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PREFACE 

 This introduction to Group Theory, with its emphasis on Lie 

Groups and their application to the study of symmetries of the 

fundamental constituents of matter, has its origin in a one-semester 

course that I taught at Yale University for more than ten years.  The 

course was developed for Seniors, and advanced Juniors, majoring 

in the Physical Sciences.  The students had generally completed the 

core courses for their majors, and had taken intermediate level 

courses in Linear Algebra, Real and Complex Analysis, Ordinary 

Linear Differential Equations, and some of the Special Functions of 

Physics.  Group Theory was not a mathematical requirement for a 

degree in the Physical Sciences.  The majority of existing 

undergraduate textbooks on Group Theory and its applications in 

Physics tend to be either highly qualitative or highly mathematical.  

The purpose of this introduction is to steer a middle course that 

provides the student with a sound mathematical basis for studying 

the symmetry properties of the fundamental particles.  It is not 

generally appreciated by Physicists that continuous transformation 

groups (Lie Groups) originated in the Theory of Differential 

Equations.  The infinitesimal generators of Lie Groups therefore 

have forms that involve differential operators and their commutators, 

and these operators and their algebraic properties have found, and 

continue to find, a natural place in the development of Quantum 

Physics. 

      Guilford, CT. 

                June, 2000. 
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1 

INTRODUCTION 

 The notion of geometrical symmetry in Art and in Nature is 

a familiar one.  In Modern Physics, this notion has evolved to 

include symmetries of an abstract kind.  These new symmetries play 

an essential part in the theories of the microstructure of matter.  The 

basic symmetries found in Nature seem to originate in the 

mathematical structure of the laws themselves, laws that govern the 

motions of the galaxies on the one hand and the motions of quarks 

in nucleons on the other. 

 In the Newtonian era, the laws of Nature were deduced from 

a small number of imperfect observations by a small number of 

renowned scientists and mathematicians.  It was not until the 

Einsteinian era, however, that the significance of the symmetries 

associated with the laws was fully appreciated.  The discovery of 

space-time symmetries has led to the widely held belief that the 

laws of Nature can be derived from symmetry, or invariance, 

principles.  Our incomplete knowledge of the fundamental 

interactions means that we are not yet in a position to confirm this 

belief.  We therefore use arguments based on empirically 

established laws and restricted symmetry principles to guide us in 

our search for the fundamental symmetries.  Frequently, it is 

important to understand why the symmetry of a system is observed 

to be broken. 

 In Geometry, an object with a definite shape, size, location, 

and orientation constitutes a state whose symmetry properties, or 

invariants, are to be studied.  Any transformation that leaves the 

state unchanged in form is called a symmetry transformation.  The 
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greater the number of symmetry transformations that a state can 

undergo, the higher its symmetry.  If the number of conditions that 

define the state is reduced then the symmetry of the state is 

increased.  For example, an object characterized by oblateness alone 

is symmetric under all transformations except a change of shape. 

 In describing the symmetry of a state of the most general 

kind (not simply geometric), the algebraic structure of the set of 

symmetry operators must be given; it is not sufficient to give the 

number of operations, and nothing else.  The law of combination of 

the operators must be stated.  It is the algebraic group that fully 

characterizes the symmetry of the general state. 

 The Theory of Groups came about unexpectedly.  Galois 

showed that an equation of degree n, where n is an integer greater 

than or equal to five cannot, in general, be solved by algebraic 

means.  In the course of this great work, he developed the ideas of 

Lagrange, Ruffini, and Abel and introduced the concept of a group.  

Galois discussed the functional relationships among the roots of an 

equation, and showed that they have symmetries associated with 

them under permutations of the roots. 

 The operators that transform one functional relationship 

into another are elements of a set that is characteristic of the 

equation; the set of operators is called the Galois group of the 

equation.   

 In the 1850’s, Cayley showed that every finite group is 

isomorphic to a certain permutation group.  The geometrical 

symmetries of crystals are described in terms of finite groups.  

These symmetries are discussed in many standard works (see 

bibliography) and therefore, they will not be discussed in this book. 
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 In the brief period between 1924 and 1928, Quantum 

Mechanics was developed. Almost immediately, it was recognized 

by Weyl, and by Wigner, that certain parts of Group Theory could 

be used as a powerful analytical tool in Quantum Physics.  Their 

ideas have been developed over the decades in many areas that 

range from the Theory of Solids to Particle Physics. 

 The essential role played by groups that are characterized by 

parameters that vary continuously in a given range was first 

emphasized by Wigner.  These groups are known as Lie Groups.  

They have become increasingly important in many branches of 

contemporary physics, particularly Nuclear and Particle Physics.  

Fifty years after Galois had introduced the concept of a group in the 

Theory of Equations, Lie introduced the concept of a continuous 

transformation group in the Theory of Differential Equations.  Lie’s 

theory unified many of the disconnected methods of solving 

differential equations that had evolved over a period of two hundred 

years.  Infinitesimal unitary transformations play a key role in 

discussions of the fundamental conservation laws of Physics. 

 In Classical Dynamics, the invariance of the equations of 

motion of a particle, or system of particles, under the Galilean 

transformation is a basic part of everyday relativity.  The search for 

the transformation that leaves Maxwell’s equations of 

Electromagnetism unchanged in form (invariant) under a linear 

transformation of the space-time coordinates, led to the discovery of 

the Lorentz transformation.  The fundamental importance of this 

transformation, and its related invariants, cannot be overstated. 
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2 

GALOIS GROUPS 

     In the early 19th - century, Abel proved that it is not possible to 

solve the general polynomial equation of degree greater than four by 

algebraic means.  He attempted to characterize all equations that can 

be solved by radicals.  Abel did not solve this fundamental problem.  

The problem was taken up and solved by one of the greatest innovators 

in Mathematics, namely, Galois. 

2.1. Solving cubic equations 

 The main ideas of the Galois procedure in the Theory of 

Equations, and their relationship to later developments in Mathematics 

and Physics, can be introduced in a plausible way by considering the 

standard problem of solving a cubic equation.  

 Consider solutions of the general cubic equation 

 Ax3 + 3Bx2 + 3Cx + D = 0,                           

where A − D are rational constants. 

If the substitution y = Ax + B is made, the equation becomes 

               y3 + 3Hy + G = 0                          

where 

            H = AC − B2                                          

and 

            G = A2D − 3ABC + 2B3.                      

The cubic has three real roots if G2 + 4H3 < 0 and two imaginary roots 

if G2 + 4H3 > 0.  (See any standard work on the Theory of Equations). 

 If all the roots are real, a trigonometrical method can be used to 

obtain the solutions, as follows: 

 the Fourier series of cos3u is  
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            cos3u = (3/4)cosu + (1/4)cos3u.            

Putting 

           y = scosu in the equation y3 + 3Hy + G = 0 (s > 0), 

gives 

           cos3u + (3H/s2)cosu + G/s3 = 0.                                              

Comparing the Fourier series with this equation leads to 

                   s = 2 √(−H)  

and 

            cos3u = −4G/s3                                    

If v is any value of u satisfying cos3u = −4G/s3, the general solution is 

                                                  3u = 2nπ ± 3v, ( n is an integer).     

Three different values of cosu are given by 

                   u = v, and 2π/3 ± v.                     

The three solutions of the given cubic equation are then 

                      scosv, and scos(2π/3 ± v).                           

 Consider solutions of the equation 

              x3 − 3x + 1 = 0.                                            

In this case, 

         H = −1 and G2 + 4H3 = −3.                                          

All the roots are therefore real, and they are given by solving 

             cos3u = −4G/s3 = −4(1/8) = −1/2                                        

or, 

                            3u = cos-1(−1/2).                            

The values of u are therefore 2π/9, 4π/9, and 8π/9, and the roots are 

       x1 = 2cos(2π/9), x2 = 2cos(4π/9), and x3 = 2cos(8π/9).            
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2.2. Symmetries of the roots 

 The roots x1, x2, and x3 exhibit a simple pattern.  Relationships 

among them can be readily found by writing them in the complex 

form: 

2cosθ = eiθ + e-iθ where θ = 2π/9, so that 

                  x1 = eiθ + e-iθ ,           

                  x2 = e2iθ + e-2iθ ,           

and 

       x3 = e4iθ + e-4iθ .           

Squaring these values gives 

                 x1
2 = x2 + 2,            

                 x2
2 = x3 + 2,            

and 

                 x3
2 = x1 + 2.            

The relationships among the roots have the functional form f(x1,x2,x3) 

= 0.  Other relationships exist; for example, by considering the sum of 

the roots we find 

      x1 + x2
2 + x2 − 2 = 0             

      x2 + x3
2 + x3 − 2 = 0,            

and 

      x3 + x1
2 + x1 − 2 = 0.            

Transformations from one root to another can be made by doubling-

the-angle, θ. 

 The functional relationships among the roots have an algebraic 

symmetry associated with them under interchanges (substitutions) of 

the roots.  If O is the operator that changes f(x1,x2,x3) into f(x2,x3,x1) 

then 
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           Of(x1,x2,x3)  → f(x2,x3,x1), 

           O2f(x1,x2,x3) → f(x3,x1,x2), 

and 

           O3f(x1,x2,x3) → f(x1,x2,x3). 

The operator O3 = I, is the identity. 

In the present case, 

        O(x1
2 − x2 − 2) = (x2

2 − x3 − 2) = 0,          

and 

       O2(x1
2 − x2 − 2) = (x3

2 − x1 − 2) = 0.                

2.3. The Galois group of an equation. 

 The set of operators {I, O, O2} introduced above, is called the 

Galois group of the equation x3 − 3x + 1 = 0. (It will be shown later 

that it is isomorphic to the cyclic group, C3). 

 The elements of a Galois group are operators that interchange 

the roots of an equation in such a way that the transformed functional 

relationships are true relationships.  For example, if the equation 

       x1 + x2
2 + x2 − 2 = 0            

is valid, then so is 

             O(x1 + x2
2 + x2 − 2 ) = x2 + x3

2 + x3 − 2 = 0.             

True functional relationships are polynomials with rational 

coefficients. 

2.4. Algebraic fields 

 We now consider the Galois procedure in a more general way.  

An algebraic solution of the general nth - degree polynomial 

             aoxn + a1xn-1 + ... an = 0             

is given in terms of the coefficients ai using a finite number of 

operations (+,-,×,÷,√).  The term "solution by radicals" is sometimes 
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used because the operation of extracting a square root is included in 

the process.  If an infinite number of operations is allowed, solutions 

of the general polynomial can be obtained using transcendental 

functions.  The coefficients ai necessarily belong to a field which is 

closed under the rational operations.  If the field is the set of rational 

numbers, Q, we need to know whether or not the solutions of a given 

equation belong to Q.  For example, if 

            x2 − 3 = 0            

we see that the coefficient -3 belongs to Q, whereas the roots of the 

equation,  xi = ± √3, do not.  It is therefore necessary to extend Q to Q', 

(say) by adjoining numbers of the form a√3 to Q, where a is in Q. 

 In discussing the cubic equation x3 − 3x + 1 = 0 in 2.2, we 

found certain functions of the roots f(x1,x2,x3) = 0 that are symmetric 

under permutations of the roots.  The symmetry operators formed the 

Galois group of the equation.  

 For a general polynomial: 

                xn + a1xn-1 + a2xn-2 + .. an = 0,            

functional relations of the roots are given in terms of the coefficients in 

the standard way 

     x1 + x2 + x3 …                              … + xn  = −a1                           

     x1x2 + x1x3 + … x2x3 + x2x4 + … + xn-1xn  =  a2           

     x1x2x3 + x2x3x4 + …                 + xn-2xn-1xn = −a3            

     .     . 

     x1x2x3 …                                      … xn-1xn =  ±an.           

 Other symmetric functions of the roots can be written in terms 

of these basic symmetric polynomials and, therefore, in terms of the 

coefficients.  Rational symmetric functions also can be constructed 
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that involve the roots and the coefficients of a given equation.  For 

example, consider the quartic 

           x4 + a2x2 + a4 = 0.                                  

The roots of this equation satisfy the equations 

                   x1 + x2 + x3 + x4 = 0             

                   x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = a2          

                   x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 0           

                   x1x2x3x4 = a4.              

 We can form any rational symmetric expression from these 

basic equations (for example, (3a4
3 − 2a2)/2a4

2 = f(x1,x2,x3,x4)).  In 

general, every rational symmetric function that belongs to the field F 

of the coefficients, ai, of a general polynomial equation can be written 

rationally in terms of the coefficients. 

 The Galois group, Gal, of an equation associated with a field F 

therefore has the property that if a rational function of the roots of the 

equation is invariant under all permutations of Gal, then it is equal to a 

quantity in F. 

 Whether or not an algebraic equation can be broken down into 

simpler equations is important in the theory of equations.  Consider, 

for example, the equation 

                             x6 = 3.              

It can be solved by writing  x3 = y, y2 = 3 or 

                   x = (√3)1/3.             

 To solve the equation, it is necessary to calculate square and 

cube roots  not sixth roots.  The equation x6 = 3 is said to be 

compound (it can be broken down into simpler equations), whereas x2 

= 3 is said to be atomic.  The atomic properties of the Galois group of 
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an equation reveal the atomic nature of the equation, itself.  (In 

Chapter 5, it will be seen that a group is atomic ("simple") if it 

contains no proper invariant subgroups). 

 The determination of the Galois groups associated with an 

arbitrary polynomial with unknown roots is far from straightforward.  

We can gain some insight into the Galois method, however, by 

studying the group structure of the quartic 

                      x4 + a2x2 + a4 = 0 

with known roots 

                 x1 = ((−a2 + µ)/2)1/2 , x2 = −x1, 

                 x3 = ((−a2 − µ)/2)1/2 , x4 = −x3, 

where 

                               µ = (a2
2 − 4a4)1/2. 

 The field F of the quartic equation contains the rationals Q, and 

the rational expressions formed from the coefficients a2 and a4. 

 The relations 

                 x1 + x2 = x3 + x4 = 0 

are in the field F. 

 Only eight of the 4! possible permutations of the roots leave 

these relations invariant in F; they are 

             x1 x2 x3 x4              x1 x2 x3 x4             x1 x2 x3 x4 

{ P1 =                    ,  P2 =                    ,  P3 =                  ,  

             x1 x2 x3 x4              x1 x2 x4 x3             x2 x1 x3 x4   

   

             x1 x2 x3 x4              x1 x2 x3 x4             x1 x2 x3 x4    

   P4 =                      , P5 =                    ,  P6 =                  , 

             x2 x1 x4 x3              x3 x4 x1 x2             x3 x4 x2 x1   
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             x1 x2 x3 x4              x1 x2 x3 x4     

   P7 =                      , P8  =                   }. 

             x4 x3 x1 x2              x4 x3 x2 x1    

 

The set {P1,...P8} is the Galois group of the quartic in F.  It is a 

subgroup of the full set of twentyfour permutations.  We can form an 

infinite number of true relations among the roots in F.  If we extend 

the field F by adjoining irrational expressions of the coefficients, other 

true relations among the roots can be formed in the extended field, F'.  

Consider, for example, the extended field formed by adjoining µ (= 

(a2
2 − 4a4)) to F so that the relation 

                   x1
2 − x3

2 = µ is in F'. 

We have met the relations  

                            x1  = −x2  and x3  = −x4 

so that 

                            x1
2 =  x2

2 and x3
2 =  x4

2. 

Another relation in F' is therefore 

                    x2
2 − x4

2 = µ. 

The permutations that leave these relations true in F' are then 

    {P1, P2, P3, P4}. 

This set is the Galois group of the quartic in F'.  It is a subgroup of the 

set {P1,...P8}. 

 If we extend the field F' by adjoining the irrational expression            

((−a2 − µ)/2)1/2 to form the field F'' then the relation 

                      x3 − x4 = 2((−a2 − µ)/2)1/2 is in F''. 

This relation is invariant under the two permutations {P1, P3}. 
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This set is the Galois group of the quartic in F''.  It is a subgroup of the 

set 

{P1, P2, P3, P4}. 

 If, finally, we extend the field F'' by adjoining the irrational                

((−a2 + µ)/2)1/2 to form the field F''' then the relation 

                       x1 − x2 = 2((−a2 − µ)/2)1/2 is in F'''. 

This relation is invariant under the identity transformation, P1 , alone; 

it is the Galois group of the quartic in F''.   

 The full group, and the subgroups, associated with the quartic 

equation are of order 24, 8, 4, 2, and 1.  (The order of a group is the 

number of distinct elements that it contains).  In 5.4, we shall prove 

that the order of a subgroup is always an integral divisor of the order 

of the full group.  The order of the full group divided by the order of a 

subgroup is called the index of the subgroup. 

 Galois introduced the idea of a normal or invariant subgroup: if 

H is a normal subgroup of G then 

            HG − GH = [H, G] = 0. 

(H commutes with every element of G, see 5.5). 

Normal subgroups are also called either invariant or self-conjugate 

subgroups.  A normal subgroup H is maximal if no other subgroup of 

G contains H. 

2.5. Solvability of polynomial equations 

 Galois defined the group of a given polynomial equation to be 

either the symmetric group, Sn, or a subgroup of Sn, (see 5.6).  The 

Galois method therefore involves the following steps: 

1.  The determination of the Galois group, Gal, of the equation. 
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2.  The choice of a maximal subgroup of Hmax(1).  In the above case, 

{P1, ...P8} is a maximal subgroup of Gal = S4. 

3.  The choice of a maximal subgroup of Hmax(1) from step 2.  

In the above case, {P1,..P4} = Hmax(2) is a maximal subgroup of Hmax(1). 

The process is continued until Hmax = {P1} = {I}.  

 The groups Gal, Hmax(1), ..,Hmax(k) = I, form a composition series.  

The composition indices are given by the ratios of the successive 

orders of the groups: 

   gn/h(1), h(1)/h(2), ...h(k-1)/1. 

The composition indices of the symmetric groups Sn for n = 2 to 7 are 

found to be: 

      n   Composition Indices 

      2   2 

      3   2, 3 

      4   2, 3, 2, 2 

      5   2, 60 

      6   2, 360 

      7   2, 2520 

We state, without proof, Galois' theorem: a polynomial equation can 

be solved algebraically if and only if its group is solvable. 

 Galois defined a solvable group as one in which the 

composition indices are all prime numbers.  Furthermore, he showed 

that if n > 4, the sequence of maximal normal subgroups is Sn, An, I, 

where An is the Alternating Group with (n!)/2 elements.  The 

composition indices are then 2 and (n!)/2.  For n > 4, however, (n!)/2 

is not prime, therefore the groups Sn are not solvable for n > 4.  Using 

Galois' Theorem, we see that it is therefore not possible to solve, 

algebraically, a general polynomial equation of degree n > 4. 
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3 

SOME ALGEBRAIC INVARIANTS  

     Although algebraic invariants first appeared in the works of 

Lagrange and Gauss in connection with the Theory of Numbers, the 

study of algebraic invariants as an independent branch of Mathematics 

did not begin until the work of Boole in 1841.  Before discussing this 

work, it will be convenient to introduce matrix versions of real bilinear 

forms, B, defined by  

                                                    B = ∑i=1
m ∑j=1

n aijxiyj   

where 

                                                     x = [x1,x2,...xm], an m-vector,  

                                                     y = [y1,y2,...yn], an n-vector, 

and aij are real coefficients.  The square brackets denote a column 

vector. 

 In matrix notation, the bilinear form is 

                                                    B = xTAy 

where 

                                                          a11   .    .              a1n    

                                          A  =          .     .    .                         .   

                                                         am1      .    .              amn    

  

  

The scalar product of two n-vectors is seen to be a special case of a 

bilinear form in which A = I. 

 If x = y, the bilinear form becomes a quadratic form, Q: 

                                                   Q = xTAx. 

3.1. Invariants of binary quadratic forms  

 Boole began by considering the properties of the binary 
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quadratic form  

                                 Q(x,y) = ax2 + 2hxy + by2 

under a linear transformation of the coordinates 

                                         x' = Mx 

where  

                                         x  = [x,y], 
                                                                                           i     j  
                                         x' = [x',y'],  and  M  = 
              k    l 

 

 The matrix M transforms an orthogonal coordinate system into an 

oblique coordinate system in which the new x'- axis has a slope (k/i), 

and the new y'- axis has a slope (l/j), as shown:                                           

 

          y               y'                                       [i+j,k+l]   

                                                             

                                                             

 

 

      [0,1]                [1,1]                                      x' 

                                                             

                                                                                                                                                                                                                                          

 

       [0,0]               [1,0]                                       x 

 

             The transformation of a unit square under M. 
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 The transformation is linear, therefore the new function 

Q'(x',y') is a binary quadratic: 

                                          Q'(x',y') = a'x'2 + 2h'x'y' + b'y'2. 

 The original function can be written  

                                 Q(x,y) = xTDx 

where 

                                                         a       h   

                                        D =                       

                                                               h        b   

 

and the determinant of D is 

                                   detD = ab − h2, is the discriminant of Q. 

 The transformed function can be written 

                                         Q'(x',y') = x'TD'x'  

where 

                                                                  a'     h'  

                                      D' =     

                                                                   h'     b' 

and 

                                   detD' = a'b' − h'2, the discriminant of Q'. 

Now, 

                                          Q'(x',y') = (Mx)TD'Mx 

                                  = xTMTD'Mx 

and this is equal to Q(x,y) if 

                                          MTD'M = D. 

The invariance of the form Q(x,y) under the coordinate transformation 

M therefore leads to the relation  
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                                  (detM)2detD' = detD 

because 

                                  detMT = detM. 

The explicit form of this equation involving determinants is 

                          (il − jk)2(a'b' − h'2) = (ab − h2). 

The discriminant (ab - h2) of Q is said to be an invariant of the 

transformation because it is equal to the discriminant (a'b' − h'2) of Q', 

apart from a factor (il − jk)2 that depends on the transformation itself, 

and not on the arguments a,b,h of the function Q. 

3.2. General algebraic invariants 

 The study of general algebraic invariants is an important 

branch of Mathematics. 

 A binary form in two variables is 

                                f(x1,x2) = aox1
n + a1x1

n–1x2 + ...anx2
n 

                                            = ∑ aix1
n–ix2

i 

If there are three or four variables, we speak of ternary forms or 

quaternary forms. 

