	

other	accelerations,	e.g.,	gravity	and	collisional	friction.		We	note	uE ⋅ b̂=0 .			Hence	
	 	 !uE ⋅ b̂=−

!̂b⋅uE and m!v|| = eE||−µb̂⋅∇B+
!̂b⋅uE 	 	 											(8.B.30)	

We	ascribe	the	notion	of	a	moving	field	line	to	the	time	derivative	(in	a	Lagrangian	
sense)	 of	 the	 magnetic	 unit	 vector	 as	 seen	 by	 the	 particle	 in	 its	 guiding	 center	
motion.			
	

8.B.c	Equations	for	field	lines,	Euler	potentials	and	Clebsch	representation		
	
	 To	 lowest	order,	 the	particles	are	 tied	 to	 the	magnetic	 field	 lines;	and	 their	
trajectories	 lie	 on	 surfaces	 that	 enclose	 the	magnetic	 flux.	 	We	 define	 a	 field	 line	
velocity	!!(!, !)	such	that	flux	moving	with	this	velocity	will	be	conserved.		We	will	
elaborate	this	notion	in	the	following	discussion.		First	there	are	some	preliminaries.		
Consider	 an	 applied	 magnetic	 field	 in	 a	 region	 of	 plasma	 such	 that	∇×! = 0 .		
Introduce	an	artificial	gravity	g	such	that	

	 	 	 v g = v∇⊥B
+vcurv ⇒ g =

v||2 +v⊥2
R

κ̂ 	 	 	 											(8.B.31)	

where	!	is	the	magnetic	curvature	unit	vector	and	R	is	the	radius	of	curvature	of	the	
magnetic	field	line.	
	
Example:	 Consider	 a	 plasma	 in	 pressure	 balance	 with	 an	 applied	 magnetic	 field.		
When	 the	 magnetic	 field	 is	 a	 minimum	 (maximum)	 in	 the	 plasma,	 the	 plasma	 is	
stable	(unstable)	with	respect	to	perturbations,	as	shown	in	the	important	paper	by	
Rosenbluth	and	Longmire	on	interchange	instability.77	
	

Definition:	Field	lines	are	be	mapped	by	
dx
Bx

=
dy
By

=
dz
Bz
, B(x,t)=(Bx ,By ,Bz ) 			(8.B.32)	

	
Definition:	The	magnetic	flux	Φ(!)	is	defined	by	the	integral	over	an	area	bounded	
by	the	curve	C:			
																																																								
77	M.	N.	Rosenbluth	and	C.	Longmire,	Ann.	Phys.	1,	120	(1957).	
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	 	 	 	 	 Φ(C)≡ B ⋅d !σ
C!∫ 	 	 	 											(8.B.33)	

Introduce	 the	 differential	 line	 element	 d
!
ℓ 	on	 the	 bounding	 curve	 C.	 The	 time	

derivative	 of	 the	 surface	 integral	 in	 Eq.(8.B.33)	 has	 contributions	 from	 the	 time	
derivative	of	the	magnetic	field	and	from	the	time	derivative	of	the	contour	C		
( d
!
ℓ×uL gives	 the	 time	 derivative	 of	 the	 differential	 parallelogram	 which	 can	

intercept	 magnetic	 fields	 lines	 and	 can	 contribute	 to	 the	 time	 derivative	 of	 the	
magnetic	flux).		We	calculate	the	time	derivative	of	Eq.(8.B.33)	and	constrain	it	to	be	
zero:	

	 									

d
dt
Φ(C)= uL ×d

!
ℓ( ) ⋅B+ ∂B

∂t
⋅d
!
σ

⎡

⎣
⎢

⎤

⎦
⎥

C
!∫ = −d

"
ℓ ⋅ uL ×B( ) ⋅+∂B

∂t
⋅d
!
σ

⎡

⎣
⎢

⎤

⎦
⎥

C
!∫

= d
"
σ ⋅ −∇× uL ×B( ) ⋅+∂B

∂t
⋅

⎡

⎣
⎢

⎤

⎦
⎥

C
!∫ ≡0

							(8.B.34)	

using	the	Stokes’	theorem.	 	The	constraint	that	the	time	derivative	of	the	magnetic	
flux	vanishes	imposes	a	condition	that	determines	!! .	
	
Theorem:	 (Field-line	 velocity)	 Setting	 the	 terms	 inside	 the	 area	 integral	 equal	 to	
zero	in	the	final	expression	on	the	right	side	of	Eq.(8.B.34)	and	use	of	Faraday’s	law	
yield	

	

−∇× uL ×B( )+ ∂B
∂t

=0= c∇×E+ ∂B
∂t

→∇× E+1
c
uL ×B

⎛

⎝
⎜

⎞

⎠
⎟=0 → E+1

c
uL ×B=−∇χ(x,t)

	 											(8.B.35)	

Equation	(8.B.35)	is	only	a	condition	on	uL ⊥B .	 	The	component	of	uL ||B 	does	not	
matter	at	all.	So	we	only	consider	uL ⊥B 	as	a	postulate.		If	we	take	the	component	of	
the	last	expression	in	Eq.(8.B.35	)	parallel	to	the	magnetic	field	

	 	 E|| =−b̂⋅∇χ(x,t) → χ(ℓ)=− dℓ'
0

ℓ

∫ E||(ℓ') 	 	 											(8.B.36)	

integrated	 along	 the	 field	 line.	 	 This	 determines	 the	 order	 of	!,	 viz.,	!	is	 the	 same	
order	as	E||~O(!).		The	component	of	!!	perpendicular	to	the	magnetic	field	is	then	

	 	 	
uL = c

E× b̂
B

+c
∇

⊥
χ × b̂
B

uE ~O(1) O(ε)
	 	 	 	 											(8.B.37)	

We	recall	that	v
⊥
=uE +vd .		Hence,	 v⊥ −uL =O(ε) ;	and	the	field	lines	are	then	tied	to	

the	fluid	velocity	at	leading	order.		In	this	sense	the	plasma	is	tied	to	the	field	lines.			
	 The	 field-line	 velocity	 is	 a	 construct.	 	 There	 is	 significant	 ambiguity.	 	 We	
know	how	 to	 relate	 the	values	of	!	along	 the	 same	 field	 line	 from	Eq.(8.B.37),	 but	
not	across	the	field	lines.		We	can	illustrate	the	ambiguity	of	the	field-line	velocity	in	
the	following	examples.	
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Example:	Suppose	B	is	uniform	and	static,	and	E=−∇φ .		Further	assume	that	!	has	
no	spatial	derivative	along	the	magnetic	field	lines	so	that	only	E

⊥
≠0 .		Two	choices	

for	!	can	be	made.	 	(a)	! = 0	everywhere,	in	which	case	uL =uE .	 	(b)	! = !,	so	that	
both	 are	 constant	 along	 the	 field	 lines.	 	 Then	 from	 Eq.(8.B.37)	uL =0 .	 	 Thus,	 the	
possible	ambiguity	in	constructing	the	field	line	velocity	is	obvious.	
		
	 It	is	useful	to	introduce	auxiliary	functions	to	characterize	the	magnetic	field	
lines.	 	Consider	 labeling	 functions	!	and	!	such	that	!Φ!"#$ = !"!#.	 	 (!,!)	labels	a	
field	 line	 emerging	 normally	 from	 a	 curvilinear	 (!,!)	surface.	 	 A	 third	 coordinate	
! along	 the	 field	 line	 is	 needed.	 	 These	 labels	 (Euler	 potentials)	 can	 be	 used	 to	
calculate	the	magnetic	field.	
	
Definition:	 The	 differential	 length	 along	 a	 field	 line	 is	!ℓ = ℎ !,!,! !" .	 	 For	
example,	if	! = !	then	ℎ = !,	where	r	is	the	local	radius	of	curvature	of	the	field	line.	
	
	 A	magnetic	field	can	be	represented	as		

	 	 	 	 B= ∇α ×∇β( )Λ(α ,β ,σ ) 	 	 	 											(8.B.38)	

where	Λ(!,!,!)	is	a	scalar	function.		Given	Eq.(8.B.38)	then					
			 	 	 B ⋅∇α =0 B ⋅∇β =0 dα

B
α

=
dβ
B
β

	 	 	 											(8.B.39)	

so	that	!	and	!	can	be	used	as	field	line	labels.	The	differential	magnetic	flux	is	
	 	 dΦ≡B ⋅da=dxdy ẑ ⋅∇α ×∇β( )Λ =dxdy J α ,βx , y

⎛

⎝
⎜

⎞

⎠
⎟Λ =dαdβΛ 												(8.B.40)	

where	 J	 is	 the	 Jacobian	of	!	and	!	with	respect	 to	x	 and	y.		In	 this	example	we	can	
take	Λ = 1;	and	then	Eq.(8.B.38)	is	the	Clebsch	representation	for	the	magnetic	field.	
The	 Clebsch	 representation	 guarantees	 that	 the	magnetic	 field	 is	 divergence	 free,	
but	does	not	guarantee	that	the	magnetic	field	has	no	curl.	
	
Examples:	Magnetic	field	configurations	(Figure	8.B.1)	
1.	Straight	wire	carrying	current	I	

	 	 α(r;I)=2I lnr β = z σ =θ → B= 2I
r
θ̂ Φ=2Iz ln r2

r1
	 										(8.B.41)	

2.	Axisymmetric	poloidal	field	–	magnetic	mirror	

					Select	 the	 z	 dependence	 of	 Bz,	 e.g.,	 for	 a	 simple	 mirror	!! = !!(1+ !!
!!)	in	 the	

paraxial	limit.		Then	

	 						α =
1
2r

2B0(1+
z2

L2
) β =θ σ = z Br =−rB0z /L2 B

θ
=0 		 										(8.B.42)	

Note	that	∇×B=−
rB0
L2
θ̂ ,	which	is	non-zero,	but	is	higher	order	in	the	paraxial	limit.	
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Figure	8.B.1	Magnetic	field	configurations:	(a)	mirror,	(b)	dipole,	and	(c)	tokamak.	
	
3.	Dipole	field	
	 !(!, !)	enumerates	the	field	lines.	! = !	is	like	a	latitude	along	the	field	line.	
! = !	is	 the	 longitude.	 	 	 The	 Clebsch	 representation	 for	 the	 dipole	magnetic	 field	
with	magnetic	moment	!	in	spherical	polar	coordinates	is	
	 	 				α =

sinθ
r2

µ β =φ Br =
cosθ
r3

µ B
θ
=
2sinθ
r3

µ B
φ
=0 	 											(8.B.43)	

4.	Toroidal	magnetic	field	
	 In	cylindrical	coordinates	a	model	toroidal	field	is	described	by	

	 						

α =
µrsinθ

(a2 +2arsinθ + z2)3/2
β = z σ =θ

B(z ≈0)≈ µcosθ (2a+rsinθ )
(a+2rsinθ )5/2

r̂−µsinθ (2a+rsinθ )
(a+2rsinθ )5/2

+Bzẑ

Bz(r ≈0)≈
2µ

(a2 + z2)3/2

	 											(8.B.44)	

5.		Tokamak	magnetic	field	
	 In	cylindrical	coordinates	(!,!, !)	a	model	axisymmetric	tokamak	field78	can	
be	derived	from	

	 	
B=B

φ
(R,z)ê

φ
+Bp(R,z) Bp =∇× A

φ
ê
φ
A
φ
=−

1
R
ψ

→BR =
1
R
∂ψ
∂z

Bz =−
1
R
∂ψ
∂R

		 											(8.B.45)	

	 	
The	toroidal	magnetic	field	!!	is	determined	by	external	current-carrying	coils.		The	
poloidal	 field	 Bp	 is	 determined	 by	 toroidal	 plasma	 currents	 and	 an	 externally	
imposed	vertical	magnetic	field.	
	

Exercise:	Show	that	 A
φ
ê
φ
=α∇β ,	determine	!	and	!,	and	check	against	Ref.	78.	

																																																								
78	A.	N.	Kaufman,	Phys.	Fluids	15,	1063	(1972). 
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	 We	return	to	the	analysis	of	field	line	motion	leading	to	Eqs.(8.B.35-8.B.37)	to	
demonstrate	 that	with	 the	Clebsch	 representation	 the	 field	 line	 labels	advect	with	
the	field	line	velocity	uL	such	that	

	 	 	
dα
dt L

=
∂α(x,t)
∂t

+uL ⋅∇α(x,t)=0 	 	 	 											(8.B.46)	

and	similarly	for	!.		Using	the	identity	B=∇α ×∇β =∇×(α∇β) ,	then	

	 	 E =−∇φ −1
c
∂

∂t
(α∇β)=−∇φ −1

c
∂α
∂t

∇β +α∇
∂β
∂t

⎛

⎝
⎜

⎞

⎠
⎟ 	 	 											(8.B.47)	

We	then	use	Eq.(8.B.46)	and	the	equivalent	for	!	to	evaluate	

	 	

1
c
uL ×B=

1
c
uL ×(∇α ×∇β)=

1
c
∇α uL ⋅∇β −∇β uL ⋅∇α⎡
⎣

⎤
⎦

=−
1
c
∇α

∂β
∂t

−∇β
∂α
∂t

⎡

⎣
⎢

⎤

⎦
⎥

	 											(8.B.48)	

	
Recalling	Eq.(8.B.35)	
	 	
	

E=−1
c
uL ×B−∇χ(x,t)=

1
c
∇α

∂β
∂t

−∇β
∂α
∂t

⎡

⎣
⎢

⎤

⎦
⎥−∇χ(x,t)=−∇φ −1

c
∂α
∂t

∇β +α∇
∂β
∂t

⎛

⎝
⎜

⎞

⎠
⎟

⇒ −∇χ(x,t)=−∇φ −1
c
∇ α

∂β
∂t

⎛

⎝
⎜

⎞

⎠
⎟ ⇒ χ(x,t)=φ +1

c
α
∂β
∂t

	

	 	 	 	 	 	 	 	 	 	 											(8.B.49)	
	
up	to	an	arbitrary	constant.	 	Equation	(8.B.49)	 is	quite	general,	and	no	ordering	 is	

involved.		However,	!~!(!);	so	!	and	 !! !"/!"	nearly	cancel.	
	
Example:	For	an	electrostatic	model	∇×! = 0	and	! = −∇!,	 there	are	two	possible	
choices	for	the	Euler	potentials:	

1   ! = 0						!"!" = −! !!	
2   ! = !						!"!" = 0	

However,	for	a	proper	ordering	only	(1)	is	consistent;	and	(2)	is	inconsistent	unless	
!	is	sufficiently	weak.	
	

