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Abstract

This document consists of lecture notes for a graduate course, which focuses on the
relations between Information Theory and Statistical Physics. The course is aimed at
EE graduate students in the area of Communications and Information Theory, as well
as to graduate students in Physics who have basic background in Information Theory.
Strong emphasis is given to the analogy and parallelism between Information Theory
and Statistical Physics, as well as to the insights, the analysis tools and techniques that
can be borrowed from Statistical Physics and ‘imported’ to certain problem areas in
Information Theory. This is a research trend that has been very active in the last few
decades, and the hope is that by exposing the student to the meeting points between
these two disciplines, we will enhance his/her background and perspective to carry out
research in the field.

A short outline of the course is as follows: Introduction; Elementary Statistical
Physics and its Relation to Information Theory; Analysis Tools in Statistical Physics;
Systems of Interacting Particles and Phase Transitions; The Random Energy Model
(REM) and Random Channel Coding; Additional Topics (optional).
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1 Introduction

This course is intended to EE graduate students in the field of Communications and Informa-

tion Theory, and also to graduates of the Physics Department (in particular, graduates of the

EE–Physics program) who have basic background in Information Theory, which is a prereq-

uisite to this course. As its name suggests, this course focuses on relationships and interplay

between Information Theory and Statistical Physics – a branch of physics that deals with

many–particle systems using probabilitistic/statistical methods in the microscopic level.

The relationships between Information Theory and Statistical Physics (+ thermodynam-

ics) are by no means new, and many researchers have been exploiting them for many years.

Perhaps the first relation, or analogy, that crosses our minds is that in both fields, there

is a fundamental notion of entropy. Actually, in Information Theory, the term entropy

was coined after the thermodynamic entropy. The thermodynamic entropy was first intro-

duced by Clausius (around 1850), whereas its probabilistic–statistical interpretation is due

to Boltzmann (1872). It is virtually impossible to miss the functional resemblance between

the two notions of entropy, and indeed it was recognized by Shannon and von Neumann.

The well–known anecdote on this tells that von Neumann advised Shannon to adopt this

term because it would provide him with “... a great edge in debates because nobody really

knows what entropy is anyway.”

But the relationships between the two fields go far beyond the fact that both share the

notion of entropy. In fact, these relationships have many aspects, and we will not cover all

of them in this course, but just to give the idea of their scope, we will mention just a few.

• The Maximum Entropy (ME) Principle. This is perhaps the oldest concept that ties

the two fields and it has attracted a great deal of attention, not only of information

theortists, but also that of researchers in related fields like signal processing, image

processing, and the like. It is about a philosopy, or a belief, which, in a nutshell, is the

following: If in a certain problem, the observed data comes from an unknown probabil-

ity distribution, but we do have some knowledge (that stems e.g., from measurements)
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of certain moments of the underlying quantity/signal/random–variable, then assume

that the unknown underlying probability distribution is the one with maximum entropy

subject to (s.t.) moment constraints corresponding to this knowledge. For example,

if we know the first and the second moment, then the ME distribution is Gaussian

with matching first and second order moments. Indeed, the Gaussian model is perhaps

the most widespread model for physical processes in Information Theory as well as

in signal– and image processing. But why maximum entropy? The answer to this

philosophical question is rooted in the second law of thermodynamics, which asserts

that in an isolated system, the entropy cannot decrease, and hence, when the system

reaches equilibrium, its entropy reaches its maximum. Of course, when it comes to

problems in Information Theory and other related fields, this principle becomes quite

heuristic, and so, one may question its relevance, but nevertheless, this approach has

had an enormous impact on research trends throughout the last fifty years, after being

proposed by Jaynes in the late fifties of the previous century, and further advocated

by Shore and Johnson afterwards. In the book by Cover and Thomas, there is a very

nice chapter on this, but we will not delve into this any further in this course.

• Landauer’s Erasure Principle. Another aspect of these relations has to do with a piece

of theory whose underlying guiding principle is that information is a physical entity. In

every information bit in the universe there is a certain amount of energy. Specifically,

Landauer’s erasure principle (from the early sixties of the previous century), which

is based on a physical theory of information, asserts that every bit that one erases,

increases the entropy of the universe by k ln 2, where k is Boltzmann’s constant. It is

my personal opinion that these kind of theories should be taken with a grain of salt,

but this is only my opinion. At any rate, this is not going to be included in the course

either.

• Large Deviations Theory as a Bridge Between Information Theory and Statistical Physics.

Both Information Theory and Statistical Physics have an intimate relation to large de-
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viations theory, a branch of probability theory which focuses on the assessment of the

exponential rates of decay of probabilities of rare events, where the most fundamental

mathematical tool is the Chernoff bound. This is a topic that will be covered in the

course and quite soon.

• Random Matrix Theory. How do the eigenvalues (or, more generally, the singular val-

ues) of random matrices behave when these matrices have very large dimensions or if

they result from products of many randomly selected matrices? This is a hot area in

probability theory with many applications, both in Statistical Physics and in Infor-

mation Theory, especially in modern theories of wireless communication (e.g., MIMO

systems). This is again outside the scope of this course, but whoever is interested

to ‘taste’ it, is invited to read the 2004 paper by Tulino and Verdú in Foundations

and Trends in Communications and Information Theory, a relatively new journal for

tutorial papers.

• Spin Glasses and Coding Theory. It turns out that many problems in channel coding

theory (and also to some extent, source coding theory) can be mapped almost ver-

batim to parallel problems in the field of physics of spin glasses – amorphic magnetic

materials with a high degree of disorder and very complicated physical behavior, which

is cusomarily treated using statistical–mechanical approaches. It has been many years

that researchers have made attempts to ‘import’ analysis techniques rooted in statis-

tical physics of spin glasses and to apply them to analogous coding problems, with

various degrees of success. This is one of main subjects of this course and we will

study it extensively, at least from some aspects.

We can go on and on with this list and add more items in the context of these very

fascinating meeting points between Information Theory and Statistical Physics, but for now,

we stop here. We just mention that the last item will form the main core of the course. We

will see that, not only these relations between Information Theory and Statistical Physics

are interesting academically on their own right, but moreover, they also prove useful and
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beneficial in that they provide us with new insights and mathematical tools to deal with

information–theoretic problems. These mathematical tools sometimes prove a lot more ef-

ficient than traditional tools used in Information Theory, and they may give either simpler

expressions for performance analsysis, or improved bounds, or both.

At this point, let us have a brief review of the syllabus of this course, where as can be

seen, the physics and the Information Theory subjects are interlaced with each other, rather

than being given in two continuous, separate parts. This way, it is hoped that the relations

between Information Theory and Statistical Physics will be seen more readily. The detailed

structure of the remaining part of this course is as follows:

1. Elementary Statistical Physics and its Relation to Information Theory:What is statis-

tical physics? Basic postulates and the micro–canonical ensemble; the canonical en-

semble: the Boltzmann–Gibbs law, the partition function, thermodynamical potentials

and their relations to information measures; the equipartition theorem; generalized en-

sembles (optional); Chernoff bounds and the Boltzmann–Gibbs law: rate functions in

Information Theory and thermal equilibrium; physics of the Shannon limits.

2. Analysis Tools in Statistical Physics: The Laplace method of integration; the saddle–

point method; transform methods for counting and for representing non–analytic func-

tions; examples; the replica method – overview.

3. Systems of Interacting Particles and Phase Transitions: Models of many–particle sys-

tems with interactions (general) and examples; a qualitative explanation for the ex-

istence of phase transitions in physics and in information theory; ferromagnets and

Ising models: the 1D Ising model, the Curie-Weiss model; randomized spin–glass mod-

els: annealed vs. quenched randomness, and their relevance to coded communication

systems.

4. The Random Energy Model (REM) and Random Channel Coding: Basic derivation and

phase transitions – the glassy phase and the paramagnetic phase; random channel codes
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and the REM: the posterior distribution as an instance of the Boltzmann distribution,

analysis and phase diagrams, implications on code ensemble performance analysis.

5. Additional Topics (optional): The REM in a magnetic field and joint source–channel

coding; the generalized REM (GREM) and hierarchical ensembles of codes; phase

transitions in the rate–distortion function; Shannon capacity of infinite–range spin–

glasses; relation between temperature, de Bruijn’s identity, and Fisher information;

the Gibbs inequality in Statistical Physics and its relation to the log–sum inequality

of Information Theory.

As already said, there are also plenty of additional subjects that fall under the umbrella

of relations between Information Theory and Statistical Physics, which will not be covered

in this course. One very hot topic is that of codes on graphs, iterative decoding, belief

propagation, and density evolution. The main reason for not including these topics is that

they are already covered in the course of Dr. Igal Sason: “Codes on graphs.”

I would like to emphasize that prior basic background in Information Theory will be

assumed, therefore, Information Theory is a prerequisite for this course. As for the physics

part, prior background in statistical mechanics could be helpful, but it is not compulsory.

The course is intended to be self–contained as far as the physics background goes. The

bibliographical list includes, in addition to a few well known books in Information Theory,

also several very good books in elementary Statistical Physics, as well as two books on the

relations between these two fields.

As a final note, I feel compelled to clarify that the material of this course is by no means

intended to be presented from a very comprehensive perspective and to consist of a full

account of methods, problem areas and results. Like in many advanced graduate courses in

our department, here too, the choice of topics, the approach, and the style strongly reflect

the personal bias of the lecturer and his/her perspective on research interests in the field.

This is also the reason that a considerable fraction of the topics and results that will be

covered, are taken from articles in which I have been involved.
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2 Elementary Stat. Physics and Its Relation to IT

2.1 What is Statistical Physics?

Statistical physics is a branch in Physics which deals with systems with a huge number

of particles (or any other elementary units), e.g., of the order of magnitude of Avogadro’s

number, that is, about 1023 particles. Evidently, when it comes to systems with such an

enormously large number of particles, there is no hope to keep track of the physical state

(e.g., position and momentum) of each and every individual particle by means of the classical

methods in physics, that is, by solving a gigantic system of differential equations pertaining to

Newton’s laws for all particles. Moreover, even if these differential equations could have been

solved (at least approximately), the information that they would give us would be virtually

useless. What we normally really want to know about our physical system boils down

to a bunch of macroscopic parameters, such as energy, heat, pressure, temperature, volume,

magnetization, and the like. In other words, while we continue to believe in the good old laws

of physics that we have known for some time, even the classical ones, we no longer use them in

the ordinary way that we are familar with from elementary physics courses. Rather, we think

of the state of the system, at any given moment, as a realization of a certain probabilistic

ensemble. This is to say that we approach the problem from a probabilistic (or a statistical)

point of view. The beauty of statistical physics is that it derives the macroscopic theory of

thermodynamics (i.e., the relationships between thermodynamical potentials, temperature,

pressure, etc.) as ensemble averages that stem from this probabilistic microscopic theory –

the theory of statistical physics, in the limit of an infinite number of particles, that is, the

thermodynamic limit. As we shall see throughout this course, this thermodynamic limit is

parallel to the asymptotic regimes that we are used to in Information Theory, most notably,

the one pertaining to a certain ‘block length’ that goes to infinity.
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2.2 Basic Postulates and the Microcanonical Ensemble

For the sake of concreteness, let us consider the example where our many–particle system is a

gas, namely, a system with a very large number n of mobile particles, which are free to move

in a given volume. The microscopic state (or microstate, for short) of the system, at each

time instant t, consists, in this example, of the position ~ri(t) and the momentum ~pi(t) of each

and every particle, 1 ≤ i ≤ n. Since each one of these is a vector of three components, the

microstate is then given by a (6n)–dimensional vector ~x(t) = {(~ri(t), ~pi(t)), i = 1, 2, . . . , n},
whose trajectory along the time axis, in the phase space, IR6n, is called the phase trajectory.

Let us assume that the system is closed, i.e., isolated from its environment, in the sense

that no energy flows inside or out. Imagine that the phase space IR6n is partitioned into very

small hypercubes (or cells) ∆~p×∆~r. One of the basic postulates of statistical mechanics is

the following: In the very long range, the relative amount of time at which ~x(t) spends at

each such cell converges to a certain number between 0 and 1, which can be given the meaning

of the probability of this cell. Thus, there is an underlying assumption of equivalence between

temporal averages and ensemble averages, namely, this is the assumption of ergodicity.

What are then the probabilities of these cells? We would like to derive these probabilities

from first principles, based on as few as possible basic postulates. Our first such postulate

is that for an isolated system (i.e., whose energy is fixed) all microscopic states {~x(t)} are
equiprobable. The rationale behind this postulate is twofold:

• In the absence of additional information, there is no apparent reason that certain

regions in phase space would have preference relative to any others.

• This postulate is in harmony with a basic result in kinetic theory of gases – the Liouville

theorem, which we will not touch upon in this course, but in a nutshell, it asserts that

the phase trajectories must lie along hypersurfaces of constant probability density.1

1This is a result of the energy conservation law along with the fact that probability mass behaves like
an incompressible fluid in the sense that whatever mass that flows into a certain region from some direction
must be equal to the outgoing flow from some other direction. This is reflected in the so called continuity
equation.

11



Before we proceed, let us slightly broaden the scope of our discussion. In a more general

context, associated with our n–particle physical system, is a certain instantaneous microstate,

generically denoted by x = (x1, x2, . . . , xn), where each xi, 1 ≤ i ≤ n, may itself be a vector

of several physical quantities associated particle number i, e.g., its position, momentum,

angular momentum, magnetic moment, spin, and so on, depending on the type and the

nature of the physical system. For each possible value of x, there is a certain Hamiltonian

(i.e., energy function) that assigns to x a certain energy E(x).2 Now, let us denote by Ω(E)

the density–of–states function, i.e., the volume of the shell {x : E(x) = E}, or, slightly
more precisely, Ω(E)dE = Vol{x : E ≤ E(x) ≤ E + dE}, which will be denoted also as

Vol{x : E(x) ≈ E}, where the dependence on dE will normally be ignored since Ω(E) is

typically exponential in n and dE will have virtually no effect on its exponential order as

long as it is small. Then, our above postulate concerning the ensemble of an isolated system,

which is called the microcanonincal ensemble, is that the probability density P (x) is given

by

P (x) =

{ 1
Ω(E)

E(x) ≈ E

0 elsewhere
(1)

In the discrete case, things are, of course, a lot easier: Then, Ω(E) would be the number

of microstates with E(x) = E (exactly) and P (x) would be the uniform probability mass

function across this set of states. In this case, Ω(E) is analogous to the size of a type class

in Information Theory, and P (x) is the uniform distribution across this type class.

Back to the continuous case, note that Ω(E) is, in general, not dimensionless: In the

above example of a gas, it has the physical units of [length×momentum]3n, but we must get

rid of these physical units because very soon we are going to apply non–linear functions on

Ω(E), like the logarithmic function. Thus, we must normalize this volume by an elementary

reference volume. In the gas example, this reference volume is taken to be h3n, where h

is Planck’s constant ≈ 6.62 × 10−34 Joules·sec. Informally, the intuition comes from the

fact that h is our best available “resolution” in the plane spanned by each component of

2For example, in the case of an ideal gas, E(x) =∑n
i=1

‖~pi‖2

2m , independently of the positions {~ri}, namely,
it accounts for the contribution of the kinetic energies only. In more complicated situations, there might be
additional contributions of potential energy, which depend on the positions.
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~ri and the corresponding component of ~pi, owing to the uncertainty principle in quantum

mechanics, which tells us that the product of the standard deviations ∆pa · ∆ra of each

component a (a = x, y, z) is lower bounded by ~/2, where ~ = h/(2π). More formally, this

reference volume is obtained in a natural manner from quantum statistical mechanics: by

changing the integration variable ~p to ~k by using ~p = ~~k, where ~k is the wave vector. This is

a well–known relationship pertaining to particle–wave duality. Now, having redefined Ω(E)

in units of this reference volume, which makes it then a dimensionless quantity, the entropy

is defined as

S(E) = k ln Ω(E), (2)

where k is Boltzmann’s constant ≈ 1.38× 10−23 Joule/degree. We will soon see what is the

relationship between S(E) and the information–theoretic entropy.

To get some feeling of this, it should be noted that normally, Ω(E) behaves as an exponen-

tial function of n (at least asymptotically), and so, S(E) is roughly linear in n. For example,

if E(x) =
∑n

i=1
‖~pi‖2
2m

, then Ω(E) is the volume of a shell or surface of a (3n)–dimensional

sphere with radius
√
2mE, which is proportional to (2mE)3n/2V n, but we should divide this

by n! to account for the fact that the particles are indistinguishable and we don’t count

permutations as distinct physical states in this case.3 More precisely, one obtains:

S(E) = k ln

[

(

4πmE

3n

)3n/2

· V n

n!h3n

]

+
3

2
nk ≈ nk ln

[

(

4πmE

3n

)3/2

· V
nh3

]

+
5

2
nk. (3)

Assuming E ∝ n and V ∝ n, we get S(E) ∝ n. A physical quantity like this, that has

a linear scaling with the size of the system n, is called an extensive quantity. So, energy,

volume and entropy are extensive quantities. Other quantities, which are not extensive, i.e.,

independent of the system size, like temperature and pressure, are called intensive.

It is interesting to point out that from the function S(E), or actually, the function

S(E, V, n), one can obtain the entire information about the relevant macroscopic physical

3Since the particles are mobile and since they have no colors and no identity certficiates, there is no
distinction between a state where particle no. 15 has position ~r and momentum ~p while particle no. 437 has
position ~r′ and momentum ~p′ and a state where these two particles are swapped.
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quantities of the system, e.g., temperature, pressure, and so on. The temperature T of the

system is defined according to:
1

T
=

(

∂S(E)

∂E

)

V

(4)

where (·)V means that the derivative is taken in constant volume.4 Intuitively, in most

situations, we expect that S(E) would be an increasing function of E (although this is not

strictly always the case), which means T ≥ 0. But T is also expected to be increasing with

E (or equivalently, E is increasing with T , as otherwise, the heat capacity dE/dT < 0).

Thus, 1/T should decrease with E, which means that the increase of S in E slows down

as E grows. In other words, we expect S(E) to be a concave function of E. In the above

example, indeed, S(E) is logarithmic in E and we get 1/T ≡ ∂S/∂E = 3nk/(2E), which

means E = 3nkT/2. Pressure is obtained by P = T · ∂S/∂V , which in our example, gives

rise to the state equation of the ideal gas, P = nkT/V .

How can we also see mathematically that under “conceivable conditions”, S(E) is a

concave function? We know that the Shannon entropy is also a concave functional of the

probability distribution. Is this related?

As both E and S are extensive quantities, let us define E = nǫ and

s(ǫ) = lim
n→∞

S(nǫ)

n
, (5)

i.e., the per–particle entropy as a function of the per–particle energy. Consider the case

where the Hamiltonian is additive, i.e.,

E(x) =
n
∑

i=1

E(xi) (6)

just like in the above example where E(x) =∑n
i=1

‖~pi‖2
2m

. Then, obviously,

Ω(n1ǫ1 + n2ǫ2) ≥ Ω(n1ǫ1) · Ω(n2ǫ2), (7)

4 This definition of temperature is related to the classical thermodynamical definition of entropy as
dS = dQ/T , where Q is heat, as in the absence of external work, when the volume V is fixed, all the energy
comes from heat and so, dE = dQ.
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and so, we get:

k lnΩ(n1ǫ1 + n2ǫ2)

n1 + n2
≥ k ln Ω(n1ǫ1)

n1 + n2
+
k lnΩ(n2ǫ2)

n1 + n2

=
n1

n1 + n2

· k ln Ω(n1ǫ1)

n1

+
n2

n1 + n2

· k ln Ω(n2ǫ2)

n2

. (8)

and so, by taking n1 and n2 to ∞, with n1/(n1 + n2)→ λ ∈ (0, 1), we get:

s(λǫ1 + (1− λ)ǫ2) ≥ λs(ǫ1) + (1− λ)s(ǫ2), (9)

which establishes the concavity of s(·) at least in the case of an additive Hamiltonian, which

means that the entropy of mixing two systems of particles is greater than the total entropy

before they are mixed (the second law). A similar proof can be generalized to the case

where E(x) includes also a limited degree of interactions (short range interactions), e.g.,

E(x) =
∑n

i=1 E(xi, xi+1), but this requires somewhat more caution. In general, however,

concavity may no longer hold when there are long range interactions, e.g., where some

terms of E(x) depend on a linear subset of particles. Simple examples can be found in:

H. Touchette, “Methods for calculating nonconcave entropies,” arXiv:1003.0382v1 [cond-

mat.stat-mech] 1 Mar 2010.

Example – Schottky defects. In a certain crystal, the atoms are located in a lattice, and at

any positive temperature there may be defects, where some of the atoms are dislocated (see

Fig. 1). Assuming that defects are sparse enough, such that around each dislocated atom all

neighors are in place, the activation energy, ǫ0, required for dislocation is fixed. Denoting

the total number of atoms by N and the number of defected ones by n, the total energy is

then E = nǫ0, and so,

Ω(E) =

(

N
n

)

=
N !

n!(N − n)! , (10)

or, equivalently,

S(E) = k ln Ω(E) = k ln

[

N !

n!(N − n)!

]

≈ k[N lnN − n lnn− (N − n) ln(N − n)] by the Stirling approximation
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Thus,
1

T
=
∂S

∂E
=

dS

dn
· dn
dE

=
1

ǫ0
· k ln N − n

n
, (11)

which gives the number of defects as

n =
N

exp(ǫ0/kT ) + 1
. (12)

At T = 0, there are no defects, but their number increases gradually with T , approximately

Figure 1: Schottky defects in a crystal lattice.

according to exp(−ǫ0/kT ). Note that from a slighly more information–theoretic point of

view,

S(E) = k ln

(

N
n

)

≈ kNh2

( n

N

)

= kNh2

(

E

Nǫ0

)

= kNh2

(

ǫ

ǫ0

)

, (13)

where

h2(x)
∆
= −x ln x− (1− x) ln(1− x).

Thus, the thermodynamical entropy is intimately related to the Shannon entropy. We will

see shortly that this is no coincidence. Note also that S(E) is indeed concave in this example.

�

What happens if we have two independent systems with total energy E, which lie in

equilibrium with each other. What is the temperature T ? How does the energy split between

them? The number of combined microstates where system no. 1 has energy E1 and system

no. 2 has energy E2 = E − E1 is Ω1(E1) · Ω2(E − E1). If the combined system is isolated,

then the probability of such a combined microstate is proportional to Ω1(E1) · Ω2(E − E1).

Keeping in mind that normally, Ω1 and Ω2 are exponential in n, then for large n, this

16



product is dominated by the value of E1 for which it is maximum, or equivalently, the sum

of logarithms, S1(E1) +S2(E−E1), is maximum, i.e., it is a maximum entropy situation,

which is the second law of thermodynamics. This maximum is normally achieved at

the value of E1 for which the derivative vanishes, i.e.,

S ′
1(E1)− S ′

2(E −E1) = 0 (14)

or

S ′
1(E1)− S ′

2(E2) = 0 (15)

which means
1

T1
≡ S ′

1(E1) = S ′
2(E2) ≡

1

T2
. (16)

Thus, in equilibrium, which is the maximum entropy situation, the energy splits in a way

that temperatures are the same.

2.3 The Canonical Ensemble

So far we have assumed that our system is isolated, and therefore has a strictly fixed energy

E. Let us now relax this assumption and assume that our system is free to exchange energy

with its large environment (heat bath) and that the total energy of the heat bath E0 is by

far larger than the typical energy of the system. The combined system, composed of our

original system plus the heat bath, is now an isolated system at temperature T . So what

happens now?

Similarly as before, since the combined system is isolated, it is governed by the micro-

canonical ensemble. The only difference is that now we assume that one of the systems (the

heat bath) is very large compared to the other (our test system). This means that if our

small system is in microstate x (for whatever definition of the microstate vector) with energy

E(x), then the heat bath must have energy E0 − E(x) to complement the total energy to

E0. The number of ways that the heat bath may have energy E0−E(x) is ΩHB(E0−E(x)),
where ΩHB(·) is the density–of–states function pertaining to the heat bath. In other words,
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the number of microstates of the combined system for which the small subsystem is in mi-

crostate x is ΩHB(E0−E(x)). Since the combined system is governed by the microcanonical

ensemble, the probability of this is proportional to ΩHB(E0 − E(x)). More precisely:

P (x) =
ΩHB(E0 − E(x))

∑

x′ ΩHB(E0 − E(x′))
. (17)

Let us focus on the numerator for now, and normalize the result at the end. Then,

P (x) ∝ ΩHB(E0 − E(x))

= exp{SHB(E0 − E(x))/k}

≈ exp

{

SHB(E0)

k
− 1

k

∂SHB(E)

∂E

∣

∣

∣

∣

E=E0

· E(x)
}

= exp

{

SHB(E0)

k
− 1

kT
· E(x)

}

∝ exp{−E(x)/(kT )}. (18)

It is customary to work with the so called inverse temperature:

β =
1

kT
(19)

and so,

P (x) ∝ e−βE(x). (20)

Thus, all that remains to do is to normalize, and we then obtain the Boltzmann–Gibbs (B–G)

distribution, or the canonical ensemble, which describes the underlying probability law in

equilibrium:

P (x) = exp{−βE(x)}
Z(β)

where Z(β) is the normalization factor:

Z(β) =
∑

x

exp{−βE(x)} (21)

in the discrete case, or

Z(β) =

∫

dx exp{−βE(x)} (22)
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in the continuous case.

This is one of the most fundamental results in statistical mechanics, which was obtained

solely from the energy conservation law and the postulate that in an isolated system the

distribution is uniform. The function Z(β) is called the partition function, and as we shall

see, its meaning is by far deeper than just being a normalization constant. Interestingly, a

great deal of the macroscopic physical quantities, like the internal energy, the free energy, the

entropy, the heat capacity, the pressure, etc., can be obtained from the partition function.

The B–G distribution tells us then that the system “prefers” to visit its low energy states

more than the high energy states. And what counts is only energy differences, not absolute

energies: If we add to all states a fixed amount of energy E0, this will result in an extra

factor of e−βE0 both in the numerator and in the denominator of the B–G distribution, which

will, of course, cancel out. Another obvious observation is that whenever the Hamiltonian

is additive, that is, E(x) =
∑n

i=1 E(xi), the various particles are statistically independent:

Additive Hamiltonians correspond to non–interacting particles. In other words, the {xi}’s
behave as if they were drawn from a memoryless source. And so, by the law of large numbers

1
n

∑n
i=1 E(xi) will tend (almost surely) to ǫ = E{E(Xi)}. Nonetheless, this is different from

the microcanonical ensemble where 1
n

∑n
i=1 E(xi) was held strictly at the value of ǫ. The

parallelism to Information Theory is as follows: The microcanonical ensemble is parallel

to the uniform distribution over a type class and the canonical ensemble is parallel to a

memoryless source.

The two ensembles are asymptotically equivalent as far as expectations go. They continue

to be such even in cases of interactions, as long as these are short range. It is instructive

to point out that the B–G distribution could have been obtained also in a different manner,

owing to the maximum–entropy principle that we mentioned in the Introduction. Specifically,

consider the following optimization problem:

max H(X)

s.t.
∑

x

P (x)E(x) = E [or in physicists’ notation: 〈E(X)〉 = E] (23)
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By formalizing the equivalent Lagrange problem, where β now plays the role of a Lagrange

multiplier:

max

{

H(X) + β

[

E −
∑

x

P (x)E(x)
]}

, (24)

or equivalently,

min

{

∑

x

P (x)E(x)− H(X)

β

}

(25)

one readily verifies that the solution to this problem is the B-G distribution where the

choice of β controls the average energy E. In many physical systems, the Hamiltonian is

a quadratic (or “harmonic”) function, e.g., 1
2
mv2, 1

2
kx2, 1

2
CV 2, 1

2
LI2, 1

2
Iω2, etc., in which

case the resulting B–G distribution turns out to be Gaussian. This is at least part of the

explanation why the Gaussian distribution is so frequently encountered in Nature. Note

also that indeed, we have already seen in the Information Theory course that the Gaussian

density maximizes the (differential) entropy s.t. a second order moment constraint, which is

equivalent to our average energy constraint.

2.4 Properties of the Partition Function and the Free Energy

Let us now examine more closely the partition function and make a few observations about

its basic properties. For simplicity, we shall assume that x is discrete. First, let’s look at

the limits: Obviously, Z(0) is equal to the size of the entire set of microstates, which is also
∑

E Ω(E), This is the high temperature limit, where all microstates are equiprobable. At

the other extreme, we have:

lim
β→∞

lnZ(β)

β
= −min

x
E(x) ∆

= −EGS (26)

which describes the situation where the system is frozen to the absolute zero. Only states

with minimum energy – the ground–state energy, prevail.

Another important property of Z(β), or more precisely, of lnZ(β), is that it is a log–

moment generating function: By taking derivatives of lnZ(β), we can obtain moments (or
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cumulants) of E(X). For the first moment, we have

E{E(X)} ≡ 〈E(X)〉 =
∑

x E(x)e−βE(x)

∑

x e
−βE(x)

= −d lnZ(β)
dβ

. (27)

Similarly, it is easy to show (exercise) that

Var{E(X)} = 〈E2(X)〉 − 〈E(X)〉2 = d2 lnZ(β)

dβ2
. (28)

This in turn implies that d2
lnZ(β)

dβ2
≥ 0, which means that lnZ(β) must always be a convex

function. Higher order derivatives provide higher order moments.

Next, we look at Z slightly differently than before. Instead of summing e−βE(x) across

all states, we go by energy levels (similarly as in the method of types). This amounts to:

Z(β) =
∑

x

e−βE(x)

=
∑

E

Ω(E)e−βE

≈
∑

ǫ

ens(ǫ)/k · e−βnǫ recall that S(nǫ) ≈ ns(ǫ)

=
∑

ǫ

exp{−nβ[ǫ− Ts(ǫ)]}

·
= max

ǫ
exp{−nβ[ǫ− Ts(ǫ)]}

= exp{−nβmin
ǫ
[ǫ− Ts(ǫ)]}

∆
= exp{−nβ[ǫ∗ − Ts(ǫ∗)]}
∆
= e−βF (29)

The quantity f
∆
= ǫ−Ts(ǫ) is the (per–particle) free energy. Similarly, the entire free energy,

F , is defined as

F = E − TS = − lnZ(β)
β

. (30)

The physical meaning of the free energy is this: A change, or a difference, ∆F = F2 − F1,

in the free energy means the minimum amount of work it takes to transfer the system

from equilibrium state 1 to another equilibrium state 2 in an isothermal (fixed temperature)

process. And this minimum is achieved when the process is quasistatic, i.e., so slow that

21



the system is always almost in equilibrium. Equivalently, −∆F is the maximum amount of

work that that can be exploited from the system, namely, the part of the energy that is free

for doing work (i.e., not dissipated as heat) in fixed temperature. Again, this maximum is

attained by a quasistatic process.

We see that the value ǫ∗ of ǫ that minimizes f , dominates the partition function and

hence captures most of the probability. As n grows without bound, the energy probability

distribution becomes sharper and sharper around nǫ∗. Thus, we see that equilibrium in the

canonical ensemble amounts to minimum free energy. This extends the second law of

thermodynamics from the microcanonical ensemble of isolated systems, whose equilibrium

obeys the maximum entropy principle. The maximum entropy principle is replaced, more

generally, by the minimum free energy principle. Note that the Lagrange minimization

problem that we formalized before, i.e.,

min

{

∑

x

P (x)E(x)− H(X)

β

}

, (31)

is nothing but minimization of the free energy, provided that we identify H with the physical

entropy S (to be done very soon) and the Lagrange multiplier 1/β with kT . Thus, the B–G

distribution minimizes the free energy for a given temperature.

Although we have not yet seen this explicitly, but there were already hints and terminol-

ogy suggests that the thermodynamical entropy S(E) is intimately related to the Shannon

entropy H(X). We will also see it shortly in a more formal manner. But what is the

information–theoretic analogue of the free energy?

Here is a preliminary guess based on a very rough consideration: The last chain of

equalities reminds us what happens when we sum over probabilities type–by–type in IT

problems: The exponentials exp{−βE(x)} are analoguous (up to a normalization factor) to

probabilities, which in the memoryless case, are given by P (x) = exp{−n[Ĥ + D(P̂‖P )]}.
Each such probability is weighted by the size of the type class, which as is known from the

method of types, is exponentially enĤ , whose physical analogue is Ω(E) = ens(ǫ)/k. The

product gives exp{−nD(P̂‖P )} in IT and exp{−nβf} in statistical physics. This suggests
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that perhaps the free energy has some analogy with the divergence. Is this true? We will

see shortly a somewhat more rigorous argument.

More formally, let us define

φ(β) = lim
n→∞

lnZ(β)

n
(32)

and, in order to avoid dragging the constant k, let us define Σ(ǫ) = limn→∞
1
n
ln Ω(nǫ) =

s(ǫ)/k. Then, the above chain of equalities, written slighlty differently, gives

φ(β) = lim
n→∞

lnZ(β)

n

= lim
n→∞

1

n
ln

{

∑

ǫ

en[Σ(ǫ)−βǫ]

}

= max
ǫ

[Σ(ǫ)− βǫ].

Thus, φ(β) is (a certain variant of) the Legendre transform5 of Σ(ǫ). As Σ(ǫ) is (normally)

a concave function, then it can readily be shown (execrise) that the inverse transform is:

Σ(ǫ) = min
β

[βǫ+ φ(β)]. (33)

The achiever, ǫ∗(β), of φ(β) in the forward transform is obtained by equating the derivative

to zero, i.e., it is the solution to the equation

β = Σ′(ǫ), (34)

or in other words, the inverse function of Σ′(·). By the same token, the achiever, β∗(ǫ), of

Σ(ǫ) in the backward transform is obtained by equating the other derivative to zero, i.e., it

is the solution to the equation

ǫ = −φ′(β) (35)

or in other words, the inverse function of −φ′(·).
Exercise: Show that the functions Σ′(·) and −φ′(·) are inverses of one another. �

This establishes a relationship between the typical per–particle energy ǫ and the inverse

5More precisely, the 1D Legendre transform of a real function f(x) is defined as g(y) = supx[xy − f(x)].
If f is convex, it can readily be shown that: (i) The inverse transform has the very same form, i.e., f(x) =
supy[xy − g(y)], and (ii) The derivatives f ′(x) and g′(y) are inverses of each other.
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temperature β that gives rise to ǫ (cf. the Lagrange interpretation above, where we said that

β controls the average energy). Now, obersve that whenever β and ǫ are related as explained

above, we have:

Σ(ǫ) = βǫ+ φ(β) = φ(β)− β · φ′(β). (36)

On the other hand, if we look at the Shannon entropy pertaining to the B–G distribution,

we get:

H̄(X) = lim
n→∞

1

n
E

{

ln
Z(β)

e−βE(X )

}

= lim
n→∞

[

lnZ(β)

n
+
βE{E(X)}

n

]

= φ(β)− β · φ′(β).

which is exactly the same expression as before, and so, Σ(ǫ) and H̄ are identical whenever

β and ǫ are related accordingly. The former, as we recall, we defined as the normalized

logarithm of the number of microstates with per–particle energy ǫ. Thus, we have learned

that the number of such microstates is exponentially enH̄ , a result that looks familar to

what we learned from the method of types in IT, using combinatorial arguments for finite–

alphabet sequences. Here we got the same result from substantially different considerations,

which are applicable in situations far more general than those of finite alphabets (continuous

alphabets included). Another look at this relation is the following:

1 ≥
∑

x: E(x)≈nǫ
P (x) =

∑

x: E(x)≈nǫ

exp{−β∑i E(xi)}
Zn(β)

≈
∑

x: E(x)≈nǫ
exp{−βnǫ− nφ(β)} = Ω(nǫ) · exp{−n[βǫ+ φ(β)]} (37)

which means that Ω(nǫ) ≤ exp{n[βǫ+ φ(β)]} for all β, and so,

Ω(nǫ) ≤ exp{nmin
β

[βǫ+ φ(β)]} = enΣ(ǫ) = enH̄ . (38)

A compatible lower bound is obtained by observing that the minimizing β gives rise to

〈E(X1)〉 = ǫ, which makes the event {x : E(x) ≈ nǫ} a high–probability event, by the

weak law of large numbers. A good reference for further study and from a more general
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perspective is:

M. J. W. Hall, “Universal geometric approach to uncertainty, entropy, and information,”

Phys. Rev. A, vol. 59, no. 4, pp. 2602–2615, April 1999.

