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Abstract. Mixing is relevant to many areas of science and engineering, including

the pharmaceutical and food industries, oceanography, atmospheric sciences, and civil

engineering. In all these situations one goal is to quantify and often then to improve

the degree of homogenisation of a substance being stirred, referred to as a passive

scalar or tracer. A classical measure of mixing is the variance of the concentration of

the scalar, which can be related to the L2 norm of the concentration field. Recently

other norms have been used to quantify mixing, in particular the mix-norm as well as

negative Sobolev norms. These norms have the advantage that unlike variance they

decay even in the absence of diffusion, and their decay corresponds to the flow being

mixing in the sense of ergodic theory. General Sobolev norms weigh scalar gradients

differently, and are known as multiscale norms for mixing. We review the applications

of such norms to mixing and transport, and show how they can be used to optimise the

stirring and mixing of a decaying passive scalar. We then review recent work on the

less-studied case of a continuously-replenished scalar field — the source-sink problem.

In that case the flows that optimally reduce the norms are associated with transport

rather than mixing: they push sources onto sinks, and vice versa.

PACS numbers: 47.51.+a, 47.52.+j

1. Introduction

One of the most vexing questions about fluid mixing is how to measure it. People

typically know it when they see it, but specific applications require customised measures.

For example, a measure might be too fine-grained for some applications that don’t

require thorough mixing. Some measures, such as residence time distributions, are

designed for open-flow situations where fluid particles are only mixed for a certain

amount of time. Others, such as the rigorous definition of a mixing flow in ergodic

theory, are better suited to an idealised mathematical treatment. Finally, one of the

main points of this review is that measures used to quantify mixing in the initial-

value decaying problem must be interpreted very differently when sources and sinks are

present.
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One of the earliest attempts to quantify mixing was by the chemical engineer and

bomb disposal officer Peter V. Danckwerts [26]. Danckwerts realised that scale was an

important consideration; he identified the large-scale breakup of fluid into clumps and

the subsequent homogenisation at small scales due to diffusion as separate processes [25]:

The breaking-up and the interdiffusion are, in the case of liquids, largely

independent processes which produce distinguishable results. The former

reduces the size of the clumps, while the latter tends to obliterate differences of

concentration between neighbouring regions of the mixture. It therefore seems

desirable to use two quantities to describe the degree of mixing — namely the

scale of segregation and the intensity of segregation.

Two other pioneers are the oceanographers Carl Eckart [32] and Pierre Welander [92],

who also identified the complementary roles of mechanical stirring and diffusion.

Following Eckart, modern parlance refers to these two stages as stirring and mixing,

the distinguishing feature being that stirring is a mechanical action, whilst mixing is

diffusion-driven or the result of coarse-graining. Welander in particular was emphatic

about the important role of stirring in creating filaments, which can subsequently be

smoothed by diffusion. It was then Batchelor [12] who identified the length scale of the

filaments, at which stirring and diffusion achieve a balance, now known as the Batchelor

scale.

Let us pin a mathematical meaning on the ideas above. Danckwert’s scale of

segregation is a correlation length of the concentration of a mixture. His intensity of

segregation is a normalised variance of the concentration. It is through the variance that

the connection to norms first appears, in this case as the L2-norm of the concentration

field. If θ(x, t) is the concentration of a passive scalar — such as temperature, dye, or

salt — then the variance is

Var θ = ‖θ‖2 − 〈θ〉2 , (1.1)

where

‖θ‖2 =
1

|Ω|

∫
Ω

θ2 dΩ, 〈θ〉 =
1

|Ω|

∫
Ω

θ dΩ (1.2)

are the L2-norm and mean value of θ, respectively, with Ω the spatial domain and |Ω|
its volume (or area in two dimensions).

Why is the variance a good measure of mixing quality? A first answer is that

it measures fluctuations from the mean, and a mixed state is exactly one where the

concentration is equal to the mean — i.e., it is uniform. But there is a second,

more intimate reason why variance is important: from the classical advection-diffusion

equation for an incompressible velocity field u(x, t) and diffusion coefficient κ,

∂θ

∂t
+ u · ∇θ = κ∆θ, ∇ · u = 0, (1.3)

we find that the concentration variance is monotonically driven to zero in the absence of

sources (see section 3). Indeed, after a few integrations by parts and assuming boundary
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conditions that conserve the total amount of θ (no-flux or periodic, see section 2), we

find the L2-norm and mean (1.2) obey

d

dt
〈θ〉 = 0,

d

dt
‖θ‖2 = −2κ ‖∇θ‖2 , (1.4)

so that
d

dt
Var θ = −2κ ‖∇θ‖2 . (1.5)

Observe that the right-hand side is negative-definite unless θ = const., i.e., the

concentration is uniform. Hence, the advection–diffusion equation says that the

concentration is driven to a uniform state with Var θ = 0, at a rate dictated by the

product 2κ‖∇θ‖2
2. Determining this rate is an important aspect of the scalar decay or

initial value problem, where we have some initial concentration field θ(x, t) = θ0(x) and

want to know how fast it is mixed by a velocity field u(x, t). There is a vast literature

focused on determining and estimating this decay rate. Note that the advecting velocity

field does not appear directly in (1.5): its role is to increase gradients of concentration.

Thus, monitoring variance is a simple way of quantifying the effectiveness of a

mixing process. It has, as mentioned above, the dual advantages of being intuitive and

of being mathematically sound. In what situations, then, is the variance a less-than-

ideal measure of mixing quality? The answer is: when the diffusivity κ is very small

and the stirring process is very effective. The typical situation in that case is that the

decay term 2κ‖∇θ‖2
2 becomes independent of κ. The physical picture is that the stirring

sharpens gradients of θ until they are large enough that diffusion easily smooths them

out. A balance between advection and diffusion is then reached, and the variance decays

at its optimal rate.

In theory, this is fine; in practice, it is disastrous. If we are trying to optimise the

mixing process, it means we have to keep track of scales down to lengths of order κ1/2,

which can be very small. Our simulations are limited by the small quantity κ, and yet

the decay rate is independent of κ. However, if we try and avoid this by setting κ = 0

in (1.3), we find that variance is exactly conserved. The limit is singular: taking κ to

zero is completely different from setting κ = 0.

This problem is similar to what happens for turbulence: letting the viscosity tend

to zero in the Navier–Stokes equations does not necessarily recover solutions to Euler’s

equations. However, here the problem is less severe, since the concentration θ does not

feed back on the flow. Hence, it is sensible to solve the pure advection equation

∂θ

∂t
+ u · ∇θ = 0 (1.6)

and try to extract some measure of mixing from θ; it’s just not possible to use variance

as a measure. The key is to use a different norm that downplays the role of small

scales. For example, a simple choice is ‖∇−1θ‖2
2. The operator ∇−1 will be defined more

carefully later, but for now it suffices to understand that it ‘smooths out’ θ, so that

small-scale variations are not detected. (We make sure the operator is well-defined by

restricting to functions with vanishing mean, 〈θ〉 = 0.)
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Figure 1. Satellite observations showing concentrations of carbon monoxide (CO) in

the atmosphere. Red corresponds to high levels of CO (450 parts per billion) and blue

to low levels (50 ppb). Note the immense clouds due to grassland and forest fires in

Africa and South America (photo from NASA/NCAR/CSA).

So far our discussion has been of equation (1.3) when the total quantity of scalar is

conserved, i.e., 〈θ〉 = const. This is the case most often discussed in the literature, and

in recent years much work has gone into understanding the factors affecting the decay

rate of the concentration and its variance. There is also a vast literature on the case

where there are sources and sinks, either within the fluid domain or at its boundaries.

In geophysical and industrial situations this is often more relevant. Figure 1 shows a

satellite image of the concentration of carbon monoxide in the atmosphere. Observe

that there are several large and many small sources, distributed in a complex manner

throughout the globe. This begs the question: what do we mean by well-mixed in a

case as in figure 1? Unmixed features are persistent, since they are replenished by an

inhomogeneous source. But we can still use a norm-measure such as the variance: it

will not tend towards zero with time, but a smaller value of variance still indicates that

the passive scalar is getting mixed to some degree. A stirring flow that is effective at

mixing will thus presumably tend to reduce the variance of the concentration field.

It has become apparent in recent years that the quality of mixing we obtain will

depend strongly on the source-sink distribution, in addition to depending on the stirring

flow itself. Let us give a simple but extreme example of this, discussed by Plasting &

Young [64] and Shaw et al [71]. Consider a two-dimensional biperiodic square domain

where sources and sinks are present, as in figure 2(a). The equation to be solved is the

analogue of (1.3) with a body source term:

∂θ

∂t
+ u · ∇θ = κ∆θ + s(x, t), (1.7)

with periodic boundary conditions. Here we choose a simple source-sink distribution,

s(x) = sin(2πx/L). If we fix the kinetic energy of the flow, 1
2
‖ρu‖2,‡ what is the

‡ We consider incompressible flows with constant density throughout, so that fixing the kinetic energy



Using multiscale norms to quantify mixing and transport 5

Hot Cold

x

y

0 L

0

L

(a)

x

y

0 L

0

L

(b)

Figure 2. (a) A source-sink distribution in a two-dimensional periodic square domain.

(b) Sketch of the velocity field that most effectively reduces the concentration variance

of the source.

incompressible stirring velocity field that will most effectively reduce the variance? The

answer sketched in figure 2(b) is somewhat surprising: the most effective stirring consists

of a uniform (constant) flow. This flow carries the hot fluid onto the cold sink, and cold

onto hot, thereby reducing the concentration variance as much as possible.

The reason this is surprising is that ‘common wisdom’ in mixing assumes that the

best stirring is either turbulent or exhibits chaotic trajectories [4, 59]. Such complex

behaviour increases concentration gradients and thus allows diffusion to act more

effectively. However, this particular source-sink configuration is best mixed not by

creating small scales, but rather by transporting fluid appropriately. One might not

call this ‘mixing’ in the strict sense, but it is dependent on diffusion, as (1.7) does not

converge to a steady-state without it.

Mixing a scalar field whose fluctuations are constantly replenished by spatially

inhomogeneous sources and sinks is a problem with a long history. Townsend [86, 87]

was concerned with the effect of turbulence and molecular diffusion on a line source of

temperature — a heated filament. The spatial localisation of the source, imposed by

experimental constraints, enhanced the role of molecular diffusivity. Durbin [31] and

Drummond [30] introduced stochastic particle models to turbulence modelling, and these

allowed more detailed studies of the effect of the source on diffusion. Sawford & Hunt [68]

pointed out that small sources, such as heated filaments, lead to an explicit dependence

of the variance on molecular diffusivity. Many refinements to these models followed, see

for instance [2, 3, 15, 85] and the review by Sawford [67]. Chertkov et al [16–20] and

Balkovsky & Fouxon [8] treated the case of a random, statistically-steady source.

We now give a brief outline of the review. In section 1.3 we recall some basic

properties of the advection-diffusion equation, to complement the earlier material in

is equivalent to fixing the L2-norm ‖u‖2. For that reason, we shall often refer to ‖u‖2 itself as the

kinetic energy.
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this introduction. Section 3 is devoted to a review of Sobolev norms. The rest of the

review is divided into two parts. Part I discusses norms as measures of mixing for the

freely-decaying passive scalar. Section 4 connects norms with the concept of mixing in

the sense of ergodic theory. In section 5 we show how negative Sobolev norms can be

used to optimise flows to achieve rapid mixing.

Part II, which forms the bulk of the paper, is devoted to advection and diffusion in

the presence of sources and sinks. In section 6 we introduce mixing efficiencies, measures

of mixing based on norms. We give some upper bounds on these efficiencies in section 4.

In section 8 we investigate the dependence of efficiencies on functional features of the

source-sink distribution. We derive mixing efficiencies from a homogenisation theory

approach in section 9. In section 10 we discuss optimisation of mixing efficiencies.

Finally, we offer some closing comments in section 11.

2. The advection–diffusion equation

The main equation discussed in this review is the advection–diffusion equation for a

passive scalar with concentration field θ(x, t),

∂θ

∂t
+ u · ∇θ = κ∆θ + s(x, t), ∇ · u = 0. (2.1)

Following the usual route, we will assume that the domain of interest Ω is a periodic

square box with dimension d, with spatial period L in each direction. Of course,

everything discussed in this paper can be repeated for a more general closed domain

with no-flux boundary conditions, but this adds little to the discussion. In particular,

by using a periodic domain we can use Fourier series expansions, which makes many

calculations explicit.

The mean 〈θ〉 satisfies
d

dt
〈θ〉 = 〈s〉 , (2.2)

with solution

〈θ〉(t) = 〈θ〉(0) +

∫ t

0

〈s〉(t′) dt′. (2.3)

Thus, if we replace θ by a new variable

θ′(x, t) = θ(x, t)− 〈θ〉(t) (2.4)

then θ′ obeys the modified equation

∂θ′

∂t
+ u · ∇θ′ = κ∆θ′ + s′(x, t), s′(x, t) = s(x, t)− d

dt
〈θ〉 . (2.5)

The new concentration field θ′ and source s′ have spatial mean zero. For the remainder

of this paper, we drop the primes and assume without loss of generality that both θ

and s have zero spatial mean.
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3. Norms

3.1. Definitions and basic properties

In this section we introduce the measures of mixing we’ll be using for the rest of the

paper. The Sobolev norm we use for the space Hq(Ω) is

‖f‖Hq =

(
1

|Ω|

∫
Ω

|(1− L2∆)q/2f |2 dΩ

)1/2

, (3.1)

or in terms of Fourier series,

‖f‖Hq =
(∑

k

(1 + k2L2)q |f̂k|2
)1/2

, (3.2)

where k := |k| and f̂k are the Fourier coefficients. In this review we will prefer to use

the seminorm on the homogeneous space Ḣq(Ω) (note the dot over H),

‖f‖Ḣq =

(
1

|Ω|

∫
Ω

|(−∆)q/2f |2 dΩ

)1/2

=
∥∥(−∆)q/2f

∥∥ , (3.3)

or in terms of Fourier series

‖f‖Ḣq =
(∑

k

k2q |f̂k|2
)1/2

. (3.4)

If we take a function f with Fourier coefficients behaving asymptotically as |f̂k| ∼ kp,

k � 1, then the norms (3.1)–(3.4) converge (exist) for q + p < −d/2, where d is the

dimension of space.

