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This is a written version of a series of lectures aimed at undergraduate students in astrophysics/particle
theory/particle experiment. We summarize the important progress made in recent years towards
understanding high energy astrophysical processes and we survey the state of the art regarding the
concordance model of cosmology.

I. ACROSS THE UNIVERSE

A look at the night sky provides a strong impression of
a changeless universe. We know that clouds drift across
the Moon, the sky rotates around the polar star, and on
longer times, the Moon itself grows and shrinks and the
Moon and planets move against the background of stars.
Of course we know that these are merely local phenom-
ena caused by motions within our solar system. Far
beyond the planets, the stars appear motionless. Herein
we are going to see that this impression of changeless-
ness is illusory.

A. Nani gigantum humeris insidentes

According to the ancient cosmological belief, the stars,
except for a few that appeared to move (the planets),
where fixed on a sphere beyond the last planet; see Fig. 1.
The universe was self contained and we, here on Earth,
were at its center. Our view of the universe dramatically

FIG. 1: Celestial spheres of ancient cosmology.

changed after Galileo’s first telescopic observations: we
no longer place ourselves at the center and we view the
universe as vastly larger [1–3].

In the early 1600s, Kepler proposed three laws that
described the motion of planets in a sun-centered solar
system [4]. The laws are:

1. Planets orbit the Sun in ellipses, with the Sun in
one of the two focuses.

2. The line connecting the Sun and a planet sweeps
out equal area in equal time.

3. The harmonic law states the squared orbital period
T of planets measured in years equals to the third
power of their major axis measured in astronomical
units, (T /yr)2 = (a/AU)3.

Newton used later the harmonic law to derive the 1/r2

dependence of the gravitational force [5]. We will fol-
low the opposite way and discuss how Kepler’s laws
follow from Newton’s law for gravitation. We begin by
recalling how a two-body problem can be reduced to a
one-body problem in the case of a central force. Denot-
ing the position and the masses of the two objects by mi
and ri, with i = 1, 2 the equations of motion are found to
be

m1~̈r1 = − f (|~r1 − ~r2|)(~r1 − r2) , (1)

and

m2~̈r2 = + f (|~r1 − ~r2|)(~r1 − r2) . (2)

In other words, the center-of-mass (c.m.) of the system

~R =
m1~r1 + m2~r2

m1 + m2
. (3)

moves freely. Now, multiplying (1) by m2 and (2) by m1
and substracting the two equation we obtain

µ~̈r = f (r)~r , (4)

where

µ =
m1m2

m1 + m2
. (5)
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We can then solve a one-body problem for the reduced
mass µ moving with the distance r = |~r1 − ~r2| in the
gravitational field of the mass M = m1 + m2.

We can now derive the second law (a.k.a. the area
law). Consider the movement of a body under the influ-
ence of a central force (4). Since ~r × ~r = 0, the vectorial
multiplication of (4) by ~r leads to

µ~r × ~̈r = 0 , (6)

that looks already similar to a conservation law. Since

d
dt

(~r × ~̇r) = ~̇r × ~̇r + ~r × ~̈r , (7)

the first term in the right-hand-side is zero and we obtain
the conservation of angular momentum ~L = µ~r × ~̇r for
the motion in a cental potential

µ~r × ~̈r =
d
dt

(µ~r × ~̇r) =
d
dt
~L = 0 . (8)

There are two immediate consequences: First, the mo-
tion is always in the plane perpendicular to ~L. Second,
the area swept out by the vector ~r is

d ~A =
1
2
~r × ~v dt =

1
2µ

d~L , (9)

and thus also constant.
We now turn to demonstrate the first law. We intro-

duce the unit vector r̂ = ~r/r and rewrite the definition of
the angular momentum ~L as

~L = µ~r × ~̇r = µrr̂ ×
d
dt

(rr̂)

= µrr̂ ×
(
ṙr̂ + r

dr̂
dt

)
= µr2r̂ ×

dr̂
dt
. (10)

The first term in the parenthesis vanishes, because of r̂×
r̂ = 0. Next we take the cross product of the gravitational
acceleration,

~a = −
GM
r2 r̂ , (11)

with the angular momentum

~a ×~L = −
GM
r2 r̂ ×

(
µr2r̂ ×

dr̂
dt

)
= −GMµr̂ ×

(
r̂ ×

dr̂
dt

)
, (12)

where G = 6.674×10−11 N m2 kg−2 [6]. The identity from
vector analysis, ~A× (~B× ~C) = ( ~A · ~C)~B− ( ~A · ~B)~C, leads to

~a ×~L = −GMµ

[(
r̂ ·

dr̂
dt

)
r̂ − (r̂ · r̂)

dr̂
dt

]
. (13)

Since r̂ is a unit vector, we have r̂ · r̂ = 1 and d(r̂ · r̂)/dt = 0,
hence

~a ×~L = GMµ
dr̂
dt
. (14)

Since ~L and GMµ are constant, we can write this as

d
dt

(~v ×~L) =
d
dt

(GMµr̂) . (15)

Integration of (15) leads to

~v ×~L = GMµr̂ + ~C , (16)

where the integration constant ~C is a constant vector.
Taking now the dot product with ~r, we have

~r · (~v ×~L) = GMµrr̂ · r̂ + ~r · ~C . (17)

Applying next the identity ~A · (~B × ~C) = ( ~A × ~B) · ~C, it
follows

(~r × ~v) ·~L = GMµr + rC cosϑ

= GMµr
(
1 +

C cosϑ
GMµ

)
, (18)

where ϑ is the angle between ~r and ~C. Expressing ~r × ~v
as~L/µ, defining e = C/(GM) and solving for r, we obtain
finally the equation for a conic section, which is Kepler’s
first law:

r =
L2/µ2

GM(1 + e cosϑ)
. (19)

Using (A3) we obtain angular momentum

L = µ
√

GMa(1 − e2) . (20)

To obtain the harmonic law we integrate the second
law in the form of (9) over one orbital period T ,

A = πab =
L

2µ
T . (21)

Squaring and solving for T , it follows

T
2 = 4π2 (abµ)2

L2 . (22)

Using (A1) and (20) for the angular momentum L, we
obtain Kepler’s harmonic law,

T
2 =

4π2

G(m1 + m2)
a3 . (23)

EXERCISE 1.1 The planet Neptune, the most distant
gas giant from the Sun, orbits with a semimajor axis
a = 30.066 AU and an eccentricity e = 0.01. Pluto, the
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next large world out from the Sun (though much smaller
than Neptune) orbits with a = 39.48 AU and e = 0.250.
(i) To correct number of significant figures given the
precision of the data in this exercise, how many years
does it take Neptune to orbit the Sun? (ii) How many
years does it take Pluto to orbit the Sun? (iii) Take the
ratio of the two orbital periods you calculated in parts
(i) and (ii). You will see that it is very close to the ratio
of two small integers; which integers are these? Thus
the two planets regularly come close to one another,
in the same part of their orbits, which allows them to
have a maximum gravitational influence on each other’s
orbits. This is an example of an orbital resonance (other
examples in the solar system can be found among the
moons of Jupiter, and between the moons and various
features of the rings of Saturn). (iv) What is the aphelion
distance of Neptune’s orbit? Express your answer in
AU. (v) What are the perihelion and aphelion distances
of Plutos orbit? Is Pluto always farther from the Sun
than Neptune?

EXERCISE 1.2 A satellite in geosynchronous orbit
(GEO) orbits the Earth once every day. A satellite in
geostationary orbit (GSO) is a satellite in a circular
GEO in the Earth’s equatorial plane. Therefore, from
the point of view of an observer on Earth’s surface, a
satellite in GSO seems always to hover in the same point
in the sky. For example, the satellites used for satellite
TV are in GSO so that satellite dishes can be stationary
and need not track their motion through the sky. Take
a look; you will notice all satellite dishes on people’s
houses point towards the Equator, that is South. How
far above Earth’s equator (i.e., above the Earth’s surface)
is a satellite in GSO? Express your answer in kilometers,
and in Earth radii.

EXERCISE 1.3 The space station Mir traveled 3.6
billion kilometers during its life. Its circular orbit was
200 km above the surface of the Earth. (i) How many
years was it in orbit? (ii) How many times did Mir circle
the Earth per day (i.e., 24 hours)? (iii) Can you put a
satellite into such an orbit that it circles the Earth 20
times per day?

The astronomical distances are so large that we specify
them in terms of the time it takes the light to travel a given
distance. For example, one light second = 3 × 108m =
300, 000 km, one light minute = 1.8 × 107 km, and one
light year

1 ly = 9.46 × 1015 m ≈ 1013 km. (24)

For specifying distances to the Sun and the Moon, we
usually use meters or kilometers, but we could spec-
ify them in terms of light. The Earth-Moon distance is
384,000 km, which is 1.28 ls. The Earth-Sun distance is
150, 000, 000 km; this is equal to 8.3 lm. Far out in the
solar system, Pluto is about 6 × 109 km from the Sun, or
6 × 10−4 ly. The nearest star to us, Proxima Centauri, is

about 4.2 ly away. Therefore, the nearest star is 10,000
times farther from us that the outer reach of the solar
system.

B. Stars and galaxies

On clear moonless nights, thousands of stars with
varying degrees of brightness can be seen, as well as
the long cloudy strip known as the Milky Way. Galileo
first observed with his telescope that the Milky Way is
comprised of countless numbers of individual stars. A
half century later Wright suggested that the Milky Way
was a flat disc of stars extending to great distances in a
plane, which we call the Galaxy [7].

Our Galaxy has a diameter of 100,000 ly and a thick-
ness of roughly 2,000 ly. It has a bulging central nucleus
and spiral arms. Our Sun, which seems to be just an-
other star, is located half way from the Galactic center
to the edge, some 26, 000 ly from the center. The Sun
orbits the Galactic center approximately once every 250
million years or so, so its speed is

v =
2π 26, 000 × 1013 km

2.5 × 108 yr 3.156 × 107 s/yr
= 200 km/s . (25)

The total mass of all the stars in the Galaxy can be esti-
mated using the orbital data of the Sun about the center
of the Galaxy. To do so, assume that most of the mass
is concentrated near the center of the Galaxy and that
the Sun and the solar system (of total mass m) move in
a circular orbit around the center of the Galaxy (of total
mass M),

GMm
r2 = m

v2

r
, (26)

where a = v2/r is the centripetal acceleration. All in all,

M =
r v2

G
≈ 2 × 1041 kg . (27)

Assuming all the stars in the Galaxy are similar to our
Sun (M� ≈ 2 × 1030 kg), we conclude that there are
roughly 1011 stars in the Galaxy.

In addition to stars both within and outside the Milky
Way, we can see with a telescope many faint cloudy
patches in the sky which were once all referred to as
nebulae (Latin for clouds). A few of these, such as those in
the constellations of Andromeda and Orion, can actually
be discerned with the naked eye on a clear night. In the
XVII and XVIII centuries, astronomers found that these
objects were getting in the way of the search for comets.
In 1781, in order to provide a convenient list of objects not
to look at while hunting for comets, Messier published
a celebrated catalogue [8]. Nowadays astronomers still
refer to the 103 objects in this catalog by their Messier
numbers, e.g., the Andromeda Nebula is M31.

Even in Messier’s time it was clear that these extended
objects are not all the same. Some are star clusters,
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groups of stars which are so numerous that they ap-
peared to be a cloud. Others are glowing clouds of gas
or dust and it is for these that we now mainly reserve
the word nebula. Most fascinating are those that belong
to a third category: they often have fairly regular ellip-
tical shapes and seem to be a great distance beyond the
Galaxy. Kant seems to have been the first to suggest that
these latter might be circular discs, but appear elliptical
because we see them at an angle, and are faint because
they are so distant [9]. At first it was not universally
accepted that these objects were extragalactic (i.e. out-
side our Galaxy). The very large telescopes constructed
in the XX century revealed that individual stars could
be resolved within these extragalactic objects and that
many contain spiral arms. Hubble did much of this ob-
servational work in the 1920’s using the 2.5 m telescope
on Mt. Wilson near Los Angeles, California. Hubble
demostrated that these objects were indeed extragalac-
tic because of their great distances [10]. The distance to
our nearest spiral galaxy, Andromeda, is over 2 million
ly, a distance 20 times greater than the diameter of our
Galaxy. It seemed logical that these nebulae must be
galaxies similar to ours. Today it is thought that there
are roughly 4×1010 galaxies in the observable universe –
that is, as many galaxies as there are stars in the Galaxy.

II. DISTANCE MEASUREMENTS

We have been talking about the vast distance of the
objects in the universe. We now turn to discuss different
methods to estimate these distances.

A. Stellar Parallax

One basic method to measure distances to nearby stars
employs simple geometry and stellar parallax. Parallax
is the apparent displacement of an object because of a
change in the observer’s point of view. One way to see
how this effect works is to hold your hand out in front
of you and look at it with your left eye closed, then
your right eye closed. Your hand will appear to move
against the background. By stellar parallax we mean
the apparent motion of a star against the background
of more distant stars, due to Earth’s motion around the
Sun; see Fig. 2. The sighting angle of a star relative
to the plane of Earth’s orbit (usually indicated by θ)
can be determined at two different times of the year
separated by six months. Since we know the distance d
from the Earth to the Sun, we can determine the distance
D to the star. For example, if the angle θ of a given
star is measured to be 89.99994◦, the parallax angle is
p ≡ φ = 0.00006◦. From trigonometry, tanφ = d/D, and
since the distance to the Sun is d = 1.5 × 108 km the
distance to the star is

D =
d

tanφ
≈

d
φ

=
1.5 × 108 km

1 × 10−6 = 1.5 × 1014 km , (28)

FIG. 2: The parallax method of measuring a star’s distance.

or about 15 ly.
Distances to stars are often specified in terms of paral-

lax angles given in seconds of arc: 1 second (1”) is 1/60
of a minute (1’) of arc, which is 1/60 of a degree, so 1”
= 1/3600 of a degree. The distance is then specified in
parsecs (meaning parallax angle in seconds of arc), where
the parsec is defined as 1/φ with φ in seconds. For ex-
ample, if φ = 6 × 10−5 ◦, we would say the the star is at a
distance D = 4.5 pc.

The angular resolution of the Hubble Space Telescope
(HST) is about 1/20 arcs. With HST one can measure
parallaxes of about 2 milli arc seconds (e.g., 1223
Sgr). This corresponds to a distance of about 500 pc.
Besides, there are stars with radio emission for which
observations from the Very Long Baseline Array (VLBA)
allow accurate parallax measurements beyond 500 pc.
For example, parallax measurements of Sco X-1 are
0.36±0.04 milli arc seconds which puts it at a distance of
2.8 kpc. Parallax can be used to determine the distance
to stars as far away as about 3 kpc from Earth. Beyond
that distance, parallax angles are two small to measure
and more subtle techniques must be employed.

EXERCISE 2.1 One of the first people to make a very
accurate measurement of the circumference of the Earth
was Eratosthenes, a Greek philosopher who lived in
Alexandria around 250 B.C. He was told that on a cer-
tain day during the summer (June 21) in a town called
Syene, which was 4900 stadia (1 stadia = 0.16 kilometers)
to the south of Alexandria, the sunlight shown directly
down the well shafts so that you could see all the way to
the bottom. Eratosthenes knew that the sun was never
quite high enough in the sky to see the bottom of wells
in Alexandria and he was able to calculate that in fact
it was about 7 degrees too low. Knowing that the sun
was 7 degrees lower at its highpoint in Alexandria than
in Syene and assuming that the sun’s rays were paral-
lel when they hit the Earth, Eratosthenes was able to
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Figure 1.3: Left: A detector with surface element dA on Earth measuring radiation coming
from a direction with zenith angle ϑ. Right: An imaginary detector on the surface
of a star measuring radiation emitted in the direction ϑ.

The Kirchhoff-Planck distribution contains as its two limiting cases Wien’s law for high-
frequencies, hν ≫ kT , and the Rayleigh-Jeans law for low-frequencies hν ≪ kT . In the
former limit, x = hν/(kT ) ≫ 1, and we can neglect the −1 in the denominator of the Planck
function,

Bν ≈ 2hν3

c2
exp(−hν/kT ) . (1.10)

Thus the number of photons with energy hν much larger than kT is exponentially suppressed.
In the opposite limit, x = hν/(kT ) ≪ 1, and ex − 1 = (1 + x − . . .) − 1 ≈ x. Hence Planck’s
constant h disappears from the expression for Bν , if the energy hν of a single photon is small
compared to the thermal energy kT and one obtains,

Bν ≈ 2ν2kT

c2
. (1.11)

The Rayleigh-Jeans law shows up as straight lines left from the maxima of Bν in Fig. 1.4.