Having established the identity between the Shannon–theoretic entropy and the thermo-

dynamical entropy, we now move on, as promised, to the free energy and seek its information–

theoretic counterpart. More precisely, we will look at the difference between the free energies

of two different probability distributions, one of which is the B–G distibution. Consider first,

the following chain of equalities concerning the B–G distribution:

P (x) =
exp{−βE(x)}

Z(β)

= exp{− lnZ(β)− βE(x)}

= exp{β[F (β)− E(x)]}. (39)

Consider next another probability distribution Q, different in general from P and hence

corresponding to non–equilibrium. Let us now look at the divergence:

D(Q‖P ) =
∑

x

Q(x) ln
Q(x)

P (x)

= −HQ −
∑

x

Q(x) lnP (x)

= −HQ − β
∑

x

Q(x)[FP − E(x)]

= −HQ − βFP + β〈E〉Q
= β(FQ − FP )

or equivalently,

FQ = FP + kT ·D(Q‖P )

Thus, the free energy difference is indeed related to the the divergence. For a given tem-

perature, the free energy away from equilibrium is always larger than the free energy at

equilibrium. Since the system “wants” to minimize the free energy, it eventually converges

to the B–G distribution. More details on this can be found in:
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1. H. Qian, “Relative entropy: free energy ...,” Phys. Rev. E, vol. 63, 042103, 2001.

2. G. B. Baǵci, arXiv:cond-mat/070300v1, 1 Mar. 2007.

Another interesting relation between the divergence and physical quantities is that the di-

vergence is proportional to the dissipated work (=average work − free energy difference)

between two equilibrium states at the same temperature but corresponding to two different

values of some external control parameter. Details can be found in: R. Kawai, J. M. R. Par-

rondo, and C. Van den Broeck, “Dissipation: the phase–space perspective,” Phys. Rev. Lett.,

vol. 98, 080602, 2007.

Let us now summarize the main properties of the partition function that we have seen

thus far:

1. Z(β) is a continuous function. Z(0) = |X n| and limβ→∞
lnZ(β)
β

= −EGS.

2. Generating moments: 〈E〉 = −d lnZ/dβ, Var{E(X)} = d2 lnZ/dβ2 → convexity of

lnZ, and hence also of φ(β).

3. φ and Σ are a Legendre–transform pair. Σ is concave.

4. Σ(ǫ) coincides with the Shannon entropy of the B-G distribution.

5. FQ = FP + kT ·D(Q‖P ).

Exercise: Consider Z(β) for an imaginary temperature β = jω, where j =
√
−1, and define

z(E) as the inverse Fourier transform of Z(jω). Show that z(E) = Ω(E) is the density of

states, i.e., for E1 < E2, the number of states with energy between E1 and E2 is given by
∫ E2

E1
z(E)dE. �

Thus, Z(·) can be related to energy enumeration in two different ways: one is by the Legendre

transform of lnZ for real β, and the other is by the inverse Fourier transform of Z for

imaginary β. This double connection between Z and Ω is no coincidence, as we shall see

later on.

26



Example – A two level system. Similarly to the earlier example of Schottky defets, which

was previously given in the context of the microcanonical ensemble, consider now a system

of n independent particles, each having two possible states: state 0 of zero energy and state

1, whose energy is ǫ0, i.e., E(x) = ǫ0x, x ∈ {0, 1}. The xi’s are independent, each having a

marginal:

P (x) =
e−βǫ0x

1 + e−βǫ0
x ∈ {0, 1}. (40)

In this case,

φ(β) = ln(1 + e−βǫ0) (41)

and

Σ(ǫ) = min
β≥0

[βǫ+ ln(1 + e−βǫ0)]. (42)

To find β∗(ǫ), we take the derivative and equate to zero:

ǫ− ǫ0e
−βǫ0

1 + e−βǫ0
= 0 (43)

which gives

β∗(ǫ) =
ln(ǫ/ǫ0 − 1)

ǫ0
. (44)

On substituting this back into the above expression of Σ(ǫ), we get:

Σ(ǫ) =
ǫ

ǫ0
ln

(

ǫ

ǫ0
− 1

)

+ ln

[

1 + exp

{

− ln

(

ǫ

ǫ0
− 1

)}]

, (45)

which after a short algebraic manipulation, becomes

Σ(ǫ) = h2

(

ǫ

ǫ0

)

, (46)

just like in the Schottky example. In the other direction:

φ(β) = max
ǫ

[

h2

(

ǫ

ǫ0

)

− βǫ
]

, (47)

whose achiever ǫ∗(β) solves the zero–derivative equation:

1

ǫ0
ln

[

1− ǫ/ǫ0
ǫ/ǫ0

]

= β (48)
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or equivalently,

ǫ∗(β) =
ǫ0

1 + e−βǫ0
, (49)

which is exactly the inverse function of β∗(ǫ) above, and which when plugged back into the

expression of φ(β), indeed gives

φ(β) = ln(1 + e−βǫ0). � (50)

Comment: A very similar model (and hence with similar results) pertains to non–interacting

spins (magnetic moments), where the only difference is that x ∈ {−1,+1} rather than

x ∈ {0, 1}. Here, the meaning of the parameter ǫ0 becomes that of a magnetic field, which

is more customarily denoted by B (or H), and which is either parallel or antiparallel to that

of the spin, and so the potential energy (in the appropriate physical units), ~B · ~x, is either
Bx or −Bx. Thus,

P (x) =
eβBx

2 cosh(βB)
; Z(β) = 2 cosh(βB). (51)

The net magnetization per–spin is defined as

m
∆
=

〈

1

n

n
∑

i=1

Xi

〉

= 〈X1〉 =
∂φ

∂(βB)
= tanh(βB). (52)

This is the paramagnetic characteristic of the magnetization as a function of the magnetic

field: As B → ±∞, the magnetization m → ±1 accordingly. When the magnetic field is

removed (B = 0), the magnetization vanishes too. We will get back to this model and its

extensions in the sequel. �

Exercise: Consider a system of n non–interacting particles, each having a quadratic Hamil-

tonian, E(x) = 1
2
αx2, x ∈ IR. Show that here,

Σ(ǫ) =
1

2
ln

(

4πeǫ

α

)

(53)

and

φ(β) =
1

2
ln

(

2π

αβ

)

. (54)

Show that β∗(ǫ) = 1/(2ǫ) and hence ǫ∗(β) = 1/(2β).
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2.5 The Energy Equipartition Theorem

From the last exercise, we have learned that for a quadratic Hamiltonian, E(x) = 1
2
αx2, we

have ǫ∗(β), namely, the average per–particle energy, is given 1/(2β) = kT/2, independently

of α. If we have n such quadratic terms, then of course, we end up with nkT/2. In the

case of the ideal gas, we have 3 such terms (one for each dimension) per particle, thus a

total of 3n terms, and so, E = 3nkT/2, which is exactly what we obtained also in the

microcanonical ensemble, which is equivalent (recall that this was obtained then by equating

1/T to the derivative of S(E) = k ln[const×E3n/2]). In fact, we observe that in the canonical

ensemble, whenever we have an Hamiltonian of the form α
2
x2i+ some arbitrary terms that do

not depend on xi, then xi is Gaussian (with variance kT/α) and independent of the other

guys, i.e., p(xi) ∝ e−αx
2
i /(2kT ). Hence it contributes an amount of

〈

1

2
αX2

i

〉

=
1

2
α · kT

α
=
kT

2
(55)

to the total average energy, independently of α. It is more precise to refer to this xi as a

degree of freedom rather than a particle. This is because in the 3D world, the kinetic energy,

for example, is given by p2x/(2m) + p2y/(2m) + p2z/(2m), that is, each particle contributes

three additive quadratic terms rather than one (just like three independent one–dimensional

particles) and so, it contributes 3kT/2. This principle is called the the energy equipartition

theorem. In the sequel, we will see that it is quite intimately related to rate–distortion theory

for quadratic distortion measures.
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Below is a direct derivation of the equipartition theorem:

〈

1

2
aX2

〉

=

∫∞
−∞ dx(αx2/2)e−βαx

2/2

∫∞
−∞ dxe−βαx2/2)

num. & den. have closed forms, but we use another way:

= − ∂

∂β
ln

[
∫ ∞

−∞
dxe−βαx

2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
d(
√

βx)e−α(
√
βx)2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
due−αu

2/2

]

The integral is now a constant, independent of β.

=
1

2

d lnβ

dβ
=

1

2β
=
kT

2
.

This simple trick, that bypasses the need to calculate integrals, can easily be extended in

two directions at least (exercise):

• Let x ∈ IRn and let E(x) = 1
2
xTAx, where A is a n× n positive definite matrix. This

corresponds to a physical system with a quadratic Hamiltonian, which includes also

interactions between pairs (e.g., Harmonic oscillators or springs, which are coupled

because they are tied to one another). It turns out that here, regardless of A, we get:

〈E(X)〉 =
〈

1

2
XTAX

〉

= n · kT
2
. (56)

• Back to the case of a scalar x, but suppose now a more general power–law Hamiltoinan,

E(x) = α|x|θ. In this case, we get

〈E(X)〉 =
〈

α|X|θ
〉

=
kT

θ
. (57)

Moreover, if limx→±∞ xe−βE(x) = 0 for all β > 0, and we denote E ′(x) ∆
= dE(x)/dx,

then

〈X · E ′(X)〉 = kT. (58)

It is easy to see that the earlier power–law result is obtained as a special case of this,

as E ′(x) = αθ|x|θ−1sgn(x) in this case.
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Example/Exercise – Ideal gas with gravitation: Let

E(x) = p2x + p2y + p2z
2m

+mgz. (59)

The average kinetic energy of each particle is 3kT/2, as said before. The contribution of the

average potential energy is kT (one degree of freedom with θ = 1). Thus, the total is 5kT/2,

where 60% come from kinetic energy and 40% come from potential energy, universally, that

is, independent of T , m, and g. �

2.6 The Grand–Canonical Ensemble (Optional)

Looking a bit back, then a brief summary of what we have done thus far, is the following:

we started off with the microcanonical ensemble, which was very restricitve in the sense

that the energy was held strictly fixed to the value of E, the number of particles was held

strictly fixed to the value of n, and at least in the example of a gas, the volume was also held

strictly fixed to a certain value V . In the passage from the microcanonical ensemble to the

canonical one, we slightly relaxed the first of these parameters – E: Rather than insisting on

a fixed value of E, we allowed energy to be exchanged back and forth with the environment,

and thereby to slightly fluctuate (for large n) around a certain average value, which was

controlled by temperature, or equivalently, by the choice of β. This was done while keeping

in mind that the total energy of both system and heat bath must be kept fixed, by the

law of energy conservation, which allowed us to look at the combined system as an isolated

one, thus obeying the microcanonical ensemble. We then had a one–to–one correspondence

between the extensive quantity E and the intensive variable β, that adjusted its average

value. But the other extensive variables, like n and V were still kept strictly fixed.

It turns out, that we can continue in this spirit, and ‘relax’ also either one of the other

variables n or V (but not both at the same time), allowing it to fluctuate around a typical

average value, and controlling it by a corresponding intensive variable. Like E, both n and

V are also subjected to conservation laws when the combined system is considered. Each

one of these relaxations, leads to a new ensemble in addition to the microcanonical and
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the canonical ensembles that we have already seen. In the case where it is the variable n

that is allowed to be flexible, this ensemble is called the grand–canonical ensemble. In the

case where it is the variable V , this is called the Gibbs ensemble. And there are, of course,

additional ensembles based on this principle, depending on what kind of the physical sytem

is under discussion. We will not delve into all of them here because this not a course in

physics, after all. We will describe, however, in some level of detail the grand–canonical

ensemble.

The fundamental idea is essentially the very same as the one we used to derive the

canonical ensemble, we just extend it a little bit: Let us get back to our (relatively small)

subsystem, which is in contact with a heat bath, and this time, let us allow this subsystem

to exchange with the heat bath, not only energy, but also matter, i.e., particles. The heat

bath consists of a huge reservoir of energy and particles. The total energy is E0 and the

total number of particles is n0. Suppose that we can calculate the density of states of the

heat bath as function of both its energy E ′ and amount of particles n′, call it ΩHB(E ′, n′). A

microstate now is a combnination (x, n), where n is the (variable) number of particles in our

subsystem and x is as before for a given n. From the same considerations as before, whenever

our subsystem is in state (x, n), the heat bath can be in any one of ΩHB(E0−E(x), n0 − n)
microstates of its own. Thus, owing to the microcanonical ensemble,

P (x, n) ∝ ΩHB(E0 − E(x), n0 − n)

= exp{SHB(E0 − E(x), n0 − n)/k}

≈ exp

{

SHB(E0, n0)

k
− 1

k

∂SHB
∂E

· E(x)− 1

k

∂SHB
∂n

· n
}

∝ exp

{

−E(x)
kT

+
µn

kT

}

(60)

where we have now defined the chemical potential µ (of the heat bath) as:

µ
∆
= −T · ∂SHB(E

′, n′)

∂n′

∣

∣

∣

∣

E′=E0,n′=n0

. (61)

Thus, we now have the grand–canonical distribution:

P (x, n) =
eβ[µn−E(x)]

Ξ(β, µ)
, (62)
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where the denominator is called the grand partition function:

Ξ(β, µ)
∆
=

∞
∑

n=0

eβµn
∑

x

e−βE(x) ∆
=

∞
∑

n=0

eβµnZn(β). (63)

It is sometimes convenient to change variables and to define z = eβµ (which is called the

fugacity) and then, define

Ξ̃(β, z) =

∞
∑

n=0

znZn(β). (64)

This notation emphasizes the fact that for a given β, Ξ̃(z) is actually the z–transform of

the sequence Zn. A natural way to think about P (x, n) is as P (n) · P (x|n), where P (n) is
proportional to znZn(β) and P (x|n) corresponds to the canonical ensemble as before.

Using the grand partition function, it is now easy to obtain moments of the RV n. For

example, the first moment is:

〈n〉 =
∑

n nz
nZn(β)

∑

n z
nZn(β)

= z · ∂ ln Ξ̃(β, z)
∂z

. (65)

Thus, we have replaced the fixed number of particles n by a random number of particles,

which concentrates around an average controlled by the parameter µ, or equivalently, z.

The dominant value of n is the one that maximizes the product znZn(β), or equivalently,

βµn+ lnZn(β). Thus, ln Ξ̃ is related to lnZn by another kind of a Legendre transform.

When two systems, with total energy E0 and a total number of particles n0, are brought

into contact, allowing both energy and matter exchange, then the dominant combined states

are those for which Ω1(E1, n1) · Ω2(E0 − E1, n0 − n1), or equivalently, S1(E1, n1) + S2(E0 −
E1, n0−n1), is maximum. By equating to zero the partial derivatives w.r.t. both E1 and n1,

we find that in equilibrium both the temperatures T1 and T2 are the same and the chemical

potentials µ1 and µ2 are the same.

Finally, I would like to point out that beyond the obvious physical significance of the

grand–canonical ensemble, sometimes it proves useful to work with it from the reason of

pure mathematical convenience. This is shown in the following example.

Example – Quantum Statistics. Consider an ensemble of indistinguishable particles, each

one of which may be in a certain quantum state labeled by 1, 2, . . . , r, . . .. Associated with
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quantum state number r, there is an energy ǫr. Thus, if there are nr particles in each state

r, the total energy is
∑

r nrǫr, and so, the canonical partition function is:

Zn(β) =
∑

n:
∑

r nr=n

exp{−β
∑

r

nrǫr}. (66)

The constraint
∑

r nr = n, which accounts for the fact that the total number of particles

must be n, causes an extremely severe headache in the calculation. However, if we pass to

the grand–canonical ensemble, things becomes extremely easy:

Ξ̃(β, z) =
∑

n≥0

zn
∑

n:
∑

r nr=n

exp{−β
∑

r

nrǫr}

=
∑

n1≥0

∑

n2≥0

. . . z
∑

r nr exp{−β
∑

r

nrǫr}

=
∑

n1≥0

∑

n2≥0

. . .
∏

r≥1

znr exp{−βnrǫr}

=
∏

r≥1

∑

nr≥0

[ze−βǫr ]nr (67)

In the case where nr is unlimited (Bose–Einstein particles, or Bosons), each factor indexed

by r is clearly a geometric series, resulting in Ξ̃ =
∏

r[1/(1 − ze−βǫr)]. In the case where

no quantum state can be populated by more than one particle, owing to Pauli’s exclusion

principle (Fermi–Dirac particles, or Fermions), each factor in the product contains two terms

only, pertaining to nr = 0, 1, and the result is Ξ̃ =
∏

r(1 + ze−βǫr). In both cases, this is

fairly simple. Having computed Ξ̃(β, z), we can in principle, return to Zn(β) by applying

the inverse z–transform. We will get back to this in the sequel.

2.7 Gibbs’ Inequality, the 2nd Law, and the Data Processing Thm

While the laws of physics draw the boundaries between the possible and the impossible in

Nature, the coding theorems of information theory, or more precisely, their converses, draw

the boundaries between the possible and the impossible in coded communication systems

and data processing. Are there any relationships between these two facts?

We are now going to demonstrate that there are some indications that the answer to

this question is affirmative. In particular, we are going to see that there is an intimate
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relationship between the second law of thermodynamics and the data processing theorem

(DPT), asserting that if X → U → V is a Markov chain, then I(X ;U) ≥ I(X ;V ). The

reason for focusing our attention on the DPT is that it is actually the most fundamental

inequality that supports most (if not all) proofs of converse theorems in IT. Here are just a

few points that make this quite clear.

1. Lossy/lossless source coding: Consider a source vector UN = (U1, . . . UN ) compressed

into a bitstream Xn = (X1, . . . , Xn) from which the decoder generates a reproduction

V N = (V1, . . . , VN) with distortion
∑N

i=1E{d(Ui, Vi)} ≤ ND. Then, by the DPT,

I(UN ;V N) ≤ I(Xn;Xn) = H(Xn), where I(UN ;V N) is further lower bounded by

NR(D) and H(Xn) ≤ n, which together lead to the converse to the lossy data com-

pression theorem, asserting that the compression ratio n/N cannot be less than R(D).

The case of lossless compression is obtained as a special case where D = 0.

2. Channel coding under bit error probability: Let UN = (U1, . . . UN) be drawn from the

binary symmetric course (BSS), designating M = 2N equiprobable messages of length

N . The encoder maps UN into a channel input vector Xn, which in turn, is sent across

the channel. The receiver observes Y n, a noisy version of Xn, and decodes the message

as V N . Let Pb = 1
N

∑N
i=1 Pr{Vi 6= Ui} designate the bit error probability. Then,

by the DPT, I(UN ;V N) ≤ I(Xn; Y n), where I(Xn; Y n) is further upper bounded

by nC, C being the channel capacity, and I(UN ;V N) = H(UN ) − H(UN |V N) ≥
N −∑N

i=1H(Ui|Vi) ≥ N −∑i h2(Pr{Vi 6= Ui}) ≥ N [1 − h2(Pb)]. Thus, for Pb to

vanish, the coding rate, N/n should not exceed C.

3. Channel coding under block error probability – Fano’s inequality: Same as in the pre-

vious item, except that the error performance is the block error probability PB =

Pr{V N 6= UN}. This, time H(UN |V N), which is identical to H(UN , E|V N), with

E ≡ I{V N 6= UN}, is decomposed as H(E|V N) +H(UN |V N , E), where the first term

is upper bounded by 1 and the second term is upper bounded by PB log(2N−1) < NPB,

owing to the fact that the maximum of H(UN |V N , E = 1) is obtained when UN is dis-
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tributed uniformly over all V N 6= UN . Putting these facts all together, we obtain

Fano’s inequality PB ≥ 1− 1/n− C/R, where R = N/n is the coding rate. Thus, the

DPT directly supports Fano’s inequality, which in turn is the main tool for proving

converses to channel coding theorems in a large variety of communication situations,

including network configurations.

4. Joint source–channel coding and the separation principle: In a joint source–channel

situation, where the source vector UN is mapped to a channel input vector Xn and

the channel output vector Y n is decoded into a reconstruction V N , the DPT gives

rise to the chain of inequalities NR(D) ≤ I(UN ;V N) ≤ I(Xn; Y n) ≤ nC, which is the

converse to the joint source–channel coding theorem, whose direct part can be achieved

by separate source- and channel coding. Items 1 and 2 above are special cases of this.

5. Conditioning reduces entropy: Perhaps even more often than the term “data process-

ing theorem” can be found as part of a proof of a converse theorem, one encounters

an equivalent of this theorem under the slogan “conditioning reduces entropy”. This

in turn is part of virtually every converse proof in the literature. Indeed, if (X,U, V )

is a triple of RV’s, then this statement means that H(X|V ) ≥ H(X|U, V ). If, in

addition, X → U → V is a Markov chain, then H(X|U, V ) = H(X|U), and so,

H(X|V ) ≥ H(X|U), which in turn is equivalent to the more customary form of the

DPT, I(X ;U) ≥ I(X ;V ), obtained by subtracting H(X) from both sides of the en-

tropy inequality. In fact, as we shall see shortly, it is this entropy inequality that

lends itself more naturally to a physical interpretation. Moreover, we can think of

the conditioning–reduces–entropy inequality as another form of the DPT even in the

absence of the aforementioned Markov condition, because X → (U, V )→ V is always

a Markov chain.

Turning now to the physics point of view, consider a system which may have two possibile

Hamiltonians – E0(x) and E1(x). Let Zi(β), denote the partition function pertaining to Ei(·),
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that is

Zi(β) =
∑

x

e−βEi(x), i = 0, 1. (68)

The Gibbs’ inequality asserts that

lnZ1(β) ≥ lnZ0(β) + β〈E0(X)− E1(X)〉0 (69)

where 〈·〉0 denotes averaging w.r.t. P0 – the canonical distribution pertaining the Hamiltonian

E0(·). Equivalently, this inequality can be presented as follows:

〈E1(X)− E0(X)〉0 ≥
[

− lnZ1(β)

β

]

−
[

− lnZ0(β)

β

]

≡ F1 − F0, (*) (70)

where Fi is the free energy pertaining to the canonical ensemble of Ei, i = 0, 1.

This inequality is easily proved by defining an Hamiltoinan Eλ(x) = (1 − λ)E0(x) +
λE1(x) = E0(x)+λ[E1(x)−E0(x)] and using the convexity of the corresponding log–partition

function w.r.t. λ. Specifically, let us define the partition function:

Zλ(β) =
∑

x

e−βEλ(x). (71)

Now, since Eλ(x) is affine in λ, then it is easy to show that d2 lnZλ/dλ
2 ≥ 0 (just like this

was done with d2 lnZ(β)/dβ2 ≥ 0 before) and so lnZλ(β) is convex in λ for fixed β. It

follows then that the curve of lnZλ(β), as a function of λ, must lie above the straight line

that is tangent to this curve at λ = 0 (see Fig. 2), that is, the graph corresponding to the

affine function lnZ0(β) + λ ·
[

∂ lnZλ(β)
∂λ

]

λ=0
. In particular, setting λ = 1, we get:

lnZ1(λ) ≥ lnZ0(β) +
∂ lnZλ(β)

∂λ

∣

∣

∣

∣

λ=0

. (72)

and the second term is:

∂ lnZλ(β)

∂λ

∣

∣

∣

∣

λ=0

=
β
∑

x[E0(x)− E1(x)]e−βE0(x)

∑

x e
−βE0(x)

∆
= β 〈E0(X)− E1(X)〉0 , (73)

Thus, we have obtained

ln

[

∑

x

e−βE1(x)

]

≥ ln

[

∑

x

e−βE0(x)

]

+ β 〈E0(X)− E1(X)〉0 , (74)
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straight line − tangent at
λ = 0.

λ

lnZλ(β)

1

Figure 2: The function lnZλ(β) is convex in λ and hence lies above its tangent at the origin.

and the proof is complete. In fact, the l.h.s. minus the r.h.s. is nothing but D(P0‖P1), where

Pi is the B–G distribution pertaining to Ei(·), i = 0, 1.

We now offer a possible physical interpretation to the Gibbs’ inequality: Imagine that a

system with Hamiltoinan E0(x) is in equilibrium for all t < 0, but then, at time t = 0, the

Hamitonian changes abruptly from the E0(x) to E1(x) (e.g., by suddenly applying a force on

the system), which means that if the system is found at state x at time t = 0, additional

energy of W = E1(x)− E0(x) is suddenly ‘injected’ into the system. This additional energy

can be thought of as work performed on the system, or as supplementary potential energy.

Since this passage between E0 and E1 is abrupt, the average of W should be taken w.r.t. P0,

as the state x does not change instantaneously. This average is exactly what we have at the

left–hand side eq. (*). The Gibbs inequality tells us then that this average work is at least

as large as ∆F = F1 − F0, the increase in free energy.6 The difference 〈W 〉0 − ∆F is due

to the irreversible nature of the abrupt energy injection, and this irreversibility means an

increase of the total entropy of the system and its environment, and so, the Gibbs’ inequality

6This is related to the interpretation of the free–energy difference ∆F = F1 − F0 as being the maximum
amount of work in an isothermal process.
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is, in fact, a version of the second law of thermodynamics.7 This excess work beyond the

free–energy increase, 〈W 〉0 − ∆F , which can be thought of as the “dissipated work,” can

easily shown (exercise) to be equal to kT · D(P0‖P1), where P0 and P1 are the canonical

distributions pertaining to E0 and E1, respectively. Thus, the divergence is given yet another

physical significance.

Now, let us see how the Gibbs’ inequality is related to the DPT. Consider a triple of

random variables (X,U ,V ) which form a Markov chain X → U → V . The DPT asserts

that I(X;U) ≥ I(X;V ). We can obtain the DPT as a special case of the Gibbs inequal-

ity as follows: For a given realization (u, v) of the random variables (U ,V ), consider the

Hamiltonians

E0(x) = − lnP (x|u) = − lnP (x|u, v) (75)

and

E1(x) = − lnP (x|v). (76)

Let us also set β = 1. Thus, for a given (u, v):

〈W 〉0 = 〈E1(X)−E0(X)〉0 =
∑

x

P (x|u, v)[lnP (x|u)−lnP (x|v)] = H(X|V = v)−H(X|U = u)

(77)

and after further averaging w.r.t. (U ,V ), the average work becomes H(X|V )−H(X|U) =

I(X;U)− I(X;V ). Concerning the free energies, we have

Z0(β = 1) =
∑

x

exp{−1 · [− lnP (x|u, v)]} =
∑

x

P (x|u, v) = 1 (78)

and similarly,

Z1(β = 1) =
∑

x

P (x|v) = 1 (79)

7 From a more general physical perspective, the Jarzynski equality tells that under certain conditions
on the test system and the heat bath, and given any protocol {λ(t)} of changing the control variable λ (of
Eλ(x)), the work W applied to the system is a RV which satisfies 〈e−βW 〉 = e−β∆F . By Jensen’s inequality,
〈e−βW 〉 is lower bounded by e−β〈W 〉, and so, we obtain 〈W 〉 ≥ ∆F (which is known as the minimum work
principle), now in more generality than in the Gibbs’ inequality, which is limited to the case where λ(t) is a
step function. At the other extreme, when λ(t) changes very slowly, corresponding to a reversible process,
W approaches determinism, and then Jensen’s inequality becomes tight, which then gives (in the limit)
W = ∆F with no increase in entropy.
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which means that F0 = F1 = 0, and so ∆F = 0 as well. So by the Gibbs inequality, the

average work I(X;U)− I(X;V ) cannot be smaller than the free–energy difference, which

in this case vanishes, namely, I(X;U) − I(X;V ) ≥ 0, which is the DPT. Note that in

this case, there is a maximum degree of irreversibility: The identity I(X;U)− I(X;V ) =

H(X|V ) − H(X|U) means that whole work W = I(X;U) − I(X;V ) goes for entropy

increase S1T−S0T = H(X|V ) ·1−H(X|U) ·1, whereas the free energy remains unchanged,

as mentioned earlier. Note that the Jarzynski formula (cf. last footnote) holds in this special

case, i.e., 〈e−1·W 〉 = e−1·∆F = 1.

The difference between I(X;U) and I(X;V ), which accounts for the rate loss in any

suboptimal coded communication system, is then given the meaning of irreversibility and

entropy production in the corresponding physical system. Optimum (or nearly optimum)

communication systems are corresponding to quasistatic isothermal processes, where the full

free energy is exploited and no work is dissipated (or no work is carried out at all, in the first

place). In other words, had there been a communication system that violated the converse to

the source/channel coding theorem, one could have created a corresponding physical system

that violates the second law of thermodynamics, and this, of course, cannot be true.

2.8 Large Deviations Theory and Physics of Information Measures

As I said in the Intro, large deviations theory, the branch of probability theory that deals

with exponential decay rates of probabilities of rare events, has strong relations to IT, which

we have already seen in the IT course through the eye glasses of the method of types and

Sanov’s theorem. On the other hand, large deviations theory has also a strong connection

to statistical mechanics, as we are going to see shortly. Therefore, one of the links between

IT and statistical mechanics goes through rate functions of large deviations theory, or more

concretely, Chernoff bounds. This topic is based on the paper: N. Merhav, “An identity of

Chernoff bounds with an interpretation in statistical physics and applications in information

theory,” IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 3710–3721, August 2008.

Let us begin with a very simple question: We have a bunch of i.i.d. RV’s X1, X2, . . . and
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a certain real function E(x). How fast does the probability of the event

n
∑

i=1

E(Xi) ≤ nE0

decay as n grows without bound, assuming that E0 < 〈E(X)〉 (so that this would be a rare

event)? One way to handle this problem, at least in the finite alphabet case, is the method

of types. Another method is the Chernoff bound:

Pr

{

n
∑

i=1

E(Xi) ≤ nE0

}

= EI
{

n
∑

i=1

E(Xi) ≤ nE0

}

I(·) denoting the indicator function

≤ E exp

{

β

[

nE0 −
n
∑

i=1

E(Xi)

]}

← ∀ β ≥ 0 : I{Z < a} ≤ eβ(a−Z)

= eβnE0E exp

{

−β
n
∑

i=1

E(Xi)

}

= eβnE0E

{

n
∏

i=1

exp{−βE(Xi)}
}

= eβnE0 [E exp{−βE(X1)}]n

= exp {n [βE0 + lnE exp{−βE(X1)}]}

As this bound applies for every β ≥ 0, the tightest bound of this family is obtained by

minimizing the r.h.s. over β, which yields the exponential rate function:

Σ(E0) = min
β≥0

[βE0 + φ(β)], (80)

where

φ(β) = lnZ(β) (81)

and

Z(β) = Ee−βE(X) =
∑

x

p(x)e−βE(x). (82)

Rings a bell? Note that Z(β) here differs from the partition function that we have encoun-

tered thus far only slighlty: the Boltzmann exponentials are weighed by {p(x)} which are

independent of β. But this is not a crucial difference: one can imagine a physical system
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where each microstate x is actually a representative of a bunch of more refined microstates

{x′}, whose number is proportional to p(x) and which all have the same energy as x, that

is, E(x′) = E(x). In the domain of the more refined system, Z(β) is (up to a constant) a

non–weighted sum of exponentials, as it should be. More precisely, if p(x) is (or can be

approximated by) a rational number N(x)/N , where N is independent of x, then imagine

that each x gives rise to N(x) microstates {x′} with the same energy as x, so that

Z(β) =
1

N

∑

x

N(x)e−βE(x) =
1

N

∑

x′

e−βE(x
′), (83)

and we are back to an ordinary, non–weighted partition function, upto the constant 1/N ,

which is absolutely immaterial.

To summarize what we have seen thus far: the exponential rate function is given by the

Legendre transform of the log–moment generating function. The Chernoff parameter β to

be optimized plays the role of the equilibrium temperature pertaining to energy E0.

Consider next what happens when p(x) is itself a B–G distribution with Hamiltonian

E(x) at a certain inverse temperature β1, that is

p(x) =
e−β1E(x)

ζ(β1)
(84)

with

ζ(β1)
∆
=
∑

x

e−β1E(x). (85)

In this case, we have

Z(β) =
∑

x

p(x)e−βE(x) =

∑

x e
−(β1+β)E(x)

ζ(β1)
=
ζ(β1 + β)

ζ(β1)
. (86)

Thus,

Σ(E0) = min
β≥0

[βE0 + ln ζ(β1 + β)]− ln ζ(β1)

= min
β≥0

[(β + β1)E0 + ln ζ(β1 + β)]− ln ζ(β1)− β1E0

= min
β≥β1

[βE0 + ln ζ(β)]− ln ζ(β1)− β1E0

= min
β≥β1

[βE0 + ln ζ(β)]− [ln ζ(β1) + β1E1] + β1(E1 − E0)
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where E1 is the energy corresponding to β1, i.e., E1 is such that

σ(E1)
∆
= min

β≥0
[βE1 + ln ζ(β)] (87)

is achieved by β = β1. Thus, the second bracketted term of the right–most side of the last

chain is exactly σ(E1), as defined. If we now assume that E0 < E1, which is reasonable,

because E1 is the average of E(X) under β1, and we are assuming that we are dealing with

a rare event where E0 < 〈E(X)〉. In this case, the achiever β0 of σ(E0) must be larger than

β1 anyway, and so, the first bracketted term on the right–most side of the last chain agrees

with σ(E0). We have obtained then that the exponential decay rate (the rate function) is

given by

I = −Σ(E0) = σ(E1)− σ(E0)− β1(E1 −E0). (88)

Note that I ≥ 0 thanks to the fact that σ(·) is concave. It has a simple graphical intepretation

as the height difference, as seen at the point E = E0, between the tangent to the curve σ(E)

at E = E1 and the function σ(E) itself (see Fig. 3).

EE0 E1

slope β1

σ(E)

σ(E1)

σ(E0)

I

Figure 3: Graphical interpretation of the LD rate function I.
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Another look is the following:

I = β1

[(

E0 −
σ(E0)

β1

)

−
(

E1 −
σ(E1)

β1

)]

= β1(F0 − F1)

= D(Pβ0‖Pβ1)

= min{D(Q‖Pβ1) : EQE(X) ≤ E0} ← exercise

The last line is exactly what we would have obtained using the method of types. This means

that the dominant instance of the large deviations event under discussion pertains to thermal

equilibrium (minimum free energy) complying with the constraint(s) dictated by this event.

This will also be the motive of the forthcoming results.

Exercise: What happens if p(x) is B–G with an Hamiltonian Ê(·), different from the one

of the LD event? �

Let us now see how this discussion relates to very fundamental information measures, like

the rate–distortion function and channel capacity. To this end, let us first slightly extend

the above Chernoff bound. Assume that in addition to the RV’s X1, . . . , Xn, there is also a

deterministic sequence of the same length, y1, . . . , yn, where each yi takes on values in a finite

alphabet Y . Suppose also that the asymptotic regime is such that as n grows without bound,

the relative frequencies { 1
n

∑n
i=1 1{yi = y}}y∈Y converge to certain probabilities {q(y)}y∈Y .

Furthermore, the Xi’s are still independent, but they are no longer necessarily identically

distributed: each one of them is governed by p(xi|yi), that is, p(x|y) =
∏n

i=1 p(xi|yi). Now,
the question is how does the exponential rate function behave if we look at the event

n
∑

i=1

E(Xi, yi) ≤ nE0 (89)

where E(x, y) is a given ‘Hamiltonian’. What is the motivation for this question? Where

and when do we encounter such a problem?

Well, there are many examples (cf. the above mentioned paper), but here are two very

classical ones, where rate functions of LD events are directly related to very important
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information measures. In both examples, the distributions p(·|y) are actually the same for

all y ∈ Y (namely, {Xi} are again i.i.d.).