The norm (3.3) has a more intimate connection with solutions of the advection–

diffusion equation than (3.1), as will be described later (section 3.2). Note that the

manner in which we have defined (3.1) and (3.3) allows for q positive, negative, or even

fractional. In section 2 we showed that we could assume 〈θ〉 = 0, so we restrict attention

to functions f with mean zero. In that case (3.3) becomes a true norm since ‖f‖Ḣq = 0

if and only if f is zero.

In fact it does not matter much which of the two norms (3.1) or (3.3) we

use, since they are equivalent for zero-mean functions: by Poincaré’s inequality, we

have
∥∥(−∆)q/2f

∥∥ ≥ (2π/L)q ‖f‖ for q ≥ 0, so that

‖f‖Ḣq ≤ L−q ‖f‖Hq ≤ (1 + (2π)−2)q/2 ‖f‖Ḣq , q ≥ 0, (3.5)

for all zero-mean functions f . For q < 0 Poincaré’s inequality is reversed, so we have

(1 + (2π)−2)q/2 ‖f‖Ḣq ≤ L−q ‖f‖Hq ≤ ‖f‖Ḣq , q < 0. (3.6)

Equivalence means that if one of the two equivalent norms goes to zero, then the other

must as well, and they must do so at the same rate [54, 55].
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For the mathematically minded, we can give a rigorous definition of what kind of

functions live in the negative Sobolev space Ḣq, with q < 0, given that we understand

the space Ḣ−q. The space Ḣq is defined as the space dual to Ḣ−q with respect to the

standard pairing

〈f , g〉 =
1

|Ω|

∫
Ω

f(x) g(x) dΩ, (3.7)

with the dual norm

‖f‖Ḣ−q∗ = sup
g∈Ḣ−q

〈f , g〉
‖g‖Ḣ−q

. (3.8)

The norm (3.3) is equal to the dual norm (3.8). To show this, first observe that by using

the Cauchy–Schwarz inequality,

〈f , g〉
‖g‖Ḣ−q

=

〈
(−∆)q/2f , (−∆)−q/2g

〉
‖g‖Ḣ−q

≤ ‖f‖Ḣq (3.9)

independent of g, so ‖f‖Ḣ−q∗ ≤ ‖f‖Ḣq . Now let g = (−∆)2qf :

〈f , g〉
‖g‖Ḣ−q

=
〈f , (−∆)2qf〉
‖(−∆)2qf‖Ḣ−q

=
‖(−∆)qf‖2

‖(−∆)qf‖ = ‖f‖Ḣq . (3.10)

Since the dual norm is defined as a sup over g, we have ‖f‖Ḣ−q∗ ≥ ‖f‖Ḣq . We conclude

that ‖f‖Ḣ−q∗ = ‖f‖Ḣq . The same argument can also be used to show ‖f‖H−q∗ = ‖f‖Hq

for the inhomogeneous spaces.

3.2. Evolution in time

To get a feel for what these norms are telling us about mixing, it is helpful to examine

how they evolve in time. That is, given that θ obeys (2.1), what is d ‖θ‖Ḣq /dt? We

start from
1
2

d

dt
‖θ‖2

Ḣq = 〈(−∆)qθ ∂tθ〉 (3.11)

where 〈·〉 denotes an average over the periodic domain Ω. Inserting (2.1) for ∂tθ,

1
2

d

dt
‖θ‖2

Ḣq = 〈(−∆)qθ (−u · ∇θ + κ∆θ + s)〉

= −〈(−∆)qθu · ∇θ〉 − κ
∥∥(−∆)(q+1)/2θ

∥∥2
+ 〈(−∆)qθ s〉 .

The case q = 0 gives the evolution of the variance, for which the velocity term on the

right integrates away:

1
2

d

dt
‖θ‖2

Ḣ0 = −κ ‖∇θ‖2 + 〈θ s〉 . (3.12)

There are two other cases that give particularly nice equations. The case q = 1 gives

the evolution of scalar concentration gradients:

1
2

d

dt
‖θ‖2

Ḣ1 = −〈∇θ · ∇u · ∇θ〉 − κ ‖∆θ‖2 − 〈∆θ s〉 . (3.13)
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The first term on the right is the familiar ‘stretching’ term, which says that gradients

are increased or decreased proportionally to their alignment with the principal axes of

the rate-of-strain tensor. A direction of positive strain will decrease gradients, whilst a

direction of negative strain will increase gradients.

The final case of interest to us is q = −1, for which

1
2

d

dt
‖θ‖2

Ḣ−1 =
〈
∇−1θ · ∇u · ∇−1θ

〉
− κ ‖θ‖2 −

〈
∆−1θ s

〉
. (3.14)

Here we interpret ∇−1 via its action on Fourier modes

(∇−1θ)k = − ik

k2
θ̂k, (3.15)

so that ∇·∇−1θ = θ. (Recall that we are restricting to functions with vanishing mean.)

Compare the first term on the right-hand side of (3.14) to the same term for (3.13):

velocity gradients have the opposite effect on d
dt
‖θ‖Ḣ−1 as they do on d

dt
‖θ‖Ḣ1 . This

is intuitively clear: the creation of concentration gradients will tend to make θ very

filamented. We will see in section 4 that this will cause it to converge weakly to zero,

and that this implies that any negative Sobolev norm must go to zero. Another argument

that the two norms should evolve with opposite trends arises from

‖θ‖2 = −
〈
∇θ · ∇−1θ

〉
≤ ‖θ‖Ḣ1 ‖θ‖Ḣ−1 . (3.16)

Since the variance ‖θ‖2 is conserved when κ = s = 0, inequality (3.16) implies that if

the norm ‖θ‖Ḣ−1 converges to zero, then ‖θ‖Ḣ1 must diverge.

Part I: The decaying problem

4. Mixing in the sense of ergodic theory

A divergence-free velocity field u(x, t) generates a time-dependent function θ(x, t) via

the advection equation,

∂θ

∂t
+ u · ∇θ = 0, ∇ · u = 0, (4.1)

with initial condition θ(x, 0) = θ0(x) ∈ L2(Ω). Note that (4.1) preserves ‖θ(·, t)‖ = ‖θ0‖
for all time, so ‖θ(·, t)‖ is uniformly bounded in time by ‖θ0‖. We have left out diffusion

in (4.1): in the present section we will discuss how we can define mixing without

appealing to diffusion, and how the norms (3.1) and (3.3) can be related to this type of

mixing. The definition of mixing we will use is the one from ergodic theory.

The property of mixing in the sense of ergodic theory is a little opaque when

described mathematically. The rigorous definition is as follows:

Let (X,A, µ) be a normalised measure space and St : X → X be a measure-

preserving flow. St is called mixing if

lim
t→∞

µ(A ∩ S−t(B)) = µ(A)µ(B), for all A,B ∈ A.



Using multiscale norms to quantify mixing and transport 10

Here X is our domain Ω, A is a so-called σ-algebra over X, and µ is a measure. The

elements of A are measurable sets, which we can think of as patches or ‘blobs’ in Ω. The

measure µ assigns a positive real number to a set in A. We have been using Lebesgue

measure — the dΩ that appears in our integrals — which means the measure of a blob

is just its volume. The flow St for us takes θ0 to θ(·, t) subject to (4.1). The flow St

preserves volume, and hence Lebesgue measure.

Intuitively, the definition of mixing works as follows. As we only deal with reversible

systems here, we can replace S−t(B) by St(B) in the definition above, since such a system

should be mixing both forward and backward in time (this makes things conceptually

easier). Think of A as a fixed reference patch, and B as a blob that gets stirred. Since

the transformation is volume-preserving, St(B) might stretch and filament, but it does

not change its volume. However, if it fills the domain ‘uniformly,’ then the volume of

its intersection with A just ends up being proportional to A and B’s volume. Crucially,

this is true for every set A and B, so everything ends up everywhere. (Note that this is

stronger than ergodicity, which only requires sets to visit every point, but not necessarily

be ‘everywhere at the same time.’)

Mathew et al [54,55] have introduced a norm, called the mix-norm, which captures

the property of mixing in the sense of ergodic theory. The mix-norm is somewhat

cumbersome to define on the torus, but to give an idea of its flavor we will describe it

for the one-dimensional periodic interval [0, L]. First, define

d(θ, x, w) :=
1

w

∫ x+w/2

x−w/2
θ(x′) dx′ (4.2)

for all x, w ∈ [0, L]. The function d(θ, x, w) is the mean value of the concentration

θ in an interval of width w centred on x. The mix-norm Φ(θ) is then obtained by

averaging d2 over x and w:

Φ2(θ) :=
1

L2

∫ L

0

∫ L

0

d2(θ, x, w) dx dw. (4.3)

In words, the mix-norm averages the concentration over an interval of width w, then

averages the square of this over all intervals and all widths. In dimensions greater than

one, the definition of the mix-norm involves integrals over balls of varying sizes instead

of intervals.

For our purposes here it suffices that the mix-norm (4.3) and its higher-dimensional

generalisation are equivalent to the norm (3.1) with q = −1/2 [55]. We will also see below

that all Sobolev norms with q < 0 capture the property of mixing in the same sense as

the mix-norm, as shown by Lin et al [50]. For that reason, we extend Mathew et al ’s

terminology and often refer to any negative Sobolev norm as a mix-norm, not just for

the case q = −1/2. The term multiscale norm encompasses the Sobolev norms for any

value of q — positive, negative, or zero.

The connection between negative Sobolev norms and mixing involves the property

of weak convergence. We refer the reader to the book by Lasota & Mackey [48] for a
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more complete discussion of the relation between weak convergence and mixing. Weak

convergence is defined as follows:

A time-dependent function f(x, t), f(·, t) ∈ L2(Ω), is weakly convergent

to f∞ ∈ L2(Ω) if

lim
t→∞
〈f(·, t), g〉 = 〈f∞, g〉, for all g ∈ L2(Ω).

Note that if f(·, t) converges weakly to f∞, then f(·, t)− f∞ converges weakly to zero.

Instead of a time-dependent function, we can also use a discrete sequence {cm},
where m is like time. A simple example of a sequence that converges weakly to zero is

given by cm = sin(2πmx/L), since

lim
m→∞

∫ L

0

sin(2πmx/L) g(x) dx = 0

for all g ∈ L2(Ω), by the Riemann–Lebesgue lemma. The connection to mixing is

that under stirring a passive scalar usually develops finer and finer scales, much like

the function sin(2πmx/L) with increasing m. In practice diffusion smooths out these

large gradients and the concentration field tends to zero at every point. However, if

we ignore diffusion and retain the small scales we can still detect this mixing process

by ‘projecting’ onto test functions such as g. We now discuss the connection between

mixing in the sense of ergodic theory and the norms (3.3).

The following is a slightly more general version of the mix-norm theorem by

Mathew et al [55] (the case q = −1/2 is equivalent to their theorem):

A time-dependent function f(x, t), where f(·, t) ∈ L2(Ω) has mean zero and is

bounded in the L2 norm uniformly in time, is weakly convergent to zero if and

only if

lim
t→∞
‖f(·, t)‖Hq = 0, for any q < 0.

The proof given by Lin et al [50] is reproduced in Appendix A.

Another theorem from Mathew et al [55] now implies that the dynamics generated

by u(x, t) are mixing in the sense of ergodic theory if and only if limt→∞ ‖θ(·, t)‖Ḣq = 0,

for any q < 0. This is a direct consequence of the mix-norm theorem above.

Note that the equivalence of the norms ‖·‖Ḣq , q < 0, with mixing in the sense of

ergodic theory is only a useful concept for the freely-decaying problem. In the presence

of sources and sinks, diffusion plays the essential role of making an asymptotic state

possible (in its absence solutions can diverge), so we cannot simply solve (4.1) with a

source term on the right and expect to get anything sensible.

We close this section with a rule of thumb to interpret the decay of mix-norms.

Consider a function f with Fourier coefficients f̂k, where the coefficients vanish when k

contains odd wavenumbers. Now define f ′ by f̂ ′k = f̂(k/2), that is, f ′ is the same as f

but with all scales divided by two. From definition (3.4), we have

‖f ′‖Ḣq =
(∑

k

k2q |f̂k/2|2
)1/2

=
(∑
k′

(2k′)2q |f̂k′ |2
)1/2

= 2q ‖f‖Ḣq . (4.4)



Using multiscale norms to quantify mixing and transport 12

Thus, a refinement of scales by a factor of two leads to a decrease in ‖·‖Ḣq of a factor 2q

(q < 0). For q = −1, the norm decreases by half when scales are refined by half.

For q = −1/2, the mix-variance ‖·‖2
Ḣq decreases by half when scales are refined by half.

In both cases, the norms decrease at a rate which reflects the creation of small scales.

5. Optimisation for decaying problem

5.1. Optimal control

Mathew et al [54] have used optimal control techniques [9, 43, 45, 73] to find velocity

fields that rapidly reduce the norm H−1/2 of a concentration field. (See also [10, 23, 24,

40, 51, 69, 76, 91].) The energy of the flow is held fixed (more precisely, its total action

over a time interval). They assume that the velocity field can be expressed as a linear

combination of steady incompressible velocity fields ui(x) as

u(x, t) =
n∑
i=1

αi(t)ui(x), ∇ · ui = 0. (5.1)

The coefficients αi(t) the controls that are adjusted to achieve the optimisation. It is

assumed that the flow (5.1) can be realised in practice for a given set of functions αi(t).

The quantity to be optimised is the Sobolev norm ‖θ‖H−1/2 of a concentration field

satisfying the advection equation (1.6), for some initial condition θ0(x).