1.3.2 Wien’s displacement law

We note from Fig. 1.4 two important properties of Bν : Firstly, Bν as function of the frequency
ν has a single maximum. Secondly, Bν as function of the temperature T is a monotonically
increasing function for all frequencies: If T1 > T2, then Bν(T1) > Bν(T2) for all ν. Both
properties follow directly from taking the derivative with respect to ν and T . In the former
case, we look for the maximum of f(ν) = c2

2hBν as function of ν. Hence we have to find the
zeros of f ′(ν),

3(ex − 1) − x expx = 0 with x =
hν

kT
. (1.12)

The equation ex(3 − x) = 3 has to be solved numerically and has the solution x ≈ 2.821.
Thus the intensity of thermal radiation is maximal for xmax ≈ 2.821 = hνmax/(kT ) or

cT

νmax
≈ 0.50K cm or

νmax

T
≈ 5.9 × 1010Hz/K . (1.13)

14
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✓

FIG. 3: Left. A detector with surface element dA on Earth
measuring radiation coming from a direction with zenith angle
ϑ (left). Right. An imaginary detector of area dA on the surface
of a star measuring radiation emitted in the direction θ [16].

calculate the circumference of the Earth using a simple
proportion: C/4900 stadia = 360 degrees/ 7 degrees. This
gives an answer of 252,000 stadia or 40,320 km, which
is very close to today’s measurements of 40,030 km. As-
sume the Earth is flat and determine the parallax angle
that can explain this phenomenon. Are the results con-
sistent with the hypothesis that the Earth is flat?

B. Stellar luminosity

In 1900, Planck found empirically the distribution

Bν dν =
2hν3

c2

[
exp

(
hν
kT

)
− 1

]−1

dν (29)

describing the amount of energy emitted into the fre-
quency interval [ν, ν+dν] and the solid angle dΩ per unit
time and area by a body in thermal equilibrium [11]. The
intrinsic (or surface) brightness Bν depends only on the
temperature T of the blackbody (apart from the natural
constants k, c and h). The dimension of Bν in the cgs
system of units is

[Bν] =
erg

Hz cm2 s sr
. (30)

In general the amount of energy per frequency interval
[ν, ν+ dν] and solid angle dΩ crossing the perpendicular
area A⊥ per time is called the specific (or differential)
intensity [12]

Iν =
dE

dνdΩdA⊥dt
; (31)

see Fig. 3. For the special case of the blackbody radiation,
the specific intensity at the emission surface is given by
the Planck distribution, Iν = Bν. Stars are fairly good
approximations of blackbodies.

Integrating (29) over all frequencies and possible solid
angles gives the emitted flux F per surface area A. The an-
gular integral consists of the solid angle dΩ = sinθdθdφ
and the factor cosθ taking into account that only the
perpendicular area A⊥ = A cosθ is visible [13]. The flux

emitted by a star is found to be

F = π

∫
∞

0
dνBν =

2π
c2h3 (kT)4

∫
∞

0

x3 dx
ex − 1

= σT4, (32)

where x = hν/(kT),

σ =
2π5k4

15c2h3 = 5.670 × 10−5 erg
cm2 K4 s

(33)

is the Stefan-Boltzmann constant [14, 15], and where we
used

∫
∞

0 x3 [ex
− 1]−1dx = π4/15.

A useful parameter for a star or galaxy is its luminosity.
The total luminosity L of a star is given by the product
of its surface area and the radiation emitted per area

L = 4πR2σT4 . (34)

Careful analyses of nearby stars have shown that the
absolute luminosity for most of the stars depends on the
mass: the more massive the star, the greater the luminosity.

Consider a thick spherical source of radius R, with
constant intensity along the surface, say a star. An ob-
server at a distance r sees the spherical source as a disk
of angular radius ϑc = R/r. Note that since the source is
optically thick the observer only sees the surface of the
sphere. Because the intensity is constant over the surface
there is a symmetry along the ϕ direction such that the
solid solid angle is given by dΩ = 2π sinϑdϑ. By looking
at Fig. 3 it is straightforward to see that the flux observed
at r is given by

F(r) =

∫
I cosϑdΩ = 2πI

∫ ϑc

0
sinϑ cosϑdϑ

= πI cos2 ϑ
∣∣∣0
ϑc

= πI sin2 ϑc = πI(R/r)2 . (35)

At the surface of the star R = r and we recover (32). Very
far away, r � R, and (35) yields F = πϑ2

c I = IΩsource;
see Appendix B. The validity of the inverse-square law
F ∝ 1/r2 at a distance r > R outside of the star relies
on the assumptions that no radiation is absorbed and
that relativistic effects can be neglected. The later con-
dition requires in particular that the relative velocity of
observer and source is small compared to the speed of
light. All in all, the total (integrated) flux at the surface
of the Earth from a given astronomical object with total
luminosity L is found to be

Fobserved @ Earth = F =
L

4πd2
L

, (36)

where dL is the distance to the object.
Another important parameter of a star is its surface

temperature, which can be determined from the spec-
trum of electromagnetic frequencies it emits. The wave-
length at the peak of the spectrum, λmax, is related to the
temperature by Wien’s displacement law [17]

λmaxT = 2.9 × 10−3 m K . (37)
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We can now use Wien’s law and the Steffan-Boltzmann
equation (power output or luminosity ∝ AT4) to deter-
mine the temperature and the relative size of a star. Sup-
pose that the distance from Earth to two nearby stars
can be reasonably estimated, and that their apparent lu-
minosities suggest the two stars have about the same
absolute luminosity, L. The spectrum of one of the stars
peaks at about 700 nm (so it is reddish). The spectrum of
the other peaks at about 350 nm (bluish). Using Wien’s
law, the temperature of the reddish star is Tr ' 4140 K.
The temperature of the bluish star will be double because
its peak wavelength is half, Tb ' 8280 K. The power ra-
diated per unit of area from a star is proportional to the
fourth power of the Kelvin temperature (34). Now the
temperature of the bluish star is double that of the redish
star, so the bluish must radiate 16 times as much energy
per unit area. But we are given that they have the same
luminosity, so the surface area of the blue star must be
1/16 that of the red one. Since the surface area is 4πR2,
we conclude that the radius of the redish star is 4 times
larger than the radius of the bluish star (and its volume
64 times larger) [18].

An important astronomical discovery, made around
1900, was that for most of the stars, the color is related
to the absolute luminosity and therefore to the mass.
A useful way to present this relationship is by the so-
called Hertzsprung-Russell (HR) diagram [19]. On the
HR diagram, the horizontal axis shows the temperature
T, whereas the vertical axis the luminosity L, each star is
represented by a point on the diagram shown in Fig. 4.
Most of the stars fall along the diagonal band termed the
main sequence. Starting at the lowest right, we find the
coolest stars, redish in color; they are the least luminous
and therefore low in mass. Further up towards the left
we find hotter and more luminous stars that are whitish
like our Sun. Still farther up we find more massive and
more luminous stars, bluish in color. There are also stars
that fall outside the main sequence. Above and to the
right we find extremely large stars, with high luminosity
but with low (redish) color temperature: these are called
red giants. At the lower left, there are a few stars of low
luminosity but with high temperature: these are white
dwarfs.

Suppose that a detailed study of a certain star suggests
that it most likely fits on the main sequence of the HR
diagram. The observed flux is F = 1× 10−12 W m−2, and
the peak wavelength of its spectrum is λmax ≈ 600 nm.
We can first find the temperature using Wien’s law
and then estimate the absolute luminosity using the
HR diagram; namely, T ≈ 4800 K. A star on the main
sequence of the HR diagram at this temperature has
absolute luminosity of about L ≈ 1026 W. Then, using
(36) we can estimate its distance from us, dL = 3× 1018 m
or equivalently 300 ly.

EXERCISE 2.2 About 1350 J of energy strikes the
atmosphere of the Earth from the Sun per second
per square meter of area at right angle to the Sun’s

rays. What is (i) the observed flux from the Sun F�
and (ii) its absolute luminosity L�. (iii) What is the
average Solar flux density measured at Mars? (iv) If the
approximate efficiency of the solar panels (with area of
1.3 m2) on the Martian rover Spirit is 20%, then how
many Watts could the fully illuminated panels generate?

EXERCISE 2.3 Suppose the MESSENGER spacecraft,
while orbiting Mercury, decided to communicate with
the Cassini probe, now exploring Saturn and its moons.
When Mercury is closest to Saturn in their orbits, it
takes 76.3 minutes for the radio signals from Mercury
to reach Saturn. A little more than half a mercurian
year later, when the 2 planets are furthest apart in their
orbits, it takes 82.7 minutes. (i) What is the distance
between Mercury and the Sun? Give answers in both
light-minutes and astronomical units. Assume that the
planets have circular orbits. (ii) What is the distance
between Saturn and the Sun?

EXERCISE 2.4 The photometric method to search for
extrasolar planets is based on the detection of stellar
brightness variations, which result from the transit of a
planet across a star’s disk. If a planet passes in front of
a star, the star will be partially eclipsed and its light will
be dimmed. Determine the reduction in the apparent
surface brightness I when Jupiter passes in front of the
Sun.

EXERCISE 2.5 The angular resolution of a telescope
(or other optical system) is a measure of the smallest
details which can be seen. Because of the distorting
effects of earth’s atmosphere, the best angular resolution
which can be achieved by optical telescopes from earth’s
surface is normally about 1 arcs. This is why much
clearer images can be obtained from space. The angular
resolution of the HST is about 0.05 arcs, and the smallest
angle that can be measured accurately with HST is
actually a fraction of one resolution element. (i) Cepheid
variable stars are very important distance indicators
because they have large and well-known luminosities.
What is the distance of a Cepheid variable star whose
parallax angle is measured to be 0.005 ± 0.001 arcs?
(ii) The faintest stars that can be detected with the HST
have apparent brightnesses which are 4 × 1021 times
fainter than the Sun. How far away could a star like
the Sun be, and still be detected with the HST? Express
your answer in light years. (iii) How far away could a
Cepheid variable with 20,000 times the luminosity of
the Sun be, and still be detected with the HST? Express
your answer in light years.

EXERCISE 2.6 The discovery of the dwarf planet
Eris in 2005 threw the astronomical community into a
tizzy and made international headlines; it is slightly
larger than Pluto and brought up interesting questions
about what the definition of a planet is. Eventually,
this resulted in the controversial demotion of Pluto
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AST 250 Spring 2010 
HOMEWORK #5 

Due Friday March 26 
 

 
(1) Develop you own mnemonic for the modern stellar spectral sequence:     

O B A F G K M L T Y.  Be creative!  I’ll read a few in class. 
 

(2)  Look up the spectral types of the following stars (the primary stars if it is a 
binary) and order them by (a) effective temperature and (b) luminosity:  
Sun, Sirius, Betlegeuse, Aldebaran, and Barnard’s Star.  (N.B.  don’t just 
look up Teff and L.  Understand the ordering based on spectral type.  
There could be a similar question on the exam). 
 

(3)  Estimate the mass of main sequence stars with twice the luminosity of the 
Sun and with half the luminosity of the Sun.  What is the dominant 
nucleosynthesis process in the cores of these stars? 

 
(4)  Calculate the Schwarzchild radius for a star the mass of the Sun. 

 
(5)  (a) The Hertzsprung-Russell diagram is usually plotted in logarithmic 

coordinates (log L vs. log Teff with temperature increasing to the left).  
Mathematically derive the slope of a line of constant radius in the 
logarithmic H-R diagram.  (b) Order the stars in problem 2 by stellar radii. 

 
 

 
FIG. 4: HR diagram. The vertical axis depicts the inherent brightness of a star, and the horizontal axis the surface temperature
increasing from right to left [20].

from the 9th planet of the Solar System to just one of a
number of dwarf planets. Throughout, assume that Eris
is spherical and is observed at opposition (i.e., the Earth
lies on the straight line connecting the Sun and Eris).
(i) In five hours, Eris is observed to move 7.5 arcseconds
relative to the background stars as seen from Earth.
Because Eris is much further from the Sun than is the
Earth, it is moving quite a bit slower around the Sun
than the Earth, so this apparent motion on the sky is
essentially entirely parallax due to the Earth’s motion.
Calculate the speed with which the Earth goes around
the Sun, in kilometers/second. Use this information and
the small-angle formula to calculate the distance from
the Earth to Eris. Express your result in AU. Compare
with the semi-major axis of Pluto’s orbit (which you will
need to look up). (ii) Eris shines in two ways: from its
reflected light from the Sun (which will be mostly visible
light), and from its blackbody radiation from absorbed
sunlight (which will mostly come out as infrared light).
The albedo of Eris (i.e., the fraction of the sunlight
incident on Eris that is reflected) is very high, about
85%. This suggests that Eris is covered by a layer of
shiny ice; spectroscopy tells us that the ice is composed
of frozen methane, CH4. Derive an expression for
the brightness of Eris which depends on its distance
from the Sun d, and its radius r. First, calculate the

amount of sunlight reflected by Eris per unit time (i.e.,
its luminosity in reflected light); express your answer
in terms of d, r, the albedo a, and the luminosity of
the Sun L�. (iii) We detect only a tiny fraction of this
light reflected by Eris. Calculate the brightness, via the
inverse square law, of Eris as perceived here on Earth.
(iv) The measured brightness of Eris is 2.4 × 10−16 Joules
meters−2 second−1. Use this information to determine
the radius r of Eris. This is what led to the controversy
of what a planet is: if Pluto is considered a planet, then
certainly Eris should be as well. We further elaborate
about this controversy in the solution of the exercise.
(v) Calculate the angular size of Eris (i.e., the angle the
diameter of Eris makes on the sky). Compare this to
the resolution of the HST; will you be able to resolve
Eris (i.e., will it look like a point of light or a finite-size
object in a telescope)? (vi) You go ahead and observe
Eris with Hubble, and find that it has a moon orbiting it.
Observations with Hubble show that this moon (called
Dysnomia) makes an almost circular orbit around Eris
with a period of 15.8 Earth days. The semi-major axis
of the orbit subtends an angle of 0.53′′ as seen from
Earth. Calculate the semi-major axis in kilometers, and
calculate the mass of Eris in kilograms. Compare with
the mass of Pluto (1.3 × 1022 kg). Is Eris more massive?



8

EXERCISE 2.7 A perfect blackbody at temperature T
has the shape of an oblate ellipsoid, its surface being
given by the equation

x2

a2 +
y2

a2 +
z2

b2 = 1 , (38)

with a > b. (i) Is the luminosity of the blackbody
isotropic? Why? (ii) Consider an observer at a distance
dL from the blackbody, with dL � a. What is the direc-
tion of the observer for which the maximum amount of
flux will be observed (keeping the distance dL fixed)?
Calculate what this maximum flux is. (iii) Repeat the
same exercise for the direction for which the minimum
flux will be observed, for fixed dL. (iv) If the two
observers who see the maximum and minimum flux
from distance dL can resolve the blackbody, what is
the apparent brightness, I, that each one will measure?
(v) Write down an expression for the total luminosity
emitted by the black body as a function of a, b and
T. (vi) Now, consider a galaxy with a perfectly oblate
shape, which contains only a large number N of stars,
and no gas or dust. To make it simple, assume that all
stars have radius R and surface temperature T. Answer
again the questions (i-v) for the galaxy, assuming
NR2

� ab. Are there any differences from the case of a
blackbody? Explain why. (vii) Imagine that there were
a very compact galaxy that did not obey the condition
NR2

� ab. Would the answer to the previous question
be modified? Do you think such a galaxy could be stable?

EXERCISE 2.8 The HR diagram is usually plotted in
logarithmic coordinates (log L vs. log T, with the tem-
perature increasing to the left). Derive the slope of a line
of constant radius in the logarithmic HR diagram.

III. DOPPLER EFFECT

There is observational evidence that stars move at
speeds ranging up to a few hundred kilometers per
second, so in a year a fast moving star might travel
∼ 1010 km. This is 103 times less than the distance to the
closest star, so their apparent position in the sky changes
very slowly. For example, the relatively fast moving
star known as Barnard’s star is at a distance of about
56 × 1012 km; it moves across the line of sight at about
89 km/s, and in consequence its apparent position shifts
(so-called “proper motion”) in one year by an angle of
0.0029 degrees. The HST has measured proper motions
as low as about 1 milli arc second per year. In the radio
(VLBA), relative motions can be measured to an accu-
racy of about 0.2 milli arc second per year. The apparent
position in the sky of the more distant stars changes so
slowly that their proper motion cannot be detected with
even the most patient observation. However, the rate
of approach or recession of a luminous body in the line
of sight can be measured much more accurately than its
motion at right angles to the line of sight. The technique

makes use of a familiar property of any sort of wave
motion, known as Doppler effect [21].