8.B.d	Guiding-center	Lagrangian	using	Euler	potentials	and	Clebsch	representation	
recovering	guiding-center	drifts	
	
	 We	return	to	the	general	consideration	of	field-line	motion	as	in	Eq.(8.B.46)	
and	the	guiding-center	Lagrangian:	
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dg.c .β
dt

=
∂β(x,t)
∂t

+V ⋅∇β(x,t)

Lg.c . = −eφ + e
c
v ⋅A+12mV

2 −µB(R ,t)

O(ε−1)? O(ε−1) O(ε−1) O(1) O(1)

→Lg.c . = −e χ −
α
c
∂β
∂t

⎛

⎝
⎜

⎞

⎠
⎟+
eα
c
!β − ∂β

∂t

⎛

⎝
⎜

⎞

⎠
⎟+
1
2mV

2 −µB(R ,t)

=−eχ + eα
c
!β +12mV

2 −µB(R ,t)
O(1) O(1) O(1) O(1)

	 											(8.B.50)	

We	recall	from	Sec.	8.B.C	that		

				E|| =−b̂⋅∇χ V =Vg.c. =V⊥ +V||b̂=uL +O(ε)+ b̂h !σ V2 =uL
2 +h2 !σ 2 +O(ε) 									(8.B.51)	

From	Eqs.(8.B.50)	and	(8.B.51)	we	have	

	 Lg.c . =−eχ(α ,β ,σ ,t)+
eα
c
!β +12muL

2(α ,β ,σ ,t)−µB(α ,β ,σ ,t) 																		(8.B.52)	

where	every	 term	is	O(1)	and	there	 is	no	mixing	of	velocity	and	coordinates.	 	The	
first,	 third,	 and	 fourth	 terms	 on	 the	 right	 side	 of	 Eq.(8.B.52)	 are	 potential	 energy	
terms	(with	a	minus	sign);	and	the	other	terms	are	kinetic	energy	terms.			
	 There	 is	 a	 problem	 with	 the	 Lagrangian	 in	 Eq.(8.B.52),	 which	 is	 revealed	
when	we	calculate	the	α		momentum	from	the	Lagrangian	equation:		

	 	 	 	 p
α
=
∂L
∂ !α

=0 	 	 		 	 	 											(8.B.53)			

This	is	erroneous.		Consider	the	Hamiltonian	derived	from	the	same	Lagrangian:	

	
H = p

α
!α +p

β
!β +p

σ
!σ −Lg.c. =

eα
c
!β +mhV|| !σ −

eα
c
!β +eχ

=mV||
2 −
1
2mh

2 !σ 2 −
1
2muL

2 +µB+eχ =
p
σ
2

2mh2
+µB+eχ −12muL

2
	 											(8.B.54)	

The	 last	 term	 on	 the	 right	 side	 of	 Eq.(8.B.54)	 is	 a	 constraint	 associated	 with	 the	
moving	 field	 line.	 This	 H	 is	 not	 equal	 to	 the	 energy	 associated	 with	 the	 guiding	
center	motion.			
	 If	instead	of	the	guiding	center	Lagrangian	in	Eq.(8.B.52),	we	use		

	 	 	 Lg.c . =−eχ −µB+
eα
c
!β +12mV

2 	 	 	 											(8.B.55)	

where		

	 	 	 V = dR
dt
(α ,β ,σ ,t)= ∂R

∂t
α ,β ,σ

+ !α ∂R
∂α

+ !β ∂R
∂β

+ !σ ∂R
∂σ

	 											(8.B.56)	

The	first	term	on	the	right	side	of	Eq.(8.B.57)	is	uL	the	field	line	velocity	and	is	O(1);	
the	second	and	third	terms	are	O(ε)	drifts	off	the	field	line;	and	the	last	term	is	the	
velocity	along	the	field	line	which	is	also	O(1).		Now	proceed	to	obtain	the	equations	
of	motion	from	the	Lagrangian	equations:	
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p
β
≡
∂L
∂ !β

=
e
c
α +mV ⋅ ∂R

∂β

p
α
=mV ⋅ ∂R

∂α
p
σ
=mh2 !σ

	 	 	 										(8.B.57)	

We	 see	 that	!! 	is	 non-zero,	 and	 this	 degree	 of	 freedom	 cannot	 be	 removed.		
Furthermore,	

															 	

!p
β
=
d
dt

e
c
α +mV ⋅ ∂R

∂β

⎛

⎝
⎜

⎞

⎠
⎟=

∂L
∂β

=−e∂χ
∂β

−µ
∂B
∂β

+
1
2m

∂V 2

∂β

!α = c
e
∂

∂β
1
2mV

2 −eχ −µB
⎛

⎝
⎜

⎞

⎠
⎟−
mc
e
d
dt

V ⋅ ∂R
∂β

⎛

⎝
⎜

⎞

⎠
⎟

!β =− c
e
∂

∂β
1
2mV

2 −eχ −µB
⎛

⎝
⎜

⎞

⎠
⎟+
mc
e
d
dt

V ⋅ ∂R
∂α

⎛

⎝
⎜

⎞

⎠
⎟

	 											(8.B.58)	

The	 second	 and	 third	 equations	 are	!(!)	equations	 and	 include	 the	 polarization	
drifts.	 	 One	 can	 recognize	 terms	 that	 derive	 from	 the	 Hamiltonian	 equations	 in	
canonical	variables	using	!(!) ≡ !

!!!! − !" − !".	
	
Exercise:	Interpret	all	the	relevant	drifts	that	appear	in	Eqs.(8.B.57)	and	(8.B.58).	
	
	 At	O(1)	the	equation	of	motion	along	the	field	line	is	

	 	 	 md
dt
(h2 !σ )= ∂

∂σ
(12mV2 −eχ −µB) 	 	 	 											(8.B.59)	

In	 Cartesian	 form	 it	 is	 straightforward	 to	 relate	 Eq.(8.B.59)	 to	 earlier	 formulae.		
Once	again	we	note	that	the	motion	across	the	magnetic	field	lines	is	O(!)	and	O(1)	
along	the	field	line.		So	we	freeze	the	motion	across	the	field	lines	and	only	study	the	
motion	along	the	field	line	for	the	moment.			Through	O(1)			

			 												 L
σ
(σ , !σ ;t;α ,β) =−eχ −µB+12muL

2 +
1
2mh

2 !σ 2 , p
σ
≡
∂L
∂ !σ

=mh2 !σ 			(8.B.60)	

Theorem:	The	Hamiltonian	through	O(1)	is	then	

	 															 H
σ
= !σp

σ
−L

σ
=

p
σ
2

2mh2
+eχ(σ ,t)+µB(σ ,t)−12muL

2(σ ,t) 	 											(8.B.61)	
We	require	that	!! 	is	essentially	time	independent	through	O(1),	i.e.,	we	require	
																																

∂

∂t
B ,χ ,uL ,h( )~O(ε), i.e.,	 2π

ωB

<<
B
∂B
∂t

⎛

⎝
⎜

⎞

⎠
⎟

	 	 	 											(8.B.62)	

Thus,	we	postulate	that	
!
!"! = !

!"! = !(!);	so	H	is	a	constant	of	the	motion	through	
O(1).	 	This	energy	 is	 the	sum	of	 the	parallel	kinetic	energy,	 the	electrical	potential	
energy,	 and	 the	 perpendicular	 kinetic	 energy	 (!"),	 less	 the	 constraint	 energy	
−!
!!!!!(!, !)	associated	with	the	moving	field	line.	
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8.B.e	Canonical	transformations,	orderings,	and	derivation	of	approximate	constants	
of	the	motion	
	
	 To	 further	 simplify	 the	 analysis,	 we	 assume	 that	!!~!(!),	 which	 loses	 the	
polarization	drift	and	is	a	great	restriction.		Under	this	assumption	the	O(1)	guiding	
center	Lagrangian	is	

	 		 	 Lg.c . =−eχ −µB+
e
c
α !β +12mh

2 !σ 2 	 	 	 											(8.B.63)	

which	leads	to	

	 				 p
β
=
∂L
∂ !β

=
e
c
α p

α
=
∂L
∂ !α

=0 Hg.c .(α ,β ;σ ,pσ ;t)=
p
σ
2

2mh2
+eχ +µB 												(8.B.64)	

There	are	two	degrees	of	freedom	for	the	motion	perpendicular	to	the	field	lines,	!	
and	! (which	are	conjugate),	and	two	degrees	of	freedom	for	the	motion	parallel	to	
the	field	line,	!	and	!! ,	plus	a	degree	of	freedom	for	the	bounce	motion,	t.		We	have	
thrown	 away	 the	 motion	 associated	 with	 the	 polarization	 drift.	 	 From	 the	
Lagrangian	equations	of	motion	

	 	

O(ε): !α = c
e
!p
β
=−

c
e
∂H
∂β

!β = ∂H
∂p

β

=
c
e
∂H
∂α

O(1): !σ =
∂H
∂p

σ

=
p
σ

mh2
!p
σ
=−

∂H
∂σ

	 	 	 											(8.B.65)	

We	 note	 that	 if	 we	 freeze	!,!, ! 	then	!"/!" = !(!) .	 With	 the	 two	 degrees	 of	
freedom	!	and	!! ,	and	other	quantities	slowly	varying,	there	is	an	action	that	is	an	
adiabatic	invariant,	which	we	have	previously	demonstrated.	
	

Definition:					 J
σ
(H ,α ,β)≡ 1

2π p
σ!∫ dσ =

1
2π 2mh2(H−eχ −µB)!∫ dσ 																				(8.B.66)	

	

With	! 	and	! 	slowly	 varying,	 i.e.,	2!/!! ≪ ! !" !" ,  the	 bounce	 action	!! 	is	
conserved	through	O(1):		 !J

σ
=O(ε) !J

σ
=O(ε2) .			The	hierarchy	of	time	scales	is	as	

follows:		!/!!!	is	the	gyro	time	scale;		!	is	the	bounce	time	scale;	and	!!!!	is	the	drift	
time	scale,	which	 is	 the	slowest.	 	Over	 the	drift	 time	scale	 the	bounce	action	 is	an	

invariant	 to	!(!):	 	 !J
σ
τdrift ≡

!J
σ

t
ε
=Δ J

σ
=O(ε) .	 	 Now	 we	 can	 introduce	 action-

angle	variables	for	!(!! ,!!;!,!)	by	constructing	a	generating	function	S	to	perform	
the	canonical	transformation	as	we	have	done	in	earlier	lectures	(see	Sec.	8.A.c).	
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LECTURES	ON	THEORETICAL	PLASMA	PHYSICS	
–	PART	4B	
Allan	N.	Kaufman	
	
8.C	Guiding	center	theory	and	hydromagnetic	equations	
	
	 This	section	of	the	lecture	notes	presents	the	systematic	derivation	of	a	fluid	
theory	 of	 a	 plasma	 beginning	 with	 the	 guiding-center	 equations	 of	 motion	 and	
distribution	 functions.	 The	 formalism	 will	 include	 considerations	 of	
magnetohydrodynamic	(MHD),	ballooning,	and	resistive	MHD	stability.	
	

8.C.a	Derivation	of	distribution	functions	and	lowest-order	velocity	moments	from	
guiding-center	theory	
	
	 We	construct	particle	distribution	functions	in	a	six-dimensional	phase	space	
representing	 guiding-center	 motion:	 	 	 (!,!!;!,!!;!,!) .	 	 The	 actual	 particle	
positions	 corresponding	 to	(!,!, !, v! , v! , v!)	in	 phase	 space	 are	 not	 in	 the	 same	
place!	 	However,	we	can	calculate	the	number	of	particles	 in	a	small	volume	of	6D	
phase	space	centered	around	a	specific	location	in	either	representation:	

	
f (x , y ,z;v x ,v y ,v z )d6V = f (x , y ,z;v x ,v y ,v z )dxdydzdv xdv ydv z

= F(µ ,θg ,σ ,pσ ;α ,β)d6 V = F(µ ,θg ,σ ,pσ ;α ,β)dαdβdpσdµdθg
									(8.C.1)	

where	

	 	 d6 V
d6V

= J
αβσp

σ
µθg

xyzv xv yv z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟= const 	 	 	 	 	 (8.C.2)	

for	 canonical	 transformations,	 and	 the	 constant	 in	 Eq.(8.C.2)	 has	 factors	 like	 c/e.		
Hence,	 f=F	 apart	 from	 some	numerical	 constants.	 	We	 can	 calculate	moments	 of	 f	
and	relate	them	to	moments	of	F.		For	example,	the	number	density	is	given	by	
	 	 	 n(x , y ,z)= dv x∫ dv ydv z f 	 	 	 	 	 (8.C.3)	
and	 similarly	 for	 the	 current	 density	 j(x,y,z)	 with	 the	 inclusion	 of	 ev	 inside	 the	
integrand	on	 the	 right	 side	of	 Eq.(8.C.3).	 	 It	 is	 significant	 that	 f	 includes	 the	 rapid	
variation	due	to	the	gyro	motion,	but	F	should	have	a	much	slower	variation	because	
we	 expect	 that	 the	 gyro	 phase	 will	 be	 randomly	 distributed.	 	 In	 order	 that	 the	
moments	 and	 fields	 have	 a	 slow	 temporal	 variation,	 we	 expect	 F	 to	 have	 a	 slow	
variation.	
	 We	can	compute	the	number	density	using	F	as	follows:	
	 	 	 	 	 	 	 (8.C.4)	n(x)= d6 V∫ δ x−x(αβσp

σ
µθg)( )F
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using	 the	!	function	 to	obtain	 a	density	 in	 the	 configuration	 space	of	 the	particles	
and	 x(α ,β ,σ ,p

σ
,µ ,θg)=R(α ,β ,σ )+r(µ ,θg) .	 We	 expand	 inside	 the	 integrand	 in	

Eq.(8.C.4)	in	a	Taylor	series	for	small	r:	

						δ(x−R−r)= e−r⋅
∂

∂xδ(x−R)=δ(x−R)−r ⋅ ∂
∂x
δ(x−R)+12 r ⋅ ∂

∂x

⎛

⎝
⎜

⎞

⎠
⎟

2

δ(x−R)+ ... 	 (8.C.5)	

to	obtain	

									n(x)= d6 V∫ Fδ(x−R)− ∂
∂x

⋅ d6 V rF∫ δ(x−R)+12∇∇ : d6 V rrF∫ δ(x−R)+ ... 	 (8.C.6)	
or,	alternatively,	

	 n(x)= d6 V e−r⋅
∂

∂x∫ Fδ(x−R)→N(x)+ ....=N(x)+ 14∇⊥

2 N ρ2( ) 	 	 (8.C.7)	

where	 N(x)	 is	 the	 density	 of	 guiding	 centers	 at	 x,	 ∇
⊥

2 ≡(I− b̂b̂):∇∇ ,	 and	

dµr ⋅r∫ F→< ρ2 > .	 	We	note	 the	 alternative	 expression	 for	n(x)	 correct	 to	 leading	
order	terms	obtained	by	expanding	the	Bessel	function	after	averaging	over		!!:	

			n(x)= d6 V e−r⋅
∂

∂x∫ Fδ(x−R)→ d6 V J0(k⊥ρ)∫ Fδ(x−R)= d6 V J0(−i∇⊥
ρ)∫ Fδ(x−R) 	

	 	 	 	 	 	 	 	 	 		 	 (8.C.8)	
	 Now	consider	the	current	density.		The	flux	density	is	

				

!
Γ(x)= d6 V∫ Fδ(x−x(...))v = d6 V∫ F δ(x−R)−r ⋅∇δ(x−R)( )(V+ !r)

=N V (x)−∇⋅N r!r (x)=N V (x)− 1
2∇⋅ N < ρ

2 >Ω(ê2ê1 − ê1ê2)⎡
⎣

⎤
⎦+ ...

=N V (x)− 1
2∇× NΩ< ρ2 > b̂( )

	 (8.C.9)	

using	 !r = ρΩ(−ê2 sinθg + ê1 cosθg) 	and	 the	 inner	 product	 with	 the	 anti-symmetric	
dyadic	 ê2ê1 − ê1ê2 	leads	to	the	cross	product.	 	The	first	term	in	the	final	expression	
for	the	flux	density	in	Eq.(8.C.9)	is	the	product	of	the	guiding-center	density		and	the	
average	guiding-center	velocity.			The	second	term	leads	to	the	diamagnetic	current	
or	magnetization	current.	

Definition:	The	magnetization	isM(x)≡N(x) −µb̂ (x) 	where	µ = e
2cΩρ

2 								(8.C.10)	

	
Theorem:	The	current	density	is	given	by	
	 	 	 j(x)= e

!
Γ(x)= eN <V >+c∇×M(x) 	 	 	 											(8.C.11)	

The	 first	 term	 in	 Eq.(8.C.11)	 is	 the	 guiding-center	 current	 density	 and	 the	 second	
term	is	identified	as	the	diamagnetic	current	density.	
	
Examples:	
1.	Consider	a	plasma	with	finite	gradients	∇! and ∇!	in	the	x	direction	with	uniform	
magnetic	 field	 in	z.	 	 In	 consequence	of	 the	particle	 gyration	 and	 the	 gradient	 in	n	
there	is	a	net	current	in	the	y	direction.	
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!
Γdiamagnetic =−

1
2∇× NΩ< ρ2 > b̂( )= 1

2Ωb̂×∇ N < ρ2 >( )≠0 	 											(8.C.12)	

However,	there	is	nothing	implied	with	respect	to	the	guiding-center	flux	
!
Γgc 	which	

can	be	zero.	
2.	 Assume	∇! = 0 = ∇!,	 but	∇Ω ≠ 0.	 	 The	 gradient	 in	 the	magnetic	 field	 does	 not	
produce	 a	 total	 net	 flux.	However,	 there	 is	 a	 finite	 particle	 drift	 due	 to	∇!,	which	
yields	 a	 finite	 guiding-center	 flux	 and	 a	 finite	 diamagnetic	 flux	 Eqs.(8.C.9)	 and	
(8.C.12).			
Exercise:	Show	the	details.	
3.	A	stress	tensor	can	be	calculated	from	

!
p(x)=nm (v−< v >)(v−< v >) (x)= p||b̂b̂+p⊥(

!
I − b̂b̂), p|| = ..., p

⊥
= ... 		(8.C.13)	

Exercise:	 Show	 that	∇⋅
!
p= 1

c
j×B+enE−nm d

dt
<u> ,	 i.e.,	momentum	balance,	where	

! = !!=!(!!" + !!"#$#%&'("))	.					
	

