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Annotation
Here we shall formulate and prove the variational optimum principle 

for electromechanical systems of arbitrary configuration, in which 
electromagnetic, mechanical, thermal, hydraulic or other processes are 
going on. The principle is generalized for systems described by partial 
differential equations, including also Maxwell equations. The presented 
principle permits to expand the Lagrange formalism and extend the new 
formalism on dissipative systems. It is shown that for such systems there 
exists a pair of functionals with a global saddle point. A high-speed 
universal algorithm for such systems calculation with any perturbations  
is described. This algorithm realizes a simultaneous  global saddle point 
search on two functionals. The algorithms for solving specific 
mathematical and technical problems are cited. The book contains 
numerous examples, including those presented as M-functions of the 
MATLAB system and as functions of the DERIVE system. The 
programs in systems MATLAB and DERIVE are published as a separate 
annex  in the form of an electronic book [52]. Programs are not required 
to understand the theory.
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Preface

Preface
The search for variational principles for the electromechanical 

systems of arbitrary structure and configuration is a subject of theoretical 
and practical interest. In this connection we shall consider below a 
problem of looking for such a functional whose steady-state equations 
are equations of electromechanical system. For mechanical systems such 
principles are generally known. For special cases of electric circuits the 
solution of this problem is known. For instance, for circuits with 
resistances the solution has been found by Maxwell [1], and was extended 
not long ago to circuits with diodes and direct-current transformers [2]. 
Another generalization for circuits with non-linear resistances may be 
found in [3, 4]. For circuits with capacitances and inductances (but 
without resistances) is also known [3, 5]. In [6] the works are listed in 
which attempts were made to solve the problem for general-form electric 
circuit, and all these attempts were proved insolvent. The reason for such 
search is understandable, as the absence of extremum principle for 
electric circuits seems to be rather strange. As regards to the practical side 
of the question, the existence of such principle permits to use alternate 
current electric circuits for calculus of variation problems simulation: 
these circuits are nature’s own simple-device computer that solves a very 
complicated mathematical problem (using an algorithm of unknown 
kind). 

On the other hand, a discussion in the terms of electric circuits may 
lead to the development of certain problems of calculus of variations. An 
example of a similar influence of the direct-current electric circuits theory 
on the theory of mathematical programming may be found in the work 
[2]. Lastly, the calculus of variations theory may also be used for electric 
circuits and electromechanical systems computing. Such approach has 
been used by the author. The extremum principle for alternating current 
electric circuit was formulated by the author in 1988 in [8] and was 
developed in the articles [9, 10, 15, 16]. The first edition of this book was 
published in [31].

The basic idea is that the current function is “split” into two independent 
functions. The proposed functional contains such pairs of functions; its 
optimum is a saddle point, where one group of functions minimizes the 
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Preface

functional, and the other one – maximizes it. The sum of the optimal 
values of these functions gives the current function of the electric circuit.

The previously presented results will be generalized and developed 
below; the computational aspect of this principle’s use will be considered 
as well. Furthermore, this principle will be extended to electromechanical 
systems, since it may be integrated with a principle known in mechanics 
as the minimal action principle, since it is a generalization of a known 
principle of least action. For a given electromechanical system a 
functional containing functions of thermal, mechanical, electric and 
electromagnetic energies, as well as the functions describing the 
perturbation actions – electric and mechanical, is formed.  These 
functions depend on the system’s configuration. The functional has the 
dimension: “energy*time”. The functional is a quadratic function of the 
sought parameters, and it has a sole optimal point. There are no 
constraints (they are also included into the functional). The functions 
providing the optimal value of the functional present solution of the 
given electromechanical system’s calculation problem. Consequently, the 
given electromechanical system’s calculation may be stated 
mathematically as a variational problem of seeking an unconditional optimum 
of a quadratic functional. Such problem always has a solution, and a fast 
algorithm has been found for the search of this functional’s saddle point. 

The described principle may be used for the development of a 
universal package of programs for fast computation of arbitrarily structured 
and configured electromechanical systems. 

So, the nature gives us by the said principle a certain functional. The 
second Kirchhoff’s law equations follow from the optimization of this 
functional with constraints in the form of the first Kirchhoff’s law 
equations. So naturally the optimization of the said functional and the 
solution of the system of Kirchhoff’s law equations both lead to the same 
result.

The proposed method extends to partial differential equations, 
including also the Maxwell equations.

In essence we are presenting  a generalization of a known Lagrange 
formalism – an universal method of physical equations derivation from 
the least action principle. However, the Lagrange formalism is applicable 
only to those systems where the full energy (the sum of kinetic and 
potential energies) is kept constant. It does not reflect the fact that in real 
systems the full energy (the sum of kinetic and potential energies) 
decreases during motion, turning into other types of energy, for example, 
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into thermal energy Q , i. e. there occurs energy dissipation. Thus, the 
presented formalism is extended on dissipative systems.

The book consists of 9 chapters. 
In Chapter 1 the electric circuit with RCL-elements is considered and 

a functional from the split function of charges x and y is formulated for 
this circuit. It is shown that the said functional it maximized as a function 
of x and minimized as a function of y. The sum of the optimal values of 
x and y is equal to the observed function of charges q. A computational 
method of searching for the functional’s saddle point is presented.

In Chapter 2 the extremum principle for functional of split  function 
of currents v and w is similarly considered. It is shown that the said 
functional is being maximized as the function of v and minimized as the 
function of w. The sum of the optimal values of v and w is equal to the 
observed function of currents g. A computing method of searching for 
the functional’s saddle point is presented.

In Chapter 3 the electric circuits are supplemented by instanteous 
current values transformers. Such transformers were originally explored 
by Dennis and will in future be called Dennis transformers. It is shown 
that in this case for electric circuit there also exist functionals from split 
functions of charge and of current. The first Kirchhoff’s law equations 
serve as constraints in the search of saddle point for these functionals. 
The existence of second Kirchhoff’s law equations follow from the 
existence of saddle points for these functionals. Then the circuits are 
modified in such a way that they become mathematically equivalent to 
simple RCL-circuits and may be described by functionals without 
constraints. The calculation of such circuits (called unconstrained) 
becomes significantly simpler. Then we shall consider the so called 
integral transformers and circuits containing them. These transformers 
present a certain generalization of Dennis transformers, and in sinusiodal 
current circuits they are equivalent to transformers with a complex turn 
ratio.

In Chapter 4 a method is proposed for finding such functions of 
charges and currents, that their optimal values provide the optimum of 
the two functionals simultaneously. The physical interpretation of the 
functionals is considered, and it is shown that in the electric circuit the 
influence of thermal and electromagnetic energy is optimized 
simultaneously.

In Chapter 5 the algorithms of simultaneous optimization of the 
said functionals are described. The most commonly encountered types of 
voltage and current sources are considered as the functions of time – 
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sinusoidal, periodical and step functions. The same functions may be 
viewed as permutation actions in a system of differential equations, 
whose solution amounts to the electric circuit calculation with the aid of 
the proposed method. It is shown that the solution of linear algebraic 
equation system also amounts to calculation of an electric circuit with 
sinusoidal currents, using the suggested method.

Chapter 6 discusses some concepts of the Pontryagin’s maximum 
principle. It is shown that this principle may be used for the electrical 
circuit functional optimization. Thereby it is established that the 
considered variational principle may be extended also for discontinuous 
functions. This argument was used above in the description of 
discontinuous functions calculation method. Further we shall describe an 
algorithm of electrical circuit calculation, based on the combination of 
variational principle and maximum principle.

In Chapter 7 we consider the analogy between the presented and the 
Lagrange formalism. Then we turn to the discussion of electromechanical 
systems.  The electric circuit is complemented by some electromechanical 
elements, which involve, along with currents and charges, some 
“foreign” variables, such as coordinates, velocities, accelerations, forces, 
moments, temperature, pressure etc, describing the non-electric 
processes – mechanical, thermal, hydraulic. A system of equation is built, 
describing a system of electromechanical elements, connected into an 
electric circuit. It is shown that such system of equations is also 
equivalent to the conditions of existence of two functionals, similar to 
the functionals for electric circuits. The optimum principle for these 
functionals in some particular cases is transformed into the principle of 
minimal action. 

In Chapter 8 we are dealing with electric circuits, which are 
described by partial differential equations – electric lines, planes, 
volumes. We consider classic and special partial differential equations. 
We show that for them it is also possible to build functionals, and the 
search for these functionals extremum is equivalent to the solution of 
these equations.

In Chapter 9 it is proved that there exists a functional for which 
Maxwell equations are the necessary and sufficient conditions of global 
extremum existence, and this extremum is a saddle point. The subject is 
the computational aspect which is illustrated by detailed examples of 
computations for various electromagnetic fields. The method allows to 
formulate and to solve the sort of Maxwell equations systems that have 
solutions with unusual physical interpretation: 
 longitudinal electromagnetic waves,
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 standing waves in the absence of energy exchange between the 
electric and magnetic component

 electric waves in the absence of magnetic waves and vice versa.

In Chapter 10 we present a new variational extremum principle of 
general action, which extends the Lagrange formalism to dissipative 
systems. We show that this principle is applicable to electrical 
engineering, mechanics with regard to friction, electrodynamics and 
hydrodynamics. The prove is in the results stated in the previous 
chapters. The proposed variational principle is a new formalism, which 
permits to build a functional  with one optimum saddle line for various 
physical systems. Moreover, the new formalism is not only universal 
method of deducing physical equations from a certain principle, but also 
a computational method  for these equations.

The book includes numerous examples. Part of them are M-functions 
of the MATLAB system. These programs comprise a significant part of 
the book, as a part of computational formulas is simply included into the 
programs. It was possible because MATLAB language is nearly as 
laconic as traditional mathematical language, particularly in the part 
concerned with operations with vectors and matrices which are being 
widely used in this book.

The book is accompanied by annex [52]. It contains the open codes 
of the mentioned programs of MATLAB and DERIVE systems. This 
annex is not necessary  to  understand  the theory.
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Chapter 1. RCL-circuits with Electric Charges

Chapter 1. RCL-circuits with 
Electric Charges

0. Introduction
Henceforth we shall denote as R, L, C resistance, inductivity and 

capacitance accordingly. Besides, instead of capacitance C we shall often 
use the parameter S=1/C to simplify the matrix expressions. The first 
and second derivative with respect to time will be denoted by one or two 
strokes, accordingly.

Consider first a CL-circuit without resistance. It is described by the 
equation:

0 EqLSq , (a)
where

 q – the charge, an unknown function of time t with continuous 
second derivatives, 

 E – a known function of t.

Example 1.  Consider an equation
0 EqLSq .

The solution of the corresponding homogeneous equation 
0 qLSq  looks as [16]

   tctcq   SinCos 21 ,
where 21, cc  - arbitrary constants, LS / .

Let teuE   . WE can see that a particular solution in this case is 

Emq  , where 
LS

m 2
1


 . The same solution will be for 

)(Sh tuE    or )(Sin tuE   , etc. Consequently, the general 
solution of the initial equation for such cases will be 

    mEatcatcq  SinCos 21 .

Let us consider the functional
16
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
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
  T dtEqqLSqqF 0
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2
1

2
1)( , (b)

It is easy to see that for the functional (b) the equation (а) is an Euler’s 
equation – the necessary condition of this functional’s global minimum 
[16].

The existence of global optimum of this functional permits us to use 
the gradient descent method for solving the equation (а). To do it for 
given values of the function q its new value is found by the formula

apqqn  ,
where

p – variation of function q, computed by (а),
a – a constant.

When the function changes from q to nq  the functional (b) changes by 
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Chapter 1. RCL-circuits with Electric Charges

Therefore, 

  T dtEppqLSqpA 0 ][ ,

  T dtpLSpB 0
22 ][ .

The iterative process permits to find the optimal value of q. The stop 
sign will be 0p . On each iteration:

 The gradient p with respect to (a) with given function q is 
computed;

 The coefficients А and В with given p and q are computed;
 The new value of q = q – ap, where a=-A/B, or 

p
B
Aqq : (с)

is computed.

Example 2. Continuing example 1, let us find q by the stated 
method. On the first iteration q=0, and hence,

EEqLSqp  , Ep   , 

  T dtELSB 0
22 , tdEA T

 0
2 , 

 E
B
Aq   or q=kE, where 

LS
k 2

1


 .

Generally, if on a certain iteration q=hE, then 
  nEEhLShEqLSqp  12 ,

    tdELhShntdEppqLSqpA TT
  0

22
0 1 ,

   TT dtELSndtpLSpB 0
222

0
22 ][  ,

And the new value of the function
 
  LS

EnE
LSn

LhShnhEp
B
Aqq 222

2 1:









 ,

i.e., as after the first iteration, q=kE, where 
LS

k 2
1


 . This 

solution differs from the final solution, obtained in the example 1, 

and has the form Emq  , where 
LS

m 2
1


 .

Let us consider the functional
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 





  T dtEqqLSqqF 0

22
1 2

1
2
1)( , (с)

which differs from the functional (b) by the sign before the second term. 
We shall call the functional (с) conjugate with regard to the primary 
functional (b). Let us consider now the descent by gradient (а) in the 
conjugate functional (с). It is easy to see that in this case

  T dtEppqLSqpA 01 ][ ,

  T dtpLSpB 0
22

1 ][ .

These coefficients differ from the coefficients А and В by their sign 
before the second term.

Example 3. Continuing the example 1, let us find the function q by 
the stated method of descent by gradient (а) in the conjugate 
functional (с). On the first iteration q=0 and further,

EEqLSqp  , Ep   , 

  T dtELSB 0
22

1  , tdEA T
 0

2
1 , 

 E
B
Aq 

1

1  or q=mE, where 
LS

m 2
1


 ,

This solution is similar to the solution obtained in the example 1. 
Generally, if on a certain iteration q=hE, then 

  nEEhLShEqLSqp  12 ,

    tdELhShntdEppqLSqpA TT
  0

22
01 1 ,

   TT dtELSndtpLSpB 0
222

0
22

1 ][  ,

And the new value of function
 
  LS

EnE
LSn

LhShnhEp
B
Aqq 222

2

1

1 1:









 ,

i.e., as after the first iteration, this solution is similar to the solution 
obtained in the example 1.

Thus, moving by the conjugate functional (с) in the direction of the 
primary functional’s (b) gradient (a) leads to the minimal value of the 
primary functional (b).

We shall use this rule in future. 
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1. Series RCL-circuit
Let us consider the functional
Further we shall designate the first and the second derivatives with 

respect to time by one or two strokes correspondingly. Consider a 
functional

 T dtyxfyxF 0 ),(),( , (1)
where


















)()(

)()(
),(

2222

yxEyxyxR

yxLyxS
yxf , (2)

 x, y – unknown functions of time t with continuous second 
derivatives,

 E – a known function of t,
 S, L, R – positive numbers.

Let us find the necessary conditions of this functional’s extremum [7]:

0













x
f

dt
d

x
f







, 0













y
f

dt
d

y
f







or
0222  EyRxLSx , (3)
0222  ExRyLSy . (4)

Let us find also:

022

2



L

x
f


 , (5)

022

2



L

y
f


 .           (5а)

Consequently, the extremal defined by the equations (3) and (4) provides 
a global weak maximum of the function x and a global weak minimum of the 
function y for the functional (1) and (2) (equations (3) and (4) are 
necessary, and equations (5, 5a) - sufficient conditions for this [7]). It 
means that there exist optimal functions 0x  and 0y , presenting a 
solution of the system of differential equations (3) and (4), and providing 
an extremal value ),( 000 yxFF  for the functional (1) and (2). The 
optimality of functions 0x  and 0y  becomes apparent when comparing 
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the values of the functional for optimal and non-optimal functions and 
their derivatives.

The optimal functions fulfill the condition:
00 yx  , (6)

which follows from the symmetry of conditions (3) and (4) and may be 
strictly proved on changing these equations to operator form [9].

Adding up the equations (3) and (4), we get
0 EqRqLSq , (7)

where
q = x + y. (8)

It means that the functional (1) and (2) has its optimum on the 
functions x and y, whose sum satisfies the equation (7). This functional 
has an optimal saddle point, in which the equations (6), (7) and (8) are 
satisfied. Equation (7) is the equation of RCL-circuit connected to a 
voltage source E, where q  - the current in this circuit. Therefore in the 
RCL-circuit the extremum principle for F, defined by (1) and (2), is 
objectively valid, and the equation (7) is the consequence of this 
principle. The integrand (2) of functional (1) has the dimension of 
energy. Thus, as the interpretation of this principle we may assume that 
the value optimized in the electrical circuit represent an algebraic sum of 
electric, magnetic, thermal energy and the potential energy of the voltage 
source. 

Remark 1. Let us consider also the case when the values S, R are 
functions S(t), R(t) of independent variable t. In the expression (2) the 
first term does not contain operators of differentiation or integration. 
Therefore the value S  may be a function S(t) of independent variable t 
without any change in the functional. To include the function R(t) into 
the functional, it should be changed in such a way, that for it,  as before, 
the stationary line would be represented by the equation (7). It is easy to 
see that such functional will be as follows:























 


)()(

)()()(
2
1)(

),(
2222

yxEyxyxR

yxLyx
dt

tdRtS
yxf . (8а)

This remark will be used in future in the process of solution of 
differential equations with spatial coordinates as independent variables.
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2. The Computing Algorithm for RCL-circuit
The existence of global optimum allows the use of gradient descent 

method for electric circuit calculation. The idea of this method is as 
follows. For the given values of x and y their new values are calculated 
according to formulas:

apxxn  , (9)
,bhyyn            (10)

where
p and h – variations of functions x and y, calculated by (3) and (4),
a and b – constants.

The direction of descent is determined by the gradients  p and h of the 
primary functional (1) with integrand (2), while moving by conjugate 
functional with the integrand 


















)()(

)()(
),(

2222

yxEyxyxR

yxLyxS
yxf .

This function differs from (1) only by the sign before the second term. 
When functions change from x to nx  and from y to ny , functional 
changes by ),(),( yxFyxFF nn  . Further we have:






































 



















T

n

nnn

n

nnn

T
n

n

nnnn

n

nnn

T
nnnnnn

dt
x

yxyxfp
x

yxyxfp

dt
a
x

x
yxyxf

a
x

x
yxyxf

dt
a

yxyxf
a

yxyxF
a
F

0

0

0

,),,,(),,,(

),,,(),,,(

),,,(),,,(




















































 T

n

nnn

n

nnnn dtp
x

yxyxfpp
x

yxyxfp
a

F

0
2

2

2

2

2

2 ),,,(),,,(






.

The optimal value of a is determined from the condition 0 aBA , 

where 
0

2

2

0
,

 

























aa a

FB
a
FA

 
or






















T
dt

x
yxyxfp

x
yxyxfpA

0

),,,(),,,(






,
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





















T
dtp

x
yxyxfpp

x
yxyxfpB

0
2

2

2

2 ),,,(),,,(






.

Thus,

  T dtEpxpxpRpxLSxpA 0 ])(22[ ,

  T dtpLSpB 0
22 ]22[ .

Similarly, the optimal value of b is determined from the condition 
0 bBA , where

  T dtEhyhyhRhyLSyhA 0 ])(22[ ,

  T dthLShB 0
22 ]22[ .

The iterative process leads us to the optimal values of x and y. Indication 
of stopping is 0p  and 0h . If the iterative process begins from 

00 yx  , then by symmetry, 00 hp  . Also 0 hphp  and the last 
two conditions 0 aBA  and 0 aBA  turn into the following 
equivalent conditions, where BBBAAA  ,  and a=b. As 
x=y=q/2, the gradient of the function q is equal to

ppq 2 .         (10а)
Further we have:

  T dtpLSpB 0
22 ]22[ ,          (11)

tdEpqpqpRpqLSqpA T
  0 ]2/)([ ,          (12)

EqRqLSqp  .          (13)
Thus, the iterative process of finding the extreme value of the 

functional (1) allows to find the function q. During every iteration
 The gradient p is calculated by (13) for the given function q;
 The coefficient a=-A/B is calculated by (11) and (12) for given p 

and q;
 The new value of the function q is calculated:

q =: q - 2ap        (13а)
or

p
B
Aqq 2:  .        (13в)
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3. The Equations for General-Form Electric 
Circuit
Let us consider a general-form electric circuit and note there two 

types of branches:
1. A branch with current source kH , placed between the node 

and the “ground”,
2. A series RCL-circuit with elements kkkk ELSR ,,, , placed 

between two nodes.
We shall assume that branches of the second type are linked in 

addition by mutual inductances kmM . An example of such circuit is 
shown in the fig. 1.

Using the line of reasoning similar to [2], we can show that such 
electric circuit is described by the following system of equations:

0 TNEqRqMSq ,           (14)
0 HqN ,           (15)

where
qH ,  - vectors of currents in branches of the first and second 

type;
E – generated voltage vector for branches of the second type;
  - potentials vector for branches of the second type;
N – incidence matrix with the elements 1, 0, -1;
S, R, M – matrixes of the type

...]...[diag 21 kSSSS            (16)
...]...[diag 21 kRRRR            (17)

























...............................
.......
............
......
......

...

............

...

...

22

11

321

23221

13121

kmk

mk

mk

kkk ML

MM
MM

MMM

MLM
MML

M .           (18)

In this system equation (15) describes the first Kirchhoff’s law, 
equation(14) – the second Kirchhoff’s law. In this system H  and E are 
known vector-functions of time t, and the vector-function of time q(t) is 
the required function.

24



Chapter 1. RCL-circuits with Electric Charges

1q 

2

1 3

1H 3H

2H

2222 ,,, ELSR

1111 ,,, ELSR 3333 ,,, ELSR

12M 23M

13M

3q 

2q

Fig. 1. An Example of General-Form Electric Circuit
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4. The Functional for General-Form Electric 
Circuit

Let us consider vector-functions of time x(t), y(t), )(),( tt  , 
satisfying equations (8) and the equation

            (19)
System of equations (14), (15) may be rewritten in the following form:

02222  TNEyRxMSx ,            (20)

02222  TNExRyMSy ,            (21)
02  HxN ,            (22)
02  HyN ,            (23)

Consider now the functional (1), where

    

























HyNHxN

yxERyxyRx

yMyxMxSyySxx

yxf
TT

TTT

TTTT

22

)(),(



          (24)

and consider the problem of seeking an extremum of this functional. The 
necessary conditions of extremum in this case take the form of equations 
(20)-(23).

Adding up the equations (20) and (21), we get (14), and adding up 
(22) and (23), we get (15). Further we have: 

M
x
f 22

2



 ,          (25)

M
y
f 22

2



 .        (25а)

Let us consider now a quadratic form xMxQ T  , being a part of the 
functional (1) and (24). Later in p. 6 it will be shown that 0Q , which 
means that the matrix M is positive definite. Therefore and from (25, 
25a) it follows [7], that the functional (1), (24) has a saddle point, where a 
global weak maximum of the function x and a global weak minimum of the 
function y are achieved. The arguments for this deduction are similar to 
those of p. 1, whence it follows that the optimum of this functional is 
reached with

0000000000 ,,,   yxqyx .
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5. The Computing Algorithm for General-
Form Electric Circuit
By analogy with p. 2 we shall discuss now the iterative process in 

which the new values of variables ,,, yx  are calculated by the 
formulas:

xxn paxx  ,           (26)

yyn payy  ,           (27)

 pan  ,           (28)

 pan ,           (29)
where

p – variations of vector-functions ,,, yx , calculated by (20)-(23), 
a – the size of steps by these vector-functions. 

By analogy with p. 2 the optimal value of xa  is determined from the 

condition 0


xa
F


  or 0()()

0















 dt

x
fp

x
fp

n

T
x

n

T
x

T





 .

So the optimal value of xa  is determined from the condition
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Similarly, the optimal value of ya  is determined from the condition
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,

the optimal value of a  is determined from the condition

   02
0


T

xx
T dtpaxNp ,

optimal value of a  is determined from the condition
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   02
0

 
T

yy
T dtpayNp .

If the iterative process begins with ,, 0000  yx then by symmetry 

 pppp yx , . Also   0 x
T
yx

T
y pRpRpp  and the above named 

conditions change into
0321  aAaAA x , 0321  aAaAA y ,

054  xaAA , 054  yaAA ,
where
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x dtpMpSppA

0
2 )(2 ,

 



 

T
TT

x dtpNpA
0
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5 2 .

Hence it follows that
54 AAaaa yxq  ,

  2
33142 AAAAAaaa   ,

2/qyx  ,
2/  ,

T
yxq NEqRqMSqppp  ,

HqNppp   ,

qqn paqq 2 ,

 pan 2 .
The coefficients may be presented in the following form:
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 























T

TT
q

T
q

T
q

T
q

T
q

T
q

dt
NpEp

qRpRqpqMpSqp
A

0
1 2

1


,

  
T

q
T

qq
T
q dtpMpSppA

0
2 )(2 ,

  
T

TT
q dtpNpA

0
3 2  ,

 
T

T dtNqpA
0

4  ,

 
T

T dtNqpA
0

5  .

Special Case 1. Circuit with One Node.
Let us consider a circuit with one node (and, probably, with an 

mutual inductances matrix). The matrix N = 0,
EqRqMSqpq  ,

21 AAaq  ,
at that

  



 

T
T
q

T
q

T
q

T
q

T
q dtEpqRpRqpqMpSqpA

0
1 2

1 .

Special Case 2. Circuit with One Branch
Let us consider a circuit with one branch, and, consequently, with 

one node. At the initial moment we have:  q=0, Epq  . At this


T

dtEA
0

2
1 ,  

T
dtELSEA

0

22
2 )(2 , 

 
TT

q dtELSEdtEa
0

22

0

2 )(2)( .
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Special Case 3. Circuit with One Branch and Voltage Source.
Let us consider a circuit with one branch, connected to a voltage 

source. At the initial moment we have:
1,,,0,0  NIpEpq q  .

Also


T

dtEA
0

2
1 ,  

T
dtELSEA

0

22
2 )(2 ,

 
T

IdtEA
0

3 2 , 04 A ,


T

EIdtA
0

5 2 , 0qa ,










 T

T

IdtE

dtE
A
Aa

0

0
2

3

1

2
 .

6. The Properties of mutual Inductances 
Matrix 

Let us show, that for real electric circuits the matrix  kmMM   is 
positive definite [9]. The element creating mutual inductance kmM , 

creates also inductances km
kL  и km

mL  in the branches k and m 
correspondingly. Let us assume that, for instance, such element is a 
transformer with the number of coils kn and mn  in the windings. Then

mkkmm
km
mk

km
k nanManLanL  ,, 22 ,           (31)

where a – a constant value. Thus, the mutual inductance is

kmmk
km
m

km
kkm MMLLM  , ,           (32)

full inductance of the k-branch is





km

km
k

o
kkkk LLML ,           (33)

where o
kL  – inductance of an element which does not create an mutual 

inductance.
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Let us consider now a quadratic form xMxQ T  . Obviously,

  mk
k km

mkkm
k

kk xxMMxLQ   


2 .

From (31), (32), (33) it follows that
  




k km
m

km
mk

km
kmkkm

k
kk xLxLxxMxLQ 222 2

or

 

















 

k km

km
mm

km
kkkk LxLxxLQ

2
2 .

Thus, 0Q , which means that the matrix  kmMM   is positive 
definite. This property of the matrix has been used above. 
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Chapter 2. RCL-circuits with 
Electric Currents

1. The Functionals of Integral Functions
Previously we have described the equations of circuits with respect to 

the charge q. Further we shall consider the equations of circuits with 
respect to the current g. First let us consider an R-circuit without 
inductivity and capacitance. It is described by the equation

0 ERg , (a)
where

 g – the current, an unknown function of time t with continuous 
second derivatives,

 E – a known function of time t.
It is easy to see that for the functional

 





  T dtEgRgqF 0

2
2
1)( , (b)

The equation (а) is the Euler’s equation – the necessary condition of this 
functional’s minimum [16]:

Let us introduce the following notations:

.ˆ, 0 t
t ZdtZdt

dZZ

There is a known Euler’s formula for the variation of a functional of 
function ,...),,( yyyf   [7]. By analogy we shall now write a similar 
formula for function ,...),,,ˆ(..., yyyyf  :

......var '
2

2
''

0
'
ˆ   yyy

t
y f

dt

d
f

dt
dfdtf (1)

In particular, if yxf () , then xvar ; if yxf ˆ()  , then x̂var  .
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2. Integral Equations of RCL-circuit.

The equations of a series RCL-circuit with respect to the current g 
and its derivatives has the following form:

0ˆ  ERggLgS . (2)
In the same way as before this equation may be substituted by two 
equations of the form:

022ˆ2  ERvwLwS (3)
022ˆ2  ERwvLvS (4)

where
g = v + w (5)

Let us now consider the functional

 T dtwvfyxF 0 ),(),( , (6)
where


















)()(

)()ˆˆ(
),( 22 wvEwvR

wvwvLwvwvS
wvf , (7)

 v, w – unknown functions of time t with continuous second 
derivatives,

 E – a known function of time t,
 S, L, R – positive numbers.

Let us find the necessary conditions of this functional’s extremum, using 
formulas of the preceding section:

0''
0

'
ˆ   vv

t
v f

dt
dfdtf , 0''

0
'
ˆ   ww

t
w f

dt
dfdtf ,

which is equivalent to the formulas (3) and (4). Let us find also

022

2
 R

v
f


 , 022

2
 R

w
f


 . (8)

Consequently, the extremal defined by the equations (3) and (4) provides 
a global strong maximum by the function v and a global strong minimum by the 
function w to the functional (6) и (7) (the equations (3) and (4) are the 
necessary, and the equations (8) – the sufficient conditions for this [7]). It 
means that there exist optimal functions 0v  and 0w , which are the 
solution of the system of differential equations (3) and (4) and which 
provide an extremum ),( 000 wvFF   to the functional (6) and (7). The 
optimality of functions 0v  and 0w  shows in the comparison of the 
functional’s other values depending on optimal and non-optimal 
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functions and their derivatives. The optimal functions satisfy the 
condition

00 wv  , (9)
which follows from the symmetry of equations (3) and (4), and may be 
proved strictly if we turn to operator form of these equations [9]. Adding 
up the equations (3) and (4), we get equations (2) and (5).

Thus, the functional (6) and (7) has its optimum on such functions v 
and w, the sum of which satisfies the equation (2). This functional has an 
optimal saddle point, where the conditions (9), (2) and (5) are fulfilled. 
The equation (2) is the equation of RCL-circuit, connected to voltage 
source E, where g – the current in this circuit. Hence, the principle of 
extremum of F, defined by (6) and (7), is objectively fulfilled for the 
RCL-circuit, and the equation (7) is the consequence of this principle. 
The integrand (2) of functional (1) has the dimension of energy. This is 
why in the interpretation of this principle we may assume that the value 
optimized in the electric circuit represent an algebraic sum of electric, 
magnetic, thermal energy and the potential energy of the voltage source. 

Remark 1. In the expression (7) the third term does not contain 
operators of differentiation and integration.  Therefore the value R may 
be a function R(t) of independent variable t.

This remark will be used in future in the process of solution of 
differential equations with spatial coordinates as independent variables.

3. The Computing Algorithm for Integral 
Equations of RCL-circuit.
The existence of global optimum allows us to use the gradient 

descent method. The idea of this method is as follows.  Having the given 
values of v and w, their new values are calculated according to formulas:

apvvn  ,           (10)
,bhwwn            (11)

where p and h – variations of functions v and w, calculated by (3) and (4), 
a and b – constants. When the functions vary from v to nv  and from w 
to nw , the function (7) varies by value ),(),( wvFwvFF nn  . 
Further we have:
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v
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.

The optimal value of a is determined from the condition 0 aBA , 

where 
0

2

2

0
,

 


























aa a

FB
a
FA

 
or


















T
dt

v
fp

v
fp

v
fpA

0 ˆ
()ˆ()()










,

 

















T
dtp

v
fpp

v
fpp

v
fpB

0
2

2

2

2

2

2
ˆ

ˆ
()ˆ()()










.
Thus 

 dtpEpRvLwpSwpwpLwpSA T
  0 2ˆˆ ,

 
T

dtRpB
0

22 .

Similarly, the optimal value of b is determined from the condition 
0 bBA , where
 dthEhRwLvhSvhvhLvhSA T

  0 2ˆˆ ,

 
T

dtRhB
0

22 .

The iterative process enables us to find the optimal values v and w. 
Indication of stopping is 0p  and 0h . If the iterative process begins 

with 00 wv   then, by symmetry, 00 hp  . Also 
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0)ˆˆ(  LhpShphpLhpS ,
0)ˆˆ(  LphSphphLphS  

and the last two conditions turn into the following equivalent conditions 
BBBAAA  ,  and a = b. As v = w = g/2, then the 

gradient of the function g is
ppg 2 .         (11а)

Further we have:

 
T

dtRpB
0

22 ,           (12)

  dtpEpRgLgpSgpgpLgpSA T
  0 2/ˆˆ ,           (13)

ERggLgSp  ˆ .           (14)
So the iterative process of searching for the extremum of the 

functional (6) enables us to find the function g. On every iteration:
 The gradient p is determined from (14) with given function g.
 The coefficient a=-A/B is determined from (13) and (12) with 

given p and g.
 The new value of g is calculated.

g =: g - 2ap         (14а)
or

p
B
Agg 2:  .         (14в)

Remark 2.
Using the stated gradient descent method for finding the minimum 

of functional (1.b), we get
  tdEpRgpA T

R   0
,

 T
R dtRpB 0

2 ,

ERgpR  ,
and the new value of the function g is

R
R

R p
B
Agg : .        (14с)

Notice, that if L=C=0 then the following formulas are valid: 
ppBBAA RRR  ,2/, . Thus, the formulas (14b) and (14с) are 

similar.
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4. The Integral Equations for General-Form 
Electric Circuit

Let us consider a general-form electric circuit described in the section 1.3. 
Reasoning by analogy with the preceding argument we may show that 
such electric circuit may be described by the following system of 
equations:

0ˆ  TNERggMgS ,            (15)
0 HNg ,            (16)

where H, g - vectors of currents in branches of the first and second type.
In this system equation (16) describes the first Kirchhoff’s law, equation 
(15) – the second Kirchhoff’s law. In this system H and E are known as 
vector-functions of time t, and the vector-function of time g(t) is the 
required function.

5. Functional for Integral Equations of 
General-form Electric Circuit

We shall consider vector-functions of time v(t), w(t), )(),( tt  , 
satisfying the equations (5) and the equation

            (17)
The system of equations (15), (16) may be rewritten in the following 
form:

0222ˆ2  TNERwvMvS            (18)
0222ˆ2  TNERvwMwS            (19)

02  HNv ,            (20)
02  HNw ,            (21)

Let us consider now the functional (6), where

    























HNwHNv
wvERwwRvv

LwvwLvSwvwSv

wvf TTT

TTTT

22
)(

ˆˆ

),(


,            (22)

and the problem of searching for the extremum of this functional. The 
necessary conditions of extremum in this case have the form of equations 
(18)-(21).
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Adding up the equations (18) and (19), we get (15), and adding up 
(20) and (21), we get (16). Further we have: 

02

2
 R

v
f


 , 02

2
 R

w
f


 .           (23)

Therefore [7] it follows, that the functional (6), (22) has a saddle 
point, where a global weak maximum of the function функции v and a 
global weak minimum of the function w are achieved. The arguments for 
this deduction are similar to those above, whence it follows that the 
optimum of this functional is reached with

0000000000 ,,,   wvgwv .

6. Computing Algorithm for General-Form 
Electric Circuit Integral Equations
By analogy with p. 3 let us consider an iterative process in which the 

new values of ,,, wv  are calculated with the aid of following 
formulas:

vvn pavv  ,           (24)

wwn paww  ,           (25)

 pan  ,           (26)

 pan ,           (27)
where

p – variations of vector-functions ,,, wv , calculated by (18-21),
a – the size of steps along these vector-functions.

By analogy with preceding discussions va  is determined from the 

condition 0


va
F


  or

0

ˆ
),(ˆ

),(),(

0



























 dt

v
wvfp

v
wvfp

v
wvfp

n

nnT

n

nnT

n

nnT
T













.

Thus, the optimal value of va  is determined from the condition
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Similarly, the optimal value of wa  is determined from the condition

 
 

0
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,

optimal value of a  is determined from the condition

   02
0


T

vv
T dtpavNp ,

optimal value of a  is determined from the condition

   02
0

 

T
ww

T dtpawNp .

If the iterative process begins from 0000 ,  wv , then by symmetry 

 pppp wv , . At that

0)ˆˆ(  w
T

vw
T
vw

T
vw

T
v MppSpppMppSp

and the above named conditions turn into
0321  aBaBB v , 0321  aBaBB w ,

054  vaAA , 054  waBB ,
where
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,

 
T

v
T
v dtRppB

0
2 2 ,  

T
TT

v dtpNpB
0

3 2  ,

 
T

T dtNvpB
0

4 2  ,  
T

v
T dtNppB

0
5 2  .

Hence it follows that
21 BBaaa wvg  ,

  535142 BBBBBBaaa   ,
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2/gwv  ,
2/  ,

T
wvg NERggMgSppp  ˆ ,

HNgppp   ,

ggn pagg 2 ,

 pan 2 .
The coefficients may be presented in the form

 























T

TT
g

T
g

T
g

T
g

T
g

T
g

T
g

dt
NpEpRgp

MgpSgpgMpgSp
B

0
1

ˆˆ
2
1


,

 
T

g
T
g dtRppB

0
2 2 ,

 
T

TT
g dtpNpB

0
3 2  ,

 
T

T dtNgpB
0

4  ,

 
T

g
T dtNppB

0
5 2  .

Special Case 1. A Circuit with One Node
Let us consider a special case of circuit with one node (and probably 

with interinductances matrix). The matrix N=0, 
ERggMgSpg  ˆ , 21 BBag  , and

  



 

T
T
g

T
g

T
g

T
g

T
g dtEpgRpRgpgMpSgpB

0
1 2

1 .

Special Case 2. A Circuit with One Branch
Let us consider a special case of circuit with one branch, and, 

consequently, with one node. In the initial moment we have: g=0, 
Epg  . At that
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 
T

dtEB
0

2
1 ,


T

dtERB
0

2
2 2 ,

Rag 21 .

Special Case 3. A Circuit with One Branch and Voltage Source
Let us consider a circuit with one branch, connected to a voltage 

source. In the initial moment we have:
1,,,0,0  NIpEpg g  .

At that 


T

dtEB
0

2
1 , 


T

dtERB
0

2
2 2 ,


T

EIdtB
0

3 2 , 

04 B , 
35 BB  . 

So, 
0ga , 







 T

T

EIdt

dtE
B
Ba

0

0
2

3

1

2
 .
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Chapter 3. Special 
Transformers in Alternative 

Current Circuits

1. Electric Circuit with Dennis Transformers
The electric circuits described below contain instanteous current 

values transformers. Such transformers were originally explored by 
Dennis [2]. Because of this they will in future be called Dennis transformers 
and denoted as DT. Dennis introduced DT as an abstract mathematical 
construction (for interpreting a quadratic programming problem) and has 
developed a theory of direct current electric circuits containing DT, 
resistors, diodes, current and voltage sources. The theory did not include 
methods of physical realization of DT. Owing  to technical complicacy of 
such realization the circuits with direct current  transformers up to now 
had not been in use. In [13] various schemes of DT realization were 
presented, and various problems of mathematical programming were 
simulated with the aid of electric circuits with DT and other 
unconventional elements.

DT has a primary and secondary winding. The instanteous values of 
currents and voltages in these winding are related to each other in the 
same way as  the complex values of harmonic currents and voltages in an 
ordinary transformer. Fig. 1 is a symbolic picture of DT. It contains two 
branches – the primary branch with current 1q  and voltage 1e  and the 
secondary branch with current 2q  and voltage 2e . DT is described by 
the following equations:

012  qtq , 021  ete ,
где t  - the turn ratio. From these equations it follows that 2211 eqeq  , 
which means that the sum of the output capacities of the primary and 
secondary branches of DT, is equal to zero. Therefore, the DT does not 
change the active and reactive capacity of a circuit, being a passive 
element. DT may be viewed as a node, where the currents with weight 
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coefficients are added up. Thus a full analogy occurs with the first 
Kirchhoff’s law.

e2e1

1q  2q

Fig. 1. A Symbolic picture of DT.

Let us consider now a special matrix of Dt – see Fig. 2. In this matrix 
we shall denote:

j – number of row,
k – number of column,
kJ  - the summary current of all windings, forming the k-column of 

this matrix,  kJJ  ,

k  - the common voltage on the windings, forming the k-column of 
this matrix,  k  ,

jq  - the current of all windings, forming the j-row of this matrix, 

 jqq  ,

jW  - the summary voltage of all windings, forming the j-row of this 

matrix,  jWW  ,

jkt  - the turn ratios,  jktT  .
Generally it is described by the following equations:

,,  TWtW
k

kjkj 

 qTJqtJ T

j
jjkk  , ,

qWJ  .
Consequently, the DT does not change the active and reactive capacity of 
the circuit. 
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t31 t21

t32 t12

t23 t13

1J

23

3q 

2q

1q 

1

2J3J

 DT. of amtrix Special 2. Fig.

The DT matrix is included into the electric circuit in such a way , that 
the rows of the matrix are parts of its branches. Then the second 
Kirchhoff’s law takes the following form:

0  TNEqRqMSq T , (1)
A circuit with “multi-winding” DT always may be transformed into a 

circuit with DT matrix.

Example 1. “Multi-winding” DT. Let us consider a circuit with 
“multi-winding” DT, shown on the Fig. A. The circuit shown on the 
Fig. B, containing the DT matrix, is equivalent to it. It becomes 
especially clear, if we draw it again in the form of Fig. C.
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R7

1

R1

R4

R3

R9

3

2

R2 R8

R5

R6

TD3

TD4

TD5 TD2

TD1

А. Fig.
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5R9 4R8 3R7

2R6 2 2

1 1 1

12 R2

3 R4

R5

R3 R1

В. Fig.
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R1

R2

R3

TD5 TD4 TD3 TD2 TD1

R4

R5

U5

R6

R7

R8

R9

Fig. C.

In future we shall assume that in all ordinary nodes of the electric 
circuit the node resistances   and current sources H  may be included, and 
in all transformer nodes the node resistances   and current sources P  
may be included.  The currents  running through resistances  , will be 
denoted as mi,  for ordinary nodes and transformer nodes, 
accordingly. Such circuits will be called general-form electric circuits.
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2

1

3

1H 3H

2H

2222 ,,, ELSR

1111 ,,, ELSR 3333 ,,, ELSR

12M 23M

13M

t31 t21

t32 t12

t23 t13

J1J2J3

2P3P 1P

  



 

a

b

c

c

a

b

23 1

3q 

2q

1q 

3q 

2q

1q 

Fig. 3. An Example of General-form Electric Circuit
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Fig. 3 shows an example of a general-form electric circuit, where 
node resistances and current sources are included in all nodes. There a, b, 
c denote the branches of the transformer matrix’s rows and the gaps in 
ordinary branches, where the row branches are connected.