When we observe a sound or light wave from a source
at rest, the time between the arrival wave crests at our
instruments is the same as the time between crests as they
leave the source. However, if the source is moving away
from us, the time between arrivals of successive wave
crests is increased over the time between their departures
from the source, because each crest has a little farther to
go on its journey to us than the crest before. The time
between crests is just the wavelength divided by the
speed of the wave, so a wave sent out by a source moving
away from us will appear to have a longer wavelength
than if the source were at rest. Likewise, if the source is
moving toward us, the time between arrivals of the wave
crests is decreased because each successive crest has a
shorter distance to go, and the waves appear to have a
shorter wavelength. A nice analogy was put forward
by Weinberg [22]. He compared the situation with a
travelling man that has to send a letter home regularly
once a week during his travels: while he is travelling
away from home, each successive letter will have a little
farther to go than the one before, so his letters will arrive
a little more than a week apart; on the homeward leg
of his journey, each succesive letter will have a shorter
distance to travel, so they will arrive more frequently
than once a week.

The Doppler effect began to be of enormous impor-
tance to astronomy in 1968, when it was applied to the
study of individual spectral lines. In 1815, Fraunhofer
first realized that when light from the Sun is allowed to
pass through a slit and then through a glass prism, the
resulting spectrum of colors is crossed with hundreds of
dark lines, each one an image of the slit [23]. The dark
lines were always found at the same colors, each corre-
sponding to a definite wavelength of light. The same
dark spectral lines were also found in the same posi-
tion in the spectrum of the Moon and brighter stars. It
was soon realized that these dark lines are produced by
the selective absorption of light of certain definite wave-
lengths, as light passes from the hot surface of a star
through its cooler outer atmosphere. Each line is due to
absorption of light by a specific chemical element, so it
became possible to determine that the elements on the
Sun, such as sodium, iron, magnesium, calcium, and
chromium, are the same as those found on Earth.

In 1868, Sir Huggins was able to show that the dark
lines in the spectra of some of the brighter stars are
shifted slightly to the red or the blue from their normal
position in the spectrum of the Sun [24]. He correctly
interpreted this as a Doppler shift, due to the motion of
the star away from or toward the Earth. For example, the
wavelength of every dark line in the spectrum of the star
Capella is longer than the wavelength of the correspond-
ing dark line in the spectrum of the Sun by 0.01%, this
shift to the red indicates that Capella is receding from
us at 0.01% c (i.e., the radial velocity of Capella is about
30 km/s).
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FIG. 5: A source of light waves moving to the right, relative
to observers in the S frame, with velocity v. The frequency is
higher for observers on the right, and lower for observers on
the left [25].

Consider two inertial frames, S and S′, moving with
relative velocity v as shown in Fig. 5. Assume a light
source (e.g. a star) at rest in S′ emits light of frequency
ν0 at an angle θ0 with respect to the observer O′. Let

pµ =

(
hν
c
,−

hν
c

cosθ,−
hν
c

sinθ, 0
)

(39)

be the momentum 4-vector for the photon as seen in S
and

pµ0 =

(
hν0

c
,−

hν0

c
cosθ0,−

hν0

c
sinθ0, 0

)
(40)

in S′. To get the 4-momentum relation from S′ → S,
apply the inverse Lorentz transformation [26]

hν
c

= γ

[
hν0

c
+ β

(
−

hν0

c
cosθ0

)]
−

hν
c

cosθ = γ

(
−

hν0

c
cosθ0 + β

hν0

c

)
hν
c

sinθ =
hν0

c
sinθ0 . (41)

The first expression gives

ν = ν0γ(1 − β cosθ0) , (42)

which is the relativistic Doppler formula.
For observational astronomy (42) is not useful because

both ν0 and θ0 refer to the star’s frame, not that of the ob-
server. Apply instead the direct Lorentz transformation
S→ S′ to the photon energy to obtain

ν0 = γν(1 + β cosθ) . (43)

This equation gives ν0 in terms of quantities measured
by the observer. It is sometimes written in terms of
wavelengths: λ = λ0γ(1 + β cosθ). (For details see
e.g. [27].)

EXERCISE 3.1 Consider the inertial frames S and S′
shown in Fig. 5. Use the inverse Lorentz transformation
to show that the relation between angles is given by

cosθ =
β − cosθ0

β cosθ0 − 1
. (44)

There are three special cases: (i) θ0 = 0, which gives

ν = ν0
√

(1 − β)/(1 + β) . (45)

In the non-relativistic limit we have ν = ν0(1 − β). This
corresponds to a source moving away from the observer.
Note that θ = 0. (ii) θ0 = π, which gives

ν = ν0
√

(1 + β)/(1 − β) . (46)

Here the source is moving towards the observer. Note
that θ = π. (iii) θ0 = π/2, which gives

ν = ν0γ . (47)

This last is the transverse Doppler effect – a second
order relativistic effect. It can be thought of as arising
from the dilation of time in the moving frame.

EXERCISE 3.2 Suppose light is emitted isotropically
in a star’s rest frame S′, i.e. dN/dΩ0 = κ, where dN is
the number of photons in the solid angle dΩ0 and κ is a
constant. What is the angular distribution in the inertial
frame S?

EXERCISE 3.3 Show that for v � c, the Doppler shift
in wavelength is

λ′ − λ
λ

≈
v
c
. (48)

To avoid confusion, it should be kept in mind that λ
denotes the wavelength of the light if observed near
the place and time of emission, and thus presumably
take the values measured when the same atomic tran-
sition occurs in terrestrial laboratories, while λ′ is the
wavelength of the light observed after its long journey
to us. If λ′ − λ > 0 then λ′ > λ and we speak of a red-
shift; ifλ′−λ < 0 thenλ′ < λ, and we speak of a blueshift.

EXERCISE 3.4 Through some coincidence, the Balmer
lines from single ionized helium in a distant star happen
to overlap with the Balmer lines from hydrogen in the
Sun. How fast is that star receding from us? [Hint:
the wavelengths from single-electron energy level
transitions are inversely proportional to the square of
the atomic number of the nucleus.]

EXERCISE 3.5 Stellar aberration is the apparent
motion of a star due to rotation of the Earth about the
Sun. Consider an incoming photon from a star with
4-momentum pµ. Let S be the Sun’s frame and S′ the
Earth frame moving with velocity v as shown in Fig. 6.
Define the angle of aberration α by θ′ = θ − α and show
that α ≈ β sinθ.

EXERCISE 3.6 HD 209458 is a star in the constellation
Pegasus very similar to our Sun (M = 1.1M� and R =
1.1R�), located at a distance of about 150 ly. In 1999, two
teams working independently discovered an extrasolar
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FIG. 6: Schematic representation of stellar aberration [25].

planet orbiting the star using the so-called radial velocity
planet search method [28, 29]. Note that a star with a
planet must move in its own small orbit in response to
the planet’s gravity. This leads to variations in the speed
with which the star moves toward or away from Earth,
i.e. the variations are in the radial velocity of the star with
respect to Earth. The radial velocity can be deduced from
the displacement in the parent star’s spectral lines due to
the Doppler shift. If a planet orbits the star, one should
have a periodic change in that rate, except for the extreme
case in which the plane of the orbit is perpendicular to
our line of sight. Herein we assume that the motions
of the Earth relative to the Sun have already been taken
into account, as well as any long-term steady change of
distance between the star and the sun, which appears as
a median line for the periodic variation in radial velocity
due to the star’s wobble caused by the orbiting planet.
The observed Doppler shift velocity of HD 209458 is
found to be K = V sin i = 82.7 ± 1.3 m/s, where i =
87.1◦ ± 0.2◦ is the inclination of the planet’s orbit to the
line perpendicular to the line-of-sight. [30]. Soon after
the discovery, separate teams were able to detect a transit
of the planet across the surface of the star making it the
first known transiting extrasolar planet [31, 32]. The
planet received the designation HD 209458b. Because
the planet transits the star, the star is dimmed by about
2% every 3.52447 ± 0.00029 days. Tests allowing for a
non-circular Keplerian orbit for HD 209458 resulted in
an eccentricity indistinguishable from zero: e = 0.016 ±
0.018. Consider the simplest case of a nearly circular
orbit and find: (i) the distance from the planet to the
star; (ii) the mass m of the planet; (iii) the radius r of the
planet.

IV. STELLAR EVOLUTION

The stars appear unchanging. Night after night the
heavens reveal no significant variations. Indeed, on hu-
man time scales, the vast majority of stars change very
little. Consequently, we cannot follow any but the tini-
est part of the life cycle of any given star since they live
for ages vastly greater than ours. Nonetheless, herein
we will follow the process of stellar evolution from the
birth to the death of a star, as we have theoretically re-
constructed it.

A. Stellar nucleosynthesis

There is a general consensus that stars are born when
gaseous clouds (mostly hydrogen) contract due to the
pull of gravity. A huge gas cloud might fragment into
numerous contracting masses, each mass centered in an
area where the density is only slightly greater than at
nearby points. Once such globules formed, gravity would
cause each to contract in towards its center-of-mass. As
the particles of such protostar accelerate inward, their
kinetic energy increases. When the kinetic energy is
sufficiently high, the Coulomb repulsion between the
positive charges is not strong enough to keep hydrogen
nuclei appart, and nuclear fussion can take place. In
a star like our Sun, the “burning” of hydrogen occurs
when four protons fuse to form a helium nucleus, with
the release of γ rays, positrons and neutrinos.1

The energy output of our Sun is believed to be due
principally to the following sequence of fusion reactions:

1
1H +1

1H→
2
1H + 2 e+ + 2 νe (0.42 MeV) , (49)

1
1H +2

1H→
3
2He + γ (5.49 MeV) , (50)

and

3
2He +3

2He→4
2He +1

1H +1
1H (12.86 MeV) , (51)

where the energy released for each reaction (given in
parentheses) equals the difference in mass (times c2) be-
tween the initial and final states. Such a released energy
is carried off by the outgoing particles. The net effect
of this sequence, which is called the pp-cycle, is for four
protons to combine to form one 4

2He nucleus, plus two
positrons, two neutrinos, and two gamma rays:

4 1
1H→

4
2He + 2e+ + 2νe + 2γ . (52)

Note that it takes two of each of the first two reactions
to produce the two 3

2He for the third reaction. So the

1 The word “burn” is put in quotation marks because these high-
temperature fusion reactions occur via a nuclear process, and must
not be confused with ordinary burning in air, which is a chemical
reaction, occurring at the atomic level (and at a much lower temper-
ature).



11

total energy released for the net reaction is 24.7 MeV.
However, each of the two e+ quickly annihilates with
an electron to produce 2mec2 = 1.02 MeV; so the total
energy released is 26.7 MeV. The first reaction, the
formation of deuterium from two protons, has very low
probability, and the infrequency of that reaction serves
to limit the rate at which the Sun produces energy.
These reactions requiere a temperature of about 107 K,
corresponding to an average kinetic energy (kT) of 1 keV.

EXERCISE 4.1 Approximately 1038 neutrinos are
produced by the pp chain in the Sun every second.
Calculate the number of neutrinos from the Sun that are
passing through your brain every second.

In more massive stars, it is more likely that the energy
output comes principally from the carbon (or CNO) cy-
cle, which comprises the following sequence of reactions:

12
6C +1

1H→
13
7N + γ , (53)

13
7N→

13
6C + e+ + ν , (54)

13
6C +1

1H→
14
7N + γ , (55)

14
7N +1

1H→
15
8O + γ , (56)

15
8O→

15
7N + e+ + ν , (57)

15
7N +1

1H→
12
6C +4

2He . (58)

It is easily seen that no carbon is consumed in this cycle
(see first and last equations) and that the net effect is the
same as the pp cycle. The theory of the pp cycle and the
carbon cycle as the source of energy for the Sun and the
stars was first worked out by Bethe in 1939 [33].

The fusion reactions take place primarily in the core
of the star, where T is sufficiently high. (The surface
temperature is of course much lower, on the order of
a few thousand K.) The tremendous release of energy
in these fusion reactions produces an outward pressure
sufficient to halt the inward gravitational contraction;
and our protostar, now really a young star, stabilizes in
the main sequence.

To a good approximation the stellar structure on the
main sequence can be described by a spherically sym-
metric system in hydrostatic equilibrium. This requires
that rotation, convection, magnetic fields, and other ef-
fects that break rotational symmetry have only a minor
influence on the star. This assumption is in most cases
very well justified.

We denote by M(r) the mass enclosed inside a sphere
with radius r and density ρ(r)

M(r) = 4π
∫ r

0
dr′ r′2 ρ(r′) (59)

or

dM(r)
dr

= 4πr2ρ(r) . (60)

An important application of (60) is to express physical
quantities not as function of the radius r but of the en-
closed mass M(r). This facilitates the computation of the
stellar properties as function of time, because the mass
of a star remains nearly constant during its evolution,
while the stellar radius can change considerably.

A radial-symmetric mass distribution M(r) produces
according Gauss law the same gravitational acceleration,
as if it would be concentrated at the center r = 0. There-
fore the gravitational acceleration produced by M(r) is

g(r) = −
GM(r)

r2 . (61)

If the star is in equilibrium, this acceleration is balanced
by a pressure gradient from the center of the star to its
surface. Since pressure is defined as force per area, P =
F/A, a pressure change along the distance dr corresponds
to an increment

dF = dAP − (P + dP)dA
= − dAdP︸︷︷︸

force

= −ρ(r)dAdr︸    ︷︷    ︸
mass

a(r)︸︷︷︸
acceleration

(62)

of the force F produced by the pressure gradient dP. For
increasing r, the gradient dP < 0 and the resulting force
dF is positive and therefore directed outward. Hydro-
static equilibrium, g(r) = −a(r), requires then

dP
dr

= ρ(r)g(r) = −
GM(r) ρ(r)

r2 . (63)

If the pressure gradient and gravity do not balance each
other, the layer at position r is accelerated,

a(r) =
GM(r)

r2 +
1
ρ(r)

dP
dr
. (64)

In general, we need an equation of state, P = P(ρ,T,Yi),
that connects the pressure P with the density ρ, the (not
yet) known temperature T and the chemical composition
Yi of the star. For an estimate of the central pressure Pc =
P(0) of a star in hydrostatic equilibrium, we integrate
(63) and obtain with P(R) ≈ 0,

Pc =

∫ R

0

dP
dr

dr = G
∫ M

0
dM

M
4πr4 , (65)

where we used the continuity equation (60) to substitute
dr = dM/(4πr2ρ) by dM. If we replace furthermore r by
the stellar radius R ≥ r, we obtain a lower limit for the
central pressure,

Pc = G
∫ M

0
dM

M
4πr4

> G
∫ M

0
dM

M
4πR4 =

M2

8πR4 . (66)
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Inserting values for the Sun, it follows

Pc >
M2

8πR4 = 4 × 108 bar
(

M
M�

)2 (R�
R

)4

. (67)

The value obtained integrating the hydrostatic equation
using the “solar standard model” is Pc = 2.48 × 1011 bar,
i.e. a factor 500 larger.

EXERCISE 4.2 Calculate the central pressure Pc of
a star in hydrostatic equilibrium as a function of its
mass M and radius R for (i) a constant mass density,
ρ(r) = ρ0 and (ii) a linearily decreasing mass density,
ρ(r) = ρc[1 − (r/R)].

Exactly where the star falls along the main sequence
depends on its mass. The more massive the star, the
further up (and to the left) it falls in the HR diagram.
To reach the main sequence requires perhaps 30 million
years and the star is expected to remain there 10 billion
years (1010 yr). Although most of stars are billions of
years old, there is evidence that stars are actually being
born at this moment in the Eagle Nebula.

As hydrogen fuses to form helium, the helium that is
formed is denser and tends to accumulate in the cen-
tral core where it was formed. As the core of helium
grows, hydrogen continues to fuse in a shell around it.
When much of the hydrogen within the core has been
consumed, the production of energy decreases at the
center and is no longer sufficient to prevent the huge
gravitational forces from once again causing the core to
contract and heat up. The hydrogen in the shell around
the core then fuses even more fiercely because of the rise
in temperature, causing the outer envelope of the star
to expand and to cool. The surface temperature thus re-
duced, produces a spectrum of light that peaks at longer
wavelength (reddish). By this time the star has left the
main sequence. It has become redder, and as it has grown
in size, it has become more luminous. Therefore, it will
have moved to the right and upward on the HR diagram.
As it moves upward, it enters the red giant stage. This
model then explains the origin of red giants as a natural
step in stellar evolution. Our Sun, for example, has been
on the main sequence for about four and a half billion
years. It will probably remain there another 4 or 5 billion
years. When our Sun leaves the main sequence, it is ex-
pected to grow in size (as it becomes a red giant) until it
occupies all the volume out to roughly the present orbit
of the planet Mercury.