 A binary form is transformed under the linear transformation 

M as follows 

                        f(x1,x2) => f'(x1',x2') = ao'x1'n + a1'x1'n-1x2' + .. 

The coefficients 

                                         ao, a1, a2,..≠  ao', a1', a2' .. 

and the roots of the equation 

                                            f(x1,x2) = 0 

differ from the roots of the equation 

                                          f'(x1',x2') = 0. 

 Any function I(ao,a1,...an) of the coefficients of f that satisfies 
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                                rwI(ao',a1',...an') = I(ao,a1,...an)  

is said to be an invariant of f if the quantity r depends only on the 

transformation matrix M, and not on the coefficients ai of the function 

being transformed.  The degree of the invariant is the degree of the 

coefficients, and the exponent w is called the weight.  In the example 

discussed above, the degree is two, and the weight is two. 

 Any function, C, of the coefficients and the variables of a form 

f that is invariant under the transformation M, except for a 

multiplicative factor that is a power of the discriminant of M, is said to 

be a covariant of f.  For binary forms, C therefore satisfies 

 rwC(ao',a1',...an'; x1',x2') = C(ao,a1,...an; x1,x2). 

 It is found that the Jacobian of two binary quadratic forms, 

f(x1,x2) and g(x1,x2), namely the determinant 

                                    ∂f/∂x1  ∂f/∂x2      

                                    

                                    ∂g/∂x1  ∂g/∂x2     

 

where ∂f/∂x1 is the partial derivative of f with respect to x1 etc., is a 

simultaneous covariant of weight one of the two forms. 

 The determinant 

                              ∂2f/∂x1
2      ∂2f/∂x1∂x2     

                                                                  

                              ∂2g/∂x2∂x1    ∂2g/∂x2
2       

 

called the Hessian of the binary form f, is found to be a covariant of 

weight two.  A full discussion of the general problem of algebraic 

invariants is outside the scope of this book.  The following example 
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will, however, illustrate the method of finding an invariant in a 

particular case. 

Example: 

 To show that  

               (aoa2 − a1
2)(a1a3 − a2

2) − (aoa3 − a1a2)2/4 

is an invariant of the binary cubic 

               f(x,y) = aox3 + 3a1x2y + 3a2xy2 + a3y3 

under a linear transformation of the coordinates. 

The cubic may be written 

                          f(x,y) = (aox2+2a1xy+a2y2)x + (a1x2+2a2xy+a3y2)y 

                                    = xTDx 

where 

                                 x = [x,y], 

and 

                                    aox + a1y  a1x + a2y     

                   D   =                                            

                                    a1x + a2y  a2x + a3      

 Let x be transformed to x': x' = Mx, where 

 

                                      i         j    

                   M   =           

                                      k        l    

  

then 

               f(x,y) = f'(x',y') 

if 

                      D = MTD'M. 

Taking determinants, we obtain 
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           detD = (detM)2detD', 

an invariant of f(x,y) under the transformation M. 

 In this case, D is a function of x and y.  To emphasize this 

point, put 

           detD = φ(x,y) 

and 

           detD'= φ'(x',y') 

so that 

         φ(x,y) = (detM)2φ'(x',y') 

 

                   = (aox + a1y)(a2x + a3y) − (a1x + a2y)2 

                   = (aoa2 − a1
2)x2 + (aoa3 − a1a2)xy + (a1a3 − a2

2)y2 

                   = xTEx, 

where 

  

                               (aoa2 − a1
2 )        (aoa3 − a1a2)/2     

               E =                                             

                            (aoa3 − a1a2)/2        (a1a3 − a2
2 )       

 

Also, we have 

      φ'(x',y') = x'TE'x' 

                   = xTMTE'Mx 

therefore 

          xTEx = (detM)2xTMTE'Mx 

so that 

               E = (detM)2MTE'M. 

Taking determinants, we obtain 
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                 detE = (detM)4detE' 

                          = (aoa2 − a1
2)(a1a3 − a2

2) − (aoa3 − a1a2)2/4   

                          = invariant of the binary cubic f(x,y) under the 

transformation x' = Mx. 

4 

SOME INVARIANTS OF PHYSICS 

4.1. Galilean invariance. 

 Events of finite extension and duration are part of the 

physical world.  It will be convenient to introduce the notion of 

ideal events that have neither extension nor duration.  Ideal events 

may be represented as mathematical points in a space-time 

geometry.  A particular event, E, is described by the four 

components [t,x,y,z] where t is the time of the event, and x,y,z, are 

its three spatial coordinates. The time and space coordinates are 

referred to arbitrarily chosen origins.  The spatial mesh need not be 

Cartesian. 

 Let an event E[t,x], recorded by an observer O at the origin 

of an x-axis, be recorded as the event E'[t',x'] by a second observer 

O', moving at constant speed V along the x-axis.  We suppose that 

their clocks are synchronized at t = t' = 0 when they coincide at a 

common origin, x = x' = 0.  

At time t, we write the plausible equations 

        t' = t 

and 

        x' = x - Vt, 

where Vt is the distance traveled by O' in a time t.  These equations 

can be written 

      E'  = GE 
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where  

                            1       0     

       G  =                     

                      −V     1     

 

G is the operator of the Galilean transformation. 

 The inverse equations are 

        t  = t' 

and 

       x  = x' + Vt' 

or 

        E  = G–1E' 

where G-1 is the inverse Galilean operator.  (It undoes the effect of 

G). 

 If we multiply t and t' by the constants k and k', respectively, 

where k and k' have dimensions of velocity then all terms have 

dimensions of length. 

 In space-space, we have the Pythagorean form x2 + y2 = r2, 

an invariant under rotations.  We are therefore led to ask the 

question: is  (kt)2 + x2 invariant under the operator G in space-time?  

Calculation gives 

               (kt)2 + x2  = (k't')2 + x'2 + 2Vx't' + V2t'2 

            = (k't')2 + x'2  only if V = 0. 

We see, therefore, that Galilean space-time is not Pythagorean in its 

algebraic form.  We note, however, the key role played by 

acceleration in Galilean-Newtonian physics: the velocities of the 
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events according to O and O' are obtained by differentiating the 

equation x' = −Vt + x with respect to time, giving 

        v' = −V + v, 

a plausible result, based upon our experience. 

 Differentiating v' with respect to time gives 

           dv'/dt' = a' = dv/dt = a 

where a and a' are the accelerations in the two frames of reference.  

The classical acceleration is invariant under the Galilean 

transformation.  If the relationship v' = v − V is used to describe the 

motion of a pulse of light, moving in empty space at v = c ≅ 3 x 108 

m/s, it does not fit the facts.  All studies of ultra high-speed 

particles that emit electromagnetic radiation show that v' = c for all 

values of the relative speed, V. 

4.2. Lorentz invariance and Einstein's space-time symmetry. 

 It was Einstein, above all others, who advanced our 

understanding of the true nature of space-time and relative motion.  

We shall see that he made use of a symmetry argument to find the 

changes that must be made to the Galilean transformation if it is to 

account for the relative motion of rapidly moving objects and of 

beams of light.  He recognized an inconsistency in the Galilean-

Newtonian equations, based as they are, on everyday experience. 

We shall restrict the discussion to non-accelerating, inertial frames. 

 We have seen that the classical equations relating the events 

E and E' are E' = GE, and the inverse E = G–1E' where       

       
                       1  0                                               1        0    
       G =           and G–1 = 
                 –V    1                                       V        1 
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These equations are connected by the substitution V ↔ −V; this is 

an algebraic statement of the Newtonian Principle of Relativity.  

Einstein incorporated this principle in his theory.  He also retained 

the linearity of the classical equations in the absence of any 

evidence to the contrary – equispaced intervals of time and distance 

in one inertial frame remain equispaced in any other inertial frame.  

He therefore symmetrized the space-time equations as follows: 

                                                t' =      t  – Vx 

                                               x' = –Vx  +   t 

(The zero in G is replaced by –V)    

Note, however, the inconsistency in the dimensions of the time-

equation that has now been introduced: 

                  t' =  t − Vx. 

The term Vx has dimensions of [L]2/[T], and not [T].  This can be 

corrected by introducing the invariant speed of light, c – a postulate 

in Einstein's theory that is consistent with experiment: 

                         ct' = ct − Vx/c 

All terms in the equation now have dimensions of length. 

 Einstein went further, and introduced a dimensionless 

quantity γ instead of the scaling factor of unity that appears in the 

Galilean equations of space-time.  This factor must be consistent 

with all observations.  The equations then become 

                 ct' =     γct − βγx  

                   x' = −βγct +   γx, where β=V/c. 

These can be written 

                         E'  = LE,  

where 
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                                        γ   −βγ     

                          L  =                      , and E = [ct, x] 

                                     −βγ      γ     

 

L is the operator of the Lorentz transformation. 

 The inverse equation is 

                        E   = L–1E' 

where 

                            γ      βγ     

                         L–1 =                      . 

                           βγ       γ     

This is the inverse Lorentz transformation, obtained from L by 

changing  β → −β (or V → −V); it has the effect of undoing the 

transformation L.  We can therefore write 

                    LL–1 = I, or 

                       γ  −βγ          γ    βγ              1    0     

                  =                 . 

           −βγ   γ          βγ    γ               0    1     

 

Equating elements gives 

 

                 γ2 − β2γ2 = 1 

therefore, 

                                      γ = 1/√(1 − β2) (taking the positive 

root). 

4.3. The invariant interval. 

 Previously, it was shown that the space-time of Galileo and 

Newton is not Pythagorean in form.  We now ask the question: is 
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Einsteinian space-time Pythagorean in form?  Direct calculation 

leads to 

               (ct)2 + (x)2 = γ2(1 + β2)(ct')2 + 4βγ2x'ct' 

                                 +γ2(1 + β2)x'2 

                                ≠ (ct')2 + (x')2 if β > 0. 

Note, however, that the difference of squares is an invariant under 

L: 

              (ct)2 − (x)2 = (ct')2 − (x')2 

because 

               γ2(1 − β2) = 1. 

Space-time is said to be pseudo-Euclidean. 

 The negative sign that characterizes Lorentz invariance can 

be included in the theory in a general way as follows. 

 We introduce two kinds of 4-vectors 

                xµ = [x0, x1, x2, x3], a contravariant 

vector, 

and 

                xµ = [x0, x1, x2, x3], a covariant vector, 

where 

                xµ = [x0,−x1,−x2,−x3]. 

The scalar product of the vectors is defined as 

           xµTxµ = (x0, x1, x2, x3)[x0,−x1,−x2,−x3] 

                    = (x0)2 − ((x1)2 + (x2)2 + (x3)2) 

The event 4-vector is 

                         Eµ = [ct, x, y, z] and the covariant form 

is 

                         Eµ = [ct,−x,−y,−z] 
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so that the Lorentz invariant scalar product is 

                    EµTEµ = (ct)2 − (x2 + y2 + z2). 

The vector xµ transforms as  x'µ = Lxµ where L is 

                                       γ  −βγ   0    0     

                                   −βγ     γ    0    0    

                           L =                               . 

                                         0    0    1    0    

                                         0    0    0    1     

 

This is the operator of the Lorentz transformation if the motion of 

O' is along the x-axis of O's frame of reference. 

 Important consequences of the Lorentz transformation are 

that intervals of time measured in two different inertial frames are 

not the same but are related by the equation 

                         Δt' = γΔt 

where Δt is an interval measured on a clock at rest in O's frame, and 

distances are given by 

                        Δl' = Δl/γ 

where Δl is a length measured on a ruler at rest in O's frame. 

4.4. The energy-momentum invariant. 

     A differential time interval, dt, cannot be used in a Lorentz-

invariant way in kinematics.  We must use the proper time 

differential interval, dτ, defined by 

            (cdt)2 − dx2 = (cdt')2 − dx'2 ≡ (cdτ)2. 

     The Newtonian 3-velocity is 

                          vN = [dx/dt, dy/dt, dz/dt], 

and this must be replaced by the 4-velocity 
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                          Vµ = [d(ct)/dτ, dx/dτ, dy/dτ, dz/dτ] 

                               = [d(ct)/dt, dx/dt, dy/dt, dz/dt]dt/dτ 

                               = [γc,γvN] . 

The scalar product is then 

                      VµVµ = (γc)2 − (γvN)2 

                               = (γc)2(1 − (vN/c)2)  

                               = c2. 

(In forming the scalar product, the transpose is understood). 

The magnitude of the 4-velocity is Vµ = c, the invariant speed of 

light. 

     In Classical Mechanics, the concept of momentum is important 

because of its role as an invariant in an isolated system.  We 

therefore introduce the concept of 4-momentum in Relativistic 

Mechanics in order to find possible Lorentz invariants involving 

this new quantity.  The contravariant 4-momentum is defined as: 

                           Pµ = mVµ 

where m is the mass of the particle. (It is a Lorentz scalar, the mass 

measured in the frame in which the particle is at rest). 

     The scalar product is 

                       PµPµ = (mc)2. 

Now, 

                          Pµ = [mγc, mγvN] 

therefore, 

                       PµPµ = (mγc)2 − (mγvN)2. 

Writing 

                         M = γm, the relativistic mass  

we obtain 
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                       PµPµ = (Mc)2 − (MvN)2 = (mc)2. 

Multiplying throughout by c2 gives 

      M2c4 − M2vN
2c2 = m2c4. 

The quantity Mc2 has dimensions of energy; we therefore write 

                           E = Mc2 

the total energy of a freely moving particle. 

This leads to the fundamental invariant of dynamics 

                   c2PµPµ = E2 − (pc)2 = Eo2 

where 

                        Eo = mc2 is the rest energy of the 

particle, and p is its relativistic 3-momentum. 

     The total energy can be written: 

                          E = γEo = Eo + T, 

where 

                          T = Eo(γ − 1), 

the relativistic kinetic energy. 

     The magnitude of the 4-momentum is a Lorentz invariant 

                       Pµ = mc. 

The 4- momentum transforms as follows: 

                         P'µ = LPµ. 

For relative motion along the x-axis, this equation is equivalent to 

the equations 

 

                          E' =   γE − βγcpx 

and 

                         cpx = -βγE +  γcpx . 

     Using the Planck-Einstein equations E = hν and 
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E = pxc for photons, the energy equation becomes 

                           ν' = γν − βγν 

                              = γν(1 − β) 

                              =  ν(1 − β)/(1 − β2)1/2 

                              =  ν[(1 − β)/(1 + β)]1/2 . 

This is the relativistic Doppler shift for the frequency ν', measured 

in an inertial frame (primed) in terms of the frequency ν measured 

in another inertial frame (unprimed). 

4.5. The frequency-wavenumber invariant                                           

 Particle-wave duality, one of the most profound discoveries 

in Physics, has its origins in Lorentz invariance.  It was proposed by 

deBroglie in the early 1920's.  He used the following argument. 

     The displacement of a wave can be written 

                      y(t,r) = Acos(ωt − k•r) 

where ω = 2πν (the angular frequency), k = 2π/λ (the 

wavenumber), and  

r = [x, y, z] (the position vector).  The phase (ωt − k•r) can be 

written  ((ω/c)ct − k•r), and this has the form of a Lorentz invariant 

obtained from the 4-vectors 

            Eµ[ct, r], and Kµ[ω/c, k] 

where Eµ is the event 4-vector, and Kµ is the "frequency-

wavenumber" 4-vector. 

     deBroglie noted that the 4-momentum Pµ is connected to the 

event 4-vector Eµ through the 4-velocity Vµ, and the frequency-

wavenumber 4-vector Kµ is connected to the event 4-vector Eµ 

through the Lorentz invariant phase of a wave ((ω/c)ct − k•r).  He 
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therefore proposed that a direct connection must exist between Pµ 

and Kµ;  it is illustrated in the following diagram: 

                                                Eµ[ct,r]                                       

                                                                                        

 

  (Einstein) PµPµ= inv.                                    EµKµ= Inv. (deBroglie)  

                                                                                          

                  Pµ[E/c,p]                                            Kµ[ω/c,k]                 

                                                                                         

                                            (deBroglie) 

 

                      The coupling between Pµ and Kµ via Eµ. 

 

     deBroglie proposed that the connection is the simplest possible, 

namely, Pµ is proportional to Kµ.  He realized that there could be 

only one value for the constant of proportionality if the Planck-

Einstein result for photons, E = hω/2π, is but a special case of a 

general result; it must be h/2π, where h is Planck’s constant.  

Therefore, deBroglie proposed that 

                          Pµ ∝ Kµ 

or 

                          Pµ = (h/2π)Kµ. 

Equating the elements of the 4-vectors gives 

                          E  = (h/2π)ω 

and 

                          p  = (h/2π)k . 
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 In these remarkable equations, our notions of particles and 

waves are forever merged.  The smallness of the value of Planck's 

constant prevents us from observing the duality directly; however, it 

is clearly observed at the molecular, atomic, nuclear, and particle 

level. 

4.6. deBroglie's invariant. 

     The invariant formed from the frequency-wavenumber 4-vector 

is 

                      KµKµ = (ω/c, k)[ω/c,−k] 

                              = (ω/c)2 − k2 = (ωo/c)2, where ωo is 

the proper angular frequency. 

     This invariant is the wave version of Einstein's energy-

momentum invariant; it gives the dispersion relation 

                        ωo2 = ω2 − (kc)2. 

The ratio ω/k is the phase velocity of the wave, vφ. 

For a wave-packet, the group velocity vG is dω/dk; it can be 

obtained by differentiating the dispersion equation as follows: 

                             ωdω − kc2dk = 0 

therefore, 

                           vG = dω/dk = kc2/ω. 

     The deBroglie invariant involving the product of the phase and 

group velocity is therefore 

                        vφvG = (ω/k).(kc2/ω) = c2. 

     This is the wave-equivalent of Einstein's  

        E = Mc2. 

We see that 

                        vφvG = c2 = E/M 
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or, 

        vG = E/Mvφ = Ek/Mω = p/M = vN, the particle velocity. 

This result played an important part in the development of Wave 

Mechanics. 

     We shall find in later chapters, that Lorentz transformations 

form a group, and that invariance principles are related directly to 

symmetry transformations and their associated groups 

5 

GROUPS — CONCRETE AND ABSTRACT 

5.1  Some concrete examples 

 The elements of the set {±1, ±i}, where i = √−1, are the roots 

of the equation x4 = 1, the “fourth roots of unity”.  They have the 

following special properties: 

 1.  The product of any two elements of the set (including the 

same two elements) is always an element of the set.  (The elements 

obey closure). 

 2.  The order of combining pairs in the triple product of any 

elements of the set does not matter.  (The elements obey associativity). 

 3.  A unique element of the set exists such that the product of 

any element of the set and the unique element (called the identity) is 

equal to the element itself.  (An identity element exists). 

 4.  For each element of the set, a corresponding element exists 

such that the product of the element and its corresponding element 

(called the inverse) is equal to the identity.  (An inverse element 

exists). 

 The set of elements {±1, ±i} with these four properties is said 

to form a GROUP. 
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 Here, the law of composition of the group is multiplication; this 

need not be the case.  For example, the set of integers Z = {… −2, −1, 

0, 1, 2, … } forms a group if the law of composition is addition; in this 

group, the identity element is zero and the inverse of each integer is 

the integer with the same magnitude but with opposite sign.   

 In a different vein, we consider the set of 4×4 matrices 

                       1 0 0 0        0 0 0 1        0 0 1 0      0 1 0 0  

        {M} =     0 1 0 0   ,   1 0 0 0   ,     0 0 0 1 ,    0 0 1 0  . 

                       0 0 1 0        0 1 0 0        1 0 0 0      0 0 0 1  

                       0 0 0 1        0 0 1 0        0 1 0 0      1 0 0 0   

If the law of composition is matrix multiplication, then {M} is found 

to obey: 

 1 –closure, 

 2 --associativity, 

and to contain: 

 3 --an identity, diag(1, 1, 1, 1), 

and 

 4 --inverses. 

The set {M} forms a group under matrix multiplication. 

5.2. Abstract groups 

 The examples given above illustrate the generality of the group 

concept.  In the first example, the group elements are real and 

imaginary numbers, in the second, they are positive and negative 

integers, and in the third, they are matrices that represent linear 

operators (see later discussion).  Cayley, in the mid-19th century, first 

emphasized this generality, and he introduced the concept of an 

abstract group G that is a collection of n distinct elements (...gi...) for 
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which a law of composition is given.  If n is finite, the group is said to 

be a group of order n.  The collection of elements must obey the four 

rules: 

1.  If gi, gj ∈ G then gn = gj•gi ∈ G ∀ gi, gj ∈ G (closure) 

2.  gk(gjgi) = (gkgj)gi [omitting the composition symbol•] (associativity) 

3.  ∃ e ∈ G such that gie = egi = gi ∀ gi ∈ G (an identity exists) 

4. If gi ∈ G then ∃ gi
–1 ∈ G such that gi

–1gi = gigi
–1 = e 

   (an inverse exists). 

 For finite groups, the group structure is given by listing all 

compositions of pairs of elements in a group table, as follows: 

                 e  .  gi    gj    .  ←(1st symbol, or operation, in pair) 

         e       .     .     .      . 

         .        .     .     .      . 

        gi       .   gigi  gigj   . 

        gj       .   gjgi  gjgj   . 

        gk      .   gkgi  gkgj   .   

 

If gjgi = gigj ∀ gi, gj ∈ G, then G is said to be a commutative or abelian 

group.  The group table of an abelian group is symmetric under 

reflection in the diagonal.  

 A group of elements that has the same structure as an abstract 

group is a realization of the group. 

5.3 The dihedral group, D3  

 The set of operations that leaves an equilateral triangle 

invariant under rotations in the plane about its center, and under 

reflections in the three planes through the vertices, perpendicular to the 

opposite sides, forms a group of six elements.  A study of the structure 
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of this group (called the dihedral group, D3) illustrates the typical 

group-theoretical approach. 

 The geometric operations that leave the triangle invariant are: 

Rotations about the z-axis (anticlockwise rotations are positive) 

           Rz(0)     (123) → (123) = e, the identity 

     Rz(2π/3)(123) → (312)  = a 

     Rz(4π/3)(123) → (231)  = a2 

and reflections in the planes I, II, and III: 

               RI (123) → (132) = b 

              RII (123) → (321) = c 

             RIII (123) → (213) = d 

 This set of operators is D3 = {e, a, a2, b, c, d}. 

