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Annotation

Here we shall formulate and prove the variational optimum principle
for electromechanical systems of arbitrary configuration, in which
electromagnetic, mechanical, thermal, hydraulic or other processes are
going on. The principle is generalized for systems described by partial
differential equations, including also Maxwell equations. The presented
principle permits to expand the Lagrange formalism and extend the new
formalism on dissipative systems. It is shown that for such systems there
exists a pair of functionals with a global saddle point. A high-speed
universal algorithm for such systems calculation with any perturbations
is described. This algorithm realizes a simultaneous global saddle point
search on two functionals. The algorithms for solving specific
mathematical and technical problems are cited. The book contains
numerous examples, including those presented as M-functions of the
MATLAB system and as functions of the DERIVE system. The
programs in systems MATLAB and DERIVE are published as a separate
annex in the form of an electronic book [52]. Programs are not required
to understand the theory.
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Preface

Preface

The search for wvariational principles for the electromechanical
systems of arbitrary structure and configuration is a subject of theoretical
and practical interest. In this connection we shall consider below a
problem of looking for such a functional whose steady-state equations
are equations of electromechanical system. For mechanical systems such
principles are generally known. For special cases of electric circuits the
solution of this problem is known. For instance, for circuits with
resistances the solution has been found by Maxwell [1], and was extended
not long ago to circuits with diodes and direct-current transformers [2].
Another generalization for circuits with non-linear resistances may be
found in [3, 4]. For circuits with capacitances and inductances (but
without resistances) is also known [3, 5]. In [6] the works are listed in
which attempts were made to solve the problem for general-form electric
circuit, and all these attempts were proved insolvent. The reason for such
search is understandable, as the absence of extremum principle for
electric circuits seems to be rather strange. As regards to the practical side
of the question, the existence of such principle permits to use alternate
current electric circuits for calculus of variation problems simulation:
these circuits are nature’s own simple-device computer that solves a very
complicated mathematical problem (using an algorithm of unknown
kind).

On the other hand, a discussion in the terms of electric circuits may
lead to the development of certain problems of calculus of variations. An
example of a similar influence of the direct-current electric circuits theory
on the theory of mathematical programming may be found in the work
[2]. Lastly, the calculus of variations theory may also be used for electric
circuits and electromechanical systems computing. Such approach has
been used by the author. The extremum principle for alternating current
electric circuit was formulated by the author in 1988 in [8] and was
developed in the articles [9, 10, 15, 16]. The first edition of this book was
published in [31].

The basic idea is that the current function is “split” into two independent
functions. The proposed functional contains such pairs of functions; its
optimum is a saddle point, where one group of functions minimizes the
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Preface

functional, and the other one — maximizes it. The sum of the optimal
values of these functions gives the current function of the electric circuit.

The previously presented results will be generalized and developed
below; the computational aspect of this principle’s use will be considered
as well. Furthermore, this principle will be extended to electromechanical
systems, since it may be integrated with a principle known in mechanics
as the minimal action principle, since it is a generalization of a known
principle of least action. For a given electromechanical system a
functional containing functions of thermal, mechanical, electric and
clectromagnetic energies, as well as the functions describing the
perturbation actions — electric and mechanical, is formed. These
functions depend on the system’s configuration. The functional has the
dimension: “energy*time”. The functional is a quadratic function of the
sought parameters, and it has a sole optimal point. There are no
constraints (they are also included into the functional). The functions
providing the optimal value of the functional present solution of the
given electromechanical system’s calculation problem. Consequently, the
given electromechanical ~ system’s calculation may be stated
mathematically as a variational problem of seeking an unconditional optimum
of a quadratic functional. Such problem always has a solution, and a fast
algorithm has been found for the search of this functional’s saddle point.

The described principle may be used for the development of a
universal package of programs for fast computation of arbitrarily structured
and configured electromechanical systems.

So, the nature gives us by the said principle a certain functional. The
second Kirchhoff’s law equations follow from the optimization of this
functional with constraints in the form of the first Kirchhoff’s law
equations. So naturally the optimization of the said functional and the
solution of the system of Kirchhoff’s law equations both lead to the same
result.

The proposed method extends to partial differential equations,
including also the Maxwell equations.

In essence we are presenting a generalization of a known Lagrange
formalism — an universal method of physical equations derivation from
the least action principle. However, the Lagrange formalism is applicable
only to those systems where the full energy (the sum of kinetic and
potential energies) is kept constant. It does not reflect the fact that in real
systems the full energy (the sum of kinetic and potential energies)
decreases during motion, turning into other types of energy, for example,

12



Preface

into thermal energy (), i. e. there occurs energy dissipation. Thus, the
presented formalism is extended on dissipative systems.

The book consists of 9 chapters.

In Chapter 1 the electric circuit with RCL-elements is considered and
a functional from the split function of charges x and y is formulated for
this circuit. It is shown that the said functional it maximized as a function
of x and minimized as a function of y. The sum of the optimal values of
x and y is equal to the observed function of charges g. A computational
method of searching for the functional’s saddle point is presented.

In Chapter 2 the extremum principle for functional of sp/iz function
of currents v and w is similarly considered. 1t is shown that the said
functional is being maximized as the function of v and minimized as the
function of w. The sum of the optimal values of v and w is equal to the
observed function of currents g. A computing method of searching for
the functional’s saddle point is presented.

In Chapter 3 the electric circuits are supplemented by instanteous
current values transformers. Such transformers were originally explored
by Dennis and will in future be called Dennis transformers. It is shown
that in this case for electric circuit there also exist functionals from split
functions of charge and of current. The first Kirchhoff’s law equations
serve as constraints in the search of saddle point for these functionals.
The existence of second Kirchhoff’s law equations follow from the
existence of saddle points for these functionals. Then the circuits are
modified in such a way that they become mathematically equivalent to
simple RCL-circuits and may be described by functionals without
constraints. The calculation of such circuits (called unconstrained)
becomes significantly simpler. Then we shall consider the so called
integral transformers and circuits containing them. These transformers
present a certain generalization of Dennis transformers, and in sinusiodal
current circuits they are equivalent to transformers with a complex turn
ratio.

In Chapter 4 a method is proposed for finding such functions of
charges and currents, that their optimal values provide the optimum of
the two functionals smultanecously. The physical interpretation of the
functionals is considered, and it is shown that in the electric circuit the
influence of thermal and electromagnetic energy is optimized
simultaneously.

In Chapter 5 the algorithms of simultaneous optimization of the
said functionals are described. The most commonly encountered types of
voltage and current sources are considered as the functions of time —
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sinusoidal, periodical and step functions. The same functions may be
viewed as permutation actions in a system of differential equations,
whose solution amounts to the electric circuit calculation with the aid of
the proposed method. It is shown that the solution of linear algebraic
equation system also amounts to calculation of an electric circuit with
sinusoidal currents, using the suggested method.

Chapter 6 discusses some concepts of the Pontryagin’s maximum
principle. It is shown that this principle may be used for the electrical
circuit functional optimization. Thereby it is established that the
considered variational principle may be extended also for discontinuous
functions. This argument was used above in the description of
discontinuous functions calculation method. Further we shall describe an
algorithm of electrical circuit calculation, based on the combination of
variational principle and maximum principle.

In Chapter 7 we consider the analogy between the presented and the
Lagrange formalism. Then we turn to the discussion of electromechanical
systems. The electric circuit is complemented by some electromechanical
clements, which involve, along with currents and charges, some
“foreign” variables, such as coordinates, velocities, accelerations, forces,
moments, temperature, pressure etc, describing the non-electric
processes — mechanical, thermal, hydraulic. A system of equation is built,
describing a system of electromechanical elements, connected into an
electric circuit. It is shown that such system of equations is also
equivalent to the conditions of existence of two functionals, similar to
the functionals for electric circuits. The optimum principle for these
functionals in some particular cases is transformed into the principle of
minimal action.

In Chapter 8 we are dealing with electric circuits, which are
described by partial differential equations — electric lines, planes,
volumes. We consider classic and special partial differential equations.
We show that for them it is also possible to build functionals, and the
search for these functionals extremum is equivalent to the solution of
these equations.

In Chapter 9 it is proved that there exists a functional for which
Maxwell equations are the necessary and sufficient conditions of global
extremum existence, and this extremum is a saddle point. The subject is
the computational aspect which is illustrated by detailed examples of
computations for various electromagnetic fields. The method allows to
formulate and to solve the sort of Maxwell equations systems that have
solutions with unusual physical interpretation:

e longitudinal electromagnetic waves,
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e standing waves in the absence of energy exchange between the
electric and magnetic component

e clectric waves in the absence of magnetic waves and vice versa.

In Chapter 10 we present a new variational extremum principle of
general action, which extends the Lagrange formalism to dissipative
systems. We show that this principle is applicable to electrical
engineering, mechanics with regard to friction, electrodynamics and
hydrodynamics. The prove is in the results stated in the previous
chapters. The proposed variational principle is a new formalism, which
permits to build a functional with one optimum saddle line for various
physical systems. Moreover, the new formalism is not only universal
method of deducing physical equations from a certain principle, but also
a computational method for these equations.

The book includes numerous examples. Part of them are M-functions
of the MATLAB system. These programs comprise a significant part of
the book, as a part of computational formulas is simply included into the
programs. It was possible because MATLAB language is nearly as
laconic as traditional mathematical language, particularly in the part
concerned with operations with vectors and matrices which are being
widely used in this book.

The book is accompanied by annex [52]. It contains the open codes
of the mentioned programs of MATLAB and DERIVE systems. This
annex is not necessary to understand the theory.
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Chapter 1. RCL-circuits with Electric Charges

Chapter 1. RCL-circuits with
Electric Charges

0. Introduction

Henceforth we shall denote as R, L, C resistance, inductivity and
capacitance accordingly. Besides, instead of capacitance C we shall often
use the parameter §=1/C to simplify the matrix expressions. The first
and second derivative with respect to time will be denoted by one or two
strokes, accordingly.

Consider first a CL-circuit without resistance. It is described by the
equation:

Sq+Lg"-E=0, (a)
where

e g — the charge, an unknown function of time ¢ with continuous

second derivatives,

e [ —aknown function of «.

Example 1. Consider an equation

Sqg+Lqg"-E=0.
The solution of the corresponding homogeneous equation
Sq+Lq" =0 looks as [16]

q= c1Cos(,B~t)+ CZSin(,B . t),

where ¢, ¢, - arbitrary constants, f=++-S/L .

Let E=u-e*'. WE can see that a particular solution in this case is

1
S+a’L
E=u-Sh(a-t) or E=u-Sin(a-t), etc. Consequently, the general
solution of the initial equation for such cases will be

q = ¢;Cos(at )+ c,Sin(at )+ mE .

. The same solution will be for

q=m-E, where m=

Let us consider the functional
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Chapter 1. RCL-circuits with Electric Charges

1 1
f«Q%:ﬁ(Esﬁz—Esz—EQ}h, (b)

It is easy to see that for the functional (b) the equation (a) is an Euler’s
equation — the necessary condition of this functional’s global minimum
10].
[ ]The existence of global optimum of this functional permits us to use
the gradient descent method for solving the equation (a). To do it for
given values of the function ¢ its new value is found by the formula
dn =9 —ap,

where

p — variation of function g, computed by (a),

a — a constant.
When the function changes from g to g,, the functional (b) changes by

AF = F(q,)— F(q) . Further we have:

O AF 2 F@ndh) 19 S Gnth) ,, _
c a c a 0 c a

2 JGns4n) O Gn , O fGn>qn) € dn |, _
2 q, o a . 0 a

T

]

0

T_ ' '

(| p0 Sty 0 f(qn,,qnﬂ "
op 2 qy 2 qn

Besides, we have:

aZAF T ﬁZ q '52 .q ,
; :J{p LA (T Ay
Oa 0 2 q; 2 q,

The optimal size of step a is determined from the condition 4+ Ba =0,

2
AF AF
whetre A=(a j , B= 0 5 or
da ), da~ )

T[ , ,
a=f|-pl L) 0 f(q,q)}h
oL 249 24q
T 2 ' 2 '

a > !0’7 ’ '
0 Jq o q
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Chapter 1. RCL-circuits with Electric Charges
Therefore,

T !
AZIO [-Sqp + Lg'p’ + Epldt ,

T ,
B=]| [Sp? — Lp'*1dt .

The iterative process permits to find the optimal value of q. The stop
sign will be p ~0. On each iteration:

e The gradient p with respect to (a) with given function g is
computed;

e The coefficients 4 and B with given p and g are computed;

e The new value of ¢ = g — ap, where a=-A/B, or

A
=q+— C
q9=4 Bp (©

is computed.

Example 2. Continuing example 1, let us find g by the stated
method. On the first iteration g=0, and hence,
=Sq+Lq"-E=-E, p'=—a-E,

(e 2 )T 2 (T 2
B_(s oL Edi, A= E7dt,
1

S+a’L

Generally, if on a certain iteration g=hE, then
p=Sq+Lq"—FE = @thazhL—l) =nkE,
A= Ig(— Sqp+Lq'p' +Ep)dt = nQSh +a’Lh+ 1)§E2dt ,
B=[ [Sp® ~LpYdi =n’ (v —azL)OTEzdt,

And the new value of the function

g= g(—E) or g=kE, where k =

A nloSh+a®Lh+ 1) E
g=q+—p=hE+ 3 3 :

B G-o?r) " 2L

ie., as after the first iteration, g=kE, where k= 12 . This
S-a“L
solution differs from the final solution, obtained in the example 1,
and has the form g =m- E , whete m = ! 5
S+a’L

Let us consider the functional

18



Chapter 1. RCL-circuits with Electric Charges

|
Fi(q)= JO[ Sq* +Lq" - qudt ©

which differs from the functional (b) by the sign before the second term.
We shall call the functional (c) comjugate with regard to the primary
functional (b). Let us consider now the descent by gradient (a) in the
conjugate functional (c). It is easy to see that in this case

T [N

A = [, [-Sqp—Lq'p'+ Epldt,
T 2 12

Blzjo [Sp” + Lp'*1dt -

These coefficients differ from the coefficients .4 and B by their sign
before the second term.

Example 3. Continuing the example 1, let us find the function ¢ by

the stated method of descent by gradient (a) in the conjugate

functional (c). On the first iteration ¢=0 and further,
p=Sq+Lqy"-E=-E, p'=—a-E,

_ 2. ¥ 2 _ (T2
B _Gm L)O E*dt, A =~[ E~dt,
1
S+a’L ’
This solution is similar to the solution obtained in the example 1.
Generally, if on a certain iteration g=hE, then

p=Sq+Lq"-E = @h+a2hL—1)f=nE,
4y = [, (-Sqp~Lq'p'+ Ep)it = n(Sh—athH)oTEzdt,

By = [Sp® + Lp1de = n? (v +a2L)OT E2dr,

q= %(—E) or g=mE, where m =
1

And the new value of function
4 nlC s - ath+1) E
q=1q+—_-p=hE+ 3 3 :
By Q‘ +a L)  S+a?
i.e., as after the first iteration, this solution is similar to the solution
obtained in the example 1.

Thus, moving by the conjugate functional (c) in the direction of the
primary functional’s (b) gradient (a) leads to the minimal value of the
primary functional (b).

We shall use this rule in future.
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Chapter 1. RCL-circuits with Electric Charges
1. Series RCL-circuit

Let us consider the functional

Further we shall designate the first and the second derivatives with
respect to time by one or two strokes correspondingly. Consider a
functional

F(x.y) = Gy, (1)

where
S(x2 — 2V Ly — 12
Fxy) = (X" =y") =L =y") ’ 2
+R(xy" = xy) = E(x =)
e X, y—unknown functions of time # with continuous second
derivatives,
e [F —aknown function of £,
e S L, R— positive numbers.
Let us find the necessary conditions of this functional’s extremum [7]:

ﬁ_i[ﬁ}o o f_i[ﬂ f}o

Ox dt|ox Vs y dt Vs y'
or
28x+2Lx"+2Ry' - E =0, 3)
28y +2Ly"+2Rx'—E=0. 4
Let us find also:
2
a fz =-2L<0, 5)
ox
2
a fz =2L>0. (52)
a 1
Yy

Consequently, the extremal defined by the equations (3) and (4) provides
a global weak maximum of the function x and a global weak minimum of the
function y for the functional (1) and (2) (equations (3) and (4) are
necessary, and equations (5, 5a) - sufficient conditions for this [7]). It

means that there exist optimal functions x; and yq, presenting a
solution of the system of differential equations (3) and (4), and providing
an extremal value Fjy =F(xg,yo)for the functional (1) and (2). The

optimality of functions Xy and Yy becomes apparent when comparing
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Chapter 1. RCL-circuits with Electric Charges

the values of the functional for optimal and non-optimal functions and
their derivatives.

The optimal functions fulfill the condition:

X0 =)0, ©)
which follows from the symmetry of conditions (3) and (4) and may be
strictly proved on changing these equations to operator form [9].

Adding up the equations (3) and (4), we get

Sqg+Lqg"+Rq'-E=0, (7)
where

q=x+y. (8)

It means that the functional (1) and (2) has its optimum on the
functions x and y, whose sum satisfies the equation (7). This functional
has an optimal saddle point, in which the equations (6), (7) and (8) are
satisfied. Equation (7) is the equation of RCL-circuit connected to a
voltage source E, where ¢’ - the current in this circuit. Therefore in the
RCL-circuit the extremum principle for F, defined by (1) and (2), is
objectively valid, and the equation (7) is the consequence of this
principle. The integrand (2) of functional (1) has the dimension of
energy. Thus, as the interpretation of this principle we may assume that
the value optimized in the electrical circuit represent an algebraic sum of
electric, magnetic, thermal energy and the potential energy of the voltage
source.

Remark 1. Let us consider also the case when the values S, R are
functions S(2), R(t) of independent variable ¢ In the expression (2) the
first term does not contain operators of differentiation or integration.
Therefore the value § may be a function S(?) of independent variable ¢
without any change in the functional. To include the function R(?) into
the functional, it should be changed in such a way, that for it, as before,
the stationary line would be represented by the equation (7). It is easy to
see that such functional will be as follows:

1dR(t) 2 2
Fan)= ( (1) + S j( y)-L-(x? =y
+R- (' =xy)-E-(x-Y)

This remark will be used in future in the process of solution of
differential equations with spatial coordinates as independent variables.

. (8a)
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2. The Computing Algorithm for RCL-circuit
The existence of global optimum allows the use of gradient descent
method for electric circuit calculation. The idea of this method is as
follows. For the given values of x and y their new values are calculated
according to formulas:
X, =x—ap, o)
Vn =y +bh, (10)

where

p and h — variations of functions x and y, calculated by (3) and (4),

a and b — constants.
The direction of descent is determined by the gradients p and 4 of the
primary functional (1) with integrand (2), while moving by conjugate
functional with the integrand

S? =)+ L ~y?)

Sy = :
+R(xy' = xy) —E(x~ )
This function differs from (1) only by the sign before the second term.
When functions change from x to x, and from y to y,, functional

changes by AF = F(x,,y,)— F(x,y). Further we have:
! ! T ! r

Ja Ja 0 Ja
T_ !’ ! ! ! !
:J‘ O f s Y X ¥) O Xy +é’ S x> Vs X, Y') O Xy dt =
ol o x, Iz o x), 2
T_ ! ! ! A
ZJ. _pé) f(xnﬂyn’xn’y)_pré, f(xnaynaxnay) dt,
oL a7 xy J xp
2 T 2 ! ! 2 ! !
a AF :J- pa f‘('x’.i’l’yi’l’xl”li'yl’l)p_l_pla f(xnaynaxl’lay)p/ dt
2 2 12
Oa 0 o xy o x,

The optimal value of a is determined from the condition A"+ B'a=0,

OAF O’AF
where A’ 2( j , B' = 5 or
oa a=0 oa 4=0

T ror ro
A'=J.|:_p0’) f(xayaxay)_plé’ f(xsyax:y):|dt’

0 o x o x'
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T 2 ! A 2 !’ ’
1 a x, ’x’ ’ﬁ x’ Qx) 1A
B=[|p A y2 y)p+p A y'2 y)p .
0 o x o x
Thus,

A = IOT [-28xp —2Lx'p"+ R(p'x — px")+ Ep]dt,
B = [25p% +20p Yt

Similatly, the optimal value of b is determined from the condition
A"+ B"b =0, whete

A" = jOT [2Syh+ 2Lyl — R(Wy — hy') — ER)dt ,
B = [ [-2K> ~2LK"1d .

The iterative process leads us to the optimal values of x and y. Indication
of stopping is p~0 and h=~0. If the iterative process begins from

X0 =)o, then by symmetry, p,=—h,. Also p'h—ph'=0 and the last
two conditions 4'+B'a=0 and A"+ B"a=0 turn into the following
equivalent conditions, where 4'=—-A4"= A, B'=—B"=B and a=b. As

x=y=q/2, the gradient of the function ¢ is equal to

Pg=2p. (10a)
Further we have:
B= jOT [28p2 +2Lp"dt , (11)
T 1! ’ !/
A=, [-Sap—Lq'p'+ R(P'q— pq)/ 2+ Epldt, (12)
p=Sq+Lq"+Rq'—E. (13)

Thus, the iterative process of finding the extreme value of the
functional (1) allows to find the function g. During every iteration

e The gradient p is calculated by (13) for the given function g;

e The coefficient a=-A/B is calculated by (11) and (12) for given p

and g;
e The new value of the function ¢ is calculated:
q=:q-2ap (132)
of
24
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3. The Equations for General-Form Electric
Circuit

Let us consider a general-form electric circuit and note there two
types of branches:

1. A branch with current source H}, placed between the node
and the “ground”,

2. A series RCL-circuit with elements Ry ,Sj,Ly,E}, placed
between two nodes.

We shall assume that branches of the second type are linked in
addition by mutual inductances M},,. An example of such circuit is
shown in the fig. 1.

Using the line of reasoning similar to [2], we can show that such
electric circuit is described by the following system of equations:

Sq+Mg"+Rq'—E+N' =0, (14)

Nq¢'+H =0, (15)
where

H, q' - vectors of cutrents in branches of the first and second

type;

E — generated voltage vector for branches of the second type;

@ - potentials vector for branches of the second type;

N —incidence matrix with the elements 1, 0, -1;

S, R, M — matrixes of the type

S = diag[5;S5...5) ...] (16)

R =diag[R|R;...R}...] (17
fL, My My My .. My, ..
My, Ly My ..My, .. My, ..

M= .. (18)
Mpy Mpy Mys Ly M

In this system equation (15) describes the first Kirchhoff’s law,
equation(14) — the second Kirchhoff’s law. In this system H and E are
known vector-functions of time ¢, and the vector-function of time g(?) is
the required function.
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Chapter 1. RCL-circuits with Electric Charges

Fig. 1. An Example of General-Form Electric Circuit

25



Chapter 1. RCL-circuits with Electric Charges

4. The Functional for General-Form Electric
Circuit

Let us consider vector-functions of time x(¥), y(t), ), ¥Y(@),
satisfying equations (8) and the equation

p=9+Y¥ (19)
System of equations (14), (15) may be rewritten in the following form:
28x+2Mx"+ 2Ry —E+2NT9 =0, (20)
28y +2My" +2Rx' —E+2NTW¥' =0, 1)
2Nx'+H =0, 22)
2Ny'+H =0, (23)

Consider now the functional (1), where
L sx—yTsy—xTa +y' Ty’ +
F,y)={+x"Ry = xTRy—ET (x—y)+ (24)
+ 9T @Nx' +H)+ YT Ny + H)

and consider the problem of seeking an extremum of this functional. The
necessary conditions of extremum in this case take the form of equations
(20)-(23).

Adding up the equations (20) and (21), we get (14), and adding up
(22) and (23), we get (15). Further we have:

2
j fz =2M, 25)
x
2
d fz =M . (252)
2y

Let us consider now a quadratic form Q = x'7 Mx', being a part of the
functional (1) and (24). Later in p. 6 it will be shown that Q0 >0, which
means that the matrix M is positive definite. Therefore and from (25,
25a) it follows [7], that the functional (1), (24) has a saddle point, where a
lobal weak maximum of the function x and a global weak minimum of the
function y are achieved. The arguments for this deduction are similar to
those of p. 1, whence it follows that the optimum of this functional is
reached with

X0 =0, % =", q0=x0+Y0, Po=%H+¥-
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5. The Computing Algorithm for General-
Form Electric Circuit

By analogy with p. 2 we shall discuss now the iterative process in
which the new wvalues of variables x, y, 4, ¥ are calculated by the

formulas:
Xp =X+ dayxPy, (26)
Yn=Yy+aypy, (27)
Iy =F +agpg, (28)
¥, =¥'+aypy, (29)
where

p — variations of vector-functions x, y, 9, ¥, calculated by (20)-(23),

a — the size of steps by these vector-functions.
By analogy with p. 2 the optimal value of a, is determined from the

AF T
:Oorj p){'é’f()_i_p;cTﬁf() dr=0-
o0 ay 0 o x, o x),

So the optimal value of a, is determined from the condition

condition

(5 T Tagr_ T Tpo_ T
2p Sx=2p Mx'—p  Ry+p Ry'—p E+

O —

T 1T pg s T Tpr
+2a,(p,SPx— Py Mpx)—ay(px Rp, —pxpr))+ dt=0>

2p'xTN T(9+agpg)

Similarly, the optimal value of a v is determined from the condition

(5 T Tars T Tps T
2pySy=2p, My'=py Ry+ p,RY' = py B+

T By T T

+2ax(pySpy = Py Mpy) —ay @y Rp, —pprx)) dt=0>
T AT

2py N* (¥ +aypy)

S —

the optimal value of ag is determined from the condition

[BiNGrapke -0,
0

optimal value of ay is determined from the condition
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T 7
IEP‘I’N(VJraypy)]’l:O'
0

If the iterative process begins with x; =y, 4 =1¥), then by symmetry

Px =Dy, Pg=Dpy- Also Q;,TRpx —pJY;Rp;C)EO and the above named

conditions change into

A1+A2ax+A3a3=0, A1+A2ay+A3a\P =0,
A4+A561x20, A4+A5ay:0,
where
T 2p}Tch—2p'xTMx'—p'xTRy+
4= T T rore |
ol p R —p E+2p N" &
T__ T T
A =[| 2 Spy - P, Mp;)}dt,
0_
ot
Ay =[|2p"N Pg}dt,
0_
F 7
Ay = %P\PNy}t,
0
F 7
4s =] %p\pry}t.
0

Hence it follows that

ag=ay=a,=-A44/4s,

2
a,=ag=ay =444 ~ A4 A,
x=y=q/2,
I=Y'=¢/2,

14 ! T
Pg=Px=Py=5¢+Mq"+Rq'—E-N"¢,
Pp=pP9g=pPy =Nq¢'+H,
qn :q+2aqpq>

Pp =@ +2a,Py.
The coefficients may be presented in the following form:
28
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1T

T\ prSq-py Mg ——G Rq+plRq

4= . dt,
0| - plE+p N o

Az—j E<p§Spq P, Mpq>}
= IEp'TNT %

Ay = gl’ggzvq}r,
Aszi[,gzvq}t.

Special Case 1. Circuit with One Node.
Let us consider a circuit with one node (and, probably, with an
mutual inductances matrix). The matrix N = 0,
Pg=Sq+Mq"+Rq' - E,

=—A4/4,,
at that
r 1(0,T
A =[] phSq- qu_E Rq+pyRq ) plE
0

Special Case 2. Circuit with One Branch
Let us consider a circuit with one branch, and, consequently, with

one node. At the initial moment we have: ¢=0, p, =—E. At this

T T
=—[E*dr, 4y =2[(SE* - LE"*)dt
0 0

T T
= [(E?)dt / 2[(SE* —LE'"*)dr.

0 0
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Special Case 3. Circuit with One Branch and Voltage Source.
Let us consider a circuit with one branch, connected to a voltage
source. At the initial moment we have:

q=05 ¢=0’ pq=_E9 p¢=[> N=1.
Also

T T
A =-[E%dt, Ay =2[(SE* - LE®)dr
0 0
T
Ay =-2[E'ldt, Ay =0,
0
T
As =-2[EIdt, a
0

T .2
-4 :—_[0 E“dt |
v 4 2IOTE’1dt

=0

b

6. The Properties of mutual Inductances
Matrix

Let us show, that for real electric circuits the matrix M = {1\/[ km} is
positive definite [9]. The element creating mutual inductance My, ,
creates also inductances Lllgm u L],{nm in the branches k& and m
correspondingly. Let us assume that, for instance, such element is a
transformer with the number of coils n k and n,, in the windings. Then

Lim = an;%, LZ" = an,%,, My, =anyn,,, (31)

where a — a constant value. Thus, the mutual inductance is

My, = L]lftmLIrcnm> Mg =My (32)
full inductance of the k-branch is
k
Ly =My =L+ X L", (33)
m#k

where L(;)( — inductance of an element which does not create an mutual

inductance.
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Let us consider now a quadratic form Q = T Mx'. Obviously,

72 ! !

0= szxk +Z Z(Mkm +Mmk)'xk Xm -
k k m>k

From (31), (32), (33) it follows that

\

12 ! ! km 2 km 2

Q:Zkak +Z ZéMkm~xkxm+Lk xi +L, Xm
k k m>k

or

2
sz{ka;f +y (x;c VL +x;,“/L’,;’"j }
k m>k

Thus, O >0, which means that the matrix M = {]\/I o } is positive
definite. This property of the matrix has been used above.
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Chapter 2. RCL-circuits with
Electric Currents

1. The Functionals of Integral Functions

Previously we have described the equations of circuits with respect to
the charge g. Further we shall consider the equations of circuits with
respect to the current g. First let us consider an R-circuit without
inductivity and capacitance. It is described by the equation

Rg-E=0, (a)
where

e g — the current, an unknown function of time ¢ with continuous

second detivatives,

e [ —aknown function of time .

It is easy to see that for the functional

F(g)=], (%Rgz - Eg}dt, (b)

The equation (a) is the Euler’s equation — the necessary condition of this
tunctional’s minimum [16]:
Let us introduce the following notations:

i =42/, 7 =| Zdt.

There 1s a known Eulet’s formula for the variation of a functional of
function f(y,y",y",...) [7]. By analogy we shall now write a similar

formula for function f(...,p, v, V", »y",...):
2

d . a7
fy'+dt—2fy”—... (1)

t ' '
var=...— [ f3dt+ f, -

In particular, if f()=xy", then var=—x";if f()=xp, then var=—x.
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2. Integral Equations of RCL-circuit.

The equations of a series RCL-circuit with respect to the current g
and its derivatives has the following form:
Sg+Lg'+Rg—E=0. 2)
In the same way as before this equation may be substituted by two
equations of the form:

2SW4+2IwW +2Rv—E =0 3)

28+ 2LV +2Rw—E =0 @)
where

g=v+w ©)
Let us now consider the functional

T

Fx,y)=[, frwdt, (©6)

where

()

Pl = {S(va —vw)+ L(vw'— v'w)} |

+ ROV —wH) —E(v—w)

e v, w—unknown functions of time ¢ with continuous second
derivatives,

e [F —aknown function of time f,

e S L, R - positive numbers.

Let us find the necessary conditions of this functional’s extremum, using
formulas of the preceding section:

t 1 1 d ' t 1 ' d '
=y fodt+ 1y ——fr =0, =y fadt+ f=—fur =0,
which is equivalent to the formulas (3) and (4). Let us find also
2 2
§f2:2R20, aj;z—ZRSO. 8)
v ow

Consequently, the extremal defined by the equations (3) and (4) provides
a global strong maximum by the function v and a global strong minimum by the
function w to the functional (6) u (7) (the equations (3) and (4) are the
necessary, and the equations (8) — the sufficient conditions for this [7]). It

means that there exist optimal functions vy and wy, which are the
solution of the system of differential equations (3) and (4) and which
provide an extremum Fj = F(vy,wy) to the functional (6) and (7). The
optimality of functions vy and wy shows in the comparison of the

functional’s other values depending on optimal and non-optimal
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functions and their derivatives. The optimal functions satisfy the
condition

Vo = Mo, ©)
which follows from the symmetry of equations (3) and (4), and may be
proved strictly if we turn to operator form of these equations [9]. Adding
up the equations (3) and (4), we get equations (2) and (5).

Thus, the functional (6) and (7) has its optimum on such functions v
and w, the sum of which satisfies the equation (2). This functional has an
optimal saddle point, where the conditions (9), (2) and (5) are fulfilled.
The equation (2) is the equation of RCL-circuit, connected to voltage
source E, where g — the current in this circuit. Hence, the principle of
extremum of F, defined by (6) and (7), is objectively fulfilled for the
RClL-circuit, and the equation (7) is the consequence of this principle.
The integrand (2) of functional (1) has the dimension of energy. This is
why in the interpretation of this principle we may assume that the value
optimized in the electric circuit represent an algebraic sum of electric,
magnetic, thermal energy and the potential energy of the voltage source.

Remark 1. In the expression (7) the third term does not contain
operators of differentiation and integration. Therefore the value R may
be a function R(?) of independent variable .

This remark will be used in future in the process of solution of
differential equations with spatial coordinates as independent variables.

3. The Computing Algorithm for Integral
Equations of RCL-circuit.

The existence of global optimum allows us to use the gradient
descent method. The idea of this method is as follows. Having the given
values of v and w, their new values are calculated according to formulas:

v, =v—ap, (10)

w, =w+Dbh, (11)
where p and & — variations of functions v and w, calculated by (3) and (4),
a and b — constants. When the functions vary from v to v, and from w
tow,,, the functon (7) vaties by value AF =F(v,,w,)—F(v,w).

Further we have:
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! / ~ ~ T
O AF 0 F(VysWns V> Wis V> Wa) =J-§ f()dt:
Ja Ja 0 Ca

00 Oy 200 2V 210 05,],
dv, Ja v, da IV, Ja

I 1

0 S0 2002 {()]dt,
2 v, Z av

2 T 2 2

o Aj’zflpé’ POy 210y 52 fg)p]
Oa 0 0

V}’l n
The optimal value of a is determined from the condition A"+ B'a=0,

2
AF AF
where A'Z(a j , B'= 2 2 or

A,z?_pa f0_,210_50.10],
oL dv ov o |
T 2 2

B | 9210 a0 s 57 f()p »
0 5\/‘ ov

Thus
= I()T [pSﬁ/+ pLw' — pSw— p'Lw—2pRv+ pE}it ,

B’=1£Rp2}z.

Similarly, the optimal value of b is determined from the condition

A"+ B"b =0, where
=" nso—hiv' + hsv+ WLv+ 20Rw—hE Je
O 3

T
B =] Eha }t.
0

The iterative process enables us to find the optimal values v and w.
Indication of stopping is p~0 and h~0. If the iterative process begins

with Vg = wy then, by symmetry, py =—h . Also
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(pSh+ pLh' — pSh— p'Lh) =0,

(—hSp—hLp' + hSp+h'Lp) =0
and the last two conditions turn into the following equivalent conditions
A=-A"=A, B=-B"=B and a = b. As v =w = g/2, then the

gradient of the function g is

Pg=2p. (11a)
Further we have:
T
B=| Esz }t, (12)
0
T ~ ' ~ '
A=, [ pSg + pLg' - pSg - p'Lg)/ 2~ pRg + pEYit, (13)
p=Sg+Lg'+Rg—E. (14)

So the iterative process of searching for the extremum of the
functional (6) enables us to find the function g. On every iteration:

e The gradient p is determined from (14) with given function g.

e The coefficient a=-A/B is determined from (13) and (12) with

given p and g.
e The new value of g is calculated.
g=:g-2ap (14a)
or
24
g—.g+?p. (14s8)
Remark 2.

Using the stated gradient descent method for finding the minimum
of functional (1.b), we get

T
A =, CRep+Ep)it,
BR = .[(f szdf 5
PR=Rg-E,
and the new value of the function g is

A
g=g+Lpp. (14¢)
Bg

Notice, that if L=C=0 then the following formulas are wvalid:
Ap =A, Bp=B/2, pg=p. Thus, the formulas (14b) and (14c) are

similar.
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4. The Integral Equations for General-Form
Electric Circuit

Let us consider a general-form electric circuit described in the section 1.3.
Reasoning by analogy with the preceding argument we may show that
such electric circuit may be described by the following system of
equations:

Sé+Mg'+Rg—E+NTgp=0, (15)

Ng+H =0, (106)
where H, g - vectors of currents in branches of the first and second type.
In this system equation (16) describes the first Kirchhoff’s law, equation
(15) — the second Kirchhoff’s law. In this system / and E are known as
vector-functions of time ¢, and the vector-function of time g(?) is the
required function.

5. Functional for Integral Equations of
General-form Electric Circuit

We shall consider vector-functions of time v(z), w(t), 3(t), Y(¢),
satisfying the equations (5) and the equation
p=9+% 17)
The system of equations (15), (16) may be rewritten in the following
form:

289+ 2Mv' +2Rw—E+2NT9=0 (18)
28W+2Mw' +2Rv—E+2NTW¥ =0 (19)
QNv+H =0, (20)
2Nw+H =0, 1)

Let us consider now the functional (6), where
vEsw—dTSw+vI Lw —vT Lw+
flv,w)= +vTRv—wTRw—ET(v—w)+ > (22)
+9QNv+ H)+¥QNw+H)
and the problem of searching for the extremum of this functional. The

necessary conditions of extremum in this case have the form of equations
(18)-(21).
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Adding up the equations (18) and (19), we get (15), and adding up
(20) and (21), we get (16). Further we have:

2 2
7S _rs0, ZL <o (23)
v ow
Therefore [7] it follows, that the functional (6), (22) has a saddle
point, where a global weak maximum of the function gyskmuu v and a

global weak minimum of the function w are achieved. The arguments for
this deduction are similar to those above, whence it follows that the
optimum of this functional is reached with

vo=wp, % =", go=vo+mwp, ¢o=%+¥p-

6. Computing Algorithm for General-Form
Electric Circuit Integral Equations

By analogy with p. 3 let us consider an iterative process in which the
new values of v, w, 9, ¥ are calculated with the aid of following

formulas:
Vv, =v+a,p,, (24)
Wy, =W+a,,Dy, (25)
3, =8+agpg, (206)
Y, =%Y+aypy, 27)
where

p — variations of vector-functions v, w, 4, ¥, calculated by (18-21),

a — the size of steps along these vector-functions.
By analogy with preceding discussions a, is determined from the

condition =0 or

Ja

1%

pT 0 f(vnawn)+prT 0 f(Vn,Wn)
o v, o vy,

+ﬁT§ f(vnawn)
I J %, |

Thus, the optimal value of a,, is determined from the condition

dt=0.

O —_—
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. pgSW+p5Mw'+2p§Rv—p5E—ﬁgSw—p(,TMw+
[|+an(py Spy + py Mpi, — pi Sp,, — pyf Mp,,)+ dt=0,
| +2a,p] Rp, +2pI NT (9 + agpy)
Similarly, the optimal value of a,, is determined from the condition
’ pg;Sﬁ + pf,Mv' + 2[)3;RW - pg;E - ﬁz;Sv - ngv +
[|+a, (HﬁSﬁv + piMp}, — plSp, - pit Mpv)* dt=0>
0 + 2aWpVTVRpW + 2p£,NT(‘P + aq;p\y)

optimal value of ag is determined from the condition

?Epgi\/(vwvm)] =0,
0

optimal value of ay is determined from the condition

TEp?{;N(m&apr)} =0.

If the iterative process begins from vy =w,, % =¥, then by symmetry

Py = Pw> P9 =Py . Atthat

T on T ’ ~T T
(pv Spw +py Mpw — Py Spw — Py Mpw) =0
and the above named conditions turn into

Bl+BQaV+B3a9 =0, Bl+B2aW+B3a\P =0,
A4 +A5av=0, B4 +BsaW=O,
where

TpfSW+p5Mw’+2p5Rv—pVTE—
B = r r T dt >

ol — py Sw—py, Mw+2p, N* 9

T T

T AT

Bz=IEvava} > 33=IEPVN pg} g

0 0

L T E T
B4=IEP9NV]'” BS=IEPQNPV]7~

0 0

Hence it follows that
g =4y =ay, :_BI/B2a

a,=ag=ay =(ByBy—BBs)/B3Bs,
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v=w=g/2,

=Y =¢/2,
Pg=Py=pPy=Sg+Mg'+Rg—E-N"p,
Pp=Pg=py =Ng+H,
gn=8g+2agpy,

Pp =@ +2a,p,.

The coefficients may be presented in the form

1GT ~ T ' ~T T
I —\pySg + po Mg’ — p,Sg — py Mg

T T T /T
O+ peRg—pgE+peN ¢

T
T
By=| Epngg ]’t g
0

T
T AT
BffEPgN qu}t’
0

T
By=| [;gNg t
0
L T
5= [betap, b
0

Special Case 1. A Circuit with One Node
Let us consider a special case of circuit with one node (and probably

with interinductances matrix). The matrix N=0,
Pg =S¢+Mg'+Rg-E, ag =-By/B,,and
s Tarr LT Tp ) T
B = g[pgSg —Pg Mg —EQg Rg +pgRg )»ng}dt-

Special Case 2. A Circuit with One Branch
Let us consider a special case of circuit with one branch, and,

consequently, with one node. In the initial moment we have: g=0,
Pg = —FE . At that
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T
B =—[E%,
0
T
By =2R[E*dt,
0
ag:1/2R_

Special Case 3. A Circuit with One Branch and Voltage Source
Let us consider a circuit with one branch, connected to a voltage
source. In the initial moment we have:

g=0, p=0, pg:—E, p(pzj, N=1.
At that

T
By =—[Edt,
0

T
By =2R|[E*dt,

0
T
By =—2[Eldt,
0
By =0,
BS =B3.
So,
ag =0,
T
- B —_[0 E2dt
" T T
B
3 2[0 Eldt
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Chapter 3. Special
Transformers in Alternative
Current Circuits

1. Electric Circuit with Dennis Transformers

The electric circuits described below contain instanteous current
values transformers. Such transformers were originally explored by
Dennis [2]. Because of this they will in future be called Dennis transformers
and denoted as DT. Dennis introduced DT as an abstract mathematical
construction (for interpreting a quadratic programming problem) and has
developed a theory of direct current electric circuits containing DT,
resistors, diodes, current and voltage sources. The theory did not include
methods of physical realization of DT. Owing to technical complicacy of
such realization the circuits with direct current transformers up to now
had not been in use. In [13] various schemes of DT realization were
presented, and various problems of mathematical programming were
simulated with the aid of electric circuits with DT and other
unconventional elements.

DT has a primary and secondary winding. The instanteous values of
currents and voltages in these winding are related to each other in the
same way as the complex values of harmonic currents and voltages in an
ordinary transformer. Fig. 1 is a symbolic picture of DT. It contains two

branches — the primary branch with current g| and voltage €] and the

secondaty branch with cutrent g5 and voltage ep. DT is described by
the following equations:

4 —1-q1=0, e —t-e=0,
rAe ¢ - the turn ratio. From these equations it follows that gje; = —ghe,,

which means that the sum of the output capacities of the primary and
secondary branches of DT, is equal to zero. Therefore, the DT does not
change the active and reactive capacity of a circuit, being a passive
element. DT may be viewed as a node, where the currents with weight
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coefficients are added up. Thus a full analogy occurs with the first
Kirchhoff’s law.

g1—> —q3
el e2

Fig. 1. A Symbolic picture of D'T..

Let us consider now a special matrix of Dt — see Fig. 2. In this matrix
we shall denote:

J — number of row,

k — number of column,

Jy - the summary current of all windings, forming the k-column of
this matrix, J = {] k },

@ - the common voltage on the windings, forming the k-column of

this matrix, ¢ = {¢k },

q’j - the current of all windings, forming the j-row of this matrix,

a'=;

Wi - the summary voltage of all windings, forming the j-row of this

matrix, W = %Vj Jla
ik - the turn ratios, T = <L‘k J‘

Generally it is described by the following equations:
W] :Zt]k¢k, W =T¢,
k

Je=Xtudj J=T"q,
J
Jop=Wq' .
Consequently, the DT does not change the active and reactive capacity of
the circuit.

43



Chapter 3. Special Transformers in Alternative Current Circuits

?3 ) 91

J3l le Jll
)@ —

~

q!
z’tsz\; it12“ :
<13

(23)}-H{{13)
88

Fig. 2. Special amtrix of DT.

The DT matrix is included into the electric circuit in such a way , that
the rows of the matrix are parts of its branches. Then the second
Kirchhoff’s law takes the following form:

Sqg+Mq"+Rq'—E+NTp+Tp=0, (1)
A circuit with “multi-winding” DT always may be transformed into a
circuit with DT matrix.

Example 1. “Multi-winding” DT. Let us consider a circuit with
“multi-winding” DT, shown on the Fig. A. The circuit shown on the
Fig. B, containing the DT matrix, is equivalent to it. It becomes
especially clear, if we draw it again in the form of Fig. C.
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Fig. A.
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® R4 -
Fig. B.
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In future we shall assume that in all ordinary nodes of the electric

Fig. C.

circuit the node resistances p and current sources H may be included, and
in all transformer nodes the node resistances p and current sources P
may be included. The currents running through resistances p, will be

denoted as I, m for ordinary nodes and transformer nodes,

accordingly. Such circuits will be called general-form electric circuits.
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l H, e l
92
—

|—-<55p:5;~¢’1m Ry, S, Ly, By )—b

.

N

R,,S\,L,E,

Fig. 3. An Example of General-form Electric Circuit
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Fig. 3 shows an example of a general-form electric circuit, where
node resistances and current sources are included in @/ nodes. There a, b,
¢ denote the branches of the transformer matrix’s rows and the gaps in
ordinary branches, where the row branches are connected.

The first Kirchhoff’s law takes the following form for ordinary and
transformer nodes accordingly:

Ng'+H =i, @)
TT¢+P=m. 3)
Let us write these laws in the form of integral equations:
Sé+Mg'+Re—E+NTp+Tg=0, )
Ng+H =i, )
TTg+P=m. ©6)

there, as before, g =¢'.

Let us turn now to the systems of equations (1)-(3) and (4)-(5). We
shall consider the functionals, for which these systems are necessary
conditions of optimum. These functionals take the following form.

For the systems of equations (1)-(3):
F(x,y.iom, 8,9.0.8) = [ f(x.y.i.m.8,'%.0.)dt ™

where

xSy — yTSy —xTMx+ y’TMy +

+xTRy'—x'TRy—ET(x—y)+§(Ti+me) ) 8)

o + 9T @QNx+ H —i) - Ny + H i)~
_—eTéTTx'+P—m)gTéTTy’+P—m) |
qg=xty, p=9"+¥', p=0"+¢". )
For the systems of equations (4)-(5):
Fvowi,m, 9.%,0.8) = [ f(v.w.i,m, 8,,0,&)dt (10)
where
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T s — T swa v M —v'T Mw +
+vTRv—wTRw—ET(v—w)+

)= +§(Ti+me) ’ (1)
+ QN+ H +i)+ YQNw+ H +i)-
—HéTTv+P+m)—§€TTW+P+m)
gzvjrw,¢=:9+‘{’,¢=(9+§. _ (12)

2. Unconditional Electric Circuit with Dennis
Transformers

An electric circuit which has (I/p)=0, will be in future called an
unconditional circuit. An example of such circuit is shown in Fig. 3.
The systems of equations (1)-(3) and (4)-(5) may be simplified with
(/)= 0, for in this case all the potentials ¢ =i-p, ¢g=m-p, and may
be excluded:

Sqg+Mg"+Rq'—E+p-N"(Ng'+H)+ p-T-(C"q'+P)=0,
Se+Mg' +Rg—E+p-N'(Ng+H)+p-T-"g+P)=0.
After similar terms reduction, we get (1.7) and (2.2), where

S=5, §=@+p~NTN+p-T~TT

o B (13)

M=M, E:E—p-Q\/TH+T-P)
So rge unconditional electric circuit with DT matrix is described by the
equations (1.7) and (2.2). These equations are identical to the equations
for RCl-circuits, and for the considered circuits there exist functionals,

for which these equations serve as necessary conditions of optimum.
These functionals have the following form:

e for the equation (1.7) - functionals (1.1), (1.2),

e for equation (2.2) - functionals (2.6), (2.7).
Notice that in these formulas the scalars S, R, L, E are substituted by

matrixes S, R, M, E ,defined according to (13).

Thus, the functionals for unconditional electric circuit have
unconditional optimum. When p — 00 an unconditional electric circuit

approximates an ordinary electric circuit with the same parameters
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(voltages and currents), but with p =oo. In other words, the mode of

electric circuit approaches the mode of the approximating unconditional
elrctrical circuit when p — 0. It means that the calculation of electric

circuit for sufficiently large p may be replaced by calculation of an
approximating unconditional electric circuit. This method will be used
hereinafter.