If the star is like our Sun, or larger, further fusion
can occur. As the star’s outer envelope expands, its
core is shrinking and heating up. When the temperature
reaches about 108 K, even helium nuclei, in spite of their
greater charge and hence greater electrical repulsion, can
then reach each other and undergo fusion:

4
2He +4

2He→8
4 Be + γ (−91.8 keV) . (68)

Once beryllium-8 is produced a little faster than it decays
(half-life is 6.7×10−17 s), the number of beryllium-8 nuclei

in the stellar core increases to a large number. Then in its
core there will be many beryllium-8 nuclei that can fuse
with another helium nucleus to form carbon-12, which
is stable:

4
2He +8

4Be→12
6 C + γ (7.367 MeV) . (69)

The net energy release of the triple-α process is
7.273 MeV. Further fusion reactions are possible, with
4
2He fusing with 12

6C to form 16
8O. Stars spend approxi-

mately a few thousand to 1 billion years as a red giant.
Eventually, the helium in the core runs out and fusion
stops. Stars with 0.4M� < M < 4M� are fated to end
up as spheres of carbon and oxygen. Only stars with
M > 4M� become hot enough for fusion of carbon and
oxygen to occur and higher Z elements like 20

10Ne or 24
12Mg

can be made.
As massive (M > 8M�) red supergiants age, they pro-

duce “onion layers” of heavier and heavier elements in
their interiors. A star of this mass can contract under
gravity and heat up even further, (T = 5 × 109 K), pro-
ducing nuclei as heavy as 56

26Fe and 56
28Ni. However, the

average binding energy per nucleon begins to decrease
beyond the iron group of isotopes. Thus, the formation
of heavy nuclei from lighter ones by fusion ends at the
iron group. Further fusion would require energy, rather
than release it. As a consequence, a core of iron builds
up in the centers of massive supergiants.

A star’s lifetime as a giant or supergiant is shorter
than its main sequence lifetime (about 1/10 as long). As
the star’s core becomes hotter, and the fusion reactions
powering it become less efficient, each new fusion fuel
is used up in a shorter time. For example, the stages in
the life of a 25M� star are as follows:: hydrogen fusion
lasts 7 million years, hellium fusion lasts 500,000 years,
carbon fusion lasts 600 years, neon fusion lasts 1 year,
oxygen fusion lasts 6 months, and sillicon fusion lasts 1
day. The star core in now pure iron. The process of cre-
ating heavier nuclei from lighter ones, or by absorption
of neutrons at higher Z (more on this below) is called
nucleosynthesis.

B. White dwarfs and Chandrasekhar limit

At a distance of 2.6 pc Sirius is the fifth closest stellar
system to the Sun. It is the brightest star in the Earth’s
night sky. Analyzing the motions of Sirius from 1833
to 1844, Bessel concluded that it had an unseen com-
panion, with an orbital period T ∼ 50 yr [53]. In 1862,
Clark discovered this companion, Sirius B, at the time
of maximal separation of the two components of the
binary system (i.e. at apastron) [54]. Complementary
follow up observations showed that the mass of Sirius
B equals approximately that of the Sun, M ≈ M�. Sir-
ius B’s peculiar properties were not established until the
next apastron by Adams [55]. He noted that its high
temperature (T ' 25, 000 K) together with its small lu-
minosity (L = 3.84 × 1026 W) require an extremely small



13

radius and thus a large density. From Stefan-Boltzmann
law we have

R
R�

=

(
L

L�

)1/2 (
T
T�

)2

≈ 10−2 . (70)

Hence, the mean density of Sirius B is a factor 106 higher
than that of the Sun; more precisely, ρ = 2 × 106 g/cm3.

A lower limit for the central pressure of Sirius B fol-
lows from (67)

Pc >
M2

8πR4 = 4 × 1016 bar . (71)

Assuming the pressure is dominated by an ideal gas the
central temperature is found to be

Tc =
Pc

nk
∼ 102Tc,� ≈ 109 K . (72)

For such a high Tc, the temperature gradient dT/dr in
Sirius B would be a factor 104 larger than in the Sun. This
would in turn require a larger luminosity and a larger
energy production rate than that of main sequence stars.

Stars like Sirius B are called white dwarfs. They have
very long cooling times, because of their small surface lu-
minosity. This type of stars is rather numerous. The mass
density of main-sequence stars in the solar neighbor-
hood is 0.04M�/pc3 compared to 0.015M�/pc3 in white
dwarfs. The typical mass of white dwarfs lies in the
range 0.4 . M/M� . 1, peaking at 0.6M�. No further
fusion energy can be obtained inside a white dwarf. The
star loses internal energy by radiation, decreasing in tem-
perature and becoming dimmer until its light goes out.

For a classical gas, P = nkT, and thus in the limit of zero
temperature, the pressure inside a star also goes to zero.
How can a star be stabilized after the fusion processes
and thus energy production stopped? The solution to
this puzzle is that the main source of pressure in such
compact stars has a different origin.

According to Pauli’s exclusion principle no two
fermions can occupy the same quantum state [56]. In
statistical mechanics, Heisenberg’s uncertainty princi-
ple ∆x∆p ≥ } [57] together with Pauli’s principle imply
that each phase-space volume, }−1 dx dp, can only be oc-
cupied by one fermionic state.

A (relativistic or non-relativistic) particle in a box of
volume L3 collides per time interval ∆t = L/vx once with
the yz-side of the box, if the x component of its velocity
is vx. Thereby it exerts the force Fx = ∆px/∆t = pxvx/L.
The pressure produced by N particles is then P = F/A =
Npxvx/(LA) = npxvx. For an isotropic distribution, with
〈v2
〉 = 〈v2

x〉 + 〈v2
y〉 + 〈v2

z〉 = 3〈v2
x〉, we have

P = 1
3 nvp . (73)

Now, if we take ∆x = n−1/3 and ∆p ≈ }/∆x ≈ }n1/3,
combined with the non-relativistic expression v = p/m,
the pressure of a degenerate fermion gas is found to be

P ≈ nvp ≈
}2n5/3

m
. (74)

(74) implies P ∝ ρ5/3, where ρ is the density. For relativis-
tic particles, we can obtain an estimate for the pressure
inserting v = c,

P ≈ ncp ≈ c}n4/3 , (75)

which implies P ∝ ρ4/3. It may be worth noting at
this juncture that (i) both the non-relativistic and the
relativistic pressure laws are polytropic equations of
state, P = Kργ; (ii) a non-relativistic degenerate Fermi
gas has the same adiabatic index (γ = 5/3) as an
ideal gas, whereas a relativistic degenerate Fermi gas
has the same adiabatic index (γ = 4/3) as radiation;
(iii) in the non-relativistic limit the pressure is inversely
proportional to the fermion mass, P ∝ 1/m, and so
for non-relativistic systems the degeneracy will first
become important to electrons.

EXERCISE 4.3 Estimate the average energy of elec-
trons in Sirius B from the equation of state for non-
relativistic degenerate fermion gas,

P =
(3π2)2/3

5
}2

m
n5/3 , (76)

and calculate the Lorentz factor of the electrons. Give
a short qualitative statement about the validity of the
non-relativistic equation of state for white dwarfs with
a density of Sirius B and beyond.

Next, we compute the pressure of a degenerate non-
relativistic electron gas inside Sirius B and check if it is
consistent with the lower limit for the central pressure
derived in (71). The only bit of information needed is the
value of ne, which can be written in terms of the density
of the star, the atomic mass of the ions making up the
star, and the number of protons in the ions (assuming
the star is neutral):

ne =
ρ

µe mp
(77)

where µe ≡ A/Z is the average number of nucleon per
free electron. For metal-poor stars µe = 2, and so from
(74) we obtain

P ≈
h2n5/3

e

me

≈
(1.05 × 1027 erg s)2

9.11 × 10−28 g

(
106 g/cm3

2 × 1.67 × 10−24 g

)5/3

≈ 1023 dyn/cm2 . (78)

Since 106 dyn/cm2 = 1 bar, we have P = 1017 bar, which
is consistent with the lower limit derived in (71).

We can now relate the mass of the star to its radius
by combining the lower limit on the central pressure
Pc ∼ GM2/R4 and the polytropic equation of state P =
Kρ5/3

∼ K(M/R3)5/3 = KM5/3/R5. It follows that

GM2

R4 =
KM5/3

R5 , (79)
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or equivalently

R =
M(10−12)/6

K
=

1
KM1/3

. (80)

If the small differences in chemical composition can be
neglected, then there is unique relation between the mass
and the radius of white dwarfs. Since the star’s radius
decreases with increasing mass, there must be a maximal
mass allowed.

To derive this maximal mass we first assume the
pressure can be described by a non-relativistic degen-
erate Fermi gas. The total kinetic energy of the star is
Ukin = Np2/(2me), where n ∼ N/R3 and p ∼ }n1/3. Thus

Ukin ∼ N
}2n2/3

2me
∼
}2N(3+2)/3

2meR2 =
}2N5/3

2meR2 . (81)

For the potentail gravitational energy, we use the ap-
proximation Upot = αGM2/R, with α = 1. Hence

U(R) = Ukin + Upot ∼
}2N5/3

2meR2 −
GM2

R
. (82)

For small R, the positive term dominates and so there
exists a stable minimum Rmin for each M.

However, if the Fermi gas inside the star becomes rel-
ativistic, then Ukin = Ncp, or

Ukin ∼ Nc}n1/3
∼

c}N4/3

R
(83)

and

U(R) = Ukin + Upot ∼
c}N4/3

R
−

GM2

R
. (84)

Now both terms scale like 1/R. For a fixed chemical
composition, the ratio N/M remains constant. Therefore,
if M is increased the negative term increases faster than
the first one. This implies there exists a critical M so that
U becomes negative, and can be made arbitrary small by
decreasing the radius of the star: the star collapses. This
critical mass is called Chandrasekhar mass MCh. It can
be obtained by solving (84) for U = 0. Using M = NNmN

we have c}N4/3
max = GN2

maxm2
N, or, with mN ' mp,

Nmax ∼

 c}
Gm2

p

3/2

∼

(
MPl

mp

)3

∼ 2 × 1057 . (85)

This leads to

MCh = Nmaxmp ∼ 1.5M� . (86)

The Chandrasekhar mass derived “professionally” is
found to be MCh ' 1.46M� [35].

EXERCISE 4.4 Derive approximate Chandrasekhar
mass limits in units of solar mass by setting the central

pressures of exercise 4.1 equal to the relativistic degen-
erate electron pressure,

P =
(3π2)1/3}c

4
n4/3 . (87)

Compare the estimates with the exact limit.

The critical size can be determined by imposing two
conditions: that the gas becomes relativistic, Ukin .
Nmec2, and N = Nmax,

Nmaxmec2 &
c}N4/3

max

R
. (88)

This leads to

mec2 &
c}
R

(
c}

Gm2
N

)1/2

, (89)

or equivalently

R &
}

mec

(
c}

Gm2
N

)1/2

∼ 5 × 108 cm . (90)

which is in agreement with the radii found for white
dwarf stars.

C. Supernovae

Supernovae are massive explosions that take place at
the end of a star’s life cycle. They can be triggered by
one of two basic mechanisms: (I) the sudden re-ignition
of nuclear fusion in a degenerate star, or (II) the sudden
gravitational collapse of the massive star’s core.

In a type I supernova, a degenerate white dwarf ac-
cumulates sufficient material from a binary companion,
either through accretion or via a merger. This material
raise its core temperature to then trigger runaway
nuclear fusion, completely disrupting the star. Since the
white dwarf stars explode crossing the Chandrasekhar
limit, M > M�, the release total energy should not vary
so much. Thus one may wonder if they are possible
standard candles.

EXERCISE 4.5 Type Ia supernovae have been ob-
served in some distant galaxies. They have well-known
luminosities and at their peak LIa ≈ 1010L�. Hence,
we can use them as standard candles to measure the
distances to very remote galaxies. How far away could
a type Ia supernova be, and still be detected with HST?

In type II supernovae the core of a M & 8M� star
undergoes sudden gravitational collapse. These stars
have an onion-like structure with a degenerate iron core.
When the core is completely fused to iron, no further
processes releasing energy are possible. Instead, high
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10 Point explosion

The sudden release of a large amount of energy E into a background fluid of density
⇢1 creates a strong explosion, characterized by a strong shock wave (a ‘blast wave’)
emanating from the point where the energy was released. Such explosions occur for
example in astrophysics in the form of supernova explosions.

But how fast will the shock wave travel and what is left behind? The problem of
the point explosion is also known as Sedov-Taylor explosion, after the two scientists
that first solved it by analytic (and in part numerical) means in the context of
atomic bomb explosions. Today, the problem can provide a useful test to validate
a hydrodynamical numerical scheme, because an analytic solution for it can be
computed which can then be compared to numerical results. Also, the problem
serves as a good example to demonstrate the power of dimensional analysis and
scale-free solutions.

10.1 A rough estimate

Let’s begin by deriving an order of magnitude estimate for the radius R(t) of the
shock as a function of time. The mass of the swept up material is of order M(t) ⇠
⇢1R

3(t). The fluid velocity behind the shock will be of order the mean radial velocity
of the shock, v(t) ⇠ R(t)/t. We further expect

Ekin ⇠ 1

2
Mv2 ⇠ ⇢1R

3R2

t2
= ⇢1

R5

t2
(10.1)

What about the thermal energy in the bubble created by the explosion? This
should be of order

Etherm ⇠ 3

2
PV (10.2)

1

10 Point explosion

where P is the postshock pressure. To find this pressure, we need to recall the jump
conditions across a shock. If the shock moves to the right with velocity v1 = v(t),
then in the rest-frame of the shock the background gas streams with velocity v1 to
the left, and comes out of the shock with a higher density ⇢2, higher pressure P2,
and with a lower velocity v2.

The Rankine-Hugonoit relations for the shock tell us

⇢1

⇢2

=
v2

v1

=
� � 1

� + 1
+

2

(� + 1)M2
(10.3)

where
M =

v1

c1

(10.4)

is the Mach number of the shock. For a strong explosion, the sound-speed of the
background medium is negligibly small, so that the Mach number will tend to infinity
in this limit. For the pressure, the Rankine-Hugonoit relation is

P2

P1

=
2�M2

� + 1
� � � 1

� + 1
(10.5)

As the background pressure is P1 = ⇢1c
2
1/�, we then obtain in the limit of a strong

shock:

P2 '
2⇢1v

2
1

� + 1
(10.6)

With this postshock pressure, we can now estimate the thermal energy in the shocked
bubble:

Etherm ⇠ P2R
3 ⇠ ⇢1v

2
1R

3 ⇠ ⇢1
R5

t2
(10.7)

This suggests that the thermal energy is of the same order as the kinetic energy,
and scales in the same fashion with time. Hence also for the total energy E, which
is a conserved quantity, we expect

E = Ekin + Etherm ⇠ ⇢1
R5

t2
(10.8)

Solving for the radius R(t), we get the expected dependence

R(t) /
✓

E t2

⇢1

◆ 1
5

(10.9)

2

u2 u1

FIG. 7: Left. The sudden release of a large amount of energy into a background fluid of density ρ1 creates a strong spherical shock
wave, emanating from the point where the energy was released. Right. Jump conditions across normal shock waves. If the shock
moves to the right with velocity ush, then in the rest-frame of the shock the background gas streams with velocity u1 = −ush to
the left, and comes out of the shock with a higher density ρ2, higher pressure P2, and with a lower velocity u2. Conservation of
momentum requires P1 + ρ1u2

1 = P2 + ρ2u2
2, see Appendix C. For the case at hand, P1 � P2 and so P2 ∼ ρ1u2

1.

energy collisions break apart iron into helium and even-
tually into protons and neutrons,

56
26Fe→ 13 4

2He + 4 n (91)

and

4
2He→ 2 p + 2 n . (92)

This removes the thermal energy necessary to provide
pressure support and the star collapses. When the star
begings to contract the density increases and the free
electrons are forced together with protons to form neu-
trons via inverse beta decay,

e− + p→ n + νe ; (93)

even though neutrinos do not interact easily with matter,
at these extremely high densities, they exert a tremen-
dous outward pressure. The outer layers fall inward
when the iron core collapses, forming an enormously
dense neutron star [36]. If M . MCh, then the core stops
collapsing because the neutrons start getting packed too
tightly. Note that MCh as derived in (86) is valid for both
neutrons and electrons, since the stellar mass is in both
cases given by the sum of the nucleon masses, only the
main source of pressure (electrons or neutrons) differs.
The critical size follows from (90) by substituting me with
mN,

R &
}

mNc

(
c}

Gm2
N

)1/2

∼ 3 × 105 cm . (94)

Since already Sirius B was difficult to detect, the ques-
tion arises if and how these extremely small stars can be
observed. When core density reaches nuclear density,
the equation of state stiffens suddenly and the infalling
material is “reflected.” Both the neutrino outburst and
the outer layers that crash into the core and rebound
cause the entire star outside the core to be blown apart.