The first Kirchhoff’s law takes the following form for ordinary and 
transformer nodes accordingly:

iHqN  , (2)

mPqT T  . (3)
Let us write these laws in the form of integral equations:

0ˆ   TNERggMgS T , (4)
iHNg  , (5)

mPgT T  . (6)
there, as before, qg  .

Let us turn now to the systems  of equations (1)-(3) and (4)-(5). We 
shall consider the functionals, for which these systems are necessary 
conditions of optimum. These functionals take the following form.

For the systems of equations (1)-(3):

  T dtmiyxfmiyxF 0 ),,,,,,,(),,,,,,,(  , (7)
where

 
   
    


































mPyTmPxT

iHNyiHNx

mmiiyxERyxyRx

MyyMxxSyyxSx

f

TTTT

TT

TTTTT

TTTT

22

22
2

)(
(.)






, (8)

q=x+y,  ,   . (9)

For the systems of equations (4)-(5):

  T dtmiwvfmiwvF 0 ),,,,,,,(),,,,,,,(  ,           (10)
where
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 
   
   







































mPwTmPvT

iHNwiHNv

mmii

wvERwwRvv

MwvwMvSwvwSv

f

TT

TT

TTT

TTTT

22

22
2

)(

ˆˆ

(.)





 ,           (11)

g = v + w,  ,   .           (12)

2. Unconditional Electric Circuit with Dennis 
Transformers
An electric circuit which has   01  , will be in future called an 

unconditional circuit. An example of such circuit is shown in Fig. 3. 
The systems of equations (1)-(3) and (4)-(5) may be simplified with 
  01  , for in this case all the potentials   mi , , and may 
be excluded:

    0 PqTTHqNNEqRqMSq TT  ,
    0ˆ  PgTTHNgNERggMgS TT  .

After similar terms reduction, we get (1.7) and (2.2), where
 

 .,

,,

PTHNEEMM

TTNNRRSS

T

TT








         (13)

So rge unconditional electric circuit with DT matrix is described by the 
equations (1.7) and (2.2). These equations are identical to the equations 
for RCL-circuits, and for the considered circuits there exist functionals, 
for which these equations serve as necessary conditions of optimum. 
These functionals have the following form:

 for the equation (1.7) - functionals (1.1), (1.2),
 for equation (2.2) - functionals (2.6), (2.7).

Notice that in these formulas the scalars S, R, L, E are substituted by 
matrixes EMRS ,,, , defined according to (13).

Thus, the functionals for unconditional electric circuit have 
unconditional optimum. When   an unconditional electric circuit 
approximates an ordinary electric circuit with the same parameters 
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(voltages and currents), but with  . In other words, the mode of 
electric circuit approaches the mode of the approximating unconditional 
elrctrical circuit when   . It means that the calculation of electric 
circuit for sufficiently large   may be replaced by calculation of an 
approximating unconditional electric circuit. This method will be used 
hereinafter.

3. Electric Circuit with Integrating 
Transformers
Integrating transformer is described by the following equations:

112 qtqtq  ,

221 etete  ,
where tt , - the turn ratios. We shall in future denote such 

transformers by abbreviation IT. For IT the following equation is valid:

22221111 etqetqetqetq  .
For instance, if the currents and the voltages are sinusoidal functions, 
then

   tjteqtjteq   2211

or 
2211 eqeq  .

This means that IT does not change the active power of the circuit.
In sinusiodal current circuits IT is a transformer with complex turn ratio 

 tjt   . Notice that such transformers are widely used in three-phase 
power systems, where they are realized by a certain combination of 
windings connected to different phases. For one-phase sinusoidal 
currents circuits physical realization of IT does not exist (as, however, 
there is also no physical realization for DT). Evidently, with 0t  IT 
becomes DT. 

Let us now consider a special matrix for IT, similar to the special 
matrix for DT, using the same notations. For the IT matrix the following 
equations are true:

  ,, 21   TTWttW
k

kjkkjkj

  ,, 21 qTqTJqtqtJ TT

j
jjkjjkk 

qWJ  .
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Matrixes 21, TT  have a following forms:

.

...............

...0

...0

...0

...0

,

...............

...1

...1

...1

...1

342414

432313

423212

413121

1

342414

432313

423212

413121

1
ttt

ttt
ttt
ttt

T
ttt

ttt
ttt
ttt

T














The second Kirchhoff’s law for branches of electric circuit  with IT 
takes the following form:

021   TTNEqRqMSq T ,                        (14)
The first Kirchhoff’s law in this case takes the following form for 

ordinary and transformer nodes, correspondingly:
iHqN  ,          (15)

mPqTqT TT  21 .          (16)
Let us write these laws in the form of integral equations:

0ˆ 21   TTNERggMgS T ,          (17)
iHNg  ,          (18)

mPgTgT T  21 .          (19)
Here, as before, qg  .

Let us turn now to the systems of equations (14)-(16) and (17)-(19). 
Consider the functionals for which these equations serve as the necessary 
conditions of optimum. These functionals look as follows.

For the equations (14)-(16):

  T dtmiyxfmiyxF 0 ),,,,,,,(),,,,,,,(  ,
where

 
   
 
 









































mPyTyT

mPxTxT

iHNyiHNx

mmiiyxERyxyRx

MyyMxxSyyxSx

f

TTT

TTT

TT

TTTTT

TTTT

21

21

22ˆ
22ˆ

22
2

)(

(.)









,

q=x+y,  ,   .
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For the equations (17)-(19):

  T dtmiwvfmiwvF 0 ),,,,,,,(),,,,,,,(  ,
where

 
   
 
  










































mPwTwT
mPvTvT

iHNwiHNv

mmii

wvERwwRvv
MwvwMvSwvwSv

f

TT

TT

TT

TTT

TTTT

21

21

22

22
22

2

)(

ˆˆ

(.)








,

g = v + w,  ,   .

The systems of equations (14)-(16) and (17)-(19) for unconditional 
electric circuit may be simplified if   01  , as in this case the potentials 

  mi , , and so they may be excluded:

 
    ,0212211 



PqTqTTPqTqTT

HqNNEqRqMSq
TTTT

T





 
    .0

ˆ

212211 



PgTgTTPgTgTT

HNgNERggMgS
TTTT

T





In sinusiodal current circuits ., 22 ggqq    Then from 
last two equations after appropriate cancellations we shall get (1.7) and 
(2.2), where

 
 

  .
,

,
,

21

2112

22
2

11

PTPTHNEE
TTTTMM

TTTTNNRR
SS

T

TT

TTT














          (20)

The further arguments are fully similar to those used for the circuits 
with DT. The only difference is that instead of the formula (13) the 
formula (20) is used.
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The further arguments are fully similar to those used for the circuits 
with DT. The difference is only in using formula (20) instead of formula 
(13). In this general case unconditional circuit differs from a real circuit 
by the fact, that in the transformer nodes of a real circuit the node 
currents are equal to zero, and in an unconditional circuit these currents 
are nonzero – see (15) and (16). In future we shall call these currents 
methodic error of the first Kichhoff's law or residual in the equations (15) and 
(16). This error is the less, the greater is  . The consequence of this is 
deviation of the vector q  in unconditional circuit from vector q  in real 
circuit, which is equivalent to a certain residual in equation (14) for real 
circuit.
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 Generalized 4. Chapter
Functional

1. Generalized Functional for Unconditional 
Electric Circuit
From the abovesaid it follows that the principle of extremum of 

functional (1.1, 1.2) from split function of charges x and y leads to such 
distribution of charges which maximizes the functional as the function of 
x and minimizes it as a function of y. The sum of the optimal values of x 
and y is equal to the observed function of charges q. Similarly, the 
principle of extremum of functional (2.6, 2.7) from split function of 
currents v and w leads to such distribution of currents which maximizes 
the functional as the function of v and minimizes it as a function of w. 
The sum of the optimal values of v and w is equal to the observed 
function of currents q. Thus, in an unconditional electric circuit there is 
an objectively established unconditional extremum of a charge functional 
(1.1, 1.2) and unconditional extremum of a current functional (2.6, 2.7). 
The result of this optimization are the equations of the second 
Kirchhoff’s law for the charges (1.7) and the currents (2.2) accordingly. It 
is assumed that in these formulas the scalars S, R, L, E are changed to 
matrixes EMRS ,,, , calculated according to (3.13). For the sake of 

clearness let us combine these formulas in the Table 1. 
Both functionals (1.1) and (2.6) are optimized simultaneosly. It means 

that we are seeking such functions qg  , whose optimal values provide 
an optimum to these functional simultaneously. This, in its turn, means that 
every deviation of the functions qg   from optimal value (even 
towards improvement) leads to the result that the value of another 
functional is adversely affected. 
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Table 1.
Variables Formula’s 

number
Formula

1.1  T dtyxfyxF 0 ),(),(
1.2


















)()(

)()(
),(

2222

yxEyxyxR

yxLyxS
yxf

1.7 0 EqRqLSq

charges

1.8 q = x + y
2.6  T dtwvfyxF 0 ),(),(
2.7


















)()(

)()ˆˆ(
),( 22 wvEwvR

wvwvLwvwvS
wvf

2.2 0ˆ  ERggLgS

currents

2.5 g = v + w

Below we shall denote 
h(t) – function of time t,
  - differentiation operator, 

)(h  - image of the function h(t).
The simultaneity of both functionals optimization from procedural 

point of view means the following:
1) Each step begins with equal values of the functions qg  . The 

gradients of both functionals coincide and are equal to
EqRqMqSp  . (1)

2) The steps by the functionals ,, 21 aa  should ensure the equality 
of the new values of the functions; for which purpose the condition 

gq   or papa 21  , should hold, or

21 aa  . (2)
3) The variables qg   should be smaller by half than the values 

they take when performing separate optimization. Then their sum when 
optimizing the generalized functional will be equal to the sought 
function. From physical considerations it is clear that all currents in 
electric circuit will become smaller by half if all the generated voltages 
were cut by half and all the currents from all the sources were cut by half. 
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It follows that to determine the size of the step, one should calculate the 
values 21, AA   depending on 2,,, EMRS , and not the values 

21, AA , which are calculated depending on EMRS ,,, .
4) Thus, if in separate optimization the steps were determined from

,0)(,0)(
222

2
111

1








 aBA
a
gFaBA

a
qF nn (3)

in simultaneous optimization the steps, considering (2), should be 
calculated from the condition

0),(
122111

1



 aBAaBA

a
gqF nn  . (4)

Hence it follows
 

21

21
1 BB

AAa



 (5)

or
 

21

21
2 BB

AAa






 (6)

5) As follows from (1.13а) and (2.14a), in the case of simultaneous 
optimization the functions’ increments should be found by the formula

pagpaq 21 2,2  . (9)
Thus, from (1.9), (6) and (9) we find

 p
BB
AAq
21

212






 ,           (10)

So, in simultaneous optimization in every iteration
 The gradient p is calculated from (1.7) with a given function q or, 

which is the same, - from (2.14) with a given function qg  ; this 
gradient is common for the two functionals, and is determined from 
(1).

 The main coefficients 2211 ,,, BABA  are calculated from the 
formulas (1.12), (1.11), (2.13), (2.12) accordingly; in these formulas 
E  should be substituted by 2E .

 The increment of the sought current function is determined from the 
formula (10).

Let us write the formulas for the main coefficients of the formula 
(10):

57



Chapter 4. Generalized Functional

  





























 T

TT

TT
dtpE

pRqpRq

pMqpSq
A 01 22

,         (11a)

   T TT dtpMppSpB 01 2 ,        (11b)

dtpEqRp
qMpqSp

qMpqSp
A T T

TT

TT

 















































02 2
2

ˆ        (11n)


T

T pdtRpB
0

2 2 .       (11m)

Generally for the calculations according to the formula (10) it is necessary 
to:

1. turn from the function p to its image p ,
2. using the formula (10) find the image q ,
3. turn from the image q  to function q .

From (11a) and (11n) it follows that the value (11r) 
 21 AAA         (11r)

from the formula (10), may be calculated by the formula

     



  T TTTT dtpEpRqpRqqSpqSpA 0 ˆ

2
1  (11s)

From (1.5, 2.8) it follows that for the existence of the gereralized 
functional's optimum it is sufficient for the matrixes RM ,  to be 
positive semi-definite. 

Let us again consider the functional

  
T

TTTT dtEqqRqqMqqSqqF
0

2)(        (12)

with the integrand vector-function q. The variation of this functional has, 
evidently, the form

.EqMqSp 
We, however, shall calculate the variation  using the formula 

EqRqMqSp            (13)
and shall call it quasivariation of functional (12). Clearly, all the 
components of the formulas (10, 11) 

 

depend only on quasivariation and 
on its components. The found results may be formulated in the form of 
the following theorem.
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Theorem 1. Let us consider functional (12) with positive semi-definite 
matrices RM ,  and its quasivariation (13). The movement in this 
functional in the direction (10, 11) 

 

is equivalent to the global saddle 
points of the two secondary functionals with integrands


















)(
),(

yxEyRxyRx

yMyxMxySyxSx
yxf

TTT

TTTT
,        (14)


















)(

ˆˆ
),(

wvEwRwvRv

vMwwMvwSvwSv
wvf

TTT

TTTT

.
The stationary values of the functions wvyxq ,,,,  satisfy the conditions

ooooooooo wvyxqwvyx  , ,
and the condition of stationary value is

0 EqRqMqS .           (15)
Corollary 1. Let us consider the functional (14) and the functional 

(12), which is  secondary with respect to the former, and also the 
quasivariation of the functional (13). The necessary conditions of the 
existence of saddle line of the functional (14) is that the quasivariation 
(13) is equal to zero,  where yxq  .

2. Sufficient Conditions of Existence for 
Generalized Functional’s Extremum

Let us consider more closely the sufficient conditions of extremum 
for the functional (1.1) with integrand (1.2). The arguments of this 

function are vector functions yx, . In section  1 it was shown that for 

an electric circuit the matrix  М is positive definite. This matrix appears in 
the functional with negative sign. Therefore, the extremum for functional 
(1.1, 1.2) is  a global weak maximum with respect to the function x  and – a 
global weak minimum with respect to the function y. If the matrix М is 
negative definite, then the extremum of the functional (1.1, 1.2) is a global 
weak minimum with respect to the function x and – a global weak maximum  
with respect to the function y. Thus, in the general case the extremum of 
functional (1.1, 1.2) exists if the matrix М is of fixed sign.

59



Chapter 4. Generalized Functional

If М=0, then to define the sufficient conditions of strong optimum  it 
the matrix S  must be considered. For an electrical circuit the matrix S is 
positive definite. This matrix appears in the functional with a positive sign. 
Therefore, the extremum of the functional (1.1, 1.2) is a global strong 
maximum  with respect to the function x and – a global strong minimum  with 
respect to the function y. If the matrix S is negative definite, then the 
extremum for the functional (1.1, 1.2) is a global strong minimum with 
respect to the function x and – a global strong maximum with respect to the 
function y. Thus, in the general case the extremum of functional (1.1, 1.2) 
exists if the matrix S is of fixed sign.

Let us now consider more closely the sufficient conditions of 
extremum for the functional (2.6) with integrand (2.7). The arguments of 
this function are vector functions v, w. In section  1 it was shown that 
for an electric circuit the matrix  R is positive definite. This matrix appears 
in the functional with positive sign. Therefore, the extremum for 
functional (2.6, 2.7) is a global weak maximum with respect to the function 
v and – a global weak minimum with respect to the function w. If the matrix 
R is negative definite, then the extremum of the functional (2.6, 2.7) is a 
global weak minimum  with respect to the function v and – a global weak 
maximum with respect to the function w. Thus, in the general case the 
extremum of functional (2.6, 2.7) exists if the matrix R is of fixed sign.

For a generalized functional (when the functionals (1.1, 1.2) and (2.6, 
2.7) are being optimized simultaneously) the sufficient conditions of  
extremum existence for the functionals  (1.1, 1.2) и (2.6, 2.7) should be 
fulfilled. The table 2 shows the sufficient conditions in dependence of 
the sort of matrices M, S, R.

Table 2.
№ Sufficient 

condition 
determining

R S M

1 Strong 
optimum

Of fixed 
sign or 
absent

Of fixed sign Absent

2 Strong 
optimum

Of fixed 
sign

Of fixed sign 
or absent

Absent

3 Weak optimum Of fixed 
sign

No difference Of fixed sign
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3. Generalized Functional for general-form 
electric circuit
From the above discussion it follows that in an electric circuit there is 

an objectively established extremum of a charge functional (1.1, 1.24) and 
an extremum of a current functional (2.6, 2.22) under the constraints 
(1.14) или (2.15). We assume there that in these formulas the scalars S, R, 
L, E are changed to the matrixes EMRS ,,, , calculated by (3.13). For 

the sake of clearness let us combine all these formulas in the Table 3.

Table 3.
Vari-
ables

Formula’s 
number

Formula

1.1  T dtyxfyxF 0 ),(),(
1.24

    

























HyNHxN

yxERyxyRx

yMyxMxSyySxx

yxf
TT

TTT

TTTT

22

)(),(



1.14 0 TNEqRqMSq
1.15 0 HqN

charges

1.8, 1.19 q = x + y, 
2.6  T dtwvfyxF 0 ),(),(
2.22

    























HNwHNv
wvERwwRvv

LwvwLvSwvwSv

wvf TTT

TTTT

22
)(

ˆˆ

),(


2.15 0ˆ  TNERggMgS
2.16 0 HNg

currents

2.5, 2.17 g = v + w, 
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Chapter 5. Electric Circuit 
Computing Algorithms

1. General Algorithm
The results obtained in Chapter 4 may be used for computing electric 

circuits. In the general case the computations proceed according to the 
following gradient search algorithm.

Algorithm 1. The general case
1. set 0,0,0  qqq .
2. compute the gradient p by the formula (4.0);
3. determine the norm p  of gradient p;

4. if p  the computation is finished with the given value q;
5. compute the main coefficients by the formula (4.11);
6. determine the image p  of the original p ;
7. determine the image of current increment by the formula (4.10);
8. determine the original of current increment q  to the image 

q ;
9. compute the new value of current qqq  ;
10. repeat points 2-9 .

For computing linear alternating current electric circuits by this 
algorithm one may, naturally, use a general-purpose computer. However 
for speeding up the computations it is advisable to use a matrix 
processor, for the algorithm deals mostly with matrixes in its operations. 
At the same time it is significant that matrixes conversion does not 
appear in the algorithm, which reduces the computing time and memory 
usage.

In some particular cases the computing formulas of the main 
coefficients 2211 ,,, BABA   and current increment q  may be 
simplified. Below we shall consider most common types of functions and 
computation modifications for these functions.
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2. System of Linear Differential Equations
2.1. Method 1. The above stated results may be interpreted as a 

method of solution of a system of second order differential equations of 
the form (4.15) of the variable q(t). The system we are to solve must 
have the form

0 dcxxbxa , (1)
where

x –vector of unknowns,
a, b, c - given positive definite matrix square matrix,
d – given vector.

Assuming that dEcSbRaMxq  ,,,, , from (3.20) we 
can find the parameters of electric circuit, which simulates the given 
system of second order differential equations .

In particular, an electric circuit may be simulating a system of first 
order general-form differential equations

0 dbxxa . (2)
Assuming that dESbRaMxq  ,0,,, , from (3.20) we 

can find the parameters of electric circuit, which simulates a given system 
of first order differential equations.

From section 4.4 it follows that the solution of system (4.15) is 
equivalent to the minimization of functionals (16) and (17) with 
constraint (4.15). Hence, the solution of system (1) is equivalent to the 
minimization of functionals

   T TTT dtxdxaxxcxxF 01 2)( , (3)

   T TT dtxdxbxxF 02 2)( (4)
with constraint (1). For a well-determined system (1) the optimization is 
practically absent, as there is only one solution. We shall consider now 
certain transformations of ill-determined systems, which will give a 
natural mathematical interpretation  to the criterions (3) and (4).

Underdetermined system. In such system the number of equations 
is less than the number of variables. In this case system (1) may be 
complemented by equation

0 xmxnxk TTT , (5)
where mnk ,,  – vectors f given weight coefficients. Then system (1) is 
transformed into a system of the following form
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0
0


d

x
m
c

x
n
b

x
k
a , (6)

And functionals (3) and (4) take the form:
   T TTTTT dtxdxkxxmxxaxxcxxF 01 2)( ,

   T TTT dtxdxnxxbxxF 02 2)( .
If the coefficients mnk ,,  are relatively large, then the latter functionals 
are transformed into

   T TT dtxkxxmxxF 01 )( , (7)

   T T dtxnxxF 02 )( . (8)
These functionals correspond to minimization of a weighted sum of 
squared variables and their derivatives. Notice that the matrices mn,  

should complement the matrices ba,  to squarte matrices 
n
b

m
a

, .

Overdetermined system. In such system the number of equations is 
larger than the number of variables. In this case system (1) may be 
transformed to the form

0
000









 d
y
x

m
c

y
x

n
b

y
x

k
a , (9)

where у – vector of additional variables, mnk ,,  – matrices of given 
weight coefficients of the additional variables. Then the functionals (3) 
and  (4) will take the following form:

   T TTTTT dtxdykyymyxaxxcxxF 01 2)( ,

   T TTT dtxdynyxbxxF 02 2)( .
If the weight coefficients mnk ,,  are relatively large, the latter 
functionals will have the form

   T TT dtykyymyxF 01 )( ,           (10)

   T T dtynyxF 02 )( .           (11)
These functionals correspond to minimization of weighted sum of 
squared residuals of the variables and their derivatives. Notice, that 
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matrices mn,  should complement matrices ba,  to squarte matrices 

n
b

m
a

0
,

0 .

2.2. Method 2. Let us consider functionals (1.1, 1.2), (2.6, 2.7), where 
scalars S, R, L, E are replaced by matrices S, R, М, E. Optimization of 
these functionals under constraints

0 HqN ,           (12)

0 PqTqT TT           (13)
(see (3.15, 3.16) or (3.18, 3.19)) is equivalent (as was shown above) to 
unconditional optimization of the same functionals, where scalars S, R, L, E 
are replaced by matrices  EMRS ,,, ,  defined by (3.20), if   .

We shall consider now a certain special case, when

0,0,0,0,0  NMSRE ,

and shall denote .,,, PcTaTbqx TT   Then the 
equation (13) transforms to equation

cxbxa           (14)
And from (3.20) we shall get:

 
 .ˆ,

,,

cabcEbaM

bbaaRbaS
T

TTT







          (15)

Hence, the equation (14) is replaced by the equation

      0ˆ  cabcxbbaaxxba TTT .          (17)
Simultaneously with the solution of this equation the functionals  (4.16) 
and (4.17) are being minimized. The latter functionals in this case take 
the form

    T TTTTT dtxcabcxbaxbxaxxF 01 ˆ2)( ,          (18)

      T TTTT dtxcabcxbbaaxxF 02 ˆ2)( ,          (19)
If the system of equations (14) is well-determined, then this system and 
the system (17) have one solution. Let us now deal with the cases when 
the system of equations (14) is ill-determined.

Underdetermined system. In such system the number of equations 
is less than the number of variables, and there exist multiple solutions. 
However, due to the fact that in this method the functionals (18) and (19) 
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are being optimized, a sole solution is being chosen. This solution 
minimizes the quadratic forms (18) and (19).

Overdetermined system.  In such system the number of equations 
is larger than the number of variables, and system (14) has no solution. 
However, due to the fact, that in this method the solution of system (14) 
is replaced by solution of system (17), a certain solution is determined 
which gives minimum to functionals (18) and (19). This solution satisfies 
the equation (14) with a certain residual – see section 3.3. As it is evident 
from (18) and (19), this residual is such, that the named inexact  solution 
minimizes the functionals (18) и (19).

3. Interoperable Functions

Let us consider the functions )(),( 21 tftf  of a certain form, for 
which the following formulas are valid:

  TT dttftfdttftf 0 210 21 )()()()( 
, (1)

  TT dttftfdttftf 0 21
2

0 21 )()()()( 
, (2)

  TT dttftfdttftf 0 21
2

0 21 )()()()( 
, (3)

  TT dttftfdttftf 0 210 21 )()()()(
, (4)

  TT dttftfdttftf 0 210 21 )()()()(ˆ
. (5)

For the sake of simplicity we shall cal such functions interoperable. It is 
easy to see that among such functions are first of all exponential 
functions teutf  )( , where   – a real or a complex number. To this 
class of functions belong also sine and cosine, hyperbolic  sine and cosine 
and sums of the above named functions. Besides, to this class belong the 
functions  tetf t  Sin)(  , where   – a real or a complex number 
which follows from the relation:

 
j
eetetf

jj
t

2
Sin)(


 

 
 . (6)

Below it will be shown that the functions of current appearing in the 
electric circuit after the application of step voltage, are also interoperable.

For interoperable functions the formulas (4.11) are simplified and 
assume the following form
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 







 T TT dtpEpMqpSqA 01 2

,

   T TT dtpMppSpB 01 2 ,

dtpEqRpA T T 









02 2
,


T

T pdtRpB
0

2 2

or
       T TT TT T dtqRpdtpMqdtpEpSqAA 00

2
021  ,

    




   

T T TT dtpMpdtpSpB 0 0
2

1 2  ,


T

T pdtRpB
0

2 2 .

Formula (4.10) then assumes the following form:

p
pdtRppdtMppdtSp

pdtEpdtRqpdtMqpdtSq
q T

TT T TT

T TTT TT T







 

  




0
0 0

2

0 00

2

0

or
  
 

p
pdtRMSp

pdtERMSq
q T T

T T








 





0

2

0

2

.

Taking into account the formula for gradient р finally we get

 
p

pdtRMSp

pdtp
q T T

T T








 


0

2

0 . (7)

In particular, for 0,0  MS  we have:

ppdtRppdtpq T TT T 




  00

.           (7а)

It is significant that the functions q and p do not change their form when 
passing from iteration to iteration.
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4. Sinusoidal Functions
In the case when the voltages and currents of the sources are 

sinusoidal functions with circular frequency , algorithm 1 is simplified. 
In this case the functions of time are substituted by complex numbers 
(denoted by the same symbols). The define integral will be substituted by 
scalar product:

  baDdtbDaT T  


0 ,

Here the upper bound in the integral is 2T , and symbol   
denotes operation of   component-wise scalar multiplication of complex 
vectors and summation of these products. The result of such operation is 
a real number.

In this case we have:

pqDDpdtqdtpDq
T

T
T

T   
2

00
, (1)

pqDjdtpDqDpdtq
T

T
T

T   


00
, (2)

pqDDpdtqdtqDp
T

T
T

T   


00
ˆ ,

  0)(0 
T TT dtqRpqRp ,

  0ˆ
0 
T TTTT dtqMpqSpqMpqSp .

Since the formula (4.10) includes a ratio of integrals, the factor   may 
be discarded, and all the integrals will be substituted by scalar products.

From (4.1) we find
  EqRjMSp   2

or

EgRXjp 













, (3)

where
 MSX 2 (4)

Taking into account (1, 2), we find that sinusoidal functions are 
interoperable. So we may use the formula (5.3.7), getting:
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  p
pRjXp

ppjg






 . (5)

From the formula (5) g  may be calculated directly (without using the 
calculus of operations).

Example 1. One branch.  If there is only one branch, then from (5) 
we getting:

  p
pRjXp

ppjg








or

RjX
pjg






 . (6)

On the first iteration Epg  ,0  and from (6) it follows, that 

 RjX
Ejg





 , which leads us to the known formula 
Z
Eg  , 

wherе 







 RMj

j
SZ 


. 

Generally, if on a certain iteration 
1Z

Eg  , then 
1Zj

Eq


  and

    nEE
Zj

ERjXEqRjXp 
1

 ,

where  
1

1
Zj

ZjRjXn


 
 , and, further, by the formula (6)

   RjX
nEj

RjX
pjg














 .

Therefore, the new value of the function is 

 
  E

Zj
ZjRjX

RjX
j

Z
Eg

Z
Eggg

1

1

11

1:




 





 ,

i.e., as well as after the first iteration, 
 RjX

Ejg





 .

The integrals (4.16) and (4.17) in this case, taking into account (1) and (2), 
look as:

     qEMSqqF  22
1 


 , (7)

    qERqqF  22  . (8)
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5. The system of linear algebraic equations
The aforecited results for linear differential equations and for 

sinusiodal current electric circuits may be interpreted as a solution 
method for a system of linear algebraic equations with complex 
coefficients. 

5.1. Method 1. 
The system being  solved should have the following form
  cxjba  , (1)

where
x – the complex variables vector,
a, b – given squarte matrixes,
с - a given vector.

Assuming that cEbSMaRxg 


 ,,,
2


 , from (3.20) we 

may find the parameters of an electric circuit simulating the considered 
system of linear algebraic equations with complex equations coefficients. 
On each iteration the new value of charge is found from the formula

  p
pjpbpa

ppxx



: ,

that follows from (5.4.5). In this connection, the movement to an 
optimum of definite functional is progressed by the gradient that has the 
form   cxjbap  . During the movement to an optimum the norm 

p  of this gradient is decreased. The following fig. 1 shows the graph of 

p  as a function of the iteration number - see also the the functions 

test2, test3, testN. The following fig. 2 shows the graph of plog  
as a function of the iteration number.
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Fig. 1

Fig. 2.

Example 1. A program SinLin for solving a system of linear 
equations with complex coefficients of the type Z*q=E is given in 
the annex [52].

About convergence
As follows from the section 4.2, the iterative process converges, if the 

matrices M and R are of fixed sign  (positive or negative definite).

Example 1b. Fig. 3 shows the example of the process divergence in 
the case of solving a three equations with complex coefficients   in 
the MATLAB system. Here the matrix M is not of fixed sign, the 
process diverges and is stopped when the error is 100 times higher 
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than the error at the process beginning – see function test3r, which 
uses function SinLin..

Fig. 3.

About speed and precision

Example 1c. Comparing the results of solving N equations with 
complex coefficients in the MATLAB system with the aid of the 
discussed algorithm and the traditional one - see functions testNv, 
testNe correspondingly. Parameter comp serves for precision 
comparison for this and the traditional algorithms and is computed 
by the formula

qt = Z\E;
nqt=norm(qt);
nq=norm(q);
comp=abs((nqt-nq)/nqt);

Fig. 4 shows graphs of the  iteration  number and the error comp 
as   functions of dimension  number N with fixed value maxEr. One 
can see that, first, comp < maxEr and, second, the iteration  number 
is proportional to the dimension  number N. 
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Fig. 5 shows graphs of the  iteration  number and the error comp 
as functions of given value mixer with fixed  dimension  number N. 
one can see that, first, comp is proportional to maxEr and, second, 
the iteration  number is proportional to maxEr.

Thus ,  
 comp ~ maxEr,
 comp is proportional to maxEr,
 iterations number is proportional to maxEr,
 iterations number is proportional to dimension  number N.

Fig. 4.

Fig. 5.
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According to section 2 let us consider now the solution of ill-
determined systems of the type (1). The integrals (5.4.7) и (5.4.8) in this 
case take the form: 

    qcaxqF T  21 
 , (2)

    xjcbxqF T  22  . (3)

Underdetermined system. In such system the number of equations 
is less than the number of variables. In this case the system (1) may be 
complemented by an equation

  0 xmjn TT , (4)
where mn,  – matrices of given weight coefficients. The system (1) is 
transformed into the system:

0
c

x
n
b

jx
m
a

 , (5)

and functionals (2) and (3) with comparatively large weight coefficients 
will take the form of following functions:

xmxxF T )(1 , (6)

xnxxF T )(2 . (7)
These functions correspond to minimization of a weighted sum of 
squared variables. Note, that the matrices mn,  are going to 

complement the matrices ba,  to squarte matrices
n
b

m
a

, .

Overdetermined system.  In such system the number of equations 
is larger than the number of variables. In this case the system (1) may be 
transformed to the form:

c
y
x

n
bj

y
x

m
a 

00 , (8)

where у – the vector of complementary variables mn,  – matrices of 
given weight coefficients of the complementary variables. Then the 
functionals (2) and (3) with comparatively large weight coefficients will 
take the form of following functions:

ymyxF T )(1 , (9)
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ynyxF T )(2 .           (10)
These functions correspond to the minimization of a weighted sum of 
squared residuals. The matrices  mn,  are going to complement matrices 

ba,  to squarte matrices 
n

b
m

a
0

,
0 .

5.2. Method 2.  
According to section 2 we shall consider now the solution of ill-

determined systems of the type (5.2.14). The integrals (5.2.18) and 
(5.2.19) in this case take the form

  x
j
bcacabxxF

T
TT 



























 21)( 2

1 ,          (11)

  x
j
bcacbbaaxxF

T
TTT 
























 2)(2 ,          (12)

or

  xc
j
abbaxxF TT 






















 21)( 2

1 ,          (13)

  xc
j
abjbbaaxxF TTT 






















 2)( 2

2 .        (14)

or, with 1 ,
   xcbjabaxxF TT  2)(1 ,          (15)

     xcjbabbaaxxF TTT  2)(2  .          (16)
The solution of system (5.2.14) with these functions’ minimization is 
equivalent to the solution of system  (5.2.17), which in this case takes the 
following form:

    01 2 







 c

j
abxbbaajbxa TTT


          (17)

or, with 1 ,
    0 cjabxbbaaj TT .

or, finally,
    0 cjbaxbbaa TT .          (18)

One can see that the equation (18) differs from the equation (5.2.14) 
by  the factor  jba  . If the system (5.2.14) is well-determined, then it 
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and the system (18) have only one solution. Let us consider the cases 
when the system (5.2.14) is ill-determined.

Let us note that  in an equation with real coefficients b=0,  and the 
equation (18) becomes

0 acxaaT ,          (19)
and the minimized function (16) becomes

  xacaaxxF TT  2)(2  .          (20)

Underdetermined system. In such system the number of equations 
is less than the number of variables. However, as was shown above, the 
solution obtained by this method has minimized the quadratic forms (15) 
and (16).

Overdetermined system.  In such system the number of equations 
is larger than the number of variables, and the system (5.2.14) has no 
solution. However, as was shown above, the solution obtained by this 
method has minimized the quadratic forms (15) and (16) with a certain 
residual. 

So, to solve the system (5.2.14) by the considered method, this 
system should be transformed into system (18). This rule is applicable 
to any type of system (5.2.14) – well-determined, underdetermined or 
overdetermined.

Example 2.  A program SinLin2 for solution of ill-determined 
linear equations system(a+j*b)*q+c=0 is given in the annex [52].

5.3. About Matrix Processor
It is well known that 75% of all numerical mathematical problems are 

essentially the problems of linear algebra [19]. Among these problems a 
large share falls on the solution of linear equations system  with (generally 
speaking) complex coefficients. We can literally say that matrix 
processors owe their very appearance to these problems. But in these 
problems only the multiplication of matrices harmonizes ideally with the 
with the possibility of parallel computations in matrix processors. Other 
operations, necessary for bringing a linear system to a form easy-to-use 
for iterations, or for matrices inversion [20], are ill-suited for paralleling. 
This problem, along with the high cost of matrix processors, is an 
obstacle to their expansion.

Offered above method and algorithms is presented for solving a 
system of linear equations with complex coefficients (including 
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underdetermined and overdetermined systems), involving only 
multiplication of vectors (the inverse matrix computation is absent). The 
matrix processor (specially designed for this problem) is significantly 
simplified and is able (without essential hardware expenses) to realize 
pipeline data processing without important hardware changes. 

It follows from the above-stated (see the function SinLin in 
Example 1), that in the process of solving a linear equations system with 
complex coefficients by the discussed method, only the following 
operations with complex vectors and matrices are being used:   addition 
and subtraction of vectors:

From the above-stated follows (see function SinLin in an example of 
vectors multiplication,

1. addition and subtraction of matrices,
2. multiplication of matrices,
3. calculating the norm of vector x

Obviously,
 addition and subtraction of matrices (3) is reduced to addition 

and subtraction of vectors (1),
 multiplication of matrices (4) is reduced to multiplication of 

vectors (2),
 calculating a vector’s norm (5) is reduced to multiplication of 

vectors (2) and addition of vectors (1).
Hence, for the solution of linear equations system we may construct a 

matrix processor which provides only operations (1, 2). The inverse 
matrix computation is absent. Such matrix processor may be realized by 
a specialist without much problems. Such processor should contain only 
summators and perform conveyer data processing. The number of 
summators S should be in proportion with the processor’s volume and in 
inverse proportion with the performance time of these operations.

On every iteration the multiplication of a square matrix by a vector is 
being performed. The performance time of such operation by an 
ordinary processor is proportional to the vector’s dimension N, and the 
number of iterations (as was mentioned above) is proportional to the 
dimension N. So, the solution time for an ordinary processor is 

proportional to 3N . For a proposed matrix processor it is proportional 

to SN3 .
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6. Computing linear electric circuits with 
sinusoidal current
These circuits may have arbitrary configuration and may contain

 resistances,
 capacitiesб
 inductances and inter-inductances,
 transformers, including multiwindingб
 transformers with complex transformation coefficients, 

including multiwinding,
 voltage sources,
 current sources.

The existing methods of calculation for the named electric circuits are 
based on their description by a linear equations system and subsequent 
solution of this system.  In our case the electric circuit before the 
calculation is being transformed into unconditional electric circuit with 
parameters (voltages and current) that are almost (within a given 
precision) similar to those of the initial electric circuit. Then this 
unconditional electric circuit is computed with the aid of the described 
method of finding an optimum of a certain functional. Note that unlike 
the known methods

 there exists an inverse proportion between the precision and the 
solution time; in practice it means that the user may quickly look 
through the approximate solutions, and then compute more 
precisely the chosen  variant;

 the number of equations is reduced by half (to be more accurate - 
the equation system for an ordinary electric circuit contains the 
equations of the First and Second Kirchhoff Law, and the 
equations system for unconditional electric model contains only 
the equation of the Second Kirchhoff Law);

 it may be possible to extend this method for non-linear (with 
respect to the power sources parameters) system.

As it follows from the above said, the unconditional electric circuit is 
described by an equations system of the type

,01
















  EgRSMj


 (1)

where EMRS ,,,  are determined according to the following 

formulas 
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 
 

  ,
,

,

,

21

2112

22
2

11

PTPTHNEE

TTTTMM

TTTTNNRR

SS

T

TT

TTT














(2)

which follow from (3.20).
The computation algorithm consists in solving repeatedly the 

equations system (1) with the same value of Second Kirchhoff Law error 
and an increasing value of methodic resistance.  This increase leads to the 
decrease of the First Kirchhoff Law error. So the algorithm is as follows:

1. Transforming the circuit to standard form – see Fig. 3.3. It was 
shown above that such transformation is possible for any 
configuration of multiwinding transformers in the circuit.

2. Preparing the tables describing the initial electric circuit.
3.  Forming from these tables the matrices 21,,,,, TTNSMR  

and the vectors E , H , P .
4. Choosing min1 , min2  from the possible values of the First 

and Second Kirchhoff Laws errors. The possible values of the 
First and Second Kirchhoff Laws errors are relative to maximal 
values of currents and potentials.

5. Choosing the initial value of methodic resistance. It may be equal 
to the average value of all complex resistances of the circuit 
branches.

6. Computing the matrices and vectors by the formulas (2).
7. Solving the equation system (1) with a given value of possible 

relative Second Kirchhoff Law error min2  - see the previous 

section 5. The current value of Second Kirchhoff Law error 2  
on each iteration is calculated by the formula

    ,,max/max2 Ep , (3)

Here the gradient р is equal to the value of the right side in the 
expression (1). On the first iteration, when the potentials ,  

are still unknown, the values 0,0   are taken.
8. Computing the value of First Kirchhoff Law error. For that the 

node currents are computed  by the formulas
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HNgi  , (4)

  PgTjTm TT  21  , (5)
which follow from (3.18) и (3.19). This error is

   PHgmi ,,max/,max1  , (6)
The node potentials are also computed

i  , (7)
m  . (8)

If the value of error 1  is less than possible value, the 
computation should be stopped.

9. Increasing the value of methodic resistance    k  (where 

k  is a given coefficient) and passing to p. 6. Along with the 

increase of   the First Kirchhoff Law  error 1  decreases, while 
the Second Kirchhoff Law  error remains constant. Fig. 1 shows 
the dependences of these parameters on the iterations number in 
the electric circuit computation, in the Example 2 when 

25.1k .

Fig. 1.
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Example 1. Further the program SinCir is given, realizing pp. 5 - 9 
of the described algorithm for electric circuit computation. The 
notations in this program comply with the above cited notations. 
More concretely:
% EEreal,SSS,LLL,RRR,HH,PP – row vectors for 
%        E,S,L,R,H,P;
% NN – incidence matrix N;

% tran1,tran2 – matrices 21, TT ;

% eK1min,eK2min,omega,stepRo - values

%      min1 , min2 ,  , k  accordingly;
% Wmax – tolerant number of external cycles

%        with k  growing;

% maxIter – tolerant total number of internal cycles
%           (in the SinLin3 function );
% kromin – the coefficient of initial methodic
%          resistance increase;
% res=0 – OK;
% res=1 – many internal iterations;
% res=2 – large error;
% res=3 – many external iterations.

Fig. 2.

Example 2. An example of the electric circuit of a certain power 
system is shown in the Fig. 2. On this diagram the generators are 
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denoted by empty circles, and transformer – by double circles. The 
diagram contains 14 branches, of them – 3 transformer branches and 
10 nodes, of them – 5 generator  nodes and 5 load nodes. After 
transformation the diagram assumed the form  shown on Fig. 3. In 
the transformed circuit the generators of nodes 1, 2, 3, 4 are depicted 
by fixed current sources, the generator f node 10 is depicted by a line 
with fixed voltage source, and the transformer – by two branches. To 
test all the possibilities, the first transformer node is supplemented by 
a current source, and the second transformer has a complex 
transformation ratio. Totally this circuit contains 22 branches, 10 
nodes and transformer matrix of 3х3 dimensions. Positive directions 
of voltages and currents are depicted by arrows. For the description 
of standard circuit on the Fig. 3 the tables of nodes Nodes, branches 
Branches and transformers Trans are arranged. From these tables 
the row vectors E, S, L, R, H, P and matrices 21,, TTN  are 
formed. Further the SinCir function is used. After performing the 
computation these tables are supplemented by the parameters 

21,,,,,,  gmi .

