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Preface

This short lecture is consist of three parts.

In the first part, the Liischer’s formula, which relates the scattering phase shift
to the two particle energy in the finite volume, explained. A comprehensive but less
rigorous derivation for the formula has been attempted in this lecture for the 7w
system as an example with the emphasis on the Bethe-Salpeter(BS) wave function. It
is important to note that the BS wave function at large separation behaves as the free
scattering wave with the phase shift which is determined by the unitarity of the S—
matrix in QCD. The Liischer’s formula can be obtained from this asymptotic behavior
of the BS wave function.

In the second part, the BS wave function is considered at non-asymptotic region
where the interaction between two particles exists, in order to define the potential in
quantum field theories. This method is applied to the two-nucleon system in order to
extract the NN potential from lattice QCD.

In the last part, the origin of the strong repulsion at short distance in the NN po-
tential, called the repulsive core, is theoretically investigated by the Operator Product
Expansion and the renormalization group.
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1
Intorduction: Nuclear Forces

In 1935 Yukawa introduced virtual particles, pions, to explain the nuclear force(Yukawa, 1935)),
which bounds protons and neutrons inside nuclei. Since then, enormous efforts have
been devoted to understand the nucleon-nucleon (NN) interaction at low energies both
from theoretical and experimental points of view. To describe the elastic nucleon-
nucleon (NN) scattering at low-energies below the pion production threshold to-
gether with the deuteron properties, the notion of the NN potential turns out to
be very useful(Taketani et al., 1967; |Hoshizaki et al., 1968; | Brown and Jackson, 1976;
[Machleidt, 1989; [Machleidt and Slaus, 2001)): it can be determined phenomenologi-
cally to reproduce the scattering phase shifts and bound state properties. Once the
potential is determined, it can be used to study systems with more than 2 nucleons
by using various many-body techniques.

Phenomenological NN potentials which can fit the NN data precisely (e.g. more
than 2000 data points with y2/dof ~ 1) at Tja, < 300 MeV are called the high-
precision NN potentials. Those in the coordinate space, some of which are shown in
FigllTl are known to reflect some characteristic features of the NV interaction at dif-
ferent length scales (Taketani et al., 1967;|Hoshizaki et al., 1968;[Brown and Jackson, 1976}
[Machleidt, 1989; Machleidt and Slaus, 2001)):

(i) The long range part of the nuclear force (the relative distance r > 2 fm) is domi-
nated by the one-pion exchange introduced by Yukawa (Yukawa, 1935). Because
of the pion’s Nambu-Goldstone character, it couples to the spin-isospin density of
the nucleon and hence leads to a strong spin-isospin dependent force, namely the
tensor force.

(ii) The medium range part (1 fm < r < 2 fm) receives significant contributions from
the exchange of two-pions (77) and heavy mesons (p, w, and o). In particular, the
spin-isospin independent attraction of about 50 — 100 MeV in this region plays
an essential role for the binding of atomic nuclei.

(iii) The short range part (r < 1 fm) is best described by a strong repulsive core
as originally introduced by Jastrow (Jastrow, 1951I). Such a short range repul-
sion is important for the stability of atomic nuclei against collapse, for deter-
mining the maximum mass of neutron stars, and for igniting the Type II super-
nova explosions (Tamagaki et al., 1993; Heiselberg and V. Pandharipande, 2000;
|[Lattimer and Prakash, 2000).

A repulsive core surrounded by an attractive well is in fact a common feature of the
“effective” potential between composite particles. The Lenard-Jones potential between
neutral atoms or molecules is a well-known example in atomic physics. The potential
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Fig. 1.1 Three examples of the modern NN potential in 'Sp (spin singlet and

S-wave) channel: CD-Bonn(Machleidt, 2001), Reid93(Stoks et al., 1994) and Argonne
vig(Wiringa et al., 1995)).

between “He nuclei is a typical example in nuclear physics. The origin of the repulsive

cores in these examples is known to be the Pauli exclusion among electrons or among

nucleons. The same idea, however, is not directly applicable to the NN potential,

because the quark has not only spin and flavor but also color which allows six quarks

to occupy the same state without violating the Pauli principle. Therefore, to account

for the repulsive core of the NN force, various ideas have been proposed as sum-

marized in Ref. (Myhrer and Wroldsen, 1988} |Oka et al., 2000} [Fujiwara et al., 2007)):

exchange of the neutral w meson (Nambu, 1957), exchange of non-linear pion field

(Jackson and Pasquier, 1985; [Yabu and Ando, 1985)), and a combination of the Pauli

principle with the one-gluon-exchange between quarks (Otsuki et al., 1965;|Machida and M. Namiki, 1965}
[Neudachin et al., 1977;[Liberman, 1977;[DeTar, 1979;[Oka and Yazaki, 1980;[Oka and Yazaki, 1981d;
[Oka and Yazaki, 19810;(Toki, 1980} Faessler et al., 1982). Despite all these efforts, con-

vincing account of the nuclear force has not yet been obtained.

In this situation, it is highly desirable to study the NN interactions from the first
principle lattice QCD simulations. A theoretical framework suitable for such purpose
was first proposed by Liischer (Luscher, 1991)): For two hadrons in a finite box with
the size L x L x L in periodic boundary conditions, an exact relation between the
energy spectra in the box and the elastic scattering phase shift at these energies
was derived: If the range of the hadron interaction R is sufficiently smaller than the
size of the box R < L/2, the behavior of the two-particle Bethe-Salpeter (BS) wave
function ¢ (r) in the interval R < |r| < L/2 under the periodic boundary conditions




Intorduction: Nuclear Forces 3

has sufficient information to relate the phase shift and the two-particle spectrum.
Liischer’s method bypasses the difficulty to treat the real-time scattering process on
the Euclidean lattice. Furthermore, it utilizes the finiteness of the lattice box effectively
to extract the information of the on-shell scattering matrix and the phase shift.

Recently, a closely related but an alternative approach to the VIV interactions from
lattice QCD has been proposed(Ishii et al., 2007;|Aoki et al., 2008;[Aoki et al., 20100).
The starting point is the same BS wave function ¢ (r) as discussed in Ref. (Luscher, 1991).
Instead of looking at the wave function outside the range of the interaction, the au-
thors consider the internal region |r| < R and define the energy-independent non-local
potential U(r,r’) from #(r) so that it obeys the Schrodinger type equation in a finite
box. Since U(r,r’) for strong interaction is localized in its spatial coordinates due
to confinement of quarks and gluons, the potential receives finite volume effect only
weakly in a large box. Therefore, once U is determined and is appropriately extrapo-
lated to L — oo, one may simply use the Schrodinger equation in the infinite space to
calculate the scattering phase shifts and bound state spectra to compare with experi-
mental data. Further advantage of utilizing the potential is that it would be a smooth
function of the quark masses so that it is relatively easy to handle on the lattice. This
is in sharp contrast to the scattering length which shows a singular behavior around
the quark mass corresponding to the formation of the NN bound state.

In this lecture, we first introduce the Liischer’s method for the scattering phase
shift in Sec[2l Since the method is not only well established but also well explained in
Ref. (Luscher, 1991)), we mainly consider properties of the BS wave function, in terms of
which the scattering phase shift can be related to the energy shift of the 2 particles state
in the finite box. These properties are also used to define the NN potential in Sec[3]
where new method in Ref.(Ishii et al., 2007; |Aoki et al., 2008} |Aoki et al., 20108 is
explained in detail. We finally consider a very recent attempt to understand the origin
of the repulsive core in the NN potential in SecHl Using the operator product expan-
sion and the renormalization group analysis in QCD, the potential derived from the
BS wave function in Sec[3]is shown to have the repulsive core, whose functional form
is also theoretically predicted(?). Brief concluding remarks are given in Sechl
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Phase Shift from Lattice QCD:
Luscher’s formula in the finite
volume

2.0.1 Preparation: Scattering phase shift in quantum mechanics

In this subsection, as a preparation for the latter sections, we give some basics of the
scattering theory in quantum mechanics.
Let us consider the 3-dimensional Schrédinger equation, given by

[Ho + V(x)]ep(r) = Eg(r) (2.1)
where
H, v V2 =040 +0? (2.2)
0 2m’ v v z '

Hereafter we consider only the spherically symmetric potential that V(r) = V (r) with
r = |r|. In this case it is convenient to use the polar coordinate such that

10,0 L* . 1 9 0 1 02
2 2 2 :
= 2= 2 2= _ — 0— . (2.3

v 2 afr or  r2’ [sin@ 90 (sm 39) +sin293¢2] (23)
Using the separation of the variables, we consider the following form of the solution
p(r):

p(r) = > Ri(r)Yim (9, ¢) (2.4)
l

where the spherical harmonic function Y;, satisfies

L*Yim (0, 6) = 11+ 1)Yim (0, 0) (2.5)

and is normalized as
27 s
/ d(b/ sin0d 0 Y (0, 6) Y (0, 6) = 616y (2.7)
0 0

Note that in this lectrue X means a complex conjugate of X while XT is a hermitan
conjugate of X. Explicitly it is given by

Yin(6,6) = V e e P cos )™ 28)
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c= { (_Pm " z 8 (2.9)

where Py, (z) is the Legendre bi-function of degree I, defined by

Pin(z) = (1 — 2?) e Iml <1 (2.10)
1 d
Pi(z) = ﬁﬁ(f -4 (2.11)

For small [ and m, for example, we have

1 3 3 . i
Yoo(0, ¢) = T Yio(0,9) =4/ ECOS& Yie1 = Fy/ 8—ﬁSln9€i ¢,

1 /1 .
}/20(95¢) = i_(3C0829_ 1)7 }/2i1(0,¢) =+ jSinecoseeiuﬁv
4dm 2 8T
15 . 0 +ioe
Y2 12(0, ) = F4/ == sin” e™**?. (2.12)
' 32m
From eqs. (24) and (Z3]), the 3-dimensional Schrédinger equation (21)) is reduced
to the 1 dimensional equation for R; as

1d (rRi(r)) + {2m (E-V(r)) — 1(1%1)} Ri(r) = 0. (2.13)

r dr?

Usually we further assume the following properties for the potential V (r):

. 2 .
}13% r*V(r) =0, (2.14)
lim "V (r)=0 for ¥n € Z. (2.15)
T—00
The first condition means
1

V(r) <O 32 (2.16)

for small r, which leads to
Ri(r) = O(rh) (2.17)

for small r. The second condition means
V(ir)=0 for r > R, (2.18)
for sufficiently large R, so that eq. (ZI3) becomes

R/ (y) + 33’@) + {1 - l(l;; D } Ri(y) =0 (2.19)
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for r > R, where y = kr and k% = 2mE. The solution to this equation is obtained as
Ri(y) = Augi(y) + Biu(y) (2.20)

where spherical Bessel functions are given by

z

r—0

i) = () (1i)l () = @+ LN

x dx

x
i — /2
sin(x — I/ )7 oo
x
Li(lﬂ) x— 0
l )
1d cosx 2 -
ny(z) = (—z)! (E%) ( . ) ~ . (2.22)
cos(z — Im/2)
— 2 =0
x

Therefore, in 7 — oo limit, the above solution becomes

sin (kr — L) L g oo (kr — Lm) o sin (kr — L+ 61(k))
: _

Rur) = Ay kr kr - kr

(2.23)

where the scattering phase shift §;(k) is given by

tan d;(k) = % , Cr= \/A% + Bl2 (2.24)
l

and A; = Cjcosdi(k), By = C;sind(k). If §;(k) > 0 the interaction is attractive for
this k, while it is repulsive if §;(k) < 0.

For the particle-particle scattering in quantum mechanics, we consider the La-
grangean,

. .
L= §m1r% + §m2r§ —V(|r1 —ra)). (2.25)
By introducing the relative coordinate r = r; — ro and the center of gravity R =
(myry + moars)/(my + ma), the above Lagrangean becomes

1. . 1
L= 5MR% + iufz - V(r), (2.26)
where M = mj +ms is the total mass and u = myma/(mq 4+ ms) is the reduced mass.
The corresponding Hamiltonian is given by

1 1
H=Hg+ Hy, Ho=-—P?% Heg=—p>+V(r), 2.27
G + Hyer, ¢ =t 1 2MP +V(r) ( )

where P = MR and p = pr. While Hg is a Hamiltonian for a free particle, Hye corre-
sponds to the Hamiltonian for a particle under the potential V(r), whose Schrodinger
equation identical to eq.(21).
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2.1 Bethe-Salpeter wave function and phase shift in quantum
field theories

In this section, we construct a ”scattering wave” in quantum field theories whose
asymptotic behavior is identical to the one in the scattering wave in quantum me-
chanics given in eq.(Z23). Moreover we show that the phase shift corresponds to the
phase of the S-matrix required by the unitarity. For notational simplicity we consider
the 77 scattering in QCD here.