In this formalism, the time-integrated energy (i.e., the action A) and the advection

equation (1.6) itself enter an augmented functional as constraints:

W [α, θ, z, η] = ‖θ(·, tf )‖2
H−1/2 − z

(
A−

∫ tf

0

α(t) ·R ·α(t) dt

)
−
∫ tf

0

〈
η(x, t)

(
∂θ(x, t)

∂t
+

n∑
i=1

αi(t)ui(x) · ∇θ(x, t)
)〉

dt, (5.2)

where z and η(x, t) are Lagrange multipliers, and the matrix R describes the kinetic

energy for the individual velocity fields in (5.1),

Rij := 1
2
〈ui(x)uj(x)〉 . (5.3)

Note that the functional (5.2) involves the norm of the concentration field only at the

final time tf . However, the constraints involve the entire history of θ(x, t).

Taking the functional (Fréchet) derivatives of (5.2) with respect to α, θ, z, η and

equating to zero leads to a two-point boundary value problem: θ(x, t) is specified at

the initial time t = 0, but η(x, t) is specified at the final time tf (see Eq. (3.2) in [54]).

Both θ and η (the ‘costate field’) satisfy advection equations of the form (1.6), so they

can be solved by following particles on Lagrangian trajectories (backwards in time for η),

following the velocity field given by the current best guess for α(t). This guess can be

varied following an iterative procedure, such as the conjugate gradient method.
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t = 0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1.0

Figure 4. Snapshots at various times of the density field advected by the optimal control
(results for velocity fields defined in (4.1)).

In fact, for different initial guesses, it is observed that the computed optimal solutions
cause a non-monotonic decay of the mix-variance. This stresses the drawback of using
a Lyapunov-based feedback method to achieve mixing. A Lyapunov-based feedback
method would try to choose values for the controls αi(t) so as to make the time-
derivative of the mix-variance less than zero. But, as shown in the calculation in (4.3),
this may be impossible.

As a second example, we use the velocity fields

u1(x) =

[
−sin(4πx1) cos (2πx2)
2cos(4πx1) sin (2πx2)

]
,

u2(x) =

[
−sin(4π(x1 − 0.125)) cos (2π(x2 − 0.25))
2cos(2π(x1 − 0.125)) sin (2π(x2 − 0.25))

]
.

⎫⎪⎪⎬⎪⎪⎭ (4.4)

For these velocity fields, the corresponding matrix R can be computed to be R =
diag{0.625, 0.625}. We use the same set of parameters and initial guess as in the
previous example, but set A∗ = 1.0. Figures 5–8 show the relevant information for this
example. Here also, it can be observed that the time-derivative of the mix-variance
comes close to zero within small time intervals. Also, oscillatory components appear
very clearly in the optimal solutions.

Figure 9 shows how the mixing performance of the optimal controls varies with
respect to the action A∗. The computations to generate these plots are done as
follows. We start with a low value for the action A∗. We find the optimal solution
using the iterative process described above. For a slightly higher value of the action,
we use the optimal solution from the previous computation as the initial guess for
the iterative process. We repeat this process up to the highest value of action desired.

Figure 3. Snapshots of the concentration field θ(x, t) advected by the optimal solution

for the velocity fields defined by (5.4) (from Mathew et al [54]).

As an illustration of the method, Mathew et al [54] apply it to the velocity fields u1

and u2 with streamfunctions

ψ1(x, y) = sinx sin y, ψ2(x, y) = cos x cos y. (5.4)

They set the time interval tf = 1 and action A = 1/4, with initial concentration θ0(x) =

sin y. Figure 3 shows the concentration field evolved by their optimal solution, which is

a time-dependent linear combination of (5.4). Note that individually the two flows (5.4)

lead to poor mixing, since they are steady and two-dimensional. Figure 3 exhibits finer

and finer scales as time evolves, a hallmark of chaotic advection, as well as a roughly

exponential decay of the Sobolev norm ‖θ‖H−1/2 (Figure 5.2), dotted line).

5.2. Local-in-time optimisation

Lin et al [50] proposed an alternative to the global optimal control approach of

Mathew et al [54]. Instead of focusing on the Ḣ−1/2 norm of the concentration field, they

instead examined Ḣ−1. As the theorem in section 4 tells us, any negative Sobolev norm

will capture mixing in the sense of ergodic theory, so there is no profound difference in

using either norm. However, the rate at which a different norms decrease will in general

be different, so different optimal solutions can be obtained. The advantage of Ḣ−1 arises

from the evolution equation (3.14), in the absence of sources and diffusion:

d

dt
‖θ‖2

Ḣ−1 = 2
〈
∇−1θ · ∇u · ∇−1θ

〉
. (5.5)



Using multiscale norms to quantify mixing and transport 14

The right-hand side is a simple expression that can easily be extremised instantaneously,

in the sense that given θ at any instant we tweak the velocity to cause the norm to decay

as fast as possible. This local-in-time approach can never do better than global optimal

control, but it is often good enough, as we will see. But most importantly, it is much

less computationally expensive since we do not have to ‘peer into the future’ and evolve

the system forward in time to determine the optimal current velocity field.

In order to formulate an optimisation problem, we must impose some constraints

on the velocity field. In section 5.1 we imposed fixed total kinetic energy through (5.3).

Now we will consider two types of constraints, fixed energy or fixed power. For a

Newtonian fluid, the power is proportional to the L2 norm ‖∇u‖2, but we shall refer

to this integral as ‘the power’ even if the fluid is not of this type. The two constraints,

then, are to respectively fix

‖u‖2 = U2 (fixed energy) (5.6)

or

‖∇u‖2 =
d∑

i,j=1

〈
(∂iuj)

2
〉

=
1

γ2
(fixed power). (5.7)

These define the root-mean-square velocity U and rate of strain γ−1 of the stirring.

We now proceed with the optimisation technique, that is, to maximise the right-

hand side of (5.5). With a few integrations by parts we recast (5.5) in the form

d

dt
‖θ‖2

Ḣ−1 = −2
〈
θu · ∇(∆−1θ)

〉
= −2 〈u · P(θ∇φ)〉 (5.8)

where φ is the filtered scalar field,

φ(x, t) :=
(
∆−1θ

)
(x, t), (5.9)

and P(·) is the projector onto divergence-free fields defined by

P(v) := v −∇∆−1(∇ · v). (5.10)

Then with either the fixed energy (5.6) or fixed power (5.7) constraint the velocity field

maximising the decay rate of Ḣ−1 is

ue = U
P(θ∇φ)

‖P(θ∇φ)‖ (fixed energy) (5.11)

or

up = −1

γ

∆−1P(θ∇φ)

‖P(θ∇φ)‖Ḣ−1

(fixed power) (5.12)

as long as the denominator does not vanish. Hence, ue or up is the best stirring velocity

fields to use at any instant in time, unless the denominator vanishes. However, if either
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of the norms in the denominators vanishes then P(θ∇φ) = 0 throughout the domain

and no incompressible flow can instantaneously decrease the Ḣ−1 norm. For example,

this will happen if the concentration field satisfies ∆θ = F (θ), which includes cases

where θ is an eigenfunction of the Laplacian. If this situation arises in the course of the

time-evolution of θ, then some other optimisation strategy must be adopted.

The most natural alternative when P(θ∇φ) = 0 is to carry to optimisation to the

order, that is, find the velocity field that minimises

d2

d2t
‖θ‖2

Ḣ−1 = 2
〈[
u · ∇φ∇θ · u− (u · ∇θ)∆−1(u · ∇θ)

]〉
. (5.13)

Then the optimal incompressible flow u solves the eigenvalue problem

Λu = P
(

(u · ∇θ)∇φ+ (u · ∇φ)∇θ − 2[∆−1(u · ∇θ)]∇θ
)

(5.14)

for the fixed energy constraint (5.6) or

Λu = −∆−1P
(

(u · ∇θ)∇φ+ (u · ∇φ)∇θ − 2[∆−1(u · ∇θ)]∇θ
)

(5.15)

for the fixed power constraint (5.6). In either case we seek the eigenfunction

corresponding to the minimum eigenvalue Λ− < 0 to use as the stirring field

momentarily, until P(θ∇φ) 6= 0. The eigenvalue problems in (5.14) and (5.15) are

generally difficult; see [50] for a discussion. In practice, we may need to solve one of

the eigenvalue problems if we choose a ‘bad’ initial condition (such as an eigenfunction

of the Laplacian, which is commonly done), but one it has started the optimisation

procedure does not seem to get stuck very often.

This local-in-time optimal stirring strategy is a limiting case of the short-horizon

optimisation studied by Cortelezzi et al [23] when the horizon becomes infinitesimal,

but the locality and simplicity allows a much broader class of flows to be used. In order

to implement it in practice the full scalar field must be monitored so that the optimal

flow field can be computed at each instant.

We reproduce here the tests of this optimal stirring strategy presented in Lin et

al [50]. They used initial scalar distribution θ0(x) = sin x in a domain of size L = 2π in

d = 2 spatial dimensions, for the fixed power constraint (5.7) with γ−1 = 6.25× (2π)2,

equivalent to the amplitude of the bi-component control used by Mathew et al [54].

The results for various norms are shown in Figure 5.2. The optimisation was performed

for Ḣ−1, but the Ḣ−1/2 norm is also plotted to allow a direct comparison with Mathew et

al [54]. The local-time-optimisation seems to outperform the global optimal control, but

this is because the former has access to all possible incompressible velocity fields. The

difference is evident when comparing figure 3 and figure 5, which shows the concentration

field. The Lin et al [50] solution uses much smaller velocity scales (though always at

fixed power, so the flow must slow down). Note also the the optimal flow in figure 5 is

suggestively self-similar in time.
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Figure 4. Evolution of norms with the fixed power constraint (5.7) for θ0(x) = sinx.

All norms are rescaled by their initial values, and the conserved L2 norm is monitored

as a numerical check. The optimisation is over all possible velocity fields satisfying the

power constraint, which is why the local-in-time optimisation outperforms the optimal

control approach of Mathew et al [54]. Snapshots of the velocity field are shown in

figure 5, and in figure 3 for the Mathew et al solution (from Lin et al [50]).

2 Z. Lin, K. Bod’ová and C. R. Doering

t = 0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1

Figure 5. Snapshots of the scalar field in [0, 2π]2 for the fixed-power optimal mixing

strategy (5.12), with initial condition θ0(x) = sinx (from Lin et al [50]).
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Part II: The source-sink problem

6. Mixing efficiencies

There are several ways to ‘calibrate’ the norms to measure some efficiency of mixing.

For the freely-decaying case (no sources or sinks), one can normalise the norm by its

initial condition to obtain the ratio ‖θ‖Ḣq / ‖θ0‖Ḣq . For the case q = 0 this is Danckerts’

‘intensity of segregation’ [25]. The goal of optimisation is then to reduce ‖θ‖Ḣq / ‖θ0‖Ḣq

as rapidly as possible. This is a strategy that has been used by many authors for the

case of variance (q = 0) [22] and for negative Sobolev norms [40,50,54], as we discussed

in section 5.

In the presence of sources and sinks, the norms ‖θ‖Ḣq typically reach an asymptotic

steady state (or at least a statistically-steady state). In that case normalising the norms

by their initial values is not helpful, since the asymptotic state is usually independent

of initial condition. Instead, a convenient measure of mixing efficiency is to normalise

the time-asymptotic norm ‖θ‖Ḣq by the value it would have in the absence of stirring.

We define mixing efficiencies (or mixing enhancement factors) by

Eq := ‖θ̃‖Ḣq

/
‖θ‖Ḣq (6.1)

where θ is the steady solution to (2.1) and θ̃ is the steady solution to the diffusion

equation

∂θ̃

∂t
= κ∆θ̃ + s . (6.2)

(If the velocity field or source are explicitly time-dependent, then an appropriate long-

time average must be added to the norms in (6.1); we will see this in section 7.)

The efficiencies measure the amount by which a norm is decreased by stirring.

If stirring decreases a norm ‖θ‖Ḣq over its purely-diffusive value, then Eq is larger.

For q ≤ 0, an increase in efficiency is associated with better mixing, since the flow has

suppressed fluctuations.

We might expect that stirring should always decrease the norms from their purely-

diffusive value. For E1, this is easily shown to be the case [71]. From the definition (3.15)

of the inverse gradient of a mean-zero function, we have

κ ‖θ‖2
Ḣ1 = 〈θs〉 =

〈
θ∇ · ∇−1s

〉
= −

〈
∇θ · ∇−1s

〉
≤ ‖θ‖Ḣ1

∥∥∇−1s
∥∥ (6.3)

where we used the Cauchy–Schwarz inequality. The steady-state solution of (6.2)

is θ̃ = −κ−1∆−1s, so ∇θ̃ = −κ−1∇−1s. We conclude from (6.3) that ‖θ‖Ḣ1 ≤ ‖θ̃‖Ḣ1 , or

E1 ≥ 1. (6.4)

Thus, the efficiency defined with gradients of θ is always decreased by stirring. This is

somewhat counter-intuitive, since we expect stirring to create gradients, but this result
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holds only for the steady state (or a long-time average). In fact the conventional wisdom

in mixing holds that stirring creates sharp gradients, and that those sharp gradients

are responsible for good mixing (see introduction). The bound (6.4) shows that this

viewpoint must be qualified when sources and sinks are present: stirring may indeed

create small scales, but the gradients are never as sharp overall as those that would

build up if we didn’t stir at all.

Perhaps even more surprising is that the efficiencies E0 and E−1 are not always

increased by stirring. The possibility of this was mentioned by Shaw et al [71]. Indeed,

the combination of flow and source-sink distribution given by§

u = (sin 2x cos 2y , − cos 2x sin 2y), (6.5a)

s = cos 2x sin y, (6.5b)

with Pe = 10 has E0 ' .991, E−1 ' .638, both less than unity. Here the Péclet number Pe

is defined in terms of the L2 norm of u as

Pe := UL/κ, U = ‖u‖ , (6.6)

and L = 2π, U = 1/
√

2 for the velocity field (6.5a). (These unmixing flows may be

related to flows that create ‘hotspots’ [36,42].)