Fig. 3.
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Nodes
Node  Re  Im  HRe  HIm 1
1 326 235 -5.07 -1.79 0.0021
2 677 419 -6.23 -1.87 0.0042
3 386  70  2.26  3.68 0.0021
4 365 215 -2.55  1.26 0.0023
5 724 208 0 0 0.0040
6 333 166 0 0 0.0020
7 334  99 0 0 0.0018
8 364 116 0 0 0.0020
9 351  69 0 0 0.0019
10 767   3 0 0 0.0041

Branches 
Num nBeg nEnd Re(E) Im(E) R L S Re(g) Im(g)

2
1 2 0 0 0 0.03 0.7 0 0.51 -0.19 4.10
2 1 6 0 0 0.44 0.1 0 -2.2 -0.1 4.93
3 1 4 0 0 0.27 0.1 0 -0.61 -1.17 2.82
4 2 5 0 0 0.25 0.1 0 -6.74 -1.7 4.03
5 5 0 0 0 0.03 0.7 0 -0.37 -0.05 2.98
6 5 10 0 0 0.1 0.1 0 -6.36 -1.65 10.49
7 6 7 0 0 0.44 0.1 0 -2.08 -0.21 5.58
8 4 8 0 0 0.27 0.1 0 -3.16 0.09 1.8
9 3 7 0 0 0.14 0.1 0 0.89 1.6 2.27
10 3 8 0 0 1.92 0.1 0 1.34 0.89 3.29
11 8 9 0 0 0.99 0.1 0 -1.36 0.34 4.26
12 3 9 0 0 0.27 0.1 0 0.03 1.19 2.89
13 7 9 0 0 0.27 0.1 0 -0.85 -0.41 4.81
14 10 0 0 0 0.03 0.7 0 0.67 0.03 13.45
15 1 0 0 0 0.01 0 0 -2.26 -0.52 7.64
16 7 0 0 0 0.01 0 0 0.85 0.01 17.94
17 9 0 0 0 0.01 0 0 -1.5 -0.07 16.44
18 10 0 750 0 0.01 0 0 -7.03 -1.68 17.45
19 6 0 0 0 8  7 0 -0.12 0.11 10.2
20 7 0 0 0 50 0.5 0 -1.19 1.79 6.78
21 8 0 0 0 157 1.5 0 -0.46 0.64 9.61
22 9 0 0 0 81 0.8 0 -0.67 1.2 5.37

Trans
Num  Re  Im  PRe  PIm t1 См. 

продол-
жение

1 319 237 1.1 0.9 0.0021
2 318  91 0 0 0.0018
3 334  71 0 0 0.0018
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Trans (continuation of columns with branches numbering)
Num B1 B5 b14 B15 B16 b17 …
1 2.25 0 0 1 0 0
2 0 2.25-0.25*j 0 0 1 0
3 0 0 2.25 0 0 1

Example 3. Let us consider the electric circuit shown in the Fig. 3. 
In this circuit only the transformers 0T  and current sources P  in 
transformer nodes are present. Methodic resistances are also shown 
there. The circuit contains n uniform elements and is described by 
two equations:

122 qNq  , PqTq  201 .
The matrix 2N  is: 






































n

n
N

1...0000
..................
0...1100
0...0110
0...0011

2
,

and the matrix 0T  is a quadratic n*n-diagonal matrix. Consider 2n-

dimensional vector 
2

1

q
q

q  . Then the incidence matrix and the 

transformer matrix of the total circuit will assume the following form:

12 DNN  , 01 TDT 
where 1D  - n*n – diagonal identity matrix. All other matrices and 
vectors for this circuit are equal to zero. Fig. 4 (see also function 
testDigDir) gives the results of this circuit computation with 

.0,0.2j+1.0,7.0,8 11  kkk PPtn
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kP

kq ,1

 

1,1  kq

kq ,2
kt ,2

kt ,1

1P

 

Fig. 3.

Fig. 4.
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7. Trigonometric Series
In the case when the voltages and the currents of the sources are 

represented by trigonometric series, the computations by the formulas 
(5.4.3, 5.4.5) in every iteration should be performed for each harmonic. 

8. Periodical Functions
In this case the formulas (4.11), where T is the functions’ period, are 

used directly for the main coefficients computations. For periodical 
functions in this formulas

  0)(0 
T TT dtqRpqRp ,

  0ˆ
0 
T TTTT dtqMpqSpqMpqSp .

9. Exponential Functions

Here we shall consider exponential functions teutf  )( , where 
  is a real or complex number. Such functions are (as was stated above) 
interoperable. Let us give some examples.

Example 1. Consider an equation 
0 EqLqRSq .

Characteristic equation of the corresponding homogeneous equation 
0 qLqRSq  is [16] 02   LRS , its roots 

L
LSRR

2
42 

 . The solution of homogeneous equation in this 

case will be as follows: 
   
      

,
2

4,
2

,SinCos04

,04

2

21
2

2211
2

L
LSR

L
R

tctceqthenLSRif

ececeqthenLSRif
t

ttt

















where 21, cc  are arbitrary constants.
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Let teuE   . Notice that a particular solution in this case will 

Emq  , where 
LRS

m 2
1

 
 .

Example 2. Continuing example 1, let us find the function q using 
the stated method. On the first iteration q=0 and, as follows from 
(4.11),

EEqLSqp  , Ep   , 




 T dtEA 0
2

1 2
1 ,   T dtELSB 0

22
1 2  ,




 T dtEA 0
2

2 2
1 ,  T dtERB 0

2
2 2 .

From (4.10) we find that 
 

   E
RLS

p
BB
AAq 










22

22
221

21







or

 RLS
Eq





 2 .

Evidently, for exponential function   . Therefore  

,kEq   where 






 


RLS

k




1 ,

Which coincides with the result, obtained in example 1. Generally, if 
on a certain iteration q=hE, then  

  nEEhLShEqLSqp  12 ,
An further, according to formula (4.10),

p
ppdtRppdtMppdtS

EpdtqpdtRqpdtMqpdtS
q TT T

T TTT








 

  





0
0 0

2

0 00
2

0

or
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 
 

 
 

 
  ,1

2

2

22

2
0

22

00
2

E
RMS
RMShnE

nRMS
nhnRMS

p
dtpRMS

EpdtqpdtRMS
q T

TT




































And the new value of the function q will be
 
  E

RMS
RMShhEqhEqqq 




 




2

2 1:

or  RMS
Eq







 2

, i.e., as after the first iteration, 

,kEq  where 






 


RLS

k




1 .

10. The Functions Determined on the 
Positive Time Semiaxis.
The theory of functionals construction, outlined above, assumes that 

the used functions are twice differentiable and is not extended for 
discontinuous functions. However, the gradient descent method does not 
require such limitations.  So it may be extended for discontinuous 
functions. The Pontryagin’s maximum principle [18] permits to 
substantiate this assertion – see the next chapter.

Further we shall restrict our consideration  to the type of functions, 
multiplied by a unite step )(t . As it will be clear from further discussion, 

we shall operate with functions of the type teutf  )( , 

 tetf t  Sin)(  ,  tetf t  Cos)(  . These functions in the section 5.3 
have been called interoperable and the formula (5.3.7) for computing 
current increment is applicable to them. Let us transform this formula to 
the form:

p
pdtRppdtMppdtSp

pdtp
q T T TT TT

T T






 

 
0 00

2
0 . (0)

or
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)()( 2 tp
LRS

atq 






 , (1)

where a, S, R, L are real numbers. This equation may be rewritten as

)()( tpaLRStq 







 


or 

0 EqLqRSq .
The problem is to determine the current )(tq  for various 

discontinuous functions. Therefore we shall now apply operational 
calculus [14]. Denote the image of )(tf  as )(f . 

If the image of gradient is

)(
)()(




b
dp  , (2)

Then, as it follows from (14),

  )(
)()( 2 


bLRS

daq



 (3)

or

  )(
)()( 2 


bLRS

daq



 (4)

If the function
  )()( 2  bLRSF  (5)

has only prime roots m , then according to Heaviside’s theorem [14] we 
find:

  



m

tm
mm

mm e
F

da
Z

aq 

 )(

)0(
, (6)

where 

)(
)()(



d

FZ


 . (7)

For S=0 the following formula is used

  



m

t

m

mm me
F
da

Z
aq 


 )(

)0(
, (6а)

where 
  )()(  bLRF  (5а)

and

)(
)()(




d
FZ  . (7а)
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11. Step Function
In this case )()( tEtf  , where )(t  - step unit. Let us first 

consider an example.
Example 1. Consider an equation

)(tEqLqRSq  .
The characteristic equation for it will be[16]:
 02   LRS , 

Its roots: 
L

LSRR
2

42 
 , its solution:

   
,

2
4,

2

,04

2

2211
2

L
LSR

L
R

ececeqthenLSRif ttt




 





      

,
2

4,
2

,SinCos04

2

21
2

L
RLS

L
R

tctceqthenLSRif t




 





where 21, cc  are arbitrary constants. Let us find the arbitrary 

constants for   042  LSR . We have

    






 

S
Etctceq t  SinCos 21 ,

as ESq   with t . Further we have

    
    
















tctce

tctce
q

t

t








CosSin

SinCos

21

21

or
   
    





















tc
tc

eq t



Sinc

Cosc

12

21 ,

For 0t  we have 0q . Therefore  
  0c21  c . (а)

Further we have
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   
   
   
    

































































tc
tc

e

tc
tc

e

q
t

t















Cosc
Sinc

Sinc
Cosc

12

21

12

21

,

or

   
    






























tcc

tcc
eq t





Sin2c

Cosc2

2
2

12
2

1
2

21
2

.
For 0t  we have EqL  . Therefore 

  LEcc /c2 1
2

21
2   (в)

Combining (а) and  (в), we find:

   2211
2

1
2

1
21

2 ,2,c














L
Ec

L
Ecccc . (с)

Substituting these constants to the expression for charge, we get

      
S
Ett

L
Eeq

t











CosSin22

. (d)

But 
  LS /22   . (e)

Therefore,

     .SinCos
S
Ett

S
Eeq

t

























Taking into account (d, e) and

        tette
t

t
t







SinCosSin22




















 ,

We find

 















t
L

Eeq
t





Sin

And further

    















tt
L

Eeq
t





SinCos .

Substituting the obtained expressions for q, q′ and q′′   in the initial 
equation, we can see that it turns into identity.
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With   042  LSR  we find
















2

2

1

11


 tt ee
LS

q ,

 tt ee
LS

q 211  


 ,

 tt ee
LS

q 22
212

1
1   


 ,

In particular, with S=0 we have: LR /21   and

t
L
R

e
R
Lq


 2 , 

t
L
R

e
R

q



1 , 

t
L
R

e
L

q



1 .

Let us consider some particular cases.
Case 1. On the first iteration )()( tEtp  , which follows from 

(4.15) with q=0. Then 


 Ep )( . In this case from (5.10.4) we find

 LRS
Eaq 2)(







 .

If the equation   0)( 2  LRSF   has for   042  LSR  the 
roots  j2,1 , then RLF   2)(  and from (5.10.6) we obtain 
the function of charge increment as a sum of two items:

 
te

RL
Eaq 2,1

2,12,1
2,1 2



 


 . (1)

After processing the expression with the aid of (5.3.6) we get (see also 
example 1):

     .SinCos


















tt
S

Eeq
t





 
















2

2

1

1



 tt ee
LS

Eaq  with   042  LSR  

t
L
R

e
R

LEaq


 2  
 
with S=0. 

With the aid of these formulas the gradient may be computed from 
(4.1). It may be seen that the gradient is a sum of exponentials  (with a 
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real or complex exponent), or of exponentials and functions of the type  
 te t   Sin  and  te t   Cos .

Example 1. Let us consider a circuit with a sole branch, where 
L=0. For a sole branch the formula (5.10.0) may be reduced by 


T T pdtp
0

, i.e. in the formula (5.10.1) а=-1. In this case on the first 

iteration we have: )()( tEtp  , /)( Etp  ,   RSF )( , 

 RS
E

Z
Eq







)0(
)(  - see (5.10.4), RS / , SZ )0(  - see 

(5.10.7), 
t

R
S

e
S
E

S
Eqq


 - see (5.10.6). On the second iteration 

  0)(1)( 





















tEEeeEtEqRSqp

t
R
St

R
S

 .

So the computation ends on the first iteration with the result 











 t
R
S

e
S
Eq 1

Example 2. Let us consider a circuit with a sole branch, where 
S=0. In this case а=-1 (see Example 1) and on the first iteration we 
have: )()( tEtp  , /)( Etp  ,   LRF )( , 

 LR
E

Z
Eq







)0(
)(  - see (5.10.3), LR / , RZ )0(  - see 

(5.10.7а), 
t

L
R

e
R

LE
R
Eqq


 2 - see (5.10.6а). On the second 

iteration

  0)(1)( 





















tEeEEetEqRqLp

t
L
Rt

L
R

 .

So the computation ends on the first iteration with the result: 











 t
L
R

e
R
L

R
Eq 1

Case 2. Assume that tetEp   )( . Then  







Ep )( . From 

(5.10.4) we find
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  )(
)( 2 







LRS
Eaq . (2)

The equation    0)( 2   LRSF  has the roots 

 j2,1  and  ,     LLRRSF 232)(    and from 
(5.10.6) we obtain the function of charge increment as a sum of two 
summands (similarly to (1))

 
te

F
Eaq 2,1

2,1
2,1









 . (3)

and another summand of the form

 
te

F
Eaq 






 3 . (4)

Example 3. Let us consider a circuit with a sole branch, where 
L=0. let us assume that for it on a certain iteration a charge 

bteaaq  10 is determined. On the next iteration 
   

    .,);(

)()(

01

110

SaEdRbSactdce
tERbeaeSaSatEqRSqp

bt

btbt











.

The computation on this iteration is performed in two ways:
1) computation for step excitation (- d ), which has been considered in 
Example 1;  the charge function will be supplemented by a 

component 
t

R
S

e


;
2) computation for exponential excitation  btce , which will be 
considered further.
So we are assuming that btcettp  )()(  . Then  

b
cp





)( , 

  bRSF  )( ,   RbSRF   2)( , )0(Z  - see 

(5.10.7), 
  bRS

cq






)(  - see (5.10.4),  bRS  ,/2,1 , 

    RbSSRbF  ,)( 2,1 . Therefore  btt
R
S

mekeq 
  - see 

(5.10.6),  i.e.  on the second way (as on the first one)  the charge 

function is supplemented by a component 
t

R
S

e


. Here 

   .,
RbS
cm

SRb
ck









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Example 4. Let us consider a circuit with a sole branch, where 
S=0. Let us assume that for it on a certain iteration the current 

bteaaq  10 is determined.  On the next iteration 
   

    .;);(

)()(

01

101

RaEdLbRactdce
tEeRaRabeLatEqRqLp

bt

btbt












The computation on this iteration is performed in two ways:
1) computation for step excitation (- d ), which has been considered in 
Example 1;  the charge function will be supplemented by a 

component 
t

R
S

e


;
2) computation for exponential excitation  btce , which will be 
considered further.
So we assume that btcettp  )()(  . Then 

b
cp





)( , 

  bLRF  )( ,   LbRLF   2)( , )0(Z  - see 

(5.10.7а), 
  bLR

cq






)(  - see (5.10.3),  bLR  ,/2,1 , 

    LbRRLbF  ,)( . Therefore, btt
L
R

mekeq 
  - see 

(5.10.6а), i.e. on the second way (as also on the first) the current 

function is supplemented by a component 
t

L
R

e


. Here 

   .,
RLb

bcm
RLbL

Rck








Case 3. Let  tetEp t     Sin)( . Then 
  22)(








Ep . 

From (5.10.4) we find

    222)(








LRS
Eaq .

Equation     0)( 222   LRSF  has the roots 
 j4,3,2,1  and from (5.10.6) we obtain the function of charge 

increment as a sum of four summands

 
te

F
Eaq 






 . (5)
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Case 4. Let  tosetEp t     C)( . Then  
  22)(








Ep . 

From (5.10.4) we find
 

   222)(








LRS
Eaq .

As in the preceding cases from (5.10.6) we obtain the function of charge 
increment as a sum of four summands

 
 

te
F

Eaq 






 . (6)

In the general case the current functions are  te t   Sin  and 

 te t   Cos . It means that they are interoperable, and so we may use 
the formulas of Section 3 to compute the current increment on each 
iteration. 

On any iteration of our computation we may encounter any of the 
considered cases. Therefore, in the general case to the current function 4 
summands of exponential type should be added on every iteration. The 
practice shows  that the computation consists of hundreds of iterations.
Thus, definite integrals in the formula contain hundreds of summands 
for each branch. To cut the time and information volume the following 
technique is suggested. Each exponential is represented as a truncated 
power series   

k

k
kk tj . So on each iteration and for each charge 

of the branch the power series of the “former” charge and its increment 
are summed up , thus not changing the structure and the volume of the  
charge as a function of time representation.

12. Displaced Step Function.

In this case )()( stEtf   , where )(t  - a step unit, s – displacement 
along the time axis. On the first iteration )( stEp   , which follows 

from (4.15) for q=0. It is known [14], that 


  seddst )( . From 

the lag theorem it follows that 
)()()( ststqtq o   ,

Where the function )( stqo   is determined in the same way as for a 
step function without displacement.
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13. Multistep Functions
Let us consider a multistep function of the type

  tktktmtf k  1,)( .

- see also fig. 1. Evidently, such function may be presented as a sum of 
displaced step functions. The superposition principle permits to reduce 
the computation of such function to a multitude of displaced step 
functions computations.

t

t

m0

mk

mn

0 k n

Figure 1. A multi-step function.

14. An Exponential on the Positive Time 
Semiaxis

In this case tetEp   )( . Such a function has been considered 
above – see (5.11.2, 5.11.3, 5.11.4). In this case these formulas are used 
on every iteration.
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15. Trigonometric and Hyperbolic Series on 
the Positive Time Semiaxis 
In this case   

k
kk tkCosbtkSinatEp )()()(   or 

  
k

kk tkChbtkShatEp )()()(  . It is known that the functions 

)(),(),(),( tkChtkShtkCostkSin   may be presented as a sum 
of two exponentials. Thus this case is brought to the preceding case.
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Chapter 6. Variational Principle 
and Maximum Principle

1. Introduction to Maximum Principle
Let us examine now some concepts of the Pontryagin's maximum 

principle  [18] in view of its future application.
Let us consider a functional

 dtuxfF T
 0 0 , , (1)

of the equations system

 uxf
dt
dx

i
i , , (2)

   
v

n

v i

v

i

i
x

uxf
x

uxf
dt

d  
 









1

0 ,,
, (3)

the function

     



n

v
vv uxfuxfuxH

1
0 ,,,,  , (4)

with respect to vector-functions of time

n
T xxxx ...,,, 21 ,

n
T  ...,,, 21 ,

m
T uuuu ...,,, 21 .

It is significant that these functions may be discontinuous,  and their 
range of values may be limited. The maximum principle lies in the fact 
that the search for functional’s (1) minimum by )(),( tutx  may be 
replaced by the search for the function’s (4) maximum by u  in all the 
points of time interval.

Later on our main interest will be in the case when  

i
i u

dt
dx

 . (6)

99



Chapter 6. Variational Principle and Maximum Principle

Then also
 

i

i
x

uxf
dt

d





,0
, (7)

    



n

v
vv uuxfuxH

1
0 ,,,  . (8)

Example 1. Let 

 dtExLuSxF T
  0

22 .
Then from (7) and (8) we shall get 

ESx
dt

d
 2

,

    uExLuSxuxH   22,, . 
The necessary condition of the last function’s maximum максимума  
by variable u  is: 

   0,, 

 uxH
u

  

or
02  Lu . 

Taking into account (6) and using the notations of section 2.1, we get 
the necessary condition of maximum 

0ˆˆ22  ExSxL . 
This condition should not change with passing from one point of 
time to another Consequently, 

  0ˆˆ22  ExSxL
dt
d

 
or

022  ESxxL .
Notice that if (6) is valid, then the necessary condition of the initial 
functional’s minimum is the same. So, we have discovered the 
condition of the initial functional’s minimum by using the maximum 
principle.

Considering the example 1, it is important to note that:
 the necessary optimum condition of the initial functional’s 

minimum may be obtained only on the condition that the 
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integrand function is differentiable, and therefore the function 
E(t) has no discontinuities;

 the necessary condition of maximum in obtainable for any 
function E(t);

 formally, the above named conditions coincide; thus, the 
maximum principle permits to extend the condition of the initial 
functional’s for discontinuous functions E(t).

Nevertheless the problem of the method of solution of the equation, 
representing the necessary condition of the initial functional’s minimum 
or the necessary maximum condition, is still an open question.  We have 
considered above a method based on gradient descent along the 
functional. Now we shall show a method based on gradient ascent along 
the maximized function Н(t).

Converting to vector and matrix notations, from (6, 7, 8) we get

u
dt
dx

 , (9)

 
x

uxf
dt

d





,0
,           (10)

    uuxfuxH T   ,,, 0 .           (11)

2. Maximization Method
Let us consider now the following
Maximization algorithm 1.

1. Assume that 0)( tx  and 0)( tu .

2. Compute 
 

x
uxf

t





,
)( 0 .

3. Compute  dt t
  0 )()(  with known )0(  .

4. Determine the function  utH ,  using (11) with known 

)(),( txt .

5. Compute )(tu  from the condition    0, 

 utH
u

.

6. Check the variation of function )(tu  compared with its 
previous value and, if it is sufficiently small, stop the 
computation.
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7. Compute   t dutx 0 )()(   with known )0(u .
8. Go to p. 2.

Example 2. Let

 dtxtELuSxF T
  0

22 )( ,

where Е – a constant, )(t  - jump unit. Let us use the maximization 
algorithm. On the first iteration
1. Assume that 0)( tx  and 0)( tu .
2. Compute )()(2)( tEtESxt   .

3. Compute tEdEt t    0 )()( .

4. From (11) determine the function   utELuutH  2, , 
where the items, not dependent on u, are discarded.

5. Compute )(tu  from the condition 02  EtLu . We have  

t
L

Etu
2

)(  .

6. Check the variation of function )(tu  and continue the 
calculation.

7. Compute 2
0 4

)()( t
L

Edutx t    .

Go to the second iteration.

2. Compute )(
2

)(2)( 2 tEt
L

SEtESxt   .

3. Compute 





 






   tt

L
SEdt

L
SEt t 3

0
2

6
)(

2
)(  .

4. Determine the function   utLuutH  )(, 2   or

  utt
L

SELuutH 





  32

6
, .

5. Compute )(tu  from the condition 0
6

2 3 





  tt

L
SELu . 

We have 





  tt

L
S

L
Eu 3

62
.

6. Check the variation of )(tu  , and continue the calculation.
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7. Compute 





 


  24
0 124

)()( tt
L
S

L
Edutx t  .

Go to the third iteration.

2. Compute )(
122

)(2)( 24 tEtt
L
S

L
SEtESxt  






 


 .

3. Compute  














 


  Ettt
L
S

L
SEdtEt t 35

0 206
)()(  .

4. Determine the function   utLuutH  )(, 2   orи

  uEttt
L
S

L
SELuutH 















 


 352
206

, .

5. Determine )(tu . We have t
L

Ett
L
S

L
SEu

22012
35

2 





 


 .

6. Check the function’s variation )(tu  and continue the computation.

7. Compute 246
20 43048

)()( t
L

Ett
L

S
L

SEdutx t 





    .

Thus, as the result of the iterations we consequently get
2

1 4
)( t

L
Etx  ,







  42

2 124
)( t

L
St

L
Etx ,











 6

2

2
42

3
360124

)( t
L

St
L

St
L

Etx ...

So we may conclude that











 ...

360124
)( 6

3
4

2
2 ttt

S
Etx  ,

where 
L
S

L
S

 2,  , or

     










 ...

!6!4!22
)(

642 ttt
S

Etx 
.

Therefore,
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  1Cos
2

)(  t
S

Etx  .

The condition of the initial functional’s minimum and the condition 
of maximum are (as was shown in the Example 1) as follows:

022  ESxxL .

Substituting )(tx  and  t
S

Etx  Cos
2

)(
2

  into this condition, we 

get  an identity,  which testifies that the computations were correct.

Example 3. Let us assume that in the example 2 on one of the 
iterations we got

 



n

k

k
k taEtx

1

2)(  , where  !22
1

kS
ak 

 .

Then 

2. Compute   )(2)(2)(
1

2 tEtaSEtESxt
n

k

k
k   


.

3. Compute     












 



 tt
k
aSEt

n

k

kk

1

12
12

2)( 


 .

5. Compute )(tu  according to the formula )(
2
1)( t
L

tu  , which  

follows from the maximization condition (8).
7. Compute

    
   
















 




L

tt
kk

a
L
SEdutx

n

k

kkt

41212
)()(

2

1

12
20 




or

 





1

1

2)(
n

k

k
k tbEtx  , где 

   2
1

2
1

212
,

4 kkL
Sab

L
tb k

k


  .

Taking into account that 
S

a
2
1

1   and (as was shown in Example 2) 

L
S

2 , find finally that kk ab  . Thus, on every iteration the series 

of function x(t) is supplemented by item number (n+1).  
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3. Second Order Differential Equations 
Systems with Step Excitations
Let us consider an RCL-circuit with electric charges and the 

functional (1.1, 1.2). We shall denote: )()(),()( tutytutx yx  . Then 
this functional will be written as follows:

 
T
o yxo dtuuyxfF ,,, ,           (12)

где

     
   



















yxEyuxuR

uuLyxS
uuyxf

xy

yx
yxo

2222
,,, .           (13)

We shall assume that the unknown functions in this functional are 
)(),( tutx x . Then according to (7), (8) we shall get accordingly

ERuSx
dt

d
y

x  2
,           (14)

    xxxx ufuxH   ...,, 0 .           (16)

The condition of the last function’s maximum with respect to )(tux  after 
discarding the items not dependent on )(tux  will become:

02  xx RyLu  ,
So the optimal value of the function  )(tux may be determined as

  0
2
1

 Ry
L

u xx  .           (17)

This means that maximization  of the function (16) is equivalent to 
minimization  of the initial functional with respect to the function )(tx .

The functions

ERuSy
dt

d
x

y  2


          (18)

    xxxx ufuxH   ...,, 0 .           (19)
may be found in the same way , as well as the optimal value of function 

)(tux , which gives the minimum of the function (19):

  0
2

1



 Rx

L
u yy  .           (20)
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So it is shown that minimization of the function (19) is equivalent to 
maximization  of the initial functional with respect to function )(ty .

We shall use now the maximization algorithm 1 for finding the 
function )(tx . In this particular case we have

Maximization algorithm 2
1. Assume that 0)( tx  and 0)( tux .
2. Compute according to (14) ERuSx yx  2 .

3. Compute  dt t
xx   0 )()(  with known )0(  .

4. Compute according to (17)  Ry
L

u xx  
2
1

.

5. Check the variation of function )(tu  compared with its previous 
value, and, if it is sufficiently small, stop the computation.

6. Compute   t dutx 0 )()(   with known  )0(u .
7. Go to p. 2.
The maximization algorithm for finding the function )(ty  will be 

similar to the one we described above. We shall perform the algorithms 
for maximization of )(tx and )(ty  simultaneously. It means that after 
performing an iteration for the two algorithms, we shall substitute the 
values of functions xux, , found in the first algorithm, to the formulas 

of the second algorithm
 
, and the values of yuy, , found in the second 

algorithm we shall substitute to the formulas of the first algorithm.
 
It is 

easy to see that on the iterations with the same numbers the following 
conditions are fulfilled: 

yxyx uuyx   ,, .           (21)
Let us denote similarly to (1.8)

yxyx uuuyxq   ,, .           (22)
From the above it follows that the charge q may be computed with 

the aid of  the following algorithm.
Maximization algorithm 3.
1. Assume that 0)( tq  и 0)( tu .

2. Compute ERuSq 
2
1 .
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3. Compute  dt t
  0 )()(  with known )0(  .

4. Compute 





  Rq

L
u

2
11  .

5. Check the variation of function )(tu  compared to its previous 
value, and if it is sufficiently small, stop the computation.  

6. Compute   t dutq 0 )()(   with known )0(u .
7. Go to p. 2

Evidently, the maximization algorithm 3 is usable only in the case when 
L>0.            (23)

Example 4. Let the voltage of a RCL-circuit be equal to )(tE  , 
where Е – is a constant, )(t  - jump unit. We shall use now the 
maximization algorithm. On  the first iteration
1. Assume that 0)( tq  and 0)( tu .

2. Compute )()(
2
1)( tEtERuSqt   .

3. Compute Etdt t    0 )()(  

4. Compute t
L
ERq

L
u 






 

2
11  .

5. Compute 2
0 2

)()( t
L

Edutq t    .

On the second iteration

2. Compute )(
22

)(
2
1)( 2 tEt

L
ERt

L
SEtERuSqt   .

3. Compute Ett
L

REt
L

SEt  23
46

)(  

4. Compute t
L
Et

L
REt

L
SERq

L
u 






  2

2
3

2 262
11  .

5. Compute 23
2

4
20 2624

)()( t
L

Et
L

REt
L

SEdutq t    .

Let us assume that on  a particular iteration we got:





n

k

k
ktaEtq

1
)( , 




n

k

k
ktbEtu

1
)( .
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Then 
1. Compute

.
2
1

),()(
2
1)(

1







 

 


kkk

n

k

k
k

RbSac

tEtcEtERuSqt 

2. Compute 












 



 tt
k
cEt

n

k

kk

1

1
1

)( .

3. Compute

 

.
2

,1

,
21

212
11)(

1
111

1

11

11
1

11

1







 








 
























































 


















L
Ra

Lk
cb

L
ab

tbE
L
tt

L
Ra

kL
ctaE

ta
L

ERtt
k
c

L
ERq

L
tu

kk
k

n

k

k
k

n

k

kkk

n

k

k
k

n

k

kk

4. Compute











 






2

2

1
0 )()(

n

k

kkt t
k

bEdutq 
.

We see that on each iteration the series of the function q(t) is 
supplemented by two items.

Example 5. To test the solution obtained in the example 4, let us 
consider the equation, given in the example 5.1. It was shown there 
that  that the general solution of this equation is as follows:

     ,SinCos
S
Ett

S
Eeq

t












where .
2

4,
2

2

L
RLS

L
R 

   Let us build a Maclaurin series of 

this function:

     






















 ...

!4!3
2

2
)( 4

222
3

22
2

22
ttt

S
Etq 
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As  
L
S

 22  , the obtained expression is similar to one obtained 

on the second iteration of the example 4, which proves the 
statement.

It may be noted that the presented algorithm is applicable also for 
vector variables, where RSL ,,  are quadratic matrices. What matters is 
only that the electric circuit  is  wholly described by the equations system

)(tExMxRSx  ,          (24)

Example 6. Consider the program realizing maximization algorithm 
3 for solving the equations system (24) for )()( tEtE   in the 
MATLAB system. This program consists of the following М-
functions:

ValueSeries – computing the value of  power series vector,
DifSeries – differentiation of power series vector ,
IntegraSeries – integration of power series vector,
errtio – computing the error for a given moment,
DEjump – main function.

Consider the main function DEjump It computes the power series 
of the functions xxx ,, . It is assumed that the function should be 
defined on the observation interval Tt 0 . The computation 
results in forming the following matrix, for representation of 
function )(tx :

Ndndd

Nknkk

Nn

d

k

xxx

xxx

xxx

tx

tx

tx

tx

,,1,

,,1,

,1,11,11

......
...............

......
...............

......

)(
...

)(
...

)(

)(  ,

where element )(txk  of vector-function )(tx  is a polynomial 

  



N

n

n
nkk txtx

1
,

 
and is represented by a row of values )(txk  in 

the observation moments. 
The following parameters are used in this program:

input:
109



Chapter 6. Variational Principle and Maximum Principle

S, М, R, E – see above,
N – maximal number of the series terms,
erToler – minimal tolerant error at the end of observation 

interval,
output:

xxxxx  2,1,  - see above,
tio=T – observation interval,
err – computed error at the end of  observation interval,
er – residual vector in the equation (24), also represented by 

power series.
The computation is performed iteratively. In the process of 

computation a series is formed, with number of terms twice the 
number of iterations. Simultaneously the size of maximal observation 
interval T  (tio), on which the relative error is less than the given 
tolerant value (erToler), is computed.

For large N it may occur, that the value NT  exceeds the bounds 
of the processor  capacity.  It may be revealed by the fact that the 
functions graphs are truncated before reaching the end of 
observation interval. In this case the number  N should be reduced. 
The figure (see function testDEJ_2)  depicts the results of 
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computation, using this function, of three independent equations, 
where 

S=[1,0,0;0,1,0;0,0,0];
R=[0,0,0;0,0.33,0;0,0,1];
M=[1,0,0;0,1,0;0,0,3];
E=[1;1;1];

We shall now look more carefully at the maximization algorithm 3 . 
Combining the formulas of this algorithm and taking into account that at 
the end of iteration process )()( tutq  , we get the formula for the 
charge:

  













  t ddEqRSqRq

L
tq 0 0 )()(

2
1)()(

2
11)(  

. 

Differentiating twice, we find

 ESqqR
L

tq  1)( ,

That means that at the end of iteration process the equation of RCL-
circuit is fulfilled.

About overflow
For large N it may occur, that the value NT  exceeds the bounds of 

the processor capacity. It may be revealed by the fact that the functions’ 
graphs are  truncated before reaching the end of observation interval. In 
this case the value of N should be reduced (see also functoin 
testDEjump4).

About convergence
Independent of the matrices’ form there exists computational 

convergence, which implies that on a given observation interval the form 
of the sought functions does not depend on the length of series (recall: 
the length of series should be extended only with the aim of extending 
the observation interval).

However, for ill determined matrices the solution diverges – the 
functions grow infinitely. At the same time the computational 
convergence still holds. Recall, that in our case the term “well determined 
matrices” means positive semi determined matrices RS ,  and a positive 
determined matrix ( 0M ). For  0M  the solution does not exist. In 
the next section we shall wthdraw this condition (see also functions 
testEDJconv, testEDJconv2).
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In our presentation context this algorithm is remarkable because it 
shows that the maximum principle of functional (1.1, 1.2) may be extended for 
discontinuous functions. From this and from Theorem 4.1.1 follows

Statement 1. The functional (4.1.12) and the equation (4.1.13) may 
contain discontinuous functions E(t). For them the Theorem 4.1.1 is 
valid , and the equation of the functional’s stationary value (4.1.12) takes 
the form (4.1.13). 

This statement has been used above in the description of 
discontinuous function computation method. Further we shall deal with 
the problems of its application for electric circuits computation.

4. First Order Differential Equations 
Systems with Step Excitations
Let us consider RCL-circuit with electrical currents and functional 

(2.6, 2.7).  Let us denote: 

wv uWwwWuVvvV  ,ˆ,,ˆ .          (25)

Then this functional for L=0  will assume the form

 
T
o wvo dtuuWVfF ,,, ,           (26)

where

     















wvwv

wv
wvo

uuEuuR

VuWuS
uuWVf 22

)(
,,, .        (27)

We shall assume that in the functional the unknown functions are 
)(),( tutV v . Then in accordance to (7), (8) we shall get accordingly

w
v Su

dt
d




,           (28)

    vvvv ufuVH   ...,, 0 .           (29)

The maximum condition of the last function )(tuv  after discarding the 

terms that do not depend on )(tuv  , will assume the form

02  vv ERuSW  ,

and from this condition the optimal value of  )(tuv may be determined:

112



Chapter 6. Variational Principle and Maximum Principle

откуда определяется оптимальное значение функции )(tuv :

 vv WSE
R

u 
2
1

.           (30)

So,  maximization of function (29) is equivalent to minimization of the 
initial functional )(tV .

In the same way we may determine the functions

v
w Su

dt
d




,           (31)

    wwww ufuWH   ...,, 0 .           (32)

The maximum condition  of the last function )(tuw  will take the form

02  vw ERuSV  ,

and the optimal value of )(tuw , for which the function (32) will be 
maximized, is,

 ww VSE
R

u 
2
1

.           (33)

So, minimization of the function (32) is equivalent to maximization of 
the initial functional  with respect to the function )(tW .

Let us now use  algorithm 1 for the search of function )(tV . In this 
particular case we have

Maximization Algorithm 4

1. Assume that 
R

Etu
2

)(   and compute   t
v dutV 0 )()(  .

2. Compute by (31) wv uS  .

3. Compute  dt t
xx   0 )()( .

4. Compute by (33)  vv WSE
R

u 
2
1

.

5. Check the increment of )(tuv  comparing with the previous 
value, and if it is small enough, stop the computation.

6. Compute   t
v dutV 0 )()(  .

7. Go to p. 2.
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The maximization algorithm for function )(tW  is similar. We shall 
now perform the maximization algorithms for )(tV  and )(tW  
synchronously. This means that after performing the iteration at hand by 
both algorithms we shall substitute the values of vuV , obtained by the 
first algorithm

 
in the formulas of the second algorithm, and the values 

wuW , , obtained by the second algorithm will be substituted in the 
formulas of the first algorithm.

 
It is easy to see that on iterations with the 

same number the following conditions are fulfilled:

wvwv uuWV   ,, .           (34)
Let us denote similarly (2.5)

wvwv uuuWVq   ,, .           (35)

From the previous it follows that the charge q may be computed by 
the following algorithm.

Maximization Algorithm 5

1. Assume that 
R
Etu )(  and compute   t dutq 0 )()(  .

2. Compute uS 
2
1 .

3. Compute  dt t
  0 )()(  with known )0(  .

4. Compute 





  qSE

R
u

2
11

 
5. Check the increment of )(tu  comparing with the previous value, 

and if it is small enough, stop the computation.

6. Compute   t dutq 0 )()(  .

7. Go to p. 2.

It is evident that the maximization algorithm 5 is applicable only in the 
case when

R>0.            (36)
Notice that pp. 2-3 may be combined, and then this algorithm 

becomes simpler and assumes the following form:
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Maximization Algorithm 6

1. Assume that 
R
Etu )(  and compute   t dutq 0 )()(  .

2. Compute  qSE
R

u 
1

 
3. Check the increment of )(tu  comparing with the previous value, 

and if it is small enough, stop the computation.

4. Compute   t dutq 0 )()(  .

5. Go to p. 2.

From the remark 2.1 it follows that this algorithm is applicable also in 
the case when R is a function R(t) of independent variable t.

If the functions are presented as series of the form





n

k
kuu

1
, 




n

k
kqq

1
,

where n  is the iteration number, then Algorithm 6 takes the following 
form:  

Maximization algorithm 7.

1. Fix 1n , compute 
R
Etu )(1  and compute 

  t dutq 0 11 )()(  .

2. Compute  )()(1 tq
R
Stu nn 

 
3. Check the function )(tu  variation compared with the previous 

n  , and if it is small enough, stop the computation.  

4. Compute   
t

nn dutq 0 11 )()(  .

5. Raise n  by 1 and go to p.. 2.

Example 7. Let us consider the equation 
0)(  tEqRSq  , (а)
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where Е is constant, )(t  - unit step. The solution of this equation is  















 t

R
S

R
Eq exp1 . Note that

 ,exp
exp

0
0

0 















































 t

R
S

S
E

d
R
S

tt

R
Edqq

t
t

t




i.e.















 t

R
S

S
Eq exp1 .

The solution of equation (а) for 0t  has the form







 t

R
S

R
Eq exp . (в)















 t

R
S

S
Eq exp1 . (с)

Fig. 1.
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For 0t   we have

0,  q
R
Eq , (д)

But at the moment 0t   the derivative exhibits a jump 


R
Eq  )0( (е)

By direct substitution into the initial equation we can ascertain that 
the solution is correct – see Fig. 1 and also function FigGamma). 

For the solution of equation (а) we shall use the optimization 
algorithm 7. 
0. Begin with 0)( tq .

1. Compute 
R

tEtutu )()()( 1


  and compute 

t
R
Edutqtq t  0 11 )()()(  .

2. Then compute consequently     

t
R
SEq

R
Su 212 

, 
2

20 22
2

)()( t
R

SEdutq t    ,

2
3

2
23

2
t

R
ESq

R
Su 

 , 
3

3

2

0 33
6

)()( t
R

ESdutq t     ,

3
4

3
34

6
t

R
ESq

R
Su  , 4

3

3

0 44
24

)()( t
R
ESdutq t   

and so on. Thus, 









 ...

62
)( 3

3

3
2

2

2
t

R
St

R
St

R
S

S
Etq . 

Notice that on each iteration one term is added to the series of 
the function q(t). Also notice that when the number of iterations 
grows, q(t) approaches the known result: 















 t

R
S

S
Etq exp1)( , which was to be proved.
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It can be seen that the proposed algorithm may be applied also to 
the case of vector variables, where RS ,  are quadratic matrices. What 
matters is only that the electric circuit is fully described by the equations 
system

)(tEqRSq  .          (37)

Example 8. Consider the program realizing maximization 
algorithm 3 for solving the equations system (37) with 

)()( tEtE  . This program is similar to the program of  example 
6 and it uses the same notations and the same subsidiary functions. 
Only the main function is different: DEjumpRC.  The following 
figure shows (see also function  testDEJRC_127) the result of 
computation with the aid of this program of a system of 127 
equations. The figure shows the graphs of )(),( txtx  for three 
functions with numbers 1, 52, 113.

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Currents in lines 1, 52, 113

C
ur

re
nt

Time

X.1-charge

X.52-charge

X.113-charge

X1.1-current = derivative of charge

X1.52-current = derivative of charge

X1.113-current = derivative of charge

Some other examples are considered in 9.6.6.
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5. Differential Equations Systems with 
Multi-step Excitations
In the above (in section 6.4) considered case the voltages of the 

circuit are of the form )()( tEtE o  , where oE  – a constant vector, 
)(t  - a jump unit. In the beginning of each iteration the value  

)(
2
1)( tEuRqSt o   is being computed, and, consequentially, 

the item is added to the function tEo . So on each iteration of the 
maximization algorithm 3 the power series of the function q(t) is 
supplemented by two items. However we shall not go beyond a certain 
number of series members, because the series are convergent.

The above presented example 4 illustrates this case.
Evidently, the same algorithm may be applied also for the function 

)()( oo ttEtE   , where 0ot  – a certain moment. The same 
algorithm is applicable in the case, when the function can be presented in 
the form

)()(
1

io
h

i
io ttEtE 




- see example fig. 1. According to the superposition principle for electric 
circuits, the computation consists in multiple use of the maximization 
algorithm 3. 

tiot(1)=0 t(2) t(3) t(n)

jump(1)

jump(2)

jump(3)

jump(n)

jump

Fig. 1.
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Example 9. Consider DEjumpMany, which realizes 
maximization algorithm 3 for step voltages. In this function the 
following parameters will be used

input:
     S, V, R,  erToler, N – see above in Dejump function description,
     EЕ – vector with all the components except one are equal to zero, 

and the non-zero component is е = 1,
     jump – vector of voltage jumps of the non-zero component е, 

jump = [jump(1), jump(2),…,jump(n)],
     tjump – vector of the jump moments,
     tjump = [t1=0,t2,t3,…,tn,999],
     pixels – number of observation points on the observation interval

output:
tio=T, err - see above in Dejump function description,
xt, x1t, x2t – the unknown functions,
t – the moments of these functions’ observation

Fig. 1 illustrates the meaning of notations used for some variables 
in this function. On the output of DEjumpMany function the 
matrices of the values of the unknown functions in all points of 
observation are formed. The figure shows the solution results of a 
certain system of three equations with multiple step excitations - see 
also function  testDEJmany.
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6. First Order Differential Equations Systems with 
Excitations in the Form of Dirac Functions
Further we shall discuss a Dirac function )(t  . Between the 

truncated Dirac function )(t   and the step function )(t  the 
following correlations are formed:





0

)()( dttt  . (1)

dttt )()(   , (2)
The maximization algorithm 6 is applicable also for the equations 

(6.4.37), where )()()( ttEtE o   . 