The unitarity of the S-matrix STS = SST = 1 with S = 1 + T leads to

(FITNE) = (FITTE) = Y _(FITTn) (0] T]d), (2.28)

where |n) are asymptotic states. In the case of 7w scattering in the center of mass
system that k, + ky — k. + kq where kq = (Eg, k), ky = (Ex, —k) and k. = (E,, p),

kq = (Ep, —p) with B = \/k? + m2 and E, = \/p? + m2, we explicitly write
(e, ka|T|ka, ky) = (2)*6" (ko + ks — ke = ka) (P, @) (2.29)
We consider the elastic scattering, where the total energy is below the 47 produc-
tion such that 24/k2 +m2 < 4m., equivalently, k2 < 3m?2 with k = |k| = |p|. In this

case, due to the energy-momentum conservation, the sum over intermediate state n in
Eq. (228 is restricted to the mm states as

3 3
Sl = [ Gt e o) ol (2.30)

Inserting this into Eq. (22]), we have

k
i .k t
T(p,k) —T"(p,k) ey /quT (p,a)T(q,k), (2.31)

where |q] = k and Qg is the solid angle of the vector q. Using the partial wave
decomposition that

[e'S) l
T(p,k) = 4-7TZ Z Tl(k)yim(QP)lem(Qk) (232)

=0 m=—1

and the orthogonal property of the spherical harmonics function Y7, (6, ¢) = Y5, (Qq)
that

/qu Yim (Qq) Yirm (Qq) = 61 0mm (2.33)

the unitarity (231)) becomes

k
87TEk

T(k) - Ti(h) = i

i) Ti(k). (2.34)
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A solution to this unitarity condition is easily obtained as

167TEk 67;61 (k
k

where §;(k) is an arbitrary real function of k, and can be interpreted as the scattering
phase shift, as seen later.

We now introduce the Bethe-Salpeter (BS) wave function for 77 system, defined
by

Ty(k) = )sin &;(k) , (2.35)

o(r) = (0T {ma(x + r,ta)m(x, tp) } |ka, a, ks, b; in) (2.36)

where |k, a, ky, b;in) is a 7w asymptotic in-state in the center of mass system such
that k, = (Fx,k) and ky, = (Fj, —k) with flavors a and b. The pion interpolating
operator is given by

) = (@it o) = (461 (2.37)

with the Pauli matrix 7,. For simplicity we take t, = t; + € with ¢ > 0 and the ¢ — 0
limit. We then simply write

o(r) = (0]mg (X + 1, t)mp(x, t)| ko, a, kp, b; in). (2.38)

The name, the Bethe-Salpeter wave function, comes from the fact that this quantity
satisfies the Bethe-Salpeter equation(Bethe and Salpeter, 1951)). Unlike field equations
such as the Dyson-Schwinger equations, the BS equation is derived from the diagram-
matic consideration. We here consider the BS wave function from the different point
of view.

By inserting the complete set of the out-states such that

| X; out) (X; out|
1= Z/ 5 32 |p, c; out) (p, c; out| —I—Z 5Ex , (2.39)

we have
90(1') _ (pelastiC(r) + (pinelastiC(r) (2'40)

where

elabtlc \/_ /

271' 32p0 X'H‘) #pot <p7 a; OUt|7Tb(x7 t)|k7 (I, _k7 b; llfl>

(2.41)

N 1
Samelabmc(r) Z<()|ﬂ-a(x+r )| X; out) —— 2Fx (X; out|mp(x, t)|k, a, —k, b;in) (2.42)
X

and |p, a,;out) is an one-pion out-state with momentum p, which satisfies

(07 (x, o) |, by out) = dap\/Zxe P, po = /P +m2. (2.43)

On the other hand, X represents general states other than one-pion states.
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Using the reduction formula that

tout (P)T(0) — T(O)ain(p) = (—p* +m2)T (x(p)O) (2.44)
T(0)al, (p) — alu (P)T(0) = (=p* + m3)T(Ox' (p)) (2.45)

where O is an arbitrary field operator and
m(p) = /d4:v \e/l;w(:v), (2.46)

we obtain

(p, a; out|my(x, 1)k, a, =k, b;in) = /Z(27)*2ko6® (p — k)e~*=
e—iq;ﬂ R
Zn————"T(p,q, ka, k 2.47
tV I (p.q b)  (2.47)
where off-shell T-matrix 7' is defined by

T(pu q, kaa kb) = (_p2 + m?‘r)(_q2 + m?r)G(pu q, kaa kb)(_kg + mi)(_klg + m72'r)
(2.48)

G(p, q, ka-ks)i(2m)* 6 (p + ¢ — ko — k) = (01T {ma(p) s (q)7] (ko)) (ko) }10)-
(2.49)

Here p = (p,po), ko = (k,ko) and k, = (—k, ko) are on-shell 4-momenta, while
q = (—p,2ko — po) is generally off-shell. Using this expression we obtain

d3p eip-r
2

peIstic(py = 7 o= iZkotgiker 4 Zﬂ_e—i2kot/ _ET(p,q, ko, ky)

(2m)32po m2 — ¢% — i

(2.50)
Similarly we have

elpxr

TX(anqvkavkb) (251)

Saimelasti(:(r) _ e—i2k0t Z vV ZTI'ZX

~ 2Ex m2 —q? —ic

where ¢ = (—px, 2ko — (px )o). For simplicity we hereafter set ¢t = 0. We rescale (p°lastic
as

cp(r) _ ngoelaStiC(r) + (pinelastiC(r) (2'52)
where
4 , d*p 1 .
elastic ik-r ipr
= H(p,k)e® 2.53
() = e +/(2ﬁ)3p2_k2_l.5 (p,k)e (2.53)
with
Po + ko
H(p,k) = T(p,q), 2.54
(p. k) Spoko (p.a) (2.54)

and k = |k| and p = |p|.
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We now investigate the large » = |r| behavior of the BS wave function below
the 47 inelastic threshold. We first consider ¢°#t¢, Using the following partial wave
decomposition

H(p,k) = 47y Hi(p, k)Yim (Qp)Yim () (2.55)
l,m

(pelastic (I‘) — 47TZ il<p?1a5tic (T, k)}/lm (Qr)}/lm (Qk) (256)
l,m

T =4 > i i (pr)Yim () Vien () , (2.57)
l,m

we have

. . 2d 1 .
@ret(r, k) = jikr) +/p = Hi(p, k)ji(pr). (2.58)

212 p2 — k2 —ie

We assume that the interaction vanishes for large r:

. d3p .
_ 2 2\, .elastic _ ipr
(V2 + 1)) = [ L agenT — 0. (259
which, in terms of the partial wave, gives
2
p~dp ,
| B e i) 0. (2.60)

We evaluate the second term of eq.(Zh8)). Using the explicit form of the spherical
Bessel function j;(z) in eq.(221]) we have

9 l oo , 21 ipr —ipr
pdp 1 . (1 d / p*Ttdp e’PT — 7P
H(p, k = (- -— Hi(p, k
/ 272 p2 k2 _ e l(pa )jl(pT) ( T) <’f' dr 0 4.7T2Z'p’l" p2 k2 _ e l(pa )

=<—T>l(1i)l/ Y

rdr oo 4m2ipr p? — k2 —ic

(2.61)

Here we used the property that H;(—p, k) = (—1)'H;(p, k), which is shown as

H(p.k) =47 Y Hi(p, k)Yim (Qp) Vi (%) = 47 Y Hi(=p, k)i (Qp) Yien ()
l,m

lm

— 4 S (1) Hi(=p, F) Vi () Vi (00 (2.62)
l,m

where Q_p, means § — 7 — 0 and ¢ — 7 + ¢. To proceed, we assume H;(p, k) = O(p)
for small p, so that no contribution around p = 0 appears in the above integral.

We know that the half off-shell T-matrix H;(p, k) do not have any poles and cuts in
the real axis, since k2 is smaller than inelastic threshold. For simplicity we assume that
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H;(p, k) has only poles in the complex p plain(this argument may also be generalized
for cuts):

Zn Zn I
Hi(p, k) = g g Hi(p, k 2.63
l(pu ) p_kn+ p_kn+ l(pu ) ( )
n>0,Imk, >0 n<0,Imk,, <0

where H; (p, k) is analytic in p. Note that k,, and Z,, implicitly depend on k. This form
of the assumption satisfies the condition eq.(260), which becomes

l _
1d k:z, .
PRV § : n n _i(Reky)r —(Imkn)r,zo 2.64
( T) (Td?”) n>0,Imk, >0 27Tknr€ ’ , ( )

for kor > 1, where kg = min,~oImk, > 0. Using the assumption ([ZG3), we can
evaluate eq.(2Z61) as

4 1 d \' e Ld\' '~ K Znetr
= —Hy(k, k)(—kr)' [ ——— - (-— Sk (2 )
g 1(k, k) (—kr) (k?” dkT) kr +(=7) (T d’l”) >0 2rknr (k7 — k?)

= ﬁHl(k k){nl(kr) + ijl(kr)} 4 (_T)l li lz ﬂei(RCkn)refﬂmkn)r
47 ’ rdr) 2k, r(k2 — k2) '

(2.65)

Since Imk,, > 0, the sum over n > 0 vanishes exponentially for large r which satisfies
Ekor > 1. Similarly we can show that ¢™¢12s%¢(r) vanishes exponentially for large 7 as
long as k2 is smaller than inelastic threshold.

Therefore, for large r (kor > 1), we finally obtain

oi(r, k) = Zp |ji(kr) + %Hl(k, kY{ni(kr) +iji(kr)}

e01(k)

~ Zn sin(kr + 6;(k) — Im/2) (2.66)

where the folowing form of the on-shell T-matrix determined from unitarity in eq.(238])
A
H(k k) = %em(‘ﬂ) sin &y (k), (2.67)

and the asymptotic behaviour of j;(z) and n;(x) that
) sin(x — 7 /2 cos(x — Im/2
Ji(z) ~ (f/)’ n(z) ~ %/)

(2.68)

are used.

Note that the derivation for the large r behavior of the BS wave function in this
section is similar but a little different from that in (Lin ef al., 2002;|Aoki et al., 20050)
for 77 and in (Ishizuka, 2009; [Aoki et al., 20108) for NN, though the final results are
same.
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2.2 Liischer’s formula for the phase shift in the finite volume

We now consider the finite volume(Liischer, 1991). We assume that no interaction
(except exponentially small contributions) exists at > R, where R is sufficiently large.
Therefore, if the box size L is larger than 2R, there exist a region that R < r < L/2
where

(V2 +E)pL(r;k) =0 (2.69)
is satisfied for the BS wave-function ¢, (r; k), which is given by
or(r;k) = (0m(x + 1,0)7(y, 0)|ka, a, kp, b) 1, (2.70)

where the subscript L indicates that the state is constructed in the finite box. This
wave function is expanded in terms of the BS wave function in the infinite volume,
introduced in the previous sections as

= 4ﬁchm Vo1 (7, k) Vi () (2.71)
where the coefficient C,,, (k) is introduced to satisfy the periodic boundary condition
such that ¢r,(r + nL; k) = ¢ (r; k) for n = (ng,ny,n,) € Z3. Note that

@i (r, k) = ny(kr)e®®) sin §;(k) + ji(kr)e?®®) cos 6 (k) (2.72)

for r > R.
On the other hand, we can construct the solution of the Helmholtz equation

(V2 + E)pr(r;k) =0 (2.73)

for r # 0 with the periodic boundary condition as

Zvlm Glm ) (274)
where
Gim(r, k) = \/_Ylm( V)G(r, k) (2.75)
rk) =73 Z ' — {p|p = nzf”,n € 23} : (2.76)
pEF
Yin(P) = 9V (Qp), p= D (2.77)

It is easy to see the above ¢ (r; k) satisfies both Helmholtz equation and periodic
boundary condition for arbitrary vy, (k)’s as

(V2 + k)pr(r Zvlm (B)WVATY 13 (V) (V2 + B2)G (x, k)
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= 0 (B)VATY 13, (V)5 (1) = 0 (2.78)
L,m

for r # 0 and

pL(r+nLik) = vim(k)VATY 1, (V)G(r + nL, k)

I,m
= Ui (W)VATY 1 (V)G (x, k) = 1 (v: k) (2.79)
I,m

The coefficient v, can be determined by comparing eq.(274) with eq.(271)). We
first rewrite

Glr,k) = %no(lm‘) S VAR (20 i ()1 () (2.80)
l,m
where
ip/k) —————
gim (k) = \/E% > %Ylm(ﬁp). (2.81)
pel

This can be easily seen as follows. Since

(V2 + k2)£no(kr) — 5(r), (2.82)
k
Glr, k) — pono(hr) (2.83)

satisfies the Helmholtz equation for all r and is smooth at » — 0, so that it can be
expanded by j; as

G(r, k) — %no(kr) = VAT Gim (k)i (kr) Vi (). (2.84)
lm
Using
e =41y " ii(pr) Vi () Yim (Qp) (2.85)
Im

in eq.(270), and considering the » — 0 limit in the both side of eq. (Z:84]), we obtain
eq.(Z8T). (Note that ji(z) ~ 2'/(21 + 1)!! as = — 0.)
We next observe(Luscher, 1991)) that

Gim(r, k) = VAT Y1, (V)G(r, k) =
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Table 2.1 Non-zero independent elements of

Mlm,l’m"

M iim | @ (Moo) b ( M) ¢ (Meo)
M00700 1 0 0
Mlm Im 1 0 0
M20,20 1 18/7 0

Mo 21 1 —12/7 0
Moz 22 1 3/7 0
Mas22-2 0 15/7 0
M30,10 0 —4V/21/7 0
M1 0 3v14/7 0
Mjz 0 V210/7 0
M0 50 1 18/11  100/33
M, 51 1 3/11 —25/11
M3 1 21/11 10/11
M52 0 15/11  —70/11
M35 1 9/11 5/33
Mas 31 0 3v15/11  35v15/33

X lem(Qr)n[(k'f') + Z Mlm,l’m’le’m’ (Qr)j[/(k’f‘) ) (286)

U',m’

where non-zero elements of M, ;s are given by the linear combination of

1 47
My = —————aqim (k). 2.87
l il(2l—|—1)kgl (k) ( )
The following properties generally hold:
Mlm,l/m/ = Ml’m/,lm = Ml*’fﬂ,l/*m/' (288)

Non-zero elements at [,1’ < 3 are expressed as
M, irmr = aMoo + bMyg + cMgo, (2.89)

with a, b, ¢ given in table 21l See Ref.(Liischer, 1991)) for more details.