8.C.b	Hamiltonian	theory	and	Liouville’s	theorem	
	
	 In	Eq.(8.C.8)	an	expression	was	derived	for	! ! = ! ! + !(!!)	where	! ! 	
is	the	guiding	center	density	at	!.	 	Introducing	a	coordinate	transformation	we	can	
express	the	number	of	guiding	centers	in	a	volume	dxdydz	as	
	 	 N(x , y ,z)dxdydz =N (α ,β ,σ )dαdβdσ 	 	 	 											(8.C.14)	
The	Jacobian	relating	!"!#!$	to	dxdydz	is	
	 J = dαdβdσ

dxdydz
= J αβσ

xyz

⎛

⎝
⎜

⎞

⎠
⎟=∇α ×∇β ⋅∇σ =B b̂⋅∇σ =B dσ

dℓ
=
B
h
	 											(8.C.15)	

where	h	is	the	field-line	metric.		The	guiding-center	density	is	
	 	 N (α ,β ,σ )≡ F(µ ,σ ,p

σ∫ ,α ,β)dµdp
σ
		 	 	 											(8.C.16)	

and	

	 	 N(x , y ,z)= B(α ,β ,σ )
h(α ,β ,σ )N (α ,β ,σ ) 	 	 	 	 											(8.C.17)	

Recall	 from	 Eqs(8.C.1)	 and	 (8.C.2)	 that	 although	 F	 has	 no	 fast	 gyro	 time	 scale	
variation,	 while	 f	 does;	 F	 differs	 from	 f	 only	 by	 some	 constants,	 which	 is	 a	
consequence	of	the	canonical	transformations.		Under	certain	conditions,	F	is	just	a	
function	 of	 canonical	 variables.	 	 Assuming	 that	 uL	 is	!(!)	as	 in	 Eq.(8.B.64)	 the	
lowest-order	guiding	center	Hamiltonian	is	

	 	
Hg.c .(α ,β ;σ ,pσ ;t)=

p
σ
2

2mh2
+eχ +µB

	
through	 !(1) .	 	 With	 ! and ! 	frozen,	 there	 is	 only	 one	 degree	 of	 freedom	
corresponding	 to	 the	bounce	motion;	and	!(!,!! , !)	satisfies	a	Vlasov	equation	 for	
one-dimensional	motion.			
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Theorem:	 Liouville	 equation	 for	 a	 Hamiltonian	 system	 with	 one-dimensional	
motion:	

																	 d
dt
F(σ ,p

σ
,t)≡ ∂

∂t
+ !σ ∂

∂σ
+ !p

σ

∂

∂p
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
F(σ ,p

σ
,t)=0 	 	 											(8.C.18)	

	 Equation(8.C.18)	 and	 Maxwell’s	 equations	 with	 appropriate	 boundary	 and	
initial	 conditions	 provide	 a	 closed	 system	 of	 equations.	 	 	 	 With	 this	 system	 of	
equations	one	can	look	for	time-independent	solutions	for	equilibrium	states.	 	One	
can	 linearize	about	 these	solutions	to	assess	waves	and	 instabilities.	 	One	can	also	
analyze	 nonlinear,	 time-dependent	 solutions,	 e.g.,	 BGK	 modes,	 mode	 coupling	
equations,	and	quasi-linear	equations.	
	 Consider	 the	 limit	 in	 which	 there	 is	 no	 explicit	 time	 dependence,	 i.e.,	
! /!" = 0.		Then	Eq.(8.C.18)	yields	Jeans’	theorem	for	!(!(!,!!)	
	 	 dF

dt
=
∂H
∂p

σ

dF
dH

∂H
∂σ

−
∂H
∂σ

dF
dH

∂H
∂p

σ

=0 	 	 	 	 											(8.C.19)	

In	general,	the	equilibrium	guiding-center	distribution	function	is	given	by	
	 	 F(µ ,σ ;p

σ
)= F(µ ,H(µ ,σ ,p

σ
)) 	 	 	 	 											(8.C.20)	

where	! and !	are	implicit.	To	lowest	order	the	particle	density	n(x)	is	the	same	as	
the	guiding	center	density:	

	 			n(x)= B
h

dµ
0

∞

∫ dp
σ

−∞

∞

∫ F(µ ,H)= B
h

dµ
0

∞

∫ dHp
σ

eχ+µB

∞

∫ −
∂F(H ,µ)
∂H

µ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 	 											(8.C.21)	

where	 we	 have	 integrated	 by	 parts:	 Fdp
σ
=d(Fp

σ
)−p

σ
dF ,	 	 and	 used	

d(Fp
σ
)

−∞

∞

∫ = Fp
σ −∞

∞
=0 	and	 dF

µ
=

∂F
∂H

dH
⎛

⎝
⎜

⎞

⎠
⎟
µ

.	 	 With	 p
σ
= 2mh2(H−eχ −µB)( )

1/2
	

Eq.(8.C.21)	becomes	

	 					n(x)=B(σ ) dµ
0

∞

∫ dH 2m(H−eχ −µB)( )
1/2

eχ+µB

∞

∫ −
∂F(H ,µ)
∂H

µ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 	 											(8.C.22)	

for	a	given	species.				
	 In	 the	 Coulomb	 plasma	 (electrostatics)	 Poisson’s	 equation	 for	 a	 singly	
charged	ion	species	is	
	 	 	 	 ∇2φ =−4πe(ni −ne ) 	 	 	 	 											(8.C.23)	

In	 the	 limit	 that	 L≡ φ / ∇2φ >> λD ,	 then	 ni ≈ ne to	O(λD /L)2 ,	 i.e.,	 the	 plasma	 is	

quasi-neutral;	and	one	can	solve	for	! ! 	from	ni(B ,χ )≈ ne(B ,χ ) .		From	the	solution	
for	! ! 	one	can	calculate	the	parallel	electric	field:	

																																																			E|| =−
dχ(B)
dσ

=−
dχ
dB

∂B
∂σ

		 	 											 											(8.C.24)	
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Example:	Magnetic	mirror	configuration	(Fig.	8.B.1a).		Assume	that	in	the	midplane	
of	the	mirror	(! = 0)	

	 	 	 f (σ =0;v
⊥
,v||)~e

−
mv||2

2T|| e
−
mv⊥2
2T⊥ = e

−
H−µB0−eχ

T|| e
−
µB0
T⊥ 	 	 											(8.C.25)	

B0	 is	 the	 magnetic	 field	 in	 the	 midplane.	 	! ! = 0 	can	 be	 set	 to	 zero	 by	 choice.		
Recall	that	F	is	a	function	of	H	and	!,	but	must	be	evaluated	at	a	particular	value	of	!.	

	Theorem:																																		F(H ,µ)~e
−
H−µB0−eχ

T|| e
−
µB0
T⊥ 						 	 	 											(8.C.26)	

	

Definition:	Defineβ||s ≡
1
T||s

	and	an	anisotropy	parameter	as ≡
T||−T⊥
T
⊥ s

.	

From	Eqs.(8.C.22)	and	(8.C.26)	we	calculate	

	 	 	 n(σ )= const e−β||eχ(σ ) b(σ )
a+b(σ ) , b≡

B(σ )
B0

	 	 											(8.C.27)	

for	each	species.		Then	quasi-neutrality	imposes	

	 	 	 Ci e
−β||ieχ(σ ) b

ai +b
=Ce e

β||eeχ(σ ) b
ae +b

	 	 	 											(8.C.28)	

Taking	! = 0	at	 the	 midplane	 where	 b=1,	 then	ci /(ai +1)= ce /(ae +1) :	 we	 choose	
ci =ai +1 and ce =ae +1 .		Elsewhere	than	the	midplane	ne /ni =1 ,	which	leads	to		

	 	
ae +b
ai +b

ai +1
ae +1

= e(β||e+β||i )eχ →(β||e +β||i )eφ = ln
ae +b
ai +b

ai +1
ae +1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 											(8.C.29)	

which	 determines	 !(!) .	 	 We	 note	 that	 if	 (T|| /T⊥)i =(T|| /T⊥)e →ae =ai 	then	

Eq.(8.C.29)	 dictates	φ(b)=0→E||(b)=0 .	 	 Thus,	 not	 only	must	 there	 be	 anisotropy,	
but	the	anisotropies	for	the	species	must	be	different	if	there	is	a	finite	E||.	
	
Theorem:	 (i)	 For	!|| ≠ 0	then	 anisotropy	 is	 necessary	 and	∂F(H ,µ)/∂µ ≠0 	(local	
anisotropy).	(2)	For	!|| ≠ 0	then	different	anisotropies	for	different	species.	
	
We	further	elaborate	the	solution	for	F	and	!(!)	in	a	magnetic	mirror	configuration.		
Consider	
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F(µ ,H)~e−β||(H+aµB0 ) a≡
T||−T⊥
T
⊥

n(σ )=nB(σ )nφ(σ )~
1+b'(σ )

1+b'(σ )T||
T
⊥

e
−
eχ(σ )
T|| b'= B(σ )−B0

B0

nB(σ )=
1+b'(σ )

1+b'(σ )T||
T
⊥

n
φ
(σ )= e

−
eχ(σ )
T||

												(8.C.30)	

A	plot	of	!!(!)	is	shown	in	Fig.	8.C.1	which	illustrates	that	the	density	variation		

	
Figure	8.C.1	!!(!)	vs.	!(!)/!!	from	Eq.(8.C.30)	

	
along	 the	 field	 line	depends	significantly	on	 the	relative	anisotropy.	 	We	note	 that	
the	duration	of	a	charged	particle	 in	a	segment	!ℓ	is	!ℓ/v||,	which	 implies	 that	 the	
duration	 increases	 near	 the	 turning	 point	 where	v|| → 0	and	 the	 density	 should	
increase.		However,	the	smaller	T||	is	relative	to	!!,	the	closer	the	turning	points	will	
be	to	the	midplane	of	the	mirror,	which	implies	that	the	density	will	decrease	away	
from	the	midplane.		When	the	temperatures	are	isotropic,	!!(!)	is	uniform.	
	

Exercise:	Assume	 f (z =0,v)~ v
⊥

2

v2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ℓ

g(v2) 	and	construct	!(!, !) → !(!).	 	Show	that	

! ! ~!!ℓ.		Construct	!∥ ! = !" v∥! 	and	evaluate	!"∥ ! /!".	
	

8.C.c	Derivation	of	lowest-order	hydromagnetic	equations	(MHD)	
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In	 this	 section	we	derive	a	 reduced	 set	of	Maxwell	 and	 fluid	equations,	 i.e.,	
the	 lowest-order	 hydromagnetic	 equations,	 magnetohydrodynamics	 (MHD).	 	 We	
begin	by	postulating	an	ordering	system.			As	a	first	pass,	assume	
	
!!!:	!,!,!!		
!!!:	e,	c,	B,	A, ! = !"/!"		
!!: !,!!,!, v,!! , !,!,!,!!/!!   (temporarily), !! 																																																			(8.C.31)	
!: !∥,!, v!, !! − !! ,Δ!	 	
	
At	 this	 point,	 !! 	and	 ! 	are	 not	 necessarily	 the	 same	 order.	 However,	 if	
!!!~!!~!(!!!),	consistent	with	!!

!
!~!!!~!!!,	 then	this	 implies	!~!(!!).	 	Now	

examine	the	relative	ordering	of	terms	in	Ampere’s	law:	
	

∇×B =
4π
c
J +

1
c
∂E
∂t

⇒ J~O(ε−2)

O(ε0)O(ε−1) O(ε)O(?) O(ε)O(1)O(1)
	 	 											(8.C.32)	

The	 time	dependence	of	all	motion	 is	assumed	to	be	slow	(adiabatic),	and	we	will	
throw	away	the	displacement	current	again	as	higher	order.		Thus,	!~!(!!!),	which	
is	consistent	with	!~!(!!!):	
	 j~nevd +c∇(nµ)~O(ε−2)O(ε−1)O(ε)+O(ε−1)O(1)O(ε−2)O(ε)~O(ε−2) 							(8.C.33)	
Consider	 the	 ordering	 of	! ≡ !

!!~
!"!!
!! ~ !!!!!

!!! = ! 1 .		 Returning	 to	 the	 reduced	
Ampere’s	law	Eq.(8.C.32):	

	 	 	 ∇×B= 4π
c
J ⇒ ∇⋅ J=0 	 	 	 	 											(8.C.34)	

Given	 !~!(!!!) ,	 we	 can	 evaluate	 u||i −u||e =
j||
ne
~ ε−2

ε−2ε−1
~O(ε) .	 	 Furthermore,	 the	

perpendicular	fluid	velocities	are	equal	to	the	field-line	velocity	to	leading	order,	i.e.,	
u
⊥
=uE +O(ε) .		Hence,	 !! − !! ~! ! .			

	
Theorem:	In	MHD	ordering,	!"~!(!!!)	is	appreciable,	while	the	velocity	difference	
between	ions	and	electrons	is	small,	! ! ,	to	give	large	currents,	!(!!!).		Electrons,	
ions,	and	field	lines	have	the	same	velocity	perpendicular	to	the	field	lines	to	leading	
order;	and	the	electrons	and	 ions	have	the	same	parallel	velocity	to	 leading	order.	
Hence,	a	single-fluid	model	is	justified.	
	
	 The	fluid	momentum	balance	equation	is		

	 	 nsms

∂

∂t
+us ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟us =−∇⋅ps +nsesE+

nses
c
us ×B+ ... 	 	 											(8.C.35)	

We	sum	Eq.(8.C.35)	over	 species	using	 !! − !! ~! ! ,	and	 the	net	 charge	density	
 !!and	the	electric	field	E	are	both	O(1)	to	obtain	the	follow	equation	retaining	only	
terms	at	! !!! :	



	 239	

	 	 	 ρm
∂

∂t
+u ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟u=−∇⋅p+1

c
j×B 	 	 	 											(8.C.36)	

where	!!	is	the	mass	density	and	p	is	the	total	pressure	summed	over	species.			
We	next	examine	the	ordering	of	the	Poisson	equation:	

−∇2φ =4πρc ~
1
L2
O(1)~O(1) ⇒ ρc ~e(ni −ne )~O(1) ⇒ Δn~O(1

e
)~O(ε) 		(8.C.37)	

Hence,	the	plasma	is	quasi-neutral.			
	
Theorem:	Summary	of	lowest-order	hydromagnetic	equations	 	

	 	

ρm
∂

∂t
+u ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟u=−∇⋅p+1

c
j×B=−∇⋅p+ 1

4π ∇×B( )×B

∂B
∂t

=∇× uL ×B( )~∇× u×B( )
∂

∂t
+u ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟n=−n∇⋅u →

∂

∂t
+u ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟ρm =−ρm∇⋅u

	 											(8.C.38)	

along	with	the	constraint	∇ ∙ ! = 0.		Equations(8.C.38)	constitute	three	equations	in	
four	 unknowns	(!!,!,!,!).	 	 	 A	 fourth	 equation	 must	 be	 added,	 which	 might	 be	
either	quite	ad	hoc	or	derived	 from	a	 collisional	 theory.	 	 For	example,	p	might	be	

assumed	 to	 be	 isotropic	 and	 satisfy	 an	 equation	 of	 state:	 D
Dt

pρm
−γ( )=0 .	 	 More	

generally,	the	pressure	is	a	tensor:		p= p||b̂b̂+p⊥
!
I − b̂b̂( ) .			