• Rate–distortion coding. Consider the good old problem of lossy compression with a

randomly selected code. Let y = (y1, . . . , yn) be a given source sequence, typical to

Q = {q(y), y ∈ Y} (non–typical sequences are not important). Now, let us randomly

select enR codebook vectors {X(i)} according to p(x) =
∏n

i=1 p(xi). Here is how the

direct part of the source coding theorem essentially works: We first ask ourselves what

is the probability that a single randomly selected codeword X = (X1, . . . , Xn) would

happen to fall at distance ≤ nD from y, i.e., what is the exponential rate of the

probability of the event
n
∑

i=1

d(Xi, yi) ≤ nD? (90)

The answer is that it is exponentially about e−nR(D), and that’s why we need slightly

more than one over this number, namely, e+nR(D) times to repeat this ‘experiment’ in

order to see at least one ‘success’, which means being able to encode y within distortion

D. So this is clearly an instance of the above problem, where E = d and E0 = D.

• Channel coding. In complete duality, consider the classical channel coding problem, for

a discrete memoryless channel (DMC), using a randomly selected code. Again, we have

a code of size enR, where each codeword is chosen independently according to p(x) =
∏n

i=1 p(xi). Let y the channel output vector, which is (with very high probabaility),

typical to Q = {q(y), y ∈ Y}, where q(y) =∑x p(x)W (y|x), W being the single–letter

transition probability matrix of the DMC. Consider a (capacity–achieving) threshold

decoder which selects the unique codeword that obeys

n
∑

i=1

[− lnW (yi|Xi)] ≤ n[H(Y |X) + ǫ] ǫ > 0 (91)

and declares an error whenever no such codeword exists or when there is more than

one such codeword. Now, in the classical proof of the direct part of the channel coding

problem, we first ask ourselves: what is the probability that an independently selected
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codeword (and hence not the one transmitted) X will pass this threshold? The answer

turns out to be exponentially e−nC , and hence we can randomly select up to slightly less

than one over this number, namely, e+nC codewords, before we start to see incorrect

codewords that pass the threshold. Again, this is clearly an instance of our problem

with E(x, y) = − lnW (y|x) and E0 = H(Y |X) + ǫ.

Equipped with these two motivating examples, let us get back to the generic problem we

formalized, and see what happens. Once this has been done, we shall return to the examples.

There are (at least) two different ways to address the problem using Chernoff bounds, and

they lead to two seemingly different expressions, but since the Chernoff bounding technique

gives the correct exponential behavior, these two expressions must agree. This identity

between the two expressions will have a physical intepretation, as we shall see.

The first approach is a direct extension of what we did before:

Pr

{

n
∑

i=1

E(Xi, yi) ≤ nE0

}

= EI
{

n
∑

i=1

E(Xi, yi) ≤ nE0

}

≤ E exp

{

β

[

nE0 −
n
∑

i=1

E(Xi, yi)

]}

= enβE0

∏

y∈Y
Ey exp

{

−β
∑

i:yi=y

E(Xi, y)

}

Ey
∆
= expectation under p(·|y)

= eβnE0

∏

y∈Y
[Ey exp{−βE(X, y)}]n(y) n(y)

∆
= num. of {yi = y}

= exp

{

n

[

βE0 +
∑

y∈Y
q(y) ln

∑

x∈X
p(x|y) exp{−βE(x, y)}

]}

and so, the resulting rate function is given by

Σ(E0) = min
β≥0

[

βE0 +
∑

y∈Y
q(y) lnZy(β)

]

(92)

where

Zy(β)
∆
=
∑

x∈X
p(x|y) exp{−βE(x, y)}. (93)
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In the rate–distortion example, this tells us that

R(D) = −min
β≥0

[

βD +
∑

y∈Y
q(y) ln

∑

x∈X
p(x)e−βd(x,y)

]

. (94)

This is a well–known parametric representation ofR(D), which can be obtained via a different

route (see, e.g., Gray’s book Source Coding Theory), where the minimizing β is known to

have the graphical interpretation of the local negative slope (or derivative) of the curve of

R(D). In the case of channel capacity, we obtain in a similar manner:

C = −min
β≥0

[

βH(Y |X) +
∑

y∈Y
q(y) ln

∑

x∈X
p(x)e−β[− lnW (y|x)]

]

= −min
β≥0

[

βH(Y |X) +
∑

y∈Y
q(y) ln

∑

x∈X
p(x)W β(y|x)

]

.

Exercise: Show that for channel capacity, the minimizing β is always β∗ = 1. �

The other route is to handle each y ∈ Y separately: First, observe that

n
∑

i=1

E(Xi, yi) =
∑

y∈Y

∑

i: yi=y

E(Xi, y), (95)

where now, in each partial sum over {i : yi = y}, we have i.i.d. RV’s. The event
∑n

i=1 E(Xi, yi) ≤ nE0 can then be thought of as the union of all intersections

⋂

y∈Y

{

∑

i: yi=y

E(Xi, y) ≤ n(y)Ey

}

(96)

where the union is across all “possible partial energy allocations” {Ey} which satisfy
∑

y q(y)Ey ≤
E0. Note that at least when the Xi’s take values on a finite alphabet, each partial sum
∑

i: yi=y
E(Xi, y) can take only a polynomial number of values in n(y) (why?), and so, it is

sufficient to ‘sample’ the space of {Ey} by polynomially many vectors in order to cover all
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possible instances of the event under discussion (see more details in the paper). Thus,

Pr

{

n
∑

i=1

E(Xi, yi) ≤ nE0

}

= Pr
⋃

{Ey :
∑

y q(y)Ey≤E0}

⋂

y∈Y

{

∑

i: yi=y

E(Xi, y) ≤ n(y)Ey

}

·
= max

{Ey :
∑

y q(y)Ey≤E0}

∏

y∈Y
Pr

{

∑

i: yi=y

E(Xi, y) ≤ n(y)Ey

}

·
= max

{Ey :
∑

y q(y)Ey≤E0}

∏

y∈Y
exp

{

n(y) min
βy≥0

[βyEy + lnZy(β)]

}

= exp

{

n · max
{Ey :

∑

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey)

}

where we have defined

Σy(Ey)
∆
= min

βy≥0
[βyEy + lnZy(βy)] . (97)

We therefore arrived at an alternative expression of the rate function, which is

max
{Ey:

∑

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey). (98)

Since the two expressions must agree, we got the following identity:

Σ(E0) = max{Ey :
∑

y q(y)Ey≤E0}
∑

y∈Y q(y)Σy(Ey)

A few comments:

1. In the paper there is also a direct proof of this identity, without relying on Chernoff bound

considerations.

2. This identity accounts for a certain generalized concavity property of the entropy function.

Had all the Σy(·)’s been the same function, then this would have been the ordinary concavity

property. What makes it interesting is that it continues to hold for different Σy(·)’s too.
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3. The l.h.s. of this identity is defined by minimization over one parameter only – the inverse

temperature β. On the other hand, on the r.h.s. we have a separate inverse temperature

for every y, because each Σy(·) is defined as a separate minimization problem with its own

βy. Stated differently, the l.h.s. is the minimum of a sum, whereas in the r.h.s., for given

{Ey}, we have the sum of minima. When do these two things agree? The answer is that

it happens if all minimizers {β∗
y} happen to be the same. But β∗

y depends on Ey. So what

happens is that the {Ey} (of the outer maximization problem) are such that the β∗
y would

all be the same, and would agree also with the β∗ of Σ(E0). To see why this is true, consider

the following chain of inequalities:

max
{Ey:

∑

y q(y)Ey≤E0}

∑

y

q(y)Σy(Ey)

= max
{Ey:

∑

y q(y)Ey≤E0}

∑

y

q(y)min
βy

[βyEy + lnZy(βy)]

≤ max
{Ey:

∑

y q(y)Ey≤E0}

∑

y

q(y)[β∗Ey + lnZy(β
∗)] where β∗ achieves Σ(E0)

≤ max
{Ey:

∑

y q(y)Ey≤E0}
[β∗E0 +

∑

y

q(y) lnZy(β
∗)] because

∑

y q(y)Ey ≤ E0

= β∗E0 +
∑

y

q(y) lnZy(β
∗) the bracketted expression no longer depends on {Ey}

= Σ(E0).

Both inequalities become equalities if {Ey} would be allocated such that:8 (i)
∑

y q(y)Ey =

E0 and (ii) β∗
y(Ey) = β∗ for all y. Since the β’s have the meaning of inverse temperatures,

what we have here is thermal equilibrium: Consider a bunch of |Y| subsystems, each one

of n(y) particles and Hamiltonian E(x, y) indexed by y. If all these subsystems are thermally

separated, each one with energy Ey, then the total entropy per particle is
∑

y q(y)Σy(Ey).

The above identity tells us then what happens when all these systems are brought into

thermal contact with one another: The total energy per particle E0 is split among the

different subsystems in a way that all temperatures become the same – thermal equilibrium.

It follows then that the dominant instance of the LD event is the one where the contributions
8Exercise: show that there exists an energy allocation {Ey} that satisfies both (i) and (ii) at the same

time.
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of each y, to the partial sum of energies, would correspond to equilibrium. In the rate–

distortion example, this characterizes how much distortion each source symbol contributes

typically.

Now, let us look a bit more closely on the rate–distortion function:

R(D) = −min
β≥0

[

βD +
∑

y∈Y
q(y) ln

∑

x∈X
p(x)e−βd(x,y)

]

. (99)

As said, the Chernoff parameter β has the meaning of inverse temperature. The inverse

temperature β required to ‘tune’ the expected distortion (internal energy) to D, is the

solution to the equation

D = − ∂

∂β

∑

y

q(y) ln
∑

x

p(x)e−βd(x,y) (100)

or equivalently,

D =
∑

y

q(y) ·
∑

x p(x)d(x, y)e
−βd(x,y)

∑

x p(x) · e−βd(x,y)
. (101)

The Legendre transform relation between the log–partition function and R(D) induces a one–

to–one mapping between D and β which is defined by the above equation. To emphasize

this dependency, we henceforth denote the value of D, corresponding to a given β, by Dβ.

This expected distortion is defined w.r.t. the probability distribution:

Pβ(x, y) = q(y) · Pβ(x|y) = q(y) · p(x)e−βd(x,y)
∑

x′ p(x
′)e−βd(x′,y)

. (102)

On substituting Dβ instead of D in the expression of R(D), we have

−R(Dβ) = βDβ +
∑

y

q(y) ln
∑

x

p(x)e−βd(x,y). (103)

Note that R(Dβ) can be represented in an integral form as follows:

R(Dβ) = −
∫ β

0

dβ̂ ·
(

Dβ̂ + β̂ ·
dDβ̂

dβ̂
−Dβ̂

)

= −
∫ Dβ

D0

β̂ · dDβ̂, (104)
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where D0 =
∑

x,y p(x)q(y)d(x, y) is the value of D corresponsing to β = 0, and for which

RQ(D) = 0, This is exactly analogous to the thermodynamic equation S =
∫

dQ/T (following

from 1/T = dS/dQ), that builds up the entropy from the cumulative heat. Note that the last

equation, in its differential form, reads dR(Dβ) = −βdDβ, or β = −R′(Dβ), which means

that β is indeed the negative local slope of the rate–distortion curve R(D). Returning to

the integration variable β̂, we have:

R(Dβ) = −
∫ β

0

dβ̂ · β̂ ·
dDβ̂

dβ̂

=
∑

y

q(y)

∫ β

0

dβ̂ · β̂ · Varβ̂{d(X, y)|Y = y}

=

∫ β

0

dβ̂ · β̂ ·mmseβ̂{d(X, Y )|Y }

where Varβ̂{·} and mmseβ̂{·|·} are taken w.r.t. Pβ̂(x, y). We have therefore introduced an

integral representation for R(D) based on the MMSE in estimating the distortion variable

d(X, Y ) based on Y . In those cases where an exact expression for R(D) is hard to obtain,

this opens the door to upper and lower bounds on R(D), which are based on upper and lower

bounds on the MMSE, offered by the plethora of bounds available in estimation theory.

Exercise: Show that Dβ = D0 −
∫ β

0
dβ̂ ·mmseβ̂{d(X, Y )|Y }.

Finally, a word about the high–resolution regime. The partition function of each y is

Zy(β) =
∑

x

p(x)e−βd(x,y), (105)

or, in the continuous case,

Zy(β) =

∫

IR

dxp(x)e−βd(x,y). (106)

Consider the Lθ distortion measure d(x, y) = |x − y|θ, where θ > 0 and consider a uniform

random coding distribution over the interval [−A,A], supposing that it is the optimal (or

close to optimal) one. Suppose further that we wish to work at a very small distortion level
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D (high res), which means a large value of β (why?). Then,

Zy(β) =
1

2A

∫ +A

−A
dxe−β|x−y|

θ

≈ 1

2A

∫ +∞

−∞
dxe−β|x−y|

θ

(large β)

=
1

2A

∫ +∞

−∞
dxe−β|x|

θ

(the integral is independent of y)

Thus, returning to the expression of R(D), let us minimize over β by writing the zero–

derivative equation, which yields:

D = − ∂

∂β
ln

[

1

2A

∫ +∞

−∞
dxe−β|x|

θ

]

(107)

but this is exactly the calculation of the (generalized) equipartition theorem, which gives

1/(βθ) = kT/θ. Now, we already said that β = −R′(D), and so, 1/β = −D′(R). It follows

then that the function D(R), at this high res. limit, obeys a simple differential equation:

D(R) = −D
′(R)

θ
(108)

whose solution is

D(R) = D0e
−θR. (109)

In the case where θ = 2 (squared error distortion), we get that D(R) is proportional to e−2R,

which is a well–known result in high res. quantization theory. For the Gaussian source, this

is true for all R.
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3 Analysis Tools and Asymptotic Methods

3.1 Introduction

So far we have dealt with relatively simple situations where the Hamiltonian is additive,

the resulting B–G distribution is then i.i.d., and everything is very nice, easy, and simple.

But this is seldom the case in reality. Most models in physics, including those that will

prove relevant for IT, as we shall see in the sequel, are way more complicated, more difficult,

but also more interesting. More often than not, they are so complicated and difficult, that

they do not lend themselves to closed–form analysis at all. In some other cases, analysis

is possible, but it requires some more powerful mathematical tools and techniques, which

suggest at least some asymptotic approximations. These are tools and techniques that we

must acquaint ourselves with. So the purpose of this part of the course is to prepare these

tools, before we can go on to the more challenging settings that are waiting for us.

Before diving into the technical stuff, I’ll first try to give the flavor of the things I am

going to talk about, and I believe the best way to do this is through an example. In quantum

mechanics, as its name suggests, several physical quantites do not really take on values in

the continuum of real numbers, but only values in a discrete set, depending on the conditions

of the system. One such quantized physical quantity is energy (for example, the energy of

light comes in quanta of hν, where ν is frequency). Suppose we have a system of n mobile

particles (gas), whose energies take on discrete values, denoted ǫ0 < ǫ1 < ǫ2 < . . .. If the

particles were not interacting, then the partition function would have been given by

[

∑

r≥0

e−βǫr

]n

=
∑

r1≥0

∑

r2≥0

. . .
∑

rn≥0

exp

{

−β
n
∑

i=1

ǫri

}

=
∑

n:
∑

r nr=n

n!
∏

r nr!
· exp

{

−β
∑

r

nrǫr

}

.

(110)

However, since the particles are indistinguishable, then permutations among them are not

considered distinct physical states (see earlier discussion on the ideal gas), and so, the com-

binatorial factor n!/
∏

r nr!, that counts these permutations, should be eliminated. In other
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words, the correct partition function should be

Zn(β) =
∑

n:
∑

r nr=n

exp

{

−β
∑

r

nrǫr

}

. (111)

The problem is that this partition function is hard to calculate in closed form: the headache

is caused mostly because of the constraint
∑

r nr = n. However, if we define a corresponding

generating function

Ξ(β, z) =
∑

n≥0

znZn(β), (112)

which is like the z–transform of {Zn(β)}, this is easy to work with, because

Ξ(β, z) =
∑

n1≥0

∑

n2≥0

. . . z
∑

r nr exp

{

−β
∑

r

nrǫr

}

=
∏

r

[

∑

nr

(

ze−βǫr
)nr

]

. (113)

Splendid, but we still want to obtain Zn(β)...

The idea is to apply the inverse z–transform:

Zn(β) =
1

2πj

∮

C

Ξ(β, z)dz

zn+1
=

1

2πj

∮

C
Ξ(β, z)e−(n+1) ln zdz, (114)

where z is a complex variable, j =
√
−1, and C is any clockwise closed path encircling the

origin and entirely in the region of convergence. An exact calculation of integrals of this

type might be difficult, in general, but often, we would be happy enough if at least we could

identify how they behave in the thermodynamic limit of large n.

Similar needs are frequently encountered in information–theoretic problems. One exam-

ple is in universal source coding: Suppose we have a family of sources indexed by some

parameter θ, say, Bernoulli with parameter θ ∈ [0, 1], i.e.,

Pθ(x) = (1− θ)N−nθn, x ∈ {0, 1}N ; n = # of 1’s (115)

When θ is unknown, it is customary to construct a universal code as the Shannon code w.r.t.

a certain mixture of these sources

P (x) =

∫ 1

0

dθw(θ)Pθ(x) =

∫ 1

0

dθw(θ)eNh(θ) (116)
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where

h(θ) = ln(1− θ) + q ln

(

θ

1− θ

)

; q =
n

N
. (117)

So here again, we need to evaluate an integral of an exponential function of n (this time, on

the real line), in order to assess the performance of this universal code.

This is exactly the point where the first tool that we are going to study, namely, the

saddle point method (a.k.a. the steepest descent method) enters into the picture: it gives us

a way to assess how integrals of this kind scale as exponential functions of n, for large n.

More generally, the saddle point method is a tool for evaluating the exponential order (plus

2nd order behavior) of an integral of the form

∫

P
g(z)enf(z)dz P is a path in the complex plane. (118)

We begin with the simpler case where the integration is over the real line (or a subset of

the real line), whose corresponding asymptotic approximation method is called the Laplace

method. The material here is taken mostly from de Bruijn’s book, which appears in the

bibliographical list.

3.2 The Laplace Method

Consider first an integral of the form:

Fn
∆
=

∫ +∞

−∞
enh(x)dx, (119)

where the function h(·) is independent of n. How does this integral behave exponentially

for large n? Clearly, if it was a sum, like
∑

i e
nhi, rather than an integral, and the number

of terms was finite and independent of n, then the dominant term, enmaxi hi, would have

dictated the exponential behavior. This continues to be true even if the sum contains even

infinitely many terms provided that the tail of this series decays sufficiently rapidly. Since

the integral is, after all, a limit of sums, it is conceivable to expect, at least when h(·) is

“sufficiently nice”, that something of the same spirit would happen with Fn, namely, that its

exponential order would be, in analogy, enmaxh(x). In what follows, we are going to show this
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more rigorously, and as a bonus, we will also be able to say something about the second order

behavior. In the above example of universal coding, this gives rise to redundancy analysis.

We will make the following assumptions on h:

1. h is real and continuous.

2. h is maximum at x = 0 and h(0) = 0 (w.l.o.g).

3. h(x) < 0 ∀x 6= 0, and ∃b > 0, c > 0 s.t. |x| ≥ c implies h(x) ≤ −b.

4. The integral defining Fn converges for all sufficiently large n. W.l.o.g., let this suffi-

ciently large n be n = 1, i.e.,
∫ +∞
−∞ eh(x)dx <∞.

5. The derivative h′(x) exists at a certain neighborhood of x = 0, and h′′(0) < 0. Thus,

h′(0) = 0.

From these assumptions, it follows that for all δ > 0, there is a positive number η(δ) s.t. for

all |x| ≥ δ, we have h(x) ≤ −η(δ). For δ ≥ c, this is obvious from assumption 3. If δ < c,

then the maximum of the continuous function h across the interval [δ, c] is strictly negative.

A similar argument applies to the interval [−c,−δ]. Consider first the tails of the integral

under discussion:

∫

|x|≥δ
enh(x)dx =

∫

|x|≥δ
dxe(n−1)h(x)+h(x)

≤
∫

|x|≥δ
dxe−(n−1)η(δ)+h(x)

≤ e−(n−1)η(δ) ·
∫ +∞

−∞
eh(x)dx→ 0 exponentially fast

In other words, the tails’ contribution is vanishingly small. It remains to examine the integral

from −δ to +δ, that is, the neighborhood of x = 0. In this neighborhood, we shall take the

Taylor series expansion of h. Since h(0) = h′(0) = 0, then h(x) ≈ 1
2
h′′(0)x2. More precisely,

for all ǫ > 0, there is δ > 0 s.t.
∣

∣

∣

∣

h(x)− 1

2
h′′(0)x2

∣

∣

∣

∣

≤ ǫx2 ∀|x| ≤ δ. (120)
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Thus, this integral is sandwiched as follows:

∫ +δ

−δ
exp

{n

2
(h′′(0)− ǫ)x2

}

dx ≤
∫ +δ

−δ
enh(x)dx ≤

∫ +δ

−δ
exp

{n

2
(h′′(0) + ǫ)x2

}

dx. (121)

The right–most side is further upper bounded by

∫ +∞

−∞
exp

{n

2
(h′′(0) + ǫ)x2

}

dx (122)

and since h′′(0) < 0, then h′′(0)+ ǫ = −(|h′′(0)|− ǫ), and so, the latter is a Gaussian integral

given by
√

2π

(|h′′(0)| − ǫ)n. (123)

The left–most side of the earlier sandwich is further lower bounded by

∫ +δ

−δ
exp

{

−n
2
(|h′′(0)|+ ǫ)x2

}

dx

=

∫ +∞

−∞
exp

{

−n
2
(|h′′(0)|+ ǫ)x2

}

dx−
∫

|x|≥δ
exp

{

−n
2
(|h′′(0)|+ ǫ)x2

}

dx

=

√

2π

(|h′′(0)|+ ǫ)n
− 2Q(δ

√

n(|h′′(0)|+ ǫ))

≥
√

2π

(|h′′(0)|+ ǫ)n
−O

(

exp
{

−n
2
(|h′′(0)|+ ǫ)δ2

})

∼
√

2π

(|h′′(0)|+ ǫ)n

where the notation An ∼ Bn means that limn→∞An/Bn = 1. Since ǫ and hence δ can be

made arbitrary small, we find that

∫ +δ

−δ
enh(x)dx ∼

√

2π

|h′′(0)|n. (124)

Finally, since the tails contribute an exponentially small term, which is negligible compared

to the contribution of O(1/
√
n) order of the integral across [−δ,+δ], we get:

∫ +∞

−∞
enh(x)dx ∼

√

2π

|h′′(0)|n. (125)
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Slightly more generally, if h is maximized at an arbitrary point x = x0 this is completely

immaterial because an integral over the entire real line is invariant under translation of the

integration variable. If, furthermore, the maximum h(x0) is not necessarily zero, we can

make it zero by decomposing h according to h(x) = h(x0) + [h(x) − h(x0)] and moving the

first term as a constant factor of enh(x0) outside of the integral. The result would then be

∫ +∞

−∞
enh(x)dx ∼ enh(x0) ·

√

2π

|h′′(x0)|n
(126)

Of course, the same considerations continue to apply if Fn is defined over any finite or half–

infinite interval that contains the maximizer x = 0, or more generally x = x0 as an internal

point. It should be noted, however, that if Fn is defined over a finite or semi–infinite interval

and the maximum of h is obtained at an edge of this interval, then the derivative of h at that

point does not necessarily vanish, and the Gaussian integration would not apply anymore. In

this case, the local behavior around the maximum would be approximated by an exponential

exp{−n|h′(0)|x} or exp{−n|h′(x0)|x} instead, which gives a somewhat different expression.

However, the factor enh(x0), which is the most important factor, would continue to appear.

Normally, this will be the only term that will interest us, whereas the other factor, which

provides the second order behavior will not be important for us. A further extension in the

case where the maximizer is an internal point at which the derivative vanishes, is this:

∫ +∞
−∞ g(x)enh(x)dx ∼ g(x0)e

nh(x0) ·
√

2π
|h′′(x0)|n

where g is another function that does not depend on n. This technique, of approximating

an integral of a function, which is exponential in some large parameter n, by neglecting the

tails and approximating it by a Gaussian integral around the maximum, is called the Laplace

method of integration.

3.3 The Saddle Point Method

We now expand the scope to integrals along paths in the complex plane, which are also

encountered and even more often than one would expect (cf. the earlier example). As said,
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the extension of the Laplace integration technique to the complex case is called the saddle–

point method or the steepest descent method, for reasons that will become apparent shortly.

Specifically, we are now interested in an integral of the form

Fn =

∫

P
enh(z)dz or more generally Fn =

∫

P
g(z)enh(z)dz (127)

where z = x+ jy is a complex variable (j =
√
−1), and P is a certain path (or curve) in the

complex plane, starting at some point A and ending at point B. We will focus first on the

former integral, without the factor g. We will assume that P is fully contained in a region

where h is analytic (differentiable as many times as we want).

The first observation, in this case, is that the value of the integral depends actually only

on A and B, and not on the details of P: Consider any alternate path P ′ from A to B such

that h has no singularities in the region surrounded by P⋃P ′. Then, the integral of enh(z)

over the closed path P⋃P ′ (going from A to B via P and returning to A via P ′) vanishes,

which means that the integrals from A to B via P and via P ′ are the same. This means

that we actually have the freedom to select the integration path, as long as we do not go too

far, to the other side of some singularity point, if there is any. This point will be important

in our forthcoming considerations.

An additional important observation has to do with yet another basic property of analytic

functions: the maximum modulus theorem, which basically tells that the modulus of an

analytic function has no maxima. We will not prove here this theorem, but in a nutshell,

the point is this: Let

h(z) = u(z) + jv(z) = u(x, y) + jv(x, y), (128)

where u and v are real functions. If h is analytic, the following relationships (a.k.a. the

Cauchy–Riemann conditions)9 between the partial derivatives of u and v must hold:

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
. (129)

9This is related to the fact that for the derivative f ′(z) to exist, it should be independent of the direction
at which z is perturbed, whether it is, e.g., the horizontal or the vertical direction, i.e., f ′(z) = limδ→0[f(z+
δ)− f(z)]/δ = limδ→0[f(z + jδ)− f(z)]/(jδ), where δ goes to zero along the reals.

59



Taking the second order partial derivative of u:

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
(130)

where the first equality is due to the first Cauchy–Riemann condition and the third equality

is due to the second Cauchy–Riemann condition. Equivalently,

∂2u

∂x2
+
∂2u

∂y2
= 0, (131)

which is the Laplace equation. This means, among other things, that no point at which

∂u/∂x = ∂u/∂y = 0 can be a local maximum (or a local minimum) of u, because if it is

a local maximum in the x–direction, in which case, ∂2u/∂x2 < 0, then ∂2u/∂y2 must be

positive, which makes it a local minimum in the y–direction, and vice versa. In other words,

every point of zero partial derivatives of u must be a saddle point. This discussion applies

now to the modulus of the integrand enh(z) because
∣

∣

∣

∣

exp{nh(z)}
∣

∣

∣

∣

= exp[nRe{h(z)}] = enu(z). (132)

Of course, if h′(z) = 0 at some z = z0, then u
′(z0) = 0 too, and then z0 is a saddle point of

|enh(z)|. Thus, zero–derivative points of h are saddle points.

Another way to see this is the following: Given a complex analytic function f(z), we

argue that the average of f over a circle always agrees with its value at the center of this

circle. Specifically, consider the circle of radius R centered at z0, i.e., z = z0 +Rejθ. Then,

1

2π

∫ π

−π
f
(

z0 +Rejθ
)

dθ =
1

2πj

∫ π

−π

f
(

z0 +Rejθ
)

jRejθdθ

Rejθ

=
1

2πj

∮

z=z0+Rejθ

f
(

z0 +Rejθ
)

d
(

z0 + Rejθ
)

Rejθ

=
1

2πj

∮

z=z0+Rejθ

f(z)dz

z − z0
= f(z0). (133)

and so,

|f(z0)| ≤
1

2π

∫ π

−π

∣

∣

∣

∣

f
(

z0 +Rejθ
)

∣

∣

∣

∣

dθ (134)

which means that |f(z0)| cannot be strictly larger than all |f(z)| in any neighborhood (an

arbitrary radius R) of z0. Now, apply this fact to f(z) = enh(z).
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Equipped with this background, let us return to our integral Fn. Since we have the

freedom to choose the path P, suppose that we can find one which passes through a saddle

point z0 (hence the name of the method) and that maxz∈P |enh(z)| is attained at z0. We

expect then, that similarly as in the Laplace method, the integral would be dominated by

enh(z0). Of course, such a path would be fine only if it crosses the saddle point z0 at a

direction w.r.t. which z0 is a local maximum of |enh(z)|, or equivalently, of u(z). Moreover, in

order to apply our earlier results of the Laplace method, we will find it convenient to draw

P such that any point z in the vicinity of z0, where in the Taylor expansion is:

h(z) ≈ h(z0) +
1

2
h′′(z0)(z − z0)2 (recall that h′(z0) = 0.) (135)

the second term, 1
2
h′′(z0)(z − z0)2 is purely real and negative, and then it behaves locally

as a negative parabola, just like in the Laplace case. This means that

arg{h′′(z0)}+ 2arg(z − z0) = π (136)

or equivalently

arg(z − z0) =
π − arg{h′′(z0)}

2
∆
= θ. (137)

Namely, P should cross z0 in the direction θ. This direction is called the axis of z0, and

it can be shown to be the direction of steepest descent from the peak at z0 (hence the

name).10

So pictorially, what we are going to do is choose a path P from A to B, which will be

composed of three parts (see Fig. 4): The parts A→ A′ and B′ → B are quite arbitrary as

they constitute the tail of the integral. The part from A′ to B′, in the vicinity of z0, is a

straight line on the axis of z0.

Now, let us decompose Fn into its three parts:

Fn =

∫ A′

A

enh(z)dz +

∫ B′

A′

enh(z)dz +

∫ B

B′

enh(z)dz. (138)

10Note that in the direction θ− π/2, which is perpendicular to the axis, arg[h′′(z0)(z − z0)2] = π − π = 0,
which means that h′′(z0)(z − z0)2 is real and positive (i.e., it behaves like a positive parabola). Therefore,
in this direction, z0 is a local minimum.
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axis

A′

A

B′

B

z0

Figure 4: A path P from A to B, passing via z0 along the axis.

As for the first and the third terms,

∣

∣

∣

∣

(

∫ A′

A

+

∫ B

B′

)

dzenh(z)
∣

∣

∣

∣

≤
(

∫ A′

A

+

∫ B

B′

)

dz|enh(z)| =
(

∫ A′

A

+

∫ B

B′

)

dzenu(z) (139)

whose contribution is negligible compared to enu(z0), just like the tails in the Laplace method.

As for the middle integral,

∫ B′

A′

enh(z)dz ≈ enh(z0)
∫ B′

A′

exp{nh′′(z0)(z − z0)2/2}dz. (140)

By changing from the complex integration variable z to the real variable x, running from −δ
to +δ, with z = z0 + xejθ (motion along the axis), we get exactly the Gaussian integral of

the Laplace method, leading to

∫ B′

A′

exp{nh′′(z0)(z − z0)2/2}dz = ejθ

√

2π

n|h′′(z0)|
(141)

where the factor ejθ is due to the change of variable (dz = ejθdx). Thus,

Fn ∼ ejθ · enh(z0)
√

2π

n|h′′(z0)|
, (142)

and slightly more generally,

∫

P g(z)e
nh(z)dz ∼ ejθg(z0)e

nh(z0)
√

2π
n|h′′(z0)|
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The idea of integration along the axis is that along this direction, the ‘phase’ of enh(z) is locally

constant, and only the modulus varies. Had the integration been along another direction

with an imaginary component jφ(z), the function enh(z) would have undergone ‘modulation’,

i.e., it would have oscillated with a complex exponential enjφ(z) of a very high ‘frequency’

(proportional to n) and then enu(z0) would not have guaranteed to dictate the modulus and

to dominate the integral.

Now, an important comment is in order: What happens if there is more than one saddle

point? Suppose we have two saddle points, z1 and z2. On a first thought, one may be

concerned by the following consideration: We can construct two paths from A to B, path P1

crossing z1, and path P2 crossing z2. Now, if zi is the highest point along Pi for both i = 1

and i = 2, then Fn is exponentially both enh(z1) and enh(z2) at the same time. If h(z1) 6= h(z2),

this is a contradiction. But the following consideration shows that this cannot happen as

long as h(z) is analytic within the region C surround by P1 ∪ P2. Suppose conversely, that

the scenario described above happens. Then either z1 or z2 maximize |enh(z)| along the closed
path P1 ∪ P2. Let us say that it is z1. We claim that then z1 cannot be a saddle point, for

the following reason: No point in the interior of C can be higher than z1, because if there

was such a point, say, z3, then we had

max
z∈C
|enh(z)| ≥ |enh(z3)| > |enh(z1)| = max

z∈P1∪P2

|enh(z)| (143)

which contradicts the maximum modulus principle. This then means, among other things,

that in every neighborhood of z1, all points in C are lower than z1, including points found in a

direction perpendicular to the direction of the axis through z1. But this contradicts the fact

that z1 is a saddle point: Had it been a saddle point, it would be a local maximum along the

axis and a local minimum along the perpendicular direction. Since z1 was assumed a saddle

point, then it cannot be the highest point on P1, which means that it doesn’t dominate the

integral.

One might now be concerned by the thought that the integral along P1 is then dominated

by an even higher contribution, which still seems to contradict the lower exponential order
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of enh(z2) attained by the path P2. However, this is not the case. The highest point on

the path is guaranteed to dominate the integral only if it is a saddlepoint. Consider, for

example, the integral Fn =
∫ a+j2π

a+j0
enzdz. Along the vertical line from a + j0 to a + j2π,

the modulus (or attitude) is ena everywhere. If the attitude alone had been whatever counts

(regardless of whether it is a saddle point or not), the exponential order of (the modulus of)

this integral would be ena. However, the true value of this integral is zero! The reason for

this disagreement is that there is no saddle point along this path.

What about a path P that crosses both z1 and z2? This cannot be a good path for the

saddle point method, for the following reason: Consider two slightly perturbed versions of

P: path P1, which is very close to P, it crosses z1, but it makes a tiny detour that bypasses

z2, and similarly path P2, passing via z2, but with a small deformation near z1. Path P2

includes z2 as saddle point, but it is not the highest point on the path, since P2 passes near

z1, which is higher. Path P1 includes z1 as saddle point, but it cannot be the highest point on

the path because we are back to the same situation we were two paragraphs ago. Since both

P1 and P2 are bad choices, and since they are both arbitrarily close to P, then P cannot be

good either.

To summarize: if we have multiple saddle points, we should find the one with the lowest

attitude and then we have a chance to find a path through this saddlepoint (and only this

one) along which this saddle point is dominant.

Let us look now at a few examples.

Example 1 – relation between Ω(E) and Z(β) revisited. Assuming, without essential loss

of generality, that the ground–state energy of the system is zero, we have seen before the

relation Z(β) =
∫∞
0

dEΩ(E)e−βE , which actually means that Z(β) is the Laplace transform

of Ω(E). Consequently, this means that Ω(E) is the inverse Laplace transform of Z(β), i.e.,

Ω(E) =
1

2πj

∫ γ+j∞

γ−j∞
eβEZ(β)dβ, (144)

where the integration in the complex plane is along the vertical line Re(β) = γ, which is
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chosen to the right of all singularity points of Z(β). In the large n limit, this becomes

Ω(E) =
1

2πj

∫ γ+j∞

γ−j∞
en[βǫ+φ(β)]dβ, (145)

which can now be assessed using the saddle point method. The derivative of the bracketed

term at the exponent vanishes at the value of β that solves the equation φ′(β) = −ǫ, which is

β∗(ǫ) ∈ IR, thus we will choose γ = β∗(ǫ) (assuming that this is a possible choice) and thereby

let the integration path pass through this saddle point. At β = β∗(ǫ), | exp{n[βǫ + φ(β)]}|
has its maximum along the vertical direction, β = β∗(ǫ) + jω, −∞ < ω < +∞ (and

hence it dominates the integral), but since it is a saddle point, it minimizes | exp{n[βǫ +
φ(β)]}| = exp{n[βǫ + φ(β)]}, in the horizontal direction (the real line). Thus, Ω(E)

·
=

exp{nminβ∈IR[βǫ+ φ(β)]} = enΣ(ǫ), as we have seen before.

Example 2 – size of a type class. Here is a question which we know how to answer using

the method of types. Among all binary sequences of length N , how many have n 1’s and

(N − n) 0’s?

Mn =
∑

x∈{0,1}N
I
{

N
∑

i=1

xi = n

}

=

1
∑

x1=0

. . .

1
∑

xN=0

I
{

N
∑

i=1

xi = n

}

=

1
∑

x1=0

. . .

1
∑

xN=0

1

2π

∫ 2π

0

dω exp

{

jω

(

n−
N
∑

i=1

xi

)}

=

∫ 2π

0

dω

2π

1
∑

x1=0

. . .
1
∑

xN=0

exp

{

jω

(

n−
N
∑

i=1

xi

)}

=

∫ 2π

0

dω

2π
ejωn

N
∏

i=1

[

1
∑

xi=0

e−jωxi

]

=

∫ 2π

0

dω

2π
ejωn(1 + e−jω)N

=

∫ 2π

0

dω

2π
exp{N [jωα+ ln(1 + e−jω)]} α

∆
=

n

N

=

∫ 2πj

0

dz

2πj
exp{N [zα + ln(1 + e−z)]} jω −→ z (146)
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This is an integral with a starting point A at the origin and an ending point B at 2πj.

