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Chapter 1

Introduction

These are lecture notes for the Les Houches summer school on Integrability in Atomic and Condensed
Matter Physics, 30 July to 24 August 2018. Their purpose is to provide an introduction to the theory of
generalised hydrodynamics (GHD). This theory has been developed primarily in the past three years or so,
sparked by two papers that appeared simultaneously in preprint in May 2016 [1, 2], where it is proposed
using alternative, complementary arguments. It is a theory based both on the empirically well-established
fundamental principles of hydrodynamics, and on some basic structures associated to integrability, ab-
stracted from the Bethe ansatz. It provides a framework for studying a wide family of integrable systems
far from equilibrium. Integrability is here understood in a large sense, and includes classical and quantum
gases, chains, field theory models, and even (conjecturally) certain cellular automata; no specific algebraic
of geometric constructions of advanced integrability theory appears to be needed for the formulation of
generalised hydrodynamics. I expect generalised hydrodynamics to be even applicable, at low densities, to
non-integrable one-dimensional many-body systems with short range interactions whose excitations can be
described by quasiparticles.

Non-equilibrium phenomena, often defined as those where time-reversal invariance is broken or where
entropy is produced, constitute one of the most active and high profile areas of studies in modern science
[3, 4]. It is a vast subject, as unlike the characterisation of equilibrium states, it is hard to imagine a full
account of all situations that are far from equilibrium, which must include life itself! A foremost question
is that of establishing a general framework and uncovering a set of principles that may be considered as
underpinning at least some wide family of non-equilibrium states and their dynamics. In theoretical physics,
important advances have been made in these directions. I believe two related frameworks have emerged as
being of particular relevance: hydrodynamics, and large deviation theory.

Hydrodynamics, the main topic of these notes, is of course extremely old, and the subject of many
textbooks. It is a theory for inhomogeneous, dynamic many-body states, where there exist nonzero currents
or flows – of particles, charge, energy, spin, etc. – between various parts of the system; see for instance
[5, 6, 7]. It describes what happens when variations occur over large distances and long times, answering at
some level, in this regime, the questions of how non-equilibrium flows evolve and fluctuate, and what guide
their shape and strength. Modern developments have shown how its basic principles can be extended or
deepened to account for many of the sometimes exotic systems and phenomena that are of current interest.
Excluding developments directly related to the subject of these notes – reviewed below – one may cite
advances in high-energy physics and field theory [8, 9, 10, 11, 12] and in strongly correlated systems
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6 CHAPTER 1. INTRODUCTION

[13, 14], as well as the large amount of progress done in the context of electron flows in graphene-based
systems [15, 16, 17, 18], which has had experimental evidence [19, 20, 21].

Large deviation theory, on the other hand, was developed in the 1960’s and 1970’s as an overarching
theory for equilibrium thermodynamics, and has been suggested to provide the right principles for a gen-
eralisation to non-equilibrium physics, see e.g. [22]. It is a theory that can be formulated in very general
terms, describing the fluctuations of “macroscopic” quantities. It has been especially successful in non-
equilibrium physics. For instance, it gave rise to universal fluctuation relations [23, 24, 25, 26, 27, 28, 29]
(see the review [30]), which encode, in system-independent symmetry relations, properties of driving po-
tentials into fluctuations of quantities transported over long times. It is also at the basis of macroscopic
fluctuation theory [31, 32, 33, 34], which establishes a deep connection between the hydrodynamics of
diffusive transport, and fluctuations of non-equilibrium currents.

In recent years, there has been a large amount of interest in understanding the non-equilibrium physics
of integrable systems, where a macroscopic number of conservation laws exist. One goal was to use the
mathematical structure of integrability in an attempt to obtain exact, model-dependent results that might
help uncover new general principles of non-equilibrium physics, and verify established ones. However,
going beyond this, it quickly became clear that integrability offers much more. First, integrable models are
actually realised in experiments. For instance, it was discovered [35, 36, 37] that the Lieb-Liniger model,
solved by Lieb and Liniger using the Bethe ansatz in 1963 [38], describes cold atomic gases constrained
to (quasi-)one-dimensional tubes. Such experiments have attracted a lot of attention in the past 15 years,
for their high manipulability and the access they give us to the physics of many-body quantum dynamics,
see the book [39]. Second, integrability affects non-equilibrium physics in fundamental ways, not seen in
equilibrium states. This was observed for instance in the seminal cold-atomic experiment on the so-called
quantum Newton’s cradle [40], where clouds of Rubidium atoms, constrained to tubes, collide without
thermalising, in contrast to what is expected of ordinary, non-integrable gases. That is, in one dimension,
despite the fact that real systems are not integrable, the large number of conserved quantities of integrable
models still appears to play a fundamental role in the non-equilibrium dynamics.

The lack of thermalisation in integrable models was theoretically addressed by studying simpler setups,
referred to as quantum quenches, where integrable quantum systems are made (on paper or in computers)
to undergo homogeneous evolution from non-stationary states far from the ground state. The fundamental
concept of generalised Gibbs ensembles emerged [41, 42, 43, 44], and was seen experimentally [45] and
developed in a large amount of works in the integrability community, see the reviews [4, 46]. However,
despite these advances in the non-equilibrium physics of integrability, there was no simple and efficient
framework to describe their inhomogeneous dynamics such as in the quantum Newton’s cradle experiment,
nor to understand their large deviations. The extensive amount of ballistic transport afforded by the con-
servation laws of integrable models rendered conventional theories inapplicable. It is in this respect that
generalised hydrodynamics offers new directions.

Generalised hydrodynamics [1, 2, 47, 48, 49] is an extension of hydrodynamics to integrable systems,
constructed on generalised Gibbs ensembles instead of Gibbs ensembles. It was originally used in order to
solve one of the most iconic problems of non-equilibrium physics, that of evaluating exact currents in states
that are steady – that do not change with time – yet far from equilibrium. Non-equilibrium steady states
have been studied for a long time. Perhaps the earliest appearance in theoretical physics is the Riemann
problem of hydrodynamics [50]. In more general contexts it is sometimes referred to as the “partitioning
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protocol” [51, 52, 53], see the reviews [54, 55], as well as [56] for a more general discussion of transport
in quantum models. In this protocol, a physical system is partitioned into two halves, which are, initially,
independently thermalised into different equilibrium states. The halves are then connected, and let to evolve
according to the Hamiltonian evolution of the physical system under consideration. After a long time, if
ballistic transport is allowed by the dynamics, a current develops as a consequence of the initial imbalance,
where quantities are transported, without diffusing, from one side to the other. This protocol, based on
Hamiltonian dynamics, has the advantage of being directly amenable to study in a wide variety of systems,
including classical and quantum gases, lattice models and field theories. A large number of exact predictions
and even rigorous results have been obtained: for the classical harmonic lattice [51], quantum models with
free fermionic and bosonic descriptions [57, 58, 59, 60, 61, 62, 63, 64, 65], and conformal field theories in
one dimension [53, 66] and in higher dimensions [10, 67, 68]. In interacting, integrable, non-conformal
quantum models, the full solution was provided in [1] for field theories, with the examples of the sinh-
Gordon and Lieb-Liniger models, and in [2] for quantum chains, with the example of the XXZ anisotropic
Heisenberg chain. These papers introduced generalised hydrodynamics, and solved its Riemann problem.

From the original papers, the architecture of generalised hydrodynamics was relatively clear, and has
been developed in later works. The theory appears to be extremely flexible, being applicable to classical
and quantum models of various types, such as chains, gases and field theories. From the perspective of
integrable systems, it provides, in its current form, an extension of the techniques of the thermodynamic
Bethe ansatz [69, 70, 71], uncovering new structures within it, and unifies a wide range of models, including
in particular soliton gases [72, 73, 74, 75, 76] and the hard rod gas [77, 78, 7], where similar hydrodynamic
theories had been partially developed at a high level of mathematical rigour. From the perspective of cold
atom physics, it provides the first complete and efficient framework for one-dimensional cold atomic gases
at large wavelengths, able to reproduce the main effects seen in the quantum Newton’s cradle experiment
[79], and verified experimentally [80]. From the perspective of non-equilibrium physics, it is a powerful
framework for inhomogeneous dynamics of quantum and classical systems with extensive ballistic trans-
port. I also hope that it will form the basis for their large deviation theory, via a counterpart to macroscopic
fluctuation theory.

These lecture notes are divided into three chapters. In Chapter 2, the rudiments of hydrodynamics are
explained. No advanced prior knowledge of hydrodynamics is assumed. In this chapter, the standard,
fundamental precepts of hydrodynamics are put into a perspective that makes them easily applicable, at
least in principle, to integrable models. A variety of aspects of hydrodynamics are reviewed, including the
Riemann problem, normal modes, Onsager-type relations and linear fluctuating hydrodynamics. In Chapter
3, the machinery of the thermodynamic Bethe ansatz is explained. This is of course based on the Bethe
ansatz, which the students will have seen, at least in part, in the first few lectures of other courses in this
school. However, I provide an intuitive, physical point of view which does not rely on it, sufficient for my
purposes. For clarity, I base it on the scattering picture of classical particle systems. Little knowledge of
the mathematics of integrability is required in order to understand the equations themselves – although it
helps in order to understand more technically where they come from. In Chapter 4, the concepts introduced
in the previous two chapters are combined into generalised hydrodynamics. I explain the basic equations of
the hydrodynamic theory, the solution to the Riemann problem as well as a variety of other topics.

I note that the division of topics taken here is not that corresponding to the historical development of
the subject. Neither do I abide, for some of the topics, by the usual distinction between thermodynamics
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and hydrodynamics. The division is instead based on a more conceptual logic. For instance, the Drude
weight, flux Jacobian and velocities of the fluid normal modes are conventionally seen as part of Euler
hydrodynamics, but their exposition is here provided within thermodynamics. This is more accurate, as,
although these objects are naturally involved in the hydrodynamic description, no hydrodynamic assumption
is actually needed for their basic definition and in order to derive their main properties: only thermodynamic
averages are required.

Many important topics stemming from, or connected to, generalised hydrodynamics have been omitted.
I note in particular, the following (incomplete list of) extra topics, some rather well developed, other necessi-
tating further investigation: the study of the zero-entropy subspace of the thermodynamic states in quantum
integrable models with Fermi seas [81, 82], the integrability structure of the GHD equations themselves
[75, 83, 84], thermalisation and the breaking of the GHD equations [85, 86, 87, 88, 89, 90, 91, 92, 93],
the spectrum of fluctuations in transport phenomena and correlation functions of order parameter [94, 95],
the phenomenon of superdiffusion in quantum spin chains [96, 97, 98, 99], properties of quantum entan-
glement in inhomogeneous, non-stationary situations [100, 101, 102, 103, 104, 82], the hydrodynamics
of integrable relativistic quantum field theory [1, 105], and the formal derivation of the elements of GHD
[106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116].

Before plunging into the details of hydrodynamics, the thermodynamic Bethe ansatz technology, and
generalised hydrodynamics, it may be useful to discuss the nature of the GHD description of one of the
most important experiments in low-dimensional many-body systems, that of the quantum Newton’s cradle
[40] discussed above. This description will already expose much of the intuition behind GHD. As an
invitation, I present it in the following section; the later chapters do not depend on it.

1.1 Invitation: the hydrodynamics of a quantum Newton’s cradle experiment

A full theoretical understanding of an experiment is always a very difficult endeavour, and GHD alone
cannot do this. However, it is able to provide a description, valid for all interaction strengths, of large scale
phenomena where the emergent physics arise. It is in this sense that GHD solves the quantum Newton’s
cradle experiment: it arguably gives the theoretical underpinning for the most striking features of its non-
equilibrium physics. Clearly, there has been many theoretical studies of the quantum Newton’s cradle
experiment, and a variety of methods can be applied under various approximations and in various parameter
regimes. Discussing these methods and their relations to GHD, or the particular physics of cold atomic
gases, would bring me too far from the main goal of these notes. I refer the reader, for instance, to the
book [39] for the quasicondensate regime and related questions, and to the discussions and references in
the papers [79, 80, 117] where the GHD of cold atomic gases is discussed. I believe it is fair to say that
more research is necessary in order to fully clarify the relation between standard methods and GHD in
cold-atomic setups.

In the quantum Newton’s cradle experiment, a gas of rubidium atoms, confined to lie within a one-
dimensional “tube”, is first brought to low enough temperatures so that quantumness becomes relevant.
The details of how such particles are confined to one dimension – be it using lasers or magnetic fields from
nearby wires – is not relevant for the present purpose. It suffices to say that the transverse confining leads
to the presence of states (representing transverse motion) whose energies are sufficiently higher than the
temperature, and thus can be neglected. The gas – which, say, contains about 2000 rubidium atoms – is also
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Figure 1.1: A sudden change of the shape of the longitudinal potential induces a large-scale motion in the gas.

confined to lie within a small region of one-dimensional space with a longitudinal external potential (again,
with laser or magnetic fields). The longitudinal potential allows atoms to move along the tube, in such a
way that the system behaves as a one-dimensional gas. Of course, in order for the system to be nontrivial,
the gas density should be of the order of the inverse typical one-dimensional scattering length, something
which depends on the transverse trapping potential. In order for a hydrodynamic theory to be applicable,
the longitudinal potential should also vary only on large enough length scales.

Then, the gas is made to move in some way. The most intuitive way is simply to imagine that the initial
shape of the one-dimensional confining potential is suddenly changed. For instance, the shape may initially
be a double well, where the gas has relaxed and is concentrated on two separate regions of space, and then
it may be suddenly changed (but this could also be smooth, instead of sudden) to a single well, forcing the
two blobs of gas to start moving. See Fig. 1.1. The question to answer is: how can we describe the motion
of the gas after the sudden change of longitudinal potential?

A microscopic, theoretical formulation of the problem, which is a very good approximation of real
systems, is in fact well known. The atoms are described by the Lieb-Liniger model, a model of Galilean
particles of Bose statistics with point-like interactions. Its homogeneous Hamiltonian is (setting the mass
of the particles to 1)

H =−
N

∑
n=1

1
2

∂
2
xn
+g ∑

n<m
δ (xn− xm) (1.1)

where g is the interaction strength (which, as said, depends on the transverse trap), and N is the number
of particles in the gas. The external longitudinal potential is simply modelled as interacting with the local
particle density n(x) = ∑m δ (x− xm). We may assume that the initial state is an equilibrium, thermal state
within the inhomogeneous potential, at some temperature β−1, so that averages of any local observables
are given by

〈o(x)〉= Tr(ρinio(x))
Trρini

, ρini = exp
[
−β

(
H +

∫
dyVini(y)n(y)

)]
. (1.2)

Then the evolution occurs with the Hamiltonian in a different inhomogeneous potential,

〈o(x, t)〉= 〈eiHevoto(x)e−iHevot〉, Hevo = H +
∫

dyVevo(y)n(y). (1.3)

For instance, a quantity that is directly observable experimentally is the atom density, 〈n(x, t)〉.
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Technically, this is a well-posed problem, and in principle, it is simply a matter of solving it by the
standard methods of quantum mechanics. However, doing this by “brute force” on the computer would
be rather limiting, as perhaps a maximum of 30 particles could be reached with current technology; we
couldn’t have confidence that we are extracting the correct large-scale physics that is expected to arise at
2000 particles. Instead, we may note that the model (1.1) is in fact integrable: this means in particular that
there are a number of advanced techniques available in order to solve it. For instance, one can obtain its
eigenvectors and eigenvalues by the Bethe ansatz. But this is not that helpful, as the operators appearing
in the exponentials in (1.2) and (1.3) are not integrable, because of the presence of the inhomogeneous
potentials. It is, after all, these operators that we actually have to diagonalise. We may use the Bethe ansatz
basis of the homogeneous Hamiltonian, and this allows us to reach perhaps 50 particles or a bit more. But
this is still relatively far from 2000, and requires extensive computer resources.

Instead of thinking of how to solve the microscopic model, we may think of the physics we expect. The
first intuition is that, if two blobs of a gas – or two regions of a gas where a significantly higher density
is present – are made to collide against each other, then one would expect, because of the interactions, the
particles to exchange momenta in complicated ways, and the momenta of particles to re-distribute so as to
re-thermalise. We would expect to be able to use the Navier-Stokes equation (specialised to one dimension),
or even its specialisation without viscosity, the Euler equation – after all, these equations automatically take
into account the redistribution of microscopic momenta, and should describe the motion of fluids at large
scales (see Section 2.1). In particular, anyone who is well acquainted with standard hydrodynamics would
expect shocks to form at the collision, at which entropy increases. In any case, shortly, the independent
blobs would stop their forward displacements, the gas would display a complicated large-scale motion
where the original blobs would not be discernible anymore, and eventually it would reach some relatively
steady configuration with respect to the evolution potential Vevo.

The problem, of course, is that this is not what is seen in experiments. Instead, the blobs collide, form a
new blob momentarily in the centre, and then remerge from it, slightly modified, to continue their motion
up, and then down, the slopes of the evolution potential. The process repeats for a great many cycles, until
other effects, such as atom losses or “prethermalisation”, become relevant. This means that, not only the
standard techniques are unable to solve the problem from its microscopic formulation, but the physics of
standard hydrodynamics, which is the one we thought should describe the large-scale motion, is simply
incorrect. It is to be noted that if the transverse potential is not as tight, and states representing transverse
motion are within the range of energies available, then the intuitive picture of standard hydrodynamics is
seen to be correct. Something happens in one dimension, because of integrability.

The authors of the original quantum Newton’s cradle experiment correctly identified the phenomenon:
that of a Newton’s cradle. Recall that this is the toy in which a number of metallic beads are held by strings,
and disposed horizontally so as to lightly touch each other when at equilibrium. One of the outer bead is
held up, and then let to descend upon its neighbour. As it hits it, it exchanges its momentum with it, itself
exchanging its momentum with the next neighbour, and so on. No bead seems to move, except for the other
outer bead, which, imparted with the momentum, starts moving up. The beads are to be likened with the
atoms of rubidium in the gas. The statement is that, because of the integrability of the model, although the
atoms do indeed exchange their momenta in complicated ways, the motion of these individual momenta
is relatively simple, and occurs on large scales. The blobs we see emerging after the first collision are not
formed of the original atoms, but carry the original momenta.
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Although this is an over-simplified picture, it extracts the correct physics. But, in order to go from such
a picture to actual equations, putting together the inhomogeneous potentials – which break integrability –
and the simplification of momentum exchanges due to integrability, one needs to do a bit of work. The
presentation I propose in these notes is in fact based on applying fundamental principles of hydrodynamics,
and, satisfyingly, the Newton’s cradle picture of large-scale momentum motion comes out a posteriori.

Let me simply provide here the generalised hydrodynamic solution to the above problem. It appears
as a set of integro-differential equations. The main object, in the most physically transparent formulation,
is the density ρp(p,x, t) of “quasi-particles” that carry momentum p at space-time point x, t. The quantity
ρp(p,x, t) is a density per unit momentum and per unit space. Like in the Newton’s cradle, the momenta
are smoothly carried around, but instead of a single momentum, we have a continuum. These are not the
real particles – which move around and exchange their momenta in complicated ways – but intermediate
objects following the flows of momenta. The connection with real particles is simple however, for instance
the density of particles at space-time point x, t is

〈n(x, t)〉=
∫

dpρp(p,x, t). (1.4)

The initial state representing (1.2) is fixed by solving a set of integral equations for two functions: the
sought-after initial quasi-particle density ρp(p,x,0), and an auxiliary function ε(p,x) called the pseudoen-
ergy. The equations are as follows:

2π(1+ eε(p,x))ρp(p,x,0) = 1+
∫

dqϕ(p−q)ρp(q,x,0)

ε(p,x) = β

( p2

2
+Vini(x)

)
−
∫ dq

2π
ϕ(p−q) log(1+ e−ε(q,x)). (1.5)

In the latter equation, the function ϕ(p−q) appears: this encodes the scattering of particles with momenta
p and q. In the Lieb-Liniger model, it takes the form

ϕ(p−q) =
2g

(p−q)2 +g2 . (1.6)

Eq. (1.6) is in fact simple to obtain from a two-body scattering problem; while Eqs. (1.5) follow from a
“local density approximation” and the thermodynamic Bethe ansatz.

Once Eqs. (1.5) are solved, say numerically by recursion (a process that is usually very efficient), the
function ρp(p,x, t) is obtained for other times t by solving the integro-differential equation

∂tρp +∂x
[
veff

ρp
]
−∂xVevo(x)∂pρp = 0. (1.7)

Here all functions whose arguments we do not write are to be evaluated at p,x, t. In this equation, a new
function veff(p,x, t) appears. This is obtained by solving yet another integral equation:

veff(p,x, t) = p+
∫

dqϕ(p−q)ρp(q,x, t)(veff(q,x, t)− veff(p,x, t)). (1.8)

Eqs. (1.7) with (1.8) are the hydrodynamic representation of the microscopic evolution (1.3). Eq. (1.7)
has a clear physical interpretation: it is a dynamical equation for a density, with quasi-particles moving at
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velocities veff(p,x, t) and subjected to an acceleration −∂xVevo(x). The nontrivial aspect of this equation is
the so-called effective velocity veff(p,x, t), which encodes all interaction effects.

In these notes, the meaning of Eqs. (1.7), (1.8) as Euler-scale hydrodynamic equations will be explained,
and Eqs. (1.4)-(1.8) will be put within a wide framework able to access many physically relevant quantities
in a large variety of integrable many-body models.
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Chapter 2

Rudiments of hydrodynamics

Hydrodynamics is an extremely old theory. It has been very widely studied, with great success. Although
there does not exist a mathematically rigorous proof of its validity in realistic, interacting gases, the prin-
ciples of hydrodynamics can be thought of as being rather well established. Yet, surprisingly, it is still
the subject of many modern studies in a wide variety of fields, including high-energy, statistical and con-
densed matter physics. This is for a good reason: it is an extremely powerful emergent theory for describing
complex many-body systems. It states that the complex behaviours of the many, many particles with small-
range interactions in a gas can be simplified drastically to a much smaller set of equations than those for
the individual trajectories of each particle. These equations are particularly well suited for studying non-
equilibrium, dynamical, inhomogeneous phenomena of many-body systems.

In a pictorial representation of time scales, see Fig. 2.1, hydrodynamics lies somewhere below thermo-
dynamics, and above the Boltzmann equations. The thinking goes as follows. At very short time scales, the
individual particles of the gas propagate ballistically, reversibly, between collisions. This is the microscopic
regime, which can always be used to describe the gas. Then after many collisions, some mixing occurs.
At this stage, one reverts to an approximate description where, instead of individual particles’ trajectories,
one uses the coarser density of particles in the single-particle phase space. This description is valid only
after this coarse graining has actually occurred. This leads to the Boltzmann equation1, with contains a
collision integral that accounts for the change of phase space densities due to collisions. This is famously
an irreversible dynamics, the passage from reversible to irreversible being attributed to the coarsening and
arguments about microscopic phase space volumes occupied by coarse states. Collisions – or the collision
integral in the Boltzmann equation – lead to relaxation, whereby the system tends to maximise entropy.
Entropy maximisation occurs at large scales compared to the microscopic scales, but can still occur at small
scales compared to laboratory scales. Thus we divide the system into “fluid cells”, where each cell, small on
laboratory scales, is considered thermodynamically large, and is considered to have (nearly) reached a state
in which entropy has been maximised. These are local thermodynamic states, and local entropy maximisa-
tion is often referred to as the reaching of a local thermodynamic equilibrium (although in integrable sys-
tems this nomenclature is not entirely accurate). There are usually much fewer available entropy-maximised
thermodynamic states than there are possible distribution of particles in momentum space. In a conventional
one-dimensional Galilean gas, for instance, an entropy-maximised thermodynamic state is described by a

1Intermediate steps leading to the Boltzmann equation are given by the so-called BBGKY hierarchy.
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Figure 2.1: Time scales in gases with their various theoretical descriptions.

temperature, a chemical potential and a Galilean boost: three numbers instead of an infinity. This change in
the degrees of freedom used to describe the local states – from densities in single-particle phase space to the
degrees of freedom of entropy-maximised thermodynamic states – is one of the most important assumptions
of hydrodynamics. Hydrodynamics is a derivative expansion, and as such there are various scales within
it, obtained by various scaling limits. Unless one takes the Euler scaling limit, which is the lowest order in
derivatives, hydrodynamics is generically irreversible: Navier-Stokes type of terms, which are at the second
order in derivatives, lead to diffusion. By diffusion or other mechanisms, the weak state modulations in
space eventually disappear, and at the largest time scales, one recovers thermodynamics.

Of course, this picture is clear for a classical gas, but similar principles are expected to hold for classical
and quantum gases, lattice models, and field theories. In constructing generalised hydrodynamics of inte-
grable systems, we simply follow these basic principles. I will now make them more precise, in a general
one-dimensional setting that includes conventional and integrable systems.

The most fundamental objects in hydrodynamics are the conservation laws afforded by the model under
consideration. These are at the basis of the manifold of entropy-maximised thermodynamic states, and as a
consequence give the dynamical degrees of freedom governed by hydrodynamics.

In this Chapter, I will describe the main aspects of thermodynamics and hydrodynamics that we need
in order to fully understand the theory of generalised hydrodynamics. I start with a review of very basic
hydrodynamics from textbooks: the Euler and Navier-Stokes equations.

2.1 Euler and Navier-Stokes equations

Before extracting the general principles, it is useful to remind ourselves of the usual equations of hydrody-
namics for Galilean fluids (in one dimension of space). They take the following form:

∂tρ(x, t)+∂x[v(x, t)ρ(x, t)] = 0

∂tv(x, t)+ v(x, t)∂xv(x, t) =
1

ρ(x, t)

[
−∂xP(ρ(x, t))+ζ ∂

2
x v(x, t)

]
.

(2.1)

In general there is also an equation for the local entropy, but in isentropic fluids – a good approximation in
many situations – the above are enough. The dynamical variables are ρ(x, t), the local mass density (for
simplicity we assume a unit mass m = 1), and v(x, t), the local velocity field. In the second equation, P(ρ)
is the pressure, purely a function of the mass density, and ζ , the bulk viscosity (in one dimension, there is
no shear viscosity). The pressure and bulk viscosity are the only model-dependent quantities, which must
be determined from microscopic calculations. Once they are known, Eqs. (2.1) describe the time evolution
of the fluid. That is, these equations stipulate that there is a large reduction of the number of degrees of
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freedom, from the ≈ 1023 trajectories of the individual particles, to two space-time functions, ρ(x, t) and
v(x, t). This large reduction of the number of degrees of freedom is at the basis of hydrodynamics.