3. Electric Circuit with Integrating

Transformers
Integrating transformer is described by the following equations:
dh=t g+

! " !
e =t-e +t e,
! " . .
where [, " - the turn ratios. We shall in future denote such

transformers by abbreviation I'T. For IT the following equation is valid:
rn_r

qit'e, +qit"e, = gyt'e, +q5t'e;.
For instance, if the currents and the voltages are sinusoidal functions,
then
gie,((' + jo-1")=goe, (' + joo-1")
or
qie1 = 92€; -
This means that I'T does not change the active power of the circuit.
In sinusiodal current circuits I'T is a transformer with complex turn ratio
(t "+ jo-t "). Notice that such transformers are widely used in #hree-phase
power systems, where they are realized by a certain combination of
windings connected to different phases. For one-phase sinusoidal
currents circuits physical realization of I'T does not exist (as, however,
there is also no physical realization for DT). Evidently, with t"=0 IT
becomes DT.
Let us now consider a special matrix for IT, similar to the special
matrix for DT, using the same notations. For the IT matrix the following
equations are true:

W; =ZQ;‘k¢k +t;7k¢l;), W=T¢+T,4,
k

J=S 0, +1%q), =T ¢ +T'q",
J

Jop=wq".
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Matrixes Tl , T 2 have a following forms:

-1 1 5y ty . 0 1 131 i3
y -1 13 typ .. y 0 13y tp
Iy=ln3 ty3 -1 13 . Ty=|3 13 0 143
g tg 153y -1 .. g 14 1534 0

The second Kirchhoff’s law for branches of electric circuit with IT
takes the following form:
Sqg+Mq"+Rq'—E+N'o+Tp+T,¢' =0, (14)
The first Kirchhoff’s law in this case takes the following form for
ordinary and transformer nodes, correspondingly:

Ng'+H =1, (15)
T"-¢'+T) -¢"+P=m. (16)
Let us write these laws in the form of integral equations:
Sg+Mg'+Rg—E+Nop+Tp+T,¢' =0, 17
Ng+H =i, (18)
T" - g+T,-g'+P=m. (19)

Here, as before, g =¢q".

Let us turn now to the systems of equations (14)-(16) and (17)-(19).
Consider the functionals for which these equations serve as the necessary
conditions of optimum. These functionals look as follows.

For the equations (14)-(16):

F(x,y,i,m,8,¥,0,5) = fOTf(x,y,i,m,S,‘I’,@,é)dt,

where

[ xTSx = yTSy—xTMx+ v My +
+XTRY'—X'TRy—ET(x—y)+§€Ti+me)+
fO=|+3 QNx+H—-i)-¥Y"QNy+H—i)-

—o" (2T1Tx'+2T2Tx"+P—m)

~EQTTy 42y + P=m)

-

qg=xty, p=93'+V¥', p=0"+¢&'".
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For the equations (17)-(19):
T
Fv,w,i,m,8,,0,8) = [ f(v,w,i,m,9,¥,0.&)dt,

where
VISWw—v" Sw+ v Mw —v'T Mw+ i

+V Rv—w' Rw—E" (v—w)+

0= +§€Ti+me)+

+IQNv+H +i)+YQNw+ H +i)-
—6’(2T,Tv+2 2Tv’+P+m)
_—§(2T1TW+ZT2TW'+P+m) ]
g=v+tw, p=9+Y,9=0+¢.

The systems of equations (14)-(16) and (17)-(19) for unconditional
electric circuit may be simplified if (/)= 0, as in this case the potentials

p=i-p, ¢ =m-p,and so they may be excluded:
Sq+Mq"+Rq —E+p-N"(Ng' + H )+
wp-T@ g +T!q"+ Py p- L@ q" + I g" + P)=0,
S¢+Mg' +Rg—E+p-N'(Ng+H)+
+p T g+ T g + Py p L g + TV g"+ P)=0.

In sinusiodal current circuits ¢'" = —@’q’, g =-w’g". Then from

last two equations after appropriate cancellations we shall get (1.7) and
(2.2), where

S=5,

R=@R+p-N'N+p-TT ~0*p-T,T)
M= +p- 11 +p-TT))
E=E-p- W H+TP+T,P')

(20)

The further arguments are fully similar to those used for the circuits
with DT. The only difference is that instead of the formula (13) the
formula (20) is used.
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The further arguments are fully similar to those used for the circuits
with DT. The difference is only in using formula (20) instead of formula
(13). In this general case unconditional circuit differs from a real circuit
by the fact, that in the transformer nodes of a real circuit the node
currents are equal to zero, and in an unconditional circuit these currents
are nonzero — see (15) and (16). In future we shall call these currents
methodic error of the first Kichhoff's law ot residual in the equations (15) and
(16). This error is the less, the greater is p. The consequence of this is

deviation of the vector ¢ in unconditional circuit from vector g in real

circuit, which is equivalent to a certain residual in equation (14) for real
circuit.
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Chapter 4. Generalized

Functional

1. Generalized Functional for Unconditional
Electric Circuit

From the abovesaid it follows that the principle of extremum of
functional (1.1, 1.2) from split function of charges x and y leads to such
distribution of charges which maximizes the functional as the function of
x and minimizes it as a function of y. The sum of the optimal values of x
and y is equal to the observed function of charges g. Similarly, the
principle of extremum of functional (2.6, 2.7) from split function of
currents v and w leads to such distribution of currents which maximizes
the functional as the function of v and minimizes it as a function of w.
The sum of the optimal values of v and w is equal to the observed
function of currents g. Thus, in an unconditional electric circuit there is
an objectively established unconditional extremum of a charge functional
(1.1, 1.2) and unconditional extremum of a current functional (2.6, 2.7).
The result of this optimization are the equations of the second
Kirchhoff’s law for the charges (1.7) and the currents (2.2) accordingly. It
is assumed that in these formulas the scalars S, R, L, E are changed to

matrixes S, R, M, E, calculated according to (3.13). For the sake of

clearness let us combine these formulas in the Table 1.

Both functionals (1.1) and (2.6) are optimized szzultaneosly. It means
that we are seeking such functions g =¢', whose optimal values provide
an optimum to these functional simultaneonsly. This, in its turn, means that
every deviation of the functions g=¢' from optimal value (even
towards improvement) leads to the result that the value of another
functional is adversely affected.
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Table 1.
Variables | Formula’s Formula
number
charges | 1.1 F(x,y)= J’OTf(x, y)dt
1.2 2_2 2 _ 02
S(x= -y )—L(x'" —y'7)
faen={"" 0
+R(xy'=xy)—E(x-y)
1.7 Sq+Lq"+Rq'-E=0
1.8 g=x+y
currents | 2.6 F(x,y)= I()Tf(v, w)dt
2.7 S(Wv—vw) + L' —v'w)
f(V, W) = 2 2
+R(V"—w)-E(Wv-w)
2.2 S¢+Lg'+Rg—E=0
2.5 g=v+w

Below we shall denote
h(t) — function of time ¢,
M - differentiation operator,
E(,u) - image of the function A(?).
The simultaneity of both functionals optimization from procedural
point of view means the following:
1) Each step begins with equal values of the functions g =¢'. The
gradients of both functionals coincide and are equal to
p=Sq+Mq"+Rq —E . (1)
2) The steps by the functionals d1, @2, should ensure the equality

of the new values of the functions; for which purpose the condition

Aq'=Ag or paip = app, should hold, or

Hay = a; . 2)
3) The variables g =¢" should be smaller by half than the values
they take when performing separate optimization. Then their sum when
optimizing the generalized functional will be equal to the sought
function. From physical considerations it is clear that all currents in
electric circuit will become smaller by half if all the generated voltages
were cut by half and all the currents from all the sources were cut by half.
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It follows that to determine the size of the step, one should calculate the
values 4|, A5 depending on §, R, M, E/ , and not the values

4,, A,,which are calculated dependingon §, R, M, E -
4) Thus, if in separate optimization the steps were determined from

oF oF
—(qn) = A4, + Bja; =0, —(gn) = A, + Bra, =0, 3
Oa; Oay
in simultaneous optimization the steps, considering (2), should be
calculated from the condition

F
M:A{+Blal+z4§+32ﬂa1=0' “)
aal
Hence it follows
— (4] + 4
a = —(i+4) ()
Bl + /ZBZ
or
L - —uldi+ 4) ©
By + uB,

5) As follows from (1.13a) and (2.14a), in the case of simultaneous
optimization the functions’ increments should be found by the formula

Aq==2a1p, Ag=—2app. ©)
Thus, from (1.9), (6) and (9) we find
— 2u-(A4+45)_
Ay 4), (10)
Bl +u- Bz

So, in simultaneous optimization in every iteration

e The gradient p is calculated from (1.7) with a given function g or,
which is the same, - from (2.14) with a given function g =g¢’; this
gradient is common for the two functionals, and is determined from
D-

e The main coefficients A4, By, Ay, By ate calculated from the
formulas (1.12), (1.11), (2.13), (2.12) accordingly; in these formulas
E should be substituted by E/2.

e The increment of the sought current function is determined from the
formula (10).

Let us write the formulas for the main coefficients of the formula

(10):
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_ TG 1T 370 =
g =[T|| 4o MR By, (1)
B, =2j§(pT§p—p'TA7p')t, (11b)
TG Txr.n =
Sqg+ p° M —
Aﬁ:foT P oq+p q_ 21— TRy’ LEp |,
_ ATSql_prTMqr 2 (11ﬂ)
T
B, =2 p! Rpat 11
2 D Rpdt. (11m)
0

Generally for the calculations according to the formula (10) it is necessary
to:
1. turn from the function p to its image p,

2. using the formula (10) find the image A_q' ,

3. turn from the image A_q' to function Ag’.
From (11a) and (11n) it follows that the value (11r)
A=(4]+45) (11r)
from the formula (10), may be calculated by the formula
T 1 o ~l o 1 D 1l Enl
A= IO {_5 TSq+pTSq )QTRp +q TRp)r Ep}dt (11s)
From (1.5, 2.8) it follows that for the existence of the gereralized
functional's optimum it is sufficient for the matrixes M , R to be

positive semi-definite.
Let us again consider the functional

T
TS 1T 77 TH 1 T+
F(Q):I{ Sq—-q'" Mq'+q" Rq'-2q E}# (12)
0

with the integrand vector-function g. The variation of this functional has,
evidently, the form

p=Sq+Mq"-E.
We, however, shall calculate the variation using the formula
p=Sq+Mq"+Rq —E (13)
and shall call it quasivariation of functional (12). Clearly, all the
components of the formulas (10, 11) depend only on quasivariation and

on its components. The found results may be formulated in the form of
the following theorem.
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Theorem 1. Let us consider functional (12) with positive semi-definite

matrices M, R and its quasivariation (13). The movement in this

functional in the direction (10, 11) 1is equivalent to the global saddle
points of the two secondary functionals with integrands

x! Sx - yT§y —xT M + y’TZWy’
feey)y=¢ T 7 . (4
+x " Ry'—x"Ry—E" (x—y)

vISw =5 Sw—vT Mw+w! My
+vT§v—wT§w—ET(V—w)

The stationary values of the functions ¢, x, y,v,w satisfy the conditions

f(v,w)=+

X0 = Yo =Vo =Wy, o =Xo+ Vo +Vo+ Wy,
and the condition of stationary value is
Sq+Mq"+Rq'—E =0, (15)
Corollary 1. Let us consider the functional (14) and the functional
(12), which is secondary with respect to the former, and also the
quasivariation of the functional (13). The necessary conditions of the

existence of saddle line of the functional (14) is that the quasivariation
(13) is equal to zero, where g =Xx+ y.

2. Sufficient Conditions of Existence for
Generalized Functional’s Extremum

Let us consider more closely the sufficient conditions of extremum
for the functional (1.1) with integrand (1.2). The arguments of this

function are vector functions x, . In section 1 it was shown that for

an electric circuit the matrix M is positive definite. This matrix appears in
the functional with negative sign. Therefore, the extremum for functional
(1.1, 1.2) is a global weak maximum with respect to the function X and —
global weak minimum with respect to the function y. If the matrix M is
negative definite, then the extremum of the functional (1.1, 1.2) is a global
weak minimum with respect to the function x and — a global weak maximum
with respect to the function y. Thus, in the general case the extremum of
functional (1.1, 1.2) exists if the matrix M is of fixed sign.
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If M=0, then to define the sufficient conditions of s#rong optimum it
the matrix § must be considered. For an electrical circuit the matrix S is
positive definite. This matrix appears in the functional with a positive sign.
Therefore, the extremum of the functional (1.1, 1.2) is a global strong
maximum with respect to the function x and — a global strong minimum with
respect to the function y. If the matrix S is negative definite, then the
extremum for the functional (1.1, 1.2) is a global strong minimum with
respect to the function x and — a global strong maximum with respect to the
function y. Thus, in the general case the extremum of functional (1.1, 1.2)
exists if the matrix S is of fixed sign.

Let us now consider more closely the sufficient conditions of
extremum for the functional (2.6) with integrand (2.7). The arguments of
this function are vector functions v, w. In section 1 it was shown that
for an electric circuit the matrix R is positive definite. This matrix appears
in the functional with positive sign. Therefore, the extremum for
tunctional (2.6, 2.7) is a global weak maximum with respect to the function
v and — a global weak minimum with respect to the function w. If the matrix
R is negative definite, then the extremum of the functional (2.6, 2.7) is a

global weak minimum with respect to the function v and — @ global weak
maximum with respect to the function w. Thus, in the general case the
extremum of functional (2.6, 2.7) exists if the matrix R is of fixed sign.

For a generalized functional (when the functionals (1.1, 1.2) and (2.6,
2.7) are being optimized simultaneously) the sufficient conditions of
extremum existence for the functionals (1.1, 1.2) u (2.6, 2.7) should be
tulfilled. The table 2 shows the sufficient conditions in dependence of
the sort of matrices M, S, R.

Table 2.
Ne Sufficient
condition R S M
determining

1 | Strong Of fixed | Of fixed sign Absent

optimum sign or
absent

2 | Strong Of fixed Of fixed sign Absent
optimum sign or absent

3 | Weak optimum Of fixed | No difference | Of fixed sign

sign
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3. Generalized Functional for general-form
electric circuit

From the above discussion it follows that in an electric circuit there is
an objectively established extremum of a charge functional (1.1, 1.24) and
an extremum of a current functional (2.6, 2.22) under the constraints
(1.14) uanm (2.15). We assume there that in these formulas the scalars S, R,

L, E are changed to the matrixes S, R, M, E , calculated by (3.13). For

the sake of clearness let us combine all these formulas in the Table 3.

Table 3.
Vari- | Formula’s Formula
ables number
charges | 1.1 F(x,y)= jon(x, y)dt
1.24 XTS)C _ yTSy _ )CITM)C’ + leMyl +
Sy ={+x Ry —xT Ry~ E" (x= )+
+ 9T QN + H)+ YT Ny + H)
1.14 Sq+Mq"+Rq'—E+NTgo=O
1.15 Ng'+H=0
1.8, 1.19 q=x+y,¢:19'+\1ﬂ
currents | 2.6 F(x,y)= _[OTf(v, w)dt
2.22 vIsw— 5T sw+vl Lw —v' T Lw+
Fo,w)=|+vI Rv—wl Rw—ET (v—w)+
+3QNv+ H)+¥YQNw+ H)
2.15 S§+Mg'+Rg—E+NT(ﬂ:O
2.16 Ng+H =0
25217 |g=v+w @=9+Y¥
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Chapter 5. Electric Circuit
Computing Algorithms

1. General Algorithm

The results obtained in Chapter 4 may be used for computing electric
circuits. In the general case the computations proceed according to the
following gradient search algorithm.

Algorithm 1. The general case
set g=0, ¢'=0, ¢"=0.
compute he gradient p by the formula (4.0);

determine the norm || p” of gradient p;

if || p” < ¢ the computation is finished with the given value g,

compute the main coefficients by the formula (4.11);
determine the image p of the original p;

determine the image of current increment by the formula (4.10);

S A A

determine the original of current increment Aq' to the image
Ag';

9. compute the new value of current ¢' <= q¢'+Aq’;

10. repeat points 2-9 .

For computing linear alternating current electric circuits by this
algorithm one may, naturally, use a general-purpose computer. However
for speeding up the computations it is advisable to use a matrix
processor, for the algorithm deals mostly with matrixes in its operations.
At the same time it is significant that matrixes conversion does not
appear in the algorithm, which reduces the computing time and memory
usage.

In some particular cases the computing formulas of the main
coefficients Ay, By, A5, By and current increment Ag’ may be

simplified. Below we shall consider most common types of functions and
computation modifications for these functions.
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2. System of Linear Differential Equations

2.1. Method 1. The above stated results may be interpreted as a
method of solution of a system of second order differential equations of
the form (4.15) of the variable g(?). The system we are to solve must
have the form

ax"+bx'+cx+d =0, (1)
where

x —vector of unknowns,
a b, c- given positive definite matrix square matrix,
d — given vector.

Assuming that g=x, M =a, R=b, S=¢, E=—-d, from (3.20) we

can find the parameters of electric circuit, which simulates the given
system of second order differential equations .
In particular, an electric circuit may be simulating a system of first
order general-form differential equations
ax'+bx+d =0. 2)
Assuming that ¢'=x, M =a, R=b, S=0, E =-d, from (3.20) we

can find the parameters of electric circuit, which simulates a given system
of first order differential equations.

From section 4.4 it follows that the solution of system (4.15) is
equivalent to the minimization of functionals (16) and (17) with
constraint (4.15). Hence, the solution of system (1) is equivalent to the
minimization of functionals

Fl(x)=.f0TQTc-x—x'Ta-x'+2de)t, €)
F(x)= JOT Q'Tb X'+ 2de')t 4)

with constraint (1). For a well-determined system (1) the optimization is
practically absent, as there is only one solution. We shall consider now
certain transformations of ill-determined systems, which will give a
natural mathematical interpretation to the criterions (3) and (4).

Underdetermined system. In such system the number of equations
is less than the number of variables. In this case system (1) may be
complemented by equation

K +n'x+mlx=0, (5)
where k, n, m — vectors f given weight coefficients. Then system (1) is

transformed into a system of the following form
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a C

b d
=0 (©6)
n m

And functionals (3) and (4) take the form:
F(x) =Ig Tc-x—x'Ta-x'+me'x—x'Tk-x'+2de)t,
F(x)= IgQ'Tbvc' +xTnx + 2de')t .

If the coefficients k, n, m are relatively large, then the latter functionals

X"+ ] x4+

are transformed into

F(x) :J.gQme—x'Tk-x') , %
Fr(x)= Ig Q'Tn . x')t . ©®)

These functionals correspond to minimization of a weighted sum of
squared variables and their derivatives. Notice that the matrices n, m

should complement the matrices g, b to squarte matrices

m |n

Overdetermined system. In such system the number of equations is
larger than the number of variables. In this case system (1) may be
transformed to the form

"

o |x 0l |x X
k| |y n| |y y
where y — vector of additional variables, k, n, m — matrices of given

! 0
+|b + 1 1+d =05 ©)
m

a C

"

weight coefficients of the additional variables. Then the functionals (3)
and (4) will take the following form:

Fl(x):fOTQTc-x—x’Ta-x'+mi-y—y'Tk-y'+2de)'t,
F(x)= I()T Q’Tb-x'+y’Tn-y'+2de’)t.
If the weight coefficients k, n, m are relatively large, the latter

functionals will have the form
T ! 1
Fl(x)=j0QTm-y—ka-y)t, (10)
F(x)= I()T Q'Tn . y')t- (11)

These functionals correspond to minimization of weighted sum of
squared residuals of the variables and their derivatives. Notice, that
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matrices p, m should complement matrices g, b to squarte matrices

2.2. Method 2. Let us consider functionals (1.1, 1.2), (2.6, 2.7), where
scalars S, R, L, E are replaced by matrices S, R, M, E. Optimization of
these functionals under constraints

Ng'+H =0, (12)
g +1T g+ P=0 (13)
(see (3.15, 3.16) or (3.18, 3.19)) is equivalent (as was shown above) to

unconditional optimization of the same functionals, where scalars S, R, L, E
are replaced by matrices §, R, M, E, defined by (3.20),if p— 0.

We shall consider now a certain special case, when
E=0, R=0, §=0, M=0, N=0,
and shall denote X =g, b= T'T, a= T”T, ¢ =—P. Then the

equation (13) transforms to equation
a-x+b-x'=c (14)
And from (3.20) we shall get:
S=—p-a'b, R=-pla” +pp")

M:—p-aTb, E=—p-(bc+ac)
Hence, the equation (14) is replaced by the equation

aTb(x +x")+ QaT +bbT )’ +(bc+aé)=0. (17)
Simultaneously with the solution of this equation the functionals (4.16)

and (4.17) are being minimized. The latter functionals in this case take
the form

F(x)= jOT ( Talbx+xTal by + 2(bc + aé)T x)t , (18)
F(x)= jOT € X7 QaT +bbT )' +2(bc + aé)Tx') , (19)

If the system of equations (14) is well-determined, then this system and
the system (17) have one solution. Let us now deal with the cases when
the system of equations (14) is ill-determined.

Underdetermined system. In such system the number of equations
is less than the number of variables, and there exist multiple solutions.
However, due to the fact that in this method the functionals (18) and (19)

(15)
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are being optimized, a sole solution is being chosen. This solution
minimizes the quadratic forms (18) and (19).

Overdetermined system. In such system the number of equations
is larger than the number of variables, and system (14) has no solution.
However, due to the fact, that in this method the solution of system (14)
is replaced by solution of system (17), a certain solution is determined
which gives minimum to functionals (18) and (19). This solution satisfies
the equation (14) with a certain residnal — see section 3.3. As it is evident
from (18) and (19), this residual is such, that the named inexact solution
minimizes the functionals (18) u (19).

3. Interoperable Functions

Let us consider the functions f(¢), f,(¢) of a certain form, for

which the following formulas are valid:

o /i@ £30)-dt = uf) 1) f(0)-dt

(1)
o fi f30)-de =[] /i) fo(0) o
fo /'@ fo0)-di = 2], fi(0)- f>(0)-d 5
Jo A©-13@)-dt =[] ) fo(0)-ds "
Jo A0 $30)-de =[] i) 12(0)-de 5

For the sake of simplicity we shall cal such functions znteroperable. 1t is
easy to see that among such functions are first of all exponential

functions f(¢) =u-e*", where @ —areal ora complex number. To this

class of functions belong also sine and cosine, hyperbolic sine and cosine
and sums of the above named functions. Besides, to this class belong the

functions £ (¢) = e*Sin(ft), where S — a real or a complex number
which follows from the relation:
a+jp _ a=jp
£@t) = e™Sin(pr)= % (6)
J
Below it will be shown that the functions of current appearing in the
electric circuit after the application of step voltage, are also interoperable.
For interoperable functions the formulas (4.11) are simplified and
assume the following form
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A =J'OT{ TSp q’TMp +—= }dt,
B = 2"'0T GT§p+p’T]\7p')t,

T
By = ZJpTEpdt
0

A+ 4 =j()T|;qT§p+Ep}t—y2j()T ET]Wp} —,ujOT ETE(]}I,
= 2(_[5 QT§p)t+y2Jg QTJWp)'t) ,

T
By = ZIpT}_det .
0
Formula (4.10) then assumes the following form:

T B IOT ngpdl —qu .[oT qTMpdt — #.[OT qTEpdt + IOT Epdt B
i . HD
LTpT§pdt + 4’ IOTpTZWpdt + yj'prl?pdt
0

or

or

—I (q (S+y2M+,uR}E)9dt
J. (S‘+y2M+,uR)Udt

Taking into account the formula for gradient p finally we get

T r
_ —| p pdt
Aq’: i py J:) — — ﬂ}_). (7)
[ p_(9+u M_+uR)Ddt
In particular, for § =0, M =0 we have:
T T =
= —UO prdt/IO pTdet)-p. (72)

It is significant that the functions g and p do not change their form when
passing from iteration to iteration.
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4. Sinusoidal Functions

In the case when the voltages and currents of the sources are
sinusoidal functions with circular frequency , algorithm 1 is simplified.
In this case the functions of time are substituted by complex numbers
(denoted by the same symbols). The define integral will be substituted by
scalar product:

jOTQTD-b t="aD®b,
w

Here the upper bound in the integral is 7 =27/w, and symbol ®
denotes operation of component-wise scalar multiplication of complex
vectors and summation of these products. The result of such operation is
a real numbet.

In this case we have:

T T

jq'TDp'dtz jq”TDpdtz—a)zqu@p, 1)
0 0 @

d T L T T

[q" Dpdt=[q" Dp'dt = jo=—gD® p, @
0 0 @

3 T a T T

[p" Dg'dt=[q" Dpdt=—gD® p,

0 0 @

T T TH o1
jo [p Rg-p Rq)}t=0,
o Q p'Sq—p' My"+ p'Sq'+ p’TMq')t =0.
Since the formula (4.10) includes a ratio of integrals, the factor 7/@ may

be discarded, and all the integrals will be substituted by scalar products.
From (4.1) we find

p=6-w?+jok )g-E

or

- iX - —
pz[ / +RJ-g—E, ©
@
where
X=6-w 4
Taking into account (1, 2), we find that sinusoidal functions are

interoperable. So we may use the formula (5.3.7), getting:
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—Jjep®p

—jep®p )
p(X +joR )® p
From the formula (5) Ag may be calculated directly (without using the

g:

calculus of operations).

Example 1. One branch. If there is only one branch, then from (5)

we getting:
Ago_ —JOP®D »
pX + joR)® p
or
__—Jo 6
g X+ joR ©
On the first iteration g=0, p=—F and from (6) it follows, that
Ag = __JoE , which leads us to the known formula Ag = E R
(X + joR) V4
where Z:[_i+ja)-M+R]
jo
Generally, if on a certain iteration g = E, then ¢ = and
Zl ja)Zl
. . E
p=(X+joR)q—E=(X+ joR) ———E=nE,
joz

(X + joR)- joz,
Jjwzy

where n = , and, further, by the formula (6)

- jop — jonE
Ag= " Y
(X +joR) (X+ jwR)
Therefore, the new value of the function is
—jo X+ joR)-joz, £

E 1
=g+Ag=—+Ag=E—+
=878 Z g Z; (X +joR) joZ,
ie., as well as after the first iteration, g = __JeE .
(X + joR)

The integrals (4.16) and (4.17) in this case, taking into account (1) and (2),
look as:

ﬂ(q){)@(ﬂsz)zE)@q, )

Fy(q)=-n(@qR +2E)®q. ®)
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5. The system of linear algebraic equations

The aforecited results for linear differential equations and for
sinusiodal current electric circuits may be interpreted as a solution
method for a system of linear algebraic equations with complex
coefficients.

5.1. Method 1.

The system being solved should have the following form

@@+ jb)e=c, 1)
where

x — the complex variables vector,

a, b — given squarte matrixes,

¢ - a given vectof.

N
Assuming that g =y, R=a, “M =5 4 E—¢, from (3.20) we

b

(4]
may find the parameters of an electric circuit simulating the considered
system of linear algebraic equations with complex equations coefficients.

On each iteration the new value of charge is found from the formula
®
X=1Xx~— P : P p
(pa+ jpb)® p
that follows from (5.4.5). In this connection, the movement to an
optimum of definite functional is progressed by the gradient that has the

form p = (a + jb)x —c . During the movement to an optimum the norm

H pH of this gradient is decreased. The following fig. 1 shows the graph of
H pH as a function of the iteration number - see also the the functions

test2, test3, testN. The following fig. 2 shows the graph of 10g|p|

as a function of the iteration numbet.
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Relative Error of Calculaion
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Example 1. A program Sinl.in for solving a system of linear

equations with complex coefficients of the type Z*g=FE is given in
the annex [52].

About convergence
As follows from the section 4.2, the iterative process converges, if the
matrices M and R are of fixed sign (positive or negative definite).

Example 1b. Fig. 3 shows the example of the process divergence in
the case of solving a three equations with complex coefficients in

the MATLAB system. Here the matrix M is not of fixed sign, the
process diverges and is stopped when the error is 100 times higher
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than the error at the process beginning — see function test3t, which

uses function Sinl.in..

Relative Error of Calculaion
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Fig. 3.

About speed and precision

Example 1c. Comparing the results of solving N equations with
complex coefficients in the MATLAB system with the aid of the

discussed algorithm and the traditional one - see functions testNV,

testNe correspondingly. Parameter comp serves for precision
comparison for this and the traditional algorithms and is computed
by the formula

gt = Z\E;

ngt=norm(qt) ;

ng=norm (q) ;

comp=abs ( (ngt-nqg) /nqgt) ;

Fig. 4 shows graphs of the iteration number and the error comp
as functions of dimension number N with fixed value maxEr. One
can see that, first, comp < maxEr and, second, the iteration number
is proportional to the dimension number N.
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Fig. 5 shows graphs of the iteration number and the error comp
as functions of given value mixer with fixed dimension number N.
one can see that, first, comp is proportional to maxEr and, second,
the iteration number is proportional to maxEr.
Thus ,

comp ~ maxEr,

comp is proportional to maxEr,

iterations number is proportional to maxEr,

iterations number is proportional to dimension number N.
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According to section 2 let us consider now the solution of ill-
determined systems of the type (1). The integrals (5.4.7) u (5.4.8) in this
case take the form:

A@)="a-2)eq. ®

(0

F(g)= —;zQ)be+2jc)8x. 3)

Underdetermined system. In such system the number of equations
is less than the number of variables. In this case the system (1) may be
complemented by an equation

([nT+mT):O, )
where n, m — matrices of given weight coefficients. The system (1) is
transformed into the system:

a b c
, ®)
n 0

and functionals (2) and (3) with comparatively large weight coefficients
will take the form of following functions:

F(x)= Im®x, (6)
Fr(x)= xTn®x . %

These functions correspond to minimization of a weighted sum of
squared variables. Note, that the matrices p, m are going to

x+j |x=

m

. . |a
complement the matrices g, b to squarte matrices

s
m| |n

Overdetermined system. In such system the number of equations
is larger than the number of variables. In this case the system (1) may be
transformed to the form:

0 0

m n

X X
y y
where y — the vector of complementary variables pn, m — matrices of

a +jb =c> (8)

given weight coefficients of the complementary variables. Then the
functionals (2) and (3) with comparatively large weight coefficients will
take the form of following functions:

Rx)=y"m®y, )
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T
Bx)=-y'n®y . (10)
These functions correspond to the minimization of a weighted sum of
squared residuals. The matrices n, m are going to complement matrices

0

n

a, b to squarte matrices

a b

b

m

5.2. Method 2.

According to section 2 we shall consider now the solution of ill-
determined systems of the type (5.2.14). The integrals (5.2.18) and
(5.2.19) in this case take the form

T
R =% Ta (07 )z(mfw} ®x )

e\
F(x)=-7x a)xTQa +bbT)#2(ac+]wj ® x> (12
Fl(x)—a)( €1 o )Tb+2(b+]a)] j@x, (13)
Fz(x):ﬂ(a)szea +bbT)2Jw[b+j j@x. (14)

) jw

or, with w =1,

Fl(x)——27r€rT Tb+(ja—b)c}§x, (15)
B (x) = n({(ga +bbT}2(a+jb))8x. (16)

The solution of system (5.2.14) with these functions’ minimization is

equivalent to the solution of system (5.2.17), which in this case takes the
following form:

Tbx( )ua)éa +bbT) [b+—Jc 0 (17)

or, with w =1,
anT+bbT)+(b—ja)c=0.
ot, finally,
Qa +bbT)+(a—jb)c:0. (18)

One can see that the equation (18) differs from the equation (5.2.14)
by the factor (a - ]b) If the system (5.2.14) is well-determined, then it
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and the system (18) have only one solution. Let us consider the cases
when the system (5.2.14) is ill-determined.

Let us note that in an equation with real coefficients b=0, and the
equation (18) becomes

aaTx+ac=0, (19)
and the minimized function (16) becomes
Fr(x)= EQTaaT + 2ac>§ X. (20)

Underdetermined system. In such system the number of equations
is less than the number of variables. However, as was shown above, the
solution obtained by this method has minimized the quadratic forms (15)
and (10).

Overdetermined system. In such system the number of equations

is larger than the number of variables, and the system (5.2.14) has no
solution. However, as was shown above, the solution obtained by this
method has minimized the quadratic forms (15) and (16) with a certain
residual.
So, to solve the system (5.2.14) by the considered method, this
system should be transformed into system (18). This rule is applicable
to any type of system (5.2.14) — well-determined, underdetermined or
overdetermined.

Example 2. A program SinlLin2 for solution of ill-determined
linear equations system(a+j*b)*q+c=0 is given in the annex [52].

5.3. About Matrix Processor

It is well known that 75% of all numerical mathematical problems are
essentially the problems of linear algebra [19]. Among these problems a
large share falls on the solution of linear equations system with (generally
speaking) complex coefficients. We can literally say that matrix
processors owe their very appearance to these problems. But in these
problems only the multiplication of matrices harmonizes ideally with the
with the possibility of parallel computations in matrix processors. Other
operations, necessary for bringing a linear system to a form easy-to-use
for iterations, or for matrices inversion [20], are ill-suited for paralleling.
This problem, along with the high cost of matrix processors, is an
obstacle to their expansion.

Offered above method and algorithms is presented for solving a
system of linear equations with complex coefficients (including
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underdetermined and overdetermined systems), involving only
multiplication of vectors (the inverse matrix computation is absent). The
matrix processor (specially designed for this problem) is significantly
simplified and is able (without essential hardware expenses) to realize
pipeline data processing without important hardware changes.

It follows from the above-stated (see the function SinLin in
Example 1), that in the process of solving a linear equations system with
complex coefficients by the discussed method, only the following
operations with complex vectors and matrices are being used: addition
and subtraction of vectors:

From the above-stated follows (see function SinLin in an example of
vectors multiplication,
1. addition and subtraction of matrices,
2. multiplication of matrices,
3. calculating the norm of vector x
Obviously,
» addition and subtraction of matrices (3) is reduced to addition
and subtraction of vectors (1),
» multiplication of matrices (4) is reduced to multiplication of
vectors (2),
» calculating a vectot’s norm (5) is reduced to multiplication of
vectors (2) and addition of vectors (1).

Hence, for the solution of linear equations system we may construct a
matrix processor which provides only operations (1, 2). The inverse
matrix computation is absent. Such matrix processor may be realized by
a specialist without much problems. Such processor should contain only
summators and perform conveyer data processing. The number of
summators S should be in proportion with the processot’s volume and in
inverse proportion with the performance time of these operations.

On every iteration the multiplication of a square matrix by a vector is
being performed. The performance time of such operation by an

ordinary processor is proportional to the vector’s dimension N, and the
number of iterations (as was mentioned above) is proportional to the
dimension N. So, the solution time for an ordinary processor is

proportional to N 3 For a proposed matrix processor it is proportional
w0 N3/s.
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6. Computing linear electric circuits with

sinusoidal current
These circuits may have arbitrary configuration and may contain
® resistances,
® capacitiesO
e inductances and inter-inductances,
e transformers, including multiwinding6
e transformers with complex transformation coefficients,
including multiwinding,
e voltage sources,
® current sources.

The existing methods of calculation for the named electric circuits are
based on their description by a linear equations system and subsequent
solution of this system. In our case the electric circuit before the
calculation is being transformed into unconditional electric circuit with
parameters (voltages and current) that are almost (within a given
precision) similar to those of the initial electric circuit. Then this
unconditional electric circuit is computed with the aid of the described
method of finding an optimum of a certain functional. Note that unlike
the known methods

e there exists an inverse proportion between the precision and the

solution time; in practice it means that the user may quickly look
through the approximate solutions, and then compute more
precisely the chosen variant;

e the number of equations is reduced by half (to be more accurate -
the equation system for an ordinary electric circuit contains the
equations of the First and Second Kirchhoff Law, and the
equations system for unconditional electric model contains only
the equation of the Second Kirchhoff Law);

e it may be possible to extend this method for non-linear (with
respect to the power sources parameters) system.

As it follows from the above said, the unconditional electric circuit is

described by an equations system of the type

j(w-ﬁ—i§j+§ g—-E=0, (1)

where § , R, M s E are determined according to the following
formulas
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el
I

<[

E
which

S,
=R+p N'N+p-1iTi’ —a)zp-T2T2T)
= 6/’+/?'T2T1T +,0'T1T2T)

=@—p-Q\/TH+T1P+T2P’))

follow from (3.20).

@)

The computation algorithm consists in solving repeatedly the
equations system (1) with the same value of Second Kirchhoff Law error

and an

increasing value of methodic resistance. This increase leads to the

decrease of the First Kirchhoff Law error. So the algorithm is as follows:

1.

Transforming the circuit to standard form — see Fig. 3.3. It was
shown above that such transformation is possible for any
configuration of multiwinding transformers in the circuit.
Preparing the tables describing the initial electric circuit.

Forming from these tables the matrices R, M, S, N, T}, T,

and the vectors £, H | P.

Choosing €1min, €2min from the possible values of the First
and Second Kirchhoff Laws errors. The possible values of the
First and Second Kirchhoff Laws errors are relative to maximal
values of currents and potentials.

Choosing the initial value of methodic resistance. It may be equal
to the average value of all complex resistances of the circuit
branches.

Computing the matrices and vectors by the formulas (2).

Solving the equation system (1) with a given value of possible

relative Second Kirchhoff Law error €2 min - see the previous

section 5. The current value of Second Kirchhoff Law error &9
on each iteration is calculated by the formula

£y = max([p‘)max([E @ ¢) ©)

Here the gradient p is equal to the value of the right side in the

5 >

expression (1). On the first iteration, when the potentials @, ¢

are still unknown, the values @ = O, ¢ = 0 are taken.

Computing the value of First Kirchhoff Law error. For that the
node currents are computed by the formulas
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i=Ng+H , Q)
m= 1T+ja)-T2T}+P, )
which follow from (3.18) u (3.19). This error is

&1 = max([i , mD/max([g, H\|P ) )
The node potentials are also computed

p==p-i, )
p=—p-m. ®)

If the value of error &1 is less than possible value, the
computation should be stopped.

9. Increasing the value of methodic resistance 0O = k o’ P (where
k p is a given coefficient) and passing to p. 6. Along with the

increase of O the First Kirchhoff Law error €] decreases, while
the Second Kirchhoff Law error remains constant. Fig. 1 shows
the dependences of these parameters on the iterations number in
the electric circuit computation, in the Example 2 when

k,=125.
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lteration Mumbers

Fig. 1.
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Example 1. Further the program SinCir is given, realizing pp. 5-9

of the described algorithm for electric circuit computation. The

notations in this program comply with the above cited notations.

More concretely:

EEreal,SSS,LLL,RRR,HH,PP - row vectors for
E,5,L,R,H,P;

NN - incidence matrix N;

do oo oo

oo

tranl,tran?2 - matrices 71, Té;

o\

eKlmin,eK2min,omega,stepRo - values

oo

€1mins» €2min, @, kp accordingly;

o

Wmax - tolerant number of external cycles

oo

with kj) growing,

% maxIter - tolerant total number of internal cycles
% (in the SinLin3 function ) ;

% kromin - the coefficient of initial methodic

3 resistance increase;

% res=0 - OK;

% res=1 - many internal iterations;

% res=2 - large error;

% res=3 - many external iterations.

Fig. 2.

Example 2. An example of the electric circuit of a certain power
system is shown in the Fig. 2. On this diagram the generators are
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denoted by empty circles, and transformer — by double circles. The
diagram contains 14 branches, of them — 3 transformer branches and
10 nodes, of them — 5 generator nodes and 5 load nodes. After
transformation the diagram assumed the form shown on Fig. 3. In
the transformed circuit the generators of nodes 1, 2, 3, 4 are depicted
by fixed current sources, the generator f node 10 is depicted by a line
with fixed voltage source, and the transformer — by two branches. To
test all the possibilities, the first transformer node is supplemented by
a current source, and the second transformer has a complex
transformation ratio. Totally this circuit contains 22 branches, 10
nodes and transformer matrix of 3x3 dimensions. Positive directions
of voltages and currents are depicted by arrows. For the description
of standard circuit on the Fig. 3 the tables of nodes Nodes, branches
Branches and transformers Trans are arranged. From these tables

the row vectors E, S, L, R, H, P and matrices N, Tj, T, are

formed. Further the SinCir function is used. After performing the
computation these tables are supplemented by the parameters

i, m, ¢, ¢, g, &, &.
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Nodes
Node Relp) Imlp) Re(H) Im(H) &
1 326 235 -5.07 -1.79 0.0021
2 677 419 -6.23 -1.87 0.0042
3 386 70 2.26 3.68 0.0021
4 365 215 -2.55 1.26 0.0023
5 724 208 0 0 0.0040
6 333 166 0 0 0.0020
7 334 99 0 0 0.0018
8 364 116 0 0 0.0020
9 351 69 0 0 0.0019
10 767 3 0 0 0.0041
Branches
Num nBeg nEnd Re(E) Im(E) R L S Re(® Im(g £
1 2 0 0 0 0.03 0.7 0 0.51 -0.19 410
2 1 6 0 0 0.44 0.1 0 2.2 -0.1 4.93
3 1 4 0 0 0.27 0.1 0 -0.61 -1.17 2.82
4 2 5 0 0 0.25 0.1 0 _6.74 1.7 4.03
5 5 0 0 0 0.03 0.7 0 -0.37 -0.05 298
6 5 10 0 0 0.1 0.1 0 -6.36 -1.65 10.49
7 6 7 0 0 0.44 0.1 0 -2.08 -0.21 5.58
8 4 8 0 0 0.27 0.1 0 316 0.09 1.8
9 3 7 0 0 0.14 0.1 0 0.89 1.6 2.27
10 3 8 0 0 1.92 0.1 0 1.34 0.89 3.29
11 8 9 0 0 0.99 0.1 0 -1.36 0.34 4.26
12 3 9 0 0 0.27 0.1 0 0.03 1.19 2.89
13 7 9 0 0 0.27 0.1 0 -0.85 -0.41 4.81
14 10 0 0 0 0.03 0.7 0 0.67 0.03 13.45
15 1 0 0 0 0.01 0 0 226 -0.52 7.64
16 7 0 0 0 0.01 0 0 0.85 0.01 17.94
17 9 0 0 0 0.01 0 0 -1.5 -0.07 16.44
18 10 0 750 0 0.01 0 0 _7.03 -1.68 17.45
19 6 0 0 0 8 7 0 012 011 102
20 7 0 0 0 50 0.5 0 -1.19 1.79 6.78
21 8 0 0 0 157 1.5 0 -0.46 0.64 9.61
22 9 0 0 0 81 0.8 0 -0.67 1.2 5.37
Trans
Num [ Re(4) | Im(p) | Re(P)| Im(P) | & C.
HPOAOA—
KEHUC
1 319 237 1.1 0.9 0.0021
2 318 91 0 0 0.0018
3 334 71 0 0 0.0018
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Trans (continuation of columns with branches numbering)

Num B1 B5 b14 | B15 | B16 | bl7
1 2.25 0 0 1 0 0
2 0 2.25-0.25% | 0 0 1 0
3 0 0 225 |0 0 1

Example 3. Let us consider the electric circuit shown in the Fig. 3.

In this circuit only the transformers 1y and current sources P in

transformer nodes are present. Methodic resistances are also shown

there. The circuit contains 7 uniform elements and is described by
two equations:

‘1; :N2Q1,> Q{"'Toq; =P.

The matrix N, is:

1 -1 0 O 0

O 1 -1 0 0

0 0 1 -1 n,
Ny =

O 0 o o .. 1

———— 5 ———— >

and the matrix 7, is a quadratic n*n-diagonal matrix. Consider 27-

. . 9
dimensional vector ¢ =
9,

transformer matrix of the total circuit will assume the following form:
N=N2 D, T=[D, 7}

where Dy - n*n — diagonal identity matrix. All other matrices and

. Then the incidence matrix and the

vectors for this circuit are equal to zero. Fig. 4 (see also function
tCStDigDiI‘) gives the results of this circuit computation with
n=8, t, =07 £=10+0.2j), B, =0.
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7. Trigonometric Series

In the case when the voltages and the currents of the sources are
represented by trigonometric series, the computations by the formulas
(5.4.3, 5.4.5) in every iteration should be performed for each harmonic.

8. Periodical Functions

In this case the formulas (4.11), where T is the functions’ period, are
used directly for the main coefficients computations. For periodical
functions in this formulas

T T TH 1
X [p Rg-p Rq)} =0,

T 'J AL ~l o 1 1l 1 1
[y épTSq—pTMq +p'Sq +pTMq) =0.
9. Exponential Functions

Here we shall consider exponential functions f)=u-e*". where
p )

o is a real or complex number. Such functions are (as was stated above)
interoperable. Let us give some examples.

Example 1. Consider an equation
Sqg+Rq'+Lg"—E=0.
Characteristic equation of the corresponding homogeneous equation

Sq+Rqg'+Lg"=01is [16]  S+RB+LB>=0, its  roots

_ —R+VR*-4LS

n= 3 . The solution of homogeneous equation in this

case will be as follows:

if Q?Z —4LS)Z 0 then g = e %e’?lf +c2e’72’)
if @2 _4LS)< 0 then g =e* (qCOS(ﬂt)+ CZSin(ﬂt))

2L

b

-R
a:—’ =
2L p

where ¢|, ¢, are arbitrary constants.
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Let E=u-e*". Notice that a particular solution in this case will
1

q=m-E  where m=—————.
S+Ra+a’L

Example 2. Continuing example 1, let us find the function g using

the stated method. On the first iteration g=0 and, as follows from
(4.11),
p=Sq+Lqy"-E=-E, p'=-a-E,

,_—1 T 2 _ G 2 )T 2
AI_TJ'OE dt, By =2+a"L) E-dt,
AZ—TJ'OE dt, By =2R|, Edr.

From (4.10) we find that

_2p-(Ai+ ) —24 ~E)

q - p_ 2
By + - By 2(S‘+a L)«yzR

or

q'= “e :
@‘ +a’L+ yRJ
Evidently, for exponential function g =« . Therefore
1
[S +al + Rj
(24
Which coincides with the result, obtained in example 1. Generally, if
on a certain iteration g=hE, then
p=Sq+Lq"-E= GthazhL—l) =nkE,
An further, according to formula (4.10),

A= —SI()qudt —szqupdt—yRJ()qudt+j()TEpdt

q'=kE, where k =

, , T H-P
SJO ppdt + szIO ppdt + ijppdt
0

or
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(S—,uZM —ﬂR)gqut+I§Epdt

Aq'= Hop=
@+/¢2M +yR§p2dt
0
(S M — /lR)n+n . h(s M — /JR)H
@'+y2M+/4R)2 (§+y2M+/1R)

And the new value of the function ¢ will be

q'=2q'+Aq'=hE+Aq’=hE+h€S 1M - ﬂR)H
Gr2mvur)

or ¢'= H-E ie., as after the first iteration,
@+,u M+,uR)
1
q' =kE, where k =75V
—+alL+R
(04

10. The Functions Determined on the
Positive Time Semiaxis.

The theory of functionals construction, outlined above, assumes that
the used functions are twice differentiable and is not extended for
discontinuous functions. However, the gradient descent method does not
require such limitations. So it may be extended for discontinuous
functions. The Pontryagin’s maximum principle [18] permits to
substantiate this assertion — see the next chapter.