We now consider the cubic group O(3,Z), which has 24 elements and is generated
by following elements in the special cubic group SO(3,Z)

100 001 0-10
R,=(100-1),R,=| 010]),R.=(100], (2.90)

010 -100 001
and the parity transformation Pr = —r. There are five irreducible representations

in SO(3,Z), denoted by A, Az, E, T1 and T», whose dimensions are 1,1,2,3, and
3, respectively. The irreducible representations of O(3,Z) are constructed these five
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Table 2.2 Decomposition of the angular momentum into irreducible representa-
tions of the cubic group

Af (i s 4+ rd) — 3t
ET  7(r} - r;*) —6r%(r? — 7“]2) (1,7) = (1,2),(2,3)
TfL rl-r]‘r’-, — rjrf’ 1#£ ]

Ty T(rrd 1) —6rriry i #

[ rep. Dbasis polynomials independent elements
0 A7 1

1 T ry 1=1,2,3

2 EY r2- rf- (i,7) = (1,2),(2,3)

2 Ty vy i#j

3 A2_ r17r2T3

3 Ty 5rd—3rir 1=1,2,3

3 Ty ri(rf- —r?) (i,7,k) = (1,2,3),(2,3,1),(3,1,2)
4

4

4

4

irreducible representations of SO(3,Z) and the parity eigenvalue 41. It is noted that
irreducible representations of the rotational group O(3,R) are decomposed in terms
of these irreducible representations. For example,

0=A", 1=T,2=Et 0T,
3=A,0T70T,,4=AT0ET 0T, 0T, (2.91)

where a number denotes an eigenvalue of the angular momentum /. The corresponding
basis polynomials for each cubic representation are given in tabld2.2l

We now compare two expressions of oy, (r; k) in some irreducible representations
of the cubic group. If we project the BS wave function to A] representation, which
contains the [ = 0 partial wave as well as [ > 4 contribution. Neglecting I > 4
contribution, eq.(ZXTI]) becomes

+ .
001 (13 k) = VAT Coo (k)€™ [ng(kr) sin 6o(k) + jo(kr) cos (k)] (2.92)
for r > R. In order to match this expression, eq.(274]) must be

gpf1+ (r; k) = Vamvgo(k)Goo(r, k)

=V 47TU00 ’no(kT) + Z MOO,lelm (Qr)jl(kr) ’ (2'93)
lm
since Gy, (r, k) with [ # 0, which contains n;(kr), can not appear in this equation. By
comparing the two, we have

Coo(k)emo(k) sin 50(]{3) Voo (294)
Coo(k)e™®) cos §o (k) = v90Moo,00 = voo Moo, (2.95)

which leads to the famous Liischer’s formula(Luscher, 1991)),
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47 47 1 1
cot(do(k)) = Moo = —goo(k) = —— 73"
2 kDP 2 p?— i

(2.96)

Note that un-matched components proportional to Moo 4m (m = 0,£4) give [ = 4
contributions.

Let us briefly explain how to use this formula. We first calculate the energy Eo(L)
of two pions in the center of mass frame on the finite L3 box with the periodic bound-
ary condition, where L is assumed to be larger than 2R. We then determine k, the
magnitude of the relative momentum of the two pions, from the equation that

By (L) = 2\/k2 + m2, (2.97)

where m, is the pion mass in the infinite volume limit. We finally determine do(k),
by solving eq.(296) with k from eq.(297) and the spatial size L. It should be noted
that the momentum for one pion is quantized as p = 27n/L on the finite box with
the periodic boundary condition. If an interaction between two pions were absent, we
would have Eo(L) = 24/p? +m2, so that k = |p|. The presence of the interaction
makes k is a little different from |p| on the finite box. The above Liischer’s formula
relates the difference to the scattering phase shift. By applying the formula for two
pions with different p and L, we can determine the scattering phase shift do(k) at
several values of k.

Similarly as above, we consider the 7T} representation, which contains the [ = 1
partial wave as well as [ > 3 contributions. If latter ones are neglected, we again obtain

COt(51 (k)) = MOO = %goo(k}) (298)

On the other hand, if the contribution from [ = 3 partial wave can not be neglected,
in addition to the [ = 1 component, we have

=47 Crm () Y1 (Qpr ™1 (8) Iy (kr) sin 6, (k + j1(kr) cos o1 (k
2

+ 4w Z Cam (k) Yap ()€™ ) [ng(kr) sin 03(k) + js(kr) cos d3(k)]

(2.99)
which should be compared with
o1 (15k) =Y 01 (k)G (1,8) + Y V3 (k)G (1, k). (2.100)
From the matching condition we obtain, after a little algebra,
Mig,10 — cot 61(k), M30,10 )
det ' ’ =0, 2.101
¢ ( M3, 10, M3 30 — cot d3(k) ( )

for m =0, and
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M1 11 — cot d1(k), M3 11, Misz,1-1
det M31711, M31)31 — cot 53(k), M33)3_1 = 0, (2102)
Ms3,1-1, M333-1, Mg 33 — cot d3(k)
for m = 1,—3 or m = —1, 3, while we have
Mg 32 — cot d3(k), M3z 32 >
det ’ : —o, 2.103
¢ < Mss 3-2, M3, 30 — cot d3(k) ( )

for m = 2,—2. From the last equation, we can determine d3(k) at some k and L.
Putting this d3(k) into the first or the second equation, we can also extract d1 (k).

2.3 Some references for the 7= phase shift from lattice QCD

The BS wave function for the 7w system in the isospin I = 2 channel has been
investigated in quenched QCD at k ~ 0(Aoki et al., 2005d) to extract the scattering
length ag through the Liischer’s formula in the center of mass system. The scattering
length is related to the scattering phase shift dq(k) as

P K O(k* 2.104

m—a—o‘fﬂ“o?"‘ k%), (2.104)

where 7y is called the effective range. The calculation of the BS wave function for

the 7w system in the I = 2 channel has been extended to the case of the non-zero

momentum in quenched QCD(Sasaki and Ishizuka, 2008) and the I = 2 n7w scat-

tering phase shift can be extracted using the Liischer’s formula in the laboratory
system(Rummukainen and Steven Gottlieb, 1995)).

Besides quenched calculations, there are only a few calculations for the wm scatter-
ing phase shift.

The I = 2 7w scattering length and phase shift have been calculated through the
Liischer’s formula in 2-flavor lattice QCD with the O(a) improved Wilson fermion in
both center of mass and laboratory systems(Yamazaki et al., 2004). Both chiral and
continuum extrapolations have been taken, though the pion masses in the simulation
are rather heavy.

The I = 2 nw scattering length has been calculated in the 2+1-flavor mixed action
lattice QCD, using the domain-wall valence quarks with the asqtad-improved staggered
sea quarks for m;®¢ ~ 294, 348 and 484 MeV at a ~ 0.125 fm(Beane et al., 2006;
[Beane et al., 2008). The scattering phase shift has also been calculated at k ~ 544
MeV and m, ~ 484 MeV.

Recently the I = 2 7 scattering length has been calculated in 2-flavor twisted
mass lattice QCD for pion masses ranging from 270 MeV to 485 MeV at a ~ 0.086
fm(Feng et al., 2010). The lattice spacing error is estimated at a ~ 0.067 fm for one
pion mass.

The P-wave scattering phase shift for the I = 1 wx system has been calculated in
2-flavor lattice QCD with an improved Wilson fermion at @ = 0.22 fm in the laboratory
system(Aoki et al., 2007)). Since m,/m, =~ 0.41 in this calculation, the decay width of
p meson can be estimated from the scattering phase shift.




3
Nuclear Potential from Lattice QCD

In the previous section, we have explained the Liischer’s method to extract the scat-
tering phase shift from the two particle energy in the finite box, considering the 7w
case as an example. To show the relation between the phase shift and the two particle
energy in the finite box, we use the fact that the BS wave function in the large sepa-
ration such that » > R, where R is the interaction range between two particles in the
infinite volume, satisfies the free Schrodinger equation (the Helmholtz equation) with
the periodic boundary condition.

In this section, instead of the large distance behaviour, we consider the short dis-
tance properties of the BS wave function, from which we define the ”potential” between
two particles. We mainly consider the NN potential, though the method in this section
can be applied to any two particles in principle.

3.1 Strategy to extract potentials in quantum field theories

In this subsection, we describe the strategy to extract the NN potentials in QCD(Ishii et al., 2007}
[Aoki et al., 2008 |Aoki et al., 20100).
As a preparation, we introduce the T-matrix of the VNV scattering below the N N7
inelastic threshold. The 4 x4 T-matrix component for a given total angular momentum
J is decomposed into two 1 x 1 submatrices and one 2 x 2 submatrix as(Ishizuka, 2009}
[Aoki et al., 20100)

TlJ:J,s:O 0 O1x2
TJ == 0 ﬂiJ,s:l 01X2 (31)
02%1 O2x1 T[]:J:Fl,szl

where [ is the orbital angular momentum between two nucleons and s is the total spin.
The unitarity tells us that

. Ty 0 _
T =Tre, Tl e =0k (770 O~k 3.2
Loo =T Thompam =0 (P50 10 Yooty )
with
o 16mEK s, ([ cosey(k) —siney(k)
Ts = — sind5(k), O(k) = siney(k) coses(k) ) (3.3)

where d;5(k) is the scattering phase shift, whereas €;(k) is the mixing angle between
| = J £ 1. Here the total energy of the two nucleons is given by 2Ej, = 21/k? + m3; in
the center of mass frame.
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Let us start describing the strategy to extract the potential in QCD. We first define
the BS amplitude for two nucleons in the center of mass frame as

ap(r) = (0T {Na(y,0)Njs(x, 0)} [k, 50, —k, sp; in), (3-4)

where the relative coordinate denoted as r = x — y, the special momentum and the
helicity for incoming nucleon is denoted by (k, s,) or (—k, sp), the total energy E = 2F},
with k& = |k|. The local composite nucleon operator is given by

N (x) = g ! (x)a5? () (im2)gn (Cy5) "7 4" ()
= g3 (2) [¢" (2)ir2C54° ()] (3.5)

where ¢%/ is a quark field with the color index a, the flavor index f and the spinor index
a. Here repeated index assumes a sum, C' = 7974 is the charge conjugation matrix
and 7y acts on the flavor index. Unless necessary, the flavor indices are implicit.

Let us briefly consider the meaning of the BS wave function. By writing

(OIT {N(y.0) S / N, 2(NN), m, E| fum(r, E)

n,m=0

(3.6)

where [2N,n(NN), m, E) is an in-state containing two nucleons, n pairs of nucleon-
antinucleon and m pions with the total energy E, we see that o= (r) = foo(r, E). (Our
normalization is (2N, n(NN), mn, E|[2N,n/(NN),m'r, E')) = 2E5(E — E')Snn S -
) Therefore the BS wave function ¢ (r) is an amplitude to find the in-state |2V, E)
in T{N(y,0)N(x,0)} |0).