Positive rotations are in an anticlockwise sense and the inverse 

rotations are in a clockwise sense, so that the inverse of e, a, a2 are 

       e–1 = e, a–1 = a2, and (a2)–1 = a. 

The inverses of the reflection operators are the operators themselves: 

      b–1 = b, c–1 = c, and d–1 = d. 

 The set D3 forms a group with the multiplication table: 

    e  a  a2  b  c  d   

     e        e  a  a2  b  c  d   

     a        a  a2  e  d  b  c 

     a2          a2  e  a  c  d  b 

     b        b   c  d  e  a  a2 

     c        c   d  b  a2  e  a 

     d        d   b  c  a  a2  e 

 



 

41 

In reading the table, we follow the rule that the first operation is 

written on the right: for example, ca2 = b.  A feature of the group D3 is 

that it can be subdivided into sets of either rotations involving {e, a, 

a2} or reflections involving {b, c, d}.  The set {e, a, a2} forms a group 

called the cyclic group of order three, C3.  A group is cyclic if all the 

elements of the group are powers of a single element.  The cyclic 

group of order n, Cn, is 

       Cn = {e, a, a2, a3, .....,an–1}, 

where n is the smallest integer such that an = e, the identity.  Since 

              akan-k = an = e, 

an inverse an-k exists.  All cyclic groups are abelian. 

 The group D3 can be broken down into a part that is a group C3, 

and a part that is the product of one of the remaining elements and the 

elements of C3.  For example, we can write 

                  D3 = C3 + bC3 , b ∉ C3 

                       = {e, a, a2} + {b, ba, ba2} 

            = {e, a, a2} + {b, c, d} 

            = cC3 = dC3. 

This decomposition is a special case of an important theorem known 

as Lagrange’s theorem.  (Lagrange had considered permutations of 

roots of equations before Cauchy and Galois). 

5.4  Lagrange’s theorem 

 The order m of a subgroup Hm of a finite group Gn of order n is 

a factor (an integral divisor) of n. 

 Let  

  Gn = {g1= e, g2, g3 ,  gn} be a group of order n, and let 

  Hm= {h1= e, h2, h3 ,  hm} be a subgroup of Gn of order m. 
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If we take any element gk of Gn that is not in Hm, we can form the set 

of elements 

     {gkh1, gkh2, gkh3, ...gkhm} ≡ gkHm. 

This is called the left coset of Hm with respect to gk.  We note the 

important facts that all the elements of gkhj, j=1 to m are distinct, and 

that none of the elements gkhj belongs to Hm.  

 Every element gk that belongs to Gn but does not belong to Hm 

belongs to some coset gkHm so that Gn forms the union of Hm and a 

number of distinct (non-overlapping) cosets.  (There are (n − m) such 

distinct cosets).  Each coset has m different elements and therefore the 

order n of Gn is divisible by m, hence n = Km, where the integer K is 

called the index of the subgroup Hm under the group Gn. We therefore 

write 

                 Gn = g1Hm + gj2Hm + gk3Hm + ....gνKHm 

where  

                gj2 ∈ Gn ∉ Hm, 

                gk3 ∈ Gn ∉ Hm, gj2Hm  

                . 

               gnK ∈ Gn ∉ Hm, gj2Hm, gk3Hm, ...gn-1, K-1Hm. 

The subscripts 2, 3, 4, ..K are the indices of the group. 

 As an example, consider the permutations of three objects 1, 2, 

3 (the group S3) and let Hm = C3 = {123, 312, 231}, the cyclic group of 

order three.  The elements of S3 that are not in H3 are {132, 213, 321}.  

Choosing gk = 132, we obtain 

               gkH3 = {132, 321, 213}, 

and therefore 

                   S3 = C3 + gk2C3, K = 2.                    
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This is the result obtained in the decomposition of the group D3 if we 

make the substitutions e = 123, a = 312, a2 = 231, b = 132, c = 321, 

and d = 213. 

 The groups D3 and S3 are said to be isomorphic.  Isomorphic 

groups have the same group multiplication table.  Isomorphism is a 

special case of homomorphism that involves a many-to-one 

correspondence. 

5.5 Conjugate classes and invariant subgroups                                      

 If there exists an element v ∈ Gn such that two elements a, b ∈ 

Gn are related by vav–1 = b, then b is said to be conjugate to a.  A finite 

group can be separated into sets that are conjugate to each other. 

 The class of Gn is defined as the set of conjugates of an 

element a ∈ Gn.  The element itself belongs to this set.  If a is 

conjugate to b, the class conjugate to a and the class conjugate to b are 

the same.  If a is not conjugate to b, these classes have no common 

elements.  Gn can be decomposed into classes because each element of 

Gn belongs to a class. 

 An element of Gn that commutes with all elements of Gn forms 

a class by itself.   

 The elements of an abelian group are such that 

             bab–1 = a for all a, b ∈ Gn, 

so that 

                  ba = ab. 

 If Hm is a subgroup of Gn, we can form the set 

     {aea–1, ah2a–1, ....ahma–1} = aHma–1 where a ∈ Gn . 
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Now, aHma–1 is another subgroup of Hm in Gn.  Different subgroups 

may be found by choosing different elements a of Gn.  If, for all values 

of a ∈ Gn 

           aHma–1 = Hm  

(all conjugate subgroups of Hm in Gn are identical to Hm),  

then Hm is said to be an invariant subgroup in Gn. 

 Alternatively, Hm is an invariant in Gn if the left- and right-

cosets formed with any a ∈ Gn are equal, i. e. ahi = hka. 

 An invariant subgroup Hm of Gn commutes with all elements of 

Gn.  Furthermore, if hi ∈ Hm then all elements ahia–1 ∈ Hm so that Hm is 

an invariant subgroup of Gn if it contains elements of Gn in complete 

classes. 

 Every group Gn contains two trivial invariant subgroups, Hm = 

Gn and Hm = e.  A group with no proper (non-trivial) invariant 

subgroups is said to be simple (atomic).  If none of the proper invariant 

subgroups of a group is abelian, the group is said to be semisimple. 

 An invariant subgroup Hm and its cosets form a group under 

multiplication called the factor group (written Gn/Hm) of Hm in Gn. 

 These formal aspects of Group Theory can be illustrated by 

considering the following example: 

The group D3 = {e, a, a2, b, c, d} ~ S3 = {123, 312, 231, 132, 321, 

213}.     C3 is a subgroup of S3: C3 = H3 = {e, a, a2} = {123, 312, 231}. 

Now, 

                bH3 = {132, 321, 213} = H3b 

                cH3 = {321, 213, 132} = H3c 

and 

                dH3 = {213,132, 321} = H3d. 
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Since H3 is a proper invariant subgroup of S3, we see that S3 is not 

simple.  H3 is abelian therefore S3 is not semisimple. 

 The decomposition of S3 is 

       S3 = H3 + bH3 = H3 + H3b. 

and, in this case we have 

               H3b = H3c = H3d. 

(Since the index of H3 is 2, H3 must be invariant). 

 The conjugate classes are 

        e = e 

             eae–1 = ea = a 

             aaa–1 = ae = a 

       a2a(a2)–1  = a2a2 = a 

            bab–1 = bab = a2 

             cac–1 = cac = a2  

            dad–1 = dad = a2  

The class conjugate to a is therefore {a, a2}. 

The class conjugate to b is found to be {b, c, d}.  The group S3 can be 

decomposed by classes: 

                  S3 = {e} + {a, a2} + {b, c, d}. 

S3 contains three conjugate classes. 

  If we now consider Hm = {e, b} an abelian subgroup, we find  

               aHm = {a,d}, Hma = {a.c}, 

              a2Hm = {a2,c}, Hma2 = {a2, d}, etc. 

All left and right cosets are not equal: Hm = {e, b} is therefore not an 

invariant subgroup of S3. We can therefore write 

                  S3 = {e, b} + {a, d} + {a2, c} 

                      =    Hm   +    aHm  +    a2Hm. 
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Applying Lagrange’s theorem to S3 gives the orders of the possible 

subgroups: they are 

   order 1: {e} 

   order 2: {e, d}; {e, c}; {e, d} 

   order 3: {e, a, a2} (abelian and invariant) 

   order 6: S3. 

5.6 Permutations 

 A permutation of the set {1, 2, 3, ....,n} of n distinct elements is 

an ordered arrangement of the n elements.  If the order is changed then 

the permutation is changed.  The number of permutations of n distinct 

elements is n! 

 We begin with a familiar example: the permutations of three 

distinct objects labeled 1, 2, 3.  There are six possible arrangements; 

they are  

                      123, 312, 231, 132, 321, 213. 

These arrangements can be written conveniently in matrix form: 

 

                          1 2 3                   1 2 3                   1 2 3      

  π1   =                 , π2  =                  , π3  =                 , 

                          1 2 3                   3 1 2                   2 3 1      

 

                          1 2 3                   1 2 3                    1 2 3      

  π4  =                 , π5  =                  , π6  =                  . 

                          1 3 2                   3 2 1                    2 1 3      

 

The product of two permutations is the result of performing one 

arrangement after another.  We then find 

   π2π3 = π1 
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and 

               π3π2 = π1 

whereas 

               π4π5 = π3 

and 

               π5π4 = π2. 

The permutations π1, π2, π3 commute in pairs (they correspond to 

rotations in the dihedral group) whereas the remaining permutations do 

not commute (they correspond to reflections).  

 A general product of permutations can be written 

     s1  s2 .  .  .sn         1  2  .  .  n                    1  2   .  .  n  

           =                             . 

      t1  t2 .  .  .tn       s1  s2 .  .  sn                    t1  t2  .  .  tn    

 

 The permutations are found to have the following properties: 

1.  The product of two permutations of the set {1, 2, 3, …} is itself a 

permutation of the set.  (Closure) 

2.  The product obeys associativity: 

 (πkπj)πi = πk(πjπi), (not generally commutative). 

3.  An identity permutation exists. 

4.  An inverse permutation exists: 

                             s1  s2  .  .  .  sn                   

 π –1 =                           

                             1   2  .  .  .  n            

 

such that ππ-1 = π-1π = identity permutation. 

The set of permutations therefore forms a group 
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5.7 Cayley’s theorem: 

 Every finite group is isomorphic to a certain permutation  

 group. 

Let Gn ={g1, g2, g3,  .  .  .gn} be a finite group of order n.  We choose 

any element gi in Gn, and we form the products that belong to Gn: 

 gig1, gig2, gig3,  .  .  . gign. 

These products are the n-elements of G, rearranged.  The permutation 

πi, associated with gi is therefore 

                                      g1        g2        .         .         gn   

                      πi  =                                                                   . 

                                      gig1     gig2       .        .        gign   

 

If the permutation πj associated with gj is 

 

 

                                      g1        g2         .         .         gn     

                     πj  =                                                                     

                                     gjg1      gjg2       .         .        gjgn    

 

where gi ≠ gj, then  

 

                                      g1         g2         .        .        gn        

                  πjπi  =                                                                     .   

                                    (gjgi)gi  (gjgi)g2   .        .       (gjgi)gn    

 

This is the permutation that corresponds to the element gjgi of Gn. 

There is a direct correspondence between the elements of Gn and the n-

permutations {π1, π2, .  .  .πn}.  The group of permutations is a 
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subgroup of the full symmetric group of order n! that contains all the 

permutations of the elements g1, g2, .  .  gn. 

 Cayley’s theorem is important in quantum systems in which 

the indistinguishability of the fundamental particles means that certain 

quantities must be invariant under the exchange or permutation of the 

particles. 

6 

LIE’S DIFFERENTIAL EQUATION, INFINITESIMAL 

ROTATIONS AND ANGULAR MOMENTUM OPERATORS 

 Although the field of continuous transformation groups (Lie 

groups) has its origin in the theory of differential equations, we shall 

introduce the subject using geometrical ideas. 

6.1 Coordinate and vector rotations 

 A 3-vector v = [vx, vy, vz] transforms into v´ = [vx´, vy´, vz´] 

under a general coordinate rotation R about the origin of an orthogonal 

coordinate system as follows: 

                   v´ = R v, where             

                                 i.i´     j.i´    k.i´      

                   R =        i.j´     j.j´    k.j´     

                                                                  i.k´    j.k´   k.k´     

 

                                                                   cosθii´   .       .             

                        =         cosθij´   .       .             

                                                                   cosθik´   .   cosθkk´       

in which i, j, k, i´, j´, k´ are orthogonal unit vectors, along the axes, 

before and after the transformation, and the cosθii´’s are direction 

cosines. 
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 The simplest case involves rotations in the x-y plane: 

 

                           vx´    =      cosθii´   cosθji       vx 

                           vy´            cosθij´   cosθjj´      vy         

 

 

            =      cosφ      sinφ       vx   = Rc(φ)v 

                                               −sinφ     cosφ       vy    

 

where Rc(φ) is the coordinate rotation operator.  If the vector is rotated 

in a fixed coordinate system, we have φ → −φ so that 

 

                     v´ = R v(φ)v, 

where  

 

                        R v(φ)  =     cosφ    −sinφ     . 

                                           sinφ      cosφ   

 

6.2  Lie’s differential equation 

 The main features of Lie’s Theory of Continuous 

Transformation Groups can best be introduced by discussing the 

properties of the rotation operator Rv(φ) when the angle of rotation is 

an infinitesimal.  In general, Rv(φ) transforms a point P[x, y] in the 

plane into a “new” point P´[x´, y´]: P´ = Rv(φ)P. 

Let the angle rotation be sufficiently small for us to put cos(φ) ≅ 1 and 

sin(φ) ≅ δφ, in which case, we have 
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          Rv(δφ)  =       1   −δφ    

                               δφ     1     

and 

       x´ =  x.1 − yδφ = x  − yδφ      

       y´ = xδφ + y.1  = xδφ + y    

Let the corresponding changes x → x´ and y → y´ be written 

       x´ = x + δx and y´ = y +δy 

so that  

       δx = −yδφ and δy = xδφ. 

We note that  

 

           R v(δφ) =     1    0      +       0   −1   δφ 

                    0    1               1     0     

 

            =  I  +  i δφ 

where 

          i =     0   −1   =  Rv(π/2). 

                   1     0    

Lie introduced another important way to interpret the operator  

i = Rv(π/2) that involves the derivative of Rv(φ) evaluated at the 

identity value of the parameter, φ = 0: 

   d Rv(φ)/dφ   =    −sinφ  −cosφ      =    0   −1    =  i  

          φ =0        cosφ  −sinφ             1     0     

            φ = 0                   

so that  

                                    Rv(δφ) =  I + dRv(φ)/dφ. δφ,   

          φ = 0     
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a quantity that differs from the identity I by a term that involves the  

infinitesimal, δφ: this is an infinitesimal transformation.  

 Lie was concerned with Differential Equations and not 

Geometry.  He was therefore motivated to discover the key equation 

 

                dRv(φ)/dφ  =   0   −1      cosφ  −sinφ      

                1    0        sinφ    cosφ      

 

                      =  i Rv(φ). 

This is Lie’s differential equation. 

Integrating between φ = 0 and φ = φ, we obtain 
       R v(φ)                           φ 
        ∫ dR v(φ)/Rv(φ)  =  i ∫ dφ 
                   I                              0 
so that 

               ln(Rv(φ)/I) = iφ, 

or 

            Rv(φ) = Ieiφ,  

the solution of Lie’s equation. 

Previously, we obtained 

            Rv(φ) = Icosφ + isinφ. 

We have, therefore 

               Ieiφ  = Icosφ + isinφ .      

This is an independent proof of the famous Cotes-Euler equation. 

 We introduce an operator of the form 

       O = g(x, y, ∂/∂x, ∂/∂y), 

and ask the question: does 

                 δx = Of(x, y; δφ) ?  
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Lie answered the question in the affirmative; he found 

             δx = O(xδφ) = (x∂/∂y − y∂/∂x)xδφ = −yδφ 

and 

             δy = O(yδφ) = (x∂/∂y − y∂/∂x)yδφ  =  xδφ. 

Putting x = x1 and y = x2, we obtain 

       δxi = Xxiδφ , i = 1, 2 

where  

                                              X = O = (x1∂/∂x2 − x2∂/∂x1),  

                                             the “generator of rotations” in the plane. 

6.3 Exponentiation of infinitesimal rotations 

We have seen that 

                           Rv(φ) = eiφ, 

and therefore 

                       Rv(δφ) = I + iδφ, 

for an infinitesimal rotation, δφ 

Performing two infinitesimal rotations in succession, we have 

                      Rv
2(δφ) = (I + iδφ)2 

                        =  I + 2iδφ to first order, 

                        = Rv(2δφ). 

Applying Rv(δφ) n-times gives 

                Rv
n(δφ) = Rv(nδφ) = einδφ = eiφ  

       = Rv(φ) (as n → ∞ and δφ → 0,  

                                                        the product nδφ → φ). 

This result agrees, as it should, with the exact solution of Lie’s 

differential equation.   

 A finite rotation can be built up by exponentiation of 

infinitesimal rotations, each one being close to the identity.  In general, 
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this approach has the advantage that the infinitesimal form of a 

transformation can often be found in a straightforward way, whereas 

the finite form is often intractable. 

6.4 Infinitesimal rotations and angular momentum operators 

 In Classical Mechanics, the angular momentum of a mass m, 

moving in the plane about the origin of a cartesian reference frame 

with a momentum p is 

                  Lz = r × p = rpsinφnz 

where nz is a unit vector normal to the plane, and φ is the angle 

between r and p.  In component form, we have 

                Lz
cl = xpy − ypx, where px and py are the 

cartesian components of p. 

 The transition between Classical and Quantum Mechanics is 

made by replacing 

           px by −i(h/2π)∂/∂x (a differential operator) 

and           py by −i(h/2π)∂/∂y (a differential operator), 

where h is Planck’s constant.  The quantum operator is therefore 

             Lz
Q = −i(h/2π)(x∂/∂y − y∂/∂x) =−i(h/2π)X 

so that 

                X = iLz
Q/(h/2π), 

and 

          δxi =  Xxi δφ = (2πiLz
Q/h)xi δφ, i = 1,2. 

 Let an arbitrary, continuous, differentiable function f(x, y) be 

transformed under the infinitesimal changes 

      x´ = x − yδφ 

      y´ = y + xδφ . 

Using Taylor’s theorem, we can write 
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             f(x´, y´) = f(x + δx, y + δy) 

     = f(x − yδφ, y + xδφ) 

                = f(x, y) + (∂f/∂x)δx + (∂f/∂y)δy  

                                                 = f(x, y) + δφ(−y(∂/∂x) + x(∂/∂y))f(x, y) 

                = I + 2πiδφLz/h)f(x, y) 

                = e2πiδφLz/h f(x, y) 

                = Rv(2πLzδφ/h) f(x, y). 

The invariance of length under rotations follows at once: 

                                  if f(x, y) = x2 + y2  then 

    ∂f/∂x = 2x and ∂f/∂y = 2y, therefore 

             f(x´, y´) = f(x, y) + 2xδx + 2yδy 

                = f(x, y) − 2x(yδφ) + 2y(xδφ) = f(x, y). 

This is the only form that is length-invariant under rotations. 

6.5 3-dimensional rotations 

 Consider three successive counterclockwise rotations about the 

x, y´, and z´´ axes through angles µ, θ, and φ, respectively: 
 

                                              z     

                                                                                                                                  z′                   y′   

                                                            y                                          µ about x                                            y 

                                                    x                                                                                                           x, x′   

 

 

                                  z′                                  y′                                                                   z′′                 y′, y′′ 

                                                                                                       θ about y´ 

 

 

                                                                        x′                                                                             x′′            x′ 

                                             z′′                                                                                          z′′′         y′′′ 

                                                             y′′ 

                                                                                                       φ about z´´ 

                                                               x′′′ 

                                                   x′′                                                                                             x′′  



 

56 

     The total transformation is Rc(µ, θ, φ) = Rc(φ)Rc(θ)Rc(µ)  

          cosφcosθ    cosφsinθsinµ + sinφcosµ   −cosφsinθcosµ + sinφsinµ       

   =   −sinφcosθ   −sinφsinθsinµ + cosφcosµ    sinφsinθcosµ + cosφsinµ      

   sinθ                   −cosθsinµ                            cosθcosµ                   

   

For infinitesimal rotations, the total rotation matrix is, to 1st-order in 

the δ’s: 

                                                1              δφ             −δθ     

            R c(δµ, δθ, δφ)  =     −δφ              1                δµ    .  

                                               δθ            −δµ               1      

 

                                               1  δφ   0      1    0 −δθ    1    0    0      

                                     =     −δφ  1   0       0    1    0     0    1   δµ   

                                               0    0   1      δθ   0   1      0 −δµ  1    

 

                                     =    ( I + Y3δφ )( I + Y2δθ )( I + Y1δµ)        

 

where       

                                             

                                0   0   0                 0   0 −1                  0  1  0    

                      Y1 =   0   0   1  ,  Y2 =    0   0   0   ,   Y3 =  −1  0  0   .  

                                0 −1   0                1   0   0                   0  0  0   

 

To 1st-order in the δ’s, we have 

 

                            Rc(δµ, δθ, δφ)  = I  +  Y1δµ  +  Y2δθ  +  Y3δφ . 
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6.6  Algebra of the angular momentum operators 

The algebraic properties of the Y’s are important.  For example, we 

find that their commutators are: 

 

                                 0   0   0     0   0 −1            0   0 −1    0   0  0    

 [Y1, Y2]   =   0   0   1     0   0   0     −     0   0   0    0   0  1    

                                 0 −1   0     1   0   0            1   0   0    0 −1  0     

                            =  −Y3 , 

 [Y1, Y3]   =    Y2  , 

and 

 [Y2, Y3]   =  −Y1 . 

 These relations define the algebra of the Y’s.  In general, we 

have 

       [Yj, Yk]  =  ± Yl = εjkl Yl , 

where εjkl is the anti-symmetric Levi-Civita symbol.  It is equal to +1 if 

jkl is an even permutation, −1 if jkl is an odd permutation, and it is 

equal to zero if two indices are the same. 