Let us look at Eqs. (2.1) in more details. The first equation is clearly that of mass conservation. The
second equation is the one-dimensional Navier-Stokes equation, and with the second-derivative term omit-
ted, it is the Euler equation. It says that the convective derivative ∂t + v(x, t)∂x of the velocity fields is
controlled by the pressure and viscosity. These have natural interpretations: the pressure variations give a
“thermodynamic force” modifying the velocity, and the viscosity acts as a friction force. In fact, the second
equation in (2.1) can also be recast into a conservation form, that of momentum. Defining the momentum
field p = vρ and its current jp = P+ v2ρ−ζ ∂xv, the equations now take the form

∂tρ(x, t)+∂x p(x, t) = 0
∂t p(x, t)+∂x jp(x, t) = 0.

(2.2)

The reduction of the relevant dynamical degrees of freedom to those governed by conservation laws is the
fundamental principle of hydrodynamics. Armed with this principle, let us look at the general situation.

2.2 Maximal entropy states and thermodynamics

Consider a homogeneous many-body one-dimensional system of infinite length, with short-range interac-
tions. We assume it is isolated from any external environment. Suppose the system admits a conserved total
energy, which we will denote H (in models with Hamiltonian dynamics, this is the Hamiltonian), and a set
of conserved charges Qi (for i in some index set), which can be written as integrals of densities satisfying
conservation laws2:

Qi =
∫

dxqi(x, t), ∂tqi(x, t)+∂x ji(x, t) = 0, ∂tQi = 0. (2.3)

In particular, the Hamiltonian H is one of these. Here, densities are either local – supported on finite regions
– or quasi-local – supported on infinite regions but with an “envelope” that decays sufficiently fast (see the
review [118]).

The first question that we ask is: if the system starts in some arbitrary, generic, homogeneous state,
what happens to a typical finite region after long enough times? Physically, we expect such finite regions
to “relax” to some state, the rest of the infinite system playing the role of a bath. By ergodicity, the density
matrix, or state distribution, ρ that describes3 all local or quasi-local observables o,

〈o〉= Tr[ρo], (2.4)

will maximise entropy, S =−Tr[ρ logρ]. As averages of conserved densities cannot change, entropy max-
imisation is with respect to the available conservation laws. Constraints for the conserved quantities Qi

2For simplicity, in quantum systems, we will assume that the charges commute with each other. Here and below I use a continuous-space
notation for convenience; similar equations hold for chains.

3Here and below I use the trace notation Tr proper to quantum mechanics for convenience; in general, this represents some appropriate a
priori measure on phase space.
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and for the normalisation of the distribution ρ can be expressed using Lagrange parameters β i and α , and
entropy maximisation is:

δTr
[
ρ(logρ +∑

i
β

iQi +α)
]
= 0 ⇒ Tr

[
δρ(logρ +1+α +∑

i
β

iQi)
]
= 0. (2.5)

Hence the maximal entropy states are of the Gibbs form,

ρ ∝ e−∑i β iQi. (2.6)

The question as to what charges Qi occur can also be given a rough answer using physical intuition,
and in fact we have already answered it. With local interactions, finite regions that are far apart should be
independent, and thus the entropy should be additive. Therefore, it can only be related, in (2.5), to extensive
conserved quantities, of the form (2.3) with local or quasi-local densities.

The β i’s form a system of coordinates in the manifold of maximal entropy states. They are the only
parameters encoding information about the initial, generic state after relaxation has occurred. These are the
“generalised inverse temperatures”, or “generalised chemical potentials”, which I will simply refer to as the
Lagrange parameters. Eq. (2.6) means that, formally, the classical probability distribution, or the quantum
density matrix, is proportional to the exponential e−∑i β iQi . Crucially, the states (2.6) have averages that
are invariant under translations in space and time (homogeneity and stationarity), and that factorise as local
observables are brought far from each other (clustering).

The form (2.6) is of course quite formal, and one needs to define the state more precisely. If the series
∑i β iQi actually truncates and the charges Qi are local, there is a variety of ways to make it rigorous in the
context of C∗ algebras, for instance directly as an infinite-volume limit, via the Kubo-Martin-Schwinger
(KMS) relation (in the quantum case) or the Dobrushin-Lanford-Ruelle (DLR) equations (in the classical
case), or by a precise notion of entropy maximisation, see [119, 120] for discussions. A general formulation,
based on tangents to a manifold of states and which account for quasi-local charges, is developed in [121].
In all cases, one basic property is that averages 〈· · ·〉β evaluated in maximal entropy states satisfy

− ∂

∂β i 〈o〉β =
∫

dx〈oqi(x,0)〉cβ (2.7)

for any observable o, where the upperscript c indicates that we must take the connected correlation function
〈o1o2〉cβ = 〈o1o2〉β −〈o1〉β 〈o2〉β (note that it doesn’t matter if qi(x,0) is on the left or right of o even in the
quantum case, as it is assumed to commute with (2.6)). This equation has the geometric interpretation that
the conserved charge Qi lies in the tangent space of the manifold of maximal entropy states. The finiteness
of (2.7) requires at least fast enough algebraic clustering4.

Maximal entropy states admit a number of properties that will be essential in what follows. It turns out
that in order to establish these, Eq. (2.7) is sufficient as a definition of the β i’s; there is no need for the
formal expression (2.6). In particular, the general structure is the same independently of the microscopic
setup (quantum or classical, deterministic or stochastic)!

4As one-dimensional systems with local interaction cannot display thermal phase transitions, clustering is exponential if the series in (2.6)
truncates and all charges are local [122].
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Let me denote by

qi = 〈qi(0,0)〉β , ji = 〈 ji(0,0)〉β (2.8)

the average densities and currents, as functions of β . First, (2.7) implies the symmetry

∂q j

∂β i =
∂qi

∂β j . (2.9)

This in turn implies the existence of a free energy density f such that

qi =
∂ f

∂β i . (2.10)

Clearly, its formal expression is f = limL→∞ L−1 logTr
[
e−∑i β iQi

]
, where L is the length of the system.

However, we did not actually need this in order to define f; only (2.7) was used. Now consider the inner
product

(o1,o2) =
∫

dx〈o1(0,0)o2(x,0)〉cβ (2.11)

on the space of local and quasi-local observables, here taken to be hermitian (or real) for simplicity5.
Eq. (2.9) simply expresses the symmetry of this inner product on the subspace of conserved densities. From
this, it is convenient to introduce the symmetric static covariance matrix Ci j,

Ci j = (qi,q j) =−
∂ 2f

∂β i∂β j =−
∂qi

∂β j , Ci j = C ji. (2.12)

This inner product is positive semidefinite, since∫
dx〈o(0,0)o(x,0)〉c

β
= lim

L→∞

1
L
〈Q2

o〉β ≥ 0, Qo =
∫ L

0
dx
[
o(x,0)−〈o(0,0)〉β

]
. (2.13)

Thus C is positive, and the set {Qi} should be chosen such that it is in fact strictly positive. As a conse-
quence, f is convex.

Second, note that there are as many parameters β i as there are conserved densities qi(x, t). In fact, by
convexity of f, the coordinate map β 7→ q, from (an appropriate space of) Lagrange parameters to averages
of conserved densities in maximal entropy states, is a bijection. That is, the set of averages can be used to
fully characterise the state. As a consequence, all averages of local or quasi-local observables in maximal
entropy states can be seen as functions of q. For the average currents ji, we may thus write

ji = ji(q). (2.14)

5For generic observables in quantum systems, the order of the observables in (2.11) now matters. In order for the formulae discussed
below at the diffusive level to hold, an appropriate symmetrisation of the product of observables must be taken, such as (o1(0,0)o2(x,0)+
o2(x,0)o1(0,0))/2 or more involved expressions; see for instance the review [56].
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The dependence of the average currents on the average densities are what we will refer to as the equations
of state of the model. These are model dependent functions.

Third, the equations of state satisfy quite surprising relations. Indeed, there is a symmetry mimicking
(2.9), which is a ballistic analogue of the Onsager reciprocity relations. Seeing the average currents as
functions of β , these are (see [1, 123]; their most general version, and an in-depth discussion, is provided
in [124])

∂ j j

∂β i =
∂ ji

∂β j . (2.15)

One quick way of deriving this is as follows. The conservation laws in (2.3) implies the existence of height
fields ϕi(x, t) of total differentials

dϕi(x, t) = qi(x, t)dx− ji(x, t)dt. (2.16)

Then 〈qi(x, t) j j(0,0)〉cβ = −〈(∂xϕi)(x, t)(∂tϕ j)(0,0)〉cβ = 〈ϕi(x, t)(∂x∂tϕ j)(0,0)〉cβ where we used space-

translation invariance, =−〈(∂tϕi)(x, t)(∂xϕ j)(0,0)〉cβ using time-translation invariance, = 〈 ji(x, t)q j(0,0)〉cβ .
Clustering has been used in order for height field correlation functions to be well defined. Using (2.7), this
implies (2.15). As a consequence, there must exist a free energy flux g such that

ji =
∂g

∂β j . (2.17)

The free energy flux g is, however, not obviously convex.
Fourth, seeing ji as functions of q as per (2.14), one defines the flux Jacobian

A j
i =

∂ ji
∂q j

. (2.18)

This matrix will play an important role in describing hydrodynamics below. The symmetry (2.15) expresses
that of a matrix built out of C and A, conventionally denoted by

Bi j = ( ji,q j) =−
∂ 2g

∂β i∂β j =−
∂ ji

∂β j = ∑
k
A k

i Ck j, Bi j = B ji, (2.19)

where the last equality of the first statement follows from the chain rule of differentiation. This symmetry
can then be expressed as

AC= CAT (that is, ∑kA
k

i Ck j = ∑kCikA
k
j ). (2.20)

Let us denote by Ci j the inverse of the positive matrix Ci j, that is ∑kC
ikCk j = ∑kCikC

k j = δ i
j. Writing an

arbitrary conserved density as a linear combination ∑i, j viC
i jq j(x, t), which can always be done, the inner

product (2.11), with (2.12), induces an inner product on the coefficient vectors v (with components vi):

〈v,w〉= (v ·C−1q,w ·C−1q) = v ·C−1w = ∑
i j

viCi jw j (2.21)
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where the first equality is the definition of 〈·, ·〉 on vectors. The matrix A naturally acts on such vectors.
Thanks to (2.20), under this inner product, A is symmetric: 〈v,Aw〉= v ·C−1Aw= v ·ATC−1w=Av ·C−1w=
〈Av,w〉. Therefore, A is diagonalisable and has real eigenvalues. The eigenvectors will be interpreted below
as the normal modes of hydrodynamics, and the eigenvalues, as their associated effective velocities (or
“generalised sound velocities”). Parametrising eigenvectors h j;` and eigenvalues veff

` by an index `,

∑
j
A j

i h j;` = veff
` hi;`. (2.22)

Finally, as an application of the above structure, let us evaluate the Drude weight. This is a quantity
which, if nonzero, represents the fact that there is ballistic transport in the model. Although it is a transport
quantity, the Kubo formula relates it to a quantity that is purely a property of the thermodynamic state:
the time-averaged, space-integrated current two-point functions. With many conservation laws, the Drude
weight is in fact a matrix, and the Kubo formula is

Di j = lim
t→∞

1
2t

∫ t

−t
ds
∫

dx〈 ji(x,s) j j(0,0)〉c = lim
t→∞

1
2t

∫ t

−t
ds( ji(s), j j(0)) (2.23)

where in the second equality I use the inner product (2.11), and the arguments of the fields are times. Time
evolution can be expected (and in some cases proven) to be unitary on the Hilbert space induced by (·, ·). By
the ergodic theorem, the result is a projection on the kernel of the time evolution, which should be identified
with the subspace of conserved quantities, of which qi form a basis:

Di j = ( ji,P j j) = (P ji, j j) = (P ji,P j j) (2.24)

where the projection acts as

Po = ∑
j,k

q jC
jk(qk,o). (2.25)

Thus [125],

Di j = ∑
kl
( ji,qk)C

kl(ql, j j). (2.26)

This is an example of a hydrodynamic projection formula, here giving a more complete version of the so-
called Mazur bound for the Drude weight [126, 127, 128]. Using the matrix (2.19), we therefore obtain
various representations of the Drude weight,

D= BC−1BT = ACAT = A2C. (2.27)

It is worth emphasising that, although the matrices A, B and D have interpretations related to transport
and to hydrodynamics, they are purely properties of the thermodynamic state – no hydrodynamic approxi-
mation is made. The equations they satisfy follow solely from statistical mechanics as encoded in (2.7).

Remark 2.2.1. Gibbs states, which take the form (2.6), are usually associated with equilibrium. Equilibrium can
be conventionally defined by the requirement of time-reversal invariance. In conventional hydrodynamics, the only
charges that do not possess this invariance are the momentum charges (there is a single one in one dimension), which
can be gotten rid of by going to the co-moving frame. Thus (2.6) is indeed at equilibrium, in this frame. In general,
especially in integrable systems, however, this is not the case, and (2.6) are, generically, truly non-equilibrium states.
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Remark 2.2.2. The notation using up and down indices points to the understanding of Ci j as a “metric” in the space
of conserved densities, with which indices can be raised and lowered. Under this notation, the conserved densities are
“vectors” and the Lagrange parameters, “covectors”. This makes all equations more transparently consistent. Using
this notation, one might in fact write Bi j = Ai j. As far as I am aware, this notation was first introduced in [123].

Example 2.2.3. In a conventional, non-integrable, one-dimensional Galilean gas, there are three conserved quanti-
ties: the total mass of all particles Q0 = mN where N is the total number of particles and m their mass (assuming a
single specie), the total momentum Q1 = P and the total energy Q2 = H (identified with the Hamiltonian function or
operator if the dynamics is Hamiltonian). In general, the states take the form e−β (H−µN−νP) where β is the inverse
temperature, µ the chemical potential, and ν the Galilean boost parameter. This is a conventional thermalised Gibbs
state, up to a Galilean boost which can be taken away by changing the laboratory frame. The case considered in
Section 2.1 was that where we neglect the effects of Q2 (that is, the temperature is kept fixed), which is justified in
many real situations.

Galilean invariance is the statement that the mass current is exactly equal to the density of momentum, this being
true at the level of observables, j0 = q1. Taking averages, this gives A 0

0 = 0,A 1
0 = 1,A 2

0 = 0. This part of the
equations of state is quite simple. On the other hand the average current of momentum is, by definition, simply related
to the pressure P = P(q0,q2) of the gas in this state, j1 = P+ q2

1/q0: the pressure is the current of momentum in
the fluid’s rest frame, and the second term is a consequence of Galilean invariance. Thus A 0

1 = ∂0P−q2
1/q

2
0,A

1
1 =

2q1/q0,A
2

1 = ∂2P. Finally, by Galilean invariance, the energy current also is expressible in terms of the pressure,
j2 = (3q1/2q0)P+q3

1/q
2
0. One can easily work out the remaining matrix elements of A. Thus the equations of state

are completely determined by the way the pressure P depends on the mass and energy densities q0,q2. The symmetry
relations (2.12) and (2.20) give nontrivial, pressure-dependent constraints on the static covariant matrix C, which
encode the fact that there is an underlying short-range microscopic model.

2.3 Local entropy maximisation and Euler hydrodynamics

Consider some initial state, in a many-body system as discussed in Section 2.2, whose averages we denote
〈· · ·〉. This state will generically be inhomogeneous and dynamical (non-stationary): average values of
observables depend on the position, and change as time passes. Now consider some average 〈o(x, t)〉 of a
local observable at x evolved up to time t. In the quantum mechanical setting, we are thinking about the
Heisenberg picture; for a deterministic classical model, the evolution is obtained by the Hamiltonian flow
on the Poisson manifold; for a stochastic model, it is the stochastic dynamics in the classical case, or the
Lindbladian dynamics in the quantum case. The basic assumption of hydrodynamics is that of local entropy
maximisation: to a good approximation, this average can be evaluated as the average of o(0,0) in a maximal
entropy state with x, t-dependent Lagrange parameters,

〈o(x, t)〉 ≈ 〈o(0,0)〉β (x,t) (2.28)

By homogeneity and stationarity of the maximal entropy state 〈· · ·〉β (x,t) [not of the state 〈· · ·〉], we can
position the observable at any point on the right-hand side, and here we chose (0,0). The state 〈· · ·〉β (x,t),
that appears in the hydrodynamic approximation, itself depends on the position in space-time where the
observable lies on the left-hand side of (2.28), via the space-time dependence of the Lagrange parameters
β (x, t). But crucially, it does not depend on the observable itself. The same state describes any local or
quasi-local observable at x, t.
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Figure 2.2: The separation of scales at the basis of the hydrodynamic approximation.

This is the separation of scales between the macroscopic, mesoscopic (fluid cells) and microscopic at
the basis of hydrodynamics. See Fig. 2.2.

The validity of this approximation is hard to establish in nontrivial systems. An exception is the hard rod
gas, where a version of it has been proven rigorously for a wide family of initial states and in an appropriate
long-time limit [77]. In general, we expect the approximation to become exact in the limit where typical
lengths in space and time over which variations of local averages occur are infinitely large. This can happen
for various reasons: it may be dynamical, developing over (infinitely) long times, or it may be that the
initial state is chosen appropriately. Infinitely large variation lengths in space and time do not simply imply
that the state is homogeneous and stationary: the limit can still be nontrivial, as we may simultaneously
take the position x, t of the observable to be infinitely far in space-time. This is what I will refer to as the
Euler scaling limit. For instance, the initial state may be like a maximal entropy state but with modulated
Lagrange parameters, e−∑i

∫
dyβ i(y,0)qi(y), and we may take the simultaneous limit where this modulation

occurs on large distances and the point (x, t) is scaled. In this case, we expect the limit to give, for almost
all values of x, t, the result of the above approximation for some β i(x, t)’s:

lim
λ→∞

Tr
(

e−∑i
∫

dyβ i(λ−1y,0)qi(y) o(λx,λ t)
)

Tr
(
e−∑i

∫
dyβ i(λ−1y,0)qi(y)

) = 〈o(0,0)〉β (x,t). (2.29)

This is just an example; states with modulated Lagrange parameters are not the only inhomogeneous states
that one can construct, and are not necessarily more natural than other states. Without the Euler scaling limit,
the approximation is not exact, but may be a good approximation. It is difficult to precisely characterise
the error made in a universal way, although certainly the inverse of typical variation lengths as well as the
particles’ scattering lengths will be involved.

Once local entropy maximisation is assumed, one can derive, from the microscopic dynamics, the Euler
equations for the model under consideration. The arguments goes as follows.

First, consider the conservation laws in (2.3) in their integral form, over some contour, say [0,X ]× [0,T ]:
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∫ X

0
dx(qi(x,T )−qi(x,0))+

∫ T

0
dt ( ji(X , t)− ji(0, t)) = 0. (2.30)

Evaluate these within the state 〈· · ·〉. Using the local entropy maximisation assumption, we get∫ X

0
dx(qi(x,T )−qi(x,0))+

∫ T

0
dt (ji(X , t)− ji(0, t)) = 0 (2.31)

where I use the notation

qi(x, t) = 〈qi(0,0)〉β (x,t), ji(x, t) = 〈 ji(0,0)〉β (x,t). (2.32)

Equations (2.31) are relations for the averages within maximal entropy states, thus giving constraints on the
Lagrange parameters. If the quantities are differentiable, they can be re-written in terms of derivatives,

∂tqi(x, t)+∂xji(x, t) = 0. (2.33)

There is, however, a conceptual difference between the derivatives appearing in the microscopic conserva-
tion equations in (2.3), and those appearing in (2.33). Indeed, the latter should be understood as large-scale
derivatives, encoding variations amongst fluid cells. They represent the large-scale integral form (2.31) of
the conservation laws obtained under local entropy maximisation.

Recall that the set {qi(x, t)} can be used to completely characterise the maximal entropy state at the
point x, t, and recall the equations of state (2.14) and the flux Jacobian (2.18). Putting these into (2.33), we
obtain what I will refer to as the Euler hydrodynamic equations for the system of interest. In the so-called
quasilinear form, by using the chain rule these are

∂tqi(x, t)+∑
j
A j

i (x, t)∂xq j(x, t) = 0 (2.34)

where A j
i (x, t) = A j

i (q(x, t)) depends on x, t only via the state q(x, t). These are “wave equations” for all
space-time-dependent coordinates qi(x, t) characterising the local maximal entropy state. The form of the
Euler equations depend on the equations of state of the model and the number of conserved quantities,
but nothing else – at the emerging Euler scale, very little of the microscopic dynamics remains. Euler
hydrodynamic equations are hyperbolic equations, and a large amount of material exists on their solutions
and behaviours [50]. We will see a small part of this below when studying the Riemann problem. We note
that the quasi-linear form can also be written in terms of the local Lagrange parameters β i(x, t). Indeed,
using (2.12), (2.20) and (2.34), we obtain

∂tβ
i(x, t)+∑

j
A i

j (x, t)∂xβ
j(x, t) = 0. (2.35)

Note that once the hydrodynamic equations (2.33), or equivalently (2.34) or (2.35), are solved, then
we know the exact local state at every space-time point (x, t). In particular, we can evaluate the average
of any observable o(x, t) lying within the fluid cell at x, t, by using 〈o(x, t)〉 = 〈o(0,0)〉β (x.t), as per (2.28)
(assuming the Euler scaling limit is taken exactly).
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Consider the eigenvalue equation (2.22). The discussion there means that there is a matrix R which
diagonalises A:

RAR−1 = veff (2.36)

where veff = diag(veff
i ). Since A is a function of q, so is R. Suppose we can find functions n j(q) whose

Jacobian is R, that is

∂ni

∂q j
= R j

i . (2.37)

Then (2.34) implies

∂tni + veff
i ∂xni = 0. (2.38)

As R is invertible, the functions ni(q) are invertible. Thus, they can be seen as new coordinates for the
maximal entropy state. These coordinates are referred to as the normal modes of the hydrodynamic system.
Having the normal modes is very useful in order to solve specific hydrodynamic problems. Eq. (2.38) simply
means that the ith normal mode is convectively transported at the velocity veff

i . The set of equations (2.38)
does not in general decouple: the velocity veff

i depends on all n js.
By changing coordinates, it is clear that, from the viewpoint of the manifold of maximal entropy states,

A does not have a fundamental meaning – only its spectrum does. However, the set of coordinates corre-
sponding to physical conserved densities is special. In this sense, the class of flux Jacobians obtained under
constant similarity transform (linear changes of coordinates) is physically meaningful – this is the class of
“natural” flux Jacobians. Of course, in general, there does not exist ni that are linear combinations of q j
such that (2.37) hold. That is, there does not exist a set of conserved densities that diagonalise the flux Ja-
cobian. If, however, the natural flux Jacobian is constant, then there exists a set of conserved densities that
diagonalises A. These are very special cases, where a lot of the hydrodynamics simplify. In fact, as we will
see later, all free-particle models are of this type, as well as 1+1-dimensional conformal hydrodynamics.
These can be referred to as free hydrodynamic systems (see the discussion in [95]).

Finally, observe that Euler equations are first-order in derivatives. They are time-reversible, and com-
pletely determined by the thermodynamics of the system (encoded by the equations of state of the maximal
entropy manifold). In this sense, they are as near to the thermodynamic point as possible in Fig. 2.1 – they
constitute some “scaling limit” towards this point.

The latter observations are given more meaning by looking at the entropy density. Using (2.6) and the
formal definition of the free energy density just below (2.10), the entropy density is easily expressible as

s= ∑
i

β
iqi− f. (2.39)

Avoiding formal expressions, this can simply be taken as a definition of s. Using the Euler hydrodynamic
equation (2.33) and the free energy flux (2.17), it is a simple matter to observe that there exists a conserved
entropy current,

∂ts+∂xjs = 0 (2.40)
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with flux

js = ∑
i

β
iji−g. (2.41)

Thus, Euler hydrodynamics on differentiable fluid fields conserve entropy.
In the above statement, the specification “on differentiable fluid fields”, which the derivation assumes,

may in fact be broken. Indeed, Euler hydrodynamics is often unstable. It may for instance develop dis-
continuities – shocks – in finite time; in these cases, the solution to the Euler equation is said to be weak,
see [50]. At shocks, entropy is no longer conserved, and a fuller understanding is obtained by considering
diffusion, discussed in Section 2.4. Shocks in Euler equations are described more precisely in Section 2.5.
Further, in realistic Euler equations fluid fields may also become non-differentiable while remaining con-
tinuous, at which loci energy may fail to be conserved, a problem known as Onsager’s conjecture [129].
See for instance [130] and [131]6.

Remark 2.3.1. The hydrodynamic assumption can be made to sound weaker: it is sufficient to assume that averages
of local and quasi-local observables may only depend on the average conserved densities at the same space-time
point. Making this assumption within a homogeneous state, we deduce that the average currents must be fixed by the
equations of state.

Example 2.3.2. In conventional Galilean systems, see Example 2.2.3, it is possible to bring (2.33) into a form that is
more familiar, as discussed in Section 2.1. One defines a “fluid velocity” v = q1/q0, and combining with the equations
of Example 2.2.3, one finds in particular

∂tv+ v∂xv =− 1
q0

P. (2.42)

2.4 Constitutive relations and diffusive hydrodynamics

Beyond the Euler scale, there are corrections. These corrections should depend on the variations in space-
time of the fluid state, as we no longer take the Euler scaling limit of infinite variation lengths. Variation
lengths are still large, but not infinite, and we are looking for the first correction. The way this is taken into
account is via the constitutive relations. These are based on two assumptions. First, we assume that it is
still possible to fully describe the state in space-time by the averages of conserved densities,

qi(x, t) = 〈qi(x, t)〉. (2.43)

More precisely, we say that a time slice – the set qi(y, t) for all i and all y ∈ R for fixed t – gives a full
description of the fluid at time t. Note how I have adjusted a bit my notation: the local state is not of
maximal entropy, but I still use qi(y, t) for describing state coordinates. From the information at the time
slice t, the assertion is that it is possible (in principle) to evaluate all averages of other local and quasi-local
observables at x, t for any x. Of course, a local observable’s average at x, t cannot depend on all of qi(y, t)
for y ∈ R; by locality, they should just depend on those y near to x. The difference with the Euler scale is

6I thank H. Spohn for pointing out this phenomenon to me.
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that it is no longer purely determined by qi(x, t). Instead, the second assumption is that the first derivative
is involved (as this is a first correction). Let me denote the average currents, within this approximation, as

Ji(x, t) = 〈ji(x, t)〉. (2.44)

Then, local entropy maximisation, (2.28) with (2.14), is modified to

Ji(x, t) = ji(q(x, t))−
1
2 ∑

j
D j

i (q(x, t))∂xq j(x, t) (2.45)

where the factor 1/2 is by convention, and D j
i is the diffusion matrix. Equation (2.45) is what is usually

referred to as the constitutive relations. The microscopic conservation laws,

∂tqi +∂xJi = 0, (2.46)

then give diffusive hydrodynamics. The second-order derivative terms (coming from the derivative in
Ji and that in the conservation law) in the resulting equations are the Navier-Stokes terms, using this
terminology in a generalised way. Again, the functions D j

i (q) are characteristics of the microscopic model.
However, they are no longer part of its thermodynamics (as the equations of state (2.14) were) – they go
beyond thermodynamics, part of hydrodynamics.

