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Introduction to Loop Quantum Gravity Simone Mercuri

1. Preface

Loop Quantum Gravity (LQG) is a background independent amthematically rigorous
canonical quantization of the gravitational field. The Qigars of the 5th International School
on Field Theory and Gravitation have asked me to give an simletable account of the main
techniques and results of this theory and | have been pleadetiill their requests. | immediately
realized that the ideas of LQG were capturing the interestariy students, who asked me a lot of
clarifications about some mathematical tools and physg@éets of background independent the-
ories. | honestly think to have answered their questionscéarified many details, but, at the same
time, | had the impression that many of them were gettingused by the canonical formulation
of gravity and by the Dirac quantization procedure.

Generally speaking, my impression has been that the stuclmaiical quantization of gauge
theories and, especially, gravity presupposes the kngeled some arguments which are often
not treated in details in the basic courses. | had the samerierpe when | started working on
guantum gravity during my PhD. Usually, the approach to @dnieelativity (GR) proposed in
the basic courses is based on the Lagrangian mechanicg tlibilcanonical formulation of the
theory is only marginally described, without deepening itite general pictures of theories with
constraints. On the one hand, this is understandable frempahspective of academic and practical
purposes, but, on the other hand, the Hamiltonian, or hdttercanonical formulation of gauge
theories and gravity remain an obscure argument amongrggidd@his is a common problem,
which cannot be neglected when one attempts to describerdidep of quantum gravity and,
more specifically, LQG.

Therefore, motivated by the questions asked me during etiffeaks and lunches, | have de-
cided to slightly shift the focus of this proceeding, givittgthe readers the opportunity to begin
with quantum gravity from what | consider its natural stagtpoint, namely the physical formula-
tion of the problem.

So, Sectior]]2 is entirely devoted to describe some simplévatinins which compel one to
formulate a quantum theory of gravity, digressing on thesipdaf implications of such a theory on
the existing concepts of space and time. Sedtjon 3 contaime reliminary arguments, which |
consider as fundamental to understand the following dgons They are quite simple and well
known arguments, nevertheless they have to be necesdaglybefore going on to face the canon-
ical theory of gravity and the Ashtekar-Barbero formulatiaf GR. So, | collected in Sectidh 3 an
extremely brief description of the causal structure of sp@me, group theory, Dirac canonical for-
mulation of gauge theories, and the initial value formulatdf theories with gauge freedom, using
a simple language and neglecting many complicated defaéliss should also serve as an easily
accessible account of the main definitions and conceptsthsegghout the paper. In Sectiph 4 |
describe the canonical formulation of GR starting from thé 8plitting of space-time. The mathe-
matical procedure that allows to write the Einstein equegtio the Hamiltonian form is described in
details; the Section concludes with a description of thigainialue problem in gravity. Sectidh 5 is
dedicated to the connections formulation of canonical GRebknown as Ashtekar—Barbero (AB)
formulation of gravity. This argument is particularly inésting in view of quantization, because by
using the so-called AB connections, the constraints of GRoearewritten in a more suitable form
for quantization. Interestingly enough, the use of AB carioms introduces a quantum ambiguity
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known as Barbero—Immirzi (Bl) parameter, which affectsefgenvalues of geometrical quantum
operators. The physical interpretation of the Bl paramatet its correlation with the topological
sector of the theory is at present an argument of active sison. Recently, the idea that this pa-
rameter is in fact a field has attracted the interest of masgarehers (me included!). | think that
this could represent an interesting bridge with particlegsics and could have consequences in
Cosmology that deserve to be studied. For these reasonisel ihe readers to refer to the original
papers to get more information. Finally, in Sect{dn 6, | féwe problem of quantization, starting
from a brief description of the Dirac procedure and the WiieBle Witt (WDW) equation. The last
part of this Section is dedicated to the description of thennmdeas of LQG, without entering in
the complicated details of the theory. As | have explainddreein this paper | prefer to focus on
introductory arguments to LQG, more than on the theoryfitsghich is beautifully described in
many books and reviews, written by the major experts in teis ffl,[2,[3]. For this reason | refer
the readers for more details to the standard Literature o8 Lv@th the hope that this paper could
help them to face the argument more confidently.

At the end, | also added two appendices, one on differerdrah$, which are commonly used
in Literature, but sometimes little known among studentsilevthe other is about the topological
sector of gauge theories, and aims to clarify some concepishwapply in canonical quantum
gravity as well.

Throughout the paper, | will use an extremely simple apgrpaometimes neglecting some
interesting but slightly involved details. This obviousWll affect the completeness and the rigor of
the discussion, but, | am sure, will be appreciated by begsand the students of the International
School of Field Theory and Gravitation, who can find in thipgraa simple description of many
arguments. My hope is to give them the possibility to get at'farder understanding” of the main
concepts of canonical quantum gravity, without being disaged by the rigorous mathematical
formulation of the problem. | strongly suggest interestedders to delve into the “higher order
descriptions” of the more complete and rigorous books avigwes cited above.

2. What is Quantum Gravity?

The present knowledge in Physics is the result of the new awolutionary ideas born in the
last century, which later led to the formulation of the twojonghysical theories describing the
four interactions: Quantum Mechanics (QM) and General titha (GR). They have, on the one
hand, opened the way to a great number of scientific disewamd technical developments, but,
on the other hand, they destroyed the coherence of preistaticlassical physicq][2], since the
basic assumptions of each one of the two theories are cataddy the other. QM is formulated
using a Newtonian absolute (fixed, non-dynamical) spane-tiOn the contrary GR describes the
dynamics of space-time itself, which is no more an exteratb§clocks and rods, but a physical
interacting field, namely the gravitational field. The basdigsical lesson of GR is contained in the
following simple sentenceseometry tells matter how to move; matter tells geometrytoaurve
which expresses in a very suggestive way the fact that thentrdescribes both the dynamics of
space-time (or gravitational field) and the motion of theibsdubjected to the gravitational field.
But it also contains the seeds of an issue, namely the sepadadithe physical world in matter and
geometry.
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This dichotomy in Physics, together with the fact that on dhe side we have the present
description of what is in general intended as matter, namgyelectromagnetic, weak and strong
interactions, unified in the language of Quantum Field ThéQFT) and on the other side gravity
(or geometry) described by the pure classical theory of @éielativity, creates a sort of “sci-
entific discomfort” [}]. This is not only a philosophical fem, but assumes the distinguishing
features of a real scientific problem as soon as one congigeasurements in which both quan-
tum and gravitational effects cannot be neglected. In fadf, and GR are hugely successful in
their own range of applicability, but they seem to be sulei@db a sort of “reciprocal exclusion
principle”. In particular, QM describes microscopic pherena involving fundamental particles,
ignoring completely gravity, while GR describes macrosc@ystems, whose quantum properties
are in general (safely) neglected. So far, no experimenideaces are available on systems in
which neither gravity nor quantum effects can be negledtatiye already know that our current
theories would not be able to describe such phenomena. ihaisn is usual in Physics and
it is, in general, the prelude to the formalization of a wedited scientific problen{]4]. Specifi-
cally, the goal of obtaining quantitative predictions afthke outcomes of certain measurements on
extremely energetic gravitational systems is often refeas theQuantum Gravity Problem

It is clear from what said above that new elements could besszey in order to make our
current theories able to face a certain class of physicahqguhena. Then, it is natural to wonder
whether these new elements affect low energy processethdnwords, should we expect, even at
low energies, small QG corrections to the predictions ofcaurent theories? It is worth stressing
that even a little deviation from the predictions of stawndahysics ascribable to any QG effects,
found in the experimental data of current and future expenisy would have an enormous impact
on the research. We recall as an example the Lamb shift, wihitivated and stimulated the studies
about QED. From this perspective, it could be important tewasr to the following question:
How far we are from an experimental evidence of a QG effabe cannot give a completely
satisfying answer to it, nevertheless we can use a dimesisibpgument to state that the new effects
should modify the usual predictions with additional termsgortional to the facto(E/Ep)",
whereE is the typical energy scale of the experimeids, is the Planck energygp = (GN)’l/2 ~
1078eV), while nis a positive integer number. At this point one may be suegrisy the compelling
necessity to quantize gravity felt by physicists, sincéatitHC, the most powerful accelerator ever
projected, we can reach a very small energy if compared tBleck scale. Specifically, the ratio
between the Planck and the reachable energy is of the ordgfef Ep| ~ 1015, that means we
are fifteen orders of magnitude below the scale at which weatxp see the quantum effects of the
gravitational field. Even though this fact is true, it is dlgely false that this is a good reason for
abandoning the program of constructing a consistent thefa®G. The motivations are connected
with the fact that there exist in Nature particles of enexgimich larger than those we can produce
with the accelerators, moreover during its evolution ouiverse experimented regimes in which
the energy available was (most likely) even larger of thenéiascale. Furthermore, even though
the factorE/Ep| is extremely small at the present available energies antsecpently, the QG
effects cannot be directly experimented, it exists the mrcpossibility that some astrophysical
phenomena can behave as magnifying glasses, being ablekw tham visible in near future
(B, B]. In other words, the fact that QG effects are expeateletvery tiny does not mean they are
absolutely untestable, clearly as one should expect thertppties to make such tests are rather
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rare. We also emphasize that it could be not necessary th teadlanck energy to see some QG
effects. In this respect, we recall that a class of extrerealgrgetic phenomena call&@mma
Ray Burst{GRB) could represent a really important laboratory to @Gtpredictions, in fact they
seem to be the natural candidates to verify whether the foadgal hypothesis about a discrete
structure of space-time will be confirmed by experimentse poculiar features which make GRB
relevant for QG is the extremely wide range of the emittedgiae and the cosmological distance
of the explosive events.

Concluding, as usual in Physics, from the pure empiricahtpof view, the new framework
possibly introduced by a consistent and complete QG themuidaepresent a tiny deviation from
what we already know, being only a further small modificatbdthose empirical laws which give
us a pictorial description of how Nature works. But from thedretical point of view, it could
represent not only the completion of that revolution QM arfd iGtroduced in the last century,
but also open the way to the discovery of complete new aspétature, exactly what QFT and
GR have been doing during the last one-hundred years. Howewapite of their great empirical
success, QM and GR have left us with a fragmented undersigrafithe physical world, this
requires a new synthesis, which is a major challenge in tsdagdamental Physic$|[2].

In this sense, Quantum Gravity can solve the dichotomy ptéseour current understanding
of physical phenomena and, moreover, it could give us ptied& on those regimes in which the
quantum and gravity effects merge.

2.1 Why we need a Quantum Theory of Gravity?

Above we introduced the so called QG problem, which gainssthtus of a true scientific
problem as soon as one considers physical systems in whilchhzogravitational and the quantum
mechanical effects play an important role. Moreover, thileria of the existing theories as soon
as we push them near their extreme margins of applicalslitygests to quantize gravity. We also
digressed on the empirical content of such a problem, afiigntihat obtaining an experimental
evidence of a QG effect is extremely complicated, but notassible; even though we expect a
very tiny modification of the existing laws describing theypical systems. Therefore, as often
occurs, one may object to the above pleaded motivations)géyat they are mainly suggested by
philosophical reasons. Namely, the hope of finding the wagpotwiliate the basic assumptions of
two very different and complementary theories is not readlyuired by a scientific problem. Put
differently, this attempt has very little to share with Piecgs simply because the physical effects
are so tiny to be actually undetectable. It could be really so

For this reason, in this Section three well stated problemiéch regards respectively QFT,
GR and the merging point of QFT and GR, are discussed in oodemphasize that QG is a true
physical problem. It, in fact, can provide information abthe behavior of fundamental gravi-
tating quantum systems as, for example, a system of griagjtédrmions, or extremely energetic
scattering processes, or the Universe itself in its indiglansion.

The questions we present below are generally connectedthgtfundamental structures of
the theories and mainly concern the problem of singulatitla fact, it is worth recalling that the
theory describing the gravitational interaction fails iigg a fully satisfactory description of the
observed Univers€][7]. GR, indeed, leads inevitably to egawe singularities as a number of
theorems mainly due to Hawking and Penrose demonstrate.sifigalarities occur both at the
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beginning of the expansion of our Universe and in the codlaggravitating objects to form Black
Holes [8]. Classical GR breaks completely down at theseusamigies, or rather it results to be
an incomplete theory, because it neither gives a desanimfadhe singularities themselves, nor
provides the boundary conditions for fields in the singulain{s. The appearance of singularities
in extremal situations reflects both on QFT and on GR itsalfiegating a more subtle question
when we trivially try to merge the two theories as we are gamgrgue.

This failure of current theories represents a good reas@ose a scientific problem and its
solution is widely believed to be in the formulation of a cgtent and complete theory of QG.

It remains to treat in a more systematic way the problem digarthe empirical content of a
QG theory. This argument is postponed at the end of the Sgetivere we will trace the way to get
information about QG from the astrophysical phenomena daBemnma Ray Bursts, motivating
the belief that the necessary experimental evidences vdaigld support the QG research are not
so far.

2.1.1 Planck scale collisions

The question i$: What would happen if we managed to collide an electron-pmsipair of
energyper particle of 10?8eV? We are unable to give an answer to this question, because the
energy in the center of mass is greater than the Planck en&gywhat would happen in the
center of mass during such a collision is completely out afunderstanding. But, according to
our present physical theories describing the collisions/éen fundamental particles, there should
be nothing peculiar in the setup of such an experiment. Hewedte same hugely successful
theories are not able to provide us with a consistent priedid¢br the outcome of this experiment.
The reason of this failure is related to the fact that, in saiclexperiment, we cannot neglect the
gravitational properties of the involved particles at themnent of the collision. But, we do not have
any scientific information on how taking into account sucheffact in the framework of QFT. In
other words, when the gravitational field is so intense tpats-time geometry evolves on a very
short time scale, QFT cannot be consistently applied angdonOr, from another perspective,
we can say that when the gravitational effects are so stroqgdduce the emergence of space-
time singularities, field theory falls into troubles. Suntimimg, we are able to extract numbers
(predictions) from QFT when the curved space-time is statislowly varying) and non-singular,
but we are not able to handle situations in which the grawitat field is so intense to give rise to
a fast varying and singular space-tinfie [4].

The incompatibility between QM and GR in treating the praubscattering problem can be
further analyzed. In this respect, we have to remember tRag@rerns consistently the space-
time and particles dynamics. In particular, given the Lagran for the matter, once the Einstein
equations have been solved, we can predict the trajectofrithe particles. But, in the framework
of QFT, particles are asymptotic states of quantum opegand during the collision they do not
follow any classical trajectory. The whole dynamics of tlodlision is contained in the S-matrix,
which gives the evolution from the initialif)) to the final (out)) state. During the interaction,
the intermediate state is a pure quantum superpositior thfegpossible states compatible with the
guantum numbers of the initial state; namely, we can aswotgarticles a semi-classical (fuzzy)

1Some of the ideas presented below are extracted m [4]@nd [
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trajectory only asymptotically, in other words much beforanuch later the collision. One could
try to apply the formalism of GR to the formally classicalj@i@ories contained in the path-integral,
but the problem remains ill-defined and, generally speakingll be affected by divergences if the
energy of the particle are sufficiently high to generate aiicant geometrodynamics. This fact is
suitable for a pictorial description. The path-integrahfialation of QM consists in summing on all
the possible trajectories connecting the initial and fingrgum state, with a weight proportional to
the exponential of the classical action. The major role énsihim is played by those trajectories near
the classical one, because the contribution of those “faryafvom the classical one is suppressed
by the weight factor. If the gravitational field is weak, wencaafely approximate the space-time
near the classical trajectory with the Minkowski flat spéioee, and assume that the curvature
does not affect the trajectories which enter in the sum. Buhe gravitational field is intense,
then also those trajectories close enough to the classieabe affected by the curvature of the
space-time and this effect should be taken into accounterpéth-integral sum. The case of fast
varying or singular gravitational field is even worst, besmin that case the trajectories could fall
into a singularity or oscillate very fast. This breaks dowmpletely the formalism, by introducing
remarkable and uncontrollable effects into the sum.

2.1.2 Singularities

The study of singularities in GR is an absolutely fascirptimgument. Here we give an ex-
tremely brief account of this huge argument, which repressene of the crucial point suggesting
that a quantum theory of gravity is, in fact, necessary. ewularities classical GR becomes in-
consistent and incomplete, as we already stressed befdreliffierently from Newtonian gravity,
they represent an inevitable feature of the theory. Indieedewtonian gravity the = 0 singular-
ity, appearing in the complete collapse of a spherical maating shell of dust (namely, when all
the matter reach simultaneously the origin), can be easgdidad slightly perturbing the spherical
symmetry of the collapsing shell, for example giving it iditrotation. On the contrary, in GR the
singular behavior of space-time cannot be avoided. All thet®ns we have of Einstein equations
show a singular behavior. But, since all of them are charizet#® by symmetries, one may think
that, as it happens in Newtonian gravity, the relaxatioryaimetries could allow to avoid singular
points. But the Hawking, Penros¢ al. theorems demonstrate that this is not the case. Wald says

[B:

Although the singularity theorems do not prove that the dimdties of classical
General Relativity must involve unbounded large curvattiney strong suggest the
occurrence in Cosmology and gravitational collapse of dmms in which quantum
or other effects which invalidate classical General Relgtwill play a dominant role.

So the singularity theorems do not use the natural and, imtaicesense, more physical notion
of unbounded density to characterize the space-time sirie$, but the characterization of sin-
gularities is based on the notion of incompleteness of gaosiewhich, however, contains some
unwanted features.

The use of such a notion to characterize space-time singesais due to the necessity of a
diffeomorphisms invariant criterion. In this respectsitiorth noting that the singular pointsrin=
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0 of Schwarzschild or Robertson-Walker metrics, rigorpsgleaking, are not point of those space-
times, otherwise the metrics would not be well defined evesne on the manifoldl. Moreover,
the criterion based on the bad behavior of higher order scatmstructed with the curvature tensor
does not work in some cases, so it is clear that a more satisfadefinition has to be introduced.

So far, the criterion of geodesics incompleteness seenssttiebmost appropriate. Its physical
meaning is suggested directly by its definition. Indeed, @gsic is said to be incomplete when
it is inextendible in at least one direction; namely, it hainite range for the affine parameter.
As a consequence, a particle falling along a time-like of imaxtendible geodesic will end its
existence within a finite proper time (or it began its existea finite proper time ago). So, even
though a completely satisfying notion of singularity lad@$, we call “physically singular” all
those space-times having at least one incomplete geodesic.

At this point, the following famous theorem by Hawking andhRese can be enunciatéd:

Theorem 2.1. Singularity theorem of Hawking and Penrose (1971@t us suppose that the space-
time (M, g,y ) satisfies the following four hypothesis:

1. RyyutuY > 0 for all time-like or null W
2. it exists at least one point for every time-like or null desics at which R,utu" # 0;
3. no closed time-like curve exist;

4. at lest one of the following three conditions holds:
i) (M,guv) possesses a compact achronal set without edgéNLegy, ) is a closed Universe,
ii) (M,guv) possesses a trapped surface,
iii) there exists a point g M such that the expansion of the future (or past) directed nul
geodesics emanating from p becomes negative along eackgead this congruence.

Then(M, g,v) must contain at least one incomplete time-like or null geate

The first three conditions of the above theorem are beliavée satisfied in our Universe. The first
one in particular can be simply showed to be shared by alktBpace-times satisfying the Einstein
equations and thgtrong energy conditioh which seems to be plausible for ordinary matter.

Finally, we can conclude that strong evidences suggesothdtiniverse is singular; of course
we cannot know by which kind of singularity it is charactedz because the above theorem does
not give us any insight on this questidrievertheless, it suggests that an extension toward QG is
necessary. It, in fact, demonstrates that the universallgf@ed theory of gravity cannot definitely
give us a complete and consistent description of the ewnlwdf our Universe.

2See § 31 for definitions.
3Namely for every time-likeu! we haveT yutu¥ > —T/2, whereTyy is the energy-momentum tensor of the

matter.
4The particular kind of singularity we obtain from the Eiristequations depends in general on the particular
symmetries of the model.
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2.1.3 Merging General Relativity and Quantum Field Theory

After having described the problem of singularities in GRe want to address a number of
difficulties coming out when one attempts to quantize gyaugting the usual formalism of QFT.
The main source of problems in extending the formalism of @-ravity is represented by the
double role played by the metric tensor. It, in fact, reptsdoth the dynamical field describing
gravity and the tensor describing the causal structureeb#tkground. The nature of these dif-
ficulties is not only conceptual, as for example the consititem that a quantum theory of gravity
would imply a quantum, namely discrete, structure of sgane-itself. But, more practically, they
are correlated to the profound difference existing betw@&&nhand other classical field theories:
while in the latter the background is always considered aesxggrnal and fixed structure, the for-
mer is the theory describing the dynamics of the backgrotsadfi Therefore, we cannot assume a
given structure of space-tinab initio, but we have to invent a formalism that allows to quantize a
classical theory in a background independent way. Thisrfeadtes GR so peculiar that, so far, all
the attempts to quantize gravity have encountered fundeneifficulties; only in the last years
many of these obstacles have been overcome, leading to istem<QG [1L[R[B].

As is well known, the construction of a QFT on Minkowski spdicee of a free or perturba-
tively interacting field is the only procedure we can conttolparticular, given a small number of
axioms, the Wightman axioms, we can construct a consistéiit Let us begin the description of
the issues one would find in applying the usual formalism oT @-gravity, by describing a very
simple and well known example, which best illustrates tlohdiomy existing in the metric tensor.

One of the Wightman axioms contains the notion of micro-ahtys In order to introduce this
concept let me consider a scalar field represented by theretheperator-valued distribution

O (f) = /Rmd“*%(d)(x) F(x), 2.1)

wheref is a test function of rapid decrease. Suppose now that thmosispof the test function$
and f’ are space-like separated, then the micro-causality aggmip equivalent to require that:

[®(f),®(f)] =0. (2.2)

Physically, the above condition assures that a measureohéime field® in the region of space-
time contained in the support of the functidrncannot be influenced by the measure of the same
field in the region contained in the support of the functidn

The gravitational interaction is described by a self-iatéing spin-2 field, so, it is natural to
expect, in analogy with the previous example, that the ¥adlg commutation relation holds

la(f),g(f")] =0, (2.3)

where f and f’ are two tensorial test functions with compact supports re¢pd by a space-like
distance. But, strictly speaking, the above relation maiesense. The reason being that we
cannot give a consistent meaning to the requirement thaugyeorts of the test functions be space-
like separated, unless we already know the state of thetgtiawial field, namely the metric tensor.
But, the commutation relation in lin¢ (.3) must hold indegently of the state of the gravitational
field.
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It is clear that the micro-causality condition is the quamttranslation of the pure classical
concept of causality. Even though it contains informatibow measurements on quantum field,
its basic structure is, however, founded upon the existef@Minkowski space-time, with its
fixed light cone. In a quantum theory of gravity, the caugalindition and, as a consequence, the
micro-causality axiom, is inextricably bound with the qtian dynamics of the gravitational field,
so it has to be, at least, modified or completely replaced Bwnarequirement.

In general, the other Wightman axioms are violated in gyaa# well. The reason being that
the fundamental objects one has to postulate in order te watvn the axioms, namely i) a differ-
entiable manifoldR™**, on which a non-dynamical Minkowski metrigis defined, together with
its fixed future and past causal light corésU J ™, ii) a symmetry group, which, in the Minkowski
space-time, is the ten parameters Poincaré grypdogether with its associated infinite dimen-
sional representation acting on the quantum stdté$?) and iii) an invariant vacuum sta{@),
cannot be properly postulated. For a general space-tinfaciywe do not have a symmetry group
and a unique invariant vacuum state. Consequently, it ere@kists any obvious generalization of
the Wightman axioms, nor one can rigorously define any FodleH space for the quantum states
of the theory. Therefore, the whole formalism falls intoutoes.

A possible solution to these issues is the splitting of thé&riméensor as would be suggested
by a perturbative approach:

Ouv = Nuv + Yuv - (2.4)

The basic assumption here is tiyg} represents the dynamical variable describing a selfaotarg
spin-2 field, whilen,, describes the background metric, which, in general, coailary solution of
the classical Einstein equations. This method is of courshematically correct. It provides some
interesting insights on the quantization of a spin-2 fieldadixed (in general curved) space-time
and could be useful to describe the interaction betweentgrevand matter or the gravitational
waves. Nonetheless, it cannot be considered as a goochgtaaint for a complete quantum
theory of gravity, because the metric separatfon| (2.4)rogstthe full general covariance of the
classical theory, namely its main constructing principiore practically, the infinite perturbative
series becomes meaningless if the fluctuations become lémgether words, GR is, in general,
a non-renormalizable theory. One can hope that the petiorbtneory turns out to be finite as a
consequence of possible (magic) cancellations of thegtivies, but this hope is unjustifigd][11].
This means that the resulting theory cannot predict anyipalysesult. We still can advance the
hypothesis that the super-symmetric extension of thisrthbas a chance to be a finite theory,
because, as is well known, the super-symmetric extensi@abdissical field theory features, in
general, an higher degree of ultraviolet convergence dieraionic cancellationd [12]. But again
the resulting theory is non-renormalizable, even wordheeithe eleven dimensional super-gravity
theory shows any hoped cancellation propefty [13] (see [i$pand references therein). Then,
although we do not have a complete proof of the failure of tR& @@rmalism in the case of gravity,
it is widely believed that the perturbative approach dogégrmvide a completely consistent answer
to the problem of QG .

All these issues have been sometimes pushed to the extremequences by some authors,
who argued that classical GR is correct at the fundamental.|&his position is, however, unten-
able for at least two reasons: The inevitability of singtiles in classical GR; and the interaction

10
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of gravity with quantum matter systems, which is a sourceamfliles as we are going to show.

The question we want to answer is: what is the curvature afesfime associated to a given
guantum state of the matter? Let us suppose that the clBEsistein equation holds at the funda-
mental level, then the most natural candidate to get an arteviieis question is:

1 ~
Ruv — éguvR: <Tuv> . (2.5)

Where in the right hand side we have put the expectation ltlee energy-momentum tensor of
the matter in a given quantum state. Now suppose that thdwuastate of the matter is such that
we have probability 12 for the localization of all the matter in a region of spaiceet denoted as
U, and the same probability for the localization in anotheiaed),, disjoint from the regiorJ;.
In other words, we are in the following situation:
|mattel = 1 |all matter inUq) + el—e |all matter inUy) (2.6)
V2 V2 ’

whereU; andU, are disjoint regions of space-time.

In this physical situation, the gravitational field, acdogito equation[(2]5), would behave
like half of the matter were it and the other half ikJ,. Now, if we resolve the quantum state by
measuring the position of matter, we will find all the mattéher inU; or in U,. Then, the grav-
itational field should modify in a discontinuous acausal manleading to serious difficultief] [9].
The idea that this problem can find its consistent descriptidhe framework of a quantum theory
of gravity is widely accepted. It could, hopefully, provid@ answer to the following question:
how does a quantum particle modify space-time? This questioto a large extent, equivalent
to the previous one and contains the subtle problem regatbminteraction of the quanta of the
gravitational field with matter.

So, QG seems to be necessary as soon as we consider thetiomeohguantum matter with
the gravitational field, but, to quantize gravity as a usuklfQwe have to face a large number
of conceptual and technical issues. This is a long standioblgm, nevertheless, it does not
contain any indication about a fundamental incompatpiietween QM and GR principles. In
fact, as stressed by Rovelfi] [2], it is important to distifgjubetween QM, which is a general
mechanical theory and QFT which can be considered as aydartapplication of the laws of QM
to a system with an infinite number of degrees of freedom. Asaig above, GR is incompatible
with the formalism of QFT for the non-existence of a fixed lgrdkind structure, but this does not
means that it is incompatible with QM at aJl [15]. So the rightestion one should pose is the
following one: is it possible to construct a quantum theohnaystem with an infinite number
of degrees of freedom, without assuming a fixed backgroungatastructure? The answer is:
yes! Itis possible, as the modern background independentids of quantum General Relativity
demonstrate. However, more insights are necessary in taretter face many issues, in particular
those connected with measurements and the consistenduoctron of measuring devices in the
framework of such theories.