If	we	are	willing	to	solve	the	Vlasov	equation	in	guiding-center	variables	for	
the	distribution	 function	!! !,!!; !;!,!; ! ,	where	!	and	!	are	constant	 for	motion	
fixed	 to	 a	 particular	 field	 line,	 then	 the	 density	 and	 pressure	 moments	 can	 be	
calculated	from	F	s:	

						 n,p|| ,p⊥( )
s
≡
B
h

dµ dp
σ∫∫ 1,mv||2 = pσ2 /mh2 ,

1
2mv⊥

2 =µB
⎛

⎝
⎜

⎞

⎠
⎟F s(σ ,p

σ
;µ;α ,β ;t) 				(8.C.39)	

F	s	satisfies	the	Vlasov	equation:	

	 	

∂F
∂t
+ !σ ∂F

∂σ
+ !p

σ

∂F
∂p

σ

=0, !σ =
∂Hs

∂p
σ

, !p
σ
=−

∂Hs

∂σ

Hs =
p
σ
2

2msh
2 +µB+eχ −

1
2muL

2
	 	 											(8.C.40)	

where	

	 	 χ =φ +
1
c
α
∂β
∂t

∂(α ,β)
∂t

=−u ⋅∇(α ,β) 	 	 	 											(8.C.41)	

and	 the	 quasi-neutrality	 condition	 determines	 !. 		 The	 analytic	 solution	 of	
Eqs.(8.C.38-8.C.41)	 in	 the	 most	 general	 circumstances	 is	 not	 possible.	 	 The	
numerical	 solution	 can	 even	 prove	 difficult.	 	 Nevertheless,	 we	 wish	 to	 apply	 this	
formalism	to	non-uniform	plasmas;	and	we	want	to	do	a	stability	analysis.	
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8.C.d	Perturbation	theory	and	variational	principle	applied	to	MHD	
	
	 MHD	theory	has	received	much	attention	and	is	nicely	reviewed	in	books	by	
Friedberg,79	Callen80,	and	Bateman81	authored	since	 these	 lecture	notes	originated.		
The	basic	approach	pursued	in	MHD	stability	theory	is	to	linearize	the	equations	in	
all	 of	 the	 variables	with	 respect	 to	 a	 zero-order	 time-independent	 solution	 of	 the	
MHD	equations.		The	zero-order	equations	are	nonlinear	and	are	by	no	means	trivial	
to	solve	in	general	circumstances.			The	MHD	equation	set	admits	the	application	of	
a	 variational	 principle	 to	 investigate	 stability.	 	 Theories	 for	 ideal	 (non-resistive)	
MHD	with	no	flows	have	been	worked	out	in	papers	by	Bernstein,	Frieman,	Kulsrud,	
Kruskal,	Oberman,	Newcomb,	Taylor,	Hastie,	Chew,	Goldberger	and	Low,	and	others.		
Frieman	and	Rotenberg	extended	previous	work	to	include	rotation.		Coppi,	Glasser,	
Greene,	and	Johnson	extended	MHD	stability	theory	to	include	resistive	effects	and	
toroidal	geometry.		
	

8.C.e	Derivation	of	an	energy	principle	for	MHD	stability	using	self-adjointness	
	
	 Consider	 a	 model	 problem	 in	 which	 the	 pressure	 is	 an	 isotropic	 pressure	
satisfying		

	 	 	 1
p
D
dt
p=−γ∇⋅u γ ≡

cp
cv
=
5
3 		 	 	 											(8.C.42)	

	
or	 equivalently	!~!! .	 	 Such	 a	 relation	 can	 be	 derived	 from	 a	 Chapman-Enskog	
expansion	 of	 the	 kinetic	 equations.	 	 One	 can	 drop	 electron	 inertia	 effects	 in	 the	
electron	momentum	equation	with	no	lowest-order	flow	or	rotation	and	in	the	low-
frequency	limit	to	obtain	an	Ohm’s	law:	

	 	 	 	 E+1
c
u×B=ηJ 	 	 	 	 											(8.C.43)	

and	 order	 the	 resistivity	! 	to	 zero.	 	 There	 are	 four	 equations	 of	 evolution	 for	
!,!,!, and	B.		The	evolution	equations	lead	to	an	energy	conservation	law:	

	 	 dU
dt

=0 U(t)= d3x∫
B(x,t)2

8π +
p(x,t)
γ −1 + 1

2ρ(x,t)u(x,t)
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 											(8.C.44)	

																																																								
79	J.	P.	Freidberg,	Ideal	Magnetohydrodynamics	(Plenum	Press,	New	York,	1987).	
80	J.	D.	Callen,	Fundamentals	of	Plasma	Physics,	
http://homepages.cae.wisc.edu/~callen/book.html	
81	G.	Bateman,	MHD	Instabilities	(MIT	Press,	Cambridge,	Mass),	1978.	
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The	first	two	terms	on	the	right	side	of	Eq.(8.C.44)	contribute	to	a	potential	energy	
W(t)	and	the	third	term	is	a	kinetic	energy	K(t).			There	is	no	electrical	energy	term	
related	to	!!/8!	because	the	electric	energy	density	is	higher	order.	

The	equilibrium	is	stationary	by	definition	(! /!" = 0)	and	static	(!! ≡ 0)	by	
assumption.	 	 Hence,	!/!" = 0	in	 Eqs.(8.C.38)	 and	 (8.C.42).	 	 The	 only	 remaining	
equation	is	

			 	 	 ∇p= 1
c
J0 ×B0 =

1
4π ∇×B0( )×B0 	 	 	 											(8.C.45)	

Equation	 (8.C.45)	 is	 a	 statement	 that	 the	 Lorentz	 force	 balances	 the	 pressure	
gradient	 in	 establishing	an	equilibrium.	 	 Furthermore,	 the	pressure	gradient	must	
be	perpendicular	to	both	the	equilibrium	current	and	magnetic	field:	
	 	 	 B0 ⋅∇p0 =0 J0 ⋅∇p0 =0 	 	 	 	 											(8.C.46)	
and	 the	 equilibrium	 pressure	 is	 constant	 along	 the	 directions	 of	 the	 equilibrium	
magnetic	field	lines	and	the	currents.			
	 The	linearization	of	the	equations	in	the	stability	theory	begins	with	
	 	 u=δu B=B0 +δB J= J0 +δJ p= p0 +δp ρ = ρ0 +δρ 	 											(8.C.47)	
The	linearized	versions	of	Eqs.(8.C.38)	and	(8.C.42)	become	

	 	 	

ρ0
∂

∂t
δu=−∇⋅δp+1

c
δj×B+1

c
j×δB

∂δB
∂t

=∇× δu×B0( )
∂

∂t
δp+δu ⋅∇p0 =−γp0∇⋅δu

	 	 	 											(8.C.48)	

The	 linearized	 Ampere’s	 law	∇×!! = 4!"!/! 	allows	 us	 to	 substitute	 for	!! 	and	
reduce	the	dependent	variables	to	the	set	(!!, !!, !").		Equation	(8.C.48)	leads	to	

										
ρ0
∂2

∂t2
δu=−∇ −γp0∇⋅δu−δu ⋅∇p0⎡

⎣
⎤
⎦−

1
4π ∇× ∇× δu×B0( )⎡

⎣
⎤
⎦{ }×B0

+
1
c
j0 × ∇× δu×B0( )⎡

⎣
⎤
⎦≡F(δu)

	 											(8.C.49)	

F	 in	Eq.(8.C.49)	 is	a	 linear,	 second-order	differential	operator	 in	 space	and	 is	 self-
adjoint.	 	 Hence,	 its	 eigenvalues	 are	 real;	 and	 its	 eigenvectors	 can	 be	 made	
orthonormal.			
	
Definition:	A	self-adjoint	operator	satisfies	 d3∫ vol !η ⋅F(

!
ξ )= d3∫ vol

!
ξ ⋅F( !η) 	

	
The	self-adjointness	of	the	operator	F	was	proven	by	Kulsrud	and	shown	generally	
from	the	Lagrangian	nature	of	the	fluid	equations.82			
	

																																																								
82	R.	M.	Kulsrud,	Astrophys.	J.	152,	1121	(1968).	 
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We	 next	 introduce	 the	 linear	 displacement	
!
ξ(x,t) 	from	 the	 equilibrium	

position	 of	 the	 fluid	 element	 in	 (x,t).	 	 In	 the	 absence	 of	 zero-order	 flows:	
d
!
ξ
dt

=
∂
!
ξ
∂t

=δu .	 	We	 replace	δu 	with	δu= ∂
!
ξ
∂t
	in	Eq.(8.C.49)	 and	 integrate	 in	 time	 to	

obtain	

	
ρ0
∂2

∂t2
!
ξ =−∇ −γp0∇⋅

!
ξ −
!
ξ ⋅∇p0⎡

⎣
⎤
⎦−

1
4π ∇× ∇×

!
ξ ×B0( )⎡

⎣
⎤
⎦{ }×B0

+
1
c
j0 × ∇×

!
ξ ×B0( )⎡

⎣
⎤
⎦

	 											(8.C.50)	

The	 right	 side	 of	 Eq.(8.C.50)	 is	 the	 force	 density.	 	 The	 inner	 product	 of	 the	 force	
density	with	 the	displacement	

!
ξ(x,t) 	integrated	over	volume	 is	 a	quadratic	 in	 the	

displacement	 and	 is	 “virial.”	 	 We	 will	 come	 back	 to	 this	 subsequently.	 	 We	 can	
construct	an	energy	that	is	quadratic	in	

!
ξ(x,t) :			 	

	
U(t)≡W(t)+K(t) K(t)= d3x∫ 1

2ρ0(x)
!"ξ(x,t)⎡
⎣⎢

⎤
⎦⎥

2

W(t)=W
!
ξ(x,t)⎡
⎣

⎤
⎦= an

n=0

∞

∑ ξ n⎡
⎣

⎤
⎦ a	functional	 ≡W0 +W1(

!
ξ )+W2(

!
ξ ,
!
ξ )+ ...

			(8.C.51)	

From	the	conservation	law	Eq.(8.C.44)	and	the	linear	expansion	with	u0=0	

	 					

0= !U = !W + !K 0= !W0 +
!W1 +
!W2 +
!K +O(ε2)= !W1 +

!W2 +
!K +O(ε2)

K(t)≡ d3x∫ 1
2ρu

2 = d3x∫ 1
2ρ
!"ξ 2 +O(ξ 3)

W(t)= d3x∫ B2

8π +
p

γ −1
⎡

⎣
⎢

⎤

⎦
⎥=W0 +W1(

!
ξ )+W2(

!
ξ ,
!
ξ )+O(ξ 3)

	 											(8.C.52)	

We	can	use	Eq.(8.C.48)	to	express		
	 	 	 	 δB(

!
ξ )≡∇×(

!
ξ ×B0) 	 	 	 	 											(8.C.53)	

and	to	rewrite	Eq.(8.C.50).		We	note	that	
	 !K ≡ d3x∫ ρ0

!"ξ ⋅
!""ξ = d3x∫

!"ξ ⋅F(
!
ξ )=−W1(

!"ξ )−W2(
!
ξ ,
!"ξ )−W2(

!"ξ ,
!
ξ ) 	 											(8.C.54)	

We	 choose	 as	 an	 initial	 condition	
!
ξ(x,t =0)=0 ,	 but	 with	 finite	 initial	 velocity	

!"ξ .	

Hence,	 W2(
!
ξ ,
!"ξ )=0	and	W2(

!"ξ ,
!
ξ )=0 ,	 which	 leaves	 W1(

!"ξ )=0 	for	 arbitrary	
!"ξ .		

W1(
!"ξ )=0 	does	not	depend	separately	on	

!
ξ .		Thus,	W1(

!"ξ )=0 	for	all	time.			
	 We	introduce	the	definition	 !η =

!"ξ 	and	note	from	Eq.(8.C.54)	
	 	 − d3x∫

!
η ⋅F(

!
ξ )=W2(

!
ξ , !η)+W2(

!
η ,
!
ξ )=− d3x∫

!
ξ ⋅F( !η) 	 											(8.C.55)	

This	 explicitly	 demonstrates	 that	 the	 operator	F(
!
ξ ) 	is	 self-adjoint	 to	 the	 order	

calculated.	 	 For	 self-adjoint	 operators	 any	 arbitrary	 displacement	 can	 be	
represented	as	a	sum	over	normal	modes:	
	 	 	

!
ξ(x,t)=

!
ξn

n
∑ (x)e−iωnt −ωn

2 !ξn =F(
!
ξn) 	 	 											(8.C.56)	
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where	−ωn
2 	is	 real	 and	

!
ξn are	 orthogonal,	 possibly	 complex-valued	 eigenfunctions.		

The	 eigenvalues	ωn 	are	 either	 real	 and	 the	 solutions	 for	 the	 displacement	 are	

oscillatory,	 or	ωn 	are	 imaginary	 such	 that	 the	 solutions	 for	 the	 displacement	 are	

purely	growing	or	decaying.	 	The	set	of	eigenfunctions	
!
ξn 	are	complete	for	square-

integrable	modes.		Singular	solutions	of	Eq.(8.C.50)	are	exceptions.83	
	 We	 consider	 the	 terms	 in	W	 at	 second	 order	 in	 the	 displacement	 using	
Eqs.(8.C.50)	and	(8.C.52):	

δW ≡W2(
!
ξ ,
!
ξ )=− 1

2 d3∫ x
!
ξ ⋅F(

!
ξ )= d3∫ x δB2

8π +
1
2δB ⋅ J0 ×

!
ξ +

γ
2p0(∇⋅

!
ξ )2 +12(∇⋅

!
ξ )(
!
ξ ⋅∇p0)

⎡

⎣
⎢

⎤

⎦
⎥

	
	 	 	 	 	 	 	 	 	 	 											(8.C.57)	
If	there	is	instability,	then	as	the	amplitude	for	

!
ξ(x,t) 	grows	exponentially,	K(t)	also	

grows.		Recall	that	K(t)	is	positive	definite.		Hence,	W	must	decrease	exponentially	if	
there	is	instability,	which	implies	that	!"	is	negative	for	some	

!
ξ(x,t) 	for	instability	

when	 K(t)	 becomes	 sufficiently	 large.	 	 This	 conclusion	 can	 be	 turned	 around	 to	
demonstrate	stability.		Conclusions	about	stability	based	on	Eq.(8.C.57)	and		the	self-
adjointness	of	the	operator	F(

!
ξ ) 	are	the	essence	of	the	MHD	energy	principle.	

	
Theorem:	 Suppose	W2	is	 positive	 definite	 for	 all	

!
ξ(x,t) ,	 then	 the	 system	 is	 stable,	

i.e.,	W2(
!
ξ ,
!
ξ )>0 	is	sufficient	for	stability.	We	will	prove	subsequently	that	this	is	also	

a	necessary	condition.	
	
	 It	is	useful	to	introduce	the	following	definition:	
	

Definition:	K2(
!
ξ )≡ d3∫ x 1

2ρ0
!
ξ

2
	(moment	of	inertia).	

	
Theorem:		Virial	theorem	

		 	

!K2(
!
ξ )≡ d3∫ xρ0

!"ξ ⋅
!
ξ

""K2(
!
ξ )≡ d3∫ xρ0

!"ξ
2
+ d3∫ x

!
ξ ⋅F(

!
ξ )=2K2(

!"ξ )−2W2(
!
ξ ,
!
ξ )

→ 1
2
!!K2(
!
ξ )=K2(

!"ξ )−W2(
!
ξ ,
!
ξ )

	 											(8.C.58)	

	
Exercise:	Use	the	virial	theorem	to	show	that	without	gravity	g,	a	plasma	cannot	be	
self-contained.	
	