We can optimise the stirring velocity field to give the worst possible mixing

efficiency for the source (6.5b), using the same techniques as in section 10.2. Figure 6

shows the resulting streamfunction for Pe = 10, as well as the solutions θ and θ̃ to the

advection–diffusion and diffusion equation, respectively. The optimised unmixing flow

has E0 ' .945, E−1 ' .642, a modest improvement over (6.5a) (in fact E−1 went up,

since the flow was optimised for smallest E0). At larger Péclet number the optimised

solution has lower suboptimal efficiency. The flow appears to achieve this low efficiency

by stretching parts of the source along the vertical direction, creating thin peaks, but

avoiding concentrating it in other places. Such ‘unmixing flows’ are fairly rare and

delicate to construct. It remains true that for a given source most velocity fields will

have efficiency greater than one, though the specific details of this question have not

been thoroughly investigated.

In fact it was thought that sources of the form (6.5b), where the source is an

eigenfunction of the Laplacian operator, could not lead to E0 or E−1 less than unity.

However, the argument in [71] contains a flaw. To obtain a lower bound on E0, the

authors solved the constrained optimisation problem

〈θ2〉 ≤ max
ϑ
{〈ϑ2〉 |κ〈|∇ϑ|2〉 = 〈sϑ〉} (6.7)

using the Euler–Lagrange equation

2ϑ∗ + 2µκ∆ϑ∗ + µs = 0 (6.8)

§ The question of whether such ‘unmixing’ flows exist was posed by Charles R. Doering at the

Workshop on Transport and Mixing in Complex and Turbulent Flows, Institute for Mathematics and

its Applications, Minneapolis, in April 2010. The form (6.5) is derived from a solution suggested by

Jeffrey B. Weiss by the end of the workshop.
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Figure 6. (a) Streamlines of the optimised unmixing flow for the source-sink

distribution (6.5b) (shown in background) at Pe = 10. (b)–(c) Corresponding

temperature field with and without stirring, respectively.

where µ is the Lagrange multiplier enforcing the constraint in (6.7). In terms of the

Fourier coefficients the solution of (6.8) is straightforward,

ϑ̂∗k = 1
2
µ ŝk/(µκk

2 − 1), (6.9)

but µ is the solution of the generally-difficult problem∑
k

2− µκk2

(µκk2 − 1)2
|ŝk|2 = 0. (6.10)

However, a convexity argument shows that (6.9)–(6.10) is only a maximum if

µκK2 ≥ 1 (6.11)

where K = 2π/L is the magnitude of the smallest wavenumber.

When the source is an eigenfunction of the Laplacian, with eigenvalue −k2
s , we can

solve for ϑ∗ and µ explicitly:

µ = 2/(κk2
s), ϑ∗ = s/(κk2

s), (6.12)

for which the maximum criterion (6.11) reads

k2
s ≤ 2K2. (6.13)

Thus, only eigenfunction sources with k2
s = K2 and k2

s = 2K2 are guaranteed to

have E0 ≥ 1. The source (6.5b) has k2
s = 12 + 22 = 5 (with K = 1), so it can

lead to E0 < 1, as we found numerically. The same criterion (6.13) also hold for E−1 to

be bounded below by 1.

Shaw et al [71] also derive the rigorous lower bounds

E2
0 ≥

∑
k(k/K)−4|ŝk|2∑
k(k/K)−2|ŝk|2

, E2
−1 ≥

∑
k(k/K)−6|ŝk|2∑
k(k/K)−2|ŝk|2

. (6.14)

However, these are always less than or equal to unity, so in principle they do not rule out

the possibility than any source could be rendered inefficient by some flow. Charles R.

Doering comments (private communication):
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While the lower bounds (6.14) may be less than one they’re greater than zero

uniformly in Pe. That is, “unstirring” or “herding” is not something that can

be enhanced in an unlimited manner by stirring (really a somewhat curious

situation in my opinion!).

The bounds (6.14) are also very permissive: for the source (6.5b) they read E0 ≥ 1/5

and E−1 ≥ 1/25, whereas the optimised unmixing flow in figure 6(a) has E0 ' .945,

E−1 ' .642 (though the unmixing flow could be a local minimum, or could decrease the

efficiency further at some higher Péclet number).

7. Upper bounds on mixing efficiencies

It is a simple matter to obtain estimates on the various mixing efficiencies. Thiffeault &

Doering [82] used an idea of Doering & Foias [27] to obtain a simple bound on the mixing

efficiency E0: multiply (2.1) by an arbitrary smooth, spatially periodic ‘comparison

function’ ϕ(x), integrate, then integrate by parts to find

〈〈 θ (u · ∇+ κ∆)ϕ 〉〉 = −〈〈ϕs 〉〉 . (7.1)

Here we introduced the double-bracket notation

〈〈F 〉〉 := 〈F (x, t)〉 (7.2)

for a space and time average, the latter defined by

F (x) := lim
t→∞

1

t

∫ t

0

F (x, t′) dt′. (7.3)

(We always assume that such time-averages exist.) The time derivative term from the

advection-diffusion equation (2.1) has vanished from (7.1), since ϕ∂tθ = ∂t(ϕ θ) =

ϕ(x) limt→∞ θ(x, t)/t = 0, since θ is bounded. Then apply the Cauchy–Schwarz

inequality to (7.1), to obtain〈〈
θ2
〉〉
≥ max

ϕ
〈〈ϕs 〉〉 2/

〈〈
(u · ∇ϕ+ κ∆ϕ)2

〉〉
(7.4)

where the maximisation is over smooth functions ϕ(x). At the cost of some sharpness

we can take the square root and then use the Minkowski inequality in the denominator,〈〈
θ2
〉〉 1/2 ≥ max

ϕ
| 〈〈ϕs 〉〉 |/

(
〈〈 (u · ∇ϕ)2 〉〉 1/2

+ κ ‖∆ϕ‖
)
. (7.5)

We then apply Hölder’s inequality and find〈〈
θ2
〉〉 1/2 ≥ max

ϕ
| 〈〈ϕs 〉〉 |/

(
U ‖∇ϕ‖L∞ + κ ‖∆ϕ‖

)
(7.6)

where

U =
(
‖u‖2

)1/2
(7.7)
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is proportional to the time-averaged total kinetic energy. The two bounds (7.4) and (7.6)

both have their uses: the former is tailored to a specific velocity field, but the latter is

a global bound valid for any stirring velocity field with bounded energy.

To illustrate the usefulness of these estimates, we shall use (7.4) to bound the mixing

efficiency E0, now defined to included a space-time average: where the efficiencies are

now defined with a time average,

E2
q := ‖θ̃‖2

Ḣq

/
‖θ‖2

Ḣq . (7.8)

Of course, this reduces to the earlier definition (6.1) for time-independent functions. We

shall prove the following surprising fact mentioned in the introduction:

An optimal way to stir a steady one-dimensional source s(x) in a periodic box,

given a fixed time-averaged energy, is to use a spatially-uniform constant flow

in the x direction.

See figure 2 for the type of source-sink distribution and flow that we have in mind. Here,

by optimal we mean a flow that maximises (7.8) for q = 0, or equivalently minimises

the time-averaged variance norm 〈〈 θ2 〉〉 .
Now for the proof. First take u(x, t) to be an arbitrary divergence-free vector field.

Expand the denominator on the right in (7.4):〈〈
(u · ∇ϕ+ κ∆ϕ)2

〉〉
=
〈〈
(u · ∇ϕ)2 〉〉 + κ2

〈〈
(∆ϕ)2 〉〉 + 2κ 〈〈 (u · ∇ϕ)∆ϕ 〉〉 . (7.9)

Given that the source s(x) = s(x) is a function of x only, choose ϕ(x) = ϕ(x). Then

the last term in (7.9) vanishes:

〈〈 (u · ∇ϕ)∆ϕ 〉〉 = 〈〈uϕ′(x)ϕ′′(x) 〉〉 = 1
2
〈〈u (ϕ′

2
)′ 〉〉 = 1

2
〈〈u · ∇(ϕ′

2
) 〉〉 = 0. (7.10)

We also have
〈〈
(u · ∇ϕ)2 〉〉 ≤ U2 〈|∇ϕ|2〉, where U is defined by (7.7). Hence, from (7.4)

we have the bound 〈〈
θ2
〉〉
≥ max

ϕ
〈ϕs〉2 /

(
U2
〈
|∇ϕ|2

〉
+ κ2

〈
(∆ϕ)2

〉)
. (7.11)

We can solve the variational problem (7.11) using its Euler–Lagrange equation, in an

identical manner to [28,71], to find〈〈
θ2
〉〉
≥
〈
s
{
κ2∆2 − U2∆

}−1
s
〉
. (7.12)

However, the right-hand side of (7.12) is exactly the variance of the periodic zero-mean

solution to

Uθ′(x) = κ θ′′(x) + s(x), (7.13)

that is, the steady advection-diffusion equation for a constant flow. Hence, the constant

flow is optimal, in the sense that any other flow with velocity norm U2 cannot decrease

the variance further. (This optimal solution might not be unique.) This is a surprising
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fact: it means that any other process, even turbulence, cannot ‘stir’ the source-sink

better. A constant flow also minimises the Ḣ1 norm at fixed kinetic energy, since the

bound for this norm is

‖θ‖2
Ḣ1 ≥

〈
s
{
κ2∆2 − U2∆

}−1
s
〉

(7.14)

which is also saturated for the periodic zero-mean solution of (7.13). The third norm,

Ḣ−1, associated with E−1, is not optimised by a constant flow, reflecting the norm’s

preference for small scales. A simple bound such as (7.12) and (7.14) which does not

depend on the details of u(x, t) cannot be derived in this case, except for particular

classes of flows (see section 8). Nevertheless, a bound can be derived from [28,71]〈〈
|∇−1θ|2

〉〉
≥ max

ϕ
〈〈ϕs 〉〉 2

/〈〈
|∇u · ∇ϕ+ u · ∇∇ϕ+ κ∆∇ϕ|2

〉〉
,

which after using the Minkowski inequality gives for the denominator gives what is likely

a terrible bound:〈〈
|∇−1θ|2

〉〉
≥ max

ϕ
〈〈ϕs 〉〉 2

/(
γ−1 ‖∇ϕ‖+ U ‖∆ϕ‖+ κ ‖∇∆ϕ‖

)2
, (7.15)

where γ−2 = ‖∇u‖2 is a time-averaged version of (5.7). This could in principle be

maximised over ϕ, but this is much harder than for the other norms. The important

fact about (7.15) is that it depends on the gradient norm ‖∇u‖ of the flow, and clearly

the bound can be made arbitrarily small by increasing this norm. Thus flows that

minimise this norm are likely mixing.

If one further constrains the problem other solutions are possible (see for example

the discussion of Plasting & Young [64] below). Nevertheless, it is surprising that the

optimal answer in this case could be so different from a ‘mixing’ flow, that is, one that

amplifies gradients of concentration (in the sense of ergodic theory – see section 4). It

is an open question whether there exists source-sink configurations for which the flow

that maximises E0 is also mixing.

To check how sharp the bound (7.4) is for a model system, Thiffeault et al [82]

considered the two-dimensional ‘random sine flow’ of Pierrehumbert [2, 62]. This flow

consists of alternating horizontal and vertical sine shear flows, with phase angles ζ1(t)

and ζ2(t) ∈ [0, 2π] randomly chosen at each time period, τ . In the first half of the period,

the velocity field is

u(1)(x, t) =
√

2U (0 , sin(2πNx/L+ ζ1(t))) ; (7.16a)

and in the second half-period it is

u(2)(x, t) =
√

2U (sin(2πNy/L+ ζ2(t)) , 0) , (7.16b)

where N is an integer indicating the scale of the flow. The source function used

is s(x) =
√

2 sin(2πx/L), and we set the integer N = 1 for now. For the simple

choice ϕ = s, we have the efficiency bound

E0 ≤
√

Pe2

8π2
+ 1 . (7.17)
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Figure 7. Mixing efficiency E0 for the random sine flow. The solid line is the upper

bound (7.17). The dashed line is the result of direct numerical simulations with U

and τ fixed. The dashed-dot curve plots simulation data with κ and τ held constant

while varying U (after Thiffeault et al [82]).

This bound is plotted in figure 7 against numerical simulations for the random sine

flow. The Péclet number is varied in two ways: by varying the diffusivity κ and the

amplitude U . The bound captures the trend of the numerical simulation, especially

as κ is varied. The oscillations as U gets larger are due to the spatial periodicity of the

domain.

Plasting & Young [64] enhanced the bound by including the scalar dissipation rate

as a constraint. They define the entropy production (or half the variance dissipation

rate) as

χ := κ
〈〈
|∇θ|2

〉〉
(7.18)

which is of course proportional to the time-average of the Ḣ1-norm of θ. The entropy

production satisfies the power integral

χ = 〈〈 θ s 〉〉 . (7.19)

Plasting & Young minimise the variance subject to both (7.1) and (7.19), taking χ as

given. They find the bound

〈〈
θ2
〉〉
≥ 〈〈A

2 〉〉χ2 + 2 〈〈 sA 〉〉 〈〈 s ϕ 〉〉χ+ 〈〈 s ϕ 〉〉 2 〈〈 s2 〉〉
〈〈A2 〉〉 〈〈 s2 〉〉 − 〈〈 sA 〉〉 2 . (7.20)

Their bound takes into account the creation of scalar gradients through the

constraint (7.19). For the sine flow (7.16), their bound is plotted in figure 8 in the 〈〈 θ2 〉〉 –
χ plane (parabolic solid curve). The horizontal curve at the bottom is the bound (7.17).

Notice that, if we know χ, the lower bound of Plasting & Young is a vast improvement

over(7.17). The problem is that we usually don’t know χ.
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Figure 8. For the sine flow (7.16): the lower bound (7.20) on variance
〈〈
θ2
〉〉

(solid

parabolic line) as a function of the dissipation χ. The horizontal solid line is the

bound (7.17), which assumes no knowledge of χ. The vertical dashed line is the N →∞
limit for χ, and the dots are numerical simulation results (after Plasting & Young [64]).