Example 9a. Let us consider an equation
0)(  tEqRSq  , (а)

where Е is a constant. The solution of this equation is

 





















 t

R
S

R
S

R
Eq exp1 . 

Note that
 

,expexp
000 




















































  

R
S

R
Ed

R
S

R
S

R
Edqq

ttt

i.e. 















 t

R
S

R
Eq exp1

Solution of the equation (а) for 0t  has the form







 t

R
S

R
ESq exp2 . (в)







 t

R
S

R
Eq exp . (с)

For 0t   we have
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2R
ESq  , 

R
Eq  , (д)

But at the moment 0t  the derivative exhibits a jump 









 2R

ES
R
Eq  , (е)

and the function exhibits a jump


R
Eq  . (d)

By direct substitution into the initial equation we can ascertain that 
the solution is correct – see Fig. 1 (see also function FigGamma). 
For physical interpretation of this equation one should have in mind 
that the function )(t   is non-dimensional, and the function )(t  
has the dimension of independent variable t. To solve this equation 
we shall use the optimization algorithm 7. 
0. Begin with 0)( tq .

1. Compute 
R

tEtutu )()()( 1


  and compute 

)()()()( 0 11 t
R
Edutqtq t    .

2. Then compute consequently     

)(212 t
R
SEq

R
Su 

, 
t

R
SEdutq t

20 22 )()(    ,

t
R

ESq
R
Su 3

2
23 

 , 
2

3

2

0 33
2

)()( t
R

ESdutq t     ,

2
4

3
34

2
t

R
ESq

R
Su  , 3

4

3

0 44
6

)()( t
R

ESdutq t   

and so on. Thus,











 ...

2
)()()( 2

3

3

2

2
t

R
St

R
St

R
St

R
Etu 











 ...

62
)()( 3

3

3
2

2

2
t

R
St

R
St

R
St

R
Etq   
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Fig. 1.

Fig. 2.
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One may see that on each iteration one item is added to the series 
of functions q(t). Also we can see that with the increase of the 
iterations number )(),( tqtq   are approaching the results indicated 
at the beginning of the example.

So we see that the maximization algorithm 6 computes the 
sought function. The fig. 2 shows graphs of the functions 

)(),( tqtq   for some fixed parameter values (see also function 

testDirak_1).

In reality there are no such cases when the voltage or the current of 
sources may be described by Dirac function time-varying. But we can 
imagine some electric of other systems where the impact may be 
described by Dirac function of space coordinates. Let us consider an 
example.

Example 9b1. considers a long line described in example 5.6.3. 
When the number of elements is large, this line may be considered as 
a continuous line with parameters depending on the length z, and the 

equation 122 qNq   may be substituted by the equation dz
qdq 1

2


  

(this is shown in Chapter 8). Thus the line as a whole is described by 
the equation

)()()()( zP
dz

zdxzTzx  .

If 











,0if,0

,0if,
)(

z
zE

zP  (as it is done in example 5.6.3), then, 

naturally, we must assume that )()( zEzP   . Then the equation 
of this line will take a form

0)()()(  zE
dz

zdxRzSx  , where )(,1 zTRS  . 

Exactly this equation has been considered above. So the discussed 
continuous line may be computed with the aid of maximization 
algorithm 6 with Dirac functions as excitations – compare the graphs 
in examples 5.6.3 and 9a.
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The computing algorithms for Dirac functions as excitations may be 
extended also for vector variables in the equation (6.4.37), where 

)()( tEtE o   and RS ,  are quadratic matrices. 

Example 9c2. Consider a system of two differential equations  
)(),( 21 tqtq  with regard to independent variable t:

).(2
,0

12

21
tqq

qq







Consider the vector 
2

1
q
q

q  . Then this system may be presented in 

the form  
)(zEqRSq   ,

where .
01
10

,
20
01

,
0 

 RSE 


 Now we have:

.
2

1

2

2

1
q

q
q
q

u


 






 

On the first iteration:
1. At the beginning we assume that 0)( tq .

2. Compute 
0
 

u
 

3. Compute 
0

)()( 0


  
t dutq .

On the second iteration:

2. Compute 

 

u
 

3. Compute 
t

dutq t



  0 )()(  

On the third iteration:

125



Chapter 6. Variational Principle and Maximum Principle

2. Compute 


 tu
22

3. Compute 
t

tdutq t




22

0 )()(    

On the fourth iteration:

2. Compute 23

22
t
tu







3. Compute 
3

)()( 33

22

0 tt
tdutq t





   

On the fifth iteration:

2. Compute 23

342 322
t

ttu






3. Compute 

 
3

432)()( 33

4422

0 tt
ttdutq t





   

On the sixth iteration:

2. Compute 
 432

322
4523

342




tt
ttu




3. Compute 

 
 54323

432)()( 5533

4422

0 
  ttt

ttdutq t


  

So after the iterations  we shall have

  
      ...432

...32
42

3




tt
ttu



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      
      ...54323

...432)( 53

42




ttt
tttq

  

Let us denote 2  . Then we shall get:

    
      ...4322

...322
42

3




tt
ttu



      
        ...543232

2
1

...4322
)( 53

42






ttt

tt
tq




  

It is easy to see that the series placed within square rackets are the 
series  of functions )sin( t  and  )cos(1 t . Hence,
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which presents the solution of the problem. The Figure shows the 
graphs of functions )(),( tqtq   with certain values of the 

parameters (see also function testFig6_9b2).

0 0.05 0.1
-1

-0.5

0

0.5

1

q1(x)

te
st

Fi
g6

9b2
, f

un
ct

io
ns

0 0.05 0.1
-1

-0.5

0

0.5

1

q2(x)

0 0.05 0.1
-200

-100

0

100

200

dq1(x)

te
st

Fi
g6

9b2
, d

er
iv

at
iv

es

0 0.05 0.1
-100

-50

0

50

100

dq2(x)

127



Chapter 6. Variational Principle and Maximum Principle

Example 9c. Let us consider the program realizing the 
maximization algorithm 6 for finding the solution of equation system 
(37) with )()( tEtE o  . The main function DEdirak is similar to 
the one described in Example 6 function DEjump, and the notations 
and subsidiary functions are the same. The following Figure 
illustrates (see also function testDirak_3) the results of 
computations for 3 equations system, using the discussed program. 
The Figure shows graphs of functions )(),( txtx  .

Example 9d. Let us consider a system of two differential 
equations of variable z:

).()()(

),()()(

222

111

zE
dz

zdhRzeS

zE
dz

zdeRzhS









Consider vector 
)(
)(

)(
ze
zh

zx  . Then the system may be presented in 

the form
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)()()( zE
dz

zdxRzSx   ,

where .
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The Figure shows graphs of functions )(),( txtx  . 

As stated above, the maximization algorithm 6 is applicable also, 
when the value R is a function R(t) of an independent variable t. 
Chapter 9 will deal with the examples of solving the Maxwell equations as 
equations with excitations in the form of Dirac functions of spatial 
coordinates.
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6а. Second Order Differential Equations Systems 
with Excitations in the Form of Dirac Functions
The maximization algorithm 3 is applicable also for the equations 

(6.4.24), where )()()( ttEtE o   . 

Maximization algorithm 8.
1. Assume that 0)( tq  and 0)( tu .

2. Compute ERuSq 
2
1 . 

3. Compute  dt t
  0 )()(  with known )0(  .

4. Compute 





  Rq

L
u

2
11  .

5. Check the variation of function )(tu  compared with its previous 
value and, if it is sufficiently small, stop the computation.

6. Compute   t dutq 0 )()(   with known )0(u .
7. Go to p. 2.

Example 9е. Let us the equation
0)(  tEqLqRSq  , (а)

where Е – a constant. Let us use the maximization algorithm 8. On 
the first iteration
1. Assume that 0)( tq  and 0)( tu .

2. Compute )()(
2
1)( tEtERuSqt   .

3. Compute )()()( 0 tEdt t     

4. Compute )(
2
11 t

L
ERq

L
u  






  .

5. Compute t
L
Edutq t  0 )()(  .

On the second iteration 

2. Compute )()(
2

)(
2
1)( tEt

L
ERt

L
SEtERuSqt   .
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3. Compute )(
2

)( 2 tEt
L

REt
L

SEt    

4. Compute )(2
22

11
2

2
2 t
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Et

L
REt

L
SERq

L
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5. Compute t
L
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L
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L
SEdutq t   2

2
3

20 6
)()(  .

Let us assume that on  a particular iteration we got:
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4. Compute 









 


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k
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.
We see that on each iteration the series of the function q(t) is 
supplemented by two items.

It may be noted that the presented algorithm is applicable also for 
vector variables, where RSL ,,  are quadratic matrices.

7. Maximization Algorithm for the 
Electrical Circuits Computation
The described algorithm is easily programmable and may be used for 

finding the solution of system (6.324) with step excitations. But very 
often it is not applicable for a real electric circuit computation. Indeed, 
we had considered an algorithm for computing RCL-circuit, described by 
equation system (6.324). Such system describes an unconditional circuit. 
However,  there exist the following limitations for its direct use:

1) The absence of inductance even in one branch of electric circuit 
leads to violation of condition (6.323) and, consequently, to 
division by 0. In this case the electric circuit should be 
supplemented by relatively small inductances in those branches 
where they were absent.

2) An unconditional electric circuit is approaching the state of a real 
electric circuit when methodic resistance approaches infinity. But 
this results in resistances matrix approaching a positive 
semidefinite (and not positive definite) matrix. And the 
observation interval approaches zero.

Let us now consider some examples of   electric circuits computations 
which meet these requirements.

Example 10. Consider electric circuit depicted in the Fig. 2 . The 
parameters of this circuit are enumerated in the Table 1.
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32 5

4 6

2

1

3

1

7 ro
ro

ro
Fig. 2.

The voltage in branch 7 jumps to the named value at the initial 
moment. Apparently, there are inductances present in every branch. 
Also, resistances ro=1.5 are attached to all the nodes. These 
resistances are physically present in the circuit, but at the same time 
the may be interpreted as methodic resistances. The considered 
circuit is described by differential equations system (24) and may be 
computed with the aid of maximization algorithm 3.

Table 1 (see also function Branches23) .
Branch First 

node
End 
node

Vol-
tage 

R 
(ohm)

L (gn) S (1/ph)

1 0 1 0 0.2 3 10000
2 0 2 0 0.3 4 10000
3 0 3 0 0.4 5 10000
4 1 2 0 5 6 100
5 2 3 0 6 7 200
6 3 1 0 1 8 300
7 2 0 -192 0.01 0.01 0

Let us now discuss the program LinCir for such circuits 
computation. This program contains the following М-functions (here 
we are using the notations assumed in the description  of function 
SinCir in section 5.6 and function DEjump in section 6.3.
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Fig. 3.

Fig. 3 (see also function testLin) shows the graphs of current 
variation in all braches of this circuit: in the first line of windows 
there are currents  ii in the resistances ro of nodes 1, 2, 3; in the 
second line of windows – currents qqt in branches 1, 2, 3; in the 
third line of windows – currents qqt in branches 4, 5, 6; in the fourth 
line and in the left window – current qqt in branch 7; in the fourth 
line and the right window – the sum of currents in node 2, which is 
the residual of the First Kirchhoff Law;  in the first line and in the 
middle window – relative (to the current of branch 7) residual of the 
First Kirchhoff Law.

Example 11. Let us now take up the electric circuit shown in the 
Fig.4.
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32 5

4 6
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3
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Current
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2 ro ro
ro

Fig. 4.

Parameters of this circuit are enumerated in the Table 2.  
Furthermore, there is a source of direct current connected to the 
node 2 and its current jumps to I=-3 at the initial moment. 
Apparently, there are inductances in all branches.  In addition (as also 
in Example 10), resistances ro=1.5 are connected to all the nodes. 
These resistances are physically present in the circuit, but at the same 
time they may be considered as methodic resistances. After 
transformation into an unconditional circuit the current I=-3 is 
substituted by a voltage vector E’=[0, 4.5, 0, 4.5, -4.5, 0]. This circuit 
is described by a differential equations system (24) and may be 
computed with the aid of maximization algorithm 3. The functions 
from Example 10 may be used for the computation. 

Table  2 (see also function Branches21) .
Branch First 

node
End 
node

Vol-
tage 

R 
(ohm)

L (gn) S (1/ph)

1 0 1 0 0.2 3 1000000
2 0 2 0 0.3 4 0
3 0 3 0 0.4 5 0
4 1 2 0 5 6 100
5 2 3 0 6 7 0
6 3 1 0 1 8 300

Fig. 5 (see also function testLin21) shows the graphs of current 
variation in all the branches of this circuit:  in the first line of 
windows there are currents   ii in the resistances  ro of nodes 1, 2, 3;  
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in the second line of windows – currents qqt in the branches 1, 2, 3; 
in the third line of windows – currents qqt in the branches 4, 5, 6; in 
the fourth line of windows - relative (to the current I=-3) residual of 
the First Kirchhoff Law. Note, that these functions compute the 
variable components of the currents – the power series  coefficients 
for the series terms with power higher than zero. The constant 
component of  the currents ii is the constant power series term equal 
to the current НН’=[0, -3, 0].

Fig. 5.

8. Maximization Algorithms for 
Computing Electric Circuits with 
Switchings
As it is known [14], with voltage jump a current appears, which may 

be considered as a sum of two currents – established one and free one. 
The same may be said about the charges. Let us show that the 
maximization algorithm does not change the established charges. Let us 
use the maximization algorithm 3:
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1. Assume that )(tq  and )()( tqtu   satisfy the of unconditional 
electric circuit

0 EqLqRSq .

2. Compute ERuSq 
2
1 .

3. Compute  dt t
  0 )()(  with known )0(  .

4. Compute 

    qqL
L

ERqqS
L

RqERqqS
L

RqEuRqS
L

Rq
L

u







 







 






 

1ˆˆ1
2
1ˆ

2
1ˆ1

2
1ˆˆ

2
1ˆ1

2
11 

,

which proves the statement.
On the other hard, the maximization algorithm in essence cannot be 

used for computing the established values, for the interval of these values 
is not limited from the left. Thus, for computation of a circuit with a 
voltage that is a function of time E=f(t), and at the zero moment jumps 
to the value f(0), it is necessary to:

1. Compute the established charge by any  method (for instance, by 
one of the methods presented in the previous chapters), 

2. Compute the free current as a reaction to the jump, by the 
maximization method,

3. Perform a superposition of these currents.
We shall now examine this method in more details on the examples of 
computing the after-failure mode after  short circuit and branch break.

Short Circuit
Consider an electrical circuit with two clamps А and В. In a normal 

mode there is a potential difference v between the clamps A and B. On 
short circuit of these clamps current i will pass through the connection 
AB.  We shall now consider the same electric circuit, excluding from it all 
current and voltage sources and including between the clamps А and В a 
voltage source with null internal connection and voltage (-v). Then the 
same current i  will pass through the connection АВ and through this 
voltage source [14]. It follows herefrom, that short circuit current and all 
other parameters of after-failure mode may be computed using the 
following algorithm
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Computing Algorithm for Short Circuit
1. Computing the normal mode of electric circuit 1 and determining 

the potential difference v between clamps А and В.
2. Transforming the initial electric circuit 1 into electrical circuit 2, 

differing from the initial circuit by the absence of all current and 
voltage sources, and the presence of voltage source (-v) between 
the clamps А and В.

3. Computing the electrical circuit 2 at the time of voltage jump 
between clamps А and В from (0) to (-v). The vector of currents 
I3 is determined.

4. Transforming the initial electric circuit 1 into electrical circuit 3, 
differing from the initial circuit by the appearance of short circuit 
АВ. The vector of currents I4 of the after-failure mode is 
determined.

5. Computing the currents of after-failure mode as a sum of 
currents I3 and I4.  

The computation of currents I3 may be performed with the aid of 
maximization algorithm 3, as described above. The computation of 
currents I4 may be performed according to section 5.6.

Branch Break
Consider an electric circuit, where  certain clamps А and В are 

marked out. In a normal mode the current i passes between А and В. 
With breaking the circuit between А and В a potential difference v will 
appear between A and B. Consider now this same electric circuit, except 
for eliminating all the current and voltage sources, and  including  a 
current source (-i) between  А and В.  Then there appears the same 
potential difference v between А and В [14]. It follows herefrom, that 
the potential difference at the ends of broken branch and all the other 
parameters  may be computed with the aid of the following algorithm.

Computing Algorithm for Branch Break
1. Computing the normal mode of electric circuit 1 and determining 

the current i between the clamps А and В.
2. Transforming the initial electric circuit 1 into electrical circuit 2, 

differing from the initial circuit by the absence of all current and 
voltage sources, and the presence of current source (-i) between 
the clamps А and В.
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3. Computing the electrical circuit 2 at the time of current jump 
between clamps А and В from (0) to (-i). The vector of currents 
I3 is determined.

4. Transforming   the initial electric circuit 1 into electrical circuit 3, 
differing from the initial circuit by the appearance of current 
source (-i) instead of the former branch АВ. The vector of 
currents I4 of the after-failure mode is determined.

5. Computing the currents of after-failure mode as a sum of 
currents I3 and I4.  

The computation of currents I3 may be performed with the aid of 
maximization algorithm 3, as described above. The computation of 
currents I4 may be performed according to section 5.6.
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Chapter 7. Electromechanical 
Systems

1. General Case
The preceding results may (as was mentioned before) be interpreted 

as a method for solution of the system of second-order differential 
equations with respect to variable q(t) :

0 EqRqMqS .                                                        (1)
The solution of this system is a consequence of the simultaneous 

optimization of two functionals (4.13) and (4.14), where 
oooooo wvqyxq  , . With the exception of DT and IT 

transformers the same system may be presented also in the following 
form:

  0 HqNNEqRqMSq T .                             (2)
Let us supplement an unconditioned electrical circuit corresponding 

to the equation (2), with branches of the third type, included between the 
node and the “ground”. We shall call such circuits “differentiating 
circuits”, as they are described by a pair of differential equations of the 
following form:   

 1111111 hXfXeXdJcJbJa ,                (3)
02222222  hXfXeXdJcJbJa ,                        (4)

where
  - the node potentials,
J  - the differentiating nodes currents,
X  - the “outside” variables,

hfedcba ,,,,,,  - known values.
In an unconditioned electrical circuit the node potentials are equal to 

i  , and the currents through node resistances in this case are equal 
to

JHqNi  .                                                                    (5)
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Then the electrical circuit’s system of equations takes the form:
 

 




















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.0

,0

,0

2222222
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11111

hXfXeXdJcJbJa

JHqNhXf

XeXdJcJbJa
JHqNNESqqRqM T





                 (6)

This system may be rewritten in the following form:
0 EQSQRQM ,                                                    (7)

where

X
J
q

Q  , 

2

1
h

Hh
HNE

E

T


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


 , 

22

11
0
0

00

da
da

M
M  ,

 
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22

11
0

00

eb
ebN

NNR
R

T






 , 
 
 

22

11
0
0

0
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NS
S

T






 .

Comparing (1), (7) and having in view the notation for Q , we get

X
J
q

G




 .

The solution method for the equation (7) is fully similar to the 
solution method for the equation (1) and is as follows:

1.  given is the initial value of the variable Q(t),
2. compute the gradient p(t), which is equal to the left part of these 

equations,
3. compute the values of 2121 ,,, BBAA   by formulas (3.11),
4. compute the variable’s increment Q(t) by formula (3.10) and the 

new value of this variable,
5. repeat the computations of pp. 2, 3, 4 till the prescribed accuracy 

is reached.

Equation (3) may describe a certain electromechanical element, where 
the “outside” variables are coordinates, velocities, accelerations, forces, 
moments, temperature, pressure and other variables describing non-
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electrical processes – mechanical, thermal, hydraulic processes. The 
system of equation (6) describes a system of electromechanical elements 
connected by an electrical circuit. The following variants of such systems 
may be noted:

1. Electrical circuit. Then:
qQhfedcba  ,0,0,0,0,0,0,0 .

2. Non-electrical (mechanical, thermal, hydraulic); electrical circuit is absent,
XQcba  ,0,0,0 ,

and only a part of the equation (4) is left in the form:
02222  hXfXeXd .

3. Electrical circuit in which the differentiating branches contain only electrical 
elements; then

J
q

Qhfed  ,0,0,0,0 ,

and the values cba ,,  have the following meaning correspondingly: 
inductance or inter-inductance of several differentiating branches, 
resistance, capacitance. Notice that a circuit of such configuration may be 
constructed without bringing in the concept of differentiating branches.

4. Electromechanical system – the general case. Some of the differentiating 
branches may:

 be absent,
 contain only electrical elements,
 contain only mechanical, thermal, hydraulic elements,
 contain electromechanical elements in which the 

electromagnetic energy is conversed into mechanical of thermal 
energy, or  a reverse conversion takes place; these are precisely 
the elements that form the electromechanical system as such.

The most commonly encountered elements and their equations are 
collected in the table 1.
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Table 1.

Type of element iRu  dt
diLu 

dt
duCi 

1 Electrical voltage = 
resistance *

current

voltage = 
inductance * 

current’s 
derivative

current = 
capacitance * 

voltage 
derivative

2 Mechanical with 
translational 
movement

displacement = 
damping 

resistance * 
force

displacement = 
spring force* 

force’s 
derivative

force = mass * 
displacement’s 

derivative

3 Mechanical with 
rotational 
movement

angular 
displacement = 

rotating 
dampener’s 
resistance * 
moment of 

force

angular 
displacement = 

rotating 
dampener’s 

force * 
moment of 

force

moment of 
force = 

moment of 
inertia * angular 
displacement’s 

derivative

4 Hydraulic pressure = 
hydraulic 

resistance * 
flow

 

flow = 
hydraulic 
capacity* 
pressure’s 
derivative

5 Thermal temperatures 
difference = 

thermal 
resistance * 
heat flow

heat flow = 
heat capacity * 
temperature 
difference’s 
derivative

2. Example. Collector Machine
As an example of an electromechanical system we shall consider a 

system with commutator machines. A commutator machine is described 
by the following equations:

,
,
XWXBAJT

JLGJXA



            (10)

or

,0
,

2222

111




hXeXdJc
XeJcJb 

            (11)
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where
X – rotation angle; in our notations it is an “outside” variable;
  - voltage across the commutator; in our notations it is a node 

potential;
J – current of the commutator machine; in our notations it is the 

current of differentiating node;
2hT   - moment of force on the commutator machine shaft ,

2dW   - moment of inertia of the commutator machine,

1cG   - winding resistance,

1bL   - winding inductance,

21 ceA   – a known coefficient (depending on the excitation 
current),

2eB   - a known coefficient.

Commutator machines are connected by electrical circuits, and are 
placed at the nodes of this circuit; they are also connected by a mechanical 
circuit – a reducer system, including, in addition to commutator machines, 
the sources and the customers of the moment of force. So the system of 
equations for an electromechanical system should, generally speaking, 
include an equation for the moments of force in the system. However, the 
moments of forces on the shafts of commutator machines may be easily 
expressed by external sources and consumers of the moments of force. 
And then such electromechanical system in general may be described  by 
a system of equations (4) with

X
J
q

Q  , 

2h
H

HNE
E

T




 , 

200
000
00

d

M
M  ,

 
 

2

11
00

00

e
ebN

NNR
R

T






 , 
 
 

00
00
0

2

1
c

c
NS

S

T






 .

In the special case when one commutator machine is running idle and 
02  eB , the equations of the electromechanical system degenerate 

into one equation
XWT              (12)

or 
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022  hXd .                                                                       (13)
The equation (12) follows from the principle of minimum of action

  min0 
T

pk dtEE ,                                                       (14)

where

22XWEk   - kinetic energy,

 TXE p   - potential energy.

In the considered case XQ  , 2hE  , 2dM  , 0R , 0S  and the 
functionals (4.13) and (4.14) take the following form:

    





  T dtXXhXXdF 0 212

2
2

2
121 2

1 ,                        

      T dtYYhYYYYdF 0 212212122 .                       
The optimization of these functionals leads to equation (13) and is 
equivalent to the optimization of functional (14), which leads to equation 
(12). Thus, in this particular case the minimum of action principle is 
equivalent to the presented principle. But the minimum of action 
principle is not applicable to the general case of electromechanical system.

3. More about Electric Circuits
Let us again consider an electric circuit with differential branches. 

Notice that a circuit of such configuration may be constructed also 
without bringing in the concept of differential branches. But before the 
computation it must be transformed into an unconditional electric circuit. 
There is, however, an exception – electric circuits, where 
1) each node is connected by one (differential) branch with “ground”;
2) differential branches are not connected with other branches by mutual    

inductances.
In future we shall call such circuits grounded. Such circuits may be 
computed directly, without transforming them into unconditional 
circuits.

According to the above-stated, a grounded electric circuit may be 
described by the following equations system 













.0
,0

,0

1111
JHqN

hJcJbJa
NESqqRqM T




                                      (15)
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Excluding ,, J  we get

       0
ˆ 1111
















hHNqcHqNbHqNaN

ESqqRqM
T ,

which is equivalent to  (7), where

qQ  ;  1111 ˆ hHcHbHaNEE T  ;

NaNMM T
1 ; NbNRR T

1 ; NcNSS T
1 . 

Equation (7) may be used for computing a stationary mode according to 
formulas of the section 5.5 and for computing the reaction on voltage 
and current jumps using the maximization algorithm 3. It is important to 
mention that to do the latter the necessary condition is only (unlike the 
circuits considered in section 6.5), the presence of inductances in all 
nondifferential branches. Apparently it leads to a possibility of 
computing transient modes in grounded electric circuits (by the method 
described in section 6.6).

Let us now consider an electric circuit with Dennis transformers (see 
section 3.2):























.0

,0
,0

,0
,0

22

1111

KPqT

JHqN
hKb

hJcJbJa
TNESqqRqM

T

T






                             (16)

Excluding from there ,,,, KJ  we get

      
  

0ˆ

22

1111 
























hPqTbT

hHNqcHqNbHqNaN

ESqqRqM

T

T ,   (17)

which is equivalent to (7, where
qQ  ; 

    221111 ˆ hPbThHcHbHaNEE T  ;
TT TbTNbNRR 1211  ; 

NaNMM T
1 ; 
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NcNSS T
1 .        (18)

Apparently, the matrices SRM ,,  in general case are symmetric 

and of fixed sign. Therefore the method described in section 5.6. may be 
applied to the computation of electric circuit in stationary mode. But this 
computation method in the case of electric circuit with step excitations 
may be used only if the matrix M  is positive definite, which is 
unattainable in general case. That is why for computing the transient 
conditions it is essential for the electric circuit to be necessarily 
transformed into unconditional or grounded circuit.

Example 1. Consider an electric circuits in the form of ring line with 
n nodes (n is an even number) – see Fig. 1.

Rn,LnR1,L1

R2
,L

2
R3

,L
3

E2

E4

En
C1

C
3

C5

R4,L4

Fig. 1.

There are an inductance and a resistance connected between every pair 
of nodes.  Between odd nodes and the “ground” there is a source of 
“jumping” voltage (switched on at the moment t=0), and between 
even nodes and the “ground” there is a capacitance. Let us use the 
method described above to compute this circuit.  From (15) we get

.0,0,0 11  JqNhJcNEqRqM T 
Then, from (16) we get

qQ  ; 1hNEE T ; MM  ; RR  ; NcNS T
1 .

It is easy to see that in this case the matrix
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






































n

n
N

1...0001
..................
0...1100
0...0110
0...0011

Fig. 2.

Fig. 2 shows the computation results with n=18, L=10, R=1, S=2, 
E=100 (see also function testDEJdlin2). This figure depicts
 Graphs of variation with time of the currents within the two first 

elements of the circuit – gX(z=1,2; t); 
 Graphs of variation with time of the currents within the four 

middle elements of the circuit – gX(z=n/2-1,n/2-2; t) and 
gX(z=n/2,n/2+1; t);

 Currents in all elements of the circuit at the first observation 
moment and at the end of  observation interval - gX(z; t=const).
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Example 2. Consider an electric circuit  in the shape of line with n 
nodes. At the line’s beginning there is a source of “jumping” voltage 
(switched on at the moment t=0). Between each pair of nodes there 
are a resistance and an inductance, and between each node and the 
“ground” there is a capacitance. We shall use for the computation of 
this circuit the formulas of Example 1. Fig. 3 shows the results of 
computation for n=(1,2,3,4), L=10, R=1, S=2, E=100 (see also 
function testDEJdlin3). This Figure shows the graphs of variation 
in time for each е-element of the electric circuit “n, e”

Fig. 3.

Example 3. Let us consider the electric circuit of Example 2, but 
without the inductances, and assuming that at the line’s beginning 
there is a source of impulse voltage (switched on at the moment t=0) 
in the form of Dirac function – for comparison see Example 6.6.9с.  
Let us use the formulas of Example 1 for this electric circuit 
computation. Fig. 3 shows the results of computation for n=(1,2,3,4), 
R=1, S=2, E=100 (see also function testDirakDlin). This Figure 
shows the graphs of variation in time for each е-element of the 
electric circuit “n, e”
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Fig. 4.
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Chapter 8. The Functional for 
Partial Differential Equations

1. Variational Optimum Principle for Electric 
Lines and Planes
Here the variational optimum principle for electromechanical systems 

is being applied for electric lines and planes [23]. A method of electric 
lines and planes computation is indicated. The lines and planes may be 
non-homogeneous, and complex loads and/or voltage sources may be 
connected to any of their points.

1.1. The equations of continuous electric line
It is known that a continuous electric line (a long line) is characterized 

by the following parameters:
GRCL ,,,  - inductance, capacitance, resistance and 

conductivity of an element of  line  length,
i  - current along the line length element,
u  - voltage on the line length element,
t  - time,
z  - the line coordinates.

Now and further the derivatives in time are denoted by strokes. As is 
known, these parameters are connected by equations

t
uCGu

z
i








, (1)

t
iLRi

z
u








. (2)

From (1) it follows
























z
uC

z
i

Gz
u

2

21
. (3)

Finally, combining (2, 3), we get:
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iLRi
z
uC

z
i

G



















2

21
. (4)

Thus, the electric line is described by (3, 4), which follow from (1, 2).

1.2. The equations of discrete electric line

L, R

m,r,c,e

kq1 1,1  kq

kq 2

Fig. 1. A long line.

We shall call an electric line composed of finite elements (unlike the 
elements whose size is related to the line length element), a discrete electric 
line  - see also Fig 1, where

RL,  - inductance and resistance of the line length element,

ercm ,,,  - inductance, capacitance, resistance and voltage, 
connected serially between a line length element and zero  
potential -  “vertical” line element,

1  - conductivity between line length element and zero potential,

1q  - current along line length element,

2q  - current of a vertical line element.

According to the above stated, the electric circuit of a discrete electric 
line may be presented by an unconditional electric circuit consisting of 1-
branches – length elements with parameters RL,  and 2-branches – 

branches with parameters ercSm ,,/1,  . The resistances   are 
connected between the nodes of this line and zero potential. Let us 
consider n-dimensional vectors
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n

k

k

n
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q

q
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1,1
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q
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q

q

q

q

q

q

q

q

,2

1,2

,2

1,2

2

,1

1,1

,1

1,1

1

...

...

,

...

...




 and 

vector 2

1
q
q

q 
. Then the parameters of electric circuit may be 

presented as

S
S

0
00

 , (1)

m
L

M
0

0
 , (2)

r
R

Rd 0
0

 , (3)

 NNRR T
d   , (4)

e
E

0
 , (5)

 nk SSSS ......diag 1 ,  nk LLLL ......diag 1 ,
 nk mmmm ......diag 1 ,  nk RRRR ......diag 1 ,

 nk rrrr ......diag 1 ,  nk
T eeee ......1 .

The First Kirchhoff Law has the form
0,21,1,1   kkk qqq . (6)

So the incidences matrix is:
12 DNN  , (7)

where 

1D  - quadratic n*n diagonal identity matrix, 

2N  - band quadratic n*n matrix 
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



















































n

n
N

1...0000
..................
0...1100
0...0110
0...0011

2 (8)

The following matrix product is a quadratic cell-wise matrix

12

21
DN
NN

NN T
T




 , (9)

where 1N  is a band quadratic n*n matrix

21
121

121
.........

121
121

12

221











 NNN T          (10)

From (4) and (7) follows
   
   12

21
DrN

NNR
R T 







.          (11)

In this case the functional (4.12) takes the form



















T

T

TTT
dt

EqqLq

qRqqmqSqq
qF

0 211

2222
)( ,          (12)

or, taking into account (11),





























T

TTTT

TTT

TTT

dt

qEqqqNq

qNqqrqqRq

qLqqmqSqq

qF
0

222122

1112211

112222

2

)(



 ,          (13)
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The gradient (4.1) in this case will take the form   
2

1
p
p

p  , where

2211111 qNqNqRqLp             (14)

  EqrqmSqqqNp T  2222122            (15)
Let us denote by symbols  11 , qq  vectors shifted along the line to 

the right or to the left, accordingly,  with respect  to 1q : 

if 

n

n

q

q

q

q

q

q

,1

1,1

3,1

2,1

1,1

1 ...



 , then 
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1,1

4,1
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1,1
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2,1

1







 
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n

q

q

q

q

q

q

q

q

q

q .

Looking at the matrices 1N and 2N , we may notice that
   11111 2 qqqqN ,         (16)
  1112 qqqN ,         (17)
  2222 qqqN .         (18)

Example 1. Consider electric line with parameters 
.3.0,1,8.0,1.1,9.0,53,50  SrRmLn   Let us 

assume that at the beginning and at the end of this line sinusoidal 
voltage sources are connected jEjE n 150200,2001501   

accordingly. After the formation of matrices RSM ,,  and vector E  
the computation of this line may be performed directly by using the 
SinLin function, cited in Example 5.5.1. Fig. 1 displays a graph of 
variation of some of the currents during the iterative computation 
process (see also function testDLIN). To be more exact, on the 
complex plane the mentioned graphs for currents 

.49,48,25,2,1,  kqk are depicted. The unbroken line 
49482521 qqqqq   describes stationary values of the currents .kq
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Fig. 1.

1.3. The Functional for Continuous Electric Line
Passing from the elements of discrete electric line to the line length 

differentials, we may consider the vector-function q , where each 
component is a function of time  tqq kk  , as a function of the 
coordinate of the line z  and time t , that is  tzqq , . Then 

  2

2 ),(2
z

tzqqqq



  ,

 
z

tzqqq



 
),(

and, taking into account (2.16-2.18), we get

2
1

2
11

),(
z

tzqqN



 , (1)

z
tzqqN





),(2

22 , (2)

.),(1
12 z

tzqqNT



 (3)

Also
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z
q

z
qqRqLp








 2

2
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2
111  , (4)

EqrqmSqq
z
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




 



 2222
1

2  . (5)

Let us denote 12 , qiSqu  . Then from (4, 5) with 

0,0 21  pp  there follow  (1.3, 1.4). Further we have


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z

T dz
z
qqqNq 2
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2
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At that (2.13) assumes the form
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Thus, similarly to the Theorem 4.1, for an electric line the following 
theorem is valid:

Theorem 1. The movement in functional (6) in the direction (4.10), 

where the gradient 
2

1

p
p

p   is determined by (4, 5), ends on a stationary 

value of the function 
2

1

q
q

q  , and the equation of this stationary value is 

(4, 5), where 
0
0

2

1




p
p

.

Thus, a continuous electric line may be computed with the aid of 
algorithm 5.1. The electric line may be non-homogeneous and complex 
loads and/or voltage sources may be connected to any point of this line.

For the computation of continuous electric line with voltages of the 
form of interoperable functions,   the formula (5.3.7) may be used. In our 
case this formula transforms to:
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In particular, for sinusoidal functions we have:
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  E
dz

dqjqrjmqSqp  1
22

2
22  , (10)

Example 5. If the function constzE )( , then on the first iteration 
we get Epp  21 ,0 . Substituting it to the previous formulas and 

reducing them by  
Z T dtdzp0 0

2
2 , we find:

  2221 ,0 p
rjmS

jgg









or

  


rmjj
S

Egg 21 ,0 .

This is the final and evident result.

Example 6. Let us consider the case when the voltage is determined 
as twice differentiable continuous complex function of the coordinate 
z , namely, exponential polynomials of real and imaginary parts of 
complex function. Formulas (7-10) may be used directly for the 
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computation, operating with power series and getting the result also in 
the form of power series. For these calculations we shall use 
functions. The notations used there are clear from previous context.

Fig. 2.

Let us apply the function SinLinDLNP to the computation of 
continuous electric line with parameters

.3.0,1,8.0,1.1,9.0,5555,50  SrRmLn 
Let us assume that to this line a voltage is applied, whose real and 
imaginary parts are 5-term series with coefficients: 

Er = [-3000, -300,    0, -0.03, -0.0007];
Ei = [  3000,  200, -10,  0.01,  0.0001].

Using the above indicated functions we shall find the currents also in 
the form of 5-term series with the following coefficients:

g1r = -0.4190,  0.0395, -0.0001, -0.0000,  0.0000
g1i = -0.4743,  0.0300, -0.0001, -0.0000,  0.0000
g2r = -0.4656, -0.0488,  0.0016, -0.0000, -0.0000
g2i =  0.5978,  0.0421, -0.0020,  0.0000,  0.0000

This result will be obtained after the third iteration with the precision 
of 0.0003. Fig. 2 presents a graph of these voltages and currents 
variation depending on the coordinate  z (see also function test0).
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In the case when the function )(zE  is not twice differentiable, the 
derivatives must be calculated with the aid of numerical differentiation. 

From (1, 2, 3) it follows that 112
1

2

qN
z
q



 , 22

2 qN
z
q



 , 

,12
1 qN

z
q T 

  where the matrices 21, NN  are determined from (1.8, 

1.10), and n – the number of intervals that the argument of the 
differentiated function is divided into .

As in theorem 4.1.1 for a continuous electric line we can determine 
two secondary functionals (as regarding the functional (6)). Let us 
consider the first of those secondary functionals –functional of the form

 
 

 

 



































































































































 

































 


























































T Z

dtdz

yxE
dt

dxy
dt

dyxr

yxS

dtdz
ydy

dtdz
xdx

dtdz

xdy
dtdz

ydx

dt
dxy

dt
dyxR

dt
dy

dt
dxm

dt
dy

dt
dxL

yxF
0 0

22

2
2

2
2

2
2

2
2

1
2

2
1

2
2

2
1

3
12

1
3

1

1
1

1
1

2
2

2
2

2
1

2
1

2

2
1),(







       (11)

In this functional the variables are the functions 2121 ,,, yyxx  of 
two independent variables   t and z. The variations of this functional by 
the functions ),(),,( 11 ztyztx  are accordingly
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Hence it follows that
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where 111 yxq  , which agrees with formula (4). Similarly, the 
variations of this functional by the functions ),(),,( 22 ztyztx  are 
accordingly
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Hence it follows that
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where 222 yxq  , which agrees with formula (5). Thus, the necessary 
conditions of the extremum of functional (6а) are the conditions 

0
0

2

1




p
p

,  where gradient 
2

1

p
p

p   is determined from (4, 5) or (which is 

the same) from (12, 13).
Putting aside the the physical model, the obtained results may be 

considered as a method for finding a solution of equations system 0p , 

where 
2

1

p
p

p   is determined from (12, 13).

Example 7. Let  ztjEztE o   exp),( . Consider an iterative 
process of computing the functions    ztqztq ,,, 21  according to 
(11, 12). On the first iteration we shall find Epp  21 ,0 . 
According to (8, 7) we compute:
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On the third iteration we find
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and so on. Thus, on any iteration ,, 2211 EqqEqq   where 

21, qq  are complex numbers, varying in the iterative process. The 
function  ztjEztE o   exp),(  may be excluded from all the 
formulas. Then we get
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These formulas  plus the formula (7) are sufficient for computing the 
final values of  21, qq . The function Volna system realizes these  
formulas. Fig. 3 presents the graphs of the variables 

21 2,1 qqqqqq   variation during an iterative process with ro=0.15; 
LL=0.9; mm=1.1; RR=0.8; SS=0.3; rr=1; omega=628; sigma=127; 
E0=1000; maxK=93.

Fig. 3.

1.4. The Functional for Continuous Electric Plane
The equations of continuous electric line with coordinate z may be 

generalized in natural way to an electric plane with coordinates z, y. It 
may be shown that for electric plane the gradient is represented by the 
equations

y
q

z
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So an electric plane may be also computed with the aid of algorithm 
5.1. The electrical plane may be non-homogeneous with connected 
complex loads and/or voltage sources.

2. An Electric Line for Poisson Equation 
Modeling
2.1. Introduction
Below it will be shown that a certain electric circuit is a model of 

Poisson equation [24]. In this electric circuit a quadratic functional is 
being minimized, with respect to the current function as a function of 
three arguments. The functional has a global absolute minimum, and the 
stationary mode of the current function is described by Poisson equation.  
The computation of this electrical circuit, and consequently, finding the 
solution of Poisson equation amounts to gradient descent along the 
mentioned functional. This method is applicable for the computations of 
homogeneous and non-homogeneous mediums. Moreover, this method 
allows to find analytical expression of the sought function, if the initial 
functions were expressed analytically.

Let us denote:
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where U is a function of arguments x, y, z. The Laplace and Poisson 
equations with respect to function U, as is well known [14], have 
accordingly the following form:

0U , (2)
),,( zyxfU  , (3)

where ),,( zyxf  is a known function. The equation (3) may be called 
the Poisson equation for homogeneous medium. Let us consider also the 
equation
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2

2

2

2

2
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z
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y
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Uzyx 
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

  ,(4)

where ),,(),,,(),,,(),,,( zyxfzyxzyxzyx   are known 
functions. This equation may be called the Poisson equation for non-
homogeneous medium.

The named equations are widely used in engineering, and thus the 
search for a speedy method of their solution is of great interest. Below 
we shall show that a certain electric circuit is a model of Poisson 
equation. So the solution of Poisson  equation turns into the problem  of 
finding  the absolute  global minimum of a certain functional.