2.2 Space-time, background independence and relationatisin Physics

The question we want to discuss here represents anothertanppen issue” of the research
in QG and regards the fate of classical space-time.
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A very interesting feature of GR and QFT is that both are cdiblgawith a classical descrip-
tion of space-time, although they do not share the sameroetish of such a classical space-time.
According to QFT, the strategy to sharply localize a poinspace-time requires a limiting proce-
dure on the mass of the devices localizing points; in GReambt the localization of a point is a
background independent procedure, based on the crossing geodesics. Below, | will describe
in more details these contrasting features.

The concept of classical space-time is appropriate in BRys long as the proposed theories
allows to localize space-time points sharply. A fundamlergquirement for a consistent physical
theory is the agreement between the limits enforced on lpessieasurements by the formalism
and the limits imposed, in principle, by the physical meamegnts procedure. An example to
illustrate this important point can be easily constructgadnsidering the measurement of the an-
gular momentum vector. In classical physics, the angulamerdgum of a particle can be sharply
measured. In other words, we can, in principle, measure eaetof the components of the an-
gular momentum vector of a particle simultaneously and withinfinite precision. But, modern
physics has radically changed our perspective by impogingedimitations to the measurements
allowed by the experimental procedures, namely, we caneatsare simultaneously all the com-
ponents of the angular momentum with an infinite precisios.akonsequence, in the description
of such a system, the angular momentum has to be describeddry-@assical formalism, which
incorporates the experimental limitations found.

This aspect deserves to be further discussed and clarigedube it is correlated with the fate
of the classical concept of space-time as described belomurately, a good example exists in the
history of physics, which involved authoritative physisigs Einstein, Bohr, Landau and Rosen-
feld. A lively and fruitful debate, in fact, animated the esaiific community during the period
immediately after the birth of quantum electrodynamicse Watter of the discussion regarded the
measurement of the electromagnetic field in the framewoduahtum electrodynamics, leading to
the formulation of the so-calleBohr-Rosenfeld criteridor a consistent theory. Before discussing
this matter, we want to focus the attention of the reader erriportance of these kind of argu-
ments for theoretical physics. A simple example can clahfg point: In this respect, we want to
stress that the study of the synchronization of distantkslponce an absolute maximum velocity
for signals has been assumed, that led Einstein to spelaslity.

2.2.1 Bronstein objection and the fate of space-time in QG

Here, we want to briefly describe the main points of the detaee out in 30s, when a group
of really distinguished physicists argued that there waseptual disagreement between the un-
certainty limits predicted by quantum electrodynamics aedain class of observations, and the
mathematical formalism that the same theory adopts forritdsg these measurements results.
Specifically, the key point of the debate was a physical damation due to Landau and Peierls.
They argued that, according to quantum electrodynamiesglctric field in a generic poirR
can be measured sharply, namely with zero uncertainty,ecpuestly a measurement procedure
allowing to measure it sharply must exist. Obviously, if #iiation were different then the the-
ory would be inconsistent. Eventually, the conclusion ohdau and Peierls was that quantum
electrodynamics must be rejected as physical theory, kecauch a zero uncertainty measurement
procedure is not possible in Nature, so quantum electrodigsais inconsistent.
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The conclusion of Landau and Peierls was motivated by tHewolg consideration: The
measurement procedure of the electric field in a generid pambe ideally performed by using an
electrically charged probe, which undergoes the effedci@®ectric field and accelerates, the out-
come consists in the experimental measurement of thisexatigin. In principle one can measure
the mean value of the electric field in a small region of spapproaching the point asymptotically.
Classically, this procedure is perfectly consistent, quantum mechanically, it is affected by the
Heisenberg principle. In fact, the simultaneous measunigraf the localization of the probe, say
AX and of the variation of its momentum due to the effect of tleeteic field, sayAP must satisfy
the following uncertainty relatiodXAP > h. Moreover, the acceleration of the probe introduces
another problem, related to the fact that an accelerategjel@mnits energy. So, the measurement
affects itself by modifying the momentum of the probe, nanileé outcome of the experiment.

Such an analysis, in fact, leads to the conclusion that gpstm@asurement of the electric
field is possible only in very special conditions. Indeedpiider to avoid the two effects described
above, the characteristics of the probe has to be adjustettina way that, by a limiting procedure,
it is possible to reduce the ratio between its electric ahaensity and its mass density to zero.

But, as noted by Landau and Peierls, the above requiremenbthe fulfilled, because, even
though in Nature it exists a great variety of particles witfiedent charge/mass ratios, no one
can constitute the ideal probe, namely with a charge/mdgsaqual to zero. As a consequence,
guantum electrodynamics must be rejected and a consistemiaiive should be sought.

Bohr and Rosenfeld opposed to this viewpoint, claiming theststency of quantum electro-
dynamics. The point is that the generations of particlestij in Nature are not a prediction
of the theory, rather they are an outside input; in other wogiven the particle content, the the-
ory predicts their mutual interactions. In this sense, #ikife pointed out by Landau and Peierls
cannot be considered as an inconsistency of the theoryubedacan be attributed to an external
fact. Therefore, it does not affect the logical structuréhef physical theory. If we found particles
with a vanishing charge/mass ratio, then we would be ablesi@sure sharply the electric field and
guantum electrodynamics would not absolutely be in cohwék such a discovery.

The same argument applied to the gravitational field has anable consequence related
to the fate of the common accepted notion of space-time. diy &8 Bronstein pointed out, the
requirement that the charge/mass ratio vanishes for tHeepueed to measure the field cannot be
applied to the gravitational field. The reason being thagtfagitational counterpart of the electric
charge is the gravitational mass. So, according to the afguige principle, the ratio between the
“gravitational charge” and the inertial mass of the probencd be freely adjusted, being equal to
one for any particle existing in Nature. Hence, the equivedeprinciple seems to put a serious
restriction on the possibility to sharply measure the dadicinal field.

This fact suggests that an unavoidable fundamental limihenmeasurements accuracy ex-
ists, affecting, as a consequence, the fundamental steusfispace-time. Furthermore, this could
have important implications in the construction of QG, hegg as is well known, QM imposes
limitations on the simultaneous measurement of conjugaits pf fields, but, following Bohr and
Rosenfeld, no limitation on the accuracy of a measuremennefsingle field occurs. The Bron-
stein’s argument suggests to consider the possibility dhéihary quantum mechanics could be
inadequate to describe the quantum theory of a geometnit fiethis sense, either a modification
of the uncertainty relation comes out naturally from theotlygeencoding this intrinsic limitation on
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the measurements of the gravitational field, or, more spéealy, a different quantum mechanics,
which reduces to the ordinary one in the appropriate lirhibugd be sought to face the problem of

QG.

2.2.2 Space-time in classical and quantum mechanics

In accordance to what said above, it is worth stressing onoe rinat QG could radically
change the present concepts of space and time. It could Bébfegsn fact, that new and unpre-
dictable non-trivial outcomes of the theory oblige us toratmn any intuitive representation of
space and time. In this respect, it is important to undedstaow the notion of space and time
changes according to the postulates of different physimbries. This is the motivation of the
following discussion, where the different notions of spand time are briefly described.

In classical mechanics space-time is an external fixed ahstiflecture. In particular, space is
an Euclidean three-dimensional stage for the physical grnena,R3, while time is represented
by the oriented one dimensional real axis, Space and time can be measured with an infinite
precision in classical mechanics. The common idea of spame-acquires a proper operative
meaning as soon as we imagine the existence of a dense aid®ab$ynchronized clocks beating
the flow of time, while perfect rods sharply measure the digta among clocks, giving in this way
an empirical meaning to the points of space-time.

Quantum mechanics is characterized by a novelty with rédpets classical counterpart; we
are referring to the uncertainty principle. This princigstablishes the impossibility to simulta-
neously measure with an infinite precision a pairs of corpigariables. Spatial coordinates are
the conjugate variables to the momenta along the same axiseanbe measured with an infinite
precision at the price of losing any information on the vitles. Therefore, a subtle question about
the evolution of the reference system arises. Indeed, as@®we have realized that the role of
time in QM is identical to the one it plays in classical medhap we can imagine to construct
the same array of dense ideal clocks to give an operative intgeémthe space-time points. But,
if the clocks had a finite mass, one should worry about theitudon, in fact, if we measure their
positions we lose information on their evolution. This faaggests the possibility that the space
and time of quantum mechanics acquire an operative meamilygirothe limit of infinite mass
clocks. This does not create any embarrassment, becaustigueechanics, as stressed at the
very beginning of this section, completely ignores grauiten its logical consistency can safely
rely on the idealization of a physical reference frame dariet by infinitely heavy patrticles.

The study of the space-time of quantum field theory introd@en more interesting features,
which deserve to be deepened. As clarified above, the baokgrof quantum mechanics is a
classical space-time; namely, we can, with a limiting pdace, measure sharply the position of
a particle in a space-time, pictorially represented by asdearray of infinite mass clocks. In
particular, in order to localize a finite mass particle, wesider an interaction between a probe
and the particle. The accuracy of the measure is propottioriae inverse of the energy carried by
the probe, namely, if the probe carries an energy, s@yX1we can localize a particle interacting

Swith the difference that in some extrapolations of the thean uncertainty relation between time and energy
comes out. However, since time is not an observable in qoantechanics but only an evolution parameter, the time-
energy uncertainty relation must be interpreted diffdyanith respect the coordinates-momenta one, which, inktisa
a consequence of the fact that coordinates and momentargtgate observables in QM.
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with the probe with an accuracy AiX. The reason being that the probe results to be confined to a
region of space-time of sizZ&X. This means that the sharp localization implies the injecitito the
physical system of a greater and greater (in principle i@&rénergy. Even though this procedure
does not create any problem in classical quantum mechasc®on as we consider a “relativistic
guantum mechanics” a subtle issue crops up. In fact, evamgththe 4-dimensional picture does
not modify the fundamental structure of space-time, stiltqrially described by a dense array of
extremely massive clocks, it introduces the equivalenteden mass and energy, which creates
a shortcoming in the above described measuring procedutleet], as soon as the energy carried
by the probe becomes higher than the rest mass of the pdrtitig measured, many copies of the
original particle are produced as a direct effect of the tomsimeasurement (injection of energy
into the systemS.

In order to avoid any misunderstanding, we want to stressthgasharp localization of an
infinite mass particle is still possible, because in ordeprimduce copies of the same measured
particle an infinite energy is necessary, so, as in ordinaantym mechanics, no problem exists in
the localization of space-time points.

Concluding, we can say that even though the space-time bmaokg) of quantum field the-
ory is the same ideal dense array of clocks that we have gliet@duced in ordinary quantum
mechanics, in guantum field theory the accuracy of a measureai the position of a particle is
however limited, the limit being imposed by the measuringcpdure itself. In other words, the
coexistence of the Heisenberg uncertainty principle wigtbcsal Relativity prevents from obtaining
a sharp measurements of the position of a finite mass pariade though the concept of classical
space-time is preserved. However, this appear to be nordqugsible when gravity is present. On
one side, in fact, quantum mechanics obliges to considenfanté mass point particle in order to
give sense to a sharp localization procedure, but, on ther gitle, this is incompatible with GR
for obvious reasons and the entire sharp localization piureefalls into troubles.

2.2.3 Space-time in General Relativity

General Relativity is the theory describing the dynamicspmdce-time. In this sense, even
the shortest discussion about GR requires to deepen intoatsie principles and the main ideas
which led Einstein to the formulation of his geometricaldheof the gravitational field. We are
not referring to the construction of the Einstein dynamiealiations, but to the more subtle and
complicate “struggle with the meaning of the coordinates.”

Generally speaking, in constructing the field equationsRfd@e has a number of hints, as, for
example, the fact that the static limit of the field equationsst be the Newton law. More suggestive
is the fact that the mass of a particle is the source of the dldam gravitational field: In fact,
considering that the mass is a form of energy, as Einsteisdifrolarified, it is quite reasonable that
the energy-momentum tensor turns out to be the source oéthtvistic field equations. Finally,
the concept that no privileged reference systems existestigighat the equations must be covariant
under a class of general coordinates transformations.tdiinsome years before the publication
of his most famous paper, appeared in 1915, learned thantiigoossible combination of second

8From another perspective this is the reason why in placdativistic quantum mechanics, a quantum field theory
is required to describe such phenomena, we need, in factamettical framework which does not require to fix the
number of particles of the system.
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order partial derivatives of the gravitational field (sp#icee metric), transforming covariantly

under general coordinates transformations, is the Rierearsor. It became soon clear to his mind
how the equations of motion of GR had to look like. But the mgitand most striking aspect of
GR, which Einstein dedicated himself to for a long periodjareled the philosophical content of
the theory: The real novelty introduced by GR is that the dimates have no physical meaning,
independently from the value of the physical field and fromtthjectories of the physical particles.

The Equations of GR are, in fact, generally covariant, ootirer words, ifeua(x) is a solution
of the field equations, then, given the general coordinatestormatiory = y(x), also€, 2 (y),
9 () _ _a

e/va(y(x)) IxH =€ (%), (2.7)

is a solution of the field equations. Essentially, this mehatthe physical laws are the same in all
the reference frames, namely in all coordinates systems.

Now, in order to understand the meaning of general covagiamhich will be useful for clari-
fying the structure of space-time of GR, we consider a regimpace-time, say/, containing the
eventP, and, assigned i/ the system of coordinateg”, let us indicate withxp its coordinates.
Lete,?(x) be a solution of the generally covariant field equations asdime that

Rip = R(x) =0, (2.8)

whereR(X) is the Ricci scalar. Suppose now that we decide to changeysters of coordinates in
the region?/. Specifically, be”” the new system of coordinates ape- F (x) the transformation
law from one system to the other. The{s*(y(x)), obtained frone,2(x) via the relation[(2]7), is a
solution of the equations of motion too. In other worels? describes the same gravitational field
ase“a, but in the# system of coordinates. Moreover, the Ricci scalar stillistags around the
point P:

R|, =R (yp) =R(F*(yp)) =R(xp) =0. (2.9)

Let us now proceed considering the new gravitational figRidefined as follows
E2(X) =€), (2.10)

namely as the primed field in the old system of coordinatés It is worth stressing that the
gravitational field described b is different from the one described leyin particular, although
the Ricci scalar constructed leys zero around the poim, namelyR(xp) = 0, we cannot draw the
same conclusion for the Ricci scalar of the fi&ldin fact we have:

Rlp =% (%) =R (%) =R(F 1 (xp)) - (2.11)

Namely, the Ricci scalar associated to the figlth the space-time poirR is given by the Ricci
scalar ofe calculated in the poin® = F~1(xp) and for no any reason it must be zero.

It results that, if the gravitational fielelis a solution of the equations of motida,is a solution
too. The reason is that the fididis described in the system of coordinat&sby the same function
describing the gravitational fielglin the system of coordinate®’; since the field equations do not
change under a coordinates transformatiomr,isfa solution, so i&.
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This is in essence the content of the so calgdstein’s hole argumentThe conclusion of
the above described argument is that the generally covdiéda equations are not deterministic,
because even thougtandE are both solutions of the same field equations, they do netmiéte
the physics at the same space-time p&infFor example, while the Ricci scalar associated to the
gravitational fielde is zero around?, the same scalar calculated using the figlds in general
different from zero around the same space-time point. Simeé&now that classical physics is
deterministic, we are at a crossroads: either the field emstannot be generally covariant, or
fixing the space-time evefthas no physical meaning.

Einstein had the courage to take the right road: He, in factetstood that there is no physical
meaning in fixing a particular space-time point on a gengralariant space-time. In this respect,
let us consider a solution of the Einstein equatierend two particles moving in this particular
gravitational field. The motion of the particles is descdill®y their respective world linesg (1)
andx; (o), which are determined by the gravitational field. Suppos#hout any loss of generality,
that the world lines of the two particles intersect at thecegiime eventP. Now consider the
gravitational fieldE = ¢@.e, wherep: M — M is a diffeomorphism; obviously the particles world
lines x1 (1) and xz (o) are no longer solutions of the particles equations of motiothe new
gravitational field. In fact, the new particles world lineletermined by the gravitational fiekg,
can be easily calculated once the world lines associatdd thét gravitational fielde are known,
they are:

X1(1) = [@xa] (1) and Xy (0) =[px](0). (2.12)

In other words, a diffeomorphism, acting both on the grawteal field and on particles world
lines, sends solutions to solutions. Furthermore, as aecence of the active diffeomorphism,
the particles do not intersect anymorePirbut inQ = @ (P). So, the fixed poinP loses its absolute
meaning and the right physical entity is the point determhibg the intersection of the world lines
of the particles. In this sense the theory does not predictatue of the gravitational field around
the space-time poir®, rather around the point determined by the intersectiomvofworld lines.
Therefore, the issue contained in the hole argument isdptkie theory is deterministic because it
predicts the same value of the gravitational field aroundsémeephysical(namely determined via
a diffeomorphisms invariant construction) space-timenpdihe characteristics of the gravitational
field e around the intersection of the world lings(7) andx; (o), as, for example, the flatness of
space-time around this point, are exactly mimed by the tgwnal fieldE around the intersection
of the world linesX; (1) andX; (o). This means that the theory has a gauge invariance in the sens
of Dirac: Different solutions, correlated by gauge transfations, represent the same physical
situations (see § 3.3). The gauge group is the group of diftephisms, which reflects the fact
that the localization of an event is not an absolute proaedomt is related to the particles and
fields themselves. We will see in paragrdph 2.2.5 that tHeadiforphisms invariance has striking
consequences on the theory, which, indeed, can be cordidsi@ partly relational theory.
Concluding, the space-time of GR is a classical structureitlis not absolute as in classical
and quantum mechanics. In other words, it is certainly jpéesgd localize sharply a point on a
generally covariant space-time, but the localization edoce requires the presence of particles
and fields. In particular the diffeomorphisms invariantqadure for the localization of an event is
based on the possibility to sharply recognize the pointsitgisection between the world lines of
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particles.

2.2.4 Space-time in Quantum Gravity

What we are going to say here must be intended by the readaraaempt to loosely explain
why the idea that QG implies an absolute limit on the locaikiraof events has a so long tradition in
the quantum gravity community. We cannot give a completecamdistent description of quantum
space-time simply because the existing theories give ysapictorial idea of how it should be;
so, here, | do not pretend neither to provide new insights tiné quantum gravity problem, nor
to give a new pictorial description of quantum space-tim&veéttheless, | think that it could be
useful and interesting to investigate the operative mepairihe localization of events in a theory
that should incorporate both the general covariance andguhetum uncertainty principle.

In this respect, we want to summarize the conclusion obdatieéore:

1. in order to satisfy the principle of general covariante, lbcalization of space-time events
must be realized via a diffeomorphisms invariant procedure

2. the quantum uncertainty does not allow to localize slaaplinite mass particle, because
this would require the injection into the system of a so laggantity of energy that it is
impossible to neglect the creation of copies of the analymetcle.

Let us now construct a physical diffeomorphisms invariaricpdure of localization. In order
to localize an event, we need at least two interacting pastianoving along their world lines;
specifically, we consider a massive particle and a probetabigeract with the particle itself. We
know from what stated above that the larger is the mass ofatie|e the greater is the accuracy of
the localization: The relation between the energy of thégm@nd the uncertainty in the localization
of the particle isE = (Ax)‘l. The physical explanation of this formula is simple. In orte
determine the position of an object with a given accugaxye have to use a probe, represented by
a massless particle interacting with the system under skochlized in a region at least comparable
with the accuracy we require for the experiment. The loa#ilin of the probe is proportional to
its Compton wavelength, so the accuracy of the experimeptaportional to the inverse of the
energy of the probe. It is well known that to reveal smalled amaller structures in particles
physics we have to use higher and higher energy test patticighis specific context, we have to
consider also the presence of the gravitational field, whigs a limit on the energy of the system.
Indeed, it is necessary that the Compton wavelength of tstesyis larger than its Schwarzschild
radius, this means that the energy during the interactiost meismaller than the Planck mass. We
consider in this pictorial context the ideal scatteringgass, which consists in a collision between
a massless probe and a particle of migisghe collision lasts for a timét. During this period of
time the system is considered frozen. We can compute thealypime of the interactiomd\t by
a very simple argument: It is the time necessary to exchamfgemation between the probe and
the particle, so it is at most equal to the distatxdraveled by the signal during the intervat.
The energy contained in the gravitational field during theriaction isvV ~ [‘%‘A'f'v', whereE is the
energy of the probe. During the collision the total energyhaf system must be smaller than the
Planck mas$/p| = (5!, thus we can write the following relation

(3 EM

At

<Mp = {51 (2.13)

18



Introduction to Loop Quantum Gravity Simone Mercuri

Now, remembering that the spatial displacement betweeprtit® and the particle is at most equal
to the accuracy of the localization and that the best we cas ancrease the energy of the probe
up to the mass of the particle (in order to avoid the creatforopies of the particle under study),
by using the relation above we obtain:

4
(ax)®

< Mpi. (2.14)

From the expression above we deduce that
AX > lpy, (2.15)

namely the best accuracy we can obtain in determining thiéiosf a particle is larger than the
Planck length.

So space-time in Quantum Gravity is not classical. In otherds, taking into account both
the general covariance and the quantum uncertainty pla@cie cannot sharply localize an event.
An intrinsic limit given by the Planck length appears in tleew@racy of a localization procedure.
As a consequence, all the intuitive concepts about spactraadnust be abandoned in a Quantum
Gravity theory, the resulting space-time structure is gegty non classical[[] 4]. More radically,
we could say that in Quantum Gravity space-time does not akal, in its place we have a fuzzy
guantum structure, which fits well with the pictorial remetation Wheeler gave many years ago:
Quantum space-time should appear like a foam. The quantam i® a state of the gravitational
field, which, at that stage, cannot be identified with a meddarstructure in a proper sense. In fact,
what is generally intended as space-time fits better witkbléssical actualization. The quantum
foam, instead, cannot be considered as a space-time, fopdxthe existence of a minimum length
suggests a fundamental discrete (non-continuous orylikein-commutative) structure. In order
to reintroduce the common concept of space-time in Quantumity, namely as a measurement
of the time elapsing between two events and the spatialndisgaseparating two disjoint events,
we have to give it a different status. We mean, considerirag ian “actualization”, rather than
an “idealization”. One way to “actualize” it is through aagbnal procedure, which is the next
argument we want to discuss.

2.2.5 Relational versus Absolute space-time

The discussion about relational or absolute space-timédcappear as a pure philosophi-
cal one, in stead it regards profoundly Physics and the debadtill open and stimulating (see
[Ld, [17,[1B] and references therein). This debate is a lomgdsig one and can be traced back
to the publication of the NewtonBrincipia Mathematican 1687. In his book Newton proposed
anabsolutenotion of space-time, according to which the geometry oEegane provides a fixed,
eternal and immutable background structure on which pestimove. In striking contrast with the
ideas of Descartes, Leibniz, Huygens, and others who, adstspoused the so-callegational
philosophy, according to which space-time has to be intgradea set of “relations” among real
objects and event§ [30] (detailed discussions on this aegtican be found in19, P0,]21]). The
Newton’s absolute view won against relationalism, sumggably the great empirical success New-
tonian mechanics had and, for a long period, no doubts wered®n which notion of space-time
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Physics should be based on. Nevertheless, the generalasmeaprinciple introduced by Einstein,
mathematically expressed via the invariance under diffapitisms, seems to destroy the New-
tonian absolute description of space-time. Essentiallthé Einstein’s theory, fixed space-time
is replaced by a dynamical structure on which the events @iemger points with assigned co-
ordinates, but interactions between physical particlesotler words relations. So, the relational
point of view deserves to be taken in serious considerasadiractly suggested by the commonly
accepted theory describing space-time and gravitation.

The guestion we should answer is: to what extent GR is a oeltitheory. Obviously, to
answer to this question we have to capture the differendeselba Newton and Einstein mechanics,
as we are going to do, taking into account the “space-tim#dtrons” we have.

Newton’s mechanics is based on the existence and physifiaitide of inertial reference
frames. They play a central role in all the classical theorie particular, they allow to distinguish
between accelerating and uniformly moving point particlagact, once fixed an inertial reference
system, the distinction between what is accelerating arat vshmoving uniformly is a property
of the geometry of the absolute space-time (backgroundzhnib completely independent of the
configuration of the matter. In other words, in Newtonian giby there is a clear and absolute
distinction between inertial and non-inertial motion. theérmore, this distinction does not depend
on something internal to the physical system, but only onetkternal geometrical properties of
space-time. Physically, we can distinguish between aatelg or uniformly moving particles, by
looking at the geometry of the reference frame glued to amgeparticle: The presence of non-
inertial forces allows us to make the distinction. This yi@mt was challenged by Mach, who
proposed to eliminate absolute space-time as a cause ioctlist between accelerating and non-
accelerating motion, replacing it with a dynamical progediAccording to Mach, the distinction
between accelerating and non-accelerating motion shauttbtermined via the relations between
all the structures which compose the entire Universe.

Mach'’s idea strongly influenced Einstein, who realized #waieleration should be determined
with respect to a reference frame, dynamically determingethe configuration of the whole sys-
tem. As a consequence, it does not exist any privileged eefer frame in the Universe, and
physical laws must be equivalent in all the frames. Sincalloeference frames are strictly con-
nected with the geometry of space-time, then space-tiralf iecomes a dynamical field, no more
fixed and immutable, but interacting with matter and affédig the matter content of the system.
The equivalence of any reference frame, mathematicallyessed by the invariance of the theory
under general coordinates transformations, suggestechthe General Relativity for such a the-
ory of space-time. It is worth noting that, even though Eirstvas surely influenced by Mach, we
cannot naively conclude that GR is a Machian the@fy [2]. Miaedess, we can say that GR is, by
construction, a partly relational theory as we are going tdivate.

Generally speaking, a physical theory postulates that aipalysystem is made up of a large
collection of mutually interacting elements. The form a tphysical theory is based on the proper-
ties and the specific interactions of these physical egtifidne physical properties of the elements
of a system, in an absolute theory, are referred to a fixedtstl as, e.g., the Newtonian space-
time, while their mutual interactions determine their ewimn with respect to the absolute tirhe
Put differently, space-time plays the role of backgroundavitoch the dynamics is referred. The
same role is played by a regular lattice, often used in thmdweork of particle physics. In this
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case, the physical entities (particles or fields) are codforethe nodes of the lattice, which is fixed
a priori and not influenced by the presence of matter.

On the contrary, the main assumption of a relational thesthat no any background exists
at all; so the question is: to which structure is the dynamadsrred? Looking for an answer, let
us firstly digress on some aspects of the relational pointi@f.v The relational view presumes
that the fundamental properties of the elementary entitesist entirely in relations between the
elementary entities themselves. Dynamics concerns wiltchianges of these relations. A good
pictorial description of a relational theory can be obtdibg considering a grapfi|[2], characterized
by some nodes representing the entities and their propediel different classes of connections
between the nodes featuring mutual interactions betwejacextt entities. The state of the system
is determined by the structure of the links between the naglesreas the dynamics modifies the
structure of the connections (relations) between differenles. It is important not to confuse the
pictorial description of a relational graph with the comniimrage everyone has of a regular lattice.
In this respect, it is worth noting that the pictorial deptidn of a relational system is completely
abstract, while a regular lattice describes a precise palsituation, where a continuous space-
time is substituted by a fixed discrete structure to which &ferrthe fields dynamics.