Diffusive hydrodynamics is irreversible, and not completely determined by the maximal entropy states
of the system. Hence it is truly away from thermodynamics in Fig. 2.1.

In fact, diffusive hydrodynamics gives rise to an “arrow of time”: entropy production. In order to see
this, consider the Onsager matrix L = DC. One can show that this matrix is positive (by which I mean
non-negative), L ≥ 0; I do this below. Positivity of L then implies that Eq. (2.40) is modified by a positive
non-conservative term. Indeed, let us define the entropy density s as in (2.39), but now with the average
conserved densities qi defined by (2.43), without assuming local entropy maximisation. Let us also denote
by js the entropy flux as a function of those average densities q, as per (2.41). Using the conservation
equation (2.46) and assuming the derivative expansion (2.45), we obtain a correction to (2.40),

∂ts+∂xjs =
1
2 ∑

i j
β

i
∂x(D

j
i ∂xq j) =−

1
2 ∑

i jk
β

i
∂x(D

j
i C jk∂xβ

k). (2.47)

This is equivalent to

∂ts+∂xJs =
1
2 ∑

i jk
(∂xβ

i)D j
i C jk∂xβ

k =
1
2 ∑

ik
∂xβ

iLik∂xβ
k ≥ 0 (2.48)

where the entropy flux receives a correction from the diffusive components of the currents,

Js = js +
1
2 ∑

ik
β

iLik∂xβ
k = ∑

i
β

iJi−g. (2.49)

The right-hand side of Eq. (2.48) is indeed positive if L is positive.
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Positivity of L , much like the statement C> 0, is a consequence of microscopic, statistical-mechanics
considerations. It can be shown by using the Green-Kubo formula, which relates it to two-point functions.
Considering the definition (2.45) and its consequences, via linear response, on two-point functions, one
may show that (see for instance [7, 132], and, in the present context, the derivation presented in [123])

Li j = lim
t→∞

∫ t

−t
ds
[
( ji(s), j j(0))−Di j

]
(2.50)

where Di j is the Drude weight (2.27), and we use the notation of the right-hand side of the last equation of
(2.27). By using the relations amongst the matrices A,B,C,D derived in Section 2.2, and recalling that the
projection P on the space of conserved densities gives the Drude weight, Eq. (2.24), we obtain

Li j = lim
t→∞

∫ t

−t
ds([1−P] ji(s), [1−P] j j(0)). (2.51)

Further, by stationarity,

Li j = lim
t→∞

1
2t

∫ t

−t
ds
∫ t

−t
ds′ ([1−P] ji(s), [1−P] j j(s′)), (2.52)

and thus L ≥ 0 by positive semi-definiteness of the inner product. In fact, the Onsager coefficients can be
bounded from below by strictly positive values if there are “quadratically extensive” conserved quantities
[133, 134].

Hydrodynamic entropy production can be puzzling: the microscopic model might have deterministic,
reversible dynamics, hence preserves its total entropy. Entropy appears to be increasing in hydrodynamics
because of the coarse graining. Effectively, the distribution of large structures at the Euler scale contains
entropy, and as the fluid moves (convection), these structures become more homogeneous (their entropy
decreases), while, because of diffusion, entropy accumulated into small-scale degrees of freedom increases.
There is a transfer of entropy from large scales to small scales. The total hydrodynamic entropy

∫
dx s(x, t)

does not capture the entropy contained in the Euler-scale structures, just that at small scales in the fluid
cells’ thermodynamic states.

It is also important to emphasise that although there may be diffusion, there does not need to be any
external noise: the randomness usually associated to diffusion, in deterministic systems, will come from
the random initial condition. This is still true diffusion.

As mentioned, diffusive hydrodynamics gives corrections beyond the exact Euler scaling limit. For in-
stance, if the variation lengths of the initial state are not infinite, then diffusive hydrodynamics will give a
more precise evolution than Euler hydrodynamics. The time range in which Euler / diffusive hydrodynam-
ics is appropriate depends on the problem under consideration. As mentioned, the dynamics under Euler
hydrodynamics may lead the fluid to be less smooth – such as when shocks develop, discontinuities in the
Euler solution. In this case, diffusive hydrodynamics “kicks in” before discontinuities appear in the actual
fluid, and the diffusion terms smooth them out. Diffusion explains the associated lack of entropy conser-
vation in weak solutions of Euler equations discussed after Eq. (2.40). In general, we expect diffusion to
smooth out the fluid’s state at very long times and eventually, in finite (but large) volume, homogeneity to
be reached. Thus, roughly, as time goes forward, the relevant equations are those from left to right in Fig.
2.1.
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Remark 2.4.1. It is important to remark that there is now a gauge ambiguity: the conserved densities qi(x, t) are fixed
by their relation to the total charges Qi, as per (2.3), only up to total derivatives. But, such total derivatives change
the second term in (2.45) – hence affect the diffusion matrix D j

i . This gauge ambiguity can be fixed by requiring an
appropriate parity-time symmetry, see [123].

Remark 2.4.2. Although the diffusion matrix D j
i is gauge dependent – it depends on the exact definition of the

conserved densities qi(x, t) – the Onsager matrix is gauge invariant; see for instance [123]. A gauge invariant way of
writing the modified current (2.45) is Ji = ji− 1

2 ∑ j Li j∂xβ j, leading to the gauge-invariant hydrodynamic equation

∑
j

[
Ci j∂tβ

j +Bi j∂xβ
j− 1

2
∂x(Li j∂xβ

j)
]
= 0. (2.53)

Note that the Lagrange parameters β is are indeed defined in a gauge-invariant way. In order to be fully predictive,
this equation has to be supplemented with a map from β (x, t) to local averages. As part of the hydrodynamic approx-
imation, this map is fully fixed once the averages 〈qi(x, t)〉 are fixed as functions of β (y, t) (for y in a neighbourhood
of x).

Remark 2.4.3. In generic one-dimensional systems, diffusion is often anomalous, and replaced by superdiffusion.
In these cases, the derivative expansion is not valid, and one must appeal to the theory of nonlinear fluctuating
hydrodynamics [135, 136], or to other constructions [134]. This is however beyond the scope of these notes. For
integrable systems, my understanding is that the derivative expansion holds true for conserved currents associated
to the integrable hierarchy of conserved charges, where the integrability structure constrains the dynamics. Hence
this is the most relevant situation for the present notes. But for conserved currents associated with internal charges,
nondiagonal scattering may lead to their being effectively “non-integrable”, and superdiffusion may arise [96, 97,
98, 137, 138, 139]. See also the discussion in the closing remarks, Chapter 5.

Example 2.4.4. For the conventional Galilean hydrodynamics discussed in Section 2.1, the Navier-Stokes term comes
from the diffusion matrix

D = 2
ζ

q0

(
0 0

−q1/q0 1

)
. (2.54)

This general form is fixed by Galilean invariance.

2.5 The Riemann problem

One of the most iconic problem of hydrodynamics is the Riemann problem. This is the initial-value problem
of hydrodynamics where the initial fluid’s state is homogeneous on the line except for a single discontinuity
at some point, say at the origin x = 0 (so that the states on the left and right are different). Here I’m
concentrating on the Euler scale, but one can discuss this at the diffusive scale as well.

From the viewpoint of microscopic models, this is a very natural configuration that is used in order to
generate non-equilibrium steady states [51, 52, 53]: the two half-infinite halves of the system play the role
of infinitely large baths that can provide and absorb particles, energies and other conserved quantities, so
that a steady flow may develop over time in the central region. This is sometimes called the partitioning
protocol.
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The initial condition is

〈qi(x,0)〉=
{

q
(l)
i (x < 0)

q
(r)
i (x > 0).

(2.55)

Clearly, this initial condition is scale invariant: it does not change under (x, t) 7→ (λx,λ t). Since the Euler
hydrodynamic equations (2.34) also are invariant under this scaling, it is natural to assume that the solution
will also be, hence that the solution only depends on the ray ξ = x/t,

qi(x, t) = qi(ξ ), ξ = x/t. (2.56)

The initial conditions give the asymptotics

lim
ξ→−∞

qi(ξ ) = q
(l)
i , lim

ξ→+∞

qi(ξ ) = q
(r)
i . (2.57)

Equation (2.34) then simplifies to a set of ordinary differential equations,

∑
j

(
A j

i −ξ δ
j

i

) dq j

dξ
= 0. (2.58)

This is nothing else than the eigenvalue problem for the flux Jacobian, where ξ is the eigenvalue and dq/dξ

the eigenvector.
The natural solutions to this problem depend on the structure of the flux Jacobian. In fact, it depends

if the Euler hydrodynamics is linearly degenerate or not. Linear degeneracy is the condition that, for
every fluid mode i, the effective velocity veff

i does not depend on the corresponding normal coordinate ni.
Integrable systems fall within this category – in addition to admitting infinitely-many conserved quantities.
Let me discuss the situation assuming a finite number of conserved quantities (fluid modes).

There are then three types of (possibly “weak”, i.e. with discontinuities) solutions to these equations.
First, let me ask for q j to be continuous and differentiable. Then ∂ξq j is an eigenvector for the flux Jacobian
A with eigenvalue ξ . In fact, the discussion is simplified by going to the normal modes as per (2.38), in
terms of which we obtain

(veff
i −ξ )

dni

dξ
= 0. (2.59)

Thus, for every i, we either have veff
i = ξ , or dni/dξ = 0. For a given state q(l) on the left, say, there is

a discrete set of ξ for which we could have nonzero dn j/dξ . As a consequence, the state stays constant
on the left, from ξ = −∞ until such a value of the ray ξ is reached. At this point, if the velocities are
non-degenerate, then, a single normal mode can be set to have a nonzero derivative, say mode j, so we
have veff

j = ξ . Then, as ξ varies, n changes, to first order, linearly. As veff
i s are (expected to be) smooth,

they stay far from ξ except for i = j, thus only n j can keep having nonzero derivatives. In order for this
to happen, we must satisfy the eigenvalue equation at ξ + dξ , so veff

j (n(ξ + dξ )) = ξ + dξ . This implies
dn j/dξ = 1/∂n jv

eff
j . If the mode is not linearly degenerate, the derivative on the right-hand side is nonzero,

hence n j indeed changes infinitesimally. This means that once we choose the left-state eigenvalue ξ (in
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a discrete set of choices), the only parameter that determines the state on the right is the length of the ξ

interval for which we solve the equation, as only a single normal mode could be modified along this interval.
This is a rarefaction wave. It has the property that, on every ray, a single normal mode is travelling along
this ray.

Crucially, this is, generically, not enough to span all possible states on the right, as we have a single
continuous parameter for the rarefaction wave, yet a higher dimensional manifold of possible right-states.
Although one can “stack” rarefaction waves for different modes, generically it is still not possible to connect
the state on the left to that on the right with a series of rarefaction waves.

The second type of solutions are shocks. These are weak solutions, in that they are discontinuities. This
means that we have to revert to the integral form of the Euler equations, (2.31). Suppose the solution is
constant in some region of rays, except for a discontinuity at some ξ , where the state just to its left / right is
q±i . Then integrating over a small rectangle around this discontinuity, as in (2.31) with X = ξ T , we obtain
the Rankine-Hugoniot equation

ξ (q−i −q+i )+(j+i − j−i ) = 0. (2.60)

We insert the equations of state, and obtain algebraic equations that relate the states just on the left and right
of the shock. Given a shock velocity ξ , this is a map from the left state to the right state, so again we only
have a single parameter.

Formally, one can put as many shocks as is desired at different velocities, and thus one obtains a large
family of possible solutions, parametrised by the shock velocities. It is in general possible to relate any
state in the left reservoir to any state in the right reservoir with such many-shock solutions. However, these
solutions are generically unphysical. Indeed, a shock is a weak solution to the Euler equations, which means
that the underlying physical system has fast variations – finite variations on scales which are much smaller
than the Euler scales – around the shock’s ray. Such variations lead to a breaking of the Euler equations,
and at shocks, diffusive terms become important. Since, as we have shown, diffusion produce entropy, one
must verify that the Ranquine-Hugoniot equation (2.60) leads, at the shock, to an increase of the entropy
s from Eq. (2.39). It turns out that an equivalent condition is that the characteristics, the curves which
follow the propagations of normal modes, are not “emitted” by the shock, but can only be “absorbed” by it
– physically, entropy production looses the information of these modes, but cannot create it. See [50] for
an in-depth discussion.

Finally, the third type are contact discontinuities. These are discontinuities which do not produce
entropy at the Euler scale – that is, which do not give rise to entropy increase that is linear with time. A
contact discontinuity is a discontinuity of a mode n j exactly at the ray ξ = veff

j . In this case, no characteristic
is absorbed or emitted by the discontinuity. In linearly degenerate systems, as ∂n jv

eff
j = 0, the rarefaction

wave analysis above leads to the possibility of having dn j/dξ = ∞, and thus a contact discontinuity. One
can stack enough of these in order to connect the left and right states. Physically, it appears as though the
system chooses the least entropy production possible, hence in linearly degenerate systems, no shock is
produced.

Remark 2.5.1. The partitioning protocol in a microscopic system does not lead, at early times, to a hydrodynamic
description, because of the large variations. However, after a long enough time, the state can be assumed to be
described by Euler hydrodynamics, and, scaling it, gives the Riemann problem. In fact, any initial condition with
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the given left and right asymptotics, approached fast enough, leads to the Riemann problem with these left and right
states.

Remark 2.5.2. As we saw, the partitioning protocol gives rise, at large times and in any finite regions around x = 0,
to a state determined by the Riemann problem of hydrodynamics. If this state carries currents, then this is a non-
equilibrium steady state. If this happen, then we say that the system admits ballistic transport: transport of quantities
unimpeded by diffusive effects. In particular, Fourier’s law is broken. Euler hydrodynamics is, indeed, a theory for
ballistic transport of hydrodynamic modes.

2.6 Hydrodynamic correlation functions

Hydrodynamic ideas also allow us to go beyond the evaluation of one-point functions (2.28), and gives
exact asymptotic results (in the Euler scaling limit, and diffusive corrections) for multi-point correlation
functions as well.

One way to get to this is by considering linear responses of the hydrodynamic flow to perturbations of
its initial state. Hydrodynamics will then describe the propagation of small waves on top of the fluid flow.
The perturbation may be thought of as a small fluctuation on top of the fluid flow, or as an effect of an
external action on the fluid. Assume qi(x, t) solves the Euler hydrodynamic equation (2.33). Consider a
small perturbation qi 7→ qi + δqi. The way the small perturbation propagates is determined by asking that
qi +δqi also satisfies (2.33). We obtain

∂tδqi +∂x

[
∑

j
A j

i (q)δq j

]
= 0 (Euler scale, fluid background). (2.61)

For simplicity, from now on in this section, I’ll assume that the background flow is homogeneous and
stationary – just a fixed maximal entropy state. Then the flux Jacobian is independent of space-time, and

∂tδqi +∑
j
A j

i (q)∂xδq j = 0 (Euler scale, stationary background). (2.62)

One can also consider this at the diffusive level, and the fluid equation (2.46) gives, again on top of a
homogeneous, stationary background,

∂tδqi +∑
j
A j

i (q)∂xδq j−
1
2 ∑

j
D j

i (q)∂ 2
x δq j = 0 (diffusive scale, stationary background). (2.63)

If one considers fluctuations, an additional noise term must be added, a phenomenological representation
of the statistical fluctuations that the particles making up the fluid as subjected to. This is connected to the
diffusion matrix by the Einstein relation. We get what is referred to as linear fluctuating hydrodynamics.
See for instance the discussion in [135]. For our present purpose, there is no need to add a noise term.

Suppose the small initial perturbation is local, at least on the Euler scale, or perhaps the lesser diffusive
scale. Then the small wave propagating from it will give rise to correlations between the observable rep-
resenting this local perturbation, and any other observable. One can think of this as the fluid equivalent of
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the usual relation between fluctuations and correlations in statistical mechanics. If o(0,0) is the observable
resulting from the perturbation, then (2.63) suggests

∂t〈qi(x, t)o(0,0)〉hyd +∑
j
A j

i ∂x〈q j(x, t)o(0,0)〉hyd− 1
2 ∑

j
D j

i ∂
2
x 〈q j(x, t)o(0,0)〉hyd = 0. (2.64)

Here 〈· · ·〉hyd is some fluid-cell-averaged (connected) correlation function in the stationary background β .
Depending on the model, fluid-cell averaging may indeed be necessary for this equation to hold, as the
long-wavelength propagation of perturbations that the equation describes cannot encode too much detail of
this perturbation. There are many ways of doing fluid-cell averaging, see e.g. [140, 141]. One way, under
which (2.64) is expected to be correct, is by Fourier transform, as described below.

One can in fact “derive” (2.64) more formally as follows. By the microscopic conservation laws,

∂t〈qi(x, t)o(0,0)〉hyd +∂x〈 ji(x, t)o(0,0)〉hyd = 0. (2.65)

Now look at 〈 ji(x, t)o(0,0)〉hyd. This can be obtained by considering a space-dependent Lagrange parameter
β o(x,0) associated to o in the initial state at time t = 0, somewhat as in the left-hand side of (2.29), and
varying it at the fluid cell x = 0. The variation must be applied to the fluid solution Ji(x, t) for the average
current under the initial condition with this inhomogeneous Lagrange parameter. Thus

〈 ji(x, t)o(0,0)〉hyd =
δJi(x, t)
δβ o(0,0)

= ∑
j

∫
dy

δq j(y, t)
δβ o(0,0)

δJi(x, t)
δq j(y, t)

(2.66)

where we used the fact that the fluid solution Ji(x, t) only depends on the average densities q j(y, t)’s on
the time slice t (this is the hydrodynamic approximation), and we used the chain rule. With the constitutive
relations (2.45) and the relation δq j(y, t)/δβ o(0,0) = 〈qi(y, t)o(0,0)〉hyd, and specialising to the stationary,
homogeneous background, one obtains (2.64).

At the Euler scale, without the diffusion operator, (2.64) is time-reversal invariant. However, at the
diffusive scale, it is not. Physically, at time goes on, correlations should decay due to diffusion. Therefore,
not only (2.64) is not time-reversal invariant, but also its validity depends on the sign of t. Indeed, for
positive (negative) t, correlation functions should decay as t gets more positive (negative). As written,
(2.64) gives decaying correlation functions towards positive times, hence is valid for t > 0. For t < 0, the
last term on the left-hand side should have a positive sign, instead of negative.

Equation (2.64) is a linear partial differential equation with constant coefficients. It can be solved by
Fourier transform, and it is this language that clarifies the meaning of the hydrodynamic fluid-cell averaged
correlation function 〈· · ·〉hyd. That is, define

Si,o(k, t) =
∫

dxeikx〈qi(x, t)o(0,0)〉c (2.67)

as the Fourier transform of the true, microscopic connected correlation function. For k small and t large, this
is also the Fourier transform of 〈qi(x, t)o(0,0)〉hyd. Hence, accounting for the sign of t, then this satisfies

∂tSi,o(k, t)− ik∑
j
A j

i S j,o(k, t)+ sgn(t)
k2

2 ∑
j

D j
i S j,o(k, t) = 0. (2.68)
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In addition, realising that at k = 0 the time dependence disappears and we can use (2.7), we have

Si,o(0, t) =−
∂ 〈o(0,0)〉

∂β i = Ci,o (2.69)

where the last equality is a definition of Ci,o Hence

Si,o(k, t) = ∑
j

exp
[
iktA− k2|t|D

] j
i C j,o(k) (2.70)

for some initial condition C j,o(k), which by (2.69) is constrained to

C j,o(0) = C j,o. (2.71)

Eq. (2.70) is an expression for the Fourier transform (2.67) of the exact connected correlation function
(in a maximal entropy state), as an expansion in powers of k. The leading power corresponds to the Euler
scale, and the first subleading, to the diffusive scale. The Euler scale is more precisely obtained by taking
the limit k→ 0, t→∞ with kt fixed. Since in this limit C j,o(k) =C j,o by (2.71), at the leading power, we can
just use C j,o(0) = C j,o for the initial condition in (2.70). By choosing the gauge for qi(x, t) appropriately
at the diffusive scale (see Remark 2.4.1), it is often possible to cancel the first subleading power of k in
C j,o(k). In such a gauge, one may simply use C j,o(k) = C j,o for the initial condition in (2.70) at both Euler
and diffusive order. In particular, for correlation functions of densities Si, j(k, t) = Si,q j(k, t), this can be done
by choosing a PT-symmetric gauge, and we obtain

Si, j(k, t) =
(

exp
[
iktA− k2|t|D

]
C
)

i j
. (2.72)

As anticipated, the Fourier analysis clarifies the meaning of (2.64). It should be understood as an
equation for the inverse Fourier transform, of the small-k expansion, of the Fourier transform of the true
correlation function in a maximal entropy state. Taking the small-k expansion between Fourier and inverse
Fourier transforms, means that an averaging is made on the fluid cell at space-time point x, t. This, in
particular, “washes out” any finite-frequency / wavelength oscillation that may appear in the true correlation
function. At the Euler scale, the derivation (2.66) may use the explicit Euler scaling limit (2.29), where the
scaling limit induces such an averaging. In particular, from this, one infers that, appropriately Euler-scale
averaged n-point connected correlation functions decay, when all distances are scaled by λ →∞, like λ 1−n.

Finally, it is also possible to access correlation functions involving other operators than the densities.
This is essentially done for the current observable in the derivation (2.66). The general form can be ex-
pressed by using hydrodynamic projections, extending the Drude weight analysis (2.27). At the Euler
scale, in a self-explanatory notation, this takes the form (compare with (2.24))

lim
k→0, t→∞

kt fixed

So1,o2(k, t) = lim
k→0, t→∞

kt fixed

SPo1,Po2(k, t) (2.73)

where I use the projection P on the space of conserved densities, defined in (2.25). Explicitly, this is

lim
k→0, t→∞

kt fixed

So1,o2(k, t) = ∑
i jmn

(o1,qi)C
i j S j,m(k, t)Cmn (qn,o2) = (o1,q) ·C−1 exp

[
iktA

]
(q,o2) (2.74)
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Figure 2.3: Correlations between observables at the Euler scale are due to propagation of ballistic waves between the
two observables.

where the inner product (2.11) is used, and S j,m(k, t) =
(

exp
[
ikAt

]
C
)

jm
is at the Euler scale. Note that at

the Euler scale, everything depends on the product kt only. The meaning of (2.74) is that the Euler-scale
correlation functions between observables o1(x, t) and o2(0,0) is obtained by projecting o2 onto the set of
conserved quantities, propagating the associated conserved densities from (0,0) to (x, t), and overlapping
the result of this propagation with o1. Physically, we are saying that the leading, Euler-scale contribution
to the correlation function is obtained by propagating linear waves (“sound waves”) between the positions
of the two observables, see Fig. 2.3. As an image, think about the strongest signal that a pond skater will
“hear” from a leaf falling on the surface of the water nearby: it will be when the surface wave produced by
the leaf reaches its feet. The formula can be written in real space, where the intuitive interpretation is even
clearer,

〈o1(x, t)o2(0,0)〉eul = (o1,q) ·C−1
δ
[
x−At

]
(q,o2). (2.75)

Here the superscript now says that this is valid at the Euler scale, and δ
[
x−At

]
is the matrix R−1diag

[
δ (x−

veff
i t)
]
R. The general expectation is that along the ballistic rays x = veff

i t, there are strong correlations, pre-
sumably algebraically decaying, while away from these rays, correlations are much weaker, exponentially
decaying.

Equation (2.73) can be shown rigorously under natural conditions, and is essentially sufficient to derive
(2.72) at the Euler scale. Hydrodynamic projections form a more powerful basis for a rigorous analysis of
correlation functions than the physical arguments and formal derivation presented above.

Remark 2.6.1. Fluid cell averaging is a delicate topic. Besides the Fourier transform procedure presented here, other
ways are possible. At the Euler scale, one might integrate over cells in space that grow sublinearly with the scale; or
one might take cells that grow simultaneously with the scale, and after the Euler scaling limit is taken, take the cells’
lengths, in scaled unit, to zero. In fact, there is no guarantee that this be sufficient in order to extract the actual Euler
physics: time-averaging may also be needed.
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Chapter 3

Integrable systems and thermodynamic Bethe
ansatz technology

I would now like to apply the various concepts of hydrodynamics introduced in Chapter 2 to integrable
systems.

The most basic characteristics of an integrable short-range many-body system is that it admits an infinite
number of conserved quantities with local densities, of the type (2.3). Because of this infinity, the notion of
maximal entropy state is more delicate – one must address the question as to if the series in the exponential
in (2.6) converges. An answer is proposed in [121]. There, it is shown that one can define states by using
state-flow equations similar to (2.7),

− ∂

∂ s
〈o〉s =

∫
dx〈oq(x,0)〉cs. (3.1)

Here s > 0 is a parameter, which for definiteness, could be thought of as occuring from replacing β i by
sβ i in (2.6) (so that ∂ 〈o〉s/∂ s = ∑i β i∂ 〈o〉s/∂β i and q = ∑i β iqi). The flow connects the desired state
to the “infinite-temperature” state s = 0, which is the trace state (it exists and is unique in many, if not
all, situations). The right-hand side of (3.1) is identified with the inner product (2.11). Therefore, the set
of allowed charges q are those which lie in the Hilbert space constructed “à la Gelfand-Naimark-Segal”
from this inner product (moding out the null space, and completing by Cauchy sequences; this is not to
be confused with the Hilbert space of the possible underlying quantum model!). It turns out, as shown in
[121], that this space is in bijection with the space of linearly extensive conserved quantities, the so-called
pseudolocal charges introduced by Prosen [142, 143] and that play a fundamental role in the thermalisation
of integrable systems [144]. That is, ∑i β iQi should in fact be identified with a single, Lagrange-parameter-
dependent pseudolocal conserved charge. The Qis form a basis for the Hilbert space of pseudolocal charges,
so ∑i β iQi is just a basis decomposition; equivalently, the qis, occurring on the right-hand side of (2.7),
form a basis for the Hilbert space constructed out of (·, ·). Because of the derivative in (2.7), this Hilbert
space is identified with the tangent space to the manifold of maximal entropy states [the full mathematical
construction of this manifold is not yet known, though].