However, for the sine flow we can find χ in the limit N → ∞. First, for the sine

flow (7.16) we can compute the effective diffusivity D explicitly [34,53]:

D = 1
8
U2τ (7.21)

where we neglect the small molecular diffusivity. For N large in (7.16), we can solve for

a ‘mean-field’ temperature field [64], and obtain

χ ' L2

4π2D
=

2L2

π2U2τ
, N � 1, (7.22)

for the same source s(x) =
√

2 sin(2πx/L) used previously. This is the ‘homogenisation

limit,’ where the scale of the source is much larger than the scale of the flow (see

section 9). The dashed line in figure 8 shows the large N form (7.22), and the dots are

numerical simulations by Plasting & Young for various N (N = 1 is off scale). The

numerical results approach the vertical line for remarkably small N . They conjecture

that for the sine flow as the scale separation (N is made larger) is increased the lower

bound is approached. It is an open question whether the bound (7.20) can be realised

for more general classes of flow than the single-wavenumber sine flow.

Recently, Alexakis & Tzella [1] addressed the issue of getting bounds that reflect

mixing instead of transport in a different way. They focused on a dissipation length

scale `d and its inverse kd defined by

k2
d = `−2

d := ‖θ‖2
Ḣ1/‖θ‖2 = E2

0/E
2
1 = χ/(κ

〈〈
θ2
〉〉
) . (7.23)

(This length scale was denoted λ in Thiffeault et al [82].) This length scale characterises

the scale or variation of the passive scalar. They find that `d scale is not always
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equivalent to the Batchelor length scale

`2
B := κ`u/U (7.24)

where `u is the typical length scale of the velocity field. They introduce the ratio

δ := `u/`s (7.25)

where `s is a typical length scale of the source. For example, for the sine flow (7.16) we

have `u = L/N , and for the source s(x) =
√

2 sin(2πx/L) we have `s = L, so δ = N−1.

The homogenisation limit is when δ → 0, used by Plasting & Young to obtain (7.22).

This represents the ideal of scale separation between a small-scale stirring velocity field

and a large-scale source. (See section 9.)

Alexakis & Tzella define the correlation ξθ,s between the source and the

concentration field by

ξ2
θ,s :=

〈〈 θ s 〉〉 2

〈〈 s2 〉〉 〈〈 θ2 〉〉 , 0 ≤ ξθ,s ≤ 1, (7.26)

from which 〈〈
θ2
〉〉

= ξ2
θ,s `

4
d κ
−2
〈〈
s2
〉〉
. (7.27)

Given κ and 〈〈 s2 〉〉 , there are then two ways to reduce the variance: decrease ξθ,s or

decrease `d (equivalently, increase kd). Decreasing ξθ,s is best achieved by transport, that

is, by having a flow that rapidly carries source onto sink and vice-versa. Decreasing `d

relies on mixing, that is, by creating small scales of the concentration field. Both achieve

the same thing in the end, but in very different ways. Thus, one can target whichever

variance-minimising method one prefers by focusing on ξθ,s or `d. So far, our emphasis

for the advection-diffusion problem with sources and sinks has been on decreasing ξθ,s.

One advantage of aiming instead to decrease `d is that the flows obtained can be good at

reducing the variance regardless of the precise structure of the source-sink configuration.

A simple bound on kd was given in Thiffeault et al [82], and after being adapted

to the two scales `u and `s it reads

k2
d`

2
B ≤ δ

(
c1 + c2δ Pe−1

u

)
, Peu := U`u/κ, (7.28)

where we used a new version of the Péclet number based on the source scale, and the

dimensionless constants c1 and c2 depend on the shape of the source and velocity field.

By working directly from the time-evolution equation for ∇θ, Alexakis & Tzella [1]

improve this to

k2
d`

2
B ≤ 1

2
c3 + 1

2

√
c2

3 + 4δ3Pe−1c2(c1 + c2δPe−1
u ) . (7.29)

where c3 is a dimensionless constant that depends on the shape of the velocity field. At

large δ and large Pe, this is a vast improvement over (7.28), as can be seen in figure 9.

The constants were chosen for the sine flow with a sinusoidal source: c1 = 2
√

2, c2 = 2,

c3 =
√

2 [1]. At smaller δ the crude bound (7.28) does better, which suggests a further
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Figure 9. The upper bound (7.28) (dashed line) and the improved bound (7.29)

(solid line), for various values of the Péclet number Peu. The constants were chosen

for the sine flow with a sinusoidal source: c1 = 2
√

2, c2 = 2, c3 =
√

2. Note that

for Peu & 1 the bounds (7.28) ‘bunch up’ and become independent of Peu (after

Alexakis & Tzella [1]).

improved bound could be derived which captures both. At larger δ the bounds (7.28)

‘bunch up’ and do not improve further, whereas the bound (7.29) continues to decrease,

achieving an asymptotic value k2
d`

2
B ≤ c3 as Peu →∞.

From the upper bounds (7.28) and (7.29), Alexakis & Tzella [1] investigate the

behaviour of kd as δ varies. They identify five regimes, which are summarised in table 1.

In regime I diffusion is very fast, so scalar gradients are set by the source scale and the

flow is irrelevant. Regime II is a transitory regime where U and κ now appear explicitly,

but the length scale `u is still absent. Regime III is the classical Batchelor regime [12],

where the gradients of θ scale as `−1
B . Regime IV is also Batchelor-like, in that k2

d is

proportional to U/κ, but where the length scale `u has been replaced by `s, since the

source now has larger scales than the velocity field. It is indeed remarkable that all

these regimes can be captured by (7.28)–(7.29).

There is a fifth regime not captured by these bounds: this is the homogenisation

regime when the source has much larger scale than the velocity field (δ � 1). We

discussed this regime earlier in connection with the Plasting & Young bound; see also

Majda & Kramer [53] for an extensive review, or Kramer & Keating [46] and Keating

et al [44] for a treatment explicitly involving sources and sinks. In homogenisation

theory the resulting effective diffusivity D usually scales as D ∼ Peακ, where α = 2

for shear flows (Taylor–Aris dispersion [5, 78]), α = 1 for perfect chaotic mixing (D is

then independent of κ, as for the sine flow in (7.21)), and α = 1/2 for cellular flows.

Note that, as pointed out by Alexakis & Tzella, the range of validity in δ of regime V

in table 1 may strictly speaking be beyond homogenisation theory: Lin et al [49] have
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Table 1. The different regimes deduced from the bounds (7.28)–(7.29) (I–IV) and by

homogenisation theory (V).

regime k2d estimate range of validity note

I ≤ c2/`2s δ � Pe diffusion-dominated

II ≤ (c1c2U/κ`
3
s)

1/2 Pe1/3 � δ � Pe

III ≤ c3/`2B O(1) . δ � Pe1/3 Batchelor regime

IV ≤ c1U/κ`s δ . O(1)

V ∼ δ2Peα−1/`2B δ � min(1,Pe1−α) homogenisation regime

shown that δ � Pe−1 is required for the theory to apply.

8. Dependence of norms on source-sink structure

In this section we discuss the results of Doering & Thiffeault [28] and Shaw, Thiffeault,

& Doering [71], who derive bounds on the dependence of the mixing efficiencies with

Péclet number. The ‘classical’ scaling for a smooth source-sink distribution is linear

in Pe. But if the source has complicated small-scale structures (‘roughness’), then

the efficiencies can scale anomalously with Pe, with exponents less than unity, or even

logarithmic corrections. The specific behaviour depends on the degree of roughness, as

characterised by the rate of decay of the power spectrum for large wavenumbers, as well

as the dimensionality of space.

As usual, we consider u(x, t) it to be a specified divergence-free vector field. In

addition, we assume the following equal-time single-point statistical properties shared

by statistically homogeneous isotropic flows (SHIFs):

ui(x, ·) = 0, ui(x, ·)uj(x, ·) =
U2

d
δij

ui(x, ·)
∂uj(x, ·)
∂xk

= 0,
∂ui(x, ·)
∂xk

∂uj(x, ·)
∂xk

=
γ2

d
δij

(8.1)

where overbar represents the long-time average (assumed to exist) at each point in

space. (See [71] for a derivation of these properties.) The r.m.s. velocity U measures

the strength of the stirring and γ indicates the flow field’s strain or shear content.

The ratio λ = U/γ corresponds to the Taylor microscale for homogeneous isotropic

turbulence. The Péclet number for the flow is Pe = UL/κ. Note that there are flows,

such as the ‘random sine flow’ (7.16), that satisfy the SHIF conditions (8.1) but are not

genuinely isotropic [14, 28, 71]. Nevertheless, we will refer to flows satisfying as SHIFs

for expediency.

The reason for introducing SHIFs as a class of flows, in addition to their simplicity

and physical relevance, is that the maximisation over ϕ in (7.4) is particularly simple,
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for then the denominator in that equation becomes

〈〈
(u · ∇ϕ+ κ∆ϕ)2

〉〉
=

〈
U2

d
|∇ϕ|2 + κ2 (∆ϕ)2

〉
. (8.2)

Assuming a time-independent source, the simple variational problem (7.4) then

gives [28,71]

E2
0 ≤

〈s∆−2s〉〈
s {∆2 − (U2/κ2d) ∆}−1 s

〉 . (8.3)

This bound depends on the spatial structure of the source function, but not its

amplitude; the stirring velocity field only enters through the length scale κ/U = Pe−1L.

We can bound the small scale and large scale efficiencies E±1 from (7.1) in the same

manner after integrations by parts and application of the Cauchy–Schwarz inequality.

For E1,

〈〈ϕs 〉〉 2 = 〈〈 (uϕ+ κ∇ϕ) · ∇θ 〉〉 2 ≤
〈〈
|uϕ+ κ∇ϕ|2

〉〉 〈〈
|∇θ|2

〉〉
so 〈〈

|∇θ|2
〉〉
≥ max

ϕ
〈〈ϕs 〉〉 2/

〈〈
(uϕ+ κ∇ϕ)2

〉〉
. (8.4)

A potentially sharper bound involving the full two-point correlation function for the

velocity field can be obtained by formally minimising over θ [71], but for our purposes

the estimate (8.4) suffices. For SHIFs the denominator in (8.4) is 〈ϕ[−κ2∆ + U2]ϕ〉 and

optimisation over ϕ leads to [28,71]

E2
1 ≤

〈s (−∆−1)s〉〈
s {−∆ + U2/κ2 }−1 s

〉 (8.5)

for a time-independent source.

We can obtain a bound on E−1 from (7.1) by using θ = ∇ · ∇−1θ, integrating by

parts, and using Cauchy–Schwarz:

〈〈ϕs 〉〉 2 =
〈〈
∇(u · ∇ϕ+ κ∆ϕ) · (∇−1θ)

〉〉 2

≤
〈〈
|∇u · ∇ϕ+ u · ∇∇ϕ+ κ∆∇ϕ|2

〉〉 〈〈
|∇−1θ|2

〉〉
so that 〈〈

|∇−1θ|2
〉〉
≥ max

ϕ

〈〈ϕs 〉〉 2

〈〈 |∇u · ∇ϕ+ u · ∇∇ϕ+ κ∆∇ϕ|2 〉〉 .

For SHIFs the denominator is 〈ϕ[−κ2∆3 + (U2/d) ∆2 − (γ2/d) ∆]ϕ〉 so that

E2
−1 ≤

〈s (−∆−3)s〉〈
s {−∆3 + (U2/κ2d) ∆2 − (γ2/κ2d) ∆}−1 s

〉 (8.6)

for a time-independent source.
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Assuming again that the fluid domain is periodic and that the source is time-

independent, it will be helpful to rewrite the mixing efficiency bounds (8.3), (8.5), and

(8.6) in Fourier space:

E2
1 ≤

∑
k|ŝk|2/k2∑

k|ŝk|2/(k2 + Pe2)
, (8.7a)

E2
0 ≤

∑
k|ŝk|2/k4∑

k|ŝk|2/(k4 + Pe2k2/d)
, (8.7b)

E2
−1 ≤

∑
k|ŝk|2/k6∑

k|ŝk|2/(k6 + Pe2k4/d+ Pe2k2/λ2d)
, (8.7c)

where we have rescaled [0, L]d to [0, 1]d so that wavevector components are integer

multiples of 2π. Now we investigate the large Péclet number behaviour of these bounds

for a variety of classes of sources.

8.1. Eigenfunction sources.

The simplest class consists of sources that depend only on a single wavenumber ks, i.e.,

that are eigenfunctions of the Laplacian ∆ with eigenvalue −k2
s . The bounds (8.7) then

simplify to

E1 ≤
√

1 + Pe2/k2
s , (8.8a)

E0 ≤
√

1 + Pe2/k2
sd , (8.8b)

E−1 ≤
√

1 + Pe2/k2
sd+ Pe2/λ2k4

sd . (8.8c)

Observe that each efficiency is asymptotically proportional to Pe for large Pe,

corresponding to the expected suppression of variance if the molecular diffusivity κ

is replaced by an eddy diffusivity proportional to UL. Moreover these upper bounds are

sharp: they may be realised by uniform flow fields whose direction varies appropriately

in time to satisfy the weak statistical homogeneity and isotropy conditions used in the

analysis [64,71]. Each estimate also exhibits a decreasing dependence on the length scale

of the source: for large Pe the bounds for the small- and intermediate-scale efficiencies

E1 and E0 are proportional to Pe/ks.

8.2. Square-integrable sources and sinks.

The next simplest case is when the Fourier coefficients of the source-sink distribution

are such that the sums in the denominators of (8.7) converge in the limit as Pe → ∞.