 Motivated by the relationship between Lz and X in 2-

dimensions, we introduce the operators 

       Jk = −i(2π/h)Yk , k = 1, 2, 3. 

Their commutators are obtained from those of the Y’s, for example 

        [Y1, Y2] = −Y3 →  [2πiJ1/h, 2πiJ2/h] = −2πiJ3/h 

or 

        −[J1, J2](2π/h)2 = −2πiJ3/h 

and therefore 

          [J1, J2] = ihJ3/2π . 

These operators obey the general commutation relation 
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                      [Jj, Jk] = ihεjkl Jl /2π . 

The angular momentum operators form a “Lie Algebra”. 

 The basic algebraic properties of the angular momentum 

operators in Quantum Mechanics stem directly from this relation. 

 Another approach involves the use of the differential operators 

in 3-dimensions.  A point P[x, y, z] transforms under an infinitesimal 

rotation of the coordinates as follows 

                      P´[x´, y´, z´]  = Rc(δµ, δθ, δφ]P[x, y, z] 

Substituting the infinitesimal form of Rc in this equation gives 

               δx = x´ − x =            yδφ − zδθ 

               δy = y´ − y =  −xδφ         + zδµ 

                δz = z´ − z =   xδθ − yδµ . 

Introducing the classical angular momentum operators: Li
cl, we find 

that these small changes can be written 

                           3 

                           δxi  =  ∑ δαk Xkxi   

                          k = 1 

For example, if i = 1 

                  δx1 = δx  =   δµ( z∂/∂y  −  y∂/∂z)x 

                        + δθ(–z∂/∂x  +  x∂/∂z)x 

                        + δφ(  y∂/∂x   −  x∂/∂y)x  

                      = −zδθ  +  yδφ . 

 Extending Lie’s method to three dimensions, the infinitesimal 

form of the rotation operator is readily shown to be 

             3 

        Rc(δµ, δθ, δφ)  =  I  +  ∑ (∂Rc/∂αi)| ⋅ δαi .  

                                               i = 1                            All αi’s = 0     
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7 

LIE’S CONTINUOUS TRANSFORMATION GROUPS 

 In the previous chapter, we discussed the properties of 

infinitesimal rotations in 2- and 3-dimensions, and we found that 

they are related directly to the angular momentum operators of 

Quantum Mechanics.  Important algebraic properties of the matrix 

representations of the operators also were introduced.  In this 

chapter, we shall consider the subject in general terms. 

 Let xi, i = 1 to n be a set of n variables.  They may be 

considered to be the coordinates of a point in an n-dimensional 

vector space, Vn.  A set of equations involving the xi’s is obtained 

by the transformations 

                  xi´ = fi(x1, x2,..xn: a1, a2,..ar), i = 1 to n 

in which the set a1, a2, ...ar contains r-independent parameters.  The 

set Ta, of transformations maps x → x´.  We shall write 

                x´  =  f(x; a) or x´  =  Tax 

for the set of functions. 

 It is assumed that the functions fi are differentiable with 

respect to the x’s and the a’s to any required order.  These functions 

necessarily depend on the essential parameters, a.  This means that 

no two transformations with different numbers of parameters are the 

same.  r is the smallest number required to characterize the 

transformation, completely. 

The set of functions fi forms a finite continuous group if: 

1.  The result of two successive transformations x → x´ → x´´ is 

equivalent to a single transformation x → x´´: 

         x´  =  f(x´; b)  =  f(f(x; a); b) 
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           =  f(x; c) 

           =  f(x; χ(a; b)) 

where c is the set of parameters 

       cλ  =  χλ (a; b) ,  λ = 1 to r, 

and 

2.  To every transformation there corresponds a unique inverse that 

belongs to the set: 

        ∃  a such that x = f(x´; a) = f(x´; a) 

 We have 

           TaTa
-1  =  Ta

-1Ta  =  I, the identity. 

We shall see that 1) is a highly restrictive requirement. 

 The transformation x = f(x; a0) is the identity.  Without loss 

of generality, we can take a0 = 0.  The essential point of Lie’s 

theory of continuous transformation groups is to consider that part 

of the group that is close to the identity, and not to consider the 

group as a whole.  Successive infinitesimal changes can be used to 

build up the finite change. 

7.1 One-parameter groups 

 Consider the transformation x → x´ under a finite change in 

a single parameter a, and then a change x´ + dx´.  There are two 

paths from x  → x´ + dx´; they are as shown: 

 
            x´ 
             an “infinitesimal” 
             δa                 a finite parameter change, 
                                                                               a   
           x´ + dx´    
                   
                                                       a + da                            x(a = 0) 
                                  a “differential” 
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We have 

       x´ + dx´ = f(x; a + da) 

           = f(f(x; a); δa) = f(x´; δa) 

The 1st-order Taylor expansion is  

     dx´ = ∂f(x´; a)/∂a  δa ≡ u(x´) δa  

                                                                          a = 0   

The Lie group conditions then demand 

           a + da = χ(a; δa). 

But 

          χ(a; 0) = a,  (b = 0) 

therefore 

           a + da = a + ∂χ(a; b)/∂b  δa 

                            b = 0 

so that 

       da = ∂χ(a; b)/∂b  δa  

                                                                          b = 0 

or 

       δa = A(a)da. 

Therefore 

      dx´ = u(x´)A(a)da, 

leading to 

     dx´/u(x´)  =  A(a)da 

so that 

   x´                    a 

             ∫ dx´/u(x´)  = ∫A(a)da  ≡ s  

            x                     0  

                                                       (s = 0 → the identity).  
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We therefore obtain 

          U(x´) − U(x) = s. 

A transformation of coordinates (new variables) therefore transfers 

all elements of the group by the same transformation: a one-

parameter group is equivalent to a group of translations. 

 Two continuous transformation groups are said to be similar 

when they can be obtained from one another by a change of 

variable. For example, consider the group defined by 

 

                       x1´         a   0       x1 

                       x2´   =    0   a2      x2   

 

The identity coprresponds to a = 1.  The infinitesimal 

transformation is therefore 

                      x1´         (1 + δa)          0        x1 

                      x2´   =       0         (1 + δa)2     x2  .    

 

To 1st-order in δa we have 

             x1´  =  x1 + x1δa 

and 

             x2´  =  x2 + 2x2δa 

or 

             δx1  =  x1δa 

and 

             δx2  =  2x2δa. 

In the limit, these equations give 

         dx1/x1  =  dx2/2x2  =  da. 
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These are the differential equations that correspond to the 

infinitesimal equations above. 

Integrating, we have 

             x1´                a                 x2´                   a 

  ∫ dx1/x1   =  ∫ da   and     ∫ dx2/2x2   =   ∫ da , 

           x1                0                  x2                    0 

so that 

          lnx1´  −  lnx1  =  a  =  ln(x1´/x1) 

and 

                ln(x2´/x2)  =  2a  =  2ln(x1´/x1) 

or 

      U´  =  (x2´/x1´2)  =  U  =  (x2/x1
2) . 

Putting V  =  lnx1, we obtain 

      V´  =  V  +  a   and U´ =  U, the translation group. 

7.2  Determination of the finite equations from the infinitesimal 

forms 

 Let the finite equations of a one-parameter group G(1) be 

               x1´  =  φ(x1, x2 ; a) 

and 

               x2´  =  ψ(x1, x2 ; a), 

and let the identity correspond to a = 0. 

We consider the transformation of f(x1, x2) to f(x1´, x2´).  We 

expand  f(x1´, x2´) in a Maclaurin series in the parameter a (at 

definite values of x1 and x2): 

         f(x1´, x2´)  =  f(0)  +  f´(0)a  +  f´´(0)a2/2!  +  … 

where 

       f(0)  =  f(x1´, x2´)| a=0  =  f(x1, x2),  
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and 

      f´(0)  =  (df(x1´, x2´)/da| a=0 

                         ={(∂f/∂x1´)(dx1´/da)+ (∂f/∂x2´)(dx2´/da)}| a=0  

 

    ={(∂f/∂x1´)u(x1´, x2´)  +  (∂f/∂x2´)v(x1´, x2´)}|a=0  

therefore 

                f´(0)  = {(u(∂/∂x1)  +  v(∂/∂x2))f}| a=0  

     =  Xf(x1, x2). 

Continuing in this way, we have 

     f´´(0)  = {d2f(x1´, x2´)/da2}|a=0  =  X2f(x1, x2), etc.... 

The function f(x1´, x2´) can be expanded in the series 

         f(x1´, x2´)  =  f(0)  +  af´(0)  +  (a2/2!)f´´(0)  + ... 

     = f(x1, x2)  +  aXf  +  (a2/2!)X2f  +  ... 

Xnf is the symbol for operating n-times in succession of f with X. 

The finite equations of the group are therefore 

                   x1´  =  x1  +  aXx1  + (a2/2!)X2x1  +  ... 

and 

                   x2´  =  x2  +  aXx2  + (a2/2!)X2x2  +  ... 

If x1 and x2 are definite values to which x1´and x2´ reduce for the 

identity a=0, then these equations are the series solutions of the 

differential equations 

                 dx1´/u(x1´, x2´)  =  dx2´/v(x1´, x2´)  =  da. 

The group is referred to as the group Xf. 

For example, let    

                           Xf = (x1∂/∂x1  +  x2∂/∂x2)f 

then 

                         x1´  = x1  +  aXx1  + (a2/2!)X2f ... 

                               = x1  +  a(x1∂/∂x1  + x2∂/∂x2)x1 + ... 
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                               = x1  + ax1  +  (a2/2!)(x1∂/∂x1   

                                                                                 +  x2∂/∂x2)x1  +  

                               = x1  +  ax1  +  (a2/2!)x1  +  ... 

                               = x1(1  +  a  +  a2/2!  +  ...) 

                               = x1ea. 

Also, we find 

                                   x2´  =  x2ea. 

Putting b = ea, we have 

                         x1´  =  bx1 and x2´  = bx2. 

The finite group is the group of magnifications. 

If X = (x∂/∂y  − y∂/∂x) we find, for example, that the finite group is 

the group of 2-dimensional rotations. 

7.3  Invariant functions of a group 

 Let 

                Xf = (u∂/∂x1  +  v∂/∂x2)f  

define a one-parameter group, and let a = 0 give the identity.  A 

function F(x1, x2) is termed an invariant under the transformation 

group G(1) if 

              F(x1´, x2´)  =  F(x1, x2) 

for all values of the parameter, a. 

 The function F(x1´, x2´) can be expanded as a series in a: 

 F(x1´, x2´) = F(x1, x2)  +  aXF  +  (a2/2!)X(XF)  +  ... 

If 

                        F(x1´, x2´)  =  F(x1, x2) 

                                                    =  invariant for all values of a, it is 

necessary for 

              XF  =  0. 

This means that 
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               {u(x1, x2)∂/∂x1  +  v(x1, x2)∂/∂x2}F  =  0. 

Consequently, 

                 F(x1, x2)  =  constant 

is a solution of 

           dx1/u(x1, x2)  =  dx2/v(x1, x2) . 

This equation has one solution that depends on one arbitrary 

constant, and therefore G(1) has only one basic invariant, and all 

other possible invariants can be given in terms of the basic 

invariant. 

 For example, we now reconsider the invariants of rotations: 

 The infinitesimal transformations are given by 

               Xf  =  (x1∂/∂x2  −  x2∂/∂x1), 

and the differential equation that gives the invariant function F of 

the group is obtained by solving the characteristic differential 

equations  

          dx1/x2  =  dφ, and dx2/x1  =  −dφ, 

so that 

        dx1/x2  +  dx2/x1  =  0. 

The solution of this equation is  

               x1
2  +  x2

2  = constant,  

and therefore the invariant function is 

       F(x1, x2)  =  x1
2  +  x2

2. 

All functions of x1
2  +  x2

2 are therefore invariants of the 2-

dimensional rotation group. 

 This method can be generalized.  A group G(1) in n-variables 

defined by the equation  

          xi´ = φ(x1, x2, x3, ...xn; a), i  =  1 to n, 
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is equivalent to a unique infinitesimal transformation 

         Xf  =  u1(x1, x2, x3, ...xn)∂f/∂x1  +  ...un(x1, x2, x3, ...xn)∂f/∂xn . 

If a is the group parameter then the infinitesimal transformation is 

         xi´  =  xi  +  ui(x1, x2, ...xn)δa  (i  =  1 to n), 

then, if E(x1, x2, ...xn) is a function that can be differentiated n-times 

with respect to its arguments, we have 

        E(x1´, x2´, ...xn´)  =  E(x1, x2, ...xn)  +  aXE  +  (a2/2!)X2E  + . 

Let (x1, x2, ...xn) be the coordinates of a point in n-space and let a be 

a parameter, independent of the xi’s.  As a varies, the point (x1, x2, 

...xn) will describe a trajectory, starting from the initial point (x1, x2, 

...xn).  A necessary and sufficient condition that F(x1, x2, ...xn) be an 

invariant function is that XF = 0.  A curve F = 0 is a trajectory and 

therefore an invariant curve if 

           XF(x1, x2, x3, ...xn)  =  0. 

8 

  PROPERTIES OF n-VARIABLE, r-PARAMETER LIE 

GROUPS 

 The change of an n-variable function F(x) produced by the  

infinitesimal transformations associated with r-essential parameters is:  

                   n  

                  dF = ∑ (∂F/∂xi)dxi  

               i = 1 

where 

                   r 

        dxi = ∑ uiλ(x)δaλ , the Lie form. 

               λ = 1 

The parameters are independent of the xi’s therefore we can write 
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                  r          n 

         dF =  ∑ δaλ{∑ uiλ(x)(∂/∂xi)F} 

                λ = 1         i = 1 

                  r 

             =  ∑ δaλ Xλ F 

                λ = 1 

where the infinitesimal generators of the group are 

                                                              n 

        Xλ ≡  ∑ uiλ(x)(∂/∂xi) , λ= 1 to r. 

                 i = 1 

The operator                                        r 

         I  +  ∑ Xλδaλ 

                λ = 1 

differs infinitesimally from the identity. 

The generators Xλ have algebraic properties of basic importance in the 

Theory of Lie Groups.  The Xλ’s are differential operators.  The 

problem is therefore one of obtaining the algebraic structure of 

differential operators.  This problem has its origin in the work of 

Poisson (1807); he introduced the following ideas: 

 The two expressions 

                          X1f  =  (u11∂/∂x1  +  u12∂/∂x2)f 

and 

                          X2f  =  (u21∂/∂x1  +  u22∂/∂x2)f 

where the coefficients uiλ are functions of the variables x1, x2, and f(x1, 

x2) is an arbitrary differentiable function of the two variables, are 

termed linear differential operators. 

The “product” in the order X2 followed by X1 is defined as 
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               X1X2f  =  (u11∂/∂x1  +  u12∂/∂x2)(u21∂f/∂x1  +  u22∂f/∂x2) 

The product in the reverse order is defined as 

               X2X1f  =  (u21∂/∂x1  +  u22∂/∂x2)(u11∂f/∂x1  +  u12∂f/∂x2). 

The difference is 

          X1X2f  −  X2X1f  =     X1u21∂f/∂x1  +  X1u22∂f/∂x2 

                   − X2u11∂f/∂x1  −  X2u12∂f/∂x2. 

                          =    (X1u21  −  X2u11)∂f/∂x1  

                                        + (X1u22  −  X2u12)∂f/∂x2 

    ≡  [X1, X2]f. 

This quantity is called the Poisson operator or the commutator of the  

operators X1f and X2f. 

The method can be generalized to include λ = 1 to r essential 

parameters and i = 1 to n variables.  The ath-linear operator is then 

                Xa  =  uia∂f/∂xi  

                n 

                      =  ∑ uia∂f/∂xi    

                                               i = 1 

(Sum over repeated indices). 

 Lie’s differential equations have the form 

     ∂xi/∂aλ  =  uik(x)Akλ(a) , i = 1 to n, λ = 1 to r. 

Lie showed that 

                       (∂ckτσ/∂aρ)uik  =  0 

in which 

                 ujσ∂uiτ/∂xj  −  ujτ∂uiσ/∂xj  = ckτσ(a)uik(x), 

so that the ckτσ’s are constants.  Furthermore, the commutators can be  

written 

                   [Xρ, Xσ]  = ( ckρσujk)∂/∂xj 
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                       = ckρσXk.  

The commutators are linear combinations of the Xk’s.  (Recall the 

earlier discussion of the angular momentum operators and their 

commutators). 

The ckρσ’s are called the structure constants of the group.  They have 

the properties 

                          ckρσ  =  −ckσρ ,  

        cµρσcνµτ  +  cµστcνµρ  +  cµτρcνµσ  =  0. 

Lie made the remarkable discovery that, given these structure 

constants, the functions that satisfy  

                                           ∂xi/∂aλ  =  uikAkλ(a) can be found. 

(Proofs of all the above important statements, together with proofs of  

Lie’s three fundamental theorems, are given in Eisenhart’s standard 

work Continuous Groups of Transformations, Dover Publications, 

1961). 

8.1  The rank of a group 

 Let A be an operator that is a linear combination of the 

generators  

of a group, Xi: 

                 A  =  αiXi  (sum over i), 

and let 

                 X  =  xjXj . 

The rank of the group is defined as the minimum number of 

commuting, linearly independent operators of the form A. 

We therefore require all solutions of 

          [A, X] = 0. 

 For example, consider the orthogonal group, O+(3); here 



 

71 

                A  =  αiXi   i = 1 to 3, 

and 

                X  =   xjXj   j = 1 to 3 

so that 

         [A, X]  = αixj[Xi, Xj]  i, j = 1 to 3 

          = αixjεijkXk . 

The elements of the sets of generators are linearly independent, 

therefore 

                    αixjεijk  = 0 (sum over i, j,, k = 1, 2, 3) 

This equation represents the equation 

 

    −α2   α1  0        x1          0   

     α3   0  −α2       x2    =    0   . 

     0   −α3  α2       x3            0   

 

The determinant of α  is zero, therefore a non-trivial solution of the xj’s  

exists.  The solution is given by 

                    xj  =  αj  (j = 1, 2, 3) 

so that 

          A  =  X . 

O+(3) is a group of rank one. 

8.2  The Casimir operator of O+(3) 

The generators of the rotation group O+(3) are the operators. Yk’s,  

Discussed previously.  They are related to the operators, Jk: 

         Jk  =  -i(h/2π)Yk (k = 1, 2, 3). 

The matrix representations of the Yk’s are 
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                 0   0   0                    0   0 −1                     0   1   0   

   Y1  =      0   0   1  ,   Y2   =     0   0   0  ,   Y3  =     −1   0   0  . 

                 0  −1  0                    1   0   0                     0   0   0    

The square of the total angular momentum, J is       

                                      3 

                  J2  =  ∑ Ji
2  

                           1 

                      = (h/2π)2 (Y1
2 + Y2

2 + Y3
2) 

                      = (h/2π)2(-2I). 

Schur’s lemma states that an operator that is a constant multiple of I  

commutes with all matrix irreps of a group, so that  

      [Jk, J2]  =  0  , k = 1,2 ,3. 

The operator J2 with this property is called the Casimir operator of the 

 group O+(3). 

 In general, the set of operators {Ci} in which the elements 

commute with the elements of the set of irreps of a given group, forms 

the set of Casimir operators of the group.  All Casimir operators are 

constant multiples of the unit matrix: 

     Ci  =  aiI; the constants ai are 

characteristic of a particular representation of a group. 

9 

MATRIX REPRESENTATIONS OF GROUPS 

 Matrix representations of linear operators are important in 

Linear Algebra; we shall see that they are equally important in 

Group Theory.  

 If a group of m × m matrices 
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          Dn
(m)  =  {D1

(m)(g1),...Dk
(m)(gk), ...Dn

(m)(gn)}  

can be found in which each element is associated with the 

corresponding element gk of a group of order n 

             Gn  =  {g1,...gk,....gn}, 

and the matrices obey 

             Dj
(m)(gj)Di

(m)(gi)  =  Dji
(m)(gjgi), 

and 

                D1
(m)(g1)  =  I, the identity, 

then the matrices Dk
(m)(gk) are said to form an m-dimensional 

representation of Gn.  If the association is one-to-one we have an 

isomorphism and the representation is said to be faithful.   

 The subject of Group Representations forms a very large 

branch of Group Theory.  There are many standard works on this 

topic (see the bibliography), each one containing numerous 

definitions, lemmas and theorems.  Here, a rather brief account is 

given of some of the more important results.  The reader should 

delve into the deeper aspects of the subject as the need arises.  The 

subject will be introduced by considering representations of the 

rotation groups, and their corresponding cyclic groups. 

9.1  The 3-dimensional representation of rotations in the plane 

 The rotation of a vector through an angle φ in the plane is 

characterized by the 2 x 2 matrix 

 

       cosφ    −sinφ  

             Rv(φ)  =                         . 

       sinφ      cosφ   
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 The group of symmetry transformations that leaves an 

equilateral triangle invariant under rotations in the plane is of order 

three, and each element of the group is of dimension two 

 Gn ~ R 3
(2)  = { R(0), R(2π/3), R(4π/3)} 

 

         = {  1   0 ,  −1/2   −√3/2  ,  −1/2   √3/2  }. 

                0   1      √3/2   −1/2     −√3/2  −1/2   

         ≈  {123, 312, 231}  =  C3. 

 

These matrices form a 2-dimensional representation of C3 . 

 A 3-dimensional representation of C3 can be obtained as 

follows: 

 Consider an equilateral triangle located in the plane and let 

the coordinates of the three vertices P1[x, y], P2[x´, y´], and P3[x´´, 

y´´] be written as a 3-vector P13  =  [P1, P2, P3], in normal order.  

We introduce    3 × 3 matrix operators Di
(3) that change the order of 

the elements of P13, cyclically.  The identity is 

                   P13  =  D1
(3)P13, where D1

(3)  =  diag(1, 1, 1). 

The rearrangement 

                   P13 →  P23[P3, P1, P2] is given by 

           P23  =  D2
(3)P13, 

where 

 

                0  0  1 

          D2
(3)  =     1  0  0    , 

                0  1  0   

and the rearrangement 
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            P13 → P33[P2, P3, P1] is given by 

 

            P33  =  D3
(3)P13 ,where 

 

        0  1  0   

           D3
(3)  =       0  0  1   . 