Here, h(z) = zα + ln(1 + e−z), and the saddle point, where h′(z) = 0, is on the real axis:

z0 = ln 1−α
α

, where h(z0) gives the binary entropy of α, as expected. Thus, the integration

path must be deformed to pass through this point on the real axis, and then to approach

back the imaginary axis, so as to arrive at B. There is one serious caveat here, however: The

points A and B are both higher than z0: While u(z0) = −α ln(1−α)− (1− α) ln(1− α), at
the edges we have u(A) = u(B) = ln 2. So this is not a good saddle–point integral to work

with.

Two small modifications can, however, fix the problem: The first is to define the inte-

gration interval of ω to be [−π, π] rather than [0, 2π] (which is, of course, legitimate), and

then z would run from −jπ to +jπ. The second is the following: Consider again the first

line of the expression of Mn above, but before we do anything else, let us multiply the whole

expression (outside the summation) by eθn (θ an aribtrary real), whereas the summand will

be multiplied by e−θ
∑

i xi, which exactly cancels the factor of eθn for every non–zero term of

this sum. We can now repeat exactly the same calculation as above (exercise), but this time

we get:

Mn =

∫ θ+jπ

θ−jπ

dz

2πj
exp{N [zα + ln(1 + e−z)]}, (147)

namely, we moved the integration path to a parallel vertical line and shifted it by the

amount of π to the south. Now, we have the freedom to choose θ. The obvious choice is

to set θ = ln 1−α
α

, so that we cross the saddle point z0. Now z0 is the highest point on the

path (exercise: please verify). Moreover, the vertical direction of the integration is also the

direction of the axis of z0 (exercise: verify this too), so now everything is fine. Also, the

second order factor of O(1/
√
n) of the saddle point integration agrees with the same factor

that we can see from the Stirling approximation in the more refined formula.

A slightly different look at this example is as follows. Consider the Schottky example

and the partition function

Z(β) =
∑

x

e−βǫ0
∑

i xi, (148)
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which, on the one hand, is given by
∑N

n=0Mne
−βǫ0n, and on the other hand, is given also by

(1+ e−βǫ0)N . Thus, defining s = e−βǫ0, we have Z(s) =
∑N

n=0Mns
n, and so, Z(s) = (1+ s)N

is the z–transform of the finite sequence {Mn}Nn=0. Consequently, Mn is given by the inverse

z–transform of Z(s) = (1 + s)N , i.e.,

Mn =
1

2πj

∮

(1 + s)Ns−n−1ds

=
1

2πj

∮

exp{N [ln(1 + s)− α ln s]}ds (149)

This time, the integration path is any closed path that surrounds the origin, the saddle point

is s0 = α/(1 − α), so we take the path to be a circle whose radius is r = α
1−α . The rest of

the calculation is essentially the same as before, and of course, so is the result. Note that

this is actually the very same integral as before up to a change of the integration variable

from z to s, according to s = e−z, which maps the vertical straight line between θ − πj and
θ + πj onto a circle of radius e−θ, centered at the origin. �

Example 3 – surface area of a sphere. Let us compute the surface area of an n–dimensional

sphere with radius nR:

Sn =

∫

IRn

dxδ

(

nR −
n
∑

i=1

x2i

)

= enαR
∫

IRn

dxe−α
∑

i x
2
i · δ

(

nR −
n
∑

i=1

x2i

)

(α > 0 to be chosen later.)

= enαR
∫

IRn

dxe−α
∑

i x
2
i

∫ +∞

−∞

dθ

2π
ejθ(nR−

∑

i x
2
i )

= enαR
∫ +∞

−∞

dθ

2π
ejθnR

∫

IRn

dxe−(α+jθ)
∑

i x
2
i

= enαR
∫ +∞

−∞

dθ

2π
ejθnR

[∫

IR

dxe−(α+jθ)x2
]n

= enαR
∫ +∞

−∞

dθ

2π
ejθnR

(

π

α + jθ

)n/2

=
πn/2

2π

∫ +∞

−∞
dθ exp

{

n

[

(α + jθ)R− 1

2
ln(α+ jθ)

]}

=
πn/2

2π

∫ α+j∞

α−j∞
dz exp

{

n

[

zR − 1

2
ln z

]}

. (150)
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So here h(z) = zR − 1
2
ln z and the integration is along an arbitrary vertical straight line

parametrized by α. We will choose this straight line to pass thru the saddle point z0 = 1
2R

(exercise: show that this is indeed the highest point on the path). Now, h(z0) =
1
2
ln(2πeR),

just like the differential entropy of a Gaussian RV (is this a coincidence?). �

Comment: In these examples, we used an additional trick: whenever we had to deal with an

‘ugly’ function like the δ function, we presented it as an inverse transform of a ‘nice’ function,

and then changed the order of integrations/summations. This idea will be repeated in the

sequel. It is used very frequently by physicists.

3.4 The Replica Method

The replica method is one of the most useful tools, which originally comes from statistical

physics, but it finds its use in a variety of other fields, with Communications and Informa-

tion Theory included (e.g., multiuser detection). As we shall see, there are many models

in statistical physics, where the partition function Z depends, among other things, on a

bunch of random parameters (to model disorder), and then Z, or lnZ, becomes, of course,

a random variable as well. Further, it turns out that more often than not, the RV 1
n
lnZ

exhibits a concentration property, or in the jargon of physicists, a self–averaging property:

in the thermodynamic limit of n→∞, it falls in the vicinity of its expectation 1
n
〈lnZ〉, with

very high probability. Therefore, the computation of the per–particle free energy (and hence

also many other physical quantities), for a typical realization of these random parameters,

is associated with the computation of 〈lnZ〉. The problem is that in most of the interest-

ing cases, the exact closed form calculation of this expectation is extremely difficult if not

altogether impossible. This is the point where the replica method enters into the picture.

Before diving into the description of the replica method, it is important to make a certain

digression: This is a non–rigorous, heuristic method, and it is not quite clear (yet) what are

exactly the conditions under which it gives the correct result. Physicists tend to believe in

it very strongly, because in many situations it gives results that make sense, live in harmony
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with intuition, or make good fit to experimental results and/or simulation results. The

problem is that when there are no other means to test its validity, there is no certainty that

it is credible and reliable. In such cases, I believe that the correct approach would be to refer

to the results it provides, as a certain educated guess or as a conjecture, rather than a solid

scientific truth. As we shall see shortly, the problematics of the replica method is not just

that it depends on a certain interchangeability between a limit and an integral, but more

severely, that the procedure that it proposes, is actually not even well–defined. In spite of

all this, since this method is so widely used, it would be inappropriate to completely ignore

it in a course of this kind, and therefore, we will devote to the replica method at least a

short period of time, presenting it in the general level, up to a certain point. However, we

will not use the replica method elsewhere in this course.

Consider then the calculation of E lnZ. The problem is that Z is a sum, and it is not

easy to say something intelligent on the logarithm of a sum of many terms, let alone the

expectation of this log–sum. If, instead, we had to deal with integer moments of Z, EZm,

life would have been much easier, because integer moments of sums, are sums of products.

Is there a way then that we can relate moments EZm to E lnZ? The answer is, in principle,

affirmative if real, rather than just integer, moments are allowed. These could be related

via the simple relation

E lnZ = lim
m→0

EZm − 1

m
= lim

m→0

lnEZm

m
(151)

provided that the expectation operator and the limit over m can be interchanged. But we

know how to deal only with integer moments of m. The first courageous idea of the replica

method, at this point, is to offer the following recipe: Compute EZm, for positive integer

m, and obtain an expression which is a function of m. Once this has been done, now forget

that m is an integer, and think of it as a real variable. Finally, use the above identity, taking

the limit of m→ 0.

Beyond the technicality of interchanging the expectation operator with the limit, which

is, after all, OK in most conceivable cases, there is a more serious concern here, and this is
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that the above procedure is not well–defined, as mentioned earlier: We derive an expression

f(m)
∆
= EZm, which is originally meant for m integer only, and then ‘interpolate’ in between

integers by using the same expression, in other words, we take the analytic continuation.

Actually, the right–most side of the above identity is f ′(0) where f ′ is the derivative of f .

But there are infinitely many functions of a continuous variable m that pass through given

points at integer values of m: If f(m) is such, then f̃(m) = f(m) + g(m) is good as well,

for every g that vanishes on the integers, for example, take g(m) = A sin(πm). Nonetheless,

f̃ ′(0) might be different from f ′(0), and this is indeed the case with the example where g

is sinusoidal. So in this step of the procedure there is some weakness, but this is simply

ignored...

After this introduction, let us now present the replica method on a concrete example,

which is essentially taken from the book by Mézard and Montanari. In this example, Z =
∑2n

i=1 e
−βEi, where {Ei}2ni=1 are i.i.d. RV’s. In the sequel, we will work with this model quite

a lot, after we see why, when and where it is relevant. It is called the random energy model

(REM). But for now, this is just a technical example on which we demonstrate the replica

method. As the replica method suggests, let’s first look at the integer moments. First, what

we have is:

Zm =

[

2n
∑

i=1

e−βEi

]m

=

2n
∑

i1=1

. . .

2n
∑

im=1

exp{−β
m
∑

a=1

Eia}. (152)

The right–most side can be thought of as the partition function pertaining to a new system,

consisting of m independent replicas (hence the name of the method) of the original system.

Each configuration of the new system is indexed by an m–tuple i = (i1, . . . , im), where each
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ia runs from 1 to 2n, and the energy is
∑

aEia . Let us now rewrite Zm slightly differently:

Zm =

2n
∑

i1=1

. . .

2n
∑

im=1

exp

{

−β
m
∑

a=1

Eia

}

=
∑

i

exp

{

−β
m
∑

a=1

2n
∑

j=1

I(ia = j)Ej

}

I(·) = indicator function

=
∑

i

exp

{

−β
2n
∑

j=1

m
∑

a=1

I(ia = j)Ej

}

=
∑

i

2n
∏

j=1

exp

{

−β
m
∑

a=1

I(ia = j)Ej

}

Let us now further suppose that each Ej is N (0, nJ2/2), as is customary in the REM, for

reasons that we shall see later on. Then, taking expecations w.r.t. this distribution, we get:

EZm =
∑

i

E

2n
∏

j=1

exp

{

−β
m
∑

a=1

I(ia = j)Ej

}

=
∑

i

2n
∏

j=1

exp

{

β2nJ2

4

m
∑

a,b=1

I(ia = j)I(ib = j)

}

using independence and Gaussianity

=
∑

i

exp

{

β2nJ2

4

m
∑

a,b=1

2n
∑

j=1

I(ia = j)I(ib = j)

}

=
∑

i

exp

{

β2nJ2

4

m
∑

a,b=1

I(ia = ib)

}

.

We now define an m × m binary matrix Q, called the overlap matrix, whose entries are

Qab = I(ia = ib). Note that the summand in the last expression depends on i only via

Q. Let Nn(Q) denote the number of configurations {i} whose overlap matrix is Q. We

have to exhaust all possible overlap matrices, which are all binary symmetric matrices with

1’s on the main diagonal. Observe that the number of such matrices is 2m(m−1)/2 whereas

the number of configurations is 2nm. Thus we are dividing the exponentially large number

of configurations into a relatively small number (independent of n) of equivalence classes,

something that rings the bell of the method of types. Let us suppose, for now, that there is
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some function s(Q) such that Nn(Q)
·
= ens(Q), and so

EZm ·
=
∑

Q

eng(Q) (153)

with:

g(Q) =
β2J2

4

m
∑

a,b=1

Qab + s(Q). (154)

From this point onward, the strategy is to use the saddle point method. Note that the

function g(Q) is symmetric under replica permutations: let π be a permutation operator of

m objects and letQπ be the overlap matrix with entries Qπ
ab = Qπ(a)π(b). Then, g(Q

π) = g(Q).

This property is called replica symmetry (RS), and this property is inherent to the replica

method. In light of this, the first natural idea that comes to our mind is to postulate that

the saddle point is symmetric too, in other words, to assume that the saddle–point Q has

1’s on its main diagonal and all other entries are taken to be the same (binary) value, call it

q0. Now, there are only two possibilities:

• q0 = 0 and then Nn(Q) = 2n(2n−1) · · · (2n−m+1), which implies that s(Q) = m ln 2,

and then g(Q) = g0(Q)
∆
= m(β2J2/4+ ln 2), thus (lnEZm)/m = β2J2/4+ ln 2, and so

is the limit as m→ 0. Later on, we will compare this with the result obtained from a

more rigorous derivation.

• q0 = 1, which means that all components of i are the same, and then Nn(Q) = 2n,

which means that s(Q) = ln 2 and so, g(Q) = g1(Q)
∆
= m2β2J2/4 + ln 2.

Now, one should check which one of these saddle points is the dominant one, depending on

β and m. For m ≥ 1, the behavior is dominated by max{g0(Q), g1(Q)}, which is g1(Q) for

β ≥ βc(m)
∆
= 2

J

√

ln 2/m, and g0(Q) otherwise. For m < 1 (which is, in fact, the relevant

case for m → 0), one should look at min{g0(Q), g1(Q)} (!), which is g0(Q) in the high–

temperature range. As it turns out, in certain regions in the β–m plane, we must back off

from the ‘belief’ that dominant configurations are purely symmetric, and resort to the quest

for dominant configurations with a lower level of symmetry. The first step, after having
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exploited the purely symmetric case above, is called one–step replica symmetry breaking

(1RSB), and this means some partition of the set {1, 2, . . . , m} into two complementary

subsets (say, of equal size) and postulating a saddle point Q of the following structure:

Qab =







1 a = b
q0 a and b are in the same subset
q1 a and b are in different subsets

(155)

In further steps of symmetry breaking, one may split {1, 2, . . . , m} to a larger number of

subsets or even introduce certain hierarchical structures. The replica method includes a

variety of heuristic guidelines in this context. We will not delve into them any further in the

framework of this course, but the interested student/reader can easily find more details in

the literature, specifically, in the book by Mézard and Montanari.
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4 Interacting Particles and Phase Transitions

4.1 Introduction – Origins of Interactions

As I said already in the introductory part on the analysis tools and asymptotic methods,

until now, we have dealt almost exclusively with systems that have additive Hamiltonians,

E(x) =∑i E(xi), which means that the particles are i.i.d. and there is no interaction: each

particle behaves as if it was alone in the world. In Nature, of course, this is seldom really

the case. Sometimes this is still a reasonably good approximation, but in many others the

interactions are appreciably strong and cannot be neglected. Among the different particles

there could be many sorts of mutual forces, e.g., mechanical, electrical, magnetic, etc. There

could also be interactions that stem from quantum–mechanical effects: Pauli’s exclusion

principle asserts that for a certain type of particles, called Fermions (e.g., electrons), no

quantum state can be populated by more than one particle. This gives rise to a certain

mutal influence between particles. Another type of interaction stems from the fact that the

particles are indistinguishable, so permutations between them are not considered as distinct

states. We have already seen this as an example at the beginning of the previous set of

lecture notes: In a quantum gas, as we eliminated the combinatorial factor (that counted

indistinguishable states as distinguishable ones), we created statistical dependence, which

physically means interactions.11

4.2 A Few Models That Will be Discussed in This Subsection
Only

The simplest forms of deviation from the purely additive Hamiltonian structure are those

that consists, in addition to the individual energy terms {E(xi)}, also terms that depend on

pairs, and/or triples, and/or even larger cliques of particles. In the case of purely pairwise

11Indeed, in the case of the boson gas, there is a well–known effect referred to as Bose–Einstein conden-

sation, which is actually a phase transition, but phase transitions can occur only in systems of interacting
particles, as will be discussed in this set of lectures.
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interactions, this means a structure like the following:

E(x) =
n
∑

i=1

E(xi) +
∑

(i,j)

ε(xi, xj) (156)

where the summation over pairs can be defined over all pairs i 6= j, or over some of the pairs,

according to a given rule, e.g., depending on the distance between particle i and particle

j, and according to the geometry of the system, or according to a certain graph whose

edges connect the relevant pairs of variables (that in turn, are designated as nodes). For

example, in a one–dimensional array (a lattice) of particles, a customary model accounts for

interactions between neighboring pairs only, neglecting more remote ones, thus the second

term above would be
∑

i ε(xi, xi+1). A well known special case of this is that of a solid, i.e.,

a crystal lattice, where in the one–dimensional version of the model, atoms are thought of

as a chain of masses connected by springs (see left part of Fig. 5), i.e., an array of coupled

harmonic oscillators. In this case, ε(xi, xi+1) =
1
2
K(ui+1−ui)2, where K is a constant and ui

is the displacement of the i-th atom from its equilibrium location, i.e., the potential energies

of the springs. This model has an easy analytical solution (by applying a Fourier transform

on the sequence {ui}), where by “solution”, we mean a closed–form, computable formula

for the log–partition function, at least in the thermodynamic limit. In higher dimensional

Figure 5: Elastic interaction forces between adjacent atoms in a one–dimensional lattice (left part
of the figure) and in a two–dimensional lattice (right part).
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arrays (or lattices), similar interactions apply, there are just more neighbors to each site,

from the various directions (see right part of Fig. 5). In a system where the particles are

mobile and hence their locations vary and have no geometrical structure, like in a gas, the

interaction terms are also potential energies pertaining to the mutual forces (see Fig. 6), and

these normally depend solely on the distances ‖~ri − ~rj‖. For example, in a non–ideal gas,

Figure 6: Mobile particles and mutual forces between them.

E(x) =
n
∑

i=1

‖~pi‖2
2m

+
∑

i 6=j
V (‖~ri − ~rj‖). (157)

A very simple special case is that of hard spheres (Billiard balls), without any forces, where

V (‖~ri − ~rj‖) =
{

∞ ‖~ri − ~rj‖ < 2R
0 ‖~ri − ~rj‖ ≥ 2R

(158)

which expresses the simple fact that balls cannot physcially overlap. This model can (and

indeed is) being used to obtain bounds on sphere–packing problems, which are very relevant

to channel coding theory. This model is also solvable, but this is beyond the scope of this

course.

4.3 Models of Magnetic Materials – General

Yet another example of a model, or more precisely, a very large class of models with interac-

tions, are those of magnetic materials. These models will closely accompany our dicussions
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from this point onward, because some of them lend themselves to mathematical formalisms

that are analogous to those of coding problems, as we shall see. Few of these models are

solvable, but most of them are not. For the purpose of our discussion, a magnetic material is

one for which the important property of each particle is its magnetic moment. The magnetic

moment is a vector proportional to the angular momentum of a revolving charged particle

(like a rotating electron, or a current loop), or the spin, and it designates the intensity of its

response to the net magnetic field that this particle ‘feels’. This magnetic field may be the

superposition of an externally applied magnetic field and the magnetic fields generated by

the neighboring spins.

Quantum mechanical considerations dictate that each spin, which will be denoted by si,

is quantized – it may take only one out of finitely many values. In the simplest case to

be adopted in our study – only two values. These will be designated by si = +1 (“spin

up”) and si = −1 (“spin down”), corresponding to the same intensity, but in two opposite

directions, one parallel to the magnetic field, and the other – antiparallel (see Fig. 7). The

Figure 7: Ilustration of a spin array on a square lattice.

Hamiltonian associated with an array of spins s = (s1, . . . , sn) is customarily modeled (up

to certain constants that, among other things, accommodate for the physical units) with a
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structure like this:

E(s) = −B ·
n
∑

i=1

si −
∑

(i,j)

Jijsisj, (159)

where B is the externally applied magnetic field and {Jij} are the coupling constants that

designate the levels of interaction between spin pairs, and they depend on properties of

the magnetic material and on the geometry of the system. The first term accounts for the

contributions of potential energies of all spins due to the magnetic field, which in general,

are given by the inner product ~B · ~si, but since each ~si is either parallel or antiparallel to

~B, as said, these boil down to simple products, where only the sign of each si counts. Since

P (s) is proportional to e−βE(s), the spins ‘prefer’ to be parallel, rather than antiparallel to

the magnetic field. The second term in the above Hamiltonian accounts for the interaction

energy. If Jij are all positive, they also prefer to be parallel to one another (the probability

for this is larger), which is the case where the material is called ferromagnetic (like iron and

nickel). If they are all negative, the material is antiferromagnetic. In the mixed case, it is

called a spin glass. In the latter, the behavior is rather complicated, as we shall see later on.

Of course, the above model for the Hamiltonian can (and, in fact, is being) generalized

to include interactions formed also, by triples, quadruples, or any fixed size p (that does

not grow with n) of spin–cliques. At this point, it is instructive to see the relation between

spin–array models (especially, those that involve large cliques of spins) to channel codes, in

particular, linear codes. Consider a linear code defined by a set of m partiy–check equations

(in GF (2)), each involving the modulo–2 sum of some subset of the components of the

codeword x. I.e., the ℓ–th equation is: xiℓ1 ⊕xiℓ2 ⊕ · · · ⊕x
ℓ
ikℓ

= 0, ℓ = 1, . . . , m. Transforming

from xi ∈ {0, 1} to si ∈ {−1,+1} via si = 1 − 2xi, this is equivalent to siℓ1siℓ2 · · · siℓkℓ = 1.

The MAP decoder would estimate s based on the posterior

P (s|y) = P (s)P (y|s)
Z(y)

; Z(y) =
∑

s

P (s)P (y|s) = P (y), (160)

where P (s) is normally assumed uniform over the codewords (we will elaborate on this pos-

terior later). Assuming, e.g., a BSC or a Gaussian channel P (y|s), the relevant distance

between the codeword s = (s1, . . . , sn) and the channel output y = (y1, . . . , yn) is propor-
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tional to ‖s−y‖2 = const.−2∑i siyi. Thus, P (s|y) can be thought of as a B–G distribution

with Hamiltonian

E(s|y) = −J
n
∑

i=1

siyi +

m
∑

ℓ=1

φ(siℓ1siℓ2 · · · siℓkℓ ) (161)

where J is some constant (depending on the channel parameters), the function φ(u) vanishes

for u = 1 and becomes infinite for u 6= 1, and the partition function given by the denominator

of P (s|y). The first term plays the analogous role to that of the contribution of the magnetic

field in a spin system model, where each ‘spin’ si ‘feels’ a different magnetic field proportional

to yi, and the second term accounts for the interactions among cliques of spins. In the case

of LDPC codes, where each parity check equation involves only a small number of bits {si},
these interaction terms amount to cliques of relatively small sizes.12 For a general code, the

second term is replaced by φC(s), which is zero for s ∈ C and infinite otherwise.

Another aspect of this model of a coded communication system pertains to calculations

of mutual information and capacity. The mutual information between S and Y is, of course,

given by

I(S;Y ) = H(Y )−H(Y |S). (162)

The second term is easy to calculate for every additive channel – it is simply the entropy of

the additive noise. The first term is harder to calculate:

H(Y ) = −E{lnP (Y )} = −E{lnZ(Y )}. (163)

Thus, we are facing a problem of calculating the free energy of a spin system with random

magnetic fields designated by the components of Y . This is the kind of calculations we

mentioned earlier in the context of the replica method. Indeed, the replica method is used

extensively in this context.

12Error correction codes can be represented by bipartite graphs with two types of nodes: variable nodes
corresponding to the various si and function nodes corresponding to cliques. There is an edge between
variable node i and function node j if si is a member in clique j. Of course each si may belong to more than
one clique. When all cliques are of size 2, there is no need for the function nodes, as edges between nodes i
and j simply correspond to partity check equations involving si and sj .
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As we will see in the sequel, it is also customary to introduce an inverse temperature

parameter β, by defining

Pβ(s|y) =
P β(s)P β(y|s)

Z(β|y) =
e−βE(s|y)

Z(β|y) (164)

where β controls the sharpness of the posterior distribution and

Z(β|y) =
∑

s

e−βE(s|y). (165)

The motivations of this will be discussed extensively later on.

We will get back to this important class of models, as well as its many extensions, shortly.

But before that, we discuss a very important effect that exists in some systems with strong

interactions (both in magnetic materials and in other models): the effect of phase transitions.

4.4 Phase Transitions – A Qualitative Discussion

Loosely speaking, a phase transition means an abrupt change in the collective behavior of a

physical system, as we change gradually one of the externally controlled parameters, like the

temperature, pressure, or magnetic field, and so on. The most common example of a phase

transition in our everyday life is the water that we boil in the kettle when we make coffee, or

when it turns into ice as we put it in the freezer. What exactly are these phase transitions?

Before we refer to this question, it should be noted that there are also “phase transitions”

in the behavior of communication systems: As the SNR passes a certain limit (for which

capacity crosses the coding rate), there is a sharp transition between reliable and unreliable

communication, where the error probability (almost) ‘jumps’ from 0 to 1 or vice versa. We

also know about certain threshold effects in highly non–linear communication systems. Are

there any relationships between these phase transitions and those of physics? We will see

shortly that the answer is generally affirmative.

In physics, phase transitions can occur only if the system has interactions. Consider, the

above example of an array of spins with B = 0, and let us suppose that all Jij > 0 are equal,
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and thus will be denoted commonly by J . Then,

P (s) =
exp

{

βJ
∑

(i,j) sisj

}

Z(β)
(166)

and, as mentioned earlier, this is a ferromagnetic model, where all spins ‘like’ to be in the

same direction, especially when β and/or J is large. In other words, the interactions, in this

case, tend to introduce order into the system. On the other hand, the second law talks about

maximum entropy, which tends to increase the disorder. So there are two conflicting effects

here. Which one of them prevails?

The answer turns out to depend on temperature. Recall that in the canonical ensemble,

equilibrium is attained at the point of minimum free energy f = ǫ−Ts(ǫ). Now, T plays the

role of a weighting factor for the entropy. At low temperatures, the weight of the second term

of f is small, and minimiizing f is approximately (and for T = 0, this is exact) equivalent to

minimizing ǫ, which is obtained by states with a high level of order, as E(s) = −J∑(i,j) sisj ,

in this example. As T grows, however, the weight of the term −Ts(ǫ) increases, and min f ,

becomes more and more equivalent to max s(ǫ), which is achieved by states with a high

level of disorder (see Fig. 8). Thus, the order–disorder characteristics depend primarily

f

ǫ∗1 ǫ∗2

T = 0

T1 T2 > T1

T2

ǫ

Figure 8: Qualitative graphs of f(ǫ) at various temperatures. The minimizing ǫ increases with T .

on temperature. It turns out that for some magnetic systems of this kind, this transition

between order and disorder may be abrupt, in which case, we call it a phase transition.

At a certain critical temperature, called the Curie temperature, there is a sudden transition

between order and disorder. In the ordered phase, a considerable fraction of the spins align in
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the same direction, which means that the system is spontaneously magnetized (even without

an external magnetic field), whereas in the disordered phase, about half of the spins are in

either direction, and then the net magnetization vanishes. This happens if the interactions,

or more precisely, their dimension in some sense, is strong enough.

What is the mathematical significance of a phase transition? If we look at the partition

function, Z(β), which is the key to all physical quantities of interest, then for every finite

n, this is simply the sum of a bunch of exponentials in β and therefore it is continuous

and differentiable as many times as we want. So what kind of abrupt changes could there

possibly be in the behavior of this function?

It turns out that while this is true for all finite n, it is no longer necesarily true if we

look at the thermodynamical limit, i.e., if we look at the behavior of φ(β) = limn→∞
lnZ(β)
n

.

While φ(β) must be continuous for all β > 0 (since it is convex), it need not necessarily have

continuous derivatives. Thus, a phase transition, if exists, is fundamentally an asymptotic

property, it may exist in the thermodynamical limit only. While a physical system is, after

all finite, it is nevertheless well approximated by the thermodynamical limit when it is very

large. By the same token, if we look at the analogy with a coded communication system: for

any finite block–length n, the error probability is a ‘nice’ and smooth function of the SNR,

but in the limit of large n, it behaves like a step function that jumps between 0 and 1 at the

critical SNR. We will see that the two things are related.

Back to the physical aspects, the above discussion explains also why a system without

interactions, where all {xi} are i.i.d., cannot have phase transitions. In this case, Zn(β) =

[Z1(β)]
n, and so, φ(β) = lnZ1(β), which is always a ‘nice’ function without any irregularities.

For a phase transition to occur, the particles must behave in some collective manner, which

is the case only if interactions take place.

There is a distinction between two types of phase transitions:

• If φ(β) has a discontinuous first order derivative, then this is called a first order phase

transition.
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• If φ(β) has a continuous first order derivative, but a discontinuous second order deriva-

tive then this is called a second order phase transition, or a continuous phase transition.

We can talk, of course, about phase transitions w.r.t. additional parameters other than

temperature. In the above magnetic example, if we introduce back the magnetic field B

into the picture, then Z, and hence also φ, become functions of B too. If we then look at

derivative of

φ(β,B) = lim
n→∞

lnZ(β,B)

n
= lim

n→∞
1

n
ln





∑

s

exp







βB
n
∑

i=1

si + βJ
∑

(i,j)

sisj









 (167)

w.r.t. the product (βB), which multiplies the magnetization,
∑

i si, at the exponent, this

would give exactly the average magnetization per spin

m(β,B) =

〈

1

n

n
∑

i=1

Si

〉

, (168)

and this quantity might not always be continuous. Indeed, as I mentioned earlier, below

the Curie temperature there might be a spontaneous magnetization. If B ↓ 0, then this

magnetization is positive, and if B ↑ 0, it is negative, so there is a discontinuity at B = 0.

We will see this more concretely later on. We next discuss a few solvable models of spin

arrays, with and without phase transitions.

4.5 The One–Dimensional Ising Model

According to this model,

E(s) = −B
n
∑

i=1

si − J
n
∑

i=1

sisi+1 (169)

with the periodic boundary condition sn+1 = s1. Thus,

Z(β,B) =
∑

s

exp

{

βB

n
∑

i=1

si + βJ

n
∑

i=1

sisi+1

}

Note: the kind of sums encountered in Markov chains

=
∑

s

exp

{

h

n
∑

i=1

si +K

n
∑

i=1

sisi+1

}

h
∆
= βB, K

∆
= βJ

=
∑

s

exp

{

h

2

n
∑

i=1

(si + si+1) +K
n
∑

i=1

sisi+1

}

(just to symmetrize the expression)
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Consider now the 2× 2 matrix P whose entries are exp{h
2
(s+ s′) +Kss′}, s, s ∈ {−1,+1},

i.e.,

P =

(

eK+h e−K

e−K eK−h

)

. (170)

Also, si = +1 will be represented by the column vector σi = (1, 0)T and si = −1 will be

represented by σi = (0, 1)T . Thus,

Z(β,B) =
∑

σ1

· · ·
∑

σn

(σT1 Pσ2) · (σT2 Pσ2) · · · (σTnPσ1)

=
∑

σ1

σT1 P

(

∑

σ2

σ2σ
T
2

)

P

(

∑

σ3

σ3σ
T
3

)

P · · · P
(

∑

σn

σnσ
T
n

)

Pσ1

=
∑

σ1

σT1 P · I · P · I · · · I · Pσ1

=
∑

σ1

σT1 P
nσ1

= tr{P n}

= λn1 + λn2 (171)

where λ1 and λ2 are the eigenvalues of P , which are

λ1,2 = eK cosh(h)±
√

e−2K + e2K sinh2(h). (172)

Letting λ1 denote the larger (the dominant) eigenvalue, i.e.,

λ1 = eK cosh(h) +

√

e−2K + e2K sinh2(h), (173)

then clearly,

φ(h,K) = lim
n→∞

lnZ

n
= lnλ1. (174)

The average magnetization is

M(h,K) =

〈

n
∑

i=1

Si

〉

=

∑

s(
∑n

i=1 si) exp{h
∑n

i=1 si +K
∑n

i=1 sisi+1}
∑

s exp{h
∑n

i=1 si +K
∑n

i=1 sisi+1}

=
∂ lnZ(h,K)

∂h
(175)
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and so, the per–spin magnetization is:

m(h,K)
∆
= lim

n→∞
M(h,K)

n
=
∂φ(h,K)

∂h
=

sinh(h)
√

e−4K + sinh2(h)
(176)

or, returning to the original parametrization:

m(β,B) =
sinh(βB)

√

e−4βJ + sinh2(βB)
. (177)

For β > 0 and B > 0 this is a nice function, and so, there is are no phase transitions and

no spontaneous magnetization at any finite temperature.13 However, at the absolute zero

(β →∞), we get

lim
B↓0

lim
β→∞

m(β,B) = +1; lim
B↑0

lim
β→∞

m(β,B) = −1, (178)

thus m is discontinuous w.r.t. B at β →∞, which means that there is a phase transition at

T = 0. In other words, the Curie temperature is Tc = 0.

We see then that one–dimensional Ising model is easy to handle, but it is not very

interesting in the sense that there is actually no phase transition. The extension to the

two–dimensional Ising model on the square lattice is surprisingly more difficult, but it is still

solvable, albeit without a magnetic field. It was first solved by Onsager in 1944, who has

shown that it exhibits a phase transition with Curie temperture given by

Tc =
2J

k ln(
√
2 + 1)

, (179)

where k is Boltzmann’s constant. For lattice dimension ≥ 3, the problem is still open.

It turns out then that whatever counts for the existence of phase transitions, is not the

intensity of the interactions (designated by the magnitude of J), but rather the “dimension-

ality” of the structure of the pairwise interactions. If we denote by nℓ the number of ℓ–th

order neighbors of every given site, namely, the number of sites that can be reached within

ℓ steps from the given site, then whatever counts is how fast does the sequence {nℓ} grow,
13Note, in particular, that for J = 0 (i.i.d. spins) we get paramagnetic characteristicsm(β,B) = tanh(βB),

in agreement with the result pointed out in the example of two–level systems, in one of our earlier discussions.
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or more precisely, what is the value of d
∆
= limℓ→∞

1
ℓ
lnnℓ, which is exactly the ordinary

dimensionality for hypercubic lattices. Loosely speaking, this dimension must be sufficiently

large for a phase transition to exist.

To demonstrate this point, we next discuss an extreme case of a model where this dimen-

sionality is actually infinite. In this model “everybody is a neighbor of everybody else” and

to the same extent, so it definitely has the highest connectivity possible. This is not quite a

physically realistic model, but the nice thing about it is that it is easy to solve and that it

exhibits a phase transition that is fairly similar to those that exist in real systems. It is also

intimately related to a very popular approximation method in statistical mechanics, called

the mean field approximation. Hence it is sometimes called the mean field model. It is also

known as the Curie–Weiss model or the infinite range model.

Finally, I should comment that there are other “infinite–dimensional” Ising models, like

the one defined on the Bethe lattice (an infinite tree without a root and without leaves),

which is also easily solvable (by recursion) and it also exhibits phase transitions (see Baxter’s

book), but we will not discuss it here.

4.6 The Curie–Weiss Model

According to the Curie–Weiss (C–W) model,

E(s) = −B
n
∑

i=1

si −
J

2n

∑

i 6=j
sisj. (180)

Here, all pairs {(si, sj)} “talk to each other” with the same “voice intensity”, J/(2n), and

without any geometry. The 1/n factor here is responsible for keeping the energy of the

system extensive (linear in n), as the number of interaction terms is quadratic in n. The

factor 1/2 compensates for the fact that the summation over i 6= j counts each pair twice.

The first observation is the trivial fact that

(

∑

i

si

)2

=
∑

i

s2i +
∑

i 6=j
sisj = n +

∑

i 6=j
sisj (181)
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where the second equality holds since s2i ≡ 1. It follows then, that our Hamiltonian is, upto

a(n immaterial) constant, equivalent to

E(s) = −B
n
∑

i=1

si −
J

2n

(

n
∑

i=1

si

)2

= −n



B ·
(

1

n

n
∑

i=1

si

)

+
J

2

(

1

n

n
∑

i=1

si

)2


 , (182)

thus E(s) depends on s only via the magnetization m(s) = 1
n

∑

i si. This fact makes the

C–W model very easy to handle similarly as in the method of types:

Zn(β,B) =
∑

s

exp

{

nβ

[

B ·m(s) +
J

2
m2(s)

]}

=

+1
∑

m=−1

Ω(m) · enβ(Bm+Jm2/2)

·
=

+1
∑

m=−1

enh2((1+m)/2) · enβ(Bm+Jm2/2)

·
= exp

{

n · max
|m|≤1

[

h2

(

1 +m

2

)

+ βBm+
βm2J

2

]}

and so,

φ(β,B) = max
|m|≤1

[

h2

(

1 +m

2

)

+ βBm+
βm2J

2

]

. (183)

The maximum is found by equating the derivative to zero, i.e.,

0 =
1

2
ln

(

1−m
1 +m

)

+ βB + βJm ≡ − tanh−1(m) + βB + βJm (184)

or equivalently, the maximizing (and hence the dominant) m is a solution m∗ to the equa-

tion14

m = tanh(βB + βJm).