Further we shall restrict our consideration to the type of functions,
multiplied by a unite step (7). As it will be clear from further discussion,

we shall operate with functions of the type f ()=u-e*",

f()= emSin(ﬂt), f= eatCos(ﬂt). These functions in the section 5.3
have been called intergperable and the formula (5.3.7) for computing
current increment is applicable to them. Let us transform this formula to
the form:
Aq'= lp ot uop- ©)
jo TSpdt+,uz'|.0 TMpdt+,u_[ pTdet

or
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’ a-
A =—F—— (), (1)
S+u-R+u°L

where a, S, R, L are real numbers. This equation may be rewritten as
Aq’(t)(E +R+u- LJ =a-p(t)
7
or
Sqg+Rq'+Lg"-E=0.
The problem is to determine the current g¢(¢f) for wvarious

discontinuous functions. Therefore we shall now apply operational
calculus [14]. Denote the image of () as f(u).
If the image of gradient is

AU 2
pun=4 b0 @
Then, as it follows from (14),
A () =g @t ) Q)

Q+ﬂ-R+ﬂ2L)b(ﬂ)
or
— - d(p)
Aq(u) = £ )
a u-(Y+u-R+ﬂ2L)b(u)

If the function

Fy =+ R+ 2L )b(a0) ®)
has only prime roots f,,, then according to Heaviside’s theorem [14] we

find:

Ag = a n a d(ﬁm)ﬁm ﬂmt , 6
20 A8 ©
where
F(u)
VA = 7
(w) = d() )
For §=0 the following formula is used
_a adB)f, s ’
M=70 2 FE) C o
where
F(u)= R+ pL)b(p) (5a)
and
F(,U) 7
Z(p)=—" i) (7Ta)
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11. Step Function
In this case f(t)=FE-y(¢t), where y(¢) - step unit. Let us first
consider an example.
Example 1. Consider an equation
Sq+Rq' +Lqg"=E-y(t).
The characteristic equation for it will be[16]:

S+RpE+ Lﬂz =0,
~R+\R*>-4LS . .
Its roots: 17 = Y3 , its solution:

if @2 —4LS> 0 then g=e Qlemt + czenzt)

R ﬂ_\/R2—4LS
L’ 2L

if @2 —4LS)< 0 then q =e *(c;Cos(ft )+ c,Sin(B))

R ﬂ_\/4LS—R2
L 2L

where ¢, ¢, are arbitrary constants. Let us find the arbitrary

constants for @2 —4LS )< 0. We have

4= {ew (e,Cos (A )+ cxSin (A )+ %}
as Sq = E with ¢ — . Further we have
J = a-e™ (c;Cos(ft )+ c,Sin () +
+ fe™ (= ¢;Sin (Bt )+ c,Cos(f3t))
or
(@i + Bey YCos(Br )+
[+ (@-co-p-c Bin(pr))]”

For ¢t =0 we have ¢’ =0. Therefore
(1 +-¢3)=0. @)

Further we have

90



Chapter 5. Electric Circuit Computing Algorithms

el
g e Bl

or

) - chl +2a-f-cy —,6’201 )os(ﬂt)+
q"=se
+ 2c2 -2a-f-¢q +,b’2c2 )in(ﬂt)
For t =0 we have Lg" = E . Therefore

@2c1+2a-ﬂ~cz—,6’2cl):E/L (8)
Combining (a) and (8), we find:
—acq -FE

2 2 2 ) E
Cy = , c— 2a - ﬂ a —, = . (C)
ﬂ @ L L(;z—l-ﬂz)

Substituting these constants to the expression for charge, we get

Ee ™ . E q
= m(a -Sin(p )- S - Cos(t )+ 3 )
Q%;ﬂ}su. (e)

Therefore,

| Ee g
S-p
Taking into account (d, €) and

2{ @_“’2 —a-Sin(fr)- ﬂ-Cos(ﬂt))}ze_mSin(ﬁt),

But

. E
)— a- Sln(ﬂt))} + 3

ot 2 + ,B
We find
—at
q = {EZB Sin(ﬂt)}
And further

g = {Ef )a- Sin(ﬂt))} .

Substituting the obtained expressions for g, ¢' and ¢” in the initial
equation, we can see that it turns into identity.
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With @2 —4LS)z 0 we find

-1 eﬂlf et
q= —+ )
LS m

-1
' mt e’72f
s 4
L2 mt mt
= e +mye’s
q = s 77
In particular, with S=0 we have: 171 =17, = R/L and
_ L r_ L " __ L
=—e b, d=—el ¢"=—e L.
4= q'=— q'=

Let us consider some particular cases.
Case 1. On the first iteration p(¢)=E-y(¢), which follows from

(4.15) with g=0. Then p(u)= £ 11 this case from (5.10.4) we find
U

a-E
y-@'er-RerzLJ
If the equation F(u)= 6‘+,u-R+y2L): 0 has for Q{Z —4LS} 0 the
roots m 5 =—a* jB, then F'(u)=2Lu+ R and from (5.10.6) we obtain

Aq(u) =

the function of charge increment as a sum of two items:

LR— (1)
m2 (ZL ma+R )
After processing the expression with the aid of (5.3.6) we get (see also
example 1):

Agp =

Ee .
:{ W )—a-Sln(ﬁt))}
—qg. me o mt
Ag="2E1ET €T Gith @2—4Ls)zo
LS \\m m
E-L _Et
Ag = 4 S—e L with $=0.
R

With the aid of these formulas the gradient may be computed from
(4.1). It may be seen that the gradient is a sum of exponentials (with a
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real or complex exponent), or of exponentials and functions of the type
e"'Sin(@-t) and e"'Cos(w-t).

Example 1. Let us consider a circuit with a sole branch, where
L=0. For a sole branch the formula (5.10.0) may be reduced by

IOTprdt, ie. in the formula (5.10.1) a=-1. In this case on the first
iteration we have: p(t)=-E-y(t), pt)=—-E/u, F(u)= (S +,uR),u,

E E
+ - see (5.104), n=-S/R, Z(0)=S - see
Z(0)  p-(S+uR)

Aq(u) =

E _E
(5.10.7), g =Aq = E+Ee R see (5.10.6). On the second iteration

p=(q+Rq—E)yt)= (E[l + e‘i’J —Ee_% —EJ (1) =0.

So the computation ends on the first iteration with the result

E -2
=—|1+e*

Example 2. Let us consider a circuit with a sole branch, where
S$=0. In this case a=-1 (see Example 1) and on the first iteration we

have:  p()=-E-y(1),  p0)=-Elpu,  F(u)=@R+ul)u,

— E E
Ag'(u) = + - see (5.10.3), n=-R/L, Z(0)=R - see
W=7 R i) (5.10.3), 7 (0)

E E-L B

(5.10.72), ¢'=Aq' =

e - see (5.10.62). On the second
R R

iteration
_R, _R,
p=(Lq"+Rq' —E)y(t)y=|Ee ' +E|1-e * |—E |-y(t)=0.

So the computation ends on the first iteration with the result:
E(, L -}
'=—|l-—e*

Case 2. Assume that p = E-}/(t)e’“ . Then p(u)= E_a/; . From

(5.10.4) we find
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a-y-E-o

ﬂ'(§+ﬂ-R+u2L)(u—/1) '
The equation F(u)= 6‘+ U-R+ ,uzL),u —~1)=0 has the roots
ma=-atjf and A, F'(u)= (S —AR)+2u-(R—LA)+ 3,uzL: and from
(5.10.6) we obtain the function of charge increment as a sum of two

summands (similarly to (1))
a-Ew . 2t
Aqip = ©)
F (771,2 )
and another summand of the form
a-Ew At

AQ3 = me . (4)

Aq(u) = )

Example 3. Let us consider a circuit with a sole branch, where
L=0. let us assume that for it on a certain iteration a charge

q = a, +ae"is determined. On the next iteration
p=(Sq+Rq' —EY () = (Sa, + Sa,e™” —a,Rbe™ —E)/(t) -
= (e —d Y(t); c=a,(S-Rb) d =E-Sa,.
The computation on this iteration is performed in two ways:
1) computation for step excitation (-d ), which has been considered in
Example 1; the charge function will be supplemented by a

N
-t

component e ®

2) computation for exponential excitation (ce_bt ), which will be
considered further.

So we are assuming that p(t) = y(¢)-ce™™ . Then p(u) = +b

F(u)=(S+mRu+b), F'(u)=QuR+(S+Rb)), Z(0)=w - sec
5.10.7), Ag(u)= H-C - 5.10.4 - _
( )> Ag(u) ,u-(S+,uRX/1+b) see ( )s s ( S/R, bJ)

s
F'(n,)= [(Rb -S) (s —Rb)]. Therefore  Ag = ke B fme™ - see

(5.10.6), ie. on the second way (as on the first one) the charge

s
-2
function is supplemented by a component e ® . Here
—c —c

“®o-sY " T (S—Rb)
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Example 4. Let us consider a circuit with a sole branch, where
S=0. Let us assume that for it on a certain iteration the current

! —bt
=a,+ae . ) . )
q 0 1 is determined. On the next iteration

p=(Lg"+Rq' —E) y(t) = Lape™ + Ra, + Rae™ —E ) y(t) =

= (ce‘”’ —d)}/(l); c=a,(R-Lb) d=E—Ra,.
The computation on this iteration is performed in two ways:
1) computation for step excitation (-d ), which has been considered in
Example 1; the charge function will be supplemented by a

N
=t

component e ® ;

2) computation for exponential excitation (ce_b’) which will be

considered further.

bl

C
,u+b’
F(u)=R+uLXu+b), F'(u)=QuL+R+Lb)), Z(0)=o0 - sec

- see (5.10.3), p,=CR/L, -b),

So we assume that p(t)=y(t)-ce™. Then p(u) =

(5.10.7a), AT/(#FWLM)

R
F'(u)= KLb ~-R) (R —Lb)]. Therefore, Aq' = ke L fme - see

(5.10.6a), i.e. on the second way (as also on the first) the current
R
-t
function is supplemented by a component e X . Here

i = Re = —bc
L(Lb-R)Y ~  (Lb—R)

Case 3. Let p=E-y(t)e*'Sin(w-1). Then ﬁ(,u)zE;w_
(u —/1)2 +w?

From (5.10.4) we find

a-u-E-o .
y'@'+y~R+,u2L)(u—/1)2 +a)2)‘

Equation F(,u):6'+,u-R+y2LI/J—77)2+a)2):0 has the roots

Aq(u) =

M4 =—0axjf and from (5.10.6) we obtain the function of charge

increment as a sum of four summands

== . 5
Z0) ©)

95



Chapter 5. Electric Circuit Computing Algorithms

Case 4. Let p :E-y(t)e’i'tCos(a)'t). Then ﬁ(ﬂ)ZM.
= /”t)2 +w?
From (5.10.4) we find
— a-u-Eu—-1
Ag(u) = £ 2(ﬂ ) 7
y-@Jr,u-RJr,u L)(,u—/i)2 +o
As in the preceding cases from (5.10.6) we obtain the function of charge
increment as a sum of four summands

B a‘Ea)(n—ﬁ,) nt
Aq_—F'(n) el . 6)

In the general case the current functions are e”’Sin(w-7) and

e Cos(@-t). It means that they are interoperable, and so we may use

the formulas of Section 3 to compute the current increment on each
iteration.

On any iteration of our computation we may encounter any of the
considered cases. Therefore, in the general case to the current function 4
summands of exponential type should be added on every iteration. The
practice shows that the computation consists of hundreds of iterations.
Thus, definite integrals in the formula contain hundreds of summands
for each branch. To cut the time and information volume the following
technique is suggested. Each exponential is represented as a truncated

power series Z(ak + JPr )~tk . So on each iteration and for each charge
k

of the branch the power series of the “former” charge and its increment

are summed up , thus not changing the structure and the volume of the

charge as a function of time representation.

12. Displaced Step Function.

In this case f(¢)=E-y(t—s), where y(r) - a step unit, s — displacement
along the time axis. On the first iteration p =—FE-y(¢—s), which follows

from (4.15) for g=0. Tt is known [14], that y(;—s)-d— > ¢4 From
y7,

the lag theorem it follows that

Ag(1) = Aqy(t=5)-y(t=s),
Where the function Ag,(f—s) is determined in the same way as for a
step function without displacement.
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13. Multistep Functions

Let us consider a multistep function of the type
f@) =my, t=k-At+(+1)At.

- see also fig. 1. Evidently, such function may be presented as a sum of
displaced step functions. The superposition principle permits to reduce
the computation of such function to a multitude of displaced step
functions computations.

A
an A
mn o
my
mg |
t#
0 k n

Figure 1. A multi-step function.

14. An Exponential on the Positive Time
Semiaxis

In this case p=E -}/(t)e’”. Such a function has been considered

above — see (5.11.2, 5.11.3, 5.11.4). In this case these formulas are used
on every iteration.
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15. Trigonometric and Hyperbolic Series on
the Positive Time Semiaxis
In this case p=E-y()-) ngSin(ka) 1)+ b Cos(kw t)J or
k
p=E-y()-Y, IEszh(ka) 1) +byChke 1) - It is known that the functions
k

Sin(kw t), Cos(kw t), Sh(kw t), Ch(kw t) may be presented as a sum

of two exponentials. Thus this case is brought to the preceding case.
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Chapter 6. Variational Principle
and Maximum Principle

1. Introduction to Maximum Principle

Let us examine now some concepts of the Pontryagin's maximum
yag

principle [18] in view of its future application.
Let us consider a functional

T
F:jo fOQ, u)’z, (1)
of the equations system
dxi A
—_—— = . , u R 2
o £ w) @)

dy; __ u)_iafv@, u),
axi Vo

df 8xl-

the function

HQ//: X, ”): fOQ‘a ”)* Zr_l‘,ll//v'f\/@» ul “4)

with respect to vector-functions of time

©)

y=1

T
X =X, X2, ooy Xy,

V/T:l/jla V2, <o Wy

uT =Up, Uy ey Uy,
It is significant that these functions may be discontinuous, and their
range of values may be limited. The maximum principle lies in the fact
that the search for functional’s (1) minimum by x(f), u(f) may be
replaced by the search for the function’s (4) maximum by u in all the

points of time interval.
Later on our main interest will be in the case when

dx i

E:ui. (6)
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Then also

dy; 6f0Qc ”)
=

{7 u):foQ )*Zl//v : ®)

Example 1. Let

F:_[OTze—Luz—Ex)t.

Then from (7) and (8) we shall get
d—‘/’ = 28K+ E,

H@/ % u)e 62 - Li? - Ex by,

The necessary condition of the last function’s maximum maxcrMyma
by variable u is:

b oo

—-2Lu+y =0.
Taking into account (6) and using the notations of section 2.1, we get
the necessary condition of maximum

—2Lx' -28%+E=0.
This condition should not change with passing from one point of
time to another Consequently,

%sz'-zsﬂﬁ:}o

)

or

or
2Lx"+28x-E=0.

Notice that if (6) is valid, then the necessary condition of the initial

functional’s minimum is the same. So, we have discovered the

condition of the initial functional’s minimum by using the maximum

principle.

Considering the example 1, it is important to note that:
> the necessary optimum condition of the initial functional’s
minimum may be obtained only on the condition that the
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integrand function is differentiable, and therefore the function
E(?) has no discontinuities;

» the necessaty condition of maximum in obtainable for any
function E(t);

» formally, the above named conditions coincide; thus, the
maximum principle permits to extend the condition of the initial
functional’s for discontinuous functions E(?).

Nevertheless the problem of the method of solution of the equation,
representing the necessary condition of the initial functional’s minimum
or the necessary maximum condition, is still an open question. We have
considered above a method based on gradient descent along the
functional. Now we shall show a method based on gradient ascent along
the maximized function H(?).

Converting to vector and matrix notations, from (6, 7, 8) we get

dx
_:u,
dt

dy __ohl, u) 10

dt ox
H@/, X, u):foec, u)H//T-u. (11)

2. Maximization Method

Let us consider now the following
Maximization algorithm 1.
1. Assume that x(#)=0 and u(¢#)=0.

ofole, u)
ox '

©)

2. Compute ¥'(t) =—

3. Compute ()= jéy/(f) dr with knowny'(0).
4. Determine the function H Q, u) using (11) with known

y(0), x(1).

5. Compute u(t) from the condition %'}‘IQ, u)]: 0.

6. Check the variation of function u(f) compared with its

previous value and, if it is sufficiently small, stop the
computation.
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7. Compute x(f) = jéu(r)-dr with known #(0).
8. Gotop.2.

Example 2. Let
F= I()TGXZ ~Lu? —E-;/(t)-x)t,

where E — a constant, ¥(f) - jump unit. Let us use the maximization
algorithm. On the first iteration
1. Assume that x(#)=0 and u(¢)=0.

2. Compute ¥'(t)=-28x+Ey(t)=Ey(t).
3. Compute y(t)=E jé y()dr=E-t.

4. From (11) determine the function Hé, u):—Lu2+E-l‘-u,

where the items, not dependent on u, are discarded.
5. Compute u(t) from the condition —2Lu+Et=0. We have

E
u(t)=—t.
=7

6. Check the wvariation of function u(f) and continue the
calculation.
7. Compute x(t) = jtu(r) -dr = it2.
0 4L
Go to the second iteration.

SE
2. Compute ¥/'(f) =—28x + Ey (1) = _th +Ex(t).
tf S » S 3

3.C N=E||-——t"+y(r) |dr=E-| ——t" +t]|.

ompute ¥/(f) JO( YA )j ( o j
4. Determine the function H Q, u):—Lu2 +y(t)-u or

HQ, u): —Lu2+E(—it3+tj~u.
6L
. S 3

5. Compute u(t) from the condition —2Lu+E —6—Lt +1|=0.

E S 3
We have u=—| ———t" +1|.
2L\ 6L

6. Check the variation of u(¢) , and continue the calculation.
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t E(-S 4 »
7.C xt)=u(t)-dr=—| —t +t°|.
ompute x(0) = (o) 4L(12L j
Go to the third iteration.
SE(-S 4
2.C "O)=-28x+Ey(t)=—— £+ [+ Ev().
ompute ¥'(f) x+Ey(1) 2L[12L j y(t)

SE( =S
3. Compute W(f)={=Efév/(f)'dT= 6L[20Lt5+t j+Et}.

4. Determine the function H Q, u): —Lu? + w(t) u orn
S 5
H ~Lu? +| -2 "+t |+Et|u
Q ): [ (2OL ] j

SE (-S 5 13\ E
5. Determine u(t). We have 4 = ———| ——1" +1~ |+ —1.
12712\ 20L 2L

6. Check the function’s vatiation u(t) and continue the computation.

7. Compute x(t) = jéu(r)-dr = —ﬁ( S 5 +t4)+%t2.

4817\ 30L
Thus, as the result of the iterations we consequently get
E 2.
x () =—-+t
10=77
E({, S 4
() =—|t°——1" |,
2() 4L( 12L j
2
() =L 2 - S 4, ST 6
4L 12L 36072

So we may conclude that

Bl B a B s
x(t)—4S£,Bt 12t +360t J

S S
where a)=\/:,,8=a)2:—,0r

X(0) = L(wt)2 @) , @) ]

2l 41 6!
Therefore,
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x(t) = %(Cos(a)t)—l).

The condition of the initial functional’s minimum and the condition
of maximum are (as was shown in the Example 1) as follows:
2Lx"+28x—-E=0.
2

Substituting x(¢) and x"(t) = — Cos(a)t) into this condition, we

get an identity, which testifies that the computations were correct.

Example 3. Let us assume that in the example 2 on one of the
iterations we got

X(t):Eia (a)t)Zk where a :;
o K705 k)

Then

n
2. Compute W'(f) = —28x+ Ey(1) = =2SE Y ay (x V¥ + Ey (0).
k=1

3. Compute /(1) = E( 252 (2k 1)0 (w )2k+1 J

1
5. Compute u(t) according to the formula u(t)zzl//(l‘), which

follows from the maximization condition (8).
7. Compute

X u(r)-dr = Sy (k+1)
(0= [ju()-d LLk1(2k+1X2(k+l))w2 (er) LJ

x(t) = EZbk(a)t)z rae by

or

Sak 1
=—, b = 7
AL LQk—1)2k o

Taking into account that @ = 55 and (as was shown in Example 2)

S
o = I find finally that by = ay. Thus, on every iteration the seties

of function x(?) is supplemented by item number (n+1).
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3. Second Order Differential Equations
Systems with Step Excitations

Let us consider an RCL-circuit with electric charges and the
functional (1.1, 1.2). We shall denote: x'(¢) =u,(¢), V'(t) = Uy, (). Then

this functional will be written as follows:

F:jjfoeayauxeuy)it> (12)
fo vty - SQ 2 ki) (13

| RGuy —uy ) EG-y))

We shall assume that the unknown functions in this functional are
x(t), uy(t). Then according to (7), (8) we shall get accordingly

TAC

de— —28x—Ruy, +E, (14)
Hlyy, x, uy )= fol)rwyouy. (16)

The condition of the last function’s maximum with respect to u,(f) after
discarding the items not dependent on u,(f) will become:
—2Lu, —Ry+y, =0,

So the optimal value of the function u,(¢) may be determined as

1
uy =y —Ry)=0. (17)

This means that maximization of the function (16) is equivalent to
minimization of the initial functional with respect to the function x(f).
The functions

d
%:ZSy+Rux—E (18)
Hlyy, x, ue )= fol ) rwy uy. (19)

may be found in the same way , as well as the optimal value of function

u,(t), which gives the minimum of the function (19):

y+Rx): 0. (20)
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So it is shown that minimization of the function (19) is equivalent to
maximization of the initial functional with respect to function y(?) .

We shall use now the maximization algorithm 1 for finding the
function x(?). In this particular case we have

Maximization algorithm 2

1. Assume that x(#)=0 and u,(¢)=0.

2. Compute according to (14) y) =—28x — Ruy, +E .
3. Compute ¥, (f) = jot w'(¢)dr with known ¥'(0).

1
4. Compute according to (17) u, = Z(W = Ry).

5. Check the variation of function u(f) compared with its previous
value, and, if it is sufficiently small, stop the computation.

6. Compute x(f) = jéu(r)-dr with known  #(0).

7. Gotop.2.

The maximization algorithm for finding the function y(f) will be
similar to the one we described above. We shall perform the algorithms
for maximization of x(f)and y(f) simultaneously. It means that after
performing an iteration for the two algorithms, we shall substitute the

values of functions X, Uy, found in the first algorithm, to the formulas

of the second algorithm , and the values of y, u I found in the second

algorithm we shall substitute to the formulas of the first algorithm. It is
easy to see that on the iterations with the same numbers the following
conditions are fulfilled:

X=V, Uy =Uy, Yy =Yy (21)
Let us denote similarly to (1.8)
q=X+y, U=y tuy, Y=Yy==Y,. (22)

From the above it follows that the charge ¢ may be computed with
the aid of the following algorithm.
Maximization algorithm 3.

1. Assume that ¢(£)=0 u u(#)=0.

1
2. Compute ¥'=-8q — ERu +E.
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3. Compute y(f) = jéy/'(r) dr with known ' (0).

2

5. Check the variation of function u(f) compared to its previous

1 1
4. Compute uzz w——Rgq|.

value, and if it is sufficiently small, stop the computation.

6. Compute g(t) = Iéu(f)-df with known u(0).

7. Gotop.2
Evidently, the maximization algorithm 3 is usable only in the case when
L>0. (23)

Example 4. Let the voltage of a RCL-circuit be equal to E-y(?),
where E — is a constant, ¥(f) - jump unit. We shall use now the

maximization algorithm. On  he first iteration
1. Assume that g(#)=0 and u(t) =0.

|
2. Compute y'(t)=-Sq - ERu +Ey(t)=Ey(1).
3. Compute y(t) = Ié w'(t)dr=Et

4. C te U I 1R Et

. ompute = - = —1.
P A

t E -

5.C t H=\|u(r) dr=—t".
ompute ¢(1) = Jyu(z)-d7=—

On the second iteration

1 SE » ER
2.C "tV==Sg——Ru+Ey(t)=——t"——t+Ey(t).
ompute ¥'(f) =—Sq 5 y(0) ALY 7(?)
SE 3 RE »
3.C ty=——t" ——1t" + Et
ompute (1) oL m

1 1 SE 3 RE , E
4. Compute U =— w——Rq :__Zt : + .
L\ 2 6L* 20f L
SE RE E
5. Compute ¢(t)= Iéu(r) dtr = __214 - 3. z
24L 6L 2L

Let us assume that on a particular iteration we got:

-k <k
q(t):EZakt , u(t)zEZbkt .
k=1 k=1
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Then
1. Compute
n
w'(t) =-Sq —%Ru +Ey(t)=-E chtk +Ey(1),
k=1
—(Sa +1Rb j
k 2 k|
n
2. Compute y(t)=E —zc—ktk+l+t .
ok +1
3. Compute
1 1 E L Cho k4l ERE &
u(t)=—|y—-——Rq |=—| - ) ——t +t|—— ) aqpt” =
« L(W 2 q) L( ,Elku 2L§ k
n n+l
Ck Rak+1 e+l
=E| —ajt - Z( ]t J [Zbkt]
[ pm L(k+1) L
1 —Ck—1 Rak
=l—aqy+—|, b1 =| ———-——"%L |
bl(le k>l(Lk 2L)
4. Compute
f I’l+2b 3
4(0) = Jyu(e)-d7 = E[ > %t"}
k=2

We see that on each iteration the series of the function g(?) is
supplemented by two items.

Example 5. To test the solution obtained in the example 4, let us
consider the equation, given in the example 5.1. It was shown there
that that the general solution of this equation is as follows:

= ie_a (~p-Cos(t)-a- Sln(ﬂt))+—
R VALS — R?

, B= —7 Let us build a Maclaurin series of

where o =

this function:

. Gwz) 2a(,2+/;z)3 G2+ﬂ23
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S . e .
As @2 + ,Hz} I the obtained expression is similar to one obtained

on the second iteration of the example 4, which proves the
statement.

It may be noted that the presented algorithm is applicable also for
vector vatiables, where L, §, R are quadratic matrices. What matters is

only that the electric circuit is wholly described by the equations system

Sx+Rx"+ Mx"=E(t), (24)

Example 6. Consider the program realizing maximization algorithm
3 for solving the equations system (24) for E(t)=Ey(t) in the
MATLAB system. This program consists of the following M-
functions:
ValueSeries — computing the value of power series vector,
DifSeries — differentiation of power series vector ,
IntegraSeries — integration of power seties vectot,
errtio — computing the error for a given moment,
DEjump — main function.
Consider the main function DEjump It computes the power series
of the functions x, x', x".Itis assumed that the function should be

defined on the observation interval 0<¢<7. The computation
results in forming the following matrix, for representation of

function x(?):

xl(t) X1 o Xp e XN
x(O) =X (O = X1 - Xkn - XkN|,
xd(t) Xd1 - Xdp - X4 N

where element X (f) of vector-function x(f) is a polynomial

N
xk(t)= zxk,n " and is represented by a row of values x;(¢) in
n=1

the observation moments.
The following parameters are used in this program:
imput:
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S, M, R, E — see above,

N — maximal number of the series terms,

erToler — minimal tolerant error at the end of observation
interval,
ontput:

x, xI=x", x2=x" - see above,

tio=T — observation interval,

err — computed error at the end of observation interval,

er — residual vector in the equation (24), also represented by
power series.

The computation is performed iteratively. In the process of
computation a series is formed, with number of terms twice the
number of iterations. Simultaneously the size of maximal observation
interval T (ti0), on which the relative error is less than the given
tolerant value (erToler), is computed.

Jurmp of E=1

1 T
0.8
0.6

| S=1,M1,R 0.33 ﬂ A
D 4

0.4
0.z

Current

02 .

0.4 .

A& .

08 F .

-1 1 1 1 1 |
1] & 10 15 20 25 a0 35

Tirme

For large N it may occur, that the value T V' exceeds the bounds
of the processor capacity. It may be revealed by the fact that the
functions graphs are truncated before reaching the end of
observation interval. In this case the number N should be reduced.

The figure (see function tCStDEJ_Z) depicts the results of
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computation, using this function, of three independent equations,
where

$=1,0,0;0,1,0;0,0,01;

rR=[0,0,0;0,0.33,0;0,0,171;

M=[1,0,0;0,1,0;0,0,3];

E=[1;1;1];

We shall now look more carefully at the maximization algorithm 3 .
Combining the formulas of this algorithm and taking into account that at
the end of iteration process ¢'(f) =u(t), we get the formula for the
charge:

1 1 7 1,
q(t) = | OZ[—ERq(z') + 0(— Sq(9) —ERq () + E(S)jd&j -dr .
Differentiating twice, we find

" 1 !
q (t)=z(—Rq ~Sq+E),

That means that at the end of iteration process the equation of RCL-
circuit is fulfilled.

About overflow

For large N it may occur, that the value T N exceeds the bounds of
the processor capacity. It may be revealed by the fact that the functions’
graphs are truncated before reaching the end of observation interval. In
this case the value of N should be reduced (see also functoin

testDEjump4).

About convergence

Independent of the matrices’ form there exists computational
convergence, which implies that on a given observation interval the form
of the sought functions does not depend on the length of series (recall:
the length of series should be extended only with the aim of extending
the observation interval).

However, for ill determined matrices the solution diverges — the
functions grow infinitely. At the same time the computational
convergence still holds. Recall, that in our case the term “well determined

matrices” means positive semi determined matrices S, R and a positive

determined matrix (M #0). For M =0 the solution does not exist. In
the next section we shall wthdraw this condition (see also functions

testED]conv, testED]Jconv2).
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In our presentation context this algorithm is remarkable because it
shows that the maximum principle of functional (1.1, 1.2) may be extended for
discontinuons functions. From this and from Theorem 4.1.1 follows

Statement 1. The functional (4.1.12) and the equation (4.1.13) may

contain discontinuous functions E(%). For them the Theorem 4.1.1 is
valid , and the equation of the functional’s stationary value (4.1.12) takes
the form (4.1.13).

This statement has been used above in the description of
discontinuous function computation method. Further we shall deal with
the problems of its application for electric circuits computation.

4. First Order Differential Equations
Systems with Step Excitations

Let us consider RCL-circuit with electrical currents and functional
(2.6, 2.7). Let us denote:

V=y, v=V'=u,, W=w, w=W'=u,,. (25)
Then this functional for [ _=0 will assume the form
T
F=[ fo W uy,u, N, (26)
where
S, W —-Vu,,)+
Jo (VaWauvauw): 27)

+R€v2 —uwz)E(uv ~uty,) .

We shall assume that in the functional the unknown functions are
V(t), u, (¢). Then in accordance to (7), (8) we shall get accordingly

dy,
dt
Hb,, V, u, ) fol )y, u,. 29)

The maximum condition of the last function U,, (¢) after discarding the

=Su,,, (28)

terms that do not depend on U,, (1) , will assume the form
SW +2Ru, -E+y, =0,

and from this condition the optimal value of U,, () may be determined:
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OTKyAQ OIIPEAEAACTCS OTUMAABHOE 3HaYeHNE (DYHKIIH U, (1)

1
ty = (E=S-W=y). (30)

So, maximization of function (29) is equivalent to minimization of the
initial functional V' (¢).

In the same way we may determine the functions

d
Ww _ —Su,,, (31)

dt

H(‘[/wa W, “w):fO(-")"'Ww'uw- (32)
The maximum condition of the last function U W(t ) will take the form

-SV -2Ru,,+E+y, =0,
and the optimal value of Uy, (%), for which the function (32) will be
maximized, is,

1
MWZE(E_S'V_I_I//W)' (33)

So, minimization of the function (32) is equivalent to maximization of
the initial functional with respect to the function W (f).

Let us now use algorithm 1 for the search of function V(). In this

particular case we have
Maximization Algorithm 4

E
1. Assume that u(t) = ﬁ and compute V' (f) = Iéuv (r)-dr.
2. Compute by (31) Wy, =8 - u,,,.

3. Compute (1) = jé v (r)dr.
1
4. Compute by (33) U,, = E(E -SW-y, )

5. Check the increment of U, (t) comparing with the previous

value, and if it is small enough, stop the computation.

t
6. Compute V(t) = jouv (r)-dr.
7. Gotop.2
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The maximization algorithm for function W () is similar. We shall
now perform the maximization algorithms for V(f) and W ()
synchronously. This means that after performing the iteration at hand by
both algorithms we shall substitute the values of V/, U,, obtained by the
first algorithm in the formulas of the second algorithm, and the values

w, U,,, obtained by the second algorithm will be substituted in the

formulas of the first algorithm. It is easy to see that on iterations with the
same number the following conditions are fulfilled:

V=W, u,=u,, v,=-y,,. (34)
Let us denote similarly (2.5)
q=V+W, u=u, +uy, Y=y, ==y, (35)

From the previous it follows that the charge ¢ may be computed by
the following algorithm.
Maximization Algorithm 5

E
1. Assume that u(?) :E and compute §(1) :Jéu(r) -dr.

1
2. Compute W' =ES-M.

3. Compute y(t) = jél//'(f) d7 with known '(0).

1 1
4, Compute u=—| E——S-qg—
ompute R( ’ q l/lj

5. Check the increment of u(t) comparing with the previous value,
and if it is small enough, stop the computation.

t
6. Compute ¢(t) = J.Ou(T)°dZ'.
7. Gotop.?2.

It is evident that the maximization algorithm 5 is applicable only in the
case when
R>0. (306)
Notice that pp. 2-3 may be combined, and then this algorithm
becomes simpler and assumes the following form:
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Maximization Algorithm 6

E
1. Assume that u(?) :E and compute §() =Jéu(r) -dr.

4.
5.

Compute U I%(E—S-q)

Check the increment of u(f) comparing with the previous value,

and if it is small enough, stop the computation.

Compute ¢(t) = Jéu(r) -drt .
Go top. 2.

From the remark 2.1 it follows that this algorithm is applicable also in

the case when R is a function R(?) of independent variable 7.
If the functions are presented as series of the form

n n
U=y up, 4= > qg,
k=1 k=1

where 71 is the iteration number, then Algorithm 6 takes the following

form:

Maximization algorithm 7.

1.

Fix 7 =1, compute uy () :i and compute

g, (0)=[yui(7) dr.

S
Compute Uy 41 (f) =~ R qn(?)

Check the function #(f) variation compared with the previous

71, and if it is small enough, stop the computation.
t

Compute 95 +1 (t) = J.O Up+1 (T) -dt .

Raise 77 by 1 and go to p.. 2.

Example 7. Let us consider the equation

Sq+Rq' - Ey(t)=0, (a)
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where E is constant, ¥(f) - unit step. The solution of this equation is

= 1+ex( t Note that
= — - - . ote a
1 R 4 P R

1.e.

The solution of equation (a) for ¢ > 0 has the form

q' = Eexp(—St). (8)
R R
q= E(l—exp(—ﬁtjj. (©)
S R
do/fdt
0 — 1 1 T 1 1 T
« (ghmma) '

Fig. 1.
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For t = 0 we have
, E
qg—>—, 40, ®)
R
But at the moment =0 the derivative exhibits a jump

E
4 —
g0 ="y ©
R
By direct substitution into the initial equation we can ascertain that

the solution is correct — see Fig. 1 and also function FlgGamma)
For the solution of equation (a) we shall use the optimization

algorithm 7.

0. Begin with ¢(t) =0.

Ey(?)

1. Compute u(t) = uj (1) =

and compute

o) =a1(0)= [y ()-dr =" ¢

2. Then compute consequently

S SE t SE »
uy=——qr ==t @)= | up(z)-de=——_17,
R R Jo 2 R2
2 2
S  S°E , S°E <3
uz=——qy=—1 93(0 u3(r)-dr=——+
R™™ 2R3 IO 6k
3
S S’E 3 t S°E A
ug=—"_q3=—"" 1, q4(t) = | us(7)-dr =~
YTORTT Rt b 2R

S 8, 8 3
and so on. Thus, Q(l‘)zf 7t_72t +73t -
R 2R 6R
Notice that on each iteration one term is added to the series of
the function g(%). Also notice that when the number of iterations

grows, q(t) approaches the known result:

E S
q(t) > E 1-exp| — El‘ , which was to be proved.
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It can be seen that the proposed algorithm may be applied also to

the case of vector variables, where S, R are quadratic matrices. What

matters is only that the electric circuit is fully described by the equations
system

Sq+Rq' =E(1). (37)

Example 8. Consider the program realizing maximization
algorithm 3 for solving the equations system (37) with

E(t)=Ey(t). This program is similar to the program of example
6 and it uses the same notations and the same subsidiary functions.
Only the main function is different: DE]umpRC The following
figure shows (see also function teStDEJRC_127) the result of
computation with the aid of this program of a system of 127
equations. The figure shows the graphs of x(1), x'(l‘) for three
functions with numbers 1, 52, 113.

Currents in lines 1, 52, 113
0.3 T T T T T T T T T

«X1.113-current =

o
o
=)
L

<
)

0.2

0.1

Current

01 t = derivative of charge

1-charge

0.3} .

_04 | | | | | | | | |

Some other examples are considered in 9.6.0.
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5. Differential Equations Systems with
Multi-step Excitations

In the above (in section 6.4) considered case the voltages of the

circuit are of the form E (t)= l_'jo -¥(t), where Eo — a constant vectot,

Y (t) - a jump unit. In the beginning of each iteration the value
' ' 1 D Fnl
y'(t) =-Sq _ER” +E,y(t) is being computed, and, consequentially,

the item is added to the function E,f. So on each iteration of the

maximization algorithm 3 the power series of the function g(?) is
supplemented by two items. However we shall not go beyond a certain
number of series members, because the series are convergent.

The above presented example 4 illustrates this case.

Evidently, the same algorithm may be applied also for the function

E(f) = EO y(t—1t,), where t, >0 — a certain moment. The same

algorithm is applicable in the case, when the function can be presented in
the form

h
E(t)=2 Ej, 7(t—tj)
i=1
- see example fig. 1. According to the superposition principle for electric
circuits, the computation consists in multiple use of the maximization
algorithm 3.
jump

jump(n)

jump(2)

jump(1)

(1)=0|  t2) [t3) [tn) tio
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Example 9. Consider DEjumpMany, which  realizes
maximization algorithm 3 for step voltages. In this function the
following parameters will be used

imput:

S, V, R, erToler, N — see above in Dejump function description,

EE — vector with all the components except one are equal to zero,

and the non-zero component is € = 1,

jump — vector of voltage jumps of the non-zero component €,
~ jump = [jump(1), jump(2).... jump(n)],

tjump — vector of the jump moments,

tjump = [t1=0,t2,t3,...,tn,999],

pixels — number of observation points on the observation interval
outpuz:

t10=T, err - see above in Dejump function description,

xt, x1t, X2t — the unknown functions,

t — the moments of these functions’ observation

15 T T T T

15 1 I 1 1
0 5 10 15 20 25

Fig. 1 illustrates the meaning of notations used for some variables
in this function. On the output of DEjumpMany function the
matrices of the values of the unknown functions in all points of
observation are formed. The figure shows the solution results of a
certain system of three equations with multiple step excitations - see

also function te stDE]rnany.
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0. First Order Differential Equations Systems with
Excitations in the Form of Dirac Functions
Further we shall discuss a Dirac function ]/'(t). Between the

truncated Dirac function ]/’(t) and the step function ]/(t) the

following correlations are formed:

y(t) = I?"(f)df. (1)
0
y'()=y(0)/dt, @

The maximization algorithm 6 is applicable also for the equations

(6.4.37), where E(t)=E (1)y'(t).

Example 9a. Let us consider an equation
Sq+Rq' ~Ey'(t)=0, @

where E is a constant. The solution of this equation is

£ ’+§— +1-ex (—EtJ
T=27 TR 77 PR :

Note that

‘. _E[l _S[% S
q({q-drR[;/R(({exp(Rrj.deJ
Le.

_E —1+ex (—Etj
q R /4 p R

Solution of the equation (a) for # >0 has the form

t

Y- exp(— Srj
0 R

= | =

q':—ESexp(—StJ. (®)

R? R

q=ECXp£—Sl‘]. (©
R R

For t > 0 we have
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q'%—ﬁ,qﬁg ®
R? R
But at the moment ¢ =0 the derivative exhibits a jump
q'=E(y'—ES} ©
R R2
and the function exhibits a jump
q= Eﬂ/ : CY
R

By direct substitution into the initial equation we can ascertain that
the solution is correct — see Fig. 1 (see also function FlgGamma)
For physical interpretation of this equation one should have in mind
that the function ¥'(f) is non-dimensional, and the function ¥(f)
has the dimension of independent variable . To solve this equation

we shall use the optimization algorithm 7.
0. Begin with ¢(¢) =0.

1. Compute u(t) =uy(t) =

Ey(1)
R

and compute

o) =a1(0)= [y ()-de =" y(0).

2. Then compute consequently

S SE t SE
uy=—"q=—"7>y(t f)= dr=-""t1,
2= =" 270 a0 Jgua()-dz o
2 2
N S°E t S°E »
3 3
S S’E 5 t S°E 3
ug =——q3=——,1°, q4(t) = | ug(r)-dr =——t
R RY '[0 6R*

and so on. Thus,

2 3
E[, . S s s,
t)=— H——y()+——Ft———=1" +...
u(?) R[m RO s ]

2R?*  6R3

2 3
E S 8%, S5
t)=— y——t+—+1t"——F1 +...
q(?) R[ﬂ) R J
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dg/dt

DY O N T

o-.4-.4.-.4—.44-.4—.-4‘-.-.4—.-*4-._.. _

Na N NN IRRUR _ cuwn VT NPT WY SRS SR SRR
) = '
L {_ﬂ;gamlina
-1.5
0.5 a 0.5 1 1.5 2 25 3 3.5 4

Fig. 1.
E=1.1 in circuit 5=0.9, B=0.7

g - charge+gamma

«— gamma*E/R = -gq{0)

Yo o - charge

— 0 +gamma’ * E/R

o' - current = derivative of charge

— q(0)=ES4/R? 1
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One may see that on each iteration one item is added to the series

of functions q(%). Also we can see that with the increase of the
iterations number Q(f ), q '(l‘ ) are approaching the results indicated

at the beginning of the example.
So we see that the maximization algorithm 6 computes the
sought function. The fig. 2 shows graphs of the functions

q(t), q'(t) for some fixed parameter values (see also function

testDirak_1).

In reality there are no such cases when the voltage or the current of

sources may be described by Dirac function time-varying. But we can
imagine some electric of other systems where the impact may be
described by Dirac function of space coordinates. Let us consider an
example.

Example 9bl. considers a long line described in example 5.6.3.
When the number of elements is large, this line may be considered as

a continuous line with parameters depending on the length Z, and the
dg,
dz

(this is shown in Chapter 8). Thus the line as a whole is described by
the equation

equation q; = N2q1, may be substituted by the equation 6]& =

() +7(:)- 2 p(z).
dz
E, if z=0,
ir P(2)= 0, if >0, (as it is done in example 5.6.3), then,

naturally, we must assume that P (Z ) =F }/’(Z ) . Then the equation
of this line will take a form

Sx(z)+ R EE)

_E7'(Z):O,where S=1, RZT(Z)_

Exactly this equation has been considered above. So the discussed
continuous line may be computed with the aid of maximization
algorithm 6 with Dirac functions as excitations — compare the graphs
in examples 5.6.3 and 9a.
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The computing algorithms for Dirac functions as excitations may be
extended also for vector variables in the equation (6.4.37), where

E(t)=E,y'(t) and S, R are quadratic matrices.

Example 9c2. Consider a system of two differential equations

q1(%), qo(t) with regard to independent variable £:
Ba1 —q5 =0,
2pq2 + 41 = py'(®).

Consider the vector g = . Then this system may be presented in

q2
the form
Sq+Rq'=Ey'(z),
0 1 0 0 -1
where E=| |, S Zﬂ , R= . Now we have:
D 0 2 1
_q _ ' =2pg
g P

On the first iteration:
1. At the beginning we assume that q(¢) =0.

pr'
2. Compute U =
0
3. Compute q(t) = I(t)u(l')df = °r )
On the secona iteration:
S e . Py’
. Lompute -
Bpy
124

5. Compute ¢(t) = [ u(r)-d7 =

Ppt
On the thira iteration:
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' 2
2. Compute U = Py =2h7p
Bpy
2 2
5. Compute 4(0) = [[u(z)-dr =7 PP
Pot
On the fourth iteration:
: 2
2. Compute U = «“ 2183 ,0;
Ppy -~ pt
t pY - ﬂzptz
3. Compute ¢(t) = jou(r)-df = 3
ot~ B pi* 3
On the fifth iteration:
py' =257 pt+25%pr 3
2. Compute U = )
Bpy — B~ pt
3. Compute

g(f) = jou(r) -dr =

pr—pBro +28%pr* |34
foi—Bpt 3

On the sixth iteration:

2. Compute U =

py' =2 pt+ 2540 3
poy - o +2° pi* [(3-4

3. Compute

q(t) = [yu(z)-dz =

pr - Bt 254 ot [(3-4)
pot— o 342550 345

So after the iterations we shall have

' =2~ (B 3+ ] h
C by -plpf-2(m) 6 4)+ .

u:
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qt)=p

. (7 —2(ﬂt)4/(3-4)+...]
[Bty— (ﬂtf/3+2(/3t)5/(3-4-5)—...h

Let us denote y = /2 \/7 Then we shall get:

ﬂ& (F/@-3)+. ]h

-l - (e 234y
[x)z/z ()} @3-4)+.. ]
=41 Eﬂ () 1@-3)+ () [23-4-5)-..

It is easy to see that the series placed within square rackets are the
series of functions SIn( ¥7) and |1 — COS(}(I)]. Hence,

7/ (,Bsm(;(t) ¥ —11 +.c0s(;(t
,6’(;/ 1+ cos(n2))’ ﬁsm(;(t) ’

which presents the solution of the problem. The Figure shows the

graphs of functions q(t), q'(t) with certain values of the
parameters (see also function tCStFig6_9b2).

q()=p

1 1
I (A W A
S A A A A
SvaivE N mviRy
: o 0.05 o1 o 0.05 0.1

a1(x) q2(x)

2 200 100
:“E 100 /2\ L2\ 0 / /
s AN ]
- WA A e AW A
: 2005 0.05 01 1% \/ 0.05\/ 0.1

dqg1(x) da2(x)
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Example 9c. Let us consider the program realizing the
maximization algorithm 6 for finding the solution of equation system

(37) with E(t) = E,y'(t). The main function DEdirak is similar to
the one described in Example 6 function DEjump, and the notations
and subsidiary functions are the same. The following Figure
illustrates  (see also function testDirak_3) the results of
computations for 3 equations system, using the discussed program.

The Figure shows graphs of functions X(Z), x'(1).

curren A1

Time

Example 9d. Let us consider a system of two differential

equations of variable Z:

de(z ,
S+ R LD ),
S.e(z)+R, ‘”’(Z) = E,7'(2).
. h(z)
Consider vector x(z)= . Then the system may be presented in
e

the form
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Sx(z)+ RM =Ey'(2),

dz
El
E

2

S, 0 0 R
0 S, R, 0f

illustrates (see also function testDirak_2) the results of
computations this equation at

E =0 S, =3.1 0 0 R =-16
E,=-10 0 S,=0.1 R, =3 0
The Figure shows graphs of functions X(f), X '(1).

where E =

5

5

The following Figure

3

2

dhfdz, defdz
1

10 i ] i i
o

Fil] 50

As stated above, the maximization algorithm 6 is applicable also,

when the value R is a function R(?) of an independent variable .
Chapter 9 will deal with the examples of solving the Maxwell equations as

equations with excitations in the form of Dirac functions of spatial
coordinates.
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6a. Second Order Differential Equations Systems

with Excitations in the Form of Dirac Functions
The maximization algorithm 3 is applicable also for the equations

(6.4.24), where E(t)=E (1)y'(t).

Maximization algorithm 8.

1.

2.

Assume that ¢(¢) =0 and u(¢)=0.

1
Compute ¥'=-S8q — ERu +E.
Compute y(f) = jél//(r) dr with known '(0).

Comput u———l ——lR
ompute .
L v 2 1

Check the variation of function u(f) compared with its previous
value and, if it is sufficiently small, stop the computation.

Compute ¢q(t) = Iéu(z‘) -dt with known u(0).
Go to p. 2.

Example 9e. Let us the equation

Sq+Rq' +Lq"-Ey'(t)=0, (a)

where E — a constant. Let us use the maximization algorithm 8. On
the first iteration
1. Assume that g(¢)=0 and u(z) =0.

2. Compute W'(t) =—Sq — ;Ru +Ey'(H)=Ey'(t).

3. Compute p/(1) = [(y/'(7) d7 = Ey(1)

1

1 E
4.C teu=—|w——Rq|=—y().
ompute L(V/ q) Ly()

2

E
5. Compute (f) = [ u(r)-dz = ot

On the second iteration

SE ER

1
2. Compute y'(£)==Sqg——Ru+ Ey'(t)=—"—t———y(t) + Ey'(1)-
w'(t) g = Ru 7'(2) i 2L7() 7'(1)
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SE 2 RE
3. Compute y(t)=——1t"———t+ Ey(¢
pute y(1) == 17 ==~ 1+ Ey (1)
4. Compute uzl((//_quj:_SEtz_zREt E 7(1)-
L\" 2 212 2 L
t SE 3 RE » E
5. Compute g(¢) = | u(r)-dr=——F5t" ——5-t"+—t.