        1  0  0   

 

The set of matrices {Di
(3)}  =  {D1

(3), D2
(3), D3

(3)} is said to form a 3-

dimensional representation of the original 2-dimensional 

representation        { R 3
(2)}.  The elements Di

(3) have the same group 

multiplication table as that associated with C3.  

9.2  The m-dimensional representation of symmetry  

 transformations in d-dimensions 

 Consider the case in which a group of order n 

             Gn  =  {g1, g2, ...gk, ...gn} 

is represented by  

          R n
(m) =  { R 1

(m), R 2
(m), ..... R n

(m) 

where 

              R n
(m) ~  Gn, 

and R k
(m) is an m × m matrix representation of gk.  Let P1d be a 

vector in d-dimensional space, written in normal order: 

           P1d  =  [P1, P2, ...Pd], 

and let 

          P1m  =  [P1d, P2d, ....Pmd] 
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be an m-vector, written in normal order, in which the components 

are each d-vectors.  Introduce the m × m matrix operator Dk
(m)(gk) 

such that 

    P 1m  =  D1
(m)(g1) P 1m 

    P 2m  =  D2
(m)(g2) P 1m 

    .    . 

    P km  =  Dk
(m)(gk) P 1m , k = 1 to m,  

                                              the number of  symmetry operations. 

P km is the kth (cyclic) permutation of P 1m , and Dk
(m)(gk)  is called 

the “m-dimensional representation of gk”. 

 Infinitely many representations of a given representation can 

be found, for, if S is a matrix representation, and M is any definite 

matrix with an inverse, we can form T(x)  =  MS(x)M-1, ∀ x ∈ G.  

Since 

   T(xy)  =  MS(xy)M-1  =  MS(x)S(y)M-1  =  MS(x)M-1MS(y)M-1 

    =  T(x)T(y), 

T is a representation of G.  The new representation simply involves 

a change of variable in the corresponding substitutions.  

Representations related in the manner of S and T are equivalent, 

and are not regarded as different representations.  All 

representations that are equivalent to S are equivalent to each other, 

and they form an infinite class.  Two equivalent representations will 

be written S ~ T. 

9.3  Direct sums 

 If S is a representation of dimension s, and T is a 

representation of dimension t of a group G, the matrix 
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                        S(g)     0      

                     P  =                       ,  (g ∈ G) 

                        0      T(g)    

 

of dimension s + t is called the direct sum of the matrices S(g) and 

T(g), written P = S ⊕ T.  Therefore, given two representations (they 

can be the same), we can obtain a third by adding them directly.  

Alternatively, let P be a representation of dimension s + t; we 

suppose that, for all x ∈ G, the matrix P(x) is of the form 

 

               A(x)     0 

 

                0       B(x)  

    

where A(x) and B(x) are s × s and t × t matrices, respectively.  (The 

0’s are s × t and t × s zero matrices).  Define the matrices S and T 

as follows: S(x)  ≡  A(x) and T(x)  ≡  B(x), ∀ x ∈ G. 

Since, by the group property, P(xy)  =  P(x)P(y), 

 

    A(xy)       0               A(x)     0      A(y)     0      

          = 

    0         B(xy)             0       B(x)     0       B(y)    

 

        A(x)A(y)             0 

          =            . 

             0              B(x)B(y) 
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Therefore, S(xy)  =  S(x)S(y) and T(xy)  =  T(x)T(y), so that S and 

T are representations.  The representation P is said to be 

decomposable, with components S and T.  A representation is 

indecomposable if it cannot be decomposed. 

 If a component of a decomposable representation is itself 

decomposable, we can continue in this manner to decompose any 

representation into a finite number of indecomposable components.  

(It should be noted that the property of indecomposablity depends 

on the field of the representation; the real field must sometimes be 

extended to the complex field to check for indecomposability).  

 A weaker form of decomposability arises when we consider 

a matrix of the form 

 

       A(x)       0 

         P(x)  =             

       E(x)    B(x) 

 

where A(x), and B(x) are matrices of dimensions s × s and t × t 

respectively and E(x) is a matrix that depends on x, and 0 is the s × 

t zero matrix.  The matrix P, and any equivalent form, is said to be 

reducible.  An irreducible representation is one that cannot be 

reduced.  Every decomposable matrix is reducible (E(x) = 0), 

whereas a reducible representation need not be decomposable. 

 If S and T are reducible, we can continue in this way to 

obtain a set of irreducible components.  The components are 

determined uniquely, up to an equivalence.  The set of distinct 
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irreducible representations of a finite group is (in a given field) an 

invariant of the group.  The components form the building blocks of 

a representation of a group. 

 In Physics, decomposable representations are generally 

referred to as reducible representations (reps). 

9.4  Similarity and unitary transformations and matrix 

diagonalization 

 Before discussing the question of the possibility of reducing 

the dimension of a given representation, it will be useful to consider 

some important results in the Theory of Matrices.  The proofs of 

these statements are given in the standard works on Matrix Theory.  

(See bibliography). 

 If there exists a matrix Q such that  

       Q–1AQ  =  B 

then the matrices A and B are related by a similarity 

transformation. 

 If Q is unitary (QQ†  =  I: Q†  =  (Q*)T, the hermitian 

conjugate) then A and B are related by a unitary transformation. 

 If A´  =  Q–1AQ; B´  =  Q–1BQ; C´  =  Q–1CQ… then any 

algebraic relation among A, B, C …is also satisfied by A´, B´, C´… 

 If a similarity transformation produces a diagonal matrix 

then the process is called diagonalization. 

 If A and B can be diagonalized by the same matrix then A 

and B commute. 

 If V is formed from the eigenvectors of A then the similarity 

transformation V–1AV will produce a diagonal matrix whose 

elements are the eigenvalues of A. 
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 If A is hermitian then V will be unitary and therefore an 

hermitian matrix can always be diagonalized by a unitary 

transformation.  A real symmetric matrix can always be 

diagonalized by an orthogonal transformation. 

9.5  The Schur-Auerbach theorem 

 This theorem states 

 Every matrix representation of a finite group is equivalent to 

a unitary matrix representation 

 Let Gn = {D1, D2, ....Dn} be a matrix group, and let D be the 

matrix formed by taking the sum of pairs of elements 

               n 

                D  =  ∑ DiDi
† 

              i = 1 

where Di
† is the hermitian conjugate of Di. 

Since Di is non-singular, each term in the sum is positive definite.  

Therefore D itself is positive definite.  Let Ld be a diagonal matrix 

that is equivalent to D, and let Ld
1/2 be the positive definite matrix 

formed by replacing the elements of Ld by their positive square 

roots.  Let U be a unitary matrix with the property that  

     Ld  =  UDU-1.  

 Introduce the matrix  

                 S  =  Ld
-1/2U, 

 then SDiS-1 is unitary.  (This property can be demonstrated by 

considering (SDiS-1)(SDiS-1)†, and showing that it is equal to the 

identity).  S will transform the original matrix representation Gn into 

diagonal form.  Every unitary matrix is diagonalizable, and 

therefore every matrix in every finite matrix representation can be 

diagonalized. 



 

81 

9.6  Schur’s lemmas 

 A matrix representation is reducible if every element of the 

representation can be put in block-diagonal form by a single 

similarity transformation.  Invoking the result of the previous 

section, we need only discuss unitary representations.   

 If Gn  =  {D(ν)(R)} is an irreducible representation of 

dimension ν of a group Gn, and {D(µ)(R)} is an irreducible 

representation of dimension µ of the same group, Gn, and if there 

exists a matrix A such that 

     D(ν)(R)A  =  AD(µ)(R)  ∀ R ∈ Gn 

then either  

 i) A = 0 

or 

 ii) A is a square non-singular matrix (so that ν = µ) 

 Let the µ columns of A be written c1, c2, … cµ then, for any 

matrices D(ν) and D(µ), we have 

          D(ν)A  =  (D(ν)c1, D(ν)c2, …D(ν)cn) 

and             µ                µ                   µ 

      AD(µ)  =  ( ∑ D(µ)
k1ck, ∑ D(µ)

k2ck, …∑D(µ)
kµck). 

           k = 1            k = 1               k = 1 

therefore              µ 

           D(ν)cj  =  ∑ D(µ)
kjck . 

              k = 1 

The µ c-vectors therefore span a space that is invariant under the 

irreducible set of ν-dimensional matrices {D(ν)}.  The c-vectors are 

therefore the null-vector or they span a ν-dimensional vector space.  
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The first case corresponds to A = 0, and the second to µ ≥ ν and A ≠ 

0. 

 In the second case, the hermitian conjugates D(ν)
1

†, …D(ν)
n

† 

and D(µ)
1

†, …D(µ)
n

† also are irreducible.   Furthermore, since 

D(ν)
i(R)A  =  AD(µ)

i(R) 

       D(µ)
i
†A†  =  A†D(ν)

i
†, 

and, therefore, following the method above we find that ν ≥ µ.  We 

must therefore have ν = µ, so that A is square.  Since the ν-columns 

of A span a ν-dimensional space, the matrix A is necessarily non-

singular.  As a corollary, a matrix D that commutes with an 

irreducible set of matrices must be a scalar matrix. 

9.7  Characters 

 If D(ν)(R) and D(µ)(R) are related by a similarity 

transformation then D(ν)(R) gives a representation of G that is 

equivalent to D(µ)(R).  These two sets of matrices are generally 

different, whereas their structure is the same.  We wish, therefore, 

to answer the question: what intrinsic properties of the matrix 

representations are invariant under coordinate transformations? 

 Consider 

     ∑ [CD(R)C-1]ii  =  ∑ CikDkl(R)Cli
-1 

      i            ikl  

          =  ∑ δklDkl(R) 

               kl   

 

          =  ∑ Dkk(R), the trace of D(R). 

               k     

We see that the trace, or character, is an invariant under a change of  
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coordinate axes.  We write the character as 

           χ(R)  =  ∑ Dii(R) 

               i   

 Equivalent representations have the same set of characters.  

The character of R in the representation µ is written 

         χ(µ)(R) or [µ; R]. 

The conjugate elements of G have the form S = URU-1 so that  

                      D(R) = D(U)D(R)[D(R)]-1 

therefore 

             χ(S) = χ(R). 

We can describe G by giving its characters in a particular 

representation; all elements in a class have the same χ.   

10 

SOME LIE GROUPS OF TRANSFORMATIONS 

 We shall consider those Lie groups that can be described by 

a finite set of continuously varying essential parameters a1,...ar: 

               xi´  =  fi(x1,… xn; a1,… ar)  =  f(x; a) . 

A set of parameters a exists that is associated with the inverse 

transformations: 

                 x  = f(x´; a). 

These equations must be solvable to give the xi’s in terms of the 

xi´’s. 

10.1  Linear groups 

 The general linear group GL(n) in n-dimensions is given by 

the set of equations                         n   

                xi´  =  ∑ aijxj, i = 1 to n 

               j = 1   



 

84 

in which det |aij| ≠ 0. 

 The group contains n2 parameters that have values covering 

an infinite range.  The group GL(n) is said to be not closed. 

 All linear groups with n > 1 are non-abelian.  The group 

GL(n) is isomorphic to the group of n × n matrices; the law of 

composition is therefore matrix multiplication. 

 The special linear group of transformations SL(n) in n-

dimensions is obtained from GL(n) by imposing the condition 

 det| aij | = 1.  A functional relation therefore exists among the n2 - 

parameters so that the number of required parameters is reduced to 

(n2 − 1). 

10.2  Orthogonal groups 

 If the transformations of the general linear group GL(n) are 

such that                     n 

           ∑ xi
2 → invariant , 

                    i = 1 

then the restricted group is called the orthogonal group, O(n), in n-

dimensions.  There are [n + n(n - 1)/2] conditions imposed on the n2 

parameters of GL(n), and therefore there are n(n - 1)/2 essential 

parameters of O(n).  For example, in three dimensions 

        x´  =  Ox ; O ≡ {O3×3: OOT = I, detO = 1, aij ∈ R} 

where 

 

                  a11  a12  a13    

                O  =     a21  a22  a23   . 

        a31  a32  a33    
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We have 

              x1´2 +x2´2 + x3´2  =  x1
2 +x2

2 +x3
2 → invariant under O(3). 

This invariance imposes six conditions on the original nine 

parameters, and therefore O(3) is a three-parameter group. 

10.3  Unitary groups 

 If the xi’s and the aij’s of the general linear group GL(n) are 

complex, and the transformations are required to leave xx† invariant 

in the complex space, then we obtain the unitary group U(n) in n-

dimensions: 

         U(n)  ≡  { Un×n: UU† = I, detU ≠ 0, uij ∈ C}. 

There are 2n2 independent real parameters (the real and imaginary 

parts of the aij’s), and the unitary condition imposes n + n(n−1) 

conditions on them so the group has n2 real parameters.  The unitary 

condition means that 

         ∑j |aij|2  =  1,  

and therefore 

              |aij|2  ≤ 1 for all i, j. 

The parameters are limited to a finite range of values, and therefore 

the group U(n) is said to be closed. 

10.4  Special unitary groups 

 If we impose the restriction detU = +1 on the unitary group 

U(n), we obtain the special unitary group SU(n) in n-dimensions: 

        SU(n)  ≡  {Un×n: UU† = I, detU = +1, uij ∈ C}. 

The determinantal condition reduces the number of required real 

parameters to (n2 − 1).  SU(2) and SU(3) are important in Modern 

Physics. 
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10.5  The group SU(2), the infinitesimal form of SU(2), and the  

         Pauli spin matrices 

 The special unitary group in 2-dimensions, SU(2), is defined 

as 

        SU(2)  ≡  {U2×2: UU† = I, detU = +1, uij ∈ C}. 

It is a three-parameter group. 

 The defining conditions can be used to obtain the matrix 

representation in its simplest form; let 

                 a   b    

      U  =               

                           c   d    

where a, b, c, d ∈ C. 

The hermitian conjugate is  

                            a*   c*   

               U†  =                  

                  b*   d* 

and therefore 

                          |a|2 + |b|2      ac* + bd*     

            UU†  =       . 

                a*c + b*d      |c|2 + |d|2       

The unitary condition gives 

                |a|2 + |b|2  =  |c|2 + |d|2  =  1  

and the determinantal condition gives 

                ad  –  bc  =  1. 

Solving these equations, we obtain 

                             c = –b* and d = a*. 

 The general form of SU(2) is therefore 
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                  a     b      

                  U =                . 

                          −b*  a*    

 We now study the infinitesimal form of SU(2); it must have 

the structure 

 

        1    0          δa     δb              1 + δa    δb 

     Uinf  =               +                       =                            . 

        0    1        −δb*   δa*           −δb*   1 + δa*  

 

The determinantal condition therefore gives 

                                detUinf  =  (1 + δa)(1 + δa*) +δbδb* = 1. 

To first order in the δ’s, we obtain 

             1 + δa* + δa  =  1, 

or 

                             δa  =  −δa*. 

so that 

 

                               1 + δa     δb 

                           Uinf  =                             . 

                                −δb*    1 − δa    

 

 The matrix elements can be written in their complex forms: 

                    δa = iδα/2 , δb = δβ/2 + iδγ/2. 

(The factor of two has been introduced for later convenience). 
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          1 + iδα/2      δβ/2 + iδγ/2 

             Uinf  =                     . 

        −δβ/2 + iδγ/2     1 − iδα/2    

Any 2×2 matrix can be written as a linear combination of the 

matrices 

   

  1    0      0    1        0   −i       1    0   

            ,             ,               ,              .    

                       0    1     1    0         i     0       0  −1  

as follows 

 

   a   b               1    0            0    1            0   −i           1    0    

                         =   A             + B               + C              + D           , 

   c   d               0    1            1    0            i    0            0   −1   

where 

  a = A + D, b = B – iC, c = B + iC, and d = A – D. 

We then have 
 

      a    b                         1    0                        0   1                          0  −i                       1    0 

                   =  (a + d)/2               + (b + c)/2              +  i(b − c)/2              + (a − d)/2            .   

      c    d                          0    1                       1   0                          i    0                       0  −1   

 

 The infinitesimal form of SU(2) can therefore be written 

                    Uinf  =  I   +  (iδγ/2)σ 1   +   (iδβ/2)σ 2   +  (iδα/2)σ 3  

or 

          Uinf  =  I  +  (i/2)∑ δτj σ j, j = 1 to 3. 

This is the Lie form.  
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The σ j’s are the Pauli spin-matrices; they are the generators of the 

group SU(2): 

 

                      0    1              0   −i               1     0   

            σ 1 =             , σ 2 =              , σ 3 =              . 

                      1    0              i     0                0   −1   

They play a fundamental role in the description of spin-1/2 particles 

in Quantum Mechanics. (See later discussions). 

10.6  Commutators of the spin matrices and structure constants 

 We have previously introduced the commutators of the 

infinitesimal generators of a Lie group in connection with their Lie 

Algebra.  In this section, we consider the commutators of the 

generators of SU(2); they are found to have the symmetric forms 

      [σ 1, σ 2]  =   2iσ 3,  [σ 2, σ 1]  = −2iσ 3,  

      [σ 1, σ 3]  =  –2iσ 2, [σ 3, σ 1]  =    2iσ 2, 

      [σ 2, σ 3]  =   2iσ 1,  [σ 3, σ 2]  =  −2iσ 1. 

 The commutator of any pair of the three matrices gives a 

constant, multiplied by the value of the remaining matrix, thus 

       [σ j, σ k]  = εjk2iσ .  

where the quantity εjk = ±1, depending on the permutations of the 

indices.  (ε(xy)z  =  +1, ε(yx)z  =  −1 … etc…). 

The quantities 2iεjk are the structure constants associated with the 

group.  Other properties of the spin matrices are found to be 

      σ 1
2  =  σ 2

2  =  σ 3
2  =  I; σ 1σ 2  = iσ 3, σ 2σ 3  =  iσ 1, σ 3σ 1  =  iσ 2 

10.7  Homomorphism of SU(2) and O+(3) 

 We can form the matrix 

                  P  =  xTσ   =  xjσ j, j = 1, 2, 3 
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from the matrices 

               x  =  [x1, x2, x3] and σ   =  [σ 1, σ 2, σ 3]  

therefore 

 

            x3         x1 − ix2     

            P     =                                    . 

         x1 + ix2       –x3     

We see that 

 

                      x3         x1 − ix2    

                     P†  =  (P*)T   =                                     =  P 

                  x1 + ix2        −x3      

so that P is hermitian. 

Furthermore, 

             TrP  =  0, 

and 

            detP  =  −(x1
2 + x2

2 + x3
2). 

 Another matrix P´ can be formed by carrying out a similarity 

transformation, thus 

               P´  =  UPU†, (U ∈ SU(2)). 

A similarity transformation leaves both the trace and the 

determinant unchanged, therefore 

             TrP  =  TrP´  

and 

            detP  =  detP´. 

This condition means that 

                        xxT  =  x´x´T 
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or 

        x1
2 + x2

2 + x3
2  =  x1´2 + x2´2 + x3´2  . 

The transformation P´ = UPU† is therefore equivalent to a three- 

dimensional orthogonal transformation that leaves xxT invariant. 

10.8  Irreducible representations of SU(2) 

 We have seen that the basic form of the 2×2 matrix 

representation of the group SU(2) is 

 

                          a     b     

                U =                , a, b ∈ C; |a|2  + |b|2 =1. 

               −b*  a*   

 Let the basis vectors of this space be 

 

     1                    0     

      x1 =         and x2 =       . 

                 0                    1    

We then have 

                 a   

               x1´  =  Ux1 =          =  ax1  −  b*x2 , 

                −b*   

and 

                 b     

               x2´  =  Ux2 =          =  bx1  +  a*x2 , 

                 a*   

and therefore 

       x´  =  Utx. 

If we write a 2-dimensional vector in this complex space as  
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c = [u, v] then the components transform under SU(2) as 

      u´  =  au  +  bv   

and 

       v´  =  b*u  +  a*v  

therefore 

      c´  =  Uc . 

 The components of the vector c transform differently from 

those of the basis vector x — the transformation matrices are the 

transposes of each other.  The vector c = [u, v] in this complex 

space is called a spinor (Cartan, 1913). 

 To find an irreducible representation of SU(2) in a 3-

dimensional space we need a set of three linearly independent basis 

functions.  Following Wigner (see bibliography), we can choose the 

polynomials 

              u2, uv, and v2 

and introduce the polynomials defined by 

                          1 + m    1 – m 
                      j = 1                  u        v       
                       f      =                               
                       m           √ (1 + m)! (1 + m)!  
where 

      j = n/2 (the dimension of the space is n + 1). 

and 

                m = j, j − 1, ... −j. 

In the present case, n = 2, j = 1, and m = 0, ±1. 

(The factor 1/√{(1 + m)! (1 − m)!} is chosen to make the 

representative matrix unitary). 

 We have, therefore 

                  f1
1 = u2/√2 , f0

1 = uv and f-1
1 = v2/√2. 
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A 3×3 representation of an element U ∈ SU(2) in this space can be 

found by defining the transformation 

               Ufm
1(u, v) = fm

1(u´, v´). 

We then obtain 

     Ufm
1(u, v) =  (au + bv)1 + m(–b*u + a*v)1 - m  , m = 0, ±1,   

            √(1 + m)!(1 − m)!  

so that 

                Uf1
1(u, v) = (au + bv)2/√ 2 

                                = (a2u2 + 2abuv + b2v2)/√ 2, 

                Uf0
1(u, v) = (au + bv)(−b*u + a*v) 

 

                                = –ab*u2 + (|a|2 − |b|2)uv + a*bv2, 

and 

               Uf-1
1(u, v) = (−b*u + a*v)2/√ 2  

                                = (b*2u2 − 2a*b*uv + a*2v2)/√2. 

We then have 

 

  a2       √2ab         b2          f1
1           f1

1´    

       −√2ab*  |a|2 − |b|2   √2a*b     f0
1     =    f0

1´    

  b*2    −√2a*b*     a*2       f-1
1           f-1

1´  

or 

              UF  = F´. 

We find that UU † = I therefore U is unitary. 

This procedure can be generalized to an (n + 1)-dimensional space 

as follows: let 

                  fm
j(u, v)  =           uj + m vj - m       , m = j, j − 1, …−j. 