As in the case of 7w, the asymptotic behaviours of the BS wave function at r =
[r| > R, where R is the interaction range of two nucleons, agree with those of the
scattering wave of the quantum mechanics(Ishizuka, 2009; |Aoki et al., 20108). The BS
wave function for a given total angular momentum J has 4 components. For example,
the BS wave function for [ = J, s = 0 at large r becomes

©1— 7 s—0(r; k) = ZY 77 (0)e700) (51 (kr) cos 8 70(k) + ny(kr)sin 8 0(k))

eid.0(k)

~ ZYJJZ (Qr) sin(kr + 5]0(k) - 7TJ/2) (37)

,
where J, is the z component of the total angular momentum. See Refs.
[Aoki et al., 20100) for more details. This shows that the BS wave function can be
regarded as the NN scattering wave.

Now we define the non-local NN “potential” through ¢%(r)(Ishii ef al., 2007}
[Aoki et al., 2008; |Aoki et al., 20100) as

k? E 3 E -V?

(5, ~ o) #Es0) = [ @0 Uuns(x ehly). Ho= - (38)
where 1 = my /2 is the reduced mass of the two nucleons. It is noted that U(x,y)
is non-local but energy-independent and this potential is equivalent to the local but
energy dependent potential V' (r, k), which is defined by
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2
K(r,k) = <§_M - HO) o(r, k) = V(r, k)p(x, k), (3.9)

where we write p(r,k) = ¢¥(r). To see the equivalence, we construct the dual basis
o(k,r) as

@&m)zjﬁ%n*mgmwmﬁx (3.10)

where the metric is given by

n(k,p) = /dBT o(r.K)o(r,p). (3.11)

It is easy to see that the dual basis satisfies
[ stex)ote.p) =500 p) (312)
[ el p)p(.) = 60— ). (313)

Using the dual basis, we obtain the non-local potential form the local one as

W&w:/pr&mﬂnw:/pr&Mﬂ&mﬂnw- (3.14)

This establishes one to one correspondence between the non-local but energy-independent
potential U(x,y) and the local but energy-dependent one V (r, k).

The equivalence also tells us that we need to know the BS wave function at all
energies to completely construct U(x,y). Although this is principle possible, it is in
practice very difficult. We therefore consider the following derivative expansion of

U(x,y).

Ux,y) = V(x,V)d® (x —y). (3.15)

The structure of the V(r, V) can be determined as follows(Okubo and Marshak, 1958)).
The most general (non-relativistic) NN potential is parameterized as

V(rlur27p17p275:170_:277?177?27t) (316)

where r;, p;, ; and 7; are the coordinate, the momentum, the spin and the isospin of
the i-th nucleon, respectively and the ¢ is the time. There are several conditions this
potential should satistfy.
1. Probability conservation implies the hermiticity of the potential, VI = V.
2. Eneregy conservation imply the ¢ independence while the momentum conservation
says that the potential depends on the combination r = r; — rs only.
3. Galilei invariance tells us that the potential contains p = p; — p2 only. From these
three conditions, we have V = V(r, p, &1, 02, 71, T2).
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4. The total angular momentum conservation implies that V' is invariant under J=

—

L + S with the orbital angular momentum L=rx p and the total spin S =
(01 + 0'2)/2.

5. The potential should be invariant under parity, (r,p,d;) = (—r, —p, 7).

6. The potential is invariant under time-reversal, (r,p,d;) — (r, —p, —J;).

7. Quantum statistics of the exchange of two nucleons implies the invariance of the
potential under (r,p,dy,d2, 71, 72) = (—r, —Pp, 02,51, T2, T1 ).

8. From isospin invariance, V' contains only 1 -1 or 7; - 7 in the isospin space.

9. The potential has only 74" terms with (n,m) = (0,0),(1,0),(0,1),(1,1). The
other higher order terms can be reduced to these terms because of the property
that o%c? = 6% + ie'T* ",

The terms which contain Pauli matrices and satisfy the above conditions are con-
structed as

= =

51 . 52, (51 + 52) . L, (51 . I‘)(&Q . I‘), (51 . p)(&g . p), (31 . L)(&Q . E), (317)

which are customarily reorganized as

-

G -Gy, S12=3(G1 8)(Fo-F) =1 -Fa, L-S,

Pip =(01-p)(02-pP), Wiz =Qu12— %51 -Gy L2, (3.18)
where S12 is called the tensor operator, and
(61 D)@ L) + (32 D)@ - D), | (3.19)
Finally we obtain

V=Y Vi,pd.é)P] (3.20)
I=1,2

where

o - 1 1 1
VI=VI+ V(61 62) + Vig(L-S)+ 5{‘/1{, Sia} + §{V1£7P12} + §{Vv{/, W2}
(3.21)

with coefficient functions Vi = Vi (2, p?, L?) for I = 0,1 and X = 0,0,T, LS, P,W.
Here Py is the projection operator to the state with the total isospin I, given by

1. 3
PIT:O = Z — T1 T2, P]:1 = Z + 71 - To. (3.22)

The anticommutators in Eq.([3ZI]) are necessary to make the potential hermitian, since
S12, P12 and Wia do not commute with the scalar potentials Vi (r?, p2, L?).



22  Nuclear Potential from Lattice QCD

From the general consideration above, we have, for example at O(V),

Ve, V) = 3 (Vi) + V()3 32+ VE()S12 + VEs()L - 5| P
1=0,1

+ O(V?). (3.23)

This form of the potential has often been used in nuclear physics. Note that the first
3 terms are O(1) while the LS potential is O(V).

This is the strategy to define and extract the NN potential in QCD. There are
two important and mutually-related remarks.

The leading order potential in the derivative expansion is nothing but the local
potential V(r, k). By construction, this (local) potential reproduces the correct phase
shift 6(k) at k = |k|, while it is not guaranteed that this potential gives the correct
phase shift at different k&’ = |k’|(# k). This means that the local potential V (r, k) and
V(r,k’) may differ, and this energy dependence of the local potential gives a measure
for the non-locality of the non-local but energy independent potential U(x,y) because
of the equivalence between V' and U. If the the first order in the derivative expansion
is good at low energy, we expect that energy dependence of the potential V' is expected
to be small at small k.

Secondly it should be mentioned that the potential U defined through the BS
amplitude of course depends on the choice of the interpolating field operators N (x).
In principle, one may choose any (local) composite operators with the same quantum
numbers as the nucleon to define the BS wave function. Different choices for the
nucleon operator give different BS wave functions, which may leads to different NN
potentials, though they all gives the same scattering phase shift. While the potential
is not an physical observable in this sense, it does not mean that it is useless, however.
The strategy in this report gives one specific scheme for the NN potential in QCD,
which is defined through the BS amplitude constructed from the local nucleon field
without derivatives. This is quite analogous to the situation for the running coupling in
QCD. Although the running coupling is scheme-dependent, it is useful to understand
and describe the deep inelastic proton-electron scattering. Let us make this analogy
more concrete. A physical observables is the scattering data in both cases, the deep
inelastic scattering or the NN scattering. An example of the physical interpretation
is the almost free partons in proton for the case of the deep inelastic scattering, while
it is an existence of the repulsive core for the case of NN scattering. An theoretical
explanation for the phenomena is the asymptotic freedom of the QCD running coupling
for the free partons, while no valid theoretical explanation exists so far for the repulsive
core. In this report, we introduce one definite scheme for the potential based on QCD,
in order to show an existence of the repulsive core. Although the choice of the scheme
is irrelevant in principle, it is better to use a ”good” scheme in practice. In the case
of the running coupling, good convergence of the pertubative expansion may give one
criterion, though the popularly used MS coupling may not be the best one for this
criterion. In the case of the NN potential, on the other hand, good convergence of
the derivative expansion may give a criteria for a ”good” potential. In other words,
the good potential is almost local and energy-independent. The NN potential which
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is completely local and energy-independent at all energy range is therefore the best
one. It is also unique if the inverse scattering method holds for the NN case.

3.2 Extraction of the BS wave function on the lattice

In this subsection, we explain how to extract the BS wave function from correlation
functions on the lattice. For simplicity, we here consider the [ = 0 state, namely the
S-state.

The BS wave function on the lattice with the lattice spacing a and the spatial
lattice volume L? is extracted from the 4-point correlation function, by inserting the
complete set of the QCD eigenstates in the finite box as,

Ga,@ (X7 y,t —to; JP) = <O|7’L,3 (yv t)poz (X, t)jpn (tO; JP)|O> (3.24)
=Y A (Olng(y, t)pa(x, t)|Ey)e Frli=to) (3.25)
n=0
. P e
oo Aopas(rJT), r=x-y (3.26)

with the matrix element A, = (E,|J,,(0)|0), where p (n) is the proton (neutron)
interpolating operator, p = N* (n = N9), |E,) is the QCD eigenstate with the
baryon number 2 and the total energy E, = 2\/k2 4+ m3%. The state created by the
source J,,, have the conserved quantum numbers, (J,J,) (total angular momentum
and its z-component), I(total isospin) and P (parity). To study the NN potential in
the J = 0 with I = 1 (1Sp) channel and the J¥ = 1% with I = 0 (3S; and ®Dy)
channel, a wall-source located at t = ¢ty with the Coulomb gauge fixing only at t = g
is used,

Tpn(to, ") = Pi [pa (to)n ™ (to)] (3.27)

where p¥all(t5) and n"®!(¢y) are obtained by replacing the local quark fields ¢(z) in
N(x) by the wall quark fields,

M (ty) = Zq(x, to). (3.28)

X

By construction, the source operator eq.([321) has zero orbital angular momentum
at t = tg, so that states with fixed (J,J.) are obtained by the spin projection with
(s,8:) = (J, J.), e.g. P50 = (02)3q and Pg;mz:o = (01)pa- Note that the [ and s are
not separately conserved, so that the state created by the source J,, (to; 17) becomes
a mixture of the [ = 0 (S-state) and | = 2 (D-state) at later time ¢ > .

The BS wave function in the orbital S state is then defined with the projection
operator for the cubic group P® with the irreducible representation R and that for
the spin P? as

o(r' So) = PP 0p(r0%) = o 3 Piasle'ri0T)  (329)
geO(3,Z)
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4o 1
o(r®81) = PA P=0p(r;17) = 7 Z op Yoas(g i 171, (3.30)
g€0(3,Z)

where the summation over g € O(3,Z) is taken for the cubic transformation group
with 24 elements to project out the [ = 0 component in the A representation, and
contributions from the higher orbital waves with I > 4 contained in the A] rep. are
expected to be negligible at low energy.

Form these BS wave functions, we can construct the local potentials at the leading
order of the derivative expansion. For the 'Sy channel, the central potential becomes

B 1 V(' S)

Vo(rt So) = V=1 (r) + VIE () =
el 0) o (r) . (1) my  my  @(r;1Sp)

(3.31)

while for the 3S; channel there are two independent terms, Vo (r,2Sy) = V{i=0(r) —
3VI=0(r) and V£=9(r), at the leading order. For a while we ignore V- and define the
effective central potential as

k2 1 VZp(r;3Sy)

effr...3 _ v -
Ve (ri8y) = my  my  p(r;3S1)

(3.32)
where the "effective” central potential means that it includes the effect of the tensor
potential V7 as the second order pertubation.

It is noted here that k2 is determined from the total energy Ey of two nucleons as
EO =2./k2 + m?v

3.3 Tensor potential

While the central potential acts separately on the S and D components, the tensor
potential provides a coupling between these two components. We therefore consider a
coupled-channel Schédinger equation in the J” = 17 channel, in which the BS wave
function has both S-wave and D-wave components as

(Ho + Vo(r;17) 4+ Vp(r)Siz) o(r; 11) = n]z—jvgo(r; 17). (3.33)

The projections to the S-wave and D-wave components similar to eq. (8:30) are defined
by

Pgos(r) = PATpap(r; 1), (3.34)
+
Qpap(r) = (1 - P )Pap(r;17). (3.35)
Here both Py.s and Qgqp contain additional components with [ > 4 but they are
expected to be small at low nenergy.

Multiplying P and @ to eq.[333) from the left and using the properties that Hy,
Vo(r;17) and Vp(r) commute with P and @, we obtain

2
Hy[Pe](r) + Vo (r 17)[Pe](r) + Vi (r) [PS12¢](r) = n]z—N[Ps&] (r)  (3.36)
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Fig. 3.1 The NN wave function in 'Sy and 3S; channels at m, = 529 MeV, measured at
(t — to) = 6a. The inset is a three-dimensional plot of the wave function ¢(x,y, z = 0;' So).

Hy[Q)(r) + Vo (ri17)[Qe](r) + Vi(n)[QS12¢](r) = —[Qel(r)  (3.37)

k2
my
where, for simplicity, the spinor indices, o and [ are suppressed. Note that Si12 does
not commute with P or Q.