Consider first the case B = 0, where the equation boils down to

m = tanh(βJm). (185)

It is instructive to look at this equation graphically. Referring to Fig. 9, we have to make a

distinction between two cases: If βJ < 1, namely, T > Tc
∆
= J/k, the slope of the function

14Once again, for J = 0, we are back to non–interacting spins and then this equation gives the paramagnetic
behavior m = tanh(βB).
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y = tanh(βJm) at the origin, βJ , is smaller than the slope of the linear function y = m,

which is 1, thus these two graphs intersect only at the origin. It is easy to check that in this

case, the second derivative of ψ(m)
∆
= h2((1 +m)/2) + βJm2/2 at m = 0 is negative, and

therefore it is indeed the maximum (see Fig. 10, left part). Thus, the dominant magnetization

is m∗ = 0, which means disorder and hence no spontaneous magnetization for T > Tc. On

m

y = m

y = tanh(βJm)

y = tanh(βJm)

+m0

−m0

y = m

m

Figure 9: Graphical solutions of equation m = tanh(βJm): The left part corresponds to the case
βJ < 1, where there is one solution only, m∗ = 0. The right part corresponds to the case βJ > 1,
where in addition to the zero solution, there are two non–zero solutions m∗ = ±m0.

the other hand, when βJ > 1, which means temperatures lower than Tc, the initial slope of

the tanh function is larger than that of the linear function, but since the tanh cannot take

values outside the interval (−1,+1), the two functions must intersect also at two additional,

symmetric, non–zero points, which we denote by +m0 and −m0 (see Fig. 9, right part). In

this case, it can readily be shown that the second derivative of ψ(m) is positive at the origin

(i.e., there is a local minimum at m = 0) and negative at m = ±m0, which means that there

are maxima at these two points (see Fig. 10, right part). Thus, the dominant magnetizations

are ±m0, each capturing about half of the probability.

Consider now the case βJ > 1, where the magnetic field B is brought back into the

picture. This will break the symmetry of the right graph of Fig. 10 and the corresponding

graphs of ψ(m) would be as in Fig. 11, where now the higher local maximum (which is also

the global one) is at m0(B) whose sign is as that of B. But as B → 0, m0(B)→ m0 of Fig.

10. Thus, we see the spontaneous magnetization here. Even after removing the magnetic

field, the system remains magnetized to the level of m0, depending on the direction (the

sign) of B before its removal. Obviously, the magnetization m(β,B) has a discontinuity at
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m

ψ(m)

+m0−m0
m

ψ(m)

Figure 10: The function ψ(m) = h2((1 +m)/2) + βJm2/2 has a unique maximum at m = 0 when
βJ < 1 (left graph) and two local maxima at ±m0, in addition to a local minimum at m = 0, when
βJ > 1 (right graph).

ψ(m)

m
−m0(B)

m

ψ(m)

+m0(B)

Figure 11: The case βJ > 1 with a magnetic field B. The left graph corresponds to B < 0 and
the right graph – to B > 0.

B = 0 for T < Tc, which is a first order phase transition w.r.t. B (see Fig. 12). We note

that the point T = Tc is the boundary between the region of existence and the region of

non–existence of a phase transition w.r.t. B. Such a point is called a critical point. The

phase transition w.r.t. β is of the second order.

Finally, we should mention here an alternative technique that can be used to analyze

this model, which is useful in many other contexts as well. It is based on the idea of using

a transform integral, in this case, the Hubbard–Stratonovich transform, and then the saddle
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−1

+1

m(β,B)

B

T > Tc

T = Tc

T < Tc

−m0

+m0

Figure 12: Magnetization vs. magnetic field: For T < Tc there is spontaneous magnetization:
limB↓0m(β,B) = +m0 and limB↑0m(β,B) = −m0, and so there is a discontinuity at B = 0.

point method. Specifically, we have the following chain of equalities:

Z(h,K) =
∑

s

exp







h

n
∑

i=1

si +
K

2n

(

n
∑

i=1

si

)2






h
∆
= βB, K

∆
= βJ

=
∑

s

exp

{

h

n
∑

i=1

si

}

· exp







K

2n

(

n
∑

i=1

si

)2






=
∑

s

exp

{

h

n
∑

i=1

si

}

·
√

n

2πK

∫

IR

dz exp

{

−nz
2

2K
+ z ·

n
∑

i=1

si

}

=

√

n

2πK

∫

IR

dze−nz
2/(2K)

∑

s

exp

{

(h + z)

n
∑

i=1

si

}

=

√

n

2πK

∫

IR

dze−nz
2/(2K)

[

1
∑

s=−1

e(h+z)s

]n

=

√

n

2πK

∫

IR

dze−nz
2/(2K)[2 cosh(h+ z)]n

= 2n ·
√

n

2πK

∫

IR

dz exp{n[ln cosh(h + z)− z2/(2K)]}

Using the the saddle point method (or the Laplace method), this integral is dominated by

the maximum of the function in the square brackets at the exponent of the integrand, or
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equivalently, the minimum of the function

γ(z) =
z2

2K
− ln cosh(h+ z). (186)

by equating its derivative to zero, we get the very same equation as m = tanh(βB + βJm)

by setting z = βJm. The function γ(z) is different from the function ψ that we maximized

earlier, but the extremum is the same. This function is called the Landau free energy.

4.7 Spin Glass Models With Random Parameters and Random

Code Ensembles

So far we discussed only models where the non–zero coupling coefficients, J = {Jij} are equal,
thus they are either all positive (ferromagnetic models) or all negative (antiferromagnetic

models). As mentioned earlier, there are also models where the signs of these coefficients are

mixed, which are called spin glass models.

Spin glass models have a much more complicated and more interesting behavior than

ferromagnets, because there might be metastable states due to the fact that not necessarily

all spin pairs {(si, sj)} can be in their preferred mutual polarization. It might be the case that

some of these pairs are “frustrated.” In order to model situations of amorphism and disorder

in such systems, it is customary to model the coupling coeffcients as random variables.

Some models allow, in addition to the random coupling coefficients, also random local

fields, i.e., the term −B∑i si in the Hamiltonian, is replaced by −∑iBisi, where {Bi}
are random variables, similarly as in the representation of P (s|y) pertaining to a coded

communicaion system, as discussed earlier, where {yi} play the role of local magnetic fields.

The difference, however, is that here the {Bi} are normally assumed i.i.d., whereas in the

communication system model P (y) exhibits memory (even if the channel is memoryless)

due to memory in P (s). Another difference is that in the physics model, the distribution

of {Bi} is assumed to be independent of temperature, whereas in coding, if we introduce

a temperature parameter by exponentiating (i.e., Pβ(s|y) ∝ P β(s)P β(y|s)), the induced

marginal of y will depend on β.
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In the following discussion, let us refer to the case where only the coupling coefficients J

are random variables (similar things can be said in the more general case, discussed in the

last paragraph). This model with random parameters means that there are now two levels

of randomness:

• Randomness of the coupling coefficients J .

• Randomness of the spin configuration s given J , according to the Boltzmann distri-

bution, i.e.,

P (s|J) =
exp

{

β
[

B
∑n

i=1 si +
∑

(i,j) Jijsisj

]}

Z(β,B|J) . (187)

However, these two sets of RV’s have a rather different stature. The underlying setting is

normally such that J is considered to be randomly drawn once and for all, and then remain

fixed, whereas s keeps varying all the time (according to the dynamics of the system). At any

rate, the time scale along which s varies is much smaller than that of J . Another difference

is that J is normally not assumed to depend on temperature, whereas s, of course, does.

In the terminlogy of physicists, s is considered an annealed RV, whereas J is considered a

quenched RV. Accordingly, there is a corresponding distinction between annealed averages

and quenched averages.

Actually, there is (or, more precisely, should be) a parallel distinction when we consider

ensembles of randomly chosen codes in Information Theory. When we talk about random

coding, we normally think of the randomly chosen code as being drawn once and for all,

we don’t reselect it after each transmission (unless there are security reasons to do so),

and so, a random code should be thought of us a quenched entity, whereas the source(s)

and channel(s) are more naturally thought of as annealed entities. Nonetheless, this is not

what we usually do in Information Theory. We normally take double expectations of some

performance measure w.r.t. both source/channel and the randomness of the code, on the

same footing.15 We will elaborate on this point later on.

15 There are few exceptions to this rule, e.g., a paper by Barg and Forney, IEEE Trans. on IT, Sept. 2002,
and several follow–ups.
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Returning to spin glass models, let’s see what is exactly the difference between the

quenched averaging and the annealed one. If we examine, for instance, the free energy, or

the log–partition function, lnZ(β|J), this is now a RV, of course, because it depends on the

random J . If we denote by 〈·〉J the expectation w.r.t. the randomness of J , then quenched

averaging means 〈lnZ(β|J)〉J (with the motivation of the self–averaging property of the

RV lnZ(β|J) in many cases), whereas annealed averaging means ln〈Z(β|J)〉J . Normally,

the relevant average is the quenched one, but it is typically also much harder to calculate

(and it is customary to apply the replica method then). Clearly, the annealed average is

never smaller than the quenched one because of Jensen’s inequality, but they sometimes

coincide at high temperatures. The difference between them is that in quenched averaging,

the dominant realizations of J are the typical ones, whereas in annealed averaging, this is

not necessarily the case. This follows from the following sketchy consideration. As for the

annealed average, we have:

〈Z(β|J〉 =
∑

J

P (J)Z(β|J)

≈
∑

α

Pr{J : Z(β|J) ·
= enα} · enα

≈
∑

α

e−nE(α) · enα (assuming exponential probabilities)

·
= enmaxα[α−E(α)] (188)

which means that the annealed average is dominated by realizations of the system with

lnZ(β|J)
n

≈ α∗ ∆
= argmax

α
[α− E(α)], (189)

which may differ from the typical value of α, which is

α = φ(β) ≡ lim
n→∞

1

n
〈lnZ(β|J)〉 . (190)

On the other hand, when it comes to quenched averaging, the RV lnZ(β|J) behaves linearly
in n, and concentrates strongly around the typical value nφ(β), whereas other values are

weighted by (exponentially) decaying probabilities.
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In the coded communication setting, there is a strong parallelism. Here, there is a

distinction between the exponent of the average error probability, lnEPe(C) (annealed) and
the average exponent of the error probability E lnPe(C) (quenched), where Pe(C) is the error
probability of a randomly selected code C. Very similar things can be said here too.

The literature on spin glasses includes many models for the randomness of the coupling

coefficients. We end this part by listing just a few.

• The Edwards–Anderson (E–A) model, where {Jij} are non–zero for nearest–neighbor

pairs only (e.g., j = i± 1 in one–dimensional model). According to this model, these

Jij’s are i.i.d. RV’s, which are normally modeled to have a zero–mean Gaussian pdf,

or binary symmetric with levels ±J0. It is customary to work with a zero–mean

distribution if we have a pure spin glass in mind. If the mean is nonzero, the model

has either a ferromangetic or an anti-ferromagnetic bias, according to the sign of the

mean.

• The Sherrington–Kirkpatrick (S–K) model, which is similar to the E–A model, except

that the support of {Jij} is extended to include all n(n − 1)/2 pairs, and not only

nearest–neighbor pairs. This can be thought of as a stochastic version of the C–W

model in the sense that here too, there is no geometry, and every spin ‘talks’ to every

other spin to the same extent, but here the coefficients are random, as said.

• The p–spin model, which is similar to the S–K model, but now the interaction term

consists, not only of pairs, but also triples, quadraples, and so on, up to cliques of size

p, i.e., products si1si2 · · ·sip, where (i1, . . . , ip) exhaust all possible subsets of p spins out
of n. Each such term has a Gaussian coefficient Ji1,...,ip with an appropriate variance.

Considering the p–spin model, it turns out that if we look at the extreme case of p → ∞
(taken after the thermodynamic limit n → ∞), the resulting behavior turns out to be

extremely erratic: all energy levels {E(s)}s∈{−1,+1}n become i.i.d. Gaussian RV’s. This is, of

course, a toy model, which has very little to do with reality (if any), but it is surprisingly
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interesting and easy to work with. It is called the random energy model (REM). We have

already mentioned it as an example on which we demonstrated the replica method. We are

next going to talk about it extensively because it turns out to be very relevant for random

coding models.
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5 The Random Energy Model and Random Coding

5.1 The REM in the Absence of a Magnetic Field

The REM was proposed by the French physicist Bernard Derrida in the early eighties of the

previous century in a series of papers:

1. B. Derrida, “Random–energy model: limit of a family of disordered models,” Phys.

Rev. Lett., vol. 45, no. 2, pp. 79–82, July 1980.

2. B. Derrida, “The random energy model,” Physics Reports (Review Section of Physics

Letters), vol. 67, no. 1, pp. 29–35, 1980.

3. B. Derrida, “Random–energy model: an exactly solvable model for disordered sys-

tems,” Phys. Rev. B, vol. 24, no. 5, pp. 2613–2626, September 1981.

Derrida showed in one of his papers that, since the correlations between the random energies

of two configurations, s and s′ in the p–spin model are given by
(

1

n

n
∑

i=1

sis
′
i

)p

, (191)

and since | 1
n

∑n
i=1 sis

′
i| < 1, these correlations vanish as p → ∞. This has motivated him

to propose a model according to which the configurational energies {E(s)}, in the absence

of a magnetic field, are simply i.i.d. zero–mean Gaussian RV’s with a variance that grows

linearly with n (again, for reasons of extensivity). More concretely, this variance is taken to

be nJ2/2, where J is a constant parameter. This means that we forget that the spin array

has any structure of the kind that we have seen before, and we simply randomly draw an

independent RV E(s) ∼ N (0, nJ2/2) (and other distributions are also possible) for every

configuration s. Thus, the partition function Z(β) =
∑

s e
−βE(s) is a random variable as

well, of course.

This is a toy model that does not describe faithfully any realistic physical system, but

we will devote to it some considerable time, for several reasons:
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• It is simple and easy to analyze.

• In spite of its simplicity, it is rich enough to exhibit phase transitions, and therefore it

is interesting.

• Last but not least, it will prove very relevant to the analogy with coded communication

systems with randomly selected codes.

As we shall see quite shortly, there is an intimate relationship between phase transitions

of the REM and phase transitions in the behavior of coded communication systems, most

notably, transitions between reliable and unreliable communication, but others as well.

What is the basic idea that stands behind the analysis of the REM? As said,

Z(β) =
∑

s

e−βE(s) (192)

where E(s) ∼ N (0, nJ2/2) are i.i.d. Consider the density of states Ω(E), which is now a RV:

Ω(E)dE is the number of configurations {s} whose randomly selected energy E(s) happens
to fall between E and E + dE, and of course,

Z(β) =

∫ +∞

−∞
dEΩ(E)e−βE . (193)

How does the RV Ω(E)dE behave like? First, observe that, ignoring non–exponential factors:

Pr{E ≤ E(s) ≤ E + dE} ≈ f(E)dE
·
= e−E

2/(nJ2)dE, (194)

and so,

〈Ω(E)dE〉 ·
= 2n · e−E2/(nJ2) = exp

{

n

[

ln 2−
(

E

nJ

)2
]}

. (195)

We have reached the pivotal point behind the analysis of the REM, which is based on a

fundamental principle that goes far beyond the analysis of the first moment of Ω(E)dE. In

fact, this principle is frequently used in random coding arguments in IT:

Suppose that we have enA (A > 0, independent of n) independent events {Ei}, each one

with probability Pr{Ei} = e−nB (B > 0, independent of n). What is the probability that
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at least one of the Ei’s would occur? Intuitively, we expect that in order to see at least one

or a few successes, the number of experiments should be at least about 1/Pr{Ei} = enB. If

A > B then this is the case. On the other hand, for A < B, the number of trials is probably

insufficient for seeing even one success. Indeed, a more rigorous argument gives:

Pr







enA
⋃

i=1

Ei







= 1− Pr







enA
⋂

i=1

E ci







= 1−
(

1− e−nB
)enA

= 1−
[

eln(1−e
−nB)

]enA

= 1− exp{enA ln(1− e−nB)}

≈ 1− exp{−enAe−nB}

= 1− exp{−en(A−B)}

→
{

1 A > B
0 A < B

(196)

BTW, the 2nd line could have been shown also by the union bound, as
∑

i Pr{Ei} =

enAe−nB → 0. Exercise: What happens when A = B?

Now, to another question: For A > B, how many of the Ei’s would occur in a typical

realization of this set of experiments? The number Ωn of ‘successes’ is given by
∑enA

i=1 I{Ei},
namely, it is the sum of enA i.i.d. binary RV’s whose expectation is E{Ωn} = en(A−B).

Therefore, its probability distribution concentrates very rapidly around its mean. In fact,

the events {Ωn ≥ en(A−B+ǫ)} (ǫ > 0, independent of n) and {Ωn ≤ en(A−B−ǫ)} are large

deviations events whose probabilities decay exponentially in the number of experiments,

enA, i.e., double–exponentially (!) in n.16 Thus, for A > B, the number of successes is

“almost deterministically” about en(A−B).

Now, back to the REM: For E whose absolute value is less than

E0
∆
= nJ

√
ln 2 (197)

16This will be shown rigorously later on.
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the exponential increase rate, A = ln 2, of the number 2n = en ln 2 of configurations, =

the number of independent trials in randomly drawing energies {E(s)}, is faster than the

exponential decay rate of the probability, e−n[E/(nJ)]
2) = e−n(ǫ/J)

2
(i.e., B = (ǫ/J)2) that E(s)

would happen to fall around E. In other words, the number of these trials is way larger than

one over this probability and in view of the earlier discussion, the probability that

Ω(E)dE =
∑

s

I{E ≤ E(s) ≤ E + dE}. (198)

would deviate from its mean
·
= exp{n[ln 2− (E/(nJ))2]}, by a multiplicative factor that falls

out of the interval [e−nǫ, e+nǫ], decays double–exponentially with n. In other words, we argue

that for −E0 < E < +E0, the event

e−nǫ · exp
{

n

[

ln 2−
(

E

nJ

)2
]}

≤ Ω(E)dE ≤ e+nǫ · exp
{

n

[

ln 2−
(

E

nJ

)2
]}

(199)

happens with probability that tends to unity in a double–exponential rate. As discussed,

−E0 < E < +E0 is exactly the condition for the expression in the square brackets at the

exponent [ln 2 − ( E
nJ
)2] to be positive, thus Ω(E)dE is exponentially large. On the other

hand, if |E| > E0, the number of trials 2n is way smaller than one over the probability of

falling around E, and so, most of the chances are that we will see no configurations at all

with energy about E. In other words, for these large values of |E|, Ω(E) = 0 for typical

realizations of the REM. It follows then that for such a typical realization,

Z(β) ≈
∫ +E0

−E0

〈dE · Ω(E)〉 e−βE

·
=

∫ +E0

−E0

dE · exp
{

n

[

ln 2−
(

E

nJ

)2
]}

· e−βE

=

∫ +E0

−E0

dE · exp
{

n

[

ln 2−
(

E

nJ

)2

− β ·
(

E

n

)

]}

= n ·
∫ +ǫ0

−ǫ0
dǫ · exp

{

n

[

ln 2−
( ǫ

J

)2

− βǫ
]}

ǫ
∆
=
E

n
, ǫ0

∆
=
E0

n
= J
√
ln 2,

·
= exp

{

n · max
|ǫ|≤ǫ0

[

ln 2−
( ǫ

J

)2

− βǫ
]}

by Laplace integration
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The maximization problem at the exponent is very simple: it is that of a quadratic function

across an interval. The solution is of either one of two types, depending on whether the

maximum is attained at a zero–derivative internal point in (−ǫ0,+ǫ0) or at an edgepoint.

The choice between the two depends on β. Specifically, we obtain the following:

φ(β) = lim
n→∞

lnZ(β)

n
=

{

ln 2 + β2J2

4
β ≤ βc

βJ
√
ln 2 β > βc

(200)

where βc =
2
J

√
ln 2. What we see here is a phase transition. The function φ(β) changes its

behavior abruptly at β = βc, from being quadratic in β to being linear in β (see also Fig.

13, right part). The function φ is continuous (as always), and so is its first derivative, but

the second derivative is not. Thus, it is a second order phase transition. Note that in the

quadratic range, this expression is precisely the same as we got using the replica method,

when we hypothesized that the dominant configuration is fully symmetric and is given by

Q = Im×m. Thus, the replica symmetric solution indeed gives the correct result in the high

temperature regime, but the low temperature regime seems to require symmetry breaking.

Thus, the condition R > ln 2− h2(δ) is equivalent to

Σ(ǫ)

+ǫ0−ǫ0 ǫ

Σ(ǫ) = ln 2−
(

ǫ
J

)2

φ(β) = βJ
√

ln 2

φ(β) = ln 2 + β2J2

4

φ(β)

β

βc

Figure 13: The entropy function and the normalized log–partition function of the REM.

What is the significance of each one of these phases? Let’s begin with the second line

of the above expression of φ(β), which is φ(β) = βJ
√
ln 2 ≡ βǫ0 for β > βc. What is the
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meaning of linear dependency of φ in β? Recall that the entropy Σ is given by

Σ(β) = φ(β)− β · φ′(β),

which in the case where φ is linear, simply vanishes. Zero entropy means that the partition

function is dominated by a subexponential number of ground–state configurations (with per–

particle energy about ǫ0), just like when it is frozen (see also Fig. 13, left part: Σ(−ǫ0) = 0).

This is why we will refer to this phase as the frozen phase or the glassy phase.17 In the high–

temperature range, on the other hand, the entropy is strictly positive and the dominant

per–particle energy level is ǫ∗ = −1
2
βJ2, which is the point of zero–derivative of the function

[ln 2− (ǫ/J)2 − βǫ]. Here the partition is dominated by exponentially many (exercise: what

is the exponent?) configurations whose energy is E∗ = nǫ∗ = −n
2
βJ2. As we shall see later

on, in this range the behavior of the system is essentially paramagnetic (like in a system of

i.i.d. spins), and so it is called the paramagnetic phase.

We therefore observe that the type of phase transition here is different than in the Curie–

Weiss model. We are not talking here about spontaneous magnetization transition, but

rather on a glass transition. In fact, we will not see here a spontaneous magnetization even

if we add a magnetic field (time permits, this will be seen later on).

From φ(β), one can go ahead and calculate other physical quantities, but we will not do

this now. As a final note in this context, I wish to emphasize that since the calculation of Z

was carried out for the typical realizations of the quenched RV’s {E(s)}, we have actually

calculated the quenched average of limn(lnZ)/n. As for the annealed average, we have

lim
n→∞

ln〈Z(β)〉
n

= lim
n→∞

1

n
ln

[
∫

IR

〈Ω(E)dǫ〉e−βnǫ
]

= lim
n→∞

1

n
ln

[
∫

IR

exp

{

n

[

ln 2−
( ǫ

J

)2

− βǫ
]}]

= max
ǫ∈IR

[

ln 2−
( ǫ

J

)2

− βǫ
]

Laplace integration

= ln 2 +
β2J2

4
, (201)

17In this phase, the system behaves like a glass: on the one hand, it is frozen (so it consolidates), but on
the other hand, it remains disordered and amorphous, like a liquid.
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which is the paramagnetic expression, without any phase transition since the maximization

over ǫ is not constrained.

5.2 The Random Code Ensemble and its Relation to the REM

Let us now see how does the REM relate to random code ensembles. The discussion in

this part is based on Mézard and Montanari’s book, as well as on the paper: N. Merhav,

“Relations between random coding exponents and the statistical physics of random codes,”

IEEE Trans. Inform. Theory, vol. 55, no. 1, pp. 83–92, January 2009. Another relevant

paper is: A. Barg and G. D. Forney, Jr., “Random codes: minimum distances and error

exponents,” IEEE Trans. Inform. Theory, vol. 48, no. 9, pp. 2568–2573, September 2002.

Consider a DMC, P (y|x) =
∏n

i=1 p(yi|xi), fed by an input n–vector that belongs to a

codebook C = {x1,x2, . . . ,xM}, M = enR, with uniform priors, where R is the coding rate

in nats per channel use. The induced posterior, for x ∈ C, is then:

P (x|y) =
P (y|x)

∑

x′∈C P (y|x′)

=
e− ln[1/P (y|x)]

∑

x′∈C e
− ln[1/P (y|x′)]

. (202)

Here, the second line is deliberately written in a form that resembles the Boltzmann dis-

tribution, which naturally suggests to consider, more generally, the posterior distribution

parametrized by β, that is

Pβ(x|y) =
P β(y|x)

∑

x′∈C P
β(y|x′)

=
e−β ln[1/P (y|x)]

∑

x′∈C e
−β ln[1/P (y|x′)]

∆
=

e−β ln[1/P (y|x)]

Z(β|y)

There are a few motivations for introducing the temperature parameter:

• It allows a degree of freedom in case there is some uncertainty regarding the channel

noise level (small β corresponds to high noise level).
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• It is inspired by the ideas behind simulated annealing techniques: by sampling from Pβ

while gradually increasing β (cooling the system), the minima of the energy function

(ground states) can be found.

• By applying symbolwise maximum a-posteriori (MAP) decoding, i.e., decoding the

ℓ–th symbol of x as argmaxa Pβ(xℓ = a|y), where

Pβ(xℓ = a|y) =
∑

x∈C: xℓ=a
Pβ(x|y), (203)

we obtain a family of finite–temperature decoders (originally proposed by Ruján in 1993)

parametrized by β, where β = 1 corresponds to minimum symbol error probability

(with respect to the real underlying channel P (y|x)) and β → ∞ corresponds to

minimum block error probability.

• This is one of our main motivations: the corresponding partition function, Z(β|y),
namely, the sum of (conditional) probabilities raised to some power β, is an expression

frequently encountered in Rényi information measures as well as in the analysis of

random coding exponents using Gallager’s techniques. Since the partition function

plays a key role in statistical mechanics, as many physical quantities can be derived

from it, then it is natural to ask if it can also be used to gain some insights regarding

the behavior of random codes at various temperatures and coding rates.

For the sake of simplicity, let us suppose further now that we are dealing with the binary

symmetric channel (BSC) with crossover probability p, and so,

P (y|x) = pd(x,y)(1− p)n−d(x,y) = (1− p)ne−Jd(x,y), (204)

where J = ln 1−p
p

and d(x,y) is the Hamming distance. Thus, the partition function can be

presented as follows:

Z(β|y) = (1− p)βn
∑

x∈C
e−βJd(x,y). (205)

Now consider the fact that the codebook C is selected at random: Every codeword is ran-

domly chosen independently of all other codewords. At this point, the analogy to the REM,
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and hence also its relevance, become apparent: If each codeword is selected independently,

then the ‘energies’ {Jd(x,y)} pertaining to the partition function

Z(β|y) = (1− p)βn
∑

x∈C
e−βJd(x,y), (206)

(or, in the case of a more general channel, the energies {− ln[1/P (y|x)]} pertaining to

the partition function Z(β|y) =
∑

x∈C e
−β ln[1/P (y|x)]), are i.i.d. random variables for all

codewords in C, with the exception of the codeword x0 that was actually transmitted and

generated y.18 Since we have seen phase transitions in the REM, it is conceivable to expect

them also in the statistical physics of the random code ensemble, and indeed we will see

them shortly.

Further, we assume that each symbol of each codeword is drawn by fair coin tossing, i.e.,

independently and with equal probabilities for ‘0’ and ‘1’. As said, we have to distinguish

now between the contribution of the correct codeword x0, which is

Zc(β|y) ∆
= (1− p)βne−Jd(x0,y) (207)

and the contribution of all other (incorrect) codewords:

Ze(β|y) ∆
= (1− p)βn

∑

x∈C\{x0}
e−Jd(x,y). (208)

Concerning the former, things are very simple: Typically, the channel flips about np bits out

the n transmissions, which means that with high probability, d(x0,y) is about np, and so

Zc(β|y) is expected to take values around (1− p)βne−βJnp. The more complicated and more

interesting question is how does Ze(β|y) behave, and here the treatment will be very similar

to that of the REM.

Given y, define Ωy(d) as the number of incorrect codewords whose Hamming distance

from y is exactly d. Thus,

Ze(β|y) = (1− p)βn
n
∑

d=0

Ωy(d) · e−βJd. (209)

18This one is still independent, but it has a different distribution, and hence will be handled separately.
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Just like in the REM, here too the enumerator Ωy(d) is the sum of an exponential number,

enR, of binary i.i.d. RV’s:

Ωy(d) =
∑

x∈C\{x0}
I{d(x,y) = d}. (210)

According to the method of types, the probability of a single ‘success’ {d(X,y) = nδ} is

given by

Pr{d(X,y) = nδ} ·
=
enh2(δ)

2n
= exp{−n[ln 2− h2(δ)]}. (211)

So, just like in the REM, we have an exponential number of trials, enR, each one with an

exponentially decaying probability of success, e−n[ln 2−h2(δ)]. We already know how does this

experiment behave: It depends which exponent is faster. If R > ln 2−h2(δ), we will typically
see about exp{n[R+ h2(δ)− ln 2]} codewords at distance d = nδ from y. Otherwise, we see

none. So the critical value of δ is the solution to the equation

R + h2(δ)− ln 2 = 0. (212)

There are two solutions to this equation, which are symmetric about 1/2. The smaller one is

called the Gilbert–Varshamov (G–V) distance19 and it will be denoted by δGV (R) (see Fig.

14). The other solution is, of course, δ = 1− δGV (R). Thus, the condition R > ln 2 − h2(δ)

δ0.5δGV (R)

ln 2−R

ln 2

1

Figure 14: The Gilbert–Varshamov distance as the smaller solution to the equation R + h2(δ) −
ln 2 = 0.

19The G–V distance was originally defined and used in coding theory for the BSC.
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is equivalent to δGV (R) < δ < 1− δGV (R), and so, for a typical code in the ensemble:

Ze(β|y) ≈ (1− p)βn
1−δGV (R)
∑

δ=δGV (R)

exp{n[R + h2(δ)− ln 2]} · e−βJnδ

= (1− p)βnen(R−ln 2) ·
1−δGV (R)
∑

δ=δGV (R)

exp{n[h2(δ)− βJδ]}

= (1− p)βnen(R−ln 2) · exp
{

n · max
δGV (R)≤δ≤1−δGV (R)

[h2(δ)− βJδ]
}

Now, similarly as in the REM, we have to maximize a certain function within a limited

interval. And again, there are two phases, corresponding to whether the maximizer falls

at an edgepoint (glassy phase) or at an internal point with zero derivative (paramagnetic

phase). It is easy to show (exercise: fill in the details) that in the paramagnetic phase, the

maximum is attained at

δ∗ = pβ
∆
=

pβ

pβ + (1− p)β (213)

and then

φ(β) = R− ln 2 + ln[pβ + (1− p)β]. (214)

In the glassy phase, δ∗ = δGV (R) and then

φ(β) = β[δGV (R) ln p+ (1− δGV (R)) ln(1− p)], (215)

which is again, linear in β and hence corresponds to zero entropy. The boundary between

the two phases occurs when β is such that δGV (R) = pβ, which is equivalent to

β = βc(R)
∆
=

ln[(1− δGV (R))/δGV (R)]
ln[(1− p)/p] . (216)

So β < βc(R) is the paramagnetic phase of Ze and β > βc(R) is its glassy phase.

But now we should remember that Ze is only part of the partition function and it is time

to put the contribution of Zc back into the picture. Checking the dominant contribution of

Z = Ze+Zc as a function of β and R, we can draw a phase diagram, where we find that there

are actually three phases, two contributed by Ze, as we have already seen (paramagnetic and
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glassy), plus a third phase – contributed by Zc, namely, the ordered or the ferromagnetic

phase, where Zc dominates (cf. Fig. 15), which means reliable communication, as the correct

codeword x0 dominates the partition function and hence the posterior distribution. The

boundaries of the ferromagnetic phase designate phase transitions from reliable to unreliable

decoding.

paramagnetic

glassy

fe
rr

om
ag

ne
tic

R

T = 1/β

1

T = Tc(R)

T = T0(R)

C

Figure 15: Phase diagram of the finite–temperature MAP decoder.

Both the glassy phase and the paramagnetic phase correspond to unreliable communi-

cation. What is the essential difference between them? As in the REM, the difference is

that in the glassy phase, Z is dominated by a subexponential number of codewords at the

‘ground–state energy’, namely, that minimum seen distance of nδGV (R), whereas in the para-

magnetic phase, the dominant contribution comes from an exponential number of codewords

at distance npβ . In the glassy phase, there is seemingly a smaller degree of uncertainty since

H(X|Y ) that is induced from the finite–temperature posterior has zero entropy. But this is

fictitious since the main support of the posterior belongs to incorrect codewords. This is to

say that we may have the illusion that we know quite a lot about the transmitted codeword,

but what we know is wrong! This is like an event of an undetected error. In both glassy

and paramagnetic phases, above capacity, the ranking of the correct codword, in the list of

decreasing Pβ(x|y), is about en(R−C).

Exercise: convince yourself that the phase diagram is as depicted in Fig. 15 and find the

equations of the boundaries between phases. Note that the triple point is (C, 1) where
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C = ln 2 − h2(p) is the channel capacity. Also, the ferro–glassy boundary is the vertical

straight line R = C. What does this mean? �

5.3 Random Coding Exponents

It turns out that these findings are relevant to ensemble performance analysis of codes.

This is because many of the bounds on code performance include summations of P β(y|x)
(for some β), which are exactly the partition functions that we work with in the foregoing

discussion. These considerations can sometimes even help to get tighter bounds. We will now

demonstrate this point in the context of the analysis of the probability of correct decoding

above capacity.

First, we have

Pc =
1

M

∑

y

max
x∈C

P (y|x) M
∆
= enR

= lim
β→∞

1

M

∑

y

[

∑

x∈C
P β(y|x)

]1/β

The expression in the square brackets is readily identified with the partition function, and

we note that the combination of R > C and β → ∞ takes us deep into the glassy phase.

Taking the ensemble average, we get:

P̄c = lim
β→∞

1

M

∑

y

E







[

∑

x∈C
P β(y|x)

]1/β






. (217)

At this point, the traditional approach would be to insert the expectation into the square

brackets by applying Jensen’s inequality (for β > 1), which would give us an upper bound.

Instead, our previous treatment of random code ensembles as a REM–like model can give

us a hand on exponentially tight evaluation of the last expression, with Jensen’s inequality
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being avoided. Consider the following chain:

E







[

∑

x∈C
P β(y|x)

]1/β






= (1− p)nE







[

n
∑

d=0

Ωy(d)e
−βJd

]1/β






·
= (1− p)nE

{

[

max
0≤d≤n

Ωy(d)e
−βJd

]1/β
}

= (1− p)nE
{

max
0≤d≤n

[Ωy(d)]
1/β · e−Jd

}

·
= (1− p)nE

{

n
∑

d=0

[Ωy(d)]
1/β · e−Jd

}

= (1− p)n
n
∑

d=0

E
{

[Ωy(d)]
1/β
}

· e−Jd

·
= (1− p)n max

0≤d≤n
E
{

[Ωy(d)]
1/β
}

· e−Jd

Thus, it boils down to the calculation of (non–integer) moments of Ωy(d). At this point, we

adopt the main ideas of the treatment of the REM, distinguishing between the values of δ

below the G–V distance, and those that are above it. Before we actually assess the moments

of Ωy(d), we take a closer look at the asymptotic behavior of these RV’s. This will also

rigorize our earlier discussion on the Gaussian REM.