The released energy goes mainly into neutrinos (99%),
kinetic energy (1%); only 0.01% into photons.

Much of the modeling of supernova explosions and
their remnants derives from the nuclear bomb research
program. Whenever a supernova goes off a large amount
of energy E is injected into the “ambient medium” of
uniform density ρ1. In the initial phase of the expansion
the impact of the external medium will be small, because
the mass of the ambient medium that is overrun and
taken along is still small compared with the ejecta mass.
The supernova remnant is said to expand adiabatically.
After some time a strong spherical shock front (a “blast
wave”) expands into the ambient medium, and the mass
swept up by the outwardly moving shock significantly
exceeds the mass of the initial ejecta, see Fig. 7. The
ram pressure, P2 ∼ ρ1u2

sh, of the matter that enters the
shock wave is much larger than the ambient pressure
P1 of the upstream medium, and any radiated energy is
much smaller than the explosion energy E. This regime,
during which the energy remains constant is known as
the Sedov–Taylor phase [37–39]. The mass of the swept
up material is of order M(t) ∼ ρ1r3(t), where r is the
radius of the shock. The fluid velocity behind the shock
will be of order the mean radial velocity of the shock,
ush(t) ∼ r(t)/t and so the kinetic energy is

Ekin =
1
2

Mu2
sh ∼ ρ1r3 r2

t2 = ρ1
r5

t2 . (95)

What about the thermal energy in the bubble created by
the explosion? This should be of order

Etherm =
3
2

P2V ∼ P2r3
∼ ρ1u2

shr3
∼ ρ1

r5

t2 . (96)

This suggests that the thermal energy is of the same order
as the kinetic energy, and scales in the same fashion with
time. Therefore

E = Ekin + Etherm ∼ ρ1
r5

t2 , (97)
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yielding

r(t) ∼
(

Et2

ρ1

)1/5

. (98)

The expanding shock wave slows as it expands

ush =
2
5

(
E
ρ1t3

)1/5

=
2
5

(
E
ρ1

)1/2

r−3/2 . (99)

This means that the blask wave decelerates and dis-
sapears after some time. The expanding supernova
remnant then passes from its Taylor-Sedov phase to its
“snowplow” phase. During the snowplow phase, the
matter of the ambient interstellar medium is swept up
by the expanding dense shell, just as snow is swept up
by a coasting snowplow.

EXERCISE 4.6 Estimate the energy of the first
detonation of a nuclear weapon (code name Trinity)
from the time dependence of the radius of its shock
wave. Photographs of the early stage of the explosion
are shown in Fig. 8. The device was placed on the top
of a tower, h = 30 m and the explosion took place at
about 1100 m above sea level. (i) Explain the origin
of the thin layer above the bright “fireball” that can
be seen in the last three pictures (t ≥ 0.053 s). Is the
shock front behind or ahead of this layer? Read the
radius of the shock front from the figures and plot it
as a function of time after the explosion. The time and
length scale are indicated in the lables of the figures.
(ii) Fit (by eye or numerical regression) a line to the
radius vs. time dependence of the shock front in a
log-log representation, ln(r) = a + b ln(t). Verifiy that b is
compatible with a Sedov-Taylor expansion. Then fix b
to the theoretical expectation, re-evaluate a and estimate
the energy of the bomb in tons of TNT equivalent. [Hint:
ignore the initial (short) phase of free expansion.]

If the final mass of a neutron star is less than MCh its
subsequent evolution is thought to be similar to that of
a white dwarf. In 1967, an unusual object emitting a
radio signal with period T = 1.377 s was detected at the
Mullard Radio Astronomy Observatory. By its very na-
ture the object was called “pulsar.” Only one year later,
Gold argued that pulsars are rotating neutron stars [41].
He predicted an increase on the pulsar period because
of electromagnetic energy losses. The slow-down of the
Crab pulsar was indeed discovered in 1969 [42].

If the mass of the neutron star is greater than MCh,
then the star collapses under gravity, overcoming even
the neutron exclusion principle [43]. The star eventually
collapses to the point of zero volume and infinite density,
creating what is known as a “singularity” [44–49]. As the
density increases, the paths of light rays emitted from
the star are bent and eventually wrapped irrevocably
around the star. Any emitted photon is trapped into
an orbit by the intense gravitational field; it will never

leave it. Because no light escapes after the star reaches
this infinite density, it is called a black hole.

V. WARPING SPACETIME

A hunter is tracking a bear. Starting at his camp, he
walks one mile due south. Then the bear changes direc-
tion and the hunter follows it due east. After one mile,
the hunter loses the bear’s track. He turns north and
walks for another mile, at which point he arrives back at
his camp. What was the color of the bear?

An odd question. Not only is the color of the bear
unrelated to the rest of the question, but how can the
hunter walk south, east and north, and then arrive back
at his camp? This certainly does not work everywhere
on Earth, but it does if you start at the North pole. There-
fore the color of the bear has to be white. A surprising
observation is that the triangle described by the hunter’s
path has two right angles in the two bottom corners, and
so the sum of all three angles is greater than 180◦. This
implies the metric space is curved.

What is meant by a curved space? Before answering
this question, we recall that our normal method of view-
ing the world is via Euclidean plane geometry, where
the line element of the n-dimensional space is given by

ds2 =

n∑
i=1

dx2
i . (100)

Non-Euclidean geometries which involve curved spaces
have been independently imagined by Gauss [50],
Bólyai [51], and Lobachevsky [52]. To understand the
idea of a metric space herein we will greatly simplify
the discussion by considering only 2-dimensional sur-
faces. For 2-dimensional metric spaces, the so-called first
and second fundamental forms of differential geometry
uniquely determine how to measure lengths, areas and
angles on a surface, and how to describe the shape of a
parameterized surface.

A. 2-dimensional metric spaces

The parameterization of a surface maps points (u, v)
in the domain to points ~σ(u, v) in space:

~σ(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 . (101)

Differential geometry is the local analysis of how small
changes in position (u, v) in the domain affect the position
on the surface ~σ(u, v), the first derivatives ~σu(u, v) and
~σv(u, v), and the surface normal n̂(u, v).

The first derivatives, ~σu(u, v) and ~σv(u, v), are vectors
that span the tangent plane to the surface at point ~σ(u, v).
The surface normal at point~σ is defined as the unit vector
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Figures also available at http://cosmo.nyu.edu/~mu495/HEA15/trinity/

2

FIG. 8: Trinity test of July 16, 1945.
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normal to the tangent plane at point ~σ and is computed
using the cross product of the partial derivatives of the
surface parameterization,

n̂(~σ) =
~σu × ~σv

||~σu × ~σv||
. (102)

The tangent vectors and the surface normal define an
orthogonal coordinate system at point ~σ(u, v) on the sur-
face, which is the framework for describing the local
shape of the surface.

Geometrically, d~σ is a differential vector quantity that
is tangent to the surface in the direction defined by du
and dv. The first fundamental form, I, which measures
the distance of neighboring points on the surface with
parameters (u, v) and (u+du, v+dv), is given by the inner
product of d~σ with itself

I ≡ ds2 = d~σ · d~σ = (~σudu + ~σvdv) · (~σudu + ~σvdv)
= (~σu · ~σu)du2 + 2(~σu · ~σv)dudv + (~σv · ~σv)dv2

= Edu2 + 2Fdudv + Gdv2 , (103)

where E, F and G are the first fundamental coefficients.
The coefficients have some remarkable properties. For
example, they can be used to calculate the surface area.
Namely, the area bounded by four vertices ~σ(u, v), ~σ(u +
δu, v), ~σ(u, v + δv), ~σ(u + δu, v + δv) can be expressed in
terms of the first fundamental form with the assistance
of Lagrange identity

n−1∑
i=1

n∑
j=i+1

(aib j − a jbi)2 =

 n∑
k=1

a2
k


 n∑

k=1

b2
k


−

 n∑
k=1

akbk


2

, (104)

which applies to any two sets {a1, a2, · · · , an} and
{b1, b2, · · · , bn} of real numbers. The classical area ele-
ment is found to be

δA = |~σu δu × ~σv δv| =
√

EG − F2 δu δv , (105)

or in differential form

dA =
√

EG − F2 du dv . (106)

Note that the expression under the square root in (106)
is precisely |~σu × ~σv| and so it is strictly positive at the
regular points.

The key to the second fundamental form, II, is the
unit normal vector. The second fundamental form coef-
ficients at a given point in the parametric uv-plane are
given by the projections of the second partial deriva-
tives of ~σ at that point onto the normal vector and can
be computed with the aid of the dot product as follows:
e = ~σuu · n̂, f = ~σuv · n̂, and g = ~σvv · n̂. The second
fundamental form,

II = e du2 + 2 f du dv + g dv2 , (107)

can be used to characterize the local shape of the folded
surface.

The concept of curvature, while intuitive for a plane
curve (the reciprocal of the radius of curvature), requires
a more comprehensive definition for a surface. Through
a point on a surface any number of curves may be drawn
with each having a different curvature at the point. We
have seen that at any point on a surface we can find n̂
which is at right angles to the surface; planes containing
the normal vector are called normal planes. The inter-
section of a normal plane and the surface will form a
curve called a normal section and the curvature of this
curve is the normal curvature κ. For most points on
most surfaces, different sections will have different cur-
vatures; the minimum and maximum values of these are
called the principal curvatures, denoted by κ1 and κ2.
The Gaussian curvature is defined by the product of the
two principal curvatures K = κ1κ2. It may be calculated
using the first and second fundamental coefficients. At
each grid point where these values are known two ma-
trices are defined. The matrix of the first fundamental
form,

I =

(
E F
F G

)
, (108)

and the matrix of the second fundamental form,

II =

(
e f
f g

)
. (109)

The Gaussian curvature is given by

K =
det II
det I

. (110)

As an illustration, consier a half-cylinder of radius R
oriented along the x axis. At a particular point on the
surface, the scalar curvature can have different values
depending on direction. In the direction of the half-
cylinder’s axis (parallel to the x axis), the surface has zero
scalar curvature, κ = 0. This is the smallest curvature
value at any point on the surface, and therefore κ1 is in
this direction. For a curve on the half-cylinder’s surface
parallel to the (y, z) plane, the cylinder has uniform scalar
curvature. In fact this curvature is the greatest possible
on the surface, so that κ2 = 1/R is in this direction. For
a curve on the surface not in one of these directions, the
scalar curvature is greater than κ1 and less than κ2. The
Gaussian curvature is K = 0.

2-dimensional metric spaces can be classified accord-
ing to the Gaussian curvature into elliptic (K > 0), flat
(K = 0), and hyperbolic (K < 0). Triangles which lie on
the surface of an elliptic geometry will have a sum of
angles which is greater than 180◦. Triangles which lie
on the surface of an hyperbolic geometry will have a
sum of angles which is less than 180◦.
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EXERCISE 5.1 The unit sphere can be parametrized
as

~σ(u, v) =

 cos u sin v
sin u sin v

cos v

 (111)

where (u, v) ∈ [0, 2π) × [0, π]. (i) Find the distance of
neighboring points on the surface with parameters (u, v)
and (u + du, v + dv), a.k.a. the line element ds2. (ii) Find
the surface area. (iii) Find the Gaussian curvature.

EXERCISE 5.2 The tractrix is a curve with the follow-
ing nice interpretation: Suppose a dog-owner takes his
pet along as he goes for a walk “down” the y-axis. He
starts from the origin, with his dog initially standing on
the x-axis at a distance r away from the owner. Then
the tractrix is the path followed by the dog if he “fol-
lows his owner unwillingly”, i.e., if he constantly pulls
against the leash, keeping it tight. This means mathe-
matically that the leash is always tangent to the path of
the dog, so that the length of the tangent segment from
the tractrix to the y-axis has constant length r. The trac-
trix has a well-known surface of revolution called the
pseudosphere which, for r = 1, can be parametrized as

~σ(u, v) =

 sechu cos v
sechu sin v
u − tanhu

 , (112)

with u ∈ (−∞,∞) and v ∈ [0, 2π). (i) Find the line
element. (ii) Find the surface area. (iii) Find the
Gaussian curvature.

A curve γwith parametr t on a surface ~σ(u, v) is called
a geodesic if at every point γ(t) the acceleration vector
~̈γ(t) is either zero or parallel to its unit normal n̂.

EXERCISE 5.3 Show that a geodesic γ(t) on a surface
~σ has constant speed.

EXERCISE 5.4 A curve γ on a surface ~σ is a geodesic
if and only if for any part γ(t) = ~σ(u(t), v(t)) contained
in a surface patch ~σ, the following two equations are
satisfied:

d
dt

(Eu̇ + Fv̇) =
1
2

(Euu̇2 + 2Fuu̇v̇ + Guv̇2) , (113)

d
dt

(Fu̇ + Gv̇) =
1
2

(Evu̇2 + 2Fvu̇v̇ + Gvv̇2) , (114)

where Edu2 +2Fdudv+Gdv2 is the first fundamental form
of ~σ. (113) and (114) are called the geodesic equations.
They are nonlinear and solvable analytically on rare
occasions only.

EXERCISE 5.5 Show that if γ is a geodesic on the unit
sphere S2, then γ is part of a great circle. Consider the

patch under the parametrization

~σ(θ, φ) =

 cosθ cosφ
cosθ sinφ

sinθ

 . (115)

[Hint: A great circle (a.k.a. orthodrome) of a sphere is
the intersection of the sphere and a plane which passes
through the center point of the sphere.]

The scalar curvature (or Ricci scalar) is the simplest
curvature invariant of an n-dimensional hypersurface.
To each point on the hypersurface, it assigns a single
real number determined by the intrinsic geometry of
the hypersurface near that point. It provides one way of
measuring the degree to which the geometry determined
by a given metric might differ from that of ordinary Eu-
clidean n-space. In two dimensions, the scalar curvature
is twice the Gaussian curvature, R = 2K, and completely
characterizes the curvature of a surface. In more than
two dimensions, however, the curvature of hypersur-
faces involves more than one functionally independent
quantity.

B. Schwarzschild metric

Consider a freely falling spacecraft in the gravitational
field of a radially symmetric mass distribution with total
mass M. Because the spacecraft is freely falling, no ef-
fects of gravity are felt inside. Then, the spacetime coor-
dinates from r→∞ should be valid inside the spacecraft.
Let us call these coordinates ~Σ∞(t∞, x∞, y∞, z∞), with x∞
parallel and y∞, z∞ transversal to movement. The space-
craft has velocity v at the distance r from the mass M,
measured in the coordinate system ~Σ = (t, r, θ, φ) in
which the mass M is at rest at r = 0. As long as the
gravitational field is weak, to first order approximation
that the laws of special relativity hold [58], and we can
use a Lorentz transformation [26] to relate ~Σ at rest and
~Σ∞ moving with v = βc. We will define shortly what
“weak” means in this context. For the moment, we pre-
sume that effects of gravity are small if the velocity of
the spacecraft, which was at rest a r → ∞, is still small
v� c. Should this be the case, we have

dt∞ = dt
√

1 − β2

dx∞ =
dr√

1 − β2

dy∞ = r dθ
dz∞ = r sinθ dφ . (116)

The infinitesimal distance between two spacetime events
is given by the Minkowskian line element [59]

ds2 = gµνdxµdxν = c2dt2
∞ − dx2

∞ − dy2
∞ − dz2

∞ , (117)
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which, for the case at hand, becomes

ds2 = (1 − β2)c2dt2
−

dr2

1 − β2 + r2(dθ2 + sin2 dφ2) . (118)

Herein we follow the notation of [27]: Greek indices
(µ, ν, · · · ) run from 0 to 3 and Latin indices (i, j, · · · ) from
1 to 3.

We now turn to determine β from measurable quanti-
ties of the system: M and r. Consider the energy of the
spacecraft with rest mass m,

(γ − 1)mc2
−

GγmM
r

= 0 , (119)

where the first term is the kinetic energy and the sec-
ond the Newtonian expression for the potential energy.
Note that here we have made the crucial assumption that
gravity couples not only to the mass of the spacecraft but
also to its total energy. Dividing by γmc2 gives(

1 −
1
γ

)
−

GM
rc2 = 0 . (120)

Introducing α = GM/c2 we can re-write (120) as√
1 − β2 = 1 −

α
r
, (121)

where γ = (1 − β2)−1/2. (121) leads to

1 − β2 = 1 −
2α
r

+
α2

r2 ≈ 1 −
2α
r

; (122)

in the last step, we neglected the term (α/r)2, since we
attempt only at an approximation for large distances,
where gravity is still weak. Inserting this expression into
(118), we obtain the metric describing the gravitational
field produced by a radially symmetric mass distribu-
tion,

ds2 =
(
1 −

2α
r

)
c2dt2

−

(
1 −

2α
r

)−1

dr2
− r2dΩ2 , (123)

where dΩ2 = dθ2 + sin2 θdφ2. Wickedly, this agrees with
the exact result found by Schwarzschild [60] by solv-
ing Einstein’s vacuum field equations of general relativ-
ity [61].