Let us assume that on a particular z'lemz‘zcm we got:

q(t)=E§:aktk, u(t):E(y( )+ Zb t J

k=1
Then
/(0) =S~ Ru+ E'(0) =
n
=—SEY a;t* ER(W) th}rEy’(t):
k=1 2
n
kK, Ry(@®)
:—E l‘ _ 7 l‘ R
(Efk Y +7()J
:(Sak +;Rbkj, if k<n,
c, =Sa,.
n
Ck 4+, R
2. Compute y(t)=-F _K ¢ +—t+v(D|.
pute /() {151’”1 51 7())

3. Compute

0= (v a -
=—E[f e MJ ER b

h el L) 2L
["f k€ )}

by = 72(611“) b1 = ("21+R"§}
2L L'k 2L
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4. Compute q(?) :Jou(f)-drz—E z A=t +
k=2 kL

We see that on each iteration the setries of the function ¢(t) is
supplemented by two items.

It may be noted that the presented algorithm is applicable also for

vector variables, where L, S, R are quadratic matrices.

7. Maximization Algorithm for the
Electrical Circuits Computation

The described algorithm is easily programmable and may be used for

finding the solution of system (6.324) with step excitations. But very

often it is not applicable for a real electric circuit computation. Indeed,
we had considered an algorithm for computing RCL-circuit, described by
equation system (6.324). Such system describes an unconditional circuit.
However, there exist the following limitations for its direct use:

1) The absence of inductance even in one branch of electric circuit

leads to violation of condition (6.323) and, consequently, to
division by 0. In this case the electric circuit should be
supplemented by relatively small inductances in those branches
where they were absent.

2) An unconditional electric circuit is approaching the state of a real

electric circuit when methodic resistance approaches infinity. But
this results in resistances matrix approaching a positive
semidefinite (and not positive definite) matrix. And the
observation interval approaches zero.

Let us now consider some examples of electric circuits computations
which meet these requirements.

Example 10. Consider electric circuit depicted in the Fig. 2 . The

parameters of this circuit are enumerated in the Table 1.
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——q

2 5 3
7 T} 3

Fig. 2.

The voltage in branch 7 jumps to the named value at the initial
moment. Apparently, there are inductances present in every branch.
Also, resistances ro=1.5 are attached to all the nodes. These
resistances are physically present in the circuit, but at the same time
the may be interpreted as methodic resistances. The considered
circuit is described by differential equations system (24) and may be
computed with the aid of maximization algorithm 3.

Table 1 (see also function Branches23) .

Branch | First End Vol- R L(gn) | S (1/ph)
node node tage (ohm)

1 0 1 0 0.2 3 10000

2 0 2 0 0.3 4 10000

3 0 3 0 0.4 5 10000

4 1 2 0 5 6 100

5 2 3 0 6 7 200

6 3 1 0 1 8 300

7 2 0 -192 0.01 0.01 0

Let us now discuss the program LinCir for such circuits
computation. This program contains the following M-functions (here
we are using the notations assumed in the description of function
SinCir in section 5.6 and function DEjump in section 6.3.

133



Chapter 6. Variational Principle and Maximum Principle

] 200 4
100 |/ 2
1] 1] a

0 0.1 02 0 0.1 0.2 0 0.1 0.z
0.01 1 0.01

n\/\/ 0 \/ u\/

-0.01 -1 -0.01
0 0.1 0.2 0 0.1 0.2 ] 01 0.2

] 4 ]

2 -0.01

-5 ] -0.02
0 0.1 0.2 0 0.1 0.2 ] 01 0.2

] 01 ]

-100 g 0.05 -10

-200 ] -20
] 0.1 0.2 ] 0.1 0.2 ] 0.1 0.2

Fig. 3.

Fig. 3 (see also function testlLin) shows the graphs of current
variation in all braches of this circuit: in the first line of windows
there are currents Il in the resistances 70 of nodes 1, 2, 3; in the
second line of windows — currents gqt in branches 1, 2, 3; in the
third line of windows — currents gt in branches 4, 5, 6; in the fourth
line and in the left window — current gqf in branch 7; in the fourth
line and the right window — the sum of currents in node 2, which is
the residual of the First Kirchhoff LLaw; in the first line and in the

middle window — relative (to the current of branch 7) residual of the
First Kirchhoff Law.

Example 11. Let us now take up the electric circuit shown in the
Fig.4.
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4 6
/
_—
Current 2 5 3
2 3
Fig. 4.

Parameters of this circuit are enumerated in the Table 2.
Furthermore, there is a source of direct current connected to the
node 2 and its current jumps to [/=-3 at the initial moment.
Apparently, there are inductances in all branches. In addition (as also
in Example 10), resistances 70=1.5 are connected to all the nodes.
These resistances are physically present in the circuit, but at the same
time they may be considered as methodic resistances. After
transformation into an unconditional circuit the current [=-3 is
substituted by a voltage vector £'=|0, 4.5, 0, 4.5, -4.5, 0]. This circuit
is described by a differential equations system (24) and may be
computed with the aid of maximization algorithm 3. The functions
from Example 10 may be used for the computation.

Table 2 (see also function Branches21) .

Branch | First End Vol- R L(gn) | S (1/ph)
node node tage (ohm)

1 0 1 0 0.2 3 1000000
2 0 2 0 0.3 A 0

3 0 3 0 0.4 5 0

4 1 2 0 5 0 100

5 2 3 0 0 7 0

6 3 1 0 1 8 300

Fig. 5 (see also function testlLin21) shows the graphs of current
variation in all the branches of this circuit: in the first line of

windows there are currents il in the resistances 70 of nodes 1, 2, 3;
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in the second line of windows — currents gqt in the branches 1, 2, 3;

in the third line of windows — currents ¢qf in the branches 4, 5, 6; in
the fourth line of windows - relative (to the current /=-3) residual of
the First Kirchhoff Law. Note, that these functions compute the
variable components of the currents — the power series coefficients
for the series terms with power higher than zero. The constant
component of the currents i is the constant power series term equal
to the current HH =0, -3, 0].

0 0 i
0.02 2 0.02
0.04— -4 no4l—
B 10 0 0 005 10 0.05
5 0.05
AVAVAVAVA
5 ]
0 005 0 005 0k 10 0.05
0.04
0.02 0.02 {1
. 0.04
G 10 005 0 005 0 0.05
1 0.05 0.01
0 0 0.02
0 0os 0 005 o 0.05
Fig. 5.

8. Maximization Algorithms for
Computing Electric Circuits with
Switchings

As it is known [14], with voltage jump a current appears, which may

be considered as a sum of two currents — established one and free one.
The same may be said about the charges. Let us show that the
maximization algorithm does not change the established charges. Let us

usce

the maximization algorithm 3:
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1. Assume that ¢(f) and u(t) =q'(t) satisfy the of unconditional
electric circuit

Sq+Rq'+Lq"-E=0.

1
2. Compute ¥'=-S8q — ERM +E.

3. Compute y(t) = I(;W'(T) d7 with known ¥'(0).

4. Compute

1 1 1 1 ~ 1
=—|W—-—Rq|=—|-S¢§——Ri+E—-—Rq |=
L(W 2 qj L( 1 2 2 qj

1 1
L( Sq—ERq+E——Rq) (Sq Rq+E} (Lq) q'

which proves the statement.

On the other hard, the maximization algorithm in essence cannot be
used for computing the established values, for the interval of these values
is not limited from the left. Thus, for computation of a circuit with a
voltage that is a function of time E=f(?), and at the zero moment jumps
to the value f(0), it is necessary to:

1. Compute the established charge by any method (for instance, by

one of the methods presented in the previous chapters),

2. Compute the free current as a reaction to the jump, by the

maximization method,

3. Perform a superposition of these currents.

We shall now examine this method in more details on the examples of
computing the after-failure mode after short circuit and branch break.

Short Circuit
Consider an electrical circuit with two clamps A and B. In a normal

mode there is a potential difference V between the clamps A and B. On
short circuit of these clamps current I will pass through the connection

AB. We shall now consider the same electric circuit, excluding from it all
current and voltage sources and including between the clamps A and B a
voltage source with null internal connection and voltage (-V). Then the
same current I will pass through the connection AB and through this
voltage source [14]. It follows herefrom, that short circuit current and all

other parameters of after-failure mode may be computed using the
following algorithm

137



Chapter 6. Variational Principle and Maximum Principle

Computing Algorithm for Short Circuit

1. Computing the normal mode of electric circuit 1 and determining
the potential difference V between clamps A and B.

2. Transforming the initial electric circuit 1 into electrical circuit 2,
differing from the initial circuit by the absence of all current and
voltage sources, and the presence of voltage source (-V) between
the clamps A and B.

3. Computing the electrical circuit 2 at the time of voltage jump

between clamps A and B from (0) to (-V). The vector of currents

13 is determined.

4. Transforming the initial electric circuit 1 into electrical circuit 3,
differing from the initial circuit by the appearance of short circuit
AB. The vector of currents [4 of the after-failure mode is
determined.

5. Computing the currents of after-failure mode as a sum of

currents 13 and 4.

The computation of currents /3 may be performed with the aid of
maximization algorithm 3, as described above. The computation of

currents /4 may be performed according to section 5.6.

Branch Break

Consider an electric circuit, where certain clamps A and B are
marked out. In a normal mode the current I passes between A and B.
With breaking the circuit between A and B a potential difference v will
appear between A and B. Consider now this same electric circuit, except
for eliminating all the current and voltage sources, and including a
current source (-I) between A and B. Then there appears the same
potential difference vV between A and B [14]. It follows herefrom, that

the potential difference at the ends of broken branch and all the other
parameters may be computed with the aid of the following algorithm.

Computing Algorithm for Branch Break
1. Computing the normal mode of electric circuit 1 and determining

the current I between the clamps A and B.
2. Transforming the initial electric circuit 1 into electrical circuit 2,
differing from the initial circuit by the absence of all current and

voltage sources, and the presence of current source (-I) between
the clamps A and B.
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3. Computing the electrical circuit 2 at the time of current jump
between clamps A and B from (0) to (-i). The vector of currents

13 is determined.
4. Transforming the initial electric circuit 1 into electrical circuit 3,
differing from the initial circuit by the appearance of current

source (-I) instead of the former branch AB. The vector of

currents 14 of the after-failure mode is determined.
5. Computing the currents of after-failure mode as a sum of

currents I3 and 4.

The computation of currents /3 may be performed with the aid of
maximization algorithm 3, as described above. The computation of

currents /4 may be performed according to section 5.6.
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Chapter 7. Electromechanical
Systems

1. General Case

The preceding results may (as was mentioned before) be interpreted
as a method for solution of the system of second-order differential
equations with respect to variable g(?) :

Sq+Mq"+Rq'—E =0. (1)

The solution of this system is a consequence of the simultaneous
optimization of two functionals (4.13) and (4.14), where
Go =Xp+ Vo> qp =V, +W,. With the exception of DT and IT

transformers the same system may be presented also in the following
form:

Sq+Mq"+Rq' —E+pNT (Ng'+H)=0. @)
Let us supplement an unconditioned electrical circuit corresponding
to the equation (2), with branches of the third type, included between the
node and the “ground”. We shall call such circuits “differentiating
circuits”, as they are described by a pair of differential equations of the
following form:
aJ"+bJ +e J+d| X" +e X'+ X +h =0, 3)
612J”+b2¢]'+CzJ-l—de”*l—@zX’*l—sz-l—hz=0, (4)
where
@ - the node potentials,
J - the differentiating nodes currents,
X - the “outside” variables,
a, b, ¢, d, e, f, h -known values.
In an unconditioned electrical circuit the node potentials are equal to
@ = p-i,and the currents through node resistances in this case are equal

to

i=Ng'+H-J . ®)
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Then the electrical circuit’s system of equations takes the form:
Mq"+Rq' +Sq—E+pNT (Ng'+H—-J)=0,
aJ"+bJ +aJ+d | X" +e X'+

©)
+ X+ — p(Ng' +H-J)=0,
ClzJ,I-i-sz'-i-Czj+d2X"+€2X'+f2X+h2 =0.
This system may be rewritten in the following form:
MQ"+RQ' +SQ-E =0, @)
where
q E-pNTH M 0 0
QIJ,E: hl—pH ,M=O a dl,
X hz 0 an dz
(QerNTN) 0 0 S (pNT) 0
R=| CpN) b a|,5=0 (a+p) Al
0 bz € 0 (&) f2
Comparing (1), (7) and having in view the notation for Q, we get
q’
G=\J"].
XI

The solution method for the equation (7) is fully similar to the
solution method for the equation (1) and is as follows:
1. given is the initial value of the vatiable Q(?),
2. compute the gradient p(t), which is equal to the left part of these
equations,
compute the values of 4j, A3, By, Bp by formulas (3.11),

4. compute the variable’s increment Q(?) by formula (3.10) and the
new value of this variable,

5. repeat the computations of pp. 2, 3, 4 till the prescribed accuracy
is reached.

Equation (3) may describe a certain electromechanical element, where
the “outside” wvariables are coordinates, velocities, accelerations, forces,
moments, temperature, pressure and other variables describing non-
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electrical processes — mechanical, thermal, hydraulic processes. The
system of equation (6) describes a system of electromechanical elements
connected by an electrical circuit. The following variants of such systems
may be noted:

1. Electrical circuit. Then:
a=0, b=0, ¢c=0, d=0, e=0, =0, h=0, O=¢q.

2. Non-electrical (mechanical, thermal, hydranlic); electrical circuit is absent,
a=0, b=0, ¢c=0, 0=X,
and only a part of the equation (4) is left in the form:
de"+€2X'+f2X+h2 =0.
3. Electrical circuit in which the differentiating branches contain only electrical
elements, then

d:O, €=0, f=0, h:(), sza

and the values @, b, ¢ have the following meaning correspondingly:

inductance or inter-inductance of several differentiating branches,
resistance, capacitance. Notice that a circuit of such configuration may be
constructed without bringing in the concept of differentiating branches.

4. Electromechanical system — the general case. Some of the differentiating
branches may:

e be absent,

e contain only electrical elements,

e contain only mechanical, thermal, hydraulic elements,

e contain  electromechanical elements in  which  the
electromagnetic energy is conversed into mechanical of thermal
energy, or a reverse conversion takes place; these are precisely
the elements that form the electromechanical system as such.

The most commonly encountered elements and their equations are
collected in the table 1.
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Table 1.
di . du
Type of element u=R-i u="L— i=C-—
dt dt
Electrical voltage = voltage = current =
resistance * inductance * capacitance *
current current’s voltage
derivative derivative
Mechanical with | displacement = | displacement =| force = mass *
translational damping spring force* | displacement’s
movement resistance * force’s derivative
force derivative
Mechanical with angular angular moment of
rotational displacement = | displacement = force =
movement rotating rotating moment of
dampenet’s dampener’s | inertia * angular
resistance * force * displacement’s
moment of moment of detivative
force force
Hydraulic pressure = flow =
hydraulic hydraulic
resistance * capacity*
flow pressure’s
derivative
Thermal temperatures heat flow =
difference = heat capacity *
thermal temperature
resistance * difference’s
heat flow detivative

2. Example. Collector Machine

As an example of an electromechanical system we shall consider a

0=AX'+GJ+LJ,
T=-AJ+BX +WX",

le'+c1J+e1X':¢),
CzJ+d2X"+€2X’+h2 =0,

system with commutator machines. A commutator machine is described
by the following equations:

(10)

(11)
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where
X — rotation angle; in our notations it is an “outside” variable;
@ - voltage across the commutator; in our notations it is a node
potential;
J — current of the commutator machine; in our notations it is the
current of differentiating node;
T =hy - moment of force on the commutator machine shaft ,

W =-d, - moment of inertia of the commutator machine,

G = ¢| - winding resistance,

L = by - winding inductance,

A=e =—cy —a known coefficient (depending on the excitation
current),

B =—e - a known coefficient.

Commutator machines are connected by electrical circuits, and are
placed at the nodes of this circuit; they are also connected by a mechanical
circuit — a reducer system, including, in addition to commutator machines,
the sources and the customers of the moment of force. So the system of
equations for an electromechanical system should, generally speaking,
include an equation for the moments of force in the system. However, the
moments of forces on the shafts of commutator machines may be easily
expressed by external sources and consumers of the moments of force.
And then such electromechanical system in general may be described by
a system of equations (4) with

q E-pN'H| M 0 0
O=\J|,E=| pH |\M={0 0 0,
X Iy 0 0 dy

Qz+pNTN)0 0 S (pNT)o
CoN) b oelsS=|0 (q+p) O
0 0 € 0 (&) 0

=|
[

In the special case when one commutator machine is running idle and
B =-ey =0, the equations of the electromechanical system degenerate

into one equation
T=wXx" (12)

or
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de”-I—hz =0. (13)
The equation (12) follows from the principle of minimum of action
T .
jo %k—Ep }t—)mm, (14)

where
Ep =WX'%/2 Xineti
= - kinetic energy,
E p= (— X ) - potential energy.

In the considered case Q=X EZhZ, ]\7:0’2, R=0, S=0 and the
functionals (4.13) and (4.14) take the following form:

= Jy 12 e, -, Jar
Fzzj(f{z@yz' —YIYZ)}QQ -Y, }t.

The optimization of these functionals leads to equation (13) and is
equivalent to the optimization of functional (14), which leads to equation
(12). Thus, in this particular case the minimum of action principle is
equivalent to the presented principle. But the minimum of action
principle is not applicable to the general case of electromechanical system.

3. More about Electric Circuits

Let us again consider an electric circuit with differential branches.
Notice that a circuit of such configuration may be constructed also
without bringing in the concept of differential branches. But before the
computation it must be transformed into an unconditional electric circuit.
There is, however, an exception — electric circuits, where
1) each node is connected by one (differential) branch with “ground”;

2) differential branches are not connected with other branches by mutual
inductances.

In future we shall call such circuits grounded. Such circuits may be

computed directly, without transforming them into unconditional

circuits.

According to the above-stated, a grounded electric circuit may be
described by the following equations system

Mq"+Rq'+Sq—E+NT(0:0,
alJ"+bJ + e+ I+ =0, 15
Ng'+H+J'=0.
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Excluding @, J, we get
Mq"+Rq' +Sq—-E +

NTEzl(Nq"+H’)+b1(Nq’+H)+c1@Vq+Fl)h1 )

which is equivalent to (7), where
0=q; E=E-N" (' +bH +cfl by )
M=M+NTaN; R=R+NThN;S=8+NT¢\N.

Equation (7) may be used for computing a stationary mode according to
formulas of the section 5.5 and for computing the reaction on voltage
and current jumps using the maximization algorithm 3. It is important to
mention that to do the latter the necessary condition is only (unlike the
circuits considered in section 6.5), the presence of inductances in all
nondifferential branches. Apparently it leads to a possibility of
computing transient modes in grounded electric circuits (by the method
described in section 6.6).

Let us now consider an electric circuit with Dennis transformers (see
section 3.2):

M¢"+Rq' +Sqg—E+NTo+Tg=0,

aJ"+bJ +cJ+hy+p=0,

bhK'+hy +¢=0, (16)
Ng'+H+J' =0,

0,

¢ +P+K' =0.

Excluding from there @, @, J, K, we get
Mq"+Rq' +Sq—-E
+NT[II(NC["-I-H')+b1(Nq'+H)+le\7q+]:[)—h1] —0, (17
+TE2€’Tq'+P)h2]

which is equivalent to (7, where
O=gq;
E=E- T @'+t + el iy - ToyP— )
R=R+NToN+TibT ;
M=M+NqN;
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S=S+Nl¢eN. (18)

Apparently, the matrices M, R, § in general case are symmetric

and of fixed sign. Therefore the method described in section 5.6. may be
applied to the computation of electric circuit in stationary mode. But this
computation method in the case of electric circuit with step excitations

may be used only if the matrix M is positive definite, which is
unattainable in general case. That is why for computing the transient
conditions it is essential for the electric circuit to be necessarily
transformed into unconditional or grounded circuit.

Example 1. Consider an electric circuits in the form of ring line with

n nodes (1 is an even number) — see Fig. 1.

Fig. 1.

There are an inductance and a resistance connected between every pair
of nodes. Between odd nodes and the “ground” there is a source of

“jumping” voltage (switched on at the moment ¢=()), and between
even nodes and the “ground” there is a capacitance. Let us use the
method described above to compute this circuit. From (15) we get

Mq"+Rq —E+N p=0, qJ +hj+9=0, Ng'+J =0.
Then, from (16) we get
O=q; E=E+N'h; M=M; R=R; §=NT¢N.

It is easy to see that in this case the matrix
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1 -1 0 O 0
1 -1 O 0
0O O I -1 0| tn
N =
-1 0 0 O |
————n ————>
20 5
. = /\/\/\/\/\/\
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0w @ @ m g'QDD 10 20 30 40
= 20 _®
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Fig, 2.

Fig. 2 shows the computation results with n=18, L=10, R=1, §=2,
E=100 (see also function tCStDEthﬂZ). This figure depicts

e Graphs of variation with time of the currents within the two first

elements of the circuit — gX(z=1,2; t);

Graphs of variation with time of the currents within the four
middle elements of the circuit — ¢gX(z=n/2-1,n/2-2; t) and
eX(z=n/2,n/2+1; t);

Currents in all elements of the circuit at the first observation
moment and at the end of observation interval - gX(z; t=const).
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Example 2. Consider an electric circuit in the shape of line with 7
nodes. At the line’s beginning there is a source of “jumping” voltage
(switched on at the moment #=()). Between each pair of nodes there
are a resistance and an inductance, and between each node and the
“ground” there is a capacitance. We shall use for the computation of
this circuit the formulas of Example 1. Fig. 3 shows the results of
computation for n=(1,2,3,4), L=10, R=1, §=2, E=100 (see also
function testDE]dlin3). This Figure shows the graphs of variation

in time for each e-element of the electric circuit “n, e’
a4

% 10
10 400 400 400
In in In in
25 ru\']- 200 :;— 200 :— 200
L ! i i
0 0 0 0
0 5 100 20 40 0 20 40 0 20 40
1&4 a0 a0 a0
" U A
o D i O Yoo o
! i
-50 A1 A1
0 20 40 0 20 40 0 20 40
a0 a0
oy o
i 0
o 0 -1 0 Vd
1l Il
= =
A0 A0
0 20 40 0 20 40
a0
Kl
(i}
- 0
Y
A0
0 20 40
Fig. 3.

Example 3. Let us consider the electric circuit of Example 2, but
without the inductances, and assuming that at the line’s beginning
there is a source of impulse voltage (switched on at the moment #=0))
in the form of Dirac function — for comparison see Example 6.6.9c.
Let us use the formulas of Example 1 for this electric circuit
computation. Fig. 3 shows the results of computation for n=(1,2,3,4),

R=1, §=2, E=100 (sce also function testDirakDDlin). This Figure

shows the graphs of variation in time for each e-element of the

. . . (13 »
electric circuit 1, e
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W,”ﬂ. S=u

T=at=t

=gl
L= =

f=a"fr=U

Fig. 4.
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Chapter 8. The Functional for
Partial Ditferential Equations

1. Variational Optimum Principle for Electric
Lines and Planes

Here the variational optimum principle for electromechanical systems
is being applied for electric lines and planes [23]. A method of electric
lines and planes computation is indicated. The lines and planes may be
non-homogeneous, and complex loads and/or voltage soutces may be
connected to any of their points.

1.1. The equations of continuous electric line
It is known that a continuous electric line (a long line) is characterized
by the following parameters:

L, C, R, G -inductance, capacitance, resistance and

conductivity of an element of line length,
I - current along the line length element,
u - voltage on the line length element,
¢t - time,
z - the line coordinates.
Now and further the derivatives in time are denoted by strokes. As is
known, these parameters are connected by equations

QzGu+Ca—u, )
oz ot
M _piv @)
Oz ot

From (1) it follows

ou 1 6_2i_C8u'

&z G 072 oz |
Finally, combining (2, 3), we get:

3)
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2. :
1 Q—Ca—u =Ri+ Li". @
G| 72 oz

Thus, the electric line is described by (3, 4), which follow from (1, 2).

1.2. The equations of discrete electric line

91k —— C]i,k+1
______ | |_’ R .
, m,r,Cc,e
q2k

1

We shall call an electric line composed of finite elements (unlike the
elements whose size is related to the line length element), a discrete electric
line - see also Fig 1, where

Fig. 1. A long line.

L, R -inductance and resistance of the line length element,

m, ¢, r, e - inductance, capacitance, resistance and voltage,

connected serially between a line length element and zero
potential - “vertical” line element,
1/p - conductivity between line length element and zero potential,

qi - current along line length element,

g5 - current of a vertical line element.

According to the above stated, the electric circuit of a discrete electric
line may be presented by an unconditional electric circuit consisting of 1-

branches — length elements with parameters L, R and 2-branches —

branches with parameters m, S =1/c, r, e. The resistances O are

connected between the nodes of this line and zero potential. Let us
consider 7#-dimensional vectors
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q1,1 q2.1 q1,1 q2.1
q1.k q2 k q1.k q2 k
q1 = > 42 = q1 = > 42 =
q1,k+1 q2.k+1 q1,k+1 q2.k+1
q1,n q2.n q1,n q2.n d
an
q1
q =
vector 921 Then the parameters of electric circuit may be
presented as
<o "
0 S
— |IL 0 2
0 m
R R O 5
4= 0
E=@d+p-NTN/, @)
— 10
=1, ©)
e
S = diag(Sy...¢...S, ), L =diag(L;...L;...L, ),
m = diag(m;...my..m, ), R =diag(R;...Ry..R,),
r = diag(ry..rp .7 ), el = fej..ep..e, }.
The First Kirchhoff Law has the form
A1k —41,k+1 — 92,k =0- ©)
So the incidences matrix is:
N =|N2 - Dy, (7
where

Dy - quadratic n*n diagonal identity matrix,

N, - band quadratic n*n matrix
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I -1 0 0 .. O
0 1 -1 0 0
0 0 1 -1 0 ¢n
Ny =
0 0 0 O 1
<————= n—————-— >
The following matrix product is a quadratic cell-wise matrix
M= M T
-N, D
where Ny is a band quadratic 72 *1 matrix
2 -1
-1 2 -1
-1 2 -1
Ny =NiN, =
-1 2 -1
-1 2 -1
-1 2

From (4) and (7) follows
R+p-N) (p-Ny)
T .
p-N; (V+,0-D1

In this case the functional (4.12) takes the form

T YA T

T\425q2 —q2 mqy +q" Rq

F@=[y " dt,
0l~q1 Lq1 — Eq;

ot, taking into account (11),

T IT ! fT !
q, 897 —q, mqy —q; Lq

T
T / T T '
F(q)=[+4q] Rqi +q,rqh + pq; Nigi pdt,
0

T /T o T T
+2p95, N> q1+p9592 —E7 g

8)

©)

(10)

1D

(12)

(13)
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The gradient (4.1) in this case will take the form p = P1
P2

p1=Lqi + Rq1 + pN1q1 — pN2g), (14)
T ! ! 14 !
p2=,0(N2611+Q2)*SQ2 +mqy +rqy —E (15)

Let us denote by symbols qj—,, g~ vectors shifted along the line to

, where

the right or to the left, accordingly, with respect to g;:

q1,1 0 q1,2
q1,2 q1,2 q1,3
if g1 = o3 , then g1, = o > Qe = 1
91,4 :
q1,n-1 q1,n-1
91.n q1,n-1 0
Looking at the matrices Njand N, , we may notice that
Nigi =41 4= —qi), (16)
Nogi =(ai —gi= ). (17)
Nags = (g5 - 45= ). (18)

Example 1. Consider electric line with  parameters
n=50, p=53, L=09, m=1.1, R=0.8, r=1, $=03. Let us
assume that at the beginning and at the end of this line sinusoidal
voltage sources are connected £, =-150+2007, £, =200-150/

accordingly. After the formation of matrices M, S, R and vector E

the computation of this line may be performed directly by using the
SinLin function, cited in Example 5.5.1. Fig. 1 displays a graph of
variation of some of the currents during the iterative computation

process (see also function tesStIDILIN). To be more exact, on the
complex  plane  the mentioned graphs for  currents

g, k=1,2,25, 48, 49.are  depicted. The unbroken line
ql—q2—q25—q48—g49 describes stationary values of the currents g;.
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g0

70

&0

a0

40

1.3. The Functional for Continuous Electric Line
Passing from the elements of discrete electric line to the line length
differentials, we may consider the vector-function ¢, where each

component is a function of time g =qy (t ), as a function of the

coordinate of the line Z and time 7, thatis ¢ = ¢ (Z St ) Then

2
@q' —q':>—612:)=—w,

oz2
G -4 ) _% &0 g’t)

and, taking into account (2.16-2.18), we get

2
,__07q1(z,0)
Ny - q] __ sl

@
0z2
, oq5(z,t
, oq1(z,t
N g =—%). 5

Also

156



Chapter 8. The Functional for Partial Differential Equations

2

14 14 8 q aq'
p1=Lqi +Rgi - p~—3-+ p—*, @
Oz 0z
aql S 14 [ _E
pP2=p —aZ +qy |+8qy +mg) +rqH : ©)

Let us denote uU=5qy, i= qi. Then from (4, 5) with
=0, py =0 there follow (1.3, 1.4). Further we have

¢'Nq! §&

dz

5

T o%q
g1 M1 =$a
> oz?
At that (2.13) assumes the form

2 2 2
Sq5 —mq,5 —Lq,
7 0%qi
F(q)=[4 [+ Rq, g1 +ra,q5 — pq 1 dz\dt>  (©)
zZ

0q
+ 2041 a_z + 04,92 — Eq

Thus, similatly to the Theorem 4.1, for an electric line the following
theorem is valid:
Theorem 1. The movement in functional (6) in the direction (4.10),

where the gradient p = is determined by (4, 5), ends on a stationary

P>

value of the function g =| |, and the equation of this stationary value is

q,

4, 5), where P
p, =0

Thus, a continuous electric line may be computed with the aid of
algorithm 5.1. The electric line may be non-homogeneous and complex
loads and/or voltage sources may be connected to any point of this line.

For the computation of continuous electric line with voltages of the
form of interoperable functions, the formula (5.3.7) may be used. In our
case this formula transforms to:
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— job
b, —w°b,, + jab,

by = Iy 7 pat=[7 {7 07 + p3 Ytz

by = |3 pT Spdt =[ [ Sp3didz:

=J'OTpT1\7pdt :Io Io Lp; dtdz+_[0 Io mpzdtdz )
d*p
Rp{ - ppy +
b= [T pTRpat =T N

2001 %+ (+p)p3

In particular, for sinusoidal functions we have:

2

2 . . d°q . dgq
p1=-0"Lqy + joRg) — jop="+ jop=2, )

dz dz

So — dq)
P2 =Sqy — 0 may + jolr+ ply + jop— - ~ ~E.0

Example 5. If the function E(z)= const, then on the first iteration

we get p, =0, p, =E. Substituting it to the previous formulas and

Z T
reducing them by J. 0 IO p % dtdz ,we find:

—jw
Ag; =0, Agy = /
S—-w m+]a)(r+p)
or
E
g1 =0,

g = -
S .
Aa)+1wm+(r+p)

This is the final and evident result.

Example 6. Let us consider the case when the voltage is determined
as twice differentiable continuous complex function of the coordinate
Z , namely, exponential polynomials of real and imaginary parts of
complex function. Formulas (7-10) may be used directly for the
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computation, operating with power series and getting the result also in
the form of power series. For these calculations we shall use
functions. The notations used there are clear from previous context.

“oltages Er, Ei
EDDD T T T T T T T T T

-5000 .

-10000

_1 EDDD L 1 1 L 1 L 1 L 1
1]

Current
fo} -y
K

_2 L 1 1 L 1 L 1 1 Iq2|
0 5 10 15 20 25 30 35 40 45 50
z
Fig, 2.

Let us apply the function SINLANDILNP to the computation of
continuous electric line with parameters

n=50, p=5555 L=09, m=1.1, R=0.8, r=1, §=0.3.

Let us assume that to this line a voltage is applied, whose real and
imaginary parts are 5-term series with coefficients:
Er = [-3000, -300, 0, -0.03, -0.00071;
Ei = [ 3000, 200, -10, 0.01, 0.00017.
Using the above indicated functions we shall find the currents also in
the form of 5-term series with the following coefficients:
glr = -0.4190, 0.0395, -0.0001, -0.0000, 0.0000
gli = -0.4743, 0.0300, -0.0001, -0.0000, 0.0000
g2r -0.4656, -0.0488, 0.0016, -0.0000, -0.0000
g2i = 0.5978, 0.0421, -0.0020, 0.0000, 0.0000
This result will be obtained after the third iteration with the precision
of 0.0003. Fig. 2 presents a graph of these voltages and currents

variation depending on the coordinate Z (see also function test().
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In the case when the function E(z) is not twice differentiable, the
derivatives must be calculated with the aid of numerical differentiation.

. ol
From (1, 2, 3) it follows that 921 =-N,-q,, 4 =-N,-q,,
Oz Oz

%:—NJ -q,, where the matrices N;, N, are determined from (1.8,
z

1.10), and m — the number of intervals that the argument of the
differentiated function is divided into .

As in theorem 4.1.1 for a continuous electric line we can determine
two secondary functionals (as regarding the functional (6)). Let us
consider the first of those secondary functionals —functional of the form

) (@f _(@)2
dt dt
2 2
. (dx_zj _(dy_zj
dt dt

d d.
R xlﬂ_ylﬁ]

dt dt
F(x,y)Z%? T —p| X d32y1 -y d32x1 dz pdt
0[0 dz=dt dz=dt
2 2

v2 gt
s -»3)
+(r+ p(xz dj;—tz—yz d:;_f) )
—E(x —y2)

In this functional the variables are the functions x,, x,, »,, y, of

two independent variables £ and z. The variations of this functional by
the functions x,(¢,z), »,(¢,z) are accordingly

160



Chapter 8. The Functional for Partial Differential Equations

2 3 2

d“x d d d“x

pu=L 21+R M, 2)/1 2
dt dt dz*dt dtdz

2 3 2
Do = d yl_Rdx1+ dx1 —,Od y2‘
Y dr? dt dz2dt dtdz

Hence it follows that

d’q, . dq d’q d*q
=p,—-p,=L—L+RT— Ly 2
Pr=Pam P =8 T P o TP g 12

where g, =x, +y,, which agrees with formula (4). Similarly, the

variations of this functional by the functions x,(t,z), y,(t,z) are

accordingly

d“x dy2 dle E
=Sty +m—2+(r+p) -—,
P2 =S tm—3 C+p)2tp—rr=s

2 2
a2y dv, d*y E

=-S m—= +p \ 2 +—.
Py2=7o)2 " dt Py P G

Hence it follows that

d’q dg d’q
=p,—DP,=8¢,+m—2+(r+p)—*+p—L—-E, (13
Py =Py = Py =049, i ( P di 'Odtdz (13)

where ¢, = X, + y,, which agrees with formula (5). Thus, the necessary

conditions of the extremum of functional (6a) are the conditions

=0

P, =
the same) from (12, 13).

Putting aside the the physical model, the obtained results may be
considered as a method for finding a solution of equations system p =0,

where gradient p = is determined from (4, 5) or (which is

b

)2

'| is determined from (12, 13).
)2

where p =

Example 7. Let E(t, z)=E, exp j(a)t+oz). Consider an iterative
process of computing the functions ¢, ((, Z) qz([, Z) according to
(11, 12). On the first iteration we shall find p, =0, p, =-F.

According to (8, 7) we compute:
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by =[3 [0 E2dudz; by =S} [ E2dudz; by, =m|] |} E*didz;

—ja)bp

d
by =G+ p)y [y E2dedz; L= ——
dt b, —wb,, + job,
Hence it follows that on the first iteration

1

q1 =0, g =wE, w= 5 .
S—wo"m+ jo(r+ p)
On the second iteration we find

dz%

—= =—wopwE =VvE, v=—-wopwE,
did- e e

b =p

P> =Sq2—a)zmq2+ja)(r+p)q2—E:&—E=0.
w

According to (8, 7) we compute:

b, =v2[L [ E2dudz; by =0; b, =Lv? [T [\ E2dudz;

_ 2¥2¢Z (T .2
by _@+pa ) Iy Iy E-drdz.
Hence it follows that on the second iteration

_ — Pl _
n= —a)2L+ja)(8+p02 )_ Ve

v
y= x 92 =
w’L —ja)@ + paz )
On the third iteration we find

0.

p1 =—0"Lqy + joRq) + joc” pgy = —VE;
pa =~wopq) - E = ~(@opy +1)E;
and so on. Thus, on any iteration g1 =q1E, qo =qoE, where

q,, 4, are complex numbers, varying in the iterative process. The

function E(t, z)=E, exp j(a)t+oz) may be excluded from all the

formulas. Then we get
2— . . 2 —
p1=—0"q + joRq + joo” pq — wopgy,
2. . _
P2 =584y — o mgy + jolr + pliy - wopq) ~ E,,
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by =02 +p2) by =5p3: by = (o} +mp2)

b= ot + o>} - 2jm102 + (4 p2)
These formulas plus the formula (7) are sufficient for computing the
final values of §, ,. The function Volna system realizes these
formulas. Fig. 3 presents the graphs of the variables
qql=q,, qq2 =g, variation during an iterative process with r0=0.15;

LL=0.9; mm=1.1; RR=0.8; S5=0.3; rr=1; omega=628; sigma=127;
E0=1000; maxK=93.

Fig. 3.

1.4. The Functional for Continuous Electric Plane
The equations of continuous electric line with coordinate Z may be
generalized in natural way to an electric plane with coordinates z, y. It

may be shown that for electric plane the gradient is represented by the
equations
2 2
,_0Tq1_ 07q)
n=Lgi+Rg —p-——5 —p— %,
Oz oy
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a' a’ !/ " 4
Pr=p ﬂ+ﬂ-|-q2 +Sq2+mq2+rq2—E,
oz 0Oy

and the functional takes the form
2 2 2
Sq5 - mq'2 — Lqi

+Rq, 91 +7q,9>

T *qi _ o%qi
F(q)= [1§3§y-pay |~ +— |pdv (dz pdt.
Oz 0
Olz|y y

(o 0

+p9,92 — Eq

So an electric plane may be also computed with the aid of algorithm
5.1. The electrical plane may be non-homogeneous with connected
complex loads and/or voltage sources.

2. An Electric Line for Poisson Equation
Modeling

2.1. Introduction

Below it will be shown that a certain electric circuit is a model of
Poisson equation [24]. In this electric circuit a quadratic functional is
being minimized, with respect to the current function as a function of
three arguments. The functional has a global absolute minimum, and the
stationary mode of the current function is described by Poisson equation.
The computation of this electrical circuit, and consequently, finding the
solution of Poisson equation amounts to gradient descent along the
mentioned functional. This method is applicable for the computations of
homogeneous and non-homogeneous mediums. Moreover, this method
allows to find analytical expression of the sought function, if the initial
functions were expressed analytically.

Let us denote:
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_oU U U
o’ o &zt

where U is a function of arguments X, ), Z. The Laplace and Poisson

equations with respect to function U, as is well known [14], have
accordingly the following form:

AU =0, )
AU = f(x,9,2), ©)
where f(x,¥,z) is a known function. The equation (3) may be called

the Poisson equation for homaogeneous medinm. Let us consider also the
equation

AU

M

U o*U U
a(x,y.2) -+ fx,y.2) o+ A0 p.2) = f(x.2) @
ox oy 0z

where C((X,y,Z), ,B(X,y,Z), i(x,y,z), f(xayaz) arc known

functions. This equation may be called the Poisson equation for non-
hontogeneous medinm.

The named equations are widely used in engineering, and thus the
search for a speedy method of their solution is of great interest. Below
we shall show that a certain electric circuit is a model of Poisson
equation. So the solution of Poisson equation turns into the problem of
finding the absolute global minimum of a certain functional.

In an unconditional electric circuit without reactive elements the
following function is being minimized

~ 1 = . =T
F(z):E-zTR-z—ETz, 1)
where
R=R+p- Wl .N+T.TT | ey
E=E-p-WIN+VTTT, (3)

N - the incidence matrix,

T — the DT transformation coefficients matrix,

H — the vector of node current sources,

V — the vector of node current sources in transformer nodes,
E — the vector of voltage sources in the circuit branches,

R - the diagonal matrix of resistances in the circuit branches,
%) - the conductivity between the node and zero potential.
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The necessary condition of the absolute minimum of function (1) is
an equation
R-i—-E=0, @
and the function (1) minimum may be found by gradient descent along
the gradient

p=R-i—E, (5)
The optimal step size is determined from the condition
T
a=——L L ©)
P R-p

2.2. The Equations of a Discrete Electric Line

We shall call an electrical line composed of finite elements (unlike the
elements whose value is related to an element of line length) a discrete
electric line.

L1 k-1 ‘,0 lik l1k+1 ¢
------ ] -
ak .
12k+1

b

la® o [
PR,

I
eos
— 2
=oa

13k1 13k 13k+1

. Vzk.z . [ hi | A Vzkﬂ

LY |

Fig. 1. A Long Line
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. rl . rl . 2
110 111 11,2
. S S
al . az . as
121 122

o

by (D,

~
is:2

th[hg

I

I

Fig. 2. Boundary Conditions

h - the source of the same name [21],

Fig. 1 shows a two-wire discrete electric line, where

a, b - nodes of the first and second line, accordingly,

y - the conductivity between the node and zero potential,
Yol

d - the Dennis transformer with an unite transformation coefficient,
r - the resistance of the first line length element,

I] - the cutrent within the first line length element,
Iy - the primal current of the Dennis transformer,
I3 - the secondary current of the Dennis transformer.

There are singularities at the ends of the line. Take for illustration an
electric line with three nodes — see Fig. 2, where the end current sources

il,09 il,n R l'3’1, l'3’,,l are depicted by hatched circles. Some of them

may be absent, but it does not mean that the respective currents are equal

To analyze the two-wire discrete electric line we shall use the method
used above for analyzing the one-wire discrete electric line. According to
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this, the electric circuit of the discrete electric line may be represented by
an unconditional electric circuit. Consider 7-dimensional vectors

11,0 1 i3]
oLk o 2k o Bk
=\ > 12 =], > 13=1, >
I,k+1 12,k+1 13 k+1
il,n i2,n i3,n
h 0y
gl 0,
i=\iolsp =n,, HT = .. > R=diagln..;p..1;)).
i3 02n
h, h
The First Kirchhoff Law for nodes is:
ik —ike1 —i2k =0, ©)
B —i3p+1+he =0, )

So the incidence matrix has the form:

© 10 ()] 5

where the dimensions are given, and
Dy - quadratic 71*n diagonal identity matrix,
N - band matrix of the form

-1 0 0 .. 0 O

1 -1 0 .. 0 O

o 1 -1 .. 0 O 4
vy @

o o0 o0 .. 1 -1

The following product is a quadratic partitioned matrix
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. (V1) QN{/ © |»
NN=TEn) @) @ |» 9
NONEROECOIE

where N7 - band quadratic matrix of the form

2 -1
-1 2 -1
-1 2 -1
©)
Ny =
-1 2 -1
-1 2 -1
-1 2
The DT matrix has to meet the condition
Ti=0 7
and thus has the form
T =0 D, -D. ®)
At that
0 O 0
7-t" =l0 D -Dy ©
0 -D; D
From (1.2), (5) and (9) follows
R OO | N -N 0
R=0 0 O+p—N2 2D1 _Dl > (10)
0 00 0 -D; (Ny+D
From figures and formulas (1.3), (3) follows
0
e p2n
E=—p. : (11)
E=—p 0
(2
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So, as follows from (1.1) and (1.5), in the considered electric circuit the
following function is being minimized

gilTi1+p-h-N'2i3+

FG)= o (i Njiy =2l Nyip + 285 [ 12

2 \—2idiy +id Ny + il iy

and the search for minimum of function (12) is performed as a descent
along gradient

Riy + p-(N{i; — Noip)
pP= Jo NETZ'I +2D1i2 —D1i3) : (13)
P D1i2 +(N{,+D1)3 +N§Th
testDwaProvoda2
0.2 2000
0.15 1000
. 0
° 0.1 = \
@ -1000 \
0.05
-2000
\\_‘__-
0 -3000
0 200 400 600 0 5 10 15
600 1500 -
400 >4~ 1000 4
c he}
3 = ie
2 200 ¢ T 500
T Le el
Obs7oeae™® A 0 ey e
-200 -500
0 5 10 15 0 5 10 15
Fig. 1.

The optimal step size is determined from (1.6). The program
calculates testDwaProvoda2 two wire line with
r=1, p=500, n=15 -see Fig. 1, where

o in the first window — computation error is shown

o in the second window — current function iy (n),
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o in the third window — function A(n) (dotted line) and function

451 6 tine),

dn
o in the fourth window — current 75 function (full line), current 73
function (dotted line), function (— dlcll(n)j (dash line).
n

As  was mentioned, the soutces of end currents
10> il.p» 131> I3 ,may be placed at the edges of the electric lines. If

some of this sources are absent, then the corresponding currents should
be computed. If some of these sources are present, then the problem of
finding the absolute minimum transforms into the problem of finding

minimum under the constraints of the form =const, where

‘s
. . . L
lg € <‘(1,0’ Nn> 131> B3n s

Let us denote by the symbols I]—, ] the vectors displaced

along the line to the right and to the left accordingly with respect to

vector I
I, 0 1.7
i12 i12 i3
UK s | I,4
h= Ho =1, » e =
11,4
I -1 I p-1
I I
if L | then Ln-1 0
Examining the matrices V- 1 and N 7, we can notice that
Nyiy = Qi —ij— — i), (14)
Noiy = (i i ), (15)
T. ..
Nyip =0 —ije), (16)

2.3. The Functional for Continuous Electric Line

Passing from the elements of discrete electric line again to the line
length differentials we may consider the vector-function I as a function
of coordinate Z ,ie., i= i(z). Then
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2.
@i —is _ic}_a(a;(;)’

A 0i(z)
i—i)=— ,
(i)
.. 0i(z)
i—i )=
(-i)=
and, taking into account (2.14, 2.15, 2.106), we get
. 3%i(2)
N1'11=— 12 5
0z
0ip (z)
Ny i =— ,
242 P
T iy (z)
N5 -ip = ,
2 72 0z
From (2.13) we get:
2. .
n-ﬁp.[_@llﬁlzj
oz2 Oz

Ol
| =—+2ip —i
oo~y

p:
| =i —a2i3+i +%
P 2 3 375,
and (2.12) assumes the form:
r o1
—i12+p-h-—3+
2 oz
, 9% 5 O o2
F(l(z)):§ o _llaZ—2+ llg—l_ %)
z |+ )
2 0%i
l
—2iyi3 —i3—2+13
0z

dz

M

@)

(22)

)

)

Thus, (4) is a functional with respect to the function I =i(z). By

analogy with discrete line it follows that the computation of the
considered continuous electric line consists in finding the minimum of
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functional (4), which is performed by descent along the gradient (3). The
optimal step size is determined according to (1.6) by the formula

$o7p-az)

a= T— ) (4a)
§(p R-p-dz,
z
Notice that the expression
p(2)=0, ®)

where p(Zz) is determined according to (3), is an Euler equation for the

functional (4). So, (5) is a minimum condition for functional (4), which
follows as from the analogy with discrete line, as also from formulas
rearrangement.