For example, the Fourier coefficients of smooth sources decay exponentially for large k,

so convergence is guaranteed. We can then use the asymptotic Pe → ∞ behaviour of
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Figure 10. Plume of ash from Eyjafjallajökull volcano, Iceland, 10 May 2010 (NASA

MODIS image).

the mixing efficiency bounds to find

E1 ≤ Pe

√∑
k|ŝk|2/k2∑
k |ŝk|2

, (8.9a)

E0 ≤ Pe

√ ∑
k|ŝk|2/k4

d
∑
k|ŝk|2/k2

, (8.9b)

E−1 ≤ Pe

√ ∑
k|ŝk|2/k6

d
∑
k|ŝk|2/(k4 + k2/λ2)

. (8.9c)

These are the same Pe scalings as above for eigenfunction sources, but the prefactors

now depend on different combinations of length scales in the source. For instance, the

efficiency E1 depends more strongly on the high wavenumbers in the source than the

other two efficiencies, as would be expected.

8.3. Rough sources.

Rough sources are very common in nature: oil gushing from an underwater well is an

infamous recent example of a point source, as is the volcanic ash plume in figure 10.

We can define ‘rough’ sources as those for which some or all the sums in the large-Pe

bounds (8.9) are divergent. For instance, if the source is not in L2 then the denominator

in (8.9a) will diverge. For those cases, the Péclet number scaling may change, resulting

in anomalous behaviour for some or all of the efficiencies (8.7).

The extreme case is the roughest physically-meaningful sources: measure-valued

sources such as δ-functions with nondecaying Fourier coefficients |ŝk| = O(1) as k →∞.
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Then the sums in (8.9a) for E1 and the denominator of (8.9b) for E0 diverge in dimension

d = 2 or 3, rendering those scalings invalid. In this case the Pe dependence of E1

drops out completely and all finite-kinetic-energy stirring velocity fields are completely

ineffective at suppressing small scale fluctuations. To determine the high-Pe behaviour

of E0 we approximate sums by integrals. The denominator of (8.7b) is

∑
k

1

k4 + (Pe2/d) k2
∼
∫ ∞

2π

kd−1 dk

k4 + Pe2k2/(4π2d)
. (8.10)

For d = 2 the integral in (8.10) is∫ ∞
2π

k dk

k4 + Pe2k2/8π2
∼ log Pe

Pe2 , (8.11)

resulting in the asymptotic bound

E0 . Pe/
√

log Pe , d = 2. (8.12)

Hence in dimension two there is a logarithmic correction to E0 as compared to the

square-integrable source case.

For d = 3 the integral in (8.10) becomes∫ ∞
2π

k2 dk

k4 + Pe2 k2/12π2
∼ 1

Pe
(8.13)

resulting in an anomalous scaling bound

E0 .
√

Pe , d = 3. (8.14)

This is a dramatic modification of the classical scaling. A similar analysis shows that

the upper bound on the large scale mixing efficiency E−1 ∼ Pe in (8.9c) persists even

for these roughest sources.

We may also analyse anomalous scalings for more general rough sources where

the Fourier spectrum |ŝk| decays as k−β with 0 ≤ β ≤ d/2. The roughest measure–

valued sources have β = 0 while for β > d/2 the source is square-integrable and thus

effectively smooth as far as these multiscale mixing efficiencies are concerned. In order

to examine the high-Péclet-number asymptotics of the bounds on the various Eq we

estimate integrals similar to (8.10) but with an extra factor of k−2β in the numerator

arising from |ŝk|2. The results are summarised in table 2. In d = 2 the scaling for E1

is anomalous for any degree of roughness while E0 is anomalous only for the roughest

sources with β = 0. In d = 3, E1 is again anomalous for any degree of roughness while

E0 scales anomalously for 0 ≤ β < 1/2. For both d = 2 and 3 the bound on the large

scale mixing efficiency E−1 is always classical (i.e., linear in Pe). Of course these scalings

neglect any large-k cutoff for the rough sources, as discussed in the next section.
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Table 2. Scalings of the bound on the mixing efficiency Eq as functions of the source

roughness exponent β in two and three dimensions.

d = 2 q = 1 q = 0 q = −1

β = 0 1 Pe/(log Pe)1/2 Pe

0 < β < 1 Peβ Pe Pe

β = 1 Pe/(log Pe)1/2 Pe Pe

β > 1 Pe Pe Pe

d = 3

β = 0 1 Pe1/2 Pe

0 < β < 1/2 1 Peβ+1/2 Pe

β = 1/2 1 Pe/(log Pe)1/2 Pe

1/2 < β < 3/2 Peβ−1/2 Pe Pe

β = 3/2 Pe/(log Pe)1/2 Pe Pe

β > 3/2 Pe Pe Pe

8.4. Rough sources with a cutoff.

In nature, it can be argued that rough sources are never truly encountered: physical

systems tend to be smooth beyond a certain small scale (as long as we stay away from

atomic scales, but that is a different story. . . ), or at least they are modelled that way.

With this in mind, how are the scalings derived in the previous section realised by

sources which are only rough when seen ‘from afar’ but are actually smooth upon closer

examination? Answering this will help, for instance, in understanding how such scalings

can be observed in data for which the roughness exponent is meaningful for a limited

range of wavenumbers. We will focus on the roughest type of sources for which Fourier

coefficients do not decay, but the analysis is easily extended to any type of rough source

discussed in section 8.3.

Point-like sources of small but finite size `s have Fourier coefficients ŝk that are

approximately constant in magnitude up to a cutoff wavenumber of order 2π/`s, beyond

which the spectrum decays as for a smooth source. We may deduce the behaviour of the

bound on E0 for such sources by inserting an upper limit at L/`s � 1 into the integral

in (8.10). For large but intermediate Péclet numbers satisfying 1 � Pe � L/`s, the

cutoff is irrelevant so the logarithmic correction (8.12) in d = 2 and the anomalous

scaling (8.14) in d = 3 appear. However for Pe � L/`s, i.e., when the modified Péclet

number based on the smallest scale in the source U`s/κ� 1, the smooth source results

apply and we recover the mixing efficiency bounds linear in Pe, as in (8.9). Figure (11)

shows this scaling transition for the d = 3 case. Even in the ultimate regime where

the source appears smooth, the prefactor in front of the high-Pe scaling bounds are

significantly diminished by the small scales in the source: E0 . [log(L/`s)]
−1/2 Pe in

d = 2, and E0 . [`s/L]1/2Pe in d = 3.
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Figure 11. Upper bound for the mixing efficiency E0 as a function of Péclet

number for a small source with `s = 10−8L stirred by a three-dimensional statistically

homogeneous and isotropic flow [computed from Eq. (8.7b)]. The intermediate Pe1/2

scaling for 1� Pe� (L/`s) is evident (after Doering & Thiffeault [28]).
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Figure 12. The theoretical upper bounds and simulation results for the mixing

enhancement of a cubic source of size `s = L/50, and a δ-function source. The stirring

velocity field is a 3D version of the random sine flow [62] (after Okabe et al [56]).

8.5. Summary and numerical evidence.

An important aspect of the mixing efficiency for rough source-sink distributions

discussed above is that an anomalous large-Pe scaling implies that molecular diffusivity is

always important, for any SHIF. To emphasise: there is no ‘residual’ effective diffusivity

due to stirring in the limit of negligible molecular diffusion. Since we derived upper
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bounds, the actual scaling could be worse (see below for numerical results). This again

highlights a theme of this review: the source-sink distribution takes centre stage, and

should not be treated as a secondary aspect when compared to the stirring flow.

For actual SHIF flows, there is evidence that the upper bound scalings are somewhat

generous for finite-size sources. Figure 12 shows results from Okabe et al [56], who used

a 3D generalisation of Pierrehumbert’s random sine flow [62] as a SHIF. The dashed

lines are for a source of size `s = L/50, where L is the domain size. In that case, the

upper bound scales is a rather poor indicator of the actual flow efficiency. However,

as the source size is made smaller the bound improves considerably: the solid lines in

figure 12 are for a δ-function source. Chertock et al [21] have confirmed these results

using an accurate operator-splitting method.

Whether the results derived in this section for statistically homogeneous and

isotropic flows (SHIFs) generalise to a wider class of flows is an important open question.

Another open question is whether there exist SHIFs that saturate the scalings of table 2.

9. Homogenisation theory with sources and sinks

Homogenisation theory is a type of multiscale analysis that exploits a large spatial scale

separation between the stirring velocity field and the source [29,34,53,61]. We used this

already in describing Plasting & Young’s results for the sine flow (7.16) for N � 1 in

section 7, and discussed it in the same section in connection with regime V of Alexakis

& Tzella.

Here we review the results of Kramer & Keating [46], Keating et al [44], and Lin

et al [49]. This series of papers has its origin in a definition of an equivalent diffusivity

defined by Thiffeault et al [82] and generalised in Shaw et al [71]:

D(eq)
q := κEq (9.1)

where Eq is just the mixing efficiency (7.8). This is the diffusivity that would be required

in the absence of stirring to achieve the same level of suppression of the norm Ḣq

with stirring. Homogenisation theory has its own effective diffusivity, D, which we

encountered before, based on a mean-field approach and exploiting separation of scales.

(We note that the effective diffusivity is additive on top of the molecular diffusivity,

whereas D
(eq)
q includes the molecular diffusivity.) For large Péclet number, the effective

diffusivity satisfies the rigorous scaling bound [6, 7, 34] D ≤ C κPe2, whereas D
(eq)
q

satisfies D
(eq)
q ≤ C2 κPe for q = 1, 0, −1 (see table 2). Since both quantities claimed to

measure essentially the same thing, both large-Pe scalings could not be right.

The answer, of course, as explained in great detail for a model system by Lin

et al [49], is that the homogenisation bound applies only when the concept of an

effective homogenisation diffusivity exists, that is, in the homogenisation limit δ � Pe−1,

where the scale separation δ = `u/`s was defined in (7.25). Lin et al point out that

the homogenisation limit δ → 0 does not commute with the large Pe limit. As a

result, the large-Pe dependence of a mixing efficiency such as E0 has two distinguished



Using multiscale norms to quantify mixing and transport 35

regimes which cross over when δ is of order Pe. They exhibit a specific example

where the efficiency E0 ∼ δ7/6 Pe5/6 for fixed δ and Pe → ∞, consistent with an

upper bound linear in Pe. For fixed Pe and δ → 0, they recover the homogenisation

scaling E0 ∼ 1 + Pe2. They then introduce a modification of Batchelor’s dispersion

theory [11], called Dispersion-Diffusion Theory, which successfully reconciles effective

diffusion in terms of particle dispersion and of suppression of variance of a source-sink

distribution.

A general treatment of homogenisation theory with sources and sinks was given

by Kramer & Keating [46]. The starting point is a rescaled version of the advection-

diffusion equation (2.1): we let x′ = δx, t′ = δ2t and immediately drop the primes to

get

δ2 ∂θ

∂t
+ δu

(
x

δ
,
t

δ2

)
· ∇θ − δ2 κ∆θ = s

(
x

δ
,
t

δ2
;x, t

)
, δ � 1, (9.2)

where we have assumed that the source can vary on the small spatial scale x/δ and fast

time scale t/δ2 as well as on the larger spatial scale x and slower time scale t, whereas the

velocity field is confined to small spatial scales. The variable x/δ is assumed periodic,

with u having space-time mean zero. The concentration θ is expanded in the usual

manner

θ(x, t) = θ(0)(ξ, τ ;x, t) + δ θ(1)(ξ, τ ;x, t) + δ2 θ(2)(ξ, τ ;x, t) + . . . (9.3)

where ξ := x/δ, τ := t/δ2 (not to be confused with the period τ of the sine flow (7.16)).

With the fast and slow variables separated as in (9.3) we must write ∂t → δ−2∂τ + ∂t,

∇ → δ−1∇ξ +∇x. The advection-diffusion operator on the left-hand side of (9.2) then

splits into three orders in δ:

L(0) = ∂τ + u · ∇ξ − κ∆ξ, at order δ0; (9.4a)

L(1) = u · ∇x − 2κ∇x · ∇ξ, at order δ1; (9.4b)

L(2) = ∂t − κ∆x, at order δ2. (9.4c)

We have not yet posited a magnitude for the source. The simplest case that

will yield a nontrivial self-consistent solution is to take a weak source, s = δ2ŝ,

where ŝ is order one. Then at leading order we have L(0)θ(0) = 0, which means

that θ(0)(ξ, τ ;x, t) = Θ(0)(x, t), i.e., it depends only on the slow variables. (This is

a consequence of the solvability condition and uniqueness results — see Lemma 3.1

in [46].) At the next order we have L(0)θ(1) = −L(1)θ(0) = −u · ∇xΘ(0). The solvability

condition for this equation says that u · ∇xΘ(0) must average to zero over the small

scales, which it does since u averages to zero and Θ(0) does not depend on the small

scales. Hence, we have θ(1) = Θ(1)(x, t) +χ · ∇xΘ(0), where χ satisfies the so-called cell

problem

L(0)χ = −u(ξ, τ), (9.5)

where χ has space-time mean zero.
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The next and final order has L(0)θ(2) = −L(1)θ(1)−L(2)θ(0) + ŝ, but we only require

the solvability condition that the space-time average of the right-hand side over the

small spatial and temporal scales vanishes. This solvability condition leads directly to

the homogenised diffusion equation

∂tΘ
(0) = ∇x ·

(
D(x, t)∇xΘ(0)

)
+ S(x, t) (9.6)

where I is the unit tensor, S is ŝ averaged over small space-time scales, and D is the

tensor

[D]ij(x, t) := κ
(
I + 〈〈∇ξχi∇ξχj 〉〉 ξ,τ

)
, S(x, t) = 〈〈 ŝ 〉〉 ξ,τ (9.7)

where the subscripts ξ, τ remind us that the average is over small and fast scales ξ

and τ . If the system is isotropic, the scalar effective diffusivity D we introduced earlier

appears on the diagonal of D.