In relational theories time loses its usual meaning. Evardus, in general, incorporated in the
modification of the relations between the physical entiéied, since time is the parameter of the
evolution itself, it acquires a relational meaning as wele concept of relational time has a great

importance in QG as a large number of papers highlights [Bg¢T7.[IB[ 79[ 20, 21, PP.]2B.] 24,
23,2627 28] 39, 30, B1] and references therein).

Having described what we mean by relationalism, let us n@ugdhe attention on GR. GR is
a complicated theory describing all the manifestationfiefgravitational interaction. In particular,
it describes gravitationally dominated subsystems of thvéJse as, for example, black holes or
gravitationally bound systems. In some models describifgpgstems of the Universe, a number
of conditions on the fields and metric are imposed at the baiesl In this case, the question
whether or not GR is a relational theory is not interestinglgBd], because imposing the boundary
conditions is equivalent to introducing a background. Mwes, the existence of a region of space-
time which is external to the system we are modeling with bapoty implies that the theory is not
“fundamental.” But GR is widely believed to be the theoryatésing the whole Universe as well.
In other words, GR is considered the best candidate for adogjcal theory. Hence, apart from
the specific dynamics, if we assume that GR is, in fact, a ctisgioal theory, the question whether
or not it provides a relational description of the dynamiéshe Universe acquires a profound
meaning.

GR contains a lot of structures, which are fixagriori, they are: dimensions, signature,
topology, and differential structure. All of them belongabat is intended as “background”, in fact,
they can be varied from model to model, but they are fixed amdairsubjected to dynamical laws.

7In order to avoid any misunderstanding, | stress that thibolutely not in contrast with the fact that the same
theory, with suitable boundary or asymptotic conditioram; describe, as well, subsystems of the Universe. In general
it is reasonable to expect that some sort of modification qgear in the cosmological dynamical equations, as for
example a non-vanishing cosmological constant. Nevartisekthe foundations of the theory remains unaffected by the
specific dynamics, them being, in fact, related to the coéstructure of the theory, which are pretty general,eath
than to the peculiar dynamics it generates.
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More precisely, they describe the manifold; whereas, the metrig,, and tensor fieldd @ are

the dynamical entities of the theory. A space-time corredpdo a determination of the manifold,
metric and fields, namel{///l,gw;T(a)). But, in order to define a physical space-time, we have
to take into account the gauge freedom of the theory, whistdescribed in paragraph 2]2.3, is
encoded in the invariance under the group of diffeomorpkisitherefore, we define a physical
space-time as an equivalence class of manifolds, metrckfi@lds under the action of the group
Dif f (.#). We denote this equivalence class{a#,g,,;T®}. Now, as already mentioned, the
points and open sets of the manifold are not preserved under the action of the diffeomorphisms
group. Diffeomorphisms send points to other points, in eisse the information encoded in the
physical space-time is a system of relations between trasfigdther than a collection of the values
fields take in the generic points of the manifold. Then, afrarh the specification of topology,
signature, dimensions and differential structure, GR sational physical theory.

It remains to answer the question posed above. Rephragsing @an ask: which is the physical
entity replacing the Newton’s absolute space-time? Theanis now simple: itis the gravitational
field! In other words, it is the gravitational field that tetibjects if they are accelerating or not.
This is the profound difference between Newton’s and Einstenechanics. In the Newton’s
mechanics the whole dynamics is referred to an absolutetgteuexternal to the system, while in
the Einstein’s mechanics the dynamics is referred to thamjcal gravitational field, carrying out
the relational idea.

2.3 Possible phenomenological implications of QG

Generally speaking, a quantum theory of gravity is expetdetescribe the dynamics of the
quantumspace-time foarfB3,[33]. The specific description of the foam dynamics dejgemn the
theory describing the quantum effects of gravity, but itesqpdmenological implications are shared
by many different approaches to QG. In particular, a possiasindidate for a quantum gravity
effect due to the foamy structure of space-time is an eneeggiident electromagnetic dispersion
relationin vacuo Specifically, the modified dispersion relation is suppasekble of the following

form .
p2:E2<L+f<——>>, (2.16)
EQG

where Eqg is an effective quantum gravity energy scale, naturallynidfi@ble with the Planck
energy. Now, let us suppose for simplicity that the Hamikgaations of motion are approximately
valid in the present scenario, then the velocity of the prtiollows from equation[(2.16) and, for
energies much lesser than the Planck scale, it turns out to be
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v E
=55~
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whereé is a positive or negative factor, which depends on the pdatidramework.

Before deepening into some phenomenological aspectss liand some words on how such
modified dispersion relations have independently emengetifierent QG approaches. It is com-
monly believed that QG effects interest too high energieBet@xperimented, until, some years
ago, the first suggestions that quantum-gravitational dateins might modify particles propaga-
tion in an observable way began to appéaf [3#, 35]. As a coeser, different classes of physical
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phenomena began to be studied. In particular, the effetath@odification in the particles propa-
gation could have on the neutral kaon systerh [3p, 37] wasdéstaboratory experiments, fixing a
lower limits on some parameters analogoug&ge [Bg]. Other examples of quantum gravitational
effects more related to String Theory and LQG can be founBgh (see alsd[40] for another string
motivated deformation) and [4L,]42]. Deformed dispersiglations, consistent with the formula
above, arise also in other approaches as #iegtiantum deformations of the Poincaré symmetry
[A3,[44] or quantization of point particles on a discretecgpames [45].

Let us now deepen into the problem of finding a physical systdrich can be used to test
such a deformed dispersion relation. Accordingd to (2.1 ,deviation from the ordinary velocity
of the photon is extremely small for practical purpose, niedess it could give a sensible effect
if photons of different energies travel for a very long dista before being detected. In particular
photons of different energies emitted at the same time ex@uielative time delay over a distance

L of the order
AE

At~ &L .
EQG

(2.18)

So, wider the spectrum of the emitted photons and largerittarate traveled, greater is the time-
delay effect. In this respect, the best candidates to obsmreh an effect are Gamma Ray Bursts
(GRB).

GRBs are, in fact, explosive events at cosmological digsnd he typical spectrum of emis-
sion is in the range .Q — 100 MeV, but it can extend up to the TeV scale. Moreover, a time
structure of the order of the millisecond is typically oh&sat in the light curves. It should now be
clear why GRB are good candidates to study the effects ofreheftion in the dispersion relation.
By a simple calculation, in fact, it turns out that a GRB withirae structure of the order of the
milliseconds, emitting photons of energy of the order of fé&Vs and exploded at a distance of
~ 10?°m ~ 10'°ly from the Earth, could test the QG structure upHgs ~ 101°GeV. Sensible
sensitivities can be already obtainable from the existiRBG data and we address the interested
readers to[[5[]6] and in particular tp J46]47]. For complets; we remark that a small mass for
the photon could produce the same time-delay effects inrtive@btime of photons of different en-
ergies. But other existing experimental data fix a limit te thass of the photon and, consequently,
to such an effect well below the expected time-delay astetim QG effects.

3. Preliminaries

This Section is dedicated to describe some fundamentairengts considered as preliminary,
in the sense that they represent the foundations which ttlecaming discussion is based on.
They are pretty general and unrelated arguments, very wesliribed in many books, in which
many more details can be found. Here | collected the maintseand definitions, according to
my own experience as student, inspired by my own notes talkengdcourses and referring to my
favorite textbooks. So the description is far from being ptete, so | exhort the interested readers
to refer to the cited Literature for a more complete treatmen

As | said in the Preface, the focus of this paper is on the daabformulation of GR. In
this respect, it is important to realize that in order to cacally formulate any theory, we have
to clarify the causal structure of space-time. This is dalitask when we treat gauge theories
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on a flat Minkowski fixed background, but everything becomesearinvolved when the dynam-
ics of the theory directly concerns the geometrical stmgctf the space-time itself as in GR. In
fact, the identification of the gravitational field with theametry of space-time implies that some
restrictions have to be imposed on its global (causal) siradn order to canonically formulate
the theory. In particular, we have to clearly understandeurwchich conditions it is possible to
“split” space-time and describe the dynamics of the gréemal field as the time evolution of a
geometrical spatial quantifylt is important to understand that this is a necessary stepnsis-
tently define a canonical theory; we recall that, in fact, lassical mechanics, the Hamiltonian
can be considered as the momentum conjugate to the timeicatadThis should give an idea of
how much complicated the situation is in GR, since the imvare under diffeomorphisms prevents
from determining a preferred time coordinate and, in gdnéreoes not exist any global system
of coordinates.

For this reason, we consider the study of the causal steiclispace-time as the natural
starting point for the canonical formulation of gravity. particular, the scope of the first part of
this Section is the introduction of the Geroch theorem, Widlarifies under which hypotheses
a global time function can be assigned on a generic spaee-timthis sense, the Geroch theo-
rem restricts the class of space-times whose dynamics ceanomically formulated, generating a
guestion about the resulting canonical quantum theoryam®gical quantum gravity applicable to
a restricted class of space-times as well, or the classicaditons can be relaxed in the quantum
theory? Up to my understanding, this question cannot beaigdy answered until a complete
canonical qguantum gravity theory has been formulated;niesiess, since the canonical quantiza-
tion procedure is, generally speaking, a mathematicaltof@ice the problem of quantization, once
the procedure has been rigorously completed, it is reagomalexpect that the resulting quantum
theory will not be affected by purely classical restricBofhese are naturally relaxed by the quan-
tization itself in a very precise and suggestive sense: lonaptete theory of QG there is no room
for space-time.

The discussion of the causal structure of space-time ansltbeequent canonical formulation
of gravity, open the way to another interesting argumentyeig the initial value formulation of a
theory with gauge symmetries and, in particular, of GR. ¢tidtl be clear that, in fact, once GR has
been rewritten as describing the “time” evolution of a 3-eimeional geometry, it is expectable that
an initial value problem can be consistently formulatedabgigning a complete set of initial data
on the initial spatial hypersurface. For physical theofemulated on a fixed Minkowski space-
time, the task of the initial value problem is to extract theique) evolution of the system starting
from a complete set of initial data, which are generally mefé to the external fixed background.
In this sense, the case of GR is much more involved. We camnfatct, refer the evolution of the
initial data to a preferred background, rather, once assignparticular starting configuration for
the metric and its time derivatives, the theory describe®tiolution of the background itself. From
another perspective, we can say that the gauge symmeti@&R,ahathematically described by the
group of 4-diffs, complicates the formulation of a well pdseitial value problem, not only from a
mathematical perspective, but also conceptually. Negbs#ls, a suitably adapted procedure can be

8|t is worth noting that the word time here does not refer todghantity measured by using clocks, which would
imply that the space-time metric has already been compldetermined.
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applied to GR in order to assign a well posed initial valuebpg and extract a unique evolution
from the Einstein equations, even though with some linutegi

In order to clearly describe these arguments, we start leflyniecalling some elements of
group theory, useful to introduce gauge theories, whichlelconsidered as a useful example in
what follows. In particular, to make the general descriptidthe canonical formulation of a gauge
theory more concrete, we will refer to the simple case of teeteomagnetic field, which is a gauge
theory of the abelian groug (1).

Finally, once the causal structure of space-time has bestiietl and the generalities about
the electromagnetic theory described, we face the probfetmednitial value formulation giving
a brief account of the main theorems used to study the probfdsw in facing this argument the
electromagnetic theory will be useful, providing a simgsef non-trivial example to show how
gauge symmetries enters in the formulation of an initialggdroblem for a classical system.

3.1 Causal Structure of space-time

The causal structure of flat Minkowski space-time is verymarand intuitive: Once a limit
on the propagation of a signal is fixed, we can associate t@egntp in space-time a light cone.
The future is represented by a half cone, while the past iesepted by the other half. The events
contained in the future half of the light cone can be reached atter particle leaving from,
all these events are generally referrecchsnological futureof p. More generally, all the events
lying in the interior of the future light cone together withose on the cone itself represent the
causal future physically representing all the events which can be, inqiple, influenced by a
signal emitted fronp.

The causal structure on a generic maniféddis only locally similar to that of flat space,
globally, in fact, the situation can be much more complidat&o give a complete and detailed
account of the problematics correlated to the study of thisalastructure of a generic space-time
would require much time and space, so here we limit to giveiaf kBketch of this argument.
In fact, non-trivial topologies or space-time singula&dtj in general, complicate enormously the
treatment by introducing many subtleties, so we restrigtdiscussion by pointing out only those
definitions, theorems, and lemmas we consider useful fort wiilhbe said below. For a more
detailed description of the causal structure and the pnoloesingularities in GR, we address the
reader to the book of Wald][9] from which we extracted the mh@orems of this Section and to
the book of Hawking and EllifJ10] in which one can find compldemonstrations.

Let me begin giving a simple, but important

Definition 3.1. The space-timg¢M, g,y ) is time orientable if Vp € M it is possible to make a
continuous designation of future and past.

The simplicity of this definition stems from its intuitives® the importance, instead, is connected
with the necessity to distinguish a particular class of sg#roes: in what follows we will always
refer to time orientable space-times. It is easy to undedsthat, in general, a non-simply con-
nected space-time cannot be time orientable; from the phlygiewpoint in a non-time orientable
space-time we cannot consistently distinguish betweenggtorward in time” or “backward in
time”. Time orientable space-times satisfy the properiyressed by the following
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Lemma 3.1. Let (M,g,y) a time orientable space-time, then there exists a non-engmooth
non-vanishing time-like vector field bn M.

The proof of this Lemma is based on the paracompactnedsanid we address the reader|to [9] for
a complete proof. It is interesting to note that the above tamsuggests a more useful definition
in order to designate time orientable space-times:

Definition 3.2. The space-timéM, g, ) is time orientableif there exists on M a time-like, contin-
uous, non-vanishing vector field.

For the sake of completeness and self-consistency of theriagbresented in this work we recall
also the following well known definitions:

Definition 3.3. A differentiable curve(t) is said to be duture directed time-like curyef at each
p € ythe tangent vectorttis time-like and future directed.

It is simple to generalize this definition toture directed causal curyd is sufficient to replace the
adjective “time-like” with “causal”. The next definition tamatically follows

Definition 3.4. The set of events that can be reached by a future directedlitimeurve starting
from p represents thehronological futureof p, namely

1*(p) = {q € M :3A(t) (future directed time-like curve) with(0) = p; A (1) = q}.

Again the definition otausal futures the same of that of chronological future except subgtigut
the words “future directed time-like curve” with “futurerdcted causal curve”. Finally we remark
that

Definition 3.5. For any subset 8 M

()= 1"(p).

pes

It is worth noting that, even though in Minkowski space-tiing p) consists of the interior of
the future light cone, in an arbitrary space-time the situatould be more complicated, and the
usual properties of flat spaces are in general not applidabdebitrary space-times (it is simple
to construct examples of pathological arbitrary spacesimemoving points from flat Minkowski
space). However, at least locally, the same propertiesinevalid as stated by the following

Theorem 3.1. Let (M, g,y) be an arbitrary space-time and letg M. Then there exists a convex
normal neighborhood of p, i.e., an open set U withefJ such thatvq,r € U there exists a
unique geodesiy connecting g and r and staying entirely within U. Furthermdor any such
U, I7(p)|u consists of all points reached by future directed time-fe®desics starting from p
and contained within U, where*[(p)|y denotes the chronological future of p in the space-time

(U,guv). In addition i *(p)|u is generated by the future directed null geodesics in U ettiaga
from p.
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The fact that all general relativistic space-times havallgahe same qualitative causal structure
as Minkowski space-time, does not exclude that globallyarsable differences can appear. As
a consequence, a general space-time can beawstally well behaving In order to clarify this
point consider, for instance, a space-time with topol8hy R3, constructed identifying the= 0
andt = 1 hyperplanes of Minkowski flat space. It is easy to realizg,tin such a space-time,
an observer would not have any difficulty in altering pastngsein fact, the integral curves with
tangent vectot = (d/dt)* will be closed and time-like. As a consequence, we hapec M,
I*(p) =11 (p) =M [H]. Although the previous example could seem rather aidifigve stress that
many general space-times with the property of allowing edosme-like curves exist, and they
occur in much less artificial examples than that describedab

From a physical perspective space-times with non-triiieged causal curves cannot be con-
sidered physically realistic, because an observer cotdd ghst events. From a mathematical point
of view, we have to ensure that time-like geodesics do nersect themselves. But the problem
is slightly more complicated than it could appear at a firangk, the reason being that we have
also to consider physically unreasonable those spaces-imehich time-like geodesics come “ar-
bitrarily close” to intersect themselves (without doing iEhey could, in fact, violate the causality
condition if a small perturbation of the metric occur. Thea eharacterize physical space-times as

Definition 3.6. A space-timgM, g, ) is said to bestrongly causaif V p € M and every neighbor-
hood U of p, there exists a neighborhood V of p contained inél, V C U such that no causal
curve intersects V more than once.

So, strongly causal space-time are characterized by thehfaiccausal curves cannot come arbi-
trarily close to themselves, but this is not sufficient tauasghat one is not “on the verge” to violate
physical causality. For this reason it is in general reasieng give a stronger notion of causality
as follows:

Definition 3.7. A space-timgM, gy, ) is said to bestably causaif there exists a continuous non-
vanishing time-like vector field'tsuch that the space tim{,g,. ), where

Ouv = Guv —tuty (3.1)
possesses no closed time-like curve.

The definition of stable causality avoids that a strong dasisace-time could violate causality
by perturbing the metric. A perturbation of the metric cquld fact, “open out” the light cone
so much that a causal curve can come arbitrarily close tt.it3éne light cones of space-time
(M, Quv) is strictly larger than that dfM, g, ), consequently if closed time-like curves do not exist
for (M,Quv), surely they will not exist fo(M, g, ) too.

For our purposes, the content of the next theorem is paatiguimportant.

Theorem 3.2. A space-timgM, g,,) is stably causal if and only if there exists a differentiable
function f on M such thafl# f is a past directed time-like vector field.

Or, in other words, a stably causal space-time is equivatetite existence of a global time func-
tion. For brevity, we do not prove this theorem here, but weress the reader t¢][9,]10] for the
details of the proof. Furthermore it is important to quote tbsult contained in the following
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Corollary 1. Stable causality implies strong causality.

This result is, in a certain sense, expectable and allows wericlude that stable causality is the
appropriate notion to be sure that a space-time is not goimiptate causality, which is a crucial
request for all physical reasonable space-times.

Above we gave the definition of causality, namely we studiedollection of events™(S)
which can be influenced by a set of eveStsiow we want to study the collection of events “com-
pletely determined” by a set of everisAbove all, we have to give the following two definitions:

Definition 3.8. A set S is saidchronalif | *(S)NS= 0.

Definition 3.9. Let S be an achronal set, tHature domain of dependenad S, D' (S), is the
collection of events p such that every past inextendiblesaazurve passing through p intersect S.

It is worth noting that the following relations hol8 c D*(S) and, S being achronalD™(S) N

I~ (S) = 0. The physical importance of the future domain of depeneleaties on the fact that,
since no signal can travel faster than light, then any sigg@gdived inp € D" (S) must have been
registered org, therefore giving suitable initial conditions @ we should be able to predict what
will happen inP. Note that ifp € I 7(S), but p ¢ D*(S) it is possible to reaclp with a signal
not passing througB. In general, the full domain of dependence of an achrondb setlefined as
D(S) =D*(S)UD(9), physically representing the complete set of events whachbe completely
determined in future and past by fixing initial conditions®n

Definition 3.10. A closed achronal s& of M such that I~) = M is said aCauchy surface

Now since the edge of an achronal Sét the set of poinp € Ssuch that every open neighborhood
U of p contains two pointg € I7(S) andr € 17 (S) and a time-like curve (t) from r to g which
does not intersecs, then it follows that the edge of a Cauchy surface is emptyerdtore, by the
following

Theorem 3.3. Let S be a closed achronal set with ed@ = O, then S is a three-dimensional,
embedded, Esubmanifold of M,

we can conclude that the Cauchy surface is a 3-dimensiorizéeded-® submanifold oM. More-
over sinceX is achronal, it represents an “instant of time” of the Unbee[]. As a consequence,
we give the following

Definition 3.11. (Wald [B]) A space-timgM, g,,) which possesses a Cauchy surfacglabally
hyperbolic

So, in a global hyperbolic space-time, we can predict opditt the entire evolution of the Uni-
verse by assigning suitable initial condition on the Causimface>. Established the importance
of a globally hyperbolic space-time, we want to give a criterto recognize them among general
space-times. In this respect, the first step is to introdoeestd called Cauchy horizons:

Definition 3.12. Let S be an achronal set, the future Cauchy horizon of S, ddrint H (S) is

H* (S =D*(S—1" [D"(9)]
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and let us immediately quote the following

Proposition 3.1. Being HS) =H" (S)UH~(S) and being5(S) the boundary of the future domain
of dependence, we have

H(S) =D(9).
From the above proposition follows the following

Corollary 2. If M is connected then a non-empty closed achronakssta Cauchy surface if and
only if H(S) = 0.

Proof. If H(S) = 0 then by the proposition foIIow|.§(S) =0, thusD(S) = int[D(S)] = D(9),
so D(S) is simultaneously closed and open, but the only sets both ape closed are the empty
set and the entire set, so we concludgp= M.

This corollary allows us to enunciate the following theoremhich represent a useful criterion to
establish if a surface embedded in a manifold is a Cauchadeirf

Theorem 3.4. If Z is a closed achronal edgeless set, thes a Cauchy surface if and only if every
inextendible null geodesic interse&sand enters (S) and I~ (S).

Now, it is easy to understand that, if a space-time is glgbiajlperbolic, then no closed time-
like curves can exist iM. Indeed, either a closed time-like (or causal) curve naversects the
Cauchy surfac& violating global hyperbolicity, or it intersectstwice violating achronality. This
fact suggests that global hyperbolic space-times have 8 taasal behaviour”, as stated by the
following

Theorem 3.5. (Geroch 1970[48])Let(M, g,y ) be a globally hyperbolic space-time. Thegw,g,)

is stably causal. Furthermore, a global time function, thdase chosen such that each surface of
constant t is a Cauchy surface. Thus M can be foliated by Gasatfaces and the topology of M
is R x X, whereX denotes any Cauchy surface.

We refrain from giving the proof of this famous theorem addneg the interested reader to the
original reference, nevertheless we want to stress itsitapoe in view of the canonical approach
and quantization of gravity. The Geroch’s theorem, in fatlbws to recast the gravitational action
in the canonical form operating a431 foliation of space-time, extracting a continuous funatio
which will play the role of evolution parameter. It will beedr that the dynamical degrees of
freedom of the gravitational field are entirely containedhia geometry (metric modulo diffeo-
morphisms) of the 3-dimensional Cauchy surface. Piclgritiie evolution of the system can be
described registering the changes of the 3-geometry goorg bne Cauchy surface to the next
one, following the integral curve of the past directed tilike-vector field[I#t.

3.2 Compact groups and gauge theories

Let us now go on to describe some elements of group theoryein of the construction of
gauge theories. Group theory, in fact, represents one ofméia tool in the mathematical for-
malization of physical interactions and, even the brie&esunt of their mathematical properties
would involve the interesting geometrical aspects of fingrdles. These arguments, even though
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important to appreciate the general mathematical strecitithis framework, would lead us away
from the scope of this paper. So, | refrain from introduce gleeeral framework of fiber bun-
dles, giving only a brief account of the group properties wedto construct a gauge theory on a
compact group.

3.2.1 Elements of group theory

Let us start from the following

Definition 3.13. Let¥ and¥’ be groups, thus a map:f¢ — ¢’ is an homomorphism ifg;, g, €

¢ we have 1g102) = f (91) f (g2). A homomorphism h% — GL(V) is called arepresentationf
the group? andV is called theepresentation spac&he representation is said to be of dimension
N if the representation space is N-dimensional.

A gauge theory can be constructed by using any compact gepuye recall that a group is said
compactf the parameters which describe the group take values imgaot set. In what follows,
we will focus our attention on the compact gro8pJ(N), which is represented by the special
group of the unitaryN x N matrices. Its fundamental representatiomNigimensional, indeed, if
g € SU(N) is an element of the group, we have that its representikienh(g) is a unitaryN x N
matrix, which acts on &l-dimensional complex space. Using the direct product, weccastruct
many other representations, which are in general redyciblelly calledensorial representatian
Consider, for example, the tensorial representation spgaed/; it is easy to imagine that the
elements of the group will act on the representation spadellasis UyUjviq = \/ij, which can
be, conversely, used as a definition for tensors valued ohithalgebra of a compact group. In
general this representation is reducible, as one can veoifigtructing group invariants. Another
possible representation is the conjugate one, which adiseospacéd/ as well as the fundamental
representation, so they turns out to have the same dimendgsrally, theN-dimensional conjugate
representation is denoted by the symNolRemarkably, the conjugate representation of the group
SU(2) is equivalent to the fundamental ofie.

Before going further introducing the so called adjoint emgmtation, we briefly describe
the parametrization of the grouU(N). In order to understand which is the most convenient
parametrization for this group, we observe that the genari@ry matrixU can be rewritten as

u=¢€*, with A=2AT, (3.2)

furthermore iU € SU(N) = TrA =0, so the groufBU(N) can be parametrized by the hermitian
matrices with null trace and, as a consequence, is detednbinbl?> — 1 parameters. Specifically,
by defining a basis in the the space of the< N hermitian matricesH, formed by theN? — 1
hermitian matricea 2 with a=1,2...,N2 — 1, satisfying the orthogonality condition

w@%ﬁ:%ﬁﬂ (3.3)

we can rewrite the generic eleméhte SU(N) as
U=¢9""  where ¢*cR,A%cH, with TrA?=0. (3.4)

9Two representations are said equivalent if it exists a oyitaapW : hy (g) — ha(g), such thal\/qu(g)W’r =
h2 (g) ) VQ
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The A2 matrices are said generators of B&(N) group. The fact that the commutator of two
hermitian matrices is an anti-hermitian matrix, allows tdtev

[/\a,)\b] —jfabeye, (3.5)

which guarantees thdt (3.4) is a good parametrization éogthupSU(N). The structure constants
of the group,f2S, turn out to be real and antisymmetric in the exchange of theze indexes.

Let us now consider the action of2U(N) operator infinitesimally close to the identity on
the representation space. This can be parametrized by steoffiter expansion of the general
parametrization[(3.4), in symbols we haw?® = | +ig2A2. The elements of the group in the
connected component of the identity generate the algeb®BUON), which is fundamental for
the construction of gauge theories. In this respect, we waanticipate here that the canonical
constraints we are going to calculate below are the gensratemall gauge transformations only,
i.e. they generate those gauge transformations in the ctetheomponent of the identity. In
other words, the behavior of the states of the theory undge lgauge transformations, i.e. those
generated by the elements of the group characterized by -warmshing winding number (see
the AppendiqB), cannot be deduced by the theory. This leads textremely interesting issue.
The observables of a gauge theory are, in fact, invariangéwutie full group, so they can be used
to super-select states of the theory belonging to gaugersecharacterized by different winding
numbers. From this perspective the global (and in generatmaal) structure of the gauge group
enters in the physical outcomes of the thelry.

By considering the direct product between the fundamemiditiae conjugate representations,
we can construct the following representation, actindNotiN matrices as follows:

V;j = UikUj*|Vk| where UeSUN), weVvaV. (3.6)

The adjoint representation is reducible, to decomposeitis iimreducible components, let us iden-
tify the generic elementy of the vector space as thkl" entry of the matriXW, thus we have

W =UwuU™. (3.7)

It is worth noting that the hermitian matrices form an ineatisubspacé! as one can easily verify.
The trace is an invariant too, so that we can reduce the repesn considering the subspace
formed by the hermitian matrices with null trace.

The representation acting on thex N hermitian matrices with null trace is callexdljoint
representatiorand has dimensioN? — 1.