From physical considerations it is clear that

ir =iy, iIf p—> o, (6)
Therefore, and from (3) and (5) it follows that in the neighborhood

of minimum

riqp+p- —&+aﬁ
RS
==+ ~ 0
”( = ’3]
0% on
072 Oz
or
2. .
m-1+p.[_5’1+5’3 ~0, ®)
072 Oz
LN 9)
0z 3 ’
0
AL RIS (10)
oz oz

From (10) and (9) we get:

2. .
0 0
Ch Oy 12)
aZZ 52 aZ
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or
2

I
L)~ h(2), (13)
872
/4
Thus, the computation of continuous line is equivalent to the solution of
the equation (13).
Let us consider an operator built on the base of (2.10), (1), (2):

ropd b2 o
P 022 >
0 , 14
wel (2] e o) "
Z
62
0 -») [p ~p—
Z
Comparing (1.5), (2.13) and (3), we see that
0
p=R@E)+| 0 |, (15)
oh
P 0z
and the functional (4) assumed the form:
. 1.7 . Oi3
F(i(2))=§3=i" RGO +p-h-—{dz, (16)
J 2 Oz

see also (1.1). The optimal step size is determined according to (4a) by

the formula
f*; Q)T )
p-dz

g=_3 ‘ 17)
$oTR(p)-dz

As in  discrete case, the sources of end currents
i (ZO), i (Zn) i3 (ZO) i3 (Zn)rnay be placed at the edges of the
electric line. If some of these sources are absent, then the corresponding
currents should be computed. If some of these sources are present, then
the problem of finding the absolute minimum turns into the problem of

finding minimum under the constraints of the form i, =const, where

g
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ig € {I(ZO)) il(Zn), l'3(ZO) i3(Zn)J‘- According to (9) we may

write

| iy . Biy
i3(z0) =—(20), i3(z4)=—"(zp)-
0z 0Oz
Thus, all the initial values of the currents may be expressed in terms

) i Oi ol
of iy(z9)s i1(zp), 6—21(20), a—i(zn)-

2.4. The Functional for Continuous Electric Volume
We shall call electric volume a three-dimensional space with coordinates

X, ¥, z, where each point is an intersection of three orthogonal two-wire
electric lines. Note that we have already considered electric plane in the
context of a similar problem. The aim of analyzing the electric volume is
that it (as will be shown further) is a visual and computational model of
the Laplace and Poisson equations [14]. Let us denote :

2 2 2
A’U:a—U+a—U+a—U, AU:a (2]+6 (21+6 (2]
ox oy Oz Ox oy oz
By analogy with the previous consideration, it may be shown that for

an electric volume

F(i)=§44 §{%iTﬂ?(i)+p-h-A'i3}dx dy {dz . (1)
z |y
(r=pp) (pp) 0
R=| () @p) Cp) | @
0 (p) (p-pA
0

p=RG+ 0 | ©
p-Ah
Thus, the computation of the considered continuous electric volume
consists in finding the minimum of functional (1), which is performed by

descent along the gradient (5). The optimal step size is determined
according to (3.17) by the formula
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§3% p} dy rdz

zyx

35 TR ) by o

z|lylx

)

By analogy with continuous electric line it may be shown that the
computation of continuous electric volume is equivalent to the solution
of equation

Ay (x,y,2) = h(x, y,2), 5)
which is Poisson equation — see (1.3). Thus, the solution of Poisson
equation is equivalent to finding global absolute minimum of the
functional (1), and the stable value of the current function i} (x, y, z) has
the form of Poisson equation (5).

Just as for electric line, at the boundary of electric volume boundary

current sources may be located il(xg,yg,zg), i3(xg,yg,zg),

where (x g:VgsZ g) - coordinates of the boundary points. If some of

these sources are absent, then the corresponding currents should be
computed. If some of these sources are present, then the problem of
finding the absolute minimum transforms into the problem of finding

minimum under the constraints of the form ig( )= const, where

. . l . .
ig ()= (g vg2¢). B(xg.vg.zg) s Ho 30=4i() In
this way all the boundary values of (), Aij().

Let's note the following. The classical methods of Poisson equation
solution require naming or the value of the sought function, or the value
of a certain function depending on the three partial derivatives of the
sought function in every boundary point — else the unique solution (so
called Dirichlet and Neumann equations [22]) can not be found. In our
case on points of border these conditions are defined by the specified

currents i1(), Aij().
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2.5. The Functional for Non-Homogeneous Continuous

Electric Volume

Above we had assumed that in every point of electric volume there
is a source of current /1 so, that A'iz = h or (disregarding the current in

resistance O)

Oi3 | Oi3 | O3 _

h. (1)
ox 0oy Oz
Further we shall assume that in the electric volume for each £-point
there are three corresponding current sources

(O!k 'hk)a (ﬂk 'hk) (}/k 'hk ), where all the values are functions of

coordinates. It is illustrated in the Fig. 3, where

a, h, Y - Dennis transformers with like transformation
coefficients.

d - Dennis transformer with a unit transformation coefficient

I3y, i3y, I3, - the secondary circuit current in the direction of
coordinate X, ¥, Z accordingly. (the secondary circuit in the

direction of Z is not shown on the Figure).

Fig. 3. Fragment of Non-Homogeneous Electric 1 olume.
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With such connection of the current source through the transformers the
following condition is fulfilled

Oi Ol Ol
BBy, ®)
X oy A
It is easy to see that then the functional (4.1) takes the form

F(i)=§1¢ §{21T R() + ph[a i3 ,B ‘zj j}a’x dyidz> (3)
z |y

and the gradient (4.3) takes the form

0
p =)+ 0 : ®)

. a%_kﬂaih{_ 87}[
Pl % 7o

where the operator R is determined according to (4.2).

By analogy with the previous discussion we may show that the
computation of a continuous electric volume with triple current sources
is equivalent to the solution of equation

2. 2.

[axalzl+ﬂ o* 121 Vs o ;lth(x,y,z), ©)
ox oy 0Oz

which is the Poisson equation for non-homogeneous medinm (1.4). Thus, the

solution of equation (5) is equivalent to seeking the global absolute

minimum of the functional (2), and the stable value of the current

function 7 (x, y,z) has the form of this equation.

3. Partial Differential Equations

3. 1. Classical Partial Differential Equations

The above cited electrical models illustrate the fact that the partial
differential equations may be considered as the necessary extremum
conditions of certain functionals. Further we shall view various
functional and Ostrogradski equations [16], which must be satisfied by
the function realizing the extremum of those functionals. Further we
shall denote:

o%i 8% &%

Ai = + +
ox? o oz’
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' 52 52 52
Agpyi= a(x,y,z)—zl + ﬂ(x,y,z)—é + }/(x,y,z)—zl.
ox oy oz

For the functional

. I, .. .
F (i) zf {) §{2 -Ai + h(x,y,z)-z}dx dy vdz
z |y lx
the Poisson equation for homogeneous medium comprises the extremum
condition

Ai(x,y,z)=h(x,y,z).

testLaplas2
5
2 o0
(]
MH
0 200 400 600 0o
iteration

i(xs{)

Fig. 4. For example 8.

Example 8. Let us consider a plane problem of the form

Ai(x, y) = h(x,y),

a-ch(fy), if x=0, y=(-s,s5),
0, if x>0,

where

h(x,y)=
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and @, 3,8 - are certain constants. Fig. 4 shows the results of this
problem's solution by the proposed method — the relative error
error depending on the iterations number, function A(X,y),

function (X, )), function gi(x,y) .
oy

For the functional

. I, . .
F(l)zf f §{2 -Aaﬂyz-l—h(x,y,z)-l}dx dy vdz
z | ylx
the Poisson equation for non-homogeneous medium comprises the
extremum condition

Aaﬂyi(xayaz) = h(x,y,z)

Let us consider another functional

F(i)=§1§ §{A'i)2+k-i2}x dy 1dz
z|lylx

For it the condition of extremum is the Helmgoltz equation
Ai(x,y,z)=k-i.

In the general case we may consider the following functional

. 1. 1,0
F(i)={1f }3{2 ~Az+h(x,y,z)-z+2k2-12}dx dy \dz
z |y

for which the condition of extremum is the equation

Ai(x,y,z)+ k2 1i(x,y,2)+h(x,y,2)=0.

Example 9. Let us consider a plane problem of the form

Ai(x,y)+r-i(x,y)=h(x,y),

a-ch(fy), if x=0, y=(-s,5)
0, if x>0,

where

h(x,y)=
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and @, 3,8 - are certain constants. Fig. 4 shows the results of this

problem's solution by the proposed method — the relative error
error depending on the iterations number,

function A(x, ), function (X, ), function (ji(x,y) .
V

testGelmgolz
5
0
S
5]
-5 \M‘.
%
-10
100 200 h(xy) 0 0
iteration

10
i(xy)/dy

Fig. 5. For example 9.

In the general case we may consider the

1i Ay pyi+
' Cafy
F(i)=§{§4] 2 | dx bdy tdz )
zZ|y|x +h(x,y,z)-i+2k-i2

the condition of extremum for it is the equation
Aaﬂyi(x,y,z)=h(x,y,z)+k-i. 2
To find the solution of equation (2) we may apply the method of
finding the minimum of functional (1), which (as it follows from the

above cited) consists of iteration process, where on each iteration the
gradient is being computed
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p=Aaﬂ7i(x,y,z)—h(x,y,z)—k-i. ©)

and the step of the variable

:f § prpdx dy vdz

a= SRES : Q)

§ fﬁ ﬁ%'Aaﬁyp_k'pZ}x dy rdz

z |y x

This formula is obtained by analogy with (1.138).
The further complication lies in the fact that the variable is

considered as a function of time i(%). So we can consider a functional

-

;i-Aaﬂ7i+h(x,y,z)-i+

F(i):§ § §>< | a2 dx vdy tdz,  (5)
2|y |x |+ kit e | 2
\ 2 2 \ar
the extremum condition for which is presented by the equation
2.
071
Aypi=h(x,y,z,t)+k-i+c| —|. (6)
apy or
In this case the gradient is
. [
P=RAgpyi—h(x,y,z,t) - k-i-c at_z )
and the step by the variable
§ f i‘;prdx dy vdz
a= R ; . ®)
§3 f’; § p-Aa'Bj,p—k-p2+c-(apj dx vdy rdz
ot

z |y lx
This formula is also obtained by analogy with (1.138).
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The realization of the search for the minimum for functionals (1) and
(5) depends on the form of functions A(X,y,z,t) in the same way as in

the case of functionals discussed in the Chapters 5 and 7.

3. 2. Special Partial Differential Equations
Finally we shall discuss the method of solving the equation

02 di
A (x,v,z)=h(x,y,z)+k-i+c| — |+ m| — |.
apy (%, y,2) =h(x,y,z) i 2 (GJ

which differs from (8.3.6) by the presence of last term. There doesn’t
exist a functional for which this equation is the condition of extremum.
For its solution we shall use the above stated extremum principle.

After changing the notations

Agpyq+Sq+Mq"+Rq'—E=0, 1)

where

S, M, R are constant coefficients,

q, E are functions of coordinates X, Y, Z and time £
Further we shall use the line of reasoning by analogy with section 4.
Now we shall consider #he functional

1
T 2q@aﬂyq)+ q' Sq-
F(q)=| dt, @)

0 _q,TMq,+qTRq,_;Eq
“gradient”
pP=8pq+Sq+Mq"+Rq' - E, 3)
the direction of moving
oA+ 45)
o2 Ui ) "
Bl +ﬂ'BZ

where

- Sqp — Mq'p' +
4 =["] Wy p) Sap-Myp') 5y vdydzdt , 5
0 7x.0:2{+ Rgp' - q'p)2 2

By = 2J.OT J.x,y’z G@aﬂyp} Sp2 + Mp'2 )xdydzdt , (6)
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, T
A2 - IO Ix,y,z

B| = 2]0

p(Aaﬁ]/q )_ Spq’ — Mp'q

— Rpq’
+Ep)/2

Q%p )xdydzdt

(P@aﬁ}/q)*‘ Spq + Mpq"
2

By analogy with Theorem 4.1 we may assert that

J'

dxdydzdt>

)

(8)

the movement in functional (2) in the direction (4) is equivalent to
moving to global saddle points of the two secondary functionals,
similar to functionals (13) and (14), and the stationary value equation

is (1).

Here it should be noted that the realization of the functional (2)
minimization method depends on the form of functions E(xX, y,z,t) as

for the cases of functionals treated in the chapters 5 and 7.

Another method consists in building electrical models of the form of
partial differential equations and in the corresponding electrical circuits
computation. This method was covered above.
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Chapter 9. The Functional for
Maxwell Equations

1. Maxwell Equations as a Corollary of
Variational Principle

1.1. Introduction

It is known [27], that Maxwell equations are deducted from the least
action principle. For this purpose it is necessary to introduce the concept
of vector magnetic potential and formulate a certain functional with
respect to such potential and to scalar electrical potential, and this
functional will be called action. Then by varying the action with respect
to vector magnetic potential and to scalar electrical potential the
conditions of this functional's minimum may be found. Further (after
certain reductions) it is shown that this condition (with regard to the
potentials) is equivalent to equations system with respect to electric and
magnetic intensities. The obtained equation system corresponds only to
four of Maxwell equations. It is evident, since the vector magnetic
potential and electric scalar potential provide only four varying functions.
But such partial result permits authors to conclude that all Maxwell
equations (with respect to the intensities) are the consequences of least
action principle as the above determined functional

But all Maxwell equations do not follow from this functional!

Furthermore, the Maxwell equations are dealing with currents in a
medium with a certain electroconductivity. As a consequence, there are
heat losses, i.e. energy dissipation. It means that, for the sake of the least
action principle in addition to electromagnetic energy, the thermal energy
should be also included in the functional; but this energy is not a part of
Lagrangian. Therefore the ILagrange formalism is in principle not
applicable to Maxwell equations.

Thus, the above conclusion, which has some cognitive value, does
not demonstrate a triumph of the least action principle. And, all the
more, this functional cannot be used for direct solution of technical
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problems (using the above described method of descent along the
functional) So it turns out that the Lagrange formalism is insufficient for
the deduction of Maxwell equations.

The matter becomes complicated also because for symmetrical
form of Maxwell equations (figuring magnetic and electrical charges), an
electromagnetic field cannot be described by vector potential that is
continuous in all the space Therefore the symmetrical Maxwell equations
cannot be deducted from variational least action principle, where the
action is an integral of difference between kinetic and potential energies.

In this section we present such a functional with respect to
intensities, whose first variations with respect to intensities when they
become zero, coincide with Maxwell equations with respect to intensities.
Then we shall describe the descent method along these variations, which
is equivalent to Maxwell equations solution.

Further we shall be dealing with three-dimensional vectors in a vector
space with the axes Ox, Oy, 0z and the orts of these axes i,j,k

cotrespondingly.  Usually a vector H will be denoted as

H=H,H,H

Z with its coordinates in the brackets. AS it is

known[14], vector-rotor of the vector /1, scalar divergence of the vector
H, vector-gradient of the function @ (x,y,z ) have accordingly the

following form

I'Ot(H): (aHZ - aHy Ja(aHx - aHZ ja[aHy - aHx] ’

oy 0z 0z ox ox oy
OH
div(H )= Oy (T Oz
ox oy oz
grad(a)= a—a,a—a,a—a .
ox Oy Oz

Let us consider a functional [20]
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oE
Hxa(fZ—Hx ay+
y zZ
oF oF
+Hy azx—Hy 8xz+
oF
+H, 8xy +Hzaalj)x+
o = dx +dy vd:
NN e, e o
Z\V|X-E, aZ+Ex 5 +
y zZ
OoH OH
—Ey azx+Ey 6xz+
OH
~E, y+E28HX+
ox o |

with respect to the functions HxaHy ,HZ =Ex ,Ey ,EZ of three

variables X, ,Z.

The necessary conditions of extremum for a function from several
independent variables are Ostrogradsky equations [16] which for every

function have the form:
o of
Y =0,
oa\ o(dv/da)

9]
l _ z (1 a)
where f is an integration element, V(X,y,Z,y is a variable function, and

v a=x,y,z,t

A — independent variable. For this functional they are as follows:

e with respect to variable H x (see the terms 1, 2,9, 12):

OF
2%z %y,
oy 0z
e with respect to variable H y (see the terms 3, 4, 8, 11):
E
2%x _5%:
0z ox

with respect to variable H - (see the terms 5, 6, 7, 10):
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oF OE
2—2L 27X =0,
ox oy
e with respect to variable Ex (see the terms 3, 6, 7, 8):
oF
2% %y
oy 0z
e with respect to variable FE y (see the terms 2, 5, 9, 10):
OF
2%z %y,
oy 0z
e with respect to variable £, (see the terms 1, 4, 11, 12):
oH oH
2— L 27X
ox oy

Hence it follows that the necessary conditions of the extremum of
functional (1) are the equations

e with respect to variable E:

2-rotH =0, 2
e with respect to variable H:
2-1otE =0. ©)

For the sake of convenience we shall further denote the integrand in (1)
\
by SQ‘[, E  Then the functional (1) will be as follows:

O, =] 35{5(’4 E)}dx dyedz

z |y Wx
It is easy to see that

S(H, E):H-rot(E)—E-rot(H). (7)

Here each cofactor is considered as a three-component vector in the
sense of matrix algebra. Thus the following LLemma holds true:

Lemma 1. The necessary conditions of the extremum of functional
(6, 7) are the equations (2, 3).
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1.2. Constructing a functional for the Maxwell Equations
We shall further use the same line of reasoning as in deducing the
variational principle for an electric circuit — see section 1.4. Consider a

functional
;3@!, E!};S@Il, E”)‘)‘
. ﬂ(ﬂrdH_H”dHJ_
2 dt dt
—E(E'dE _E,,dE j_
2 dt dt
T
CD:J. § §<§<—K’(dlvE’ Py dx vdy vdz rdt
g
Olz|y|x
+K”(div n_ P )+
2¢
+L’(diVH’— —
2u
_Lﬂ[div 14 _O-j
2u
@
Here

e [—time,
e H', H') E', E", K', K", L', L" -variable vector -
functions of coordinates X, y,Z .

In this case the above mentioned Ostrogradsky equations (1.1.1a) taking
into account Lemma 1 will take the following form:

. N 14
e with respect to variable E:
14

rotH' — gddit —grad(K')=0, ©

e with respect to variable E".
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E!
—rotH" + ga;,—t +grad(K")=0,
e with respect to variable H':
dH"
rotE’ + pe - +grad(L')=0,

e with respect to variable H":
!/

—1otE” — ﬂddit —grad(L")=0,

e with respect to variable K "L'.K",L" accordingly:

- (divE' — p) —0, [divH'--Z | =0,
2¢ 2u

(div "—pjzo, | divH"= % |=0.
2¢ 2u

Owing to the symmetry of equations (2-5) we have:
El — E", H! — H”’ K! :K”, L! :L”.
Denote:

E=E'+E" H=H'+H",
K=K'+K'", L=L'+L"
Subtracting equation (3) from (2), we get
rotH — eci—f —grad(K)=0,
Similarly, from (4, 5) we get
dH
rotE + ,u; +grad(L)=0,

Similarly, from (6) we get

(divE — p/g)=0,
(divH —o/u)=0.

)

Q)

®)

(62)

(6v)

)

(8)

©)

(10)

(11)
(12)

Equations (2) and (3) are necessary condition of the existence of

functional (1) extremum with respect to the function E’ and to the

. 4 . .
function E". These extremum are of opposite character (minimum-
maximum or maximum-minimum), as the equations (2) and (3) differ in
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the terms signs. Consequently, these equations are necessary conditions
of a saddle line existence with respect to the functions £’ and E” in the
functional (1).

Similarly, equations (4) and (5) are necessary conditions of the
existence of a saddle line with respect to the functions H' and H" in
the functional (1).

Similarly, equations (6) are necessary conditions of the existence of a

saddle line with respect to the functions K " K" and a saddle point

. . !’ [/ .
with respect to the functions L', L" in the functional (1).

The question of sufficient conditions of saddle pints existence is still
an open question (it will be discussed below). Should these conditions be
found, it will mean that the following Statement holds true.

Statement 1. The functional (1) has an optimal saddle line in which
the conditions (7) are fulfilled, and it is optimized on such functions
E'E"H' H",K',K",L' L", which in sum (8) satisty the equations
(9-12).

It is easy to see that the equations (9-12) are symmetrical Maxwell
equations, where

E - electric field intensity,

H - magnetic field intensity,

M - magnetic permeability ,

& - dielectric permittivity,
P - electric charge density
O - hypothetic magnetic charge density,
grad(K ) - electric current density,
grad(L) - hypothetic magnetic current density
Denote:
j=grad(K), (13)
m = grad(L). (14)
Consider the physical meaning of quantities K . Denote:
@ - electric scalar potential,
9 - electrical conductivity,

Jx - projection of the vector current density j on axis OX.

. do . dK
Then we get ], = _Igd_. But from (13) follows that j, =——.
X

dx
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Consequently,
L (15)
dx dx
Le.
K=-9¢. (16)
Similarly,
a___ds "
dx d dx’
L=-5¢, (18)
where

@ - magnetic scalar potential,
¢ - magnetic conductivity.

1.3. About Sufficient Extremum Conditions

Further we shall consider along with vectors in the sense of vector
algebra - vectors in the sense of matrix algebra. It will be clear from the
context, which of the vectors we have in view. For the future we must
note that the concept of derivative by a vector, may be found, for
instance in B [14]. So, the functional (2.1) may be written in the form

T
D= [1§<§1§ 1 (2", 2" Yix pdy pdz (dt, ()
Olz|ylx
where
« Z(X)=[EH,K'L'), Z"(X)=|E",H",K",L"] - the
functions vectors,
e X= (x, V,Z,t ) — independent variables vector.
In  this section we shall wvary only the functions
Z’(X)= [E',H',K',L’]. The equations (2.2, 2.4, 2.6a) may be written

as

p=0, 2
where
PE
p=|P4|, 3)
Pk
PL
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pg =1otH' — ga;,it —grad(K"), @)
Py =TotE' + ,u% +grad(L'), (5)
px =—divE'+ p/2 ©6)
pr =divH'— /2. 7

Vector p is a variation of functional @ with respect to function Z'
and it depends on the function Z',i.e. p= p(Z '). Remember that the

. 14 .
function Z" here is fixed.

Now our reasoning will be in accordance to [7]. Let S be an
extremal, satisfying the Statement 1, and, consequently, the gradient in it

is p=ps=0.To find out the character of this extremum we must
study the sign of the functional increment
AD = D(S)-D(C), ®
where C is the compatison line, where p = DPe * 0.Let
op 2
Al-p+Ay—+By-p~ +
o 1P 2 ax 1P
= ; ©)
2
op op
+By)| —| +By-p-—
2(8)() 3P ox

where A19A29B1aBZaB3 are known functions of Z' with fixed Z".
Then the following Statement 2 holds true
Let the values of vector Z on the lines S and C differ by
Zo—-Zs=2'-Z5=A=a-p, (13)

where
p is a variation on the line C,

a — a known numbet.
Let us denote

dZ'
, O=—"-. (14)

Then
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oA® _00()_ f)
oa  oa IX_d -
or() az' of() o
“Ix gz(')' oa ggg)' aﬂdX: 1

LERE I

- oz’
2
AP _ 0 L0, TO
8a2  oa X 8Z' oQ
L0z ﬁzf() o0
2 D P
p.a ORI VR4
02'0Q Oa 0Z0Q Oa |
Ny 0, 2. f() c2pg- 01Oy
X5 ez 00* o700 [
For small @ we may write
2
ACD:aaA(D +a’ 29 A(D (17)
Oa oa?
Then the following Statement 3 holds true:

A

Statement 2. If 7 is always non-negative (non-positive), then
oa

the line brings a global strong minimum (maximum) to the functional.
Comparing (9, 15, 16, 17) we find that

GZACD:IX 20 f() . f() 2270 X, (18)

2pq ,
ba* 07" 802 0Z'0Q

Thus, to find the sufficient conditions of the functional extremum
existence, we must compute the second derivatives in the expression

(18).
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1.4. First Partial Derivatives
Let us find first the partial derivatives of the integrand function f ()

in the functional (2.1) with respect to the functions with one stroke. To
do this we must previously find the vectors

orot(E) orot(E) oOrot(E)
OF, O, OF,
orot(E)/d(@E, /oy)=0, 0, 1)
orot(E)/8(E, /6z)=(0, 1, 0),
orot(E)/0E,, /ox )=, 0, 1,
orot(E)/0E,, /oz =1, 0, 0) @
orot(E)/8(E, /ox)=0, -1, 0),
orot(E)/0(E, /oy)=1, 0, 0,

and scalars

odiv(E) _ odiv(E) _ adiv(E) _

0, (M

0, )
OF o, OE,
odiv(E) _ odiv(E) _ odiv(E) _ . @
0(E, /ox) OWE, /dy) 8(E, /oz)
Let us consider vector X 1 ZQC, Y, Z)‘. Then
odiv(E) _Q’ L 1} 5)

o@E/aX))

First we shall find the first partial derivatives of the integrand
function f() with respect to vector Z' = (E',H',K',Ll). We have:
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lSRQ_[I, EI)_ E(E/ aE _E"ai)
o) o |2 2\ o or )|
oE.) o(E! -
( X) ( X) _K’(dIVE,_gJ

3 —H'-rot(E')+lE'-r0t(H')
G(E;C) _E(Er 6E” E”aE j K!(diVEI_Bj
2 ot ot 2
o (1 OE"
=% | _E rot (H)-ZE
a2 E U &j
Thus,
Q) aH _OHy ,OE} o
8(E;C) 2 0z 81‘
Table 1 is filled in the same way.
Table 1.
a0 498
o(E") o(H')

x | () (GH’ oH, aE"J orQ) _1oEy OEy aH;;]

o) 2 = o) |l 2y e YTa

y af(.)_l[aH;C_é’H;_ga }] a0 _1 8E§C_6E’Z+Iu58t§;]

o) 2 o oty,) 2 ez ox
z | or() 1(oH) oH,  OE! of() 1(CEy OEy  oH:
=— - -& =— - +u
aEL) 2 ax oy ot AHL) 2\ ox oy ot

Keeping in mind the definition of rotor from this table we find

() ¢ dE"
) ( ot(H')-= 5 dt) (6a)
%}9) (r t(E' )+ﬂ %) (6B)

We have also:
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;(f]g)) —divE' + p/2 @
o) _ =divH' - /2. ®)
oLy
Let us now find the first partial derivatives of the integrand function
, oZ'
f () with respect to vector . We have:
o0 _
O(dEY /dy)
,dE" dE'
_ER E! Eﬂ
o @ 2)3 ( dt dt j

O(dEY |dy) _K,(divE,_g]

H'-rot(E")+ E'-rot(H")

d
AL 1 g !d " ”dE !’ : !’ /O =
E! R N ) K'| divE' - &
OldE; [dy) 2( dt dtj ( v 2)

0 . orot(E") _ g OdivE" OdivE’
e Jv\ oWE,/dy)  OWEL/dy))

-0, 0, -1)-K"

Thus,
af() =-H,-K" )
O0(dE. /dy)
Table 2 is filled in the same way.
We have also:
A0 _ep HO s w0
O(dE'/dt) 2 a(dH "/dt) 2
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Table 2.
a(aaf(/)ayf |y
8(82{((/)82)_ | a(ailf—;f/)az):E y+L
X%):HE_K" %Z%) EL+L.
ag%:H;K’. %Z%) —EY +L'.
a(a(z(/)ax)_ Hy - K G(GZ'(/)Gx) Eyw L
A R E 4 Bt

1.5. Second Partial Derivatives

Let us now find the non-zero second partial derivatives for functions
with one stroke. For this sake we shall differentiate (4.9) with respect to
H x - The results are brought together in the Table 1, where the results
of double differentiation are given, and the formulas symmetry is taken

into account, thanks to which the results were doubled. Every element
of the table shows the value of the second derivative of the function

f () with respect of the pair of functions that are named in the heading

of corresponding row and column.

Table 1.
OF’ OFE 3, OE’, OF’, OE 3, OE’,
oy 0z 0z ox Ox oy
H' 1 -1 0 0 0 0
H 3, 0 0 1 -1 0 0
H 0 0 0 0 1 -1
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Keeping in mind the definition of rotor and definition of derivative

by vector, we shall rewrite
coordinates are shown.

Table 2.
roty (E") roty(E’) rot, (E)
H. 1 0 0
H; 0 1 0
H) 0 0 1

Table 1 as Table 2, where the rotors

Finally, keeping in mind the definition of derivative by vector, we
shall rewrite the Table 2 as Table 3, where the values of the second

derivative of function f'(.) with respect to a pair of vector-functions are

shown.
Table 3.
rot(E")
H' 1
Thus,
2
0 f(G)E' =1, (1a)
OH'"P| —
i %)
By symmetry in formula (1.1) we also get
2
0 f() =-1. (1)

a(E’)ﬁ(aH )

ox

So, the second partial derivatives of function f (), included in the

formula (3.18),
2 2
0 ng): 0, 0 f(zz): 0, 2
0Z 00

The integration element in (3.18) takes the form
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2 2 ' '
2E oy I (PO
0Z'60 o, H')@( ) X’ oX
X’ ox
or
62f()Q_ 2> 1 () O o’fQ)  oE
dZ'00 o OH' ox , 8E’j X
AEP| — o(H" | —
( )a(an oL
or, taking into account (1a, lB)
2 I !
7000y gy Oy OF (5)
aZ'aQ aX X
or
2
ZZ{;(Q)Q E'-rot(H')~ H'-rot(E") (6)
Thus, (3.18) is transformed into
0°AD Nt
2= [ [E"-rot(H")~H'-rot(E")liX ™)

The expression in the right side of (7) is the flow of energy through
the surface bounding this volume. This flow does not change its sign
(which follows of the physics of electromagnetic waves propagation).
Therefore the integral (7) is a value of fixed sign. From this according to
2 it follows that the functional @ has global strong minimum with respect
to the Z'.

By symmetry functional @ has a global strong maximum with respect
to the function Z".

The above cited is, in essence, the proof of the following theorem.

Theorem 1. Functional ®, determined in (2.1) with respect to the
functions Z'=[E',H",K',L'] and Z"=[E",H",K",L"], has a
global saddle extremal where a strong minimum with respect to Z' and a
strong maximum with respect to Z "is achieved. The functions on this
extremal  are such, that 7'=7", and  their  sum

Z=7'+27"= [E,H,K,L] satisfies the Maxwell equations.
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2. Computational Aspect

Consider vector-function
g’ = Ex,Ey,EZ,Hx,Hy,HZ,K,L‘ 5)

and vector-functions

( ) |dE E, E, H . H, H, K L|
dm

©)

where m= {x,y,z,t } We shall also consider vector-functions
! "

» dq dq

,q",——,——, where the components are functions £, H and their

dm dm

derivatives with one or two strokes correspondingly. Then the functional
(9.1.2.1) may be rewritten as

T, 49" .7, dq
R, —q""R,
g X dx : dx
dy dy
L r, 49" .7, dq’
o= ff 14" R.———q"" R, dxdydz vdt> ()
dz dz
0|x,y,z a0 d
IT q NT q
R R
q t i —q t di
QT "T),
- —q
WhereU=—OOOOOOp ,
y7i
R, R,
1 1 1
2 1 -1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
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[N | R[N —
—_
"

1

By analogy with the corollary 4.1.1 the secondary functional that
corresponds to the functional (7)

(R){ dq RT dq+RT de g

N

T
de Y dy dz

o= fff o dxdydz (dt, (8)

0fx,y,z q T

+— | Rig—4q U
(dtj 19 —aq ,

where

9=q'+q". ©)

Its quasivariation with respect to every variable (5) is
p=rI Y +RT 1 99 RT 94 pT 99 _ T
de Y dy dz

For p =0 the equation system (10) turns into the Maxwell equations
system (9.1.2.9-9.1.2.12) in a more detailed form:

(10)

b oH, OHy OE, dK_,
oy oz ot dx

> OH, oH, OBy dK_,
0z ox o dy
5 1 0H, oH, JOE, dK
ox oy ot dz
 0E, OEy  OH, dL

+ L+—=0 10
oy o o dx (102)
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5. OE, OE, +/u8Hy +d—L=O
0z  Ox ot dy

6. OE, OE, +ﬂ8HZ LdL

o0
ox Oy ot dz

7. _aEx_aEy_6E2+£:0
ox oy 0z &

8 8Hx+aHy+aHZ_g_O

Their solution may be obtained with the use of the method of descent
along the quasivariation, considered above in its application to electric
circuits. Let

q4=4; 04, 0g, 04, )
where ¢¢,qy, qy-9:z depend only on £,X,y,Z accordingly. The
symbol (O) denotes the component-wise multiplication of vectors

U=U, oU, oU, oU,, (12)
Further for brevity sake we shall write ¢ ;= 4x oJ7] y 0q,,
9,=49: 99y 09, Zy =4t 04x 04z, 9_ =4t 04y 09y . Let us

rewrite (8) in this notations

T
= |1 o, fdxdydz dt. (13)
0(x,y,z

Taking into account the adopted assumptions and notations, the
integrand (13) will take the form:
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dq d
X
Rx(_dx 0¢; 0q), Oqzj+

+R dq—yo 0q, 0q, |+
¥ dy qr O4x 09

. @, 04, gy og.) ey

®o” +Rz(%o% 0q, qu)

dq,
+ Ry (E 0gx O0qy oqz)

+@t 0gy 0g,, Oc]Z)w -(Ut oU, oU,, OUZ)
Consider now the functional (13, 14) with fixed functions ¢;,q y>4z

depending only on the functions of independent variable X. After
complicated transformations (13, 14) may be presented in the form

T
d = T
d :j qux ( a?):j R.qy +q5Vy pdx, (15)
X
where
R, = fﬁfr @x,gx )’tdydz,
t,y,z
dqy da: dg;

V= Ux ﬁaf fo @x, U, )tdydz.
t,y,z

Notice that the expression (15) is equivalent to the functional (4.1.12),
and the method for seeking its stationary value was described in 4.1.1 and
amounts to the solution of quasivariation equation (4.1.15). In our case
this equation takes the following form

S.qy + R, (dqxjﬂf =0, (17)
dx
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Note, that the expression (15) is equivalent to the quasivariation (4.1.12)
of the secondary functional, for which the method of finding a stationary
value was described in the Theorem 4.1.1.

So, for fixed functions ¢§;,q y>4z it is possible to find a function
d x , that is the stationary value, bringing extremum to the functional (13,
14). Similar expressions ,ay be obtained for the functions g;,q ys4z

when the three other functions are fixed.
To find the stationary value of the function ¢, defined as (11),

coordinate-wise descent along each independent variable

m= {x’y ’Z’t} should be performed.

Note also that the functional (2 8) is equivalent to functional

SR(H o) I S
z dt dt
o =] fff dxdydz ydt .(18)
0|x,y,z |- (leE pj L(leH—O-j
€ H

3. Nonlinear Maxwell Equations

The space in which the electromagnetic field is spreading may be
heterogeneous. It is expressed in the fact that magnetic permeability £/
and dielectric permittivity & depend on the space coordinates, i.e. they
are vector-functions of these coordinates. We shall restrict our
consideration by the case, when each coordinate of vector f or &
depends only on one space coordinate of the same name.

Consider functional that takes into account the field heterogeneity.
For this we shall rewrite the equations (9.1.2.9, 9.1.2.10) in the following

form

rotH — ¢ oc;—f - grad(K): 0, 1)

rotE + u ocil—];l — grad(L): 0, 2)

where the symbol {O} denotes the operation of componentwise

multiplication of vectors. The equations (1, 2, 1.11, 1.12) are
quasivariation equations for the functional
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s

. s@, E)yn- g
dt dt
=7 {ff dxdydz }dt .(18)
0]xy,z —K-(divE—ijrL-(divH—O-]
& H

similar to the functional (2.18). The solution method for equations (1, 2,
1.11, 1.12) of the quasivariation of functional (3) is identical with the
solution method for equations (9.1.2.9, 9.1.2.10) of the quasivariation of
functional (2.18), despite the dependence of 4 and & of independent

variables. Below we shall illustrate these methods by a specific example.

4. Example. The Coaxial Cable

Computation

4.1. Setting up a Problem

To illustrate the preceding we shall consider a special case of Maxwell
equations, namely, the coaxial cable equations — see also Fig. 1. An ideal
coaxial cable has a zero active resistance of the wire and ideal dielectric,
filling the space between the central wire and the outward sheath. The
cable is connected to a voltage source. The electromagnetic field of the
cable has an axial symmetry by the axis perpendicular to the figure’s
plane. Hence it is advisable to consider it in a cylindrical coordinate
system, where the axis Z is directed along the cable axis, and the
coordinates 7 and  are directed as it is shown on the Figure 1. Then
the field intensity vector will have a component directed only along the
arc @

H=H,, H,=H, =0.

Disregarding the conductors resistance, £, =0, and the electric field

intensity vector will have only a component directed along the radius

E=E,, E,=E,=0.
In cylindrical coordinates r, @, z, as it is well known [14], the

scalar divergence of the vector H, , vector gradient of the scalar function
a (x, V, Z), vector rotor of the vector H are accordingly

div(H )= Hy , oH, +l-aH¢ Loz, (@)
r or r O 0z
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aa 1 60 aa

gad, (@)= 5" gadg@)= o0 gad (=5 0

OoH

rot},(H): la&_ % , ©
r op Oz
OH, OH

rOt(”(H):( o _a_rzj’ @
H OH

rot (H): ¢)+ (D_l.aHr i ©

: r or r O

Between ideal dielectric-1 and the cable sheath we will post
dielectric-2 with some conductivity (to illustrate the method of
calculation) This distinguishes the present embodiment from the
conventional embodiment. For electromagnetic field in the dielectric-2
the Maxwell equations take the following form:

OH
¢+g%+JZ=O, )
Oz Ot
oF 6H¢,
=+ =0 2
% M , 2
where

H = H, —magnetic field intensity directed along an arc,

E = E, — electric field intensity directed along a radius,

J =J_ —electric cutrent density in dielectric-2 created by voltage

source connected to the cable in the point z=0.

Fig. 1. Coaxial cable
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These equations correspond to equations (9.1.2.9, 9.1.2.10). All their
terms are functions of time ¢ and coordinate z. The density of electric

current J is created by voltage source U, connected to the cable in the
point z=0. Thus,

J:—ﬂZ—Z. 3)

where S — conductivity of the dielectric-2 (rather than the central wire)
cable in a given point. Hence the equation (1) may be rewritten as

oH oF ou

T eZ gy, 4

= a e @
Let

u=v-Sin(ar). 5)

First we shall consider the known solution of the equations (1, 4) with
z >0 and infinitely heavy cable load, i.e. the equations (2) and

O L O _y. ©)
0z ot
Tt is [25]:
E = E;Cos(ot Bin(xz),
: )
H = H;Sin (@t )Cos(xz)
Substituting this solution into (2) and (6), we find
K=Wm\&u, 8)
E 1) K
Ao o)

H; K wE

4.2. Functional of the problem
Our problem is as follows. The equations (2, 4, 5) and the values
E, U, m, [,V are known. We need to find the form of the functions

E(t,z), H(t,z), and if it would be shown that the solution has the
form of (10), then we have to find also the values E, H, x. We shall

seek the solution in the form

H(t,Z) = ht .hZ’
E(t,z)=¢;-e,,

e, - unknown functions. The function U, given in

(10)

where hy, e, h,,

the sole point z=0, is naturally defined as
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V(t,z)=y'(z)-v-Sin(ot) (11)
where ¥'(z) is Dirac function — see section 6.6. Assuming that the
derivative of Dirac function is 7"(z) =—y'(z), we find

ou(t,z)

oz
Then the equation (4) will be

6ﬂ+88_E+7 (2)- vﬁ-Sin(a)t):O. (14)
oz ot

Let us apply the above described method to this problem. We shall

denote
h,Sin(ct B
etCos(a)t 1z
_|dE H

3 H
q - E ”
dt ) |dt’dt

4]
dz)
— Ib’vSm(a)tﬁj U, -

=—y'(z)-v-Sin(wt) (13)

hZ

¢z

b

q(t,z)=q;0q,, q; =

dE dH
dz’ dz|

_ ol 7'(2)
v=~, 0 0|

Then the equations (2, 14) will assume the form

T T
@ () 1o
dz dt

where

5 U:UIOUZ’ U[:

U
e of

Functional (9.2.8) in this case will take the form:

{ {[ 1) g %) th_qTU}dz}dz
&
(

or

Oqzj R.(g, 0q,)+

Z

dz ¢dt

Sy

Il
S — N
S —a N

q: Oij R/(g. 0q;)-(q; 04, ) U
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or

(‘Z’Z htj(hzh,)+ (% etj(ezet)

Z
T\|Z
D = .[ .[ (@Z ﬁjg(hzht)-i_ (hz %)ﬂ(ezet) dz +dt - (1 5)
olo dt dt

— (h hy pySin(at ' (2))

4.3. The Solution of the Problem with Fixed Functions of Time

Let us consider this functional with fixed functions of time g

depending only on the functions of independent variable Z. Assuming
here that

H(t,z) = hSin(ot ) h,,
E(t,2) = ¢,Cos(wt)-e,,

where h;, e, - known numbers, h,, e, - unknown functions . Toraa

Z (dhz Rllezj+(d&R22hzj
D = J' dz dz dz > (17

0 €S12hzz) @2165)@%17'(2)
T T 2
S1p = _[ {a)ethtSinz(a)t)dt} Sr1= _[ {)ethtCOS2 (a)t)dtJ
0 0

(16)

TAC

T T
Rip= | 42sin2(@)§r, Ry =| | £Cos (@) |
0 0
T
Uy =] $vhsin(@r) g
0

Denote:

a= ? {inz(a)t)}t :? éos2 (a)t)}t.
0 0

Taking this into account, we find
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Rll :ahtz, R22 :aetz, S12 :—aa)etht, S21 :aa)etht,

Taking this into account, we find

Z T
d R ’
®= I ( a‘lIsz R.q, |+ QZTSZQZ)‘Utl(hﬂ/ (Z)) dz, (19
0

where

~ R 0] B2 0
z - 20
0 Ryl |0 ¢ 20)
0 6‘S12 0 -¢
SZ = = a)etht B
uSy 0 u 0

The quasivariation (4.1.13) dyuxmuonaaa (19) ¢ ygerom yrBepKAcHUA
6.3.1 nmeeT BUA:

D dq Ull ’
Pz =S8:9,+R,| —* |- -7'(2)
dz 0
Thus, on this stage the optimization consists in the solution of equation
= (d Utl '
SZQZ+RZ( C?ZZ)_ 7'(2)=0. @D

The method, algorithm and program for solving such equation are given
in section 6.6. For €, = h; =1 in an extended form this equation takes

the form

—wE-e, + dhy +uy'(z)=0,
dz
de (22)
ou-h, +—==0,
- ny d=
where

u=-p0-v, (23)

and its solution — the form

h, =-u(Cos(xz)-y(2)H, )

e, = —u\/Z -Sin(xz) &4
&
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K=wm.\&U (25)
Combining (16) and (24), we obtain
H(t,z) =—uhSin(et ) (Cos(xz )+ y(2)H, )

E(t,z)= —e,u@Cos(cot)Sin(Kz)

So, in a dielectric-2 appear
1) standing electromagnetic wave,

H,(t,z) = —uhSin(ot )- Cos(xz),

E(t,z)= —etu\/ZCos(a)t)Sin(Kz)
&

2) static magnetic field,
H,(t,z)=H, -Sin(fz)

(25a)

Example 1. Let (16) and

u=-55 -1, 0=10, u=02, £=32.
t
be fulfilled. The equation (21) then will be:
0 -we 1 0 (dq =55 ,
gzt il 7'(2)=0.
0 1 dz 0

ou 0

From this it follows that

h, =—A4;, -Cos(xz), e, = A, -Sin(xz), k=28,

oh(z) Oe(z)
0z

where Ay =55, A, = Ah\/Z =13.75. It is easy to see that the
&

= kAj, - Sin(kz), = KA, - Cos(xz),

value K satisfies the condition (8). Thus, the solution of this problem
is found on the first iteration:

H =-55Sin(ot Cos(xz), E =13.75Cos(wt Bin(xz).
It corresponds by its form to formula (7). Substituting this solution to

(2) and (6), we find:

gE + ﬂag = Cos(awt)Cos(xz)(13.75x — 55 uw)=0,
Z
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OH L GO Sin(wt)Sin(xz)(55x —13.756w)= 0,
0z ot
and in the point Z = 0 the condition Ah =u is fulfilled, which was

to be proved.

Example 2. Let us consider also the program for solving the
equation (21) or (22), using the method described in section 6.6. It is
easy to see that the solution is of the form (24) — see the next figure
and function testDirako.
500 T T T T T T
3 /_\ /—\
£ \\/ \,/
©
_500 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2
200 T T T T T T T T T
3
o 0
©
_200 Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100 T T T T T T T T T
¥ o0
<
_100 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20 T T T T T T T T T
N oo
(0]
_20 Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
z

4.4. The Solution of the Problem with Fixed Functions of

Variable z

In Example 1 it was shown that with known functions of time
h;, e; the functions h,, e, of variable z may be found, taking the

form (24) and

Oz oz &

Now we shall assume that the latter functions are known, and shall
look for the functions A;, e;. Let us consider the functional (15) with

V4
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fixed functions g, , depending only on the functions of independent

variable #:
Gnhzz )F 622%2 )F
o ij (d—eERlzh j ( dhy MR> e j dt, 27)
o|Lat Y ar !
—vYzl (htSin(a)t))
where
R12 R21 j{e h }dZ \/71/!2
0 &
zZ
0 dz 0 dz £
Z
Uy = _.[{hz7,(z)}dz =0.
0

Here

b= ?{COS(KZ)SZ'I’Z(KZ)}CZZ.
0

From (27) we get:

® = j[( q &%J+€f&%)JQ.ﬁ,

where
‘ eRip| | o \/; 0 ¢
= = u —_ ,
pRyp 0 glu 0
S 0 -1 0
s, =11 = bxu’ , U, =0.
0 Sx» 0 ule

The quasivariation (4.1.13) of this functional will look as:

d(]tj
S;q, + R
Pt =9ty t( Jt
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So we must find the solution of the equations system

- bKuzet + buz\/ZE% =0,
e dt

b2 Hp, +bu2\/zy&=0.
& g dt

Reducing it, we find
dh de
— ke ++Jeu——L=0, why ++Jeu—L=0.
dt dt

After a substitution one may see that the solution of this problem has
the following form:

h, =Sin(wt) h, = Cos(wt) o= K‘/\/E (28)

Comparing (28) and (16, 25), we notice that the obtained result has been
the starting point in the section 6.4.3. So the convergence of iterative
process is proved.

4.5. A Cable of Variable Diameter

As it was indicated in section 9.3, the computation method is
applicable without any modifications in the case when the magnetic
permeability 4 and dielectric permittivity € are depending on the space
coordinates. Let us consider for illustration the computation of cable

with variable diameter d. We may assume that
e=&-d(z), p=p-d(z), (30)
where &, [l are known constants, and d (Z ) is a known function of

independent variable. Having been given, as above, certain fixed values
of the electric component in the electromagnetic field, we again get the
equation (17), differing only in the fact, that the matrix (10) is presented
in the form

0
S,=w-e h-d(z)-|_

(31)

For the equation of the form (21), where R, is a function of z, we

shall use the maximization algorithm 6 — see the remark at the end of
section 6.6. However, there is no proof that this algorithm is applicable

for the equation of the type (21), where S, is a function of Z (though

formally it may be used and gives a true solution!). Hence it should be
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proved that the equation (21, 24) may be transformed into the form,
where S » does not depend on z, and RZ depends on z. Let us show it.

The equation (21) with condition (24) is in fact a system of two
equations:

h2 dh,

—weyhyge d(z) + ~Upn -7'(2)=0,

de,

we;hy Lie, a’(z)+e2 . Z =0.

Evidently, they may be rewritten as:

2
h dh Un
—e;+ t_ —= 7'(2)=
wehyed(z) dz a)et h,ed(0)

etz de, _
a)ethtﬁd(Z) dZ

Let us present them in matrix form:

z

!’ ’ dq !
ZqZ+RZ( dzzj_ 0 7(2):(), 32)
where
h? 0
0 -1 =
S;=‘ CR=— e gy
)73

Note, that here R’ (Z) is a function of z. The equation (32) may be

solved with the aid of maximization algorithm 6.

Example 3. Let us add to the conditions of Example 1 condition

(30), where 77 = 0.2, & =3.2. Then the equation (32) will look as:

0 1.(12 1 |I/g O, (dqzj_ 55/(a)gd(0)%,(z)=0.
1 0 wd(z)| 0 g \ dz 0

This equation is being solved in this Example. The next Figure (see

also function testDirakS) shows the results of solving this

equation by the method described in section 6.6, with
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d(z)=3.4-1.1-¢ (left windows) and with
d(z)=0.5+0.35-Sin(5¢) (right windows). It may be noted that the

frequency of space oscillations depends on z.