For two numbers a and b in [0, 1], let us define the binary divergence as

D(a‖b) = a ln
a

b
+ (1− a) ln 1− a

1− b . (218)

Using the inequality

ln(1 + x) = − ln

(

1− x

1 + x

)

≥ x

1 + x
,
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we get the following lower bound to D(a‖b):

D(a‖b) = a ln
a

b
+ (1− a) ln 1− a

1− b
= a ln

a

b
+ (1− a) ln

(

1 +
b− a
1− b

)

≥ a ln
a

b
+ (1− a) · (b− a)/(1− b)

1 + (b− a)/(1− b)
= a ln

a

b
+ b− a

> a
(

ln
a

b
− 1
)

Now, as mentioned earlier, Ωy(d) is the sum of enR i.i.d. binary RV’s, i.e., Bernoulli RV’s

with parameter e−n[ln 2−h2(δ)]. Consider the event Ωy(d) ≥ enA, A ≥ 0, which means that

the relative frequency of ‘successes’ exceeds enA

enR = e−n(R−A). Then this is a large deviations

event if e−n(R−A) > e−n[ln 2−h2(δ)], that is,

A > R + h2(δ)− ln 2. (219)

Using the Chernoff bound (exercise: fill in the details), one can easily show that

Pr{Ωy(d) ≥ enA} ≤ exp{−enRD(e−n(R−A)‖e−n[ln 2−h2(δ)])}. (220)

Note: we have emphasized the use of the Chernoff bound as opposed to the method of types

since the method of types would introduce the factor of the number of type classes, which

is in this case (enR + 1). Now, by applying the above lower bound to the binary divergence,

we can further upper bound the last expression as

Pr{Ωy(d) ≥ enA} ≤ exp{−enR · e−n(R−A) · (n[ln 2− R− h2(δ) + A]− 1)}

= exp{−enA · (n[ln 2− R− h2(δ) + A]− 1)}

Now, suppose first that δGV (R) < δ < 1 − δGV (R), and take A = R + h2(δ) − ln 2 + ǫ,

where ǫ > 0 may not necessarily be small. In this case, the term in the square brackets

is ǫ, which means that the right–most side decays doubly–exponentially rapidly. Thus, for
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δGV (R) < δ < 1−δGV (R), the probability that Ωy(d) exceeds E{Ωy(d)}·enǫ decays double–
exponentially fast with n. One can show in a similar manner (exercise: please do)20 that

Pr{Ωy(d) < E{Ωy(d)} · e−nǫ} decays in a double exponential rate as well. Finally, consider

the case where δ < δGV (R) or δ > 1− δGV (R), and let A = 0. This is also a large deviations

event, and hence the above bound continues to be valid. Here, by setting A = 0, we get an

ordinary exponential decay:

Pr{Ωy(d) ≥ 1}
·
≤ e−n[ln 2−R−h2(δ)]. (221)

Now, after having prepared these results, let’s get back to the evaluation of the moments

of Ωy(d). Once again, we separate between the two ranges of δ. For δ < δGV (R) or

δ > 1− δGV (R), we have the following:

E{[Ωy(d)]1/β} ·
= 01/β · Pr{Ωy(d) = 0}+ en·0/β · Pr{1 ≤ Ωy(d) ≤ enǫ}+ double–exp. terms

·
= en·0/β · Pr{Ωy(d) ≥ 1}
·
= e−n[ln 2−R−h2(δ)]

Thus, in this range, E{[Ωy(d)]1/β} ·
= e−n[ln 2−R−h2(δ)] independently of β. On the other hand

in the range δGV (R) < δ < 1− δGV (R),

E{[Ωy(d)]1/β} ·
= (en[R+h2(δ)−ln 2])1/β · Pr{en[R+h2(δ)−ln 2−ǫ] ≤ Ωy(d) ≤ en[R+h2(δ)−ln 2+ǫ]}+

+double–exp. terms

·
= en[R+h2(δ)−ln 2]/β

since the probability Pr{en[R+h2(δ)−ln 2−ǫ] ≤ Ωy(d) ≤ en[R+h2(δ)−ln 2+ǫ]} tends to unity double–

exponentially rapidly. So to summarize, we have shown that the moment of Ωy(d) undergoes

a phase transition, as it behaves as follows:

E{[Ωy(d)]1/β} ·
=

{

en[R+h2(δ)−ln 2] δ < δGV (R) or δ > 1− δGV (R)
en[R+h2(δ)−ln 2]/β δGV (R) < δ < 1− δGV (R) (222)

20This requires a slighly different lower bound to the binary divergence.
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Finally, by plugging these moments back into the expression of P̄c (exercise: fill in the

details), and taking the limit β →∞, we eventually get:

lim
β→∞

E







[

∑

x∈C
P β(y|x)

]1/β






·
= e−nFg (223)

where Fg is the free energy of the glassy phase, i.e.,

Fg = δGV (R) ln
1

p
+ (1− δGV (R)) ln

1

1− p (224)

and so, we obtain a very simple relation between the exponent of P̄c and the free energy of

the glassy phase:

P̄c
·
=

1

M

∑

y

e−nFg

= exp{n(ln 2− R− Fg)}

= exp{n[ln 2−R + δGV (R) ln p+ (1− δGV (R)) ln(1− p)]}

= exp{n[h2(δGV (R)) + δGV (R) ln p+ (1− δGV (R)) ln(1− p)]}

= e−nD(δGV (R)‖p)

The last expression has an intuitive interpretation. It answers the following question: what

is the probability that the channel would flip less than nδGV (R) bits although p > δGV (R)?

This is exactly the relevant question for correct decoding in the glassy phase, because in

that phase, there is a “belt” of codewords “surrounding” y at radius nδGV (R) – these are

the codewords that dominate the partition function in the glassy phase and there are no

codewords closer to y. The event of correct decoding happens if the channel flips less than

nδGV (R) bits and then x0 is closer to y more than all belt–codewords. Thus, x0 is decoded

correctly.

One can also derive an upper bound on the error probability at R < C. The partition

function Z(β|y) plays a role there too according to Gallager’s classical bounds. We will not

delve now into it, but we only comment that in that case, the calculation is performed in

the paramagnetic regime rather than the glassy regime that we have seen in the calculation

of P̄c. The basic technique, however, is essentially the same.

112



We will now demonstrate the usefulness of this technique of assessing moments of distance

enumerators in a certain problem of decoding with an erasure option. Consider the BSC

with a crossover probability p < 1/2, which is unknown and one employs a universal detector

that operates according to the following decision rule: Select the message m if

e−nβĥ(xm⊕y)

∑

m′ 6=m e
−nβĥ(xm′⊕y)

≥ enT (225)

where β > 0 is an inverse temperature parameter and ĥ(x ⊕ y) is the binary entropy

pertaining to the relative number of 1’s in the vector resulting from bit–by–bit XOR of x

and y, namely, the binary entropy function computed at the normalized Hamming distance

between x and y. If no message m satisfies (225), then an erasure is declared.

We have no optimality claims regarding this decision rule, but arguably, it is a reasonable

decision rule (and hence there is motivation to analyze its performance): It is a universal

version of the optimum decision rule:

Decide on m if
P (y|xm)

∑

m′ 6=m P (y|xm′)
≥ enT and erase otherwise. (226)

The minimization of ĥ(xm ⊕ y) among all codevectors {xm}, namely, the minimum con-

ditional entropy decoder is a well–known universal decoding rule in the ordinary decoding

regime, without erasures, which in the simple case of the BSC, is equivalent to the maxi-

mum mutual information (MMI) decoder and to the generalized likelihood ratio test (GLRT)

decoder, which jointly maximizes the likelihood over both the message and the unknown pa-

rameter. Here we adapt the minimum conditional entropy decoder to the structure proposed

by the optimum decoder with erasures, where the (unknown) likelihood of each codeword

xm is basically replaced by its maximum e−nĥ(xm⊕y), but with an additional degree of free-

dom of scaling the exponent by β. The parameter β controls the relative importance of the

codeword with the second highest score. For example, when β → ∞,21 only the first and

the second highest scores count in the decision, whereas if β → 0, the differences between

the scores of all codewords are washed out.

21As β varies it is plausible to let T scale linearly with β.
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To demonstrate the advantage of the proposed analysis technique, we will now apply it

in comparison to the traditional approach of using Jensen’s inequality and supplementing

an additional parameter ρ in the bound so as to monitor the loss of tightness due to the use

of Jensen’s inequality. Let us analyze the probability of the event E1 that the transmitted

codeword xm does not satisfy (225). We then have the following chain of inequalities, where

the first few steps are common to the two analysis methods to be compared:

Pr{E1} =
1

M

M
∑

m=1

∑

y

P (y|xm) · 1
{

enT
∑

m′ 6=m e
−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)
≥ 1

}

≤ 1

M

M
∑

m=1

∑

y

P (y|xm) ·
[

enT
∑

m′ 6=m e
−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)

]s

=
ensT

M

M
∑

m=1

∑

y

P (y|xm) · enβsĥ(xm⊕y) ·
[

∑

m′ 6=m
e−nβĥ(xm′⊕y)

]s

(227)

Considering now the ensemble of codewords drawn indepedently by fair coin tossing, we

have:

Pr{E1} ≤ ensT
∑

y

E
{

P (y|X1) · exp[nβsĥ(X1 ⊕ y)]
}

·E
{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

∆
= ensT

∑

y

A(y) · B(y) (228)

The computation of A(y) is as follows: Denoting the Hamming weight of a binary sequence

z by w(z), we have:

A(y) =
∑

x

2−n(1− p)n ·
(

p

1− p

)w(x⊕y)

exp[nβsĥ(x⊕ y)]

=

(

1− p
2

)n
∑

z

exp

[

n

(

w(z) ln
p

1− p + βsĥ(z)

)]

·
=

(

1− p
2

)n
∑

δ

enh(δ) · exp
[

n

(

βsh(δ)− δ ln 1− p
p

)]

·
=

(

1− p
2

)n

exp

[

nmax
δ

(

(1 + βs)h(δ)− δ ln 1− p
p

)]

. (229)

It is readily seen by ordinary optimization that

max
δ

[

(1 + βs)h(δ)− δ ln 1− p
p

]

= (1+ βs) ln
[

p1/(1+βs) + (1− p)1/(1+βs)
]

− ln(1− p) (230)
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and so upon substituting back into the the bound on Pr{E1}, we get:

Pr{E1} ≤ exp
[

n
(

sT + (1 + βs) ln
[

p1/(1+βs) + (1− p)1/(1+βs)
]

− ln 2
)]

·
∑

y

B(y). (231)

It remains then to assess the exponential order of B(y) and this will now be done in two

different ways. The first is Forney’s way of using Jensen’s inequality and introducing the

additional parameter ρ, i.e.,

B(y) = E











[

∑

m>1

exp[−nβĥ(Xm ⊕ y)

]s/ρ




ρ





≤ E

{(

∑

m>1

exp[−nβsĥ(Xm ⊕ y)/ρ]

)ρ}

0 ≤ s/ρ ≤ 1

≤ enρR
(

E
{

exp[−nβsĥ(Xm ⊕ y)/ρ]
})ρ

, ρ ≤ 1 (232)

where in the second line we have used the following inequality22 for non–negative {ai} and
θ ∈ [0, 1]:

(

∑

i

ai

)θ

≤
∑

i

aθi . (233)

Now,

E
{

exp[−nβsĥ(Xm ⊕ y)/ρ]
}

= 2−n
∑

z

exp[−nβsĥ(z)/ρ]

·
= 2−n

∑

δ

enh(δ) · e−nβsh(δ)/ρ

= exp[n([1− βs/ρ]+ − 1) ln 2], (234)

where [u]+
∆
= max{u, 0}. Thus, we get

B(y) ≤ exp(n[ρ(R − ln 2) + [ρ− βs]+]), (235)

22To see why this is true, think of pi = ai/(
∑

i ai) as probabilities, and then pθi ≥ pi, which implies
∑

i p
θ
i ≥

∑

i pi = 1. The idea behind the introduction of the new parameter ρ is to monitor the possible loss
of exponential tightness due to the use of Jensen’s inequality. If ρ = 1, there is no loss at all due to Jensen,
but there is maximum loss in the second line of the chain. If ρ = s, it is the other way around. Hopefully,
after optimization over ρ, the overall loss in tightness is minimized.
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which when substituted back into the bound on Pr{E1}, yields an exponential rate of

Ẽ1(R, T ) = max
0≤s≤ρ≤1

{(ρ− [ρ− βs]+) ln 2−

−(1 + βs) ln
[

p1/(1+βs) + (1− p)1/(1+βs)
]

− ρR − sT
}

. (236)

On the other hand, estimating B(y) by the new method, we have:

B(y) = E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

= E

{[

∑

δ

Ωy(nδ) exp[−nβh(δ)]
]s}

·
=

∑

δ

E{Ωsy(nδ)} · exp(−nβsh(δ))

·
=

∑

δ∈Gc
R

en[R+h(δ)−ln 2] · exp[−nβsh(δ)] +
∑

δ∈GR

ens[R+h(δ)−ln 2] · exp[−nβsh(δ)]

∆
= U + V, (237)

where GR = {δ : δGV (R) ≤ δ ≤ 1−δGV (R)}. Now, U is dominated by the term δ = 0 if βs >

1 and δ = δGV (R) if βs < 1. It is then easy to see that U
·
= exp[−n(ln 2−R)(1− [1−βs]+)].

Similarly, V is dominated by the term δ = 1/2 if β < 1 and δ = δGV (R) if β ≥ 1. Thus,

V
·
= exp[−ns(β[ln 2− R]− R[1− β]+)]. Therefore, defining

φ(R, β, s) = min{(ln 2−R)(1− [1− βs]+), s(β[ln 2− R]− R[1− β]+)}, (238)

the resulting exponent is

Ê1(R, T ) = max
s≥0

{

φ(R, β, s)− (1 + βs) ln
[

p1/(1+βs) + (1− p)1/(1+βs)
]

− sT
}

. (239)

Numerical comparisons show that while there are many quadruples (p, β, R, T ) for which

the two exponents coincide, there are also situations where Ê1(R, T ) exceeds Ẽ1(R, T ). To

demonstrate these situations, consider the values p = 0.1, β = 0.5, T = 0.001, and let R

vary from 0 to 0.06 in steps of 0.01. Table 1 summarizes numerical values of both exponents,

where the optimizations over ρ and s were conducted by an exhaustive search with a step

size of 0.005 in each parameter. In the case of Ê1(R, T ), where s ≥ 0 is not limited to the
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R = 0.00 R = 0.01 R = 0.02 R = 0.03 R = 0.04 R = 0.05 R = 0.06

Ẽ1(R, T ) 0.1390 0.1290 0.1190 0.1090 0.0990 0.0890 0.0790

Ê1(R, T ) 0.2211 0.2027 0.1838 0.1642 0.1441 0.1231 0.1015

Table 1: Numerical values of Ẽ1(R, T ) and Ê1(R, T ) as functions of R for p = 0.1, β = 0.5,
and T = 0.001.

interval [0, 1] (since Jensen’s inequality is not used), the numerical search over s was limited

to the interval [0, 5].23

As can be seen (see also Fig. 16), the numerical values of the exponent Ê1(R, T ) are

considerably larger than those of Ẽ1(R, T ) in this example, which means that the analysis

technique proposed here, not only simplifies exponential error bounds, but sometimes leads

also to significantly tighter bounds.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

R

Figure 16: Graphs of Ê1(R, T ) (solid line) and Ẽ1(R, T ) (dashed line) as functions of R for
p = 0.1, T = 0.001 and β = 0.5.

There are other examples where these techniques are used in more involved situations,

23 It is interesting to note that for some values of R, the optimum value s∗ of the parameter s was indeed
larger than 1. For example, at rate R = 0, we have s∗ = 2 in the above search resolution.
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and in some of them they yield better performance bounds compared to traditional methods.

Here is a partial list of papers:

• R. Etkin, N. Merhav and E. Ordentlich, “Error exponents of optimum decoding for the

interference channel,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 40–56, January

2010.

• Y. Kaspi and N. Merhav, “Error exponents of optimum decoding for the degraded

broadcast channel using moments of type class enumerators,” Proc. ISIT 2009, pp.

2507–2511, Seoul, South Korea, June–July 2009. Full version: available in arXiv:0906.1339.

• A. Somekh–Baruch and N. Merhav, “Exact random coding exponents for erasure de-

coding,” to appear in Proc. ISIT 2010, June 2010, Austin, Texas, U.S.A.
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6 Additional Topics (Optional)

6.1 The REM With a Magnetic Field and Joint Source–Channel
Coding

6.1.1 Magnetic Properties of the REM

Earlier, we studied the REM in the absence of an external magnetic field. The Gaussian

randomly drawn energies that we discussed were a caricature of the interaction energies in

the p–spin glass model for an extremely large level of disorder, in the absence of a magnetic

field.

We are now going to expand the analysis of the REM so as to incorporate also an external

magnetic field B. This will turn out to be relevant to a more general communication setting,

namely, that of joint source–channel coding, where as we shall see, the possible skewedness

of the probability disitribution of the source (when it is not symmetric) plays a role that is

analogous to that of a magnetic field. The Hamiltonian in the presence of the magnetic field

is

E(s) = −B
n
∑

i=1

si + EI(s) (240)

where EI(s) stands for the interaction energy, previously modeled to beN (0, 1
2
nJ2) according

to the REM. Thus, the partition function is now

Z(β,B) =
∑

s

e−βE(s)

=
∑

s

e−βEI(s)+βB
∑n

i=1 si

=
∑

s

e−βEI(s)+nβBm(s) m(s) =
1

n

∑

i

si

=
∑

m





∑

s: m(s)=m

e−βEI (s)



 · e+nβBm

∆
=

∑

m

Z0(β,m) · e+nβBm

where Z0(β,m) is the partial partition function, defined to be the expression in the square
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brackets in the second to the last line.24 Now, observe that Z0(β,m) is just like the par-

tition function of the REM without magnetic field, except that it has a smaller number

of configurations – only those with magnetization m, namely, about exp{nh2((1 +m)/2)}
configurations. Thus, the analysis of Z0(β,m) is precisely the same as in the REM except

that every occurrence of the term ln 2 should be replaced by h2((1 +m)/2). Accordingly,

Z0(β,m)
·
= enψ(β,m) (241)

with

ψ(β,m) = max
|ǫ|≤J
√
h2((1+m)/2)

[

h2

(

1 +m

2

)

−
( ǫ

J

)2

− βǫ
]

=







h2
(

1+m
2

)

+ β2J2

4
β ≤ βm

∆
= 2

J

√

h2
(

1+m
2

)

βJ
√

h2
(

1+m
2

)

β > βm

and from the above relation between Z and Z0, we readily have the Legendre relation

φ(β,B) = max
m

[ψ(β,m) + βmB]. (242)

For small β (high temperature), the maximizing (dominant)m is attained with zero–derivative:

∂

∂m

[

h2

(

1 +m

2

)

+
β2J2

4
+ βmB

]

= 0 (243)

that is
1

2
ln

1−m
1 +m

+ βB = 0 (244)

which yields

m∗ = mp(β,B)
∆
= tanh(βB) (245)

which is exactly the paramagnetic characteristic of magnetization vs. magnetic field (like

that of i.i.d. spins), hence the name “paramagnetic phase.” Thus, plugging m∗ = tanh(βB)

back into the expression of φ, we get:

φ(β,B) = h2

(

1 + tanh(βB)

2

)

+
β2J2

4
+ βB tanh(βB). (246)

24Note that the relation between Z0(β,m) to Z(β,B) is similar to the relation between Ω(E) of the
microcanonical ensemble to Z(β) of the canonical one (a Legendre relation in the log domain): we are
replacing the fixed magnetization m, which is an extensive quantity, by an intensive variable B that controls
its average.
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This solution is valid as long as the condition

β ≤ βm∗ =
2

J

√

h2

(

1 + tanh(βB)

2

)

(247)

holds, or equivalently, the condition

β2J2

4
≤ h2

(

1 + tanh(βB)

2

)

. (248)

Now, let us denote by βc(B) the solution β to the equation:

β2J2

4
= h2

(

1 + tanh(βB)

2

)

. (249)

As can be seen from the graphical illustration (Fig. 17), βc(B) is a decreasing function and

hence Tc(B)
∆
= 1/βc(B) is increasing. Thus, the phase transition temperature is increasing

with |B| (see Fig. 18). Below β = βc(B), we are in the glassy phase, where φ is given by:

ln 2

β

y = β2J2

4

B = 0

βc(0)βc(B2) βc(B1)

y = h2
(

1+tanh(βB1)
2

)

B2 > B1

y = h2
(

1+tanh(βB2)
2

)

Figure 17: Graphical presentation of the solution βc(B) to the equation 1
4β

2J2 = h2((1 +
tanh(βB))/2) for various values of B.

φ(β,B) = max
m

[

βJ

√

h2

(

1 +m

2

)

+ βmB

]

= β ·max
m

[

J

√

h2

(

1 +m

2

)

+mB

]

(250)

thus, the maximizing m does not depend on β, only on B. On the other hand, it should be

the same solution that we get on the boundary β = βc(B), and so, it must be:

m∗ = mg(B)
∆
= tanh(Bβc(B)). (251)
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paramagnetic

glassy

B

T

Tc(0) =
J

2
√
ln 2

Figure 18: Phase diagram in the B–T plane.

Thus, in summary

φ(β,B) =











h2

(

1+mp(β,B)
2

)

+ β2J2

4
+ βBmp(β,B) β ≤ βc(B)

βJ

√

h2

(

1+mg(B)
2

)

+ βBmg(B) β > βc(B)
(252)

In both phases B → 0 implies m∗ → 0, therefore the REM does not exhibit spontaneous

magnetization, only a glass transition, as described.

Finally, we mention an important parameter in the physics of magnetic materials – the

weak–field magnetic susceptibility, which is defined as χ
∆
= ∂m∗

∂B
|B=0. It can readily be shown

that in the REM case

χ =

{ 1
T

T ≥ Tc(0)
1

Tc(0)
T < Tc(0)

(253)

The graphical illustration of this function is depicted in Fig. 19. The 1/T behavior for high

temperature is known as Curie’s law. As we heat a magnetic material up, it becomes more

and more difficult to magnetize. The fact that here χ has an upper limit of 1/Tc(0) follows

from the random interactions between spins, which make the magnetization more difficult

too.

6.1.2 Relation to Joint Source–Channel Coding

We now relate these derivations to the behavior of joint source–channel coding systems. The

full details of this part are in: N. Merhav, “The random energy model in a magnetic field
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χ

1
Tc(0)

Tc(0)
T

Figure 19: χ vs. T .

and joint source–channel coding,” Physica A: Statistical Mechanics and Its Applications, vol.

387, issue 22, pp. 5662–5674, September 15, 2008.

Consider again our coded communication system with a few slight modifications (cf. Fig.

20). Rather than enR equiprobable messages for channel coding, we are now talking about

joint source–channel coding where the message probabilities are skewed by the source prob-

ability distribution, which may not be symmetric. In particular, we consider the following:

Suppose we have a vector s ∈ {−1,+1}N emitted from a binary memoryless source with

symbol probabilities q = Pr{Si = +1} = 1− Pr{Si = −1}. The channel is still a BSC with

crossover p. For every N–tuple emitted by the source, the channel conveys n channel binary

symbols, which are the components of a codeword x ∈ {0, 1}n, such that the ratio θ = n/N ,

the bandwidth expansion factor, remains fixed. The mapping from s to x is the encoder. As

before, we shall concern ourselves with random codes, namely, for every s ∈ {−1,+1}N , we
randomly select an independent codevector x(s) ∈ {0, 1}n by fair coin tossing, as before.

Thus, we randomly select 2N codevectors, each one of length n = Nθ. As in the case of pure

encoder decoder
ŝy

P (y|x)
x(s)s

Figure 20: Block diagram of joint source–channel communication system.
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channel coding, we consider the finite–temperature posterior:

Pβ(s|y) =
[P (s)P (y|x(s))]β

Z(β|y) (254)

with

Z(β|y) =
∑

s

[P (s)P (y|x(s))]β, (255)

corresponding to the finite–temperature decoder:

ŝi = argmax
s=±1

∑

s: si=s

[P (s)P (y|x(s))]β. (256)

Once again, we separate the contributions of Zc(β|y) = [P (s0)P (y|x(s0))]β , s0 being the

true source message, and

Ze(β|y) =
∑

s 6=s0

[P (s)P (y|x(s))]β . (257)

As we shall see quite shortly, Ze behaves like the REM in a magnetic field given by B =

1
2
ln q

1−q . Accordingly, we will henceforth denote Ze(β) also by Ze(β,B), to emphasize the

analogy to the REM in a magnetic field.

To see that Ze(β,B) behaves like the REM in a magnetic field, consider the follow-

ing: first, denote by N1(s) the number of +1’s in s, so that the magnetization, m(s)
∆
=

1
N
[
∑N

i=1 1{si = +1} −∑N
i=1 1{si = −1}], pertaining to spin configuration s, is given by

m(s) = 2N1(s)/N − 1. Equivalently, N1(s) = N(1 +m(s))/2, and then

P (s) = qN1(s)(1− q)N−N1(s)

= (1− q)N
(

q

1− q

)N(1+m(s))/2

= [q(1− q)]N/2
(

q

1− q

)Nm(s))/2

= [q(1− q)]N/2eNm(s)B

where B is defined as above. By the same token, for the binary symmetric channel we have:

P (y|x) = pdH (x,y)(1− p)n−dH (x,y) = (1− p)ne−JdH (x,y) (258)
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where J = ln 1−p
p

and dH(x,y) is the Hamming distance, as defined earlier. Thus,

Ze(β,B) = [q(1− q)]Nβ/2
∑

m





∑

x(s): m(s)=m

e−β ln[1/P (y|x(s))]



 eNβmB

= [q(1− q)]βN/2(1− p)nβ
∑

m





∑

x(s): m(s)=m

e−βJdH (x(s),y)



 eβNmB

∆
= [q(1− q)]Nβ/2(1− p)nβ

∑

m

Z0(β,m|y)eβNmB

The resemblance to the REM in a magnetic field is now self–evident. In analogy to the

above analysis of the REM, Z0(β,m) here behaves like in the REM without a magnetic field,

namely, it contains exponentially eNh((1+m)/2) = enh((1+m)/2)/θ terms, with the random energy

levels of the REM being replaced now by random Hamming distances {dH(x(s),y)} that

are induced by the random selection of the code {x(s)}. Using the same considerations as

with the REM in channel coding, we now get (exercise: fill in the details):

ψ(β,m)
∆
= lim

n→∞
lnZ0(β,m|y)

n

= max
δm≤δ≤1−δm

[

1

θ
h2

(

1 +m

2

)

+ h2(δ)− ln 2− βJδ
]

δm
∆
= δGV

(

1

θ
h2

(

1 +m

2

))

=

{

1
θ
h2
(

1+m
2

)

+ h2(pβ)− ln 2− βJpβ pβ ≥ δm
−βJδm pβ < δm

where again,

pβ =
pβ

pβ + (1− p)β . (259)

The condition pβ ≥ δm is equivalent to

β ≤ β0(m)
∆
=

1

J
ln

1− δm
δm

. (260)

Finally, back to the full partition function:

φ(β,B) = lim
n→∞

1

N
ln

[

∑

m

Z0(β,m|y)eNβBm
]

= max
m

[θψ(β,m) + βmB]. (261)

For small enough β, the dominant m is the one that maximizes [h2((1 + m)/2) + βmB],

which is again the paramagnetic magnetization

m∗ = mp(β,B) = tanh(βB). (262)
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Thus, in high decoding temperatures, the source vectors {s} that dominate the posterior

Pβ(s|y) behave like a paramagnet under a magentic field defined by the prior B = 1
2
ln q

1−q .

In the glassy regime, similarly as before, we get:

m∗ = mg(B)
∆
= tanh(Bβc(B)) (263)

where this time, βc(B), the glassy–paramagnetic boundary, is defined as the solution to the

equation

ln 2− h2(pβ) =
1

θ
h2

(

1 + tanh(βB)

2

)

. (264)

The full details are in the paper. Taking now into account also Zc, we get a phase diagram

as depicted in Fig. 21. Here,

B0
∆
=

1

2
ln

q∗

1− q∗ (265)

where q∗ is the solution to the equation

h2(q) = θ[ln 2− h2(p)], (266)

namely, it is the boundary between reliable and unreliable communication.

glassy phase

paramagnetic   phase

ferromagnetic phaseferromagnetic phase

T

B

1

T = Tpf (B) T = Tpf (B)

T = Tpg(B)

−B0 +B0

Figure 21: Phase diagram of joint source–channel communication system.
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6.2 The Generalized Random Energy Model (GREM) and Hier-
archical Coding

In the mid–eighties of the previous century, Derrida extended the REM to the generalized

REM (GREM), which has an hierarchical tree sturcture to accommodate possible correlations

between energy levels of various configurations (and hence is somewhat closer to reality). It

turns out to have direct relevance to performance analysis of codes with a parallel hierarchical

structure. Hierarchicial structured codes are frequently encountered in many contexts, e.g.,

tree codes, multi–stage codes for progressive coding and successive refinement, codes for the

degraded broadcast channel, codes with a binning structure (like in G–P and W–Z coding

and coding for the wiretap channel), and so on. This part is based on the following papers:

• B. Derrida, “A generalization of the random energy model which includes correlations

between energies,” J. de Physique – Lettres, vol. 46, L–401-107, May 1985.

• B. Derrida and E. Gardner, “Solution of the generalised random energy model,” J.

Phys. C: Solid State Phys., vol. 19, pp. 2253–2274, 1986.

• N. Merhav, “The generalized random energy model and its application to the statistical

physics of ensembles of hierarchical codes,” IEEE Trans. Inform. Theory, vol. 55, no.

3, pp. 1250–1268, March 2009.

We begin from the physics of the GREM. For simplicity, we limit ourselves to two stages,

but the discussion and the results extend to any fixed, finite number of stages. The GREM

is defined by a few parameters: (i) a number 0 < R1 < ln 2 and R2 = ln 2 − R1. (ii) a

number 0 < a1 < 1 and a2 = 1 − a1. Given these parameters, we now partition the set of

2n configurations into enR1 groups, each having enR2 configurations.25 The easiest way to

describe it is with a tree (see Fig. 22), each leaf of which represents one spin configuration.

Now, for each branch in this tree, we randomly draw an independent random variable, which

25 Later, we will see that in the analogy to hierarchical codes, R1 and R2 will have the meaning of coding
rates at two stages of a two–stage code.
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will be referred to as an energy component: First, for every branch outgoing from the root,

we randomly draw ǫi ∼ N (0, a1nJ
2/2), 1 ≤ i ≤ enR1 . Then, for each branch 1 ≤ j ≤ enR2 ,

emanating from node no. i, 1 ≤ i ≤ enR1 , we randomly draw ǫi,j ∼ N (0, a2nJ
2/2). Finally,

we define the energy associated with each configuration, or equivalently, each leaf indexed

by (i, j), as Ei,j = ǫi + ǫi,j , 1 ≤ i ≤ enR1 , 1 ≤ j ≤ enR2 .

ǫM1

ǫ2,M2

ǫ2ǫ1

ǫM1,1

R1 +R2 = ln 2

a1 + a2 = 1

ǫi ∼ N (0, nJ2a1/2)

ǫi,j ∼ N (0, nJ2a2/2)

Ei,j = ǫi + ǫi,j

ǫM1,M2

M2 = enR2 leaves M2 = enR2 leaves

M1 = enR1branches

ǫ1,1 ǫ1,M2 ǫ2,1

M2 = enR2 leaves

Figure 22: The GREM with K = 2 stages.

Obviously, the marginal pdf of each Ei,j is N (0, nJ2/2), just like in the ordinary REM.

However, unlike in the ordinary REM, here the configurational energies {Ei,j} are correlated:
Every two leaves with a common parent node i have an energy component ǫi in common and

hence their total energies are correlated.

An extension of the GREM to K stages is parametrized by
∑K

ℓ=1Rℓ = ln 2 and
∑K

ℓ=1 aℓ =

1, where one first divides the entirety of 2n configurations into enR1 groups, then each such

group is subdivided into enR2 subgroups, and so on. For each branch of generation no.

ℓ, an independent energy component is drawn according to N (0, aℓnJ
2/2) and the total

energy pertaining to each configuration, or a leaf, is the sum of energy components along

the path from the root to that leaf. An extreme case of the GREM is where K = n, which

is referred to as the directed polymer on a tree or a directed polymer in a random medium.

We will say a few words about it later, although it has a different asymptotic regime than

the GREM, because in the GREM, K is assumed fixed while n grows without bound in the

thermodynamic limit.
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Returning back to the case of K = 2 stages, the analysis of the GREM is conceptually

a simple extension of that of the REM: First, we ask ourselves what is the typical number

of branches emanating from the root whose first–generation energy component, ǫi, is about

ǫ? The answer is very similar to that of the REM: Since we have enR1 independent trials of

an experiment for which the probability of a single success is exponentially e−ǫ
2/(nJ2a1), then

for a typical realization:

Ω1(ǫ) ≈
{

0 |ǫ| > nJ
√
a1R1

exp
{

n
[

R1 − 1
a1

(

ǫ
nJ

)2
]}

|ǫ| < nJ
√
a1R1

(267)

Next, we ask ourselves what is the typical number Ω2(E) of configurations with total en-

ergy about E? Obviously, each such configuration should have a first–generation energy

component ǫ and second–generation energy component E − ǫ, for some ǫ. Thus,

Ω2(ǫ) ≈
∫ +nJ

√
a1R1

−nJ√a1R1

dǫΩ1(ǫ) · exp
{

n

[

R2 −
1

a2

(

E − ǫ
nJ

)2
]}

. (268)

It is important to understand here the following point: Here, we no longer zero–out the

factor

exp

{

n

[

R2 −
1

a2

(

E − ǫ
nJ

)2
]}

(269)

when the expression in the square brackets at the exponent becomes negative, as we did in

the first stage and in the REM. The reason is simple: Given ǫ, we are conducting Ω1(ǫ) ·enR1

indepenent trials of an experiment whose success rate is

exp

{

− n
a2

(

E − ǫ
nJ

)2
}

. (270)

Thus, whatever counts is whether the entire integrand has a positive exponent or not.

Consider next the entropy. The entropy behaves as follows:

Σ(E) = lim
n→∞

ln Ω2(E)

n
=

{

Σ0(E) Σ0(E) ≥ 0
−∞ Σ0(E) < 0

(271)

where Σ0(E) is the exponential rate of the above integral, which after applying the Laplace

method, is shown to be:

Σ0(E) = max
|ǫ|≤+nJ

√
a1R1

[

R1 −
1

a1

( ǫ

nJ

)2

+R2 −
1

a2

(

E − ǫ
nJ

)2
]

. (272)
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How does the function Σ(E) behave like?

It turns out that to answer this question, we will have to distinguish between two cases:

(i) R1/a1 < R2/a2 and (ii) R1/a1 ≥ R2/a2.
26 First, observe that Σ0(E) is an even function,

i.e., it depends on E only via |E|, and it is monotonoically non–increasing in |E|. Solving

the optimization problem pertaining to Σ0, we readily find:

Σ0(E) =

{

ln 2−
(

E
nJ

)2 |E| ≤ E1

R2 − 1
a2

(

E
nJ
−√a1R1

)2 |E| > E1

where E1
∆
= nJ

√

R1/a1. This is a phase transition due to the fact that the maximizing ǫ

becomes an edgepoint of its allowed interval. Imagine now that we gradually increase |E|
from zero upward. Now the question is what is encountered first: The energy level Ê, where

Σ(E) jumps to −∞, or E1 where this phase transition happens? In other words, is Ê < E1

or Ê > E1? In the former case, the phase transition at E1 will not be apparent because

Σ(E) jumps to −∞ before, and that’s it. In this case, according to the first line of Σ0(E),

ln 2− (E/nJ)2 vanishes at Ê = nJ
√
ln 2 and we get:

Σ(E) =

{

ln 2−
(

E
nJ

)2 |E| ≤ Ê

−∞ |E| > Ê
(273)

exactly like in the ordinary REM. It follows then that in this case, φ(β) which is the Legendre

transform of Σ(E) will also be like in the ordinary REM, that is:

φ(β) =

{

ln 2 + β2J2

4
β ≤ β0

∆
= 2

J

√
ln 2

βJ
√
ln 2 β > β0

(274)

As said, the condition for this is:

nJ
√
ln 2 ≡ Ê ≤ E1 ≡ nJ

√

R1

a1
(275)

or, equivalently,
R1

a1
≥ ln 2. (276)

26Accordingly, in coding, this will mean a distinction between two cases of the relative coding rates at the
two stages.