As in special relativity, the line element ds2 determines
the time and spatial distance between two spacetime
events. The time measured by an observer in the instan-
taneous rest frame, known as the proper time dτ, is given
by dτ = ds/c [27]. In particular, the time difference be-
tween two events at the same point is obtained by setting
dxi = 0. If we choose two static observers at the position
r and r′, then we find with dr = dφ = dθ = 0,

dτ(r)
dτ(r′)

=

√
g00(r) dt√
g00(r′) dt

=

√
g00(r)
g00(r′)

. (124)

The time intervals dτ(r′) and dτ(r) are different and thus
the time measured by clocks at different distances r from
the mass M will differ too. In particular, the time τ∞
measured by an observer at infinity will pass faster than
the time experienced in a gravitational field,

τ∞ =
τ(r)

√
1 − 2α/r

< τ(r) . (125)

Since frequencies are inversely proportional to time, the
frequency or energy of a photon traveling from r to r′
will be affected by the gravitational field as

ν(r′)
ν(r)

=

√
1 − 2α/r
1 − 2αr′

. (126)

Therefore, an observer at r′ → ∞ will receive photons,
which were emitted with frquency ν by a source at posi-
tion r, redhsifted to frequency ν∞,

ν∞ =

√
1 −

2GM
rc2 ν(r) . (127)

Note that the photon frequency is redshifted by the grav-
itational field. The size of this effect is of order Φ/c2,
where Φ = −GM/r is the Newtonian gravitational po-
tential. We are now in position to specify more pre-
cisely what weak gravitational fields means. As long as
|Φ|/c2

� 1, the deviation of

g00 = 1 −
2GM
rc2 ≈ 1 − 2

Φ(r)
c2 (128)

from the Minkowski value g00 = 1 is small, and Newto-
nian gravity is a sufficient approximation.

What is the meaning of r = 2α? At

RSch =
2GM

c2 = 3 km
M

M�
, (129)

the Schwarzschild coordinate system (123) becomes ill-
defined. However, this does not mean necessarily that at
r = RSch physical quantities like tidal forces become in-
finite. As a matter of fact, all scalar invariants are finite,
e.g. R = 0 and K = 12RSch/r6. Here R is the Ricci scalar
and K the Kretschmann scalar [62], a quadratic scalar in-
variant used to find the true singularities of a spacetime.
The Schwarzschild’s scalar invariants can only be found
by long and troublesome calculation that is beyond the
scope of this course; for a comprehensive discussion see
e.g. [63, 64]. Before proceeding we emphasize again that,
whether or not the singularity is moved to the origin,
only depends on the coordinate frame used, and has no
physical significance whatsoever; see Appendix D for an
example.

If the gravitating mass is concentrated inside a radius
smaller than RSch then we cannot obtain any information
about what is going on inside RSch, and we say r = RSch
defines an event horizon. An object smaller than its
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Schwarzschild radius, is called a black hole. In Newto-
nian gravity, only the enclosed mass M(r) of a spherically
symmetric system contributes to the gravitational poten-
tial outside r. Therefore, we conclude the Sun is not a
black hole, becasue for all values of r the enclosed mass
is M(r) < rc2/(2G). The Schwarzschild black hole is fully
characterized by its mass M. To understand this better,
we consider next what happens to a photon crossing the
event horizon as seen from an observer at r→∞.

Light rays are characterized by ds2 = 0. Consider a
light ray traveling in the radial direction, that is to say
dφ = dθ = 0. The Schwarzschild metric (123) becomes

dr
dt

=
(
1 −

2α
r

)
c . (130)

As seen from far away a light ray approaching a massive
star will travel slower and slower as it comes closer to
the Schwarzschild radius. In fact, for an observer at in-
finity the signal will reach r = RSch only asymptotically,
for t → ∞. Similarly, the communication with a freely
falling spacecraft becomes impossible as it reaches
r = RSch. A more detailed analysis shows that indeed,
as seen from infinity, no signal can cross the surface
at r = RSch. The factors (1 − 2α/r) in (123) control the
bending of light, a phenomenon known as gravitational
lensing. The first observation of light deflection was
performed by noting the change in position of stars as
they passed near the Sun on the celestial sphere. The
observations were performed in May 1919 during a total
solar eclipse, so that the stars near the Sun (at that time
in the constellation Taurus) could be observed [65].

EXERCISE 5.6 In addition to the time dilation due to
an object moving at a finite speed that we have learned
about in special relativity, we have seen that there is
an effect in general relativity, termed “gravitational red-
shift,” caused by gravity itself. To understand this latter
effect, consider a photon escaping from the Earth’s sur-
face to infinity. It loses energy as it climbs out of the
Earth’s gravitational well. As its energy E is related to
its frequency ν by Planck’s formula E = hν, its frequency
must therefore also be reduced, so observers at a great
distance r→∞must see clocks on the surface ticking at
a lower frequency as well. Therefore an astronaut orbit-
ing the Earth ages differently from an astronomer sitting
still far from the Earth for two reasons; the effect of grav-
ity, and the time dilation due to motion. In this problem,
you will calculate both these effects, and determine their
relative importance. (i) The escape speed from an object
of mass M if you are a distance r from it is given by

vescape =

√
2GM

r
. (131)

That is, if you are moving this fast, you will not fall back
to the object, but will escape its gravitational field en-
tirely. Schwarzschild’s solution to Einstein’s field equa-
tions of general relativity shows that a stationary, non-
moving clock at a radius r ≥ R⊕ from the Earth will tick

at a rate that is√
1 −

1
c2

2GM⊕
r

=

√
1 −

v2
escape

c2 (132)

times as fast as one located far away from the Earth
(i.e. at r → ∞). Note how much this expression looks
like the equivalent expression from special relativity
for time dilation. Here R⊕ is the radius of the Earth,
and M⊕ is its mass. Using (132) calculate the rate at
which a stationary clock at a radius r (for r > R⊕) will
tick relative to one at the surface of the Earth. Is your
rate greater or less than 1? If greater than 1, this means
the high altitude clock at r > R⊕ ticks faster than one
on the surface; if less than one, this means the high
altitude clock ticks slower than one on the surface.
(ii) Now consider an astronaut orbiting at r > R⊕. What
is her orbital velocity as a function of r? Because she is
moving with respect to a stationary observer at radius
r, special relativity says that her clock is ticking slower.
Calculate the ratio of the rate her clock ticks to that of a
stationary observer at radius r. (Note that for circular
motion, the acceleration in the spaceship travelling in
a circle is not zero, so the spaceship is not in a single
frame of inertia.) (iii) Determine an expression for the
ratio of the rate at which the orbiting astronaut’s clock
ticks to a stationary clock on the surface of the Earth,
as a function of the radius r at which she orbits. You
may ignore the small velocity of the clock on the surface
of the Earth due to the Earth’s rotation. (iv) Using
√

1 − x ≈ 1 − x/2 + · · · , (1 − x)−1
≈ 1 + x + · · · , and

(1 − x)(1 − y) = 1 − x − y + xy ≈ 1 − (x + y), all valid for
x � 1 and y � 1, derive an expression of the form 1 − δ
for the relative rate of a clicking clock on the surface
of the Earth and the orbiting astronaut. Demonstrate
that δ � 1. (v) Calculate the radius r at which the clock
of the orbiting astronaut ticks at the same rate as a
stationary one on the surface of the Earth; express your
result in Earth radii and kilometers. Will an astronaut
orbiting at a smaller radius age more or less than one
who stayed home? Thus, do astronauts on the Space
Shuttle (orbiting 300 km above the Earth’s surface) age
more or less than one staying home?

EXERCISE 5.7 “A full set of rules [of Brockian Ultra
Cricket, as played in the higher dimensions] is so
massively complicated that the only time they were
all bound together in a single volume they underwent
gravitational collapse and became a black hole” [66].
A quote like this is crying out for a calculation. In
this problem, we will answer Adams challenge, and
determine just how complicated these rules actually
are. An object will collapse into a black hole when
its radius is equal to the radius of a black hole of the
same mass; under these conditions, the escape speed
at its surface is the speed of light (which is in fact the
defining characteristic of a black hole). We can rephrase
the above to say that an object will collapse into a black
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hole when its density is equal to the density of a black
hole of the same mass. (i) Derive an expression for the
density of a black hole of mass M. Treat the volume
of the black hole as the volume of a sphere of radius
given by the Schwarzschild radius. As the mass of a
black hole gets larger, does the density grow or shrink?
(ii) Determine the density of the paper making up the
Cricket rule book, in units of kilograms per cubic meter.
Standard paper has a surface density of 75 g per square
meter, and a thickness of 0.1 mm. (iii) Calculate the
mass (in solar masses), and radius (in AU) of the black
hole with density equal to that of paper. (iv) How many
pages long is the Brockian Ultra Cricket rule book?
Assume the pages are standard size (8.5′′ × 11′′). For
calculational simplicity, treat the book as spherical (a
common approximation in this kind of problem). What
if the rule book were even longer than you have just
calculated? Would it still collapse into a black hole?

EXERCISE 5.8 Black holes provide the ultimate lab-
oratory for studying strong-field gravitational physics.
The tides near black holes can be so extreme that a
process informally called “spaghettification” occurs in
which a body falling towards a black hole is strongly
stretched due to the difference in gravitational force at
different locations along the body (this is called a tidal
effect). In the following, imagine that you are falling
into a 3M� black hole. (i) What is the Schwarzschild
radius of this black hole (in km)? (ii) You are 1.5 m tall
and 70 kg in mass and are falling feet first. At what
distance from the black hole would the gravitational
force on your feet exceed the gravitational force on your
head by 10 kN? Express this distance in km and in
Schwarzschild radii of the black hole. (iii) To appreciate
if this amount of force is enough to “spaghettify” and
kill you, imagine that you are suspended from a ceiling
of your room (on Earth) with a steel plate tied to your
feet. Calculate the mass of the plate (in kg) that will
give you a nice tug of 10 kN (you can ignore the weight
of your body here). Do you think this pull will kill
you? (iv) Now consider a trip toward the supermassive
black hole at the center of our Galaxy, which has an
estimated mass of 4 million M�. How does this change
the distance at which you will be “spaghettified” by the
differential gravity force of 10 kN? Express your answer
in km and in Schwarzschild radii of the black hole.
(v) Find the smallest mass of the black hole for which
you would not die by “spaghettification” before falling
within its event horizon.

EXERCISE 5.9 In the Schwarzschild metric r is a co-
moving coordinate, not a real physical distance. Rather,
integrals over ds constitute physical distances. In the fol-
lowing we will take slices of spacetime at a constant time
(dt = 0). (i) Compute the physical circumference, C, at
a given coordinate distance R from the center of a black
hole of mass M at θ = π/2. (ii) Compute the physical
distance Rphys from the center of the black hole out to

the coordinate distance R (assume R > RSch and take the
absolute value of grr). [Hint: The following facts may be
helpfull: ∫ 1

0

√
ξ

1 − ξ
dξ =

π
2
, (133)

and∫ α

1

√
ξ

1 − ξ
dξ = ln(

√

α − 1 +
√
α) +

√

α − 1
√
α , (134)

where α > 1 is constant.] (iii) Now use your answers to
part (i) and part (ii) to compute Π where C = 2ΠRphys.
(iv) Plot Π as a function of ξ ≡ R/RSch for ξ ∈ [1, 103] (use
log axes for the x axis). What happens with Π as ξ→∞?

C. Eddington luminosity and black hole growth

Binary X-ray sources are places to find strong black
hole candidates [67, 68]. A companion star is a perfect
source of infalling material for a black hole. As the matter
falls or is pulled towards the black hole, it gains kinetic
energy, heats up and is squeezed by tidal forces. The
heating ionizes the atoms, and when the atoms reach a
few million degrees Kelvin, they emit X-rays. The X-
rays are sent off into space before the matter crosses the
event horizon, and so we can detect this X-ray emission.
Another sign of the presence of a black hole is random
variation of emitted X-rays. The infalling matter that
emits X-rays does not fall into the black hole at a steady
rate, but rather more sporadically, which causes an ob-
servable variation in X-ray intensity. Additionally, if the
X-ray source is in a binary system, the X-rays will be
periodically cut off as the source is eclipsed by the com-
panion star.

Cygnus X-1 is one of the strongest X-ray sources we
can detect from Earth [69] and the first widely thought to
be a black hole, after the detection of its rapid X-ray vari-
ability [70] and the identification of its optical countem-
part with the blue supergiant star HDE 226868 [71, 72].
The X-ray emission is powered mainly by accretion from
the strong stellar wind from HDE 226868 [73]. While the
disk of accreting matter is incredibly bright on its own,
Cygnus X-1 has another source of light: a pair of jets per-
pendicular to the disk erupt from the black hole carrying
part of the infalling material away into the interstellar
space [74].

Consider a steady spherically symmetrical accretion.
We assume the accreting material to be mainly hydro-
gen and to be fully ionized. Under these circumstances,
the radiation exerts a force mainly on the free electrons
through Thomson scattering, since the scattering cross
section for protons is a factor (me/mp)2 smaller, where
me/mp = 5 × 10−4 is the ratio of the electron and proton
masses [75]. If F is the radiant energy flux (erg s−1cm−2)
and σT = 6.7 × 10−25 cm2 is the Thomson cross section,
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then the outward radial force on each electron equals the
rate at which it absorbs momentum,

Fout =
σTF

c
. (135)

The attractive electrostatic Coulomb force between the
electrons and protons means that as they move out the
electrons drag the protons with them. In effect, the radi-
ation pushes out electron-proton pairs against the total
gravitational force

Fin =
GM
r2 (mp + me) (136)

acting on each pair at a radial distance r from the center.
If the luminosity of the accreting source is L (erg s−1), we
have

F =
L

4πr2 (137)

by spherical symmetry, so the net inward force on an
electron-proton pair is

Fnet =
(
GMmp −

LσT

4πc

) 1
r2 . (138)

There is a limiting luminosity for which this expression
vanishes, called the Eddington limit [76]

LEdd =
4πGMmp

σT
' 1.3 × 1038

(
M

M�

)
erg s−1 . (139)

At greater luminosities the outward pressure of radiation
would exceed the inward gravitational attraction and
accretion would be halted.

Active galactic nuclei (AGNs) are galaxies that
harbor compact masses at the center exhibiting intense
non-thermal emission that is often variable, which
indicates small sizes (light months to light years). The
luminosity of an accreting black hole is proportional to
the rate at which it is gaining mass. Under favorable
conditions, the accretion leads to the formation of a
highly relativistic collimated jet. The formation of the
jet is not well constrained, but it is thought to change
from magnetic-field-dominated near the central engine
to particle (electron and positron, or ions and electrons)
dominated beyond pc distances. The AGN taxonomy,
controlled by the dichotomy between radio-quiet and
radio-loud classes, is represented in Fig. 9. The appear-
ance of an AGN depends crucially on the orientation
of the observer with respect to the symmetry axis of
the accretion disk [78]. In this scheme, the difference
between radio-loud and radio-quiet AGN depends on
the presence or absence of radio-emitting jets powered
by the central nucleus, which in turn may be speculated
to depend on: (i) black hole rotation; (ii) low power or
high power, as determined by the mass-accretion rate
Ṁc2/LEdd [79].

EXERCISE 5.10 The pictures in Fig. 10 show a time
sequence of radio observations of the quasar 0827+243.
The core of the quasar is the bright object at a distance
of 0 ly and a fainter blob of plasma is moving away
from it. (i) What is the apparent velocity of the motion
of the plasma blob? (ii) Derive the apparent transverse
velocity of an object ejected from a source at velocity v at
an angle θ with respect to the line of sight between the
source and the observer. (iii) Which angle maximizes
the apparent transverse velocity? What is accordingly
the minimal Lorentz-factor of the plasma blob observed
in 0827+243?

VI. EXPANSION OF THE UNIVERSE

The observations that we will discuss in this section
reveal that the universe is in a state of violent explosion,
in which the galaxies are rushing appart at speeds ap-
proaching the speed of light. Moreover, we can extrapo-
late this explosion backwards in time and conclude that
all the galaxies must have been much closer at the same
time in the past – so close, in fact, that neither galaxies
nor stars nor even atoms or atomic nuclei could have
had a separate existence.