4 1
g
2 g 05
g
o
0 0
0 15 2 0 05 1 15 2
200 50

—
— o
——

Hz
>

<
<

-200 -50
0 0.5 1 1.5 2
50 10
N NA AN N
TRVAAV/ 3 o
50 \/ U
-100 -10
0 0.5 1 1.5 2 0 0.5 1.5 2
z z
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5. Computational Aspect - continued

Let us look again at the equation system (9.2.10a). In the first of these
| | dK ¢
equations according to (9.1.2.15) d_ = —19d—, and in the fourth of

X X
. . d¢
these equations according to (9.1.2.17) —— =—¢——. The same
dx dx

remarks may be made for equations (2, 3, 5, 6). So we may rewrite the
system (9.2.10a) in the following form:

1. aHZ_aHy_gxaEx+9x<3(p:O
dy dz dt dx
2. OF
8Hx_6HZ_y y+9y6¢20
dz dx dt dy
3. aHy_aHx_g 5Ez+3 ai”:o
de dy S dt  Cdz
4, aEZ_aEyW aHx_g % _,
dy dz Y dt TV dx
> OB, O Oy o _
dz dx "V dt 7V dy
6. aEy—aEer,u 5Hz_g %—O
dc dy 7 dt % dz
7. _8Ex_aEy_aEZ+£:0
dx dy dz ¢

8. oH, OH OH. o
X o4 Yy + z_Y )

dx dy dz u

In these equations the parameters

Ex>EysExs s Mys My I8y, 92,650,656,

may be the functions of coordinates X, y,z. If we assume that they

Q)

0

differ according to different axes, then we may consider spaces_which are
threaded by orthogonal strings with conductivities and permeabilities that
differ for the strings parallel to different axes.
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Below we shall not consider the physical interpretation of our
mathematical results. However, as we are using widely the concept of
magnetic charges existence, we must mark that the pole of a long magnet
from mathematical point of view may be identified with a magnetic
charge - see, for example, [38].

Below we do not consider the physical interpretation of mathematical
results. Further the concept of the electric charges existence is being
widely used. It is known that Heavyside had been to first to introduce the
magnetic charges and magnetic currents to the Maxwell's electrodynamics
[39]. Let us note also that long magnet pole may be identified in
mathematical sense with magnetic charge [38].

Further, unlike (9.2.5, 9.2.6), we shall deal with the vector-function

T
q =\Ey.Ey,E,,H H,,H,,0,¢ (1)
and vector-functions
T
dq _ |dEx Ey E, H, Hy H, ¢ ¢ | (19
dm ‘dm’dm’dm’dm’dm,dm’dm’dm’
and also the matrices
R, R,
1 0, 1
2 -1 Hy
3 1 -1
4 ~—Gx 1
5 -1 =Sy
6 1 -1
7 |1 -1
8 1 1
RZ Rt
1 1 —
2 1 —-&
3 0, -
4 1 )7
511 U
6 -6z H
7 1
8 1
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The equations system (1) in system DERIVE looks like, resulted in
the program of CD/DERIVE/ section95.dfw, that will be used in other
program.

Let us note some particular features of the equation system (1):

1. the existence of magnetic charges and currents is assumed,

2. instead of electric and magnetic currents we shall introduce scalar
potentials and conductivities, not only electrical, but also
magnetic ones.

3. it is assumed that the densities of electric and magnetic charges
vary with time

4. Later these equations are extended also to physical systems
containing microscopic bearers of electric and magnetic charges.

The introduction of electric and magnetic potentials allows
considering the system of 8 Maxwell equations as 8 unknown functions —
6 intensities m 2 scalar differentials. The existing methods (as far as the
author knows) assume that the charges densities and tee currents
densities are known, and the unknown quantities are intensities. In this
sense the Maxwell equations system is overdetermined

At present the author may present a realization of the method only for
the case when (presumably) it is known that they comply with conditions
(9.2.11).

Let us consider more closely the matrix Ex in (9.2.15). To do this we
shall first consider the vector (9.2.11) and in (9.2.13, 9.2.14) the item

Dp, =

T
d
= {f (R){ ;]; 0g; 0q,, Oqu (qx 0g; 09y, 0q, )l’tdxdxdz =

T
d T
= ﬁ:f (Z;Oc], 0g,, Oqzj R, (qx 0g; 0q,, Oqz)itdxdxdz =
1,x,y,z

4
= {f ( G111 2i Rk ck Dok ke =k |dteledxdz =
Poktx,y.z

dq
—Z%§ ;" Ridk || $9i94t | §9,:9 4y | §9219 4.4
l X t y z

Let us denote:
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Q1ik = &qﬁqtkdl ik = §qxiqudy 5

t y
2

Gyit =| 9,44V b Gzine =| $9219.4 |

y z

Then
(1) = quZR . S B I
Rx ZZiS dx xki9xk4qtik4 yik 4 zik 10X -
i kx

Let us consider the matrices

O =ik 5 Ox = Wik N
= %yik} 0, =Gzt

These matrices may be computed for fixed vector-functions

di> 9x> qys 9z Also

Py = {{dj; k. 00 00, 00. jdx

Thus,
R, = . 00,00, 00. . @
In the same manner we may consider the vector (9.2.12), the values
i‘;an dt |, - igqinxidy ’
y

®)

iﬁqyinidy, A, = §quU dz
y z

and vectors
= {ﬁlz} Uy = <{ﬁxi } ©
= {’ Vi } {uZl

Note, that in these vectors there are only two no-zero components :
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A7 = ftgqppdma A8 = §¢Odm> m = (x:yaz:t)
m m
Then also

Vy=U, Oy ouy, ou, |
Similarly we may determine
Ey = ll_ey 0Q; 00, 00, s
V,=U, olu, ou, ou, |
EZ = I@z 00, 00y on K
V,=U, OIE‘t Ou, Ouyj.
R =i 00,00, 00.
V,=U, oy ou, ou, |

Let us denote also

R | (Y A | g Yxi
Grik = §—dt Gt |, Grip = §—d§ g dx |,
t X
2 qyi 2 95
= 0—=—q ,dv |, G, =|¢2Lq_,dz |
qyik fidy 9y @Y | 4zik idz q,

Consider matrices

O, = Yk § Ov = Gt §
Qy = éyik} Qz = <521’1{}

Then, by the same reasoning, we may find the matrices
Ry, = kf 00 00,00, ,
Rylz = |6y OQy 00, 00, o
Rzly = I@z 00, 00, OQy K

Here the item S in formula (9.2.16) takes the form

Sx = RtyZ + RytZ + thy

(62)

()

8)
©)
(10)
(11)
(12)
(13)

(14)

(15)

(16)
17)

(18)

(19)
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The matrices named in the following table 1 may be determined in a
similar way.

Table 1.
t X y z
t Rtyz Rtxz | Rtxy
x | Rxyz Rxtz Rxty
y | Ryxz Rytz Rytx (20)
z | Rzxy | Rzty Rztx :
St Sx Sy Sz _
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6. Example. Spatial Electromagnetic Wave

6.1. Computation of numbers (9.5.2), (9.5.14) and matrices

(9.5.3), (9.5.15)

We shall now deal with the numbers (9.5.2), (9.5.14) and matrices
(9.5.3), (9.5.15) for certain cases, in view of further use. Table 1 shows

the vectors q,.,gq y>9z>91 > for which these numbers and matrices will be

computed.

Table 1.

Ne| 1 2 3 4 5 6 7
ax |49y | 9 | 4 | 4: 4@ |4

X | oW Cos(yx Sin(;y) Cos(ﬂz) Cos(at) i
X | oW Sin(yx) | Cos(py) | Cos(z) | Cos(wt) P
X | oW Sin(yx) | Sin(y) Sin(,b’z) Cos(at) P
X | oW Sin(;(x) Cos(;y) Sin(,é’z) Sin(a)t) eﬁz
Cos(yx) | Sin(y) | Sin(pz) | Sin(et) P
X | oW Cos(;(x) Cos(}y) Cos(ﬂz) Sin(wt) i
e | W Sin(;(x) Sin(;y) Cos(ﬂz) Sin(a)t) eﬂz
X | oW Cos(yx) | Cos() | Sin(Bz) | Cos(wt) P

ool Q] Nl L] B W N =
Y
aQ
I

First let us consider the matrix Qx = {éxik} for the vector shown in
the column 1 of Table 1. Evidently, all the numbers

ik = §€;(x )dx =dy 1)
X
and matrix
Oy =ayl, 2

Where [ is a matrix made of unities. It is also evident that all the
numbers

de®*
dx

Gxik = § eHdx = Xy - ©)
X
and the matrix
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Oy = yal, )
Similarly, for the vector shown in column 2 of Table 1 we have:
Qy = j/ay] > ©)

where
ay:§éwj@k )

Similarly, for the vector written in the column 7 of Table 1, we have:

Qz = azl > (Ta)
QZ = ﬂazl > (7b)
where

= éﬂz )dz , (79

Now let us look at the vector shown in column 3 of Table 1. For this
case the matrix Qx = {é ik } is shown in the Table. 2, where

cc= §C0s(;(xﬁos(;(x)dx, 5§ = §Sin(;(x)5in(xx)dx, cs = §Sin(gxﬁos(;(x)dx >

and prefixes X, V,Z,f mean that these are the positions of non-zero

elements of the matrices Rxa Ryst R Rt accordingly.

Table 2.
Ox
1 cc-t cs cs cs cc-z |ss-y  [csx | cc
2] cs ss-t ss ss-z | cs Cs-X | ss-y cc
3] cs SS ss-t | ss-y |cs-x | cs S8-2 cs
4] cs $S-Z ss-y | ss-t | cs cs $S Cs-X
5] cc-z cs cs-x | cs cc-t | cs cs cc-y
0] ss-y cs-X | cs cs cs cc-t | cs cc-z
7| cs-x SS-y ss-z | ss cs cs SS cs
8| cc cs cs cs-x | cc-y |cec-z | cs cc
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On an interval dividable by value 277/ y, we have: cc = 8§ . Let us
denote b, =cc =ss. From Table 2 it follows that component-wise
multiplication of matrices RyastRt by Qx is equivalent to these

matrices multiplication by the number

by, = § Cos(yx )Cos (o Y - ®

So

5

R, 00, =byRy, R, 00, =byR;, R, 00, =bR,. ()

Further, component-wise multiplication of matrix R, by Q, is

equivalent to multiplication:

Rx OQx = beRx > (10)

Similarly, for the vector shown in the column 4 of Table 1, we have
by = §Cos(yyfos(}y)dy> an
y
R, 00y, =byRy, R, 00, =b,R;, R, 00y, =b,R;, (12

Ry, 00, = ybyRy. (13)
Let us now consider the vector shown in the column 5 of Table 1. For
this case the matrix O, = {é Zik } is shown in the Table 3, where

cc= §Cos(ﬂzxos(ﬂz}lz> 8§ = §Sin(ﬂz)9in(ﬂz)iz > ¢s = §Cos(ﬂz)§in(ﬂz)dz >

and the prefixes X, y,Z,f mean the same as in Table 2.

Table 3.
0,
1] cc-t cc cs cs cs-z cc-y cc-x | cs
2| cc cc-t cs cs-z cs cc-x cc-y | cs
3| cs cs ss-t $s-y $S5-X cs cs-z | ss
4| cs cs-z ss-y | ss-t ss cs cs $5-X
5] cs-z cs SS-X | s ss-t cs cs $8-y
6| cey cc-x | cs cs cs cc-t cc cs-z
7| cc-x cc-y cs-z | cs cs cc cc cs
8] cs cs ss $5-X $s-y cs-z cs ss
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As above for table. 2, let us denote @, = cc = 85 . From this Table 3

it follows that component-wise multiplication of matrices Rx, RyaRt by
Q. is equivalent to the multiplication of these matrices by the number
a, = §C0s(ﬂzx0s(,b’z)dz- (14)
z
In this way,

Rx OQZ = aZRX’ Ry OQZ = aZRy, Rt OQZ = aZRt . (15)

Further, component-wise multiplication of matrices R, by O, is

equivalent to multiplication:

R, 00, = fa,R,. (16)
Let us consider now the vector shown in the column 6 of Table 1.
The matrix for this case Qt = {thik } is shown in the Table 4, where

cc= §C0s(a)t)C0s(a)t)dt > 58 = §Sin(a)t)5in(cot)dt’ cs = §C0s(a)t)5'in(wt)dt’

and the prefixes X, ), Z,f mean the same as in Table 2.

Table 4.
O
1 Ccc-t CC CC CS CS-Z CS-y CS-X CC
2| cc cc-t | ce Ccs-z cs Cs-X cs-y | cc
3 CC CC cc-t CS—Y CS-X CS CS-Z CC
4 CS CS-Z Cs-y SS-t SS SS SS CS-X
5 CS-Z CS CS-X SS SS-t SS SS CS—y
6 CS—y CS-X CS SS SS SS-t SS CS-Z
7 CS-X CS‘y CS-Z SS SS SS SS CS
8 CC CC CC CS-X CS—Y CS-Z CS CC

From this table it follows that component-wise multiplication of the

matrices Rx,Ry,RZ by Qt is equivalent to multiplication of these

matrices by the number

a; = §Cos(a)t)9in(a)t)dt- 17
t

So

b

R, 00 =Ry, R, 00, =Ry, R, 00, =R;. (18)
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~

Further, component-wise multiplication of the matrix R; by Oy is

equivalent to multiplication

R, 00, = a,0R, . (19)
6.2. Setting of the Problem
Let
Ey = ex\PccExfx (x)Exﬁ/ (J/), 1)
E, = echcEyfx (x)Eyj_‘j/ ()/), 2
E, = ez\PcsEzfx (x)Ezf_j/ ()’), 3
Hy = hxq]sstﬁc(x)Hxﬁ ()/), Q)
Hy = hyLPssHyﬁc (x)Hyfj/ ()’), ®)
H, = thPscHzﬁc (x)Hzfj/ ()/), ©
Q= ¢0q]sc¢fx(xkoﬁz ()/), )
¢:¢0Tcs¢fx(x)¢ﬁ/ (J/), ®)
P =pPoYecE, ©)
o=0,¥,=, (10)
where
syl g Do Ps O an

- real numbers,

Y. = (— Sin(a)t)X- Cos(ﬂz)), (12a)
Y. = (— Cos(a)t))Sin(,Bz), (12b)
¥, = Sin(or X-Sin(fz)) (12¢)
Y. = Cos(a)tX— Cos(ﬂz)), (12d)
Exp s Hyf s x> Oxf  Eyp s Hyp s @yp by (14

- unknown functions,
E=E(xy)= E‘x(x)E‘y()’) (15)

- 2 known function of a form that will be determined later
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The problem is for certain coefficients p,,0, from the set (11),

determined by function = (15) and known function W of the
form (12) using the Maxwell equations system (9.5.1) to find the

functions (14) and unknown coefficients
ex,ey,ez,hx,hy,hz,¢)0,¢0 from the set (11).

Let us consider the vectors
q" =lexep ez iy 0.6, 29)
qT:‘ExaEyaEzaHxaHyaHza(pa¢, (30)
q =4 04y 0qy, 09 0, (31)

- see also (9.3.11). The vectors included into the last formula, atre
determined in the Table 1.

U=U oU, oU,, oU, oU,

Table 1.
1 9 | 4qx q, q- 4
q1=Ey |ex | Exi (x) | Exp(v) | Cos(Bz) | -Cos(ar)
a2 =E, e, |Enl) [Ep) | Cos(f) |-Coslor)
qg3=E, |e, E 4 (x) Ezfx(y) -Sin(fz) | - Cos(ar)
qq = H, hx fox(x) H g, (y) Sin(ﬂz) - Sin(at)
qs = Hy hy Hyp (x) H 5, () | Sin(Bz) | -Sin(er)
qe=H, | h, | Hx&) | Hpx(y) |-Cos(s) | Sinler)
q7 =9 Py | Phi (x) P (v) |-Cos(pz) | Sin(er)
q3 = ¢ b |25 [05() [-Sin(a) |-Cosler)
6.3. Computing the vectors (9.5.7, 9.5.9)
Let us consider the vectors
U’ =10,0,0,0,0,0, p, o], (39)
o’ =10,0,0,0,0,0, p,.0, (40)

(41)
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- see also (9.3.7). The vectors included into the last formula, are
determined in the Table 2, where only 2 last (non-zero) components are
shown.

Table 2.
7 8

U P -see (9.6.2.9) O - see (9.6.2.10)
U | Po O

Uy | Ex(x) Ex(x)

U, 2,0) =,()

U, Cos(fz) Sin(fz)

U, | Cos (cot) Sin (a)t)

ty | §o g (xE(x)dx §6 (B (x)dx
v | $o5(WEO)Y 05 (v E()dy
y y

<>

122 a, -see. (9.60.1.14,9.5.6a) | A, -see. (9.6.1.14, 9.5.6a)

Uy ay - see (9.6.1.17) ay -see (9.6.1.17)
Ve | arazt,75(x) asa ,gE(x)
Vy asaty7E(y) a0t 8E(y)

For known functions ¢ and U the numbers (9.5.5) may be found.
They are shown in Table 2. For their computation we shall use Table 1,

where the numbers § -, dy.qz,qtare shown.

6.4. Iterations

Let us assume that on a certain iteration the functions gy, ¢ ys 4z
are fixed, and according to them (as was shown in Section 6.1) the
matrices (9.5.3) O, Qy’ Q. and matrices (9.5.15) O, Qy’ Q, were
computed. From the formulas (9.5.4, 9.6.1.15, 9.6.1.18) it follows that:

R, =R, 00, 00,00, =a,a;Ry 00, M
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From formulas (9.5.16, 9.6.1.15, 9.6.1.19) follows:

Rtyz =R, 00, OQy 00, =a,a;0R, OQy' @
From formulas (9.5.17, 9.6.1.15, 9.6.1.18) follows:

Rytz = Ry OQy 0Q; 00, = azatRy OQy . ©)
From formulas (9.5.18, 9.6.1.16, 9.6.1.18) follows:

Ry, = R; 00; 00, 00, = PazaR; 00, )

Then the matrix (9.5.19) is determined. Also on the same iteration the

functions U;, U T U, ate fixed, and according to them (as was

shown in Section 6.3) the vector-function (9.5.7) V is determined. After

this the vector-function ¢, is determined from the equation (9.2.17)
—(d _
Sqy + Rx(% +U oV, =0. )
X

And if on a certain iteration the functions ¢;, ¢y, ¢, and

Uta U X U - are fixed, then according to them the equation is
similarly determined

S E% UoV,=0
yqy+ yd—y + Oy— . (6)

6.5. Exponentially Distributed Charges Modeling
Let us consider first the case when the charges distribution function is
of the form

B = E(x,y)z aez‘x‘ﬂ/‘y‘ 1)
where J¥,) are negative numbers, and @ is the function's maximal
value. We shall consider only the domain X = 0, ¥20. Instead of
function (1) we may consider the function
== E(x,y): aeXV )
We shall consider the vector-functions ¢, , ¢y, ¢ yas known in
(6.2.1-8) and determined only in the 5, 6, 4 accordingly. Then

component-wise multiplication by the matrices Qy , Qy is described by
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formulas (9.1.5, 9.1.6), and the formulas (6.4.1-4) accordingly take the
following form

R, =a,aa,R,, 3
Ry, = ajaa, @R, @)
Ry, =azaa,)R,,, )
Ry =azaa, R, ©)

Further by (2) and Tables 6.3.2 we find
iy =05 OB =67 Jav=a,
y y

and similarly

Uyg =dy-

and then
Vi7 = Podsazay=,(x) = atazaypoelx’ )
Vg = 0oa1a,a,,E(x) = atazayaoezx. (8)

Substituting (3-8) in (9.5.19) and further substituting it in (9.6.4.6) and

reducing by a common factor a,a;a y» We get

(R, + BR. + R, )iy + Rx(%j

dx )1 =0, )

+10,0,0,0,0,0, p,, 0, T -

Let us substitute in this equation the vector-function ¢y in the form

determined in the column 1. Then this equation will take the form

ge? =0, (10)
where
(ZR + R, + R, + R, )+
g= - (11)
+10,0,0,0,0,0, p,, 0,

Le. g is a vector-function

T
g :%19 g2, 83, 84, 85- 86> 87- gS} (112)

with components
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Log1 =y - Bhy — cwe, + 30,1 ),
2.0 gy = (ﬁhx +hy +ewe), — Sgooyj,
3 g3=x—hyy+wsee, + BIp, )
4 gq=le.y+ Py + uoh, —cp, x ) (11b)
5. g5 =\Bey +e.x — poh, + s,y )
6. g6 =leyx—eyy—uwh, — g, ),
Togr=bex—e,y—Pe,+p,/c,
8. gg=ly+h,y+ph,—c,/u,

Here the values ya2 ﬂ , 0, Py ,0,are known, and
€x>€y,€; ,hx ,hy ,hZ NO» ,¢0 - unknown. Evidently (10) is equivalent
to equation

g=0. (12)
The equation (12) or equations system (11c) may be solved in symbol

form with respect to the unknown g = kxaeyﬂezahxvhyahzv¢oa¢o_

(for example, in system DERIVE — see the program of

section965.dfw). This decision has a bulky appearance here again is
not resulted. We shall notice only, that in this decision

O,0

bos =—g@2 2 —Zz) (122)

Thus, we have determined the form of vector-function ¢, and of

the vector of coefficients ¢ . The numerical solution may be found with

the aid of the function tCStMaXEXPOX.

o,0
From (12a) the product @,G =———— may be found. The reader
a

who doesn't accept the notion of magnetic resistance & of the
environment and of scalar magnetic potential ¢0 , may notice that for

g =, ¢0 =0 value of the product g¢0 is not determined and
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o,
may be assumed @,¢ =——2%—" from (12a). Then another paradox
a

arises: the magnetic current exists in the absence of permeance and the
scalar magnetic potential. Nevertheless, accepting in future the concept
of magnetic resistance and scalar magnetic potential, we shall find the
solutions of several problems possessing a physical meaning. (Note also
that the substances with great magnetic permeability ££, such as, for
instance, soft iron, behave approximately as magnetic conductors [38].)
The solution (6.2.1-8) may be also presented in the following form

+ _
xaEyaEzaHxaHyaHza¢a¢]:e%x W’Q‘Qz‘qt, (13B)
where ¢, q,, ¢, are specified in table 9.6.1.1. Consequently,
|Ex.Ey . E..H H , H,,0,6 F

XN G [Woer oo, Vg, Vs, P

CC> ~CC> ~C§S> ~ 88> ~8§»

(13a)

¥ \PSC > \PCS ]

sc»
or

4 _
Q= xaEyaEZ7Hx>HyaHz:¢7¢]:ezx W'Q'QZ'QI’ (138)
where g, ¢q,, qjare determined in the table 9.6.1.1. substituting this

solution to the Maxwell equation system (9.5.1), we get
g0oA =0, (14)
where

"d' denotes the operation of vectors component-wise multiplication.

T +
A = [\Psc:\Psc’lPss:\Pcsalycselyccaqjcc"{lss]' (15)
It is evident that from the condition (14) follows condition (12), which is
tulfilled. Therefore the solution (13) satisfies the equation system (9.5.1),

which was to be proved.

The program section965a.dfw in system DERIVE carries out
the specified transformations: makes substitution of functions (9.6.2.12a,
b, ¢, d) and (9.6.5.13a, 9.6.5.2) in system of equations Maxceaaa (9.5.1),
differentiates it, carries out reduction on the general multipliers (15) and
calculates functions which appear equal to functions (11s).

6.6. Periodically Distributed Charges Modeling

Here we shall consider the charges with distribution density by the y —
axis, of the form

E(y)=ae” 0
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(as in previous section), but with distribution density by the X -axis, of
the form

Z(x)= aSin(xx). @)

As the formula (1) coincides with formula (9.6.5.2) for Y -axis, so all
the reasoning of the previous section may be repeated up to deducing the
formulas (9.6.5.7, 9.6.5.8). In this case these formulas take the following
form:

V7 = Potra a,Ey(x) = atazaypOSin(;(x), 3)
Vg = 000,05 (x) = atazayO'OSin(;(x). ey
Then, similarly to formula (9.6.5.7) we get:

(R, + BR. + R, )iy + Rx(%j

+10,0,0,0,0,0, p,., 0, T -Sin(3x)

Using complex numbers, this equation may be written as:

«?Ry + fR, + a)Rl‘)Jr xR, )]x O
< _0 )
+[0,0,0,0,0,0, 95,5, ©

The complex vector ¢y may be computed as the solution of linear

N

=0. (5)

equation system (6) with complex coefficients with regard to the
unknowns ¢ = kx,ey,ez,h h hz,(00,¢0_ - see function

testMaxSinX. So in this case also the form of vector-function ¢ X

and coefficients vector ¢ are being determined.

6.7. Modeling with Charges Distributed According to Dirac
Function

Here we shall deal with the charges with distribution density by the ¥
—axis in the form (9.6.6.1) (as in previous section), but with distribution

density by the X — axis of the form

2(x)=al'(x). 1)

where A" is a Dirac function (see section 6.6). It is hard to imagine a real
system with such distribution density, but still we shall consider such
mathematical problem having in view that in future it will be modernized
and "brought in to land". As the formula (9.6.6.1) is similar to formula
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(9.6.5.2) for y —axis, all the reasoning of section 9.6.5 may be repeated
here till formulas (9.6.5.7, 9.6.5.8). In this case these formulas will take

the

following form
V1= poatazayax(x) = atazaypo/y(x)’ e
Vig = 0oa1a,a,=,(x) = atazayO'O/%'(x). ?3)

Then, as for the formula (9.6.5.9) we get:

dq
(R, + BR. + R, )iy + Rx(d—;j Y

)
+10,0,0,0,0,0, p,. 0, - 2'(x)

Equation (4) is a differential equation with perturbations in the form
of Dirac functions. A method for solving such equations was given in the
section 6.6. Let us now use this method.

Example 1. Let us consider equation (4), setting the values of
@,7, B, py,0,- To solve the equation (4), we shall use the function

DEdirak, mentioned in the Example 06.6.9c. The function

testMaxDiracX contains addressing to this function and
performs the computation for

®=2500, y=6000, #=200, p,=5-10* o,=2-10°>.  The
result is given in Figure 1, where the sought functions are shown.
The main harmonics of these functions has circular frequency
¥ =6000 - in the first window a sinusoid graph is given as a dotted

line for comparison.
Fig. 2 show the computation errors for each of eight Maxwell
equations determined by formula

d
£y = (yRy + SR, + wR, )]x + Rx(%) ©)

X
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.. de, dh, .
In the derivatives R p in the solution for x =0 there
X X

appear Dirac functions, which is explained in 6.9a — see formula (A).
They have the following value

dex o _Po dhx ;i G0
dx £ dx y7;

©)

Besides, for X =0 the functions Exs H x have non-zero values —

there is a jump in these functions values, namely
LW, z,t
E . (x=0,y,z,t)= _(y;,)’

()
Hx(x = anazat) = _M'
Y7,
These remarks must be held in mind in future in the process of
solving Maxwell equations system with Dirac functions.
So, in this case the presented method also allows to determine the

form of vector-function ¢y and vector of coefficients ¢ .

Example 2. In the Example 1 it was assumed that the electric
conductivities &, .9y,192 and magnetic permeances Gy ,& 126z had
different values along different axes. In this Example we shall assume
them to be equal. The result proves to be more symmetrical — see
Figure3, built by the function testMaxDiracXnow. The
petiodical functions have circular frequency ¥ = 6003.
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Fig. 3.
Table 1.
1 q qx qy q:z qt

q=Ex [ex |~ Cos(jx) e” Cos(fz) | -Cos(ar)

q2 = Ey €y |- Sin(;(x) e? COS(ﬂZ) -Cos(at)
q3 = EZ € - Sin(;(x) e? -Sin(ﬂz) -Cos(a)t)
q4 = Hx hx - Cos(;(x) e” Siﬂ(ﬂZ) -Sin(a)t)
gs=H, | h, |=Sin(zx) | v | Sin(sz) | -Sin(er)
g6 =H; | h, |~ Sin(jzx) e -Cos(fz) Sin(cot )

q7=¢ @o |~ Sin(zx) oW | -Cos(px) Sin(wt)
q8 = ¢ ¢0 - Sin(zx) e? -Sin(ﬂz) -Cos(at)
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So
clectroconductivities 4, ugy ,¥, and magnetoconductivities Gy,& 156z

when solving the equation (4) in the case of equal

b

the functions ¢, assume the form shown in Table 1 (in it

q.9,95,4; are taken from Table 6.2.1).

Note the important difference between this problem and problems
considered in Sections 9.6.5 and 9.6.6. There the intensity functions and

potentials ¢y ,{q y assumed the same form as the given charge

functions (9.6.2.15). So if this function was an exponent (9.6.5.2), then
the functions dx-9y had the same form - see. (9.6.5.13). And if this

function was a sinusoid (9.6.6.2), then the function ¢, assumed the
form of sinusoid. In this section this function is a Dirac function (1). But

at the same time the functions ¢, were sinusoids. Besides, (as we

de. dh,
already mentioned) the derivatives , —— from two of these
dx = dx

functions assumed the form of Dirac functions — see. (6). Thus, the

charges that change as Dirac function along the axis OX, excite the same
electromagnetic waves, as the charges that change periodically along the

same axis OX. But, besides, on the plane 0y these (changing as Dirac
function along the axis 0X) charges create a jump of intensities
€x> hx in the point X = 0, which is determined by formula (6). From

this it follows that in this case the Dirac functions (9.5.1.7, 8) are split
into couples of equations, taking the following form:

for x=0
t
Ey(x=0,y,z0) =~ P051) ®
'
Ho(x=0,y,2,0=-"050) o)
Y7
for x >0
dE
_dE, _dEy dE; 0
dx« dy dz
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dH, dH, dH
X 4 Y + z

dx dy dz

Thus, when solving the equation (4) in the case of equal electric

=0. (11)

conductivities Sx,gy,gz and magnetic permeances §y,& 1,6z the

functions ¢ assume the form given in the Table 1.

Substituting these functions to the Maxwell equation (9.5.1.1), we find:
- Q’Zy + :Bhy Fm(lx)
+ (ewey — 99, 1 Xos (zv)

It is easy to see that this equation falls into two independent equations
with respect to the components of electric and magnetic fields.
Amasormamoe  3aMEYAHHME MOKHO  CAEAATh  OTHOCHTEABHO  BCEX
ypaBHeHU! B cucteme ypasHeHuit (9.5.1) ¢ yaerom (7-10).

The program section967.dfw in system DERIVE carries out the
specified transformations: makes substitution of functions from Table
6.2.1 in system of equations Maxceaaa (9.5.1) and differentiates it. Thus
it is possible to be convinced, that the same may be said about all the
equations in the equations system (9.5.1). Thus it follows that under the
conditions of this problem the electric waves may originate in the
absence of magnetic waves and vice versa.

e’ Sin(ewt)Cos(fz) =0.

6.7a. Magnetic wave in simulation with charges distributed

according to Dirac function

Let us consider the Maxwell equations system (9.5.1) for the functions
presented in the Table 9.6.7.1, under the condition that only magnetic
charges are present. In this case only a magnetic field will arise, and the
equations system (9.5.1) will assume the following form:

(.7 + By, )= 0. 1)

(hy B+ 2h.)=0, o)
(i, - =0, ©)
pohy —cyd, =0, 4)
Hohy, — gy, =0, 5)
:ua)hz + gﬂ¢o =0, ©)
Xhy = yhy, = Ph, =0, [1=0. )
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In these equations the multipliers Sin(;gx)eWSin(a)t)Cos(ﬂz) are

not shown for brevity sake.

From (9.6.7.8) it follows that

hy=0,/u. )
From (1, 2, 3) we find:

h, =—hy, By, (11)

hy ==he B/ % . 12)

hy, = hy y/x. (13)

From (4, 5, 6) we find:
Sy =hy poo/ x =h, po|y =—h, po/B. (14
From (8, 11, 12, 13) for X > 0 we get:

X=" =" |"h =0 (15)

X =" 62 +ﬂ2, (17)

Thus, for the given 0'0,7,,8,0) according to (9, 12, 13, 14, 17) all

or

the parameters of magnetic wave hx,hz,hy,g¢0,}{ may be

accordingly found

6.78. Electric wave in simulation with charges distributed

according to Dirac function

Let us consider the Maxwell equations system (9.5.1) for the functions
presented in the Table 9.6.7.1, under the condition that only electric
charges are present. In this case only a electric field will arise, and the
equations system (9.5.1) will assume the following form:

(ezy+ﬂey)=0. )

(ex B+ ye;)=0, ®)
(ze, —7e, )= 0, 3)
puwey, —0yp, =0, 4)
Hawey, —Oyp, =0, ©)
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e +6fp, =0, ©)

xex —yey = fPe; —p,/e=0. ©)
From (9.6.7.9) it follows that

ey =pPo /€. )
Also, as well as in section 9.6.7a, we find:

eZ:_x:B/Z’ (10)

ey=exr/x a

Ip, =exe0/ y =e, e0/y =—e 0/ B. (12)

zzx/@ +5%, (13

Thus, for the given p,,7, [,@ according to (9-13) all the
parameters of magnetic wave Ay, h,,h ysS @y, ¥ may be accordingly

found

6.8. Modeling with Charges Distributed According to Step
Function

Here we shall deal with charges with distribution density by y-axis of
the form (9.6.6.1), but distribution density by the X —axis of the form
2(x)=al(x). 1)
where A — unit step (see section 6.4). As formula (9.6.6.1) is similar to

formula (9.6.5.2) for y -axis, all the reasoning of section 9.6.5 may be
repeated here, up to getting formulas (9.6.5.7, 9.6.5.8). In this case these
formulas assume the following form

Vy7 = poatazayax(x) = atazaypol(x)’ @)
Vg = 0pa1a,a,E(x) = atazayaoxl(x). 3)

Then, similarly to formula (9.6.5.7) we shall get:
d
(R, + BR. + @R, )y + R, (—;;

+10,0,0,0,0,0, p,, o, T - 2(x)

Equation (4) is a differential equation with perturbations described by
step functions. The method for solving such equations was given in
section 6.4. Now we shall use this method.

=0. @
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Example 1. Let us consider equation (4), setting the values
@,7, 3, py,0,- To solve equation (4) we shall use the function

DEjumpRC, mentioned in  Example 06.4.8. Function
testMaX]ume contains  addressing DE)umpRC and
performs the computation with

@ =2500, y=6000, =200, p,= 5-104, o, = 2~105.

The result is given in Figure 1, where the sought functions are
shown. The main harmonics of these functions has circular frequency
¥ =6000 - in the first window a sinusoid graph is given as a dotted

line for comparison. Figure 2 shows the computation errors for each
of the eight Maxwell equations defined by the formula (9.6.7.5)

ex(x) eyix) ez(x) , w10 TR

100

-100
0
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Step functions appear in tee derivatives of the sought function with
respect to y which was explained in Example 6.4.7. As the result the
nodes of main harmonics for these derivatives are displaced from the
origin — see Figure 3, where these graphs are shown.

So in this case also the presented method enables to determine the

form of vector-function ¢y and the coefficients ¢ .

6.9. Modeling with Charges Distributed Non-uniformly

Let us now consider the case when the charges distribution is
described by multistep trapezium (or, for instance, by square pulse). In
this case we ought to use the method described in section 6.5. The fig. 1
shows the result of computation, similarly to Example 9.6.8.1, but for

trapezium charges distribution. (see the function testMaXTrapX).
One can see that the electromagnetic fields amplitudes depend
significantly from the type of charges distribution.

impuls

200 , 200 100

o] S RUTAC, ) SRS AP (L
! : .

0 : 10
v st
R -1 S --- - Y]

-200

_____________

' 200 ' 150 ' 0
0 002 0DO0f0 o002 004 0 D002 004 O 2002 004
y 10
5

]

1000 500 400

500 200

o
200 -

500
-500 ]

400 |----

oo B00 -10
0 ooz o004 0 02 004 0 002 004 0 0.0z 004
Fig. 1.

-1000

For example, if all the other conditions are the same, the amplitude

h » in equal to
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60 for step function distribution
500  for three-step trapezium distribution,

50000 for distribution described by Dirac function (see
accordingly 9.6.8.1, 9.6.9.1, 9.6.7.1).

Trapezium distribution of charges may be considered an
approximation of exponential distribution, examined in section 9.6.5.

6.10. Discussion
In general, the scheme of the method use is as follows:

1)
2)

3)

4)

5)

An assumption about electromagnetic waves form as a function
of three coordinates (for instance, V, Z,1) is made.

Matrices (9.5.3), (9.5.15) and vectors (9.5.7, 9.5.9) based on this
assumption are computed.

The form of electromagnetic waves as a function of the fourth
coordinate (for instance, X ), with the use of the known matrices
and vectors is determined. If the elements of the named matrices
(9.5.3), (9.5.15) are not equal (by absolute value), then we get
damped oscillation (in space and/or in time). It is significant that
the algorithms of section 6, applied to the determination of the
functions types (in the case when they are not smooth functions),
enable us to get an analytical presentation of these functions (in
the form of power series). In the previous examples the same way
was used to derive the frequency of the main harmonics of the
sought functions.

The obtained functions are substituted to the Maxwell Equations
system and the parameters of these functions stux (such as the
amplitudes and the damping coefficients) are computed. In the
case when they are not smooth, the parameters are determined
(using algorithms of section 6) simultaneously with the functions
form determination.

When the form of the electromagnetic waves as a function of
coordinate X is obtained, the assumptions of p.1 and so on, may
be specified by the same method.

The method is applicable also in the case of heterogeneous space (see
section 9.4.5).
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7. Example. Superpositions of
Electromagnetic Waves

In the cases discussed above the electromagnetic fields intensity
functions may be presented in the form (9.2.11). Now we shall discuss
the case when the electromagnetic fields intensity functions may be
presented as a superposition of the functions (9.2.11).

1. Electromagnetic oscillations with exponentially distributed

charges. Case 1.

Let us return to the problem discussed in the section 9.6.5where the
charges density distribution functions (9.6.2.9, 9.6.2.10) with respect to
arguments X, V, Z, 1 , are known:

P = po‘{lccelx_wy ) @)
o= GO‘PSSerJrW. )
Table 1.
Variants
q _

1 2 3

q =E ey | Yec Wy Q

qr =E y | €y Y. Wi Q

qgy=E, | e, | Y Wy, ¥

q4 = H X hx \'Pss "Pcc Q

qs =H % hy Wi Wee Q

g6 =H, | h, | Y Wes ¥

q7 =¢ ?o | se Wes ¥

qg = ¢ 9y | Yes Wy, ¥

P Po | Yee Vs Q

o Oy Vs Wee Q
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Here we, as distinct from (9.6.2.12), shall define the functions ¥ in
the form

.. = Cos(wt )Cos(fz), (22)
¥, = —Sin (ot Bin(sz) (2b)
¥, = Cos(ot Bin(z) (20)
¥, = Sin(wt )Cos(fz) (2d)

The intensity and potentials functions from arguments X, V, Z,I are

defined by (9.6.13a), i.e.
Ey.Ey.E. . Hy H  H,.0.6
\PCC > \PCC > \Pcs > \Pss s | (3)
Y

¥ sc» \PSC > ‘PCS

eZX+W.q—.|:
S8

where real numbers
g =fx-€y-ezh,hy 0, 0,.0, 4)

For clearness sake in the Table. 1 the functions W, included in 1,2, 3),
are enumerated— see version 1.
To show what is the form of Maxwell equations (9.5.1) in this case,

let us consider a vector-function (9.6.5.11a) from %, }/,,3, @,0,,0,,

exs€y,es, e hy 04,8, e,

T
g = rgla £2- 83, &4- 85, 86> 87> 88, O
Here we, unlike (9.6.5.11b) shall define the functions (5) in the form

L gy =y + Bhy, + coey + 90,1 )

2. gy =\ Phy—hy +cwe, + 90,y
3 g3 =1 —hy —wee, + BIp,
4 g4 =le,y+fey, — uoh, — o, ) (52)
5. gs =\ pex—e.x— poh, —gpyy )
6. g6 =le,x—exy+uoh, — peg, )
Togr=bexr—ey—pe.+p,/c)
8. gy = x+hyy+ph,—0c,/u,
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Turning to the remark at the end of Section 9.6.1, we must note that

in this case the matrices RxaRyaRzaRt differ from the matrices given

in Section 9.5, by the signs of some elements. The differing elements are
denoted below by darkening.

R, R,
1 0, 1
2 1 —@
3 1 -1
4 ~—Cx !
5 1 5y
6 1 -1
711 -1
8 1 1
RZ Rt
1 1 &
2 -1 - &
3 0, 3
4 -1 —Hu
511 7
6 —6z —H
7 -1
8 1

We shall define similatly to (9.6.5.15) also the vector -function
Al = B0 W, W, Vg W, W, W

sc> Tsco Tsss> Less Tess cca\Pcce\Pss]' ©)
By substituting the functions (1, 2, 3) to the Maxwell equations system
(9.5.1) we may see that

g0oA =0, ()

where "O' the operation of component wise multiplication of vectors.
After reducing each equation from (7) by multiplier (6) this equation
system will be transformed into equation system

g=0. ®)
The program section971a.dfw in the DERIVE system performs

the indicated processing: substitutes the functions (9.7.1.2a, b, ¢, d; 3) and
(9.6.5.2) into the Maxwell equations system (9.5.1), differentiates this
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system, cancels the common factors (6) and computes the functions
g =0, which turn out to be equal to functions (5a).

For the given parameters &, 1, 3,&, characterizing the domain of
waves and currents distribution, and given ¥,7,[,®,p,,0,, the
numbers €x>€y,€; ahxahy ,hZ NO» ,¢0 may be found as the solution of

linear equation system (8) or, which is the same, equations system (5a).
Thus, if the charges densities are distributed according to functions (1,

2) with known y,7, ﬂ ,@,P,,0,, then there emerge electromagnetic
fields and scalar potentials, enumerated in the table 1 (version 1), and the

parameters €x>€),€;, h SR h L h 2P0 » ¢0 are functions

Yo ﬂ ,@,P,,0,, determined by solving the linear equations system

(5a).

2. Electromagnetic oscillations with exponentially distributed
charges. Case 2.
Let us assume now that, unlike (9.8.1.2, 9.8.1.2),

p = po s 1)
oc=0,¥, et )

Then by analogy with the above said we may find the functions ¥,
taking the values enumerated in the Table 1 (version 2). The parameters

ex,ey,ez,hx,hy,hz,(00,¢0 are functions of Z,y,ﬂ,w,po,ao,
determined also from the linear equation system (1.5a). But in this case
this equations system follows from the equations system (1.7), where,
unlike (1.0), the vector

Al = ot [¥

CS»

¥

CcS»

b 4

ceo

g

SC»

\PSCW\PSS’\IISS’\IICC]' (3)

3. Electromagnetic oscillations with linear movement of
exponentially distributed charges.
Let us denote

Q= Cos(a)t + ,Bz) 1)
¥ = Sin(wt + f2) ©

Since

Cos(at + fz)= Cos(wt )Cos(z)— Sin (et Bin(5z)
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Sin(at + £z)= Sin(et )Cos(5z )+ Cos(wt Bin(Bz),
from (1, 2, 9.6.2.12) it follows that
Q=Y. + ¥, (3
Y=Y, +Y¥,. )
Further we shall denote all the quantities for cases 1 and 2 by one or
two strokes correspondingly. Let us assume that

p=p+p" (52)

o=0'+0". (5b)
Then

L= pOQe%x+W> ©)

o= O'OQerJrW. ©)

Physically it means that the charges are grouped around the Z axis,
they move along this axis and change their value with time. In the
physical sense it means that the charges are grouped beside the Z axis.

Owing to (3, 4, 5) and the system’s (9.5.1) linearity, the summary
electromagnetic field for this case may be found the sum of solutions for
cases 1 and 2. As the system (9.5.1) is linear, the summary
electromagnetic field may be found from the sum of solutions 1 and 2.
Therefore, in this case

IExaEyaEZ:HxaHyaHza¢a¢J:

Y G [0,0,P,0,0, %, P, ]

where real numbers ¢ are determined by (9.7.1.4) — see also Table 1

(72)

(version 3).
From (1.7) we get:

go(A"+A")=0, ®)
where A’, A" are determined correspondingly by (1.6) and (2.3). But
A=AN+A"

where, on account of (3, 4),
AT e o 0w, 0 0 v v v
Therefore in this case also the parameters

ex,ey,ez,hx,hy,hz,(oo,qﬁo are functions of )(,j/,ﬂ,a),po,O'O,

which are also determined from the solution of the linear equations
system (1.52).
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The program section9731a.dfw in the DERIVE system
performs the indicated processing: substitutes the functions (1, 2, 7a) and
(9.6.5.2) into the Maxwell equations system (9.5.1), differentiates this
system, cancels the common factors (9) and computes the functions

g =0, which turn out to be equal to functions (1.52).

The equations system (1.5a) may be solved in symbolic form (for
example, in the DERIVE system (see program section9732.dfw)
with respect to the unknowns ¢ = I_ex,ey,ez,hx,hy,hz,¢0,¢0 _. This

solution has the following form:

— — )
o = —PoX. e, = Pol . eZ:poﬂ, p=Lo?
ac ac ac
B (10)
— O, — O O, o,
h, = 07(, hy: 07/’ h, ==0F  4==0=
au au au ag
where
2 2 2
a=p"-x"-r. (1)
For a given @ from (10) we may find the products
4 o,
(00192—'00 s PG =— 9, The first of these formulas
a a

determines the product of electric resistance & of the environment by
the electric scalar potential ¢, which creates no questions. The second

of theses formulas determines the product of magnetic resistance § of

the environment by magnetic scalar potential ¢0 . In the section 9.6.5 we

have already discussed the question of how this values may be
interpreted.

Thus, the functions (6, 7) cannot be represented in the form of
(9.6.2.11). Nevertheless the presented method may be applied in this case
as well [29].

Turning to the physical interpretation of this problem we must note
that that the discussed Maxwell equations system (9.5.1) in this case
describes the situation when the charges are concentrated on the z axis,
and move (as a current) along this axis. The magnetic charges may be
imitated by the poles of magnetic dipoles. In this interpretation the

following thing is interesting. Along the 0z axis an electromagnetic field
H Z,EZ appears, as the consequence of wave distribution of the
charges along the Zaxis (independent of the form of charge density
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distribution along the axes 0X and 0)). This electromagnetic field is a
longitudinal electromagnetic wave. Note that the existence of such waves
does not contradict the Maxwell's electrodynamics [30]. The experiment
showing existence of longitudinal waves, is described in section 9.8.5a.

3a. Electromagnetic oscillations at compound motion of the

exponentially distributed charges

Let us consider without deduction one more case of moving charges.
Let us denote:

Q = Cos(wt + y + fz) (1)

Y= Sin(cot + o+ ,Bz), )
Let

0= p,Qet’, (3

oc=0c,Ve¥, “

Ey.Ey.E. . Hy H  H 0.6

TP, Y, P,Q.0,¥,.Q]

where real numbers ¢ are determined by (9.7.1.4).

®)

Physically it means that the charges are grouped around the Z axis they

are moving along axes 0y and 0z, changing by value with the time. In
this case

g0oA =0, (6)

where _
AT e w0 0 0w % O ¥. 0

The program section973a.dfw in the DERIVE system performs
the indicated processing: substitutes the functions (1-5) into the Maxwell
equations system (9.5.1), differentiates this system, cancels the common

factors (7) and determines the functions @ =0. Then the equations
system @ =0 may be solved in symbolic form with respect to the
unknowns ¢ = kx,ey,ez,hx,hy,hz,¢0,¢0 - This solution has the

following form:
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ex:—pOZ’ ey:poa, eZ:poﬂ, o= Po?
as as as ad
-0, -o,y -o,[ - 0,0 ®

hy=—20% h,=—"00 j,=—0F g=_—0=
au au au ag

whetre
2 2 2
a=p"+y"—x". ©)

4. Magnetic oscillations with charges distributed according to

Dirac function. Case 1.

Let us return to the problem discussed in Section 9.6.7a, the magnetic
charges density distribution function is considered known

!/
o =0,V A (x)e”, 0)
which follows from (9.6.2.10, 9.6.6.1, 9.6.7.1). here we again, unlike the
(9.6.2.12), shall define the functions ¥ in the form (9.8.1.2a,b,c,d)

For clearness sake, in the Table 2 the functions W, included in (1,
9.8.1.3), are enumerated — see version 1.

Table 2.
Variants

9 q dy 1 2 3
q4 :Hx hx —Cos(;(x) Y Y. Q
qs =H y h v |~ Sin(ix) Fs Ve | Q
g6 =H; | h; |~ Sin(7zx) Wy, Ve k4
qs = ¢ ¢0 B Sin(;(x) Wes Wi k4
o O, A'(x) Vs Yee Q

The Maxwell equations (9.5.1) in this case take the form (9.6.7a.1-8),
and their solution is (9.6.7a.9, 9.6.7a.12, 9.6.7a.13, 9.6.7a.14, 9.6.7a.17).

5. Magnetic oscillations with charges distributed according to
Dirac function. Case 2.
Let us assume now that unlike (9.8.4.0),

0 =0, A (x)e”, 1)
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Then by analogy with the previous discussion, we may find ¥, which
assume the values enumerated in the Table 2 (version 2). The Maxwell
equations (9.5.1) in this case also take the form (9.6.7a.1-8) ), and their
solution is (9.6.7a.9, 9.6.7a.12, 9.6.72.13, 9.6.7a.14, 9.6.7a.17).