By solving these equations for («, 5) = (2,1) component, we finally extract

2
Vo(r;1h) = n]j—N - ﬁ {[QS12¢]21(r) Ho[Ppla1 (r) — [PS12¢]21(r) Ho[Qp]21(r) }
(3.38)
Ve(r) = g5 {Qelar () B Pias () — [Plar (1) HolQuela (1) (3.39)
where

D(r) = [Ppla1(r)Ho[QS120)21(r) — [Qepla1 (1) Ho[PS126p]21 (7). (3.40)

Note that the effective central potential is expressed as
VEE(r3Sy) = K Ho[Pela(r) (3.41)

my  [Pplai(r)
with Hy = —V?/my.

3.4 Results in lattice QCD

The first result for the NN potential in lattice QCD based on the strategy in the
previous subsections appeared in Ref.(Ishii et al., 2007), where the (effective) central
potential has been calculated for 'Sy (3S;) channel in quenched QCD simulations at




26  Nuclear Potential from Lattice QCD

600 - 10‘0 T T T T T -
A 330 e
500 £ . 1 E
= 50 F ° -
o 400 | 4o 2 E
> VS
=80F % ofF B L e.eeccsed]
% a Ba2?
o 200 F ° 2 -
>
A% -50 1 1 1 1
100 4. 00 05 10 15 20
0 %nﬂnlase?sssls&
0.0 0.5 1.0 1.5 2.0

r [fm]

Fig. 3.2 The central potential in the 'Sy channel and the effective central potential in the
3S; channels at m, = 529 MeV.

the lattice spacing a ~ 0.137 fm and the spacial extension L ~ 4.4 fm. More details of
numerical simulations can be found in Ref. (Ishii et al., 2007]).

Fig[3Tlshows the BS wave function in 'Sy and 3S; channels at m, = 529 MeV and
k2 ~ 0, which is measured at ¢t — t; = 6a. The wave functions are normalized to be 1
at the largest spatial point » = 2.192 fm.

The reconstructed central and effective central potentials in the 'Sy and 3S; chan-
nels at m, = 529 MeV from the BS wave functions with the formulae B31]) and (332
are shown in Fig[3.2l The overall structure of the potentials are similar to the known
phenomenological N N potentials discussed in Sec[I] namely the repulsive core at short
distance surrounded by the attractive well at medium and long distances. The figure
also shows that the interaction between two nucleons is well switched off for r > 1.5
fm, so that the condition R < L/2 ~ 2.2 is satisfied.

To check the stability of these potentials against the time-slice adopted to define
the BS wave function, the t-dependence of the 'Sy potential for several different values
of r is shown in Figl33l at m, = 529 MeV. In this case, the choice t — tg = 6a for
the extraction of Vi (r) is large enough to assure the stability within statistical errors,
which indicates the ground state dominance at this ¢.

The NN potentials in the 'Sy channel are compared among three different quark
masses in Figl34 As the quark mass decreases, the repulsive core at short distance
and the attractive well at medium distance becomes stronger simultaneously.

The 3S; and ?D; components of the BS wave functions obtained from J¥ = 11,
J. = 0 state at m, = 529 MeV and k? ~ 0 are plotted in Figl35a), according to
eqs. (34) and @30). Note that the 3D; wave function becomes multi-valued as a
function of r due to the its angular dependence. It is expected that («, ) = (2,1) spin
component of the D-state wave function for J© = 11 and J, = 0 is proportional to the
Ya0(6, ¢) ox 3cos® @ — 1. As shown in Fig[Z5(b), the D-state wave function, divided by
the Y50(6, ¢), becomes almost single-valued, so that the D-wave component is indeed
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Fig. 3.3 The t dependence of the potential at » = 0, 0.14, 0.19, 1.37, 2.19, 0.69 fm from top
to bottom in the 'Sy channel at m, = 529 MeV.
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Fig. 3.4 The central potentials in the 'Sy channel at three different quark masses.

dominant in Q(r). The central potential Vc(r 1*) and the tensor potential Vi (r)
together with the effectlve central potential V, ( 38) in the 3S; channel are plotted
in Fig[3.8l Note that V& (r;3S1) contains the effect of Vip(r) implicitly as higher order
effects through the process such as 2S; =3 D; =2 S;. In the real world, ( 39)
is expected to acquire large attraction from the tensor force, which is reason why
the bound state for a deuteron exist in the 3S; while no bound states appears for a
dineutron. As seen from Fig[3.6] the difference between Vo (r; 17) and VST (r;3 Sq) is
still small in this quenched simulations due to relatively large quark masses.

The tensor potential Vr(r) in Figl3 is negative for the whole range of r within
statistical errors and has a minimum at short distance around 0.4 fm. If the tensor
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jected out from a single state with J© = 17, J, = 0. (b) The D-state wave function is divided
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Fig. 3.6 The central potential Vo (r;11) and the tensor potential Vir(r) obtained from the
JT BS wave function at m, = 529 MeV, together with Véﬁ(r;3 S1).

force receives significant contribution from the one-pion exchange as expected from
the meson theory, Vi would be rather sensitive to the change of the quark mass. As
shown in FigB7 indeed the attraction of Vr(r) substantially increases as the quark
mass decreases.

At present potentials are determined at leading order of the derivative expansion,
and examples presented so far are extracted from lattice data taken at k ~ 0. If the
higher order terms such as VLs(T)E - S becomes important, the LO local potentials
determined at k > 0 are expected to be different from the one at k ~ 0. From such k
dependence of the LO local potentials, some of the higher order terms can in principle
be determined. A lattice QCD analysis on the k dependence has been recently carried
out by changing the spatial boundary condition of the quark field from the periodic
to the anti-periodic ones, which corresponds to the change from k ~ 0 MeV to k =
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Fig. 3.7 Quark mass dependence of the tensor potential Vr(r).

\/3(m/L)? ~ 250 MeV. In Fig38 the local potential for the 1Sy channel obtained at
k ~ 250 MeV is compared with the one at k ~ 0 in quenched QCD at a = 0.137 fm
and m, = 529 MeV. As seen from the figure, the k dependence of the local potential
turns out to be very small for every r within statistical errors. Namely the non-locality
of the potential with the choice of the local interpolating operator for the nucleon is
small, and the present local potential at the LO can be used to well describe phsyical
observables such as the phase shift 0o (k) from k& ~ 0 to k ~ 250 MeV without significant
modification, at least in quenched QCD at a = 0.137 fm and m, = 529 MeV. This
also indicates that the definition for the potential through the BS wave function with
the local nucleon operator is a ”good scheme”.
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Fig. 3.8 A comparison of central potentials at k& ~ 0 (PBC, blue) and at k ~ 250 MeV
(APBC, red) for the 'Sy state in quenched QCD at a = 0.137 fm and m, = 529 MeV.
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Repulsive core and operator product
expansion in QCD

As shown in the previous section, the lattice QCD calculations shows that the NN
potential defined through the BS wave function has not only the attraction at medium
to long distance, which has long well been understood in terms of pion and other heav-
ier meson exchanges, but also a characteristic repulsive core at short distance, whose
origin is still theoretically unclear. A recent attempt(Aoki et al., 2010d) to theoreti-
cally understand the short distance behavior of the potential in terms of the operator
product expansion(OPE) is explained in this section.

4.1 Basic idea

Let us first explain the basic idea. We consider the equal time BS wave function defined
by

pip(r) = (0[0a(r/2,0)05(-1/2,0)|E) (4.1)

where |E) is some eigen-state of a certain system with the total energy E, and Oy,
Op are some operators of this system. We here suppress other quantum number of the
state |E) for simplicity. The OPE reads

04(r/2,0)0p(—r/2,0) ~ ZDAB )Oc(0,0), (4.2)

from which we have

<PAB Z DAB ){0|0c(0,0)|E). (4.3)

It is noted that r dependence appears solely in Dg p(r) while the E dependence exists
only in (0|O¢(0,0)|E). Suppose that the coefficient function of the OPE behaves in
the small r = |r| limit as

Dgp(r) = r*c(~logr)’ fc (6, 9) (4.4)

where 6, ¢ are angles in the polar coordinate of r, the BS wave function becomes

¢ip(r ZT‘“C —logr)’ fo(0,¢)Dc(E), De(E) = (0[0c(0,0)|E)  (4.5)
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in this limit. The potential at short distances can be known from this expression. For
example, in the case of the Ising field theory in 2-dimensions, the OPE for the spin
field o is given by

o(x,0)0(0,0) ~ G(r)1 + /401 (0) +---, =z, (4.6)

where Oy () (=: ¥¢(z) : in terms of the free fermion fields) is an operator of dimension
1, which leads to

p(r,B) = r**D(E) + O(r"*),  D(E) = ¢(0|01(0)|E), (4.7)
where |E) is a two-particle state with energy F = 2v/k? + m?2. From this expression

the potential becomes
" (r, E) + k?¢(r, E) L 31
mo(r, E) T 16 me?

V(r) = (4.8)
in the 7 — 0 limit. The OPE predicts not only the »~2 behavior of the potential at short
distance but also its coefficient —3/16. Furthermore the potential at short distance does
not depend on the energy of the state in this example(Aoki et al., 20090)).

As will be seen later, the dominant terms at short distance have ac = 0. Among
these terms, we assume that C' has the largest contribution such that 8o > B¢ for
VC" # C. Since, as will be also seen later, such dominant operators with ac = 0
mainly couples to the zero angular momentum (L = 0) state, let us consider the BS
wave function with L = 0, given by

pp(r) ~ (—logr)** D (E) + Y | (= logr)’ Deu(E). (4.9)
C'#£C
Using
2/ B_ (—logr)ﬁl[_ﬂ—l]
Ve(—logr)” =-p 2 1 “Togr |’ (4.10)

we obtain the following classification of the short distance behavior of the potential.

1. Bc # 0: The potential at short distance is energy independent and becomes

Be
Vi)~ ————— 4.11
1)~ s (111)
which is attractive for ¢ > 0 and repulsive for o < 0.
2. Bc = 0: In this case the potential becomes
D ’ E - ’
~ De(E) o ogr)fer—t, (4.12)

~ -1
)= DeiE) =
where B¢ < 0 is the second largest one. The sign of the potential at short distance
depends on the sign of D¢/ (E)/De(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at
short distance. The above classification hold at ¢ < r < 1/Aqcp, while the potential
becomes finite even at 7 = 0 on the lattice.
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4.2 Renormalization group analysis and operator product
expansion

In Ny-flavor QCC regularized in D = 4 — 2¢, bare local composite operators Off) (x)
are renormalized as

0% (2) = Zap(g,e)OW (2), (4.13)

We here ignore the contribution from quark mass terms, which generates less singular
terms in the OPE. Throughout this section, summation of repeated indices is assumed.
The meaning of this formula is that finite results are obtained if we insert the right
hand side into any correlation function, provided the QCD coupling and the quark and
gluon fields are appropriately renormalized. We first consider an n—quark correlation
function without operator insertion G%O) (go,€) (Here the dependence on the quark
momenta and other quantum numbers suppressed.), which is renormalized as

GRe (9. 1) = 25" (9.0G1 (90, 0), (4.14)
where the coupling renormalization is given by
90 = 1*Z1(g% €)g” . (4.15)

The renromalization constant Z; in the minimal subtraction (MS) scheme has only
pure poles terms as

2 4 2 4
2 N 1 Bog _ Py Bog 6
Zl(g 76) =1 € % + €2 +O(g ) (416)
where
1 11N 2N 1 34N? 13N 1
= — = — — — | Ny p.(4.17
bo 167r2{ 3 3 } A 2567r4{ 3 ( 3 N) f}( )
Similarly the quark field renormalization constant is given by
2
Zr(g.) = 1= 225+ 0(g"). (4.18)

The gluon field renormalization constant is also similar but is not necessary for our

purpose. Similarly an n—quark correlation function with operator insertion ng‘ (g0, ¢€)
is renormalized as

GV (9. 1) = Zag(g,€) Zz"*(9.€) Gs (g0, €) (4.19)
where
’Y(l) g2
Zap(9,€) = 6ap — 47— + O(g"). (4.20)

The renormalization group (RG) equations are obtained from the simple fact that
bare quantities are independent of the renormalization scale p. Introducing the RG
differential operator
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0 0

=ty tonl9) 5 (4.21)

the RG equation for n—quark correlation functions can be written as

D(p)

(D) +57r(9)} GE (g, ) =0, (4:22)

where the RG beta function is

dg €9
Bp(9) = e = ———F 1%
( ) 6/” 1+%81§gZ1

= —€g — Bog® — B1g” + O(g"), (4.23)

while the RG gamma function for quark fields is

olnZz
vr(g9) = Bo(g, €) % = vr0 g% + O(g"). (4.24)

Note that Sp(g) differs from 84(g) only by —eg, and therefore has the smooth limit
to D = 4. The RG invariant A parameter satisfies D(u)A = 0 with the Ansatz that

A=pelf@, (4.25)

The solution is the lambda-parameter in the MS scheme, Ayg, if the arbitrary inte-
gration constant is fixed by requiring that for small coupling