In integrable systems, this Hilbert space is infinite-dimensional, hence the manifold of maximal entropy
states is infinite-dimensional. One can think of the infinite-dimensionality as the “generalised” bit of gen-
eralised Gibbs ensembles (GGEs). The form (2.6), with an appropriate series of conserved charges, has
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been seen to arise from relaxation in quench protocols in a great many situations, hence it is quite well
established, see the review [144]1.

This means that, in integrable systems, the manifold of maximal entropy states – the GGEs – is much
larger than it is in conventional models. Nevertheless, it suggests that the large amount of conserved charges
of integrable models does not entirely preclude ergodicity: it simply further reduces the manifold within
which ergodicity may take place. In a classical mechanics picture, the action variables specify the hyper-
torus in phase space on which the system’s state is constrained, but ergodicity occurs on the angle variables,
as the system covers the available hyper-torus.

The above is a rather formal description. How do we make this more precise and get actual formulae that
are practically useful for integrable systems? In this chapter, I explain how the maximal entropy states can
be efficiently described by the thermodynamic Bethe ansatz (TBA) technology. I will provide all elements
of Section 2.2, and even some of Section 2.3, in the language of TBA. It is important to note that, despite the
name, TBA is not constrained to Bethe-ansatz solvable quantum models. What I here refer to as the TBA
technology is a general formalism, that applies to quantum and classical models alike, and that is based on
an understanding of conserved quantities and maximal entropy states using the “asymptotic coordinates” of
scattering theory.

3.1 Scattering map in integrable systems

The main tool for describing GGE measures is to use the scattering map. The idea is very simple. First,
we choose a “vacuum” for our physical system. In a spin chain, a canonical choice is all spins up; in a
field theory, the zero value of the field; in a gas, the absence of particles. But there are other choices,
and the choice of vacuum affects the scattering theory of the model. Second, the system is excited on
some region, say of length L. That is, the system exists on the infinite line, but, for instance, there are
particles on the interval [0,L] and nowhere else. For a finite density system, the total number of particles,
quantity of energy or of other charge (with respect to the chosen vacuum) is chosen proportional to L, in
the eventual large-L limit. But before taking this limit, the question is to describe a distribution (quantum
or classical) of configurations on this finite-density excited region. In order to do so, the third step is to
simply change coordinates, from the canonical ones on the line, to asymptotic coordinates. The latter are
obtained in a dynamical fashion, by letting the system evolve for a very long time on the line, all the way
until the density is null and all emerging excitation units (particles, solitons etc.) are, in some way, very well
separated2. The description of these excitation units – their velocities or momenta, and a characterisation
of their positions (“impact parameters”) – is what replace the description of the particles, or the field, or
the spins on the interval [0,L]. This is the scattering map. See Fig. 3.1. Finally, we put a measure on
the asymptotic coordinates themselves, which, by the scattering map, represents the GGE on the interval
[0,L], and we take the large-L limit in order to describe the thermodynamic system. In this description, it
was never necessary to fix any explicit boundary: we describe the thermodynamic of a finite-density gas,

1In integrable models there are two types of quasi-local, not strictly local conserved charges: those that can be obtained from local conserved
charges by Cauchy completion, and those that are Cauchy completion of local observables which become conserved only in the limit. The
latter, I believe, are the extra quasi-local conserved charges associated to strings in the thermodynamic Bethe ansatz language [118].

2This is more subtle if there are radiative excitation units, which are not well-delimited energy lumps, but the scattering theory for these can
also be constructed.
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Figure 3.1: The scattering map. The physical particles (black dots) lie on an interval of length L. After a long-time
evolution (shaded gray region), they are far apart (red dots). Their velocities p∞

n , and the impact parameters x∞
n –

the intercept of the zero-time slice with the asymptotic trajectories’ extrapolations (red dotted line) – characterise the
asymptotic configuration. The impact parameters lie on an interval of length R, generically different from L.

field theory of chain by using zero-density excitations on the line. Using zero-density objects to describe a
finite-density state makes this a powerful technique.

The general idea is of course applicable for any system, integrable or not, but it is with integrability
that its full power emerges. Structurally, the main properties of integrable systems is the presence of an
extensive number of local conserved quantities. But their most important effects are indeed seen in the
scattering theory, and this is what allows us to obtain explicit equations for their thermodynamics.

Let me illustrate these ideas, in this and the next section, using a simple, explicit example: the Toda
model. This is a model of Galilean, labelled particles, with an exponential repulsive potential between
particles of neighbouring labels (here with unit mass):

H = ∑
n

(
p2

n
2
+ e−(xn+1−xn)

)
. (3.2)

One can make the number of particles finite, for instance by requiring that xn = ∞ (−∞) for n > N (n < 1).
The momenta pn and positions xn are canonical coordinates, in particular {xn, pm} = δn,m. They evolve
according to the equations of motion induced by the Hamiltonian flow H. I will now describe the scattering
map, which maps the particle’s coordinates to a new set of coordinates that has a very simple dynamics.

For simplicity, consider the classical case. Because the potential is repulsive, any configuration of par-
ticles’ positions and velocities, if let to evolve with H, will eventually end up with well-separated particles,
x1� x2� . . .� xN , going away from each other, pn+1− pn > 0. Because they are so well separated, the
potential will not be felt, hence the evolution will be free. Thus,

pn(t) = p∞
n +O(t−∞), xn(t) = p∞

n t + x∞
n +O(t−∞). (3.3)

The O(t−∞) corrections come from the exponentially small potential. One can see p∞
n and x∞

n as functions
of the initial conditions, the sets {pm = pm(0)} and {xm = xm(0)}. Thus, the asymptotic trajectories –
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determined by the asymptotic momenta p∞
n and the “impact parameters” x∞

n (see Fig. 3.1) – give rise to a
change of coordinates

S : {pn},{xn} 7→ {p∞
n },{x∞

n }. (3.4)

This is the scattering map. This is the “out” scattering map, S = Sout, and there is also an “in” scatter-
ing map which maps to the asymptotic coordinates {p−∞

n },{x−∞
n } obtained by evolution towards negative

infinite time. Note that the impact parameters are simply the positions where the linear extensions of the
asymptotic trajectories cross the time slice t = 0.

The asymptotic coordinates are also dynamical variables, and possess a Poisson bracket induced by that
on the original coordinates; indeed S is just a change of coordinates. Because time evolution is a canonical
transformation, it is simple to see that the scattering map also is a canonical transformation, and thus

{p∞
n , p∞

m}= 0, {x∞
n , p∞

m}= δnm, {x∞
n ,x

∞
m}= 0. (3.5)

Using (3.3) in the time-evolved form of the Hamiltonian (3.2), we immediately find, because the positions
at large times are separated by very large distances, that the Hamiltonian takes the free-particle form when
written in terms of asymptotic coordinates,

H = ∑
n

(p∞
n )

2

2
. (3.6)

As a consequence, time evolution by time s of the asymptotic coordinates is trivial,

p∞
n (s) = p∞

n , x∞
n (s) = p∞

n s+ x∞
n . (3.7)

The asymptotic coordinates are similar to the action-angle variables of integrable systems; however the
scattering map exists in general, independently from integrability.

Let me now consider the other conserved charges of the model. Because they are supposed to be local,
when particles are far from each other, they are not supposed to be affected by inter-particle interactions.
Thus they can only be functions of the asymptotic momenta, that are indeed conserved. One finds that in
general, the local conserved charges take the form

Qi = ∑
n
(p∞

n )
i, i = 1,2,3, . . . (3.8)

[In fact, i might lie in an unbounded subset of N, the set of values of i being a characteristic of the integrable
model.] That is, they are obtained from powers of the asymptotic momenta. As explained above, we need
to complete the set to the space of pseudolocal charges, and this is expected to lead to a parametrisation of
conserved charges by a big space of functions w(p) of the momenta,

Qw = ∑
n

w(p∞
n ). (3.9)

Of course, formally, all the charges (3.9) are well defined and conserved even if the system is not in-
tegrable. This is similar to the situation in quantum chains, where all projectors onto energy eigenstates
are conserved quantities, independently of integrability. However, the main point of integrability is that the
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Q3

Figure 3.2: The Q3 flow in integrable models. Because the displacement is proportional to the square of the momen-
tum, a three-body process is factorised into well separated two-body processes.

charges (3.9) are local, or pseudolocal – that is, they have appropriate locality properties. This is at the
hearth of integrability, and will be used below in one, crucial argument, leading to the very simple structure
of the scattering map of integrable systems.

The final ingredient necessary to describe the thermodynamics is the scattering shift. In order to un-
derstand this, consider a full scattering process. We have a set of particles which, at large negative times,
have free-particle trajectories whose linear extrapolation to the time slice t = 0 covers some region of space.
This region is assumed to have a length R (see Fig. 3.1) proportional to the number of particles N, so that
we are describing a gas of finite density. At large positive times, the particles separate again because of the
repulsive potential, and end up in outgoing free-particle trajectories. The scattering question is concerned
with determining the outgoing asymptotic coordinates as functions of the ingoing asymptotic coordinates:
Sout ◦S−1

in .
In integrable models, this question can be answered very explicitly. The clearest argument is from Parke

[145] – it was made in the context of quantum field theory, but can be applied more generally, as discussed
in [146]. Consider a single non-trivial conserved charge, say Q3 in (3.8). Assume that it has appropriate
locality property – what this mean will be clear below. Consider its associated Hamiltonian flow et3{·,Q3}.
Let us apply this flow for a “time” t3 on the particles’ coordinates at a very negative real-time slice t � 0,
and then for a “time” −t3 at a very positive real-time slice t � 0. Because the Q3 flow commutes with the
H flow, the result does not affect the scattering problem. In math,

Sout ◦S−1
in = Sout ◦ e−t3{·,Q3} ◦ et3{·,Q3} ◦S−1

in = e−t3{·,Q3} ◦Sout ◦S−1
in ◦ et3{·,Q3} (3.10)

where we use commutation of the Q3 flow with the scattering map. Now, because the charge is local, and
because at large negative (positive) times all trajectories of particles are well separated, one can simply
apply the Q3 flow independently on each in (out) asymptotic coordinates themselves. This is trivial, for
instance

e−t3{·,Q3}(p∞
n ) = p∞

n , e−t3{·,Q3}(x∞
n ) = x∞

n −3t3(p∞
n )

2. (3.11)

The important point it that this is a constant shift by the square of the momentum. This is different from
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(x, t)
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<latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit>

'(p1 � p2)
<latexit sha1_base64="rnlxVL8qGuRVyPxS7BBc0HbTMfs=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EixCPVh2i6DHohePFewHtMuSTdM2NJsNSbZQlv4TLx4U8eo/8ea/MW33oK0PBh7vzTAzL5KcaeN5305hY3Nre6e4W9rbPzg8co9PWjpJFaFNkvBEdSKsKWeCNg0znHakojiOOG1H4/u5355QpVkinsxU0iDGQ8EGjGBjpdB1exOs5IhVZOhfybB2Gbplr+otgNaJn5My5GiE7levn5A0psIQjrXu+p40QYaVYYTTWamXaioxGeMh7VoqcEx1kC0un6ELq/TRIFG2hEEL9fdEhmOtp3FkO2NsRnrVm4v/ed3UDG6DjAmZGirIctEg5cgkaB4D6jNFieFTSzBRzN6KyAgrTIwNq2RD8FdfXietWtX3qv7jdbl+l8dRhDM4hwr4cAN1eIAGNIHABJ7hFd6czHlx3p2PZWvByWdO4Q+czx8tNZKw</latexit><latexit sha1_base64="rnlxVL8qGuRVyPxS7BBc0HbTMfs=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EixCPVh2i6DHohePFewHtMuSTdM2NJsNSbZQlv4TLx4U8eo/8ea/MW33oK0PBh7vzTAzL5KcaeN5305hY3Nre6e4W9rbPzg8co9PWjpJFaFNkvBEdSKsKWeCNg0znHakojiOOG1H4/u5355QpVkinsxU0iDGQ8EGjGBjpdB1exOs5IhVZOhfybB2Gbplr+otgNaJn5My5GiE7levn5A0psIQjrXu+p40QYaVYYTTWamXaioxGeMh7VoqcEx1kC0un6ELq/TRIFG2hEEL9fdEhmOtp3FkO2NsRnrVm4v/ed3UDG6DjAmZGirIctEg5cgkaB4D6jNFieFTSzBRzN6KyAgrTIwNq2RD8FdfXietWtX3qv7jdbl+l8dRhDM4hwr4cAN1eIAGNIHABJ7hFd6czHlx3p2PZWvByWdO4Q+czx8tNZKw</latexit><latexit sha1_base64="rnlxVL8qGuRVyPxS7BBc0HbTMfs=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EixCPVh2i6DHohePFewHtMuSTdM2NJsNSbZQlv4TLx4U8eo/8ea/MW33oK0PBh7vzTAzL5KcaeN5305hY3Nre6e4W9rbPzg8co9PWjpJFaFNkvBEdSKsKWeCNg0znHakojiOOG1H4/u5355QpVkinsxU0iDGQ8EGjGBjpdB1exOs5IhVZOhfybB2Gbplr+otgNaJn5My5GiE7levn5A0psIQjrXu+p40QYaVYYTTWamXaioxGeMh7VoqcEx1kC0un6ELq/TRIFG2hEEL9fdEhmOtp3FkO2NsRnrVm4v/ed3UDG6DjAmZGirIctEg5cgkaB4D6jNFieFTSzBRzN6KyAgrTIwNq2RD8FdfXietWtX3qv7jdbl+l8dRhDM4hwr4cAN1eIAGNIHABJ7hFd6czHlx3p2PZWvByWdO4Q+czx8tNZKw</latexit><latexit sha1_base64="rnlxVL8qGuRVyPxS7BBc0HbTMfs=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EixCPVh2i6DHohePFewHtMuSTdM2NJsNSbZQlv4TLx4U8eo/8ea/MW33oK0PBh7vzTAzL5KcaeN5305hY3Nre6e4W9rbPzg8co9PWjpJFaFNkvBEdSKsKWeCNg0znHakojiOOG1H4/u5355QpVkinsxU0iDGQ8EGjGBjpdB1exOs5IhVZOhfybB2Gbplr+otgNaJn5My5GiE7levn5A0psIQjrXu+p40QYaVYYTTWamXaioxGeMh7VoqcEx1kC0un6ELq/TRIFG2hEEL9fdEhmOtp3FkO2NsRnrVm4v/ed3UDG6DjAmZGirIctEg5cgkaB4D6jNFieFTSzBRzN6KyAgrTIwNq2RD8FdfXietWtX3qv7jdbl+l8dRhDM4hwr4cAN1eIAGNIHABJ7hFd6czHlx3p2PZWvByWdO4Q+czx8tNZKw</latexit>

p1
<latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit>

p1
<latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit>

p2
<latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit>

p2
<latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit>

Figure 3.3: The two-body scattering shift.

real time evolution, where the shift is linear with momentum. As a consequence, for t3 large enough, the
Q3-modified scattering process is composed of well-separated two-body processes. See Fig. 3.2.

The above has important consequences. Since in 1+1 dimensions, two-body processes preserve mo-
menta, and since the Q3 flows above don’t change the asymptotic momenta, we conclude that scattering is
elastic: {pin

n }= {pout
n }. This in turn implies that the shift due to the Q3 flow on the in-particle of momentum

p, is equal and opposite to that on the out-particle of the same momentum. Thus, we may evaluate the effect
of scattering on the impact parameters simply by adding all two-body shifts ϕ(pn− pm) (see Fig. 3.3) in-
curred as trajectories of momenta pn and pm cross (we use Galilean invariance to say it is a function of the
difference only) – this is factorised scattering. Here and throughout these notes, we assume the symmetry
ϕ(p) = ϕ(−p), which holds in many models.

Let me introduce the concept of quasiparticle: this is a “tracer” attached to real particles, but which may
jump from particle to particle at collisions, in such a way that it follows a given momentum. The concept
of quasiparticle only makes sense with elastic, factorised scattering as above, because we need to be able
to trace a given momentum. Labelling quasiparticles using the in-particle labels from left to right, and
using p±∞

n and x±∞
n to represent the quasiparticles’ asymptotic coordinates, we therefore have p∞

n = p−∞
n ,

the ordering p−∞
n > p−∞

m for n < m, and

x∞
n = x−∞

n − ∑
m>n

ϕ(p−∞
n − p−∞

m )+ ∑
m<n

ϕ(p−∞
n − p−∞

m ). (3.12)

It turns out that two-body shifts can also be used to describe the individual in and out scattering maps
themselves, up to small corrections that do not affect the thermodynamics. A quasiparticle at position xn
will incur shifts, as it evolves towards positive time, due to quasiparticles on its right that have smaller
momenta, and quasiparticles on its left that have higher momenta.

x∞
n ≈ xn +

(
∑

m<n,xm<xn

− ∑
m>n,xm>xn

)
ϕ(p−∞

n − p−∞
m ). (3.13)

Similarly,

x−∞
n ≈ xn +

(
∑

m>n,xm<xn

− ∑
m<n,xm>xn

)
ϕ(p−∞

n − p−∞
m ). (3.14)
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In quantum systems, scattering shifts are replaced by scattering phases. The two-body scattering am-
plitude is a unit-modulus complex number S(p), and one defines ϕ(p) = −id logS(p)/dp. Integrability
implies that the many-body amplitude factorises as a product of two-body amplitudes, and scattering is
again elastic, preserving all momenta. The Bethe ansatz wave function can be seen as an explicit descrip-
tion of this factorised scattering.

Asymptotic states, both in the classical and quantum cases, can be much more complicated than the
simple freely evolving Toda particles. There can be many quasiparticle types, with internal numbers that
can be exchanged under scattering. In chains and field theory, asymptotic states are often described by
solitons and radiation modes. In all cases I know, however, the general TBA structure described in the next
section holds.

The notion of quasiparticles, and the scattering shift equation (3.13), are the two important results of
this section, and lead to the TBA description of the thermodynamics.

Remark 3.1.1. The Toda model can be presented in two natural ways. The first is that presented above: it is a gas
of particles, interacting via a pairwise potential that depends on their position. Of course, the potential is perhaps a
bit “strange”, as it only makes particles of neighbouring labels interact with each other. Another way is that under
which the model is seen as a chain. In this way, the labels are the discrete positions were the degrees of freedom lie,
say horizontally on the subset Z of the line, and the local degrees of freedom are particles with their momentum and
position, moving, as it were, vertically. In this way of presenting, the interaction is between nearest neighbour on the
chain.

One difference between these two ways is the notion of space. In a the first, it is the values that xn take, while in
the second, it is the label n itself. In a thermodynamic state, of fixed density, the two notions of space, on large scales,
are in proportion to each other. But in general, especially in the hydrodynamics, the difference is more important (see
[146]).

In fact, another difference, which brings an important point discussed above, is as to the notion of vacuum. In
the chain viewpoint, if one adds the conserved charge Q0 = ∑n(xn+1− xn) to the Hamiltonian and one considers the
infinite chain, the “vacuum” can be seen as the configuration where all vertical positions minimise the interaction
potential. Excitations on top of this vacuum are waves propagating along the chain. These excitations are known
to be solitons and radiative waves [147, 148]. Thus, in this viewpoint, the most natural set of asymptotic states are
solitons and radiation modes. Their two-body scattering shift can be evaluated once the two-body exact solution is
known; although this is not as elementary a calculation as in the gas viewpoint. The set of quasiparticles – in the
chain, the solitons and radiation modes, and in the gas, the Toda particles themselves – depends on the viewpoint.
This illustrates the fact that the choice of vacuum influences the set of asymptotic particles, and thus quasiparticles,
of the scattering theory. Different choices lead to different ways of presenting the thermodynamics, but, in principle,
are equivalent, possibly, as in the Toda example, up to a redefinition of space.

Remark 3.1.2. The asymptotics of the scattering shift at large momentum gives information about the local properties
of the gas or field theory. For instance, I note that for the hard rod gas, see Example 3.1.4 below, the scattering shift is
a negative constant, equal to the rods’ length a. From the viewpoint of a quantum scattering theory, this corresponds to
S(p)= e−aip. Such a scattering phase is known not to have a well-defined local energy density, which we can interpret
by the fact that this is a theory where particles have a finite extent (being otherwise free). Likewise, it is known that
certain perturbations of relativistic quantum integrable models, referred to as “T-Tbar” perturbations, which are not
UV finite, give rise to an additional factor to the two-body scattering of the form S(θ1−θ2) = e−aip(θ1−θ2) where θi

are rapidities and p(θ) is the momentum. Thus this affects the asymptotic of the scattering phase, and we can interpret
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Figure 3.4: The gas of hard rods.

again the lack of UV-finiteness by the conjecture that T-Tbar perturbations give a nonzero length to the fundamental
particles of the original theory.

Example 3.1.3. In the Toda model, the Lax matrix was constructed by Flashka [149]. It is the matrix with structure

L =



. . .
...

...
· · · b−1 a−1 0 0 · · ·

a−1 b0 a0 0
0 a0 b1 a1

· · · 0 0 a1 b2 · · ·
...

...
. . .


(3.15)

where an = e−(xn+1−xn)/2 and bm = pm. Because this is part of a Lax pair, its traces TrLk are time-independent. In
fact, they give rise to the local conserved charges of the Toda model, with in particular 1

2 TrL2 = H. Thus here we
have access to all conserved charges, and it is easy to verify that (3.8) holds. As the spectrum is time invariant, we
can evaluate it simply by evolving L for a long time (that is, applying the scattering map). Clearly, at long times
an→ 0 and bn→ p∞

n . Thus L becomes diagonal, and the spectrum of the Lax matrix is the set of asymptotic momenta,
which are indeed conserved quantities. The associated current observables can also be constructed explicitly [150].
But more importantly for our construction, the crucial ingredient, the scattering shift, is an elementary two-body
calculation of classical mechanics, and gives

ϕ(p− p′) = 2log |p− p′|. (3.16)

Example 3.1.4. The gas of hard rods is a gas composed of elongated particles (rods), all of length say a > 0, which
move freely except for elastic collisions (we assume they all have unit mass). See Fig. 3.4. The set of momenta is
therefore conserved throughout the evolution, and for our purpose we may assume that all momenta are different.
Here the concept of quasiparticles is very simple: the quasiparticle for momentum p can be taken as the rod which
has momentum p – that is, it is the velocity tracer. It simply jump from one rod to the other upon elastic collisions.
Its exact position can also be taken simply as the centre of the rod that is tracing the given velocity. With this picture,
a quasiparticle is affected by a jump forward of distance a upon collision with another quasiparticle. This is the
scattering shift, and we conclude that

ϕ(p− p′) =−a (3.17)

(notice the negative sign associated to a forward jump, in our convention). See Fig. 3.5

Example 3.1.5. The quantum Lieb-Liniger model is perhaps the most important model for applications of GHD, as
it gives a good description of cold atomic gases seen in many experiments [39]. It is a model for N bosons (where N
is taken to infinity in the thermodymic limit), with Hamiltonian

H =−
N

∑
n=1

1
2

∂
2
xn
+g ∑

n<m
δ (xn− xm) (3.18)
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Figure 3.5: Upon collision, velocities are exchanged. We can think of a quasiparticle as the tracer of a given velocity,
which jumps by a distance a upon collisions.

where g > 0 is the repulsion strength between the bosons. It is Bethe-ansatz integrable, and the study of its thermody-
namics led to one of the first formulation of TBA [38, 69]. The differential scattering phase can also be calculated by
the elementary construction of the exact two-particle wave function for this Hamiltonian (no need for Bethe ansatz!),
giving

ϕ(p− p′) =
2g

(p− p′)2 +g2 . (3.19)

3.2 Quasiparticle description of thermodynamic densities

I now develop the thermodynamics of integrable systems using the scattering formalism. As explained in
Chapter 2, this eventually allows us to obtain the Euler hydrodynamics. There is one important remark how-
ever: thermodynamics gives us, in a sense, a bit more, which is not required for the Euler hydrodynamic
equations, as it gives access to the large-scale fluctuations. Indeed, for instance, the thermodynamic en-
tropy is a large-deviation function for fluctuations of total conserved quantities in thermodynamic systems.
The Euler hydrodynamic equations do not necessitate the knowledge of any such fluctuation “spectrum”
(although, of course, Euler-scale correlation functions do). Below this will translate into the fact that the
statistics of quasiparticles is required for the thermodynamics, but not the Euler hydrodynamics equations.
In this sense, it would be possible to go more directly to the Euler hydrodynamic equations, and one way
is via the change of metric induced by the scattering map, as explained in Section 4.3. Nevertheless, any
complete discussion necessitates the thermodynamics, hence I will follow this route here.

Let me consider again the example of the Toda model. Its partition function in a system of length L, for
the state (2.6), is

Z = ∑
N

1
(2π)NN!

∫
xn∈[0,L]

N

∏
n=1

dxn

N

∏
n=1

dpn e−∑i β iQi = ∑
N

1
(2π)NN!