Let us now study the algebraic structure of the adjoint regm&ation. We consider an infinites-
imal transformation, which acts on the hermitian tracetaasrixV, we have:

V' =UVU™T = (I +igPA3)V (| —igPA b) =V +igP {/\b,v} . (3.8)

10This fact is not only of mathematical interest, in this regpete that the solution of the so-calléd1)a puzzle in
QCD is directly correlated to the topological global aspaiftthe gauge group. For the sake of completeness, we also
stress that the extension of the theory to contain topoddigioon-trivial terms in the action has led to the necessity
solving the so-called stron@P problem, which contains physical predictions going “beydine Standard Model,” as,
for example, the existence of the axion.

11considering only the hermitian matrices is not restricthezause a generic matrix can be rewritten aé =
A +iAz, with A; = Al andA, = A
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Now, by expandingy on the basis, we obtain the transformation law of the compio® namely:
V’a —va_ fabcgbvc _ (5ac_ fabcgb) Ve (3.9)

The above expressiop (B.9) allows us to identify the genesaif the adjoint representation, they
are, in fact, given by the matrices of componertts’identified with (Q?),. = f2°C. Itis straightfor-
ward to verify the universality of the commutation rules loé tgenerators, in other words starting
from the Jacobi identity for thd 2 matrices and using the commutation relatidns] (3.5), one can
demonstrate that

Q%.Q°] = fob. (3.10)
In other words, the structure constants characterize thepgindependently from the represen-
tation, as their name suggests. It should appear obviotghhatructure constants characterize

only the algebraic properties of the group, not the globasprvhich cannot be deduced from the
algebra.

3.2.2 The gauge principle and physical interactions
We are now ready to introduc&J(N) Yang—Mills gauge theories. In this respect, let
P1(x)
W(x) = : (3.11)
Un(X)

be a collection oN Dirac spinor fields, the dynamics of which is described byDivac Lagrangian
LW W] =P(x) (iy'dy —M)W(x), (3.12)

whereM is theN x N mass matriX? The Lagrangian above is symmetric under the action of the
SU(N) group, acting on the spinor fiek! and its conjugat&’ according to the following rules:

W(x) — W'(x) =U[g¥(x) = €9 W(x), (3.13)

B(x) — T (x) = P(x)U g = P(x)e 92" (3.14)
whereg? are theN? — 1 constant parameters of the transformation. In other wahgscollective
spinorW¥ transforms in the vectorial representation of the gréuN).

The gauge principle states that the minimal coupling irtigma between fermions and boson
gauge fields can be obtained by requiring the local gaugeiamee of the Dirac Lagrangian.
In other words, we can directly extract the right minimal gling by simply requiring that the
Lagrangian[(3:12) is invariant under the following locartsformations

W(x) = W(x) = U[g(x)]W(x) = 9" p(x) (3.15)
W(x) — P (x) = P(x)UHg(x)] = P(x) e 9" A" (3.16)

12The mass matri can be in general neither diagonal nor hermitian. In thigcasfact, it can be easily diag-
onalized by a chiral transformation. This procedure, ebeugh completely safe in the classical theory, can produce
striking effects in the quantum theory, because of the thitamaly.
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It is worth noting that, in fact, the kinetic term in the Lagggan (3.1P) cannot be invariant under
such a transformation for a very simple reason: The devivaiperator is defined through a limiting
procedure of objects transforming differently under thel&U(N) group, or, equivalently, we can
say that the ordinary derivative of a spinor does not transfio the vectorial representation of the
SU(N) group. More practically, one can note that the action of teavdtive operator on the
transformed spinor field”’ (x) generates a term which cannot be reabsorbed unless welioérad
counter term.

So the invariance requirement induces to modify the Ladgeamigy defining a new derivative
operatorD,,, which transforms in the adjoint representation of 8N) group, so that

Dy — (Dytp)" = U[g(x)]DLU [g(x)]U [g(x)]¥ = U [g(x)|D,W. (3.17)

This can be easily achieved by introducing a connection gdieid A, = Af,)\ a, valued on the
groupSU(N) and transforming according to the following equation

A = Ay =U gL [90x)] ~ U [90x))0,U 9(x)]
— 90N S 108NN g0 g, g TGO (3.18)

Consequently, for an infinitesimal gauge transformatiorhesee:
AL — A2 = AL +ifPGAS — 0,0° = AS — P, (3.19)

where the covariant derivative of the adjoint represemtatZ,;, has been defined. In order to
rigorously introduce the mathematical concept of conoestand study their properties, we should
digress on the geometry of fiber bundles, but this is far froendcope of this paper. So let us just
remark that the replacement

0y W(x) — DyW(x) = 9, W (x) +iALW, (3.20)

is a consequence of the fact that the global symmetry grosifpéan promoted to be a local group
and this introduces a fiber bundle structure which motiveitesntroduction of connections.

Now, it is a simple exercise writing a Dirac Lagrangian whiiehtures the required properties
of symmetry, i.e.

LW, WA (X) (iy"Dp— M) W(x)

=y
=W(x) (iy*9y — M) W(x) - ALP(X)A ' W(X) = Z[W, W] + L[V, W,A],  (3.21)
Remarkably, a new interaction term denoted.$); has appeared in the full Lagrangian, repre-
senting the minimal interaction of tf&J(N) gauge connection and the spinor matter fields.

So, by fulfilling the requirement of the gauge principle, wavé been able to automatically
extract the correct minimal interaction between fermiond Boson gauge fields. But, the gauge
principle does not give us any hint on how to construct a kinetrm for the new gauge field
A,. From the general theory of fiber bundles, we know that oncenaection has been defined,
a natural curvature tensor can be constructed. Usuallyhysips books, the curvature tensor is
defined as follows:

[Dy, Dy W=iFu,W, (3.22)
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whereF,, = F[j‘v)\a is said curvature or strength tensor. By the above definitisreasy to extract
the explicit expression of the curvature tensor as funatiihe connection, i.e.

The curvature tensor satisfies the so-called Bianchi iyenti
DuFvp =0, (3.24)

which, remembering the definitioh (3122), can be considassalconsequence of the Jacobi identity
associated to the covariant derivative operaigr

It is worth noting that if the gauge symmetry is representgdhle U (1) group, the structure
constants vanish as a consequence of the vanishing of thewet@tor between the group generators
(Abelian group) and, in this specific case, the connectiorsighlly describes the electromagnetic
potential, while the curvature tensor is the electromagrieid strength.

The curvature tensor transforms as a proper element of jbanacepresentation (in contrast
with the connection), specifically we have:

Fuv = Fly =U[9()]Fu U Tg(0)]. (3.25)

This fact, and the analogy with the electromagnetic fieldjgests the expression of the action
for the field A,. Specifically, requiring that the dynamics be described dyosd order partial
differential equations of motion, a good action is:

1 1
SA = —E/d“xTrFqu“" - _Z/ d'xy Fo,Fa, (3.26)
a

where in the second equality we used the orthogonality ¢iondf3-3). The trace acts on the# — 1
gauge internal indexes and makes the action invariant uhdeaction of theSU(N) group as can
be easily demonstrated.

As afinal remark, note that we can add a term to the above agtibaut affecting the classical
equations of motion, i.e. the action

1 0
A= | a3 FFY e / a0 Y LR (3.27)

is dynamically equivalent t&/A], since thef-term contribution to the classical equations of mo-
tion vanishes identically according to the Bianchi iden{@.24). Even though such a term does
not affect the classical theory, it produces striking effén the non-perturbative quantum theory
(further details are given in Append[§ B). Keep in mind thenfioof the actionSy[A], since an
analog situation will characterize the Ashtekar—Barberonulation of canonical gravity.

3.3 Gauge Symmetries and Constraints

Let us now start describing the canonical formulation obtfes with gauge symmetries. This
argument is particularly important for us, since it is thasslical starting point of the canonical
guantization of gauge systems. At the end of the section Wealculate the canonical Hamilto-
nian of the electromagnetic theory, which will serve as adpson of the formalism in a simple
practical example.
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3.3.1 General formalism

Let us consider a physical system described by a Lagrangian

L=L(ai,%), (3.28)

where Latin indexes denotes the different generalizeddioates and velocities which determine
the classical motion of the system on the configuration spHoe Lagrangian equations of motion

ae d /oL oL

By suitably defining the momenta and performing the so-ddllegendre transformation, it is pos-
sible to refer the dynamics of a physical system to the géimedacoordinates and their conjugate
momenta. In this respect, we define the momenpyras

oL
= oac
The couple of canonical variablég;, pc) are the coordinates of the so-called phase space. Usually,
in classical mechanics, we introduce the hypothesis tieatibmenta are independent functions of
the velocities. Even though this hypothesis is fulfilled iamy interesting classical macroscopic
systems, it is too restrictive to be applied to more fundaalgrhysical theories, e.g. those based
on the gauge principle.
In general, the Lagrangian could be singular, namely
9°L
de '{dqiqu} =0. (3.31)

If this is the case, the velocities cannot be all inverteduastions of the generalized coordinates
and momenta3 As a conseguence, the momenta are not all independenty sathee relations
among them crop up directly from their definitions. Specifcave have

%(Qiapk)zoa m:l727"'7M' (332)

These relations are callgdimary constraintsemphasizing that they result from the very definition
of the momenta. The submanifold in the phase space detedrhinthe conditions[(3.B2) is called
primary constraint surface.

At this point, let us define the following function

H= Z PGk — L(ai, ak(pj)) (3.33)

(3.30)

and calculate its variation:
- : oL (g, Gk) OL(a,0k) \ <.
OH = opig + ) POk — (7 oq;j — —— | 90q
20PG 2 &q 2\ e

(qhqk)) _
= quépk ( 3, oq;, (3.34)

B3t is easy to show, starting from the equations of mot@’,&ﬁhat the vanishing of the above determinant implies
also that the accelerations at a generic time cannot be eigigetermined as functions of the positions and velocites
the same time.
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this is called canonical Hamiltonian and its variation deggeonly on the positions and canonical
momenta. However, the Hamiltonian defined above is not @hjgdetermined because we can
add to it any linear combination of the primary constraints. other words, the theory cannot
distinguish between the Hamiltoni&hdefined above and the new Hamiltonldih=H + 5 1, .
Nevertheless, since the above equation has to hold for aigtiea, provided that the variation
preserves the conditiong (332), we can obtain the follgidamiltonian equations of motion:

g = dp. +Z malol (3.35a)
IFSUCLLNE ALY 3.35b
Pk an % mdqk ( )

which are in accordance with the general method of the aadood variations applied to a system
with constraints. We stress that the symbgldenotes a completely arbitrary set of functions. Be-
fore going on, it is convenient to introduce a formalism thlidws to write the canonical equations
of motion in a compact way. We are referring to the PoissooKats. Letf andg be two generic
functions of the canonical variables, then we define:

of dg Of 0g>
f,g = — . 3.36
.9 Z(dqapi op; 0q; (3.30)
It immediately follows that
[0, Px] = ik, (3.37)

wheredy is the Kronecker symbol. Moreover, it is easy to demonsttetethe equations of motion
(B.354) can be easily rewritten as

= [q,H Z Um [G, @] , (3.38)
P = [P H]+ Y Um[ Pk, @] - (3.39)
m
more generically, we have
g = 97 + z Um g7 I (340)

whereg is a generic functions of the canonical variables. The Baissackets are defined only for
those quantities that are functions of the canonical vieegmonetheless, the above definition for
the time derivative of the generic functigican be rewritten more concisely as:

g=1[g,H1], (3.41)

where the total Hamiltoniahklt is defined as
m

One may immediately wonder about the acceptability of tleinition, because one of the term
that come out from Poisson brackgt (3.41¥ js[g, um| ¢n. This is badly defined because thgare
arbitrary functions not depending on the canonical vaeisbBut, the correctness of this definition
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stems from the fact that the Poisson brackets multiply thestdng functionsg,. So, we have
to carefully consider the fact that in dealing with the Pors$ormulation of classical mechanics
in theories with constraints, these have to be imposed dtdy laaving calculated all the Poisson
brackets, otherwise we would affect the consistency of dmstruction. That is the reason why the
weakly vanishing symbol” is widely used; it emphasizes the fact that the constrdiaige to
be imposed at the end of the canonical analysis, limitingetiodution of the system to a restricted
region of the phase space.

As a consistency requirement, we have to impose anotheitimndn the dynamics. Namely,
we have to require that the primary constraints surface ésepved by the Hamiltonian flow, i.e.

= [, H]+ 3 Un[eh, @] ~O. (3.43)

If the above equation is automatically satisfied, namelytime derivative of the primary con-
straints vanishes on the primary constraints surface, tlbesther consistency check is necessary.
But, in general, different cases may occur. In particufap, £ O for certain values af, then some
secondary constraintg (¢, px) ~ 0 have to be imposed, further restricting the availableoregif
the phase space. Obviously, the same consistency conititia. (3.4B) has to be satisfied by the
secondary constraints, otherwise tertiary constraints tabe imposed and so on.

Since there is no fundamental difference between primadysasondary constraints, we col-
lect all of them in the same symbol, i.e.

q)fn(qi?pk)%O? m:1727"'7M+K7 (344)

whereK is the number of secondary constraints. In general, theistensy equation contains
interesting information about the arbitrary functionsegimg in the Hamiltonian, so a closer look
atitis in order. We have:

[%7H]+Zum[¢ha¢h‘l] ’Q"Joa (345)

generally, if def{[@, @n]} # O, we can extract a solution for thug, by inverting the matrixXC,,, =
[@h, @v); for convenience let us indicate this set of solution&Jaéai, px). Moreover, in order to
write the general solution of the equation above, we musttaddsolution of the homogeneous
equation to the particular solutiokk,(q;, pk), namely

> Vin([¢h, @]) ~ 0. (3.46)

In general, there can be a certain number of independertigohf the equation above, which are
denoted a¥,m. So that the most general solution of the consistency condg u, =Un+ 5 5 VaVan,
where the components of the functiong that can be fixed by the consistency conditions have
been separated from that which remains arbitrary. In tefrtlsi®©new expression fau, the total
Hamiltonian can be rewritten as

Hr =H+ 5 Un@in+ > Vaga =H'+ 5 Vag, (3.47)
m a a

where we have defined’ = H + 5 ,,Un@n and @ = Vam@n. The canonical equations of motion
can be calculated through the total Hamiltonian by usingRbisson brackets formalism. Obvi-
ously, even though some of the arbitrariness has been eliedrnvia the consistency condition,

37



Introduction to Loop Quantum Gravity Simone Mercuri

they still contain some arbitrary functions, Nevertheless, the canonical equations of motion are
equivalent, by construction, to the Lagrangian ones.

At this point, we have to introduce some useful terminologye call first classall those
functions of the canonical variables which have weakly shing Poisson brackets with all the
constraints. By remembering that tipés are the only independent quantities which are weakly
zero, then the functio®= S(q;, pk) is first class if

S =3 cmnth, Ym=1. M+K. (3.48)
n

All the other functions of the canonical variables are saibd¢second classlt is easy to demon-
strate that the Poisson brackets of two first class funci®fisst class as well as the Hamiltonian
H’ defined in [3.4]7). This terminology applies to constrairstsvall: We callfirst class constraints
the set ofg,, with m < K+ M such that

[@n, @] = Conpp,  VmM=1--- M+K, (3.49)
P

while the others are referred sscond class constraints

Finally, we want to digress on the transformations inducgdhle first class constraints. In
order to do that, let us stress that in a theory with condsaibecause of the presence of the
arbitrary functionsy,, the evolution of the generalized coordinates and momaetaat uniquely
determined by the initial state. This means that there arg/mlaoices of the fundamental variables
that characterize the same physical state. In this respéastjnteresting to consider particular
values of phase space variables (let us call tiggwt an initial time, e.ggo = g(t = 0), and look
at their values after an infinitesimal temporal lagéeBy using the Poisson brackets, we obtain:

9(dt) = go+ gt = go+ [9,Hr] 6t = go + Ot ([g, H']+3 valg, <pa]> : (3.50)
a
Imagine that we had initially taken different functiovis then we would have obtained:
g'(3t) = go+ gt = go+ g, Hr] 5t = go + Ot <[g, H'l+ % Valg, %]) : (3.51)
a

In other words, during the infinitesimal tim#, the differencelv, of the two functions/, andv,
(i.e. Avy = v4 — V,) generates a difference betwegandg’ given by

whereg, is a small quantity, being proportional &. So, according to the above rule, the variables
describing a particular physical configuration of the systean be arbitrarily changed without
affecting the state of the system. In other words, many miffesets of canonical variables, related
each other by the above transformation, equivalently desthe same physical state. Hence, the
functionsg, result to be the generators of gauge transformations.

Concluding, we have found that first class primary constsagenerate gauge transformations,
but it is, in general, expectable that also secondary fiessctonstraints are generators of gauge
transformations, and this is, in fact, the case in many nrachbsystems. It is commonly believed
that all the first class constraints generate gauge transtans, even though, this belief is not
supported by a rigorous proof and is sometimes referred @Biconjecture.
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3.3.2 Electromagnetic canonical theory

The electromagnetic theory provides a very simple, buttneia and practically interesting
example to operatively use the procedure just describedrder to be definite, we start from the
Lagrangian for the Maxwell's theory, i.e.

L(A,0A) = —%/d%( FuFHY. (3.53)

Here the fundamental variable is the electromagnetic piateXy,, which, as is well known, is the
connection field associated to tbé1) gauge symmetry; namely, acting with a gauge transforma-
tion onA,;, we have that

whereA is a generic function of the space-time points. Accordingvhat said above, the gauge

symmetry will reveal its presence in the canonical theorgugh the appearance of first class con-
straints, associated with the generators of the gaugdaramstion. Hence, let us start the canonical
analysis of the electromagnetic theory by calculating thgugate momenta to the variablag.

Namely,
oL _dL

0Ay 0Ag
are respectively the momenta conjugatédocandAg (the Greek indexes from the beginning of the
alphabet indicate purely spatial components, while thexr@@lindicates the time component). The
resulting phase space is 8-dimensional with coordingigsA, E?, P%), and can be equipped with
the following symplectic structure:

E =—0°A% +9°A°=F%°  and P° 0, (3.55)

[Aa(t,x),EB(t,x’) —5EE(xX),  [Ao(t,x),PO(t,X)] = 5(x.X), (3.56)

the other brackets vanishing.

The fact that the right hand side of the momentBfrdoes not contain any velocity implies
that the Lagrangian is singular, according to definitipr2§3. moreover it generates a primary
constraint, i.e.

0:=P°~0. (3.57)

Now, the canonical Hamiltonian can be calculated by perfiognthe Legendre transformation,
obtaining*

1 1
H :/d%( {EE“EG—kZFaBFO’B—E“daAO] . (3.58)
So, the primary total Hamiltonian results to be:
1 1
Hr :/d%([éE“EaJrZFaBF“B +AodaE“+ucp] , (3.59)

where we integrated by parts the third term. As a consistehegk, we calculate the time deriva-
tive of the primary constrair®®, we have:

q): [(va] = _a(XEa> (360)

141t is worth noting that the velocityi\c,r can be rewritten as function of the momentumdas= E4 + 0qAg, Where
we have taken into account the signature of the metricH,e-,+, +.
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so that a secondary constraint has to be imposed, namely

X = 04,EY =~ 0. (3.61)
The next consistency check does not generate any tertiastraint, indeed

X =[x,H]=0. (3.62)

So, the theory generates one primary and one secondaryaiahsthich form a set of first class
constraints, i.e.

0,9 =0, [p,x]=0, [x,x]=0. (3.63)

Now, in order to get the most general physically possibleiomotve write the extended Hamilto-
nian containing the secondary constraint as well, we have:

He :/d%([%EaEg—F%FaBFaB +AgdoEY +up+vy| . (3.64)

The equations of motion can be easily obtained by calcgdtie Poisson bracket of the canonical
variables with the extended Hamiltonian above; but, irsimgly enough, given the structureleg,
some simplifications are possible. In this respect, let sflyfjrcalculate the equation of motion of
Ay, obtaining

Ao = [Aog,HE| = u. (3.65)
This reveals the nature of one of the ambiguities of the thewhich turns out to be the time
derivative ofAg. More importantly, the above equations states that thaigeol of Ag is completely
arbitrary. So, remembering the expression of the seconclamgtrainty, we can reabsorb the
variableAg in the definition of the arbitrary functiom Moreover, the momentut® is constrained
to vanish along all the evolution and its presence in the Hanian only ensures that the variable
Ag is an arbitrary function. So, in order to simplify the exgies of the extended Hamiltonian and
reduce the number of unphysical degrees of freedom, we cgnixdith the variableso andPP. It
is worth stressing that the dynamics of the physically @h\degrees of freedom is not affected
by this reduction. Finally, the total Hamiltonian turns ¢aibe:

1 1
HT:/de}([EE“EO,+ZFaBF“B +VI,EY |, (3.66)

which can be used to calculate the canonical equations abmair to quantize the system by
implementing the Dirac procedure described 6.1. We rkenfeat the only survived constraint
is the first class Gauss constramfE? ~ 0. A Gauss constraint appears in Yang—Mills gauge
theories of non-abelian groups as well; in that case theardiderivative is replaced by a covariant
derivative, so the connection field enters in the Gauss @inst complicating its mathematical
structure (see, e.g (B.1)).

It is interesting to note that the Gauss constraint, in fgeherates gauge transformations. Let
us, for example, consider the action of the smeared Gaussraont, i.e.

G(f) = /d%(f(t,x)daE“(t,x), (3.67)
on the fundamental variabks,, we have:
5Ag(t,X) = [Aa(t,X),G(f)] :aaf(t,X), (368)

where the generic smearing functiérplays the role of in (B.53).
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3.4 Initial Value Formulation

We conclude this section giving an account of the fundam#marems for establishing a well
posed initial value formulation for gauge theories and Gl flesults expressed by these theorems
are pretty general, but as we will show below, they can bdyeapplied to specific cases. As an
example, we will address the simple problem regarding thialivalue formulation of Maxwell's
electromagnetism. The case of electromagnetism is itilegebecause, being a gauge theory,
shares with GR the presence of first class constraints ard¢c@ssequence, the necessity to make
a proper “gauge choice” in order to write the equations initably form to face the initial value
problem.

3.4.1 Some important theorems

First of all we enunciate the following theorem without demstrating it, addressing the reader
to [L] for a complete proof (a partial proof can be found inléfi¢éabook [9]):

Theorem 3.6. Let (M, g,v) be a globally hyperbolic space-time (or a globally hypeibokgion
of an arbitrary space-time) and léfi,, be any derivative operator. L&t be a smooth, space-like
Cauchy surface. Consider the system of n linear equatians tmknown functiongp, ..., @, of
the form

¢ Ou0va+ > A50u@ + Y Bijg +Ci =0, (3.69)
J J

namely a linear, diagonal, second order hyperbolic syst€hen equation[(3.69) has a well posed
initial value formulation or. More precisely, given arbitrary smooth initial datagp, n*, @) for
i=1,...,nonZ, there exists a unique solution of equatipn (B.69) througéd. Furthermore, the
solutions depend continuously on the initial data. Finadlyariation of the initial data outside of
a closed subset, S, Bfdoes not affect the solution in(5).

It is worth noting that the theorem explicitly refers to laresystems of equations, moreover, al-
though there are few results concerning the initial valuenfdation for non-linear systems of
equations, an important result exists concerning the dedccgliasi-linear, diagonal second order
hyperbolic equations due to Leray (1952) and is containeddriollowing theorem:

Theorem 3.7. Let(@)1, ..., (@)n be any solution of a quasi-linear hyperbolic system of eiquat
below

o (%@, 0p@)0u0va = R @, 0,9 (3.70)

on a manifold M and letgo)** = g"V(x; (@), 0u(¢);j). Suppos&M, (go)uv) is globally hyper-
bolic (or alternatively consider a globally hyperbolic ieg of this space-time). L&t be a smooth
space-like Cauchy surface fM, (go),v). Then, the initial value formulation of equation (3.70)
is well posed ork in the following sense: for initial data ol sufficiently close to the initial data
for (@)1,---,(@)n, there exists an open neighborhood O3ofuch that equation[ (3./0) has a
solution @y, ..., ¢h, in O and (O, guy (X, @, 0u@;)) is globally hyperbolic. The solution is unique
in O and propagates causally in the sense that if the initetadfor ¢[, ..., ¢, agree with that of
(®)1,---,(@)n On a subset S df, then the solution agree on @D (S). Finally the solutions
depend continuously on the initial data.
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As before we do not give the demonstration of the theoremchwtan be find in[[70], together with
some other interesting properties of the solutions. Letusark that equatior{ (3J70) differs from
(B.69), because the Lorentzian metric fig)d is now allowed to depend on the unknown variables
and their first derivatives, while the smooth functidhsmay have a non-linear dependence on
these variables. An interesting recent application of Yertheorem is the demonstration that a
well posed initial value formulation can be formulated fbe tscalar-gravity coupled system, as
showed in [4P].

3.4.2 Initial value formulation for the electromagnetic fidd

The strategy we want to follow in order to show that the Maxwgktem of equations has
a well posed initial value formulation should be now cledrbasically consists in recasting the
equations in a form which can be traced back to those in[[ir69§3
So let us start recalling the expression of the Maxwell systé equations in Minkowski
space-time:
Ou (OHAY —9VAH) = 0. (3.71)

We can easily split the background, fixing a one parameteifarhhypersurfaceg; parametrized
by constant values of the inertial timgin particular let us assume thag = >;_, be our initial
hypersurface. This procedure allows to emphasize a celemfire of the Maxwell system of
equations, namely the appearance of the so called Gaussaiofisdue to the fact that the time
component of the equation above does not contain any seitoediérivative term. Indeed,

94E% =0, (3.72)

where

E? =F90 = 99A0 — 9°A% = 99 A0+ A7 (3.73)
is the electric field. Thus equatiop (3.72) represents atains for the initial data(A”,A") on
2o. In other words, the choice of the initial data is not fre@ytimust, in fact, satisfy the Gauss
constraint, otherwise they cannot generate solutionseofthxwell’'s equations. One could expect
that differentiating the Gauss constraint with respecini@f an equation containing a second time
derivative of the scalar potentidly can be obtained. But, as can be easily verified, the Bianchi
identity dF = 0 (whereF = dAis the curvature 2-form associated to the electromagnetid A
andd is the exterior derivative operator) prevents from geregatecond order time derivatives of
Ap. As a side remark, we stress that in the opposite case, tid walue problem would have a
simple solution, at least in the sense expressed by the €&mlialewski theorem:

Theorem 3.8. (Cauchy-Kowalewski theorem):et (t,x},...,x™ — 1) be coordinates oR™. Con-
sider a system of n partial differential equations for n uokm functionsg,, ..., @ in R™, having

the following form
2 92 2

otz Ot 90X’ Jtaxa’ 9xagxd
where each Hs an analytic function of its variables. Let(?) and g(x?) be analytic functions.
Then there is an open neighborhood O of the initial hypeeigft= ty such that within O there
exists a unique analytic solution of equatign (.74) suat th(to,x?) = fj(x®) and %—‘f(to,xa) =
Gi ().
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Unfortunately, this is not the case. The Maxwell system afatipns [3.71) is under-determined,
being equivalent to the dynamical equations for the spadialponents of the electromagnetic field,
which contain second time derivatives, plus a constrainaggn for four unknown functions. But
this feature is absolutely not unexpected. It simply refi¢toe presence of thé(1) gauge freedom.
In other words, the existing gauge freedom prevents the Mbaguations from completely deter-
mining the potentiaA,, namely we should expect that they uniquely determine tienpial up to
a gauge transformation. From this perspective, it is easyptierstand that the system of Maxwell
equations admit a well posed initial value formulation ofdy the physicalstates of the theory.
In fact, once realized how the gauge transformations enterthe game, the solution becomes
simple.

In order to clarify this point, let us fix the Lorentz gauge, .