In an unconditional electric circuit without reactive elements the 
following function is being minimized

iEiRiiF TT 
2
1)( , (1)

where
 TT TTNNRR   , (2)

 TTT TVNHEE   , (3)

N  - the incidence matrix,
Т – the DT transformation coefficients matrix,
Н – the vector of node current sources,
V – the vector of node current sources in transformer nodes,
Е – the vector of voltage sources in the circuit branches,
R  - the diagonal matrix of resistances in the circuit branches,


1  - the conductivity between the node and   zero potential.
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The necessary condition of the absolute minimum of function (1) is 
an equation

0 EiR , (4)
and the function  (1) minimum may be found by gradient descent along 
the gradient

EiRp  , (5)
The optimal step size is determined from the condition

pRp
ppa T

T


 (6)

2.2. The Equations of a Discrete Electric Line
We shall call an electrical line composed of finite elements (unlike the 

elements whose value is related to an element of line length) a discrete 
electric line.

 

i1,k i1,k+1

i2,ki2,k-1 i2,k+1

i3,ki3,k-1 i3,k+1

i1,k-1

hk-1 hk hk+1

ddd

ak

bk

  



d



d



d



r r r

Fig. 1. A Long Line
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i1,2

i2,2i2,1 i2,3

i3,2i3,1 i3,3

i1,1

h2 h3

ddd

a2

b2

 



d



d



d



r r
a1 a3

b3

i1,0 i1,3
r r

Fig. 2. Boundary Conditions

Fig. 1 shows a two-wire discrete electric line, where 
ba,  - nodes of the first and second line, accordingly,


1  - the conductivity between the node and   zero potential,

h  - the source of the same name [21],
d  - the Dennis transformer with an unite transformation coefficient,  
r  - the resistance of the first line length element,

1i  - the current within the first line length element,

2i  - the primal current of the Dennis transformer,

3i  - the secondary  current of the Dennis transformer.
There are  singularities at the ends of the line. Take for illustration an 

electric line with three nodes – see Fig. 2, where the end current sources 

nn iiii ,31,3,10,1 ,,,  are depicted by hatched circles.  Some of them 
may be absent, but it does not mean that the respective currents are equal 
to zero.

To analyze the two-wire discrete electric line we shall use the method 
used above for analyzing the one-wire discrete electric line. According to 
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this, the electric circuit of the discrete electric line may be represented by 
an unconditional electric circuit. Consider n-dimensional vectors
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 ,  nk rrrR ......diag 1 .

The First Kirchhoff Law for nodes is:
0,21,1,1   kkk iii , (1)

01,3,3   kkk hii . (2)
So the incidence matrix has the form: 

 2N  1D (0) n
N= (0) (0)  2N n                                     (3)

n n n
where the dimensions are given, and

1D  - quadratic n*n diagonal identity matrix, 

2N  - band matrix of the form

11...000
..................
00...110
00...011
00...001

2








N
(4)

The following product is a quadratic partitioned matrix
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 1N  TN2 (0) n

 2N  1D (0) n                (5)NNT

(0) (0)  1N n

n n n

where 1N  - band quadratic matrix of the form

21
121

121
.........

121
121

12

1











N
(6)

The DT matrix has to meet the condition 
0iT T (7)

and thus has the form

110 DDT T  . (8)
At that

11

11
0
0

000

DD
DDTT T


 . (9)

From (1.2), (5) and (9) follows

 111

112

21

0
2

0

000
000
00

DND
DDN

NNR
R

T





  ,          (10)

From figures and formulas (1.3), (3) follows

 nhN

n
E

T
2

2
0
...
0








  ,          (11)
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So, as follows from (1.1) and (1.5), in the considered electric circuit the 
following function is being minimized


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,          (12)

and the search for minimum of function (12) is performed as a descent 
along gradient
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  hNiDNiD

iDiDiN
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T
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Fig. 1.

The optimal step size is determined from (1.6). The program 
calculates testDwaProvoda2 two wire line with 

15,500,1  nr   - see Fig. 1, where
o in the first window  – computation error is shown
o in the second window – current function   )(1 ni ,

170



Chapter 8. The Functional for Partial Differential Equations

o in the third window – function )(nh  (dotted line) and function 

dn
ndi )(3  (full line),

o in the fourth window – current 2i  function (full line), current 3i  

function (dotted line), function 







dn
ndi )(1  (dash line).

As was mentioned, the sources of end currents 
nn iiii ,31,3,10,1 ,,, may be placed at the edges of the electric lines. If 

some of this sources are absent, then the corresponding currents should 
be computed. If some of these sources are present, then the problem of 
finding the absolute minimum transforms into the problem of finding 
minimum under the constraints of the form constgi , where 

 nng iiiii ,31,3,10,1 ,,, .

Let us denote by the symbols  11 , ii  the vectors displaced 
along the line to the right and to the left accordingly with respect to 
vector 1i : 

if n

n

i
i

i
i
i

i
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1 ...
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.
Examining the matrices 1N  and 2N , we can notice that

   11111 2 iiiiN ,         (14)
  1112 iiiN ,         (15)

  1112 iiiNT ,         (16)

2.3. The Functional for Continuous Electric Line
Passing from the elements of discrete electric line again to the line 

length differentials we may consider the vector-function i  as a function 
of coordinate z , i.e.,  zii  . Then  
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  2
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and, taking into account (2.14, 2.15, 2.16), we get
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From (2.13) we get:
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and (2.12) assumes the form:
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Thus, (4) is a functional with respect to the function )(zii  . By 
analogy with discrete line it follows that the computation of the 
considered continuous electric line consists in finding the minimum of 
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functional (4), which is performed by descent along the gradient (3). The 
optimal step size is determined according to (1.6) by the formula

 
 









z

T
z

T

dzpRp

dzpp
a           (4а)

Notice that the expression
0)( zp , (5)

where )(zp  is determined according to (3), is an Euler equation for the 
functional (4). So, (5) is a minimum condition for functional (4), which 
follows as from the analogy with discrete line, as also from formulas 
rearrangement.

From physical considerations it is clear that
 if,32 ii , (6)

Therefore, and from (3) and (5) it follows that in the  neighborhood 
of minimum
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From (10) and (9) we get:
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Thus, the computation of continuous line is equivalent to the solution of 
the equation (13).

Let us consider an operator built on the base of (2.10), (1), (2):
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Comparing (1.5), (2.13) and (3), we see that

 
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and the functional (4) assumed the form:
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see also (1.1). The optimal step size is determined according to (4а) by 
the formula
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As in discrete case, the sources of end currents 
       nn zizizizi 303101 ,,,  may be placed at the edges of the 

electric line. If some of these sources are absent, then the corresponding 
currents should be computed. If some of these sources are present, then 
the problem of finding the absolute minimum turns into the problem of 
finding minimum under the constraints of the form constgi , where 
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        nng zizizizii 303101 ,,, . According to (9) we may 
write
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z
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 .

Thus, all the initial values of the currents may be expressed in terms 

of )(),(),(),( 1
0

1
101 nn z

z
iz

z
izizi





 .

2.4. The Functional for Continuous Electric Volume
We shall call electric volume a three-dimensional space with coordinates 

x, y, z, where each point is an intersection of three orthogonal two-wire 
electric lines. Note that we have already considered electric plane in the 
context of  a similar problem. The aim of analyzing the electric volume is 
that it (as will be shown further) is a visual and computational model of 
the Laplace and Poisson equations [14]. Let us denote :  
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By analogy with the previous consideration, it may be shown that for 
an electric volume
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0
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Thus, the computation of the considered continuous electric volume 
consists in finding the minimum of functional (1), which is performed by 
descent along the gradient (5). The optimal step size is determined 
according to (3.17) by the formula
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By analogy with continuous electric line it may be shown that the 
computation of continuous electric volume is equivalent to the solution 
of equation

),,(),,(1 zyxhzyxi  ,   (5)
which is Poisson equation – see (1.3). Thus, the solution of Poisson 
equation is equivalent to finding global absolute minimum of the 
functional (1), and the stable value of the current function ),,(1 zyxi  has 
the form of Poisson equation (5). 

Just as for electric line, at the boundary of electric volume boundary 
current sources may be located ),,(),,,( 31 gggggg zyxizyxi , 

where ),,( ggg zyx  - coordinates of the boundary points. If some of 
these sources are absent, then the corresponding currents should be 
computed. If some of these sources are present, then the problem of 
finding the absolute minimum transforms into the problem of finding 
minimum under the constraints of the form   constgi , where 

   ),,(),,,( 31 ggggggg zyxizyxii  . Но  13() ii  . In 

this way all the boundary values of ()(), 11 ii  . 
Let's note the following. The classical methods of Poisson equation 

solution require naming or the value of the sought function, or the value 
of a certain function depending on the three partial derivatives of the 
sought function in every boundary point – else the unique solution (so 
called Dirichlet and Neumann equations [22]) can not be found. In our 
case on points of border these conditions are defined by the specified 
currents ()(), 11 ii  .
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2.5. The Functional for Non-Homogeneous Continuous 
Electric Volume
Above we had  assumed that in every point of electric volume there 

is a source of current h  so, that hi  3  or (disregarding the current in 
resistance  )

h
z
i

y
i

x
i



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

 333 . (1)

Further we shall assume that in the electric volume for each k-point 
there are three corresponding current sources 
     kkkkkk hhh   ,, , where all the values are  functions of 
coordinates. It is illustrated in the Fig. 3, where

 ,, h  - Dennis transformers with like transformation 
coefficients.  

d  - Dennis transformer with a unit transformation coefficient

zyx iii 333 ,,  - the secondary circuit current in the direction of 

coordinate zyx ,,  accordingly. (the secondary circuit in the 
direction of z  is not shown on the Figure).

d d

d

d






i3x bk

hk

i3y

Fig. 3. Fragment of Non-Homogeneous Electric Volume.
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With such connection of the current source through the transformers the 
following condition is fulfilled
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It is easy to see that then the functional (4.1) takes the form
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and the gradient (4.3) takes the form
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where the operator   is determined according to (4.2).
By analogy with the previous discussion we may show that the 

computation of a continuous electric volume with triple current sources 
is equivalent to the solution of equation
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which is the Poisson equation for   non-homogeneous medium (1.4). Thus, the 
solution of equation  (5) is equivalent to seeking the global absolute 
minimum of the functional (2), and the stable value of the current 
function ),,(1 zyxi  has the form of this equation.

3. Partial Differential Equations
3. 1. Classical Partial Differential Equations
The above cited electrical models illustrate the fact that the partial 

differential equations may be considered as the necessary extremum 
conditions of certain functionals. Further we shall view various 
functional and Ostrogradski equations [16], which must be satisfied by 
the function realizing the extremum of those functionals. Further we 
shall denote:
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Example 8.  Let us consider a plane problem of the form  
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and sa ,,  - are certain constants. Fig. 4 shows the results of this 
problem's solution by the proposed method – the relative error 
error  depending on the iterations number, function ),( yxh , 

function ),( yxi , function ),( yxi
y


.

For the functional
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the Poisson equation for non-homogeneous medium comprises the 
extremum condition
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Let us consider another functional
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For it the condition of extremum is the Helmgoltz equation
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In the general case we may consider the following functional
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for which the condition of extremum is the equation
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and sa ,,  - are certain constants. Fig. 4 shows the results of this 
problem's solution by the proposed method – the relative error 
error  depending on the iterations number,

function ),( yxh , function ),( yxi , function ),( yxi
y


.
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In the general case we may consider the 
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1,,
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)(


, (1)

the condition of extremum for it is the equation  
ikzyxhzyxi  ),,(),,( . (2)

To find the solution of equation (2) we may apply the method of 
finding the minimum of functional (1), which (as it follows from the 
above cited) consists of iteration process, where on each iteration the 
gradient is being computed
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ikzyxhzyxip  ),,(),,( . (3)
and the step of the variable
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This formula is obtained by analogy with (1.13в).
The further complication lies in the fact that the variable is 

considered as a function of time i(t). So we can consider a functional
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the  extremum condition for which is presented by the equation
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In this case the gradient is
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This formula is also obtained by analogy with (1.13в).
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The realization of the search for the minimum for functionals (1) and 
(5) depends on the form of functions ),,,( tzyxh  in the same way as in 
the case of functionals discussed in the Chapters 5 and 7.

3. 2. Special Partial Differential Equations 
Finally we shall discuss the method of solving the equation
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t
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2
),,(),,( .

which differs from (8.3.6) by the presence of last term.  There doesn’t 
exist  a functional for which this equation is the condition of extremum. 
For its solution we shall use the above stated extremum principle.

After changing the notations
0 EqRqMSqq , (1)

where
S, M, R  are constant coefficients,
q, E  are functions of coordinates x, y, z and time t.
Further we shall use the line of reasoning by analogy with section 4. 

Now we shall consider  the functional
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 “gradient”
EqRqMSqqp   , (3)

the direction  of moving
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   T
zyx dxdydzdtRpB 0 ,,

2
1 2 . (8)

By analogy with Theorem 4.1 we may assert that

the movement in functional (2) in the direction (4) is equivalent to 
moving to global saddle points of the two secondary functionals, 
similar to functionals (13) and (14), and the stationary value equation 
is (1).

Here it should be noted that the realization of the functional (2) 
minimization method depends on the form of functions ),,,( tzyxE  as 
for the cases of functionals treated in the chapters 5 and 7.

Another method consists in building electrical models of the form of 
partial differential equations and in the corresponding electrical circuits 
computation. This method was covered above.
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Chapter 9. The Functional for 
Maxwell Equations

1. Maxwell Equations as a Corollary of 
Variational Principle
1.1. Introduction
It is known [27], that Maxwell equations are deducted from the least 

action principle. For this purpose it is necessary to introduce the concept 
of vector magnetic potential and formulate a certain functional with 
respect to such potential and  to scalar electrical potential, and this 
functional will be called action. Then by varying the action with respect 
to vector magnetic potential and to scalar electrical potential the 
conditions of this functional's minimum may be found. Further (after 
certain reductions) it is shown that this condition (with regard to the 
potentials) is equivalent to equations system with respect to electric and 
magnetic intensities. The obtained equation system corresponds only to 
four of Maxwell equations. It is evident, since the vector magnetic 
potential and electric scalar potential provide only four varying functions. 
But such partial result permits authors to conclude that all Maxwell 
equations (with respect to the intensities) are the consequences of least 
action principle as the above determined functional

But all Maxwell equations do not follow from this functional!
Furthermore, the Maxwell equations are dealing with currents in a 

medium with a certain electroconductivity. As a consequence, there are 
heat losses, i.e. energy dissipation. It means that, for the sake of the least 
action principle in addition to electromagnetic energy, the thermal energy 
should be also included in the functional; but this energy is not a part of 
Lagrangian. Therefore the Lagrange formalism is in principle not 
applicable to Maxwell equations. 

Thus, the above conclusion, which has some cognitive value, does 
not demonstrate a triumph of the least action principle. And, all the 
more, this functional cannot be used for direct solution of technical 
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problems (using the above described method of descent along the 
functional)  So it turns out that the Lagrange formalism is insufficient for 
the deduction of  Maxwell equations. 

The matter becomes complicated also because for symmetrical 
form of Maxwell equations (figuring magnetic and electrical charges),  an 
electromagnetic field cannot be described by vector potential that is 
continuous in all the space Therefore the symmetrical Maxwell equations 
cannot be deducted from variational least action principle, where the 
action is an integral of difference between kinetic and potential energies.

In this section we present such a functional with respect to 
intensities, whose first variations with respect to intensities when they 
become zero, coincide with Maxwell equations with respect to intensities. 
Then we shall describe the descent method along these variations, which 
is equivalent to Maxwell equations solution.

Further we shall be dealing with three-dimensional vectors in a vector 
space with the axes zyx 0,0,0  and the orts of these axes kji ,,  

correspondingly. Usually a vector Н will be denoted as 
 zyx HHHH ,, , with its coordinates in the brackets. AS it is 

known[14], vector-rotor of the vector Н, scalar divergence of the vector 
Н, vector-gradient of the function  zyxа ,,  have accordingly the 
following form
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Let us consider a functional [26]
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with respect to the functions zyxzyx EEEHHH ,,,,,
 

of three 
variables zyx ,, . 
The necessary conditions of extremum for a function from several 
independent variables are Ostrogradsky equations [16] which for every 
function have the form:
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,,,
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,          (1а)

where f is an integration element,  v(x,y,z,t) is a variable function, and 
a – independent variable. For this functional they are as follows: 

 with respect to variable xH  (see the terms 1, 2, 9, 12):
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 with respect to variable yH  (see the terms 3, 4, 8, 11):
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 with respect to variable zH  (see the terms 5, 6, 7, 10):
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 with respect to variable xE  (see the terms 3, 6, 7, 8):
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 with respect to variable yE  (see the terms 2, 5, 9, 10):
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 with respect to variable zE  (see the terms 1, 4, 11, 12):
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Hence it follows that the necessary conditions of the extremum of 
functional (1) are the equations

 with respect to variable Е:
0rot2  H , (2)

 with respect to variable Н:
0rot2  E . (3)

For the sake of convenience we shall further denote the integrand in (1) 
by  EH , . Then the functional (1) will be as follows:

   dzdydxEH
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It is easy to see that
  )(rot)(rot, HEEHEH  . (7)

Here each cofactor is considered as a three-component vector in the 
sense of matrix algebra. Thus the following Lemma holds true:

Lemma 1. The necessary conditions of the extremum of functional 
(6, 7) are the equations (2, 3).
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1.2. Constructing a functional for the Maxwell Equations
We shall further use the same line of reasoning as in deducing the 

variational principle for an electric circuit – see section 1.4. Consider a 
functional
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



























































































































































 







 







 












 









T

z y x
dtdzdydx

HL

HL

EK

EK

dt
EdE

dt
EdE

dt
HdH

dt
HdH

EHEH

0

2
div

2
div

2
div

2
div

2

2

,
2
1,

2
1















(1)
Here

 t – time,
 LLKKEEHH  ,,,,,,,  - variable  vector - 

functions of coordinates zyx ,, .
In this case the above mentioned Ostrogradsky equations (1.1.1а) taking 
into account Lemma 1 will take the following form: 

 with respect to variable E :

  0gradrot 


 K
dt
EdH  , (2)

 with respect to variable E  :
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  0gradrot 


 K
dt
EdH  , (3)

 with respect to variable H  :

  0gradrot 


 L
dt
HdE  , (4)

 with respect to variable H  :

  0gradrot 


 L
dt
HdE  , (5)

 with respect to variable LKLK  ,,,  accordingly:

,0
2

div,0
2

div 














 





 HE           (6а)

.0
2

div,0
2

div 














 





 HE           (6в)

Owing to the symmetry of equations (2-5) we have:
.,,, LLKKHHEE  (7)

Denote:

.,

,,

LLLKKK

HHHEEE




. (8)

Subtracting equation (3) from (2), we get

  0gradrot  K
dt
dEH  , (9)

Similarly, from (4, 5) we get

  0gradrot  L
dt

dHE  ,          (10)

Similarly, from (6) we get
  ,0div  E          (11)

  0div  H .          (12)
Equations (2) and (3) are necessary condition of the existence of 

functional (1) extremum with respect to the function E  and to the 
function E  . These extremum are of opposite character (minimum-
maximum or maximum-minimum), as the equations (2) and (3) differ in 
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the terms signs. Consequently, these equations are necessary conditions 
of a saddle line existence with respect to the functions E  and E   in the 
functional (1).

Similarly, equations (4) and (5) are necessary conditions of the 
existence of a saddle line with respect to the functions H   and H   in 
the functional (1).

Similarly, equations (6) are necessary conditions of the existence of a 
saddle line with respect to the functions  KK ,  and a saddle point 

with respect to the functions LL ,  in the functional (1).
The question of sufficient conditions of saddle pints existence is still 

an open question (it will be discussed below). Should these conditions be 
found, it will mean that the following Statement holds true.

Statement 1. The functional (1) has an optimal saddle line in which 
the conditions (7) are fulfilled, and it is optimized on such functions 

LLKKHHEE  ,,,,,,, , which in sum (8) satisfy the equations 
(9-12).

It is easy to see that the equations (9-12) are symmetrical Maxwell 
equations, where

E  - electric field intensity,
H  - magnetic field intensity,
  -  magnetic permeability ,
  - dielectric permittivity,
  - electric charge density
  - hypothetic magnetic charge density,

 Kgrad  - electric current density,
 Lgrad  - hypothetic magnetic current density

Denote:
 Kgradj ,          (13)
 Lgradm  .          (14)

Consider the physical meaning of quantities K . Denote:
  - electric scalar potential,
  - electrical conductivity,

xj  - projection of the vector current density j  on axis ох.

Then we get 
dx
djx
 . But from (13) follows that 

dx
dKjx  . 

191



Chapter 9. The Functional for Maxwell Equations

Consequently, 

dx
d

dx
dK  ,          (15)

i.e.
K .          (16)

Similarly,

dx
d

dx
dL  ,          (17)

L ,          (18)
where

  - magnetic scalar potential, 
  - magnetic conductivity.

1.3. About Sufficient Extremum Conditions
Further we shall consider along with vectors in the sense of vector 

algebra - vectors in the sense of matrix algebra. It will be clear from the 
context, which of the vectors we have in view.  For the future we must 
note that the concept of derivative by a vector, may be found, for 
instance in в [14].  So, the functional (2.1) may be written in the form

    





































T

z y x
dtdzdydxZZf

0
, , (1)

where
    LKHEXZ  ,,, ,    LKHEXZ  ,,,  - the 

functions vectors,
  tzyxX ,,,  – independent variables vector.

In this section we shall vary only the functions 
   LKHEXZ  ,,, . The equations (2.2, 2.4, 2.6а) may be written 

as
0p , (2)

where 

L

K

H

E

p
p
p
p

p  , (3)
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 K
dt
EdHpE 


 gradrot  , (4)

 L
dt
HdEpH 


 gradrot  , (5)

2div  EpK (6)
2div  HpL . (7)

Vector p  is a variation of functional   with respect to function Z   
and it depends on the function Z  , i. e.  Zpp  . Remember that the 
function Z   here is fixed.

Now our reasoning will be in accordance to [7]. Let S  be an 
extremal, satisfying the Statement 1, and, consequently, the gradient in it 
is 0 spp . To find out the character of this extremum we must 
study the sign of the functional increment

   CS  , (8)
where С  is the comparison line, where  0 сpp . Let










































X
ppB

X
pB

pB
X
pApA

3
2

2

2
121

, (9)

where 32121 ,,,, BBBAA  are known functions of Z   with fixed Z  . 
Then the following Statement 2 holds true 

Let the values of vector Z  on the lines S  and С differ by 
paZZZZZ SSC  ,          (13)

where  
р  is a variation on the line С, 
а – a known number.

Let us denote:

.,
dX
ZdQ

dX
dpq


          (14)

Then 
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 

 

  ;..

..

..

dX
Q

fq
Z
fp

dX
a
Q

Q
f

a
Z

Z
f

dX
a

f
aa

X

X

X




























































        (15)

 

 

 

   ..2..

..

..

..

2

2

2
2

2

2
2

22

2

2

2

2

2

2

dX
QZ

fpq
Q
fq

Z
fp

dX

a
Z

QZ
fq

a
Q

QZ
fp

a
Q

Q
fq

a
Z

Z
fp

dX
Q

fq
Z
fp

aa

X

X

X





















































































































     (16)

For small а we may write

.2

2
2

a
a

a
a









         (17)

Then the following Statement 3 holds true:

Statement 2. If 2

2

a


 is always non-negative (non-positive), then 

the line brings a global strong minimum (maximum) to the functional.
Comparing (9, 15, 16, 17) we find that  

   ..2.. 2

2

2
2

2

2
2

2

2
dX

QZ
fpq

Q
fq

Z
fp

a X 



























       (18)

Thus, to find the sufficient conditions of the functional extremum 
existence, we must compute the second derivatives in the expression 
(18).

194



 Chapter 9. The Functional for Maxwell Equations

1.4. First Partial Derivatives
Let us find first the partial derivatives of the integrand function .f  

in the functional (2.1) with respect to the functions with one stroke. To 
do this we must previously find the vectors

0)(rot)(rot)(rot














zyx E
E

E
E

E
E

, (1)

   1,0,0)(rot  yEE x ,

   0,1,0)(rot  zEE x ,

   1,0,0)(rot  xEE y
   0,0,1)(rot  zEE y ,

   0,1,0)(rot  xEE z ,

   0,0,1)(rot  yEE z

(2)

and scalars

0)(div)(div)(div














zyx E
E

E
E

E
E , (3)

      1)(div)(div)(div














zE
E

yE
E

xE
E

zyx
. (4)

Let us consider vector  zyxX ,,1  . Then 

   1,1,1)(div

1





XE
E . (5)

First we shall find the first partial derivatives of the integrand 
function .f  with respect to vector  LKHEZ  ,,, . We have:
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
   

 

 

  .
2

)(rot
2
1

2
div

2

)(rot
2
1)(rot

2
1

2
div

2
,

2
1

.

x 









































 














































 























t
EEHE

E

EK
t

EE
t

EE

HEEH

E

EK

t
EE

t
EEEH

EE
f

x

x

xx









Thus,


  .

2
1.

























t

E
z

H
y

H
E
f xyz

x
 (6)

Table 1 is filled in the same way.

Table 1.

 .

.
E
f


 
 .

.
H
f




x 
  
























t

E
z

H
y

H
E
f xyz

x


2
1. 

  



























t

H
z

E

y
E

H
f xyz

x


2
1.

y 
  




























t
E

x
H

z
H

E
f yzx

y


2
1. 

  



























t
H

x
E

z
E

H
f yzx

y


2
1.

z 
  




























t
E

y
H

x
H

E
f zxy

z


2
1. 

  



























t
H

y
E

x
E

H
f zxy

z


2
1.

Keeping in mind the definition of rotor from this table we find

    ,

2
rot.







 





dt
EdH

E
f 

          (6а)


    .

2
rot.







 





dt
HdE

H
f 

          (6в)

We have also:
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
  2div. 


 E
K
f

(7)


  2div. 


 H
L

f
. (8)

Let us now find the first partial derivatives of the integrand function 

.f  with respect to vector 
X
Z



. We have:


 

 

 

 

     

  .1,0,0

div)(rot

2
div

2

)(rot)(rot
2

div

2
,

2
1

.

KH

dyEd
EK

dyEd
EH

dyEd

EK
dt
EdE

dt
EdE

HEEH

dyEd

EK

dt
EdE

dt
EdEEH

dyEd

dyEd
f

xxx

x

x

x












































 






 




































 







 




















Thus,


  .. KH
dyEd

f
z

x





(9)

Table 2 is filled in the same way.
We have also:

    H
dtHd

fE
dtEd

f 






2

(.),
2

(.) 
.          (10)
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Table 2.


 bE
f
a 

 . 
 bH

f
a 

 .


  .. KH

yE
f

z
x




 
  .. LE

yH
f

z
x







  .. KH

zE
f

y
x




 
  .. LE

zH
f

y
x







  .. KH

xE
f

z
y




 
  .. LE

xH
f

z
y







  .. KH

zE
f

x
y




 
  .. LE

zH
f

x
y







  .. KH

xE
f

y
z




 
  .. LE

xH
f

y
z







  .. KH

yE
f

x
z




 
  .. LE

yH
f

x
z






1.5. Second Partial Derivatives
Let us now find the non-zero second partial derivatives for functions 

with one stroke. For this sake we shall differentiate (4.9) with respect to 

xH . The results are brought together in the Table 1, where the results 
of double differentiation are given, and the formulas symmetry is taken 
into account, thanks to which the results were doubled.   Every element 
of the table shows the value of the second derivative of the function 

(.)f  with respect of the pair of functions that are named in the heading 
of corresponding row and column.

Table 1.

y
Ez



z
Ey



z

Ex



x
Ez



x
Ey



y

Ex



xH  1 -1 0 0 0 0
yH  0 0 1 -1 0 0

zH  0 0 0 0 1 -1
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Keeping in mind the definition of rotor and definition of derivative 
by vector, we shall rewrite  Table 1 as Table 2, where the rotors 
coordinates are shown.

Table 2.
 Exrot  Eyrot  Ezrot

xH  1 0 0
yH  0 1 0

zH  0 0 1

Finally, keeping in mind the definition of derivative by vector, we 
shall rewrite the Table 2 as Table 3, where the values of the second 
derivative of function (.)f  with respect to a pair of vector-functions are 
shown. 

Table 3.
 Erot

H  1
Thus,


 

1.2















X
EH

f
, (1а)

By symmetry in formula (1.1) we also get


 

1.2
















X
HE

f
. (1в)

So, the second partial derivatives of function .f , included in the 
formula (3.18), 

    ,0,0 2

2

2

2











Q
Zf

Z
Zf

(2)

The integration element in (3.18) takes the form
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   
 



































X
H

X
E

X
H

X
EHE

fHEQ
QZ

fZ ,
,,

.,. 22
(4)

or

 
 


  X

E

X
EH

fH
X
H

X
HE

fEQ
QZ

fZ




































 ... 222

or, taking into account (1а, 1в),


X
EH

X
HEQ

QZ
fZ











 .2
(5)

or

    EHHEQ
QZ

fZ 


 rotrot.2
(6)

Thus, (3.18) is transformed  into

    dXEHHE
a X 


 rotrot2

2
(7)

The expression in the right side of (7) is the flow of energy through 
the surface bounding this volume.  This flow does not change its sign 
(which follows of the physics of electromagnetic waves propagation). 
Therefore the integral (7) is a value of fixed sign.  From this according to 
2 it follows that the functional Ф has global strong minimum with respect 
to the Z  .

By symmetry functional Ф has a global strong maximum with respect 
to the function Z  . 

The above cited is, in essence, the proof of the following theorem.
Theorem 1. Functional Ф, determined in (2.1) with respect to the 

functions  LKHEZ  ,,,  and  LKHEZ  ,,, , has a 
global saddle extremal where a strong minimum with respect to Z   and a 
strong maximum with respect to Z  is achieved. The functions on this 
extremal are such, that ZZ  , and their sum 

 LKHEZZZ ,,,  satisfies the Maxwell equations. 
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2. Computational Aspect
Consider vector-function

LKHHHEEEq zyxzyx
T ,,,,,,, (5)

and vector-functions

dm
L

dm
K

dm
H

dm
H

dm
H

dm
E

dm
E

dm
dE

dm
dq zyxzyx

T
,,,,,,,






 , (6)

where  tzyxm ,,, . We shall also consider vector-functions 

dm
qd

dm
qdqq


 ,,, , where the components are functions HE,  and their 

derivatives with one or two strokes correspondingly. Then the functional 
(9.1.2.1) may be rewritten as

 

 












































































































T

zyx

TT

t
T

t
T

z
T

z
T

y
T

y
T

x
T

x
T

dtdxdydz

Uqq
dt
qdRq

dt
qdRq

dz
qdRq

dz
qdRq

dy
qdRq

dy
qdRq

dx
qdRq

dx
qdRq

0 ,,

, (7)

where 




 

 ,,0,0,0,0,0,0U ,

xR yR
1 -1 1
2 -1 -1
3 1 -1
4 1 1
5 -1 1
6 1 -1
7 -1 -1
8 1 1
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zR tR
1 -1 
2 1 
3 -1 
4 -1 
5 1 
6 1 
7 -1
8 1

By analogy with the corollary 4.1.1 the secondary functional that 
corresponds to the functional (7)

 



































































T

zyx T
t

T

T
T
z

T
y

T
x

dtdxdydz

UqqR
dt
dq

q
dz
dqR

dy
dqR

dx
dqR

0 ,,
4

, (8)

where 
qqq  . (9)

Its quasivariation with respect to every variable (5)  is
TT

t
T
z

T
y

T
x U

dt
dqR

dz
dqR

dy
dqR

dx
dqRp 2 .           (10)

For 0p  the equation system (10) turns into the Maxwell equations 
system (9.1.2.9-9.1.2.12) in a more detailed form: 

1.
0













dx
dK

t
E

z
H

y
H xyz 

2.
0













dy
dK

t
E

x
H

z
H yzx 

3.
0













dz
dK

t
E

y
H

x
H zxy 

4.
0













dx
dL

t
H

z
E

y
E xyz  (10а)
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5.
0













dy
dL

t
H

x
E

z
E yzx 

6.
0













dz
dL

t
H

y
E

x
E zxy 

7.
0

















z
E

y
E

x
E zyx

8.
0
















z
H

y
H

x
H zyx

Their solution may be obtained with the use of the method of descent 
along the quasivariation, considered above in its application to electric 
circuits. Let 

zyxt qqqqq ooo ,          (11) 

where zyxt qqqq ,,,  depend only on zyxt ,,,  accordingly. The 

symbol  o  denotes the component-wise multiplication of vectors

zyxt UUUUU ooo ,          (12) 

Further for brevity sake we shall write zyxt qqqq oo , 

zytx qqqq oo , zxty qqqq oo , yxtz qqqq oo . Let us 

rewrite (8) in this notations

  













T

zyx
o dtdxdydz

0 ,,
.          (13)

Taking into account the adopted assumptions and notations, the 
integrand (13) will take the form:
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 

    















































































































zyxt
T

zyxt

zyxt

T

zyx
t

t

yxt
z

z

zxt
y

y

zyt
x

x

o

UUUUqqqq

qqqq

qqq
dt

dqR

qqq
dz

dqR

qqq
dy

dq
R

qqq
dx

dqR

oooooo

ooo

ooo

ooo

ooo

ooo

.        (14)

Consider now the functional (13, 14) with fixed functions zyt qqq ,,  

depending only on the functions of independent variable х. After 
complicated transformations (13, 14)  may be presented in the form






















x
x

T
xxx

T
x

xx
T
x dxVqqR

dx
dqqSq ,          (15)

where

 

  .,

,,,,,,,

,,

,,

,,

,,

dtdydzUqfUV

dtdydz
dt

dq
dz

dq
dy

dq
qRRRfS

dtdydzqRfR

zyt
xxvxx

zyt

tzy
xzytsx

zyt
xxrx





















      (16)

Notice that the expression (15) is equivalent to the functional (4.1.12),  
and the method for seeking its stationary value was described in 4.1.1 and 
amounts to the solution of quasivariation equation (4.1.15). In our case 
this equation takes the following form

0





 x

x
xxx V

dx
dqRqS ,        (17)
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Note, that the expression (15) is equivalent to the quasivariation (4.1.12) 
of the secondary functional, for which the method of finding a stationary 
value was described in the Theorem 4.1.1. 

So, for fixed functions zyt qqq ,,  it is possible to find a function 

xq , that is the stationary value, bringing extremum to the functional (13, 

14). Similar expressions ,ay be obtained for the functions zyt qqq ,,  
when the three other functions are fixed.

To find the stationary value of the function q , defined as (11), 
coordinate-wise descent along each independent variable 

 tzyxm ,,,  should be performed. 
Note also that the functional (2.8) is equivalent to functional

 
 




















































 




T

zyx
dtdxdydz

HLEK

dt
dEE

dt
dHHEH

0 ,, divdiv

,







.(18)

3. Nonlinear Maxwell Equations
The space in which the electromagnetic field is spreading may be 

heterogeneous. It is expressed in the fact that magnetic permeability   
and dielectric permittivity   depend on the space coordinates, i.e. they 
are vector-functions of these coordinates. We shall restrict our 
consideration by the case, when each coordinate of vector   or   
depends only on one space coordinate of the same name. 

Consider functional that takes into account the field heterogeneity. 
For this we shall rewrite the equations (9.1.2.9, 9.1.2.10) in the following 
form

  0gradrot  K
dt
dEH o , (1)

  0gradrot  L
dt

dHE o , (2)

where the symbol o  denotes the operation of componentwise 
multiplication of vectors. The equations (1, 2, 1.11, 1.12) are 
quasivariation equations for the functional
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 
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


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


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




 


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T

zyx
dtdxdydz

HLEK

dt
dEE

dt
dHHEH

0 ,, divdiv

,







.(18)

similar to the functional (2.18). The solution method for equations (1, 2, 
1.11, 1.12) of the quasivariation of functional (3) is identical with the 
solution method for equations (9.1.2.9, 9.1.2.10) of the quasivariation of 
functional (2.18), despite the dependence of   and   of independent 
variables. Below we shall illustrate these methods by a specific example.

4. Example. The Coaxial Cable 
Computation
4.1. Setting up a Problem
To illustrate the preceding we shall consider a special case of Maxwell 

equations, namely, the coaxial cable equations – see also Fig. 1. An ideal 
coaxial cable has a zero active resistance of the wire and ideal dielectric, 
filling the space between the central wire and the outward sheath. The 
cable is connected to a voltage source.  The electromagnetic field of the 
cable has an axial symmetry by the axis perpendicular to the figure’s 
plane. Hence it is advisable to consider it in a cylindrical coordinate 
system, where the axis z  is directed along the cable axis, and the 
coordinates r  and   are directed as it is shown on the Figure 1. Then 
the field intensity vector will have a component directed only along the 
arc  :

.0,  zr HHHH 
Disregarding the conductors resistance, 0zE , and the electric field 
intensity vector will have only a component directed along the radius

.0,  zr EEEE 
In cylindrical coordinates zr ,,  , as it is well known [14], the 

scalar divergence of the vector Н, , vector gradient of the scalar function 
 zyxа ,, , vector rotor of the vector Н  are accordingly 

  




















z

HH
rr

H
r

HH zrr

1div , (a)

206



 Chapter 9. The Functional for Maxwell Equations

      ,grad,1grad,grad
z
aaa

r
a

r
aa zr 












 (b)

  ,1rot 
















z
HH

r
H z

r



(c)

  ,rot 















r

H
z

HH zr
 (d)

  .1rot 

















 r

z
H

rr
H

r
H

H (e)

Between ideal dielectric-1 and the cable sheath we will post 
dielectric-2 with some conductivity (to illustrate the method of 
calculation) This distinguishes the present embodiment from the 
conventional embodiment. For electromagnetic field in the dielectric-2 
the Maxwell equations take the following form:

0







z
r J

t
E

z
H

 , (1)

0







t
H

z
Er  , (2)

where 
HH   –magnetic field intensity directed along an arc,

rEE   – electric field intensity directed along a radius,

zJJ   – electric current density in dielectric-2 created by voltage 
source connected to the cable in the point z=0.



r
E

H

z
z

Fig. 1. Coaxial cable
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These equations correspond to equations (9.1.2.9, 9.1.2.10). All their 
terms are functions of time t and coordinate z. The density of electric 
current J is created by voltage source u, connected to the cable in the 
point z=0. Thus,

z
uJ



  . (3)

where   – conductivity of the dielectric-2 (rather than the central wire) 
cable in a given point. Hence the equation (1) may be rewritten as

0











z
u

t
E

z
H  . (4)

Let 
 tvu Sin . (5)

First we shall consider the known solution of the equations (1, 4) with 
0z  and infinitely  heavy cable load, i.e. the equations (2) and

0







t
E

z
H  . (6)

It is [25]:
   
   ,CosSin

,SinCos

1

1
ztHH

ztEE






(7)

Substituting this solution into (2) and (6), we find
  , (8)

.
1
1








H
E

(9)

4.2.  Functional of the problem
Our problem is as follows. The equations (2, 4, 5) and the values 

v,,,,   are known. We need to find the form of the functions 
),(),,( ztHztE , and if it would be shown that the solution has the 

form of (10), then we have to find also the values .,, HE  We shall 
seek the solution in the form

,),(
,),(

zt

zt
eeztE
hhztH



         (10)

where tt eh , , zz eh , - unknown functions. The function u , given in 

the sole point z=0, is naturally defined as
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 tvzztV  Sin)(),(           (11)
where )(z   is Dirac function – see section 6.6. Assuming that the 
derivative of Dirac function is )()( zz   , we find

 tvz
z

ztu  Sin)(),(





         (13)

Then the equation (4) will be

  0Sin)( 





 tvz

t
E

z
H  .          (14)

Let us apply the above described method to this problem. We shall 
denote

 
  ,,

Cos
Sin

,),(,
z

z
z

t

t
tzt e

h
q

te
th

qqqztq
E
H

q 



o

dz
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dz
dE

dz
dq T

,





 , 

dt
H

dt
dE

dt
dq T

,




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 ,

 
.

0
)(

,
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0
z

U
tv

UUUU
u

U ztzt








 o

Then the equations (2, 14) will assume the form

0












 UR

dt
dqR

dz
dq

t
T

z
T

,

where

.
0

0
,

10
01




 tz RR

Functional (9.2.8)  in this case will take the form:
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or
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0 0
)(Sin 

 .     (15)

4.3. The Solution of the Problem with Fixed Functions of Time
Let us consider this functional with fixed functions of time tq  

depending only on the functions of independent variable z. Assuming 
here that

 
  ,Cos),(

,Sin),(

zt

zt
eteztE
hthztH






          (16)

where tt eh ,  - known numbers, zz eh , - unknown functions . Тогда
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где

     ,Cos,Sin
0

2
21

0

2
12  

T
tt

T
tt dttheSdttheS 

      ,Cos,Sin
0

22
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0
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11 








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 

T
t

T
t dtteRdtthR 

  
T

tt dttvhU
0

2
1 .Sin 

Denote:

      
TT

dttdtta
0

2

0

2 .CosSin 

Taking this into account, we find
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tttttt heaSheaSaeRahR   2112
2

22
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11 ,,, ,

tt vhaU 1 .          (18)
Taking this into account, we find
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The quasivariation (4.1.13) функционала (19) с учетом утверждения 
6.3.1 имеет вид:

)(
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1 z
U

dz
dqRqSp tz

zzzz  

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
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Thus, on this stage the optimization consists in the solution of equation
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dqRqS tz
zzz  .          (21)

The method, algorithm and program for solving such equation are given 
in section 6.6.  For 1 tt he  in an extended form this equation takes 
the form


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where
vu   ,         (23)

and its solution – the form
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          (25)
Combining (16) and (24), we obtain
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So, in a dielectric-2 appear
1) standing electromagnetic wave,
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2) static magnetic field,
 .Sin),(2 zHztH o 

Example 1. Let (16) and 

.2.3,2.0,10,1,55  
t
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be fulfilled. The equation (21) then will be:
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From this it follows that
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where .75.13,55 



heh AAA  It is easy to see that the 

value   satisfies the condition (8). Thus, the solution of this problem 
is found on the first iteration: 

    ).(SinCos75.13),(CosSin55 ztEztH  

It corresponds by its form to formula (7). Substituting this solution to 
(2) and (6), we find:

  ,05575.13)(Cos)(Cos 

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
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  ,075.1355)(Sin)(Sin 





  zt

t
E

z
H

and in the point 0z  the condition uAh   is fulfilled, which was 
to be proved.