                 √(j + m)!(j − m)!  
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(Note that j = n/2 = 1/2, 1/1, 3/2, 2/1, …). 

For a given value of j, there are 2j + 1 linearly independent 

polynomials, and therefore we can form a (2j + 1) × (2j + 1) 

representative matrix of an element U of SU(2): 

    Ufm
j(u, v)  =  fm

j(u´, v´). 

The details of this general case are given in Wigner’s classic text.  

He demonstrates the irreducibility of the (2j + 1)-dimensional 

representation by showing that any matrix M which commutes with 

Uj for all a, b such that |a|2 + |b|2 = 1 must necessarily be a constant 

matrix and therefore, by Schur’s lemma, Uj is an irreducible 

representation. 

10.9  Representations of rotations and the concept of tensors 

 We have discussed 2- and 3-dimensional representations of 

the orthogonal group O(3) and their connection to angular 

momentum operators.  Higher-dimensional representations of the 

orthogonal group can be obtained by considering a 2-index quantity  

Tij — a tensor — that consists of a set of 9 elements that transform 

under a rotation of the coordinates as follows: 

 Tij → Tij´  =  RiRjmTm (sum over repeated indices 1, 2, 3). 

If Tij = Tji (Tij is symmetric), then this symmetry is an invariant 

under rotations; we have 

          Tji´  =  RjRimTm  =  RjmRiTm  =  RiRjmTm  =  Tij´. 

If TrTij  =  0 then so is TrTij´: 

          Tii´  =  RiRimTm  =  (RTR)mTm  =  δmTm  =  T  =  0. 
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 The set of components of a symmetric traceless 2-index 

tensor contains 5 members so that the transformation Tij → Tij´ = 

RiRjmTm defines a new representation of them of dimension 5.  

 Any tensor Tij can be written 

                         Tij  =  (Tij + Tji)/2 + (Tij − Tji)/2, 

the sum of a symmetric and anti-symmetric part, 

                               = (Tij − (δijT)/3) + (δijT)/3 . 

The decomposition of the tensor Tij gives any 2-index tensor in 

terms of a sum of a single component, proportional to the identity, a 

set of 3 independent quantities combined in an anti-symmetric 

tensor (Tij − Tji)/2, and a set of 5 independent components of a 

symmetric traceless tensor.  We write the dimensional equation 

       9 = 1 ⊕ 3 ⊕ 5 . 

This is as far as it is possible to go in the process of decomposition: 

no other subsets of 2-index tensors can be found that preserve their 

identities under the defining transformation of the coordinates.  

Representations with no subsets of tensors that preserve their 

identities under the defining rotations of tensors are irreducible 

representations.  

 We shall see that the decomposition of tensor products into 

symmetric and anti-symmetric parts is important in the Quark 

Model of elementary particles. 

 The representations of the orthogonal group O(3) are found 

to be important in defining the intrinsic spin of a particle.  The 

dynamics of a particle of finite mass can always be descibed in its 

rest frame (all inertial frames are equivalent!), and therefore the 

particle can be characterized by rotations.  All known particles have 
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dynamical states that can be described in terms of the tensors of 

some irreducible representation of O(3).  If the dimension of the 

irrep is (2j + 1) then the particle spin is found to be proportional to 

j.  In Particle Physics, irreps with values of j = 0, 1, 2, … and with j 

= 1/2, 3/2, … are found that correspond to the fundamental bosons 

and fermions, respectively. 

 The three dimensional orthogonal group SO(3) (det = +1) 

and the two dimensional group SU(2) have the same Lie algebra.  In 

the case of the group SU(2), the (2j + 1)-dimensional 

representations are allowed for both integer and half-integer values 

of j, whereas, the representations of the group SO(3) are limited to 

integer values of j.  Since all the representations are allowed in 

SU(2), it is called the covering group.  We note that rotations 

through φ and φ + 2π have different effects on the 1/2-integer 

representations, and therefore they are (spinor) transformations 

associated with SU(2).  

11 

THE GROUP STRUCTURE OF LORENTZ 

TRANSFORMATIONS 

 The square of the invariant interval s, between the origin  

[0, 0, 0, 0] of a spacetime coordinate system and an arbitrary event 

xµ = [x0, x1, x2, x3] is, in index notation 

                           s2 = xµxµ = x´µx´µ , (sum over µ = 0, 1, 2, 3). 

The lower indices can be raised using the metric tensor 

                         ηµν = diag(1, –1, –1, –1), 

 so that 

                      s2 = ηµνxµxν = ηµνx´µx´v , (sum over µ and ν). 
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The vectors now have contravariant forms. 

 In matrix notation, the invariant is 

                         s2 = xTηx = x´Tηx´ . 

(The transpose must be written explicitly). 

The primed and unprimed column matrices (contravariant vectors) 

are related by the Lorentz matrix operator, L 

                                               x´ = Lx . 

We therefore have 

                                 xTηx = (Lx)Tη (Lx) 

                                          = xTLTηLx . 

The x’s are arbitrary, therefore 

                                LTηL = η . 

This is the defining property of the Lorentz transformations. 

 The set of all Lorentz transformations is the set L of all 4 × 4 

matrices that satisfies the defining property 

                   L = {L: LTηL = η ; L: all 4 × 4 real matrices;  

                  η  = diag(1, –1, –1, –1}. 

(Note that each L has 16 (independent) real matrix elements, and 

therefore belongs to the 16-dimensional space, R16). 

11.1  The group structure of L 

 Consider the result of two successive Lorentz 

transformations L1 and L2 that transform a 4-vector x as follows 

                                    x → x´ → x´´ 

where 

                            x´ = L1x  

and 

                          x´´  = L2x´. 
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The resultant vector x´´ is given by 

                           x´´ = L2(L1x) 

                                  = L2L1x  

                                 = Lcx  

where 

                            Lc = L2L1 (L1 followed by L2). 

If the combined operation Lc is always a Lorentz transformation 

then it must satisfy 

                             Lc
TηLc = η . 

We must therefore have 

                (L2L1)Tη (L2L1) = η  

or 

                  L1
T(L2

TηL2)L1 = η  

so that 

                            L1
TηL1 = η ,    (L1, L2 ∈ L) 

therefore  

                          Lc = L2L1 ∈ L . 

Any number of successive Lorentz transformations may be carried 

out to give a resultant that is itself a Lorentz transformation. 

 If we take the determinant of the defining equation of L,  

                        det(LTηL) = detη  

we obtain 

                   (detL)2 = 1  (detL = detLT) 

so that  

                       detL = ±1. 

 Since the determinant of L is not zero, an inverse transformation 

 L–1 exists, and the equation L–1L = I, the identity, is always valid. 
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 Consider the inverse of the defining equation 

                           (LTηL)–1 = η –1 

or 

                       L–1η –1(LT)–1 = η –1. 

Using η  = η –1, and rearranging, gives 

                        L–1η (L–1)T = η . 

This result shows that the inverse L–1 is always a member of the set 

L. 

 We therefore see that  

 1. If L1 and L2 ∈ L , then L2 L1 ∈ L 

 2. If L ∈ L , then L–1 ∈ L 

 3. The identity I = diag(1, 1, 1, 1) ∈ L 

and  

 4. The matrix operators L obey associativity. 

The set of all Lorentz transformations therefore forms a group. 

11.2  The rotation group, revisited 

 Spatial rotations in two and three dimensions are Lorentz 

transformations in which the time-component remains unchanged. 

 Let R be a real 3×3 matrix that is part of a Lorentz 

transformation with a constant time-component.  In this case the 

defining property of the Lorentz transformations leads to 

            RTR = I, the identity matrix, diag(1,1,1). 

This is the defining property of a three-dimensional orthogonal 

matrix 

 If x = [x1, x2, x3] is a three-vector that is transformed under 

R to give x´ then 

                      x´Tx´ = xTRTRx 
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                                = xTx = x1
2 + x2

2 + x3
2  

                                                   = invariant under R. 

The action of R on any three-vector preserves length.  The set of all 

3×3 orthogonal matrices is denoted by O(3): 

            O(3) = {R: RTR = I, rij ∈ R}. 

The elements of this set satisfy the four group axioms. 

 The group O(3) can be split into two parts that are said to be 

disconnected: one with detR = +1 and the other with detR = –1.  

The two parts are written 

          O+(3)  =  {R: detR = +1} 

and 

          O–(3)  =  {R: detR = –1}. 

 If we define the parity operator , P, to be the operator that 

reflects all points in a 3-dimensional cartesian system through the 

origin then 

 

                  −1   0   0     

                 P  =      0  −1   0  . 

                              0   0  −1    

 

The two parts of O(3) are related by the operator P: 

       if R ∈ O+(3) then PR ∈ O–(3), 

and 

      if R´ ∈ O–(3) then PR´ ∈ O+(3). 

We can therefore consider only that part of O(3) that is a group, 

namely O+(3), together with the operator P. 
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11.3  Connected and disconnected parts of the Lorentz group 

 We have shown previously, that every Lorentz 

transformation, L, has a determinant equal to ±1.  The matrix 

elements of L change continuously as the relative velocity changes 

continuously.  It is not possible, however, to move continuously in 

such a way that we can go from the set of transformations with 

detL = +1 to those with detL = –1; the set {L: detL = +1} is 

disconnected from the set {L: detL = −1}. 

 If we write the Lorentz transformation in its component form 

      L → Lµ
ν 

where µ = 0,1,2,3 labels the rows, and ν = 0,1,2,3 labels the 

columns then the time component L0
0 has the values 

      L0
0 ≥ +1 or L0

0 ≤ −1. 

 The set of transformations can therefore be split into four 

disconnected parts, labeled as follows: 

          {L↑
+} = {L: detL = +1, L0

0 ≥ +1} 

          {L↑
–} = {L: detL = −1, L0

0 ≥ +1} 

          {L↓
+} = {L: detL = +1, L0

0 ≤ −1}, 

and 

          {L↓
–} = {L: detL = −1, L0

0 ≤ –1}. 

The identity is in {L↑
+}. 

11.4  Parity, time-reversal and orthochronous transformations 

 Two discrete Lorentz transformations are 

 i) the parity transformation 

                  P = {P: r → −r, t → t} 

                     = diag(1, −1, −1, −1), 

and 
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 ii) the time-reversal transformation 

                 T = {T: r → r, t → -t} 

                    = diag(−1, 1, 1, 1}. 

 The disconnected parts of {L} are related by the 

transformations that involve P, T, and PT, as shown: 

 

                PT 

              L↑
+                                            L↓

+ 

 

 

          P      T 

 

 

              L↑
–                                             L↓

– 

 

 

Connections between the disconnected parts of Lorentz 

transformations  

 The proper orthochronous transformations are in the group 

L↑
+.  It is not necessary to consider the complete set {L} of Lorentz 

transformations — we need consider only the subset {L↑
+} that 

forms a group by itself and either P, T, or PT combined.  

Experiments have shown clear violations under the parity 

transformation, P and violations under T have been inferred from 

experiment and theory, combined.  However, not a single 

experiment has been carried out that shows a violation of the proper 

orthochronous transformations, {L↑
+}. 
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12 

ISOSPIN 

 Particles can be distinguished from one another by their 

intrinsic properties: mass, charge, spin, parity, and their electric and 

magnetic moments. In our on-going quest for an understanding of 

the true nature of the fundamental particles, and their interactions, 

other intrinsic properties, with names such as “isospin” and 

“strangeness”, have been discovered.  The intrinsic properties are 

defined by quantum numbers; for example, the quantum number a 

is defined by the eigenvalue equation 

            Aφ  =  a φ 

where A is a linear operator, φ is the wavefunction of the system in 

the zero-momentum frame, and a is an eigenvalue of A.   

 In this chapter, we shall discuss the first of these new 

properties to be introduced, namely, isospin. 

 The building blocks of nuclei are protons (positively 

charged) and neutrons (neutral).  Numerous experiments on the 

scattering of protons by protons, and protons by neutrons, have 

shown that the nuclear forces between pairs have the same strength, 

provided the angular momentum and spin states are the same.  

These observations form the basis of an important concept — the 

charge-independence of the nucleon-nucleon force.  (Corrections 

for the coulomb effects in proton-proton scattering must be made).  

The origin of this concept is found in a new symmetry principle.  In 

1932, Chadwick not only identified the neutron in studying the 

interaction of alpha-particles on beryllium nuclei but also showed 
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that its mass is almost equal to the mass of the proton.  (Recent 

measurements give 

    mass of proton = 938⋅27231(28) MeV/c2  

and 

    mass of neutron = 939⋅56563(28) MeV/c2)  

Within a few months of Chadwick’s discovery, Heisenberg 

introduced a theory of nuclear forces in which he considered the 

neutron and the proton to be two “states” of the same object — the 

nucleon.  He introduced an intrinsic variable, later called isospin, 

that permits the charge states (+, 0) of the nucleons to be 

distinguished.  This new variable is needed (in addition to the 

traditional space-spin variables) in the description of nucleon-

nucleon scattering. 

 In nuclei, protons and neutrons behave in a remarkably 

symmetrical way: the binding energy of a nucleus is closely 

proportional to the number of neutrons and protons, and in light 

nuclei (mass number < 40), the number of neutrons can be equal to 

the number of protons. 

 Before discussing the isospin of particles and nuclei, it is 

necessary to introduce an extended Pauli Exclusion Principle.  In its 

original form, the Pauli Exclusion Principle was introduced to 

account for features in the observed spectra of atoms that could not 

be understood using the then current models of atomic structure: 

 no two electrons in an atom can exist in the same quantum state 

defined by the quantum numbers n, , m, ms where n is the 

principal quantum number,  is the orbital angular momentum 
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quantum number, m is the magnetic quantum number, and ms is the 

spin quantum number.   

 For a system of N particles, the complete wavefunction is 

written as a product of single-particle wavefunctions 

          Ψ(1, 2, ...N)  =  ψ(1)ψ(2)...ψ(N). 

Consider this form in the simplest case — for two identical 

particles.  Let one be in a state labeled Ψa and the other in a state 

Ψb.  For identical particles, it makes no difference to the probability 

density |Ψ|2 of the 2-particle system if the particles are exchanged: 

   |Ψ(1, 2)|2  =  |Ψ(2, 1)|2, 

(the Ψ’s are not measurable) 

so that, either  

      Ψ(2, 1)  =  Ψ(1, 2)  (symmetric) 

or  

      Ψ(2, 1)  = −Ψ(1, 2)  (anti-symmetric). 

Let  

             ΨI  =  ψa(1)ψb(2)  (1 an a, 2 in b) 

and 

            ΨII  =  ψa(2)ψ(1)  (2 in a, 1 in b). 

The two particles are indistinguishable, therefore we have no way 

of knowing whether ΨI or ΨII describes the system; we postulate 

that the system spends 50% of its time in ΨI and 50% of its time in 

ΨII.  The two-particle system is considered to be a linear 

combination of ΨI and ΨII: 

we have, therefore, either 

              Ψsymm   =  (1/√2){ψa(1)ψb(2) + ψa(2)ψb(1)} (BOSONS) 

or 
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               Ψantisym= (1/√2){ψa(1)ψb(2) − ψa(2)ψb(1)} (FERMIONS). 

(The coefficient (1/√2) normalizes the sum of the squares to be 1). 

Exchanging 1 ↔ 2 leaves Ψsymm unchanged, whereas exchanging 

particles   1↔ 2 reverses the sign of Ψantisymm . 

 If two particles are in ΨS, both particles can exist in the same 

state with     a = b.  If two particles are in ΨAS , and a = b, we have 

ΨAS = 0 — they cannot exist in the same quantum state.  Electrons 

(fermions, spin = (1/2)) are described by anti-symmetric 

wavefunctions. 

 We can now introduce a more general Pauli Exclusion 

Principle.  Write the nucleon wavefunction as a product: 

       Ψ(χ, q)  =  ψ(χ)φN(q) , 

where 

                χ  =  χ(r, s) 

 in which r is the space vector, s is the spin, and q is a charge or 

isospin label.  

 For two nucleons, we write 

            Ψ(χ1, q1; χ2, q2), 

for two protons: 

            Ψ2p  = ψ1(χ1, χ2)φN(p1)φN(p2), 

for two neutrons: 

           Ψ2n  =  ψ2(χ1, χ2)φN(n1)φN(n2), 

and for an n-p pair: 

           Ψnp  = ψ3(χ1, χ2)φN(p1)φN(n2) 

or 

                  = ψ4(χ1, χ2)φN(n1)φN(p2). 



 

107 

If we regard the proton and neutron as different states of the same 

object, labeled by the “charge or isospin coordinate”, q, we must 

extend the Pauli principle to cover the new coordinate: the total 

wavefunction is then 

     Ψ(χ1, q1; χ2, q2)  =  −Ψ(χ2, q2; χ1, q1) . 

It must be anti-symmetric under the full exchange. 

For a 2p- or a 2n-pair, the exchange q1↔ q2 is symmetrical, and 

therefore the space-spin part must be anti-symmetrical. 

 For an n-p pair, the symmetric (S) and anti-symmetric (AS) 

“isospin” wavefunctions are 

 I)   ΦS  =  (1/√2){φN(p1)φN(n2) + φN(n1)φN(p2)} 

    (symmetric under q1 ↔ q2), 

and therefore the space-spin part is anti-symmetrical, 

 II) ΦAS  =  (1/√2){φN(p1)φN(n2) − φN(n1)φN(p2)} 

    (anti-symmetric under q1 ↔ q2), 

and therefore the space-spin part is symmetrical. 

We shall need these results in later discussions of the symmetric 

and anti-symmetric properties of quark systems. 

12.1  Nuclear β -decay 

 Nuclei are bound states of neutrons and protons.  If the 

number of protons in a nucleus is Z and the number of neutrons is N 

then the mass number of the nucleus is A = N + Z.  Some nuclei are 

naturally unstable.  A possible mode of decay is by the emission of 

an electron (this is β-decay — a process that typifies the 

fundamental “weak interaction”). 

We write the decay as 

         A
ZXN  →  A

Z+1XN-1 + e–1 + νe  (β–-decay) 
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or, we can have 

           A
ZXN →  A

Z-1XN-1 + e+ + νe  (β+ - decay). 

A related process is that of electron capture of an orbital electron 

that is sufficiently close to the positively charged nucleus: 

    e– + A
ZXN  →  A

Z+1XN+1 + νe. 

Other related processes are  

   νe + A
ZXN  →   A

Z-1XN-1 + e+ 

and 

    νe + A
ZXN  →  A

Z+1XN-1 + e– . 

The decay of the free proton has not been observed at the present 

time.  The experimental limit on the half-life of the proton is > 1031 

years.  Many current theories of the microstructure of matter predict 

that the proton decays.  If, however, the life-time is > 1032 - 1033 

years then there is no realistic possibility of observing the decay 

directly (The limit is set by Avogadro’s number and the finite 

number of protons that can be assembled in a suitable experimental 

apparatus). 

 The fundamental β-decay is that of the free neutron, first 

observed in 1946.  The process is 

     n0 →  p+ + e– + νe
0 , t1/2 = 10⋅37 ± 0⋅19      

                minutes. 

This measured life-time is of fundamental importance in Particle 

Physics and in Cosmology. 

 Let us set up an algebraic description of the β-decay process, 

recognizing that we have a 2-state system in which the 

transformation p ↔ n occurs: 

 In the β–-decay of a free neutron 
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                n  →  p+ + e– + νe,  

and in the β+-decay of a proton, bound in a nucleus, 

                p  → n + e+ + νe. 

12.2  Isospin of the nucleon 

 The spontaneous transformations p ↔ n observed in β-decay 

leads us to introduce the operators τ ± that transform p ↔ n: 

           τ +φn  =  φp, τ +φp  =  0, (eliminates a 

proton) 

and 

            τ -φp  =  φn, τ -φn  =  0, (eliminates a 

neutron). 

Since we are dealing with a two-state system, we choose the 

“isospin” parts of the proton and neutron wavefunctions to be  

 

               1       0 

          φ(p)  =          and  φ(n)  =         , 

               0        1   

in which case the operators must have the forms: 

 

               0    1                   0    0   

             τ +  =                 and τ - =                . 

               0    0                   1    0   

They are singular and non-hermitian.  We have, for example 

 

               0    1      0           1   

           τ +φn  =                       =         , φn  →  φp,          

               0    0      1           0   
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and 

 

                0    1      1        0   

            τ +φp  =                       =       

                0    0      0        0   

(τ + removes a proton). 

To make the present algebraic description analogous to the two-

state system of the intrinsic spin of the electron, we introduce linear 

combinations of the τ ± : 

 

       0    1   

         τ 1  =  τ +  +  τ -  =               =  σ 1, a Pauli matrix, 

       1    0 

and 

 

       0  −i   

       τ 2  = i(τ -  −  τ +) =              =  σ 2, a Pauli matrix. 

       i     0      

A third (diagonal) operator is, as expected 

 

       1    0    

       τ 3  =              =  σ 3, a Pauli matrix. 

       0    1    

 

 The three operators {τ 1, τ 2, τ 3} therefore obey the 

commutation relations 

              [τ j/2, τ k/2]  = iεjkτ /2 , 
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where the factor of(1/2) is introduced because of the 2:1 

homomorphism between SU(2) and O+(3): the vector operator 

                  t  =  τ /2 

is called the isospin operator of the nucleon. 

 To classify the isospin states of the nucleon we may use the 

projection of t on the 3rd axis, t3.  The eigenvalues, t3, of t3 

correspond to the proton (t3 = +1/2) and neutron (t3 = −1/2) states.  

The nucleon is said to be an isospin doublet with isospin quantum 

number t = 1/2.  (The number of states in the multiplet is 2t + 1 = 2 

for t = 1/2). 

 The charge, QN of the nucleon can be written in terms of the 

isospin quantum numbers: 

               QN  =  q(t3 +(1/2))  =  q or 0, 

where q is the proton charge.  (It is one of the major unsolved 

problems of Particle Physics to understand why the charge on the 

proton is equal to the charge on the electron). 

12.3  Isospin in nuclei. 

 The concept of isospin, and of rotations in isospin space, 

associated with individual nucleons can be applied to nuclei — 

systems of many nucleons in a bound state.   