1B
2609%> 203

Finally the RG equations for n—quark correlation functions with operator insertion are
of the form

flg) = In(Bog?) + O(g). (4.26)

n ren ren
{DG) + S9r(9)} G2 (9.1) = 1aB(0)GSE (9. = 0, (4.27)
where .
0Z;
148(9) = ~Zachp(9,) =5EE = 1ing® + O(g"). (4.28)

Let us consider the OPE

01(y/2)02(=y/2) ~ Dp(y) Os(0). (4.29)

where O; and Os are nucleon operators and the set of operators Op are local 6—quark
operators of canonical dimension 9 and higher. All operators in (£.29) are renormalized
ones, but from now on we suppress the labels (™). As we will see, the nucleon operators
are renormalized diagonally as

01 = Zi(g,¢) O, Oz = Zs(g,€) O, (4.30)

and the corresponding RG gamma functions are defined by
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olnZ
.2(9) = Bp(g,€) —5 12 = 129" + O(g"), (4.31)

Comparing (£29) with its bare version,

01" (y/2)05” (~y/2) = D (4) 05 (0), (4.32)
we can read off the renormalization of the coeflicient functions as
Di(y) = Z1(9.9 229, ) DY (y) Z1 b (9. ) (4.33)
so the the RG equation becomes
D(u)Dp(g, 1,y) + Dalg, 11, y) 7a8(9) = 0, (4.34)

where the effective gamma function matrix is defined as

FaB(9) = 1a8(9) = [11(9) +72(9)] da5- (4.35)

Hereafter we assume the dimensionless coefficient functions, which can be written as
Da(g, 1, y) = Da(g; pr) with r = |y|. For the case of operators with higher canonical
dimension 9 4+ « the coefficients are of the form r“ times dimensionless functions
and the analysis is completely analogous and can be done independently, since in the
massless theory operators of different dimension do not mix. In the full theory quark
mass terms are also present, but they correspond to higher powers in 7 and therefore
can be neglected.

To solve the vector partial equation [@34), we introduce Uap(g), the solution of
the matrix ordinary differential equation

d .

B(g) 3 Uap(g) =3ac(9) Ucr(g) (4.36)

and its matrix inverse Uap(g). With this solution, Dp(g; ur) can be easily obtained
as

Dgp(g; pr) = Fa(Ar) Uag(g), (4.37)

where the vector Fs is RG-invariant. Now the running coupling g is introduced as the
solution of the equation

£(3) = f(g) +In(ur) = In(Ar). (4.38)

Note that g is a function of r but does not depend on u. Since Fjz is RG invariant, we
can evaluate it at = 1/r as

Fp(Ar) = Da(3;1) Uap(g). (4.39)

By definition g = g at u = 1/r. Since, because of asymptotic freedom (AF), for r — 0

also g — 0 as
o 1

2B In(Ar)’

Fp can be calculated perturbatively.

(4.40)
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Putting everything together, the operator product expansion ([@29) can be rewrit-
ten as ~
01(y/2)02(—y/2) ~ Fp(Ar) Op(0), (4.41)
where

OB = UBc(g) Oc. (4.42)

There is a factorization of the operator product into perturbative and non-perturbative
quantities: Fp(Ar) is perturbative and calculable (for » — 0) thanks to AF, whereas
the matrix elements of Op are non-perturbative but r-independent.

The coefficient functions have the perturbative expression

Da(g; pr) = Dayo + ¢*Dasr(pr) + O(g"), (4.43)
and the basis of operators can be chosen such that the 1-loop mixing matrix is diagonal:

YaB(9) =260 Ba g dan + O(g"). (4.44)

In such a basis the solution of ([@36]) in perturbation theory takes the form

Uas(g9) = {0as + Ran(9)} 97277, (4.45)

where Rag(g9) = O(g?), with possible multiplicative log g? factors, depending on the
details of the spectrum of 1-loop eigenvalues 54. An operator Op first occurring at
{p-loop order on the right hand side of [@29]) has coefficient F(Ar) with leading short
distance behavior

Fp(Ar) ~ Dpy, (1) g2“77P5) ~ Dp 4, (1) (=28 In(Ar))?5 =17 . (4.46)

In principle, an operator with very large Bg, even if it is not present in the expansion
at tree level yet, might be important at short distances. This is why it is necessary to
calculate the full 1-loop spectrum of Sp eigenvalues. As we will see, no such operators
exist for the two nucleon case, and therefore operators with non-vanishing tree level
coeflicients are dominating at short distances. The corresponding coefficient functions
have leading short distance behavior given by

Fp(Ar) ~ Dp.o (=280 In(Ar))?? . (4.47)

4.3 OPE and Anomalous dimensions for two nucleons

The general form of a gauge invariant local 3—quark operator is given by

P — pfgh be a,, b, h
B (x) = BJF (x) = gy (2)g5" (2)a5" () (4.48)
The color index runs from 1 to N = 3, the spinor index from 1 to 4, and the flavor
index from 1 to Ny. A summation over a repeated index is assumed, unless otherwise
stated. Note that Bi“é}; is symmetric under any interchange of pairs of indices (e.g.
Bg%}fy = ng;) because the quark fields anticommute. For simplicity we sometimes use
the notation such as F' = fgh and I' = afv as indicated in (£48]).
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The nucleon operator is constructed from the above operators as

Bl(x) = (Py4) yor BLIS (C5) (im2)*" (4.49)

where Pry = (1 4+ 74)/2 is the projection to the large spinor component, C' = 274
is the charge conjugation matrix, and 75 is the Pauli matrix in the flavor space (for
N; = 2) given by (im2)?9 = /9. Both Cv5 and im are anti-symmetric under the
interchange of two indices, so that the nucleon operator has spin 1/2 and isospin 1/2.
Although the explicit form of the v matrices is unnecessary in principle, we find it
convenient to use a chiral convention given by

(0 oy (01 B (10
Tk = (—iok 0 ) y Y4 = (1()) » V5 = 71727374 = (0_1) . (4.50)

As discussed in the previous subsection, the OPE at the tree level (generically)
dominates at short distance. The OPE of two nucleon operators given above at tree
level becomes

Bl(w +y/2)B3a — y/2) = Bl@)B)(w) + 5 {0.[BL@)]By(@) - Bl(0)0,[By()]}
+0(y?). (4.51)

For the two-nucleon operator with either the combination [af8], {fg} (S = 0) or the
combination {3}, [fg] (S = 1), terms odd in y vanish in the above OPE;, so that only
even L contributions appear. These 6—quark operators are anti-symmetric under the
exchange (o, f) <> (8, g). On the other hand, for two other operators with ([a5], [fg])
or ({ap},{fg}), which are symmetric under the exchange, terms even in y vanish in
the OPE and only odd L’s contribute.

Knowing the anomalous dimensions of the 6—quark operators appearing in the
OPE, which will be calculated later in this subsection, the OPE at short distance
(r=lyl <1, ya = 0) becomes

Bl(z +y/2)Bj(z — y/2) ~ ZCA VOIS () + > " dp(r)y*OL% T (x) + O(r?),
’ (4.52)
where the coefficient functions behave as
ea(r) ~ (—logr)P* | dp(r) ~ (~logr)P® (4.53)

and 4 g are related to the anomalous dimensions of the 6-quark operators Of;%’A and

of those with one derivative Oi%’f. The wave function defined through the eigenstate
|E) is given by

(peEven(y) _ <O|B£(I 4 y/Z)Bg(I — y/2)|E> ~ Z CA(’I”) <O|O(J;%’A(Qj)|E> (454)
A

for the anti-symmetric states, while
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P%4(y) = (0|BL(z +y/2)BY(x — y/2)|E) ~ Z dp(r)y" (00155 ()|E) (4.55)

for the symmetric states. Hereafter we consider only 6-quark operators without deriva-
tives and calculate the corresponding anomalous dimensions.

The renormalization factor Zx of a k-quark operator X = [¢*] is defined through
the relation

4" = Zx|ak) = Zx 2}/ *[¢"], (4.56)

where ¢o(q) is the bare (renormalized) quark field. The wave function renormalization
factor for the quark field is given at 1-loop by

ACr

Zr =1+92Zp) . Zp) =~

(4.57)

where ) is the gauge parameter and Cp = —N;ﬁ L

At 1-loop the renormalization of simple k—quark operators without gauge fields is
given by the divergent parts of diagrams involving exchange of a gluon between any
pair of quark fields. The 1-loop correction to the insertion of an operator g% (x)qg’g (x)
in any correlation function involving external quarks is expressed as the contraction
of

45! (@)ag” (2) 5 / dPyd”z A% (y) AT (2)[7" ()igT*yua” (0)][7% (2)ig TP 797 (2)]
(4.58)

where tr TATE = 648 /2 in our normalization. Since two identical contributions cancel
the 2! in the denominator, the contraction at 1-loop is given by

= 9% (T")aay (T, /dDy "z [Sr(x = 9742 Gy = 2)
x [Sp(z — 2)na(2)]5 " (4.59)
where the free quark and gauge propagators are given in momentum space as

—ip+m 1 k. k.,
p2¢+7m2’ Goun(k) = = [gw,—(l—)\) e (4.60)

Sr(p) =
The above contribution can be written as
dPpdPq ) .
{5aa15bb1 NéabyOarb} / 7Taa1,ﬁ51 (p. @) a5 (p)e" g3 (q)e™”

(4.61)

where

D
Toas 8, (P, q) = / (;iﬂ)kD [SF(p + k)Yl o, Guv (k) [SF(q — k) 1wlgp, » (4.62)




OPE and Anomalous dimensions for two nucleons 39

whose divergent part is independent of the momenta p, ¢ and is given by

11 1
Taal BB1 (O O) 1671'2 [_Z Z O pv & Opuv +Al®1 (463)
i aa1,BB1
with o, = % [V, 7). The divergent part of the 1-loop contribution becomes
" 1—loop,div 92 fe
|02 (@)% ()] = v L [(To +ATy) - ¢*(2) © ¢ (@)] 7, (4.61)

where (bold—faced symbols represent matrices in flavor and spinor space)

1, 1 = ffi,99
(To)idy s = =7 D {8 @ s + Now@s } 005 (4.65)
g
ffi991 s ff1991
(T = {101+ N1®1}aa17ﬂ61 : (4.66)

Here we use the notation

(Keylg, =X, BN, —X YL, a6
{S#v}aﬁ - 5}‘9(0,#1/)0‘57 {l}fg = 5f95 ap - (468)

By the following Fierz identities for spinor indices

1 . 3
- > 0w ® 0y = Pr @ Pr+ P @ P, — 2(Pr@Pg + PLOPL),  (4.69)
j%

1 . . 3
-3 > 0w @0y, = Pr&Pr+ PL&P, — 2(Pr @ Pr+ PL® Pr),  (4.70)
v

where Pg, Pp, are the chiral projectors, Pr = (1 +75)/2 and P, = (1 —v5)/2, Ty can
be simplified as

(To)éﬁtll);qgél = §/hgom [5Ot0z1 6,331 - 26,30t160131] + N§olL 5l [53011 60131 - 2601(1153,31]
(4.71)

where either oy, 51 € {1,2}(right-handed) or a1, 81 € {3,4}(left-handed) due to the
chiral projections in eqs. (£.69) and [@.10). In the following calculation of the 1-loop
anomalous dimensions, eq. [@LG4) together with eqs. [@TI) and (EGGH) are the key
equations.

We now calculate the anomalous dimensions of general 3—quark operators at 1-loop.
In terms of the renormalization factor defined as

By = Zyglad) = Zsg Zy P (qP), Zsg =1+ g2(Z5) + Z§2 ) + .., (472)

where Z; (1) ( Zé,};?A ) is the A-independent (dependent) part at 1-loop, the divergent

part of the insertion of the 3-quark operator B = Bé%}; at 1-loop is given by a linear
combination of insertion of baryon operators as
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FF’

. 3 /
(PO E — g2 <Z§}} +Z5D\ + 5219)) BE . (4.73)
I/
The A\-dependent contribution from T in ([GH]) is diagonal and given by
2
2 /(DdivyF 9° N+1
g (") = 3)\327r2 Ne Br (4.74)
so that the A-dependent part of Z3, vanishes:

(1) 7_3/\ N+1—§Z(l)* A 3(N+1)(N_3)70 N =3 4.75

302 7 3972 Ne 27 T 64N~T? € =0 (N=3). (4.75)

Therefore Z3, is A-independent, as expected from the gauge invariance. We leave N
explicit in some formulae to keep track of the origin of the various terms, but we should
always set N = 3 at the end.