Zcano(N,L) (3.20)

where the sum is over all possible number of particles N ∈ N. This is the “grand canonical ensemble”,
and Zcano(N,L) is the (or rather, a generalised version of the) partition function for the canonical ensemble.
The factor 1/(2π)N is introduced for consistency with quantum calculations, where the phase-space cell
is divided by h, and we take h̄ = 1. The change to asymptotic coordinates preserves the measure, as it is
canonical. Using (3.8), but for the in-coordinates p−∞ = pin and x−∞ = xin for convenience, and in fact
re-writing ∑i β iQi = Qw with (3.9), we then obtain

Zcano =
∫

xn∈[0,L]
∏

n
dxin

n ∏
n

dpin
n e−∑n w(pin

n ) =
∫

∏
n

dpin
n e−∑n w(pin

n )
∫

xn∈[0,L]
∏

n
dxin

n . (3.21)
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�ix
<latexit sha1_base64="b/pvNl85sWql+/2lQJDFZrJtQTo=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9MljA7O0mGzMwuM7NiWPYDvHvVX/AmXv0M/8DPcJLswSQWNBRV3XR3BTFn2rjut1NYWV1b3yhulra2d3b3yvsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ebz1SpVkk7804pr7AA8n6jGBjpYeztKsEYhl66pUrbtWdAi0TLycVyFHvlX+6YUQSQaUhHGvd8dzY+ClWhhFOs1I30TTGZIQHtGOpxIJqP51enKETq4SoHylb0qCp+ncixULrsQhsp8BmqBe9ifif10lM/8pPmYwTQyWZLeonHJkITd5HIVOUGD62BBPF7K2IDLHCxNiQ5raEiSFDgnlWstF4i0Esk+Z51XOr3t1FpXadh1SEIziGU/DgEmpwC3VoAAEJL/AKb86z8+58OJ+z1oKTzxzCHJyvX6p/maI=</latexit><latexit sha1_base64="b/pvNl85sWql+/2lQJDFZrJtQTo=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9MljA7O0mGzMwuM7NiWPYDvHvVX/AmXv0M/8DPcJLswSQWNBRV3XR3BTFn2rjut1NYWV1b3yhulra2d3b3yvsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ebz1SpVkk7804pr7AA8n6jGBjpYeztKsEYhl66pUrbtWdAi0TLycVyFHvlX+6YUQSQaUhHGvd8dzY+ClWhhFOs1I30TTGZIQHtGOpxIJqP51enKETq4SoHylb0qCp+ncixULrsQhsp8BmqBe9ifif10lM/8pPmYwTQyWZLeonHJkITd5HIVOUGD62BBPF7K2IDLHCxNiQ5raEiSFDgnlWstF4i0Esk+Z51XOr3t1FpXadh1SEIziGU/DgEmpwC3VoAAEJL/AKb86z8+58OJ+z1oKTzxzCHJyvX6p/maI=</latexit><latexit sha1_base64="b/pvNl85sWql+/2lQJDFZrJtQTo=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9MljA7O0mGzMwuM7NiWPYDvHvVX/AmXv0M/8DPcJLswSQWNBRV3XR3BTFn2rjut1NYWV1b3yhulra2d3b3yvsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ebz1SpVkk7804pr7AA8n6jGBjpYeztKsEYhl66pUrbtWdAi0TLycVyFHvlX+6YUQSQaUhHGvd8dzY+ClWhhFOs1I30TTGZIQHtGOpxIJqP51enKETq4SoHylb0qCp+ncixULrsQhsp8BmqBe9ifif10lM/8pPmYwTQyWZLeonHJkITd5HIVOUGD62BBPF7K2IDLHCxNiQ5raEiSFDgnlWstF4i0Esk+Z51XOr3t1FpXadh1SEIziGU/DgEmpwC3VoAAEJL/AKb86z8+58OJ+z1oKTzxzCHJyvX6p/maI=</latexit><latexit sha1_base64="b/pvNl85sWql+/2lQJDFZrJtQTo=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9MljA7O0mGzMwuM7NiWPYDvHvVX/AmXv0M/8DPcJLswSQWNBRV3XR3BTFn2rjut1NYWV1b3yhulra2d3b3yvsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ebz1SpVkk7804pr7AA8n6jGBjpYeztKsEYhl66pUrbtWdAi0TLycVyFHvlX+6YUQSQaUhHGvd8dzY+ClWhhFOs1I30TTGZIQHtGOpxIJqP51enKETq4SoHylb0qCp+ncixULrsQhsp8BmqBe9ifif10lM/8pPmYwTQyWZLeonHJkITd5HIVOUGD62BBPF7K2IDLHCxNiQ5raEiSFDgnlWstF4i0Esk+Z51XOr3t1FpXadh1SEIziGU/DgEmpwC3VoAAEJL/AKb86z8+58OJ+z1oKTzxzCHJyvX6p/maI=</latexit>

ihqii
<latexit sha1_base64="TRSTvzdhhWjmnwCoHvfSXbqJu7o=">AAACIXicbZDLSsNAFIYn9VbrLerSzdAiuCqJCLosunFZwV6gCWEymbRDJ5M4MxFKyN73cO9WX8GduBNfwMdwkmZhW38Y+PnPOZwzn58wKpVlfRm1tfWNza36dmNnd2//wDw86ss4FZj0cMxiMfSRJIxy0lNUMTJMBEGRz8jAn94U9cEjEZLG/F7NEuJGaMxpSDFSOvLMZuaICNLcYYiPGYFOhNQEIwYfPOqIMvPMltW2SsFVY1emBSp1PfPHCWKcRoQrzJCUI9tKlJshoShmJG84qSQJwlM0JiNtOYqIdLPyLzk81UkAw1joxxUs078TGYqknEW+7ixOlcu1IvyvNkpVeOVmlCepIhzPF4UpgyqGBRgYUEGwYjNtEBZU3wrxBAmElca3sCVIFS4Y5Q2Nxl4GsWr6523batt3F63OdQWpDk5AE5wBG1yCDrgFXdADGDyBF/AK3oxn4934MD7nrTWjmjkGCzK+fwG4fKRR</latexit><latexit sha1_base64="TRSTvzdhhWjmnwCoHvfSXbqJu7o=">AAACIXicbZDLSsNAFIYn9VbrLerSzdAiuCqJCLosunFZwV6gCWEymbRDJ5M4MxFKyN73cO9WX8GduBNfwMdwkmZhW38Y+PnPOZwzn58wKpVlfRm1tfWNza36dmNnd2//wDw86ss4FZj0cMxiMfSRJIxy0lNUMTJMBEGRz8jAn94U9cEjEZLG/F7NEuJGaMxpSDFSOvLMZuaICNLcYYiPGYFOhNQEIwYfPOqIMvPMltW2SsFVY1emBSp1PfPHCWKcRoQrzJCUI9tKlJshoShmJG84qSQJwlM0JiNtOYqIdLPyLzk81UkAw1joxxUs078TGYqknEW+7ixOlcu1IvyvNkpVeOVmlCepIhzPF4UpgyqGBRgYUEGwYjNtEBZU3wrxBAmElca3sCVIFS4Y5Q2Nxl4GsWr6523batt3F63OdQWpDk5AE5wBG1yCDrgFXdADGDyBF/AK3oxn4934MD7nrTWjmjkGCzK+fwG4fKRR</latexit><latexit sha1_base64="TRSTvzdhhWjmnwCoHvfSXbqJu7o=">AAACIXicbZDLSsNAFIYn9VbrLerSzdAiuCqJCLosunFZwV6gCWEymbRDJ5M4MxFKyN73cO9WX8GduBNfwMdwkmZhW38Y+PnPOZwzn58wKpVlfRm1tfWNza36dmNnd2//wDw86ss4FZj0cMxiMfSRJIxy0lNUMTJMBEGRz8jAn94U9cEjEZLG/F7NEuJGaMxpSDFSOvLMZuaICNLcYYiPGYFOhNQEIwYfPOqIMvPMltW2SsFVY1emBSp1PfPHCWKcRoQrzJCUI9tKlJshoShmJG84qSQJwlM0JiNtOYqIdLPyLzk81UkAw1joxxUs078TGYqknEW+7ixOlcu1IvyvNkpVeOVmlCepIhzPF4UpgyqGBRgYUEGwYjNtEBZU3wrxBAmElca3sCVIFS4Y5Q2Nxl4GsWr6523batt3F63OdQWpDk5AE5wBG1yCDrgFXdADGDyBF/AK3oxn4934MD7nrTWjmjkGCzK+fwG4fKRR</latexit><latexit sha1_base64="TRSTvzdhhWjmnwCoHvfSXbqJu7o=">AAACIXicbZDLSsNAFIYn9VbrLerSzdAiuCqJCLosunFZwV6gCWEymbRDJ5M4MxFKyN73cO9WX8GduBNfwMdwkmZhW38Y+PnPOZwzn58wKpVlfRm1tfWNza36dmNnd2//wDw86ss4FZj0cMxiMfSRJIxy0lNUMTJMBEGRz8jAn94U9cEjEZLG/F7NEuJGaMxpSDFSOvLMZuaICNLcYYiPGYFOhNQEIwYfPOqIMvPMltW2SsFVY1emBSp1PfPHCWKcRoQrzJCUI9tKlJshoShmJG84qSQJwlM0JiNtOYqIdLPyLzk81UkAw1joxxUs078TGYqknEW+7ixOlcu1IvyvNkpVeOVmlCepIhzPF4UpgyqGBRgYUEGwYjNtEBZU3wrxBAmElca3sCVIFS4Y5Q2Nxl4GsWr6523batt3F63OdQWpDk5AE5wBG1yCDrgFXdADGDyBF/AK3oxn4934MD7nrTWjmjkGCzK+fwG4fKRR</latexit>

hjii
<latexit sha1_base64="ldwl9/kHLeOZoRH7ukC0LulMsgU=">AAACGnicbZDLSsNAFIYn9VbrLeqym8EiuCqJCLosunFZwV6gKWEyPW3HTiZhZiKU0IXv4d6tvoI7cevGN/AxnKRZ2NYfBn7+cw7nzBfEnCntON9WaW19Y3OrvF3Z2d3bP7APj9oqSiSFFo14JLsBUcCZgJZmmkM3lkDCgEMnmNxk9c4jSMUica+nMfRDMhJsyCjRJvLtqseJGHHAXkj0mBKOH3zmyTzz7ZpTd3LhVeMWpoYKNX37xxtENAlBaMqJUj3XiXU/JVIzymFW8RIFMaETMoKesYKEoPpp/okZPjXJAA8jaZ7QOE//TqQkVGoaBqYzO1Ut17Lwv1ov0cOrfspEnGgQdL5omHCsI5wRwQMmgWo+NYZQycytmI6JJFQbbgtbBommGaNZxaBxl0GsmvZ53XXq7t1FrXFdQCqjKjpBZ8hFl6iBblETtRBFT+gFvaI369l6tz6sz3lrySpmjtGCrK9f9BahSA==</latexit><latexit sha1_base64="ldwl9/kHLeOZoRH7ukC0LulMsgU=">AAACGnicbZDLSsNAFIYn9VbrLeqym8EiuCqJCLosunFZwV6gKWEyPW3HTiZhZiKU0IXv4d6tvoI7cevGN/AxnKRZ2NYfBn7+cw7nzBfEnCntON9WaW19Y3OrvF3Z2d3bP7APj9oqSiSFFo14JLsBUcCZgJZmmkM3lkDCgEMnmNxk9c4jSMUica+nMfRDMhJsyCjRJvLtqseJGHHAXkj0mBKOH3zmyTzz7ZpTd3LhVeMWpoYKNX37xxtENAlBaMqJUj3XiXU/JVIzymFW8RIFMaETMoKesYKEoPpp/okZPjXJAA8jaZ7QOE//TqQkVGoaBqYzO1Ut17Lwv1ov0cOrfspEnGgQdL5omHCsI5wRwQMmgWo+NYZQycytmI6JJFQbbgtbBommGaNZxaBxl0GsmvZ53XXq7t1FrXFdQCqjKjpBZ8hFl6iBblETtRBFT+gFvaI369l6tz6sz3lrySpmjtGCrK9f9BahSA==</latexit><latexit sha1_base64="ldwl9/kHLeOZoRH7ukC0LulMsgU=">AAACGnicbZDLSsNAFIYn9VbrLeqym8EiuCqJCLosunFZwV6gKWEyPW3HTiZhZiKU0IXv4d6tvoI7cevGN/AxnKRZ2NYfBn7+cw7nzBfEnCntON9WaW19Y3OrvF3Z2d3bP7APj9oqSiSFFo14JLsBUcCZgJZmmkM3lkDCgEMnmNxk9c4jSMUica+nMfRDMhJsyCjRJvLtqseJGHHAXkj0mBKOH3zmyTzz7ZpTd3LhVeMWpoYKNX37xxtENAlBaMqJUj3XiXU/JVIzymFW8RIFMaETMoKesYKEoPpp/okZPjXJAA8jaZ7QOE//TqQkVGoaBqYzO1Ut17Lwv1ov0cOrfspEnGgQdL5omHCsI5wRwQMmgWo+NYZQycytmI6JJFQbbgtbBommGaNZxaBxl0GsmvZ53XXq7t1FrXFdQCqjKjpBZ8hFl6iBblETtRBFT+gFvaI369l6tz6sz3lrySpmjtGCrK9f9BahSA==</latexit><latexit sha1_base64="ldwl9/kHLeOZoRH7ukC0LulMsgU=">AAACGnicbZDLSsNAFIYn9VbrLeqym8EiuCqJCLosunFZwV6gKWEyPW3HTiZhZiKU0IXv4d6tvoI7cevGN/AxnKRZ2NYfBn7+cw7nzBfEnCntON9WaW19Y3OrvF3Z2d3bP7APj9oqSiSFFo14JLsBUcCZgJZmmkM3lkDCgEMnmNxk9c4jSMUica+nMfRDMhJsyCjRJvLtqseJGHHAXkj0mBKOH3zmyTzz7ZpTd3LhVeMWpoYKNX37xxtENAlBaMqJUj3XiXU/JVIzymFW8RIFMaETMoKesYKEoPpp/okZPjXJAA8jaZ7QOE//TqQkVGoaBqYzO1Ut17Lwv1ov0cOrfspEnGgQdL5omHCsI5wRwQMmgWo+NYZQycytmI6JJFQbbgtbBommGaNZxaBxl0GsmvZ53XXq7t1FrXFdQCqjKjpBZ8hFl6iBblETtRBFT+gFvaI369l6tz6sz3lrySpmjtGCrK9f9BahSA==</latexit>

x
<latexit sha1_base64="ZRkIf2GH0yY7U51EI5K4yTBfBPA=">AAAB/nicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOzvcmQ2dllplcMIeDdq/6CN/Hqr/gHfoaTZA8msaChqOqmuytIpTDout/O2vrG5tZ2Yae4u7d/cFg6Om6aJNMcGjyRiW4HzIAUChooUEI71cDiQEIrGN5N/dYjaCMS9YCjFPyY9ZWIBGdopfpTr1R2K+4MdJV4OSmTHLVe6acbJjyLQSGXzJiO56boj5lGwSVMit3MQMr4kPWhY6liMRh/PDt0Qs+tEtIo0bYU0pn6d2LMYmNGcWA7Y4YDs+xNxf+8TobRjT8WKs0QFJ8vijJJMaHTr2koNHCUI0sY18LeSvmAacbRZrOwJcyQDziTk6KNxlsOYpU0LyueW/HqV+XqbR5SgZySM3JBPHJNquSe1EiDcALkhbySN+fZeXc+nM9565qTz5yQBThfv3EWlj8=</latexit><latexit sha1_base64="ZRkIf2GH0yY7U51EI5K4yTBfBPA=">AAAB/nicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOzvcmQ2dllplcMIeDdq/6CN/Hqr/gHfoaTZA8msaChqOqmuytIpTDout/O2vrG5tZ2Yae4u7d/cFg6Om6aJNMcGjyRiW4HzIAUChooUEI71cDiQEIrGN5N/dYjaCMS9YCjFPyY9ZWIBGdopfpTr1R2K+4MdJV4OSmTHLVe6acbJjyLQSGXzJiO56boj5lGwSVMit3MQMr4kPWhY6liMRh/PDt0Qs+tEtIo0bYU0pn6d2LMYmNGcWA7Y4YDs+xNxf+8TobRjT8WKs0QFJ8vijJJMaHTr2koNHCUI0sY18LeSvmAacbRZrOwJcyQDziTk6KNxlsOYpU0LyueW/HqV+XqbR5SgZySM3JBPHJNquSe1EiDcALkhbySN+fZeXc+nM9565qTz5yQBThfv3EWlj8=</latexit><latexit sha1_base64="ZRkIf2GH0yY7U51EI5K4yTBfBPA=">AAAB/nicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOzvcmQ2dllplcMIeDdq/6CN/Hqr/gHfoaTZA8msaChqOqmuytIpTDout/O2vrG5tZ2Yae4u7d/cFg6Om6aJNMcGjyRiW4HzIAUChooUEI71cDiQEIrGN5N/dYjaCMS9YCjFPyY9ZWIBGdopfpTr1R2K+4MdJV4OSmTHLVe6acbJjyLQSGXzJiO56boj5lGwSVMit3MQMr4kPWhY6liMRh/PDt0Qs+tEtIo0bYU0pn6d2LMYmNGcWA7Y4YDs+xNxf+8TobRjT8WKs0QFJ8vijJJMaHTr2koNHCUI0sY18LeSvmAacbRZrOwJcyQDziTk6KNxlsOYpU0LyueW/HqV+XqbR5SgZySM3JBPHJNquSe1EiDcALkhbySN+fZeXc+nM9565qTz5yQBThfv3EWlj8=</latexit><latexit sha1_base64="ZRkIf2GH0yY7U51EI5K4yTBfBPA=">AAAB/nicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOzvcmQ2dllplcMIeDdq/6CN/Hqr/gHfoaTZA8msaChqOqmuytIpTDout/O2vrG5tZ2Yae4u7d/cFg6Om6aJNMcGjyRiW4HzIAUChooUEI71cDiQEIrGN5N/dYjaCMS9YCjFPyY9ZWIBGdopfpTr1R2K+4MdJV4OSmTHLVe6acbJjyLQSGXzJiO56boj5lGwSVMit3MQMr4kPWhY6liMRh/PDt0Qs+tEtIo0bYU0pn6d2LMYmNGcWA7Y4YDs+xNxf+8TobRjT8WKs0QFJ8vijJJMaHTr2koNHCUI0sY18LeSvmAacbRZrOwJcyQDziTk6KNxlsOYpU0LyueW/HqV+XqbR5SgZySM3JBPHJNquSe1EiDcALkhbySN+fZeXc+nM9565qTz5yQBThfv3EWlj8=</latexit>

xin
<latexit sha1_base64="IFZhXrqZDA2wNY34PzA3pq2cqRE=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOTNczOTpIhM7PLzKwYlv0A7171F7yJVz/DP/AznCR7MIkFDUVVN91dQcyZNq777RRWVtfWN4qbpa3tnd298v5BU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdD3xW49UaRbJOzOOqS/wQLI+I9hY6f7pIe0qgZjMeuWKW3WnQMvEy0kFctR75Z9uGJFEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6cXZ+jEKiHqR8qWNGiq/p1IsdB6LALbKbAZ6kVvIv7ndRLTv/RTJuPEUElmi/oJRyZCk/dRyBQlho8twUQxeysiQ6wwMTakuS1hYsiQYJ6VbDTeYhDLpHlW9dyqd3teqV3lIRXhCI7hFDy4gBrcQB0aQEDCC7zCm/PsvDsfzuesteDkM4cwB+frF3icmiE=</latexit><latexit sha1_base64="IFZhXrqZDA2wNY34PzA3pq2cqRE=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOTNczOTpIhM7PLzKwYlv0A7171F7yJVz/DP/AznCR7MIkFDUVVN91dQcyZNq777RRWVtfWN4qbpa3tnd298v5BU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdD3xW49UaRbJOzOOqS/wQLI+I9hY6f7pIe0qgZjMeuWKW3WnQMvEy0kFctR75Z9uGJFEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6cXZ+jEKiHqR8qWNGiq/p1IsdB6LALbKbAZ6kVvIv7ndRLTv/RTJuPEUElmi/oJRyZCk/dRyBQlho8twUQxeysiQ6wwMTakuS1hYsiQYJ6VbDTeYhDLpHlW9dyqd3teqV3lIRXhCI7hFDy4gBrcQB0aQEDCC7zCm/PsvDsfzuesteDkM4cwB+frF3icmiE=</latexit><latexit sha1_base64="IFZhXrqZDA2wNY34PzA3pq2cqRE=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOTNczOTpIhM7PLzKwYlv0A7171F7yJVz/DP/AznCR7MIkFDUVVN91dQcyZNq777RRWVtfWN4qbpa3tnd298v5BU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdD3xW49UaRbJOzOOqS/wQLI+I9hY6f7pIe0qgZjMeuWKW3WnQMvEy0kFctR75Z9uGJFEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6cXZ+jEKiHqR8qWNGiq/p1IsdB6LALbKbAZ6kVvIv7ndRLTv/RTJuPEUElmi/oJRyZCk/dRyBQlho8twUQxeysiQ6wwMTakuS1hYsiQYJ6VbDTeYhDLpHlW9dyqd3teqV3lIRXhCI7hFDy4gBrcQB0aQEDCC7zCm/PsvDsfzuesteDkM4cwB+frF3icmiE=</latexit><latexit sha1_base64="IFZhXrqZDA2wNY34PzA3pq2cqRE=">AAACB3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOTNczOTpIhM7PLzKwYlv0A7171F7yJVz/DP/AznCR7MIkFDUVVN91dQcyZNq777RRWVtfWN4qbpa3tnd298v5BU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdD3xW49UaRbJOzOOqS/wQLI+I9hY6f7pIe0qgZjMeuWKW3WnQMvEy0kFctR75Z9uGJFEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6cXZ+jEKiHqR8qWNGiq/p1IsdB6LALbKbAZ6kVvIv7ndRLTv/RTJuPEUElmi/oJRyZCk/dRyBQlho8twUQxeysiQ6wwMTakuS1hYsiQYJ6VbDTeYhDLpHlW9dyqd3teqV3lIRXhCI7hFDy4gBrcQB0aQEDCC7zCm/PsvDsfzuesteDkM4cwB+frF3icmiE=</latexit>

Figure 3.6: The change of metric due to interactions in integrable models.

I emphasise that the function w(p) does not need to have a Taylor series expansion, or even to be continuous,
as Qw lies in a certain completion of the space of conserved quantities. What functions w(p) we can put here
is a tricky question, but certainly w(p) should grow at large |p| fast enough to make the multiple integral
convergent.

Note how, because the GGE measure is only a function of the asymptotic momenta, I have extracted in
(3.21) the integral over impact parameters. What we see is that the partition function takes the form of that
of free particles, up to the volume contribution, which I denote RN :

RN =
∫

xn∈[0,L]
∏

n
dxin

n . (3.22)

This volume contribution is nontrivial: the relation between xin
n = x−∞

n and xn is given by (3.14), and thus
momentum dependent. It can be evaluated in the limit of large N and L (at fixed ratio). Consider for instance
quasiparticle 1. The full length R it sees in “asymptotic space” is that obtained by scanning from left to
right its trajectory, in such a way that its position on time-slice t = 0 scans from 0 to L. Scanning from
left to right, jumps are incurred, and thus the length in asymptotic space is different as that at time 0, a
“change of metric”, see Fig. 3.6. At its furthest point on the left, it does not incur any shift, as pin

1 > pin
n

for all n > 1: its trajectory is straight from the asymptotic region to time 0. By contrast, when the impact
parameter is such that the trajectory reaches at time 0 the furthest point on the right, it must have crossed
all other quasiparticles’ trajectories exactly once. Therefore, the full length R seen in asymptotic space (the
length covered by the impact parameter such that the time-0 position covers the interval [0,L], see Figs. 3.1
and 3.6) is

R = L+ ∑
m6=1

ϕ(pin
1 − pin

m). (3.23)

Repeating for all quasiparticles, we obtain

RN = ∏
n

(
L+ ∑

m 6=n
ϕ(pin

n − pin
m)

)
= LN

∏
n

(
1+ ∑

m 6=n

ϕ(pin
n − pin

m)

L

)
. (3.24)

One can then combine (3.21), (3.22) and (3.24), and what remains to do is a large-deviation analysis,
N,L→∞ with density N/L fixed, and then the Legendre transformation to get (3.20). In the large-deviation
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analysis, a certain distribution of the values of the integration momenta pin
n will give the dominant contribu-

tion to the integral. Thus, the integrations over momenta are replaced by the minimisation of an appropriate
functional with respect to a distribution of momenta. This analysis is beyond the scope of these notes, but
see [146]. Here I simply express the final result.

Before doing so, let me note two things. First, the analysis produces a distribution of momenta, a
function I will denote ρp(p). By definition, it is such that

1
L ∑

n
f (pin

n )∼
∫

dpρp(p) f (p) ∀ f smooth enough (3.25)

in the limit of large L and N. It is interpreted as a density of quasiparticles per unit momentum and per unit
volume, thus the subset p (for “particle”). The average of any conserved density can be expressed using
this, for instance

qi =
1
L ∑

n

(
pin

n )
i ∼

∫
dpρp(p)pi. (3.26)

Second, using this density, the quantity
(

1+∑m 6=1
ϕ(pin

1 −pin
m)

L

)
from (3.23) becomes

2πρs(pin
1 ) = 1+

∫
dpρp(p)ϕ(pin

1 − p); (3.27)

this defines the function ρs(p), and the factor 2π is by convention. According to the above argument, the
quantity (3.27) is 2πρs = R/L, the ratio of asymptotic-space lengths to zero-time-slice lengths. This takes
into account the “perceived” change of length due to the scattering shifts, and can be interpreted as an
effective available space density in which quasiparticles roam. Thus, really, as mentioned, this is like a
metric – an interpretation that will play an important role in Section 4.3. The subscript s is for “space”
density.

I will now state the result of the large-deviation analysis by expressing the free energy density f =
− limN,L→∞ L−1 logZ; from this, the above quasiparticle and space densities will be obtained. The free
energy density takes the form

f =
∫ dp

2π
F(ε(p)). (3.28)

Here the free energy function F(ε) encodes the almost-free nature of the form of Z, and is the free energy
contribution of a free particle of energy ε , given by F(ε) = −e−ε . The function ε(p) is not, however, the
“bare” contribution w(p) of quasiparticle p to the partition function. Instead, it receives contributions due
to the change of volume in asymptotic space. It solves the nonlinear integral equation

ε(p) = w(p)+
∫ dp′

2π
ϕ(p− p′)F(ε(p′)). (3.29)

The function w(p) in this equation is usually referred to as the source term.
This gives us in principle the full information about all average conserved densities qi, obtained by

differentiation of the free energy density, (2.10). Suppose the amount of charge Qi carried by quasiparticle
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i is the function hi(p); in (3.8) and (3.26), for instance, this is chosen to be hi(p) = pi, but one may choose
a different basis of functions. This means

w(p) = ∑
i

β
ihi(p). (3.30)

Differentiation then gives

qi =
∫ dp

2π
n(p)hdr

i (p) (3.31)

where we define the occupation function

n(p) =
dF(ε)

dε

∣∣∣
ε=ε(p)

. (3.32)

The factor which we denoted hdr
i (p) is simply hdr

i (p) = ∂ε(p)/∂β i. Applying the derivative to (3.29), we
find that this satisfies the linear integral equation

hdr
i (p) = hi(p)+

∫ dp′

2π
ϕ(p− p′)n(p′)hdr

i (p′). (3.33)

For any function of momentum, we define the dressing operation h 7→ hdr by the solution to (3.33) for hi
replaced by h.