130



On the other hand, in the opposite case, Ê > E1, the phase transition at E1 is apparent,

and so, there are now two phase transtions:

Σ(E) =











ln 2−
(

E
nJ

)2 |E| ≤ E1

R2 − 1
a2

(

E
nJ
−√a1R1

)2
E1 < |E| ≤ Ê

−∞ |E| > Ê

(277)

and accordingly (exercise: please show this):

φ(β) =















ln 2 + β2J2

4
β ≤ β1

∆
= 2

J

√

R1

a1

βJ
√
a1R1 +R2 +

a2β2J2

4
β1 ≤ β < β2

∆
= 2

J

√

R2

a2

βJ(
√
a1R1 +

√
a2R2) β ≥ β2

(278)

The first line is a purely paramagnetic phase. In the second line, the first–generation branches

are glassy (there is a subexponential number of dominant ones) but the second–generation

is still paramagnetic. In the third line, both generations are glassy, i.e., a subexponen-

tial number of dominant first–level branches, each followed by a subexponential number

of second–level ones, thus a total of a subexponential number of dominant configurations

overall.

Now, there is a small technical question: what is it that guarantees that β1 < β2 whenever

R1/a1 < ln 2? We now argue that these two inequalities are, in fact, equivalent. In a paper

by Cover and Ordentlich (IT Transactions, March 1996), the following inequality is proved

for two positive vectors (a1, . . . , an) and (b1, . . . , bn):

min
i

ai
bi
≤
∑n

i=1 ai
∑n

i=1 bi
≤ max

i

ai
bi
. (279)

Thus,

min
i∈{1,2}

Ri

ai
≤ R1 +R2

a1 + a2
≤ max

i∈{1,2}

Ri

ai
, (280)

but in the middle expression the numerator is R1 + R2 = ln 2 and the denominator is

a1 + a2 = 1, thus it is exactly ln 2. In other words, ln 2 is always in between R1/a1 and

R2/a2. So R1/a1 < ln 2 iff R1/a1 < R2/a2, which is the case where β1 < β2. To summarize

our findings thus far, we have shown that:
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Case A: R1/a1 < R2/a2 – two phase transitions:

φ(β) =







ln 2 + β2J2

4
β ≤ β1

βJ
√
a1R1 +R2 +

a2β2J2

4
β1 ≤ β < β2

βJ(
√
a1R1 +

√
a2R2) β ≥ β2

(281)

Case B: R1/a1 ≥ R2/a2 – one phase transition, like in the REM:

φ(β) =

{

ln 2 + β2J2

4
β ≤ β0

βJ
√
ln 2 β > β0

(282)

We now move on to our coding problem, this time it is about source coding with a fidelity

criterion. For simplicity, we will assume a binary symmetric source (BSS) and the Hamming

distortion. Consider the following hierarchical structure of a code: Given a block length n,

we break it into two segments of lengths n1 and n2 = n − n1. For the first segment, we

randomly select (by fair coin tossing) a codebook Ĉ = {x̂i, 1 ≤ i ≤ en1R1}. For the second

segment, we do the following: For each 1 ≤ i ≤ en1R1 , we randomly select (again, by fair

coin tossing) a codebook C̃i = {x̃i,j , 1 ≤ j ≤ en2R2}. Now, given a source vector x ∈ {0, 1}n,
segmentized as (x′,x′′), the encoder seeks a pair (i, j), 1 ≤ i ≤ en1R1, 1 ≤ j ≤ en2R2 ,

such that d(x′, x̂i) + d(x′′, x̃i,j) is minimum, and then transmits i using n1R1 nats and j

– using n2R2 nats, thus a total of (n1R1 + n2R2) nats, which means an average rate of

R = λR1+(1−λ)R2 nats per symbol, where λ = n1/n. Now, there are a few questions that

naturally arise:

• What is the motivation for codes of this structure? The decoder has a reduced delay. It

can decode the first n1 symbols after having received the first n1R1 nats, and does not

have to wait until the entire transmission of length (n1R1 + n2R2) has been received.

Extending this idea to K even segments of length n/K, the decoding delay is reduced

from n to n/K. In the limit of K = n, in which case it is a tree code, the decoder is

actually delayless.

• What is the relation to the GREM? The hierarchical structure of the code is that of

a tree, exactly like the GREM. The role of the energy components at each branch is
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now played by the segmental distortions d(x′, x̂i) and d(x
′′, x̃i,j). The parameters R1

and R2 here are similar to those of the GREM.

• Given an overall rate R, suppose we have the freedom to choose λ, R1 and R2, such

that R = λR1 + (1− λ)R2, are some choice better than others in some sense? This is

exactly what we are going to check out..

As for the performance criterion, here, we choose to examine performance in terms of the

characteristic function of the overall distortion, E[exp{−s · distortion}]. This is, of course,

a much more informative figure of merit than the average distortion, because in principle,

it gives information on the entire probability distribution of the distortion. In particular,

it generates all the moments of the distortion by taking derivatives at s = 0, and it is

useful in deriving Chernoff bounds on probabilities of large deviations events concerning the

distortion. More formally, we make the following definitions: Given a code C (any block

code, not necessarily of the class we defined), and a source vector x, we define

∆(x) = min
x̂∈C

d(x, x̂), (283)

and we will be interested in the exponential rate of

Ψ(s)
∆
= E{exp[−s∆(X)]}. (284)

This quantity can be easily related to the “partition function”:

Z(β|x) ∆
=
∑

x̂∈C

e−βd(x,x̂). (285)

In particular,

E{exp[−s∆(X)]} = lim
θ→∞

E
{

[Z(s · θ|X)]1/θ
}

. (286)

Thus, to analyze the characteristic function of the distortion, we have to assess (noninteger)

moments of the partition function.
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Let’s first see what happens with ordinary random block codes, without any structure.

This calculation is very similar the one we did before in the context of channel coding:

E
{

[Z(s · θ|X)]1/θ
}

= E















∑

x̂∈C

e−sθd(x,x̂)





1/θ










= E







[

n
∑

d=0

Ω(d)e−sθd
]1/θ







·
=

n
∑

d=0

E
{

[Ω(d)]1/θ
}

· e−sd

where, as we have already shown in the past:

E
{

[Ω(d)]1/θ
}

·
=

{

en[R+h2(δ)−ln 2] δ ≤ δGV (R) or δ ≥ 1− δGV (R)
en[R+h2(δ)−ln 2]/θ δGV (R) ≤ δ ≤ 1− δGV (R) (287)

Note that δGV (R) is exactly the distortion–rate function of the BSS w.r.t. the Hamming

distortion. By plugging the expression of E{[Ω(d)]1/θ} back into that of E{[Z(s · θ|X)]1/θ}
and carrying out the maximization pertaining to the dominant contribution, we eventually

(exercise: please show that) obtain:

Ψ(s)
·
= e−nu(s,R) (288)

where

u(s, R) = ln 2− R− max
δ≤δGV (R)

[h2(δ)− sδ]

=

{

sδGV (R) s ≤ sR
v(s, R) s > sR

(289)

with

sR
∆
= ln

[

1− δGV (R)
δGV (R)

]

(290)

and

v(s, R)
∆
= ln 2−R + s− ln(1 + es). (291)

The function u(s, R) is depicted qualitatively in Fig. 23.
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sR
s

slope δ(R)

ln 2− R

u(s, R)

Figure 23: Qualitative graph of the function u(s,R) as a function of s for fixed R.

Let’s now move on to the hierarchical codes. The analogy with the GREM is fairly clear.

Given x, there are about Ω1(δ1)
·
= en1[R1+h2(δ1)−ln 2] first–segment codewords {x̂i} in Ĉ at

distance n1δ1 from the first segment x′ of x, provided that R1+h2(δ1)−ln 2 > 0 and Ω1(δ1) =

0 otherwise. For each such first–segment codeword, there are about en2[R2+h2(δ2)−ln 2] second–

segment codewords {x̃i,j} at distance n2δ2 from the second segment x′′ of x. Therefore, for

δ = λδ1 + (1− λ)δ2,

Ω2(δ) =

1−δGV (R1)
∑

δ1=δGV (R1)

en1[R1+h2(δ1)−ln 2] · en2[R2+h2((δ−λδ1)/(1−λ))−ln 2]

·
= exp

{

n · max
δ1∈[δGV (R1),1−δGV (R1)]

[

R + λh2(δ1) + (1− λ)h2
(

δ − λδ1
1− λ

)]}

In analogy to the analysis of the GREM, here too, there is a distinction between two cases:

R1 ≥ R ≥ R2 and R1 < R < R2. In the first case, the behavior is just like in the REM:

Σ(δ) =

{

R + h2(δ)− ln 2 δ ∈ [δGV (R), 1− δGV (R)]
−∞ elsewhere

(292)

and then, of course, φ(β) = −u(β,R) behaves exactly like that of a general random code, in

spite of the hierarchical structure. In the other case, we have two phase transitions:

φ(β,R) =







−v(β,R) β < β(R1)
−λβδGV (R1)− (1− λ)v(β,R2) β(R1) < β < β(R2)
−β[λδGV (R1) + (1− λ)δGV (R2)] β > β(R2)

(293)

The last line is the purely glassy phase and this is the relevant phase because of the limit

θ → 0 that we take in order to calculate Ψ(s). Note that at this phase the slope is λδGV (R1)+
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(1−λ)δGV (R2) which means that code behaves as if the two segments were coded separately,

which is worse that δGV (R) due to convexity arguments. Let’s see this more concretely

on the characteristic function: This time, it will prove convenient to define Ω(d1, d2) as an

enumerator of codewords whose distance is d1 at the first segment and d2 – on the second

one. Now,

E
{

Z1/θ(s · θ)
}

= E







[

n
∑

d1=0

n
∑

d2=0

Ω(d1, d2) · e−sθ(d1+d2)
]1/θ







·
=

n
∑

d1=0

n
∑

d2=0

E
{

Ω1/θ(d1, d2)
}

·e−s(d1+d2).

(294)

Here, we should distinguish between four types of terms depending on whether or not δ1 ∈
[δGV (R1), 1− δGV (R1)] and whether or not δ2 ∈ [δGV (R2), 1− δGV (R2)]. In each one of these

combinations, the behavior is different (the details are in the paper). The final results are

as follows:

• For R1 < R2,

lim
n→∞

[

−1

n
lnE exp{−s∆(X)}

]

= λu(s, R1) + (1− λ)u(s, R2) (295)

which means the behavior of two independent, decoupled codes for the two segments,

which is bad, of course.

• For R1 ≥ R2,

lim
n→∞

[

−1

n
lnE exp{−s∆(X)}

]

= u(s, R) ∀s ≤ s0 (296)

where s0 is some positive constant. This means that the code behaves like an unstruc-

tured code (with delay) for all s up to a certain s0 and the reduced decoding delay

is obtained for free. Note that the domain of small s is relevant for moments of the

distortion. For R1 = R2, s0 is unlimited.

Thus, the conclusion is that if we must work at different rates, it is better to use the higher

rate first.
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Finally, we discuss a related model that we mentioned earlier, which can be thought of

as an extreme case of the GREM with K = n. This is the directed polymer in a random

medium (DPRM): Consider a Cayley tree, namely, a full balanced tree with branching ratio

d and depth n (cf. Fig. 24, where d = 2 and n = 3). Let us index the branches by a pair

of integers (i, j), where 1 ≤ i ≤ n describes the generation (with i = 1 corresponding to

the d branches that emanate from the root), and 0 ≤ j ≤ di − 1 enumerates the branches

of the i–th generation, say, from left to right (again, see Fig. 24). For each branch (i, j),

1 ≤ j ≤ di, 1 ≤ i ≤ n, we randomly draw an independent random variable εi,j according

to a fixed probability function q(ε) (i.e., a probability mass function in the discrete case, or

probability density function in the continuous case). As explained earlier, the asymptotic

regime here is different from that of the GREM: In the GREM we had a fixed number of

stages K that didn’t grow with n and exponentially many branches emanating from each

internal node. Here, we have K = n and a fixed number d of branches outgoing from each

note.

30 1 2 4 65 7

0 1

0 1 2 3

Figure 24: A Cayley tree with branching factor d = 2 and depth n = 3.

A walk w, from the root of the tree to one of its leaves, is described by a finite sequence

{(i, ji)}ni=1, where 0 ≤ j1 ≤ d − 1 and dji ≤ ji+1 ≤ dji + d − 1, i = 1, 2, . . . , (n − 1).27 For

27In fact, for a given n, the number jn alone dictates the entire walk.
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a given realization of the RV’s {εi,j : i = 1, 2, . . . , n, j = 0, 1, . . . , di − 1}, we define the

Hamiltonian associated with w as E(w) =
∑n

i=1 εi,ji, and then the partition function as:

Zn(β) =
∑

w

exp{−βE(w)}. (297)

It turns out that this model is exactly solvable (in many ways) and one can show (see e.g.,

E. Buffet, A. Patrick, and J. V. Pulé, “Directed polymers on trees: a martingale approach,”

J. Phys. A: Math. Gen., vol. 26, pp. 1823–1834, 1993) that it admits a glassy phase transition:

φ(β) = lim
n→∞

lnZn(β)

n
=

{

φ0(β) β < βc
φ0(βc) β ≥ βc

almost surely (298)

where

φ0(β)
∆
=

ln[d ·Ee−βρ(ǫ)]
β

(299)

and βc is the value of β that minimizes φ0(β).

In analogy to the hierachical codes inspired by the GREM, consider now an ensemble of

tree codes for encoding source n–tuples, x = (x1, . . . , xn), which is defined as follows: Given

a coding rate R (in nats/source–symbol), which is assumed to be the natural logarithm of

some positive integer d, and given a probability distribution on the reproduction alphabet,

Q = {q(y), y ∈ Y}, let us draw d = eR independent copies of Y under Q, and denote them

by Y1, Y2, . . . , Yd. We shall refer to the randomly chosen set, C1 = {Y1, Y2, . . . , Yd}, as our

‘codebook’ for the first source symbol, X1. Next, for each 1 ≤ j1 ≤ d, we randomly select

another such codebook under Q, C2,j1 = {Yj1,1, Yj1,2, . . . , Yj1,d}, for the second symbol, X2.

Then, for each 1 ≤ j1 ≤ d and 1 ≤ j2 ≤ d, we again draw under Q yet another codebook

C3,j1,j2 = {Yj1,j2,1, Yj1,j2,2, . . . , Yj1,j2,d}, for X3, and so on. In general, for each t ≤ n, we

randomly draw dt−1 codebooks under Q, which are indexed by (j1, j2, . . . , jt−1), 1 ≤ jk ≤ d,

1 ≤ k ≤ t− 1.

Once the above described random code selection process is complete, the resulting set of

codebooks {C1, Ct,j1,...,jt−1, 2 ≤ t ≤ n, 1 ≤ jk ≤ d, 1 ≤ k ≤ t − 1} is revealed to both the

encoder and decoder, and the encoding–decoding system works as follows:
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• Encoding: Given a source n–tuple Xn, find a vector of indices (j∗1 , j
∗
2 , . . . , j

∗
n) that

minimizes the overall distortion
∑n

t=1 ρ(Xt, Yj1,...,jt). Represent each component j∗t

(based on j∗t−1) by R = ln d nats (that is, log2 d bits), thus a total of nR nats.

• Decoding: At each time t (1 ≤ t ≤ n), after having decoded (j∗1 , . . . , j
∗
t ), output the

reproduction symbol Yj∗1 ,...,j∗t .

In order to analyze the rate–distortion performance of this ensemble of codes, we now

make the following assumption:

The random coding distribution Q is such that the distribtion of the RV ρ(x, Y ) is the same

for all x ∈ X .

It turns out that this assumption is fulfilled quite often – it is the case whenever the

random coding distribution together with distortion function exhibit a sufficiently high de-

gree of symmetry. For example, if Q is the uniform distribution over Y and the rows of the

distortion matrix {ρ(x, y)} are permutations of each other, which is in turn the case, for

example, when X = Y is a group and ρ(x, y) = γ(x − y) is a difference distortion function

w.r.t. the group difference operation. Somewhat more generally, this assumption still holds

when the different rows of the distortion matrix are formed by permutations of each other

subject to the following rule: ρ(x, y) can be swapped with ρ(x, y′) provided that q(y′) = q(y).

For a given x and a given realization of the set of codebooks, define the partition function

in analogy to that of the DPRM:

Zn(β) =
∑

w

exp{−β
n
∑

t=1

ρ(xt, Yj1,...,jt)}, (300)

where the summation extends over all dn possible walks, w = (j1, . . . , jn), along the Cayley

tree. Clearly, considering our symmetry assumption, this falls exactly under the umbrella

of the DPRM, with the distortions {ρ(xt, Yj1,...,jt)} playing the role of the branch energies

{εi.j}. Therefore, 1
nβ

lnZn(β) converges almost surely, as n grows without bound, to φ(β),

now defined as

φ(β) =

{

φ0(β) β ≤ βc
φ0(βc) β > βc

(301)
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where now

φ0(β)
∆
=

ln[d ·E{e−βρ(x,Y )}]
β

=
ln[eR ·E{e−βρ(x,Y )}]

β

=
R + ln[E{e−βρ(x,Y )}]

β
,

Thus, for every (x1, x2, . . .), the distortion is given by

lim sup
n→∞

1

n

n
∑

t=1

ρ(xt, Yj∗1 ,...,j∗t )
∆
= lim sup

n→∞

1

n
min
w

[

n
∑

t=1

ρ(xt, Yj1,...,jt)

]

= lim sup
n→∞

lim sup
ℓ→∞

[

− lnZn(βℓ)
nβℓ

]

≤ lim sup
ℓ→∞

lim sup
n→∞

[

− lnZn(βℓ)
nβℓ

]

a.s.
= − lim inf

ℓ→∞
φ(βℓ)

= −φ0(βc)

= max
β≥0

[

− ln[E{e
−βρ(x,Y )}] +R

β

]

= D(R),

where: (i) {βℓ}ℓ≥1 is an arbitrary sequence tending to infinity, (ii) the almost–sure equality

in the above mentioned paper, and (iii) the justification of the inequality at the third line is

left as an exercise. The last equation is easily obtained by inverting the function R(D) in

its parametric representation that we have seen earlier:

R(D) = −min
β≥0

min
Q

{

βD +
∑

x∈X
p(x) ln

[

∑

y∈Y
q(y)e−βρ(x,y)

]}

. (302)

Thus, the ensemble of tree codes achieves R(D) almost surely.
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6.3 Phase Transitions of the Rate–Distortion Function

The material in this part is based on the paper: K. Rose, “A mapping approach to rate-

distortion computation and analysis,” IEEE Trans. Inform. Theory , vol. 40, no. 6, pp.

1939–1952, November 1994.

We have seen in one of the earlier meetings that the rate–distortion function of a source

P = {p(x), x ∈ X} can be expressed as

R(D) = −min
β≥0

[

βD +
∑

x

p(x) ln

(

∑

y

q(y)e−βd(x,y)
)]

(303)

where Q = {q(y), y ∈ Y} is the output marginal of the test channel, which is also the one

that minimizes this expression. We are now going to take a closer look at this function in

the context of the quadratic distortion function d(x, y) = (x− y)2. As said, the optimum Q

is the one that minimizes the above expression, or equivalently, the free energy

f(Q) = − 1

β

∑

x

p(x) ln

(

∑

y

q(y)e−βd(x,y)
)

(304)

and in the continuous case, summations should be replaced by integrals:

f(Q) = − 1

β

∫ +∞

−∞
dxp(x) ln

(
∫ +∞

−∞
dyq(y)e−βd(x,y)

)

. (305)

Rose suggests to represent the RV Y as a function of U ∼ unif[0, 1], and then, instead of

optimizing Q, one should optimize the function y(u) in:

f(y(·)) = − 1

β

∫ +∞

−∞
dxp(x) ln

(
∫ 1

0

dµ(u)e−βd(x,y(u))
)

, (306)

where µ(·) is the Lebesgue measure (the uniform measure). A necessary condition for opti-

mality,28 which must hold for almost every u is:

∫ +∞

−∞
dxp(x) ·

[

e−βd(x,y(u))
∫ 1

0
dµ(u′)e−βd(x,y(u′))

]

· ∂d(x, y(u))
∂y(u)

= 0. (307)

28The details are in the paper, but intuitively, instead of a function y(u) of a continuous variable u, think
of a vector y whose components are indexed by u, which take on values in some grid of [0, 1]. In other words,

think of the argument of the logarithmic function as
∑1

u=0 e
−βd(x,yu).
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Now, let us define the support of y as the set of values that y may possibly take on. Thus,

this support is a subset of the set of all points {y0 = y(u0)} for which:
∫ +∞

−∞
dxp(x) ·

[

e−βd(x,y0)
∫ 1

0
dµ(u′)e−βd(x,y(u′))

]

· ∂d(x, y(u))
∂y(u)

∣

∣

∣

∣

y(u)=y0

= 0. (308)

This is because y0 must be a point that is obtained as y(u) for some u. Let us define now

the posterior:

q(u|x) = e−βd(x,y(u))
∫ 1

0
dµ(u′)e−βd(x,y(u′))

. (309)

Then,
∫ +∞

−∞
dxp(x)q(u|x) · ∂d(x, y(u))

∂y(u)
= 0. (310)

But p(x)q(u|x) is a joint distribution p(x, u), which can also be thought of as µ(u)p(x|u).
So, if we divide the last equation by µ(u), we get, for almost all u:

∫ +∞

−∞
dxp(x|u)∂d(x, y(u))

∂y(u)
= 0. (311)

Now, let’s see what happens in the case of the quadratic distortion, d(x, y) = (x − y)2. Let
us suppose that the support of Y includes some interval I0 as a subset. For a given u, y(u)

is nothing other than a number, and so the optimality condition must hold for every y ∈ I0.
In the case of the quadratic distortion, this optimality criterion means

∫ +∞

−∞
dxp(x)λ(x)(x − y)e−β(x−y)2 = 0, ∀y ∈ I0 (312)

with

λ(x)
∆
=

1
∫ 1

0
dµ(u)e−βd(x,y(u))

=
1

∫ +∞
−∞ dyq(y)e−βd(x,y)

, (313)

or, equivalently,
∫ +∞

−∞
dxp(x)λ(x)

∂

∂y

[

e−β(x−y)
2
]

= 0. (314)

Since this must hold for all y ∈ I0, then all derivatives of the l.h.s. must vanish within I0,
i.e.,

∫ +∞

−∞
dxp(x)λ(x)

∂n

∂yn

[

e−β(x−y)
2
]

= 0. (315)
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Now, considering the Hermitian polynomials

Hn(z)
∆
= eβz

2 dn

dzn
(e−βz

2

) (316)

this requirement means
∫ +∞

−∞
dxp(x)λ(x)Hn(x− y)e−β(x−y)

2

= 0. (317)

In words: λ(x)p(x) is orthogonal to all Hermitian polynomials of order ≥ 1 w.r.t. the weight

function e−βz
2
. Now, as is argued in the paper, since these polynomials are complete in

L2(e−βz
2
), we get

p(x)λ(x) = const. (318)

because H0(z) ≡ 1 is the only basis function orthogonal to all Hn(z), n ≥ 1. This yields,

after normalization:

p(x) =

√

β

π

∫ 1

0

dµ(u)e−β(x−y(u))
2

=

√

β

π

∫ +∞

−∞
dyq(y)e−β(x−y)

2

= Q ⋆N
(

0,
1

2β

)

. (319)

The interpretation of the last equation is simple: the marginal of X is given by the convo-

lution between the marginal of Y and the zero–mean Gaussian distribution with variance

D = 1/(2β) (= kT/2 of the equipartition theorem, as we already saw). This means that X

must be representable as

X = Y + Z (320)

where Z ∼ N
(

0, 1
2β

)

and independent of Y . From the Information Theory course we know

that this is exactly what happens when R(D) coincides with its Gaussian lower bound, a.k.a.

the Shannon lower bound. Here is a reminder of this:

R(D) = h(X)− max
E(X−Y )2≤D

h(X|Y )

= h(X)− max
E(X−Y )2≤D

h(X − Y |Y )

≥ h(X)− max
E(X−Y )2≤D

h(X − Y ) equality if (X − Y ) ⊥ Y

= h(X)− max
EZ2≤D

h(Z) Z
∆
= X − Y

≥ h(X)− 1

2
ln(2πeD) equality if Z ∼ N (0, D)

∆
= RSLB(D)
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The conclusion then is that if the support of Y includes an interval (no matter how small)

then R(D) coincides with RSLB(D). This implies that in all those cases that RSLB(D) is

not attained, the support of the optimum test channel output distribution must be singular,

i.e., it cannot contain an interval. It can be, for example, a set of isolated points.

But we also know that whenever R(D) meets the SLB for some D = D0, then it must

also coincide with it for all D < D0. This follows from the following consideration: If X can

be represented as Y + Z, where Z ∼ N (0, D0) is independent of Y , then for every D < D0,

we can always decompose Z as Z1 + Z2, where Z1 and Z2 are both zero–mean independent

Gaussian RV’s with variances D0 −D and D, respectively. Thus,

X = Y + Z = (Y + Z1) + Z2
∆
= Y ′ + Z2 (321)

and we have represented X as a noisy version of Y ′ with noise variance D. Whenever X

can be thought of as a mixture of Gaussians, R(D) agrees with its SLB for all D upto the

variance of the narrowest Gaussian in this mixture. Thus, in these cases:

R(D)

{

= RSLB(D) D ≤ D0

> RSLB(D) D > D0
(322)

It follows then that in all these cases, the optimum output marginal contains intervals for

all D ≤ D0 and then becomes abruptly singular as D exceeds D0. From the viewpoint

of statistical mechanics, this looks like a phase transition, then. Consider first an infinite

temperature, i.e., β = 0, which means unlimited distortion. In this case, the optimum output

marginal puts all its mass on one point: y = E(X), so it is definitely singular. This remains

true even if we increase β to the inverse temperature that corresponds to Dmax, the smallest

distortion for which R(D) = 0. If we further increase β, the support of Y begins to change.

In the next step it can include 2 points, then 3 points, etc. Then, if there is D0 below which

the SLB is met, then the support of Y abruptly becomes one that contains one interval at

least. This point is also demonstrated numerically in the paper.

An interesting topic for research evolves around possible extensions of these results to

more general distortion measures, other than the quadratic distortion measure.
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6.4 Capacity of the Sherrington–Kirkpartrick Spin Glass

This part is based on the paper: O. Shental and I. Kanter, “Shannon capacity of infinite–

range spin–glasses,” Technical Report, Bar Ilan University, 2005. In this work, the authors

consider the S–K model with independent Gaussian coupling coefficients, and they count the

number N(n) of meta–stable states in the absence of magnetic field. A meta-stable state

means that each spin is in its preferred polarization according to the net field that it ‘feels’.

i.e.,

si = sgn

(

∑

j

Jijsj

)

, i = 1, . . . , n. (323)

They refer to the limit limn→∞[lnN(n)]/n as the capacity C of the S–K model. However, they

take an annealed rather than a quenched average, thus the resulting capacity is somewhat

optimistic. The reason that this work is brought here is that many of the mathematical tools

we have been exposed to are used here. The main result in this work is that

C = ln[2(1−Q(t))]− t2

2
(324)

where

Q(t)
∆
=

1

2π

∫ ∞

t

du · e−u2/2 (325)

and t is the solution to the equation

t =
e−t

2/2

√
2π[1−Q(t)]

. (326)

The authors even address a slighlty more general question: Quite obviously, the metasta-

bility condition is that for every i there exists λi > 0 such that

λisi =
∑

j

Jijsj. (327)

But they actually answer the following question: Given a constant K, what is the expected

number of states for which there is λi > K for each i such that λisi =
∑

j Jijsj? For

K → −∞, one expects C → ln 2, and for K →∞, one expects C → 0. The case of interest

is exactly in the middle, where K = 0.
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Moving on to the analysis, we first observe that for each such state,

∫ ∞

K

· · ·
∫ ∞

K

n
∏

i=1

[

dλiδ

(

∑

ℓ

Jiℓsℓ − λisi
)]

= 1 (328)

thus

N(n) =

∫ ∞

K

· · ·
∫ ∞

K

n
∏

i=1

dλi
∑

s

〈

n
∏

i=1

δ

(

∑

ℓ

Jiℓsℓ − λisi
)〉

J

. (329)

Now, according to the S–K model, {Jiℓ} are n(n−1)/2 i.i.d. zero–mean Gaussian RV’s with

variance J2/n. Thus,

N̄(n) =
( n

2πJ2

)n(n−1)/4
∫

IRn(n−1)/2

dJ exp

{

− n

2J2

∑

i>ℓ

J2
iℓ

}

·
∑

s

∫ ∞

K

···
∫ ∞

K

dλ·
n
∏

i=1

δ

(

∑

ℓ

Jiℓsℓ − λisi
)

.

(330)

The next step is to represent each Dirac as an inverse Fourier transform of an exponent

δ(x) =
1

2π

∫ +∞

−∞
dωejωx j =

√
−1 (331)

which then becomes:

N̄(n) =
( n

2πJ2

)n(n−1)/4
∫

IRn(n−1)/2

dJ exp

{

− n

2J2

∑

i>ℓ

J2
iℓ

}

·
∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ×

∫

IRn

dω

(2π)n

n
∏

i=1

exp

{

jωi

(

∑

ℓ

Jiℓsℓ − λisi
)}

=
( n

2πJ2

)n(n−1)/4
∫

IRn(n−1)/2

dJ
∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ×

∫

IRn

dω

(2π)n
exp

{

− n

2J2

∑

i>ℓ

J2
iℓ + j

∑

i>ℓ

Jiℓ(ωisℓ + ωℓsi)− j
∑

i

ωisiλi

}

(332)

We now use the Hubbard–Stratonovich transform:

∫

IR

dxeax
2+bx ≡

√

π

a
eb

2/(4a) (333)

with a = n/(2J2) and b = ωisℓ + ωℓsi:

N̄(n) =
∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ

∫

IRn

dω

(2π)n

n
∏

i=1

e−jωisiλi
∏

i>ℓ

exp{−(ωisℓ + ωℓsi)
2J2/(2n)}. (334)
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Next observe that the summand doesn’t actually depend on s because each si is multiplied

by an integration variable that runs over IR and thus the sign of si may be absorbed by this

integration variable anyhow (exercise: convince yourself). Thus, all 2n contributions are the

same as that of s = (+1, . . . ,+1):

N̄(n) = 2n
∫ ∞

K

· · ·
∫ ∞

K

dλ

∫

IRn

dω

(2π)n

n
∏

i=1

e−jωiλi
∏

i>ℓ

exp{−(ωi + ωℓ)
2J2/(2n)}. (335)

Now, consider the following identity (exercise: prove it):

J2

2n

∑

i>ℓ

(ωi + ωℓ)
2 = J2 (n− 1)

2n

∑

i

ω2
i +

J2

n

∑

i>ℓ

ωiωℓ, (336)

and so for large n,

J2

2n

∑

i>ℓ

(ωi + ωℓ)
2 ≈ J2

2

∑

i

ω2
i +

J2

n

∑

i>ℓ

ωiωℓ ≈
J2

2

∑

i

ω2
i +

J2

2n

(

n
∑

i=1

ωi

)2

. (337)

thus

N̄(n) ≈ 2n
∫ ∞

K

· · ·
∫ ∞

K

dλ

∫

IRn

dω

(2π)n

n
∏

i=1

exp







−jωiλi −
J2

2

n
∑

i=1

ω2
i −

J2

2n

(

n
∑

i=1

ωi

)2






.

(338)

We now use again the Hubbard–Stratonovich transform

ea
2 ≡

∫

IR

dt

2π
ej

√
2at−t2/2 (339)

and then, after changing variables λi → Jλi and Jωi → ωi (exercise: show that), we get:

N̄(n) ≈ 1

πn
· 1√

2π

∫ ∞

K/J

···
∫ ∞

K/J

dλ

∫

IR

dte−t
2/2

n
∏

i=1

[

∫

IR

dωi exp

{

jωi

(

−λi +
t√
n

)

− 1

2

n
∑

i=1

ω2
i

}]

(340)
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which after changing t/
√
n→ t, becomes

N̄(n) ≈ 1

πn
· n√

2π

∫

IR

dte−nt
2/2

[
∫ ∞

K/λ

dλ

∫

IR

dωejω(t−λ)−ω
2/2

]n

=
1

πn
· n√

2π

∫

IR

dte−nt
2/2

[√
2π

∫ ∞

K/λ

dλe−(t−λ)2/2
]n

(again, the H–S identity)

=
1

πn
· n√

2π

∫

IR

dte−n(t+K/J)
2/2

[√
2π

∫ t

−∞
dλe−λ

2/2

]n

t→ t+K/J, λ→ −λ + t+K/J

=
1

πn
· n√

2π

∫

IR

dte−n(t+K/J)
2/2 · [2π(1−Q(t))]n

=
n√
2π

∫

IR

dt exp
{

−n
2
(t+K/J)2 + ln[2(1−Q(t))]

}

·
= exp

{

n ·max
t

[

ln(2(1−Q(t))− (t+K/J)2

2

]}

Laplace integration

The maximizing t zeroes out the derivative, i.e., it solves the equation

e−t
2/2

√
2π[1−Q(t)]

= t+
K

J
(341)

which for K = 0, gives exactly the asserted result about the capacity.
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6.5 Generalized Temperature, de Bruijn’s Identity, and Fisher In-
formation

Earlier, we defined temperature by

1

T
=

(

∂S

∂E

)

V

. (342)

This definition corresponds to equilibrium. We now describe a generalized definition that is

valid also for non–equilibrium situations, and see how it relates to concepts in information

theory and estimation theory, like the Fisher information. The derivations here follow the

paper: K. R. Narayanan and A. R. Srinivasa, “On the thermodynamic temperature of a

general distribution,” arXiv:0711.1460v2 [cond-mat.stat-mech], Nov. 10, 2007.

As we know, when the Hamiltonian is quadratic E(x) = α
2
x2, the Boltzmann distribution

is Gaussian:

P (x) =
1

Z
exp

{

−β · α
2

n
∑

i=1

x2i

}

(343)

and by the equipartition theorem:

Ē(P )
∆
=

〈

α

2

n
∑

i=1

X2
i

〉

P

= n
kT

2
. (344)

We also computed the entropy, which is nothing but the entropy of a Gaussian vector S(P ) =

nk
2
ln(2πe

αβ
). Consider now another probability density function Q(x), which means a non–

equilibrium probability law if it differs from P , and let’s look also at the energy and the

entropy pertaining to Q:

Ē(Q) =

〈

α

2

n
∑

i=1

X2
i

〉

Q

=

∫

dxQ(x) ·
[

α

2

n
∑

i=1

x2i

]

(345)

S(Q) = k · 〈− lnQ(X)〉Q = −k
∫

dxQ(x) lnQ(x). (346)

In order to define a notion of generalized temperature, we have to define some sort of deriva-

tive of S(Q) w.r.t. Ē(Q). This definition could make sense if it turns out that the ratio
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between the response of S to perturbations in Q and the response of Ē to the same perurba-

tions, is independent of the “direction” of this perturbation, as long as it is “small” in some

reasonable sense. It turns out the de Bruijn identity helps us here.

Consider now the perturbation of X by
√
δZ thus defining the perturbed version of X

as Xδ = X +
√
δZ, where δ > 0 is small and Z is an arbitrary i.i.d. zero–mean random

vector, not necessarily Gaussian, whose components all have unit variance. Let Qδ denote

the density of Xδ (which is, of course, the convolution between Q and the density of Z,

scaled by
√
δ). The proposed generalized definition of temperature is:

1

T
∆
= lim

δ→0

S(Qδ)− S(Q)
Ē(Qδ)− Ē(Q)

. (347)

The denominator is easy since

E‖X +
√
δZ‖2 −E‖X‖2 = 2

√
δEXTZ + nδ = nδ (348)

and so, Ē(Qδ) − Ē(Q) = nαδ/2. In view of the above, our new definition of temperature

becomes:
1

T
∆
=

2k

nα
· lim
δ→0

h(X +
√
δZ)− h(X)

δ
=

2k

nα
· ∂h(X +

√
δZ)

∂δ

∣

∣

∣

∣

δ=0

. (349)

First, it is important to understand that the numerator of the middle expression is positive

(and hence so is T ) since

S(Qδ) = kh(X +
√
δZ) ≥ kh(X +

√
δZ|Z) = kh(X) = S(Q). (350)

In order to move forward from this point, we will need a piece of background. A well–known

notion from estimation theory is the Fisher information, which is the basis for the Cramér–

Rao bound for unbiased parameter estimators: Suppose we have a family of pdf’s {Qθ(x)}
where θ is a continuous valued parameter. The Fisher info is defined as

J(θ) = Eθ

{

[

∂ lnQθ(X)

∂θ

]2
}

=

∫ +∞

−∞

dx

Qθ(x)

[

∂

∂θ
Qθ(x)

]2

. (351)

Consider now the special case where θ is a translation parameter, i.e., Qθ(x) = Q(x − θ),
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then

J(θ) =

∫ +∞

−∞

dx

Q(x− θ)

[

∂

∂θ
Q(x− θ)

]2

=

∫ +∞

−∞

dx

Q(x− θ)

[

∂

∂x
Q(x− θ)

]2
∂Q(x− θ)

∂x
= −∂Q(x − θ)

∂θ

=

∫ +∞

−∞

dx

Q(x)

[

∂

∂x
Q(x)

]2

∆
= J(Q) with a slight abuse of notation.

independently of θ. For the vector case, we define the Fisher info matrix, whose elements

are

Jij(Q) =

∫

IRn

dx

Q(x)

[

∂Q(x)

∂xi
· ∂Q(x)
∂xj

]

i, j = 1, . . . , n. (352)

Shortly, we will relate T with the trace of this matrix.