 Let the isospin of the ith-nucleon be ti, and let ti = τ i /2.  The 

operator of a system of A nucleons is defined as 

                T  =  ∑A
i=1 ti  =  ∑A

i=1 τ i/2 . 

The eigenvalue of T3 of the isospin operator T3 is the sum of the 

individual components 

                         T3  =  ∑A
i=1 t3i  =  ∑A

i=1 τ3i/2  

          = (Z – N)/2 . 
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 The charge, QN of a nucleus can be written 

    QN  =  q∑A
i=1 (τ3i + 1)/2  

                     = q(T3 + A/2) . 

For a given eigenvalue T of the operator T, the state is (2T + 1)-fold 

degenerate.  The eigenvalues T3 of T3 are 

     T3  =  −T, −T + 1,… 0,… T + 1, T. 

If the Hamiltonian H of the nucleus is charge-independent then 

         [H, T]  =  0 

and T is said to be a good quantum number.  In light nuclei, where 

the isospin-violating coulomb interaction between pairs of protons 

is a small effect, the concept of isospin is particularly useful.  The 

study of isospin effects in nuclei was first applied to the observed 

properties of the lowest-lying states in the three nuclei with mass 

number A = 14: 14C, 14N, and 14O.  The spin and parity of the ground 

state of 14C, the first excited state of 14N and the ground state of 14O 

are measured to be 0+; these three states are characterized by T = 1.  

The ground state of 14N has spin and parity 1+; it is an isospin 

singlet (T = 0). 

The relative energies of the states are shown in the following 

diagram: 
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Energy (MeV) 

 

 

              6 

                0+  T = 1, T3 = 1 

 

 

              4 

 

                 0+   T = 1, T3 = 0 

 

              2 

 

 

                                 0+   T = 1, T3 = −1      1+  T = 0, T3 = 0   

               0 

 

 An isospin singlet (T = 0) and an isospin triplet (T = 1) in  

 the A = 14 system.  In the absence of the coulomb interaction, the 

three  T = 1 states would be degenerate.   

 

12.4  Isospin and mesons 

 We have seen that it is possible to classify the charge states 

of nucleons and nuclear isobars using the concept of isospin, and 

the algebra of SU(2).  It will be useful to classify other particles, 

including field particles (quanta) in terms of their isospin.   
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 Yukawa (1935), first proposed that the strong nuclear force 

between a pair of nucleons is carried by massive field particles 

called mesons.   

Yukawa’s method was a masterful development of the theory of the 

electromagnetic field to include the case of a massive field particle.  

If ψπ is the “meson wavefunction” then the Yukawa differential 

equation for the meson is 

        ∂µ∂µ ψπ + (E0/c)2ψπ  =  0. 

where  

            ∂µ∂µ  =  (1/c2)∂2/∂t2 − ∇2 . 

The r-dependent (spatial) form of ∇2 is 

               ∇2 → (1/r2)d/dr(r2d/dr) 

The static (time-independent) solution of this equation is readily 

checked to be 

            Ψ(r)  =  (−g2/r)exp(−r/rN) 

where 

              rN = /mπc = c/mπc2 = c/Eπ
0,  

so that  

                      1/rN
2  =  (Eπ

0/c)2 

The “range of the nuclear force” is defined by the condition 

       r  =  rN  =  /mπc ≈ 2 ×10-13 cm. 

This gives the mass of the meson to be close to the measured value.  

It is important to note that the “range of the force” ∝ 1/(mass of the 

field quantum).  In the case of the electromagnetic field, the mass of 

the field quantum (the photon) is zero, and therefore the force has 

an infinite range.   
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 The mesons come in three charge states: +, −, and 0.  The 

mesons have intrinsic spins equal to zero (they are field particles 

and therefore they are bosons), and their rest energies are measured 

to be 

          Eπ±
0  =  139⋅5 MeV and Eπ0

0  =  135⋅6 MeV. 

They are therefore considered to be members of an isospin triplet: 

                  t  = 1, t3  = ±1, 0. 

In Particle Physics, it is the custom to designate the isospin 

quantum number by I, we shall follow this convention from now on. 

 The third component of the isospin is an additive quantum 

number.  The combined values of the isospin projections of the two 

particles, one with isospin projection I3
(1) , and the other with I3

(2), is 

            I3
(1+2)  =  I3

(1)  +  I3
(2) . 

Their isospins combine to give states with different numbers in each 

multiplet.  For example, in pion (meson)-nucleon scattering 

                 π  +  N → states with I3
(1 + 2) = (3/2) or (1/2). 

These values are obtained by noting that 

                        Iπ(1) = 1, and IN
(2) = 1/2, so that 

           I3π
(1) + I3N

(2)  =  (±1, 0)  +  (±1/2) 

          = 3/2, an isospin quartet, or                                                  

          =   1/2, an isospin doublet. 

Symbolically, we write 

         3 ⊗ 2  =  4 ⊕ 2. 

(This is the rule for forming the product (2I3
(1) + 1)⊗(2I3

(2) + 1). 
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13 

GROUPS AND THE STRUCTURE OF MATTER 

13.1  Strangeness 

 In the early 1950’s, our understanding of the ultimate 

structure of matter seemed to be complete.  We required neutrons, 

protons, electrons and neutrinos, and mesons and photons.  Our 

optimism was short-lived.  By 1953, excited states of the nucleons, 

and more massive mesons, had been discovered.  Some of the new 

particles had completely unexpected properties; for example, in the 

interaction between protons and π-mesons (pions) the following 

decay mode was observed: 

 

                           Proton (p+)   

                                                                      Sigma(∑+)    Pion (π0 )   

                 

                             ❊                         ❊   

       Kaon (K+)                 Pion (π+)    

         

                    Pion (π+) 

                                                  ⇑                              ⇑   

                       Initial interaction                Final decay  

           lasts ~10–23 seconds         takes ~10–10 seconds 

          (Strong force acting)        (Weak force acting) 

 

Gell-Mann, and independently Nishijima, proposed that the kaons 

(heavy mesons) were endowed with a new intrinsic property not 

affected by the strong force.  Gell-Mann called this property 

“strangeness”.  Strangeness is conserved in the strong interactions 
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but changes in the weak interactions.  The Gell-Mann - Nishijima 

interpretation of the strangeness-changing involved in the proton-

pion interaction is 

 

                 p+ (S = 0)                                ∑+ (S = –1) 

          

                                                                          π0 (S = 0) 

 

      ❊              K+ (S = +1)     ❊ 

         

                                                                          π+ (S = 0) 

 

                 π+ (S = 0) 

 

      ⇑               ⇑   

           ∆S = 0                    ∆S = 1 

 

In the strong part of the interaction, there is no change in the 

number defining the strangeness, whereas in the weak part, the 

strangeness changes by one unit.  Having defined the values of S for 

the particles in this interaction, they are defined forever.  All 

subsequent experiments involving these objects have been 

consistent with the original assignments.   

13.2  Particle patterns 

 In 1961, Gell-Mann, and independently Ne’eman, introduced 

a scheme that classified the strongly interacting particles into family 

groups. They were concerned with the inclusion of “strangeness” in 

their theory, and therefore they studied the arrangements of 
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particles in an abstract space defined by their electric charge and 

strangeness.  The common feature of each family was chosen to be 

their intrinsic spin; the family of spin-1/2 baryons (strongly 

interacting particles) has eight members: n0, p+ ,∑±  ,∑0 ,Ξ– ,Ξ0 , and 

Λ0 .  Their strangeness quantum numbers are: S = 0: n0, p+ ; S = –1: 

∑± , ∑0  and Λ0 ; and S = –2: Ξ0 – .  If the positions of these eight 

particles are given in charge-strangeness space, a remarkable 

pattern emerges:     

Strangeness 

    ⇓                                n0                                p+ 

    0 

 

 

 

                ∑–     ∑+                

  -1 

 

   

               

   -2                         Ξ–                           Ξ0                  +1        

                               

                           Charge -1                0 

  

There are two particles at the center, each with zero charge and 

strangeness –1; they are the ∑0 and the Λ0.  (They have different rest 

masses).  An important set of particles consists of all baryons with 
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spin 3/2.  At the time, there were nine known particles in this 

category:  Δ0, ∆±1, ∆+2, ∑*0, ∑*±1, Ξ0, and Ξ-1 .  They have the 

following pattern in charge-strangeness space: 

 

       Charge:       –1                     0                   +1                  +2       

                   

Strangeness 

      ⇓ 

      0                                                                                                

                      ∆-              ∆0               ∆+              ∆++ 

 

 

    –1                        

                     ∑*–                  ∑*0                  ∑+ 

 

 

 

   –2                   

                                 Ξ*–                 Ξ*0 

 

 

             –3                                                

                               Ω–   ? 

 

The symmetry pattern of the family of spin-3/2 baryons, shown by 

the known nine objects was sufficiently compelling for Gell-Mann, 

in 1962, to suggest that a tenth member of the family should exist.  
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Furthermore, if the symmetry has a physical basis, the tenth 

member should have spin-3/2, charge –1, strangeness –3, and its 

mass should be about 150MeV greater than the mass of the Ξ0 

particle.  Two years after this suggestion, the tenth member of the 

family was identified in high-energy particle collisions; it decayed 

via weak interactions, and possessed the predicted properties.  This 

could not have been by chance.  The discovery of the Ω– particle 

was crucial in helping to establish the concept of the Gell-Mann – 

Ne’eman symmetry model.   

 In addition to the symmetries of baryons, grouped by their 

spins, the model was used to obtain symmetries of mesons, also 

grouped by their spins.   

13.3  The special unitary group SU(3) and particle structure 

 Several years before the work of Gell-Mann and Ne’eman, 

Sakata had attempted to build-up the known particles from 

{neutron-proton-lambda0} triplets.  The lambda particle was 

required to “carry the strangeness”.  Although the model was shown 

not to be valid, Ikeda et al. (1959) introduced an important 

mathematical analysis of the three-state system that involved the 

group SU(3).  The notion that an underlying group structure of 

elementary particles might exist was popular in the early 1960’s.  

(Special Unitary Groups were used by J. P. Elliott in the late 1950’s 

to describe symmetry properties of light nuclei).  

 The problem facing Particle Physicists, at the time, was to 

find the appropriate group and its fundamental representation, and 

to construct higher-dimensional representations that would account 

for the wide variety of symmetries observed in charge-strangeness 
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space.  We have seen that the charge of a particle can be written in 

terms of its isospin, a concept that has its origin in the charge-

independence of the nucleon-nucleon force.  When appropriate, we 

shall discuss the symmetry properties of particles in isospin-

strangeness space.    

 Previously, we discussed the properties of the Lie group 

SU(2).  It is a group characterized by its three generators, the Pauli 

spin matrices.  Two-state systems, such as the electron with its 

quantized spin-up and spin-down, and the isospin states of nucleons 

and nuclei, can be treated quantitatively using this group.  The 

symmetries of nucleon and meson families discovered by Gell-

Mann and Ne’eman, implied an underlying structure of nucleons 

and mesons.  It could not be a structure simply associated with a 

two-state system because the observed particles were endowed not 

only with positive, negative, and zero charge but also with 

strangeness.  A three-state system was therefore considered 

necessary, at the very least; the most promising candidate was the 

group SU(3).  We shall discuss the infinitesimal form of this group, 

and we shall find a suitable set of generators.  

13.3.1  The algebra of SU(3)   

 The group of special unitary transformations in a 3-

dimensional complex space is defined as 

         SU(3) ≡ {U3×3 : UU† = I, detU = +1, uij ∈ C}. 

The infinitesimal form of SU(3) is 

      SU(3)inf = I + iδαjλ j/2 , j = 1 to 8. 

(There are n2 − 1 = 8 generators). 
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The quantities δαj are real and infinitesimal, and the 3×3 matrices 

λ j are the linearly independent generators of the group.  The 

repeated index, j, means that a sum over j is taken. 

 The defining properties of the group restrict the form of the 

generators.  For example, the unitary condition is 

             UU† = (I + iδαjλ j/2)(I – iδαjλ
†

j/2) 

          = I – iδαjλ j
†/2 + iδαjλ j/2  

             to 1st-order, 

          = I if λ j = λ j
†. 

The generators must be hermitian. 

The determinantal condition is 

               det = +1; and therefore Trλ j = 0. 

The generators must be traceless. 

 The finite form of U is obtained by exponentiation: 

                 U = exp{iαjλ j/2}. 

 We can find a suitable set of 8 generators by extending the 

method used in our discussion of isospin, thus: 

 Let three fundamental states of the system be chosen in the 

simplest way, namely: 

                   1              0                     0 

           u =   0  ,  v =    1  , and w  =   0   . 

         0              0                     1 

If we wish to transform v → u, we can do so by defining the 

operator A+: 

                        0   1   0      0        1    

                          A+ v = u,    0   0   0      1  =    0  .  

                        0   0   0      0        0    
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We can introduce other operators that transform the states in pairs, 

thus 

                           0   0   0 

                         A– =     1   0   0  , 

                           0   0   0 

                   0   0   0                 0   0   0    

        B+  =   0   0   1 ,   B– =     0   0   0  , 

                   0   0   0                 0   1   0   

         0   0   0                 0   0   1   

       C+  =    0   0   0 ,  C–  =     0   0   0 . 

         1   0   0                 0   0   0   

These matrices are singular and non-hermitian.  In the discussion of 

isospin and the group SU(2), the non-singular, traceless, hermitian 

matrices τ 1, and τ 2 are formed from the raising and lowering 

operators τ ± matrices by introducing the complex linear 

combinations 

     τ 1  =  τ + + τ –  = σ 1 and τ 2  =  i(τ 1  –  τ 2)  = σ 2. 

The generators of SU(3) are formed from the operators A±, B±, C± 

by constructing complex linear combinations.  For example: 

the isospin operator τ 1 =  σ 1  =  τ + + τ –, a generator of SU(2), 

becomes 

 

        0      

                                σ 1   0      =  A+ + A– ≡ λ 1, a generator of SU(3). 

         0   0   0   

Continuing in this way, we obtain 

                    A+  =  λ 1/2  +  iλ 2/2,  
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where  

                                       0  

                λ 2  =       σ 2    0    , 

                             0   0   0 

and 

   C+ + C–  =  λ 4,  C+ – C–  =  –iλ 5, 

   B+ + B–  =  λ 6 , B + – B–  =    iλ 7. 

The remaining generators, λ 3 and λ 8 are traceless, diagonal, 3×3 

matrices: 

 

                  0                    1    0    0    

                λ 3  =     σ 3      0    ,  λ 8  =     0    1    0  . 

                             0   0   0                    0   0  −2   

 

The set of matrices {λ 1, .....λ 8} are called the Gell-Mann matrices, 

introduced in 1961.  They are normalized so that  

       Tr(λ jλ k)  =  2δjk. 

The normalized form of λ 8 is therefore 

 

                           1    0   0   

               λ 8  =  (1/√3)   0    1   0   . 

                                                                    0   0  –2   

If we put Fi = λ i/2, we find 

     A± = F1 ± iF2, 

     B± = F6 ± iF7,  

and  

     C± = F4 + iF5. 
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Let A3 = F3, B3 = –F3/2 + (√3/4)F8 , and C3 = (–1/2)F3 − (√3/4)F8, 

so that  

          A3 + B3 + C3 = 0. 

The last condition means that only eight of the nine operators are 

independent. 

 The generators of the group are readily shown to obey the 

Lie commutation relations 

         [Fi, Fj] = ifijkFk , i,j,k = 1 to 8. 

where the quantities fijk are the non-zero structure constants of the 

group; they are found to obey  

       fijk = –fjik 

 and the Jacobi identity. 

The commutation relations [Fi, Fj] can be written in terms of the 

operators A±, ...Some typical results are 

  [A+, A–] = 2A3, [A+, A3] = –A+, [A–, A3] = +A–, 

  [A3, B3]  = 0,     [A3, C3] = 0,    [B3, C3]  = 0 

  [B+, B–]  = 2B3, [B+, B3] = –B–, [B–, B3]  = +B– etc. 

 The two diagonal operators commute: 

       [F3, F8] = 0 . 

The operators F1, F2, and F3 contain the 2×2 isospin operators (Pauli 

matrices), each with zeros in the third row and column; they obey 

the commutation relations of isospin.  We therefore make the 

identifications 

              F1 = I1, F2 = I2, and F3 = I3 

where the Ij’s are the components of the isospin. 

 Particles that experience the strong nuclear interaction are 

called hadrons; they are separated into two sets: the baryons with 
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half-integer spins and the mesons with zero or integer spins.  

Particles that do not experience the strong interaction are called 

leptons.  In order to quantify the difference between baryons and 

leptons, it has been found necessary to introduce the baryon number 

B = +1 to denote a baryon, B = –1 to denote an anti-baryon, and  

B = 0 for all other particles.  Leptons are characterized by the 

lepton number L = +1, anti-leptons are assigned L = –1, and all 

other particles are assigned L = 0.  It is a present-day fact, based 

upon numerous observations, that the total baryon and lepton 

number in any interaction is conserved.  For example, in the decay 

of the free neutron we find 

                 n0  = p+ +  e–  + νe
0  

                    B = +1 = +1 +  0   +  0  

                    L =   0  =  0  + 1   + (–1). 

The fundamental symmetries in Nature responsible for these 

conservation laws are not known at this time.  These conservation 

laws may, in all likelihood, be broken. 

 In discussing the patterns of baryon families in charge-

strangeness space, we wish to incorporate the fact that we are 

dealing with baryons that interact via the strong nuclear force in 

which isospin and strangeness are conserved.  We therefore choose 

to describe their patterns in isospin-hypercharge space, where the 

hypercharge Y is defined to include both the strangeness and the 

baryon attribute of the particle in an additive way: 

                 Y = B + S. 

The diagonal operator F8 is therefore assumed to be directly 

associated with the hypercharge operator: 

       F8 = (√3/2)Y.  
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 Because I3 and Y commute, states can be chosen that are 

simultaneous eigenstates of the operators F3 and F8.  Since no other 

SU(3) operators commute with I3 and Y, no other additive quantum 

numbers are associated with the SU(3) symmetry.  The operators F4, 

… F8 are considered to be new constants-of-the-motion of the 

strong interaction Hamiltonian. 

13.4 Irreducible representations of SU(3) 

 In an earlier discussion of the irreducible representations of 

SU(2), we found that the commutation relations of the generators of 

the group were satisfied not only by the fundamental 2×2 matrices 

but also by matrices of higher dimension [(2J + 1) ⊗ (2J + 1)], 

where J can have the values 1/2, 1, 3/2, 2,…The J-values 

correspond to the spin of the particle whose state is given by a 

spinor (a column vector with special transformation properties).  In 

the 2×2 representation, both covariant and contravariant spinors are 

allowed: 

i) covariant spinors (with lower indices) are written as 2-

component columns that transform under U ∈ SU(2) as  

               α i´ =  Ui
j α j ,  

where  

 

                a1   

                 α  =        , 

                a2   

and 

ii) contravariant spinors (with upper indices) are written as    

2-component rows that transform as: 
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              β j´ =  β i Ui
j †, 

where 

 

              β   =  (b1, b2). 

The co- and contravariant spinors are transformed with the aid of 

the anti-symmetric tensors ε ij and ε ij.  For example, 

 

                β i = ε ij β j 

transforms as a covariant spinor with the form 

 

                  b2   

                β i  =          . 

                 –b1   

The higher-dimensional representations are built up from the 

fundamental form by taking tensor products of the fundamental 

spinors α i , β j , or β i and by symmetrizing and anti-symmetrizing 

the result.  We state, without proof, the theorem that is used in this 

method: 

when a tensor product of spinors has been broken down into its 

symmetric and anti-symmetric parts, it has been decomposed into 

irreducible representations of the SU(n).  (See Wigner’s standard 

work for the original discussion of the method, and de Swart in 

Rev. Mod. Phys. 35, (1963) for a detailed discussion of tensor 

analysis in the study of the irreps of SU(n)) 

 As an example, we write the tensor product of two covariant 

spinors  
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µ i and ν j in the following way 

  µ i⊗ν j = µ iν j = (µ iν j + µ jν i)/2  +  (µ iν j − µ jν i)/2 

There are four elements associated with the product (i,j can have 

values 1 and 2). 

 The symmetric part of the product has three independent 

elements, and transforms as an object that has spin J=1.  (There are 

2J + 1 members of the symmetric set).  The anti-symmetric part has 

one element, and therefore transforms as an object with spin J = 0.  

This result is familiar in the theory of angular momentum in 

Quantum Mechanics.  The explicit forms of the four elements are: 

       J3 = +1:  µ 1ν 1 

          J = 1          J3 =   0: (1/√2)(µ 1ν 2 + µ 2ν 1) 

                  J3 = –1 : µ 2ν 1 

and 

          J = 0           J3 = 0 : (1/√2)(µ 1ν 2 – µ 2ν 1). 

Higher-dimensional representations are built up from the tensor 

products of covariant and contravariant 3-spinors, α  and β  

respectively.  The products are then written in terms of their 

symmetric and anti-symmetric parts in order to obtain the 

irreducible representations.  For example, the product  

                              α iβ
j, i,j = 1,2,3, can be written  

   α iβ
j  =  (α iβ

j  −  (1/3)δi
jα kβ

k) + (1/3)δi
jα kβ

k , 

in which the trace has been separated out.  The trace is a zero-rank 

tensor with a single component.  The other tensor is a traceless, 

symmetric tensor with eight independent components.  The 

decomposition is written symbolically as: 

          3 ⊗ 3  =  8 ⊕ 1. 
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 We can form the tensor product of two covariant 3-spinors, 

µ iν j as follows: 

        µ iν j  =  (1/2)(µ iν j + µ jν i) + (1/2)(µ iν j – µ jν i), i,j = 1,2,3. 

Symbolically, we have 

          3 ⊗ 3  =  6 ⊕ 3 , 

in which the symmetric tensor has six components and the anti-

symmetric tensor has three components. 

Other tensor products that will be of interest are 

              3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 , 

and 

                     8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8´ ⊕ 1. 

 The appearance of the octet “8” in the 3 ⊗ 3 decomposition 

(recall the observed octet of spin-1/2 baryons), and the decuplet 

“10” in the triple product 3 ⊗ 3 ⊗ 3 decomposition (recall the 

observed decuplet of spin-3/2 baryons), was of prime importance in 

the development of the group theory of “elementary” particles.  