																																																								
83	G.	Laval,	C.	Mercier,	and	R.	Pellat,	Nucl.	Fusion	5,	156	(1965).	 
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Consider	 a	 displacement	 !η(x) 	such	 that	W2(
!
η)<0 	and	 define	γ 2 ≡ −W2(

!
η)

K2(
!
η) .	 	 Choose	

initial	conditions:	
	 	 	

!
ξ(x,t =0)= !η(x)

!"ξ(x,t =0)=γ !η(x) 	 	 											(8.C.59)	
The	energy	then	becomes	
	 	 	 U =W2 +K2(

!"ξ )=−γ 2K2(
!
η)+γ 2K2(

!
η)=0 	 	 											(8.C.60)	

at	 all	 times.	 	 Thus,	 if	 W2<0	 then	 K2>0	 for	 all	 time.	 	 From	 the	 virial	 theorem	
Eq.(8.C.58)	
	 	 	 	 !!K2(

!
ξ )=4K2(

!"ξ ) 	 	 	 	 											(8.C.61)	
We	use	the	Schwarz	inequality	(! ∙ !)! ≤ !!!!	and	generalize	to	Hilbert	space:	
	 	

	

!K2
2
= d3xρ0

!
ξ(x)⋅

!"ξ(x)∫
2
≤ d3xρ0

!
ξ(x)2∫

⎡

⎣⎢
⎤

⎦⎥
d3xρ0

!"ξ(x)
2

∫
⎡

⎣
⎢

⎤

⎦
⎥=2K2(

!
ξ )2K2(

!"ξ ) 		(8.C.62)	

Then	using	Eqs.(8.C.61)	and	(8.C.62)	

	 	 !!K2(
"
ξ )=4K2(

!"ξ )≥
!K2(
"
ξ )2

K2(
!
ξ ) ≥0 and K2(

!
ξ )≥

!K2(
"
ξ )2

4K2(
!"ξ )
≥0 	 											(8.C.63)	

We	 next	 define	 y(t)≡ ln K2(
!
ξ )/K2(

!
η)⎡

⎣
⎤
⎦=2γ(t) 	which	 removes	 the	 spatial	

dependence	of	the	initial	conditions.		Given	the	definition	of	y,	y(0)=0	and !y(0)=2γ ;	
and	 in	 consequence	 of	 W2<0	 and	 Eq.(8.C.63),	 one	 can	 show !!y >0 	and	

K2(
!"ξ )≥W2(

!
η) e2γt 	which	implies	!!>0	and	the	possibility	of	instability.	

	
Theorem:	If	W2>0	for	all	

!
ξ ,	 the	system	is	stable;	and	 if	W2<0,	 it	 is	possible	 to	 find	

instability	 for	 some	 choice	 of	
!
ξ .	 	 Because	 of	 the	 energy	 principle	 for	 this	 system,	

W2<0	is	a	necessary	and	sufficient	condition	for	instability.	
	

8.C.f	Interchange	instability	
	
	 Perhaps	 the	 most	 basic	 example	 of	 MHD	 instability	 is	 the	 interchange	
instability.	 	 We	 begin	 the	 analysis	 of	 the	 interchange	 by	 introducing	 a	 new	
expansion	 parameter	!~!!/(!!!/4!) ≪ 1,	 i.e.,	 we	 assume	 a	 low-! 	plasma.	 	 We	
expand	the	relevant	quantities	in	powers	of	!:	
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B0(x)=B0
(0)(x)+B0

(1)(x)+ ...
j0(x)= j0(0)(x)+ j0(1)(x)+ ...
p0(x)= p0(0)(x)+p0(1)(x)+ ...!
ξ(x)=

!
ξ (0)(x)+

!
ξ (1)(x)+ ...

W2(x)=W2
(0)(x)+W2

(1)(x)+ ...

		 	 											(8.C.64)	

In	this	example	we	also	assume		

	 	 	 	 ∇×B0
(0) =

4π
c
j0
(0) =0 	 	 	 	 											(8.C.65)	

The	plasma	 is	 contained	by	a	vacuum	magnetic	 field.	 	Consistent	with	Eq.(8.C.65),	
!!(!) = 0	and	

																																				W2
(0) = d3∫ x

∇×δB(0)
2

8π = d3∫ x
∇×
!
ξ (0)×B(0)( )

2

8π 							 											(8.C.66)	

We	 minimize	!!(!)	with	 respect	 to	
!
ξ (0) to	 zero	 order	 by	 requiring	δB(0) =0 .	 	 The	

lowest-order	energy	is	

	 	 	 	 W (0) = d3∫ x
B(0)

2

8π 	 	 	 	 											(8.C.67)	

The	zero-order	displacement	must	satisfy	∇×
!
ξ (0)×B(0)( )=0 .		Hence,	

	 	 	
!
ξ (0)×B(0) =∇φB → B(0) ⋅∇φB =0 	 	 	 											(8.C.68)	

The	first-order	!!(!)	is	then	
																				

W2
(1) =

1
2 d3∫ x γp0

(1) ∇⋅
!
ξ (0) 2 +

!
ξ (0) ⋅∇p0

(1)( )∇⋅
!
ξ (0)⎧

⎨
⎩

⎫
⎬
⎭
	 	 											(8.C.69)	

Through	this	order	 in	 the	!	expansion	we	do	not	need	to	know	
!
ξ (1) 	or	B0

(1) .	 	Using	
Eq.(8.C.68)	one	can	express	the	displacement	as	

	 	 	 	
!
ξ =

B0 ×∇φB(α ,β)
B0
2 +ξ||b̂0 	 	 	 											(8.C.70)	

where	ξ|| 	is	 arbitrary.	 	 For	! = 5/3	then	!/(! − 1) = (3/2)!~(3/2)!!!!.	 	 	!!(!)	is	
primarily	associated	with	changes	in	the	thermal	energy	content	in	a	volume	being	
converted	to	a	macroscopic	displacement.		However,	flux	tubes	can	interchange	with	
no	thermal	energy	exchange	in	what	we	call	an	interchange	instability.		If	there	are	
no	topological	constraints,	then	minimization	of	!!(!)	with	respect	to	ξ|| 	yields	∇⋅

!
ξ 	

that	is	not	a	function	of	!	and	is	constant	along	a	field	line.		We	examine	Eq.(8.C42)	
rewritten	as	
	 	 	 	 Dp=−γp0∇⋅

!
ξ 	 	 	 	 											(8.C.71)	
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and	conclude	that	Dp	is	constant	along	the	field	line.		This	removes	the	possibility	of	
sound	waves	along	 the	 field	 line,	which	waves	would	contradict	our	hypothesis	of	
virtual	 slow	 (adiabatic)	 displacements	 of	 the	 plasma.	 	 The	 Eulerian	 version	 of	
Eq.(8.C.71)	is	

δp(α ,β)=−γp0∇⋅
!
ξ −ξ ⋅∇p0 	 	 																									(8.C.72)	

Because	 the	magnetic	 field	 is	 a	 vacuum	magnetic	 field,	B	 can	be	 represented	by	a	
gradient	 of	 a	 potential,	 i.e.,	! = ∇!	by	 choice	 and	 is	 convenient.	 	 The	 differential	
volume	element	is	given	by	

	 	 	
d3x = dαdβdσ

B2(α ,β ,σ )
=dαdβ dℓ

B

h≡ dℓ
dσ

=metric b̂⋅B= b̂⋅∇σ B = dσ
dℓ

=
1
h

	 	 											(8.C.73)	

Theorem:	Using	Eqs.(	8.C.72)	and	(8.C.73)	in	Eq.(8.C.69)	one	obtains	

							W2
(1) =−

1
2 dαdβ∫ (∇⋅

!
ξ )δp dσ

B2(α ,β ,σ )∫ =−
1
2 dαdβ∫ (∇⋅

!
ξ )δp dℓ

B∫ 																(8.C.74)	

The	last	integral	factor	on	the	right	side	of	Eq.(8.C.74)	has	special	significance	as	the	
volume	per	unit	flux.	

		 	 Uvol ≡
dℓ
B∫ =

d3x
dαdβ∫ =

d3x
dΦB

∫ =
dvol
dflux∫ 	 	 	 											(8.C.75)	

Definition:	The	specific	volume	is	the	volume	per	unit	flux.	
	
	 Consider	 pressure	 surfaces	 consistent	 with	 momentum	 balance	 to	 leading	
order.	 	 We	 note	 that	 b̂⋅∇p=0 ,	 j⋅∇p=0 ,	 and	 j|| << j

⊥
	to	 leading	 order.	 	 A	 three-

dimensional	plot	of	the	pressure	surfaces,	the	magnetic	fields	lines,	and	the	currents	
will	show	the	following.		B	and	j	vector	fields	are	perpendicular	to	one	another	and	
lie	in	surfaces	of	constant	p	because	∇!	is	perpendicular	to	both	B	and	j.	 	Hence,	B	
and	j	 form	a	cage	for	the	pressure	(Fig.	8.C.2).	 	The	constant	pressure	surfaces	are	
also	 magnetic	 flux	 surfaces,	 i.e.,	 the	 pressure	 can	 be	 written	 as	 a	 function	 of	 the	
magnetic	flux.		
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	 Figure	8.C.2	Plasma	equilibrium	in	which	the	current	density	
	 and	magnetic	field	lines	lie	in	nested	surfaces	of	constant		
	 pressure	which	are	also	constant	flux	surfaces.84	
																												
Consider	two	pressure	surfaces	an	infinitesimal	apart,	the	volume	contained	within	
the	two	pressure	surfaces,	and	the	magnetic	fluxes	associated	with	the	two	surfaces:	
!"#(!)	and	Φ!(!).		In	consequence,	!"#$/!Φ! 	is	a	function	of	the	pressure.		One	can	
also	show	that		

																									 	 	 dℓ
Bα ,β

∫ =
dℓ
Bα ,β

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ΦB

	 	 	 																									(8.C.76)	

is	a	function	of	the	magnetic	flux.	 	 In	guiding-center	theory,	the	flux	surface	is	also	
the	drift	surface.		We	use	Eqs.(8.C.74)	and	(8.C.75),	and	cancel	factors	of	!Φ! 	in	the	
numerator	and	denominator	to	express	the	energy	!!(!):	

													 	
W2

(1) !ξ( )=−12 dvol∫ δp∇⋅
!
ξ =−

1
2 dαdβ∫ Uvolδp∇⋅

!
ξ

=−
1
2 dαdβ∫ δpDUvol = dαdβ∫ w2

(1)(α ,β) 	 											(8.C.77)	

where	Uvol ≡dvol /dΦB 	is	the	specific	volume,	∇⋅
!
ξ =DUvol /Uvol ,	and		

	 	 	
w2
(1)(α ,β)≡− 1

2δp(α ,β)DUvol(α ,β) 	 	 	 											(8.C.78)	

is	the	flux	surface	density	of	energy	for	a	virtual	displacement	
!
ξ ,	i.e.,	the	energy	per	

unit	flux.		We	use	!" ≡ !" + (!"/!Φ!)!Φ! 	to	express	Eq.(8.C.78)	as	

																																						w2
(1)(α ,β)≡− 1

2 Dp−
dp
dΦB

dΦB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟DUvol(α ,β) 	 				 											(8.C.79)	

																																																								
84	John	Howard,	Introduction	to	Plasma	Physics,	Fig.	6.2,	Chapter	6,	Australian	
National	University,	https://physics.anu.edu.au/prl/intranet/_files/c17/chap06.pdf	
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Next	 we	 use	 DUvol =
dUvol

dΦB

and	the	adiabatic	law		Dp
p
=−γ

DUvol

Uvol

	in	 Eq.(8.C.79)	 to	

obtain	

	 	 w2
(1)(α ,β)≡ 1

2(dΦB )2
dUvol

dΦB

dp
dΦB

+γ
p
Uvol

dUvol

dΦB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ 																															(8.C.80)	

or	alternatively,	

	 	 w2
(1)(α ,β)≡ 1

2(dΦB )2γ
p
Uvol

dUvol

dΦB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

1+ dp
dUvol

Uvol

γp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 	 											(8.C.81)	

Stability	 (instability)	 is	 determined	 by	 w2
(1) >0	 (w2

(1) < 0) .	 Hence,	 the	 stability	
condition	is	

	 	 	 dp
dUvol

Uvol

γp
>−1 or dp

dUvol

>−
γp
Uvol

	 	 	 											(8.C.82)	

which	 is	 a	 statement	 about	 the	 configuration	 and	 its	 pressure	 gradient.	 	 For	
example,	consider	a	typical	situation	in	which	

	 	 	 dp
dUvol

=
dp/dΦB <0
dUvol /dΦB >0

→
dp
dUvol

<0 	 	 	 											(8.C.83)	

but	how	large	is	dp/dUvol	compared	to	– !"/!!"#?	
	
Theorem:	A	sufficient	condition	for	stability	is	dp/dUvol>0.	
	
Thus,	 if	 p	 decreases	 with	 magnetic	 flux	 while	 Uvol	 also	 decreases,	 then	 moving	
pressure	from	higher	to	lower	down	the	gradient	is	accompanied	by	decreasing	Uvol	
with	 increasing	 flux.	 	 In	 this	 case	 the	 plasma	 is	 stable.	 	 If	 Uvol	 can	 increase	with	
increasing	 flux	while	 the	 pressure	 decreases	 such	 that	 perturbations	 can	 grow	 as	
the	 expense	of	 cooling	under	 an	adiabatic	 expansion,	 then	 the	plasma	 is	unstable.		
Note	 that	Uvol	 is	 always	positive	by	definition	of	 the	 right-hand	coordinate	 system	
!,!,!.			

The	 preceding	 arguments	 are	 predicated	 on	 considerations	 of	 confined	
plasmas,	 i.e.,	 plasma	 pressure	 in	 the	 interior	 of	 a	 configuration	 with	 a	 vacuum	
magnetic	 field	 external	 to	 the	 plasma:	 !"!!!

< 0; 	and	 a	 sufficient	 condition	 for	
stability	is	!!!"#!!!

< 0.	
	

Definition:	V "≡ dUvol

dΦB

<0 	for	 stability.	 	 V”	 is	 a	 term	 seen	 in	 the	 MHD	 stability	

literature.		
		
Definition:	From	Eq.(8.C.76)		
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	 	 	 	 Uvol ≡
dℓ
Bα ,β

∫ ≡
L
B
	 	 	 	 											(8.C.84)	

Thus,	in	a	stable	confined	plasma	where	the	pressure	and	the	volume	per	unit	flux	
are	maximal	 then	<B>	 is	minimal.	 	 	Minimum	average	B	 is	equivalent	 to	V”<0	as	a	
sufficient	condition	for	stability	and	is	well-established	as	a	constraint	in	designing	
low-!	magnetic	confinement	experiments.				
	
Theorem:	 In	 sum,	!"!!!"# > 0, minimum	 average	 B,	 and	 V”<0	 are	 equivalent	
conditions	for	stability	with	respect	to	interchange	modes.		
	

8.C.g	Interpretation	of	interchange	stability	theory	in	magnetically	confined	plasmas	
	

A	 physical	 interpretation	 of	 the	 interchange	 instability	 can	 be	 given	 as	
follows.	

1) There	can	be	an	unstable	expansion	of	plasma	down	a	pressure	gradient	into	
a	 region	 of	 weaker	 magnetic	 field	 accompanied	 by	 a	 reduction	 in	
temperature.	

2) There	 is	 a	 thermodynamic	 drive	 for	 the	 instability	 because	 the	 plasma	 is	
diamagnetic,	 i.e.,	 the	 plasma	 magnetization	 is	 oppositely	 directed	 to	 the	
applied	magnetic	field,	so	that	the	plasma	is	attracted	to	weaker	fields.	

3) Field-line	curvature	can	be	stabilizing	if	the	field	lines	are	convex	relative	to	
the	plasma	pressure	maximum	or	destabilizing	if	the	field	lines	are	concave	
relative	to	the	plasma	pressure	maximum.		The	field-line	curvature	vector	is	
!
κ ≡ b̂⋅∇b̂ 	and	 is	perpendicular	 to	B.	 Greene	and	 Johnson85	showed	 that	 the	
drive	term	in	w2

(1) 	can	be	rewritten	as		

−
1
4π
!
ξ ⋅∇p0

!
ξ ⋅
!
κ 		 	 	 																									(8.C.85)	

When	the	curvature	and	the	pressure	gradient	are	anti-parallel,	this	term	is	
positive	and	is	stabilizing.		When	the	pressure	gradient	has	a	component	that	
is	parallel	 to	 the	 curvature,	 there	 can	be	displacements	 such	 that	 the	drive	
term	 is	 negative	 and	 destabilizing	 if	 the	 drive	 term	 is	 sufficiently	 strong	
enough	to	render		w2

(1) 	negative.			
	