Example 2. Let us consider also the program for solving the 
equation (21) or (22), using the method described in section 6.6. It is 
easy to see that the solution is of the form (24) – see the next figure 
and function testDirak6.
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4.4. The Solution of the Problem with Fixed Functions of 
Variable z
In Example 1 it was shown that with known functions of time 

tt eh ,  the functions zz eh ,  of variable z  may be found, taking the 
form (24) and

),(Cos)(),()(Sin)( zu
z
zezuzu

z
zh 


 





      (26)

Now we shall assume that the latter functions are known, and shall 
look for the functions tt eh , . Let us consider the functional (15) with 
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fixed functions zq  , depending only on the functions of independent 
variable t:
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








The quasivariation  (4.1.13) of this functional will look as:  









dt
dqRqSp t

tttt .
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So we must find the solution of the equations system

.0

,0

22

22





dt
debuhb

dt
dhbueub

t
t

t
t












Reducing it, we find

.0,0 
dt
deh

dt
dhe t

t
t

t 

After a substitution one may see that the solution of this problem has 
the following form:

      ,Cos,Sin thth tt .          (28)
Comparing (28) and (16, 25), we notice that the obtained result has been 
the starting point in the section 6.4.3. So the convergence of iterative 
process is proved.

4.5. A Cable of Variable Diameter
As it was indicated in section 9.3, the computation method is 

applicable without any modifications in the case when the magnetic 
permeability   and dielectric permittivity   are depending on the space 
coordinates. Let us consider for illustration the computation of cable 
with variable diameter d.  We may assume that

)(),( zdzd   ,          (30)

where  ,  are known constants, and )(zd  is a known function of 
independent variable. Having been given, as above, certain fixed values 
of the electric component in the electromagnetic field, we again get the 
equation (17), differing only in the fact, that the matrix (16) is presented 
in the form 

.
0

0
)(






 zdheS ttz          (31)

For the equation of the form (21), where zR  is a function of z, we 
shall use the maximization algorithm 6 – see the remark at the end of 
section 6.6. However, there is no proof that this algorithm is applicable 
for the equation of the type (21), where zS  is a function of z (though 
formally it may be used and gives a true solution!). Hence it should be 
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proved that the equation (21, 24) may be transformed into the form, 
where zS  does not depend on z, and zR  depends on z. Let us show it.

The equation (21) with condition (24) is in fact a system of two 
equations:

.0)(

,0)()(

2

1
2





dz
deezdehe

zU
dz

dhhzdehe

z
tztt

t
z

tztt




.

Evidently, they may be rewritten as:

.0
)(

,0)(
)0()(

2

1
2





dz
de

zdhe
eh

z
dhe

U
dz

dh
zdhe

he

z

tt

t
z

tt

tz

tt

t
z






.

Let us present them in matrix form:

0)(
0

1 








 z

U
dz

dqRqS tz
zzz  ,      (32)

where

.
)0(

,
0

0

)(
1,

01
10 1

12

2

dhe
U

U
e

h

zdhe
RS

tt

t
t

t

t

tt
zz 











Note, that here  zRz  is a function of z. The equation (32) may be 
solved with the aid of maximization algorithm 6.

Example 3. Let us add to the conditions of Example 1 condition 
(30), where .2.3,2.0    Then the equation (32) will look as:

 
0)(

0
)0(55

10
01

)(
1

01
10













z

d
dz

dq
zd

q z
z 







.

This equation is being solved in this Example. The next Figure (see 
also function testDirak8) shows the results of solving this 
equation by the method described in section 6.6, with 
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tzd  1.14.3)(  (left windows) and with 
)5(Sin35.05.0)( tzd   (right windows). It may be noted that the 

frequency of space oscillations depends on z.
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5. Computational Aspect - continued
Let us look again at the equation system (9.2.10а). In the first of these 

equations according to (9.1.2.15) 
dx
d

dx
dK  , and in the fourth of 

these equations according  to (9.1.2.17) 
dx
d

dx
dL  . The same 

remarks may be made for equations (2, 3, 5, 6). So we may rewrite the 
system (9.2.10а) in the following form:

1.
0










dxdt
E

dz
H

dy
H

x
x

x
yz 

2.
0










dydt
E

dx
H

dz
H

y
y

y
zx 

3.
0










dzdt
E

dy
H

dx
H

z
z

z
xy 

4.
0










dxdt
H

dz
E

dy
E

x
x

x
yz  (1)

5.
0










dydt
H

dx
E

dz
E

y
y

y
zx 

6.
0










dzdt
H

dy
E

dx
E

z
z

z
xy 

7.
0













dz
E

dy
E

dx
E zyx

8.
0











dz
H

dy
H

dx
H zyx

In these equations the parameters
zyxzyxxyxxyx  ,,,,,,,,,,,

 may be the functions of coordinates zyx ,, . If we assume that they 
differ according to different axes, then we may consider spaces which are 
threaded by orthogonal strings with conductivities and permeabilities that 
differ for the strings parallel to different axes. 
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Below we shall not consider the physical interpretation of our 
mathematical results. However, as we are using widely the concept of 
magnetic charges existence, we must mark that the pole of a long magnet 
from mathematical point of view may be identified with a magnetic 
charge - see, for example, [38].

Below we do not consider the physical interpretation of mathematical 
results. Further the conсept of the electric charges existence is being 
widely used. It is known that Heavyside had been to first to introduce the 
magnetic charges and magnetic currents to the Maxwell's electrodynamics 
[39]. Let us note also that long magnet pole may be identified in 
mathematical sense with magnetic charge [38].

Further, unlike (9.2.5, 9.2.6), we shall deal with the vector-function

,,,,,,, zyxzyx
T HHHEEEq           (1а)

and vector-functions

dmdmdm
H

dm
H

dm
H

dm
E

dm
E

dm
dE

dm
dq zyxzyx

T  ,,,,,,,





 ,    (1c)

and also the matrices

xR yR
1 x 1
2 -1 y
3 1 -1
4 x 1
5 -1 y
6 1 -1
7 -1 -1
8 1 1

zR tR
1 -1 
2 1 
3 z 
4 -1 
5 1 
6 z 
7 -1
8 1
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The equations system (1) in system DERIVE looks like, resulted in 
the program of CD/DERIVE/section95.dfw, that will be used in other 
program.

Let us note some particular features of the equation system (1):
1. the existence of magnetic charges and currents is assumed,
2. instead of electric and magnetic currents we shall introduce scalar 

potentials and conductivities, not only electrical, but also 
magnetic ones.

3. it is assumed that the densities of electric and magnetic charges 
vary with time

4. Later these equations are extended also to physical systems 
containing microscopic bearers of electric and magnetic charges.

The introduction of electric and magnetic potentials allows 
considering the system of 8 Maxwell equations as 8 unknown functions – 
6  intensities и 2 scalar differentials. The existing methods (as far as the 
author knows) assume that the charges densities and tee currents 
densities are known, and the unknown quantities are intensities. In this 
sense the Maxwell equations system is overdetermined

At present the author may present a realization of the method only for 
the case when (presumably) it is known that they comply with conditions 
(9.2.11).

Let us consider more closely the matrix xR  in (9.2.15). To do this we 
shall first consider the vector (9.2.11) and in (9.2.13, 9.2.14) the item

 

 

 

 

































































































































i k x z
zkzi

y
ykyi

t
tktixkki

xi

i k zyxt
zkyktkxkxkiziyiti

xi

zyxt
zytx

T
x

T
zyt

x

zyxt
zytx

T

zyt
x

x

Rx

dzqqdyqqdtqqqR
dx

dq

dtdxdxdzqqqqRqqq
dx

dq

dtdxdxdzqqqqRqqq
dx

dq

dtdxdxdzqqqqqqq
dx

dqR

,,,

,,,

,,,

oooooo

oooooo

.
Let us denote:
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.ˆ,ˆ

,ˆ,ˆ


























































z
zkzizik

y
ykyiyik

y
xkxixik

t
tktitik

dzqqqdyqqq

dyqqqdtqqq

(2)

Then 

dxqqqqR
dx

dq

i k x
zikyiktikxkxki

xi
Rx  






 ˆˆˆ .

Let us consider the matrices
   
   .ˆ,ˆ

,ˆ,ˆ

zikzyiky

xikxtikt

qQqQ

qQqQ




(3)

These matrices may be computed for fixed vector-functions

zyxt qqqq ,,, . Also

  dxqQQQR
dx

dq

x
xzytx

x
Rx  






 ooo

Thus,

 zytxx QQQRR ooo . (4)
In the same manner we may consider the vector (9.2.12), the values 


























































z
zizizi

y
yiyiyi

y
xixixi

t
tititi

dzUqudyUqu

dyUqudtUqu

ˆ,ˆ

,ˆ,ˆ

(5)

and vectors
   
   .ˆ,ˆ

,ˆ,ˆ

zizyiy

xixtit

uuuu

uuuu




(6)

Note, that in these vectors there are only two no-zero components :

221



Chapter 9. The Functional for Maxwell Equations

 .,,,,ˆ,ˆ 87 tzyxmdmudmu
m

m
m

m              (6а)

Then also
 zytxx uuuUV ooo . (7)

Similarly we may determine

 zxtyy QQQRR ooo . (8)

 zxtyy uuuUV ooo . (9)

 yxtzz QQQRR ooo .           (10)

 yxtzz uuuUV ooo .           (11)

 zyxtt QQQRR ooo .           (12)

 zyxtt uuuUV ooo .           (13)
Let us denote also

.ˆ̂,ˆ̂

,ˆ̂,ˆ̂

































































z
zk

zi
zik

y
yk

yi
yik

x
xk

xi
xik

t
tk

ti
tik

dzq
dz
q

qdyq
dy
q

q

dxq
dx
q

qdtq
dt
q

q

          (14)

Consider matrices

   
   .ˆ̂ˆ,ˆ̂ˆ

,ˆ̂ˆ,ˆ̂ˆ

zikzyiky

xikxtikt

qQqQ

qQqQ




          (15)

Then, by the same reasoning, we may find the matrices

 zytttyz QQQRR ooo ˆ ,           (16)

 ztyyytz QQQRR ooo ˆ ,           (17)

 ytzzzty QQQRR ooo ˆ ,           (18)

Here the item xS  in formula (9.2.16) takes the form

ztyytztyzx RRRS  .           (19)
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The matrices named in the following table 1 may be determined in a 
similar way.

Table 1.
t x y z

t Rtyz Rtxz Rtxy
x Rxyz Rxtz Rxty
y Ryxz Rytz Rytx (20)
z Rzxy Rzty Rztx

St Sx Sy Sz
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6. Example. Spatial Electromagnetic Wave
6.1. Computation of numbers (9.5.2), (9.5.14) and matrices 
(9.5.3), (9.5.15)
We shall now deal with the numbers (9.5.2), (9.5.14) and matrices 

(9.5.3), (9.5.15) for certain cases, in view of further use. Table 1 shows 
the vectors tzyx qqqq ,,, , for which these numbers and matrices will be 
computed.

Table 1.
1 2 3 4 5 6 7№

xq yq xq yq zq tq zq
1 xe ye  xCos   ySin   zCos   tCos  ze
2 xe ye  xSin   yCos   zCos   tCos  ze
3 xe ye  xSin   ySin   zSin   tCos  ze
4 xe ye  xSin   yCos   zSin   tSin  ze
5 xe ye  xCos   ySin   zSin   tSin  ze
6 xe ye  xCos   yCos   zCos   tSin  ze
7 xe ye  xSin   ySin   zCos   tSin  ze
8 xe ye  xCos   yCos   zSin   tCos  ze

First let us consider the matrix  xikx qQ ˆ  for the vector shown in 
the column 1 of Table 1. Evidently, all the numbers

  x
x

x
xik adxeq  

2
ˆ  (1)

and matrix
IaQ xx  , (2)

Where I  is a matrix made of unities. It is also evident that all the 
numbers

x
x

x
x

xik adxe
dx

deq 


 ˆ̂ . (3)

and the matrix
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IaQ xx ˆ , (4)
Similarly, for the vector shown in column 2 of Table 1 we have:

IaQ yy  , (5)

IaQ yy ˆ , (6)
where

 dyea
y

y
y 

2 . (7)

Similarly, for the vector written in the column 7 of Table 1, we have: 
IaQ zz  ,          (7a)

IaQ zz ˆ ,          (7b)
where

 dzea
z

z
z 

2 ,          (7c)

Now let us look at the vector shown in column 3 of Table 1. For this 
case the matrix  xikx qQ ˆ  is shown in the Table. 2, where 

            
xxx

dxxxcsdxxxssdxxxcc  CosSin,SinSin,CosCos ,. 

and prefixes tzyx ,,,  mean that these are the positions of non-zero 
elements of the matrices tzyx RRRR ,,,  accordingly. 

Table 2.

xQ
1 cc-t cs cs cs cc-z ss-y cs-x cc
2 cs ss-t ss ss-z cs cs-x ss-y cc
3 cs ss ss-t ss-y cs-x cs ss-z cs
4 cs ss-z ss-y ss-t cs cs ss cs-x
5 cc-z cs cs-x cs cc-t cs cs cc-y
6 ss-y cs-x cs cs cs cc-t cs cc-z
7 cs-x ss-y ss-z ss cs cs ss cs
8 cc cs cs cs-x cc-y cc-z cs cc
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On an interval dividable by value   /2 , we have: sscc  . Let us 
denote ssccbx  . From Table 2 it follows that component-wise 
multiplication of matrices tzy RRR ,,  by xQ  is equivalent  to these 
matrices multiplication by the number 

   
x

x dxxCosxCosb  . (8)

So, 

txxtzxxzyxxy RbQRRbQRRbQR  ooo ,, . (9)

Further, component-wise multiplication of matrix xR  by xQ̂  is 
equivalent to multiplication: 

xxxx RbQR ˆo ,           (10)
Similarly, for the vector shown in the column 4 of Table 1, we have

   
y

y dyyCosyCosb  ,          (11)

tyytzyyzxyyx RbQRRbQRRbQR  ooo ,, ,      (12)

yyyy RbQR ˆo .          (13)
Let us now consider the vector shown in the column 5 of Table 1. For 

this case the matrix  zikz qQ ˆ  is shown in the Table 3, where  

   
z

dzzCoszCoscc  ,    
z

dzzSinzSinss  ,    
z

dzzSinzCoscs  ,

and the prefixes tzyx ,,,  mean the same as in Table 2. 

Table 3.

zQ
1 cc-t cс cs cs cs-z cc-y cc-x cs
2 cc cc-t cs cs-z cs cc-x cc-y cs
3 cs cs ss-t ss-y ss-x cs cs-z ss
4 cs cs-z ss-y ss-t ss cs cs ss-x
5 cs-z cs ss-x ss ss-t cs cs ss-y
6 cc-y cc-x cs cs cs cc-t cc cs-z
7 cc-x cc-y cs-z cs cs cc cc cs
8 cs cs ss ss-x ss-y cs-z cs ss
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As above for table. 2,  let us denote ssccaz  . From this Table 3 
it follows that component-wise multiplication of matrices tyx RRR ,,  by 

zQ  is equivalent to the multiplication of these matrices by the number 
   

z
z dzzCoszCosa  .         (14)

In this way,

tzztyzzyxzzx RaQRRaQRRaQR  ooo ,, . (15)

Further, component-wise multiplication of matrices zR  by zQ̂  is 
equivalent to multiplication: 

zzzz RaQR ˆo .         (16)
Let us consider now the vector shown in the column 6 of Table 1. 

The matrix for this case  tikt qQ ˆ  is shown in the Table 4, where

   
t

dttCostCoscc  ,    
t

dttSintSinss  ,    
t

dttSintCoscs  ,

and the prefixes tzyx ,,,  mean the same as in Table 2. 

Таble 4.

tQ
1 cc-t cс cc cs cs-z cs-y cs-x cc
2 cc cc-t cc cs-z cs cs-x cs-y cc
3 cc cc сc-t cs-y cs-x cs cs-z cc
4 cs cs-z cs-y ss-t ss ss ss cs-x
5 cs-z cs cs-x ss ss-t ss ss cs-y
6 cs-y cs-x cs ss ss ss-t ss cs-z
7 cs-x cs-y cs-z ss ss ss ss cs
8 cc cc cc cs-x cs-y cs-z cs cc

From this table it follows that component-wise multiplication of the 
matrices zyx RRR ,,  by tQ  is equivalent to multiplication of these 
matrices by the number

   
t

t dttSintCosa  .          (17)

So,

zttzyttyxttx RaQRRaQRRaQR  ooo ,, .         (18)
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Further, component-wise multiplication of the matrix  tR  by tQ̂  is 
equivalent to multiplication

tttt RaQR ˆo .        (19)

6.2. Setting of the Problem
Let

   yExEeE xfyxfxccxx  , (1)

   yExEeE yfyyfxccyy  , (2)

   yExEeE zfyzfxcszz  , (3)

   yHxHhH xfyxfxssxx  , (4)

   yHxHhH yfyyfxssyy  , (5)

   yHxHhH zfyzfxsczz  , (6)

   yx fyfxsco   , (7)

   yx fyfxcso   , (8)

 cco , (9)

 sso , (10)
where 

oooozyxzyx hhheee  ,,,,,,,,, (11) 
- real numbers, 

     ,Cos-Sin- ztsc  (12a)

    ,SinCos- ztcs  (12b)

    ,Sin-Sin ztss  (12c)

    ,Cos-Cos ztcc  (12d)

yfyfyfyfxfxfxfxf HEHE  ,,,,,,, (14)
- unknown functions, 
     yxyx yx  ,  (15)

- a known function of a form that will be determined later
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The problem is  for certain coefficients oo  ,  from the set (11), 
determined by function   (15) and known function   of the 
form (12) using the Maxwell equations system (9.5.1) to find the 
functions (14) and unknown coefficients 

oozyxzyx hhheee  ,,,,,,,  from the set (11).
Let us consider the vectors

oozyxzyx
T hhheeeq  ,,,,,,, , (29)

,,,,,,, zyxzyx
T HHHEEEq  , (30)

tzyx qqqqqq oooo (31)
- see also (9.3.11). The vectors included into the last formula, are 
determined in the Table 1. 

Table 1.
q q xq yq zq tq

xEq 1 xe  xExfx  yExfy  zCos  -  tCos 

yEq 2 ye  xEyfx  yEyfy  zCos  -  tCos 

zEq 3 ze  xEzfx  yEzfx -  zSin  -  tCos 

xHq 4 xh  xHxfx  yH xfy  zSin  -  tSin 

yHq 5 yh  xH yfx  yH yfy  zSin  -  tSin 

zHq 6 zh  xH zfx  yH zfx -  zCos   tSin 

7q o  xfx  yfy -  zCos   tSin 

8q o  xfx  yfy -  zSin  -  tCos 

6.3. Computing the vectors (9.5.7, 9.5.9)
Let us consider the vectors

 ,,0,0,0,0,0,0TU , (39)

oo
TU  ,,0,0,0,0,0,0 , (40)

tzyx UUUUUU oooo (41)
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- see also (9.3.7). The vectors included into the last formula, are 
determined in the Table 2, where only 2 last (non-zero) components are 
shown. 

Table 2.
7 8

U  - see (9.6.2.9)  - see (9.6.2.10)

U o o

xU )(xx )(xx

yU )(yy )(yy

zU  zCos   zSin 

tU  tCos   tSin 

xû   
x

fx dxxx )(   
x

fx dxxx )(

yû   
y

fy dyyy )(   
y

fy dyyy )(

zû za  - see. (9.6.1.14, 9.5.6a) za  - see. (9.6.1.14, 9.5.6a)

tû ta  - see (9.6.1.17) ta  - see (9.6.1.17)

xV )(ˆ 7 xuaa yzt  )(ˆ 8 xuaa yzt 

yV )(ˆ 7 yuaa xzt  )(ˆ 8 yuaa xzt 

For known functions q  and U  the numbers (9.5.5) may be found. 
They are shown in Table 2. For their computation we shall use Table 1, 
where the numbers xq , yq , zq , tq are shown.

6.4. Iterations
Let us assume that on a certain iteration the functions zyt qqq ,,  

are fixed, and according to them (as was shown in Section 6.1) the 
matrices (9.5.3) zyt QQQ ,,  and matrices (9.5.15) zyt QQQ ˆ,ˆ,ˆ were 
computed. From the formulas (9.5.4, 9.6.1.15, 9.6.1.18) it follows that:

yxtzzytxx QRaaQQQRR oooo  . (1)
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From formulas (9.5.16, 9.6.1.15, 9.6.1.19) follows:

yttzzytttyz QRaaQQQRR oooo  ˆ . (2)
From formulas (9.5.17, 9.6.1.15, 9.6.1.18) follows:

yytzztyyytz QRaaQQQRR ˆˆ oooo  . (3)
From formulas (9.5.18, 9.6.1.16, 9.6.1.18) follows:

yztzytzzzty QRaaQQQRR oooo  ˆ . (4)
Then the matrix (9.5.19) is determined. Also on the same iteration the 
functions zyt UUU ,,  are fixed, and according to them (as was 

shown in Section 6.3) the vector-function (9.5.7) xV  is determined. After 
this the vector-function xq  is determined from the equation (9.2.17)

0





 x

x
xxx VU

dx
dqRqS o . (5)

And if on a certain iteration the functions zxt qqq ,,  and 

zxt UUU ,,  are fixed, then according to them the equation is 
similarly determined

0







 y

y
yyy VU

dy
dq

RqS o . (6)

6.5. Exponentially Distributed Charges Modeling
Let us consider first the case when the charges distribution function is 

of the form

  yxaeyx   ,  (1)
where  ,  are negative numbers, and а is the function's maximal 

value. We shall consider only the domain 0,0  yx . Instead of 
function (1) we may consider the function

  yxaeyx   ,  (2)

We shall consider the vector-functions zq , tq , yq as known in 
(6.2.1-8) and determined only in the 5, 6, 4 accordingly. Then 
component-wise multiplication by the matrices yy QQ ˆ,  is described by 
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formulas (9.1.5, 9.1.6), and the formulas (6.4.1-4) accordingly take the 
following form

xytzx RaaaR  , (3)

tytztyz RaaaR  , (4)

yytzytz RaaaR  , (5)

zytzzty RaaaR  . (6)
Further by (2) and Tables 6.3.2 we find

    
y

y
y

y
fyy adyedyyyu

2
7 )(ˆ 

and similarly

yy au 8ˆ ,
and then

x
oyztxyztox eaaaxaaaV   )(7 , (7)

x
oyztxyztox eaaaxaaaV   )(8 . (8)

Substituting (3-8) in (9.5.19) and further substituting it in (9.6.4.6) and 
reducing by a common factor  ytz aaa , we get

 
 

0
,,0,0,0,0,0,0




























xT
oo

x
xxtzy

e

dx
dqRqRRR




. (9)

Let us substitute in this equation the vector-function  xq  in the form 
determined in the column 1. Then this equation will take the form 

0xge ,          (10)
where

 
  
















T
oo

tzyx RRRR
g





,,0,0,0,0,0,0
.          (11)

i.e. g  is a vector-function

 87654321 ,,,,,,, gggggggggT      (11а)
with components
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1.   oxyz ehhg 1 ,

2.   oyzx ehhg 2 ,

3.  ozxy ehhg  3 ,

4.   oxyz heeg 4 , (11b)
5.   oyzx heeg 5 ,

6.  ozxy heeg  6 ,

7.   ozyx eeeg 7 ,

8.   ozyx hhhg 8 .

Here the values oo  ,,,,, are known, and 

oozyxzyx hhheee  ,,,,,,,  - unknown. Evidently (10) is equivalent 
to equation 

0g .          (12)
The equation (12) or equations system (11c) may be solved in symbol 
form with respect to the unknown  oozyxzyx hhheeeq  ,,,,,,,  
(for example, in system DERIVE – see the program of 
section965.dfw). This decision has a bulky appearance here again is 
not resulted. We shall notice only, that in this decision 

 .222 



 o
o        (12а)

Thus, we have determined the form of vector-function xq  and  of 
the vector of coefficients q . The numerical solution may be found with 

the aid of the function testMaxЕxpoX.

From (12a) the product 
a
o

o
   may be found. The reader 

who doesn't accept the notion of magnetic resistance   of the 
environment and of scalar magnetic potential o , may notice that for 

0,  o    value of the product o  is not determined and 
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may be assumed 
a
o

o
   from (12а). Then another paradox 

arises: the magnetic current exists in the absence of permeance and the 
scalar magnetic potential. Nevertheless, accepting in future the concept 
of magnetic resistance and scalar magnetic potential, we shall find the 
solutions of several problems possessing a physical meaning. (Note also 
that the substances with great magnetic permeability  , such as, for 
instance, soft iron, behave approximately as magnetic conductors [38].)

The solution (6.2.1-8) may be also presented in the following form 

  tz
yx

zyxzyx qqqeHHHEEE  ,,,,,,, ,          (13в)

where tz qqq ,,  are specified in table 9.6.1.1. Consequently,

 
 csscscsssscscccc

yx
zyxzyx

qe

HHHEEE





 ,,,,,,,

,,,,,,,



.        (13а)

or

  tz
yx

zyxzyx qqqeHHHEEE  ,,,,,,, ,  (13в)

where tz qqq ,, are determined in the table 9.6.1.1. substituting this 
solution to the Maxwell equation system (9.5.1), we get

0og ,          (14)
where 

""o  denotes the operation of vectors component-wise multiplication.

 sscccccscsssscsc
yxT e   ,,,,,,, . (15)

It is evident that from the condition (14) follows condition (12), which is 
fulfilled. Therefore the solution (13) satisfies the equation system (9.5.1), 
which was to be proved.

The program section965а.dfw in system DERIVE carries out 
the specified transformations: makes substitution of functions (9.6.2.12a, 
b, c, d) and (9.6.5.13а, 9.6.5.2) in system of equations Максвелла (9.5.1), 
differentiates it, carries out reduction on the general multipliers (15) and 
calculates functions which appear equal to functions (11в).

6.6. Periodically Distributed Charges Modeling
Here we shall consider the charges with distribution density by the у –

axis, of the form

  yaey   (1)
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 (as in previous section), but with distribution density by the х -axis, of 
the form

   xax Sin . (2)
As the formula (1) coincides with formula (9.6.5.2) for у -axis, so all 

the reasoning of the previous section may be repeated up to deducing the 
formulas (9.6.5.7, 9.6.5.8). In this case these formulas take the following 
form:

 xaaaxaaaV oyztxyztox  Sin)(7  , (3)

 xaaaxaaaV oyztxyztox  Sin)(8  . (4)
Then, similarly to formula (9.6.5.7) we get:

 
   

0
Sin,,0,0,0,0,0,0




























x

dx
dqRqRRR

T
oo

x
xxtzy




. (5)

Using complex numbers, this equation may be written as:
  
 

0
,,0,0,0,0,0,0


















T
oo

xxtzy qRjRRR




. (6)

The complex vector xq  may be computed as the solution of linear 
equation system (6) with complex coefficients with regard to the 
unknowns  oozyxzyx hhheeeq  ,,,,,,,  - see function 

testMaxSinX. So in this case also the form of vector-function xq  
and coefficients vector q are being determined.

6.7. Modeling with Charges Distributed According to Dirac 
Function
Here we shall deal with the charges with distribution density by the у 

–axis in the form (9.6.6.1) (as in previous section), but with distribution 
density by the х – axis of the form

   xax   . (1)
where   is a Dirac function (see section 6.6). It is hard to imagine a real 
system with such distribution density, but still we shall consider such 
mathematical problem having in view that in future it will be modernized 
and "brought in to land". As the formula (9.6.6.1) is similar to formula 

235



Chapter 9. The Functional for Maxwell Equations

(9.6.5.2) for у –axis, all the reasoning of section 9.6.5 may be repeated 
here till formulas (9.6.5.7, 9.6.5.8). In this case these formulas will take 
the following form

 xaaaxaaaV oyztxyztox   )(7 , (2)

 xaaaxaaaV oyztxyztox   )(8 . (3)
Then, as for the formula (9.6.5.9) we get:

 
   

0
,,0,0,0,0,0,0




























x

dx
dqRqRRR

T
oo

x
xxtzy




. (4)

Equation (4) is a differential equation with perturbations in the form 
of Dirac functions. A method for solving such equations was given in the 
section 6.6. Let us now use this method.

Example 1. Let us consider equation (4), setting the values of 
oo  ,,,, . To solve the equation (4), we shall use the function 

DEdirak, mentioned in the Example 6.6.9с. The function 
testMaxDiracX contains addressing to this function and 
performs the computation for 

54 102,105,200,6000,2500  oo  . The 
result is given in Figure 1, where the sought functions are shown. 
The main harmonics of these functions has circular frequency 

6000  - in the first window a sinusoid graph is given as a dotted 
line for comparison. 

Fig. 2 show the computation errors for each of eight Maxwell 
equations  determined by formula

  







dx
dqRqRRR x

xxtzym  (5)
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Fig. 1.

Fig. 2.
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In the derivatives 
dx

dh
dx
de xx ,  in the solution for 0x  there 

appear Dirac functions, which is explained in 6.9а – see formula (A). 
They have the following value





 oxox

dx
dh

dx
de

 , . (6)

Besides, for 0x  the functions xx HE ,  have non-zero values – 
there is a jump in these functions values, namely

 

 .,,),,,0(

,,,),,,0(







tzytzyxH

tzytzyxE

x

x




(7)

These remarks must be held in mind in future in the process of 
solving Maxwell equations system with Dirac functions.

So, in this case the presented method also allows to determine the 
form of vector-function   xq  and vector of coefficients q .

Example 2. In the Example 1 it was assumed that the electric 
conductivities zyx  ,,  and magnetic permeances zyx  ,,  had 
different values along different axes. In this Example we shall assume 
them to be equal. The result proves to be more symmetrical – see 
Figure3, built by the function testMaxDiracXnow. The 
periodical functions have circular frequency 6003 .
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Fig. 3.

Table 1.
q q xq yq zq tq

xEq 1 xe  xCos  ye  zCos  -  tCos 

yEq 2 ye  xSin  ye  zCos  -  tCos 

zEq 3 ze  xSin  ye -  zSin  -  tCos 

xHq 4 xh  xCos  ye  zSin  -  tSin 

yHq 5 yh  xSin  ye  zSin  -  tSin 

zHq 6 zh  xSin  ye -  zCos   tSin 

7q o  xSin  ye -  zCos   tSin 

8q o  xSin  ye -  zSin  -  tCos 
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So, when solving the equation (4) in the case of equal  
electroconductivities zyx  ,,  and magnetoconductivities zyx  ,,  

the functions xq  assume the form  shown in Table 1 (in it 

tz qqqq ,,,  are taken from Table 6.2.1). 
Note the important difference between this problem and problems 

considered in Sections 9.6.5 and 9.6.6. There the intensity functions and 
potentials  yx qq ,  assumed the same form as the given charge 
functions (9.6.2.15). So if this function was an exponent (9.6.5.2), then 
the functions yx qq , had the same form - see. (9.6.5.13). And if this 

function was a sinusoid (9.6.6.2), then the function xq  assumed the 
form of sinusoid.  In this section this function is a Dirac function (1). But 
at the same time the functions xq  were sinusoids. Besides, (as we 

already mentioned) the derivatives 
dx

dh
dx

de xx ,  from two of these 

functions assumed the form of Dirac functions – see. (6). Thus, the 
charges that change as Dirac function along the axis  ох, excite the same 
electromagnetic waves, as the charges that change periodically along the 
same axis ох. But, besides, on the plane zоy these (changing as Dirac 
function along the axis  ох) charges  create a jump of intensities 

xx he ,  in the point 0x , which is determined by formula (6). From 
this it follows that in this case the Dirac functions (9.5.1.7, 8) are split 
into couples of equations, taking the following form:

for 0x
 


 tzytzyxEx
,,),,,0(  , (8)

 


 tzytzyxH x
,,),,,0(  , (9)

for 0x

0
dz

dE
dy

dE
dx

dE zyx ,          (10)
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0
dz

dH
dy

dH
dx

dH zyx .          (11)

Thus, when solving the equation (4) in the case of equal electric 
conductivities zyx  ,,  and magnetic permeances zyx  ,,  the 

functions xq  assume the form given in the Table 1. 
Substituting these functions to the Maxwell equation (9.5.1.1), we find:

 
 

0)()(
)(

)(













zCostSine

xCose

xSinhh y

ox

yz 


  .

It is easy to see that this equation falls into two independent equations 
with respect to the components of electric and magnetic fields. 
Аналогичное замечание можно сделать относительно всех 
уравнений в системе уравнений (9.5.1) с учетом (7-10).

The program section967.dfw in system DERIVE carries out the 
specified transformations: makes substitution of functions from Table 
6.2.1 in system of equations Максвелла (9.5.1) and differentiates it. Thus 
it is possible to be convinced, that the same may be said about all the 
equations in the equations system (9.5.1). Thus it follows that under the 
conditions of this problem the electric waves may originate in the 
absence of magnetic waves and vice versa.

6.7a. Magnetic wave in simulation with charges  distributed 
according to Dirac function 
Let us consider the Maxwell equations system (9.5.1) for the functions 

presented in the Table 9.6.7.1, under the condition that only magnetic 
charges are present. In this case only a magnetic field will arise, and the 
equations system (9.5.1) will assume the following form:
  0 yz hh  , (1)

  0 zx hh  , (2)
  0 xy hh  , (3)

0 oxh  , (4)
0 oyh  , (5)

0 ozh  , (6)
0  ozyx hhh . (8)
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In these equations the multipliers )()()( zCostSinexSin y    are 
not shown for brevity sake.

From (9.6.7.8) it follows that
 oxh  . (9)

From (1, 2, 3) we find:
yz hh  , (11)

xz hh  , (12)
xy hh  . (13)

From (4, 5, 6) we find:
 zyxo hhh  . (14)

From (8, 11, 12, 13) for 0x we get:

0
22











 xh




 (15)

or 

 22   . (17)
Thus, for the given  ,,,o  according to (9, 12, 13, 14, 17) all 

the parameters of magnetic wave  ,,,, oyzx hhh  may be 
accordingly found

6.7в. Electric wave in simulation with charges  distributed 
according to Dirac function
Let us consider the Maxwell equations system (9.5.1) for the functions 

presented in the Table 9.6.7.1, under the condition that only electric 
charges are present. In this case only a electric field will arise, and the 
equations system (9.5.1) will assume the following form:
  0 yz ee  . (1)

  0 zx ee  , (2)
  0 xy ee  , (3)

0 oxe  , (4)
0 oye  , (5)
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0 oze  , (6)
0  ozyx eee . (8)

From (9.6.7.9) it follows that
oxe  . (9)

Also, as well as in section 9.6.7а, we find:
xz ee  , (10)
xy ee  . (11)

 zyxo eee  . (12)

 22   . (13)
Thus, for the given  ,,,o  according to (9-13) all the 

parameters of magnetic wave  ,,,,, oyzx hhh  may be accordingly 
found

6.8. Modeling with Charges Distributed According to Step 
Function
Here we shall deal with charges with distribution density by у-axis of 

the form (9.6.6.1), but distribution density by the х –axis of the form
   xax  . (1)

where   – unit step (see section 6.4). As formula (9.6.6.1) is similar to 
formula (9.6.5.2) for у -axis, all the reasoning of section 9.6.5 may be 
repeated here, up to getting formulas (9.6.5.7, 9.6.5.8). In this case these 
formulas assume the following form

 xaaaxaaaV oyztxyztox   )(7 , (2)

 xaaaxaaaV oyztxyztox   )(8 . (3)
Then, similarly to formula (9.6.5.7) we shall get:

 

   
0

,,0,0,0,0,0,0




























x

dx
dqRqRRR

T
oo

x
xxtzy




. (4)

Equation (4) is a differential equation with perturbations described by 
step functions. The method for solving such equations was given in 
section 6.4. Now we shall use this method.
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Example 1. Let us consider equation (4), setting the values 
oo  ,,,, . To solve equation (4) we shall use the function 

DEjumpRC, mentioned in Example 6.4.8. Function 
testMaxJumpХ contains addressing DEjumpRC and 
performs the computation with

54 102,105,200,6000,2500  oo  .
The result is given in Figure 1, where the sought functions are 

shown. The main harmonics of these functions has circular frequency  
6000  - in the first window a sinusoid graph is given as a dotted 

line for comparison. Figure 2 shows the computation errors for each 
of the eight Maxwell equations defined by the formula (9.6.7.5)

Fig. 1.
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Fig. 2.

Fig. 3.
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Step functions appear in tee derivatives of the sought function with 
respect to у which was explained in Example 6.4.7. As the result the 
nodes of main harmonics for these derivatives are displaced from the 
origin – see Figure 3, where these graphs are shown.

So in this case also the presented method enables to determine the 
form of vector-function xq  and the coefficients q .

6.9. Modeling with Charges Distributed Non-uniformly
Let us now consider the case when the charges distribution is 

described by multistep trapezium (or, for instance, by square pulse). In 
this case we ought to use the method described in section 6.5. The fig. 1 
shows the result of computation, similarly to Example 9.6.8.1, but for 
trapezium charges distribution. (see the function testMaxTrapX). 
One can see that the electromagnetic fields amplitudes depend 
significantly from the type of charges distribution. 

Fig. 1.

For example, if all the other conditions are the same, the amplitude 

zh  in equal to
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60       for step function distribution
500    for three-step trapezium distribution,
50000 for distribution described by Dirac function (see 

accordingly 9.6.8.1, 9.6.9.1, 9.6.7.1).
Trapezium distribution of charges may be considered an 

approximation of exponential distribution, examined in section 9.6.5.

6.10. Discussion
In general, the scheme of the method use is as follows:
1) An assumption about electromagnetic waves form as a function 

of three coordinates (for instance, tzy ,, ) is made.
2) Matrices (9.5.3), (9.5.15) and vectors (9.5.7, 9.5.9) based on this 

assumption are computed.
3) The form of electromagnetic waves as a function of the fourth 

coordinate (for instance, x ), with the use of the known matrices 
and vectors is determined. If the elements of the named matrices 
(9.5.3), (9.5.15) are not equal (by absolute value), then we get 
damped oscillation (in space and/or in time). It is significant that 
the algorithms of section 6, applied to the determination of the 
functions types (in the case when they are not smooth functions), 
enable us to get an analytical presentation of these functions (in 
the form of power series). In the previous examples the same way 
was used to derive the frequency of the main harmonics of the 
sought functions.

4) The obtained functions are substituted to the Maxwell Equations 
system and the parameters of these functions этих (such as the 
amplitudes and the damping coefficients) are computed. In the 
case when they are not smooth, the parameters are determined 
(using algorithms of section 6) simultaneously with the functions 
form determination.

5) When the form of the electromagnetic waves as a function of 
coordinate x  is obtained, the assumptions of p.1 and so on, may 
be specified by the same method.

The method is applicable also in the case of heterogeneous space (see 
section 9.4.5).
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7. Example. Superpositions of 
Electromagnetic Waves
In the cases discussed above the electromagnetic fields intensity 

functions may be presented in the form (9.2.11). Now we shall discuss 
the case when the electromagnetic fields intensity functions may be 
presented as a superposition of the functions (9.2.11).

1. Electromagnetic oscillations with exponentially distributed 
charges. Case 1. 
Let us return to the problem discussed in the section 9.6.5where the 

charges density distribution functions (9.6.2.9, 9.6.2.10) with respect to  
arguments tzyx ,,, , are known:

yx
cco e   , (1)

yx
sso e   . (2)

Table 1.
Variants

q q
1 2 3

xEq 1 xe cc ss 

yEq 2 ye cc ss 

zEq 3 ze cs sc 

xHq 4 xh ss cc 

yHq 5 yh ss cc 

zHq 6 zh sc cs 

7q o sc cs 

8q o cs sc 


o cc ss 
 o ss cc 
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Here we, as distinct from (9.6.2.12), shall define the functions   in 
the form

   ,CosCos ztcc  (2а)

   ,SinSin ztss  (2b)

   ,SinCos ztcs  (2c)

   ,CosSin ztsc  (2d)
The intensity and potentials functions from arguments tzyx ,,,  are 

defined by (9.6.13а), i.e.
 


















csscscss

sscsccccyx

zyxzyx

qe

HHHEEE

,,,
,,,,

,,,,,,,




, (3)

where real numbers
 oozyxzyx hhheeeq  ,,,,,,, . (4)

For clearness sake in the Table. 1 the functions  , included in (1, 2, 3), 
are enumerated– see version 1. 

To show what  is the form of Maxwell equations (9.5.1) in this case, 
let us consider a vector-function (9.6.5.11а) from oo  ,,,,, , 

oozyxzyx hhheee  ,,,,,,, , i.e.,

 87654321 ,,,,,,, gggggggggT  , (5)
Here we, unlike (9.6.5.11b) shall define the functions (5) in the form

1.   oxyz ehhg 1
2.   oyzx ehhg 2
3.  ozxy ehhg  3
4.   oxyz heeg 4 (5a)
5.   oyzx heeg 5
6.  ozxy heeg  6
7.   ozyx eeeg 7
8.   ozyx hhhg 8
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Turning to the remark at the end of Section 9.6.1, we must note that 
in this case the matrices tzyx RRRR ,,,  differ from the matrices given 
in Section 9.5, by the signs of some elements. The differing elements are 
denoted below by darkening.

xR yR
1 x 1
2 1 y
3 1 -1
4 x 1
5 1 y
6 1 -1
7 -1 -1
8 1 1

zR tR
1 1 
2 -1 
3 z 
4 -1 
5 -1 
6 z 
7 -1
8 1

We shall define similarly to (9.6.5.15) also the vector -function

 sscccccscsssscsc
yxT e   ,,,,,,, . (6)

By substituting the functions (1, 2, 3) to the Maxwell equations system 
(9.5.1) we may see that 

0og , (7)
where ""o  the operation of component wise multiplication of vectors. 
After reducing each equation from (7) by multiplier (6) this equation 
system will be transformed into equation system

0g . (8)

The program section971а.dfw in the DERIVE system performs 
the indicated processing: substitutes the functions (9.7.1.2a, b, c, d; 3) and 
(9.6.5.2) into the Maxwell equations system (9.5.1), differentiates this 
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system, cancels the common factors (6) and computes the functions 
0g , which turn out to be equal to functions (5а).

For the given parameters  ,,, , characterizing the domain of 
waves and currents distribution, and given oo  ,,,,, , the 
numbers oozyxzyx hhheee  ,,,,,,,  may be found as the solution of 
linear equation  system (8) or, which is the same, equations system (5а).

Thus, if the charges densities are distributed according to functions (1, 
2) with known oo  ,,,,, , then there emerge electromagnetic 
fields and scalar  potentials, enumerated in the table 1 (version 1), and the 
parameters oozyxzyx hhheee  ,,,,,,,  are functions 

oo  ,,,,, , determined by solving the linear equations system 
(5а). 