The A-independent part of T} from Ty in @ETI) leads to (N = 3):

2
(Wdivyfoh _ N+1) g fah _omnfah _ opfeh _ onfoh
(PO ]S, = o o [3Ba5, — 2Bl —2Blgn —2BlSE| . (4.76)

2
(Wdivyfoh _ N+1) g [ foh fgh}
(T )aﬁﬁ = SN To-% Bogs —2Bgas | (4.77)
where a, 8,7 € {1,2} (right-handed), while 4 € {1 = 3,2 = 4} (left-handed). Note
that the same results hold with hatted and unhatted indices exchanged. These results
can be easily diagonalized as

d

(\foh (o, ()\fgh  _
(Z3q ){ZQB} - (Z?;q ){Zdﬁ} - 1227 (478)
(D\f#gh _ ()N F#gh _ d
(Z3q )[ozB(]]a - (Z?;q )[dﬁ(]]d - _1227 (479)
(\foh _ ((O\Fgh  _ 44
(D\f#gh _ (1) f#gh _ d
(Z3q )[aﬁ(]lﬁ/ - (Z?;q )[@B(TV - _12;7 (481)
where d is given by
1 1
= = or 2 4.82
32N72 9672 (4.82)
The square bracket denotes antisymmetrization [«f8] = af — Ba, and curly bracket

means {af} = af + Pa, {aaf} = aaf + afa + PBaa. The totally symmetric case
corresponds to the decuplet representation (for Ny = 3) and contains the Ny = 2,1 =
3/2 representation. The antisymmetric case corresponds to the octet representation
(for Ny = 3) and contains the Ny = 2,1 = 1/2 representation. The anomalous
dimension at 1-loop, obtained from

olnZ
v =g*" +0(¢g*) = By, G)ngq = 275V g% + O(g"), (4.83)
becomes
fgh fgh
M = (~® = —24d, 4.84
(FY ){aaﬁ} (FY ){daﬁ} ( )
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e
B
(7(1)){;72 _ (,Y(l))fgzj — 94d. (4.87)

We next consider the renormalization of arbitrary local gauge invariant 6—quark
operator of (lowest) dimension 9, which can be written as a linear combination of
operators

Fy,F. _ pF F.
Oc(x) = Brlv? (z) = Byl () B2 (z) = Oa(x)Op(x), (4.88)

with A = (I'y, F1) and B = (T3, F). Note O4(x) and/or Op(x) may not be opera-
tors with proton or nucleon quantum numbers and separately may not be diagonally
renormalizable at one loop. The reason for considering the renormalization in more
generality is that in principle there may be operators in this class which occur in the
OPE of two nucleon operators at higher order in PT, but are relevant in the analysis
because of their potentially large anomalous dimensions.

According to the structure of the divergent part at 1-loop order, the operators in
eq. (£RY) mix only with operators Ocr = O4:Op: which preserve the set of flavors
and Dirac indices in the chiral basis i.e.

FlUFQZF{UFé, F1UF2:F11UF12.

Note however that such operators are not all linearly independent. Relations between
them follow from a general identity satisfied by the totally antisymmetric epsilon
symbol which for N labels reads

NEal"'aNEbl'”bN — Z E(ll...ajflbka]?kl»».(lNEbl...bk*lﬂjbk#»ln»bN . (489)
3ok
For our special case, N = 3, this identity implies the following identities among the
6—quark operators
3
Fy,F F1Fy)[iyj
3BEfE+ > B =0, (4.90)
i,j=1
where i-th index of abc and j-th index of def are interchanged in (abe,def)li, j]. For
example, (I'1,I'2)[1, 1] = a2 B171, 1 8272 or (I'1,I'2)[2, 1] = a1, B18272. Note that
the interchange of indices occurs simultaneously for both I'y, I's and Fi, F5 in the above
formula. The plus sign in [@90) appears because the quark fields are Grassmann.

As an example of identities, let us consider the case that I'1,I's = aaf, a8 (a #
and Fy, Fo = ffg, ffg (f # g). The constraint gives

3Bffg7ffg + (3 _ Q)Bffg,ffg + Bfff,fgg + (2 _ 1)Bfgg7fff

aaf,aBp aaf,aBf aaa,BBB afp,aaf
_ frg.ff Fff fac fag.fff _
= 48,058,058 T Basaipss T Baphiacs = 0 (4.91)
where minus signs in the first line come from the property that Bgzg = —B?ll 1}1722
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An immediate consequence of the identity is that the divergent part of the A-
dependent contributions, calculated from T; in (£64]), must vanish, after the sum-
mation over the 9 different contributions from quark pairs on the different baryonic
parts A, B is taken. The A-dependent part of the contribution of quark contractions
on the same baryonic parts is compensated by the quark field renormalization. Thus
the renormalization of the bare 6-quark operator is A-independent as expected from
gauge invariance.

We thus need only to calculate the contributions from T, which can be classified
into the following 4 different combinations for a pair of two indices:

(f) (&) = -V+1) () () +

(

G () =a-2mD) G +w-2(5) ). (
<><> —@) () =N () (D), (4.94

) (5 (

)= A () 2 () G} { () @) 2 @B (5))

where f # g and a # 8 € (1,2) (Right) or € (3,4) (Left).

The computation can be made according to the following steps:

i.) Select the total flavor content e.g. 3f + 3¢ or 4f + 2g (f # g). These are the
only cases for baryon operators with Ny = 2, but the approach is also applicable to
more general cases (Ny > 2).

ii.) Given a flavor content classify all the possible sets of Dirac labels in the chiral
basis e.g. 111223, 112234, ... It is obvious from the rules above that some have equiva-
lent renormalization at 1-loop e.g. 111223 and 112223 with 1 <> 2, and also those with
hatted and unhatted indices exchanged e.g. 111223 and 133344.

iii.) For given flavor and Dirac sets generate all possible operators. Then generate
all gauge identities between them and determine a maximally independent set {S;}.

iv.) Compute the divergent parts of the members of the independent basis:

I = %%‘jsj : (4.96)

v.) Finally compute the eigenvalues and corresponding eigenvectors of v to de-
termine the operators which renormalize diagonally at 1-loop.

Some of the steps are quite tedious if carried out by hand. e.g. in the case 3f + 3¢
and Dirac indices 112234 there are initially 68 operators in step iii.) with 38 indepen-
dent gauge identities, and hence an independent basis of 30 operators. However all
the steps above can be easily implemented in an algebraic computer program using
MATHEMATICA or MAPLE.

For Ny = 2 the quark f(g) has I3 = 1/2( —1/2). If an eigenvalue is non-degenerate
the corresponding eigenvector belongs to a certain representation of the isospin group.
If the eigenvalue is degenerate then linear combinations of them belong to definite
representations. For the 3f + 3¢ case they can have I = 0, 1,2, 3. Eigenvectors with
I = 0,2 are odd under the interchange f <> g and those with I = 1,3 are even. The
operators in the case 4f 4+ 2g have I3 = 1 and hence have I = 1,2, 3. The eigenvectors
in this case can be obtained from those of the 3f + 3¢ case by applying the isospin
raising operator.
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The complete list of eigenvalues and possible isospins are given in Tables
The most important results are summarized as follows.

1) For the 3f 4+ 3¢ (and 4f + 2g) cases all eigenvalues v; < 48d = 27y, where vy
is the 1-loop anomalous dimension of the nucleon (3—quark) operator.

2) It is easy to construct eigenvectors with eigenvalue 2yy e.g. operators of the

form B’ [f ﬁq a]Bq?f gl since there is no contribution from diagrams where the gluon line
joins quarks in the different baryonic parts.

3) Operators with higher isospin generally have smaller eigenvalues.
We now consider the renormalization of 6—quark operators which appear at the
tree level of the OPE more explicitly. Since

0-10 0
1000
0’75 = 00 0-1 y (497)
0010
in the chiral representation, the nucleon operator is written as
[ _ pffg ffg
B, Ba+a 2,1] BaJra 3.1] (4.98)

where a = 1,2, & = a + 2, and f # ¢. This has anomalous dimension vy = 24d.

Two independent 6—quark operators occurring in the OPE at tree level can be
decomposed as follows. The spin-singlet (S = 0) and isospin-triplet (I = 1) operator
becomes

ffg ffg _ o1 01
B porspaBavhsasipa = Br T Bi1+ Biir + By + By + BY,
(4.99)
where (a # )
ffg ffg ffg frg
Bl Ba[ﬂ a]B 318,0] +Ba[/3 O[]B B16.6)" (4.100)
ffg frg ffg ffg ffg ffg ffg ffg
Bit = BuigeBaa T BaisaBaise  BaigarBaipa T Batsei Bajaa(4100)
ffg fra ffg fra fra fra fra frg
BHI Ba[ﬁa]B 318, ]+Ba[5a]B 313, ]+B i, ]B 318, ]+B i, ]Bg[g ],(4102)
By, = BIlY B+ BIY  BIY (4.103)
01 _ pffg ffg ffg ffg
By, _Ba[,é oz]B”[ ]+Ba[ﬂ a]B BiB.a)’ (4.104)
ffg frg ffg ffg
BVI = Ba[ﬂ a]B BlB.a] Ba[ﬂ O[]B BBl " (4.105)

In the above some contributions are obtained from interchanges under (1,2) < (3,4)
r (1,3) <> (2,4).
Similarly the spin-triplet (S = 1) and isospin-singlet (I = 0) operator is decom-
posed as

Biii,[ﬁ,a]qL[ﬁ,d]Biijd,[ﬁ,a]Jr[ﬁ a B}O +B + BIU +B +B + BVI’
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(4.106)
where

B = Bl Bl + Baff o Pithan 0
B} = BLi3wBih o + Buif e Belb.as + Bl Bals.e + Balfa Bafs o (4:108)
Biir = Bl Bilh o+ BlS Bl + BLE  BofA oy + BLlf 4 Be3 4(4:109)
Bl = Bl Bt e Balba Balhal (4.110)
By = B[ Bl o+ BallwBall oy (4.111)
By = BI{J 4 BY  + B B - (4.112)

It is important to note here that operators B} for both cases (ST = 01 and 10)
have the maximal anomalous dimension at 1-loop, since as noted in point 2) above,
no 1-loop correction from Ty joining quarks from the two baryonic components exists
for Bf;jzl Bray type of operators. Therefore there always exist some operators with
B4 = 0 which dominate in the OPE at short distance.

The 1-loop corrections T to 6-quark operators BS! are summarized as:

d d
()@ = —28mp, ()Y =288, (1) o,

d d d
()W =0, ()Y =By + 6By, (1) =258y, (4113)

for ST = 01. The last two results can be written as

(ro) W = 6%331,, (T )Y = 24dBV,/, , (4.114)
where
By} = BY — %B?}, : BYY,, = BYY . (4.115)
Similarly for ST = 10
r0)® = e, @ =208, )" =0,
i) =8Bl (i) = 6‘531& @)W =218, (a116)
where
Bi) = By — %BW : By, = By . (4.117)

Denoting the eigenvalues of the anomalous dimension matrix by ¢, the values of
75T defined by
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vo — 2N = 2dv°T (4.118)

are given in table €4l (N = 3), which shows, in both cases, that the largest value is
zero while others are all negative. The case 2 in sect. Elis realized: S = 0 and

6
Bc/: glz—m fOfS:07I:17 (4119)
2

Bc/: éoz—m fOI'S:].,I:O. (4120)

4.4  Short distance behavior of the potentials and the repulsive
core

As discussed before, the NN potential at the leading order of the derivative expansion
is given by

Vi) = Vi) + VEI(r)d, - 6o+ VE(r)Sie + O(V). (4.121)

From the result in the previous subsection, the OPE of NN at tree level can be written
as

ST1
Bl(a +y/2) By — y/2) = cviBY 5(2) + crr(—logr)® BIY 4(x) +-(4.122)

where cy; and ¢y are some constants, and - - - represents other contributions, which
are less singular than the first two at short distance. The spinor and flavor indices
@, and f, g are explicitly written here. The anomalous dimensions 357 are given in

@I19) and (E£120).
In the case that S =0and I =1 (a # S and f = g in eq.([@I22)), the leading
contributions couple only to the J = L = 0 state given by

|E) =1|L,=0,5,=0,I, =1)1—0,5=0,1=1 = [0,0,1)0,0,1 - (4.123)
The relevant matrix elements are

evi{0|BY 1510,0, 100,00 = AV YoolaBl{ fa}1, (4.124)

11 {017 510,000 = Af Yoo [a]{ fo i, (4.125)

where A9, and AY,, are non-perturbative constants, Y7 . is a spherical harmonic
function, [af] = (641052 — d510a2)/v/2 Tepresents the (S, S.) = (0,0) component, and

{fg}1 = 071041 corresponds to isospin (I,I,) = (1,1). The wave function at short
distance is dominated by

0°(y) = (0|BL(z + y/2)BY(z — y/2)|0,0,1)0.0.1
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= (4G + A%y (—Tog )™ ) (" S0, 0)M + -+, (4.126)
where ¢(1 Sy, J. = 0)15=11 = YyolaB]{fg}1. This wave function leads to

(—log 7‘)681_1 —B3tAY

AR
Jo 5 (1S, 001 + - (4.127)

%%9 (y) ~ r

mn

where m = my /2 is the reduced mass of the two nucleon system. Since S12 is zero on
#(*Sp,0)!, we have

(—log 7‘)681_1 —B3t A9

VL) (y) i} IL 416, 0)1 + - .- (4.128)

T myn

where V1 (r) = Vo (r) — 3V, (r). Therefore the potential is obtained as

AO
VO (r) = PO (r) 2o~ (4.129)
|7
where
_BSI(_ BT -1
Fsi(y = P (Zlost) . (4.130)

myr?