AuAH =0, (3.75a)

which is particularly useful to treat this problem. The gagpoice allows to simplify the structure

of Eq. (3.71), i.e.
0,0"AH = 0. (3.75b)

The system of equations are physically equivalenfto}3.Kgre precisely, solutions of the Eq.
(B-73) can differ from those obtainable by solving the systd# equations in[(3.7ba) anfl (3.T5b)
only by a gauge transformation. So, from a physical pergpedhe dynamics is well described by
Egs. [3.75a) and (3.7bb), with the remarkable advantagendvawe can use the result of theorem
B:9).

Specifically, let us suppose that the initial data are chaseich a way that they satisfy the
Lorentz gauge condition in Eq[._(3.75a) on the initial hypeface, (if they don't we can operate
on them by a suitable gauge transformation), then, usingtagqu(3.75p) and the Schwarz theorem,
we can write:

Hence, provided that equatiol d*A” = 0 is satisfied everywhere, according to theoren] (3.6) also
the gauge condition will be satisfied everywhere if and ohlgd A" /dt = 0 on Zo. It is worth
explaining the role played here by the Gauss constraint.fisdtaglance the Gauss constraint seems
to have disappeared; actually, it has only been written iiffardnt form. In fact, we have required
thatddy,AY /dt = 0 on Xy, namely

0= %auAﬂ = 08A°+ 04 0oA”
= 9§A°+ 0y (E* — 09A%) = 9,E7, (3.77)

where we used equatioh (3.75b). It is not surprising at all the Gauss constraint turns out to be
encapsulated in the initial conditions, because the Irfigéd configuration must satisfy not only
the gauge condition, but also the constraint. In parti¢cutarrole is to assure that, if equation
(B-75b) holds everywhere and, provided tA@E® = 0 onZ, the Lorentz gauge condition remains
valid throughout all the evolution for the gauge transfodnmetial data.

It remains only to solve the dynamical equatiofs (3.75b}hwhe given, suitably chosen,
initial data. But now the problem is simple, the equationgehia fact the desired form, i.e. the
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form required to apply the result of theorefn {3.6), whicheied establishes the existence of a well
posed initial data formulation. The last question is: carcaseclude that the solutions are unique?
We can briefly answer to this question supposing that thenadigystems of Maxwell equations
(B.71) provides two solutions$; and S, with the same initial conditions. By making a gauge
transformation, it is possible to recast them into the smubf the equation[(3.75b) with the same
initial condition. But, since the solution of the system7&)) is unique, once assigned suitably
initial conditions, then we conclude th&t andS, can differ at most by a gauge transformation.
In other words they represent the same physical field corfigur. Concluding, physically the
solution is, in fact, unique.

4. Canonical General Relativity

As we have clarified above, the canonical constraints plagueia role in the initial value
formulation of a theory with gauge freedom. Furthermore;eothe canonical analysis has been
completed and the second class constraints eliminatedghrthe Dirac prescription, the system
can be canonically quantized, by requiring that the opesatorresponding to the first class con-
straints annihilates the state functional. The same proeednd considerations are, in general,
valid as far as we regard GR, which features a gauge symmeatrglated with the invariance un-
der diffeomorphisms. So in this section, in view of discngghe problem of quantum gravity, we
canonically reformulate GR, digressing on the main aspadts initial value formulation.

Specifically, starting from the description of the so-aalB+1 splitting procedure, we finally
arrive at the canonical equations of motion of GR, initiadlydied by Dirac [[30] and then by
Arnowitt, Deser, and Misnef [51, b2,|5B,]54]. This will alsitoa us to address the initial value
problem, which will be only briefly sketched, emphasizing thle of gauge symmetries.

4.1 3+1 splitting of space-time

The splitting procedure is a tool which allows to sort an atioh parameter out of the co-
variant general relativistic space-time. It is worth stieg that covariance is not lost in this for-
mulation, even though it is no longer manifest as in the Liagian approach. As suggested by
Theorem [3]), by using a gauge transformation, which wer tefas embedding diffeomorphism,
it is possible to “slice” a globally hyperbolic space-tinmepresenting it as the evolution in “time”
of 3-dimensional space. As any gauge transformation, theedding diffeomorphisms does not
affect the dynamical content of the theory. In other wortlg, ¢anonical Hamiltonian equations
plus constraints (obviously!) are completely equivalenthie usual Einstein equations.

Technically, what we are going to do is the following: Stagtifrom the Hilbert—Einstein
action,

Sie(0) = 5 [ d%/OR, @.)
M

whereR = g,,,0vsR'P? is the Ricci scalar curvaturd(,,,°ve = [0y, 0v] v, being the Riemann
curvature tensor), we restrid to be a globally hyperbolic space-time?, so that, according to
Theorem[3}F),# = R x ¥3; 33 being a compact three-dimensional manifold without bowda

It is interesting to note that the restriction to globallyplkybolic space-times is a quite strong
requirement, especially in view of the formalization of aagtum theory of gravity. Being aware
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of this strong hypothesis, necessary to canonically qeartie theory, we expect that it could be
relaxed once a rigorous formulation of the quantum theoty bvé at hand, as suggested [h [3].
So far, up to the author’s knowledge, no rigorous prescnipéxists that allows to get rid of this
hypothesis or consider different topologies directly ia uantum theor}?

However, once the hypotheses of the Geroch theorem ardieshtisve can foliate# by

Cauchy hypersurfaces’ def yi(0), in other wordsvt € R, 3 a globally injective immersion (em-
beddings)y; : =2 — M, defined byy;(X) = y(t,x), wherex € ¢ are the coordinates over the
hypersurfaceg®. Hence,> represents a foliation of the manifod parametrized by the con-
tinuous functiont. Now let us denote the unit normal vector to the hypersusfageasn#, so
that the four-dimensional metrg;,, induces a three-dimensional Riemannian metyigcon each
hypersurface:

The above relation is often referred first fundamental fornof 3. Now, consider a vector field
tH, called “deformation vector”, satisfying the the followinelationt#J,t = 1. It generates a
1-parameter family of diffeomorphismg : R x =% — M, defined agt,x) — y“(t,x) := y'(x),
called embedding diffeomorphisms. Geometrically, thedahtion vector represents the “flow of
time” throughout space-time, in other words it is the tartgector to the “time line”, namely the
directional derivative it generates corresponds to areiment in label timé. Remarkably, the label
timet does not correspond to physical time, the measurement ehwtbuld imply the knowledge
of the space-time metric; rather, it is a mere label dendtieglifferent Cauchy hypersurfaces.

So, the embedding diffeomorphisms is completely arbiteargt can be usefully parametrized
by decomposing the deformation vector in its normal andédatigl components with respect to
;. Specifically, by defining the “Lapse functioiN and the “Shift vectorN* as

N = —nytH = (¥ D“t)_l , (4.3a)

Ny = hytV, (4.3b)
th(y) = (—ay“;tt ’X)> = N(y)n"(y)+NH(y). (4.4)
Y(tX)=%(X)
It is important to note that in order to generate a consid@idtion the Lapse function has to be
monotonic.

At this point a brief digression is in order. It should be eésythe reader familiar with
the canonical formalism to imagine that the lapse functiod shift vector, being two completely
arbitrary functions which parametrize the time flow, wilthwut to be Lagrange multipliers. As
regarding the 4-metric, four of its entries directly depamdthem. So, only six out of the ten

we have:

15The case of Loop Quantum Gravity is quite different. In Loaga@tum Gravity, in fact, the continuum space-time
is replaced by a discrete genuinely quantum structure. ifiipies that in this theory no room is left for (the classical
concept of) space-time, which, in this sense, is not reettiby the hypothesis of the Geroch’s theorem. In other words
in Loop Quantum Gravity the quantization procedure itselifixes the classical restrictions on the space-time sireict

18Note that if we do not fix the metric, the lapse of time, gay dividing two different spatial hypersurface&?
ande’Mt, is completely general and correlated with the integrabewftH, which generates the embedding diffeomor-
phism. So it is not referable to any real physical measur¢nbeing correlated to gauge transformations.
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component of the metric are dynamical variables. This fasetin reflects in the canonical theory,
where the 3-metric, with its six components, turns out toHgefindamental dynamical variable.
In other words, a globally hyperbolic space-time represéme time evolution of a Riemannian
3-metric field on a 3-dimensional abstract manifdld [9], lhhe other four components express
only the arbitrariness we have in choosing the referencesys}]. It is worth recalling that the
Einstein equations in vacuum

Ry =0 (4.5)

are, in fact, six equations (not ten!), because the Biamtehitity 0, R, = 39, Rrelates four of the
ten components of the Ricci tensor.

Let us now enter in the technical details of the canonicahfdation of gravity, enunciating
the following

Lemma 4.1. Let(M, g,v) be a space-time and I&tbe a smooth space-like hypersurface in M. Let
hyv denote the induced metric @hand let D, denote the covariant derivative operator associated
with the metric ky,. Then the action of Ris given by the formula

DpTY ¥ =% b by fon o 0w (4.6)

H BrBm’

wherell; is the derivative operator associated with,g

Proof. It is simple to verify that [) satisfies the following properties: Linearity, Leibnizeul
Commutativity with contraction, Torsion freg f{ € &, [D“, DV] f = 0) and acts as a directional
derivative on scalar functions f. Moreover we have:

Dyuhoo = h,®h’ h/ Oy (gap +Nanp) (4.7)

becausel,gps = 0 and h,yn” = 0. Thus D, is the unique derivative operator associated with
hIJv. |:|

Let us define theecond fundamental forof 23, called extrinsic curvature:

1 1
Kuv = huphVUD(an) =5 hy’hEnhpe = > (Enh) (4.8)

pv

where the symbo£, denotes the Lie derivative with respect to the vector fiéld The extrinsic
curvature is a spatial vector by definition and represemp#rnallel transport of the normal vector
along the hypersurfacg, or the variation of the three-metric along the integrak lwf n#. We
can easily rewrite the extrinsic curvature in order to makgieit the Lie time derivative of the
3-metric; namely

1 1
Kuy = 5 (Enh) = 5007 (0 Oahpo +hpallon™ + hag Don)

1
= mhlf)hvo— (N na Dahpo’ + hpa DU(N na) + hagDp(N na))
1 1 .
- mhllphvo—E(t—N)hPU - ﬂ (huv - 2D(“Nv)) 5 (49)

where we definedi,, = h,’h,°£h,, and we used equatiofi (7).
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Once defined the covariant derivative operafor (4.7), wededime the curvature tensor of the
Cauchy surfac& as usual:

®R,,J ws = DuDywy, — DyDywp . (4.10)

Now using the prescription to express the covariant devieain the 3-dimensional manifold as
projection of the 4-dimensional derivative operator weehav

D“Dva — D“ (hvahprmga)[> — hvahpﬁhuymy <haUhBTDUOJr)
= h,%hyhY 0, 0o + 0,0 h, Y0y (hehy') Do
=h,%h,'h)/0, 06w 4 hy Ky un? Og e +h, Kppn Og or (4.11)

where we used the expression of the 3-metric as functioneo#itmetric and the normal vector

E2.

At last, we have all the elements to write down the relationveen the 3-dimensional curva-
ture tensor as function of the 4-dimensional Riemann teasdrextrinsic curvature:

— y
= Zh[ﬂ hv?hpTDyDgwr + ZhPTK[V“]nUDg(DT — ZK[“|p|KV]a(A)U
= h/hPhyTh%R 5 % we — KyupK, 7w + KypK o s (4.12)

where, in the second line, we usefK,,,n" Oy wr = h,*Kyp 0 (NTwr) —h 2Ky pw Ogn® =Ky pK, " wr
andKj,y) = 0. Now, considering thady, is a common factor, we can write down tfiest Gauss-
Codacci relation

CRug = h/hPh %R 57 — KoK, + KK, (4.13)
With an analogous procedure, we can obtainsteond Gauss-Codacci relatias well:
DK, —DyKF, =RypnPh’ . (4.14)
At this point, once we have realized that
RuvpahPh’? = Ry po (9P +nHnP) (97 +1n"n%) = R+ 2R,on"n? (4.15)
we can write the Ricci scalar as
R= Ryypsh*?h’? — 2R, sn"n? (4.16)
and from the first Gauss-Codacci relation we have:
R= OR+ (KK, =K KH —2R,on"n7. (4.17)
Moreover,

Rvgnvna — Rvpé-)nvna — —nv (Dvl:lp - DPDV) np
= (K" = Ky KHY — Oy ("M OpnP) + Op (0,0 (4.18)
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Therefore, being/—g = Nv/h, from equations[(4.}7) andl (4]18) we finally obtain the fwileg
action for the gravitational field (having dropped the lasit in the last line above, which being a
total divergence, does not affect the equations of motion):

1 "
Sp1a(N,NH, ) = 5 / dtexNVR (FR+ Ky K — (K#)?) (4.19)
Rxo
It is particularly useful to pull back spatial tensors to tiypersurfac&?. This can be easily done
by suitably defining the projectoRél = (dyH(t,x)/dx%) wherex® are spatial coordi-
nates orZ3. In this respect, let us define

Ve ()=y(t.x)*

hap = huwX& Xg = guvXa X3 , (4.20a)

Kap = KuwXa X5 , (4.20b)
so that we can rewrite the extrinsic curvature as

Kap = % (hap —2D(aNp)) (4.21)

where only spatial indexes appear.

The Lagrangian contains the time derivatives of the 3-métrld through the terms depending
on the extrinsic curvature, while no time derivatives of thpse function and the shift vectors
appear. Hence, the Lagrangian is singular, so we expecthbaheory generates four primary
constraints as we are going to demonstrate.

The next step in the canonical analysis is the definition efabnjugate momenta. Once the
space-time has been split, we recall that the fundamentalles areN, N andhg,, the conjugate
momenta of which respectively are

0.2
N _ 9% 4.22
“ui_g (4.220)
0.2
P =~ =0. (4.22b)
0?f — ‘95?:3“ = Vh(K —hBK) (4.22¢)
ap

So, the phase space is twenty dimensional and coordindtizéite setN, N, hg,, p™), pN) | pBy
and equipped with the following symplectic structure:

INEX, PN (%)} = 8(xX), (4.232)
(N0, (1.X) } = 85 5(xX) (4.23b)
{hap(t.20,P°(1.X) } = 858(x.X), (4.23¢)
where the symbof- - - ,---} denotes the Poisson brackets, whﬁg(% =3 (040 —058%).

From the definition of conjugate momenta, we immediatelambfour primary constraints as
expected, i.e.

&™) = pN ~ 0, (4.24a)
N .~ N <0, (4.24b)
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Now, we can perform the Legendre transformation. Becausieegbresence of primary con-
straints, we cannot re-express all the velocities as fanstof the fundamental variables and their
conjugate momenta. This implies that the Hamiltonian, lxgaiefined as

H=%pg -2, (4.25)

whereq; and px are the generalized coordinates on the phase space, isiqoelyndetermined as
function of the fundamental variables and momenta. In otfeeds, because of the presence of the
primary constraints, the Hamiltonian is well defined onlyeorestricted region of the phase space
determined by the primary constraints. So that, in ordeake into account the restriction of the
phase space implied by the four constraifits {4.24), we hwirdrbduce four Lagrange multipliers
A andA?, which have to be varied independently in the action. We have

1 . .
Spea(N. PN, g s, p7F) =5 / dtcx | PP + N + p N
Rxo

—NH—N“HG—A%(N)—)\B%N)], (4.26)

where the super-Hamiltoniad and super-momentutd @ are defined as:

1 1 2 1
= vh [paﬁ pF — 2 (haB paﬁ) } -~ vhOR= EGGBWSPGB p?° —VvhOR, (4.27a)
HY = —2Dsp"°. (4.27b)

Above we have introduced the so called super-medgg,s = \/iﬁ (hayhgs +hashgy — haghys).
Finally, we write down the canonical Hamiltonian for thegtational field,

Ao = /d3x [NH +NTHg + A%, +AB<@§N>] : (4.28)
0—3

and go on to discuss the dynamics.

4.2 Canonical constrained dynamics

This Section is devoted to the study of the constrained dyoswf the gravitational field.
Namely, starting from the split actiof (4]26), we are goingalculate the Hamiltonian equations
of motion. At the end, a discussion about the formulation @fedl posed initial value problem
will follow, in correlation also with a well known issue of eanical quantum gravity, the so-called
problem of time. In GR, in fact, once suitable initial comalits have been assigned and the gauge
fixed, the time evolution is uniquely determined and depeodsinuously on the initial data; but, as
remarked more than once th@arameter appearing in the equations of motion does natsept
physical time, rather it is a label denoting the differenu€lay hypersurfaces. The fact that the
Hamiltonian is constrained to weakly vanish in General Ratg, implies that the observables,
which must commute with all the constraints, are “frozerd@mely they do not evolve. The concept
of time evolution can be reintroduced in such a “frozen” fatism through a physical procedure,
relating the evolution to the dynamics of other fields codptegravity. We consider this aspect of
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GR extremely natural, because the theory is describing yhardics of the space-time itself and
not the dynamics of a field on a background. Moreover, fromantium perspective, the frozen
formalism does not affect the interpretation of the outcerakthe theory, which describes the
actual quantum state of space-time and, eventually, theitian from one quantum configuration
to another. From this perspective, the classical idea ofugea in time has to be completely
abandoned, as the concept of classical trajectories hasdbdndoned in describing the quantum
transitions of an electron in an atom.

Having in mind the above premise, let me start the canonitallais by varying actior] (4.26)
with respect to the Lagrange multipliessand A ¥, thus obtaining the primary constrainfs (4.24).
In order to guarantee that the dynamics of the system is stem$iwe have to require that the
constraints be preserved during the evolution, namelyth@Poisson brackets of the constraints
with the Hamiltonian vanish. We have,

%(N)(tvx) = {%ana(g(m(t»x)} = H (t,X), (4293.)
66 (100 = { Hean 68V (19} =Ha (1), (4.29)
hence a set of secondary constraints have to be imposed, i.e.

H(t,x) ~ 0, (4.30a)
Hq (t,x) ~ 0, (4.30b)

for all x € Z. The above weak equations are called super-Hamiltoniarsaper-momentum con-
straints and generate the following algebra

{Hq (t,X),Hp (t,X) } =Hp(t,X)da 8 (x,X) — Ha(t,X)9p3 (X,X) , (4.31a)
{Hq (t,%),H (t,X)} =H (t,X) 945 (x,X) , (4.31b)
{H(t,x),H (t,X)} =HP (t,x) 938 (x,X) —HP (t,X) 96 (X ,X) . (4.31c)

The algebra above reveals that the super-Hamiltonian apersnomentum constraints are the
generators of diffeomorphisms: It is worth noting thateliéfntly from the usual Yang-Mills gauge
theories, the algebra of the constraints has structurdifunscinstead of structure constants. Fur-
thermore, the above relations prevent from the emergenttiry constraints.

The fact that the Poisson brackets between the whole sehsframts weakly vanish indicates
that the super-Hamiltonian and super-momentum togethibrthve primary constraints form a set
of first class constraints. Interestingly enough, this aatle easily reduced, by taking into account
that the primary constraints can be strongly satisfied byidening the lapse functioN and the
shift vectorN? themselves as Lagrange multipliers. In this respect, leouasider the dynamical
eguations folN andN?Y, i.e.

N(t,x) = A(t,x), (4.32a)
N9 (t,x) = A%(t,X), (4.32b)

so, as we can immediately understand, the evolution of tipsé.dunction and the Shift vector
is completely arbitrary, being their time derivatives tethto the Lagrange multipliers andA“,
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which are unspecified functions. Henceforth, the systerhbgildescribed on the phase space by
the remaining variables,z and p¥®, while the Lapse function and the Shift vector are treated as
Lagrange multipliers. This automatically solves the priynzonstraints[(4.24), since the momenta
conjugated tdN andN“ vanish strongly. The dynamical equations fig and p¥d can be directly
calculated from the reduced Hamiltonian

%:/d3x[NH+N“Ha], (4.33)
obtaining:
hap =2N Gypys P + 204 Np), (4.34a)
peP = z\f NheP (pV5DV5 -2 p2> - % (p“prB - % pp“) Nf( R -3 (3>Rh""3>
+vh (D“DBN _hak DVDVN) —2p"@O NP 40, (Nypaﬁ> , (4.34b)

where we ignored all the boundary terms and used equdti®@H}. The system of equations
(B-304), [(4.30b),[(4.3}a) anfl (4.B4b) is equivalent to teuum Einstein equatiorg,, = 0. As
remarked above, the super-Hamiltonian and super-momeotunstraints are first class (see Egs.
(B-31)) and reflect the gauge invariance of the theory. Bealithat the spatial equations of motion
are satisfied, they, in fact, generate a diffeomorphisms flowthe phase space, according to the
following identifications:

(HN,. ..} = £, (4.35a)
{ﬁ(ﬁ),...} — Eu(...), (4.35b)

where we used the following notation:

—

/d3xN (t,x)H(t,x) and H /d3xN (t,X)Hi (t,%) . (4.36)

In particular, the super-momentum or vectorial constrigictearly correlated with spatial dif-
feomorphisms and can be satisfied by introducing the Wheefmrspacé’ The super-Hamiltonian
or scalar constraint, instead, represents a serious ¢dbstaard the canonical quantization of the
gravitational field. As we remarked before, it generatefedifiorphisms along the normal vector to
the Cauchy hypersurfaces, provided that the spatial epgatf motion are satisfied. Interestingly
enough, as noted by Wald and Kuéhtine scalar constraint is strictly analogous to the cairstr
coming out when one tries to parametrize an original norsttamed theory on fixed background.
More specifically, an analogous constraint crops up whenimneduces within the Lagrangian a
time function which labels the hypersurfacgs starting from an initial hypersurfacg and then
treats this “time function” as a dynamical variabf [9, 5Buit, as one can easily verify in the case

1"The Wheeler superspace is the space of the 3-metrics moediffte@morphisms. Namely, two metric fields
related by a spatial diffeomorphisms represent the samme pnithe Wheeler superspace.
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of the point particle in flat space-time [57], the parametlitheory is linear in the momentum con-
jugate to the time function, thus the theory can be easilyad®petrized by solving the constraint
with respect to this momentum. The scalar constraint of GRistead, quadratic in the momenta,
therefore such a deparametrization seems not to be pqsaiftdast in pure gravit}?

In order to understand how many physical degrees of freederdescribed by the theory, let
us count the number of independent variables. Obvioustyptiesence of first class constraints
associated with the gauge freedom of the theory, indichedghere is more than one set of canon-
ical variables which correspond to a particular physicatest In other words, a physical state is
well described by two or more different sets of canonicalaldes if they are correlated by a gauge
transformation. Or, we can rephrase saying, a physica saepresented by the class of equiva-
lence of canonical variables under the symmetries of thayh&sually, in order to eliminate such
an ambiguity in the description of the physical system, a$gauge conditions are imposed on
the canonical variables. The gauge conditions are chaddmcand are, sometimes, suggested
by the mathematical or physical structure of the theorythey are not a consequence of the the-
ory. They are external conditions. Nevertheless, they aneptetely admissible, since they only
remove the unphysical degrees of freedom of the theory. ddisily, they have to fulfill some con-
sistency requirements: Firstly, they have to be accessibleit must exist a transformation which
maps the original set of variables to the set satisfying tiggg conditions; secondly, we have to
require that the gauge conditions be preserved by the symiflat.. The two requirements above
imply that the number of gauge conditions has to be equalagmtimber of first class constraints
in order to completely fix the gauge. Moreover, the determtimd the matrix constructed by the
Poisson brackets between the gauge conditions and theléisst constraints has to be different
from zero. Remarkably, this is exactly the definition of acfetecond class constraints, which can
be in principle solved through the Dirac procedJrd [50]. i tpoint, the count of the number of
physical degrees of freedom is easy. We have to subtracetoumber of canonical variables the
total number of second class constraints, or, accordindhtt gaid before, the number of first class
constraints plus the number of gauge conditions plus thenskeclass constraints not coming from
the gauge fixing. In other words, we have to subtract twicenilmaber of first class constraints
plus the number of independent second class constrairtie twimber of canonical variables. Itis
worth noting that in the present case the number of physegilegs of freedom in the phase space
is four, which correspond to the two polarization of the gi@vin the configuration space.

Concluding, we can say that the symmetry group of GR is wegtlé@mented in the canonical
formalism, which is in this sense generally covariant, etfeugh the covariance of the theory is
not manifest as in the Lagrangian formulation. We want absstriess the importance of the invari-
ance under diffeomorphisms, pointing out that every pdssibservable for this theory must be
invariant under this group of symmetries of the action. Betrineaning of this statement goes over
the usual meaning it has in Yang-Mills gauge theories, bexdloe request of 4-diffeomorphisms
invariance involves also the dynamics, therefore the difinbf an observable is not only a kine-
matical problem, it necessarily implies to solve the dyr@min other words in GR kinematics and

18As soon as matter fields are considered, a deparametrizafionfact, possible|E8] (see al ZEI 31]). In
this framework, the evolution of the physical system canriberpreted in terms of relational variablgs|[[LY, 26] and the
so-called problem of time can be solved, by referring thduian to the dynamical “relations” between distinguished
fields.
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dynamics are inextricably bound. Quoting a famous sentbypce Stachel, we can say that in GR:
“There is no kinematics without dynantics

4.3 Initial value formulation for gravity

As we have shown above, the Hamiltonian of GR is not a true Hamian, but a linear com-
bination of constraints. In particular, if we assume tha #patial components of the Einstein
equations are satisfied, then it generates a flow along tegraitcurve of the deformation vector,
namely a gauge flow? Nevertheless, the Cauchy problem can be well posed untéppearance
of a singularity affects the consistency of the theory ftsel

In order to construct a parallel with the case of electrornséigm, it is worth recalling that
the Gauss constraint comes out from the time component dfithevell equations, which does
not contain second time derivatives. The same considestice valid for Einstein equations in
vacuum. In fact, the equatior,,n" = 0 do not contain second time derivatives of anyone of
the metric component, namely, as in the electromagnetig, these equations depend only on the
initial data: In other words, they represent a restrictionttte possible acceptable initial data set.
So, we expect that the canonical constraints be containgtirquationss,,n" = 0, indeed we
have:

H

Guvn“nv - _2—\/ﬁ - O, (437&)
H.

Gun'eY, = 2\—'m =0. (4.37b)

Therefore, the constraints equations are actually eqnvab four of the Einstein dynamical equa-
tions; furthermore the Bianchi identity, G*V = O, RV —1/20VR =0, together with the equations
of motion for the spatial components, implies that the aaimsts ara@nvolutive Namely, provided
that the super-Hamiltonian and super-momentum constrairg satisfied on the initial Cauchy
surface and the equations of motion are satisfied everywtiene also the constraints are satisfied
along the evolution. A very simple argument allows to showatjst claimed. Assuming that
we have already solved the equations for the spatial cormpeé the gravitational field, then the
Bianchi identity represents a relation between the timevaiéve of the normal components of the
Einstein tenso,,n” and the non-time differentiated componentsgf, and their spatial deriva-
tives. Now, by pulling back equatidf, GV = 0 on the solution for the spatial components of the
Einstein equations and realizing that the spatial pa@af vanishes, the Bianchi identity becomes
a linear homogeneous system of four first order partial egustfor the four unknown functions
Guvn”. Then, it follows that ifG,,n" vanish on the initial slice, they must vanish on any slice.
From the Lagrangian point of view the vanishing of four of thiastein vacuum equations
could appear as an under-determination of the componetttg afetric field, instead it just reflects
the invariance of the theory under reparametrization, akave already explained before. In other
words, the apparent under-determination is not a physioa) exactly as in the electrodynamics
case. Infact, ifp: M — M is a diffeomorphisms an@, g,y ) is a solution of the Einstein equations,
then(M, ¢*gyy) is a solution too. So, the metric contains four arbitrary poments, corresponding

191t is worth stressing that the lapse function and the shiftaeentering in the Hamiltonian are arbitrary functions
of the space-time points.
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to a free choice of reference system. So that the remainingponents are exactly six, as the
number of the dynamical equations.