13.4.1  Weight diagrams 

 Two of the Gell-Mann matrices, λ 3 and λ 8, are diagonal.  We 

can write the eigenvalue equations: 

                 λ 3u = αuu, λ 3v = αvv, and λ 3w = αww, 

 and 

                  λ 8u = βuu, λ 8v = βvv, and λ 8w  = βww , 

 where αi and βi are the eigenvalues.   

 Let a and b be normalization factors associated with the 

operators λ 3 and λ 8, repectively, so that 
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    a    0   0        b    0    0   

           λ 3
N  =    0  –a   0    and  λ 8

N  =    0    b    0   . 

    0    0   0                        0    0  –2b   

If  u = [1, 0, 0], v = [0, 1, 0] and w = [0, 0, 1] (columns), we find 

          λ 3
Nu =    au,  λ 8

Nu =      bu,  

          λ 3
Nv =  –av,   λ 8

Nv =      bv,  

         λ 3
Nw =    0w,  λ 8

Nw = –2bw. 

The weight vectors are formed from the pairs of eigenvalues: 

  [αu, βu] = [a, b], 

  [αv, βv] = [−a, b],  

  [αw, βw] = [0, −2b]. 

A weight diagram is obtained by plotting these vectors in the α–β 

space: 

                     β     

         2b     

 

          b               

 

 

                     –a                          a                α  

       −b          

 

      –2b        

 

This weight diagram for the fundamental “3” representation of 

SU(3) was well-known to Mathematicians at the time of the first 
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use of SU(3) symmetry in Particle Physics.  It was to play a key 

role in the development of the quark model. 

13.5  The 3-quark model of matter 

 Although the octet and decuplet patterns of hadrons of a 

given spin and parity emerge as irreducible representations of the 

group SU(3),  major problems remained that resulted in a great deal 

of scepticism concerning the validity of the SU(3) model of 

fundamental particles.  The most pressing problem was: why are 

there no known particles associated with the fundamental triplets 3, 

3 of SU(3) that exhibit the symmetry of the weight diagram 

discussed in the last section?  In 1964, Gell-Mann, and 

independently, Zweig, proposed that three fundamental entities do 

exist that correspond to the base states of SU(3), and that they form 

bound states of the hadrons.  That such entities have not been 

observed in the free state is related to their enormous binding 

energy.  The three entities were called quarks by Gell-Mann, and 

aces by Zweig.  The Gell-Mann term has survived.  The anti-quarks 

are associated with the conjugate 3 representation.  The three 

quarks, denoted by u, d, and s (u and d for the up- and down-isospin 

states, and s for strangeness) have highly unusual properties; they 

are 

 Label     B        Y         I          I3       Q= I3 +Y/2     S = Y − B  

    u          1/3      1/3       1/2      +1/2       +2/3          0          

    d          1/3      1/3       1/2      –1/2       –1/3           0             

    s          1/3    –2/3         0          0         –1/3         –1      

    s        –1/3      2/3         0          0         +1/3         +1        

    d        –1/3    –1/3       1/2      +1/2       +1/3           0         

    u        –1/3    –1/3       1/2      –1/2        –2/3          0          
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The quarks occupy the following positions in I3 – Y space  

 

      Y          Y   

                    s 

 d       u 

 

          I3                 I3 

 

                u             d 

     s 

 

These diagrams have the same relative forms as the 3 and 3 weight 

diagrams of SU(3). 

 The baryons are made up of quark triplets, and the mesons 

are made up of the simplest possible structures, namely quark–anti-

quark pairs.  The covariant and contravariant 3-spinors introduced 

in the previous section are now given physical significance: 

                  µ  = [u, d, s], a covariant column 3-

spinor, 

and 

                  ν  = (u, d, s), a contravariant row 3-

spinor. 

where u = [1, 0, 0], d = [0, 1, 0], and s = [0, 0, 1] represent the 

unitary symmetry part of the total wavefunctions of the three 

quarks. 

 The operators A±, B±, and C± are now viewed as operators 

that transform one flavor (type) of quark into another flavor: 
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   A± ≡ I±(I3)    → I3 ± 1 , 

             B± ≡ U±(U3) → U3 ± 1, called the U-spin operator, and 

   C± ≡ V±(V3) → V3 ± 1, called the V-spin operator, where 

           I+(–1/2) →  1/2 : d → u 

           I–(+1/2) → –1/2 : u → d 

          U+(–1/2) →   1/2 : s → d 

          U–(+1/2) → –1/2 : d → s 

          V+(–1/2) →   1/2 : u → s 

          V–(+1/2) →  –1/2 : s → u. 

Quarks can be characterized by the quantum numbers I3, U3, V3 

 

 

                           U3    –V3 

 

         

           +1/2   

  d            u 

 

   –I3      +1/2     I3 

 

            +1/2 

 

          s(0, –½, ½) 

      V3                    –U3 

 

The members of the octet of mesons with JP = 0– are formed from 

qq-pairs that belong to the fundamental 3, 3 representation of the 
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quarks.  The π0 and η0 mesons are linear combinations of the qq 

states, thus 

      Y 

            K0 ds       us  K+ 

 

            s 

         d       u 

 

      π– du           π0           ud π+ 

            –1                           η0                                    +1     I3 

         u       d 

 

     s 

 

  K+ su      sd  K0 

 

 

The nonet formed from the tensor product  3 ⊗ 3  is split into an 

octet that is even under the label exchange of two particles, and a 

singlet that is odd under label exchange: 

        3 ⊗ 3  =  8 ⊕ 1 

where the “1” is 

              η0´ = (1/√3)(uu + dd + ss), 

 and the two members of the octet at the center are: 

    π0 = (1/√2)(uu – dd) and η0 = (1/√6)(uu + dd − 2ss). 
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The action of I– on π+ is to transform it into a π0.  This operation has 

the following meaning in terms of I– acting on the tensor product,  

u ⊗ d:  

                      I–(u ⊗ d) ≡ (I–u) ⊗ d + u ⊗ (I–d)  (c.f. derivative rule) 

                             ↓           ↓                      ↓  

              I– ( π+ ) =    d   ⊗ d + u  ⊗  u   

     →  π0     

Omitting the tensor product sign, normalizing the amplitudes, and 

choosing the phases in the generally accepted way, we have: 

            π0 = (1/√2)(uu – dd). 

The singlet η0´ is said to be orthogonal to π0 and η0 at the origin. 

 If the symmetry of the octet were exact, the eight members 

of the octet would have the same mass.  This is not quite the case; 

the symmetry is broken by the difference in effective mass between 

the u- and d-quark (essentially the same effective masses: ~ 300 

MeV/c2) and the s-quark (effective mass ~ 500 MeV/c2).  (It should 

be noted that the effective masses of the quarks, derived from the 

mass differences of hadron-pairs, is not the same as the “current-

quark” masses that appear in the fundamental theory.  The 

discrepancy between the effective masses and the fundamental 

masses is not fully understood at this time). 

 The decomposition of 3 ⊗ 3 ⊗ 3 is 

           3 ⊗ 3 ⊗ 3 = (6 ⊕ 3) ⊗ 3 

                          =  10 ⊕ 8 ⊕ 8´ ⊕ 1 

in which the states of the 10 are symmetric, the 1 is antisymmetric, 

and the 8, 8´ states are of mixed symmetry.  The decuplet that 

appears in this decomposition is associated with the observed 
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decuplet of spin-3/2 baryons. In terms of the three fundamental 

quarks — u, d, and s, the make -up of the individual members of the 

decuplet is shown schematically in the following diagram: 

 

 

      ddd         ~ dud         ~ uud           uuu 

 

 

            ~ dds          ~ dus          ~ uus 

 

 

            ~ sds          ~ sus 

 

 

             sss 

 

The precise make-up of each state, labeled by (Y, I, I3,) is: 

  (1, 3/2, +3/2)  =            uuu(++) 

  (1, 3/2, +1/2)  =   (1/√3)(udu + duu + uud) 

  (1, 3/2, –1/2)  =   (1/√3)(ddu + udd + dud) 

  (1, 3/2, –3/2)  =            ddd(–) 

  (0, 1, +1)        =   (1/√3)(usu + suu + uus) 

            (0, 1,   0) = (1/√6)(uds + dsu + sud + dus + sdu + usd) 

  (0, 1, –1)        =   (1/√3)(dsd + sdd + dds) 

        (–1, 1/2, +1/2)    =   (1/√3)(ssu + uss + sus) 

        (–1, 1/2, –1/2)    =   (1/√3)(ssd + dss + sds) 

  (−2, 0, 0)        =             sss(–) 
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 The general theory of the permutation group of n entities, 

and its representations, is outside the scope of this introduction.  

The use of the Young tableaux in obtaining the mixed symmetry 

states is treated in Hamermesh (1962).   

 The charges of the Δ++, Δ–, and Ω–  particles fix the fractional 

values of the quarks, namely 

   quark flavor   charge (in units of the electron charge)  

            u              +2/3   

            d              –1/3   

            s              –1/3   

The charges of the anti-quarks are opposite in sign to these values. 

 Extensive reviews of the 3-quark model and its application 

to the physics of the low-energy part of the hadron spectrum can be 

found in Gasiorowicz (1966) and Gibson and Pollard (1976).  

13.6  The need for a new quantum number: hidden color 

  Immediately after the introduction of the 3-quark model by 

Gell-Mann and Zweig, it was recognized that the model was not 

consistent with the extended Pauli principle when applied to bound 

states of three quarks.  For example, the structure of the spin-3/2 Δ+ 

state is such that, if each quark is assigned a spin sq = 1/2, the three 

spins must be aligned ↑↑↑ to give a net spin of 3/2.  (It is assumed 

that the relative orbital angular momentum of the quarks in the Δ+ is 

zero (a symmetric s-state) — a reasonable assumption to make, as it 

corresponds to minimum kinetic energy, and therefore to a state of 

lowest total energy).  The quarks are fermions, and therefore they 

must obey the generalized Pauli Principle; they cannot exist in a 

completely aligned spin state when they are in an s-state that is 
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symmetric under particle (quark) exchange.  The unitary spin 

component of the total wavefunction must be anti-symmetric.  

Greenberg (1964) proposed that a new degree of freedom must be 

assigned to the quarks if the Pauli Principle is not to be violated.  

The new property was later called “color”, a property with profound 

consequences.  A quark with a certain flavor possesses color (red, 

blue, green, say) that corresponds to the triplet representation of 

another form of SU(3) — namely SU(3)C, where the subscript C 

differentiates the group from that introduced by Gell-Mann and 

Zweig — the flavor group SU(3)F.  The anti-quarks (that possess 

anti-color) have a triplet representation in SU(3)C that is the 

conjugate representation (the 3).  Although the SU(3)F symmetry is 

known not to be exact, we have evidence that the SU(3)C symmetry 

is an exact symmetry of Nature.  Baryons and mesons are found to 

be colorless; the color singlet of a baryon occurs in the 

decomposition 

   SU(3)C = 3 ⊗ 3 ⊗ 3 = 10 + 8 + 8´ + 1. 

The meson singlets consist of linear combinations of the form 

   1 = (RR + BB + GG)/√3. 

 Although the hadrons are colorless, certain observable 

quantities are directly related to the number of colors in the model.  

For example, the purely electromagnetic decay of the neutral pion, 

π0, into two photons 

             π0 = γ + γ, 

has a lifetime that is found to be closely proportionl to the square of 

the number of colors. (Adler (1970) gives Γ = /τ = 1(eV) (number 

of colors)2  
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The measurements of the lifetime give a value of  Γ~8 eV, 

consistent with  Ncols = 3.  Since these early measurements, refined 

experiments have demonstrated that there are three, and only three, 

colors associated with the quarks.  

 In studies of electron-positron interactions in the GeV-

region, the ratio of cross sections: 

              R = σ(e+e– → hadrons)/σ(e+e– → µ+µ–) 

is found to depend linearly on the number of colors.  Good 

agreement between the theoretical model and the measured value of 

R, over a wide range of energy, is obtained for three colors.   

 The color attribute of the quarks has been responsible for the 

development of a theory of the strongly interacting particles, called  

quantum chromodynamics.  It is a field theory in which the quarks 

are generators of a new type of field — the color field.  The 

mediators of the field are called gluons; they possess color, the 

attribute of the source of the field.  Consequently, they can interact 

with each other through the color field.  This is a field quite unlike 

the electrodynamic field of classical electromagnetism, in which the 

field quanta do not carry the attribute of the source of the field, 

namely electric charge.  The photons, therefore, do not interact with 

each other.   

 The gluons transform a quark of a particular color into a 

quark of a different color.  For example, in the interaction between 

a red quark and a blue quark, the colors are exchanged.  This 

requires that the exchanged gluon carry color and anti-color, as 

shown: 
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  qb                                             qr    

 

 

                                                    gluon, grb carries red and anti-blue: 

             

                       qr                                             qb    

                          The color lines are continuous.  

 

 Three different colors permit nine different ways of coupling 

quarks and gluons.  Three of these, red-red, blue-blue, and green-

green do not change the colors.  A linear combination ~ (R→R + 

B→B + G→G) is symmetric in the color labels, and this 

combination is the singlet state of the group SU(3)C.  Eight gluons, 

each with two color indices, are therefore required in the 3-color 

theory of quarks.   

13.7  More massive quarks 

 In 1974, the results of two independent experiments one, a 

study of the reaction p + Be → e+ + e– … (Ting et al.), the other a 

study of e+ + e– → hadrons … (Richter et al), showed the presence 

of a sharp resonance at a center-of-mass energy of 3.1 GeV.  The 

lifetime of the resonant state was found to be ~10–20 seconds — 

more than 103 seconds longer than expected for a state formed in 

the strong interaction.  The resonant state is called the J/ψ.  It was 

quickly realized that the state corresponds to the ground state of a 

new quark–anti-quark system, a bound state cc, where c is a fourth, 
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massive, quark endowed with one unit of a new quantum number c, 

called “charm”.  The quantum numbers assigned to the c-quark are 

                 JP = 1/2+, c = 1, Q/e = +2/3, and B = 1/3. 

  Sound theoretical arguments for a fourth quark, carrying a 

new quantum number, had been put forward several years before 

the experimental observation of the J/ψ state.  Since 1974, a 

complex set of states of the “charmonium” system has been 

observed, and their decay properties studied.  Detailed comparisons 

have been made with sophisticated theoretical models of the system. 

 The inclusion of a charmed quark in the set of quarks means 

that the group SU(4)F must be used in place of the original Gell-

Mann-Zweig group SU(3)F.  Although the SU(4)F symmetry is 

badly broken because the effective mass of the charmed quark is ~ 

1.8 GeV/c2, some useful applications have been made using the 

model.  The fundamental representations are 

          [u, d, s, c], a covariant column spinor, 

 and 

          (u, d, s, c), a contravariant row spinor. 

The irreps are constructed in a way that is analogous to that used in 

SU(3)F, namely, by finding the symmetric and anti-symmetric 

decompositions of the various tensor products.  The most useful are: 

         4 ⊗ 4 = 15 ⊕ 1, 

         4 ⊗ 4 = 10 ⊕ 6, 

           4 ⊗ 4 ⊗ 4 = 20sym ⊕ 20mix ⊕ 20´mix ⊕ 4anti, 

 and 

    15 ⊗ 15 = 1 ⊕ 15sym ⊕ 15anti ⊕ 20sym ⊕ 45 ⊕ 45 ⊕ 84. 
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The “15” includes the non-charmed (JP = 0– ) mesons and the 

following charmed mesons: 

        D0 = cu, D0 = cu, mass = 1863MeV/c2, 

        D+ = cd, D– = cd, mass = 1868 MeV/c2,  

         F+ = cs, F–  = cs, mass = 2.04 MeV/c2. 

In order to discuss the baryons, it is necessary to include the quark 

spin, and therefore the group must be extended to SU(8)F.  

Relatively few baryons have been studied in detail in this extended 

framework.   

 In 1977, well-defined resonant states were observed at 

energies of 9.4, 10.01, and 10.4 GeV, and were interpreted as bound 

states of another quark, the “bottom” quark, b, and its anti-partner, 

the b.  Mesons can be formed that include the b-quark, thus 

        Bu = bu, Bd
0 = bd, Bs

0 = bs, and Bc = bc . 

The study of the weak decay modes of these states is currently 

fashionable. 

 In 1994, definitive evidence was obtained for the existence 

of a sixth quark, called the “top” quark, t.  It is a massive entity 

with a mass almost 200 times the mass of the proton. 

 We have seen that the quarks interact strongly via gluon 

exchange.  They also take part in the weak interaction.  In an earlier 

discussion of isospin, the group generators were introduced by 

considering the β-decay of the free neutron, n0 → p+ + e– + ν0.  We 

now know that, at the microscopic level, this process involves the 

transformation of a d-quark into a u-quark, and the production of 

the carrier of the weak force, the massive W– particle.  The W– 
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boson (spin 1) decays instantly into an electron–anti-neutrino pair, 

as shown: 
              ν0       

 

       W – 1                   e–     

 

         d                                                                         u 

             neutron, n0                        d(–1/3) → u(+2/3)                       proton, p+ 

         u                                                                         u 

 

         d                                                                         d 

 

The carriers of the Weak Force, W±, Z0, were first identified in p-p 

collisions at high center-of-mass energy.  The processes involve 

quark–anti-quark interactions.      
         e+          e–    

 u(+2/3)            Z0                              u (–2/3) 

      e+              

                           W+     

 u(+2/3)                     ν0               d(+1/3) 

      ν0 

       

                                       W–      e–    

 d(−1/3)          u(–2/3) 

         

           

      

The charge is conserved at each vertex. 

The carriers have very large measured masses: 

  mass W±  ~ 81 GeV/c2, and mass Z0 ~ 93 GeV/c2.  
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 (Recall that the range of a force ∝ 1/(mass of carrier); the W and Z 

masses correspond to a very short range, ~10-18 m, for the Weak 

Force). 

 Any quantitative discussion of current work using Group 

Theory to tackle Grand Unified Theories, requires a knowledge of 

Quantum Field Theory that is not expected of readers of this 

introductory book. 

14 

LIE GROUPS AND THE CONSERVATION LAWS OF THE 

PHYSICAL UNIVERSE 

14.1  Poisson and Dirac Brackets 

 The Poisson Bracket of two differentiable functions 

  A(p1, p2, ...pn, q1, q2, ...qn) 

and 

  B(p1, p2, ...pn, q1, q2, ...qn) 

of two sets of variables (p1, p2, ...pn) and (q1, q2, ...qn) is defined as 

     {A, B} ≡ ∑1
n (∂A/∂qi)(∂B/∂pi) – (∂A/∂pi)(∂B/∂qi) . 

 If A ≡ O(pi, qi), a dynamical variable, and 

    B ≡ H(pi, qi), the hamiltonian of a dynamical system,  

where pi is the (canonical) momentum and qi is a (generalized) 

coordinate, then 

     {O, H} = ∑1
n (∂O/∂qi)(∂H/∂pi) – (∂O/∂pi)(∂H/∂qi) . 

(n is the”number of degrees of freedom” of the system). 

Hamilton’s equations are 

                ∂H/∂pi = dqi/dt and ∂H/∂qi = – dpi/dt , 

and therefore 

    {O, H} = ∑1
n (∂O/∂qi)(dqi/dt) + (∂O/∂qi)(dpi/dt) . 
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The total differential of O(pi, qi) is 

          dO = ∑1
n (∂O/∂qi)dqi + (∂O/∂pi)dpi. 

and its time derivative is     

    (dO/dt) = ∑1
n (∂O/∂qi)(dqi/dt) + (∂O/∂pi)(dpi/dt)  

      •    

       = {O, H} = O . 

 If the Poisson Bracket is zero, the physical quantity O is a 

constant of the motion.  

In Quantum Mechanics, the relation 

               (dO/dt) = {O, H} 

is replaced by 

               (dO/dt) = −(i/))[O, H], 

Heisenberg’s equation of motion.  It is the custom to refer to the 

commutator [O, H] as the Dirac Bracket. 

 If the Dirac Bracket is zero, the quantum mechanical 

quantity O is a constant of the motion..    

 (Dirac proved that the classical Poisson Bracket {O, H} can 

be identified with the Heisenberg commutator –(i/)[O, H] by 

making a suitable choice of the order of the q’s and p’s in the 

Poisson Bracket). 

14.2  Infinitesimal unitary transformations in Quantum 

Mechanics 

The Lie form of an infinitesimal unitary transformation is 

       U = I + iδαX/ , 

where δα ia real infinitesimal parameter, and X is an hermitian 

operator.  (It is straightforward to show that this form of U is, 

indeed, unitary). 
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 Let a dynamical operator O change under an infinitesimal 

unitary transformation: 

            O → O´ = UOU–1   

                = (I + iδaX/)O(I – iδaX/) 

     = O – iδaOX/ + iδaXO/ to 1st-order 

               = O + i(δaXO – OδaX)/ 

               = O + i(FO – OF)/. 

where 

           F = δaX. 

The infinitesimal change in O is therefore 

        δO = O´ – O 

    = i[F, O]/ 

If we identify F with –Hδt (the classical form for a purely temporal 

change   in the system) then  

        δO = i[−Hδt, O]/, 

or 

      –δO = i[H, O]δt/ , 

so that 

            –δO/δt = i[H, O]/.  

For a temporal change in the system, δO/δt = – dO/dt.  

The fundamental Heisenberg equation of motion  

              dO/dt = i[Η ,O]/  

is therefore deduced from the unitary infinitesimal transformation 

of the operator O. 

This approach was taken by Schwinger in his formulation of 

Quantum Mechanics. 
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 |F| = Hδt is directly related to the generator, X, of a 

Quantum Mechanical infinitesimal transformation, and therefore we 

can associate with every symmetry transformation of the system an 

hermitian operator F that is a constant of the motion - its 

eigenvalues do not change with time.  This is an example of 

Noether’s Theorem: 

 A conservation law is associated with every symmetry of the 

equations of motion.  If the equations of motion are unchanged by 

the transformations of a Group then a property of the system will 

remain constant as the system evolves with time.  As a well-known 

example, if the equations of motion of an object are invariant under 

translations in space, the linear momentum of the system is 

conserved. 
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