We	 return	 to	 consideration	 of	 Eq.(8.C.84).	 Recall	 Eq.(8.C.73)	 and	 note	 that	
! = !"/!ℓ	so	that	it	follows		
				 	 δUvol =

dσ
B2 →

∂δUvol

∂α
=
∂

∂α
∫ dσ

B2∫ =−2 dσ
B3
∫ ∂B

∂α
	 											(8.C.86)	

However,	!Φ! = !"!#	and		
																																																								
85	J.	M.	Greene	and	J.	L.	Johnson,	Hydromagnetic	Equilibria	and	Stability,		in	Advances	
in	Theoretical	Physics,	1965	(Academic	Press,	N.Y.); J.	M	Greene	and	J.	L.	
Johnson,	Plasma	Phys.	10,	729	(1968).	
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																																												α =
ΦB

2π =
Bπr2

2π =
1
2Br

2 dα =Brdr 		 											(8.C.87)	

along	a	field	line	if	! is	the	azimuthal	angle;	and	! is	constant	along	the	field	
line.	 	 In	this	cylindrical	configuration	!"/!" = !/!	where	R	 is	 the	radius	of	
curvature	 of	 the	 magnetic	 field	 line.	 	 Using	 Eq.(8.C.87)	 in	 Eq.(8.C.86)	 one	
obtains	

									
∂δUvol

∂α
=−2 dσ

B3
∫ ∂B

∂α
=−2 dσ

B4∫ ∂B
r∂r

=−2 dσ
B3
∫ 1

rR
=−2 dℓ

B2∫ 1
rR

=−
1
2α2

dℓr3

R∫ (8.C.88)	

If	the	region	along	the	field	line	where	R<0	dominates	the	integral	along	the	
field	 line	 in	 Eq.(8.C.88),	 then	 the	 right	 side	 of	 (8.C.88)	 is	 positive	 and	 the	
plasma	 is	 unstable.	 	 A	 positive	 radius	 of	 curvature	 promotes	 V”<0	 and	 is	
stabilizing.	

4) Consider	 the	 plasma	 drift	 motion	 and	 magnetic	 shear.	 	 There	 is	 a	 strong	
analogy	between	Rayleigh-Taylor	instability	in	which	a	fluid	accelerates	due	
to	gravity	into	a	region	of	lower	mass	density	and	the	expansion	of	a	plasma	
into	 a	 region	of	 decreasing	magnetic	 field	 strength.	 	 If	 the	plasma	 starts	 to	
flute	along	the	 field	 line,	 the	concomitant	electric	 field	across	 the	 flutes	can	
drive	 an	E×B	 drift	 that	 enhances	 the	 amplitude	 of	 the	 flute	 perturbations.		
The	 positive	 contribution	 to	 the	 potential	 energy	 in	 magnetic	 tension	
decreases	 as	 the	 plasma	 expands	 into	 a	 weaker	 field	 region	 with	 bad	
curvature.	 	 Magnetic	 shear	 can	 provide	 a	 topological	 constraint	 that	 can	
balance	 this	 decrease.	 	 An	 interchange	mode	 has	 flute	 structure	 along	 the	
field	line.	 	Shearing	of	the	field	causes	the	interchange	mode	to	bend,	which	
costs	 it	 energy	 to	 do	 so.	 Hence,	magnetic	 shear	 has	 a	 stabilizing	 effect.	 An	
intuitive	 argument	 yields	 an	 order-of-magnitude	 estimate	 for	 stabilization	
when	the	magnetic	shearing	rate	satisfies	

dθ
dz

>
2γ0
cA

	 	 	 	 											(8.C.89)	

where	!	is	the	angle	of	 inclination	of	the	magnetic	field,	!!~!!/!	is	the	ideal	
MHD	growth	rate	in	the	absence	of	shear,	and	!!	is	the	Alfvén	speed.				
	
When	 the	 plasma	 pressure	 is	 finite	 and	!	is	 no	 longer	 low,	 the	 pressure	
perturbation	contributes	a	negative	term	to	the	energy:	

																													 W2 = d3∫ x δB2

8π −δp+ ...
⎡

⎣
⎢

⎤

⎦
⎥ 	 	 	 											(8.C.90)	

Symbolically	the	contribution	of	finite	pressure	to	the	energy	is	negative	and	
enhances	the	instability	drive.	Magnetic	shear	does	not	seem	to	help	against	
ballooning	instability	when	!~1.	

5) The	 inclusion	 of	 resistivity	 adds	 a	 qualitatively	 new	 character	 to	
hydrodynamic	instability.		Ohm’s	law	becomes	

																																	 	 E+1
c
u×B=η j 	 	 	 											(8.C.91)	

Faraday’s	law	becomes	



	 251	

	 	

	 ∂B
∂t

=−c∇×E=∇× u×B−cη j( )=∇× u×B( )−4π∇× η∇×B( ) 									(8.C.92)	
Now	 plasma	 can	 move	 across	 the	 field	 lines,	 and	 the	 magnetic	 field	 can	
diffuse.	 	There	 is	a	 large	body	of	research	on	resistive	MHD	stability	theory	
addressing	 instabilities	 such	 as	 the	 resistive	 interchange,	 resistive	
ballooning,	and	resistive	tearing	instabilities.	
	

8.C.h	 Chew-Goldberger-Low	 double-adiabatic	 theory	 -	 accommodating	 a	 tensor	
pressure	in	MHD	theory	
	
	 A	tensor	pressure	can	be	represented	by	
	 	 	 	 p= p||b̂b̂+p⊥

!
I − b̂b̂( ) 	 	 	 	 											(8.C.93)	

Chew,	Goldberger,	and	Low	(CGL)86	derived	a	fluid	model	from	consideration	of	the	
Vlasov	equation	in	the	collisionless	limit	and	with	certain	assumptions	on	the	heat	
flow.		They	calculated	the	second	velocity	moment	of	the	Vlasov	equation	to	obtain	

	 	 ∂

∂t
p=−∇⋅ Q+up⎡

⎣
⎤
⎦− ∇u+u

!
∇( ) ⋅p+ e

mc
p×B−B×p)( ) 																		(8.C.94)	

where	Q	is	the	heat	flow:	
	 	 	 Q=nm (v−u)(v−u)(v−u)

f
	 	 	 											(8.C.95)	

The	parallel	 and	perpendicular	 components	of	 the	 time	derivative	of	 the	pressure	
tensor	p	 are	 obtained	by	operating	on	Eq.(8.C.94)	with b̂b̂ 	and	

!
I
⊥
=
!
I − b̂b̂( ) .	 	 In	 so	

doing	one	must	represent	the	heat	flow:	
	 	 Q=Q||b̂b̂b̂+Q⊥

b̂I
⊥
+I

⊥
b̂+ ê1bê1 + ê2bê2( ) 	 	 	 											(8.C.96)	

The	analysis	leads	to	the	following	pair	of	evolution	equations:	

	 	

D
Dt
ln p

⊥

ρB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

∂

∂t
+u ⋅∇

⎛

⎝
⎜

⎞

⎠
⎟ln p

⊥

ρB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=−

B2

p
⊥

∂

∂ℓ

Q
⊥

B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D
Dt
ln p||B

2

ρ3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= ... Q||( ) 	 	 											(8.C.97)	

where	 Q
⊥
≡ 1

2nm v
⊥

2 v|| Q|| ≡
1
2nm v||2v|| .	 	 CGL	 assumed	 that	 the	 right	 sides	 of	

Eqs.(8.C.97)	are	negligible,	i.e.,	negligible	heat	flow.		With	this	assumption	there	are	

two	adiabatic	invariants	that	advect	with	the	fluid:	
p
⊥

ρB
and		 p||B

2

ρ3
.	 	

																																																								
86	G.	F.	Chew,	M.	L.	Goldberger,	F.	E.	Low,	Proc.	R.	Soc.	Lond.	A	236,	112	(1956).	
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Example:	⊥	compression	–	Consider	a	compression	of	the	plasma	and	the	magnetic	
field	 lines	perpendicular	 to	 the	 field	 that	 increase	B	 and	!	together.	 	We	 then	note	

that		 p
⊥
=
nmv

⊥

2

2 =nµB µ ≈ const		→ 	p
⊥
∝nB = ρ

m
B∝ρ2 ∴

D
Dt

p
⊥

ρB
∝
ρ2

ρ2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=0 		and	

p|| ~nmv||2∝ρ ∴
p||B

2

ρ3
∝
ρρ2

ρ3
~1 .	

	
Example:	||	compression	–	Consider	a	compression	of	the	plasma	along	the	field	line	
but	no	compression	of	the	magnetic	field	strength.		Then	

p
⊥
∝ρ pdq= v||∫ L= const		→ 	v||∝

1
L
∝ρ→ p|| ~ρv||2∝ρ3 ∴

p||B
2

ρ3
∝
ρ3

ρ3
=1 	

	
	 An	energy	theorem	like	that	 in	Secs.	8.C.e	and	8.C.f	can	be	derived	with	the	
CGL	anisotropic	pressure.		One	begins	with	the	fluid	equation	of	motion	

	 	 	 ρ
Du
Dt

=−∇⋅ p||b̂b̂+p⊥
!
I − b̂b̂( )⎡

⎣
⎤
⎦+
1
c
j×B 	 	 											(8.C.98)	

and	linearizes	about	an	equilibrium.		The	analysis	leads	to	an	equation	of	the	form	
ρ
!""ξ =F(

!
ξ ) .	 	We	can	again	show	that	the	operator	F(

!
ξ ) 	is	self-adjoint.	 	The	analysis	

involved	 is	 three	 times	 the	 amount	 of	 formalism	 as	 for	 ideal	 MHD,	 where	 the	
pressure	is	assumed	to	be	a	scalar.		The	same	theorems	result,	but	the	formulae	are	
different.	We	 can	make	 comparisons	 between	 the	 CGL	 and	 the	 ideal	MHD	 energy	
principles.79	
	
Theorem:	Comparison	theorem	–	Assume	 p||

0 = p
⊥

0 	but	allow	the	perturbations	to	be	
anisotropic	and	render	the	perturbed	pressure	to	be	anisotropic	in	the	CGL	theory.		
The	 dynamics	 of	

!
ξ(t) 	are	 very	 different	 in	 the	 ideal	MHD	 theory	 from	 that	 in	 the	

CGL	theory.		One	finds		
	 	 	 	 	 W2

CGL ≥W2
MHD 	 	 	 	 											(8.C.99)	

Thus,	 if	 the	 energy	 theorem	 for	 ideal	 MHD	 stability	 indicates	 stability,	 then	 CGL	
theory	 is	 certain	 to	 predict	 stability.	 	 Similarly,	 if	 CGL	 theory	 indicates	 instability,	
then	MHD	 theory	 is	 certain	 to	 do	 so	 as	 well.	 	 However,	W2

CGL is	 relatively	 useless	
because	it	is	so	complicated.	
	
Theorem:	 Comparison	 theorem	 for	 low-!	interchange	 in	 an	 axisymmetric	 system.		
In	ideal	MHD	with	!||! = !!! = !	the	analysis	in	Sec.	8.C.f	can	be	used	to	show	that	the	
stability	condition	for	interchange	is	

	 	 	 	 dℓ
B2rR
∫ dp

dα
<0 ideal	MHD 	 	 									(8.C.100)	

where	 R	 is	 the	 radius	 of	 curvature	 and	 r	 is	 the	 radial	 distance	 from	 the	 axis	 of	
symmetry.	 	Bad	curvature	 (concave	 field	 lines	 facing	 the	plasma)	 corresponds	 the	
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R<0,	 while	 good	 curvature	 (convex	 field	 lines	 facing	 the	 plasma)	 corresponds	 to	
R>0.		For	anisotropy		!||! ≠ !!! 	one	 can	 use	 CGL	 theory	 to	 derive	 the	 stability	
condition	for	interchange	

	 	 	 	 dℓ
B2rR
∫

d(p||0 +p⊥0 )
dα

<0 CGL 	 	 									(8.C.101)	

Mirror	plasmas	are	typically	anisotropic,	and	stability	of	an	axisymmetric	mirror	is	
difficult	to	achieve.		Recall	that	(p||0 +p⊥0 )/R∝(v||2 + 1

2 v⊥2 )/R~vd .		Thus,	consideration	
of	the	guiding-center	drifts	can	give	the	stability	condition	in	Eq.(8.C.101)	a	physical	
interpretation.87	

8.C.i	Kulsrud	and	Kruskal-Oberman	extensions	to	the	energy	principle	
	
	 In	addition	to	the	CGL	theory	there	have	been	other	important	extensions	of	
ideal	MHD	 theory	 leading	 to	 energy	principles	with	 added	physics	 content.	 	 Some	
prominent	examples	of	these	are	the	works	of	Kulsrud,82,88	Kruskal	and	Oberman,89	
and	Newcomb.90		Kulsrud	derives	an	energy	principle	starting	from	a	guiding-center	
Vlasov	 equation	 for	 the	 linearly	 perturbed	 guiding-center	 distribution	 function	
!!!.!..	 	 	With	 considerable	 labor	Kulsrud	 shows	 that	 the	 force	F(

!
ξ ) 	is	 self-adjoint,		

and	an	energy	principle	is	obtained.			
	
Theorem:		Kulsrud	demonstrates	that	the	minimum	values	of	the	energy	satisfy	
w2

CGL ≥w2
G .C . ≥w2

MHD .			Thus,	if	the	system	is	MHD	stable,	then	guiding-center	and	CGL	
theories	 also	 indicate	 stability.	 	 Conversely,	 if	 the	 system	 is	 unstable	 according	 to	
CGL	 theory,	 then	 the	 other	 two	 theories	 also	 indicate	 instability.	 	 We	 retire	 this	
approach	and	go	to	J.B.	Taylor’s	general	ordering	scheme	in	the	next	section.91	
	 	 	

8.C.j	Taylor’s	guiding-center	theory	and	Taylor	and	Hastie’s	analysis	of	linear	stability	
	

The	guiding-center	Vlasov	kinetic	equation	capturing	the	motion	parallel	 to	
the	magnetic	field	is	

	 	 	 ∂F
∂t
+ !σ ∂F

∂σ
+ !p

σ

∂F
∂p

σ

=0 	 	 	 									(8.C.102)	

We	 introduce	 the	 expansion	F = F0(H)+δF .	 	 The	 linearized	 form	 of	 Eq.(8.C.103)	
becomes	

																																																								
87	M.	N.	Rosenbluth	and	C.	L.	Longmire,	Ann.	Phys.	1,	120	(1957).	
88	R.	M.	Kulsrud,	Phys. Fluids 5, 192 (1962). 
89	M.	D.	Kruskal	and	C.	Oberman,	Phys.	Fluids	1,	275	(1958).	
90	W.	A.	Newcomb,	Annals	of	Physics	10,	232	(1960).	
91		J.	B.	Taylor,	Proc.	Royal	Society	A	304,	335	(1968).	
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∂δF
∂t

+δ !σ
∂F0
∂σ

+δ !p
σ

∂F0
∂p

σ

+ !σ ∂δF
∂σ

+ !p
σ

∂δF
∂p

σ

=0 		 	 									(8.C.103)	

where	

		HG .C . =
p
σ
2

2mh2
+µB+eχ , δH =µδB+eδχ + ..., δ !σ =

∂δH
∂p

σ

, δp
σ
=−

∂δH
∂σ

~δE|| 			(8.C.104)	

and	the	guiding	center	drifts	excluding	the	polarization	drift	are	

	 	 	 	 !α =− c
e
∂H
∂β

!β = c
e
∂H
∂α

	 	 	 									(8.C.105)	

The	theory	assumes	that	uL~O(ε)	and	time	derivatives	are	similarly	ordered	so	that	
to	 lowest	 order	 the	 particles	 are	 confined	 to	 field	 lines,	 which	 field	 lines	 do	 not	
change	much.	 	 The	 resulting	 system	 has	 two	 degrees	 of	 freedom	with	 slow	 time	
dependence.	 	 Despite	 these	 simplifications	 there	 is	 lengthy	 mathematics	 in	 the	
theory.		
	 We	recall	the	longitudinal	adiabatic	invariant	derived	earlier:	
	 	 	 J

σ
= dσp

σ!∫ (H ,α ,β ,σ ) 	 	 	 	 									(8.C.106)	

One	can	show	that	 !J
σ
=O(ε) 	because	 !H , !α , !β ~O(ε) .		Moreover,	it	was	demonstrated	

earlier	that	 !J
σ
=O(ε2) 	where	the	average	is	over	a	bounce.	

	
Theorem:	!! 	is	effectively	invariant	on	the	drift	time	scale.	
	