6. Magnetic oscillations with linear movement of charges,

distributed according to Dirac function

Reasoning in the same way as in Section 9.8.3, and bearing in mind
formulas (9.8.3.1-5, we see that

o =0,Q1 (x)e”. (1)
In the physical sense it means that the charges are grouped beside the
z axis and are changing their value with the time. The along distribution

of the charges along the X axis is described by the Dirac function, which
means that there is stepwise change of the density distribution the axis

OX.

In view of the system's (9.5.1) linearity, the summary electromagnetic
field may be found from the sum of solutions for cases 4 and 5. The
Maxwell equations (9.5.1) in this case also take the form (9.6.7a.1-8).

Therefore, in this case the functions W assume the values enumerated
in the Table. 2 (version 3). The solutions of equations (9.6.7a.1-8) here
also certainly have the form (9.6.7a.9, 9.6.7a.12, 9.6.7a.13, 9.6.7a.14,
9.6.72.17), i.e.

1= +5, @
hy=0,/u, 3)
h,=h. B/ x, Q)
hy=hey/x, ©5)

5y =—hy pw/x =—h, po/y =—h, po/ . ©
Thus, for given T,,7,3,@ by (2-6) all the parameters of magnetic
wave hx, h,, I’ly Na ¢0 , ¥ accordingly, may be found.

Let us note also that for @ =0 the equations (2-5) describe a
magnetostatic field.

So, the function (1) cannot be represented in the form (9.6.2.11).
Nevertheless, the presented method is applicable in this case also.

Similar formulas may be derived for electric oscillations.
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Turning to the physical interpretation of this problem, we see that in
this case (as in the case 9.7.3) along the axis 0Z a magnetic field z s

originated, and it is a longitudinal magnetic wave (in 9.7.3 there was a
longitudinal electromagnetic wave). Furthermore, in this case due to

stepwise change of density distribution of charged along the axis OX a
magnetic field H . appears, which is a stationary wave. Indeed, the

nodes of this wave on the 0x axis do not move with the time. As in this
case the electric field is absent, so there is no exchange of energy between
magnetic and electric fields, as it occurs in the known stationary
electromagnetic waves. Therefore, in this case we have an yolatile
stationaty magnetic wave.

Above we had noted that for this case there is a symmetry of electric
and magnetic fields. Because of disconnectedness of magnetic and
electric waves in an electromagnetic wave (which appears if there are

both electric and magnetic charges) along the ox axis there also appear
two disconnected electric and magnetic stationary waves. They may have
different periods, but if the periods coincide, the electric and magnetic
waves components will be in-phase. It may be seen in the example of the
Section 9.6.7.1 and generally in the examples of Sections 9.6.7, 9.6.8,

9.6.9.
It is notable that in the known stationary wave the magnetic and

electric components of the wave have phase displacement of 7/2.
These questions are more in detail considered in [40].
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8. Example. Electromagnetic radiation of the
localized charges.

1. Problem definition

Let us consider a problem where the vectors ¢,,q y>qz-q; are of

the form presented in Table 1.

Table 1.

1 9 qx 4y | 4z qt q . (calc)
aq=E, |ex | Exi (x) o | o2 | Coslar) |- Cos(zx)
92 =E, |e, | Eyn () | g | B | Cosler) | -Sin(x)
@=E;, |e; |Ex (x) | P Cos(at) | - Sin(yx)
qa=Hy | hy | H xfx(x) | Sin(wt) | - Cos(zx)
qs=Hy | hy | Hyp ()| o | o | Sinler) | =Sin(xx)
go=H, | h, | Hpx() | o | of | Sinfer) | - Sin(ex)
gr=0 |0, |2:C) [ [ [-Sin(e) |-Sin(x)
as=0¢ |, |0x®@) [ [ B |-Cos(ar) | -Sin(x)

At that
E, = e, Cos(wt ? - Ey i (x), (1)
E, = eyCos(a)t)eW“L'BZEyﬁc (x), ©
E. = —eZCos(a)t)eW“L'BZEZﬁC (x), 3)
H, = thin(a)t)eW+'BZHxﬁC (x), @)
H, = hySin(a)t)eW+'BZHyﬁc (x), 5)
H, = —hZSin(a)t)eW+'BZHZﬁC (x). ©)

0 =—@,Sin(wt e g 1 (v), 0
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¢ =—¢,Cos(ar e g5 (x),

p = p,Cos(wt e? =
o =o,Sin(w 2

where

ex,€y,ez, 0,y Ny, 00,05, P0,00
are real numbers,
Exf’fo=¢xfo¢xf
are unknown functions,
=22, ()

a known function, whose form will be discussed later.
The problem, as before, is as follows: for certain unknown

C)

©)
(10)

(11)

(14)

(15)

coefficients from manifold (11), for certain function & (15), by Maxwell
equations system (9.5.1) find the form of functions (14) and the

unknown coefficients for manifold (11).

2. Computing vectors (9.5.7, 9.5.9)

Table 2.
7 8
U | p-or 0719 o - o (9.7.1.10)
U | Po %o
Uy | Ex(%) Ex(x)
Uy |e?” W
U, | iz
U,; | Cos (o) Sin(ot )
iy | forE®d | $ds(E(x)dx
X X
y | ay -see (9.6.1.7) ay -see (9.6.1.7)
Uy, | a, -see(9.61.7¢) a, -see (9.6.1.70)
Uy | @y - see (9.6.1.17) a; - see (9.6.1.17)
Ve | araza,E(x) a;a,a,E(x)
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Let us take the vectors (9.6.3.39-41) and build for this problem a
Table 2, similar to the Table 9.6.2. For known functions ¢ and U the
numbers (9.5.5) may be found. They are shown in the Table 2. To

compute these numbers we shall use Table 1, showing the numbers ¢,

qyan ’Qt

3. Computations
From formulas (9.5.4, 9.6.1.5, 9.6.1.18, 9.6.1.7a) follows:

R, =R, 00, 00y, 00, = azaya;R,- @)
From formulas (9.5.16, 9.6.1.5, 9.6.1.19, 9.6.1.7a) follows:

RtyZ = Rt OQt OQy OQZ = azayata)Rt . (2)
From formulas (9.5.17, 9.6.1.6, 9.6.1.18, 9.6.1.72) follows:
From formulas (9.5.18, 9.6.1.7b, 9.6.1.18, 9.6.1.4) follows:

Rzly =R, 00, 00 OQy = ﬁazayatRz‘ 4)

Then the matrix (9.5.19) is determined. Furthermore, on the same
iteration the functions U, U y U, are being fixed, and by them (as
shown in Section 6.3) the vector-function (9.5.7) V. is determined After

this vector-function ¢, is found from the equation (9.2.17)

Seqy + Ex(%) +U oV, =0. 5)

4. Modeling of wave with electric and magnetic charges
exponentially distributed along ), Z axes and with Dirac

distribution along X axis.
Similarly to Section 9.6.7 we shall consider the charges with density

distribution along the X axis:

2(x)=2"(x). (1)

r . . . . . . . .
where A’ is a Dirac function, and exponential density distribution along

Y and Z axes (as above). Thus,
p = poCos(@ e F 2 (x), (13
o =o,Sin(w e? 1 (x). (18)
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By analogy with (9.6.7.2, 9.6.7.3) we find:
Vy7 = poatazayax(x) = atazaypol'(x)’ 2
Vig = 0oa1a,a,E,(x) = atazayaoxl'(x). ?3)

Then, by analogy with formula (9.6.5.9) we shall get

(R, + BR. + R, )iy + Rx(‘;ﬂj

X )r=0, 4

+10,0,0,0,0,0, p,. 0, - 2'(x)

The equation (4) is a differential equation with Dirac functions as
perturbations. A method for solving such equations was given in Section
6.6. Let us apply this method.

Example 1. Consider equation (4) and set the values of
@,7, B, py,0,- To solve equation (4) we shall use DEdirak

function. The function testFloid contains access to this function

and performs the computation for
w=50, y=70, =170, p,=5-10*, &,=2-10".
w 10y () w 1082 feix)
4 : 4 04 .

--.02 --

h.02

04 '
0Z O 01 02
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The result is given on Figure 1, where the required functions are

shown. The periodic functions have circular frequency ¥ =99.

Thus, when solving the equation (9.7.5.4) the functions (9.7.2.14) take
the form shown in Table 9.7.2.1 — see column ¢y (calc). Substituting
these functions to the Maxwell equation (9.5.1.1), we find:

(B, — By Pin()
+ (cwe,, — 9, x YCos(xx)

Evidently, this equation splits in two independent equations with respect
to the components of electric and magnetic fields. The program

section984.dfw in the DERIVE system substitutes the functions
from table 6.2.1 into the Maxwell equations system (9.5.1) and
differentiates this system. It is now obvious that the same may be said
about all equations in the equations system (9.5.1). Hence it follows that
under conditions of this problem electric waves may appear in the
absence of magnetic waves and vice versa.

e Cos(at) = 0.

4a. Modeling of wave with magnetic charges distributed

periodically along the ), I axes and with Dirac distribution

along X axis.

By analogy with Section 9.8.5 we shall deal with charges with density
distribution along the X axis of the form of Dirac function (9.8.5.1), but
(unlike Section 9.8.5) with periodical density distribution along the axes Y

and z. To put it more precisely,

p = poCos(@t )Cos(p )Cos (B2 W' (x). )
o = o,Sin(wt )Cos( )Cos(Bz ' (x). 2)

By analogy with Section 9.8.5 it may be shown that in this case all the
equations (9.5.1) fall into two independent equations with respect to the
components of electric and magnetic fields. The program

section984a.dfw in the DERIVE system contains the solution of
equation (9.5.1), performs substitution of this solution into Maxwell
equations system (9.5.1) and differentiates this system. The above said
remark is being confirmed here.

As opposed to (1, 2) we may consider another couple of equations for
electrical and magnetic charges density distribution:

p = poCos(@t )Cos(py JCos(Bz W' (x), ®)
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o = o ,Cos(wt )Cos(y )Cos(Bz W' (x). )

The distinction is only in the fact that these distributions are cophasal.,
and in this case it is easy to show that all the equations (9.5.1) break up
into two independent equations with respect to the components of

electric and magnetic fields. The function section984a.2.dfw

(similar to function section984a.dfw) confirms the above mentioned
remark..

5. Modeling of wave with magnetic charges distributed
exponentially along the axes ), 7 and with Dirac function

distribution along X axis

Let us take now the equations system (9.5.1) in Section 9.8.4 under
condition that there exists only a magnetic field. Thus, for example, the
equation (9.8.4.1) is corresponded to by the equation

(Bhy — .y Bin(r)e? % Cos(i) = 0. M

corresponds in this case to the equation (9.6.7a.1). In future in the
equations  of  this  system the factors of the type

Sin(e)e? P Cos(awr) will not be shown.

(heB— yh.)=0, ®)
G — 2y =0, o
HOhy + 6y =0, @
HOhy, +Syd, =0, ©)
Hoh; + ¢, =0, ©)
Xy —yhy, = Ph. — 0, [1=0. )

So, in this case the magnetic wave changes in time and space along the

X axis, and along the axes ), Z itis limited by function e” +h % The

solutions of equations (1-8) are determined, as in Section 9.7.6, in the
following form:

2=+ 5%, @)
hy =0,/u, 3
hz:hxﬂ/Z> 4
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hy, = VX )
5@y =—hy po/ x =—h, po/y =—h; po/B. ©

As also in Section 9.7.6, one may note that in this magnetic wave, due
to stepwise change of the charges density distribution along OX axis,

there appears a magnetic field H x> Which is a energy-dependent

standing magnetic wave.

For @ = 0 the equations (2-5) describe a magnetostatic field.

5a. Modeling of wave with magnetic charges periodically
distributed along the axes ), I and with Dirac distribution

along the X axis

Let us consider now Maxwell equations system (9.5.1) of Section
9.8.4a under condition that there exists only the magnetic field. In this
case, by analogy with Section 9.8.5 the following equations system is true:

(. —h,B)=0
(hxﬁ + xh, ): 0

(yhx+;(hy)20

pHohy +cxd, =0 M
;ua)hy B g7/¢0 =0
/ua)hz o gﬂ¢0 =0

Xhy _7hy - ph; _GO/IUZO
The solution of equations (1) are determined (as also in Section 9.8.5)
in the following form:

2= +B, )
hy=0,/u, 3)
hzzhyﬂ/7s )
hy:_hx7/l’ ®)

5o = —hy uw/x =hy, poly =h; uw/B.  ©
As in Section 9.8.5, one may note that in this magnetic wave, due to
stepwise change (the charge is at an end face, but is absent outside of an

end face) of the density distribution of charges along the axis OX a
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magnetic field emerges in the form of volatile stationary longitudinal

magnetic wave, with a component H x - The intensities in this wave are
described by

H , = h,Cos(at)Cos(p)Cos(Bz)Cos(yx), @

H,, = hy,Cos(ert)Sin(yy)Cos(fz)Sin( xx), (8)

H, = h,Cos(awt)Cos(p)Sin(fz)Sin( yx). )

For @ = 0 the equations (2-5) describe a magnetostatic field.

Let us consider now a function of a more general nature than (9.4a.2),
describing magnetic charges density distribution in space

p = poCos(@ )f, () (2 '(x). (10)

Let us assume that the functions fy (y), fZ (Z ) are of a similar

form and may be expanded into trigonometrical series. We shall denote

them by a common symbol f() Then in the same way as above it may
be shown that the intensities distribution functions are of the form

H, =h,Cos(at)f (y)f(2)f(x), 11)
df (y) df (x)
H ., =h,Cos(wt f(z , 12
»=hyCos@n < i) 1)
H. = h.Cos(at)f () L&) 4L (13)
dz dx
From this, in particular, follows that for fixed x, z, ¢
Hy(y)
H =X 77 13
y(y) dy (13a)
and for fixed y, z, ¢
H, (x)
H,(x)=—"""~ 13
y( ) dx (13B)
Here the sense of a designation '=' consists that functions coincide to

within constant coefficient.

Example 1. Let us consider a cylindrical magnet depicted on
Figurel. Its residual induction is equal to 1.1 Tl, diameter is 20 mm
and length — 20mm. An experimental device for the measurement of
such magnet's magnetic field and the intensities of this field is
described in [41]. The results of measurements of the magnetic field
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intensities (for x=1mm) near the face plane may be approximated by
following empirical functions:

4
H () = 400¢ 000047 (14)

~0.0004y%
Hy(y)=—1.8y3e 0.0004y " (15)

Thus, the formula (13a) is confirmed, correct to a constant
coefficient. The graphs of functions (14, 15) are shown on Figure 2.
On the same Figure there are graphs (depicted by dotted lines) of the
first harmonics of these empirical functions expansion into

trigonometric series — see the function HXY. For these harmonics

H . (y)=200(1+ Cos(0.27y)), (14a)
H ,(y)=-280Sin(0.27y). (15a)

'

Fig. 1.

Since, as follows from (10, 11) for fixed x; g, #

H,(y)= p(»)=£(), (16)

correct to a constant coefficient, so we must assume that the
magnetic charges density distribution along the face plane axes has
the form of (14) or (14a). Separating from (14a) the variable part, we
find:

4
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From (12) follows that

df (y)
H =27 18
y) dy (18)
From (15a, 18) follows that
? ~ Sin(0.27y). (182)

400

300
= 200
=

100

400

200

mTL

a

-200

-400 ' '
0

Fig. 2. The upper window - (¥), the lower window -
H, (¥), firm lines — experimental approximation,

dotted lines — the first harmonic of trigonometrical series
expansion.

This follows (correct to a constant) also from (17), which
confirms experimentally the formula (12). Then according to (11, 12,
17, 18a) we may expect

H,(x) =f(x) ~ Cos(0.27x), (19)
df (x)

H,(x)= ~Sin(0.27x). (20)
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To confirm the correctness of (19, 20) we have made appropriate
experimental dependences. For the building of dependence H | (x)
along the magnet's axis of symmetry (axis X, where X=0 on the face
plane)

e The intensity [ ;c (X) in the axis points has been measured,

e The intensity H ; (x) in the same points for the equivalent

solenoid has been measured,

e And finally, the sought intensity was computed (the variable
component which cannot be predicted by the existing theory)

H (x)=(H} (x) - Hy(x)). (22)

Fig. 3. The upper window -, (X), the lower window -
H y (x), firm lines — experimental approximation,

dotted lines — the first harmonic of trigonometrical series
expansion, lines made of circles — «weakened» first
harmonic of trigonometrical series expansion.
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Fig. 3 (upper window) shows the graph of this experimentally

found function (22) — see function HXYEXPCrZ. It 1s easy to see
that the first harmonic of this function has the shape of cosine

H,(x) = Cos( ) s

and coincide with function (17). It proves that the experiment has

revealed the oscillatory nature of the function H (x).

For the building of dependence y (x) along the magnet's axis
of symmetry

e The intensity FH 3, (X) in the axis points has been measured,

e The intensity in the same points of the equivalent solenoid for
check of identity H 3’, (x) = 0 was computed

e Required intensity was computed
H,,(x)=H)(x). (24)
Figure 3 (lower window) shows the graph of this experimentally

found function (24) — see function nyExper. It is easy to see
that the first harmonic of this function has the shape of sine.

H () =Sin( ) @)

and coincide with function (20). It proves that the experiment has

revealed the oscillatory nature of the function H y (x).

Note, that from (2) for f# =¥ follows (due to the face plane's
symmetry)

=2 26)
From Figure. 3 and formulas (23, 25) follows also that formula (138)
is valid. One can see that the period ) of the first harmonics of

functions 1, (x), Hy (x) and the period ¥ of the first
harmonics of functions (), H v () answer the formula (26).

Let us continue the comparison of theory with experiment, to do
so we shall consider the weakening of intensities when moving away
from the magnet face plane. We shall define the weakening
coefficient as

K(x)=H(0)/H}(x), 27)
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where H ; (Xx) as before, denotes the computed intensity of the
equivalent solenoid. Apparently, we should assume that the

intensities . (x), H y (X) are weakening with the same

coefficient of weakening. Apparently, it is necessary to believe, that
the order of easing intensities (x), Hy (x), it will be

characterized by the same factor of easing. In this assumption we
may compute the "weakened" intensities

H . (x) = H(x)/ K(x),
ﬁy(x) =Hy(x)/K(x).

Figure. 3 depicts by "circle lines" the graphs of these functions,
computed for the first harmonics (23, 25).

Considering possible errors of measurements, it is possible to
ascertain the satisfactory consent between the theory and experiment.
Thus, executed experiment reveals intensity waves of the magnetic
field in the direction of constant magnet's axis, which confirms the
presented theory and the existence of longitudinal magnetic waves in

which the change H x (x) occuts.

6. Modeling of wave with electric charges exponentially
distributed along the axes ), I and with Dirac distribution

along the X axis

We have remarked above on the symmetry on the symmetry of
electric and magnetic fields. In view of disconnectedness of magnetic and
electric waves in the electromagnetic wave (which appears in the
presence of both magnetic and electric charges) along the axis ox' there
also appear two disconnected energy-dependent electric and magnetic
standing waves. They may have different periods, but in the case of
identical periods the electric and magnetic waves will be cophased. It may
be seen on the Figure 1.

Let us consider now the equations system (9.5.1) under condition that
there exists only electric field. We then get results fully identical to those
obtained in Section 9.6.7b

As in Section 9.8.5, here it is easy to see that in this _electric wave, due

to stepwise change of the charges density distribution along the axis OX,

an electric field £ x 1s generated, as a volatile stationary longitudinal

wave.

For @ = 0 the equations (2-5) describe an electrostatic field.
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6a. Modeling of wave with electric charges distributed
periodically along the axes ), Z and with Dirac distribution

along the X axis

Let us consider now the equations system (9.5.1) from Section 9.8.4a
under condition that there exists only electric field. Owing to the
symmetry of electric and magnetic fields we shall obtain results fully
identical to the results obtained in Section 9.8.5a.

As in Section 9.8.5, here it is easy to see that in this _electric wave, due

to stepwise change of the charges density distribution along the axis OX,

an electric field £ x 1s generated, as a volatile stationary longitudinal

wave.

For @ = 0 the equations (2-5) describe an electrostatic field.
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9. Analytical Method of Maxwell Equations

Solution

9.1. Description of the method

From previous discussion it follows that for known density
distribution functions it is possible to find the intensities functions and
scalar potentials functions.. Further the method will be formalized to
maximal extent.

Let us consider a system figuring magnetic and electric charges,
whose density distribution is described by the following functions

p(x..2,t)= poChp(fz + vt Bhd(ey JE(x). 12
o(x,v,z,t)= o,Chp(fz + vt Chd(&y E(x). (18)

We shall not discuss here the technical interpretation of this system.

So, we shall seek for the solution in form of the following magnetic
intensity functions, electric intensity function and electric potential
functions:

Ex(x,y,z,t): Chp(ﬂz + Utﬁhd(a‘/)fex(x)’ 2
By (o 50)=Chp(fe + o @)/ ().
E_(x,y,z,t)=Shp(fz + vt Shd(6y )f,., (x). 4)
H(x,y,2,1)= Chp(fz + vt )Chd(&) )y (), ©)
H, (x, V.2, t): Chp(,BZ + Ut)Shd(Hy)fhy (x) (6)
H . (x,y,z,t)=Shp(fz + vt )Chd (@ )1, (x), @
o(x, y,2,1)=Shp(fz + vt Bhd () ),y (x), ®)
#(x, ,2,1)=Shp(fz + vt JChd (6 )5 (x), ©)
The form of function Z(x ) is known. The functions

Chp(w), Chd(w ), Shp(w), Shd(w) 10)

are such, that

‘II(LP(W)) = kSpChp(W),

(11)
w
d(Ch
(dfv(w» = kepShp(w), (12)
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”Z(S?JV(W)) ks yChd(w), (13)
"W k.zShd(w). (14)

We must find functions

fex(x)> fey(x)> fez(x)> fhx(x)
Ty @) fh () () fp(x)

with respect of known G, O, ,B, g, v.

(15)

By substituting the functions (1-8) into the Maxwell equations,
differentiating according to rules (11-14) and reducing further by

common factors, we get (see program section900.dfw):
My (X) + Gz (DK g = 6o )+ By ()Kep =0,
N (K g = [ () = €ty ()= A ()Kep =0, 2
Fiy () = @ @K e + (Baf () — e0f,, (x)K g =0,

O oz (s — o (x) = (B (%) = 1 (¥) Ky = 0,

— for ()= EOn (K oq + (Bl ox () + 10y (x) K = 0. 25
oy ()= G ox (DK g + (utfp; (x) = B ()Kgp =0, g
— o ()= Oy (K g = Bf oz (VK gy + (p, £ E(x) =0, )
S )+ @y QK s+ Bl (K gy — (0, 1E(X) =0, 9

This is a system of 8 differential equations with 8 unknown functions
(15).

Let us proceed with finding the solution. For this purpose we shall
present this system in the following form:

S-q+R-dq:QE(x), (30)
dx

23)

24

whetre
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[~ 0K,

_fex (x) ]
fey (x)
Jez(x)
S (%)
fhy (x) [
Snz(x)
Jp(X)

ey

0
-&0K,
0
- ,Bch
0
0
—0Koq
0

0
0 0
0
0
PK cp
- Ky
0
0

0
0

0

S O O O o O
S O = O O O o O
oS O O O

-¢0K,
K g

- ﬁKsp

—_, O O O O O o O

S O O O O = O O

_8fex(x)/ax_

Of ey (x)/Ox
o - (x) 0
Of py (x)/ Ox
Oy (x)/ Ox ’
Ofp, (x)/ Ox
Gf(o(x)/ ox
Of g(x)/ x

0

ﬂch
OK .4

lua)ch

0
0
0
0

OK 54

SO O O O O O o3

S O O O o O

o o o O

ﬂKSp

(31)

S O O O O O

— P/ 1
_O-o//vl ]

(32)

(33)

274



Chapter 9. The Functional for Maxwell Equations

Let us _ﬁnd
0 0 0 0
0 0 0 O
0 0 O 0
1|0 0 0 0
0 0 1 0
0 -1 20 0
/n 0 0 0
0 0 0 -1/¢

0 0
0 1
-1 0
0 0
0 0
0 0
0 0
0 0

S O O O o o O

S O O = O O O

0

(34)

The equations system (30) may be rewritten in the following form

RS q+% - . 0E(x)
dx

or

d _
S1q + dq = 01=(x)
X

where
S =R7s=
0 0K ﬂKsp
-0K gy 0 0
-BKey 0 0
0 0 0
) 0 0 - é0K g,
00 &K ¢ 0
—eoKey 0 0 0
0 ﬂch/éu _Hst/g

0

0

0

0
~OKeg
B ﬂch

0

pek g, €

0

0
- uok
Ky

0

0

_ﬂch/ﬂ K eq I

0

P

0

UOK

0

p

ﬂKSp

0
0

0

(35)

(36)

[ s = )

Pk sp
—OnK 4
0
0

- /H{Ksp
¢oK cd

S O o O

(37
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Pol€
0
0
1y | G0/t 38
0=k"0= """} o
0
0
L O _
From this we find:
dq _
o= S+ OEG) 59)
q(x) =7 dQ(;) (40)

The parameters 77, § , generally speaking, may become equal to zero.

To avoid division by zero ( which may occur in the matrix S7), vector

dg(x)
dx

will be determined and denoted as

O ex (x)/ Ox |
8fey(x)/5x
Of o, (x)/ Ox
o] Tix/x | "

afhy(x)/ax
oo () 0
ﬂ-@fw(x)/ﬁx

3 y(x) /x|
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Then matrix S 1 will assume the form

S10 =
[0 K  PKyp 0 0 0 0 0 |
-0Kyy 0 0 0 0 pekK g, 0 - Py
Py 0 0 0 -pekKy, 0 0 GOK 4
0 0 0 0 Ky PKy 0 0
0 0 -eky -6Key 0 0 PrKsy 0
00 ek 0 - PKep 0 0 -0nKy 0
—eoKgy, 0 0 0 PRy Ky 0 0
0 Ky -OKgq ueKy, 0 0 0 0
(“2)

and formula (39) will be transformed into

u(x) = —Sj0q(x) + Q1E(x), @3)

But now the formula (analytical) integration (40) should be performed as
follows: for the first 6 components — using the usual formula

dk (X) = J.guk(f)df, k=12...6. (44)

and for the last two components — using the following rule:

Q7(x)=77-717 [ s, o

qg(x>=4-:, [Fug(ryde, 40
where

L if >0, |1, if £>0,

n= ¢ = , @7

5
0, if =0, 0, if £ =0,
In future such integration will be denoted as

q(x)= jgu(f)dr. 48)
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dq(x)
If functions T, q ()C ) on the 7 -th iteration are presented as the
X

series
dq n n
g U= Lk 4= 2k (49)
X k=1 k=1
then, in accordance with algorithms 6.7 and (43, 48), on the (n + 1)—th

iteration, where X > 0, we shall have:

Up41(x) ==S109, (%), (50)
Gn1 () = [t 41 () -d7. 61
9.2. Examples of Functions

Chp(w) Chd(w),Shp(w), Shd(w)
Here we shall show several functions satisfying the conditions (1.11-
L14). For kg, =kgg =kep =keg =1 the conditions (1.11-1.14)

are satisfied, for instance, by functions

Chp(w)=e%,Chd(w)=¢",

M
Shp(w)=e%,Shd(w)=¢"

Chp(w)=ch(w) Chd(w)=e",

Shp(w)=sh(w) Shd(w)= ¥ ?

or
Chp(w)= ch(w), Chd(w)= ch(w)
Shp(w)=sh(w) Shd(w)=sh(w)
For ks = ksd =1, kcp = kcd =—1 the conditions (1.11-

)

1.14) are met, for instance, by functions

Chp(w)= cos(w), Chd(w)= cos(w),

Shp(w)= sin(w) Shd(w)= sin(w) 4
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9.3. Using the method for E(x): A(x) m
ksp = kgq :kcp =keqg =1.

In this section we are discussing the function E(x )= A'(x)

9.3.1. The general solution
The matrix (1.42) will take the form

o ¢ B 0 0 0 0 0]
-6 0 0 0 0 wo 0 -5
-0 0 0 -pww 0 0 6
o 0 0 0 &6 g 0 0
S S M
U
0 e 0 -4 0 0 -6 O
-0 00 0 - 66 0 0
0 p -0 pwo 0 0 0 0

Let us consider, according to algorithm 6.7 and formulas (1.43, 1.48)

the iteration process, assuming that ¢, (x )= 0.

ul(x):Ql = qx)= UZ(X): qz(x)z
[ Po/€] o/ ] 0] 0]
0 0 bp, /€ Op, |
0 0 Bro B, /e
| ColH , O,/ 1 , B 0 , 0
- 0 =4 0/ 4 0o,/ - bo,/
0 0 ﬂo-o//u fo,/u
0 0 Py /1 Py 1
0 | | 0 - w0, /{ | |- w0,/ |
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uz(x)=x

g (¥)= L

)=

And so on. Contmumg the iterations, we may notice the tollowing

0252 ),

-( —gﬁ%
1 -1 pwlo,
- éz /32 }0 /,U
(1 - Z)‘)ﬁpo
- (1 - Z)ﬂ)@po

A
KR %

e

x| -
> q3(X):7

3
X
(]4(x)—7

4
X
> QS(x)_2.3

pattern in iterations with odd numbers

@)= ) n00) 410)=2 () o)
s(6)= % )+ n () a6)= " G+ o)
JZ 2

252 ), e

3| - 6% + p?
- > +

_(1_77})):0ﬂ00
1 -1 Wlo,
éz +ﬂ2}0/ﬂ _
(I_Zbﬂpo
—(1—?)0(9,00
0
0

e

O - —
-00* + 5% ),
_IB 2+ﬂ2 0

e
0

o/lu

7]
+ﬂ2)}0
@2+/32)po

i

—(1 n)ob
@2 +IB2)O'O/,U

(- a)oﬁ% )37
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uy ()= (- Yoo, (x) q2(x)= (-1 )Boym(x)
u3(x)= (-7 )bo,r(x) q3(x)=—0~17)00,r(x)
us(x)=~( - O ofor () q5(x)=—(= & JoBoyrs (x)
us (x)= (1~ obp,ry () q6(x)= (A= Yol (x)

and in iterations with even numbers

u(x)= 10 (A(x)+ 13 (X)) q(x)=up0r3(x)

where

0

Op, /€

B, /€
0

o,/ u
Boy/u
0Py 1
L~ Cwo, /;_

and the setries are:

n(x):(_x@z+ﬂz);?3@z+ﬂz)_...}
w[ CEes) L) ]
r3(x)=[_x+2"_33@2 . ﬂ2)...],

W){ N ﬁ)}

Continuing the iterations, we may see that these series are power series of
trigonometric functions, namely:

rl(x) —;(sm(;( x), rz(x) (—l+cos(;( x)),
r3(x)=;SiH(Z'X) ”4(x):7(—1+005(1'x))
X v4

Uz =

whetre
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Z= @2 + %) @

So, in the iterations with odd numbers

()= (A0)= rsinC o)) g,(6)= 2 (2)-1+ cos(r-x))
g (0)= "2 ()= zsinz ) 44(0)= %2 (o)1 + ol )
12)=-0)"7 (sinlz- ) qz(x)=(1—n)”’f%<—1+cosu-x>>,
(@)=~ -n)" % sinly ) qg(x)=—(1—n)”j%<—1+cosof-x»
0s(@)=-0- )" (siny- ) q5<x>=—(1—;)“f#<—1+cos<z-x»
15(0)=~- )P (sinfy ) qé(x):—(l—;)“’f#<—1+cos(z-x»

and in iterations with even numbers

u(x): U (/I(x)— 1+ cos(;( . x)), q(x): uzo(l sin(;( . x)j
v4
Hence, the solution is as follows:

Sex(x) = ex (A(x) =1+ cos(r))
Jey(x) = €, sin(x) + €, (= 1+ cos(x))
for (x) = €. sin( ) — el (— 1+ cos( yx))

S () = e (A(x)=1+ cos(x) )
Siy () = Iy sin(x) = b, (= 1+ cos 1)) | o
(%) = B sin(x) + b (= 1+ cos(zx))

Jp(X) =@y sin(x)
J¢(x) = ¢y sin(x)
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Of e (X) 0 = €, (2'(x) - ysin(zv))
Of ey (x)/ 0x = pe), (A(x)~1+cos(yx))- e, sin( x)
Of ez (x)/ 0 = 2, (Ax)=1+ cos(z0) )+ et sin( )
dq Ofpe (%) 0 = hy (A'(x) - sin( 1))

dv | Ofjy(x)/Ox = Zh'y(/l(x)—Hcos( )+ 7y sin(p) | @
Ofjz(x) 1 0x = 7’ (A(x)~1+ cos( ) )- zh; sin( 1)
Ofp(x)/ 0 = = (A(x)~ 1+ cos( 1))
0fp(x)10x = = (Ax) =1+ cos( )

Coefficients in (3, 4) are enumerated in the Table. 1. There it is
specified, which coefficients are absent in certain media in the presence

of certain charges. In vacuum 77 =0, ¢ =0 and, in accordance with
(147 £ =0, 7=0.In normal medium £ =0 ¢ =0.
It is easy to see that presence or absence of coefficients €, /1 does

not depend on the type of medium is being considered — vacuum or
normal medium. If there are both electric and magnetic charges, all the

coefficients e, h are present.

In particular, if X = 0, from (3, 4) we have:

e =ex | o)/ ax=(p,/e)(0)
Jey(x)=0 Oy (x)/0x =0
Jez(x)=0 Of g (x)/Ox =0

g= S (%) = Dy dq _ 8fhx(x)/8x:(00/ﬂ)/1'(0)

fy@=0 [ a | apiax=0 [ O
Jrz(x)=0 Ofpz(x)/0x =0
fgp(x) =0 8f¢(x)/5x 0

I Jp(x)=0 ] I 0fg(x)/0x =0 |
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Chapter 9. The Functional for Maxwell Equations

Table 1.
Vacuum Normal medium
Coefficients Only Only Only Only
electric | magnetic | electric | magnetic
charges | charges | charges | charges
e;} =0p, / &y + 0 + 0
— 2" 0 + 0 +
6;2(1_77 /BO-O/Z )
ez = Ppo/ex i 0 ! 0
— 2 0 + 0 +
622(1_77)@”90-0/}( y
hy=0,/u 0 T 0 -
hy, =0o,/ux 0 * 0
— 2" + 0 + 0
N
h; = Bo,/ 1y 0 * 0 *
' = 2 + 0 + 0
hé:(l_gk)ﬂpo/l )
ox =1(0p, 1) + 0 + 0
¢ =—¢ (w0, /¢x) ! " ! !

Thus, mpu the solution of differential equations with disturbances in the
form of Dirac functions l’(X) , the obtained functions and their

derivatives may contain a variable component, a step component l(X) ,

. . !
a Dirac function A (X) and a constant component.

We shall solve this problem directly as the equation (1.36). An
example of solving equation (1.30) for

0=90, =110, @=1000, o, =-025 p,=10""is shown on

Fig. 9.3.1. Fig. 9.3.1a shows the graphs of sought functions, Fig. 9.3.1b —
graphs of these functions' derivatives, and Fig. 9.3.1c — graphs of
residuals in the equations (1.36). The types of graphs are shown in the
figures. The function used in the calculations is also indicated there, as
well as the values of some parameters of this function, which appear in
the captions under the figures ( these remarks will apply also to other
figures of this section).
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Fig. 9.3.1a. The general solution for E(x )= A'(x),
kSp = ksd = kcp =Ked = 1, mode=1, modeZ=2, modeFig=1.
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Fig. 9.3.1b, modeFig=2.
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5 -4 -5 -3
x 10 x 10 x 10 x 10
w 15 2 15 3
S
qhi 10 0 10 2
8
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1723
o

-5 -4 -5 -1
0 00501 0 00501 0 00501 0 0.05 0.1

erl er2 er3 erd
6 -6 5
x 10 x 10 x 10
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1 -5 0 0.02
0 -10 -0.5 0

-1 -0.02
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
er5 er6 er7 er8

Fig. 9.3.1c, modeFig=3.

In the solution of differential equations with disturbances in the

. . ' . . .
form of Dirac functions A (X), the obtained functions and their
derivatives may contain a variable component, a step component E(X) s

a Dirac function /1’()(7) and a constant component.
Let us solve this problem directly as the equation (1.36) — see the
function testMaxAna. The example of solving this equation for

0=90, =110, ®=1000, o, =-0.25 p, = 1077 is given on Fig.

9.3.1. The Fig 9.3.1a shows the graphs of the unknown functions, Fig.
9.3.1B — the graphs of their derivatives and Fig. 9.3.1c —graphs of the
residuals in equations (1.36). The types of these graphs is shown in the
pictures. There are also shown the functions used for and in the captions
there are also some values of this function's parameters (the same
remarks will be true for other figures in this section).
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9.3.2. Solution in the medium without scalar magnetic

potential -{ =0

Above in general case we were dealing with a hypothetic medium, in
which both electric and magnetic scalar potentials may be present, as
well as electric and magnetic currents. In a medium without scalar

magnetic potential { =0, and in accordance with (1.47) - Z =0.
According to Table 1 certain coefficients are absent.

9.3.2.1. Magnetic charges in the medium without scalar
magnetic potential
In this case (3, 4) take the form

fex (x)=0
oy (x) = €}, (= 1+ cos( x))
Joz(x) =—€3 (=14 cos(x))
e () = hy (A(x) =1+ cos(x))
Sy (@) =Hysin(p) | )
iz (x) = b sin( )
fgp (x) =0
f(x)=0

O oy (x)/0x =0

Of gy (x)/ Ox = = ), sin( yx)

Of ez (x)/ 0 = ye; sin( )

dg | Ofpe(0)0x=he((x) = sin( )

dr | Ofpy(x)/ 0x = 7}, (A(x)- 1+ cos( )| ®)

Ofje ()10 = b2 (Ax) =1 +cos( )
0f p(x)/2x =0

0fg(x)/0x =0
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We shall solve this problem directly as the equation (1.36). To do
this we shall discard the variable function f, é (x) and the equation (1.24)

in the equation system (1.21-1.28). We shall begin to solve the system of
the remaining 7 equations. Further we shall show that the equation (1.24)
is fulfilled when the obtained solution is substituted to the full equations
system. After the equation (1.24) is discarded, the vectors and matrices of
equation (1.30) take the following form:

—fex(x)_ afex(x)/ax_
fey (x) afey (x)/ x
Jez(X) p O ez (x)/ Ox
g=| fix@|, =] )0 ©)
fhy (x) afhy (x)/0x
Iz (%) Ofpz (x)/ Ox
| Sp(¥) | | Ofp(x)/ x|
—ew 0 0 0 -8 6 0]
0 —-ew O p 0 6On
0 0 -ew -6 0 pn
s=l o 0 0 0 g ol 10
B0 0 0 wuw 0 0
-0 0 0 0 0 wuw O
0 -0 -8 0 0 0 0]
[0 0 0 00 0 7] 0 ]
0 0 0 00 —-10 0
0O 0 001 0 O 0
R={0 0 0 10 0 0 0=|c,/u|"
0 0 -1 00 0 O 0
0 1 0 00 O0 O 0
-1 0 0 00 0 O 0

Here we have in mind the following order of equsjttions: _(21, 22,23, 28,
25, 26, 27).
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é 1_5x10'12 0 1x10'7
ARENTIR RS
2;0 0.5 j -2 \/ v \} \ > \
g % 005 0410 005 04 %0 005 01 0 005 0A
ex(x) ey(x) ez(x) fe(x)
0x1o5 / 2x1o5 X ° 5x10'10
A 110 1 /\
AL
NIRRT RV AVATN
v \/ VoY VRV,
-4 -2 -2 -15
0 005 01 0 005 01 0 005 01 0 0.05 0.1
hx(x) hy(x) hz(x) erMax4
Fig. 9.3.2.1. Magnetic charges in the medium without scalar magnetic
potential
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Fig. 9.3.2.18.
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An example of solving the equation (1.36) for
6=90, =110, ®=1000, o, =-0.25 p,=0is shown on Fig.

9.3.2.1 — see also function testMaxDiracY 2. There for x > 0.06 we

see "spikes" of certain functions, which may be explained by methodical
errors. In the last window in all three figures we observe the error
(residue) in the condition (1.24), which was discarded above in order to
eliminate overdetermination of the equation system. Thus we have also
proved the relevance of this discarding. The figures show that the
obtained solution is in accordance with analytical solution (7, 8).

9.3.2.2. Electrical charges in the medium without scalar
magnetic potential.
In this case (3, 4) take the form:

_fex(x) =€y (/I(x)_ 1+ COS(ZX))_
fey (x) = e;; sin( xx)
Jez(x) = ez sin(x)

e (x)=0
Siy () = = (= 1+ cos( 1))
fiz () = B (= 1+ cos(z)
£(3) = 0y sin( )
Jp(x)=0

)

(12)

()0 = e, (1) - sin( ) ]
Of gy (x) 0 = 1 (Ax)~ 1+ cos( )
Of oy (x)/ 0Ox = Zez(/i(x) 1+cos()(x))
dg _ Ofpy(x)/0x =0 | 13
dx Ofpy (x)/ Ox = 1 ;sin( )

Oz (x)/ B = = hC sin( zv)
0fp(x)/ 0x = =1 (A(x)~1+ cos( )

Ofy(x)/ax=0
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testMaxDiracY2, functions

testMaxDiracY2, functions
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Fig. 9.3.2.2a. Electrical charges in the medium without scalar
magnetic potential.
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Fig. 9.3.2.2b.
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As in the previous case we shall solve the same problem directly as
the equation (1.36). An example of  solving for

0=90, p=110, @=1000, o, =0, p, = 1077 is shown on Fig.
9.3.2.2.

9.3.3. Solution in vacuum
To verify the solution (3, 4) we shall now solve the problem directly
as the equation (1.36). To do this we shall discard the equations (1.21,

1.24) and variable functions f, @ (X), /. ¢ (X) in the equations system

(1.21-1.28). We shall solve a system of the remaining 6 equations. Then
we shall show that the equations (1.21-1.28) are fulfilled at substitution of
the obtained solution into the full system. After discarding the equations
(1.21-1.28) vectors and matrices of the equation (1.36) take the following

form:
[ fex (%) | Of o (x)/0x |
fey(x) afey (x)/ox
Jez (%) ez (x)/ Ox
0= fix0) | < =) x|, ®
fhy(x) afhy(x)/ax
Jnz(x) Ofpz(x)/ Ox
0 -6 - 0 0 0 ]
0 -ew O g 0 0
0 0 -ew -6 0 0
S=| 0 0 0 0 6 p (16)
Jij 0 0 0 wuw O
-0 0 0 0 0 uow
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10 0 00 0 1 [-p/u]
0 0 00 —I 0
0 0 01 0 0
R=| 0 0100 | 0= aul 1
0 0 -100 0 0
0 0 00 0 0
] i |

Here we are meaning the following order of equations: (1.27, 1.22, 1.23,
1.28, 1.25, 1.20).

9.3.3.1. Magnetic charges in vacuum

Let us first discuss the case when only magnetic charges are present

— see also function testMaxDiracY 2e. The solution is as follows (7,

8. An  example of  equation (1.36) solution  for
6=90, =110, ®=1000, o, =-0.25 p,=01is shown on Fig

9.3.3.1. There for x >0.06 we see "spikes" of certain functions, which
may be explained by methodical errors. In the 4% and 8% window on all
three figures we observe the error (residue) in the conditions (1.21) and
(1.24), which were discarded above Thus we have proved the relevance
of this discarding.

<
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Fig.. 9.3.3.1a. Magnetic charges in vacuum.
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Fig. 9.3.3.1b. Magnetic charges in vacuum.
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Fig. 9.3.3.2a. Electrical charges in vacuum.
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Fig. 9.3.3.2b. Electrical charges in vacuum.

9.3.3.2. Electrical charges in vacuum.
Let us now discuss the case when only electrical charges are present

—see also function testMaxDiracY?2e. The solution is as follows
(12, 13). An example of equation (40)  solution  for

0=90, f=110, ®=1000, o, =0, p,=10""is shown on Fig.
9.332.

9.3.3.3. Harmonic static magnetic field
Let us consider a particular case when y =6, v=0, p, =0

The function (1.18) of magnetic charge density distribution assumes the

form
o(x,y,2)=o,Chp(z)Chd(w ' (x), (18)

and remain in accordance with (3.3, 3.4) and Table 1, and and there
remain only magnetic charge density distribution functions of the form:

Jie () = by (A )1+ cos(x) )
q =1 fiy(x) = b, sin( x) : (19)
iz (x) = B} sin( x)
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|0 0=y (E0) - 5in()
dz =10y (x)/0x = yh), (A(x)~1+cos( ) ). (20)
0fpe () 8x = 7z (Ax) -1+ cos( 1))

Hence for U =0 there exists only a static magnetic field (19, 20).

9.3.3.4. Harmonic static electric field
Let us consider another particular case when

P=0, V=0, 0,=0 The function (1.1a) of magnetic charge

density distribution assumes the form

p(x,»,2,t)= p,Chp(Bz Bhd(By ' (x). (1)

and remain in accordance with (3.3, 3.4) and Table 1, and and there
remain only the electric field density distribution functions

Jex () = ey (Ax )1+ cos( )
q =1 fey(x) =€), sin(x) , (22
Jez(x) = €7 sin(yx)
O (x)/ Ox = e, (A'(x) - ysin( )
;lq =1 0fey (X)/ Ox = el (A(x)~1+cos(yx))r. (23)
U e/ = 7)1 cos( )

Hence for =0 there exists only a static electric field which satisfies
the equations (22, 23).

9.4. Using the method for Z(x)=A(x) and
ksp = ksaq :kcp =keg =1.

In this section the step-function E(x )= A(x)is being considered.