2. Electromagnetic oscillations with exponentially distributed 
charges. Case 2. 
Let us assume now that, unlike (9.8.1.2, 9.8.1.2),

yx
sso e   , (1)

yx
cco e   . (2)

Then by analogy with the above said we may find the functions  , 
taking the values enumerated in the Table 1 (version 2). The parameters 

oozyxzyx hhheee  ,,,,,,,  are   functions   of oo  ,,,,, , 
determined also from the linear equation system (1.5а). But in this case 
this equations system follows from the equations system (1.7), where, 
unlike (1.6), the vector

 ccssssscsccccscs
yxT e   ,,,,,,, . (3)

3. Electromagnetic oscillations with linear movement of 
exponentially distributed charges.
Let us denote

 ,Cos zt   (1)
 ,Sin zt   (2)

Since
         ,SinSinCosCosCos ztztzt  
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         ,SinCosCosSinSin ztztzt  
from (1, 2,  9.6.2.12) it follows that

,sscc  (3)

.cssc  (4)
Further we shall denote all the quantities for cases 1 and 2 by one or 

two strokes correspondingly. Let us assume that 
,            (5a)

  .           (5b)
Then

,yx
o e   (6)

yx
o e   . (7)

Physically it means that the charges are grouped around the z axis, 
they move along this axis and change their value with time. In the 
physical sense it means that the charges are grouped beside the z axis.

Owing to (3, 4, 5) and the system’s (9.5.1) linearity, the summary 
electromagnetic field for this case may be found the sum of solutions for 
cases 1 and 2. As the system (9.5.1) is linear, the summary 
electromagnetic field may be found from the sum of solutions 1 and 2. 
Therefore, in this case 
 

 



 ,,,,,,,

,,,,,,,

qe

HHHEEE
yx

zyxzyx



,            (7а)

where real numbers q  are determined by (9.7.1.4) – see also Table 1 
(version 3).

From (1.7) we get:
  0 og , (8)

where  ,  are determined correspondingly by (1.6) and (2.3). But

 
where, on account of (3, 4),

   ,,,,,,,yxT e  . (9)
Therefore in this case also the parameters 

oozyxzyx hhheee  ,,,,,,,  are functions of oo  ,,,,, , 
which are also determined from the solution of the linear equations 
system (1.5а).
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The program section9731а.dfw in the DERIVE system 
performs the indicated processing: substitutes the functions (1, 2, 7a) and 
(9.6.5.2) into the Maxwell equations system (9.5.1), differentiates this 
system, cancels the common factors (9) and computes the functions 

0g , which turn out to be equal to functions (1.5а).
The equations system (1.5а) may be solved in symbolic form (for 

example, in the DERIVE system (see program section9732.dfw) 
with respect to the unknowns  oozyxzyx hhheeeq  ,,,,,,, . This 
solution has the following form:

,,,,

,,,,



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



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













     (10)

where
222  a .           (11)

For a given   from (10) we may find the products 

.,
aa
o

o
o

o
   The first of these formulas 

determines the product of electric resistance   of the environment by 
the electric scalar potential o , which creates no questions. The second 
of theses formulas determines the product of magnetic resistance   of 
the environment by magnetic scalar potential o . In the section 9.6.5 we 
have already discussed the question of how this values may be 
interpreted.

Thus, the functions (6, 7) cannot be represented in the form of 
(9.6.2.11). Nevertheless the presented method may be applied in this case 
as well [29].

Turning to the physical interpretation of this problem we must note 
that that the discussed Maxwell equations system (9.5.1) in this case 
describes the situation when the charges are concentrated on the z  axis, 
and move (as a current) along this axis.  The magnetic charges may be 
imitated by the poles of magnetic dipoles. In this interpretation the 
following thing is interesting. Along the оz axis an electromagnetic field  

zz EH ,  appears, as the consequence of wave distribution of the 
charges along the z axis (independent of the form of charge density 
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distribution along the axes ох and оу). This electromagnetic field is a 
longitudinal electromagnetic wave. Note that the existence of such waves 
does not contradict the Maxwell's electrodynamics [30]. The experiment 
showing existence of longitudinal waves, is described in section 9.8.5а.

3a. Electromagnetic oscillations at compound motion of the 
exponentially distributed charges
Let us consider without deduction one more case of moving charges. 

Let us denote:
 ,Cos zyt   (1)

 ,Sin zyt   (2)
Let

,x
o e  (3)

x
o e  , (4)

 
 ,,,,,,,,

,,,,,,,





qe

HHHEEE
x

zyxzyx



, (5)

where real numbers q  are determined by (9.7.1.4).
Physically it means that the charges are grouped around the z axis they 

are moving along axes oy and oz, changing by value with the time. In 
this case

0og , (6)
where

  ,,,,,,,xT e . (7)

The program section973а.dfw in the DERIVE system performs 
the indicated processing: substitutes the functions (1-5) into the Maxwell 
equations system (9.5.1), differentiates this system, cancels the common 
factors (7) and determines the functions 0g .  Then the equations 
system 0g  may be solved in symbolic form with respect to the 
unknowns  oozyxzyx hhheeeq  ,,,,,,, . This solution has the 
following form:
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,,,,
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 (8)

where
222  a . (9)

4. Magnetic oscillations  with charges distributed according to 
Dirac function. Case 1. 
Let us return to the problem discussed in Section 9.6.7а,  the magnetic 

charges density distribution function is considered known
y

sso ex  )( , (0)
which follows from  (9.6.2.10, 9.6.6.1, 9.6.7.1). here we again, unlike the 
(9.6.2.12), shall define the functions   in the form (9.8.1.2a,b,c,d)

For clearness sake, in the Table 2 the functions  , included in (1, 
9.8.1.3), are enumerated – see version 1. 
Table 2.

Variants
q q xq 1 2 3

xHq 4 xh  xCos  ss cc 

yHq 5 yh  xSin  ss cc 

zHq 6 zh  xSin  sc cs 

8q o  xSin  cs sc 
 o )(x  ss cc 

The Maxwell equations (9.5.1) in this case take the form (9.6.7а.1-8), 
and their solution is (9.6.7а.9, 9.6.7а.12, 9.6.7а.13, 9.6.7а.14, 9.6.7а.17).

5. Magnetic oscillations  with charges distributed according to 
Dirac function. Case 2. 
Let us assume now that unlike (9.8.4.0),

y
cco ex  )( , (1)
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Then by analogy with the previous discussion, we may find  , which 
assume the values enumerated in the Table 2 (version 2). The Maxwell 
equations (9.5.1) in this case also take the form (9.6.7а.1-8) ), and their 
solution is (9.6.7а.9, 9.6.7а.12, 9.6.7а.13, 9.6.7а.14, 9.6.7а.17).

6. Magnetic oscillations with linear movement of charges, 
distributed according to Dirac function
Reasoning in the same way as in Section 9.8.3, and bearing in mind 

formulas (9.8.3.1-5, we see that
y

o ex  )( . (1)
In the physical sense it means that the charges are grouped beside the 

z axis and are changing their value with the time. The along  distribution  
of the charges along the х axis is described by the Dirac function, which 
means that there is stepwise change of the  density distribution the axis 
ох.

In view of the system's (9.5.1) linearity, the summary electromagnetic 
field may be found from the sum of solutions for cases 4 and 5. The 
Maxwell equations (9.5.1) in this case also take the form (9.6.7а.1-8). 
Therefore, in this case the functions   assume the values enumerated 
in the Table. 2 (version 3). The solutions of equations (9.6.7а.1-8) here 
also  certainly have the form (9.6.7а.9, 9.6.7а.12, 9.6.7а.13, 9.6.7а.14, 
9.6.7а.17), i.e.

 22   , (2)
 oxh  , (3)
xz hh  , (4)
xy hh  , (5)

 zyxo hhh  . (6)

Thus, for given  ,,,o  by (2-6) all the parameters of magnetic 
wave  ,,,, oyzx hhh  accordingly, may be found. 

Let us note also that for 0  the equations (2-5) describe a 
magnetostatic field.

So, the function (1) cannot be represented in the form (9.6.2.11). 
Nevertheless, the presented method is applicable in this case also.

Similar formulas may be derived for electric oscillations.
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Turning to the physical interpretation of this problem, we see that in 
this case (as in the case 9.7.3) along the axis оz a magnetic field zH   is 
originated, and it is a   longitudinal magnetic wave (in  9.7.3 there was a 
longitudinal electromagnetic wave). Furthermore, in this case due to 
stepwise change of density distribution of charged along the axis ох a 
magnetic field xH  appears, which is a  stationary wave. Indeed, the 
nodes of this wave on the ох axis do not move with the time.  As in this 
case the electric field is absent, so there is no exchange of energy between 
magnetic and electric fields, as it occurs in the known stationary 
electromagnetic waves. Therefore, in this case we have an volatile 
stationary magnetic wave.

Above we had noted that for this case there is a symmetry of electric 
and magnetic fields. Because of disconnectedness of magnetic and 
electric waves in an electromagnetic wave (which appears if there are 
both electric and magnetic charges) along the ох axis there also appear 
two disconnected electric and magnetic stationary waves. They may have 
different periods, but if the periods coincide, the electric and magnetic 
waves components will be in-phase.  It may be seen in the example of the 
Section 9.6.7.1 and generally in the examples of Sections 9.6.7, 9.6.8, 
9.6.9.

It is notable that in the known stationary wave the magnetic and 
electric components of the wave have phase displacement of 2/ . 
These questions are more in detail considered in [40].
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8. Example. Electromagnetic radiation of the 
localized charges.
1. Problem definition
Let us consider a problem where the vectors tzyx qqqq ,,,  are of 

the form presented in Table 1.

Table 1.
q q xq yq zq tq xq (calc)

xEq 1 xe  xExfx ye ze  tCos   xCos 

yEq 2 ye  xEyfx ye ze  tCos   xSin 

zEq 3 ze  xEzfx ye ze  tCos   xSin 

xHq 4 xh  xHxfx ye ze  tSin   xCos 

yHq 5 yh  xH yfx ye ze  tSin   xSin 

zHq 6 zh  xH zfx ye ze  tSin   xSin 

7q o  xfx ye ze -  tSin   xSin 

8q o  xfx ye ze -  tCos   xSin 

At that

   xEeteE xfx
zy

xx
  Cos , (1)

   xEeteE yfx
zy

yy
  Cos , (2)

   xEeteE zfx
zy

zz
  Cos , (3)

   xHethH xfx
zy

xx
  Sin , (4)

   xHethH yfx
zy

yy
  Sin , (5)

   xHethH zfx
zy

zz
  Sin , (6)

   xet fx
zy

o    Sin , (7)
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   xet fx
zy

o    Cos , (8)

    zy
o et  Cos , (9)

    zy
o et  Sin , (10)

where 

oooozyxzyx hhheee  ,,,,,,,,, (11) 
  are real numbers, 

xfxfxfxf HE  ,,, (14)
are unknown functions, 

 xx  (15)
a known function, whose form will be discussed later.

The problem, as before, is as follows: for certain unknown 
coefficients from manifold (11), for certain function   (15), by Maxwell 
equations system (9.5.1) find the form of functions (14) and the 
unknown coefficients for manifold (11).

2. Computing vectors (9.5.7, 9.5.9)
Table 2.

7 8
U  - см. (9.7.1.9)  - см. (9.7.1.10)

U o o

xU )(xx )(xx

yU ye ye

zU ze ze

tU  tCos   tSin 

xû   
x

fx dxxx )(   
x

fx dxxx )(

yû ya  - see (9.6.1.7) ya  - see (9.6.1.7)

zû za  - see (9.6.1.7c) za  - see (9.6.1.7c)

tû ta  - see (9.6.1.17) ta  - see (9.6.1.17)

xV )(xaaa yzt  )(xaaa yzt 
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Let us take the vectors (9.6.3.39-41) and build for this problem a 
Table 2, similar to the Table  9.6.2. For known functions q  and U  the 
numbers (9.5.5) may be found. They are shown in the Table 2. To 
compute these numbers we shall use Table 1, showing the numbers xq ,

yq , zq , tq .

3. Computations
From formulas (9.5.4, 9.6.1.5, 9.6.1.18, 9.6.1.7a)   follows:

xtyzzytxx RaaaQQQRR  ooo . (1)
From formulas (9.5.16, 9.6.1.5, 9.6.1.19, 9.6.1.7a) follows:

ttyzzytttyz RaaaQQQRR  ooo ˆ . (2)
From formulas (9.5.17, 9.6.1.6, 9.6.1.18, 9.6.1.7a) follows:

ytzyztyyytz RaaaQQQRR  ooo ˆ . (3)
From formulas (9.5.18, 9.6.1.7b, 9.6.1.18, 9.6.1.4) follows:

ztyzytzzzty RaaaQQQRR  ooo ˆ . (4)
Then the matrix (9.5.19) is determined. Furthermore, on the same 
iteration the functions zyt UUU ,,  are being fixed, and by them (as 

shown in Section 6.3) the vector-function (9.5.7) xV  is determined After 
this vector-function xq  is found from the equation (9.2.17)

0





 x

x
xxx VU

dx
dqRqS o . (5)

4. Modeling of wave with electric and magnetic charges 
exponentially distributed along y, z axes and with Dirac 
distribution along х axis.
Similarly to Section 9.6.7 we shall consider the charges with density 

distribution along the х axis:
   xx   . (1)

where   is a Dirac function, and exponential density distribution along 
y and z axes (as above). Thus,

   xet zy
o    Cos ,           (1а)

   xet zy
o    Sin .           (1в)
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By analogy with (9.6.7.2, 9.6.7.3) we find:
 xaaaxaaaV oyztxyztox   )(7 , (2)

 xaaaxaaaV oyztxyztox   )(8 . (3)
Then, by analogy with formula (9.6.5.9) we shall get

 
   

0
,,0,0,0,0,0,0




























x

dx
dqRqRRR

T
oo

x
xxtzy




. (4)

The equation (4) is a differential equation with Dirac functions as 
perturbations. A method for solving such equations was given  in Section 
6.6. Let us apply this method.

Example 1. Consider equation (4) and set the values of 

oo  ,,,, . To solve equation (4) we shall use DEdirak 

function.  The function testFloid contains access to this function 
and performs the computation for 

54 102,105,70,70,50  oo  . 

Fig. 1.
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The result is given on Figure 1, where the required functions are 
shown. The periodic functions have circular frequency 99 .

Thus, when solving the equation (9.7.5.4) the functions (9.7.2.14) take 
the form shown in Table 9.7.2.1 – see column xq (calc). Substituting 
these functions to the Maxwell equation (9.5.1.1), we find:

 
 

0)(
)(

)(












  tCose
xCose

xSinhh zy

ox

zy 


  .

Evidently, this equation splits in two independent equations with respect 
to the components of electric and magnetic fields. The program 
section984.dfw in the DERIVE system substitutes the functions 
from table 6.2.1 into the Maxwell equations system (9.5.1) and 
differentiates this system. It is now obvious that the same may be said 
about all equations in the equations system (9.5.1). Hence it follows that 
under conditions of this problem electric waves may appear in the 
absence of magnetic waves and vice versa.

4а. Modeling of wave with magnetic charges distributed 
periodically along the y, z axes and with Dirac distribution 
along х axis.
By analogy with Section 9.8.5 we shall deal with charges with density 

distribution along the х axis of the form of Dirac function (9.8.5.1), but 
(unlike Section 9.8.5) with periodical density distribution along the axes y 
and z. To put it more precisely,

       xzyto   CosCosCos , (1)

       xzyto   CosCosSin . (2)
By analogy with Section 9.8.5 it may be shown that in this case all the 
equations (9.5.1) fall into two independent equations with respect to the 
components of electric and magnetic fields. The program 
section984а.dfw in the DERIVE system contains the solution of 
equation (9.5.1), performs substitution of this solution into Maxwell 
equations system (9.5.1) and differentiates this system. The above said 
remark is being confirmed here.

As opposed to (1, 2) we may consider another couple of equations for 
electrical and magnetic charges density distribution:

       xzyto   CosCosCos , (3)
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       xzyto   CosCosCos . (4)
The distinction is only in the fact that these distributions are cophasal., 
and in this case it is easy to show that all the equations (9.5.1) break up 
into two independent equations with respect to  the components of 
electric and magnetic fields. The function  section984а.2.dfw 
(similar to function section984а.dfw) confirms the above mentioned 
remark..

5. Modeling of wave with magnetic charges distributed 
exponentially along the axes y, z and with Dirac function 
distribution along х axis
Let us take now the equations system (9.5.1) in Section 9.8.4 under 

condition that there exists only a magnetic field. Thus, for example, the 
equation (9.8.4.1) is corresponded to by the equation

  0)()(   tCosexSinhh zy
zy   . (1)

corresponds in this case to the equation (9.6.7а.1). In future in the 
equations of this system the factors of the type 

)()( tCosexSin zy     will not be shown.
  0 zx hh  , (2)
  0 yx hh  , (3)

0 oxh  , (4)
0 oyh  , (5)

0 ozh  , (6)
0  ozyx hhh . (8)

So, in this case the magnetic wave changes in time and space along the 

х axis, and along the axes zy,  it is limited by function zye   . The 
solutions of equations (1-8) are determined, as in Section 9.7.6, in the 
following form:

 22   , (2)
 oxh  , (3)
xz hh  , (4)
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xy hh  , (5)

 zyxo hhh  . (6)
As also in Section 9.7.6, one may note that in this magnetic wave, due 

to stepwise change of the charges density distribution along ох axis, 
there appears a magnetic field xH , which is a energy-dependent 
standing magnetic wave.

For 0  the equations (2-5) describe a  magnetostatic field.

5а. Modeling of wave with magnetic charges periodically 
distributed along the axes y, z  and with Dirac distribution 
along the х axis
Let us consider now Maxwell equations system (9.5.1) of Section 

9.8.4а under condition that there exists only the magnetic field. In this 
case, by analogy with Section 9.8.5 the following equations system is true:

  0  yz hh
  0 zx hh 
  0 yx hh 

0 oxh  (1)

0 oyh 
0 ozh 

0  ozyx hhh
The solution of equations (1) are determined (as also in Section 9.8.5) 

in the following form:

 22   , (2)
 oxh  , (3)
yz hh  , (4)

xy hh  , (5)

 zyxo hhh  . (6)
As in Section 9.8.5, one may note that in this magnetic wave, due to 

stepwise change (the charge is at an end face, but is absent outside of an 
end face) of the density distribution of charges along the axis ох a 
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magnetic field emerges in the form of volatile stationary longitudinal 
magnetic wave, with a component xH . The intensities in this wave are 
described by 

)(Cos)(Cos)(Cos)(Cos xzythH xx  , (7)
)(Sin)(Cos)(Sin)(Cos xzythH yy  , (8)

)(Sin)(Sin)(Cos)(Cos xzythH zz  . (9)
For 0  the equations (2-5) describe a  magnetostatic field.
Let us consider now a function of a more general nature than (9.4а.2), 

describing magnetic charges density distribution in space
       xzyt zyo   ffCos . (10)

Let us assume that the functions    zy zy f,f  are of a similar 
form and may be expanded into trigonometrical series. We shall denote 
them by a common symbol .f . Then in the same way as above it may 
be shown that the intensities distribution functions are of the form

)(f)(f)(f)(Cos xzythH xx  , (11)

dx
)(df)(f

dy
)(df)(Cos xzythH yy  , (12)

dx
)(df

dz
)(df)(f)(Cos xzythH zz  . (13)

From this, in particular, follows that  for fixed x, z, t

dy
yHyH x

y
)()(  , (13а)

and for fixed y, z, t

dx
xHxH x

y
)()(  . (13в)

Here the sense of a designation ''  consists that functions coincide to 
within constant coefficient.

Example 1. Let us consider a cylindrical magnet depicted on 
Figure1. Its residual induction is equal to 1.1 Тl, diameter is 20 mm 
and length – 20mm. An experimental device for the measurement of 
such magnet's magnetic field and the intensities of this field is 
described in [41]. The results of measurements of the magnetic field 
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intensities (for x=1mm) near the face plane may be approximated by 
following  empirical functions:

40004.0400)( y
x eyH  , (14)

40004.038.1)( y
y eyyH  . (15)

Thus, the formula (13а) is confirmed, correct to a constant 
coefficient. The graphs of functions (14, 15) are shown on Figure 2. 
On the same Figure there are graphs (depicted by dotted lines) of the 
first harmonics of these empirical functions expansion into 
trigonometric series – see the function Hxy. For these harmonics

  yyH x 27.0Cos1200)(  , (14а)

 yyH y 27.0Sin280)(  . (15а)

Fig. 1.

Since, as follows from (10, 11) for fixed x, z, t 
  )(f)( yyyH x   , (16)

correct to a constant coefficient, so we must assume that the 
magnetic charges density distribution along the face plane  axes has 
the form of (14) or (14а). Separating from (14а) the variable part, we 
find:

40004.0)( yeyf  . (17)
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From (12) follows that

dy
)(df)( yyH y  , (18)

From (15a, 18) follows that

 yy 27.0Sin
dy

)(df
 . (18а)

Fig. 2.  The upper window - )(yH x , the lower window - 
)(yH y , firm lines – experimental approximation, 

dotted lines – the first harmonic of trigonometrical series 
expansion.

This follows (correct to a constant) also from (17), which 
confirms experimentally the formula (12).  Then according to (11, 12, 
17, 18а) we may expect 

 xxxH x 27.0Cos)(f)(  , (19)

 xxxH y 27.0Sin
dx

)(df)(  . (20)
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To confirm the correctness of (19, 20) we have made appropriate 
experimental dependences. For the building of dependence )(xH x  
along the magnet's axis of symmetry (axis х, where х=0 on the face 
plane)
 The intensity )(xH x  in the axis points has been measured,
 The intensity )(xH x  in the same points for the equivalent 

solenoid has been measured,
 And finally, the sought intensity was computed (the variable 

component which cannot be predicted by the existing theory)
 )()()( xHxHxH xxx  . (22)

Fig. 3. The upper window - )(xH x , the lower window - 
)(xH y ,  firm lines – experimental approximation, 

dotted lines – the first harmonic of trigonometrical series 
expansion, lines made of circles – «weakened» first 
harmonic of trigonometrical series expansion.
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Fig. 3 (upper window) shows the graph of this experimentally 
found function (22) – see function HxyExper2. It is easy to see 
that the first harmonic of this function has the shape of cosine 

)(Cos)( xxH x  (23)
and coincide with function (17). It proves that the experiment has 
revealed the oscillatory nature of the function )(xH x .

For the building of dependence )(xH y  along the magnet's axis 
of symmetry  
 The intensity )(xH y  in the axis points has been measured,

 The intensity in the same points of the equivalent solenoid for 
check of identity 0)(  xH y  was computed  

 Required intensity was computed  
)()( xHxH yy  . (24)

Figure 3 (lower window) shows the graph of this experimentally 
found function (24) – see function HxyExper. It is easy to see 
that the first harmonic of this function has the shape of  sine.

)(Sin)( xxH y  (25)
and coincide with function (20). It proves that the experiment has 
revealed the oscillatory nature of the function )(xH y .

Note, that from (2) for    follows (due to the face plane's 
symmetry)

2  . (26)
From Figure. 3 and formulas (23, 25) follows also that formula (13в) 
is valid. One can see that the period   of the first harmonics of 
functions )(xH x , )(xH y  and the period   of the first 

harmonics of functions )(yH x , )(yH y  answer the formula (26). 
Let us continue the comparison of theory with experiment, to do 

so we shall consider the weakening of intensities when moving away 
from the magnet face plane. We shall define the weakening 
coefficient as

)(/)0()( xHHxK xx  , (27)
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where )(xH x   as before, denotes the computed intensity of the 
equivalent solenoid. Apparently, we should assume that the 
intensities )(xH x , )(xH y  are weakening with the same 
coefficient of weakening. Apparently, it is necessary to believe, that 
the order of easing intensities )(xH x , )(xH y , it will be 
characterized by the same factor of easing. In this assumption we 
may compute the "weakened" intensities 

)(/)()( xKxHxH xx  ,

)(/)()( xKxHxH yy  .
Figure. 3 depicts by "circle lines" the graphs of these functions, 

computed for the first harmonics (23, 25).
Considering possible errors of measurements, it is possible to 

ascertain the satisfactory consent between the theory and experiment. 
Thus, executed experiment reveals intensity waves of the magnetic 
field in the direction of constant magnet's axis, which confirms the 
presented theory and the existence of longitudinal magnetic waves in 
which the change )(xH x occurs. 

6. Modeling of wave with electric charges exponentially 
distributed along the axes y, z  and with Dirac distribution 
along the х axis
We have remarked above on the symmetry on the symmetry of 

electric and magnetic fields. In view of disconnectedness of magnetic and 
electric waves in the electromagnetic wave (which appears in the 
presence of both magnetic and electric charges) along the axis ох there 
also appear two disconnected energy-dependent electric and magnetic 
standing waves. They may have different periods, but in the case of 
identical periods the electric and magnetic waves will be cophased. It may 
be seen on the Figure 1.

Let us consider now the equations system (9.5.1) under condition that 
there exists only electric field. We then get results fully identical to those 
obtained in Section 9.6.7b

As in Section 9.8.5, here it is easy to see that in this  electric wave, due 
to stepwise change of the charges density distribution along the axis ох,  
an electric field xE  is generated, as a volatile stationary longitudinal 
wave.

For 0  the equations (2-5) describe  an electrostatic field.
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6а. Modeling of wave with electric charges distributed 
periodically along the axes y, z and with Dirac distribution 
along the х axis
Let us consider now the equations system (9.5.1) from Section 9.8.4а 

under condition that there exists only electric field. Owing to the 
symmetry of electric and magnetic fields we shall obtain results fully 
identical to the results obtained in Section 9.8.5а. 

As in Section 9.8.5, here it is easy to see that in this  electric wave, due 
to stepwise change of the charges density distribution along the axis ох, 
an electric field xE  is generated, as a volatile stationary longitudinal 
wave.

For 0  the equations (2-5) describe  an electrostatic field.
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9. Analytical Method of Maxwell Equations 
Solution 
9.1. Description of the method
From previous discussion it follows that for known density 

distribution functions it is possible to find the intensities functions and 
scalar potentials functions.. Further the method will be formalized to 
maximal extent.  

Let us consider a system figuring magnetic and electric charges, 
whose density distribution is described by the following functions

       xytztzyx o   ShdChp,,, , (1а)

       xytztzyx o   ChdChp,,, . (1в)
We shall not discuss here the technical interpretation of this system.
So, we shall seek for the solution in form of the  following magnetic 

intensity functions, electric intensity function and electric potential 
functions:

       xfytztzyxE exx  ShdChp,,,  , (2)

       xfytztzyxE eyy  ChdChp,,,  , (3)

       xfytztzyxE ezz  ShdShp,,,  . (4)
       xfytztzyxH hxx  ChdChp,,,  , (5)

       xfytztzyxH hyy  ShdChp,,,  , (6)

       xfytztzyxH hzz  ChdShp,,,  , (7)

       xfytztzyx  ShdShp,,,  , (8)

       xfytztzyx  ChdShp,,,  , (9)

The form of function  x  is known. The functions 
       wwww Shd ,Shp,Chd ,Chp (10)

are such, that
    wk

dw
wd

spChpShp
 , (11)

    wk
dw

wd
cpShpChp

 , (12)
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    wk
dw

wd
sdChdShd

 , (13)

    wk
dw

wd
cdShdChd

 . (14)

We must find functions
       
       .,,,

,,,,

xfxfxfxf

xfxfxfxf

hzhy

hxezeyex


(15)

with respect of known  ,,,, oo .

By substituting the functions (1-8) into the Maxwell equations, 
differentiating according to rules (11-14) and reducing further by 
common factors, we get (see program section900.dfw):

     0)()(  cphyexcdhz KxfxfKxfxf   , (21)

     0)()(  cphxeyhzsd KxfxfxfKxf   , (22)

     0)()(  spezcdhxhy KxfxfKxfxf   , (23)

     0)()(  cphxeymsdez KxfxfxfKxf  , (24)

     0)()(  cphyexcdmez KxfxfKxfxf  , (25)

     0)()(  spmhzsdexey KxfxfKxfxf  , (26)

      0)()(  xKxfKxfxf ospezcdeyex  , (27)

      0)()(  xKxfKxfxf osphzsdhyhx  . (28)

This is a system of 8 differential equations with 8 unknown functions 
(15).

Let us proceed with finding the solution. For this purpose we shall 
present this system in the following form:  

 xQ
dx
dqRqS  , (30)

where 
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,

/)(
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/)(
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/)(
/)(

,

)(

)(
)(
)(
)(
)(
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)(
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





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






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











xxf

xxf
xxf
xxf
xxf
xxf
xxf
xxf

dx
dq

xf

xf
xf
xf
xf
xf
xf
xf

q

hz

hy

hx

ez

ey

ex

hz

hy

hx

ez

ey

ex









(31)

,
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cpsdcp
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KK
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KKK
KKK

KKK
KKK
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S
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







(32)
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


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
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











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





o

o

QR

0
0
0
0
0
0

,

00001000
00000001
00000010
00000100

0000000
00010000
00100000
0000000

.(33)
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Let us find

.

00001000
00000001
00000010
00000100
10000000
00010000
00100000
01000000

1












































R (34)

The equations system (30) may be rewritten in the following form

 xQR
dx
dqqSR   11

(35)

or

 xQ
dx
dqqS  11 (36)

where

,
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00000
000000
00000
000000

00000
00000

000000

1
1
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




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
















 













cpsdcp

cdcpcp

sdcpcp

spcdsp

spsd

cdcpcp

spspsd

spcd

KKK
KKK

KKK
KKK

KK
KKK

KKK
KK

SRS

(37)
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.

0
0
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1
1















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
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
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







  



o

o

QRQ . (38)

From this we find:

 xQqS
dx
dq

 11 , (39)


x d

d
dqxq 0

)()( 



. (40)

The parameters , , generally speaking, may become equal to zero. 
To avoid division by zero ( which may occur in the matrix 1S ), vector 

 
dx

xdq
 will be determined and denoted as

,

/)(

/)(
/)(
/)(
/)(
/)(
/)(
/)(

)(
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
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
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

xxf

xxf
xxf
xxf
xxf
xxf
xxf
xxf

xu

hz

hy

hx

ez

ey

ex









(41)
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Then matrix 1S will assume the form


















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
























00000
00000
000000
00000
000000

00000
00000

000000
10

cpsdcp

cdcpcp

sdcpcp

spcdsp

spsd

cdcpcp

spspsd

spcd

KKK
KKK

KKK
KKK

KK
KKK
KKK

KK
S













(42)
and formula (39) will be transformed into

 xQxqSxu  110 )()( , (43)
But now the formula (analytical) integration (40) should be performed as 
follows: for the first 6 components – using the usual formula

6....,2,1,)()( 0   kduxq x
kk  . (44)

and for the last two components – using the following rule:

 x duxq 0 77 )(1)( 


 , (45)

 x duxq 0 88 )(1)( 


 , (46)

where











































,0if,0

,0if,1
,

,0if,0

,0if,1









 , (47)

In future such integration will be  denoted as 


x duxq 0 )()(  . (48)
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If functions 
   xq

dx
xdq ,  on the n -th iteration are presented as the 

series





n

k
kuu

dx
dq

1
, 




n

k
kqq

1
, (49)

then, in accordance with algorithms 6.7 and (43, 48), on the  1n -th 
iteration, where 0x , we shall have: 

)()( 101 xqSxu nn  , (50)

  
x

nn duxq 0 11 )()(  . (51)

9.2. Examples of Functions 
       wwww Shd ,Shp,Chd ,Chp

Here we shall show several functions satisfying the conditions (1.11-
1.14). For 1 cdcpsdsp kkkk  the conditions (1.11-1.14) 
are satisfied, for instance, by functions

   
    ww

ww

eShd ,eShp

,eChd ,eChp





ww

ww
(1)

or 

     
      w

w

eShd ,shShp

,eChd ,chChp





www

www
(2)

or
       
       .shShd ,shShp

,chChd ,chChp
wwww
wwww




(3)

For 1,1  cdcpsdsp kkkk  the conditions (1.11-
1.14) are met, for instance, by functions

       
       .sinShd ,sinShp

,cosChd ,cosChp
wwww

wwww



(4)
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9.3. Using the method for   )(xx    и 
1 cdcpsdsp kkkk .

In this section we are discussing the function   )(xx  

9.3.1. The general solution 
The matrix (1.42) will take the form










































00000
00000
00000
00000
000000

00000
00000

000000

10













S (1)

Let us consider, according to algorithm 6.7 and formulas (1.43, 1.48) 
the iteration process, assuming that   0xqo .

 



































0
0
0
0

0
0

11





 o

o

Qxu

, 



































0
0
0
0

0
0

)(1





 o

o

xq

, 

 















































o

o

o

o

o

o

xu

0

0
2

 , 

 













































o

o

o

o

o

o

x

xq

0

0
2

.
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 

 
 
 
 
 
 

,

0
0

1
1

1
1

22

22

3










































o

o

o

o

o

o

xxu










   

 
 
 
 
 
 










































0
0

1
1

1
1

2

22

22

2
3

o

o

o

o

o

o

xxq










.

 

 
 
 
 
 
 

,
0

0

2

22

22

22

22

22

22

2
4










































o

o

o

o

o

o

xxu









  

 
 
 
 
 
  










































o

o

o

o

o

o

xxq









22

22

22

22

22

22

3
4

0

0

32
.

 

 
   
   
 

   
   

,

0
0

1
1

1
1

32
22

22

222

22

22

222

3
5
















































o

o

o

o

o

o

xxu









  

 

 
   
   
 

   
   
















































0
0

1
1

1
1

432
22

22

222

22

22

222

4
5

o

o

o

o

o

o

xxq









.

And so on. Continuing the iterations, we may notice the following  
pattern in iterations with odd numbers

    ,)(11 xrxxu o  

        ,21 xrxxq o  




      ,14 xrxxu o  

        ,24 xrxxq o  



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     ,1 32 xrxu o       ,1 42 xrxq o
     ,1 33 xrxu o       ,1 43 xrxq o
     ,1 35 xrxu o       ,1 45 xrxq o
     ,1 36 xrxu o       ,1 46 xrxq o

and in iterations with even numbers
      ,420 xrxuxu       ,320 xruxq 

where











































o

o

o

o

o

o

u
0

0

20
,

and the series are:

      ,...
32

222
3

22
1 













  xxxr

      ,...
4322

222
4

22
2

2 












  xxxr

    ,...
32

22
3

3 












 xxxr

    ,...
4322

22
42

4 












 xxxr

Continuing the iterations, we may see that these series are power series of 
trigonometric functions, namely:

   ,sin1 xxr        ,cos12 xxr  

   ,sin1
3 xxr 


 


     ,cos11
24 xxr  


where
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 22   . (2)
So, in the iterations with odd numbers

      ,sin1 xxxu o  

        ,cos11 xxxq o  




      ,sin4 xxxu o  

        ,cos14 xxxq o  




      ,sin12 xxu o  



        ,cos11 22 xxq o  





      ,sin13 xxu o  


        ,cos11 23 xxq o  




      ,sin15 xxu o  


        ,cos11 25 xxq o  




      ,sin16 xxu o  


        ,cos11 26 xxq o  




and in iterations with even numbers

      ,cos120 xxuxu           .sin1
20 








 xuxq 


Hence, the solution is as follows:

  
 
 

  
 
 

,

)sin()(

)sin()(
)cos(1)sin()(
)cos(1)sin()(

)cos(1)(
)cos(1)sin()(
)cos(1)sin()(

)cos(1)(













































xxf

xxf
xhxhxf
xhxhxf

xxhxf
xexexf
xexexf

xxexf

q

x

x
zzhz

yyhy

xhx

zzez

yyey

xex

















 (3)
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 
  
  

 
  
  

  
  

.

)cos(1/)(

)cos(1/)(
)sin()cos(1/)(
)sin()cos(1/)(

)sin()(/)(
)sin()cos(1/)(
)sin()cos(1/)(

)sin()(/)(














































xxxxf

xxxxf
xhxxhxxf
xhxxhxxf

xxhxxf
xexxexxf
xexxexxf

xxexxf

dx
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Coefficients in (3, 4) are enumerated in the Table. 1. There it is 
specified, which coefficients are absent in certain media in the presence 
of certain charges.   In vacuum 0,0    and, in accordance with 

(1.47) 0,0   . In normal medium 0  0 .

It is easy to see that presence or absence of coefficients he,  does 
not depend on the type of medium is being considered – vacuum or 
normal medium.  If there are both electric and magnetic charges, all the 
coefficients he,  are present.

In particular,  if 0x , from (3, 4) we have:
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Table 1.
Vacuum Normal  medium

Coefficients Only 
electric 
charges

Only 
magnetic 
charges

Only 
electric 
charges

Only 
magnetic 
charges

oxe  + 0 + 0

oye  + 0 + 0

  21  oye  0 + 0 +

oze  + 0 + 0

  21  oze  0 + 0 +

oxh  0 + 0 +

oyh  0 + 0 +

  21  oyh  + 0 + 0

ozh  0 + 0 +

  21  ozh  + 0 + 0

  ox  + 0 + 0

  ox  0 + 0 0

Thus, при the solution of differential equations with disturbances in the 
form of Dirac functions )(x , the obtained functions and their 

derivatives  may contain a variable component, a step component )(x , 

a Dirac function )(x  and a constant component. 
We shall solve this problem directly as the equation (1.36). An 

example of solving equation (1.36) for 
710,25.0,1000,110,90  oo   is shown on 

Fig. 9.3.1. Fig. 9.3.1a shows the graphs of sought functions, Fig. 9.3.1b – 
graphs of these functions' derivatives, and Fig. 9.3.1с – graphs of  
residuals in the equations (1.36). The types of graphs are shown in the 
figures. The function used in the calculations is also indicated there, as 
well as the values of some parameters of this function, which appear in 
the captions under the figures ( these remarks will apply also to other 
figures of this section).
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In the solution of differential equations with disturbances in the 
form of Dirac functions )(x , the obtained functions and their 

derivatives  may contain a variable component, a step component )(x , 

a Dirac function )(x  and a constant component. 
Let us solve this problem directly as the equation (1.36) – see the 

function testMaxAna. The example of solving this equation for 
710,25.0,1000,110,90  oo   is given on Fig. 

9.3.1. The Fig 9.3.1а shows the graphs of the unknown functions, Fig. 
9.3.1в – the graphs of their derivatives and Fig. 9.3.1с –graphs of the 
residuals in equations (1.36). The types of these graphs is shown in the 
pictures. There are also shown the functions used for and in the captions 
there are also some values of this function's parameters (the same 
remarks will be true for other figures in this section).  
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9.3.2. Solution in the medium without scalar magnetic 
potential - 0
Above in general case we were dealing with a hypothetic medium, in 

which  both electric and magnetic scalar potentials may be present, as 
well as electric and magnetic currents. In a medium without scalar 
magnetic potential 0 ,  and in accordance with (1.47) - 0 . 
According to Table 1 certain coefficients are absent.

9.3.2.1. Magnetic charges in the medium without scalar 
magnetic potential  
In this case (3, 4) take the form
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We shall solve this problem directly as the equation (1.36). To do 
this we shall discard the variable function  xf  and the equation (1.24) 
in the equation system (1.21-1.28). We shall begin to solve the system of 
the remaining 7 equations. Further we shall show that the equation (1.24) 
is fulfilled when the obtained solution is substituted  to the full equations 
system. After the equation (1.24) is discarded, the vectors and matrices of 
equation (1.36) take the following form:
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Here we have in mind the following order of equations: (21, 22, 23, 28, 
25, 26, 27).
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Fig. 9.3.2.1. Magnetic charges in the medium without scalar magnetic 
potential 
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An example of solving the equation (1.36) for 
0,25.0,1000,110,90  oo   is shown on Fig. 

9.3.2.1 – see also function testMaxDiracY2. There for 06.0x  we 
see  "spikes" of certain functions, which may be explained by methodical 
errors. In the last window in all three figures we observe the error 
(residue) in the condition (1.24), which was discarded above in order to 
eliminate overdetermination of the equation system. Thus we have also 
proved the relevance of this discarding. The figures show that the 
obtained solution is in accordance with analytical solution (7, 8).

9.3.2.2. Electrical charges in the medium without scalar 
magnetic potential.
In this case  (3, 4) take the form:
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Fig. 9.3.2.2а. Electrical charges in the medium without scalar 
magnetic potential.
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As in the previous case we shall solve the same problem directly as 
the equation (1.36). An example of solving for 

710,0,1000,110,90  oo   is shown on Fig. 
9.3.2.2. 

9.3.3. Solution in vacuum
To verify the solution (3, 4) we shall now solve the problem directly 

as the equation (1.36). To do this we shall discard the equations (1.21, 
1.24) and variable functions    xfxf  ,  in the equations system 
(1.21-1.28). We shall solve a system of the remaining 6 equations. Then 
we shall show that the equations (1.21-1.28) are fulfilled at substitution of 
the obtained solution into the full system. After discarding the equations 
(1.21-1.28) vectors and matrices of the equation (1.36) take the following 
form:
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Here we are meaning the following order of equations: (1.27, 1.22, 1.23, 
1.28, 1.25, 1.26).

9.3.3.1. Magnetic charges in vacuum
Let us first discuss the case when only magnetic charges are present  

– see also function testMaxDiracY2e. The solution is as follows (7, 
8). An example of equation (1.36) solution for 

0,25.0,1000,110,90  oo   is shown on Fig. 
9.3.3.1. There for 06.0x  we see  "spikes" of certain functions, which 
may be explained by methodical errors. In the 4th and 8th  window on all 
three figures we observe the error  (residue) in the conditions (1.21) and 
(1.24), which were discarded above Thus we have proved the relevance 
of this discarding.
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Fig.. 9.3.3.1а. Magnetic charges in vacuum.
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Fig. 9.3.3.1b. Magnetic charges in vacuum.

0 0.05 0.1
0

1

2

3
x 10

4

ex(x)te
st

M
ax

D
ira

cY
2e

, f
un

ct
io

ns

0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

ey(x)
0 0.05 0.1

-1

-0.5

0

0.5

1
x 10

4

ez(x)

0 0.05 0.1
0

1

2

3

4
x 10

-18

hx(x)
0 0.05 0.1

-1.5

-1

-0.5

0
x 10

-6

hy(x)
0 0.05 0.1

0

0.5

1
x 10

-6

hz(x)

0 0.05 0.1
-2

-1

0

1

2
x 10

-16

erMax1

0 0.05 0.1
-15

-10

-5

0

5
x 10

-6

erMax4

Fig. 9.3.3.2а. Electrical charges in vacuum.
294



 Chapter 9. The Functional for Maxwell Equations

0 0.05 0.1
-2

0

2
x 10

6

ex(x)te
st

M
ax

D
ira

cY
2e

, d
er

iv
at

iv
es

0 0.05 0.1
0

1

2

3
x 10

6

ey(x)
0 0.05 0.1

0

1

2

3
x 10

6

ez(x)

0 0.05 0.1
0

2

4

6
x 10

-16

hx(x)
0 0.05 0.1

-1

0

1

2
x 10

-4

hy(x)
0 0.05 0.1

-1

0

1

2
x 10

-4

hz(x)

0 0.05 0.1
-2

0

2
x 10

-16

erMax1

0 0.05 0.1
-2

-1

0

1
x 10

-5

erMax4

Fig. 9.3.3.2b. Electrical charges in vacuum.