Hence,	one	can	construct	a	bounce-averaged	Hamiltonian	such	that	

																	

H J
σ
;α ,β( ) !α =− ce

∂H
∂β

α , Jσ ,t

!β = c
e
∂H
∂α

β , Jσ ,t

!JL =
∂H
∂θL α ,β ,t

=0 														(8.C.107)	

One	must	use	canonical	transformations	to	obtain	!(!!;!,!).	
	 Before	continuing	with	guiding	center	theory,	we	digress	to	identify	some	of	
the	 relevant	 literature	 and	 theoretical	 results.	 	 Taylor	 and	 Hastie	 introduced	 a	
theory	 of	 equilibrium	 and	 stability	 of	 a	 small	 Larmor-radius	 plasma	 in	 general	
geometry	 and	 derived	multi-pole	 dispersion	 relations	 for	 electrostatic	modes.92,93	
The	modes	examined	satisfy	!! ,!!~! ≪ Ω	and	allow	for	!~!! ,	but	with	weak	scale	
lengths	 for	 the	 plasma	 and	 the	 magnetic	 field	 so	 that	 the	 magnetic	 moment	 is	
conserved.		C.	S.	Liu	examined	the	dynamics	of	the	drift	equations	and	analyzed	two	
instabilities	 excited	 by	 temperature	 gradients.94		 In	 all	 of	 these	 guiding	 center	
theories	 there	 is	 a	 requirement	 on	 the	 distribution	 function	 F	 in	 order	 to	 do	 the	
mathematics:	one	must	assume	

																																																								
92	J.B.	Taylor	and	R.J.	Hastie,	Plasma	Physics	10,	479	(1968).	
93	R.J.	Hastie	and	J.B.	Taylor,	Plasma	Physics	13,	265	(1971).	
94	C.S.	Liu,	Phys.	Fluids	12,	1489	(1969).	



	 255	

	 	 	 F0 µ;α ,β ;H(σ ,pσ )( ) , ∂F0
∂H

µ ,α ,β

<0 	 	 	 									(8.C.108)	

This	 restriction	 is	 rather	 unsatisfactory	 and	 limiting.	 	 However,	 there	 are	 two	
relevant	and	 important	 examples	of	kinetic	microstability	 in	 a	 collisionless	Vlasov	
plasma.	
	
Example:	 A	 uniform,	 one-dimensional,	 unmagnetized	 plasma,	 is	 stable	 if	 f0(H)	
satisfies	df0/dH<0.	If	the	inequality	is	reversed	then	one	can	get	an	unstable	bump-
on-tail	mode	associated	with	Landau	resonance	when	the	wave	phase	velocity	falls	
on	an	interval	of	f0	with	positive	slope.	
	
Example:	In	a	uniform	plasma	with	a	uniform	applied	magnetic	field,	there	is	gyro-
resonance	 when	! − !∥v∥ = ℓΩ.  	Taylor	 and	 Hastie	 show	 that	 modes	 satisfying	
bounce	 resonance	! = ℓ!!(!,!) 	are	 stable	 if	 !!!/!" < 0 because	 the	 waves	
transfer	energy	to	the	particles	rather	than	vice	versa	with	this	sign	of	the	derivative	
of	the	distribution	function.	
	
	 Given	 the	 values	 of	 the	 magnetic	 moment	!	and	 the	 Hamiltonian	 H,	 the	
surfaces	of	constant	J	in	Eq.(8.C.106)	contain	the	drift	surfaces.		The	gradient	of	J	is	
normal	to	the	drift	surfaces:	

	 	 	 	 ∇J
µ ,H
=
∂J
∂α

∇α +
∂J
∂β

∇β 	 	 	 									(8.C.109)	

where	!	and	!	are	the	Euler	potentials.	 	Using	the	Hamiltonian,	one	can	show	after	
some	algebra	

																										vd = const ∇J × b̂ → mvd ≡ mvd b
=
ωb

Ω
b

∇J × b̂ 	 	 									(8.C.110)	

where	the	average	is	over	the	bounce	motion.		Recall	the	derivation	of	the	guiding-
center	 drifts	 in	 Sec.	 8.B.b	 and	 Eq.(8.B.29).	 	 Consider	 the	 limit	! ≪ !!;	 in	 fact,	 let	
! → 0. 	Freeze	 the	 bounce	 action	 and	 magnetic	 moment,	 and	 look	 just	 at	 the	
guiding-center	 drifts.	 	 In	 the	!"	plane	 there	 are	 nested	 contours	 of	! !,! = ℰ.		
These	surfaces	are	characterized	by	constant	energy,	bounce	action,	and	magnetic	
moment.	 	 	The	parameters	of	a	guiding-center	particle	consist	of	!, !,!	for	a	given	
species	(which	specification	sets	the	mass	and	charge).		In	this	zero	frequency	limit,	
we	will	not	worry	about	the	drift	phase,	bounce	phase,	or	gyro	phase,	because	!,	!,	!	
depend	on	 ∂

∂θd
, ∂
∂θb

, ∂
∂θg

.		Thus,	the	density	in	phase	space	better	not	be	dependent	

on	 the	 phases	 else	 there	 will	 be	 time	 dependence:	 thus	!!(!, !,!).	 	 Given	 the	
Hamiltonian	H	we	can	calculate	the	magnetic	flux:	
	 	 	 αdβ = dαdβ =Φ(H)∫∫!∫ 	 	 	 	 									(8.C.111)	
We	can	invert	Eq.(8.C.111)	to	obtain	!(!, !,Φ).		Because	of	the	ignorable	phases	!,	!,	
!	all	vanish.	
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	 Now	we	 relax	 the	 constraint	 of	 no	 time	 dependence	 and	 allow	 for	 a	weak	
time	dependence:		! ≪ !!	with	 !H ≠0while	!,	!,	Φ	are	all	zero,	i.e.,	flux	is	conserved;	
J	is	conserved	over	a	bounce;	and	!	is	conserved	over	a	gyration	period.		There	are	
some	 options	 for	 how	 to	 parameterize	 the	 particle	 motion.	 	 We	 consider	 the	
following	 options:	 !, !,! , !, !,Φ , !,!,Φ , 	and	 !!.!. = !/!,!,Φ 	where	
!!.!. = v!/(v!!/!)	at	the	bounce	turning	point.		!	and	H	can	be	measured,	but	J	is	not	
immediately	measurable.	 	 If	we	know	the	symmetry	of	 the	configuration	and	 thus	
can	describe	the	flux	surface,	then	Φ	is	measurable.		Consider	!(!, !,Φ)	and	
						 Ω

b ,d
= !θg b ,d

=
∂H
∂µ J ,Φ

, ωb d
= !θb g ,d

=
∂H
∂J

µ ,Φ
, ωd =

!θd g ,b
=
∂H
∂Φ

µ , J
								(8.C.112)	

with	fixed	!,!	and	c,	where	the	subscripts	for	the	averaging	are	defined	as	g=gyro	
period,	b=bounce	period,	and	d=drift	period.		In	more	detail	we	have	

	 	 H(µ; J;α ,β ;t), !β = c
e
∂H
∂α

, !α =− c
e
∂H
∂β

, !H = ∂H
∂t
	 	 									(8.C.113)	

where	!	and	!	are	Euler	potentials	for	the	magnetic	field	and	serve	as	labels	for	the	
magnetic	field	lines:		! = !∇!	and	! = ∇×!;	and	

	 	 	 H(µ;α ,β ;σ ,p
σ
;t)=µB+eχ + p

σ
2

2mh2
	 	 	 									(8.C.114)	

Example:	B =B0(α ,β) 1+
σ 2

2L2(α ,β)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ,	 and	 we	 choose	! = 0	and	 h=1	 for	 simplicity.	

Hence,	

	 	 H(µ;α ,β ;σ ,p
σ
;t)= p

σ
2

2mh2
+µB0(α ,β)+

1
2µB0(α ,β)
L2(α ,β)

σ 2 	 									(8.C.115)	

which	has	the	structure	of	a	harmonic	oscillator.		From	Eq.(8.C.115)	we	deduce	the	
bounce	frequency	

	 	 	 	 ωb
2 =

µB0(α ,β)
mL2(α ,β)

	 	 	 	 									(8.C.116)	

which	is	a	function	of	the	field-line	label.		The	bounce-averaged	action	is	

	 	 	 Jb =
1
2π dσp

σ!∫ =
H−µB0(α ,β)
ωb(α ,β)

= J(H ,α ,β) 	 	 									(8.C.117)	

With	 the	 use	 of	 Eq.(8.C.117)	 	 and	 a	 canonical	 transformation	 to	 action-angle	
variables	we	have	
	 	 	 H(µ , J ,α ,β)=µB0(α ,β)+ωb(α ,β ,µ) J 	 								 									(8.C.118)	
From	Eq.(8.C.113)	one	derives	

	 	 	 !β = c
e
µ
∂B0
∂α

+ J
∂ωb

∂α

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	 	 	 	 	 									(8.C.119)		

	 We	now	postulate	a	time-independent	equilibrium	with	no	electric	potential:		
	 	 H0(µ; J;Φ)=H0(σ ,pσ ;α ,β ;µ), !α =0, !β = !β(µ , J ,α) 	 									(8.C.120)				
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The	 total	 Hamiltonian	 including	 a	 linear	 perturbation	 due	 to	 a	 small-amplitude	
electrostatic	field	is	
	 												H =H0(σ ,pσ ;α ,β ;µ)+δH =H0(σ ,pσ ;α ,β ;µ)+eδφ(α ,β ,σ ,t) 									(8.C.121)	
The	bounce	action	is	

	 		
Jb =

1
2π dσp

σ!∫ =
1
2π dσ 2m H−µB−eφ( )!∫

→ 0=δ J = 1
2π

dσ
!σ
δH−eδφ( )!∫ ∴ δH = e δφ

b
(α ,β ;µ , J)

											(8.C.122)	

for	! ≪ !! .		The	perturbed	equations	of	motion	lead	to	

	 	 !α =−c
∂ δφ

b

∂β
!β = c

e
∂H0
∂α

+ ...= !β0 +δ !β 	 	 	 								(8.C.123)	

The	linearized	Vlasov	equation	for	the	guiding	center	distribution	function		
                      ! !; !;!,!; ! = !! !, !,! + !" !, !,! !!ℓ!!!"#																															(8.C.124)	
is	then	

	 	

dF
dt

=
∂F
∂t
+ !α ∂F

∂α
+ !β ∂F

∂β
=
∂δF
∂t

+δ !α
∂F0
∂α

+ !β0
∂δF
∂β

=−iωδF +δ !α
∂F0
∂α

+ !β0iℓδF

	 		 									(8.C.125)	

Hence,	

	 	 δF =
−δ !α

∂F0
∂α

−iω + iℓ "β0(µ , J ,α)
=
iℓc δφ(α ,σ )

σ

s ∂F0
∂α

(µ , J ,α)
−iω + iℓ "β0(µ , J ,α)

																						(8.C.126)	

using	

	 	 	 δφ =δφ(α ,σ )eiℓβ−iωt !α =−c
∂ δφ

b

∂β
	 	 	 									(8.C.127)	

We	 next	 construct	 the	 density	 of	 guiding	 centers	 by	 integrating	 the	 distribution	
function:	

	 	 	
N(α ,β ,σ ;t)= dµ dp

σ∫∫ F(α ,β ;σ ,p
σ
;µ;t)

=− dµ p
σ
dF∫∫ =− dµ dJ p

σ

∂F
∂J∫∫

	 	 									(8.C.128)	

with	an	integration	by	parts.		The	linearization	of	Eq.(8.C.128)	yields	

	 	 δN(α ,β ,σ ;t)=− dµ dJ δp
σ

∂F0
∂J

+p
σ
(0) ∂δF

∂J

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
s

∫∫ 	 	 									(8.C.129)	

where	 p
σ
(0) = 2m H0(µ , J ,α)−µB(α ,β ,σ )−eφ (0)(α ,β ,σ )⎡

⎣
⎤
⎦ 	and	 remember	 the	 species	

labels:	!" = !!!! .	 	 	 Given	 that	 the	 particle	 number	 density	 is	 related	 to	 the	
guiding-center	 number	 density	 by	 ! = ! + !(!!)

! ,	 so	 ! ≈ !;  and the	 quasi-
neutrality	condition	becomes		
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					δNe =δNi 	 	 	 	 	 								(8.C.130)	
for	 singly	 charged	 ions.	 	 The	 quasi-neutrality	 condition	 is	 equivalent	 to	 Poisson’s	
equation	 for	! ≪ !.	 	Using	Eqs.(8.C.126-8.C.129)	 to	evaluate	(8.C.130),	we	obtain	a	
messy	 integral	 equation	 for	!" ! . 		! 	is	 only	 a	 parameter,	 and	! 	appears	 only	
through	 ℓ "β0 .		Equation	(8.C.130)	is	an	eigenvalue	problem	subject	to	the	restriction	
! ≪ !! .		We	note	that	there	is	a	pole	in	the	!" term on the right	side	of	Eq.(8.C.126)	
that	corresponds	to	the	drift	resonance:		ω = ℓ "β0 .	 	 	In	the	velocity-space	integration	
we	use	the	Landau	prescription	for	the	imaginary	part	of	the	contribution	from	the	
resonance	 and	 the	 principal	 value	 for	 the	 real	 part.	 	We	 cannot	 directly	 solve	 the	
eigenvalue	equation;	so	we	construct	a	variational	principle	for	 it.	 	 	We	remark	on	
the	stability	characteristics	of	two	types	of	perturbations.	
	 (i)	 Perturbations	 that	 conserve	!, ! :	 long-wavelength	 modes	! ≫ !!"#$ 	to	
conserve	!	and	low	frequency	! ≪ !!	to	conserve	J.		Taylor	and	Hastie91,92	show		

																																																		
∂F0
∂H

µ , J

<0 	 	 	 	 		 									(8.C.131)	

is	sufficient	for	stability	and	
	 	 	 	 	

																																					 									
∂F0
∂H

Φ,µ

<0 	 	 	 	 	 									(8.C.132)	

ensures	stability	against	bounce	resonant	modes.			
	
Example:	 In	 the	 earth’s	 radiation	 belt	 the	 electron	 density	 increases	 and	 then	
decreases.		Which	edge	of	the	band	is	unstable?	Do	the	gradients	drive	instabilities	
that	can	cause	the	aurora?		Consider	

	 	 	 	
∂F0
∂Φ

µ , J

≡
∂F0
∂H

µ , J

∂H
∂Φ

µ , J
	 	 	 										 									(8.C.133)	

where	

	 	 ∂H
∂Φ

µ , J
=−

∂H
∂J

µ ,Φ

∂J
∂Φ

µ ,H

∂H
∂J

µ ,Φ
= ωb d

>0											 	 									(8.C.134)	

using	the	properties	of	a	cyclic	chain	rule.		Hence,	from	Eqs.(8.C.131),	(8.C.133),	and	
(8.C.134)	one	obtains	

	 	 	
∂F0
∂H

µ , J

<0 ⇒
∂F0
∂Φ

µ , J

∂J
∂Φ

µ ,H
>0 	 	 	 									(8.C.135)	

for	stability.		A	corollary	to	Eq.(8.C.135)	is		
	 	 	 	 dF0dJ >0 	 	 	 	 																						(8.C.136)	
for	 stability.	 	 With	!Φ > 0,	 i.e.,	 moving	 outward	 in	 the	 magnetosphere,	 then	 one	
wants	maximum	density	where	there	is	a	maximum	in	J.		This	is	called	“maximum	J	
stability”	in	the	literature.		From	the	relation	
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	 	 	 	 J = dσ H−µB!∫ 	 	 	 	 									(8.C.137)		
J	being	a	maximum	in	a	region	of	space	implies	that	B	is	a	minimum.		Hence,	

	 	 	 	 ∂J
∂Φ

∝−
∂B
∂Φ b ,d

											 	 	 	 									(8.C.138)	

Theorem:		Eq.(8.C.135-8.C.138)	imply	that		

	 	 	 max J⇔min<B >⇔∂F0
∂H Φ,µ

µ , J

<0 	 	 																						(8.C.139)	

are	equivalent	stability	conditions.	
(ii)	Perturbations	that	conserve	! but	violate	J	conservation:	long-wavelength	

modes	! ≫ !!"#$	to	 conserve	!	and	 but	 with	! ≳ !! .	 	 	 No	 general	 conclusions	 are	
reached	 for	arbitrary	distribution	 functions,	but	 for	a	so-called	Taylor	distribution	
function	with	two	degrees	of	freedom:	

	 	 F0 µ , J ,Φ( )= F0 µ ,H( J ,Φ)( ) 	 	 	 	 									(8.C.140)	

there	is	a	stability	condition	

	 	 	 	
∂F0
∂H

µ

<0 	 	 	 	 	 									(8.C.141)	

The	 Taylor	 distribution	 function	 is	 useful	 for	 applications	 to	 mirror	 confinement	
because	its	dependence	on	!	facilitates	anisotropy.		The	species	number	density	for	
a	Taylor	distribution	is	

	
N0

s(α ,β ,σ )= dµ dp
σ∫∫ F0

s µ ,H(α ,β ,σ )( )= dµ dH
!σ

∫∫ F0
s µ ,H(α ,β ,σ )( )

→ N0
s B0(α ,β ,σ )( )= dµ dH

H−µB0
∫∫ F0

s µ ,H( )
			(8.C.142)	

In	 a	 minimum-B	 configuration	 there	 are	 nested	 surfaces	 of	 constant	 density	
threaded	 by	 the	 magnetic	 field	 lines.	 	 Iso-field	 and	 iso-density	 surfaces	 are	
coincident.			
	