9.4.1. General solution
Similarly to the Section 9.3.1 and according to algorithm 6.7 and
formulas (1.43, 1.48) we shall now discuss the iterative process,

assuming that ¢, (x ): 0.
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“l(x): q1(x) = MZ(X): 6]2(X)=
Polé]  Po/€] 0] 0
0 0 Opo /€ Op, /€
0 0 Bro /€ B, /€
:ﬂgo/:u’ :xao/,u’ — 0 ’:ﬁ 0
0 0 0o,/ u 2| Go,/u
0 0 ﬂgo/:u foy/u
0 0 WPy |1 @P, |1
0| 0| —wo,/{ | ~wo,/< |

And so on. Since we have here the same matrix (3.1), on each iteration
the difference of functions u(x), g(x), obtained here an in the Section

9.3.1, will be only in the variable multiplier placed before the square
brackets. More specifically, if the multipliers in Section 9.3.1 for the
functions u(x), g(x) were accordingly

24w 22w A, x, x2/21, X33
here for the functions u(x), q(x) they are accordingly
A, x, X220 S mx, ¥, B,
Hence, the functions u(x), ¢(x) in this case are negative integrals of the

similar functions from Section 9.3.1. And in this case the solution will be
a negative integral of the solution (9.3.3, 9.3.4), and has the following

form:
fex(x) = _(ex /;()sin(;(x)
foy () =€}/ 7 Pos() - € (= x+ 1/ 2 Jsin( )
oz (x) = (€| 7 )oos( ) + €3 (= x + (1/ x Jsin( x))
Jne(0) ==/ 3 Jsin(x)

Sy )= @ 1 PosC0) + (= x + (1 Jsin(0)) [
Frz(x)= () )eos(x) = b3 (= x + (1]  Jsin( x))
fo(x) =@/ 2 )eos( %)

S0 =@/ 2 )eos(x)

M
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testMaxAna$S, functions

Ofex (x)/ 0 = €, (A(x) ~ cos( 1))
Gfey( X)/0x = —ey sin( yx) - e ' cos(yx)
0f ., (x)/ Ox = —e sin( yx) + e, cos( yx)

Ofje (%) 0x = by (A(x) ~ cos( )
Ofpy (x)/0x = ~h), sin(pc) + b}, cos( ) |
Oy () x = ~h, sin( ) ~ ] cos( )

0fp(x)/ Ox = =@, sin( yx)
0fy(x)/ Ox = ¢y sin( x)
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N s TR e e R
°\\/ \\/ ll \\ /\\ o /r \\ I/\\ o /I \\ // \\
o V) s ] e o)

0 0 0
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
hx(x) hy(x) hz(x) fm(x)

Fig. 9.4.1a. General solution for E(x)z A(x) and

ksp:ksd:kcp: cdzl'

@)
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Fig. 9.4.1b

We shall find the solution of this problem by solving directly the
equation (1.36). An example of solving equation (121) for

@ =2500, y=6000, £=200, p, :5~104, o, =2:10° is given on
the Fig. 9.4.1 — see also function testMaxAnaS. The Figures show
that the obtained solution complies with the analytical solution (1, 2). No

components of the form (— X+ (1/ y4 )sin( ;(x)) due to the fact that for

small X, this term is close to zero.
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9.4.2. Magnetic charges in vacuum
In this case (1, 2), taking into account Table. 1 will be:

fex (x)=0 W
ey (x) = =€, (= x+(1/ 1 Jsin(x))
ez (x) =2 (= x+ (1  Jsin(zx))
S () ==(hy / 7 Jsin( zx) 3)
Sy ()= @}/ 2 Yos( )
Jnz(x) = (1] y eos( %)
fp(x)=0

fy(x)=0 |

=

Ofox (x)/0x =0
Of gy (x)/ Ox = e, cos(x)
Of gz (x)/ Ox = €7 cos(pr)
dg | ()] 0x = he (A(x) ~ cos( )
de | ofy(x)/on=—h,sin(a) | @)

Oy ()0 =~ sin( )
ofp(x)/6x =0

8f¢(x)/8x =0

We shall find the solution of this problem by solving directly the
equation (1.36) — see also function testMaxAnaS. An example of
solving equation (121) for
6=90, =110, ®=1000, o, =-0.25 p,=01is given on Fig
9.4.2. The Figures show that the obtained solution complies with the
analytical solution (3, 4). It is not visible members with small " (see

Table. 1), and component f, ¢(x) - systematic error, which has a value

1072,
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Fig. 9.4.2a. Magnetic charges in vacuum

testMaxAnaS, derivatives
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Fig. 9.4.28.
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9.4.3. Electrical charges in vacuum.
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Fig. 9.4.3a. Electrical charges in vacuum
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Fig. 9.4.3b.

testMaxAna$S, derivatives

In this case (1, 2), taking into account 16, assume the form :
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Sex(x) = (e )sin()
for () =€,/ 1 Ros( )
fez(x) = (€2 2 )oos( 1)
Jnx(x)=0 ©)
Fry () = B3, (= x4+ (1) 2 )sin( ) |
Iz () = =h7 (= + (U g Jsin( )
Ty (1) =0
i f5(x)=0
[ Ofex (1)1 0 = € (A(x) ~ cos( ) )]
Ofey(x)/ Ox = —e'y sin( zx)
0f ()] 0 = ¢, sin( )
dg Ofpy(x)/0x =0 ©)
dx Ofpy(x)/ 0x = cos() |
Oy (1) =~ cos( )
0fp(x)/Ox =0
0fg(x)/ox=0
We shall find the solution of this problem by solving directly the

equation (1.36) — see also function testMaxAna. An example of
solving equation (121) for

6=90, =110, @=1000, o, =0, p, =10""is given on Fig

9.4.3. The Figures show that the obtained solution complies with the

analytical solution (5, 6). There are no small members with small h" see
Table 1), and the component £, ¢(x) is the methodical error of the

value 10_8 .

9.4a. Using the method for impulse function Z(x) and
ksp =kq :kcp =keqg =1.
In this Section we shall consider impulse function
E(x)=A(x) - A(x+9),
where O - the impulse width. First of all we must note that for a small
enough O
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cos(yx) — cos(;((x + 5))z Oy sin( yx), 1)
sin( yx) —sin(y(x + &) )= —5y cos(yx). @
Let us denote as g3’ (x)f (3.3), g,5(x) f (4.1), qs5(x) the

function found for E(x) being: Dirac function, step function and

impulse function, accordingly.
The solution in this case may be found as the difference :

45(x)=4,(x) =g (x+9), 3
where @ ;(X) are determined by (4.1). Getting this difference from (1,
2), we find

fex(x) = (ex/ 2 Joos( 1)
Fey(@) =€/ 2 bin(ze) + €, (U 1+ cos( )
fer ()= (2 7 sin(o0) — €2 (1] )+ cos ()
_ S (x) = (hx /Z)COS(ZX) )
S ()= 2 binCi) = (U )+ cos(0)|
Sz (0) = (0 2 )sinCg) + B2 () 7)1+ cos( )
S () =/ 2)sin ()
Sp(x) =@/ 2 )sin(pr) |
Disregarding the values €”,h" as small compared with e',h" (See
Table. 1), and discarding the items with €”,A" in formulas (4.1) and (4),
we notice that
q,()=5-q,(x). ©)
Let us assume that the charges are distributed in a plate O -thick.
Let us call plate density of a charge — a charge located in a unit of area of

the plate. Let us denote as E, O the plate density of an electric and a

magnetic charges accordingly, and as ,070, 670 - their amplitudes. For a
uniform distribution of charges through the plate's thickness
pio:po'é" 0-70:00'5- ©)
The functions ¢, f (3.3), q, f (4.1), qs f(4) are

determined according to coefficients shown in the Table 1. Let us

consider also the functions ¢ ', a, %, which differ from the
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previous ones by the fact, that their coefficients depend not on volume

density of charges p,, O,, but on plate density of the charges

,070, 0'70. Because of (6) we have:

ay/0=4qy, 4,/0=4z, 45/0=45. Q)
Combiniing (5,7) we get:
q,(x)~q, (x). )

It means that
for given p,, O, the functions g5

do not depend on the plate's thickness.

In particular, for 0 — 0 we have k)o, O, J—) E, Foy§ or
, O Ao, o . 9
o 90 5= 0 To. )

The last formula reveals the physical sense of using Dirac functions
as the charges distribution functions.

4 4 4 3
x 10 x 10 x 10 x 10
2 0 0 6 6
2 \
[&]
3 -2 2 4 / 4
% -4 -4 2 2
= \
173
L 6 -6 0 0
0 0.01 002 0 001002 0 001002 0 0.01 0.02
ex(x) ey(x) ez(x) fe(x)
5 5 5
x 10 x 10 x 10
10 0 0 0

-2
/ -5
5 -4 \ -5

-1
NEAN \ [
0 -8 -10 -15
0 001 002 0 001002 0 0.01 002 0 0.01 0.02

hx(x) hy(x) hz(x) fm(x)

Fig. 9.5.1a. General solution for E(x)= A'(x),
ksp =kgq =1, kcp =keqg =1,
modeFig=1, mode=2, modeZ=2.
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Fig. 9.5.1b, modeFig=2, mode=2, modeZ=2.

9.5. Using the method for Z(x)=A1'(x) and

kp =ksq =1, kep =heg =—1.

We shall find the solution of this problem by solving directly the
equation (1.36) - see also function testMaxAna. An example of
equation (1.36) solution for
0=90, f=110, ®=1000, o, =-0.25, p, = 1077 is given on Fig.

9.5.1. In this case the functions (1.15) are monotonous and are expressed
by hyperbolic sines and cosines.

9.6. Using the method for Z(x)=A(x) and

kp =ksq =1, kep =keg =—1.

We shall find the solution of this problem by solving directly the
equation (1.36) — see also function testMaxAnaS. An example of
equation (1.36) solution for
@ =2500, y=6000, B=200, p, =5~104, o, =2.10° is given on

Fig. 9.6.1. In this case the functions (1.15) are monotonous and are
expressed by hyperbolic sines and cosines.
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Fig. 9.6.1a. General solution for E(X)Z A(x),
ksp =kyy =1, kcp = k.g = —1, modeFig=1, mode=2, modeZ=2.
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Fig. 9.6.1b, modeFig=1, mode=2, modeZ=2.
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10. A summary of models from Sections

9.6, 9.7, 9.8.

Here, for convenience sake we shall summarize the main
characteristics of the models. Table 1 shows the magnetic and electric
charges density distributions formulas, and Table 2 contains the formulas
for intensities and scalar potentials. Further we shall be using the
following notations:

¥, = Sin(wt )Cos(Bz) M)
¥, ., = Cos(at Bin(pz), 2)
¥, = Sin(awrt Bin(Bz) 3)

.. = Cos(wt )Cos(fz), 4

Q= Cos(a)t + ﬁz) (5)
¥ = Sin(ot + f2) ©)
Q=Y. -Y¥, %
V=" +Y¥, ®)
2y = Cos(a)t +ay + ,Bz), )
¥, =Sin(wt + ay + f). (10)
Table 1.
P = | o=
9.6.5. Exponentially Distributed Charges Modeling
— po\Pccer_Hy — Go\Psse%x_FW

9.6.6. Periodically Distributed Charges Modeling

- p,¥..Sin 24 — o, ¥, Sin g
o0~ cC o0~ SS

9.6.7. Modeling with Charges Distributed According to Dirac
Function
- independent electric and magnetic fields

- poq’ccll(xk%v - GOLPSS/II(xk%V

9.6.7a. Magnetic wave in simulation with charges distributed
according to Dirac function
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B GOLPSSZ,(xk%V

9.6.78. Electric wave in simulation with charges distributed according

to Dirac function

! bid
= PoPec A (x)e
9.6.8. Modeling of wave with Charges Distributed According to Step
Function
— g — iz
poqjccﬂ’(x)e O-OLPss/l(xk

9.6.9. Modeling of wave with Charges Distributed Non-uniformly
- H(x ) - multi-step trapezium (in particular, square pulse)

—Po¥ec H(ka — 0,V H(x)ew

9.7.1. Electromagnetic oscillations with exponentially distributed
charges. Case 1.

+ +
po\Pccer ” _Golpssezx ”

9.7.2. Electromagnetic oscillations with exponentially distributed
charges. Case 2.

+ +
_,OolPsseIx ” O-oqjccezx ”

9.7.3. Electromagnetic oscillations with linear movement of
exponentially distributed charges
- longitudinal electromagnetic wave

+ +
0,QeP T o =0,Qer”

9.7.3a. Electromagnetic oscillations at compound motion of the
exponentially distributed charges
- longitudinal electromagnetic wave

PoQrer, PoPre”,

9.7.4. Magnetic oscillations with charges distributed according to
Dirac function. Case 1.

— 0,V A (x)e”

9.7.5. Magnetic oscillations with charges distributed according to
Dirac function. Case 2.

O'OLPCC/l’(x)eW

9.7.6. Magnetic oscillations with linear movement of charges,
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distributed according to Dirac function
- possibly magnetostatic field

- longitudinal magnetic wave H Z

- energy-dependent magnetic wave standing magnetic wave H

o, QA (x)e”

9.8.4. Modeling of wave with electric and magnetic charges
exponentially distributed along ), Z axes and with Dirac distribution

along X axis.
- independent electric and magnetic fields

2,Cos(at e 2/ (x) o, Sin(wt e? 7 1 (x)

9.8.4a. Modeling of wave with magnetic and electric charges
distributed periodically along the ), Z axes and with Dirac

distribution along X axis
- independent electric and magnetic fields

p = p,Cos(awt )Cos()- o= O'OSin(a)tﬁos(yy)-
Cos(ﬂz)l'(x) Cos(ﬂz)l'(x)

P = PoSin(a’fxOS(W)'
Cos(Bz W (x)

9.8.5. Modeling of wave with magnetic charges distributed
exponentially along the axes ), Z and with Dirac function distribution
along X axis

- energy-dependent standing magnetic wave H |

- possibly magnetostatic field

o, Sin(wt e P 1 (x)

9.8.5a. Modeling of wave with magnetic charges periodically
distributed along the axes ), Z and with Dirac distribution along the
X axis

- energy-dependent standing electric wave E

- possibly magnetostatic field

o = o ,Sin(wt )Cos(»p)-
Cos(fz '(x)

9.8.6. Modeling of wave with electric charges exponentially
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distributed along the axes ), Zz and with Dirac distribution along the
X axis
- energy-dependent standing electric wave £

- possibly electrostatic field
p,Cos(wt e '(x)
9.8.6a. Modeling of wave with electric charges distributed periodically

along the axes ), zZ and with Dirac distribution along the X axis
- energy-dependent standing electric wave £ X

- possibly electrostatic field

p = poCos(t)Cos(1y)
Cos(fz '(x)

Table 2.

q1=Ex |92=E, |q3=E, |qs=H;,

gs=H, |q6=H; |q7=¢ q3 =9
Sections 9.6.5, 9.6.6

gy 9:6.5 oI
gy 966 Sin(jx)

q- Cos(fx) Cos(fx) -Sin(fz) Sin(z)

Sin(fz) -Cos(fz) -Cos(fz) | -Sin(fz)
q; -Cos(at) | -Cos(ot) -Cos(at) | -Sin(et)
- Sin(at ) Sin(et ) Sin(et ) -Cos(at)
Sections 9.6.7, 9.6.7a , 9.6.7=.
qx ~Cos(yx) | - Sin(yx) — Sin(ypx) | — Cos(yx)
- Sin(;(x) — Sin(yx) - Sin(;(x) — Sin(zx)

qy e”

q Cos(ﬂz) Cos(ﬂz) - Sin(ﬂz) Sin(ﬂz)

Sin(fz) -Cos(fz) -Cos(fz) | -Sin(fz)
q; -Cos(at) -Cos(at) -Cos(wt) | -Sin(et)
- Sin(at) Sin(ct ) Sin(ct ) -Cos(at)
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Sections 9.7.1, 9.7.2, 9.7.3.

qx et
qy w2
qz.49¢ P Yoo Yo -y
9.7.1 - ‘Pss \Psc ‘Psc \Pcs
q9z.49¢ P W Ve P
2.7.2 Yo Vs Vs Y.
q..9 Q Q b4 Q
oal [0 57 57 N7
Sections 9.7.3a.
qx e X
9z.9z.9¢ | €22 kY) s )
Q 2 Q2 \PZ Q 2
Sections 9.7.4, 9.7.5, 9.7.6.
qq = Hy QS:Hy g6 =H; | q3=¢
q ~ Cos(yx) | - Sin(x) — Sin(yx) — Sin(x)
qy e
qz.9: |- Yss W Yy W
9.7.4
qz.9: | Yec Pee Wes Wye
9.7.5
q-.9; Q Q b b
9.7.6
Sections 9.8.4, 9.8.5, 9.8.6
qx |- Cos(px) | —Sin(px) | —Sin(yx) | —Cos(x)
— Sin(zx) ~Sin(yx) | —Sin(px) | - Sin(x)
g, | exp(m)
7. | o)
q; Cos(at) Cos(at) Cos(at) Sin(wt)
Sin(ct ) Sin(ct ) - Sin(et ) -Cos(ot)
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Sections 9.8.4a, 9.8.5a, 9.8.6a

g | —Cos(yx)| - Sin(;(x) —Sin(yx) | - Cos(xx)
— Sin(yx) | = Sin(yx) | - Sin(xx) | - Sin(px)
ay | Cos(py) | Sin(py) | Cos(py) | Cos(p)
Sin(py) | Cos(py) | Cos(py) | Cos(p)
q. | Cos(Pz) | Cos(Pz) | Sin(fz) | Cos(fz)
Cos(Pz) | Sin(pz) | Cos(Pz) | Cos(fz)
q; Sin(or) Sin(at) Sin(awt) Cos(a)t)
Cos(ot) Cos(at) | Cos (a)t) Sin(at)
Sections 9.8.4a
dx | — Cos(;(x) —Sin(yx) | —Sin(yx) | —Cos(yx)
—Sin(yx) | = Sin(x) | - Sin(ex) | - Sin(yx)
qy | Cos(py) | Sin(py) | Cos(py) | Cos(py)
Sin(py) | Cos(py) | Cos(zy) | Cos(yy)
q. | Cos(Pz) | Cos(fz) | Sin(fz) | Cos(fz)
Cos(Pz) | Sin(pz) | Cos(Pz) | Cos(fz)
9 | Cos(et) | Cos(wt) | Cos(et) | Cos(ar)
Cos(a)t) Cos(a)t) Sin(et) | Sin(et)
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9.11. The Maxwell Equations in Cylindrical

Coordinates

1. The first variant

Above we had considered the solution of Maxwell equations in
Cartesian coordinates (9.5.1) for certain functions of density distribution
for electric and magnetic charges. Here we shall consider the solution of
the same problem in cylindrical coordinates 7,y,¢. And here the
Maxwell equations instead of ( 9.5.1) take the following form ( see for
instance [51]):

1. 1.6((]{(0)_1.6(!_[)})_86121”_gd(§0,)20
r or ro op ot dx

2 1 0H,)_10kH,) O, .dlp)_,
r Op r Or ot dy

> 10kHy) oH,  OE, 9dp _,
oy ot rdo

v oE,) 1 oky)

1 0Ey), o, cd(d)_

M

o r 0@ ot r do
o) 1 ok P, d)_
r Op r Or ot dy
6. 1 0vE,) ok, L OHo cd_,
o oy o rde
r or oy r o0p ¢

8. 1‘a(rHr)+aHy+l.aH¢_g:O
r or oy r O0p u

Here the electric potential (contrary to the previous) is denoted as ¢@'.
Formally the transformation (9.5.1) in (1) may be performed according to
the rule:

o the coordinates are re-denoted as:
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o XD, Y=y, z=>r-Q,

o the derivatives are re-denoted as:
oH 1 o(rH) oH _ OH
= 5 = D

ox r or oy oy oz r op

0cH 1 oH
=

|
|
Fig. 1.

This transformation is explained on the Figure 1, where the axis 0y is a

generatrix of the cylinder, the axis OX = 0r - is directed along the
cylinder radius, the axis 0z = ¥ - @ is an arc of the cylinder.

We shall assume that the charges are distributed along the circle of

radius R, and their distribution density functions may be presented as

p(r.0,y,0)= p,Ch(BRo + ot Ch(@ W'(R), @
o(r,0,y,1)= 0,Ch(BRe + vt Ch(y W' (R). ()

We shall search for the solution of equations (1-3) in the form

E,(r,¢,2,t)= Ch(5Rp + vt Ch(&) )1, (), @
Ey(r,9,2,6)= Ch(BRo + vt )Ch(@) )fey (1), ®
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E,(r,p.z,1)=Sh(BRo + vt Ch() )f,.. (r), ©)
H,(r,p,2,t)= Ch(BRe + vt )Ch(&) ) f, (), 0
Hy,(r,0,2,1)= Ch(BRop + vt JCh(&) ), (1), ®)
H,(r,¢,z,1)=Sh(BRo + vt )Ch(&y )1 (r), o)
¢'(r,p.2,t)=Sh(BRe + vt JCh(&) ), (), (10)
#(r.0,2,1)=Sh(BRe + vt Ch() ) (), ()

where the functions

(x)_ fer(r)j fey(r)’ feq)(r) fhr(r)’
RV WO WAGWAR

obpasyrorcs  mu3 dyaxmuii  (1.1.12) 1o caeayromemy IpaBHAY:

12)

TPUrOHOMETpHYECKHE (DYHKITHU BHAA sin( ;(x), COS( ;(x) 3aMEHAFOTCS

sin(y(r=R))  cos(x(r—R))
r ’ r
are formed from the functions (1.1.12) by the following rule:

trigonometrical functions SIN( ¥x), cos(x) are changed to the

sin(y(r—R)) cos(x(r—R))
r ’ r

Let us substitute the functions (4-12) into equations (1), differentiate and

reduce the common factors. Then we shall get an equations system with

respect to the coefficients of functions (12), divided by 7. From here it

follows that the solution of this problem in cylindrical coordinates differs

from the solution in Cartesian coordinates by a factor

R
E=—, r2R.
r
This means that in Cartesian coordinates there exist undamped
oscillations along the coordinate X, and in cylindrical coordinates —

oscillations , damped by hyperbolic law, along the coordinate 7.

Ha CPYHKHI/H/I BHAQ COOTBETCIBEHHO.

functions accordingly.

The function of intensity along the axis OF has the form of
sinusoid with monotonically decreasing amplitude.

316



Chapter 9. The Functional for Maxwell Equations

2. The second variant

In contrast to the previous look at a different location of cylindrical
coordinates - see Fig. 2, where the axis 0X is perpendicular to the plane
of the figure, the axis 0X is directed along the radius, ¢ - the angular

coordinate.

I
Fig. 2.

In this case Maxwell's equations instead of (9.5.1) take the form:

b1 okty) 1 o) 0B, _4d@)_,
r  or ro op ot dx
2 1 a(H,)_oM,) oE, 8dGe)_,
r  op ox ot r dr
> a(Hr)_l.a(er)_gaE(D+§d¢7'20
ox r or o0 rdo
b1 obEy) 1 aE,) (O d@)_o | gy
r or ro oQ ot dx
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5. l'ﬁ(Ex)_a(E(”) 8Hr_£d(r¢):0

+u
r oo O o r dr
“ 0E,)_1 oCE,), My _cdp_
o - or o rdep

7 8Ex+l.8(rE,,)+l.aE¢_£:O
ox r or r op &
8. 8Hx+1.6(rHr)+l.5H¢_g:O
ox r or r o0p u

Here the electric potential (contrary to the previous) is denoted as ¢@'.

Formally the transformation (9.5.1) in (1) may be performed according to
the rule :

o the coordinates are re-denoted as:
XX, y=>r, z=>r-@Q,
o the derivatives are re-denoted as:
OH OoH oH 1 o(H) oH 1 oH
=, e e
ox ox oy r or oz r Op

This transformation is explained on the Figure 1, where the axis 0X is
perpendicular to the plane of the ring, the axis 0y = or is directed
along the radius, the axis 0Z = 7+ @ - the arc of ring.

”
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9.12. Monochromatic Fields

Here we shall consider the intensities of monochromatic fields, the
potentials and charges in complex form [51]:

A= Alx, y,z)eia) ’ M
A=Re(4), @)

where

~

A - true instantaneous values,

A - complex values,

A - complex amplitudes,

@ - angular frequency,

I - imaginary unit.
Let us rewrite the system of symmetrical Maxwell equations (9.5.1) for
monochromatic fields in the complex form [51]:

1. H H . n
OHz oMy —iweE +196—¢=0
oy oz dx
2. H H _ o
Ofx _OH: —iweky +198—¢=0
0z ox dy
3 0Hy 0Hy —iw8E2+19@:
ox oy dz
4 0E; 8Ey O
+iouH —=0
oy o eMtxTe )
5. E E . p
OFx _OE:z +iouH y —g%=0
oz ox dy
6. P
aEy aEx +la)/,lHZ g%zo
ox oy dz
ox oy oz ¢
8. ﬁﬁx_l_ﬁﬁy_'_ﬁﬁz_é_o
ox oy oz U
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Let us remind that here
M - magnetic permeability,
& - dielectric permittivit,
P - electric charge density,
O - hypothetic magnetic charge density,
j= grad(K ) - electric current density,
m = grad(L) - hypothetic magnetic current density,
@ - electric scalar potential,
@ - hypothetic magnetic scalar potential,

G - electrical conductivity,
¢ - hypothetic magnetic conductivity.

The equations (3) may be rewritten in abbreviated form:
rotH —iweE +60¢p =0,
rotE +iouH —cd=0,

divE—p/e=0,
divH —o/u=0.
Let us denote
E=iE,
p=ip.

and rewrite (4-7) in the form
rotH —wek +0p =0,
-1otE + wuH — ¢ =0,
divE - p/e =0,
divH —o/u=0.

)
®)
©)

v
®
©)

(10)

1)
12)

13)

Evidently, the complex amplitudes for E, E arcidentical and equal to

E . Also the complex amplitudes for g, ; are identical and equal to

P . Therefore, (10-13) may be rewritten as follows after discarding the

iwt
common factors e :

320



Chapter 9. The Functional for Maxwell Equations

rotH — weE +60p =0, (14)
-rotE + wuH —c¢p =0, (15)
divE — p/e =0, (16)
divH-o/u=0. 17)

This equations system may be solved by the aforesaid methods. After its
solution the complex values of the variables are determined as

— . it
E=i-F-e ,
— it
H=H-e ,
— it
p=@-€ )
— iwt
p=¢-e
— . it
p=i-p-e

it

= - e
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9.13. The Static Electric and Magnetic Fields

Here we shall consider plane static electric and magnetic fields that
emerge around a charged plate, the end of a permanent magnet or a plane
conductor. It will be shown that the intensities of such fields give a
minimum to a certain functional. We also are presenting a method for
calculation of such fields, consisting in gradient descent along this
functional [54].

1. The Electric Field of a Charged Infinite Strip

The Maxwell equations for electrostatics are as follows:
div(E)=",. M
&
rot(£)=0,. )

where
& - absolute permittivity of the environment
L - density of charges.
Let the charged plate has a form of infinite strip — see Fig. 1.

F

Puc. 1.

In this case the intensity £, =0 and electrostatic equations take the

form

OF
ox oy €
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OE
7)} _ % — O , (4)
ox Oy
as in this case

OE
div(E) = aE—"+—y . (5)

ox Oy

oE

rot(E) = Py Oy .. (©)

ox Oy

2. The Variational Principle for Plane Static Electric
Fields

Let us consider a functional

2
1 d. d.
X

from a function g(x), where Lis a known constant, and p(X)—a

known function. The extremal of this functional is described by an
equation of the form:

2
d d
YA ) @)
dx2 d.x
or, after integrating,
d
L-—q+p+const:0. €)
dx
Therefore, when descending on this functional along its gradient
2
dq | dp
p=—L| |- )
dx dx

the optimal value of the function g(X)will be found, satisfying the
equation (3).
Let us now consider a vector-function

E=[E,(x.y) Ey(x,»). ©)

and the following functional
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;Ey -d(grad (E, ) /oy + ;Ex -0(grad (Ey )/6)/
F(E) = ” dxdy (62)

xv| + Ey -o(grad (E, ) /ox — E,, - AE, )+ g div(E,)

1. (e%E, %E.) 1, [0°E, &°E,
~Ey- 5 1 +—E,- 5 T
2 dy Ooxoy 2 dy Oxoy

2 2 2 2 , (6B)
F(E)= “’ +E. . 0"Ey +% —E. . &Jraj dd
- x 2 y 2 2 Y

X,y Ox 0OxQy Ox oy

P OEy  OEy
& \ Ox oy

where p(X,)) is a known function.

Now we shall reason by analogy with the aforesaid. According to
Ostrogragsky formula [16] it is easy to show that the extremal of this
functional is described by two equations — extremals by the functions

Ex(xay)’ Ey(xay):
0°E, 0°E, o2 2
2y+ y+a Ex +a E2'x +1(a’0+8’0] :O’
dy ox0y  Ox0y  fx g \ox Oy

or

2 2 2 2
o Ex+5 Ex_a Ey_a Ey o,
6y2 ox0y gy’ OxOy

Here the first two members in both equations are the result of
differentiation, according to Ostrogradsky theorem, of the two first
members of the functional; the third and the fourth members in the first
equation are the result of differentiating the third summand of the
functional; the third and fourth members of the second equation are the
result of differentiating the fourth summand of the functional; the fifth
member of the first equation is the result of differentiating the fifth
summand of the functional.. Taking into account (1.5, 1.6), the equations
(7) are transformed into the form:
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grad(div(E))+ L grad(p)=0,
8 .
grad(rot(E))=0.

Since the field E does not have a permanent component, from (8)

follows (1.1, 1.2). Therefore, the descent on the functional (6a) in the
direction of gradient

e [pr _ grad(div(E))+ i -grad(p)=0 | o

Py grad(rot(E))=0
will give us the optimal value of the function E(X,y), satisfying the
Maxwell equations Maxcseaaa (1.1, 1.2) or (1.3, 1.4).

®

3. The Magnetic Field Around an Elongated End of a

Permanent Magnet

Let us consider a permanent strip magnet, magnetized in the
direction of the strip thickness — Fig. 1 shows such a construction. The
Maxwell equations around the end-strip of such magnet are:

div(i)=2,. )
&
rot(H)=0,. )

where

M - the absolute permeability of the environment,

O - the density of magnetic charges, which is equal to the
induction on the magnet end.
These equations and the equations of the electric field of a charged strip
are identical up to the notations and constants. It means that for the
calculation of such magnetic field the aforesaid method can be used.

4. The Magnetic Field of a Strip Conductor
We shall assume that the conductor carrying a constant current, is
formed as an infinite strip along the g coordinate — see Fig. 1. Then the

intensity [/, = 0 and Maxwell equations will take the following form:
OH N OH,,

=0, 1
ox oy 2
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OH, oH, _dK/ﬂ:O
ox oy dz

@)

where
o axis OX is directed perpendicular to the plane of the strip,
axis 0Y is directed across the strip,
axis 0Z is directed along the strip,
electric current density
= grad(K ) ?3)
O M - absolute magnetic permeability.

We denote
@ - electric scalar potential,

o O O

9 - electrical conductivity,

Jz - projection of vector of electric current density J on the axis 0Z.

Then we shall get
=2 @
Jz dz’
: do
=-9, 5
Jz s ©)
dK d
=9, ©
dx dx
K=-9¢. )
Let us rewrite the equation (2) as
8H 8H
—J/u= ®)
ox 6y

where J s the projection of the vector of constant current density to the
plane X0y .

5. Variational Principle for a Strip Conductor
The equations (4.1, 4.8) may be written as

div(H)=0, 1)
rot(H)—J/u=0. @)

By analogy with Section 2 let us consider the following functional
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lHy -grad(Hx)/6y+le -grad(Hy)ﬁy
F(E) = ” 2 2 dxdy’(3)

xy|+H, ~grad(Hx)/8x—Hy -A@y}i'diV(Hy)

where J(X,y)is a known function. The extremal of this functional is
described by two equations — extremals by the functions
Hx(xay)’ Hy(xay):
grad(div(H))=0,
1 : )
grad(rot(H))—— - grad(J)=0.
u

Since the field H does not have a permanent component, from (4)
follow (1, 2). Therefore, the descent on the functional (3) in the direction
of gradient

(pr grad(div(H))+ L grad(J)=0
p= Py = H '

®)
grad(rot(H ))z 0

HAXOAUTCA ONTHMAABHOE 3HAYCHUE JyHKIHI H(x,y),
yAOBA€TBOpsiroree ypapHeHHAM Makcseana (1, 2).

6. Variational Principle for Three-dimentional Static
Electric Fields

The Maxwell equations for electrostatics in this case also will be of
the form (1.1, 1.2). But in this case they turn into 4 equations with
respect to three unknown functions

E (x y,2) Ey(x y,z) E.(x, y,z)

OF
8Ex+ y+aEZ:£’ (1)
ox oy oz ¢

%_%:0’ )
ox oy
%_%:O’ (3)
ox 164
oy _%E: 4
oz 0Oy
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This system formally is overdetermined. But in the case of

axisymmetric structure 9around the OX axis) the equation (4) becomes an
identity and may be excluded. Further we shall consider only such
structures (although, generally speaking, the overdetermining is excluded
even in the general case — in numerical modeling the solution found by
(1-3), satisfies the equation (4)). In such structure, described by two

equations (2, 3) the rotor will be denoted by roty(£) =0.

By analogy with Section 2 let us consider the functional

;Ey -d(grad (E,, ) /oy + ;Ex o(grad (£, ) /oy +
1 1

FE) - ([ EEZ-ﬁ(grad(Ex))/az+EEx-8(grad(EZ))/8z+ dxdy,<1z>
woy| Ey-o(grad (£, )/ox — E, - AE,, )- E. - AE,)

+2 div(E,)
&

where p(X,)) is a known function. By analogy with the aforesaid we
may show that the extremal of this functional is described by three

equations—extremals by the functions-txtremals
Evryz) Ey(egs) EaGeorec)
grad(div(E))- L grad(p)=0,

g : 13)

grad(rotO(E ))= 0.
Since the field E does not have a permanent component, from (13)

follow (1, 2, 3). Therefore, the descent on the functional (12) in the
direction of gradient

Dx . 1 B
b= Py |- grad(dlv(E))—;-grad(p)—O ' (14)

D grad(rotO(E))= 0
will give us the optimal value of the function E(X,y,z), , satisfying
the Maxwell equations Maxkcseaaa (1, 2, 3).
In the same way we can build a functional for static magnetic fields,
formed by magnet's ends or by plane conductors.
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Chapter 10. Principle extremum
of full action

1. The Principle Formulation

The Lagrange formalism is widely known — it is an universal
method of deriving physical equations from the principle of least action.
The action here is determined as a definite integral - functional

t
S(9)=,* (K(q)~ P(q) )it 0
from the difference of kinetic energy K(g) and potential energy P(q),

which is called Lagrangian
Ag)=K(q)-P(q). @

Here the integral is taken on a definite time interval f] < <f, and ¢
is a vector of generalized coordinates, dynamic variables, which, in their
turn, are depending on time. The principle of least action states that the
extremals of this functional (ie equations in which it takes its minimum
value), on which it reaches its minimum, are equations of real dynamic
variables (i.e. existing in reality).

For example, if the energy of system depends only on functions ¢

and their derivatives with respect to time ¢ ,, then the extremal is
determined by the Euler formula [16]

0K-P) d(oK-P))_,
oq dt\ oq' '

The Lagrange formalism is applicable to those systems where the

full energy (the sum of kinetic and potential energies) is kept constant.

The principle does not reflect the fact that in real systems the full energy
(the sum of kinetic and potential energies) decreases during motion,

3

turning into other types of energy, for example, into thermal enerng , 1
e. there occurs energy dissipation. The fact, that for dissipative systems
(i.e., for system with energy dissipation) there is no formalism similar to
Lagrange formalism, seems to be strange: so the physical world is found
to be divided to a harmonious (with the principle of least action) part,
and a chaotic ("unprincipled") part.
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The author puts forward the principle extremum of full action,
applicable to dissipative systems. We propose calling full action a definite
integral — the functional

5)
D (g)= [ H(g)ds @
from the value
R(9)=(K(9)-P(9)-0(q)). ®)
which we shall call Energian. In it J(q) is the thermal energy. Further
we shall consider a full action quasiextremal, having the form:

o(K-P) d(o(K-P) 0 _,

dq dt\ oq' oq

Functional (4) reaches its extremal value (defined further) on
quasiextremals. The principle extremum of full action states that the
quasiextremals of this functional are equations of real dynamic processes

Right away we must note that the extremals of functional (4)
coincide with extremals of functional (1) - disappears term,

corresponding to Q(q).

Let us determine the extremal value of functional (5). For this

©)

putpose we shall "split" (ie replace) the function q(t) into two

independent functions X(¢) and Y(f) , and the functional (4) will be
associated with functional

t
(DZ(xay) :Jtlz mZ(xay)dta ()

which we shall call "split" full action. The function Ry (X, y) will be
called "split" Energian (by analogy with the Lagrangian). This functional

is minimized along function X(t) with a fixed function Y(f) and is

maximized along function )(f) with a fixed function X(f). The
minimum and the maximum are sole ones. Thus, the extremum of

functional (7) is a saddle line, where one group of functions X
minimizes the functional, and another -}, , maximizes it. The sum of
the pair of optimal values of the split functions gives us the sought
function § = X, + ), satisfying the quasiextremal equation (6). In
other words, the quasiextremal of the functional (4) is a sum of extremals

Xo»Vo of functional (7), determining the saddle point of this
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functional. It is important to note that this point is the sole extremal
point — there is no other saddle points and no other minimum or
maximum points. Therein lies the essence of the expression "extremal
value on quasiextremals". Our statement 1 is as follows:

In every area of physics we may find correspondence between full
action and split full action, and by this we may prove that full action
takes global extremal value on quasiextremals.

Let us consider the relevance of statement 1 for several fields of physics.

2. Electrical Engineering
Full action in electrical engineering takes the form (1.4, 1.5), where

12 2
L S ,
K<q>=§ , P(q)= Z ~Eq|, 0(q)=Rqq. o

Here stroke means derivative , ¢ - vector of functions-charges with
respect to time, E - vector of functions-voltages with respect to time, L
- matrix of inductivities and mutual inductivities, R - matrix of
tesistances, O - matrix of inverse capacities, and functions
K(q), P(q), O(q) present magnetic, electric and thermal energies
correspondingly. Here and further vectors and matrices are considered in

the sense of vector algebra, and the operation with them are written in
simplified form. Thus, a product of vectors is a product of column-

vector by row-vector, and a quadratic form, as, for example, Rq'q is a

! . .
product of row-vector ¢ by quadratic matrix R and by column-vector
q.
It was shown above that such interpretation is true for any
electrical circuit
The equation of quasiextremal in this case takes the form:

Sq+Lq"+Rq'—E=0. ®)
Let us (1) B (1.5), write the Energian (1.5) in an expanded form
12 2
Lg% S ,
R(g)= Z—Z+Eq—qu : ©)

Let us present the split Energian in the form
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X% - Sx? +Ex—Rx'y) |

Here the extremals of integral (1.7) by functions X(¢) and y(), found
by Euler equation, will assume accordingly the form:
28x +2Lx"+2Ry'— E =0, (5)
28y +2Ly"+2Rx'— E=0. (6)
By symmetry of equations (5, 6) it follows that optimal functions X() and

Ro(x,y)= (4)

Y0 » satisfying these equations, satisfy also the condition

X0 =)0- (7
Adding the equations (5) and (6), we get equation (2), where
qg=%Xo tVo. (8)

It was shown above, that conditions (5, 6) are necessary for the existence
of a sole saddle line. It was also shown above that sufficient condition

for this is  that the matrix L has a fixed sign, which is true for any
electric circuit.

Thus, the statement 1 for electrical engineering is proved. From it
follows also statement 2:

Any physical process described by an equation of the form (2),
satisfies the principle extremum of full action.

3. Mechanics

Here we shall discuss only one example - line motion of a body
with mass M under the influence of a force f and drag force kq ',

where k - known coefficient, q - body's coordinate. It is well known
that

f=mq"+kq'. (1)

In this case the kinetic, potential and thermal energies are accordingly:

K(g)=mq™ 2, P(q)=—fg, O(g)=kqq" @
Let us write the Energian (1.5) for this case:
l2 !
R(q)=mq” 2+ fa—kaq' ©)

The equation for Energian in this case is (1)

332



Chapter 10. Principle extremum of full action

Let us present the split Energian as:

[+ o)
mﬂ%yy_émaﬁﬁ—hy) @

It is easy to notice an analogy between Energians for electrical
engineering and for this case, whence it follows that Statement 1 for this
case is proved. However, it also follows directly from Statement 2.

4. Electrodynamics

Further instead of the general-action extremum principle with regard
to energies we shall discuss the similar general-action extremum principle
with regard to powers.

4.1. The power balance of electromagnetic field
The equation of electromagnetic field power balance in differential
form is well known [48]. It has the following form

Pn-l-PEH-I-PQ-l—PC:O, 1
where

PH - the density of power flow through a certain surface ,

Prpy - the density of electromagnetic power of an electromagnetic
field,
PQ - the density of heat loss power,

Fr - the density of outside current sources powet.

Also
P =div[ExH] @
or, according to a known formula of vector analysis,
Pq=E-rot(H)—-H -rot(E), 3)
dH dE
P —+ el — 4
EH =HH e 4
By=J|E, ©)
Fc=JE, ©)
where

& - absolute permittivity,
M - absolute magnetic permeability,
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J ] - the density of conduction current,

J - the current density of outside current soutce.

Here and turther the three-component vectors

dH _ dE
; B, E ,J1,J9,10t(H ), r0t(E) are considered  vectors in

the sense of vector algebra. So the operations of multiplication for them

may be written in simplified form. For instance, a product of vectors

E -tot(H) is a product of column-vector E by row-vector Tot(H').
Let us denote

2

J=J1+J2, %
PJ =PQ +Pc. 8)
J = grad(K), ©)

where K is a scalar potential. From (5-9) it follows, that the power of
an electric current

Py =E-grad(K). (10)
The charges in the field of scalar potential possess potential energy. The
corresponding power

P,=Kp /&, (11)
where O - distribution density of summary (free and outside) charges.

Let us assume now, that there exist magnetic charges with density

distribution O and magnetic currents

M = grad(L), (12)
where L is a scalar parameter. Then by symmetry we should assume that
there exists magnetic current power

Py = H -grad(L), (13)
potential energy of magnetic charges and the corresponding power
Pr=Lo/u, (14)

where O - density of magnetic charges.
Let us denote also the summary currents power (electric and
magnetic)

PJMZPJ-l-PM. (15)
and the total power of charges (electric and magnetic)
Pp(7 = Pp +P;. (16)

Then the equation of power balance of electromagnetic field takes
the form:
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PH+PEH+PJM +P,00':0’ (18)

where the components are determined as (3, 4, 15, 16) accordingly.

4.2. Building the functional for Maxwell equations
Let us consider a electromagnetic field of volume V', limited by

surface S . Full action in electrodynamics has such a form

T
CD=I &{)EH—PJM—PIDG}V—E{)HQIS dt, 21)
ow S

Here we have in mind that the volume density of the power of
electromagnetic field Pgpy is determined from (4), the volume density

of the total power of the currents is determined from (15, 16), and the
Pointing vector is

N=[ExH] (22)
Here the first component is the electromagnetic field in volume V', the
second component is the currents power in volume V', and the third

component is the power of the charges in the volume V', and the fourth
component is the instantaneous value of density of power flow through

surface 3.
I'To Teopeme OcTporpasckoro nMeem:
fdivlExH PV = {[ExHES. (23)
V S

Taking regard of formulas (2, 22), from (21) we get:

T
CDIJ- § St; Eﬁ{)EH—PH—PJM—PpU}'X dy dz vdt (24)
Olz|yWx
or
T
CD:I §3 §3 fﬁi(q(x,y,z,t)dx dy vz vdt (25)
0lz|yx

where ¢ - the vector of unknown functions (E ,H, K ,L), and the
Energian for electrodynamics has the form:

[
R(q) = Perr —Pr1 =Pyt — Poo (26)
Taking regard of formula (4, 3, 18), we get
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H-rot(E)—E-rot(H)+,qu—H+5Ed—E—
dt dt
R(g) = @

- (E -grad(K )+ Kgpj - (H -grad(L)+ L:j

Let us remind that the necessary conditions of extremum for a functional
from functions of several independent variables - the Ostrogradsky
equations [16] for each function have the form (9.1.1.1a).

Let us consider a vector of unknown scalar functions of four

variables (X,J/,%z‘):
q=|E.E,.E,.HH, H, K,L| (278)

Let us write the equation of quasiextremal for the functional (27) for

each 1 -th component  {; of the vector ¢

LTI { d ( 0Py H
an a:x,y’z,t da a[dql/da]
0Pps 0Py 0P
y PO U0 YEH
ogi  Oq;  0g;
The first four components here corresponds to Ostrogradsky equation
(9.1.1.1a), and two others are ordinary partial derivatives. Differentiating
by unknown functions according to (28), and combining then the three
projections into a vector, we get:

e By variable £ = I_Ex,Ey,EZJ:

=0. 28)

-totl + ¢ CZ —grad(K)=0, (29)

e By variable H= |!_1x’Hy’HZJ:

rotE + ,ua:;[ - grad(L): 0, (30)

e By variables K, L accordingly,

. . (o}

divk — = |=0, | divH —— |=0. 31)
& 7

We may notice that these equations are symmetrical Maxwell equations

(since they have more magnetic charges, the scalar potentials and
currents).
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4.3. Splitting the functional for Maxwell equations
Let us associate with the functional (25) the functional oa split full
action

T

q)z:j f f£ ﬁiﬂz(q',q”)dx dy vdz pdt > (32)
0lz |y x

Let us present the split Energian in the form
1
5 (H'-rot(E")+ E'-rot(H"))

- ; (H"-tot(E")+ E" - rot(H") )+

’ " /’l ’ L4
Ro(q.q") =12 1 art’ _gr9E
2(q4") 2( dt a ) 2\" a dt

- (E’ -grad(K")+ Kpj + (E” -grad(K")+ K pj
g &

" i " 4 (33)
dH _H,,de_g(E,dE dE]

- [H’ -grad(L')+ LO-] + (H" -grad(L")+ Laj
7 7

Above it was proved that the extremals of integral (32) by functions
q',q", found from Ostrogradsky equation, are the necessary and
sufficient conditions of the existence of a sole saddle line, and the

optimal functions qé, qg, satisfying these extremals, satisfy also the

condition

do =95 (34)
Adding these extremals, we shall get the Maxwell equations system (29-
31), where

q9=9,+9,. (35)

- see (278). Consequently, the Statement 1 for electrodynamics is proved.
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Chapter 10. Principle extremum of full action

5. Principle extremum of full action for
hydrodynamics

This principle is discussed in detail in [53]. The hydrodynamic
equations for a viscous incompressible and compressible fluid follow
from it.

6. Computational Aspect

Thus, the proposed variational principle permits to build for various
physical systems a functional with a sole optimal saddle line. We have
also proposed a computational method of moving to the saddle line,
which permits to find quasiextremals of this functional. In this way we
are able to determine real equations for a given physical system.

Therefore the new formalism is not only an universal method of
deducing physical equations according to a certain principle, but also a
computational approach to the building of these equations.
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Main Notations

Main Notations

Variables In Formulas | In Programs
actual iterations number ziklSum
actual number of methodic W
resistance changes
branches array bran
branches number VGFvetvi
branches numbers in transformers b1, b2, ...
table
chatges vector ., q 94
choice of circuit for computation mode
circular frequency 2 omega
complex matrix Z

currents vector b m of P P, TokiTtans
transformer node,

currents vector g , g=q' qqt

currents vector in methodic X i

resistances of normal nodes,

currents vector in methodic Y mm

resistances of transformer nodes
density of hypothetic Dirac mono- | m=grad(L)
fields magnetic current

diagonal reciprocal capacities S sssDiag
matrix Sy,

diagonal resistances matrix Ry, R rerDiag
electric charge density Yol

electric current density j=grad(K)

electric current density j=grad(K)

electric field strength E

electric potential Q

electro conductivity 9
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Main Notations

EMEF vector Ej, E EEreal

EMF vector in unconditional E E

electric circuit

energian R

error for First Kirchhoff Law £ eK1, ErrKirh1
error for Second Kirchhoff Law &y eK2, VGFerPP
first and last nodes numbers of a nBeg, nEnd
given branch

full action ()

gradient p Pp

hypothetic magnetic charge density | o'

imaginary part of transformation tran2

coefficients matrix

incidences matrix N N, Inzidenz
incidences matrix square T NTN,

NN Kwadralnzidenz
indication of cutrents presence in VGFyesTokiTran
transformer nodes
indication of node currents VGFyesTokiUzlo
presence M
indication of transformers presence VGFyesTrans
indication of transformers with VGFyesTranslnt
complex transformation
coefficients presence
inductances matrix Ly and mutual M mmmDiag
inductances matrix M kn s
initial methodic resistance increase krmin
coefficient
iterative process indication res
magnetic conductivity S
magnetic field strength H
magnetic permeability H
magnetic scalar potential ¢
methodic resistance change kp stepRoo
coefficient
methodic resistance, 1% ro
minimal error for First and Second eK1min,
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Main Notations

Kirchhoff Laws eK2min
mutual inductances matrix in M MMM
unconditional electric circuit

node potentials vector @y, , 2 ft

node currents vector H ;| H H, TokiUzlow
nodes array nod
nodes number VGFuzly
permittivity &

potentials vector ¢m of ¢ ffTran
transformer nodes,

real part of transformation T1 tranl
coefficients matrix

reciprocal capacities matrix in E sssDiag
unconditional electric citrcuit

resistances matrix in unconditional E RN
electric circuit

split energian R 2

split full action (I)2

tolerant iterations number maxIter
tolerant number of methodic Wmax
resistance changes

transformer nodes number VGFtpt
transformers array nodTran

truncated Dirac function

y'(0),E(x)

unit step

(), A(x)

Ah', BT LR, T

t11, t12, t21
t22

5
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Some of the Terms

Some of the Terms

aaaTerm Section
Complex transformation coefficient 3.3
Conjugate functional 1.0
Dennis transformer 3.1
Differentiating branch 7.1
Dirac function 6.6
Energian 10
Full action 10
Grounded electric circuit 7.3
Instanteous values transformer 3.1
Integrating transformer 3.3
Interoperable function 5.3
Lagrange formalism 10
Longitudinal electromagnetic wave 9.7
Maximization algorithm 6.2
Maximization method 6.2
Methodic resistance 3.2
Outside variable 6.1
Power density 10
Principle extremum of full action 10
Quasiextremal 10
Quasivariation 4.1
Secondary functional 4.1
Split energian 10
Split full action 10
Splitting functions 10
Step function, unit step 6.2
Transformers matrix 3.1
Unconditional electric circuit 3.2
Volatile standing electromagnetic wave 9.7
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