So far everything has proceeded as one would expect: the homogenised

equation (9.6) is exactly the standard one with an averaged source added. How can

things go wrong and become more interesting? The most obvious way is if the small-

scale average S in (9.7) vanishes identically. In that case we do not get a self-consistent

equation involving the source, and we must rescale the source differently. Following

Kramer & Keating, we set s = δŝ, which is a stronger source. At order δ0 nothing

changes from before, but at order δ1 we get L(0)θ(1) = −u · ∇xΘ(0) + ŝ, the source

now making an appearance. The solvability condition is still satisfied, since the source

averages to zero at the small scales, by assumption. We may then express the solution

as

θ(1)(ξ, τ ;x, t) = Θ(1)(x, t) + χ · ∇xΘ(0) + θs(ξ, τ ;x, t) (9.8)

where χ is again the unique periodic mean-zero solution to the cell problem (9.5),

and θs(ξ, τ ;x, t) is the unique periodic mean-zero solution to

L(0)θs(ξ, τ ;x, t) = ŝ(ξ, τ ;x, t) (9.9)

for every (x, t). Again, this ‘source cell problem’ has a solution because the source

satisfies 〈〈 ŝ 〉〉 ξ,τ = 0, by assumption. The term θs gives us one extra term in the solvability

condition for the next order, which now appears as a source instead of the vanishing

averaged source in (9.6):

∂tΘ
(0) = ∇x ·

(
D(x, t)∇xΘ(0)

)
−∇x · 〈〈u θs 〉〉 ξ,τ (9.10)

where D is defined as in (9.7). Thus in this case because the small-scale mean of

the source vanishes the source of concentration arises from the small-scale correlations

between u and θs that give rise to large-scale variations. To paraphrase Kramer &

Keating, θs is exactly the local response of the passive scalar field to the source on the

small scale, with the large-scale variation frozen at its local value. Then u θs is the

advective flux of passive scalar density generated in response to the local behaviour of

the source. It would be of great interest to generate examples of this type, and to study

how their efficiency scales.
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The is a third case mentioned by Kramer & Keating [46], when ∇x · 〈〈u θs 〉〉 ξ,τ
vanishes as well as 〈〈 θs 〉〉 ξ,τ . Then we must promote the strength of the source again, so

that it comes in at order zero. Two source cell problems must then be solved for the,

but the resulting homogenised equation looks very similar to (9.10).

The mixing efficiencies associated with (9.7) can easily be derived [44], since in the

absence of flow we just set D = κ:

E2
0 =

〈〈
S∆−2

x S
〉〉 / 〈〈
|(∇x · (D/κ) · ∇x)−1 S|2

〉〉
, (9.11a)

E2
−1 =

〈〈
S∆−3

x S
〉〉 / 〈〈
|∇−1 (∇x · (D/κ) · ∇x)−1 S|2

〉〉
, (9.11b)

where now the space-time averages are over large scales. These simplify considerably

if D(x, t) = D I = const.:

E0 = D/κ, E−1 = D/κ. (9.12)

Thus, in this homogenisation limit these two efficiencies are identical, and the definition

of equivalent diffusivity (9.1) for q = −1, 0 is the same as the effective diffusivity D (if

we include the additive molecular value).

The astute reader will have noticed that we did not list E1. Indeed, Keating et

al [44] showed that E1 expressed as for (9.11) directly in terms of θ0 = Θ0 is not correct

in the context of homogenisation theory. The cause is that the gradient now takes the

scale-separated form ∇ = δ−1∇ξ+∇x, so the δ−1 can promote the smaller-order term θ1

to leading other. We thus have

∇θ = ∇xθ(0) +∇ξθ(1) + O(δ1) (9.13)

from which〈〈
|∇θ|2

〉〉
ξ,τ

=
〈〈
|∇xθ(0)|2

〉〉
ξ,τ

+
〈〈
|∇ξθ(1)|2

〉〉
ξ,τ

+ 2
〈〈
∇xθ(0) · ∇ξθ(1)

〉〉
ξ,τ

+ O(δ1) (9.14)

The last term vanishes since ∇xθ(0) doesn’t depend on the fast variables, and then

using θ(0) = Θ(0) and θ(1) = Θ(1)(x, t) + χ · ∇xΘ(0) we get

〈〈
|∇θ|2

〉〉
ξ,τ

= |∇xΘ(0)|2 +
∑
i,j

〈〈∇ξχi · ∇ξχj 〉〉 ξ,τ
∂Θ(0)

∂xi

∂Θ(0)

∂xj

= ∇xΘ(0) · (D/κ) · ∇xΘ(0)

in the limit as δ → 0. Inserting the steady solution Θ(0) = (∇x · (D/κ) · ∇x)−1 S, we

obtain the gradient norm efficiency

E2
1 =

〈〈
S∆−1

x S
〉〉 / 〈〈
∇ (∇x · (D/κ) · ∇x)−1 S · (D/κ) · ∇ (∇x · (D/κ) · ∇x)−1 S

〉〉
. (9.15)

The difference from directly trying to generalise (9.11) for the gradient norm mixing

efficiency is that here there is an extra (D/κ) sandwiched in the denominator. It is

easier to see how this differs from (9.11) by specialising to D(x, t) = D I = const.,

E1 = (D/κ)1/2, (9.16)
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and comparing to (9.12).

Keating et al [44] suggest defining a small-scale-averaged version of the equivalent

diffusivities,

D(eq)
q (x, t) := κ 〈〈 |∇qθ̃|2 〉〉 ξ,τ

/
〈〈 |∇qθ|2 〉〉 ξ,τ , (9.17)

where as before θ̃ is the purely-diffusive solution. The advantage of definition (9.17) over

an homogenised D is that it can be made even if there is no formal scale separation

between the large scales and the small scales, that is, D
(eq)
q (x, t) characterises scalar

dissipation due to processes at ‘subgrid scales’ whether or not there is a ‘gap’ between

the small and large scales. In fact for q = ±1 we can go a step further and naturally

generalise (9.17) to tensorial quantities,

[D(eq)
±1 (x, t)]ij := κ 〈〈 |∇±1θ̃|2 〉〉 ξ,τ

/
〈〈 (∇±1θ)i(∇±1θ)j 〉〉 ξ,τ , (9.18)

with q = −1 being the preferred choice to relate to the effective diffusivity, because of

the different scaling for E1 in (9.16).

10. Optimisation for the source-sink problem

Given sources and sinks, there is an obvious optimisation problem: for fixed energy,

which incompressible velocity field has the highest mixing efficiency Eq? The stirring

velocity field should in principle satisfy a fluid equation such as Stokes or Navier–Stokes,

but we can also optimise over all incompressible velocity fields to get an upper bound

on efficiency. This optimisation problem will be discussed in section 10.2.

The presence of sources and sinks implies a different optimisation problem. If the

position of the sources and sinks is part of the design process (as it often is for industrial

applications), then we may try to optimise the source-sink locations as well. This is a

less familiar problem, but one that is easier to tackle because of the structure of (2.1).

We discuss thus this problem first in section 10.1.

10.1. Source optimisation

By far the easier optimisation problem is one that is less intuitive: given a stirring

velocity field, what is the source-sink distribution which is best mixed by the flow. This

problem was examined by Thiffeault & Pavliotis [84]. For example, suppose we have a

room whose temperature we wish to control, and that there happens to be a predominant

airflow in that room which is relatively unaffected by the temperature distribution. Then

we can ask where to put heaters (sources) and windows (sinks) so that the temperature

is as uniform as possible.

We illustrate the optimisation procedure on the time-independent advection–

diffusion equation,

u(x) · ∇θ − κ∆θ = s(x), ∇ · u = 0, (10.1)

in Ω = [0, L]d with periodic boundary conditions. The velocity field u(x) is specified.

Both u(x) and s(x) are assumed to be sufficiently smooth. As before, we assume that
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the source and initial condition have spatial mean zero, which implies that the scalar

concentration also has mean zero.

Our goal is to maximise the efficiency Eq defined by (6.1),

E2
q = ‖(−∆)q/2θ̃‖2

/
‖(−∆)q/2θ‖2 ,

where θ̃ solves equation (10.1) in the absence of advection, −κ∆θ̃ = s. In maximising the

efficiency Eq, we fix the L2 norm of the velocity field (or equivalently, the mean kinetic

energy of the flow), and vary the diffusivity through the Péclet number Pe = ‖u‖L/κ.

Define the linear operators

L := u(x) · ∇ − κ∆ and L̃ := −κ∆,

from which we can write the solution to (10.1) and to the purely-diffusive problem

as θ = L−1s and θ̃ = L̃−1s, respectively. We can then rewrite the efficiency (6.1) as

E2
q =
‖(−∆)q/2L̃−1s‖2

‖(−∆)q/2L−1s‖2
=

〈
s Ã−1

q s
〉〈

sA−1
q s
〉 , (10.2)

where the self-adjoint operators Aq and Ãq are

Aq := L(−∆)−qL∗ , Ãq := L̃(−∆)−qL̃∗ = κ2(−∆)2−q , (10.3)

and as before 〈·〉 denotes an average over Ω. To maximise E2
q, we compute its variation

with respect to s and set it equal to zero,

δE2
q =

2〈
sA−1

q s
〉 〈(Ã−1

q s− E2
q A
−1
q s
)
δs
〉

= 0, (10.4)

which implies

Ã−1
q s = E2

q A
−1
q s . (10.5)

This is an eigenvalue problem for the operator AqÃ
−1
q . Optimal sources are given by

ground states of the inverse of this operator, and the normalised variance is given by

the corresponding (first) eigenvalue. The minimisation problem has a unique minimum,

though it may be realised by more than one source-sink distribution, in particular when

the flow has symmetry [84].

The operators A−1
q and Ã−1

q are self-adjoint from L2(Ω) to L2(Ω); furthermore,

they are both positive operators in L2(Ω) (restricted to functions with mean zero).

Consequently, the generalised eigenvalue problem (10.5) has real positive eigenvalues,

and the eigenfunctions s and s′ corresponding to distinct eigenvalues are orthogonal

with respect to the weighted inner product (s , s′) := 〈s Ã−1
q s′〉. For numerical

implementation, it is preferable to solve the equivalent self-adjoint eigenvalue problem

(Ã−1/2
q AqÃ

−1/2
q ) r = E2

q r , s =: Ã1/2
q r , (10.6)
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Figure 13. Source distribution that optimises E0 for the cellular flow (10.7), for three

values of the Péclet numbers. Note how there is no source of heat over the stagnation

points. The background shading shows hot (red, or dark grey) and cold (blue, or

light grey) regions, separated by tepid regions (white). The black contour lines are

streamlines of the flow. For both small and large Pe the optimal source converges

to an invariant eigenfunction. In all cases there is no source of temperature over the

elliptic stagnation points, but in the small Pe case there are sources and sinks over

some hyperbolic points.

for the eigenvector r, which then yields the optimal source distribution s. The advantage

of the form (10.6) is that the self-adjoint structure of the operator is explicit.

Our goal now is to calculate the optimal source and the corresponding mixing

efficiency for some simple velocity fields. Notice that the operator Ã−1
q is a diagonal

operator in Fourier space with entries κ2k2q−4, where k = |k| is the magnitude of

the wavevector. For q < 2, this operator acts as a low-pass filter, suppressing high

frequencies.

10.1.1. Dependence on Péclet number We consider the cellular flow on the domain Ω =

[0, L]2 = [0, 2π]2 with streamfunction

ψ(x, y) =
√

2 sin x sin y (10.7)

and velocity field u = (ux, uy) = (∂yψ,−∂xψ), normalised to make ‖u‖ = 1. For this

cellular flow there are two independent optimal source eigenfunctions with degenerate

optimal efficiency; the degeneracy is a consequence of the discrete symmetries of

the flow [84]. In figure 13 we show the source that optimises E0 for three values

of Pe. In the foreground are contour lines of the streamfunction. The optimal source

distribution appears to become independent of Pe both for small Pe and large Pe, but

the distributions are different. The transition between the two regimes occurs when Pe

is of order unity. Though the two asymptotic sources are very different, they respect

some general principles: the source is arranged for effective transport of hot onto cold

and vice versa, and regions of high speed are favoured. In particular, note that the

centre of the rolls has a nearly zero, flat source distribution in all cases.

Another perhaps surprising aspect of the small Pe solution in figure 13 is that it

has complicated structure. In this large diffusivity limit, one would expect diffusion
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Figure 14. For the flow with streamfunction (10.7), mixing efficiency E0 − 1 for the

optimal source distribution as a function of the Péclet number (after Thiffeault &

Pavliotis [84]).

to dominate and gradients to be smoothed out. But since our mixing efficiency (6.1)

compares the variance to the unstirred case, which already has very low variance, any

amount of improvement will count. Hence, the complicated source for small Pe in

figure 13 only gives a minute improvement to the efficiency. The small-Pe optimal

solution is particular in that it has some hot and cold spots localised over hyperbolic

stagnation points. This is probably due to the high speeds along the separatrices being

favoured, even at the cost of straddling hyperbolic stagnation points a little.

In figure 14 we show the value of the optimal efficiency E0 as a function of Pe. For

large Pe, the efficiency typically scales linearly with Pe: this is the ‘classical’ scaling

discussed in [28, 71, 82, 84]. For small Pe, the optimal efficiency also converges towards

unity linearly with Pe.

In summary, the optimal source distribution becomes independent of Pe for both

large and small Pe, but of course for small Pe the efficiency gain is minimal (since the L2

norm of the velocity is fixed).

10.1.2. Dependence on norm chosen Our final study will be to examine the behaviour

of the optimal efficiency Eq as q is varied in (6.1). In section 10.1.1 we used q = 0;

now we fix Pe = 100, and allow q to vary over negative and positive values. Figure 15

shows the optimal source distributions for q = −1, 0, and 1. For large |q| (not shown),

the optimal source distribution converges rapidly to invariant patterns. The q = −1

case in figure 15 (negative q) shows small, localised sources and sinks. In contrast,

the q = 1 case (positive q) shows large, regular localised sources and sinks. In fact,

what is striking about the pattern is its simplicity: it is what one might take as a guess

at an efficient source distribution, with no added frills. Thus, a high power of q might

be useful in situations where a simple configuration is preferable due to engineering

constraints. The reason for the simplicity is that spatial variations in the source favour
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Figure 15. For the flow with streamfunction (10.7), optimal source distribution s(x)

for Pe = 100 and q = −1, 0, and 1. In all cases there are no sources or sinks of

temperature over the stagnation points. (See the caption to figure 13 for a key to the

background shading and contours.)
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Figure 16. For the flow with streamfunction (10.7), mixing efficiency Eq − 1 as a

function of the exponent q for optimal source at Pe = 100. The optimal efficiency

is symmetric about q = 1, and for |q| � 1 it grows as (2.2)|q| (after Thiffeault &

Pavliotis [84]).

the diffusion operator in L, and as q → ∞ these are magnified. Thus, the source

must remain as spatially simple as possible while trying to maximise alignment with

the velocity. As q → −∞, spatial variations of the source are downplayed by the norm,

allowing more complexity.