Exercise:	 (i)	 Show	 that	!!! 	and	!∥!	are	 functions	 of	 position	 only	 through	B	 for	 the	
Taylor	distribution.		(ii)	Show	that	N0	increases	as	B	decreases.	
	
	 Nested	 magnetic	 surfaces	 facilitate	 good	 confinement.	 	 If	 there	 is	 also	
minimum	average	B,	 then	there	 is	stability	as	well.	 	The	analysis	 for	perturbations	
that	 violate	 both	! 	and	 J	 conservation	 is	 more	 complicated.91,92	 	 Returning	 to	
consideration	of	the	magnetosphere,	with	conditions	on	the	inner	side	of	the	layer	
such	that	N0	 is	 increasing	as	B	 is	decreasing	and	with	minimum	average	B	 there	is	
stability.	 	 However,	 on	 the	 outer	 side	 of	 the	 layer	 with	 N0	 decreasing	 as	 B	 is	
increasing	there	can	be	instability.		This	may	be	a	mechanism	for	the	aurora.	
	
8.D	Introduction	to	the	theory	of	the	stability	of	drift	waves	
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	 The	 theory	of	drift	waves	has	a	very	 large	 literature.	 	 [Editor’s	note:	A	good	
review	paper	that	was	published	a	few	years	after	these	lectures	is	Tang’s	paper,95	but	

this	 review	 is	 now	 forty	 years	 old.]	 	 Here	 we	 adopt	 a	 slab	 model	 and	 a	 uniform	
magnetic	 field	! = !!!.	 	We	assume	that	 the	equilibrium	quantities	vary	only	 in	x.		
We	also	 assume	 that	 the	 equilibrium	electric	 field	vanishes	 (or	we	 transform	 to	 a	
frame	in	which	the	electric	field	vanishes).		The	perturbed	fields	are	assumed	to	be	
electrostatic	here,	i.e.,		
	 	 	 ∇×δE=0 δE=−∇δφ δB=0 	 	 	 	 (8.D.1)	
We	 further	 assume	! ≫ !	and	! ≪ Ω	so	 that	 the	 magnetic	 moment	 is	 conserved.		
The	 equilibrium	 distribution	 function	 is	 !!(!, v! ,!) .	 The	 linearly	 perturbed	
distribution	 function	 is	 !"(!; v! , !;!,!; !) .	 We	 choose	 an	 electric	 potential	
perturbation	of	the	form	
	 	 	 δφ(X ,Y ,z;t)=δφ(X )e−iωt+ikzz+ik yY 	 	 	 	 (8.D.2)	
and	a	perturbed	distribution	function	
	 	 	 δF =δF(µ;v z ;X )e

−iωt+ikzz+ik yY 	 	 	 	 	 (8.D.3)	
We	ignore	finite-Larmor-radius	(FLR)	effects.		The	distribution	function	satisfies	the	
collisionless	Vlasov	equation:	

	 	 D
Dt
F(µ;v z ,z;X ,Y ;t)=

∂F
∂t
+ !z ∂F

∂z
+ !v z

∂F
∂v z

+ !X ∂F
∂X

+ !Y ∂F
∂Y

=0 	 	 (8.D.4)	

The	linearized	Vlasov	equation	is	

											

∂δF
∂t

+v z
∂δF
∂z

+ !v z
∂F0
∂v z

+ !X
∂F0
∂X

+ !Y
∂F0
∂Y

=
∂δF
∂t

+v z
∂δF
∂z

+ !v z
∂F0
∂v z

+ !X
∂F0
∂X

=0 	 (8.D.5)	

with	solution	

	 	 δF(v z ,X ,µ)=
e
m

δφ

v z −
ω
kz

∂

∂v z
+
1
Ω

ky
kz

∂

∂x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟F0(X ,v z ,µ) 		 	 (8.D.6)	

where	Ω! ≡ !!!/!!!	with	signs	(Ω! < 0).	 	 	We	note	 the	Landau-type	denominator	
in	 Eq.(8.D.6).	 	 We	 use	 the	 quasi-neutrality	 condition	 or	 Poisson’s	 equation	 to	
determine	the	electric	potential	self-consistently	and	to	obtain	dispersion	relations:	
	 	 	 ns(x)= d∫ µ dv z∫ Fs(v z ,x ,µ) 		 	 	 	 (8.D.7)	
In	Eq.(8.D.7)	we	have	dispensed	with	 the	distinction	between	x	 and	X	because	we	
are	 ignoring	 FLR	 effects.	 	 The	 integral	 in	 vz	 in	 Eq.(8.D.7)	 will	 lead	 to	 a	 Hilbert	
transform	and	a	Landau	pole.	
	

Definition:		 	 Z s Vz =
ω
kz
,x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟n0(x)≡ dµ dv z∫∫

F0
s v z ,x ,µ( )
v z −Vz

															 (8.D.8)	

																																																								
95	W.	M.	Tang,	Nucl.	Fusion	18,	1089	(1978).	
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With	the	definition	in	Eq.(8.D.8)	the	linearized	perturbed	number	density	deduced	
from	the	velocity-space	integral	of	Eq.(8.D.6)	is	

	

δns(x)= es
ms

δφ(x) n0(x)
∂

∂Vz
Z s Vz ,x( )+

ky
kz

1
Ω

∂

∂x
Z s Vz ,x( )n0(x)⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=
es
ms

δφ(x) ∂

∂Vz
+
ky
kz

1
Ω

∂

∂x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Z s Vz ,x( )n0(x)

	 	 (8.D.9)	

If	 we	 use	 Eq.(8.D.9)	 and	 invoke	 quasi-neutrality	 for	! ≪ !! 	and	! ≫ !! , !!"#$ 	,	
!!!(!) = !!!(!),	we	obtain	a	dispersion	 relation	 for	!(!! , !! , !)	for	 the	 frequency	
of	a	quasi-mode.		This	is	a	WKB-like	expression	for	the	local	frequency	of	the	quasi-
mode.		From	Eq.(8.D.9)	and	the	quasi-neutrality	relation,	we	can	form		

	 	 	 δne(x)
δφ(x) = χ

e(x)= δn
i(x)

δφ(x) = χ
i(x) 	 	 	 											(8.D.10)	

from	which	we	determine	a	local	dispersion	relation	for	!(!! , !! , !).		From	this	local	
dispersion	relation	one	can	deduce	the	group	velocity	for	wave	packets:	

																												 V g ≡
∂ω
∂k x

= ŷ ∂ω
∂ky

+ ẑ ∂ω
∂kz

	 	 	 	 											(8.D.11)	

Thus,	 the	 wave	 packets	 move	 in	 the	 surface	 containing	 the	 drifts.	 	 	 	 For	 shorter	
wavelength	modes	there	is	also	a	component	of	the	group	velocity	across	the	slab	in	
x.	 	 Corrections	 to	 the	 local	 dispersion	 relation	 and	 the	 group	 velocity	 are	 order	
(!!!)! ≪ 1.												

Next	 consider	 the	 role	 of	 Landau	 damping.	 	 For	 vth~Vz there	 is	 strong	
Landau	damping.		There	are	two	limiting	cases	of	interest	in	evaluating	the	Hilbert	
transform	of	a	Gaussian	unperturbed	velocity	distribution	function.	

Example:	 vth <<Vz 	 then	 ZGaussian→−
1
Vz
−
vth2
Vz
3 + ..., vth2 ≡ v z2 	

Example:	 vth >>Vz 					then	

		 ∂
∂Vz

ZGaussian→−
1
vth2

+ iπ g'(Vz ) → ZGaussian→O
v z
vth2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ iπ g(Vz ), g= 1

n0
dµF0∫ ,kz >0 		

Example:	 vth,e >>Vz >> vth,i 	then	selecting	 the	dominant	 terms	results	 in	an	electron	
response	

	 	 	

δne(x)
n0(x)

=
eδφ(x)
Te

, Te ≡mevth,e2

→ne(x)=n0e
eφ
Te

	 	 	 											(8.D.12)	

We	note	that	Eq.(8.D.12)	implies	that	the	results	of	the	Vlasov	equation	agree	with	
the	Boltzmann	equation	including	collisions,	but	this	 is	somewhat	of	a	coincidence	
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and	 nothing	 profound.	 	 The	 ion	 response	 includes	 ion	 inertia,	 and	 the	 quasi-
neutrality	relation	leads	to		

	 ω2 −ωkyu*
e(x)= kz2cs2(x), cs2 =

Te(x)
mi

, u*e(x)≡−
cTe(x)
|e|B

d
dx
lnn0(x) 														(8.D.13)	

where	u*
e(x) 	is	 called	 the	 electron	 diamagnetic	 flow	 velocity.	 	 One	 can	 derive	 the	

diamagnetic	flow	velocity	from	consideration	of	force	balance	on	the	electrons:	

	 	 ∇pe =
1
c
je ×B → x̂ d

dx
nTe =−

1
c
enue ×B → ue = ... 									 											(8.D.14)	

The	local	dispersion	relation	in	Eq.(8.D.13)	leads	to	the	following	results	in	specific	
limits:	
	 	 ω =±kzcs +

1
2kyu*

e |kz |→∞, ω→0,kyu*e |kz |→0 	 	 											(8.D.15)	

For	propagation	parallel	 to	 ŷ ,	 in	 the	electron	 frame	moving	with	u*
e 	the	wave	has	

zero	frequency,	i.e.,	an	electron	drift	wave.		There	is	no	comparable	wave	carried	by	
the	ions.		The	interpretation	is	that	the	pressure	gradient	accelerates	or	retards	the	
ion	acoustic	wave	and	morphs	it	into	a	drift	wave.	
	 Including	 the	 Landau	 resonance	 effects	 contributes	 an	 imaginary	 part	 to	 Z	
and	 Z’,	 i.e.,	! = !"# + !"#	and	!′ = !"#′+ !"#′.		 We	 calculate	 the	 growth	 rates	 in	
the	limit	 vth,e >>Vz >> vth,i 	and	using		

																 	 ε =ε '+ iε"=0 → γ ≈ −
ε"
∂ε '
∂ω

, ω
∂ε '
∂ω

>0 	 	 											(8.D.16)	

The	waves	are	positive	energy.		Consider	two	limits.	

(i)	 Assume	
dTe
dx

≠0 	and	uze =0 	(no	 current	 along	 magnetic	 field	 lines).	 	 After	 re-
evaluating	 the	 local	 dispersion	 relation	 including	 imaginary	 parts	 of	 the	 electron	
response	function	in	the	small	kz	limit	with	!!! ≪ 2v!!,	one	obtains	

	 	 γ
ω
=−

π
2
Vz
vth,e

1
2
d lnTe
d lnn +

Vz
2

2vth,e2 1− 1
2
d lnTe
d lnn

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
<<1, ω~kyu*e 									(8.D.17)	

Equation	(8.D.17)	implies	instability	for	

	 	 	 	
d lnTe
d lnn <0 → γ >0 	 	 	 																								(8.D.18)	

(ii)	Assume	
dTe
dx

=0 	and	uze ≠0 .		The	local	dispersion	relation	yields	

	 	 	 	 γ
ω
=

π
2

uz
e

vth,e
− 1
2
Vz
vth,e

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 	 	 										(8.D.19)	

and	there	is	instability	for	
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uz
e

vth,e
> 1

2
Vz
vth,e

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3

→γ >0 	 	 	 										(8.D.20)	

When	ion	Landau	damping	is	included	there	is	a	threshold	condition:	

	 	 	 	 uz
e >
me

mi

v th,i 	 	 	 	 	 										(8.D.21)	

This	 is	 a	 very	 small	 threshold	 for	 the	electron	 flow	velocity	 along	 the	 field	 line	 to	
lead	 to	 an	 unstable	 drift	 wave	 propagating	 across	 the	 field	 lines.	 	 There	 is	 a	
significant	cancellation	of	the	Landau	damping	in	this	limit.	
	
Exercise:	Derive	the	results	in	Eqs.(8.D.17-21).	
	
	 There	are	many	possible	refinements	to	the	theory	of	drift-wave	instability,	
and	there	is	a	large	literature.94,96	Some	examples	of	refinements	are	as	follows.	

1. Allow	short	wavelengths	!~!! 	and	 !µi ≠0 .		∇! ≠ 0	leads	to	instability.	
2. Shear	 in	 the	 magnetic	 field	 as	 a	 function	 of	 x	 moving	 across	 the	 slab	 is	

strongly	stabilizing	due	to	ion	Landau	damping.	
3. Collisions	lead	to	new	instabilities.	
4. Electromagnetic	extension	!! ≠ 0	leads	to	new	electromagnetic	instabilities,	

e.g.,	drift-Alfvén	waves.	
5. Curvature	 of	 the	 magnetic	 field	 lines	 introduces	 magnetically	 trapped	

particles	and	new	possible	instabilities.	
6. ∇!B ≠ 0	may	lead	to	new	instabilities?	
7. Higher	 frequency	 modes,	 e.g.,	!~Ω! ,	 allows	 for	 gyro-resonance	 effects	 and	

drift	cyclotron	instability.	
8. Higher	frequency	modes,	e.g.,	!~Ω! ,	and	a	loss-cone	distribution	can	lead	to	

drift-cone	instability.	
Taylor	and	Hastie91,92	have	examined	some	of	the	physics	issues	in	nos.	1,	2,	5,	and	6.	
	
	 We	 next	 present	 an	 example	 of	 how	 local	 theory	 can	 be	 extended	 to	 a	
nonlocal	 theory	from	which	normal	mode	frequencies	can	be	calculated.	 	Consider	
the	 inclusion	of	 space-charge	effects	by	using	Poisson’s	 equation	 instead	of	quasi-
neutrality:	

	 	 −∇2δφ =−
d2

dx2
−ky

2 −kz
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟δφ =4πe δni −δne( ) 	 	 											(8.D.22)	

We	construct	a	WKBJ	solution	to	Eq.(8.D.22)	for	a	pure	drift	wave	(kz=0):	

																																																								
96	AB	Mikhaĭlovskiĭ,	Theory	of	Plasma	Instabilities:	Instabilities	of	a	homogeneous	
plasma,	Consultants	Bureau,	1974.	
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	 δφ(x)= 1
kx(x)

e
±i dx 'kx (x ')

xi

x

∫
, kx(ω ,ky ,kz =0,x)= kD2(x)

kyu*
e

ω
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
−ky

2 									(8.D.23)	

Next	we	use	the	Bohr-Sommerfeld	prescription	for	calculating	normal	modes:	

	 	 dxkx
x1

x2

∫ (ω ,ky ,x)=(ℓ+ 1
2)π , ℓ=0,1,2,... → ω

ℓ
(ky ,kz =0) 	 											(8.D.24)	

where	 x1	 and	 x2	 are	 two	 turning	 points:	 	kx(ω ,ky ,x1,2)=0 ,	 and	 ωℓ(ky ,kz ) 	is	 the	
normal	mode	frequency.	 	When	the	size	of	the	slab	is	long	compared	to	the	typical	
wavelengths,	 the	 set	 of	 discretely	 space	!ℓ	is	 so	 finely	 spaced	 as	 to	 approach	 a	
continuum.			

	[Editor’s	note:	There	is	clearly	much	more	that	could	be	said	about	both	drift	
waves	and	non-uniform	plasmas	in	general.	 	However,	the	series	of	 lectures	ended	at	

this	point.]	
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