The potential diverges as F°(r) in the 7 — 0 limit, which is a little weaker than r=2.

In the case of the spin-triplet and isospin-singlet state (S = 1 and I = 0), the
leading contributions in eq.([@I22) couple only to the J = 1 state, which is given by

|B) = [>S1,J. = 1) +a’Dy, J. = 1), (4.131)
where
291, J. =1) = |L. = 0,5, = 1) =0,5=1, (4.132)
1
D1 J,=1) = — 1) — V3|1 2 -1 4.1
| 15‘] > \/m |:|Oa > \/§| 7O> + \/6| ) >}L:2, _ ) ( 33)

x is the mixing coefficient, which is determined by QCD dynamics, and %1 L ; specifies
quantum numbers of the state. We here drop indices I and I, unless necessary.
Relevant matrix elements are given by

) fg
C <0 ‘Bi,aﬁ

351,1> :B?¢ (351) 5 C; <0’B£Zﬁ

3D, 1> =0, (4.134)

for : = Il and VI, where B? are non-perturbative constants, and
¢ (>S1) = Yoo(0, ¢){aBh[fg], (4.135)

With {Ozﬂ}l = 5&1551-
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Using the above results, the BS wave function becomes

eE (y) = {BYr + (—1og)™ Bl b 6 (°51), (4.136)
which leads to
Vi o —B10 (~log )P’ 0 (3
o PE (y) ~ . 2 Bir¢ (°51) - (4.137)
On the other hand,
V()eE y) = BY VIO (1) (3S1) + 2v2Vr(r)BY ¢ (3D1) ,  (4.138)

where V10(r) = VQ(r) + VO(r) and

6(D1) = o [VanlaBh ~ Vi¥nlasho + V&Yalaf) ] lfal,  (1.139)
with {af8}_1 = Ja26s2 and {aB}o = (Ja16s2 + 6510a2)/V/2.
By comparing eq.([@I37) with eq.([@I3]), we obtain

VI0(r) ~ FOr) Vr(r) ~0. (4.140)

By,
This shows that the central potential V10(r) diverges as F'°(r) in the » — 0 limit,
which is a little weaker than 1/r?, while the tensor potential Vr(r) becomes zero in
this limit at the tree level in the OPE.

While the OPE predicts the functional form of the central potentials at short
distance fro both S = 0 and S = 1 channels, it can not determine whether it is
repulsive or attractive. The NN operators are decomposed as

B/ B = [Br + Br1 + Biir + Brv + By + vi]i% , (4.141)
where

(B1)L% = [BrrBrr + BrrBrill% (4.142)
(BU)(Z(Z-} = [BRRBRL + Br.Brr + B Brr + BLRBLL]i% s (4.143)
(BUI)(Z(Z-} = [BRRBLR + Br,rBrr + Br.Brr + BRLBLL]Q% s (4.144)
(Brv)L% = [BrrBri + BLrBrr]lY | (4.145)
(Bv)L% = [BroBrr + BLrBrollY . (4.146)
(Bv1)L% = [BrrBri + BLLBrrll% . (4.147)
Here 3—quark operators in terms of left- and right- handed component are defined by
Blxo = (Pa)asBh s, Bl =Bl (CrysPx)s(ima)gn s (4.148)

for A, X = R or L. We need to know
(0[(B:)!% 12N, B) (4.149)

for i = IT, V1.
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For f # g, Lorentz covariance leads to

OBLBL2N,B) = 3 C8(s)Pau(p.o1)Pau(-p,o2),  (4.150)
A,B=R,L

where s = E? = 4(p? + m%) with the total energy F in the center of mass frame,
o; (i = 1,2) is the spin of the i-th nucleon, and C4¥ is an unknown function of s.
Note that spinor indices are suppressed here. Invariance of QCD under the parity
transformation PBx P~! = v4Bg where R = L and L = R gives

@EIE0) = (0|PBLBY.P~'P|2N. E) = Y C{{Pavau(~p,01) Pprau(p, o2)
A.B

= > CPau(p,01) Pru(—p, 02), (4.151)
A,B

where v4u(—p, 01) = u(p, 01) is used. The above relation implies C)’%é = O4E8. There-
fore the matrix elements are evaluated as

(0[(Br)! 512N, B) = CRI {(Pr ® Pr + P ® Pu)u(p,01)u(—P, 02) bagssa
(4.152)

and

(O[(By )15 97 12N, E) = C{ 7 {(Pr® P+ PL ® Pr)u(p, 01)u(—p, 02) }apssa
(4.153)

The spinor in Dirac representation for v matrices (Itzykson and Zuber, 1980) is
given by

Exn +mpy 0
1 0 1 En +my
wEp,+) = ——— u(Ep,—) = ——
B )= T | e | P T T | 0
0 +p-
(4.154)
for p = (0,0,p, > 0), where Ex = /p?2+m3. For I =1 ( fg+gf) and S = 0
(01 = + and 02 = — ) the above explicit form for the spinors gives
{(Pr ® Pr+ Pp ® Pr)u(p, +)u(—=p, =) }12-21 = En, (4.155)
{(Pr ® P + P ® Pr)u(p, +)u(—p, =) }12-21 = mn, (4.156)

while, for =0 ( fg—gf)and S=1 (o1 =+ and o2 =+ )

{(Pr ® Pr+ Pr ® Pr)u(p, +)u(—p,+)}11 = mn, (4.157)
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{(PR®PL + Pp, ®PR)u(p,+)u(—p,+)}11 = FEn. (4.158)

Finally the ratio of the matrix elements becomes

. . RR,
O(Br)g* 12N E) _ En Crpipa(s) (4.159)
O|(By)igte 12N, B)  mn CEE*(s)
for fg+gf and (01,02) = (+,—) ( 1Sp ), and
_ RR,—
O[(B){? "*|2N E) _ mn Crrior(s) (4.160)

O/(By){y 112N, E) ~ En CF1(s)

for fg—gf and (01,02) = (+,4) (*S1 ), where s = 4E3,.

Unfortunately, the sign of the ratio for these matrix elements can not be deter-
mined. As a very crude estimation, the non-relativistic expansion for constituent
quarks whose mass mg is given by mg = muy/3 is considered. In the large mg
limit, v4q0 = qo and y4ug = ug, where a subscript 0 for ¢ and u means the 0-th

order in the non-relativistic expansion. In this limit, it is easy to show C4¥ = C
for all X,Y, A, B, so that ng+LR = 2C and C’gf = (. Furthermore the first order

correction to C’}?B = (' vanishes in the expansion. Therefore the leading order of the
non-relativistic expansion gives
ol(B fot+gf ON. E 2
{OI( ”)1J?Q+gf| Bl L9io P (4.161)
(O[(Bvr)15 2N, E) mq

for (o1,02) = (+,—) (1Sp ), and

fo—fg 2
(O(Brr)1i "*I2N, E) ~24+0 <p_> (4.162)

(0|(By){{~/912N, E) m

for (o1,02) = (+,+) (351 ). For both cases, the ration has positive sign, which gives
repulsion at short distance, the repulsive core.
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Table 4.1 Eigenvalues 7, of the anomalous dimension
matrix v and isospins of the corresponding eigenvec-
tors for the case 3f3g.

Dirac indices | v,/(2d)
111111 —24
111112 21 | 0,1
111122 —4 0
24 | 0,1
—40 2
111222 —4 0
—12 1
24 | 0,1
—40 2
—72 3
111113 ~16 | 0,1
111123 —6 0,1
~16 | 0,1
24 | 1,2
111223 0 0,1
—6 0,1
~16 | 0,1
18 | 1,2
—24 | 1,2
48 | 2,3
111133 —4 0
16 | 0,1,2
111134 0 1
—4 0
—12 1
16 | 0,1,2
111233 4 1
—4 0
8 | 0,1,1
—16 | 0,1,2
32 |1,2,3
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Table 4.2 As in Tabld41] (continued).

Dirac indices | v;/(2d) I
111234 20 0
1
1
1
—4 0
-8 0,1,1,2
—12 1
16 |0,0,0,1,1,2,2,2
~32 1,2,3
112233 8 0
4 1
4 0,0,1,2
-8 0,1,1,2
~16 0,1,2
—28 2
~30 1,2,3
112234 20 0
12 1
0,1
1
1,1
4 0,0,1,2
-8 0,1,1,2
—12 1
16 | 0,0,1,1,2,2,2
—28 2
~32 1,2,3
~36 1,2,3
111333 —6 0,1
—24 0,1,2,3
111334 0 0,1,1,2
—6 0,1
~18 1,2
—94 0,1,2,3
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Table 4.3 As in Tabld41] (continued).

Dirac indices | v;/(2d) 1
112334 24 0,1
0,1
0 0,0,1,1,1,1,2,2

—6 0,1

~12 1,1,2,2

~18 1,1,2,2

—94 0,1,2,3

-30 0,1,2,3

Table 4.4 The value of v°! (defined in (4.72)) for
each eigen operator in the ST = 01 and ST = 10 states.

I 11 III 1V V' VI
AT =36 —12 —24 -24 -—18 0
101 28 —4 —24 -16 -18 0




5
Concluding Remarks

In this lecture, we consider two different but closely related topics in lattice QCD
approaches to hadron interactions.

In the first part, we explain the Liischer’s formula, which relates the scattering
phase shift to the two particle energy in the finite volume. Although this formula
is well-established and has appeared in the well-written reference(Luscher, 1991)), a
comprehensive (but less rigorous) derivation for the formula has been attempted in this
lecture for the w7 system as an example with the emphasis on the BS wave function.
It is important to stress that the BS wave function at large separation behaves as
the free scattering wave with the phase shift which is determined by the unitarity of
the S—matrix in QCD. The Liischer’s formula can be obtained from this asymptotic
behavior of the BS wave function.

In the second part, on the other hand, we consider the BS wave function at non-
asymptotic region where the interaction between two particles exists, in order to define
the potential in quantum field theories. We apply this method for the two nucleons
to calculate the VIV potential in QCD. The first result from lattice QCD has a good
shape, which reproduces both the repulsive core at short distance and the attractive
well at medium and long distances.

In the last part, the origin of the repulsive core is theoretically investigated by the
OPE and the renormalization group. The analysis predicts the r dependence of the
potentials at short distance, though it can not tell the sign of the potential, positive
(repulsive) or negative (attractive). A crude estimate by the non-relativistic quark
gives the positive sign, the repulsive core.

The method to investigate potentials through the BS wave function in lattice QCD
is a quite new approach, which may be applied to the following directions.

(1) In order to extract the realstic NN potentials from lattice QCD, it is necessary
to carry out full QCD simulations near the physical u, d quark masses. Studies along
this line using 2+1-flavor QCD configuration generated by PACS-CS Collaboration
(Aoki et al., 2009d) is currently under way(Ishii ef al., 2008).

(2) The hyperon-nucleon (Y N) and hyperon-hyperon (YY) potentials are essential
to understand properties of hyper nuclei and the hyperonic matter inside the neutron
star. While experimental scattering data are very limited due to the short life-time
of hyperons, the NN, YN and YY interactions on the lattice can be investigated
in the same manner just by changing only the quark flavors. The =N potential in
quenched QCD(Nemura et al., 2009) and the AN potentila in both quenched and full
QCD(Nemura et al., 2008) are examined as a first step toward the systematic un-
derstanding of baryonic potentials. To this connection, the OPE analysis should be
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extended to the Ny = 3 case, in order to reveal the nature of the repulsive core in
baryon-baryon potentials. Since quark mass terms can be neglected in the OPE at
short distance, the analysis can be done in the exact SU(3) symmetric limit.

(3) The three-nucleon force is thought to play important roles in nuclear structures
and in the equation of state in high density matter. Since the experimental informa-
tion is very limited, the extension of the method to the three nucleons may lead to the
first principle extractions of the three-nucleon potentials in QCD. It is also interesting
to investigate the existence or the absence of the repulsive core in the three-nucleon
potentials. The calculation of anomalous dimensions of 9—quark operators will be re-
quired at 2-loop level.

(4) More precise evaluations including numerical simulations of matrix elements
(0|Ox |E) will be needed to understand the nature of the core in the potential through
the OPE analysis.
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