Now, in analogy with the electromagnetic case, we fix the gasice the gauge freedom of
GR regards the general coordinates transformation, theosaing a gauge means to fix a particular
system of coordinates. A suitable choice is the “harmonilige, characterized by a system of
coordinates satisfying the following equations:

0,0MyP =0. (4.38)

This choice does not affect the generality of the proced@eecifically, in a neighborhood of a
portion of space-time covered by an original set of coordisiasayH, we can proceed as follows:
Firstly, let us note that equatiof (4}38) has the form of ¢équa(3.69), therefore, assuming as
initial data the old sek* and its derivativel],x’, we can uniquely solve equatioh (4.38) in a
neighborhood of the portion of space-time covered by thesetcbf coordinates. Sinde,x" are
linearly independent, then aldg,y® are linearly independent and consequently they8euwill
provide a local coordinates system. The choice of the haienowordinates will result in the
following equation:

1 1 1
0=0,0Hy? = \/——_ga“ (\/ _gguvavya) = —_g (9;1\/ —ggﬂa) = 0,gH%+ zguagpoaagpa'
(4.39)
Furthermore, we have that the Ricci ten&y, can be written as
1

The above expression emphasizes that the Ricci tensorfegtinlinear in the second derivatives
of the metric tensor, wherg,, (g,dg) contains the non-linear dependence on the metric and its
derivatives. So that, considering both Ef. (#.39) dnd [4we can isolate, in the Einstein equa-
tions, the non-linear dependence on the metric and itsaterds, obtaining[[39]:

1 ~
(h)R/JV =Ry + gp(uav)DUDpr = —Egpaapaaguv +Fuv(g,09) = 0. (4.41)

Therefore, the Einstein equations in vacuum are equivédethe system of equationf (4]41) (gener-
ally referred as reduced Einstein equations) 4nd}(4.38).r&tluced Einstein equations are suitable
to apply the result of the Leray’s theoren 3.7).

In this respect, leh,z andKs be the metric and extrinsic curvature of the hypersurigte
and let us assume that they satisfy the constrajnts] (4.3fgn,Tafter having chosen a suitable
system of coordinates over a portion of the hypersurfEteassign as initial data for the metric
and its time derivative the sétd ;, ho ), such that the extrinsic curvatukgs on 2° results from
this choice via equatior] (421). Since the Einstein equoatiovolve all the ten components of the
metric field, we have to give the initial values @fp andgoy t00. A very simple choice could be
oo = —1,goa = 0 and, as a consequeni€gp = hyp = 39qp. Now the time derivative of the “0”
components of the metric tensdgo,/dt remains undetermined by this choice, but they can be
fixed via the gauge fixing conditio, C0*y? = 0 on >3, In the canonical formalism this means that
we initially choose the value of the Lapse functitin= —1 and Shift vectoN! = 0, then via the
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gauge fixing we assign the time evolution of these two geaoa¢tobjects. Interestingly enough,
by assigning the functional form of the Lapse and Shift omeaampletely fix the gauge, i.e. the
reference system.

Now, let us suppose that the chosen initial conditions affecently near that of flat space-
time, then, according to theorerh (3.7), we can solve equatfd.4]l) in a neighborhood of that
portion of =3 covered by the original set of coordinates. Moreo¥&mwwill be a Cauchy surface of
the globally hyperbolic space-time generated by the swiuti

Furthermore, it is possible to demonstrate that a solutf@goations[(4.41) will be a solution
of the vacuum Einstein equations in a neighborhood of agrodf space-time where the condition
(B.38) holds. This concludes this brief digression abostitiitial value problem in gravity. The
interested reader can find the demonstration of the lasnséatt in [D].

Concluding we can say that we can give a prescription to detrate that it exists, at least
locally, a solution of the Einstein equations, moreover sbkition depends continuously on the
initial data and the space-time it generates is globallyenyplic. This demonstration is based on
the assumption that the set of initial data is near to thatabfsijpace, but this requirement can be
relaxed using a trick. The idea is that any curved space gmesl from a sufficiently small scale
appears nearly flat, so the trick consists simply in resgdli initial data metric function via a
coordinate transformation if they did not appear suffidiefiat (for details see[]9]).

5. Ashtekar Canonical Gravity

As is well known, the program of canonical quantization i$ aeigid algorithm and can be
slightly adapted to the theory one is going to constructati,fthe general program of quantization
of classical systems requires to make choices in differeqtssof the quantization procedure, as
is briefly described in the next section. Generally speakimg could say that the achievement of
the desired result, namely the construction of a rigorowntpum theory, depends on the choices
made in the different steps of the canonical procedure. Tiuetare of the theory could result
remarkably simplified if a smart choice of variables were ejoallowing to consistently reduce
the difficulties one has to face in the quantization procedun other words, a smart choice of
fundamental variables could make the theory manageablewaf quantization.

To be more specific, the introduction of the Ashtekar selt@L(2,C) connections[[g0] al-
lows to reduce the phase space of GR to that of a Yang—Millg@dwueory, which can be non-
perturbatively quantized by formulating the theory usirjohomies and fluxes as fundamental
variables?® But, let me follow the natural order of things, clarifyingething at the time.

It is possible to demonstrate, in fact, that by introducing Ashtekar self-dugbL(2,C) con-
nections in the framework of canonical GR, a Gauss constnaimnich incorporates the generators
of the local Lorentz boosts and rotations in a complex coatimn, appears besides the vectorial
and scalar constraints, both connected with the diffeohisnps gauge invariance of the theory.
Simultaneously, the high non-linearity of the Arnowitt-d@e-Misner (ADM) canonical formula-
tion of GR disappears: the new canonical constraints depehmomially on the fundamental

20The loop formalism does not work properly in Yang—Mills gattfeories, remarkably, the reason of this failure
can be traced back to the basic assumption of a continuune-gjpae. This fact suggests that it may work well in QG,
where a discrete space-time naturally emerges.
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variables, both in vacuum and in the presence of mr2[36EB}/ using the Ashtekar formulation
of GR, a background independent quantum theory of gravity hater formulated[[§2]. But the
use of complex fundamental variables generates a serifficsilly connected with the implemen-
tation of thereality conditionsin the quantum theory, which are strictly necessary to enthat
the evolution of the system is real. This difficulty has no¢th@vercome so far and, basically, it
can be considered the technical motivation which led to ttopton of the real Ashtekar-Barbero
(AB) connections[[§d, 64] as fundamental variables, irtefahe complex ones. The link existing
between real and complex variables can be clarified by olvggtirat both are obtainable from the
ADM canonical pair via a contact transformation. In part@cua suitable canonical transformation
allows to introduce a finite complex numbgt,# 0, namely the Barbero—Immirzi (Bl) parame-
ter, in the definition of the new variables, so that they poad to the (anti)self-dual ones when
B = £i and to the real ones for any real valug®f

Geometrically, the main difference between these two dgisssible new variables for GR is
the following: while the complex connections are the progtover the 3-space of the self-dual
part of the Ricci spin connections, the real ones are neiallgi related to them, complicating their
reconstruction[[§5]. In fact, the re8lU(2) valued connections contain only half of the necessary
information for reconstructing the Lorentz valued conitewt of GR [8], motivating also the ne-
cessity of fixing the temporal gauge in order to avoid the apgece of second class constraffts.
By fixing the temporal gauge, the accessible part of the pbpaee is determined by first class
constraints only[[g6] and the system can be quantized tirthey Dirac procedure. The result is a
non-perturbative background independent quantum thdaawity calledLoop Quantum Gravity
(LQG) [@.R.3[6rr°

Since the Bl parameter has been introduced via a canonaaformation, one can naively
believe that different values @@ correspond to unitary equivalent quantum theories. Seélgng
enough, this is not the case. In faBtenters in the spectrum of the main geometrical observables
of the theory, e.g. the spectra of the area and volume opsratvealing that a one parameter
family of non-equivalent quantum theories exists. As adgbg Rovelli and Thiemanr{[}6], two
dynamically equivalen8Q(3)-valued connections exist and, as a consequence, an atgtagui
pears in the theory, which is essentially expressed by theepice of the Bl parameter.

Immirzi suggested that the appearance of the Bl parametbeiquantum theory was a con-
sequence of the temporal gauge fixifg [77], so that it woultldisappeared in a fully Lorentz

211t is worth noting that the standard ADM formulation of GR wégs that the metric field is non-degenerate,
since it contains the three-dimensional Ricci scalar, Whcconstructed by the Ricci tensor saturating the indexes
with the inverse metric field. In the Ashtekar formulatioe ttame requirement is not mandatory, since the constraints
are polynomial. So, we can say that the Ashtekar self-duahditation of Gravity represents a possible extension of
GR allowing the presence of degenerate metrics. Whetheotathis extension has any physical relevance, up to my
knowledge, is not completely understood yet.

22The temporal gauge fixing consists in rotating the localhgi using a suitable Wigner boost so that, at every
instant of “time”, its zeroth component is parallel to themal vector to the instantaneous Cauchy hypersurkce
This condition reduces the loc&8IQ0(3,1) gauge group to the subgroup of spatial rotatid®®(3), by fixing the boost
component of the Lorentz symmetry.

231.QG besides providing interesting physical predictionghas quantization of areas and volumgs [2] (see also
[@,]), has been able to cure the inevitable singular ehaf classical GR in symmetric spacetimgs [E, Iﬂ 72].
Furthermore, the recently obtained results about the @rayiropagator have strengthened the physical conteneof th
theory, providing new insights into its non-singular bebayf7d, 74.[7F].
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covariant theory. But this expectation was not completelgfitmed by the so-calle@ovariant
Loop Quantum Gravit{CLQG), which is a fully Lorentz covariant quantum theory grfvity,
constructedh la Dirac relaxing the time gauge condition [73].This approach, in fact, revealed a
correlation between the choice of the fundamental varisduhal the appearance of the Bl ambiguity
in the quantum theory. In other words, in CLQG different clesi of the fundamental variables are
possible. In particular, for a geometrically well motivitspecific choice of variables the resulting
area spectrum no longer depends on the Bl parameter [80].cBabsing different fundamental
variables considered as a direct generalization of the Alhections, the resulting area spectrum
turns out to depend on the Bl ambiguity agdir [81], reprodgthe result of the gauge fixed theory
(see also the interesting papkr|[82]).

Recently, it has been proposed the idea that the Bl pararnseterfact, analogous to thé-
angle of the topological sector of Yang—Mills gauge theog$,[84] (for a brief description of the
topological sector of Yang—Mills gauge theories see AppeBdJl. This idea, initially proposed by
Gambini, Obregon and Pullifi [B5], has been lately recomeitién relation to the proposal to gen-
eralize the action for gravity to contain a topological tdB#, B [8F]. This argument will be better
described below ifi §.3, but it is worth anticipating that fresence of a topological term, called
Nieh—Yan density[[§8], which further generalize the sdezhHolst modification[[§9], allows, in
fact, to construct a precise analogy between the Bl pararaetd thef-angle. Furthermore, by
clarifying the large structure of the gauge group involvedtiavity through the Nieh-Yan density,
it is possible to demonstrate its supposed topologicalroegd, as a consequence, the existence of
non-unitary equivalent quantum theories associated terdiit values of3.

Having briefly outlined the AB formulation of GR and some neicaspects concerning the
interpretation of the Bl parameter, let me now enter in meahmical details, starting from the
tetrad formulation of gravity and the consequent genaadim of the 3+1 splitting procedure.

5.1 3+1 splitting again

Let us introduce a one to one mapM#* — T M, which sends tensor fields dn* in tensor
fields in the Minkowskian tangent spadeMy. The fieldse* are commonly called tetrads or
vierbein (or, more physically, gravitational field[] [2]) émepresent a local reference system for
space-time. They satisfy the following relations with thetrit field:

an b a a av %
Ouv = Nave,le,’, ele =4, gle’, =9

¥ v, (5.1)

where Greek and Latin indexes run from 0 to 3, and transfogpeetively under general coordi-
nates transformations and local Lorentz transformatidhg. symbolj,, denotes the metric tensor
in the local Minkowski frame. So, the tetrad fields incorgerall the metric properties d¥l. It

is worth noting that the converse is not true. In fact, theeeiafinitely many choices of the local
basis which reproduce the same metric tensor: This is gl@eatbnsequence of the local Lorentz
gauge invariance, manifestly present in this formalismis Thalso the reason why there are more
components ire 2 than in the metrigy,y, the difference being exactly six, that is the number of

241t is worth remarking that the complicated form of the Diraadkets, necessary to solve the second class con-
straints (se€[[3d, 91, prevents the fully Lorentz covatrtaeory from being rigorously formalized.
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degrees of freedom of the gro®®(3, 1) representing the number of independent parameters of a
Lorentz transformation in the tangent space-time.

As we briefly described in §3.2.1, the presence of a local gdwagedom requires the intro-
duction of a covariant derivativ®, transforming in the adjoint representation of the gaugegro
This implies the introduction of a Lorentz valued connatt{often referred as spin connection),
here denoted a@?°(x) and satisfying the following propertg®(x) = —wP3(x). The covariant
derivative operatoD, acts on Lorentz valued tensor fields as follows:

n m
a...am _ a...am __ p aj...am 3 ar..a_1ba...am
DHTvl...vn - aHTvl...vn Z r“VkTvl---Vk—1PVk+1...Vn + z w b[,lTvln-Vn
k=1 =1
o a...ay-1ba1...am
_ az... =] 1...84 1 1..n
= OuTyp g™+ S 0%y Ty, s (5.2)
=1

where Ff“, denotes the affine connection. Now, requiring the compayitwf the above defined
covariant derivative operator with the tetrad basis, we e@drapolate the expression of the spin
connection as function of the local basis vectors:

Dye?=0 = i, = epaDueP , (5.3)

whereld, as usual satisfies the metric compatibility condition, iggys = 0.

As we are going to show, the same conclusion can be derivedtfie solution of the second
Cartan structure equation, which will be extensively useldW. In this respect, from the expres-
sion given above for the four dimensional spin connectiofuastion of the tetrad fields, it is easy
to derive the following equation:

Oues = - e (5.4)
If the torsion-less condition holds, namely

0,0y f =0,0,f, (5.5)
and remembering that the operator is compatible with the metric, we can easily deduce

dues = -0 e, (5.6)
which recalling the definition of exterior derivative of arfns can be rewritten as:

det + wd A eP=0. (5.7)

The above equation is called homogeneous second Cartatusériequation and completely de-
termines the spin connection as function of the gravitaidield 2° It is worth noting that in the
case of non-vanishing torsion, the affine connecﬁﬁn has also an antisymmetric part, then the
second Cartan structure equation generalizes to:

deét + i NP =T?, (5.8)

25For the reader’s convenience, we collected a descriptidneoforms formalism in AppendiElA, where he/she can
also find the Hilbert-Palatini and matter actions translatethe forms language.
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where the torsion 2-fori 2 is defined as
Tiv =7 (T —T0u) - (5.9)

In this more general case, the solution of the second Cairtactgre equation provides the full spin
connection as a sum of its torsion-less componetife] plus a contortion ternk®, namely

0P ...] = w*e +K¥e,...], (5.10)

where the dots indicate that the contortion component cpartkon matter fields as in the case of
spinors coupled to gravity.

The spin connection 1-form generates, in the usual way,uheture 2-formR%, through the
following identification (in what follows let us use the coagy notationd®@(...) =d(...)+ wA
(...):

d(@ od@hA = R AVP. (5.11)

Explicitly we have
Rab = dwab+wac/\ (A)Cb, (512)

which is called first Cartan structure equation. The cumeatensor satisfies the Bianchi identity
d@Rs =0, (5.13)

which is a consequence of the Jacobi identity applied to tvariant exterior derivatives opera-
tor, i.e. d® od® od(®@ = 0. Another identity can be obtained applying the exterioraciant
derivative operator on the left and right hand sides of tleeisé Cartan structure equatidn [5.8),
i.e.

R AL =dT3+ wd, ATP, (5.14)

which in the torsion-less case reduces to the Bianchi ciabdintity:
R, A =0. (5.15)

It is possible to rewrite the action for gravity in the tetfmdmalism by using the relations
given in (5.1L), specifically we have

e = % / d*xdetelete}R,, . (5.16)

which can be used as starting point to canonically reforteulae gravitational theory. Actually,
the canonical formulation of tetrad gravity can be stréefigftardly deduced from the canonical
theory described in Sectiofs .1 gnd 4.2, by taking intoautthe presence of an additional local
symmetry in this new framework.

So, in order to construct the canonical theory, let us asstatethe space-time is a globally
hyperbolic metric manifoldM = R x 23,9“\, = nabe;evb). Let hyy = guv +nny andKyy =
1/2£,hy, be respectively the first and second fundamental form of tnec@y hypersurfacg®, so
that, by using the tetrad fields, we can write:

59



Introduction to Loop Quantum Gravity Simone Mercuri

The expression of the first fundamental form above suggessyasimple gauge choice to elimi-
nateab initio some non-dynamical degrees of freedom. Specifically, byatipg a Wigner boost
it is possible to rotate the local basis in such a way that dnam)nenbuo results to coincide with
the normal vecton,,. This gauge choice, called temporal gauge, reduces thegaage symmetry
to the group of spatial rotations, since the boost compouihie original Lorentz group is obliged
to vanish by having chosen the direction of one of the compbogthe local basig®

By implementing the temporal gauge and projecting the Jimet the hypersurface, we have

hap = 8je5e5 (5.18)

where Greek indexeq,3,y... run over 12 3, while Latin indexed, j,k,... are related to the
SQ(3) (or, via an isomorphism, to tHalU(2)) local symmetry. Note that the orthogonality condition
n*h,y = 0 is automatically fulfilled according to the properties lo¢ tetrad basis. This allows us
to easily write the components of the tetrad fields and tinggrise in the coordinates systétx),
we have

a | —
- (E Ne?“> and  ep=| N , (5.19)
a - epj

as beforeN denotes the Lapse function, whi' the Shift vector. This identification of some of
the components of the local basis with the Lapse and Shifbgsiple by considering that the line
element

ds = e e, dxdx’ = —N2dt> + hyg (NOdt+dxX¥) (NPdt -+ dxéP), (5.20)

corresponds to the ADM decomposition of the 4-metric. Iiniportant to note that the 3-metric
(B.18) is invariant under a loc8Q(3) rotations of the tetrad basis, namely the dreibein carhiest
degrees of freedom more with respect to the three-migyic As a consequence also the number
of constraints of the canonical theory written in tetradicnfialism must increase. In particular,
we should have three (first class) constraints more in omlegabsorb the local gauge degrees of
freedom connected with tH&Q(3) symmetry.

In this respect, consider the second fundamental form. Bdfia 1-formKO,i on X2 and con-
tract the internal index with the tetrads, i.e.

Hap = GiK'65. (5.21)

Now, it is easy to realize that the symmetric part of the ten#gg is the extrinsic curvature,
namely
Hap) = Kap s (5.22)

while its antisymmetric part, corresponding to the antisytric part of the extrinsic curvature,
which is naturally symmetric, has to vanish. Then the 1-f0(5ﬁ must satisfies the following
constraint:

c75/[1“3] = K[O',emi ~ 0. (523)

261t is worth stressing that the fixation of the temporal gawugrearkably simplifies the canonical theory. Neverthe-
less, we have to say that, the temporal gauge is not a magddtoice to construct the canonical theory. In fact, we can
canonically formulate the theory as well without fixing theeuge, but the technical difficulties one would have to face
in solving the second class constraints are far from theesobphis paper.
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Hqp) IS @ 3x 3 antisymmetric matrix constrained to vanish, so it reatisexactly the three degrees
of freedom more that we have introduced with the choice ofétads as elementary variabfés.
As a next step, let me introduce the weighted triad fields

E =ed, (5.24)
wheree = dete,].28 We can rewrite the constrairft (5}23) as
Hij = eé'e?%p = ee,"’efK[o',‘eB]k = Ka[iEj] = 0. (5.25)

At this point we are ready for changing variables, speciffoak can easily rewrite the canon-
ical ADM variables as:
hap = det(E)8 E4 E (5.26a)
p?f = 20{"EPIE EY,KY. (5.26b)

The new couple of fundamental variables can be introducédeirscalar and vectorial constraints
too, we obtain

oyl e o
= # apB i i 1) in1/2 (3)
N detE, )2 (Ka'Kg —KJKg') — (detlEq]) V" OR(E)., (5.27b)

where the Ricci scalar curvat$fdR(E) is considered as function of the weighted tetrads. At this
point, it is important to demonstrate that the canonicaladyits, described by the new variables
on the extended phase sp&éés equivalent to that described by the usual ADM variableshis
respect, we can easily demonstrate that once the extendsd ppace is equipped with the natural
symplectic structure

{E/tX0.K3(ty)} = 5j575(x~). (5.28a)
{8/ 0.8ty } = {Kitx.K5wy)} =0, (5.28b)

the constraint
Z(a) = / Pxa* K EY, (5.29)

27The reader may wonder about the legitimacy of the weaklyskang symbol in 3). In this respect, we have
to say thaKj, has been generically defined, but only when it satisfies thdition expressed b3), it can be safely
related to the extrinsic curvature. Since the final goal hallto change variables and describe the canonical dynamics
through the canonical coup(e(ﬂpEf), the second being defined below, such a canonical systemilsesordinary
gravity when Eq. 3) is satisfied. In other words, comjit) plays exactly the role of a constraint (weak
equation) limiting the physically relevant evolution toestricted region of the enlarged phase space.

28Notice that the inverse of the weighted triad is divided by determinant o, .

29The adjective “extended” refers to the fact that the phaseespssociated to the new couple of variables has six
dimensions more with respect to the ADM one.
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wherea'® is an arbitrary antisymmetric matrix function, genera8&X3) rotations. In fact, calcu-
lating the Poisson algebra generated by the rotationakmonms we obtain:

{%(a),z(a")} =% (|a.a']), (5.30)

which is exactly the algebra of spat{(3) rotations. Any Poisson bracket between the rotational
constraint and the ADM canonical variables vanishes, sinmgicause the latter are manifestly
rotations invariant. The 3-metric tenshyg, being a function only of the weighted tetrad fields
(see relation[(5.2ba)), simply satisfies the following tieka

{haﬁ(tvx)vhyé(t>y)} =0. (531)
The case of the canonical momenta is more complicated,finalhave [B]:

{paﬁ (t,x), p*° (t,y)} - —g [h“*ﬂ%’ﬁ‘s + hoSgpBY | WBY 95 | hB5,%’ay] t,%) 3(xy). (5.32)

Namely, the above brackets vanish as soon as the rotatimtraon is satisfied. In other words,
as soon asZ(a) = 0, the ADM canonical variables, written as functions of tkkeaded phase
space variablegKl,,E)), generate the usual Poisson brackEts (#.23c). At last,fexitralgebraic
passages, we also obtain

{PP (e, hys(t.y) | = 3585 3(xy). (5.33)

Summarizing, the new extended phase space elementartzjlrnzmﬁizg,i andK¢ reduces through the
definitions in lines|(5.26a) anfl (5.26b) to the ADM ones, rowes their Poisson brackets mimic the
ADM ones as soon as the rotational constraint is satisfiedveStan conclude that the Hamiltonian
system described by the action

Sp1(E,K) = % / dtcx (KC{EG‘ ~ NH - NHq +o”<,%>ik> :

Rxo

once solved the rotational constraigfy = 0, is equivalent to that described by the ADM action
©.33).

The constraints[ (5.23)[ (5.27a) arld (5]27b) are first cessan be demonstrated with some
algebra. They reflect the gauge structure of the theory,ethdbey are correlated to the auto-
morphisms of the tangent bundle, namely 8@3) rotational symmetry, and to the space-time
diffeomorphisms©

5.2 Canonical transformations and new variables for graviy

Let us begin noting that, given the symplectic struct{r@gp. the transformationE“j —
E%/B andK,' — BK,' are canonical, in fact they do not change the symplectictire. The

301t should be clear from what stated above that this statedhszs not mean that the flow generated by the “new”
super-Hamiltonian and super-momentum constraints onxteméded phase space is a diffeomorphisms. Rather, once
the rotational constraint is satisfied, i.e. on the constrsiirface determined by the conditigf); = 0, it still exists a
representation of the diffeomorphisms group. There, it #he Hamiltonian flow of the rotational invariant variable
hgpg and p?B is equivalent to that generated on the ADM phase space.
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parametegB is called Barbero—Immirzi (Bl) parameter and is, in genesmatomplex number. It is
worth noting that the rotational constraint remains irematriunder this rescaling, so we can rewrite
it as

Ky = Ekij%ij = &ij (B)Kai (BE] ~ 0, (5.34)
where we used the properties of the total antisymmetric symiy and we indicated a§)K ;' and
(PEQ the canonical variables rescaled by the Bl parameter.

Let us now introduce the connection associated withSK€3) symmetry (or equivalently
SU(2)). Namely, we introduce the connection 1- foﬁH , in order to covariantly denvéO(S)
valued tensors. In particular, let us define the connecuantwactmn on the generic tens

containing both vectorial an8Q(3) indexes, i.e.

1an

n
ioim |1 i i1...0 i i1 di-ajiig. Im
DBTal an " aﬁ ag... "= z Bay 011 -Ok—1YOk41...0n m_,_ZF JBTal -On

(5.35)
It can be verified by direct analysis that the generalizecigant derivative aboveédg, sends each
smoothSQ(3) valued tensor field of typép, q) to a smoott5Q(3) valued tensor of typép,q+ 1)
onZ. As usual, we require that the covariant derivative operiatcompatible with the tetrad basis,
i.e. it annihilates the fieléai, namely we have

Dpes =0 = T, =efilye]. (5.36)

The curvature 2-formRa Bij’ is defined by considering the commutators of two covarianivel-
tives on arSQ(3)-valued scalar, i.e.

Ryp' V) = [Da, D]V — Ry = 20015 + T (5.37)

I
The following relation holds:
DoE = Ou (ed ) ~Tyed = eDyef =0, (5.38)
where we have taken into account the compatibility condif@3§). Consequently we have,
DoE =0, (5.39)

moreover, being, EY = 04 (e é’j> = OqE%, we finally obtain the following important relation:

where we defined’® ' —1/25k ' . Itis worth noting that the above defin&d, as function

of the dreibeins fields can be recasted as function of thehtaiigtriadsE®, we give below the
expressiort:
: 1 . : : :
My =5 jE™ [aﬁ Eq) — 0aE; +EY Em&BEy']

| 0p (defE, ")) e | Oa (detE,'])
detE, ] P defE,] |’

+ % gy EPX leO, (5.41)

31The expression of the 3-dimensional spin connection agifimof the densitized triad is the one that we should
use in [5.27b) to rewrite the Ricci scalar as function of Efe This can be easily done considering tf{E) =

= fk] R ﬁ'k[ (E)], whereR B'k[ (E)] is the curvature tensor associated with the connedtiand defined in7).
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which can be calculated simply by substituting the defini{6.24) in the expressiof (5]36) for the
spatial spin connection. We also note thigtis not affected by the rescalirigf; — P)E% =E% /B

of the weighted tetrad fields. By using the strong equafiof((5we can now replace the rotational
constraint [(5.35) with a Gauss constraiB, of anSQ(3) or SU(2) Yang-Mills gauge theory, as
follows

Gk = DaEZ + % = 0a PES + &, /T, PEY 1 g | PK,IPEY
— 00 PEY 4 £, Pl PET ~ 0, (5.42)

where the Ashtekar-Barbero connection, definetfag! = '’ + BK_!, has been introduced. For
B = +i we obtain the original definition of the Ashtekar self-duatiables for gravity.

Again a change of variables is in order. Specifically, we aplace the canonical couple
(Ki,,EP) with the new couple(®.7},(PEP) and, once checked that the replacement does not
affect the symplectic structure (canonical transfornmtig i.e.