9.3.3.2. Electrical charges in vacuum.
Let us now discuss the case when only electrical charges are present  

– see also function testMaxDiracY2e. The solution is as follows 
(12, 13). An example of equation  (40) solution for 

710,0,1000,110,90  oo   is shown on Fig. 
9.3.3.2. 

9.3.3.3. Harmonic static magnetic field  
Let us consider a particular case when 0,0,  o  

The function (1.1в) of magnetic charge density distribution assumes the 
form 

       xyzzyx o   ChdChp,, , (18)
and remain in accordance with (3.3, 3.4) and Table 1, and and there 
remain only magnetic charge density distribution functions of the form:
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Hence for 0  there exists only  a static magnetic field  (19, 20).

9.3.3.4. Harmonic static electric field
Let us consider another particular case when 

0,0,  o  The function (1.1а)  of magnetic charge 
density distribution assumes the form

       xyztzyx o   ShdChp,,, . (21)
and remain in accordance with (3.3, 3.4) and Table 1, and and there 
remain only the electric field density distribution functions 
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Hence for 0  there exists only a static electric field which satisfies 
the equations (22, 23).

9.4. Using the method for   )(xx   and 
1 cdcpsdsp kkkk .

In this section the step-function   )(xx  is being considered.
9.4.1. General solution
Similarly to the Section 9.3.1 and according to algorithm  6.7 and 

formulas   (1.43, 1.48) we shall now discuss the iterative process, 
assuming that   0xqo .
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And so on.  Since we have here the same matrix (3.1), on each iteration 
the difference of functions   )(, xqxu , obtained here an in the Section 
9.3.1, will be only in the variable multiplier placed before the square 
brackets. More specifically, if the multipliers in Section 9.3.1 for the 
functions   )(, xqxu  were accordingly

,...!2,,, 2xx   и ,...!3,!2,, 32 xxx
here for  the functions   )(, xqxu  they are accordingly

,...!3,!2,, 32 xxx  и ,...!4,!3,!2, 432 xxxx
Hence, the functions   )(, xqxu  in this case are negative integrals of the 
similar functions from Section 9.3.1. And in this case the solution  will be 
a negative integral of the solution (9.3.3, 9.3.4), and has the following 
form:  
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Fig. 9.4.1а. General solution for   )(xx   and 
1 cdcpsdsp kkkk .
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Fig. 9.4.1b

We shall find the solution of this problem by solving directly the 
equation (1.36). An example of solving equation (121) for 

54 102,105,200,6000,2500  oo   is given on 

the Fig. 9.4.1 – see also function testMaxAnaS. The Figures show 
that the obtained solution complies with the analytical solution (1, 2). No 
components of the form   )sin(1 xx   due to the fact that for 
small x , this term is close to zero.
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9.4.2. Magnetic charges in vacuum
In this case (1, 2), taking into account Table. 1 will be:
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We shall find the solution of this problem by solving directly the 
equation (1.36) – see also function testMaxAnaS. An example of 
solving equation (121) for 

0,25.0,1000,110,90  oo   is given on Fig. 
9.4.2. The Figures show that the obtained solution complies with the 
analytical solution (3, 4). It is not visible members with small e   (see 
Table. 1), and component )(xf  - systematic error, which has a value 

510 .
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Fig. 9.4.2а. Magnetic charges in vacuum
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Fig. 9.4.2в.
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9.4.3. Electrical charges in vacuum.
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Fig. 9.4.3а. Electrical charges in vacuum
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Fig. 9.4.3b.

In this case (1, 2), taking into account 1б, assume the form :
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We shall find the solution of this problem by solving directly the 
equation (1.36) – see also function testMaxAna. An example of 
solving equation (121) for 

710,0,1000,110,90  oo   is given on Fig. 
9.4.3.  The Figures show that the obtained solution complies with the 
analytical solution (5, 6). There are no small members with small h   see 
Table 1), and the component  )(xf  is the methodical error of the 

value  810 .

9.4а. Using the method for impulse function  x  and 
1 cdcpsdsp kkkk .

In this Section we shall consider impulse function
   )()(   xxx , 

where   - the impulse width. First of all we must note that for a small 
enough    
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  )sin()(cos)cos( xxx   , (1)
  )cos()(sin)sin( xxx   . (2)

Let us denote as   )(),1.4()(),3.3( xqxqxq  ff  the 

function  found for  x  being: Dirac function, step function and 
impulse function, accordingly.

The solution in this case may be found as the difference :
  )()(   xqxqxq , (3)

where )(xq  are determined by (4.1). Getting this difference from (1, 
2),  we find

 
    
    

 
    
    

 
 

,

)sin()(

)sin()(
)cos(1)sin()(
)cos(1)sin()(

)cos()(
)cos(1)sin()(
)cos(1)sin()(

)cos()(













































xxf

xxf
xhxhxf
xhxhxf

xhxf
xexexf
xexexf

xexf

q

x

x
zzhz

yyhy

xhx

zzez

yyey

xex




















(4)

Disregarding the values he  ,  as small compared with he ,  (See 
Table. 1), and discarding the items with he  ,  in formulas (4.1) and (4), 
we notice that

  )(xqxq


  . (5)

Let us assume that the charges are distributed in a plate   -thick. 
Let us call plate density of a charge – a charge located in a unit of area of 
the plate. Let us denote as  ,  the plate density of an electric and a 

magnetic charges accordingly, and as  oo  ,  - their amplitudes. For a 
uniform distribution of charges through the plate's thickness    

  oooo , . (6)

The functions )4(),1.4(),3.3( fff  qqq   are 
determined according to coefficients shown in the Table 1. Let us 
consider also the functions  qqq ,, , which differ from the 
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previous ones by the fact, that their coefficients depend not on volume 
density of charges  oo  , , but on plate density of the charges 

oo  , . Because of (6) we have:

  qqqqqq   ,, . (7)
Combining (5, 7)  we get:

  )(xqxq
  . (8)

It means that
for given oo  ,  the functions q  
do not depend on the plate's thickness. 

In particular, for 0  we have     oooo ,,   or

   oooo 


,,
0

 


. (9)

The last formula reveals the physical sense of using Dirac functions 
as the charges distribution functions. 
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Fig. 9.5.1а. General solution for   )(xx   , 
1,1  cdcpsdsp kkkk , 

modeFig=1, mode=2, modeZ=2.
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Fig. 9.5.1b, modeFig=2, mode=2, modeZ=2.
9.5. Using the method for   )(xx    and 

1,1  cdcpsdsp kkkk .
We shall find the solution of this problem by solving directly the 

equation (1.36) - see also function testMaxAna. An example of 
equation (1.36) solution for 

710,25.0,1000,110,90  oo   is given on Fig. 
9.5.1.  In this case the functions (1.15) are monotonous and are expressed 
by hyperbolic sines and cosines. 

9.6. Using the method for   )(xx   and 
1,1  cdcpsdsp kkkk .

We shall find the solution of this problem by solving directly the 
equation (1.36) – see also function testMaxAnaS. An example of 
equation (1.36) solution for 

54 102,105,200,6000,2500  oo   is given on 
Fig. 9.6.1. In this case the functions (1.15) are monotonous and are 
expressed by hyperbolic sines and cosines. 
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Fig.  9.6.1а. General solution for   )(xx  , 
1,1  cdcpsdsp kkkk ,  modeFig=1, mode=2, modeZ=2.
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Fig. 9.6.1b,  modeFig=1, mode=2, modeZ=2.
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10. A summary of models from Sections 
9.6, 9.7, 9.8.
Here, for convenience sake we shall summarize the main 

characteristics of the models. Table 1 shows the magnetic and electric 
charges density distributions formulas, and Table 2 contains the formulas 
for intensities and scalar potentials. Further we shall be using the 
following notations:

   ,CosSin ztsc  (1)

   ,SinCos ztcs  (2)

   ,SinSin ztss  (3)

   ,CosCos ztcc  (4)

 ,Cos zt   (5)
 ,Sin zt   (6)

,sscc  (7)

,cssc  (8)

 zyt   Cos2 , (9)

 zyt   Sin2 .           (10)

Table 1.
 

9.6.5. Exponentially Distributed Charges Modeling
yx

cco e   yx
sso e  

9.6.6. Periodically Distributed Charges Modeling

  y
cco ex  Sin   y

sso ex  Sin
9.6.7. Modeling with Charges Distributed According to Dirac 
Function
- independent electric and magnetic fields

  y
cco ex     y

sso ex  
9.6.7а. Magnetic wave in simulation with charges distributed 
according to Dirac function

308



 Chapter 9. The Functional for Maxwell Equations

  y
sso ex  

9.6.7в. Electric wave in simulation with charges distributed according 
to Dirac function

  y
cco ex  

9.6.8. Modeling of wave with Charges Distributed According to Step 
Function

  y
cco ex     y

sso ex  
9.6.9. Modeling of wave with Charges Distributed Non-uniformly
-  x  - multi-step trapezium (in particular, square pulse)

  y
cco ex     y

sso ex  
9.7.1. Electromagnetic oscillations with exponentially distributed 
charges. Case 1.

yx
cco e   yx

sso e  
9.7.2. Electromagnetic oscillations with exponentially distributed 
charges. Case 2.

yx
sso e   yx

cco e  
9.7.3. Electromagnetic oscillations with linear movement of 
exponentially distributed charges
- longitudinal electromagnetic  wave

,yx
o e   yx

o e  
9.7.3а. Electromagnetic oscillations at compound motion of the 
exponentially distributed charges
- longitudinal electromagnetic  wave

,2
x

o e  ,2
x

o e 
9.7.4. Magnetic oscillations  with charges distributed according to 
Dirac function. Case 1.

y
sso ex  )(

9.7.5. Magnetic oscillations  with charges distributed according to 
Dirac function. Case 2.

y
cco ex  )(

9.7.6. Magnetic oscillations with linear movement of charges, 
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distributed according to Dirac function
- possibly magnetostatic field
- longitudinal magnetic wave zH
- energy-dependent magnetic wave standing magnetic wave xH

y
o ex  )(

9.8.4. Modeling of wave with electric and magnetic charges 
exponentially distributed along y, z axes and with Dirac distribution 
along х axis.
- independent electric and magnetic fields

   xet zy
o   Cos    xet zy

o   Sin
9.8.4а. Modeling of wave with magnetic and electric charges 
distributed periodically along the y, z axes and with Dirac 
distribution along х axis
- independent electric and magnetic fields

   
   xz

yto






Cos

CosCos

or
   

   xz
yto







Cos
CosSin

   
   xz

yto






Cos

CosSin

9.8.5. Modeling of wave with magnetic charges distributed 
exponentially along the axes y, z and with Dirac function distribution 
along х axis
- energy-dependent standing magnetic wave xH
- possibly magnetostatic field

   xet zy
o   Sin

9.8.5а. Modeling of wave with magnetic charges periodically 
distributed along the axes y, z  and with Dirac distribution along the 
х axis
- energy-dependent standing electric wave xE
- possibly magnetostatic field

   
   xz

yto






Cos

CosSin

9.8.6. Modeling of wave with electric charges exponentially 
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distributed along the axes y, z  and with Dirac distribution along the 
х axis
- energy-dependent standing electric wave xE
- possibly electrostatic field

   xet zy
o   Cos

9.8.6а. Modeling of wave with electric charges distributed periodically 
along the axes y, z and with Dirac distribution along the х axis
- energy-dependent standing electric wave xE
- possibly electrostatic field

   
   xz

yto






Cos

CosCos

Table 2.
xEq 1 yEq 2 zEq 3 xHq 4

yHq 5 zHq 6 7q 8q
Sections 9.6.5, 9.6.6

xq  9.6.5 xe

xq  9.6.6  xSin 

yq ye
 zCos   zCos  -  zSin   zSin zq
 zSin  -  zCos  -  zCos  -  zSin 

-  tCos  -  tCos  -  tCos  -  tSin tq
-  tSin   tSin   tSin  -  tCos 

Sections 9.6.7, 9.6.7а , 9.6.7в.
 xCos   xSin   xSin   xCos xq
 xSin   xSin   xSin   xSin 

yq ye

 zCos   zCos  -  zSin   zSin zq
 zSin  -  zCos  -  zCos  -  zSin 

-  tCos  -  tCos  -  tCos  -  tSin tq
-  tSin   tSin   tSin  -  tCos 
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Sections 9.7.1, 9.7.2, 9.7.3.

xq xe

yq ye

cc cc cs - sszq , tq
9.7.1 - ss sc sc cs

ss ss sc cczq , tq
9.7.2 cc cs cs sc

   zq , tq  
9.7.3    

Sections 9.7.3а.

xq xe

2 2 2 2zq , zq , tq

2 2 2 2
Sections 9.7.4, 9.7.5, 9.7.6.

xHq 4 yHq 5 zHq 6 8q

xq  xCos   xSin   xSin   xSin 

yq ye

zq , tq
9.7.4

- ss - ss sc cs

zq , tq
9.7.5

cc cc cs sc

zq , tq
9.7.6

   

Sections 9.8.4, 9.8.5, 9.8.6
 xCos   xSin   xSin   xCos xq
 xSin   xSin   xSin   xSin 

yq )exp( y

zq )exp( z

 tCos   tCos   tCos   tSin tq
 tSin   tSin  -  tSin  -  tCos 
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Sections 9.8.4а, 9.8.5а, 9.8.6а
 xCos   xSin   xSin   xCos xq

 xSin   xSin   xSin   xSin 
)( yCos  )( ySin  )( yCos  )( yCos yq

)( ySin  )( yCos  )( yCos  )( yCos 
)( zCos  )( zCos  )( zSin  )( zCos zq
)( zCos  )( zSin  )( zCos  )( zCos 

 tSin   tSin   tSin   tCos tq

 tCos   tCos   tCos   tSin 
Sections 9.8.4а

 xCos   xSin   xSin   xCos xq
 xSin   xSin   xSin   xSin 

)( yCos  )( ySin  )( yCos  )( yCos yq
)( ySin  )( yCos  )( yCos  )( yCos 
)( zCos  )( zCos  )( zSin  )( zCos zq
)( zCos  )( zSin  )( zCos  )( zCos 

 tCos   tCos   tCos   tCos tq

 tCos   tCos   tSin   tSin 
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9.11. The Maxwell Equations in Cylindrical 
Coordinates
1. The first variant
Above we had considered the solution of Maxwell equations in 

Cartesian coordinates (9.5.1) for certain functions of density distribution 
for electric and magnetic charges. Here we shall consider the solution of 
the same problem in cylindrical coordinates ,, yr . And here the 
Maxwell equations instead of  ( 9.5.1)  take the following form ( see for 
instance  [51]):

1.       011



















dx
d

t
EH

rr
rH

r
ry 




2.       011



















dy
d

t
E

r
rH

r
H

r
yr 




3.  
0'1

















 

d
d

rt
E

y
H

r
rH

r
ry

4.       01





















d
rd

rt
HE

ry
E ry (1)

5.       011
















dy
d

t
H

r
rE

r
E

r
yr 




6.  
01

















 

d
d

rt
H

y
E

r
rE

r
ry

7.   011




















E

ry
E

r
rE

r
yr

8.   011




















H

ry
H

r
rH

r
yr

Here the electric potential (contrary to the previous) is denoted as   . 
Formally the transformation (9.5.1) in (1) may be performed according to 
the rule:

o the coordinates are re-denoted as:

314



 Chapter 9. The Functional for Maxwell Equations

o  rzyyrx ,, ,
o the derivatives are re-denoted as:

o
 




















 H

rz
H

y
H

y
H

r
rH

rx
H 1,,1

.

text

)/(~ rz

y (~y)

r (~x)

Fig. 1.

This transformation is explained on the Figure 1, where the axis oy  is a 
generatrix  of the cylinder,  the axis orox - is directed along the 
cylinder radius,  the axis    roz  is an arc of the cylinder.

We shall assume that the charges are distributed along the circle of 
radius R, and their distribution density functions may be presented as

       RytRtyr o   ChCh,,, , (2)

       RytRtyr o   ChCh,,, . (3)
We shall search for the solution of equations (1-3) in the form

       rfytRtzrE err  ChCh,,,  , (4)

       rfytRtzrE ey ChCh,,,  , (5)
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       rfytRtzrE ezz  ChSh,,,  , (6)

       rfytRtzrH hrr  ChCh,,,  , (7)

       rfytRtzrH hy ChCh,,,  , (8)

       rfytRtzrH hzz  ChSh,,,  , (9)

       rfytRtzr  ChSh,,,  , (10)

       rfytRtzr  ChSh,,,  , (11)

where the functions

 
       
        












rfrfrfrf

rfrfrfrf
xg

hhy

hreeyer





,,,

,,,,
(12)

образуются из функций (1.1.12) по следующему правилу:  
тригонометрические функции вида )cos(),sin( xx   заменяются 

на функции вида 
   

r
Rr

r
Rr )cos(,)sin(  

 соответственно. 

are formed from the functions (1.1.12) by the following rule:  
trigonometrical functions )cos(),sin( xx   are changed to the 

functions 
   

r
Rr

r
Rr )cos(,)sin(  

 accordingly.

Let us substitute the functions (4-12) into equations (1), differentiate and 
reduce the common factors. Then we shall get an equations system with 
respect to the coefficients of functions  (12), divided by r . From here it 
follows that the solution of this problem in cylindrical coordinates differs 
from the solution in Cartesian coordinates by a factor  

Rr
r
R

 , .

This means that in Cartesian coordinates there exist  undamped 
oscillations along the coordinate  x , and in cylindrical coordinates – 
oscillations , damped by hyperbolic law, along the coordinate   r .

The function of intensity along the axis or  has the form of 
sinusoid with monotonically decreasing amplitude.
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2. The second variant
In contrast to the previous look at a different location of cylindrical 

coordinates - see Fig. 2, where the axis ox  is perpendicular to the plane 
of the figure, the axis ox  is directed along the radius,   - the angular 
coordinate.

text

)/(~ rz
r (~y)

Fig. 2.

In this case Maxwell's equations instead of (9.5.1) take the form:

1.       011


















dx
d

t
EH

rr
rH

r
xr 




2.       01


















dr
rd

rt
E

x
HH

r
rx 




3.     0'1















 

d
d

rt
E

r
rH

rx
H xr

4.       011















dx
d

t
HE

rr
rE

r
xr 


 (1)
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5.       01















dr
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rt
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EE

r
rx 




6.     01












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
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d
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rt
H
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rE

rx
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7.   011


















E

rr
rE

rx
E rx

8.   011








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


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



H

rr
rH

rx
H rx

Here the electric potential (contrary to the previous) is denoted as   . 
Formally the transformation (9.5.1) in (1) may be performed according to 
the rule :

o the coordinates are re-denoted as:
 rzryxx ,, ,

o the derivatives are re-denoted as:
 




















 H

rz
H

r
rH

ry
H

x
H

x
H 1,1, .

This transformation is explained on the Figure 1, where the axis ox  is 
perpendicular to the plane of the ring, the axis oroy   is directed 
along the radius, the axis  roz  - the arc of ring.
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9.12. Monochromatic Fields
Here we shall consider the intensities of monochromatic fields, the 

potentials and charges in complex form [51]:

  tiezyxAA ,, , (1)
 AA Reˆ  , (2)

where
Â  - true instantaneous values,
A  - complex values,
A  - complex amplitudes,
  - angular frequency,
i  - imaginary unit.

Let us rewrite the system of symmetrical Maxwell equations (9.5.1) for 
monochromatic fields in the complex form [51]:

1.
0









dx
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H
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E
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dz
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E
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Let us remind that here
  -  magnetic permeability,
  - dielectric permittivit,
  - electric charge density,
  - hypothetic magnetic charge density,

 Kgradj  - electric current density,
 Lm grad  - hypothetic magnetic current density, 

  - electric scalar potential,
  - hypothetic magnetic scalar potential, 
  - electrical conductivity,
  - hypothetic magnetic conductivity.

The equations (3) may be rewritten in  abbreviated form:
0rot  EiH , (4)

0rot  HiE , (5)

,0div  E (6)

0div  H . (7)
Let us denote

EiE ~ , (8)
 i~ . (9)

and rewrite (4-7) in the form
0~rot  EH , (10)

0rot-  HE , (11)

,0ˆˆdiv  E (12)

0div  H . (13)

Evidently, the complex amplitudes for  EE,~  are identical and equal to 

E . Also the complex amplitudes for  ,~  are identical and equal to 
 . Therefore, (10-13) may be rewritten as follows after discarding the 

common factors 
tie  :
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0rot  EH , (14)
0rot-  HE , (15)

,0div  E (16)

0divH   . (17)

This equations system may be solved by the aforesaid methods.  After its 
solution the complex values of the variables are determined as

tieEiE 
 ,

tieHH 
 ,

tie   ,
tie   ,

tiei   ,
tie   .
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9.13. The Static Electric and Magnetic Fields
Here we shall consider plane static electric and magnetic fields that 
emerge around a charged plate, the end of a permanent magnet or a plane 
conductor. It will be shown that the intensities of such fields give a 
minimum to a certain functional.   We also are presenting a method for 
calculation of such fields, consisting in gradient descent along this 
functional  [54].

1. The Electric Field of a Charged Infinite Strip
The Maxwell equations for electrostatics are as follows: 

,)(div



E . (1)

,0)(rot E . (2)
where

  - absolute permittivity of the environment
  - density of charges.

Let the charged plate has a form of infinite strip – see Fig. 1.

x
z

y
oA

B
C D

E F

Рис. 1.

In this case the intensity 0zE  and electrostatic equations take the 
form













y
E

x
E yx ,  (3)
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0








y
E

x
E xy ,  (4)

as in this case

,)(div 













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.)(rot 
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












y
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E xy
. (6)

2. The Variational Principle for Plane Static Electric 
Fields
Let us consider a functional

 





















x
dx

dx
dq

dx
dqLqF 

2

2
1)( . (1)

from a function )(xq , where  L is a known constant, and  )(x – a 
known function. The extremal of this functional is described by an 
equation of the form: 

02

2
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










dx
dq

dx
qdL . (2)

or, after integrating,  

0const  
dx
dqL . (3)

Therefore, when descending on this functional along its gradient

dx
d

dx
qdLp 










 2

2
(4)

the optimal value of the function )(xq will be found, satisfying the 
equation (3).

Let us now consider a vector-function
    yxEyxEE yx ,,, (5)

and the following functional
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or
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where ),( yx  is a known function.
Now we shall reason by analogy with the aforesaid. According to   

Ostrogragsky formula  [16] it is easy to show that the extremal of this 
functional is described by two equations – extremals by the functions 
   yxEyxE yx ,,, :
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Here the first two members in both equations are the result of 
differentiation, according to Ostrogradsky theorem, of the two first 
members of the functional; the third and the fourth members in the first 
equation are the result of differentiating the third summand of the 
functional; the third and fourth members of the second equation are the 
result of differentiating the fourth summand of the functional; the fifth 
member of the first equation is the result of differentiating the fifth 
summand of the functional.. Taking into account (1.5, 1.6), the equations 
(7) are transformed into the form:
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Since the field   Е does not have a permanent component, from (8) 
follows (1.1, 1.2). Therefore, the descent on the functional (6а) in the 
direction of gradient
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will give us the optimal value of the function ),( yxE , satisfying the 
Maxwell equations Максвелла (1.1, 1.2) or (1.3, 1.4).

3. The Magnetic Field Around an Elongated End of a 
Permanent Magnet
Let us consider a permanent strip magnet, magnetized in the 

direction of the strip thickness – Fig. 1 shows such a construction. The 
Maxwell equations around the end-strip of such magnet are: 

,)(div



H . (1)

,0)(rot H . (2)
where

  - the absolute permeability of the environment,
  - the density of magnetic charges, which is equal to the 

induction on the magnet end.  
These equations and the equations of the electric field of a charged strip 
are identical  up to the notations and constants. It means that for the 
calculation of such magnetic field the aforesaid method can be used.

4. The Magnetic Field of a Strip Conductor
We shall assume that the conductor carrying a constant current, is 

formed as an infinite  strip along the z coordinate – see Fig. 1. Then the 
intensity 0zH  and Maxwell equations will take the following form:

0








y
H

x
H yx ,  (1)
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0

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





dz
dK

y
H

x
H xy ,  (2)

where
o axis ох is directed perpendicular to the plane of the strip,
o axis оу is directed across the strip,
o axis оz is directed along the strip,
o electric current density

 Kgradj . (3)
o   - absolute magnetic permeability.

We denote
  - electric scalar potential,
  - electrical conductivity,

zj  - projection of vector of electric current density j on the axis оz. 
Then we shall get

dz
dKjz  , (4)

dz
djz
 , (5)

dx
d

dx
dK  , (6)

K . (7)
Let us rewrite the equation (2) as

0







J

y
H

x
H xy ,  (8)

where J  is the projection of the vector of constant current density to the 
plane хоу . 

5. Variational Principle for a Strip Conductor
The equations (4.1, 4.8) may be written as

,0)(div H (1)

0)(rot  JH . (2)
By analogy with Section 2 let us consider the following functional
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where ),( yxJ is a known function.  The extremal of this functional is 
described by two equations – extremals by the functions 
   yxHyxH yx ,,, :
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Since the field Н does not have a permanent component, from   (4) 
follow (1, 2). Therefore, the descent on the functional (3) in the direction 
of gradient
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находится оптимальное значение функции ),( yxH , 
удовлетворяющее уравнениям Максвелла (1, 2).

6. Variational Principle for Three-dimentional Static 
Electric Fields  
The Maxwell equations for electrostatics in this case also will be of 

the form  (1.1, 1.2). But in this case they turn into 4 equations with 
respect to three unknown functions 
     zyxEzyxEzyxE zyx ,,,,,,,, :
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This system formally is overdetermined. But in the case of  
axisymmetric structure 9around the ох axis) the equation (4) becomes an 
identity and may be excluded. Further we shall consider only such 
structures (although, generally speaking, the overdetermining is excluded 
even in the general case   – in numerical modeling the solution found by 
(1-3), satisfies the equation (4)). In such structure, described by two 
equations (2, 3) the rotor will be denoted by 0)(roto E .

By analogy with Section 2 let us consider the functional
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where ),( yx  is a known function. By analogy with the aforesaid we 
may show that the extremal of this functional is described by three 
equations–extremals by the functions-txtremals 
     zyxEzyxEzyxE zyx ,,,,,,,, :
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Since the field Е does not have a permanent component, from  (13) 
follow (1, 2, 3). Therefore, the descent on the functional (12) in the 
direction of gradient
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will give us the optimal value of the function ),,( zyxE ,   , satisfying 
the Maxwell equations Максвелла (1, 2, 3).

In the same way we can build a functional for static magnetic fields, 
formed by magnet's ends or by plane conductors.
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Сhapter 10. Principle extremum 
of full action

1. The Principle Formulation
The Lagrange formalism is widely known – it is an universal 

method of deriving physical equations from the principle of least action. 
The action here is determined as a definite integral - functional

   2
1

)()()( t
t dtqPqKqS (1)

from the difference of kinetic energy )(qK  and potential energy )(qP , 
which is called Lagrangian

)()()( qPqKq  . (2)
Here the integral is taken on a definite time interval 21 ttt  , and q   
is a vector of generalized coordinates, dynamic variables, which, in their 
turn, are depending on time. The principle of least action states that the 
extremals of this functional (ie equations in which it takes its minimum 
value), on which it reaches its minimum, are equations of real dynamic 
variables (i.e. existing in reality).

For example, if the energy of system depends only on functions q  

and their derivatives with respect to time q , then the extremal is 
determined by the Euler formula [16]

    0














q
PK

dt
d

q
PK

. (3)

The Lagrange formalism is applicable to those systems where the 
full energy (the sum of kinetic and potential energies) is kept constant. 
The principle does not reflect the fact that in real systems the full energy 
(the sum of kinetic and potential energies) decreases during motion, 
turning into other types of energy, for example, into thermal energyQ , i. 
e. there occurs energy dissipation. The fact, that for dissipative systems 
(i.e., for system with energy dissipation) there is no formalism  similar to 
Lagrange formalism, seems to be strange: so the physical world is found 
to be divided to a harmonious (with the principle of least action) part, 
and a chaotic ("unprincipled") part. 
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The author puts forward the principle extremum of full action, 
applicable to dissipative systems. We propose calling full action a definite 
integral – the functional

  2
1

)()( t
t dtqq (4)

from the value
 )()()()( qQqPqKq  , (5)

which we shall call Energian. In it )(qQ  is the thermal energy. Further 
we shall consider  a full action quasiextremal, having the form:  

    0








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





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q
Q

q
PK

dt
d

q
PK

. (6)

Functional (4) reaches its extremal value (defined further) on 
quasiextremals. The principle extremum of full action states that the 
quasiextremals of this functional are equations of real dynamic processes

Right away we must note that the extremals of functional (4) 
coincide with extremals of functional (1) - disappears term, 
corresponding to )(qQ .

Let us determine the extremal value of functional (5). For this 
purpose we shall "split" (ie replace) the function )(tq  into two 
independent functions )(tx  and )(ty  , and the functional  (4) will be 
associated  with functional

  2
1

),(),( 22
t
t dtyxyx , (7)

which we shall call   "split" full action. The function ),(2 yx  will be 
called "split" Energian (by analogy with the Lagrangian). This functional 
is minimized along function )(tx  with a  fixed function )(ty  and is 
maximized along function )(ty  with a fixed function )(tx . The 
minimum and the maximum are sole ones. Thus, the extremum of 
functional (7) is a saddle line, where one group of functions ox  

minimizes the functional, and another - oy , maximizes it.  The sum of 
the pair of optimal values of the split functions gives us the sought 
function oo yxq  , satisfying the quasiextremal equation (6). In 
other words, the quasiextremal of the functional (4) is a sum of extremals 

oo yx ,  of functional (7), determining the saddle point of this 
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functional. It is important to note that this point is the sole extremal 
point – there is no other saddle points and no other minimum or 
maximum points. Therein lies the essence of the expression "extremal 
value on quasiextremals". Our statement 1 is as follows:
 

In every area of physics we may find correspondence between full 
action and split full action, and by this we may prove that full action 
takes global extremal value on quasiextremals.  

Let us consider the relevance of statement 1 for several fields of physics.  

2. Electrical Engineering
Full  action in electrical engineering takes the form (1.4, 1.5), where

.)(,
2

)(,
2

)(
22

qqRqQEqSqqPqLqK 












 (1)

Here stroke means derivative , q  - vector of functions-charges with 
respect to time, E  - vector of functions-voltages with respect to time, L  
- matrix of inductivities and mutual inductivities, R  - matrix of  
resistances, S  - matrix of inverse capacities, and functions   

)(),(),( qQqPqK  present magnetic, electric and thermal energies 
correspondingly. Here and further vectors and matrices are considered in 
the sense of vector algebra, and the operation with them are written in 
simplified form. Thus, a product of vectors is a product of column-
vector by row-vector, and a quadratic form, as, for example, qqR   is a 
product of row-vector q  by quadratic matrix R  and by column-vector 
q .

It was shown above that such interpretation is true for any 
electrical circuit

The equation of quasiextremal in this case takes the form: 
0 EqRqLSq . (2)

Let us (1) в (1.5), write the Energian (1.5) in an expanded form














 qqREqSqqLq

22
)(

22
. (3)

Let us present the split Energian in the form
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yxRExSxxL

yRxEySyyL
yx

22

22

2 ),( . (4)

Here the extremals of integral (1.7) by functions )(tx  and )(ty , found 
by Euler equation, will assume accordingly the form: 

0222  EyRxLSx , (5)
0222  ExRyLSy . (6)

By symmetry of equations (5, 6) it follows that optimal functions 0x  and 

0y , satisfying these equations, satisfy also the condition

00 yx  . (7)
Adding the equations (5) and (6),  we get equation (2), where

oo yxq  . (8)
It was shown above, that  conditions (5, 6) are necessary for the existence 
of a sole saddle line.  It was also shown above that  sufficient condition 
for this is   that the matrix L  has a fixed sign, which is true for any 
electric circuit. 

Thus, the statement 1 for electrical engineering is proved.  From it 
follows also statement 2:

Any physical process described by an equation of the form  (2), 
satisfies the principle extremum of full action. 

3. Mechanics
Here we shall discuss only one example - line motion of a body 

with mass m  under the influence of a force f  and drag force qk  , 
where k  - known coefficient, q  - body's coordinate. It is well known 
that

qkqmf  . (1)
In this case the kinetic, potential and thermal energies are accordingly:

qkqqQfqqPqmqK  )(,)(,2)( 2 . (2)
Let us write the Energian  (1.5) for this case:

qkqfqqmq  2)( 2 . (3)
The equation for Energian in this case is (1)
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Let us  present the split Energian as:
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It is easy to notice an analogy between Energians for electrical 
engineering and for this case, whence it follows that Statement 1 for this 
case is proved. However, it also follows directly from Statement 2. 

4. Electrodynamics
Further instead of the general-action extremum principle with regard 

to energies we shall discuss the similar general-action extremum principle 
with regard to  powers.

4.1. The power balance of electromagnetic field
The equation of electromagnetic field power balance  in differential 

form is well known [48]. It has the following form
0 CQEH PPPP , (1)

where

P  - the density of  power flow through a certain surface  ,

EHP  - the density of electromagnetic power of an electromagnetic 
field, 

QP  - the density of heat loss power,

CP  - the density of outside current sources power.
Also

 HEP  div (2)
or, according to a known formula of vector analysis,

)(rot)(rot EHHEP  , (3)

dt
dEE

dt
dHHPEH   , (4)

EJPQ 1 , (5)

EJPC 2 , (6)
where

  - absolute permittivity,
  - absolute magnetic permeability,
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1J  - the density of conduction current,

2J  - the current density of outside current source.
Here and further the three-component vectors 

)(rot),(rot,,,,,, 21 EHJJ
dt
dEE

dt
dHH  are considered   vectors in 

the sense of vector algebra. So the operations of multiplication for them 
may be written in simplified form. For instance,  a product of vectors 

)(rot HE   is a product of column-vector E  by row-vector )(rot H .
Let us denote 

21 JJJ  , (7)

CQJ PPP  . (8)

 KJ grad , (9)
where K  is a scalar potential. From (5-9) it follows,  that the power of 
an electric current

 KEPJ grad . (10)
The charges in the field of scalar potential possess potential energy. The 
corresponding power

 KP  ,           (11)
where   - distribution density of summary (free and outside) charges. 

Let us assume now, that there exist magnetic charges with density 
distribution     and magnetic currents

 LM grad , (12)
where L  is a scalar parameter. Then by symmetry we should assume that 
there exists magnetic current power 

 LHPM grad ,           (13)
potential energy of magnetic charges and the corresponding power

 LP  ,            (14)
where   - density of magnetic charges.

Let us denote also the summary currents power (electric and 
magnetic)

MJJM PPP  .          (15)
and the total power of charges (electric and magnetic)

 PPP  .          (16)
Then the equation of power balance of electromagnetic field takes 

the form:
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0 PPPP JMEH ,          (18)
where the  components are determined as (3, 4, 15, 16) accordingly.

4.2. Building the  functional  for Maxwell equations
Let us consider a electromagnetic field of volume V , limited by 

surface S . Full action in electrodynamics has suсh a form

  













T

SV
JMEH dtdSdVPPP

0
 ,        (21)

Here we have in mind that  the volume density of the power of 
electromagnetic field EHP  is determined from (4), the volume density 
of the total power of the currents is determined from (15, 16), and the 
Pointing vector is

 HE  .          (22)
Here the first component is the electromagnetic field in volume V , the 
second component is the currents power in volume V , and the third 
component  is the power of the charges in the volume V , and the fourth 
component is the instantaneous value of density of  power flow through 
surface S .

По теореме Остроградского имеем:
   dSHEdVHE

SV
 div .         (23)

Taking regard of formulas (2, 22), from (21) we get:

    




































 

T

z y x
JMEH dtdzdydxPPPP

0
       (24)

or

   





































T

z y x
dtdzdydxtzyxq

0
),,,(( ,         (25)

where q  - the vector of unknown functions ),,,( LKHE , and the 
Energian for electrodynamics has the form: 

 PPPPq JMEH  )( .          (26)
Taking regard of formula (4, 3, 18), we get
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   

































 












LLHKKE

dt
dEE

dt
dHHHEEH

q
gradgrad

)(rot)(rot
)( .        (27)

Let us remind that the necessary conditions of extremum for a functional 
from functions of several independent variables - the Ostrogradsky 
equations [16]  for each function have the form  (9.1.1.1а).

Let us consider a vector of unknown scalar functions of four 
variables (x,y,z,t):

 LKHHHEEEq zyxzyx ,,,,,,, .        (27в)
Let us write the equation of quasiextremal for the functional (27) for 

each   i -th component   iq  of the vector q

 
0,,, 


































































i
EH

ii

tzyxa i
JM

i
JM

q
P

q
P

q
P

dadq
P

da
d

q
P


.         (28)

The first four components here corresponds to Ostrogradsky equation 
(9.1.1.1а), and two others are ordinary partial derivatives. Differentiating 
by unknown functions according to  (28), and combining then the three 
projections into a vector, we get:

 By variable  zyx EEEE ,, :

  0gradrot-  K
dt
dEH  ,        (29)

 By variable  zyx HHHH ,, :

  0gradrot  L
dt
dHE  ,        (30)

 By variables LK ,  accordingly,

0div,0div 














 





 HE .        (31)

We may notice that these equations are symmetrical Maxwell equations 
(since they have more magnetic charges, the scalar potentials and 
currents).

336



Сhapter 10. Principle extremum of full action

4.3. Splitting the functional for Maxwell equations
Let us associate with the functional (25) the functional oа split full 

action

   





































T

z y x
dtdzdydxqq

0
22 ),( , (32)

Let us present the split Energian in the form

 

 

   

    














































 








 








 







 









 










 


























LLHLLH

KKEKKE

dt
EdE

dt
EdE

dt
HdH

dt
HdH

HEEH

HEEH

qq

gradgrad

gradgrad

22

)(rot)(rot
2
1

)(rot)(rot
2
1

),(2
 (33)

Above it was proved that  the extremals of integral (32) by functions 
qq , , found from Ostrogradsky equation, are the necessary and 

sufficient conditions of the existence of a sole saddle line, and the 
optimal functions  oo qq  , , satisfying these extremals, satisfy also the 
condition  

oo qq  . (34)
Adding these extremals, we shall get the Maxwell equations system (29-
31), where 

oo qqq  . (35)
- see (27в).  Consequently, the Statement 1 for electrodynamics is proved.
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5. Principle extremum of full action for 
hydrodynamics
This principle is discussed in detail in [53]. The hydrodynamic 

equations for a viscous incompressible and compressible fluid follow 
from it.

6. Computational Aspect
Thus, the proposed variational principle permits to build for various 

physical systems a functional with a sole optimal saddle line. We have 
also proposed a computational method of moving to the saddle line, 
which permits to find quasiextremals of this functional. In this way  we 
are able to determine   real equations for a given physical system.

  Therefore the new formalism is not only an universal method of 
deducing physical equations according to a certain principle, but also a 
computational approach to the building  of these equations. 
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Main Notations

Main Notations

Variables In Formulas In Programs
actual iterations number ziklSum
actual number of methodic 
resistance changes

w

branches array bran
branches number VGFvetvi
branches numbers in transformers 
table

b1, b2, …

charges vector kq , q  qq

choice of circuit for computation mode
circular frequency  omega
complex matrix Z
 currents vector mP  of 
transformer node, 

P  P, TokiTrans

 currents vector kg , qg   qqt

 currents vector in methodic 
resistances of normal nodes,

X  ii

 currents vector in methodic 
resistances of transformer nodes

Y  mm

density  of hypothetic Dirac mono-
fields magnetic current

 Lgradm 

diagonal reciprocal capacities 
matrix kS ,

S  sssDiag

diagonal resistances matrix kR , R  rrrDiag

electric charge density  
electric current density  Kgradj 
electric current density  Kgradj 
electric field strength E
electric potential 
electro conductivity 
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Main Notations

EMF vector kE , E  EEreal

EMF vector in unconditional 
electric circuit

E E

energian 
error for First Kirchhoff Law 1 eK1, ErrKirh1
error for Second Kirchhoff Law 2 eK2, VGFerPP
first and last nodes numbers of a 
given branch

nBeg, nEnd

full action 
gradient p pp
hypothetic magnetic charge density  
imaginary part of transformation 
coefficients matrix 2T  tran2

incidences matrix N  N, Inzidenz
incidences matrix square NN T NTN, 

KwadraInzidenz
indication of currents presence in 
transformer nodes

VGFyesTokiTran

indication of node currents 
presence

VGFyesTokiUzlo
v

indication of transformers presence VGFyesTrans
indication of transformers with 
complex transformation 
coefficients presence

VGFyesTransInt

inductances  matrix kL  and mutual 

inductances matrix knM ,

M  mmmDiag

initial methodic resistance increase 
coefficient

krmin

iterative process indication res
magnetic conductivity 
magnetic field strength H
magnetic permeability 
magnetic scalar potential 
methodic resistance change 
coefficient

k stepRoo

methodic resistance,   ro
minimal error for First and Second eK1min, 
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Main Notations

Kirchhoff Laws eK2min
mutual inductances matrix in 
unconditional electric circuit

M MMM

node  potentials vector m ,   ff

node currents vector mH , H  H, TokiUzlow

nodes array nod
nodes number VGFuzly
permittivity 
potentials vector m  of 
transformer nodes, 

  ffTran

real part of transformation 
coefficients matrix 1T  tran1

reciprocal capacities   matrix in 
unconditional electric circuit S  sssDiag

resistances matrix in unconditional 
electric circuit

R RN

split energian 2
split full action 2
tolerant iterations number maxIter
tolerant number of methodic 
resistance changes

Wmax

transformer nodes number VGFtpt
transformers array nodTran
truncated Dirac function )(t  , )(x
unit step )(t , )(x

TTTT TTTTTTTT 22122111 ,,, t11, t12, t21, 
t22
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Some of the Terms

Some of the Terms

aaaTerm Section 
Complex transformation coefficient 3.3
Conjugate functional 1.0
Dennis transformer 3.1
Differentiating branch 7.1
Dirac function 6.6
Energian 10
Full action 10
Grounded electric circuit 7.3
Instanteous values transformer 3.1
Integrating transformer 3.3
Interoperable function 5.3
Lagrange formalism 10
Longitudinal electromagnetic wave 9.7
Maximization algorithm 6.2
Maximization method 6.2
Methodic resistance 3.2
Outside variable 6.1
Power density 10
Principle extremum of full action 10
Quasiextremal 10
Quasivariation 4.1
Secondary functional 4.1
Split energian 10
Split full action 10
Splitting functions 10
Step function, unit step 6.2
Transformers matrix 3.1
Unconditional electric circuit 3.2
Volatile standing electromagnetic wave 9.7
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