To this end, we will need the following result, which is a variant of the well–known de

Bruijn identity, first for the scalar case: Let Q be the pdf of a scalar RV X of finite variance.

Let Z be a unit variance RV which is symmetric around zero, and let Xδ = X+
√
δZ. Then,

∂h(X +
√
δZ)

∂δ

∣

∣

∣

∣

δ=0

=
J(Q)

2
. (353)

The original de Bruijn identity allows only a Gaussian perturbation Z, but it holds for any

δ. Here, on the other hand, we allow an arbitrary density M(z) of Z, but we insist on δ → 0.

The proof of this result is essentially similar to the proof of the original result, which can be

found, for example, in the book by Cover and Thomas: Consider the characteristic functions:

ΦX(s) =

∫ +∞

−∞
dxesxQ(x) (354)

and

ΦZ(s) =

∫ +∞

−∞
dzeszM(z). (355)
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Due to the independence

ΦXδ
(s) = ΦX(s) · Φ√

δZ(s)

= ΦX(s) · ΦZ(
√
δs)

= ΦX(s) ·
∫ +∞

−∞
dze

√
δszM(z)

= ΦX(s) ·
∞
∑

i=0

(
√
δs)i

i!
µi(M) µi(M) being the i–th moment of Z

= ΦX(s) ·
(

1 +
δs2

2
+ · · ·

)

odd moments vanish due to symmetry

Applying the inverse Fourier transform, we get:

Qδ(x) = Q(x) +
δ

2
· ∂

2Q(x)

∂x2
+ o(δ), (356)

and so,
∂Qδ(x)

∂δ

∣

∣

∣

∣

δ=0

=
1

2
· ∂

2Q(x)

∂x2
∼ 1

2
· ∂

2Qδ(x)

∂x2
. (357)

Now, let’s look at the entropy:

h(Xδ) = −
∫ +∞

−∞
dxQδ(x) lnQδ(x). (358)

Taking the derivative w.r.t. δ, we get:

∂h(Xδ)

∂δ
= −

∫ +∞

−∞
dx

[

∂Qδ(x)

∂δ
+
∂Qδ(x)

∂δ
· lnQδ(x)

]

= − ∂

∂δ

∫ +∞

−∞
dxQδ(x)−

∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x)

= − ∂

∂δ
1−

∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x)

= −
∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x) (359)

and so,

∂h(Xδ)

∂δ

∣

∣

∣

∣

δ=0

= −
∫ +∞

−∞
dx · ∂Qδ(x)

∂δ

∣

∣

∣

∣

δ=0

· lnQ(x) = −
∫ +∞

−∞
dx · 1

2

d2Q(x)

d2x
· lnQ(x). (360)

Integrating by parts, we obtain:

∂h(Xδ)

∂δ

∣

∣

∣

∣

δ=0

=

[

−1
2
· dQ(x)

dx
· lnQ(x)

]+∞

−∞
+

1

2

∫ +∞

−∞

dx

Q(x)

[

∂Q(x)

∂x

]2

. (361)
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The first term can be shown to vanish (see paper and/or C&T) and the second term is

exactly J(Q)/2. This completes the proof of the (modified) de Bruijn identity.

Exercise: Extend this to the vector case, showing that for a vector Z with i.i.d. components,

all symmetric around the origin:

∂h(X +
√
δZ)

∂δ
=

1

2

n
∑

i=1

∫

IRn

dx

Q(x)

[

∂Q(x)

∂xi

]2

=
1

2

n
∑

i=1

Jii(Q) =
1

2
tr{J(Q)}. � (362)

Putting all this together, we end up with the following generalized definition of temper-

ature:
1

T
=

k

nα
· tr{J(Q)}. (363)

In the ‘stationary’ case, where Q is symmetric w.r.t. all components of x, {Jii} are all the

same quantity, call it J(Q), and then

1

T
=
k

α
· J(Q) (364)

or, equivalently,

T =
α

kJ(Q)
=
α

k
· CRB (365)

where CRB is the Cramér–Rao bound. High temperature means a lot of noise and this in

turn means that it is hard to estimate the mean of X . In the Boltzmann case, J(Q) =

1/Var{X} = αβ = α/(kT ) and we are back to the ordinary definition of temperature.

Another way to look at this result is as an extension of the equipartition theorem: As we

recall, in the ordinary case of a quadratic Hamiltonian and in equilibrium, we have:

〈E(X)〉 =
〈α

2
X2
〉

=
kT

2
(366)

or
α

2
σ2 ∆

=
α

2
〈X2〉 = kT

2
. (367)

In the passage to the more general case, σ2 should be replaced by 1/J(Q) = CRB. Thus,

the induced generalized equipartition function, doesn’t talk about average energy but about

the CRB:
α

2
· CRB =

kT

2
. (368)
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Now, the CRB is a lower bound to the estimation error which, in this case, is a transaltion

parameter. For example, let x denote the location of a mass m tied to a spring of strength

mω2
0 and equilibrium location θ. Then,

E(x) = mω2
0

2
(x− θ)2. (369)

In this case, α = mω2
0, and we get:

estimation error energy =
mω2

0

2
·E(θ̂(X)− θ)2 ≥ kT

2
(370)

where θ̂(X) is any unbiased estimator of θ based on a measurement of X . This is to say

that the generalized equipartition theorem talks about the estimation error energy in the

general case. Again, in the Gaussian case, the best estimator is θ̂(x) = x and we are back

to ordinary energy and the ordinary equipartition theorem.
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6.6 The Gibbs Inequality and the Log–Sum Inequality

In one of our earlier meetings, we have seen the Gibbs’ inequality, its physical significance,

and related it to the second law and the DPT. We now wish to take another look at the

Gibbs’ inequality, from a completely different perspective, namely, as a tool for generating

useful bounds on the free energy, in situations where the exact calculation is difficult (see

Kardar’s book, p. 145). As we show in this part, this inequality is nothing else than the log–

sum inequality, which is used in Information Theory, mostly for proving certain qualitative

properties of information measures, like the data processing theorem of the divergence, etc.

But this equivalence now suggests that the log–sum inequality can perhaps be used in a

similar way that it is used in physics, and then it could perhaps yields useful bounds on

certain information measures. We try to demonstrate this point here.

Suppose we have an Hamiltonian E(x) for which we wish to know the partition function

Z(β) =
∑

x

e−βE(x) (371)

but it is hard, if not impossible, to calculate in closed–form. Suppose further that for another,

somewhat different Hamiltonian, E0(x), it is rather easy to make calculations. The Gibbs’

inequality can be presented as a lower bound on lnZ(β) in terms of B–G statistics pertaining

to E0.

ln

[

∑

x

e−βE(x)

]

≥ ln

[

∑

x

e−βE0(x)

]

+ β 〈E0(X)− E(X)〉0 , (372)

The idea now is that we can obtain pretty good bounds thanks to the fact that we may

have some freedom in the choice of E0. For example, one can define a parametric family of

functions E0 and maximize the r.h.s. w.r.t. the parameter(s) of this family, thus obtaining

the tightest lower bound within the family. We next demonstrate this with an example:

Example – Non–harmonic oscillator. Consider the potential function

V (z) = Az4 (373)
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and so

E(x) = p2

2m
+ Az4, (374)

where we approximate the second term by

V0(z) =

{

0 |z| ≤ L
2

+∞ |z| > L
2

(375)

where L is a parameter to be optimized. Thus,

Z0 =
1

h

∫ +∞

−∞
dp

∫ +∞

−∞
dze−β[V0(z)+p

2/(2m)]

=
1

h

∫ +∞

−∞
dp · e−βp2/(2m)

∫ +L/2

−L/2
dz

=

√
2πmkT

h
· L

and so, by the Gibbs inequality:

lnZ ≥ lnZ0 + β〈E0(X)− E(X)〉0

≥ lnZ0 −
1

kT
· 1
L

∫ +L/2

−L/2
dz ·Az4

≥ ln

[

L
√
2πmkT

h

]

− AL4

80kT

∆
= f(L)

To maximize f(L) we equate its derivative to zero:

0 =
df

dL
≡ 1

L
− AL3

20kT
=⇒ L∗ =

(

20kT

A

)1/4

. (376)

Plugging this back into the Gibbs lower bound and comparing to the exact value of Z

(which is still computable in this example), we find that Zapprox ≈ 0.91Zexact, which is

not that bad considering the fact that the infinite potential well seems to be quite a poor

approximation to the fourth order power law potential V (z) = Az4.

As somewhat better approximation is the harmonic one:

V0(z) =
mω2

0

2
· z2 (377)
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where now ω0 is the free parameter to be optimized. This gives

Z0 =
1

h

∫ +∞

−∞
dp

∫ +∞

−∞
dze−β[mω

2
0z

2/2+p2/(2m)] =
kT

~ω0

~ =
h

2π
(378)

and this time, we get:

lnZ ≥ ln

(

kT

~ω0

)

+
1

kT

〈

mω2
0Z

2

2
− AZ2

〉

0

= ln

(

kT

~ω0

)

+
1

2
− 3AkT

m2ω4
0

∆
= f(ω0)

Maximizing f :

0 =
df

dω0

≡ − 1

ω0

+
12AkT

m2ω5
0

=⇒ ω∗
0 =

(12AkT )1/4√
m

. (379)

This time, we get Zapprox ≈ 0.95Zexact, i.e., this approximation is even better. �

So much for physics. Let’s look now at the Gibbs inequality slightly differently. What we

actually did, in a nutshell, and in different notation, is the following: Consider the function:

Z(λ) =
n
∑

i=1

a1−λi bλi =
n
∑

i=1

aie
−λ ln(ai/bi), (380)

where {ai} and {bi} are positive reals. Since lnZ(λ) is convex (as before), we have:

ln

(

n
∑

i=1

bi

)

≡ lnZ(1)

≥ lnZ(0) + 1 · d lnZ(λ)
dλ

∣

∣

∣

∣

λ=0

= ln

(

n
∑

i=1

ai

)

+

∑n
i=1 ai ln(bi/ai)
∑n

i=1 ai

which is nothing but the log–sum inequality, which in IT, is more customarily written as:

n
∑

i=1

ai ln
ai
bi
≥
(

n
∑

i=1

ai

)

· ln
∑n

i=1 ai
∑n

i=1 bi
. (381)

Returning to the form:

ln

(

n
∑

i=1

bi

)

≥ ln

(

n
∑

i=1

ai

)

+

∑n
i=1 ai ln(bi/ai)
∑n

i=1 ai
, (382)
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the idea now is, once again, to lower bound an expression ln(
∑n

i=1 bi) which may be hard

to calculate, by the expression on the l.h.s. which is hopefully easier, and allows a degree

of freedom concerning the choice of {ai}, at least in accordance to some structure, and

depending on a limited set of parameters.

Consider, for example, a hidden Markov model (HMM), which is the output of a DMC

W (y|x) =
∏n

t=1W (yt|xt) fed by a first–order Markov process X, governed by Q(x) =
∏n

t=1Q(xt|xt−1). The entropy rate of the hidden Markov process {Yt} does not admit a

closed–form expression, so we would like to have at least good bounds. Here, we propose an

upper bound that stems from the Gibbs inequality, or the log–sum inequality.

The probability distribution of y is

P (y) =
∑

x

n
∏

t=1

[W (yt|xt)Q(xt|xt−1)]. (383)

This summation does not lend itself to a nice closed–form expression, but if the t–th factor

depended only on t (and not also on t− 1) life would have been easy and simple as the sum

of products would have boiled down to a product of sums. So this motivates the following

use of the log–sum inequality: For a given y, let’s think of x as the index i of the log–sum

inequality and then

b(x) =
n
∏

t=1

[W (yt|xt)Q(xt|xt−1)]. (384)

Let us now define

a(x) =

n
∏

t=1

P0(xt, yt), (385)

where P0 is an arbitrary joint distribution over X × Y , to be optimized eventually. Thus,
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applying the log–sum inequality, we get:

lnP (y) = ln

(

∑

x

b(x)

)

≥ ln

(

∑

x

a(x)

)

+

∑

x a(x) ln[b(x)/a(x)]
∑

x a(x)

= ln

(

∑

x

n
∏

t=1

P0(xt, yt)

)

+

+

∑

x [
∏n

t=1 P0(xt, yt)] · ln[
∏n

t=1[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]
∑

x
∏n

t=1 P0(xt, yt)
. (386)

Now, let us denote P0(y) =
∑

x∈X P0(x, y), which is the marginal of y under P0. Then, the

first term is simply
∑n

t=1 lnP0(yt). As for the second term, we have:

∑

x [
∏n

t=1 P0(xt, yt)] · ln[
∏n

t=1[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]
∑

x
∏n

t=1 P0(xt, yt)

=
n
∑

t=1

∑

x

∏n
t=1 P0(xt, yt) ln[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]

∏n
t=1 P0(yt)

=
n
∑

t=1

∏

t′ 6=t−1,t P0(yt′)
∏n

t=1 P0(yt)
·
∑

xt−1,xt

P0(xt−1, yt−1)P0(xt, yt) · ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

=
n
∑

t=1

∑

xt−1,xt

P0(xt−1, yt−1)P0(xt, yt)

P0(yt−1)P0(yt)
· ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

=

n
∑

t=1

∑

xt−1,xt

P0(xt−1|yt−1)P0(xt|yt) · ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

∆
=

n
∑

t=1

E0

{

ln

[

Q(Xt|Xt−1)W (yt|Xt)

P0(Xt, yt)

] ∣

∣

∣

∣

Yt−1 = yt−1, Yt = yt

}

where E0 denotes expectation w.r.t. the product measure of P0. Adding now the first term

of the r.h.s. of the log–sum inequality,
∑n

t=1 lnP0(yt), we end up with the lower bound:

lnP (y) ≥
n
∑

t=1

E0

{

ln

[

Q(Xt|Xt−1)W (yt|Xt)

P0(Xt|yt)

] ∣

∣

∣

∣

Yt−1 = yt−1, Yt = yt

}

∆
=

n
∑

t=1

∆(yt−1, yt;P0).

(387)

At this stage, we can perform the optimization over P0 for each y individually, and then derive

the bound on the expectation of lnP (y) to get a bound on the entropy. Note, however, that
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∑

t∆(yt−1, yt;P0) depends on y only via its Markov statistics, i.e., the relative frequencies

of transitions y =⇒ y′ for all y, y′ ∈ Y . Thus, the optimum P0 depends on y also via

these statistics. Now, the expectation of
∑

t∆(yt−1, yt;P0) is going to be dominated by the

typical {y} for which these transition counts converge to the respective joint probabilities of

{Yt−1 = y, Yt = y}. So, it is expected that for large n, nothing will essentially be lost if we

first take the expectation over both sides of the log–sum inequality and only then optimize

over P0. This would give, assuming stationarity:

H(Y n) ≤ −n ·max
P0

E{∆(Y0, Y1;P0)}. (388)

where the expectation on the r.h.s. is now under the real joint distribution of two consecutive

samples of {Yn}, i.e.,

P (y0, y1) =
∑

x0,x1

π(x0)Q(x1|x0)P (y0|x0)P (y1|x1), (389)

where π(·) is the stationary distribution of the underlying Markov process {xt}.
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6.7 Dynamics, Evolution of Info Measures, and Simulation

The material here is taken mainly from the books by Reif, Kittel, and F. P. Kelly, Reversibility

and Stochastic Networks, (Chaps 1–3), J. Wiley & Sons, 1979.

6.7.1 Markovian Dynamics, Global Balance and Detailed Balance

So far we discussed only physical systems in equilibrium. For these systems, the Boltzmann–

Gibbs distribution is nothing but the stationary distribution of the microstate x at every

given time instant t. However, this is merely one part of the picture. What is missing is the

temporal probabilistic behavior, or in other words, the laws that underly the evolution of

the microstate with time. These are dictated by dynamical properties of the system, which

constitute the underlying physical laws in the microscopic level. It is customary then to

model the microstate at time t as a random process {Xt}, where t may denote either discrete

time or continuous time, and among the various models, one of the most common ones is

the Markov model. In this section, we discuss a few of the properties of these processes as

well as the evolution of information measures, like entropy, divergence (and more) associated

with them.

We begin with an isolated system in continuous time, which is not necessarily assumed

to have reached (yet) equilibrium. Let us suppose that Xt, the microstate at time t, can

take on values in a discrete set X . For r, s ∈ X , let

Wrs = lim
δ→0

Pr{Xt+δ = s|Xt = r}
δ

r 6= s (390)

in other words, Pr{Xt+δ = s|Xt = r} = Wrs · δ + o(δ). Letting Pr(t) = Pr{Xt = r}, it is

easy to see that

Pr(t+ dt) =
∑

s 6=r
Ps(t)Wsrdt + Pr(t)

(

1−
∑

s 6=r
Wrsdt

)

, (391)

where the first sum describes the probabilities of all possibile transitions from other states to

state r and the second term describes the probability of not leaving state r. Subtracting Pr(t)
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from both sides and dividing by dt, we immediately obtain the following set of differential

equations:
dPr(t)

dt
=
∑

s

[Ps(t)Wsr − Pr(t)Wrs], r ∈ X , (392)

where Wrr is defined in an arbitrary manner, e.g., Wrr = 0 for all r. These equations are

called the master equations.29 When the process reaches stationarity, i.e., for all r ∈ X ,
Pr(t) converge to some Pr that is time–invariant, then

∑

s

[PsWsr − PrWrs] = 0, ∀ r ∈ X . (393)

This is called global balance or steady state. When the system is isolated (microcanonical en-

semble), the steady–state distribution must be uniform, i.e., Pr = 1/|X | for all r ∈ X . From
quantum mechanical considerations, as well as considerations pertaining to time reversibility

in the microscopic level,30 it is customary to assume Wrs = Wsr for all pairs {r, s}. We then

observe that, not only,
∑

s[PsWsr − PrWrs] = 0, but moreover, each individual term in the

sum vanishes, as

PsWsr − PrWrs =
1

|X |(Wsr −Wrs) = 0. (394)

This property is called detailed balance, which is stronger than global balance, and it means

equilibrium, which is stronger than steady state. While both steady–state and equilibrium

refer to a situation of time–invariant state probabilities {Pr}, a steady–state still allows cyclic
flows of probability. For example, a Markov process with cyclic deterministic transitions

1→ 2→ 3→ 1→ 2→ 3→ · · · is in steady state provided that the probability distribution

of the initial state is uniform (1/3, 1/3, 1/3), however, the cyclic flow among the states is in

one direction. On the other hand, in detailed balance (Wrs = Wsr for an isolated system),

which is equilibrium, there is no net flow in any cycle of states. All the net cyclic probability

fluxes vanish, and therefore, time reversal would not change the probability law, that is,

29Note that the master equations apply in discrete time too, provided that the derivative at the l.h.s. is
replaced by a simple difference, Pr(t+1)−Pr(t), and {Wrs} designate one–step state transition probabilities.

30Think, for example, of an isolated system of moving particles, obeying the differential equations
md2ri(t)/dt

2 =
∑

j 6=i F (rj(t) − ri(t)), i = 1, 2, . . . , n, which remain valid if the time variable t is replaced

by −t since d2ri(t)/dt
2 = d2ri(−t)/d(−t)2.
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{X−t} has the same probability law as {Xt}. For example, if {Yt} is a Bernoulli process,

taking values equiprobably in {−1,+1}, then Xt defined recursively by

Xt+1 = (Xt + Yt)modK, (395)

has a symmetric state–transition probability matrix W , a uniform stationary state distrib-

tuion, and it satisfies detailed balance.

6.7.2 Evolution of Information Measures

Returning to the case where the process {Xt} pertaining to our isolated system has not

necessarily reached equilibrium, let us take a look at the entropy of the state

H(Xt) = −
∑

r

Pr(t) logPr(t). (396)

We argue thatH(Xt) is monotonically non–decreasing, which is in agreement with the second

law (a.k.a. the H–Theorem). To this end, we next show that

dH(Xt)

dt
≥ 0, (397)

where for convenience, we denote dPr(t)/dt by Ṗr(t).

dH(Xt)

dt
= −

∑

r

[Ṗr(t) logPr(t) + Ṗr(t)]

= −
∑

r

Ṗr(t) logPr(t)
∑

r

Ṗr(t) = 0

= −
∑

r

∑

s

Wsr[Ps(t)− Pr(t)] logPr(t)) Wsr = Wrs

= −1
2

∑

r,s

Wsr[Ps(t)− Pr(t)] logPr(t)−

1

2

∑

s,r

Wsr[Pr(t)− Ps(t)] logPs(t)

=
1

2

∑

r,s

Wsr[Ps(t)− Pr(t)] · [logPs(t)− logPr(t)]

≥ 0. (398)
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where the last inequality is due to the increasing monotonicity of the logarithmic function:

the product [Ps(t) − Pr(t)] · [logPs(t) − logPr(t)] cannot be negative for any pair (r, s), as

the two factors of this product are either both negative, both zero, or both positive. Thus,

H(Xt) cannot decrease with time.

This result has a discrete–time analogue: If a finite–state Markov process has a symmetric

transition probability matrix, and so, the stationary state distribution is uniform, thenH(Xt)

is a monotonically non–decreasing sequence.

A considerably more general result is the following: If {Xt} is a Markov process with a

given state transition probability matrix W = {Wrs} (not necessarily symmetric) and {Pr}
is a stationary state distribution, then the function

U(t) =
∑

r

Pr · V
(

Pr(t)

Pr

)

(399)

is monotonically strictly increasing provided that V (·) is strictly concave. To see why this

is true, we use the fact that Ps =
∑

r PrWrs and define W̃sr = PrWrs/Ps. Obviously,
∑

r W̃sr = 1 for all s, and so,

Pr(t + 1)

Pr
=
∑

s

Ps(t)Wsr

Pr
=
∑

s

W̃rsPs(t)

Ps
(400)

and so, by the concavity of V (·):

U(t + 1) =
∑

r

Pr · V
(

Pr(t+ 1)

Pr

)

=
∑

r

Pr · V
(

∑

s

W̃rs
Ps(t)

Ps

)

>
∑

r

∑

s

PrW̃rs · V
(

Ps(t)

Ps

)

=
∑

r

∑

s

PsWsr · V
(

Ps(t)

Ps

)

=
∑

s

Ps · V
(

Ps(t)

Ps

)

= U(t). (401)

Here we required nothing except the existence of a stationary distribution. Of course in the

above derivation t+ 1 can be replaced by t+ τ for any positive real τ with the appropriate
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transition probabilities, so the monotonicity of U(t) applies to continuous–time Markov

processes as well.

Now, a few interesting choices of the function V may be considered:

• For V (x) = −x ln x, we have U(t) = −D(P (t)‖P ). This means that the divergence

between {Pr(t)} and the steady state distribution {Pr} is monotonically strictly de-

creasing, whose physical interpretation could be the decrease of the free energy, since

we have already seen that the free energy is the physical counterpart of the divergence.

This is a more general rule, that governs not only isolated systems, but any Markov

process with a stationary limiting distribution (e.g., any Markov process whose disti-

bution converges to that of the Boltzmann–Gibbs distribution). Having said that, if

we now particularize this result to the case where {Pr} is the uniform distribution (as

in an isolated system), then

D(P (t)‖P ) = log |X | −H(Xt), (402)

which means that the decrease of divergence is equivalent to the increase in entropy,

as before. The difference, however, is that here it is more general as we only required

a uniform steady–state distribution, not necessarily detailed balance.31

• Another interesting choice of V is V (x) = ln x, which gives U(t) = −D(P‖P (t)). Thus,
D(P‖P (t)) is also monotonically decreasing. In fact, both this and the monotonicity

result of the previous item, are in turn, special cases of a more general result concerning

the divergence (see also the book by Cover and Thomas, Section 4.4). Let {Pr(t)} and
{P ′

r(t)} be two time–varying state–distributions pertaining to the same Markov chain,

but induced by two different initial state distributions, {Pr(0)} and {P ′
r(0)}. Then

31For the uniform distribution to be a stationary distribution, it is sufficient (and necessary) thatW would
be a doubly stochastic matrix, namely,

∑

rWrs =
∑

rWsr = 1. This condition is, of course, weaker than
detailed balance, which means that W is moreover symmetric.
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D(P (t)‖P ′(t)) is monotonically non–increasing. This happens because

D(P (t)‖P ′(t)) =
∑

r

Pr(t) log
Pr(t)

P ′
r(t)

=
∑

r,s

Pr(t)P (Xt+τ = s|Xt = r) log
Pr(t)P (Xt+τ = s|Xt = r)

P ′
r(t)P (Xt+τ = s|Xt = r)

=
∑

r,s

P (Xt = r, Xt+τ = s) log
P (Xt = r, Xt+τ = s)

P ′(Xt = r, Xt+τ = s)

≥ D(P (t+ τ)‖P ′(t+ τ)) (403)

where the last inequality follows from the data processing theorem of the divergence:

the divergence between two joint distributions of (Xt, Xt+τ ) is never smaller than the

divergence between corresponding marginal distributions of Xt+τ .

• Yet another choice is V (x) = xs, where s ∈ [0, 1] is a parameter. This would yield

the increasing monotonicity of
∑

r P
1−s
r P s

r (t), a metric that plays a role in the theory

of asymptotic exponents of error probabilities pertaining to the optimum likelihood

ratio test between two probability distributions. In particular, the choice s = 1/2

yields balance between the two kinds of error and it is intimately related to the Bhat-

tacharyya distance. Thus, we obtained some sorts of generalizations of the second law

to information measures other than entropy.

For a general Markov process, whose steady state–distribution is not necessarily uniform,

the condition of detailed balance, which means time–reversibility, reads

PsWsr = PrWrs, (404)

both in discrete time and continuous time (with the corresponding meaning of {Wrs}). The
physical interpretation is that now our system is (a small) part of a large isolated system,

which obeys detailed balance w.r.t. the uniform equilibrium distribution, as before. A well

known example of a process that obeys detailed balance in its more general form is an M/M/1

queue with an arrival rate λ and service rate µ (λ < µ). Here, since all states are arranged

along a line, with bidirectional transitions between neighboring states only (see Fig. 25),
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there cannot be any cyclic probability flux. The steady–state distibution is well–known to

be geometric

Pr =

(

1− λ

µ

)

·
(

λ

µ

)r

, r = 0, 1, 2, . . . , (405)

which indeed satisfies the detailed balance Prλ = Pr+1µ for all r. Thus, the Markov process

{Xt}, designating the number of customers in the queue at time t, is time–reversible.

It is interesting to point out that in order to check for the detailed balance property,

one does not necessarily have to know the equilibrium distribution {Pr} as above. Applying
detailed balance to any k pairs of states in a cycle, (s1, s2), (s2, s3), . . . , (sk, s1), and mul-

tiplying the respective detailed balance equations, the steady state probabilities cancel out

and one easily obtains

Ws1s2Ws2s3 · · ·Wsk−1skWsks1 =Wsksk−1
Wsk−1sk−2

· · ·Ws2s1Ws1sk , (406)

so this is clearly a necessary condition for detailed balance. One can show conversely, that

if this equation applies to any finite cycle of states, then the chain satisfies detailed balance,

and so this is also a sufficient condition. This is true both in discrete time and continuous

time, with the corresponding meanings of {Wrs} (see Kelly’s book, pp. 22–23).

λ λ λ λ

µ µ µ µ

0 1 2 3 · · ·

Figure 25: State transition diagram of an M/M/1 queue.

In the case of detailed balance, there is another interpretation of the approach to equi-

librium and the growth of U(t). We can write the master equations as follows:

dPr(t)

dt
=
∑

s

1

Rsr

(

Ps(t)

Ps
− Pr(t)

Pr

)

(407)

where Rsr = (PsWsr)
−1 = (PrWrs)

−1. Imagine now an electrical circuit where the indices {r}
designate the nodes. Nodes r and s are connected by a wire with resistance Rsr and every
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node r is grounded via a capacitor with capacitance Pr (see Fig. 26). If Pr(t) is the charge

at node r at time t, then the master equations are the Kirchoff equations of the currents

at each node in the circuit. Thus, the way in which probability spreads across the circuit

is analogous to the way charge spreads across the circuit and probability fluxes are now

analogous to electrical currents. If we now choose V (x) = −1
2
x2, then −U(t) = 1

2

∑

r
P 2
r (t)
Pr

,

which means that the energy stored in the capacitors dissipates as heat in the wires until

the system reaches equilibrium, where all nodes have the same potential, Pr(t)/Pr = 1, and

hence detailed balance corresponds to the situation where all individual currents vanish (not

only their algebraic sum).

1

2

3
4

5
6

7

R12 R23 R34

R45

R56R67

R27

P1

P2

P3

P4

P5P6
P7

1 2 3 4

567

Figure 26: State transition diagram of a Markov chain (left part) and the electric circuit that
emulates the dynamics of {Pr(t)} (right part).

We have seen, in the above examples, that various choices of the function V yield various

‘metrics’ between {Pr(t)} and {Pr}, which are both marginal distributions of a single symbol.

What about joint distributions of two or more symbols? Consider, for example, the function

J(t) =
∑

r,s

P (X0 = r, Xt = s) · V
(

P (X0 = r)P (Xt = s)

P (X0 = r, Xt = s)

)

, (408)

where V is concave as before. Here, by the same token, J(t) is a ‘metric’ between the

joint probability distribution {P (X0 = r, Xt = s)} and the product of marginals {P (X0 =

r)P (Xt = s)}, namely, it a measure of the amount of statistical dependence between X0 and

Xt. For V (x) = ln x, we have, of course, J(t) = −I(X0;Xt). Now, using a similar chain of
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inequalities as before, we get the non–decreasing monotonicity of J(t) as follows:

J(t) =
∑

r,s,u

P (X0 = r, Xt = s, Xt+τ = u) · V
(

P (X0 = r)P (Xt = s)

P (X0 = r, Xt = s)
· P (Xt+τ = u|Xt = s)

P (Xt+τ = u|Xt = s)

)

=
∑

r,u

P (X0 = r, Xt+τ = u)
∑

s

P (Xt = s|X0 = r, Xt+τ = u)×

V

(

P (X0 = r)P (Xt = s, Xt+τ = u)

P (X0 = r, Xt = s, Xt+τ = u)

)

≤
∑

r,u

P (X0 = r, Xt+τ = u)×

V

(

∑

s

P (Xt = s|X0 = r, Xt+τ = u) · P (X0 = r)P (Xt = s, Xt+τ = u)

P (X0 = r, Xt = s, Xt+τ = u)

)

=
∑

r,u

P (X0 = r, Xt+τ = u) · V
(

∑

s

P (X0 = r)P (Xt = s, Xt+τ = u)

P (X0 = r, Xt+τ = u)

)

=
∑

r,u

P (X0 = r, Xt+τ = u) · V
(

P (X0 = r)P (Xt+τ = u)

P (X0 = r, Xt+τ = u)

)

= J(t+ τ). (409)

This time, we assumed nothing beyond Markovity (not even homogeneity). This is exactly

the generalized data processing theorem of Ziv and Zakai (J. Ziv and M. Zakai, “On function-

als satisfying a data-processing theorem,” IEEE Trans. Inform. Theory , vol. IT–19, no. 3,

pp. 275–283, May 1973), which yields the ordinary data processing theorem (of the mutual

information) as a special case. Thus, we see that the second law of thermodynamics is (at

least indirectly) related to the data processing theorem via the fact that they both stem from

some more general principle concerning monotonic evolution of ‘metrics’ between probability

distributions defined using convex functions. In a very similar manner, one can easily show

that the generalized conditional entropy

∑

r,s

P (X0 = r, Xt = s) · V
(

1

P (X0 = r|Xt = s)

)

(410)

is monotonically non–decreasing with t for any concave V .

6.7.3 Monte Carlo Simulation

Returning to the realm of Markov processes with the detailed balance property, suppose we

want to simulate a physical system, namely, to sample from the Boltzmann–Gibbs distribu-
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tion

Pr =
e−βEr

Z(β)
. (411)

In other words, we wish to generate a discrete–time Markov process {Xt}, possessing the

detailed balance property, whose marginal converges to the Boltzmann–Gibbs distribution.

This approach is called dynamic Monte Carlo or Markov chain Monte Carlo (MCMC). How

should we select the state transition probability matrix W to this end? Substituting Pr =

e−βEr/Z(β) into the detailed balance equation, we readily see that a necessary condition is

Wrs

Wsr

= e−β(Es−Er). (412)

The Metropolis algorithm is one popular way to implement such a Markov process in a rather

efficient manner. It is based on the concept of factoring Wrs as a product Wrs = CrsArs,

where Crs is the conditional probability of selecting Xt+1 = s as a candidate for the next state,

and Ars designates the probability of acceptance. In other words, we first choose a candidate

according to C, and then make a final decision whether we accept this candidate or stay in

state r. The Metropolis algorithm pics C to implement a uniform distribution among n states

‘close’ to r (e.g., flipping one spin of a n–spin configuration). Thus, Wrs/Wsr = Ars/Asr,

and so, it remains to choose A such that

Ars
Asr

= e−β(Es−Er). (413)

The Metropolis algorithm defines

Ars =

{

e−β(Es−Er) Es > Er
1 otherwise

(414)

In simple words, the algorithm works as follows: Given that Xt = r, first randomly select

one candidate s for Xt+1 among n possible (neighboring) states. If Es < Er always accept

Xt+1 = s as the next state. If Es ≥ Er, then randomly draw a RV Y ∈ Unif[0, 1]. If

Y < e−β(Es−Er), then again, accept Xt+1 = s as the next state. Otherwise, stay in state r,

i.e., Xt+1 = r. To see why this choice of A works, observe that

Ars
Asr

=

{

e−β(Es−Er) Es > Er
1

e−β(Er−Es)
Es ≤ Er

= e−β(Es−Er). (415)

There are a few nice things about this algorithm:
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• Energy differences between neighboring states, Es−Er, are normally easy to calculate.

If r and s differ by a single component of the microstate x, and the if the Hamiltonian

structure consists of short–range interactions only, then most terms of the Hamiltonian

are the same for r and s, and only a local calculation is required for evaluating the

energy difference.

• Calculation of Z(β) is not required, and

• Chances are that you don’t get stuck in the same state for too long.

The drawback, however, is that aperiodicity is not guaranteed. This depends on the Hamil-

tonian.

The heat bath algorithm (a.k.a. Glauber dynamics) alleviates this shortcoming and al-

though somewhat slower than Metropolis to equilibrate, it guarantees all the good properties

of a Markov chain: irreducibility, aperiodicity, and convergence to stationarity. The only

difference is that instead of the above choice of Ars, it is redefined as

Ars =
1

2

[

1− tanh

(

β(Es − Er)
2

)]

=
e−β(Es−Er)

1 + e−β(Es−Er)

=
Ps

Ps + Pr
, (416)

which is also easily shown to satisfy the detailed balance condition. The heat bath algorithm

generalizes easily to sample from any distribution P (x) whose configuration space is of the

form X n. The algorithm can be described by the following pseudocode:

1. Select X0 uniformly at random across X n.

2. For t = 1 to t = T :

3. Draw an integer i at random with uniform distribution across {1, 2, . . . , n}.
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4. For each x ∈ X , calculate

P (X i = x|X∼i = x∼i
t ) =

P (X i = x,X∼i = x∼i
t )

∑

x′∈X P (X
i = x′,X∼i = x∼i

t )
. (417)

5. Set xjt+1 = xjt for all j 6= i and xit = X i, where X i is drawn according to

P (X i = x|X∼i = x∼i
t ).

6. end

7. Return the sequence X t, t = 1, 2, . . . , T .

It can be easily seen that the resulting Markov chain satisfies detailed balance and that in

the case of binary alphabet (spin array) it implements the above expression of Ars. One can

also easily generalize the Metropolis algorithm, in the same spirit, as e−β(Es−Er) is nothing

but the ratio Ps/Pr.
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