{PE, (1), DA% (ty)} = 550 5(x.y), (5.43a)
{PE) (6.0, PES (t,y) } = { PA% 1., DA% (t.y) } =0, (5.43b)

we can go on to rewrite the canonical constraints as furetidthe new variables.
So, let us define the curvature of the new connections

Fap =20 P+ 8 Pty Pz, (5.44)
satisfying the following relation

T = RE 12D K+ 4 B K . (5.45)

As a useful formula, we rewrite the 3-dimensional Bianchilicyidentity, R[O(Bij e, =0, as
e R 5Eyj =0, (5.46)
which, after some algebra and considering the definifia®4(5 can be further reduced to
i B _
RiEP =0. (5.47)

By using the definition[(5.44) and the equations (5.45) &mdij(5 the canonical constraints can be
rewrite as follows:

Hy = PEY 7, — PKLG;, (5.48a)
He P (BEa BIEY [g”kyg —2(B2+ 1)K Kj] +B72(B)E'VDVGJ.'
(detE,)) Y2 ‘ Y LT (detg )2
(5.48b)

#2The only non-trivial check is that the Poisson brack8VAY, (t,x), (FIA%, (Ly)} in fact vanishes. This is a non-

trivial result, mainly based on the fact th%[ia(E), Ké} =0.
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It is interesting to note that both the scalar and vectoaistraints [(5.48) involve the Gauss con-
straint. Obviously, since the new expressions of the caaboonstraints[(5.42) anfl (5]48) are the
consequence of a well defined canonical transformationsttiueture of their Poisson brackets is
unaffected. In other words, they still represent a set of filesss constraints, correlated with the
gauge symmetry of the system; they limit the dynamics of trstesn to a restricted region of the
extended phase space. The same dynamics can be obtairely diaking with the following set
of first class constraints:

Gi = ZaE% = 0,E +&; ¥ Plr)EZ ~ 0, (5.49a)
Ca=EZi5~0, (5.49b)
C=—_ - pogh [e” T —2(B2+1) K['GKJ}] ~0, (5.49c¢)

(defEg))"? "
which are dynamically equivalent to the previous ones.

It is worth noting that the Gauss layv (5.49a) and the vectostraint [5.49b) do not depend on
the Bl parametef3, while the scalar constrainf (5.49c)fsdependent, implying that the physical
predictions of the quantum theory will in general dependtenitmmirzi parameter. A weird fact
is that even physical quantities not directly dependingt@HKamiltonian, for example the area
operator come out to b@-dependent.

As a final remark, the value8 = +i corresponding to the complex Ashtekar (anti)self-dual
variables are pretty special: The constraints become poijal, provided that we can someway
reabsorb the determinant of the densitized triad in the mémeator of the scalar constraint, e.g., by
defining a densitized Lapse functign [61].

5.3 Holst action as Lagrangian formulation of Ashtekar gravty

So far, we have never introduced the action which correspotite AB constraints calculated
previously. We dedicate this last part of the section to #rgument, describing also a recent
proposal for a possible generalization of the so-calledstaition.

The Holst action represents an important contribute in tstdeding the geometrical content
of the Ashtekar-Barbero formalism. If[89], Holst showedttthe AB canonical constraints of
GR [63,[64] can be derived by splitting a generalized Hilfatatini action. The Hilbert-Palatini
action in tetrad formalism %3

Se w] = %/ea/\eo/\*Rab(a)). (5.50)

The Riemann tensor is a function of the spin-connectimnwhich is considered as a separate
distinct variables with respect to the gravitational 1rfice® = €/,dx. In other words, the action
as to be varied with respect to both the gravitational field #ne spin connections to write down
the full set of equations of motion. Specifically, by varyitige action with respect ta ande
respectively, we obtain

det+ wineP =0, (5.51a)
3 .4€ ARY(w) =0. (5.51b)

33| et us use differential forms in order to be more concise imidating this argument. Some details are given in
Appendix[A.
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The first one of the above equations is the second Cartartigteuequation[(5]8), containing the
information about the relation between the spin connediwhthe gravitational field. This can be
easily solved and the solution can be put{in (5/51b), whiettlae Einstein equations in vacuum.

It is worth noting that the presence of matter, in generdecé$ the Einstein equations by
generating a source in the right hand side of (58.51b). Reabdylspinor fields, which interact with
gravity through both the gravitational field and the spinrmgtion, generate also a source for the
second Cartan structure equation, namely they representreesfor torsion[[86].

We claim that the Holst action

S(e> 0.)) = S—IP(ev w) + SHol (ev w) = %/ea/\eo/\ (*Rab_ %Rab> s (552)

wherep is the Bl parameter, is the starting point to formulate cacadrgravity in the AB variables.
The Holst action is made up of two parts, the first one is thaludiilbert-Einstein action, while
the second one is an “on (half-)shell” vanishing term. Gtadly, the Holst action is dynamically
equivalent to the HP one, indeed, by varying it with respecthe spin connection we get the
unmodified second Cartan structure equation, while thetian with respect to the gravitational
field gives

€3 4 A RCd(w)—%eo/\Rab(w) =0. (5.53)
But as previously demonstrated, the homogeneous secotahGtucture equatioh (5.31a) implies
the cyclic Bianchi identity[(5.15), which ensures that theskein dynamics is preserved from the
Holst modification.

We note that in the Holst formulation the Bl parameter turosto be a multiplicative con-
stant in front of a on (half-)shell vanishing term, this dias why it does not affect the classical
dynamics, while it has important effects in the quantummegas remarked previously. This be-
havior is reminiscent of the parameter characterizing dipelbgical sector of Yang—Mills gauge
theories (see actiorj (3]27) and the comment below; see gigerdlix[B). If thef-angle and
the Bl parametef8 have an analogous origin, then it must exist a classical dvemrk where the
analogy between the two parameters can be made manifesie pute gravitational case, in fact,
the argument proposed fails to be completely convincinge Mblst modification, in fact, is not
a topological density. It does not reduce to a total divecgemather it is an on-shell identically
vanishing term. But the actiofi (5]52) can be further geialto include in the picture also the
interesting case of torsional space-times. In particatafBg, [87], by introducing spinor matter
fields, an interesting hint was given to complete the Holstupe; specifically, the presence of
spinors can generate the necessary torsion contributigeneralize the Holst modification and
construct a topological term. In other words, by using a monimal coupling between spinors
and gravity?* it has been, indirectly, demonstrated that the EC actionbeageneralized without
modifying the classical dynamics by adding the Nieh—Yarological density[[88], i.e.

1 1
Sorav= SHp 6, W] + Sy [, W] = E/ea/\eo/\*Rab—I-ﬁ/<Ta/\Ta—ea/\eo/\Rab) .

345ee El)] for the extension to supergravity theories.
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By remembering the definition of the torsion 2-foilfd = de? + w?)/\eb, the NY term can be easily
rewritten as a total divergence, i.e.

/ (T2ATa—eanenn R) :/d(ea/\Ta). (5.54)

The modification is now a true topological term related to@hern—Pontryagin classds[91]. This
generalization is quite naturgl [92] 93] and has been thigrgigpoint to construct a precise analogy
between the Bl parameter and tBiengle of Yang—Mills gauge theories, presented ih [83], ab w
as other recent work$ [Of,]95]. The structure of the largggawoup, which is supposed to be at
the base of the proposed interpretation of the Bl paramgiguite subtle; a possible framework is
described in[[84].

Finally, we want to briefly digress on an interesting podisjbivhich has lately attracted much
interest. The analogy existing between thangle of Yang—Mills gauge theories and the Bl pa-
rameter in gravity suggest a further generalization, ngnine idea that the Bl parameter is actually
afield [96,[9%[97]. Initially, this idea was considered jasta possible generalization of the theory,
but recently it has been demonstrated that promoting theaBirpeter to be a field could be neces-
sary in order to reabsorb a divergence coming from the caimamaly on space-time with torsion
[P3]. This proposal has an interesting outcome, indeede ¢ime Bl field is coupled to gravity via
the Nieh—Yan density, it generates a torsion contributioiiné second Cartan structure equation. In
the case of pure gravity interacting with the Bl field, the efé¢ct of the presence of such a torsion
contribution is the appearance of a kinetic term for the Bdfigvhich turns out to behave like a
decoupled pseudo-scalar field. A more interesting dynaaygears as soon as we consider the
presence of fermion fields. Indeed, the Bl field couples toféheion axial current and, through
the chiral anomaly, it interacs with boson fields as wgl) [08,[98]. As it happens for the QCD
axion, instantonic effects can provide an extremely smaksrto the Bl field, which can be easily
evaluated[[93, 95], allowing one to extract some intergstissmological implicationd [P9].

We conclude this section saying that the nature of the Blmater is still debated; it is, in
fact, still argument of active discussion from both the puctassical and quantum perspective. The
idea that it is the expectation value of a super-weakly attng pseudo-scalar field is particularly
fascinating and rich from the theoretical point of view.

6. Quantization Program

Previously in this paper, precisely in[§]2.1, we discussedesgeneral and very well known
arguments which motivates the attempts to formulate a stamdi QG. Remarkably, the necessity
of a quantum theory of gravity was pointed out by Einsteind@thin 1916: More than ninety years
later a fully consistent and complete formulation of a quangravity theory still lacks.

Onthe one hand, it appeared immediately obvious from theggong works of Dirac, Wheeler,
and DeWitt, that the problem of quantizing gravity was mucbrenconceptually involved than
other analogous problems regarding the other interactidiss led to the idea that the problem
of QG could not be solved separately from the other intevasti namely, that it was inextrica-
bly bound to the issue of unification. So, for many years, tlablem of quantizing pure gravity
marginally interested physicists, more attracted by ttengit of unifying the other interactions or,
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more recently, by the idea of supersymmetry and extra-déines. Another interesting aspect that
is worth mentioning is the belief that the main question tevear to construct a consistent quantum
gravity was the disappearance of time. In other words ailhjtit seemed that the so calléizen
formalismwas the main obstacle to obtain a physically consistent dtation of QG. But the pe-
culiar role played by time in ordinary quantum mechanics #&nty correlated with the, let's say,
evolutionary interpretation of physical theories that vewdnbeen used to by classical mechanics.
The presence of an evolutionary parameter is neither a foadtal request of the quantization
procedure, nor a fundamental ingredient for the physidakjmetation of the theory. A quantum
theory without time can be, in fact, perfectly consistent.

On the other hand, the physical situation a theoreticaliplsgss called to face in constructing
a quantum theory of gravity should appear as the best hed@henagine. At present, in fact, there
is no strong experimental constraint on the quantum graeigymes. Naively, one could expect
that a rich variety of different consistent theories hashbeemulated so far, on the contrary, we
do not have anyone. Most likely the reason is the double eauGR, namely it is the field theory
describing gravity and, simultaneously, it is the theorgalibing the structure of space-time. Any
guantum gravity theory, in fact, has to put together threelfumental dynamical elements, i.e.
geometry, gravity and quantum laws. In this perspective, didinary quantum theory of field
cannot provide any insightful hint as one of the fundameinigledients lacks, i.e. the dynamical
nature of the space-time geometry.

We know, in fact, that as soon as we treat quantum gravityugstively, namely neglecting
the full dynamics of space-time, as one would do following prescriptions of quantum field
theory, the result we get is a non-renormalizable theory.itS@ems pretty natural to incorporate
the full dynamics of space-time in the theory through a nertysbative approach. But one may
wonder if a non-perturbative quantum theory of gravity catually be a consistent theory. This
guestion is often suggested by a naive analogy based on tiagibe at high energy of the Fermi
theory for the weak interaction. As is well known, the Fernodual contains a point-like four
fermions interaction, which is non-renormalizable. Féesmiodel works well at low energy, but
it is doomed to fail at high energies. A striking progress wase in this sense by completely
reformulating the theory through the introduction of thessiae boson®Vv* andZ° carrying the
weak interaction.

It is often argued that an analogous procedure has to beedppliGR, since its perturbative
non-renormalizability points in a direction similar to thad the Fermi model of weak interaction.
Nevertheless, this argumentation completely fails iniggtan essential difference between the
weak and the gravitational interaction, namely the fadt pleaturbative expansions presuppose that
the space-time is a smooth continuum at all the energy scBlass there is no reason to believe
that the classical concept of continuum space-time hagwvelat scales of the order of the Plank
energy. That is why a non-perturbative approach, able twrpurate the complete dynamics of the
geometry of space-time, may safely describe quantum gemdaiivity.

Furthermore, the failure of the standard perturbation esja in gravity may well reflect the
fact that GR is characterized by a non-trivial fixed pointlod tenormalization group flow. This
extremely fascinating aspect of perturbative QG has bedhdsscribed during this school by
Roberto Percacci, who, in his two lectures, has pointed lmitthere is a growing evidence that
this is exactly the case. Furthermore the requirement teafixed point should continue to exist
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also in presence of matter fields constrains the possiblpliogs in an interesting physical way
[L0Q].

In general, it is expectable that a consistent quantum yhefogravity is able to remove sin-
gularities, replacing them with a well defined quantum stétie gravitational field. Initially, this
was just a hope, but now encouraging results exist. They amglyrdue to the general quantization
program of Loop Quantum Gravity, which faces the problemuzrqum gravity merging together
the three main ingredients said above. They are still paggults, in the sense that it is possi-
ble to remove singularities at least in symmetric spacedinboth of cosmological origin, as the
Big Bang singularity [[741] 101, Ip2, 108, 1d4, 11{5,]106] 10W those resulting from a complete
gravitational collapse[T74, Ip§, 709]. Of course, a theoestablishing a general result about the
avoidance of singularities in LQG still lacks.

However, the existing results make us confident that a daitzdckground independent quan-
tization of the gravitational field can solve the problem lafssical singularities; the program of
canonical quantization of gravity has exactly this taskt, Bus a matter of fact, that so far the
complicated structure of the canonical constraints hagepted from making progresses in the full
theory.

Below, we describe the main features of canonical quaitdizastarting from a brief account
of the prescriptions of the Dirac quantization procedurentwe digress on the old Wheeler-DeWitt
quantum gravity and finally we go on to briefly introduce sorsgezts of Loop Quantum Gravity.

6.1 Dirac quantization procedure

The Dirac quantization procedure is a set of prescriptiaméng to consistently face the quan-
tization of constrained physical system. One useful exaerngplinderstand how the Dirac procedure
works is the quantization of the electromagnetic field, Wwhas remarked in [§ 3.2.1 is a gauge the-
ory of the compadt (1) group.

Canonical quantum electrodynamics is usually construbiedimposing a gauge condition
on the electromagnetic potential, as initially suggested-brmi. Specifically, the quantization
usually chosen is the so-called Lorentz gadgéH = 0. By imposing the gauge in the action, the
definition of the momenta conjugated to the electromagipetiential do not generate any primary
constraint. So, the theory can be quantized and the gaugktioonweakly imposed on the Fock
guantum states, reducing the physical degrees of freeddhettwo polarizations of the photon.
Another possibility is to consider the full canonical ciasstheory. As we have calculated in §
B.3 a first class Gauss constraint appears and can be treafiethh the gauge. A possible choice
is the Coloumb gaugé,A® = 0. The dynamical variable®,, E?) have to satisfy both the gauge
fixing condition and the Gauss constraint. As we said in $€8, the general conditions that a
consistent gauge fixing has to satisfy imply that the Gausstcaint and the gauge condition form
a set of second class constraints. Thus, the degrees obfmedconfiguration space are exactly
reduced to those corresponding to the two polarizationeephoton field. Finally, once the non-
physical degrees of freedom have been eliminated, thersys@ be quantized by promoting the
canonical variables to operators, satisfying the relataerived from promoting the Dirac brackets
to quantum commutators.

This procedure works well if applied to linear physical gyss, but it presents some com-
plicated issues when applied to non-linear systems asxéonple, gravity or Yang-MillsSU(N)
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gauge theories faN > 2. The reason is connected with the existence of the so dalldayv am-
biguities, which are produced by the complicated geonedtéaspects of the complete phase space
associated with the dynamics of gauge theories. In factemneral, the geometry of the constraints
surface and gauge orbits could be such that the gauge fixifersucuts some of the orbits more
than once and it does not intersect at all some of the oth8ts $b the gauge fixing surface works
properly only locally, in general, it is impossible to find blgal suitable gauge condition. This
fact is generally referred as the Gribov obstruction andasgnts a shared characteristic of all the
non-abelian gauge theories. Also gravity is affected by phhoblem, indeed, studying the classical
canonical aspects of the theory, we pointed out that thenpteto solve the Cauchy problem in
GR reveals the non-existence of global gauge conditionfdhit is possible to find a solution of
the Cauchy problem at most locally.

For these reasons it is important to develop a theory of flestscconstraints without being
obliged to fix the gauge. The way, suggested by Dirac, is t@saghe first class constraints after
the quantization, namely directly on the quantum statesotter words, the idea is to set up a
Schrédinger-like equation by promoting the first class Hamian to a quantum operator acting
on the states of the theory. The classical first class contgran stead, are imposed on the state
functional as supplementary conditions, i.e.

Ci|y)=0. (6.1)

The action of the first class Hamiltonian and the first clagsstraints on the state functional is
dictated by the upgrade of the classical Dirac brackets émiyum commutators.

In this way, every quantum state remains unchanged undansfarmation generated by the
constraints, namely we are reintroducing the gauge irvegiaat a quantum level. In fact the
condition above implies, as a consequence, that the quastates are invariant under finite gauge
transformations in the sector connected with the ideftitye.

exp{ianC | 1) = y). (6.2)
We are assuming that the set of classical constr@ints first class, i.e.
{CI,Cy} = fi,Ck, (6.3)
if this relation is preserved by the quantization we have
G1.Go] = ify,<Cx, (6.4)

but in general it is possible that the first class conditiobsva show the presence of additional
terms of quantum mechanical origin, i.e. we could have

[él 76.]} = iRf,,“C + R2A;. (6.5)

35The properties of the physical states under “large gaugsfisemation”, that is those not connected with the iden-
tity, are not contained in the action principle, indeed nostmints are generated by them. So, requiring the invegian
of the physical states under this larger class of transfdomavould be an extra assumption. See Appelﬂiix B for more
details.
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If this is the case the physical states, namely the statesiamt under finite gauge transformation
connected with the identity, must satisfy the additionalditon

A ly) =0, (6.6)

which has not a classical analogue and in general restagplihise space too much. In particular
if the operatorﬂu is invertible, it would imply that the space of the physictes is empty. So,
on the one hand, we cannot impose such a condition withostidadly affecting the content of
the theory. But, on the other hand, if we do not pose that ¢immdihe operatoré are not first
class any longer; so, they no longer generate gauge tramsfions. In other words, the gauge
invariance is broken at a quantum level, i.e. the quantinadf the system has produced a gauge
anomaly. Summarizing, if quantum effects break down gangariance, then it is meaningless to
search for gauge invariant physical states, i.e. we canmmbse equatior] (§.1). We can finally say
that if a gauge anomaly is present the Dirac quantizatioragetannot be applied and a different
guantization procedure, e.g. BRST, must be considereth, thwit hope that it could improve the
situation in view of a consistent quantum theory.

6.2 Wheeler-DeWitt equation

The Wheeler-DeWitt equation is essentially the result efBtirac quantization procedure as
applied to gravity. There is one peculiar aspect that makiesargument interesting, namely the
fact that the first class Hamiltonian of GR is a combinatiorcarfistraints; so that the equivalent
of the Schrodinger equation does not exist in quantum graVitis aspect is well known and, as
remarked previously, it is often referred as the probleriro&f® Nevertheless, the quantization
can be formally performed, by following the standard prased

Firstly, let us define the smeared ADM variables,

Q) = [ dxhegQ” (6.72)
>

P(f) = /dgx PP fap. (6.7h)
2

whereQ?? and f 5 are smooth tensor valued function, whiigs and pY9 are the canonical vari-
ables defined in § 4.1. As is well known the wave function delseanly on half of the elementary
variables, since in this case a natural separation betwad#igaration variables and momenta ex-
ists, then the “polarization of the symplectic manifold”geetty natural, i.e. the wave function
will depend onQ(h). Now, once a suitable quantum configuration spéckas been introduced,

it has to be equipped with the structure of a Hilbert spaceis Tansists in choosing a suitable
measurel L, in such a way tha¥” becomes naturally ah, space. Obviously, the present Hilbert
space does not know about the dynamics, so it will be refeasekinematic Hilbert space. Now
the quantization proceeds in the usual way, namely requitiat the operator representation of
the elementary variables, i.€(h) andP(f), acting as linear operator on a common dense domain

361t is worth stressing that the observables of the theory tabe gauge invariant, namely they must commute with
all the constraints. This implies that the observables efdgtavitational field commute with the Hamiltonian, which
leaves them invariant rather than generating their timéugiem as in ordinary quantum mechanics (frozen formalism)
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of the kinematic Hilbert space?’(L,,dLp) generate an irreducible representation of the canonical
commutation relation. In other words, we require that

Q). P(f)| = iR{Q(M). P(f)} (6.8)
As usual,@(h) operates by multiplication when valuated on the quantunfigoration space, i.e.
(h QN ¥) = Q(h) (hiw) = QW(h), (6.9)

while P(f) acts as a functional derivative operator, i.e.
(h|B(f) / A fop oo 5h (hlw) = / A fop oo 5h Wh). (6.10)

Now, the naive quantization of the system follows from trem$iation of the classical constraints
to quantum operators, in accordance with the prescriptiave i.e.

= HN)Y[Q(M)] =
= HN)¥Y[Q(h)] =

: (6.11)

~0
~0 (6.12)
But this procedure presents a lot of shortcomings, someeashthre of a general nature, while
others are specific for the gravitational cgde [3]; we sunirean what follows the main ones.

e We know that in the construction of the quantum phase spauifuns we can arbitrarily
add to the elementary variables terms proportional to tmstamth without affecting the
classical limit of the theory. This ambiguity in the choicktlee phase space function is
known asfactor ordering ambiguity Divergences can arise in gauge theories where a bad
factor ordering is fixed, a simple example is provided by QEact, only after the choice
of a suitable factor ordering, the Hamiltonian operatoultsswell defined, being otherwise
divergent and nowhere defined.

¢ In general the divergences of an operator are of a worse kiddan be reabsorbed only after
a regularization and renormalization procedure. It is tvardting that the renormalization is
connected with the free possibility of adding localizedrisito the quantum operators.

e It is important choose the factor ordering in such a way thatquantum operators be self-
adjoint. This is a crucial step in theories with true Hanmilam, aiming to guarantee that
the eigenvalues of the operator be real. It could be negldntéheories with a constrained
Hamiltonian like gravity, on condition that the eigenvalzero is contained in the spectrum.
Working with self-adjoint operators is however advantageo

e The Hamiltonian quantum operator of GR depends neithernpohyally nor analytically
on the metric field. This fact poses a serious problem, becaugeneral operator valued
distributions multiplied at the same point gives divergessults; so, a regularization proce-
dure is required. Even worse the presence of distributichendenominator poses a more
difficult problem of formal definition. Anyway, we can try t@esk formal solutions of the
Wheeler-DeWitt operator, being aware of the fact that aleegqation procedure is however
required.
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e Let us suppose to neglect initially the amount of technisalies and bad definitions of the
Wheeler-DeWitt approach, hopefully solvable after a $litaegularization and renormal-
ization procedure. Let us suppose that we succeed in findswgusion of this equation,
then a conceptual and interpretative issue arises. Indexdp not know, in general, how to
interpret the result. This fact is strictly connected wiik problem of time and, even though
a quantum mechanics without time can be constructed, themtlzef amount of work is
required to correctly interpret the result of quantizatioh possible solution to this inter-
pretative problem is the relational evolution. Namely, &r8dinger-like equation can be
constructed in place of the Wheeler-DeWitt one, showing the presence of time in the
quantum equations reflect on the classical theory gengratatter fields[[39]. The other
way around is to couple matter to gravity, e.g. a free scadddl fir a dust of particles and
extract a relational time variables related to the momerdtithe scalar field, by using, e.g.,
the Brown-Kuchaprocedure[[38] 31]. It is worth noting that in this kind offapaches the
evolution parameter is not external with respect to the ighysystem, as, e.g., in back-
ground dependent theories; here the evolution is refeaad tinternal time”, as one would
expect in a background independent framework.

e Finally we stress that a central issue should be faced aratdedhe presence of gauge
anomalies. In GR, indeed, the problem is particularly cacapt, because the group structure
constants are replaced by structure function dependingeometric field. So, in computing
equation [(6}4) it is possible that an anomalous factor cayaes

All the above described issues have led to seek for a betteralzation of the problem. In
particular, since the choice of the elementary variabledidsated only by the convenience and
simplicity of the resulting constraints, the use of Ashtelgarbero variables turned out to be ex-
tremely useful in facing some of these problems. In fact, rsigbent anomaly free quantization
is possible and has given interesting results. For exantipdespectra of regularized self-adjoint
operators related to geometrical quantities are exactlin@with the results one would expect
from a quantum General Relativity theory.

6.3 The program of Loop Quantum Gravity

As we showed in Sectioﬁ 5, canonical GR in the Ashtekar—Barfmmulation is character-
ized by the following set of first class constraints:

Gi = 9o PY+ & jsz{;P‘} ~0, (6.13)
Cy = Piyyti:rymoﬂ (6.14)
C— P_apjy [Eljkg;ay_z(BZ_i_l) K['O,K)J,]] ~0, (6.15)

(defP,i)™?

where, to simplify the notation, we defin® = (PEY and we dropped the upper lgtin the
connection, i.e«7) = BK}, +T,. For convenience we rewrite here the symplectic structsireed|

[t 0.R X))} = 8af5(xx), { ot ), a5 tx)} =0, {R(EX).R(tX)}=0.
(6.16)
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The above formulation of the classical canonical GR is thdisg point of LQG. Remarkably, the
AB formulation, allowing to rewrite GR as a theory of connens, provides a sort dfinematical
unificationwith the other forces. Other interactions are, in fact, egstully described by Yang—
Mills gauge theories, namely as theories of connectionseeabn compact groups of ttf&J(N)
family. Nevertheless, it has to be emphasized that, from reahjcal perspective, a profound
different can be immediately recognized: In Yang—Millsdties the metric of space-time plays a
central role, e.g. in the n-point functions, while in QG nakground metric is assumedpriori;
better to say that in QG there is no space-time at all.

According to the Dirac prescriptions previously describtwe theory can be quantized by
suitably defining a quantum representation of the canoaigabra and then imposing the operator
translation of the canonical constraints on the state fonat, W(<), representing the states of the
theory. A possible choice for the representation is the oggested by the old Wheeler—-DeWitt
approach described before, which, even though formallgecgrcannot be made rigorous.

The program of Loop Quantum Gravity goes, in fact, in a difd@rdirection. The idea is
to use a different set of fundamental variables,which areensaitable for quantization. In this
respect, let us introduce the holonomibg|<7], of the connectiom/g, and the fluxesP[Z, f], of
the momentun® respectively as

hy /] = yexp{/dg,ncg:ds} , (6.17a)
y
and y
i dx® dx¥
P[S f] ZS/Pi“f'eapyHEdsldsZ. (6.17b)

Above, the 2x 2 matricest; = %ai are the generators of th&U(2) group, g; being the Pauli
matrices; whilef' is an SU(2) valued smearing function. The symbpldenotes the parametric
oriented curve on which the holonomy is valued; wiSleepresent a 2-dimensional surfacesth

It is easy to demonstrate that the holonomy has the folloyiagerties:

hyoy, [#] = hy [@]hy, (@] and h,1[o] =ht[e], (6.18)

wherey; o y» corresponds to join together the end pointpand the initial point ofy,, while y—1
denotes a change in the orientation of the curve. Noticethieeholonomy [(6.1Ta) is an element of
the groupSU(2).