In order to go further, let me show the following symmetry formula:∫
dpg(p)n(p)hdr(p) =

∫
dpgdr(p)n(p)h(p). (3.34)

The most straightforward way of showing this is by introducing the integral-operator notation. We write

(T h)(p) =
∫ dp′

2π
ϕ(p− p′)h(p′) (3.35)

and write n for the diagonal integral operator that is multiplication by the function n(p). Usually, by
convention, one also introduces the T (p− p′) kernel,

T (p− p′) =
1

2π
ϕ(p− p′). (3.36)

Then,

hdr = h+T nhdr⇒ hdr = (1−T n)−1h. (3.37)

With the dot-product h ·g =
∫

dph(p)g(p), we find∫
dpg(p)n(p)hdr(p) = g ·n(1−T n)−1h = (1−nT )−1ng ·h = n(1−T n)−1g ·h (3.38)
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and the last expression is exactly the right-hand side of (3.34) (here we used the symmetry of T ).
Using this symmetry formula, we obtain, from (3.31),

qi =
∫ dp

2π
1dr(p)n(p)hi(p) (3.39)

where 1(p) = 1 is the constant unit function. This is of the form (3.26), that is

qi =
∫

dpρp(p)hi(p), (3.40)

which allows us to identify

ρp(p) =
1

2π
1dr(p)n(p) (3.41)

as the density of quasiparticles. Note that by (3.33)

1dr(p) = 1+
∫ dp′

2π
ϕ(p− p′)n(p′)1dr(p′) (3.42)

and inserting (3.41) on the right-hand side, we compare with the definition (3.27) and obtain

ρs(p) =
1

2π
1dr(p). (3.43)

As argued above, this is interpreted as the density of space. In particular, the occupation function takes the
form

n(p) =
ρp(p)
ρs(p)

, (3.44)

the ratio of the density of quasiparticles to the available space density – it is indeed, then, an “occupation”
ratio.

As a technical note, the symmetry formula (3.34) can be used to obtain a different form of the dressing
operation. Applying it to the second term on the right-hand side of (3.33) gives

hdr = (1+T drn)h (3.45)

where T dr is the integral operator whose kernel,

T dr(p, p′) =
[
(1−T n)−1T (·− p′)

]
(p), (3.46)

is the dressed scattering kernel, the dressing of T (p− p′) as a function of its first argument p. [Note that
even if T (p− p′) is a function the difference of momenta, such as in the Galilean model here considered,
the result, in general, is no longer a function of p− p′: the state is not necessarily Galilean invariant.] That
is, once T dr(p, p′) is evaluated, the dressing of any function can be evaluated simply by integrating – no
need to solve an integral equation. Note that if T is symmetric, then T dr(p, p′) = T dr(p′, p), as (T dr)T =
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[
(1−T n)−1T

]T
= T (1− nT )−1 = (1−T n)−1T = T dr, a relation which we have used in order to obtain

(3.45).
Finally, in order to complete the description of the thermodynamics of conserved densities, let me look

at the entropy density, defined in (2.39). It can be calculated explicitly in terms of the above objects:

s = ∑
i

β
iqi− f

=
∫

dp
[
∑

i
β

ihi(p)ρp(p)− 1
2π

F(ε(p))
]

=
∫

dp
[
w(p)ρp(p)− 1

2π
F(ε(p))

]
=

∫
dp
[
ε(p)ρp(p)− 1

2π

(∫
dqρp(p)ϕ(p−q)F(ε(q))+F(ε(p))

)]
=

∫
dpε(p)ρp(p)− 1

2π

(∫
dq(2πρs(q)−1)F(ε(q))+

∫
dpF(ε(p))

)
=

∫
dpρs(p)

[
ε(p)n(p)−F(ε(p))

]
. (3.47)

Using F(ε) =−e−ε , this becomes s=
∫

dpρs(ε +1)e−ε =−∫ dpρsn(log(n)−1), which we recognise as
the usual form the entropy density takes in a system of free classical particles.

3.3 Ingredients of the TBA technology, classical and quantum

The formulation given in Section 3.2 forms the basic ingredients of the “TBA technology”, which I complete
in the following section of this Chapter. Although the example of the Toda model was taken, which is
a Galilean invariant classical model of interacting particles, the formulation is directly adaptable to other
models, quantum and classical, Galilean and relativistic (or with any other dispersion relation), field theories
or chains.

In fact, as far as I am aware, the TBA was actually first obtained in quantum models, in the Bose gas
with δ -function repulsion potential, by Yang and Yang [69]. See [70, 71] for the derivations in quantum
chains and quantum field theory. In these cases, ρs is usually interpreted as a density of states – the density
of available states that can be filled by quasiparticles (thus the subscript s still makes sense). The Yang-Yang
thermodynamic equations were verified experimentally in cold atom gases [151].

Classical limits of quantum results can be taken in order to get the classical TBA, see [152], and in
particular [153, 154, 155, 156] for the Toda model. Independent, purely classical calculations are also
available, such as the one outlined in Section 3.2 based on scattering of classical particles; the picture is
suggested in [154] and worked out in [146]. More involved derivations using the classical inverse scattering
method were also done or proposed for various classical models [157, 158, 159, 158].

Generalised hydrodynamics based on the TBA, discussed in Chapter 4, was first introduced for quantum
field theories [1] and quantum chains [2], and later shown [160] to agree with equations found before for
the classical hard rod gas [77] and soliton gases [73, 74, 75, 76], and to reproduce the dynamics of classical
field theories [141]. It was also verified experimentally in cold atom gases [80].
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In any case, from observation of the results in quantum and classical cases, it appears as though the
TBA technology is extremely general. I observe that all numbered equations from (3.27) to (3.47) hold in
generality, with the following ingredients:

I. The spectral space. This is part of the specification of the model. If there are many quasiparticle
types, then one must augment the momentum p with an extra index, (p, `), labelling the types, and replace∫

dp→ ∑`

∫
dp. For instance, these may be soliton types in field theory or chains. In some cases, it is

also possible that the momenta may only take values within a finite region (Brillouin zone). In general, one
must determine the full set of parameters that parametrise the asymptotic excitations (which, in integrable
systems, become quasiparticles) of scattering theory.

II. The scattering shift ϕ(p− p′). This is again part of the model specifications. It can be evaluated
simply by looking at the two-body scattering of asymptotic excitations. It may in general be a function not
of the momentum difference, but of two independent momenta, ϕ(p, p′); and it might not be symmetric, in
which case some of the equations above have to be adjusted. With an appropriate re-parametrisation, for
instance p(θ) = msinhθ with the rapidity θ in relativistic models, it may simplify again to a function of
the difference, ϕ(θ −θ ′). There is a theory of reparametrisation of the spectral space. See [123].

III. The free energy function F(ε). This is also part of the model specifications. It describes the statistics
of the quasiparticles involved. For instance:

Classical particles:
F(ε) =−e−ε , n = e−ε

s=−
∫

dpρsn(logn−1). (3.48)

Classical radiation:
F(ε) = logε, n = 1/ε

s=
∫

dpρs(logn+1). (3.49)

Quantum fermions:
F(ε) =− log(1+ e−ε), n = (1+ eε)−1

s=−
∫

dpρs[n logn+(1−n) log(1−n)]. (3.50)

Quantum bosons:
F(ε) = log(1− e−ε), n = (eε −1)−1

s=−
∫

dpρs[n logn− (1+n) log(1+n)]. (3.51)

IV. The functions hi(p). These specify the conserved quantities Qi. In the classical case, hi(p) is
obtained from evaluating Qi as a function of asymptotic momenta, as Qi =∑n hi(p∞

n ). In the quantum case, it
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is the one-particle eigenvalue of the operator Qi; on a N-particle state, this operator acts as Qi|p1, . . . , pN〉=
∑n hi(pn)|p1, . . . , pN〉.

V. The function w(p). This specifies the state (2.6). Again, in the classical case, it is the function
obtained when evaluating ∑i β iQi as a function of asymptotic momenta, and in the quantum case, it is the
one-particle eigenvalue of the operator ∑i β iQi. Clearly, w(p) = ∑i β ihi(p).

It is also worth noting that we can now take a variety of different “coordinate systems” for the maximal
entropy state. Recall that the set of Lagrange parameters {β i} is such a system of coordinates. As mentioned
above, because of the relation (3.30), once we’ve fixed our choice of basis charges Qi, hence of basis
functions hi, then the Lagrange parameters fix w(p). Thus, w(p) specifies the state. Once we know w(p),
we may evaluate ε(p) by solving (3.29). The inverse is also immediate: knowing ε(p), we obtain w(p)
easily. But once ε(p) is known, then so is the occupation function n(p), via (3.32) (and the model-given
form of the free-energy function F(ε)). Then we know ρp(p) by (3.41), and this also can be easily inverted:
knowing ρp(p) we obtain n(p) by evaluating ρs(p) by (3.27) and then calculating the right-hand side of
(3.44). Finally, all qi are then fixed by, for instance, (3.40) [the inversion problem, getting ρp(p) from the
qis, requires hi(p) to be complete in an appropriate sense, see the discussion in Remark 3.5.1]. Thus, there
are various bijections between various systems of coordinates:

{β i} (3.30)↔ w(p)
(3.29)↔ ε(p)

(3.32)↔ n(p)
(3.41),(3.27),(3.44)↔ ρp(p)

(3.40)↔ {qi}. (3.52)

Example 3.3.1. All models with quadratic Hamiltonians – free classical and quantum particles and radiations – can
be worked out explicitly, and one can check that the above formulation works, with ϕ(p) = 0. More explicitly, let
me consider various single-specie free models (spectral space R), of various statistics (see Point III above) for free
classical particles the partition function Z ∼ e−Lf is

Z =
∞

∑
N=1

1
(2π)NN!

∫ N

∏
n=1

dpn

∫
xn∈[0,L]

N

∏
n=1

dxn exp
[
−∑

n
w(pn)

]
(3.53)

and this can be calculated explicitly by elementary integration. For free radiation, we instead do a classical field
theory, for instance, for a thermal state,

Z =
∫

DΠDΦ exp
[
− β

2

∫ L

0

(
Π(x)2 +(∂xΦ(x))2)]. (3.54)

The fields can be Fourier-transformed, the integral in the exponential is diagonalised, and the functional integral can
be evaluated. In the quantum case, we may formulate the problem either as a field theory or as a particle system. For
instance, in terms of for free particles, we evaluate the trace

Z = TrHL exp
[
− 1

2

N

∑
n=1

p̂k
n

]
(3.55)

on the Hilbert space HL of N-particle wave functions, with given statistics (fermionic or bosonic). Again by Fourier
transform, this factorises the trace into a product of traces over the fillings of the Fourier modes, and the allowed
filling – either 0 or 1 for fermions, or 0,1,2,3, . . . for bosons, are determined by the statistics. Anyonic cases can be
done by restricting the allowed fillings to a finite set 0,1,2,3, . . . ,m.
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Example 3.3.2. The partition function for the hard rod gas of Example 3.1.4 can be written explicitly,

Z =
∞

∑
N=1

1
(2π)NN!

∫ N

∏
n=1

dpn

∫
xn∈[0,L]

N

∏
n=1

dxn ∏
m,n

Θ(|xn− xm|−a)exp
[
−∑

n
w(pn)

]
(3.56)

where Θ(·) is Heavyside’s step function. That is, it is like a free particle model, but with the constraint that the
particles must be pairwise separated by a distance at least a. In this case, ϕ(p− p′) = −a as mentioned. The
partition function is more difficult to evaluate fully rigorously, however the arguments presented in Section 3.2 apply,
and thus results in the statistics of a classical particle, F(ε) =−e−ε .

Example 3.3.3. The partition function for the Lieb-Liniger model, Example 3.1.5, based upon the Hamiltonian (4.34),
is evaluated by the quantum TBA calculation. Here, it turns out, there are two ways of describing the result: either in
terms of fermionic quasiparticle, or bosonic quasiparticles, see the discussion in [152]. This points to the ambiguity
in the set of asymptotic states; this set depends on the choice of vacuum, see Remark 3.1.1. The fact that fermionic
quasiparticles can occur is intuitively understood by the delta-function repulsion: this essentially forbids particles to
be at the same point, a bit like the fermoinic statistics does. Indeed, at infinite interaction g→ ∞, the model becomes
that of free fermions. The bosonic description, on the other hand, is more natural when taking the limit g→ 0.

The elementary two-body calculation of the scattering shift, giving (3.19), actually corresponds to fermionic
quasiparticles, with F(ε) =− log(1+ e−ε).

Example 3.3.4. Another class of important examples are the quantum spin chains, such as the Heisenberg chain

H = J ∑
n∈Z

~σn ·~σn+1 (3.57)

where ~σn is the vector of Pauli matrices acting nontrivially on site n. I refer to [70] for the TBA of this and related
model, which, it turns out, fits within the above general “TBA technology”.

3.4 Equations of state

In the Section 3.2, I have described how to obtain the free energy density f of the thermodynamic descrip-
tion. This, however, does not give the equations of state (2.14), the relation between the average currents
and densities, which are essential in order to develop the hydrodynamic theory. Since currents know about
the definition of time, one extra ingredient is needed:

• The energy function E(p). This is E(p) = hi(p) for i such that Qi = H the Hamiltonian, i.e. the
generator of time evolution.

For the Hamiltonian (3.2), this is E(p) = p2/2.
A guess for the equations of state may be obtained as follows. Recall that in relativistic quantum field

theory, there is crossing symmetry: a symmetry under the exchange of space and time, (x, t)→ (−it, ix).
Under this change, the relativistic rapidities change as θ → iπ/2− θ . This means with momentum and
energy being p(θ) =msinhθ and E(θ) =mcoshθ , crossing symmetry gives (p,E)→ (iE,−ip). Naturally,
under crossing symmetry, densities and currents are likewise exchanged. Therefore, if we know how to
evaluate densities, we simply have to apply crossing symmetry to the state in order to obtain currents. This
means, we have to change momentum to energy.
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The simplest proposition is to write the free energy flux (2.17), simply by taking the TBA expression for
the free energy density (3.28), and replacing the momentum measure by the “energy measure”,

g =
∫ dp

2π
E ′(p)F(ε(p)) (3.58)

where E ′(p) = dE(p)/dp. Applying the derivative as per (2.17), we obtain, by a similar calculation as in
Section 3.2,

ji =
∫ dp

2π
E ′(p)n(p)hdr

i (p) (3.59)

and then

ji =
∫ dp

2π
(E ′)dr(p)n(p)hi(p). (3.60)

We can therefore define the effective velocity

veff(p) =
(E ′)dr(p)

1dr(p)
(3.61)

and we obtain

ji =
∫

dpveff(p)ρp(p)hi(p). (3.62)

Notice that 1 = dp/dp, thus the effective velocity is (E ′)dr(p)/(p′)dr(p). This expression holds under more
general spectral parametrisations. In this form, the effective velocity appears as a version of the group
velocity which takes into account, via the dressing operation, the interaction with the quasiparticles in the
gas.

Expression (3.62) has a very natural interpretation: the average current is obtained by evaluating the
quantity hi(p) of charge carried by the quasiparticles of bare momentum p, times the density of quasi-
particles ρp(p) at this momentum, multiplied by the velocity veff(p) at which they are going within the
gas.

In order make this interpretation even clearer, and to get additional intuition about the effective velocity,
I will now show that it satisfies the following linear integral equation:

veff(p) = E ′(p)+
∫

dp′ϕ(p− p′)ρp(p′)(veff(p′)− veff(p)). (3.63)

One can see this equation as defining the “effectivisation” v(p)→ veff(p) of the group velocity v(p) =
E ′(p). To show this, bring one term on the right-hand side of (3.63) to the left-hand side, this is[

1+
∫

dp′ϕ(p− p′)ρp(p′)
]
veff(p) = E ′(p)+

∫
dpϕ(p− p′)ρp(p′)veff(p′). (3.64)

According to (3.27) and using (3.44), this becomes

2πρs(p)veff(p) = E ′(p)+
∫ dp

2π
ϕ(p− p′)n(p)2πρs(p′)veff(p′). (3.65)
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Figure 3.7: The effective velocity emerges as a tagged quasiparticle travels through the gas. In this cartoon, the
scattering shifts arise from time delays due to quasiparticles sticking together for a while.

Therefore, with (3.33), we identify

2πρs(p)veff(p) = (E ′)dr(p). (3.66)

With (3.43), we finally find (3.61).
Eq. (3.63) is useful because it leads to a very natural interpretation of the effective velocity: it is the

large-scale effective velocity of a quasiparticle as it travels through the gas, obtained by taking into account
the scattering shifts it accumulates at collisions with the other quasiparticles of the gas, see Fig. 3.7.

In order to see this, consider a quasiparticle of momentum p, which we tag and follow. Its displacement
∆x within the gas, as it travels for a time ∆t, is

∆x = E ′(p)∆t +∑
n

ϕ(p− pn)×
{
−1 (tagged quasiparticle hits quasiparticle n on its right)
+1 (tagged quasiparticle hits quasiparticle n on its left) (3.67)

where the sum is over all quasiparticles it crosses in the time ∆t. This formula is interpreted as the linear
displacement p∆t due to its “free” propagation between collisions at the group velocity v(p) = E ′(p), plus
the accumulation of the shifts ϕ(p− pn) it incurs at every collision. This is just an interpretation, as,
of course, in general, in a finite density gas, the quasiparticle’s trajectory is never actually linear. This
interpretation is valid on large scales only: the quasiparticle doesn’t actually “jump” at collisions, rather
it overall accumulates shifts. There is one subtlety in the formula: it is important that the direction of
the “jump”, at every collision, depends on the direction in which the collision occurs, not on the velocity
difference v(p)− v(pn). That is, if the tagged quasiparticle hits a quasiparticle on its right (left), then
it jumps to the left (right) for ϕ(p− pn) > 0 [and the opposite direction for ϕ(p− pn) < 0] – meaning
that the contribution of the collision to the tagged quasiparticle’s overall displacement is to the left (right).
Because the tagged quasiparticle’s trajectory is different from a linear displacement of velocity v(p), it may
be that, even for v(p) > v(pn), the quasiparticle of momentum pn collide with the tagged quasiparticle (of
momentum p) on its left, instead of its right as would be suggested by their group velocities.

The exact displacement ∆x depends on the precise configuration, but let us take its expectation 〈∆x〉,
over the distributions of the quasiparticles in the gas for a given state. Equivalently, by self-averaging, we
can think of a large trajectory in a typical configuration of the gas. The result gives the effective velocity:

〈∆x〉= E ′(p)∆t +
∫

dqs(p,q)ω(p,q)ϕ(p−q) = veff(p)∆t (3.68)
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where s(p,q) is the direction of the jump with a quasiparticle of momentum q, and ω(p,q) is the probability
that it hits a quasiparticle of momentum q. The fact that the direction and probability only depend on the
momenta, and their exact expressions, is argued for as follows. For the direction, it is clear that, on large
scales, if veff(p) > veff(q), then the quasiparticles will have to have collided exactly one more time as p
(left)↔ q (right), then as q (left)↔ p (right). Thus the sign of the direction can be taken as −1. Hence we
have

s(p,q) = sgn(veff(q)− veff(p)). (3.69)

The probability of colliding is proportional to both the density of quasiparticles ρp(q), and to a geometric
contribution due to the angle at which, on large scales, the quasiparticles propagate, |veff(p)−veff(q)| (e.g. if
they are parallel, they will never meet). Thus we obtain

ω(p,q) = ρp(q)|veff(p)− veff(q)|∆t. (3.70)

Putting things together, we obtain (3.63).
Expression (3.58), on which all was based, was of course just a guess. In relativistic QFT, it can be

derived more precisely [1] using crossing symmetry. The semi-classical interpretation via the accumulation
of jumps [160] helps justify it. The expression (3.61) for an effective velocity appeared in [161] in the study
of propagations of excitations in the context of quantum quenches. The formula (3.62) for the average
current has been verified numerically in many ways both in quantum [2] and classical [162] models. There
is a proof in QFT [108] using a form factor expansion. Following similar arguments, expressions valid
in any Bethe state of quantum chains were obtained [112], with a simpler derivation using certain boost
operators [113]. Other proofs were recently found in [114, 115] using the symmetry of the B-matrix (2.19),
applicable in certain situations such as Galilean and relativistic gases, and the XXZ spin chain. In a large
family of quantum integrable models, a full algebraic construction of the currents has been given [116].
The hydrodynamic equations obtained from formulae (3.62) (see Chapter 4) in fact appeared earlier than
all works on GHD, proven rigorously in [77] for the hard rod gas, and derived from the inverse scattering
method in [74] in the context of soliton gases.

Finally, the discussion of the currents is completed by considering the entropy flux (2.41). Again, this
can be calculated (I leave it as an exercise to figure out which of the equations we’ve derived until now is
used at every step!):

js = ∑
i

β
iji−g

=
∫

dp
[
∑

i
β

ihi(p)veff(p)ρp(p)− 1
2π

E ′(p)F(ε(p))
]

=
∫

dp
[
w(p)veff(p)ρp(p)− 1

2π
E ′(p)F(ε(p))

]
=

∫
dp
[
ε(p)veff(p)ρp(p)− 1

2π

(∫
dqveff(p)ρp(p)ϕ(p−q)F(ε(q))+E ′(p)F(ε(p))

)]
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and

=
∫

dp
[
ε(p)veff(p)ρp(p)− 1

2π

(∫
dqveff(q)ρp(p)ϕ(p−q)F(ε(q))+ veff(p)F(ε(p))

)]
=

∫
dpε(p)veff(p)ρp(p)− 1

2π

(∫
dqveff(q)(2πρs(q)−1)F(ε(q))+

∫
dpveff(p)F(ε(p))

)
=

∫
dpveff(p)ρs(p)

[
ε(p)n(p)−F(ε(p))

]
. (3.71)

Thus, the entropy current is, again quite naturally, obtained by multiplying the integrand of the entropy
density (3.47) – which is the entropy density per unit phase-space element – by the effective propagation
velocity of the quasiparticles, veff(p).

Remark 3.4.1. The semi-classical interpretation of veff discussed above has been explains the Euler-scale hydrody-
namic equations found in classical soliton gases [72, 73, 74]. It can also be used in the simpler hard rod gas [77],
where ϕ(p) =−a is a negative constant, see Example 3.1.4. There, the tagged quasiparticle is subject to exact linear
displacements punctuated by actual jumps. The picture of exact linear displacements punctuated by actual jumps is
at the source of the flea gas algorithm, discussed in Section 4.4, valid for any ϕ(p).

3.5 Hydrodynamic matrices, Drude weights and normal modes

Finally, we complete the description of the thermodynamic state by deriving the expressions for the matrices
A,B,C,D discussed in Section 2.2.

The matrices B and C are obtained by differentiation of ji and qi, respectively, following (2.19) and
(2.12). Let us do the case of C, as the case of B is similar. A direct way is to start with expression (3.31), in
the form

qi =
1

2π
1 ·n(1−T n)−1hi (3.72)

(see (3.35) and (3.37)). We observe that

−∂n(p)
∂β i =−d2F(ε)

dε2

∣∣∣
ε=ε(p)

∂ε(p)
∂β i = f (p)n(p)hdr

i (p) (3.73)

where we used the equation in the paragraph above (3.33) and Eq. (3.32), and we introduced the statistical
factor

f (p) =−d2F(ε)/dε2

dF(ε)/dε

∣∣∣
ε=ε(p)

. (3.74)

This takes the form f (p) = 1, f (p) = n(p), f (p) = 1− n(p) and f (p) = 1+ n(p) for classical particle,
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classical radiation, fermions and bosons, respectively. Then

Ci j = − ∂qi

∂β j

=
1

2π
1 · (n(1−T n)−1T +1)(−∂β jn)(1−T n)−1hi

=
1

2π
1 · ((1−nT )−1nT +1)( f nhdr

j )hdr
i

=
1

2π
1 · (1−nT )−1 n f hdr

i hdr
j

=
1

2π
n(1−T n)−11 · f hdr

i hdr
j

=
1

2π
n1dr · f hdr

i hdr
j

=
∫

dpρp(p) f (p)hdr
i (p)hdr

j (p). (3.75)

A similar calculation gives

Bi j =−
∂ ji

∂β j =
∫

dpveff(p)ρp(p) f (p)hdr
i (p)hdr

j (p), (3.76)

which indeed satisfies the expected symmetry (2.19).
For the matrix A j

i , it can be obtained again by differentiation as per (2.18). One may obtain its integral-
operator kernel, acting on functions of p, by using this formula, with the replacement q j 7→ ρp(p), which is
justified by (3.40). Let me instead directly use the results obtained above, along with the general structure
that we have in (2.19). The main assumption is that the set of functions hdr

i form a complete set with respect
to the inner product hdr

i •hdr
j = Ci j given by (3.75). This is equivalent to the assumption of completeness of

the set of conserved densities in the Hilbert space based on the inner product (2.11). Then

Bi j = ∑
k
A k

i Ck j (3.77)

implies∫
dpveff(p)ρp(p) f (p)hdr

i (p)hdr
j (p) =

∫
dpρp(p) f (p)∑

k
A k

i hdr
k (p)hdr

j (p) (3.78)

and by completeness on the index j, we deduce

∑
j
A j

i hdr
j (p) = veff(p)hdr

i (p). (3.79)

This is the eigenvalue equation (2.22), where we identify the index ` parametrising the spectrum with the
momentum p. That is, the flux Jacobian has a continuous spectrum given by the allowed effective velocities
of the quasiparticles.
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This immediately gives the Drude weight by using (2.27):

Di j = A2C=
∫

dpρp(p) f (p)∑
k,l

A k
i A

l
k hdr

l (p)hdr
j (p)

=
∫

dpρp(p) f (p)
[
veff(p)

]2hdr
i (p)hdr

j (p),
(3.80)

which is one of the most physically important results of the analysis up to now.
It is convenient to introduce integral operators, acting on a space of functions of p, in order to represent

the hydrodynamic matrices, avoiding the use of any explicit basis of functions hi(p). For this purpose, let
me define integral operators A, B, C and D via

∑
j
A j

i h j(p) = (AThi)(p), Bi j = hi ·Bh j, Ci j = hi ·Ch j, Di j = hi ·Dh j. (3.81)

Note how I had to treat covariant and contraviant indices differently. In particular, the definitions make sure
that we keep the relation B = AC for integral operators, as hi ·Bh j = Bi j = A k

i Ck j = AThi ·Ch j = hi ·ACh j.
The first equation in (3.81), combined with (3.79), gives

veff(p)hdr
i (p) = ∑

j
A j

i hdr
j (p) =

(
∑

j
A j

i h j

)dr
(p) = (AThi)

dr(p),

thus

A = (1−nT )−1veff(1−nT ). (3.82)

The others can be directly read off the expressions obtained above,

B = (1−nT )−1veff
ρp f (1−T n)−1 (3.83)

C = (1−nT )−1
ρp f (1−T n)−1 (3.84)

D = (1−nT )−1(veff)2
ρp f (1−T n)−1. (3.85)

In the next Chapter, I discuss the hydrodynamics of integrable models, called generalised hydrody-
namics, based on the TBA technology developed in the present Chapter. However, even before discussing
aspects specific to hydrodynamics, we already have the elements in order to build the normal modes of
generalised hydrodynamics, as defined in (2.37) and (2.38). Indeed, we have the necessary hydrodynamic
matrices! Clearly, (3.82) is the integral-operator form of the main equation (2.36) defining the matrix
change-of-basis R. It isthen immediate that we can take, for the kernel R associated to the matrix R (in the
same way as A is related to A in (3.81)),

R =
1
ρs
(1−nT ) (3.86)

(from its definition, this can be premultiplied by any state-dependent diagonal operator, but for the specific
results below, we choose 1/ρs). Equation (2.37), which defines the normal modes, can be written as

− ∂ni

∂β j = ∑
k
R k

i Ck j. (3.87)
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In terms of integral kernels, the right-hand side is (omitting the explicit dependence on p of the integrand)

∑
k
R k

i Ck j =
∫

dphiRCh j =
∫

dphin f hdr
j = hi ·n f hdr

j . (3.88)

As qi = hi ·ρp (Eq. (3.40)), likewise the normal modes take the form ni = hi · ñ for a normal-mode function
ñ(p). Thus we must have

− ∂ ñ
∂β j = n f hdr

j . (3.89)

We compare this with the result (3.73) for the derivative of n, and conclude that we can take

ñ(p) = n(p). (3.90)

That is, we have found that the occupation function gives the normal modes of generalised hydrody-
namics. There is one normal mode for every value of momentum p, in agreement with the continuous
spectrum veff(p) that we found in Section 3.4.