Figure 16 shows how the optimal mixing efficiency varies as a function of q.

For |q| � 1, the efficiency scales exponentially as 2.2|q|. Note that the curve is symmetric

about q = 1, which leads to a minimum there: whether this is true in general has not

been proved, but no counterexample has been found. Thiffeault & Pavliotis [84] provide

a partial proof by explicitly finding the symmetry between the operators A2−q and Aq,

but only for small Pe.
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10.2. Velocity field optimisation

We turn now to a more obviously relevant problem, that of optimising the stirring

velocity field for a given source-sink configuration. As in section 10.1, we restrict to

the time-independent problem for simplicity. We will need the functional derivative

of ‖θ‖Ḣq , which arises from the variation

δ‖θ‖2
Ḣq = δ‖(−∆)q/2L−1s‖2 = δ

〈
((−∆)q/2L−1s)2

〉
. (10.8)

Since the velocity field only appears in the operator L defined in (10.1), we have

δ‖θ‖2
Ḣq = 2

〈
(−∆)q/2L−1s (−∆)q/2δL−1s

〉
. (10.9)

Using the property δL−1 = −L−1 δLL−1 leads to

δ‖θ‖2
Ḣq = −2

〈
(−∆)q/2L−1s (−∆)q/2L−1 δLL−1s

〉
= −2

〈(
L−1∗(−∆)qL−1s

)
δu · ∇L−1s

〉
,

where we integrated by parts, used the adjoint L∗ of L, and substituted δL = δu · ∇.

From the definition (10.3) of the self-adjoint operator Aq, we can then write the

functional derivative as

1
2

δ‖θ‖2
Ḣq

δu
= −

(
A−1
q s
)
∇L−1s. (10.10)

To formulate an optimisation problem, we also need to add constraints on u:

incompressibility and fixed energy. This is done in the usual manner by considering

Lagrange multipliers in the extended functional

F[u] = 1
2
‖θ‖2

Ḣq + 1
2
µ (‖u‖2 − U2) + 〈ν∇ · u〉 . (10.11)

Here µ and ν(x) are the Lagrange multipliers, with ν a function of space since∇·u = 0 is

a pointwise constraint. The functional derivative of F[u] then gives the Euler–Lagrange

equation,
δF[u]

δu
= −

(
A−1
q s
)
∇L−1s+ µu−∇ν = 0. (10.12)

to be solved for u for given s. Note that (10.12) is profoundly nonlinear in u, since it

enters in the nonlocal operators L−1 and A−1
q .

Let us restrict to the two-dimensional case, where we can introduce a

streamfunction ψ with u = (∂yψ,−∂xψ). Then taking the curl of (10.12) yields

µ∆ψ +
[
A−1
q s , L−1s

]
= 0, (10.13)

where

[f , g] = ∂xf ∂yg − ∂yf ∂xg. (10.14)

Equation (10.13) is a nonlinear eigenvalue problem that can be solved in several ways.

A direct approach is to start with an initial guess for ψ and µ and compute the residual
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Figure 17. (a) Optimal stirring velocity field (streamlines) for the source cosx cos y,

for Pe = 10. (b) Dependence on Péclet number of the optimal mixing efficiency E0.

For small Pe the optimal streamfunction approaches
√

2 sinx sin y. The dashed line is

the upper bound (10.15).

vector, that is the amount by which (10.13) fails to be satisfied. We also append the

constraint (‖u‖2 − U2) to the residual vector. Then use a multidimensional nonlinear

solver such as Matlab’s fsolve that finds zeroes of the residual vector, by adjusting the

vector (ψ, µ). Here ψ has been discretised in some way, either by specifying it on a grid

or by expanding it as a Fourier series.

Figure 17(a) shows a solution of (10.13) with q = 0, U = 1, and Pe = 10 for the

source cosx cos y. The efficiency corresponding to this solution is E0 = 1.46. The flow

is close to the standard cellular flow (10.7), but with a flattened core where velocities

are smaller. Whether this is truly optimal is a difficult question: (10.13) has many

solutions with different µ, and unlike the source optimisation case (which leads to a

linear eigenvalue problem) there is no simple way of finding minimising solutions (but

see the upper bound (10.15) below). It is an open challenge to characterise the solutions

of (10.12) and (10.13) more thoroughly. The solution in figure 17(a) was obtained from

the initial guess
√

2 sin x sin y, and all other initial conditions examined gave larger

values of the norm.

Figure 17(b) shows the dependence on Pe of the optimal mixing efficiency E0, for

the fixed source-sink distribution sinx sin y of figure 17(a). For smaller values of Pe,

the optimal E0− 1 is proportional to Pe2: this is the diffusion-dominated regime, where

stirring only has a small effect. The optimal solution converges to
√

2 sin x sin y for

small Pe. For larger values of Pe, the optimal solution recovers the ‘classical’ upper

bound scaling, linear in Pe.

It is instructive to compare the optimal efficiency plotted in figure 17(b) with

the ‘global bound’ (7.6). This requires a choice of comparison function ϕ, and the

simplest is to take ϕ(x) = s(x) = cosx cos y. We then have 〈ϕs〉 = 1/4, ‖∇ϕ‖L∞ = 1
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Figure 18. Left: a sphere heated at the equator and cooled at the poles. Right:

longitude–latitude plot of the streamlines of a steady flow that maximises E0, along

with the temperature field in the background (from O’Rourke [58]).

and ‖∆ϕ‖ = 1 in (7.6). After normalising by the purely-diffusive solution we obtain

E0 − 1 ≤ U

κ
=

Pe

2π
, (here L = 2π), (10.15)

which is valid even if the velocity field is allowed to be time-dependent, in which case U

is defined as in (7.7). The bound (10.15) is plotted as a dashed line in figure 17(b),

where we see that our optimal solution is remarkably close to the global upper bound

for large Pe (about 37.5% above the optimal solution). This shows that the series

of inequalities required to obtain (10.15) do not cause too much loss of sharpness for

large Pe, but it also implies that even allowing for arbitrary time-dependent stirring

cannot improve E0 by very much. The bound (7.6) thus helps to determine if our local

optimal solution is anywhere close to being a global optimum.

11. Discussion

The literature on stirring, mixing, and transport is enormous, and of course we only

covered a small corner of it, focusing on direct uses of norms. The decay of variance

itself is an object of study, and predicting its decay rate in terms of flow characteristics

has been a long-term goal of the theory of mixing. The dominant approaches are the

local theory, based on dynamical systems quantities such as the statistics of finite-time

Lyapunov exponents [2, 3, 8, 33, 72, 79, 88], and the global theory, which requires a more

thorough analysis of the advection-diffusion equation [35,38,41,52,62,63,65,66,77,80,93].

Neither of these approaches is particularly well-suited to optimisation, so we do not

discuss them here. It is also important to note that there are many other measures

of mixing beyond norms — see for instance [13, 22, 37, 39, 47, 60, 74, 75, 83, 89, 90] and

references therein.

We have reviewed the reasons why various norms were desirable for studying mixing,

and how they could be used to optimise the rate of decay for the initial-value, freely-
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decaying problem. We then focused for most of the review on the use of norms in

the presence of sources and sinks in the long-time limit where the system attain an

equilibrium. Our examples used simple periodic geometries.

Let us briefly discuss the work of Constantin et al [22], which contains some of

the most important recent rigorous results (we leave out a few technical conditions).

Their focus is on flows that are relaxation-enhancing. These are steady flows with the

property that for any given t > 0 and ε > 0, it is possible to increase the amplitude

of stirring to make ‖θ(·, t)‖ < ε. (As usual we assume mean-zero functions.) In other

words, it is at least possible to achieve an arbitrary level of mixing, measured according

to the L2 norm, by stirring hard enough. Weakly mixing incompressible flows are

always relaxation-enhancing. Constantin et al prove that an incompressible velocity

field u(x) is relaxation-enhancing if and only if u · ∇ has no eigenfunctions in H1

other than the constant function. Indeed, if there exists such eigenfunctions then most

initial conditions will contain some admixture of them, which will not decay. Current

examples of relaxation-enhancing flows are, however, not very physical. It is possible

that extending the work of Constantin et al to time-dependent velocity fields would

greatly increase the range of flows that are relaxation-enhancing, but this is likely to be

difficult.

There are a number of open problems and areas for further study. We mention a

few:

• Find the optimal velocities for more complicated flows, and refine the numerical

methods needed to do so; for example O’Rourke has recently examined optimal

transport flows on the sphere [58] (see figure 18).

• Understand better the transition between ‘transporting’ and ‘mixing’ flows. The

flows that minimise the norms in the presence of sources and sinks are very different

from mixing flows. Is this a flaw in the measure? What would be a better measure?

Are there flows and source-sink distributions which are both optimal in the sense

of minimising norms, but are also optimally mixing in the sense of ergodic theory?

• Since all norms ‖·‖Ḣq for q < 0 act as ‘mix-norms,’ that is, they decay if the

flow is mixing, which one is best? Do we need to select q according to particular

applications? Mathew et al [54, 55] used q = −1/2, and in this review we focused

more on q = −1, but there is no clear reason to choose either one at this point. On

the plus side, however, both work quite well.

• In a similar vein as the previous problem, it is not known whether there are

any advantages in using even more general Sobolev norms on the space W q,p,

1 ≤ p ≤ ∞, rather than on W q,2 = Hq. Values of p other than 2 are rarely used in

the context of mixing, except for p = ∞ which is common (see for example [90]).

Some rigorous results, such as [22], do not depend on p, which suggests the choice

of p matters little.

• Do the results on ‘roughness’ of the source-sink distribution carry over to open

flows, where the sources and sinks can be regarded as distributed on the boundary
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rather than in the bulk [81]?

• There has been some work on using the norm approach to quantify mixing in more

complex systems with reactions, for example a decaying passive scalar [70], the

Fisher equation [14], and the Cahn–Hilliard equation [57]. In this case how do

reaction rates, etc., depend on the source-sink structure? What kinds of flows

optimise reaction rates?
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Appendix A. Proof of mix-norm theorem

In this appendix we prove the theorem presented at the end of section 4 relating weak

convergence to the negative Sobolev norms. The proof is from Lin et al [50]. Write the

norm for Hq(Ω) as

‖f‖Hq =
(∑

k

λ
(q)
k |f̂k|2

)1/2

, (A.1)

where λ
(q)
k = (1 + k2L2)q for the norm (3.1). Suppose that f(·, t) is uniformly bounded

in L2(Ω), so that ‖f(·, t)‖ ≤ C, and limt→∞ ‖f(·, t)‖Hq → 0 for some q < 0. Then for

any g ∈ L2(Ω),

|〈f , g〉| =
∣∣∣∣∣∑
k≤K

√
λ

(q)
k f̂k

ĝ∗k√
λ

(q)
k

+
∑
k>K

f̂k ĝ
∗
k

∣∣∣∣∣
≤ ‖f‖Hq

(∑
k≤K

|ĝk|2

λ
(q)
k

)1/2

+ ‖f‖
(∑
k>K

|ĝk|2
)1/2

.

Given ε > 0, first choose K(ε) such that( ∑
k>K(ε)

|ĝk|2
)1/2

≤ ε

2C
, (A.2)
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then choose T (ε) such that

‖f(·, T (ε))‖Hq ≤ 1
2
ε

( ∑
k≤K(ε)

|ĝk|2

λ
(q)
k

)−1/2

, t > T (ε). (A.3)

We then have

|〈f , g〉| ≤ 1
2

(
1 + C−1 ‖f‖

)
ε ≤ ε, t > T (ε),

which implies that f converges weakly to zero as t→∞. (This is true even for q = 0.)

Conversely, suppose ‖f(·, t)‖ ≤ C for all t and limt→∞ 〈f , g〉 → 0 for all g ∈ L2(Ω).

By choosing g = exp(−ik·x) we see that all the Fourier coefficients f̂k(t)→ 0 as t→∞.

Also, because ‖f(·, t)‖2 =
∑
k|f̂k(t)|2 ≤ C2 then each |f̂k(t)| ≤ C for all t.

We have

‖f‖2
Hq =

∑
k≤K

λ
(q)
k |f̂k|2 +

∑
k>K

λ
(q)
k |f̂k|2

≤
∑
k≤K

λ
(q)
k |f̂k|2 + λ

(q)
K ‖f‖2 . (A.4)

For any ε > 0, we can choose K(ε) such that λ
(q)
k ‖f‖ ≤ λ

(q)
k C < ε/2 for k ≥ K(ε) (this

requires q < 0). For any finite K,
∑

k≤K λ
(q)
k |f̂k(t)|2 → 0 as t→∞, so there exists T (ε)

such that
∑

k≤K(ε) λ
(q)
k |f̂k(t)|2 < ε/2, for all t > T (ε). From (A.4) we obtain ‖f‖2

Hq < ε

for all t > T (ε), which proves the result.
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[55] G. Mathew, I. Mezić, and L. Petzold, A multiscale measure for mixing, Physica D, 211

(2005), pp. 23–46.

[56] T. Okabe, B. Eckhardt, J.-L. Thiffeault, and C. R. Doering, Mixing effectiveness

depends on the source–sink structure: Simulation results, Journal of Statistical Mechanics:

Theory and Experiment, 2008 (2008), p. P07018.
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