Our purpose is to describe the canonical dynamics of thetgt@nal system by using the
new variables defined above. The first step in this prograheigvaluation of the Poisson brackets
between the new configuration observaliigsz/] and moment#[S f]. Specifically, the Poisson
brackets between two configuration variables vanish, whoesidering that any edgewith yn
S= 0 can be trivially written as the union of elementary edgésctv either lie in S, or intersect S
in exactly one of their end-points, then, for each of theeemehtary edgegwhich intersect S at a
point p, we have:

h,[«/] T, fi(p) if pisthe source of

—fi(p)tih, [«] if pis the target of ’ (6.19)

{he[%LP(Z? f)} = —K(S,V) X {
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where

+1 if yN= £0 (6.20)

Notice that the Poisson brackets between two momenta idrivigd; the reason being related to
the fact that new variables are still distributional qutisi even though they are smeared, since the
smearing is made respectively on one and two dimensionati@uns for holonomies and fluxes, so
that a particular care has to be taken in handling with Paissackets involving two momenta.

According to the usual procedure, the quantum fundameptiabors in the auxiliary Hilbert
space will be required to satisfy the algebra originatirggrfrthe commutation relations. So, one
of the main issue one has to face is to find a consistent repeggm for the quantum algebra. It
is worth saying that the properties of the resulting quang@ometry can be extracted through the
momentum operator@[Z, f] in that representation. The momentum operator, in facelaed to
the classical orthonormal basis via the definitRfh= g ~1E?. Surprisingly enough, the diffeomor-
phisms invariance requirement sort out a unique repref@mtaf the quantum algebra. This result
is often referred as LOST theorem by the acronym of Lewankipwolow, Sahlmann, and Thie-
mann [11P] (an independent result with the same physicakobmas been given by Fleischhack
[L11])

After this brief introduction, a schematic description @whthe Dirac procedure applies to
gravity in the LQG program is in order.

0 ifynZ=0orynzZ=
on-{ sy,

e Holonomies of the connection are chosen as configuratiaablas. In particular, the auxil-
iary Hilbert space can be constructed and consists of a $ahcfionals of the holonomies,
square integrable in the Ashtekar-Lewandowski measure.

e The Gauss and vectorial constraints have a natural actiahestates of the theory. In
particular, the space of solutions of the Gauss and vettmisstraints is well understood.

e The situation becomes much more involved as far as the soaiatraint is considered. The
main problem is that the scalar constraint is highly noedin Some strategies have been
developed to deal with the scalar constraint, particuliihpugh the Thiemann’s “master
constraint program”[[1]2], but many unsolved issues atepsgésent in the theory. Nev-
ertheless, well defined version of the scalar constrainsyimmetric systems) have been
constructed, leading to striking results, which answer eséomg-standing question about
(quantum) gravity.

e At the present stage of the development of the theory, phlysleservables are known only
in some special cases.

In order to be more specific, let us give a brief account ofdtsteps by introducing the so-called
spin-networks representation.

In order to be as clear as possible, let us start by definingstneect graphl;, which is intended
as a collection of pathg € ~ meeting at most at their end-points. Given a grBpkve denote by
1,2,--- ,Nitsedges, i.e. = UE:l Y. We call cylindrical functions of generalized connecti@ans
functional of the holonomies valued on the edges of the graglomplex numbers,

F:SUQ2N -, (6.21)
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defined as
LIJI'F[*Q{]:F(hm[%]f"’hm[%])' (6.22)

As a simple example, consider a closed lgagnd the functional
Wy [7] = Py [o/] = tr {hy (7]}, (6.23)

this is often referred as Wilson loop and belongs to the sphcgindrical functions, i.eW, [«/] €
Cylr.

Let us now denote a¢ the linear space of all functionals- ¢ [A] for all I and f. The space
Z can be equipped with a scalar product through the followirg@dure. Define a new stagig,
as

A (Wr ) =/|1dhyF (Peeahn) (6.24)

yC
wheredhe is the normalized Haar measure $8)(2). The stateua, (Yr ¢) is normalized, i.e.,
UaL (1) =1, because the Haar measure is normalized, and positive, i.e

HaL (Pr e Ui F) :/ ndhyF* (hys- - hy ) F (hyg,... hy ) > 0. (6.25)
yC

As a consequence, a scalar product#@rcan be defined as

(Urelyre) = ta (Tredrp) = / [T dheF” (he,,....he)F (hey,....he,) . (6.26)
ecrur’

Usually ua, is called Ashtekar-Lewandowski measure. The above sceddupt gives to the kine-
matical state space the structure of an auxiliary Hilbeatsp Furthermore, the kinematical scalar
product is invariant under the automorphisms of the localdiel and 3-diffeomorphisms, so that
the kinematical state space carriesnitary representation of loc&8U(2) and 3-diffeomorphisms.

At this point, the states of the theory, represented by thetfonalsyr ¢ € .#, have to be re-
stricted by imposing the constraints. In particular, by asipg the Gauss and vectorial constraints,
the state of the theory will be invariant under the Id88l2) symmetry, correlated with the (double
cover of the) group of spatial rotations, and under the &.dBut, in order to rigorously implement
in the quantum theory the following formal equations

Giyrr o) =
C\GWF.F [52/] =

, (6.27a)
) (6.27b)

it is necessary to find a quantum operator representatioheotlassical elementary variables.
In this respect, the introduction of a suitable basis forkimematical states space is particularly
useful. Without entering in the details, we can just use ¢selt of the Peter—Weyl theorem, stating
that a basis on the Hilbert spacelof functions onSU(2) is given by the matrix elements of the
irreducible representations of the group. We indicate th&imelements in thg-representation as
R(”"?], wherem,n, ... denote the matrix elements of the specific representatiberefore, a basis
for each grapli is simply obtained by “tensoring” the basis above, i.e.
Urelel= 3 AT NRER (hy []) - R (hy[]) - (6.28)

_ jaiin
Ji N
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The symbolj labels the irreducible representationSif(2), which can be characterized by half-
integer spins, pictorially associated to each edge of thptgr. The coefficients of the expansion
fj,...jy are restricted by the gauge invariance. We can easily aatsirsimple example for one of
the elements of the sum above by considering a gragtade up of three edges, y», 5, to which
we respectively associate the representatiqés%lof the groupSU(2), then we have:
Wipopop [#] = RY (hy [7]) RY? (hy, [7])

RY2 (h, [#]) .. 0 CaBP, (6.29)
V3 C i

AB D J

wherei, j = 1,2,3 are vector indexes, whil&,B,C,D = 1,2 are spinor indexes, aquC are the
2 x 2 Pauli matrices. It is easy to check that the expressionalsmgauge invariant, in fact, the
Pauli matrices are invariant tensors in the tensor prodymesentation & 1/2® 1/2 acting on the
nodes of the graph = y1 U o U y5. Generally, we can write a gauge invariant state function as

o= (@R“”(ha W])) - (@m) ,

where the invariant tensorg assigned on the nodes of the graph are called intertwinévgeba
the representationg, - - - , jn associated to the edges joining in a node. The gfgpthe labels
jk “coloring” the links, and the intertwiners, “coloring” the nodes completely define a state; in
particular, a state defined by the tripl&t, jx,in) is calledspin-network

Now, in order to physically characterize the states of tleeti represented by spin-networks,
we construct some geometrical operators acting on thermindgfiheir action on the single holon-
omy (the action on the complete state can be extracted by @sitigm). The first operator we
wish to define is the momentum operator. It is easily coreeldb the triad, which has a precise
geometrical interpretation as stressed above. The momePfunaturally acts on the holonomies
as a functional derivative, i.e.

o

5k (6.30)

PIS f] = Tﬁ/dssdsysapyfk
S

where we introduced the Planck constariit is worth recalling that we set7/8 =1 andc =1
from the very beginning). To compute the result of the acbbthe momentum operator on the
holonomy, let us firstly note that

o M / ds3 (x hyl /] Tihy, [7] | (6.31)
namely, the action of the functional derivative “cuts” tiwkly at the pointy where the derivative
operator acts, inserting &UJ(2) generators in the middle of the holonomies valued on the two
resulting pieces of the original holonomy. Given that, weilgayet

_ R dx dx® dx/
P[sf]hy[m:T/dsldszdé By o o d; (x(s%),y(s5,82) fihy (/] Tihy, [#] . (6.32)

Notice that the integration is made in 3-dimensions so thatdt distribution can be safely in-
tegrated, moreover its presence ensures that the aboggahtanishes if the linky does not
intersect the surfac® The points of intersection between links and surfaces sually called
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punctures By using the scalar product defined before, one can showithiaict, the triad operator
is self-adjoint.

After having established the action of the triad operatothenholonomy, we can now define
an interesting quantum operator, namely the area ope?atdret me initially refer to a single
holonomy in the fundamental representation. Neglectingesgvery important) subtleties, we
have that:

519 B 2 i 3

RSP [§hy[o] = -hhy [Z]T'Th), [] = il hy [«/] .
Considering a general irreducible representatioBldf2), the action of the square of the momen-
tum operator on the holonomy turns out to be

RSP [SRY (hy[«]) = -2 (j+ 1)RD (h,[])

where we assumed that the surf&&eés punctured only once. For a generic surf&mm space
the situation is slightly more complicated and can be reduoehe previous simple case by the
following procedure. Divide the surfac®in N cells and consider the full area as a linf =

limn_e AY, where
N
AN:BZZL\MH(S)Pi(S)M (6.33)
=

R(S) being the flux through the-th cell. The factor3 stems from the definition of the classical

momentumP? = (BET = EA/B, remembering that the area operator has to be defined with the

geometrical triads”. So that, the quantum area operator then simply becdmeslimy_ .« /Sg.
Considering the result obtained above, the area operatws twt to be diagonal in the basis

of spin-networks and reintroducing the physical constiémgpectrum is given by

As|w) = Beplz p(Jp+1)[¢), (6.34)

where/p) is the Planck length. Notice that the cellular decompasittomade in such a way that,
in the limit N — oo, each cell is punctured at most in a single point.

An analog procedure allows to define the kinematic volumeaipe\7. The classical volume
of a region,%, of space can be written as

/d3 \/ |cap e ETEPEY. (6.35)

which corresponds to a complicated quantum operator. lticplar, to calculate the spectrum
of the volume operator, a cellular decomposition analodi&b performed in the case of the area
operator results to be very useful. Specifically, the voluperator

= lim B33, / d3x \/ Eapye PP, (6.36)

can be evaluated and its spectrum results to be discretadiegeon the quantum numbers coloring
the nodes of the graph. It is worth noting that the Gauss mnstobliges the flux operator at a
node to vanish, so that the volume of a three-valent nodeskrasias well.
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The fact that the quanta of area depend on the quantum nurabsosiated with the links
or edges of the graph, while the quanta of volume depend oguaetum numbers of the nodes,
suggests a natural physical interpretation of a graph. ifigaly, any node of a graph represent
a chunk of volume of the quantum space-time, while links dieeche quantum properties of the
surfaces between two volumes. This means that quantum-tipaeat a kinematical level is made
up of quanta of volume separated by quanta of area.

It remains to describe how the canonical constraints cammpéemented on the quantum
states of the theory. This argument deserves to be carefollyyzed and is far from the scopes
of this paper. Nevertheless, it is important to say that thei<s and vectorial constraints can be
implemented and solved at the present stage of the develawhihe theory. They, in fact, have a
pretty natural action on spin-networks, but serious diffies appear as soon as the scalar constraint
is regarded. Here | want to digress on the general procedwe: to deal with such a problem.

As we said before, the spacg can be equipped with the structure of an auxiliary Hilbert
space by defining a normalized positive defined kinematizabs product. Our final purpose is to
define a physical scalar product, namely between statesshitisfy the constraints. In order to
give a general brief description of the problem, let us r&dex general constraiff and define the
following projection operator

S = / SN/ dNT (6.37)

This operator allows to formally define a physical inner pretdfor details and rigorous procedures
see [1]). The idea is th&, is formally equivalent to a delta function of the constraperatoré’,
S0 it can select the states of the theory that satisfy thetizons i.e.

(<4’r,FWr/,F'>)phyS= <'~)UI'7F‘5 (Cg> \l,Ur'.F/> . (6.38)

So, formally, the physical inner product corresponds tddtlewing expression

/ SNdJaNE

(UrelSAYr g) = <¢’r.|: l,UrzF/> = ((Ur e lUr F)) ppys- (6.39)

which can be made rigorous through the group averaging dusee

Concluding, we stress that an important result obtainetienfiamework of LQG is the dis-
creteness of the eigenvalues of geometric operators. Builtaneously, this fact introduces an
interesting issue. In fact, in the classical theory, to aiste a precise physical meaning to geomet-
rical quantities as the area and volume of a region of sgaoe-bne has to define the surfaces and
regions operationally, e.g., by using matter fields. Ongeithdone, one can simply calculate val-
ues of these observables using the geometrical formulagsnAlogous situation characterizes the
guantum theory. For instance, the area of the isolated dwifza Dirac observable in the classical
theory and the application of the quantum geometry areaudtarito this surface leads to physical
results [1L]. In this situation, the operators and their eigéues correspond to the proper lengths,
areas an volumes of physical relevant objects.

Finally, answering to a question asked more than once dahi@gschool, it is important to
emphasize that no tension exists between the discretehdssagenvalues of geometrical opera-
tors and Lorentz invariance. A simple example from quantuectmanics should clarify this point.
Consider, e.g., the angular momentum operator in ordinaapntym mechanics, its eigenvalues are
discrete and this is perfectly compatible with the rotatidnvariance of the theory.
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A. Differential forms

In this appendix, we have collected the main definitions amohéilas useful to deal with dif-
ferential forms. This language has become pretty commolneimeéicent Literature and sometimes
confuses students used to the index notation. We shouldhsaynta theory like GR, where the
coordinates do not have any physical meaning, differefdiahs represent the most natural math-
ematical formalism, even though, in some problems, theximd¢ation is preferable. So, often one
has the necessity to switch from one formalism to the otl@ngyfrom forms to indexes and vice
versa. This has induced me to collect some formulas in feweqagith the hope they will be useful
to the readers as they has been for me.

As a disclaimer, | stress that many different notations aexlun the Literature, anyone valid
and motivated by precise choices. The definitions and fambkelow are in accordance with
a notation commonly used in Physics and refers to an arpitmamber of dimensions (unless
differently specified) and to any signature of tirdimensional manifold.

Let M be ann-dimensional manifold with signatue®” Denote the| D -dimensional space

of p-forms on the cotangent bundle A8(T*M"). Lete? = €, dx* be a 1-form transforming under
the vectorial representation of the local symmetry gr@@@n—s,s). The canonical basis for
AP(T*M") is naturally induced by the local bas®, through the wedge product. Specifically, a
basis forp-forms inn dimensions is given by the collection of all the possibledrly independent
p-forms which can be formed by wedging thevectorse®. For example, the natural basis for

3-forms in four dimensions is made up of t eg 3-forms given below:

e2—petne?, PB=nretned, B=Enrfned, eB=elnne’.  (Ad)

Any p-form n € AP(TM") can be expanded on the canonical basis according to theviotio

definition

1
p!

where the square brackets denote anti-symmetrizatiom-f&rm can be naturally integrated on the

n-dimensional manifoldV, by considering that it contains the natural volume elenagabrding

to the following definition

n Niag.-ap) € A - ANEPP, (A.2)

N ne =gt XA AdXE = (—1)%H TV (A.3)

wheredV = \/@dx1 ---dx" denotes the volume element agyg 5, the totally antisymmetric sym-
bol, with the condition that,, 5, =1 fora < aj1.

We introduce now the internal or scalar product betweeredifftial p-forms and vectory
defined on the tangent bundleM. Let w € AP(T*M") andv = V@&, € TM, where the vector
fields & = e'“adp are a local basis o M. By definition we haves® &, = §2. The following
prescription allows to evaluate any differential form inpaular directions represented by vector

37Namely,s corresponds to the number of minus signs in the metric.
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fields, obtaining & p— 1)-form, according to the following prescription:

1
w(v) = o Waya P [N AP Lgy

p .
- % Zl(_l) pilét?i%lwaawapvbeal VAREEWA efi-1 A\ gfi+1 A--- A efp
[
= (p_ll)l (—l) p_l%al__.ap71W§l ACEEWAN eapfl’ (A4)

where in the last line we moved the index saturated with timepmments of the vectaron the left
by using the antisymmetry of the indexescofind renamed the others. By using the above formula
we can extract the components opdorm by evaluating it orp vectors of the local basis, i.e.

N(a. €)= (~1)2P Vg o0, ¥n e AP(T*M"), (A.5)

namely, the p-formm is a smooth map that at any poit M associates an antisymmetric tensor
of type (0, p).

Let us now introduce the exterior or wedge produgt”“between two generic differential
forms. The wedge product is amap AP(T*M") x A4(T*M") — APT9(T*M") (p+qg < n) defined
as

1
@A = ﬁ%~ap]'7[b1---bqleal nefeneltne

1 +0)!
- (p_|_ q)l <(pplq(l:1) qal"~apnap+1"~ap+q]> e ne nert g ’ (A'G)
so that the components of the resultimH- q)-form are
p+09)!
WA r’(eaw o ’eap+q) = ( p!q!) Weay-apMap.1-apq] - (A7)

Another useful operator we want to introduce is the so-ddfledge dual usually denoted by the
symbol “x”. The Hodge dual is a map: AP(T*M") — A"P(T*M"), acting on the canonical basis
according to the following prescription

1
*x (€N NEPR) = msapﬂ---anal BBpii A L. Al
1

—p) a1
== p)!(—l)p(” Pt e BN N EP (A.8)
Notice that the above definition slightly differs from theustiard one, but it results particularly
convenient for a reason that will be clear soon. In fact, ér@sting consequence of the definition
above is that the wedge product ofpeform with its Hodge dual generates the volume element
according to the following formula:

* (€A NEP)A (B, Ao Aepy) = P! 5[";‘;1‘jjf';‘;;]dv (A.9)

wheredV is the natural volume element on thelimensional manifold defined above. It is worth
noting that no dependence on the signature or dimensioreaapthe formula above, so that it

82



Introduction to Loop Quantum Gravity Simone Mercuri

will be particularly convenient to rewrite actions in termisdifferential forms. Notice, also, that
operating twice with the Hodge dual one obtains the initaif apart for a possible sign factor, i.e.

*ox (BN NEP) = (—1)STP—Plghi .. p g, (A.10)

By using the definitions[(A]2) and (A.8), we can easily extréie expression of the dual of a
genericp-form. Specifically,

1 1 1
*W = a (L)al...ap*(eal /\ e /\ eap) - < (—l) p(n_p) (th...apgal ap ap+1...an> eap+l /\ . /\ea“ .

(n—p! \p!
(A.11)
In other words, the dual of a genereform is the(n— p)-form of components
1 _
*0(€ay, -+ €ay ) = a(—1) POP) g€ st (A.12)
So letw andn € AP(TM") be twop-form, we have by the formula above that:
*WAN = %wal...apr;al‘“apdv. (A.13)

Hence, apart for the factor/p!, the wedge product i (A.13) corresponds to the scalarywbd
between the components of the twdorms multiplied by the natural volume element. This can be
rewritten as: 1

*WAN = a (w(eala T 7eap)7 r’(eala e 7eap)) dV7 (A14)

where the symbq...,...) denotes the internal product. We remark that wedgingotfrm with
the canonical basis the factorial pfdisappears.
The exterior derivative operatdris a map fromAP(T*M") to AP+1(T*M") defined as

APHL(T*M™) 5 n =dw = (pTll)l ((p+ 1)d[bwa1...ap]> PASLN- AP, we AP(T*MD),
(A.15)
where, as usual, we contained in parentheses the compasfethies resulting(p + 1)-form. By
the definition given above we can immediately extract an mgpd property of the exterior deriva-
tives, i.e.dod = 0, namely the composition of two derivative operators isvidugishing operator.
Moreover, assuming thab € AP(TM") andn € AJ(TM"), it is very easy to show the following
formula
dlwAn)=(dw)An+(-1)Pwadn. (A.16)

In general, the presence of a local symmetry requires theitiefi of a covariant derivative. In
this framework a locaBQ(s,n— s) symmetry is present, therefore we have to define a new exterio
derivative operator acting dQ(s, n— s) valuedp-forms which generateSQ(s,n—s) valued(p+
1)-forms. Namely, by using the language introduced ip § B.th&, derivative operator has to
transform in the adjoint representation of the local symmpngtoup. In this respect, let us introduce
aSQ(s,n— s) valued connection 1-form? and define the new derivative operath®) as

d@ .. —d. LA (A.17)
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We claim that the above derivative operator has exactly thpgrty required, as can be easily
demonstrated. In order to operatively define the covariarivative operator, we firstly specify its
action on the basis 1-fore?, we have

d@e? = de? + wi A€, (A.18)
which, as can be easily recognized, is the definition of theida 2-formT?2. Specifically,
T2:=d@We = dé+ wi N €. (A.19)

So, in the presence of torsion the covariant exterior deviv@perator fails in annihilating the basis
element. Sometimes, the equatidff)e? = T2 is referred as second Cartan structure equation. It
is worth noting that the composition of two covariant exdederivative does not trivially vanish,
rather we have

d@od@e? = R A€, (A.20)

which allows to extract the following expression for thevature 2-form
R = daw®® + wd A w®, (A.21)
known as first Cartan structure equation. It is worth renmaykhat if
RP =0 = w} = (A% dAS, (A.22)

namely the connection is a pure gaufé® = —AP?2 being a representation of the local symmetry
group. Then, one can demonstrate that by assuming

RP=0—=— dé#=0 iff T2=0, (A.23)

which implies that? = dx@, wherex? are functions of the original set of coordinates. Moreover,
we havee};, = d,,x%, so that the components of the local basis simply reprekergdidering forms
in flat space between two local arbitrary accelerated reerérames, with the origin placed at the
same point of the tangent bundle.

Two useful identities can be easily derived from the abovadiens, i.e.

d @R =0, (A.243)
d9OTe=R{ A€, (A.24b)
respectively known as first and second Bianchi identity.
We refer now to a specific case: we assume that4 ands = 1, which means that we
are referring to a 4-dimensional pseudo-Riemannian miankd#, which is locally isomorphic to

Minkowski space-time with signature-,+,+,+), so the local symmetry group 8O(3,1). In
this framework the Hilbert-Palatini action for General &#glity can be rewritten as

Sew) = %/ea/\eoA*Rab. (A.25)
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Remembering definitior] (A.2) and formula (P.9) we can easiite:
1 b_ 1 [1ap cagd) 1[4

where we usedV = det(e)d*x.

An analog procedure allows to rewrite also the Dirac actiothe formalism of differential
forms. But before doing that, we need to define the action®gttierior covariant derivative on a
spinor field, which is a 0-form transforming under the spirepresentation of th8Q(3,1) local
group. We do not enter in the details about the constructfoiine spinor bundle, we only say
that the exterior covariant derivative operator acts onsghiaor fieldsgy and@ according to the
following rules

Dy =dy — % WS ol (A.27a)
Dy =dy + %wzabwab, (A.27b)

where |
20— [ya, yb] (A.28)

are the generators of the Lorentz group. Now we claim thaDilec action can be written as
i — i
S(.7) = 5 [ e [WYDY DB+ smETy|. (.29)

Remembering that, according to our notatiee, A €® = 8°dV, the demonstration follows imme-
diately.

As a final remark, we recall that particular care has to be useslvriting the physical actions
in other possible signatures. For example, many books ontguomefield theory use the signature
(+,—,—,—), which is preferred by particle physicists. The changegfaiure can change the sign
in front the action according to the change occurring in tga¢ions of motion. As an example try
to write the action of a scalar field in both signatures ane rotlifference in the sign in front of
the kinetic term.

B. Large gauge transformations in Yang-Mills gauge theoris

Let theSU(N) valued connectiod, = 5, AL, A and its associated electric field = 5 EfAK
(wherel ,J,K, - -- are internal indexes running on2l.- - - ,N?>— 1) be a couple of conjugate variables
in the framework of a canonical formulation of Yang-Millsugge theories (se€[§ 3.3). The evolution
of the system is limited to a restricted region of the phasesiby the first class Gauss constraint,
expressed by the following weak equation:

G| :=DgEf = 04E + f,“ALEZ ~ 0. (B.1)

According to the Dirac quantization proceddre [50Q, 79],stee functional describing the quantum
physical system must satisfy the Gauss constrhin} (B.mehawe have to require that

O o(A) =0, (B.2)

GPA) = ~iDasr
a
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where the usual quantum representation of the operatofsdegisassumed.

The Gauss constraint in Ef.(B.1) formalizes the requestafg invariance of the quantum
state describing the physical system, namely it is equitale requiring that the state functional
be invariant under the small component of the gauge g@®upSU(N), as can be easily realized.
Since the global structure of the gauge group is non-triiiatiew of quantization, it is particularly
interesting to study the behavior of the state functionalaurthe large gauge transformations. A
non-trivial global structure of the gauge group, in factn gamoduce striking effects in the non-
perturbative theory, as, e.@andCP violations, physically motivating this extension of thedtiny.

In this respect, le® be the generator of the large gauge transformations, actinfe state
functional ®(A). Considering that the Hamiltonian operatﬁ?z is invariant under the full gauge
group (or, more formally, it commutes with the opera&?))r, we can construct a set of eigenstates
for the quantum theory by diagonalizing simultaneou@andg?. In other words, the following
equation

Gy (A) = B, (A%) = P, (A), where A9=gAgl+gdg?, (B.3)
is a super-selection rule for the states of the theory, whielow labeled by theiinding number
w = w(Qg), according to their behavior under the action of the larggygaransformation operator.
The constan® introduced in Eq. [(B]3) is an angular parameter, which iaigdis how much the

state functional “rotates” under the action of the largeggatnansformations operator. Specifically,
it represents a quantization ambiguity connected with tiretrivial global structure of the gauge

group.

Eq.(B.3) implies that the wave functionals either have tisBasuitabled-dependent boundary
conditions passing from one “slab” to the next in the configjon space; or, a fully gauge invariant
state functional can be constructed, transferring@ltgependence in the momentum operator. In
this respect, we recall that the so-calledern-Simons functional

1 1
@(A):ﬁ/tr <F /\A—§A/\A/\A> , (B.4)

is characterized by the following remarkable property:
Y (A% =2 (A)+w(g). (B.5)

In other words, the Chern—Simons functional under a larggjgaransformations turns out to be
modified by a quantity exactly corresponding to the windingnber, expressed by the Maurer—
Cartan integral

W(Q) = 5, / tr(g 'dg) A (g *dg) A (g 1dg). (B.6)

This directly implies that the new state functional,
o'(A) =e R, (A), (B.7)
will be invariant under the full gauge group, as can be eakglyonstrated. In other words we have

G (A) = D'(A). (B.8)
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So, by using the rescaling (B.7), we have obtained a new fiallyge invariant quantum state
functional, at the price of modifying the momentum operatamely, thed-dependence has been
transferred from the boundary conditions to the momentueraipr, which becomes:

o i0

1a —|9??/ a 0% (A
EYQ'(A) = AEIO? N/ (A) = — I[5Aa a2

“ﬁVFBV] PD'(A). (B.9)

The above modification in the conjugate momentum reflectdietdamiltonian operator, i.e.

1 ] ]
H’:/d3xtr [E (E“—ﬁs“%ﬁy) (Ea & oed FBV> +>F BFO’B] (B.10)

generating a pseudo-vectorial term which prevents the namiltbnianH’ from being invariant
under the CP discrete symmetry.

The new Hamiltonian corresponds to a topological modificatf the classical action, con-
sisting in the presence of an additional term belonging écRntryagin class, i.e.

SheW(A):—%/tr*F/\F—i—%/trF/\F. (B.11)

The 6 parameter appears as a multiplicative constant in frori@fodification. It is worth men-
tioning that the new term does not affect the classical egmtof motion, as we have already
noticed in §3.2]1, but modifies the vacuum to vacuum amgitacthe path-integral formulation
of the quantum theory. In other words, it allows to take intoaunt possible tunneling phenom-
ena between distinct vacua characterized by different windumbers, violating the CP discrete
symmetry.
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