As a final calculation, using what we have just established, we can show that a property of linear
degeneracy, as introduced in Section 2.5, holds in integrable models. This, as I explained in that Section,
has strong consequences on the type of solutions hydrodynamic problems can display, which we will see in
particular in Section 4.2. This is the property according to which the effective velocity of a normal mode
does not depend on this normal mode (although it may depend on all other normal modes). We should keep
in mind that in integrable models, as there is a continuum of effective velocities, the consequences of this
property are not as clear-cut. For instance, the modes associated to different effective velocities do not all
separate well after large times, a notion that is sometimes made use of in conventional fluids. This subtlety
does not seem to affect the application of linear degeneracy to the Riemann problem, however.

Let me then calculate

δveff(p)
δn(p′)

. (3.91)

For this purpose, I will use the expression (3.61), the ratio of the dressed quantities (E ′)dr(p) and 1dr(p).
There is a nice general formula:

δhdr(p)
δn(p′)

=
δ

δn(p′)

[
(1−T n)−1h

]
(p)

=
[
(1−T n)−1T

δn(·)
δn(p′)

(1−T n)−1h
]
(p)

= T dr(p, p′)hdr(p′) (3.92)
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where I used δn(p)/δn(p′) = δ (p− p′) and the dressed scattering kernel (3.46). Hence,

δveff(p)
δn(p′)

=
δ

δn(p′)
(E ′)dr(p)

1dr(p)

= T dr(p, p′)
(E ′)dr(p′)1dr(p)−1dr(p′)(E ′)dr(p)[

1dr(p)
]2

= T dr(p, p′)
1dr(p′)
1dr(p)

[
veff(p′)− veff(p)

]
. (3.93)

We immediately observe that δveff(p)/δn(p) = 0, which is the linear degeneracy property sought.

Remark 3.5.1. The question of a complete space of functions hi(p) which would correspond to the complete set of
conserved charges of a model is a tricky one. The basic answer lies within the theory of hydrodynamic projections
and pseudolocal charges. As explained at the beginning of Chapter 3, the natural object is the Hilbert space built
from the inner product (2.11). The subspace of this Hilbert space composed of all elements that are invariant under
time evolution is the subspace of conserved densities. If this subspace, is countable dimensional (which is the case,
for instance, in quantum spin chains), then the static covariance matrix (3.75) is the sesquilinear form to be used.
Therefore, the Hilbert space of conserved quantities should be identified with that of functions h(p) of finite norm,
under the inner product

(h,g) =
∫

dpρp(p) f (p)
[
hdr(p)

]∗gdr(p). (3.94)

This Hilbert space depends on the state ρp(p), in accordance with the general theory of pseudolocal charges [121].
However, the change of coordinates (3.52) between {ρp(p)} and {qi} requires, instead, the inversion of (3.40).

Here we would like to see qi = q[hi] with q[·] a map on the space of functions just defined. If we think of the state as
the integration along the path (3.1) on the manifold of states starting from the infinite-temperature state, as proposed
in [121], and if the Hilbert spaces (the tangent spaces) at each point satisfy an appropriate inclusion property (as may
be achieved if the path is directed by the strength of clustering of the states visited), then the result is a continuous
linear functional on h, and by the Riesz representation theorem, is representable by an element of the Hilbert space.
It is perhaps in this sense that we should understand (3.40). More research on these aspects would be needed.
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Chapter 4

Generalised hydrodynamics

In Chapter 3, I developed the TBA technology, which expresses all elements of the statistical mechanics
of maximal entropy states introduced in Section 2.2 in terms of asymptotic states of the underlying micro-
scopic model. We now have all the ingredients necessary in order to work out the hydrodynamics, Sections
2.3 (Euler scale), 2.4 (diffusive scale), 2.5 (Riemann problem) and 2.6 (correlation functions). As this hy-
drodynamic theory is based not on Gibbs ensembles, but on generalised Gibbs ensembles (GGEs), it has
been dubbed generalised hydrodynamics (GHD). See Fig. 4.1.

I won’t follow exactly this order of Sections 2.3 to 2.6, instead concentrating on the Euler scale as
until now most of the theory is developed at this scale, and only at the end discuss diffusion. So I’ll start
with the Euler hydrodynamic equations, the basic equations of GHD; then I’ll develop various applications,
including the Riemann problem, and explain additional concepts which were not discussed above such as
force terms and numerical solutions; then I’ll discuss correlation functions, again only at the Euler scale;
then I’ll finish with diffusion.

4.1 Fundamental equations

Repeating the ideas of Chapter 2, the fundamental assumption of GHD is that, when the variation scales
of the state become large enough in space-time, then we may assume that on every “fluid cell” – large
enough to contain a thermodynamic amount of miscrocopic particles, but small enough so that their state
vary slowly in space-time – the state has maximised entropy with respect to all available linearly extensive
conserved quantities. This is expressed in the approximation (2.28), where averages of observables at (x, t)
are evaluated by calculating their average in a maximal entropy state whose Lagrange parameters depend
on (x, t).

In Chapter 3, I explained how such maximal entropy states can be represented using the asymptotic
states of scattering theory. In fact, from this, we obtained various systems of coordinates which can be
used in order to represent a given maximal entropy state, see (3.52). Hence, according to (2.28), we must
introduce space-time dependence in all these coordinate systems [although, of course, the way they are
related to each other is not dependent on space-time]. In particular, we replace

ρp(p)→ ρp(p,x, t), n(p)→ n(p,x, t). (4.1)
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Figure 4.1: Where GHD fits.

The quasiparticle density, per unit of length and momentum, now depends not just on the momentum, but
on space-time as well. This function of p tells us in what state the fluid cell at space-time point (x, t) is.

Once we have this, we simply write the Euler hydrodynamic equation (2.33), and replace in it the
expressions for qi and ji from the TBA technology, (3.40) and (3.62) respectively. Bringing the space-time
derivatives inside the momentum integral,∫

dphi(p)
(

∂tρp(p,x, t)+∂x
[
veff(p,x, t)ρp(p,x, t)

])
= 0. (4.2)

Using completeness of the set of functions {hi}, we then extract the bracket, and obtain the Euler-scale
GHD equations:

∂tρp(p,x, t)+∂x
[
veff(p,x, t)ρp(p,x, t)

]
= 0. (4.3)

This is the most important result from our analysis, and is at the basis of much of the development in GHD.
Recall that the x, t-dependence of ρp(p,x, t) is because this function represents the state at the fluid cell

x, t. The x, t-dependence of veff(p,x, t) arises because veff(p,x, t) is the effective velocity evaluated in the
state at x, t: it is a functional of ρp(·,x, t). For instance, in (3.63), the quasiparticle density in the integrand
becomes x, t-dependent, ρp(p′,x, t), hence the solution veff(p,x, t) also is. Likewise, in (3.61), the dressing
operation introduces an x, t-dependence even if the function it dresses is not x, t-dependent, i.e. we write
hdr(p,x, t) for h(p), because (3.33) involves the occupation function, n(p,x, t).

Equation (4.3) is a integro-differential equation, which is first-order in derivatives. It is highly nonlinear,
because veff(p,x, t) depends nonlinearly on the solution ρp(p,x, t) that we seek. The equation is, however,
homogeneous in space-time, in that it does not depend on x, t except through the solution sought ρp(p,x, t).
In order to “solve” it, one would need to set an initial condition ρp(p,x,0), then use this in order to evaluate
veff(p,x,0), and, with a finite-element discretisation of (4.3), solve for ρp(p,x,dt), etc. The initial condi-
tion depends on the problem, but it may be obtained by the “local density approximation”, which is the
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hydrodynamic approximation as applied to the initial state. For instance, given space-dependent Lagrange
parameters β i(x), such as a space-dependent chemical potential, then one evaluates ρp(p,x,0) by applying,
at every x, the TBA technology based on the Lagrange parameters β i(x).

Continuing our analysis, we can write the GHD equations in a quasilinear form, as in (2.34). Using the
integral-operator representation of the flux Jacobian (3.81), (3.82), we obtain (omitting the explicit p,x, t,
dependence)

∂tρp +A∂xρp = 0. (4.4)

This is not, however, the most useful equation, because it involves an integral operator. Instead, we have
already found in Section 3.5 that the occupation function gives the GHD normal modes, diagonalising
this operator, as defined in (2.37) and (2.38), see Eq. (3.90). Therefore, the hydrodynamic equations they
satisfy, (2.38), take the form

∂tn(p,x, t)+ veff(p,x, t)∂xn(p,x, t) = 0. (4.5)

Compared with (4.3), the effective velocity is now outside the derivative. Eq. (4.5), and its generalisations
and specialisations, is by far the most useful equation in GHD.

There was quite a lot of theory involved in Section 3.5 in order to deduce that the occupation function
gives the GHD normal modes. But it is possible to derive (4.5) much more directly, in a perhaps less
conceptual way, as was originally done [1, 2]. We can simply use the forms (3.39) and (3.60) for the average
densities and currents, and apply the time and space derivatives, recalling that all space-time dependence is
in the occupation function n. In general, the result of a derivative with respect to some parameter u (which
will be x or t) of

∫
dphngdr is

∂u

∫
dphngdr = ∂u

∫
dphn(1−T n)−1g =

∫
dph(1−nT )−1

∂ungdr. (4.6)

Therefore, again using completeness of the set of functions {hi} we have

∂tn1dr +∂xn(E ′)dr = 0 (4.7)

which is indeed equivalent to (4.5) by using (3.61).
In words, Equation (4.5) means that the occupation function – which is the density of quasiparticle

per unit available space in asymptotic coordinates – is convectively transported by the GHD flow. That
is, the value of n(p,x, t) along the characteristic curve for p, the curve whose tangents at every point x, t
are veff(x, t, p), is constant along the curve. This picture will be very useful in Section 4.3, where the
characteristics will be studied.

Equations (4.3) and (4.5) are the most important results of this section.
An immediate consequence of these two equations is that any function r(n) gives rise to a conservation

law:

∂t
[
ρpr(n)

]
+∂x

[
veff

ρpr(n)
]
= 0. (4.8)

This is a consequence of combining (4.3) with (4.5). Hence, in particular, taking r(n) = 1/n and using
(3.44), we find that the state density also is a conserved density:

∂tρs +∂x
[
veff

ρs
]
= 0. (4.9)
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We also see, using the expressions (3.47) and (3.71), that, as expected, the entropy density and flux satisfy
a continuity equation,

∂ts+∂xjs = 0. (4.10)

Remark 4.1.1. The derivation presented here has the drawback that we need to assume appropriate completeness
of the set of functions {hi(p)}. There is also the question as to the correctness of assuming that locally, generalised
thermalisation happens, even though the GGEs occurring may be based on pseudolocal charges with quite weak
locality properties. These problems are circumvented in a different derivation, based directly on the scattering theory,
outlined in Section 4.3.

4.2 The Riemann problem

Let me now consider the Riemann problem of hydrodynamics, as applied to GHD [1, 2, 132, 163]. This is
the problem of solving the Euler equation with the initial condition where on the left- and right-hand side of
space, the fluid is set to different, otherwise homogeneous, states, see Eq. (2.55). As explained in Section
2.5, it is convenient to use the normal modes, which are the occupation functions n(p,x, t). We therefore set
the initial state by considering two maximal entropy states, say as determined by the Lagrange parameters
β i

l and β i
r , and set

n(p,x,0) =


nl(p) = n(p)

∣∣∣
w=∑i β i

l hi(p)
(x < 0)

nr(p) = n(p)
∣∣∣
w=∑i β i

r hi(p)
(x > 0)

(4.11)

where we use the transformations described in (3.52).
We must now solve the problem (2.59) with the asymptotic conditions (2.57). This translates into[

veff(p,ξ )−ξ
]∂n(p,ξ )

∂ξ
= 0, lim

ξ→−∞

n(p,ξ ) = nl(p), lim
ξ→+∞

n(p,ξ ) = nr(p). (4.12)

We have established in Section 3.5 that GHD is a linearly degenerate hydrodynamics. Hence, according to
the discussion in Section 2.5, the solution to the Riemann problem must be composed of contact disconti-
nuities: jumps of the normal modes exactly at the rays corresponding to their velocities. This means that
we can just naively solve (4.12), by requiring n(p,ξ ), for every p, to be constant in ξ except at the value
ξ = ξ∗(p) solving the equation

ξ∗(p) = veff(p,ξ∗(p)). (4.13)

There, it must have a jump, and assuming that there is a single solution ξ∗(p), there is a single jump for this
mode, hence this jump is determined by requiring that it connects the left and right state in order to satisfy
the asymptotic conditions in (4.12). With this, we then set

n(p,ξ ) =
{

nl(p) (ξ < ξ∗(p))
nr(p) (ξ > ξ∗(p)). (4.14)
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Figure 4.2: A continuum of states, parametrised by the ray ξ = x/t, emerges in the partitioning protocol for integrable
systems, where ballistic currents exist.

We thus have a coupled system of nonlinear integral equations: given n(p,ξ ), representing, as a function
of p, the state at the ray ξ , we evaluate veff(p,ξ ), a nonlinear functional of n(·,ξ ). From this, we set ξ∗(p)
by solving (4.13), and this in turn determines n(p,ξ ). In practice, we solve by recursion: we may start with
approximating veff(p,ξ ) by the bare group velocity E ′(p), and set ξ∗(p) = E ′(p). Inserting this into (4.14),
we get an approximation for the solution n(p,ξ ). Using this approximation, we evaluate veff(p,ξ ), from
which we get a new ξ∗(p), from which we evaluate a new n(p,ξ ). We repeat until convergence.

Surprisingly, an exact analytic solution was found to this system of nonlinear integral equations in the
XXZ quantum chain with a particular initial state [163], and a general solution was obtained in the hard rod
gas [132]. However, in general it appears to be necessary to solve the system numerically.

The solution is a continuum of contact discontinuities, and thus gives rise to a continuum of states, one
for each ray ξ , where typical observables would change in a continuous fashion. See Fig. 4.2

The picture behind the solution (4.14), (4.13) is very simple: the quasiparticle of momentum p carries,
on the ray ξ , the information of the left (right) initial reservoir if its effective velocity veff(p,ξ ) on this ray is
positive (negative). This can be understood by looking at the characteristics associated to p, the continuous
curve in space-time that is tangent to veff(p,ξ ) at every point. This characteristics represents the trajectory
of a test particle. As the occupation function is convectively transported, it is constant, for fixed p, on this
curve, thus this curves carries its value from the initial reservoir. The characteristics for a given p cannot
cross twice a given ray ξ : doing so there would have to be two different values of effective velocities for a
given p and ξ , but as the state depends only on the ray, a single value may occur. Thus, if the characteristics
crosses the ray ξ from the left (right), it must come from the left (right). See Fig. 4.3.

In fact, in many cases veff(p,ξ ) is monotonic in p, and it is more convenient to write the solution as

n(p,ξ ) =
{

nl(p) (p > p?(ξ ))
nr(p) (p < p?(ξ )),

ξ = veff(p?(ξ ),ξ ). (4.15)

The problem of the non-equilibrium steady state is that of looking at the state at ξ = 0, and thus for this
purpose we may omit the ray ξ and write the condition as (E ′)dr(p?) = 0.

Numerically, in many models a single solution to (4.13) is found, and the recursive process converges
quite fast. The Riemann problem is one of the most successful applications of GHD. A more in-depth
analysis of the Riemann problem for GHD is beyond the scope of these notes, see the original papers [1, 2],
as well as [140] and especially the extensive analysis done in [104].
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Figure 4.3: The solution to the partitioning protocol. The state for quasiparticle p is determined by the direction this
quasiparticle comes from when it reaches the ray ξ .

4.3 Geometric interpretation and solution by characteristics

The characteristic curves have been discussed in Sections 4.1 and 4.2 in order to interpret the equations
obtained there. Let me now study these curves in a bit more detail [84]. I will use them in order to obtain a
geometric picture behind the GHD equations (4.3) and (4.5), a solution by characteristics to the initial value
problem for these equations which generalises the solution presented in 4.2 to arbitrary initial conditions,
and an alternative derivation of the GHD equations themselves, based on the scattering picture and which
does not explicitly use the local entropy maximisation approximation and the completeness of the set of
conserved quantities.

The characteristic curve for the quasiparticle of momentum p (the p-characteristics), starting at position
u, in a generically inhomogeneous, non-stationary fluid, is the curve t 7→ x(p,u, t) tangent to the effective
velocity veff(p,x, t) at every point:

∂x(p,u, t)
∂ t

= veff(p,x(p,u, t), t), x(p,u,0) = u. (4.16)

By the GHD equation (4.5), the occupation function is constant along this curve:

∂n(p,x(p,u, t), t)
∂ t

∣∣∣
p,u

=
[
∂tn(p,x, t)+ veff(p,x, t)∂xn(p,x, t)

]
x=x(p,u,t) = 0. (4.17)

Let me now consider the starting point u of the characteristic curve, and invert the function x(p,u, t) as

u = u(p,x, t), x(p,u(p,x, t), t) = x. (4.18)

[By abuse of notation, I use the same symbol for the function x(· · ·) and the variable x.] The function
u(p,x, t) is the starting point of the p-characteristics which crosses the space-time point x, t, see Fig. 4.4.
In order to find it, starting at x, t we go backwards along the p-characteristics until we reach time 0. As a
consequence of the invariance of n along the characteristic curve, we have

n(p,x, t) = n(p,u(p,x, t),0). (4.19)
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(x, t)
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Figure 4.4: The function u(p,x, t).

Thus, if we can determine u(p,x, t), this provides a solution to the initial value problem for GHD. This is
the solution by characteristics.

The function u(p,x, t) satisfies the same equation as n(p,x, t). This is simple to see from (4.19), just
imposing (4.5). One can also derive this from the definition of u(p,x, t) itself. Indeed using (4.16), we find

0 =
∂x(p,u(p,x, t), t)

∂ t

∣∣∣
p,x

=
[
∂tu(p,x, t)∂ux(p,u, t)+ veff(p,x(p,u, t), t)

]
u=u(p,x,t) (4.20)

and

1 =
∂x(p,u(p,x, t), t)

∂x

∣∣∣
p,t

= ∂xu(p,x, t)∂ux(p,u, t)
∣∣
u=u(p,x,t). (4.21)

Combining these,

∂tu(p,x, t)+ veff(p,x, t)∂xu(p,x, t) = 0. (4.22)

Its initial condition is

u(p,x,0) = x. (4.23)

In free models, the effective velocity does not depend on the state, and is equal to the group velocity
v(p) = E ′(p). Hence it is constant in space-time, and u(p,x, t) = x− v(p)t. The solution n(p,x, t) =
n(p,x− v(p)t,0) is just that of a freely propagating, non-dispersive wave. In interacting fluids, however, it
is in general not possible to explicitly solve for u(p,x, t).

Surprisingly, in GHD, there is an integral equation that determines u(p,x, t). Suppose that the state of
the fluid asymptotically very far on the left does not depend on space-time (the left is just a choice, I could
use the right as well) – it is asymptotically homogeneous, hence does not evolve. Let me define

v̂(p) = 2πρs(p,−∞,0)veff(p,−∞,0). (4.24)

Then for u and x related as in (4.18), we have

2π

∫
dy
[
ρs(p,y,0)Θ(u− y)−ρs(p,y, t)Θ(x− y)

]
+ v̂(p) t = 0. (4.25)
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Recall that 2πρs(p,x, t) = 1dr(p,x, t). For free models, v̂(p) = v(p) and ρs is independent of x, t, so that
(4.25) reproduces u− x+ v(p)t = 0. In a homogeneous, stationary state, the solution is also simply u =
x− v̂(p)t, representing the linear propagation of quasiparticles. In inhomogeneous, interacting models,
however, (4.25) is a nontrivial integral equation relating u and x.

Before showing (4.25), I note that the integral equation (4.25) combined with the characteristic curve
equation (4.19) provide a system of equations solving the GHD initial value problem. Indeed, in (4.25), only
the state at t and at 0 is required, and the time t appears explicitly as a parameter. Thus, in principle, one
can solve for n(p,x, t) by recursion. For instance, set as a first approximation n(p,x, t)≈ n(p,x− v(p)t,0),
then use this in (4.25), which must be solved numerically, in order to obtain an approximation for u(p,x, t),
and insert this in (4.19) to obtain the next approximation for n(p,x, t). Repeating, the recursive process has
been observed to converge in the cases studied [84].

In order to show (4.25), I will simply show that it leads to (4.22) with initial condition (4.23). The initial
condition is in fact immediate. In order to show (4.22), I use the fact that ρs satisfies the conservation law
(4.9). Differentiating (4.25) with respect to t at p,x fixed, this gives

2πρs(p,u,0)∂tu+2πveff(p,x, t)ρs(p,x, t) = 0 (4.26)

where I used (4.9) and performed the y-integral of the total derivative that arose, cancelling the term v̂(p).
Differentiating with respect to x at p, t fixed,

2πρs(p,u,0)∂xu−2πρs(p,x, t) = 0. (4.27)

Combining, I indeed get (4.22).
What is the meaning of (4.25)? In order to understand, let me define, for every p, a new space coordinate

x̂ related to x as

dx̂ = 2πρsdx. (4.28)

The change of coordinate x→ x̂ depends, in general, both on the momentum p of the quasiparticle consid-
ered, and on time t. Integrating (4.28), we will write x̂(p, t). With this, Eq. (4.25) is

û(p,0)− x̂(p, t)+ v̂(p)t = 0. (4.29)

That is, in this new coordinate system, forgetting about the special t dependence of the transformation,
û− x̂+ v̂t = 0: this is of the form of the free-particle solution for the characteristic curve! In fact, these
coordinates trivialise the fluid equation. Defining n̂(p, x̂, t) by

n̂(p, x̂(p, t), t) = n(p,x, t), (4.30)

we have

∂t n̂(p, x̂, t)+ v̂(p)∂x̂n̂(p, x̂, t) = 0. (4.31)

Indeed, n̂(p, x̂(p, t), t)= n(p,x, t)= n(p,u,0)= n̂(p, û(p,0),0)= n̂(x̂(p, t)− v̂(p)t,0). The occupation func-
tion, written in the x̂ coordinates, evolves trivially.
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The change of coordinates induces a change of metric between x and x̂. How do we interpret this change
of metric? For this purpose, let me go back to the discussion just after Equation (3.27). There, it was
observed that 2πρs = R/L is the ratio of the lengths perceived in the space of asymptotic impact parameters,
to the actual lengths where the real particles lie. The ratio is the effective available space density in which
quasiparticles move. Because they are affected by scattering shifts, this effective space density is different
from one. Thus, the coordinate x̂ should be interpreted as the coordinate for the space perceived by the
quasiparticles. Equivalently, it is the coordinate where lie the impact parameters of the scattering map.

The fact that the change of coordinates x 7→ x̂ trivialises the GHD equation is then interpreted as the
fact that the asymptotic coordinates of scattering theory satisfy trivial evolution equations (3.7), that of
free particles. Indeed, the fluid equations for free particles are nothing else but the Liouville equations,
or collisionless Boltzmann equations, for their phase-space density, which state that phase-space elements
are preserved. And the occupation function (3.44) is, by construction, the density of quasiparticle per unit
available quasiparticle space, so it is the density in asymptotic phase space. Thus, GHD is the trivial fluid
equations for the freely evolving “asymptotic particles”, whose coordinates are the asymptotic momenta
and impact parameters.