A. Hubble’s law

The XVI century finally saw what came to be a water-
shed in the development of Cosmology. In 1543 Coper-
nicus published his treatise “De Revolutionibus Orbium
Celestium” (The Revolution of Celestial Spheres) where
a new view of the world is presented: the heliocentric
model [3].

It is hard to underestimate the importance of this work:
it challenged the age long views of the way the uni-
verse worked and the preponderance of the Earth and,
by extension, of human beings. The realization that
we, our planet, and indeed our solar system (and even
our Galaxy) are quite common in the heavens and re-
produced by myriads of planetary systems, provided a
sobering (though unsettling) view of the universe. All
the reassurances of the cosmology of the Middle Ages
were gone, and a new view of the world, less secure and
comfortable, came into being. Despite these “problems”
and the many critics the model attracted, the system
was soon accepted by the best minds of the time such as
Galileo.

The simplest and most ancient of all astronomical ob-
servations is that the sky grows dark when the Sun goes
down. This fact was first noted by Kepler, who, in the
XVII century, used it as evidence for a finite universe. In
the XIX century, when the idea of an unending, unchang-
ing space filled with stars like the Sun was widspread
in consequence of the Copernican revolution, the ques-
tion of the dark night sky became a problem. To clearly
ascertain this problem, we recall that if absorption is
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added: a dusty torus or a wrapped disk obscuring the light of type 2
objects.

The unification scheme that has emerged combining these ingredi-
ents (black hole, disk, jet, torus and clouds) is usually attributed to
Antonucci (1993) and Urry & Padovani (1995). As shown in Fig. 6, it
is based on orientation effects compared to the line of sight.

Figure 6. Unification scheme of AGN. The acronyms
for the different sub-classes of AGN are given in Fig. 2.
Adapted from Urry & Padovani (1995) .
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FIG. 9: Unification scheme of AGN. The acronyms for the different sub-classes of AGN are as follows: Fanaroff-Riley radio
galaxies (FR I/II), narrow line radio galaxy (NLRG), broad line radio galaxy (BLRG), radio-loud quasar (RLQ), radio quiet quasar
(RQQ), flat spectrum radio quasar (FSRQ), and Sefeyrt galaxies (Sy 1/2) [77].

neglected, the aparent luminosity of a star of absolute
luminosity L at a distance r will be b = L/4πr2. If the
number density of such stars is a constant n, then the
number of stars at distances r between r and r + dr is
dN = 4πnr2dr, so the total radiant energy density due to
all stars is

ρs =

∫
b dN =

∫
∞

0

( L
4πr2

)
4πn r2dr

= Ln
∫
∞

0
dr . (140)

The integral diverges, leading to an infinite energy den-
sity of starlight!

In order to avoid this paradox, both de Chéseaux

(1744) [81] and Olbers (1826) [82] postulated the exis-
tence of an interstellar medium that absorbs the light
from very distant stars responsible for the divergence
of the integral in (140). However, this resolution of
the paradox is unsatisfactory, because in an eternal
universe the temperature of the interstellar medium
would have to rise until the medium was in thermal
equilibrium with the starlight, in which case it would
be emitting as much energy as it absorbs, and hence
could not reduce the average radiant energy density.
The stars themselves are of course opaque, and totally
block out the light from sufficiently distant sources,
but if this is the resolution of the so-called “Olbers
paradox” then every line of segment must terminate
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for component C2 in 0827+243, however, has been established
with a high degree of confidence.

4. DISCUSSION

Inspection of Table 3 shows that different Gaussian compo-
nents in the same source have different apparent speeds. There
are two possible origins of these different apparent speeds. The
first possibility is that the components move with different pat-
tern speeds that are not necessarily equal to the bulk speed. Lister
(2006) concluded from a correlation of apparent speeds from
the 2 cm andMOJAVE surveys with other source properties that
various pattern speeds are present in the jets, but that the fastest

Fig. 5.—Distances from the core of Gaussian component centers as a function
of time. The lines are the least-squares fits to outward motion with constant speed.

Fig. 6.—Mosaic of images of 0827+243 at 22 GHz. The bright feature moves
approximately 15 lt-yr in 0.6 yr (source frame), for an apparent speed of about
25c. Only four of the six epochs are shown to prevent overlapping of images.
The peak flux densities at the four epochs are 1.2, 1.6, 1.2, and 1.1 Jy beam!1,
respectively. Images have been rotated 25" clockwise and restored with a cir-
cular 0.5 mas beam. Model component C3 is at the center of the bright jet
feature.
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FIG. 10: Mosaic of images of 0827+243 at 22 GHz [80].

at the surface of a star, so the whole sky should have
a temperature equal to that at the surface of a typical star.

EXERCISE 6.1 (i) In a forest there are n trees per
hectare, evenly spaced. The thickness of each trunk is
D. What is the mean distance that you have an unob-
structed view into the woods, i.e. the mean free path?
(ii) How is this related to the Olbers paradox?

In 1929, Hubble discovered that the spectral lines of
galaxies were shifted towards the red by an amount pro-
portional to their distances [83]. If the redshift is due
to the Doppler effect, this means that the galaxies move
away from each other with velocities proportional to
their separations. The importance of this observation is
that it is just what we should predict according to the
simplest possible picture of the flow of matter in an ex-
panding universe.

The redshift parameter is defined as the traditional shift
in wavelength of a photon emitted by a distant galaxy at
time tem and observed on Earth today

z =
λobs

λem
− 1 =

νem

νobs
− 1, (141)

Although measuring a galaxy’s redshift is relatively easy,
and can be done with high precision, measuring its dis-
tance is difficult. Hubble knew z for nearly 50 galaxies,
but had estimated distances for only 20 of them. Nev-
ertheless, from a plot of redshift versus distance (repro-
duced in Fig. 11) he found the famous linear relation
now known as the Hubble’s law:

z =
H0

c
r , (142)

where H0 is a constant (now called the Hubble con-
stant). Since in the study of Hubble all the redshift were
small, z < 0.04, he was able to use the classical non-
relativistic realtion for small velocities (v � c). From
(48) the Doppler redshift is z ≈ v/c and Hubble’s law
takes the form

v = H0 r . (143)

Since the Hubble constant H0 can be found by dividing
velocity by distance, it is customarily written in the
rather baroque units of km s−1 Mpc−1. From Fig. 11 it
follows that H0 = 500 km s−1 Mpc−1. However, it turned
out that Hubble was severely underestimating the
distances to galaxies. In Fig. 12 we show a more recent
determination of the Hubble constant from nearby
galaxies, using HST data [84]. By combining results
of different research groups, the present day Hubble
expansion rate is H0 = 70+5

−3 km s−1 Mpc−1.

EXERCISE 6.2 The Sloan Digital Sky Survey (SDSS)
is a survey that mapped positions and distances of a
million galaxies using a dedicated 2.5 m telescope in
New Mexico [85]. In this exercise, you will use data
from this survey to calculate H0. In Fig. 13 we show
the spectrum of a star in our galaxy and spectra of four
distant galaxies, as measured by the SDSS. For each of
the galaxies, we indicate the measured brightness in
units of Joules per square meter per second. Assume
that each of them has the same luminosity as that of the
Milky Way (LMW = 1011 L�, or LMW = 4×1037 J/s). (i) De-
termine the distance to each of the four galaxies, using
the inverse-square law relation between brightness and
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Figure 2.4: Edwin Hubble’s original plot of the relation between redshift
(vertical axis) and distance (horizontal axis). Note that the vertical axis
actually plots cz rather than z – and that the units are accidentally written
as km rather than km/s. (from Hubble 1929, Proc. Nat. Acad. Sci., 15,
168)

FIG. 11: Hubble’s original plot of the relation between redshift
(vertical axis) and distance (horizontal axis). Note that in the
vertical axis he actually plots cz rather than z, and that the units
are accidentally written as km rather than km/s [83].
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Figure 2.5: A more modern version of Hubble’s plot, showing cz versus
distance. In this case, the galaxy distances have been determined using
Cepheid variable stars as standard candles, as described in Chapter 6. (from
Freedman, et al. 2001, ApJ, 553, 47)

velocity away from Earth. Since the values of z in Hubble’s analysis were all
small (z < 0.04), he was able to use the classical, nonrelativistic relation for
the Doppler shift, z = v/c, where v is the radial velocity of the light source
(in this case, a galaxy). Interpreting the redshifts as Doppler shifts, Hubble’s
law takes the form

v = H0r . (2.6)

Since the Hubble constant H0 can be found by dividing velocity by distance,
it is customarily written in the rather baroque units of km s−1 Mpc−1. When
Hubble first discovered Hubble’s Law, he thought that the numerical value of
the Hubble constant was H0 = 500 km s−1 Mpc−1 (see Figure 2.4). However,
it turned out that Hubble was severely underestimating the distances to
galaxies.

Figure 2.5 shows a more recent determination of the Hubble constant
from nearby galaxies, using data obtained by (appropriately enough) the

FIG. 12: A more modern version of Hubble’s plot, showing cz
versus distance. In this case, the galaxy distances have been de-
termined using Cepheid variable stars as standard candles [84].

luminosity. Express your answers both in meters and in
megaparsecs, and give two significant figures. (ii) The
spectrum of each of these objects shows a pair of strong
absorption lines of calcium, which have rest wavelength
λ0 = 3935 Å and 3970 Å, respectively. The wavelengths
of these lines in the galaxies have been shifted to longer
wavelengths (i.e., redshifted), by the expansion of the
universe. As a guide, the spectrum of a star like the Sun
is shown in the upper panel; the calcium lines are at
zero redshift. Measure the redshift of each galaxy. That
is, calculate the fractional change in wavelength of the
calcium lines. [Hint: The tricky part here is to make sure
you are identifying the right lines as calcium. In each
case, they are a close pair; for Galaxy #2, they are the
prominent absorption dips between 4100 Åand 4200 Å.
Measure the redshift for both of the calcium lines in
each galaxy (in each case the two lines should give the
same redshift, of course!). Give your final redshift to
two significant figures. Do the intermediate steps of the
calculation without rounding; rounding too early can
result in errors. (iii) Given the redshifts, calculate the

Figure for Problem 4.

4

FIG. 13: Spectra measured by the SDSS [86].

velocity of recession for each galaxy, and in each case
use the distances to estimate the Hubble constant, in
units of kilometers per second per Megaparsec. You
will not get identical results from each of the galaxies,
due to measurement uncertainties (but they should all
be in the same ballpark), so average the results of the
four galaxies to get your final answer.

Now a point worth noting at this juncture is that galax-
ies do not follow Hubble’s law exactly. In addition to the
expansion of the universe, galaxy motions are affected by
the gravity of specific, nearby structures, such as the pull
of the Milky Way and Andromeda galaxies on each other.
Each galaxy therefore has a peculiar velocity, where pe-
culiar is used in the sense of “individual,” or “specific to
itself.” Thus, the recession velocity of a galaxy is really

v = H0d + vpec, (144)

where vpec is the peculiar velocity of the galaxy
along the line of sight. If peculiar velocities could
have any value, then this would make Hubble’s law
useless. However, peculiar velocities are typically
only about 300 km/s, and they very rarely exceed
1000 km/s. Hubble’s law therefore becomes accurate
for galaxies that are far away, when H0d is much
larger than 1000 km/s. Furthermore, we can often
estimate what a galaxy’s peculiar velocity will be by
looking at the nearby structures that will be pulling on it.

EXERCISE 6.3 Suppose we observer two galaxies, one
at a distance of 35 Mly with a radial velocity of 580 km/s,
and another at a distance of 1, 100 Mly with a radial ve-
locity of 25, 400 km/s. (i) Calculate the Hubble constant
for each of these two observations. (ii) Which of the
two calculations would you consider to be more trust-
worthy? Why? (iii) Estimate the peculiar velocity of
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the closer galaxy. (iv) If the more distant galaxy had
this same peculiar velocity, how would that change your
calculated value of the Hubble constant?

We would expect intuitively that at any given time the
universe ought to look the same to observers in all typical
galaxies, and in whatever direction they look. (Hereafter
we will use the label “typical” to indicate galaxies that
do not have any large peculiar motion of their own, but
are simply carried along with the general cosmic flow
of galaxies.) This hypothesis is so natural (at least since
Copernicus) that it has been called the cosmological prin-
ciple by Milne [87].

As applied to the galaxies themselves, the cosmologi-
cal principle requires that an observer in a typical galaxy
should see all the other galaxies moving with the same
pattern of velocities, whatever typical galaxy the ob-
server happens to be riding in. It is a direct mathematical
consequence of this principle that the relative speed of
any two galaxies must be proportional to the distance
between them, just as found by Hubble. To see this
consider three typical galaxies at positions ~r1, ~r2, and ~r3.
They define the triangle shown in Fig. 14, with sides of
length

r12 ≡ |~r1 − ~r2|

r23 ≡ |~r2 − ~r3|

r31 ≡ |~r3 − ~r1| . (145)

In a homogeneous and uniform expanding universe the
shape of the triangle is preserved as the galaxies move
away from each other. Maintaining the correct relative
lengths for the sides of the triangle requires an expansion
law of the form

r12(t) = a(t) r12(t0)
r23(t) = a(t) r23(t0)
r31(t) = a(t) r31(t0) , (146)

where a(t) is a scale factor, which is totally independent
of location or direction. The scale factor a(t) tells us how
the expansion (or possibly contraction) of the universe
depends on time. At any time t, an observer in galaxy
#1 will see the other galaxies receding with a speed

v12(t) =
dr12

dt
= ȧ r12(t0) =

ȧ
a

r12(t)

v31(t) =
dr31

dt
= ȧr31(t0) =

ȧ
a

r31(t) . (147)

You can easily demonstrate that an observer in galaxy
#2 or galaxy #3 will find the same linear relation be-
tween observed recession speed and distance, with ȧ/a
playing the role of the Hubble constant. Since this ar-
gument can be applied to any trio of galaxies, it implies
that in any universe where the distribution of galaxies
is undergoing homogeneous, isotropic expansion, the
velocity-distance relation takes the linear form v = Hr,
with H = ȧ/a.
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Figure 2.6: A triangle defined by three galaxies in a uniformly expanding
universe.

Hubble Space Telescope. The best current estimate of the Hubble constant,
combining the results of different research groups, is

H0 = 70 ± 7 km s−1 Mpc−1 . (2.7)

This is the value for the Hubble constant that I will use in the remainder of
this book.

Cosmological innocents sometimes exclaim, when first encountering Hub-
ble’s Law, “Surely it must be a violation of the cosmological principle to
have all those distant galaxies moving away from us ! It looks as if we are
at a special location in the universe – the point away from which all other
galaxies are fleeing.” In fact, what we see here in our Galaxy is exactly what
you would expect to see in a universe which is undergoing homogeneous and
isotropic expansion. We see distant galaxies moving away from us; but ob-
servers in any other galaxy would also see distant galaxies moving away from
them.

To see on a more mathematical level what we mean by homogeneous,
isotropic expansion, consider three galaxies at positions !r1, !r2, and !r3. They
define a triangle (Figure 2.6) with sides of length

r12 ≡ |!r1 − !r2| (2.8)

r23 ≡ |!r2 − !r3| (2.9)

r31 ≡ |!r3 − !r1| . (2.10)

FIG. 14: A triangle defined by three galaxies in a uniformly
expanding universe [88].

If galaxies are currently moving away from each other,
this implies they were closer together in the past. Con-
sider a pair of galaxies currently separated by a distance
r, with a velocity v = H0r relative to each other. If there
are no forces acting to accelerate or decelerate their rela-
tive motion, then their velocity is constant, and the time
that has elapsed since they were in contact is

tH =
r
v

= H−1
0 , (148)

independent of the current separation r between galax-
ies. The time H−1

0 is generally referred to as the Hub-
ble time. For H ≈ 70 km s−1 Mpc−1, the Hubble time is
H−1

0 ≈ 14 Gyr. If the relative velocities of galaxies have
been constant in the past, then one Hubble time ago, all
the galaxies in the universe were crammed together into
a small volume.