This gives a very powerful interpretation of GHD. In two statements: (1) GHD is the fluid equation
obtained by applying the inverse of the scattering map (3.4) to the Liouville equations; and (2) in integrable
systems, the inverse scattering map is a change of metric, which takes into account the accumulation of
scattering shifts. In a “meta-equation”, this is

GHD = S−1
in ◦ Liouville equation. (4.32)

In this sense, it is perhaps appropriate to refer to the GHD equations as “Bethe-Liouville equations” (the
name “Bethe-Boltzmann equations” has been proposed [48], before the present understanding came to
light). This understanding of GHD gives an alternative derivation of the GHD equations, which does not
require the assumption of local maximisation of entropy towards GGEs. One starts with the Liouville equa-
tion in asymptotic space, and simply applies the change of coordinates corresponding to the accumulation
of scattering shifts. The above results show that the GHD equations are obtained in this way. The full
thermodynamics, including the Lagrange parameters, can likewise be obtained in this way. Interestingly, I
believe this is a blueprint for a rigorous derivation of GHD; indeed it is essentially such ideas, expressed in
different terms, that are used in order to show the fluid equations in the hard rod gas [77].

Remark 4.3.1. In (4.25), it appears as though we could use ρsr(n) for any positive function r(n) of the occupation
function, in place of ρs, without changing the result for the differential equation (thanks to (4.8)). However, the
resulting integral equation may not be as well defined, because n may vanish [but this has not been analysed in any
depth yet]. Likewise, the metric interpretation also would fail with this replacement.

4.4 The flea gas algorithm

I have explained in the previous section how the viewpoint of the accumulation of phase shifts, advocated
in Sections 3.1 and 3.2 and at the basis of the TBA technology, gives a simple geometric meaning to the
GHD equations themselves. This provides a set of coupled integral equations which “solve” the initial value
problem.
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Figure 4.5: (a) The quasiparticle jump in the hard rod case, see Fig. 3.5. (b) The flea-gas quasiparticle jump, for
ϕ(p− p′)> 0 (backward jump). (c) The flea-gas quasiparticle jump, for ϕ(p− p′)< 0 (forward jump).

In this section, I use this viewpoint in order to construct an algorithm that solves GHD [160]. The
algorithm is a classical molecular dynamics, that is, a classical gas of interacting particles whose trajectories
we directly implement on the computer. There is such a gas for any GHD equation (4.3), no matter the form
of the scattering shift ϕ(p). That is, this algorithm actually shows that there are classical gases that have
the same Euler hydrodynamics as quantum gases. Because of its particular features, it is referred to as the
flea gas.

The point of the algorithm – of the molecular dynamics – is to reproduce the displacement equation
(3.67) which we argued, in Section 3.4, could be used as an interpretation of the formula for the effective
velocity. The idea is a generalisation of old ideas used for the hard rod gas (see Example 3.1.4), where
the displacements are now made momentum-dependent. However, the algorithm is not a hard-rod type of
algorithm, and does not specialise to it in the case of a constant scattering shift (momentum-independent
displacements). Nevertheless, it reproduces the same Euler hydrodynamics (there is a lot of universality at
large scales).

Let me imagine a gas of particles, each with a momentum label p. I wish to identify these particles with
the quasiparticles constructed abstractly in Section 3.1 as the velocity tracers.

Suppose each particle travels freely, between collisions, at a velocity v(p). This part of the algorithm
reproduces the linear displacements, the first term on the right-hand side of (3.67). Here, contrary the case
of real quasiparticles, from a real model such as the Toda model, there is true linear displacement between
collisions; but this is just an imagined gas, an algorithm.

In order to reproduce the jumps that quasiparticles should undergo, I indeed impose the particles of the
gas to jump, instantly, by the required distance, in the required direction, every time there is collision. The
distance and direction is specified in the second term on the right-hand side of (3.67). See Fig. 4.5.

At this point, however, two subtleties arise. First, if ϕ(p)> 0, then the jump “adds space”, i.e. is back-
ward, towards the directions where the particles come from. If from there the particles continue travelling
linearly, as they should, they will meet soon again, and, naively, would jump backward again, never getting
through each other. This is not right – a single jump should occur at each crossing. So, we let the particle
have a “memory”: they exchange a card to say they’ve already met, and when they meet again, they go
through each other without jumping.

The second subtlety is more delicate. When a particle p tries to jump by the amount ϕ(p− p′) after
meeting another particle p′, this jump might be large enough to cross other particles on its way. Not
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Figure 4.6: In a flea-gas jump trajectory, another particle is met. A second jump must then be executed, before
finishing the first one. Here all scattering shifts are positive.

considering these, there would be crossings without a scattering shifts, breaking (3.67). Hence, if the set
of particles p1, p2, . . . pN is on the path of the jump of particle p after it met p′, then each crossing (p, pn)
(n = 1,2, . . . ,N) must be considered a collision. In order to understand these collisions, imagine that, even
if the jump is instantaneous, we stop time, and look at the trajectory the particle p takes during its jump.
This trajectory has a specific direction, coming from where the original collision was; these are the curly
arrows in Fig. 4.5. Then, the meeting (p, p1) of particle p with the closest of particle (say p1) on its jump
path should be understood as a collision, of the same type as above. Thus, this occasions another jump to
be executed, of a distance and direction again determined by (3.67). Note how, crucially, the direction of
this “inside-jump” jump is not determined by the direction of linear travel, v(p), but rather by the direction
the particle is taking during its jump. This guarantees that the directions of the jumps are determined by
those of crossings, as it should for (3.67). See Fig. 4.6.

Naturally, any “inside-jump” jump may also cross other particles, and require further jumps. Thus, we
arrive at a recursive procedure, in which the jump procedure may call itself in order to execute “inside-
jump” jumps.

The result is a chain reaction of jumps at every collision, reminiscent of fleas jumping around and
encouraging their neighbours to jump as the pass above (I do not know if this is an actual socio-biological
effect in the flea).

Remark 4.4.1. It is important to note that the flea gas algorithm is not time-reversal invariant, and that it does not
immediately reproduce the thermodynamics with arbitrary free energy function F(ε) (see Section 3.3). In particular,
it does not reproduce, in general, the correlation functions or the diffusion operator discussed in Section 4.6. It is, for
now, limited to solving the Euler-scale equation. It does, however, work with simple external force terms, see Remark
4.5.1. In more general situations, the algorithm still needs to be studied.

4.5 External force

Equations (4.3), and equivalently (4.5), describe how the fluid of a many-body integrable system evolves
in space-time. This is for a microscopic evolution according to some homogeneous Hamiltonian H, for
instance that of the Toda gas (3.2).

However, in many situations of high interest experimentally, the microscopic evolution includes an
external force field, which is often inhomogeneous. The most important example is the quantum Lieb-
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Liniger model in an external potential,

H =−1
2 ∑

n
∂

2
xn
+g ∑

n<m
δ (xm− xn)+∑

n
V (xn), (4.33)

see Example 3.1.5. Written in second quantisation, this takes the form

H =
∫

dx
[1

2
∂xΨ

†(x)∂xΨ(x)+
g
2

Ψ
†(x)Ψ†(x)Ψ(x)Ψ(x)+V (x)Ψ†(x)Ψ(x)

]
(4.34)

for a canonical Bosonic field, [Ψ(x),Ψ†(y)] = δ (x−y). The function V (x) is the external potential, and the
associated force is −V ′(x).

The conserved number of particles is

Q0 =
∫

dxΨ
†(x)Ψ(x). (4.35)

However, with an external potential that is inhomogeneous, the momentum charge is broken because there
is no translation invariance anymore, and in fact all higher conserved charges, beyond the Hamiltonian, are
broken. That is, the system is not integrable anymore! Can we still use the theory of GHD in order to
describe what happens at large scales in such a situation?

The answer is yes, under the condition that the potential V (x) vary on large enough scales. The situation
is not so different from that of conventional hydrodynamics in an external force field, such as gravity or an
external electric or magnetic field. There, although momentum is broken by an external inhomogeneous
field, we can still write Euler equations (2.1) for local densities of particles and momentum, modified to
include a force term. The momentum conservation equation, the second line of (2.2), receives a correction
due to Newton’s equation telling us how momentum changes. That is, locally, we still have fluid cells that
maximise entropy with respect to all the usual conserved charges including momentum (that is, the fluid
cells can still have a nontrivial velocity); it is the large-scale equations that break momentum.

Hence, we apply the same principles to GHD, and we assume that the breaking of conserved charges
(be it the momentum, or the higher conserved charges) occurs only on large enough scales, and hence does
not preclude local entropy maximisation to GGEs. That is, on the fluid cell at position x, the evolution with
the microscopic Hamiltonian (4.34) is equivalent to that of the homogeneous Hamiltonian, modified by the
presence of the chemical potential −V (x) [the force potential is the negative of the chemical potential, in
the usual conventions],

H(x) = HLL +V (x)Q0 (4.36)

where

HLL =
∫

dy
[1

2
∂yΨ

†(y)∂yΨ(y)+
g
2

Ψ
†(y)Ψ†(y)Ψ(y)Ψ(y)

]
(4.37)

is the homogeneous part of the Lieb-Liniger Hamiltonian. We thus have to figure out how to evolve the
locally entropy-maximised states in time with a Hamiltonian that contains space-dependent couplings to
the conserved charges.
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Of course, H(x) is part of the integrable hierarchy for any value of V (x). That is, it has a local energy
function, now x-dependent, which we can write within our formalism,

E(p,x) =
p2

2
+V (x). (4.38)

In general, we can do the same with couplings to all other conserved charges, for instance

H(x) = HLL +∑
i

V i(x)Qi. (4.39)

This will be associated to a local energy function

E(p,x) =
p2

2
+∑

i
V i(x)hi(p). (4.40)

We can therefore simply assume a local energy function that depends on both p and x, in some given way.
How is the Euler-scale hydrodynamic equation modified by such a space-dependent Hamiltonian? Cer-

tainly, we can calculate the currents in the local fluid cells, and they have the same form as before, (3.62),
but with an effective velocity that knows about the x-dependence of the Hamiltonian, as it uses the local
energy function at x,

veff(p,x, t) =
(E ′(·,x))dr(p,x, t)

1dr(p,x, t)
(4.41)

But this does not tell us how, at large scales, the charges are broken by the presence of a force; e.g. how
the momentum is not conserved anymore. For this, we need an additional force term in the GHD equations
(4.3) and (4.5). It turns out that this force term can be written explicitly [47], although the calculation is
quite involved, and I don’t have a simple, direct argument leading to it. The result is simple, however, and
takes the form

∂tρp +∂x
[
veff

ρp
]
+∂p

[
aeff

ρp
]
= 0 (4.42)

in terms of quasiparticle densities, and

∂tn+ veff
∂xn+aeff

∂pn = 0 (4.43)

in terms of the occupation function, where the effective acceleration is the “effectivisation” of the acceler-
ation,

aeff(p,x, t) =

(
−∂xE(·,x)

)dr
(p,x, t)

1dr(p,x, t)
. (4.44)

It turns out that it satisfies an equation similar to (3.63), but with the acceleration as source term (here
omitting the t dependence),

aeff(p,x) =−∂xE(p,x)+
∫

dp′ϕ(p− p′)ρp(p′,x)(aeff(p′,x)−aeff(p,x)). (4.45)
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It is noteworthy that for the simple and most physical case of (4.38), the effective acceleration simplifies to
the usual acceleration,

aeff(p,x) =−∂xV (x) (case (4.38)). (4.46)

More general force terms were proposed in [164, 165] in order to describe space-time variations of the
interaction terms in the Hamiltonian (that is, space-time dependent, integrable Hamiltonians that do not
stay within a given integrable hierarchy), where special effects such as sudden entropy increase can occur
due to the features of the spectrum of quasiparticles.

Remark 4.5.1. We note that, with an external potential associated to the number of particles and with (4.38), the
flea gas algorithm described in Section 4.4 can be implemented, simply by adding an acceleration to the flea’s linear
evolution, without changing the jump procedure.

4.6 Correlation functions and diffusion

Finally, it is possible to apply the general ideas of Sections 2.4 and 2.6 to the cases of integrable models, as
done in [125, 140] and [49, 123, 166].

I start with the discussion of correlation functions, Section 2.6. The general result for the two-point
function of conserved densities is expressed in (2.72). At the Euler scale, we can set D j

i = 0 in this
equation, and from Section 3.5, we already know all the necessary hydrodynamic matrices in the TBA
framework. Putting things together, one finds

Si j(k, t) =
∫

dpρp(p) f (p)eiktveff(p)hdr
i (p)hdr

j (p) (4.47)

and, Fourier transforming back to real space,

〈qi(x, t)q j(0,0)〉eul =
∫

dpρp(p) f (p)δ (x− veff(p)t)hdr
i (p)hdr

j (p)

= t−1
∑

p∈P(x/t)

ρp(p) f (p)hdr
i (p)hdr

j (p)∣∣∂veff/∂ p
∣∣ (4.48)

where P(x/t) = {p : veff(p) = x/t} is the set of momenta for which the mode propagates along the ray x/t.
It is also possible to go further and work out the formula (2.74) from hydrodynamic projections. The

necessary ingredients are the overlaps (qi,o). These are known as soon as the averages 〈o〉β are known as
functions of all Lagrange parameters β i. For convenience, assume that this is known, and write it in the
form (see [140])

−
∂ 〈o〉β
∂β i = (qi,o) =

∫
dpρp(p) f (p)hdr

i (p)V o(p) (4.49)

for some function V o(p). This parallels the form (3.75) for (qi,q j). Then the result is

〈o1(x, t)o2(0,0)〉eul =
∫

dpρp(p) f (p)δ (x− veff(p)t)V o1(p)V o2(p). (4.50)
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Figure 4.7: The trajectory of a test quasiparticle within the gas spreads diffusively around its velocity veff.

In particular, for the currents, V ji(p) = veff(p)hdr
i (p), as per (3.76).

The quantities V o(p) can be evaluated for various fields, see [140]. The very general result (4.50) was
recently shown from a thermodynamic spectral decomposition [167, 110].

It is important to note that these correlation functions decay generically as 1/t in the region of rays x/t
where the effective velocity ranges. This is a particularity of integrable systems: instead of a smaller power
law (slower decay) at specific rays and an exponential decay otherwise, one finds that the continuum of
normal modes give a larger power law (1, or it may be larger along certain rays for certain observables)
within the full range of the effective velocity. Of course, the specialisation of the Euler-scale correlation
function to the Drude weight is then immediate: one simply needs to integrate the current-current correlation
function, as per (2.27), re-obtaining (3.80).

Finally, the diffusion operator can also be evaluated. This is much more involved, as it requires a more
in-depth understanding of the structure of correlation functions in integrable models. The calculation in [49,
123] uses a spectral decomposition, which can be framed within the thermodynamic spectral decomposition
of [167, 110]. The result can be written for the Onsager matrix in the form

Li j =
∫ dp1dp2

2
ρp(p1) f (p1)ρp(p2) f (p2)|veff(p1)− veff(p2)|T dr(p1, p2)×

×
[hdr

i (p2)

ρs(p2)
− hdr

i (p1)

ρs(p1)

][hdr
j (p2)

ρs(p2)
−

hdr
j (p1)

ρs(p1)

]
. (4.51)

This is obviously a non-negative, symmetric matrix, as it should. Although this form was derived in the
quantum context, when specialised to classical systems, with the Boltzmann statistical factor f (p) = 1, it
correctly specialises to the form derived rigorously in the hard rod gas [78]. This is therefore expected to
be completely general.

The proposed physical picture behind diffusion in integrable systems is that the trajectory of a test
quasiparticle within a gas of quasiparticles is not exactly the line at veff, but rather spreads diffusively
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because of the random collisions, see Fig. 4.7. This picture is well known from the hard rod model. It was
first linked with the (diagonal elements of the) diffusion constant in [166], and has now been made quite
precise thanks to the understanding of ballistic wave scattering in hydrodynamics [168, 134]. It is important
to emphasise that although there is diffusion, there is no external noise (usually) in integrable system: the
randomness normally associated with diffusion comes from the random initial condition.



Chapter 5

Closing remarks

In these notes, I have tried to provide a pedagogical overview of the subject of generalised hydrodynamics
(GHD). Although GHD grew out of describing many-body quantum systems out of equilibrium, it is now
seen as applicable to a very wide array of many-body systems, both quantum and classical. It connects
nicely many previous studies, extracting the main physical principles and their structures. In fact, one
important outcome of GHD has been to push the study of the general theory of hydrodynamics. It has put
the emphasis on the general relations between conserved quantities and the emerging large-scale physics,
in contrast with the particular hydrodynamic notions based on density of particles, momentum and energy
traditionally used.

The GHD equations are similar to the Liouville equations, or collisionless Boltzmann equations. I have
explained the origin of this in Section 4.3: the GHD equations come from applying a scattering map to
the Liouville equations, using the special properties of integrable systems. It is important to note that the
GHD equations are not based on molecular chaos, as Boltzmann equations typically are, but local entropy
maximisation at large wavelengths, as Euler equations are. The GHD equations were also extended to
include diffusive contributions, Section 4.6.

It is likely that GHD can be pushed further than the diffusive level, possibly using form factor tech-
niques as in [49, 123], or the more general techniques of [168, 134]. A possible picture is that as finer
and finer hydrodynamic scales are accessed (the expansion is pushed to higher and higher derivatives), the
quasiparticle density ρp(p) morphs into the real-particle phase space density of the Boltzmann equation.
This is to be contrasted with generic, conventional hydrodynamics, where it is usually believed that beyond
the diffusive scale, the hydrodynamic approximation, under which the number of degrees of freedom is
reduced to the conserved quantities, fails. In integrable models, one might indeed expect that the derivative
expansion up to infinite order stays meaningful, at least as an asymptotic expansion. The reduction of the
number of degrees of freedom should stay valid at all inverse powers of the variation lengths, because the
scattering map gives a position of quasiparticles up to imprecisions of order of the scattering length, that is,
of order 1 with respect to the thermodynamic limit.

Another aspect of GHD which would be interesting to investigate is the importance of the choice of
vacuum in the scattering description. The choice of the vacuum affects the spectrum of asymptotic excita-
tions, see the beginning of Section 3.1 and Remark 3.1.1. Thus, for any given system and state, there may
be many different-looking TBA formulations. One example is the dual bosonic and fermionic descriptions
of the Lieb-Liniger model. How does this affect the physical intuition behind GHD?
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Although GHD pertains to the domain of integrable systems, in one dimension of space, one can ar-
gue (see e.g. [146]) that generic, non-integrable systems at low density follow to a good approximation
the equations of GHD. Indeed, at low densities, two-body scattering is sufficient in order to describe the
dynamics, and in one dimension, energy and momentum are conserved under two-body scattering. Thus,
the notion of quasiparticle makes sense, and the general arguments leading to the TBA technology apply.
This is probably an important reason for which integrable systems are so successful in reproducing many
of the observations made in quasi-one-dimensional experimental setups. It is also the fundamental reason
behind the Fermi-Pasta-Ulam-Tsingou results [169]: when a classical field, or anharmonic chain, is excited
only with large-wavelength configurations, then it has a low density of asymptotic excitations [note that this
is different from exciting a classical field with a large-wavelength distribution of configurations that may
themselves be very rough; this leads to hydrodynamics].

The above in fact points to the crucial, more general problem of understanding how perturbations of
integrability affect the non-equilibrium dynamics; this is essential, it can be argued, in order to have full
theoretical understanding of experiments on near-integrable systems.

One area of research in GHD that needs further studies is that of classical integrable field theory. This
has, for instance, potential application to low-temperature cold atomic systems, where an integrable clas-
sical field theory (the nonlinear Schrödinger equation) describes the pseudo-condensate wave function.
Results are also much more easily compared to numerical simulations. In classical field theory, there is the
well-known UV catastrophe. However, as emphasised in [141], higher conserved charges in one dimension
cure this. It would be interesting to analyse the physical consequences further.

In many integrable models, GHD, as currently framed, is not the full story. As GHD concentrates
on the commuting Hamiltonian flows of integrable systems, it does not account very well for the internal
symmetries that may be available. It would be important to elucidate how these can be described efficiently,
complementing the GHD framework. In particular, it is likely that, in models where scattering is non-
diagonal (internal degrees of freedom are mixed in scattering events), there is some emerging conventional,
non-integrable type of hydrodynamics for these degrees of freedom, on top of the GHD hydrodynamics for
quasiparticles. This would connect with some recent work on spin degrees of freedom in spin chains [139].

As noted, see Section 3.5, GHD is a linearly degenerate hydrodynamic system. In such systems, shocks
do not develop. An important question is as to the connection between GHD, and in particular the TBA
technology, and generic linearly degenerate hydrodynamic equations. Are the hydrodynamic properties of
integrable systems actually entirely properties of linear degeneracy? Could we adapt the GHD geometric
picture, or the exact results on correlations and diffusion, to more general linearly degenerate hydrodynam-
ics?

Finally, one potential area of extension is to higher-dimensional systems. One may devise higher-
dimensional gases with appropriate factorisation properties as in the hard rod gas or flea gas algorithm. It
would be interesting to see how this may connect to, and inform, the theory of higher-dimensional integra-
bility.



Problems

Chap. 2. A relativistic, conformal fluid in d dimensions of space (d+1 space-time dimensions) can be restricted
to a one-dimensional fluid if we only look at unidirectional flows. Two conserved quantities are
relevant: the energy H = Q1, and the momentum P = Q2 in the flow’s direction. The maximal entropy
states are characterised by a rest-frame temperature T and a boost θ , as ρ = e−(H coshθ−Psinhθ)/T . The
densities and currents take the form

q1 = aT d+1(d cosh2
θ + sinh2

θ)

j1 = q2 = a(d +1)T d+1 coshθ sinhθ

j2 = aT d+1(cosh2
θ +d sinh2

θ)

where a is a model-dependent constant.

a. Evaluate the matrices A, B and C, and the effective velocities for this fluid. Show that the effective
velocities are given by ±1/

√
d when the fluid is at rest, θ = 0. How does A simplify in the case

d = 1?

b. Show that n± = T e±θ/
√

d are normal modes.

c. Show that the free energy flux is g =−aT d sinhθ . Calculate the free energy density f.

Chap. 3. a. By directly using the equations of motion, and going to the centre-of-mass frame, show that the
scattering shift of the Toda model is ϕ(p) = 2log |p|.

b. In the general framework of TBA with a Galilean invariant, single quasiparticle spectrum, show
that the entropy flux js = ∑i β iji−g takes the form∫

dpveff(p)ρs(p)
[
ε(p)n(p)−F(ε(p))

]
.

You can try without looking at the proposed derivation in Eq. (3.71); if you use this derivation,
simply give the justification for each of the steps shown there.

c. Consider again the framework of TBA with a Galilean invariant, single quasiparticle spectrum.
What functions h0(p) and h1(p) should be used in order to represent the density of particles, and
the density of momentum, respectively? Show that

∫
dp pρp(p) =

∫
dpveff(p)ρp(p) and interpret

this result in view of your answer to this question.
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d. Consider a Galilean invariant quantum integrable model with a single quasiparticle type of
fermionic statistics, with scattering shift ϕ(p) = 4/(p2 + 4). Suppose the state is determined
by w(p) = wT (p) = (p2/2−1)/T where T > 0 is the temperature. Evaluate numerically (using
Mathematica, or Python, or any other computer language), the average density and the average
energy for various temperatures (say 5 values) in the range T ∈ [0,2]. Also plot the occupation
function n(p). What happens to the latter when T → 0?

Chap. 4. a. The hard rod gas is a classical gas of rods, each of length a > 0, with elastic collisions. With
quasiparticles being velocity tracers as usual, the TBA framework and GHD can be applied, with
ϕ(p) =−a and the classical particle statistics. Show that the effective velocity simplifies to

veff(p,x, t) =
p−aρ(x, t)u(x, t)

1−aρ(x, t)

where ρ(x, t) =
∫

dpρp(p,x, t) is the total density per unit length at the fluid cell x, t, and

u(x, t) =
1

ρ(x, t)

∫
dp pρp(p,x, t)

is the average velocity at the fluid cell x, t. Then, consider the solution to the partitioning
protocol, with left and right initial states determined by the occupation functions nl(p) and
nr(p), respectively. Recall that the solution n(p,ξ ) has a discontinuity, as a function of p for
ξ fixed, at p = p∗(ξ ). Show that the condition for the momentum at which discontinuity occurs,
veff(p∗(ξ ),ξ ) = ξ , reduces to

p∗(ξ ) = g−1(ξ ), g(p) = p+a
∫

∞

p
dp′(p− p′)nl(p′)+a

∫ p

−∞

dp′(p− p′)nl(p′).

b. Consider a Galilean invariant quantum integrable model with a single quasiparticle type of
fermionic statistics, with scattering shift ϕ(p) = 4/(p2+4), as in Part d., Chapter 3 above. Sup-
pose an initial state of the partitioning protocol is determined by wTl(p) and wTr(p), for Tl > Tr
the temperatures on the left and the right, where wT (p) = (p2/2− 1)/T . Using the solution
method that we obtained in the class, evaluate numerically, and plot, the energy current and the
energy density as functions of the ray ξ for, say Tl = 2 and Tr = 0.5.

c. Show that the equations for GHD in a force fields in terms of the quasiparticle density (4.42),
and in terms of the occupation function (4.43), are equivalent. For this, it is sufficient to start
with (4.42), replace in it the expressions for the effective velocity and acceleration in terms of
dressed quantities, and apply the derivatives on this.

d. Consider a system with a Galilean invariant, single particle spectrum, in some external force
field. There is thus some energy function E(p,x), whose form I leave undetermined. Consider a
statrionary solution (independent of time) for the GHD equation with acceleration, and consider
the source term w(p,x) associated to this solution. Show that it satisfies(

∂xw(·,x)
)dr

(p,x)(
∂xE(·,x)

)dr
(p,x)

=

(
w′(·,x)

)dr
(p,x)(

E ′(·,x)
)dr

(p,x)
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(where, as usual, ′ = ∂/∂ p is the momentum derivative). From this, deduce that w(p,x) =
βE(p,x) is a solution for any β , and interpret this result.
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edited by E. Brézin, V. Kazakov, D. Serban, P. Wiegmann, and A. Zabrodin, NATO Science Series
II: Mathematics, Physics and Chemistry, Vol. 221 (Springer, Dordrecht, 2006), pp. 139–161.
DOI: 10.1007/1-4020-4531-X 5

[14] E. Bettelheim, A. G. Abanov and P. Wiegmann, Nonlinear quantum shock waves in fractional quan-
tum Hall edge states, Phys. Rev. Lett. 97, 246401 (2006).
DOI: 10.1103/PhysRevLett.97.246401

[15] M. Müller, Jörg Schmalian and L. Fritz, Graphene: a nearly perfect fluid, Phys. Rev. Lett. 103, 025301
(2009).
DOI: 10.1103/PhysRevLett.103.025301

[16] B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schütt and A. D. Mirlin, Hydrodynamics in graphene:
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