The observation of galaxy redshifts points naturally to
a big bang description for the evolution of the universe.
A big bang model could be broadly defined as a model
in which the universe expands from an initially highly
dense state to its current low-density state. The Hubble
time of ∼ 14 Gyr is comparable to the ages computed for
the oldest known stars in the universe. This rough equiv-
alence is reassuring. However, the age of the universe
(i.e the time elapsed since its original highly dense state)
is not necessarily exactly equal to tH. On the one hand,
if gravity working on matter is the only force at work on
large scales, then the attractive force of gravity will act
to slow down the expansion. If this were the case, the
universe was expanding more rapidly in the past than
it is now, and the universe is younger than H−1

0 . On the
other hand, if the energy density of the universe is dom-
inated by a cosmological constant Λ (more on this later),
then the dominant gravitational force is repulsive, and
the universe may be older than H−1

0 .
The horizon distance is defined as the greatest dis-

tance a photon can travel during the age of the universe.
The Hubble distance, RH = c/H0 ≈ 4.3 Gpc, provides a
natural distance scale. However, just as the age of the
universe is roughly equal to H−1

0 in most big bang mod-
els, with the exact value depending on the expansion
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history of the universe, one horizon is roughly equal
to c/H0, with the exact value, again, depending on the
expansion history.

Before proceeding any further, two qualifications have
to be attached to the cosmological principle. First, it is
obviously not true on small scales – we are in a Galaxy
which belongs to a small local group of other galaxies,
which in turn lies near the enormous cluster of galaxies
in Virgo. In fact, of the 33 galaxies in Messier’s catalogue,
almost half are in one small part of the sky, the constella-
tion of Virgo. The cosmological principle, if at all valid,
comes into play only when we view the universe on a
scale at least as large as the distance between clusters
of galaxies, or about 100 million light years. Second,
in using the cosmological principle to derive the rela-
tion of proportionality between galactic velocities and
distances, we suppose the usual rule for adding v � c.
This, of course, was not a problem for Hubble in 1929,
as none of the galaxies he studied then had a speed any-
where near the speed of light. Nevertheless, it is im-
portant to stress that when one thinks about really large
distances characteristic of the universe, as a whole, one
must work in a theoretical framework capable of dealing
with velocities approaching the speed of light.

Note how Hubble’s law ties in with Olbers’ paradox.
If the universe is of finite age, tH ∼ H−1

0 , then the night
sky can be dark, even if the universe is infinitely large,
because light from distant galaxies has not yet had time
to reach us. Galaxy surveys tell us that the luminosity
density of galaxies in the local universe is

nL ≈ 2 × 108L� Mpc−3 . (149)

By terrestrial standards, the universe is not a well-lit
place; this luminosity density is equivalent to a single 40
watt light bulb within a sphere 1 AU in radius. If the
horizon distance isRH ≈ c/H0, then the total flux of light
we receive from all the stars from all the galaxies within
the horizon will be

Fgal ≈ nL
∫
RH

0
dr ∼ nL

c
H0
∼ 9 × 1011L� Mpc−2

∼ 2 × 10−11L� AU−2 . (150)

By the cosmological principle, this is the total flux of
starlight you would expect at any randomly located spot
in the universe. Comparing this to the flux we receive
from the Sun,

F� =
L�

4π AU2 ≈ 0.08L� AU−2 , (151)

we find that Fgal/F� ∼ 3 × 10−10. Thus, the total flux of
starlight at a randomly selected location in the universe
is less than a billionth the flux of light we receive from
the Sun here on Earth. For the entire universe to be as
well-lit as the Earth, it would have to be over a billion
times older than it is; and you would have to keep the
stars shining during all that time.

16.6 FREIDMANN MODELS AND THE AGE 
OF THE UNIVERSE

Freidmann’s work established the foundation for describing the time evolu-
tion of the Universe based on general relativity. General relativity must be
used in cosmological calculations because it correctly describes gravity, the
most important force determining the Universe’s structure, over immense cos-
mological distances. Newtonian theory can lead to errors when applied to the
Universe as a whole because it assumes that the force of gravity is always attrac-
tive and is instantaneously transmitted. Although Freidmann did consider
models both with and without Einstein’s repulsive form of gravity (cosmologi-
cal constant), it is easiest to see the general form of Big Bang behavior without
introducing repulsive gravitational forces at this point.

Freidmann found three types of time-dependent universes, which may be
described in terms of the universal expansion scaling factor a(t). Figure 16.17
shows a(t )(the separation between galaxies) as a function of time for the
three cases labeled open universe, flat universe, and closed universe. Note that
a(t) alone has a value of zero at the lower-left corner of the graph, not t, and
that the three curves start at different times in the past in order to give the
same scaling factor at the present time, denoted t0. Open universes have less
mass and energy than that needed to halt the expansion. They start with a scale
factor of zero and grow without limit, any given galaxy approaching a limiting
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EXAMPLE 16.2 Critical Density of 
the Universe

We can estimate the critical mass density of the Universe,
!c, using classical energy considerations. The result turns
out to be in agreement with the rigorous predictions of
general relativity because of the simplifying assumption
that the mass of the Universe is uniformly distributed.

Solution Figure 16.16 shows a large section of the Uni-
verse with radius R with the critical density, containing a
total mass M, where M consists of the total mass of matter
plus the effective mass of radiation with energy E, E/c2. A
galaxy of mass m and speed v at R will just escape to infin-
ity with zero speed if the sum of its kinetic energy and
gravitational potential energy is zero. Thus,

Because the galaxy of mass m obeys the Hubble law,
v " HR, the preceding equation becomes

or !c "
3H 2

8#G
H 2 "

8#G

3
!c

  v2 "
8#G

3
R2!c

1
2 mv2 "

Gm4
3#R3!c

R

Etotal " 0 " K $ U " 1
2 mv2 %

GmM

R

Using H " 23 & 10%3 m/(s · lightyear), where 1 light-
year " 9.46 & 1015 m and G " 6.67 & 10%11 N · m2/kg2,
yields a present value of the critical density !c " 1.1 &
10%26 kg/m3. As the mass of a hydrogen atom is 1.67 &
10%27 kg, !c corresponds to about 7 hydrogen atoms per
cubic meter, an incredibly low density.

R

v

m

Figure 16.16 (Example 16.2) A galaxy escaping from a
large cluster contained within radius R. Only the mass
within R slows the mass m.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  
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FIG. 15: Spherical region of galaxies with a larger radius than
the distance between clusters of galaxies, but smaller radius
than any distance characterizing the universe as a whole.

B. Friedmann-Robertson-Walker cosmologies

In 1917 Einstein presented a model of the universe
based on his theory of general relativity [89]. It de-
scribes a geometrically symmetric (spherical) space with
finite volume but no boundary. In accordance with the
cosmological principle, the model is homogeneous and
isotropic. It is also static: the volume of the space does
not change. In order to obtain a static model, Einstein
introduced a new repulsive force in his equations. The
size of this cosmological term is given by the cosmo-
logical constant Λ. Einstein presented his model before
the redshifts of the galaxies were known, and taking the
universe to be static was then a reasonable assumption.
When the expansion of the universe was discovered, this
argument in favor of a cosmological constant vanished.
Einstein himself later called it the biggest blunder of his
life. Nevertheless, the most recent observations seem to
indicate that a non-zero cosmological constant has to be
present.

In 1922, Friedmann [90, 91] studied the cosmological
solutions of Einstein equations. If Λ = 0, only evolv-
ing, expanding or contracting models of the universe
are possible. The general relativistic derivation of the
law of expansion for the Friedmann models will not be
given here. It is interesting that the existence of three
types of models and their law of expansion can be de-
rived from purely Newtonian considerations, with re-
sults in complete agreement with the relativistic treat-
ment. Moreover, the essential character of the motion
can be obtained from a simple energy argument, which
we discuss next.

Consider a spherical region of galaxies of radius R.
(For the purposes of this calculation we must take R to
be larger than the distance between clusters of galaxies,
but smaller than any distance characterizing the universe
as a whole, as shown in Fig. 15. We also assume Λ = 0.)
The mass of this sphere is its volume times the cosmic
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mass density,

M =
4πR3

3
ρm . (152)

We can now consider the motion of a galaxy of mass m
at the edge of the spherical region. According to Hub-
ble’s law, the velocity of the galaxy is v = HR, and its
corresponding kinetic energy

K =
1
2

mv2 =
1
2

mH2R2 . (153)

In a spherical distribution of matter, the gravitational
force on a given spherical shell depends only on the
mass inside the shell. The potential energy at the edge
of the sphere is

U = −
GMm

R
= −

4πmR2ρmG
3

. (154)

Hence, the total energy is

E = K + U =
1
2

mH2R2
− Gm

4π
3

R2ρm . (155)

which has to remain constant as the universe expands.
Likewise,

2E
mR2 = H2

−
8π
3

Gρm . (156)

Since we assume that the universe is homogeneous, H
and ρm cannot be functions of R. Thus, the left-hand-
side of (156) cannot depend on the chosen distance R to
the coordinate center. However, the value of 2E/(mR2)
is time-dependent, because the distance between us and
the galaxy will change as the universe expands. Since
the mass m of our test galaxy is arbitrary, we can choose
it such that |2E/(mc2)| = 1 holds at an arbitrary moment
as long as E , 0. For different times, the left-hand-side
scales as R−2 and thus we can rewrite (156) as( ȧ

a

)2
=

8π
3

Gρm −
kc2

a2R2
0

. (157)

Note that because E is constant, k is constant too. Ac-
tually, k = 0,±1 is generally known as the curvature
constant. Throughout the subscripted “0”s indicate that
quantities (which in general evolve with time) are to be
evaluated at present epoch. Finally, we account for the
equivalence of mass and energy by including not only
the mass but also the energy density, ρ = ρmc2 + · · · and
so (157) becomes

H2
≡

( ȧ
a

)2
=

8π
3

G
ρ

c2 −
kc2

a2R2
0

. (158)

which is Friedmann equation (without cosmological con-
stant) in the Newtonian limit. (158) agrees exactly with

the equation derived from general relativity [63]. For
k = 0, the value of H fixes the so-called critical density as

ρ(k = 0) ≡ ρc =
3H2c2

8πG
. (159)

Since we know the current value of the Hubble parame-
ter to within 10%, we can compute the current value of
the critical density to within 20%. We usually hide this
uncertainty by introducing h,

H0 = 100 h km s−1 Mpc−1 , (160)

such that

ρc,0 = 2.77 × 1011h2M�/Mpc3

= 1.88 × 10−29h2g/cm3

= 1.05 × 10−5h2 GeV/cm3 . (161)

Note that since h ≈ 0.70+0.05
−0.03 a flat universe requires an

energy density of ∼ 10 protons per cubic meter.
The expansion of the universe can be compared to the

motion of a mass launched vertically from the surface
of a celestial body. The form of the orbit depends on
the initial energy. In order to compute the complete or-
bit, the mass of the main body and the initial velocity
have to be known. In cosmology, the corresponding
parameters are the mean density and the Hubble con-
stant. On the one hand, if the density exceeds the critial
density, the expansion of any spherical region will turn
to a contraction and it will collapse to a point. This
corresponds to the closed Friedmann model. On the
other hand, if ρm < ρc, the ever-expanding hyperbolic
model is obtained. These three models of the universe
are called the standard models. They are the simplest
relativistic cosmological models for Λ = 0. Models with
Λ , 0 are mathematically more complicated, but show
the same behaviour. The simple Newtonian treatment
of the expansion problem is possible because Newtonian
mechanics is approximately valid in small regions of the
universe. However, although the resulting equations
are formally similar, the interpretation of the quantities
involved is not the same as in the relativistic context.
The global geometry of Friedmann models can only be
understood within the general theory of relativity [63].

Next, we define the abundance Ωi of the different play-
ers in cosmology as their energy density relative to ρc.
For example, the dimensionless mass density parameter
is found to be

Ωm =
ρmc2

ρc
=

8πG
3H2 ρm . (162)

For simplicity, for the moment we will keep considering
scenarios with Λ = 0, but we advance the reader that

ΩΛ =
Λc2

3H2 . (163)

Now, what about our universe? On a large scale
what is the overall curvature of the universe? Does it
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have positive curvature, negative curvature, or is it flat?
By solving Einstein equations, Robertson [92, 93] and
Walker [94], showed that the three hypersurfaces of con-
stant curvature (the hyper-sphere, the hyper-plane, and
the hyper-pseudosphere) are indeed possible geometries
for a homegeneous and isotropic universe undergoing
expansion. The metric they derived, independently of
each other, is called the Friedmann-Robertson-Walker
(FRW) metric. The line element is most generally writ-
ten in the form

ds2 = c2dt2
− a2(t)

[
d%2

1 − k%2/R2 + %2dΩ2

]
, (164)

where dΩ2 = dθ2+sin2 θdφ2. It is easily seen that the spa-
tial component of the FRW metric consists of the spatial
metric for a uniformly curved space of radius R, scaled
by the square of the scale factor a(t). If the universe had
a positive curvature k = 1, then the universe would be
closed, or finite in volume. This would not mean that the
stars and galaxies extended out to a certain boundary, be-
yond which there is empty space. There is no boundary
or edge in such a universe. If a particle were to move in a
straight line in a particular direction, it would eventually
return to the starting point – perhaps eons of time later.
On the other hand, if the curvature of the space was zero
k = 0 or negative k = −1, the universe would be open. It
could just go on forever.

Using the substitution

% = Sk(r) =

 R sin(r/R) for k = +1
r for k = 0
R sinh(r/R) for k = −1

; (165)

the FRW line element can be rewritten as

ds2 = c2dt2
− a2(t)

[
dr2 + S2

k(r) dΩ2
]

; (166)

see Appendix E for details.
The time variable t in the FRW metric is the cosmolog-

ical proper time, called the cosmic time for short, and is
the time measured by an observer who sees the universe
expanding uniformly around him. The spatial variables
(%, θ, φ) or (r, θ, φ) are called the comoving coordinates
of a point in space. If the expansion of the universe
is perfectly homogeneous and isotropic, the comoving
coordinates of any point remain constant with time.

To describe the time evolution of the scale factor a(t) we
need an additional equation describing how the energy
content of the universe ρ is affected by expansion. The
first law of thermodynamics,

dU = TdS − PdV, (167)

with dQ = 0 (no heat exchange to the outside, since no
outside exists) becomes

dU = −PdV ⇒
dU
dt

+ P
dV
dt

= 0 . (168)

There is a caveat to the statement that the expansion of a
homogeneous universe is adiabatic: when particles anni-
hilate, such as electrons and positrons, this adds heat and
makes the expansion temporarily non-adiabatic. This
matters at some specific epochs in the very early uni-
verse.

For a sphere of comoving radius R0,

V =
4
3
πR3

0 a3(t) , (169)

and so

V̇ = 4πR3
0 a2 ȧ = 3

ȧ
a

V . (170)

Since U = ρV,

U̇ = ρ̇V + ρV̇ = V
(
ρ̇ + 3

ȧ
a
ρ
)
. (171)

Substituting (170) and (171) into (168) we have

V
(
ρ̇ + 3

ȧ
a
ρ + 3

ȧ
a

P
)

= 0 (172)

and thus

ρ̇ = −3
(
ρ + P

) ȧ
a
. (173)

This fluid equation describes the evolution of energy den-
sity in an expanding universe. It tells us that the ex-
pansion decreases the energy density both by dilution
and by the work required to expand a gas with pressure
P ≥ 0.

To solve this equation, we need an additional equation
of state relating P and ρ. Suppose we write this in the
form

P = wρ . (174)

In principle, w could change with time, but we will as-
sume that any time derivatives of w are negligible com-
pared to time derivatives of ρ. This is reasonable if the
equation of state is determined by “microphysics” that
is not directly tied to the expansion of the universe. The
fluid equation then implies

ρ̇

ρ
= −3(1 + w)

ȧ
a
, (175)

with solution

ρ

ρ0
=

( a
a0

)−3(1+w)
. (176)

The pressure in a gas is determined by the thermal mo-
tion of its constituents. For non-relativistic matter (a.k.a.
cosmological dust),

w =
P
ρ
∼

mv2

mc2 ∼
v
c2 � 1 , (177)
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where v is the thermal velocity of particles with mass
m. To a near-perfect approximation w = 0, implying
ρm ∝ a−3. Light, or more generally any highly relativistic
particle, has an associated pressure (radiation pressure).
Pressure is defined as the momentum transfer onto a
perfectly reflecting wall per unit time and per unit area.
Consider an isotropic distribution of photons (or another
kind of particle) moving with the speed of light. The mo-
mentum of a photon is given in terms of its energy as
p = E/c = hν/c. Consider now an area element dA of
the wall; the momentum transferred to it per unit time
is given by the momentum transfer per photon, times
the number of photons hitting the area dA per unit time.
We will assume for the moment that all photons have
the same frequency. If θ denotes the direction of a pho-
ton relative to the normal of the wall, the momentum
component perpendicular to the wall before scattering
is p⊥ = p cosθ, and after scattering p⊥ = −p cosθ; the
two other momentum components are unchanged by
the reflection. Thus, the momentum transfer per pho-
ton scattering is ∆p = 2p cosθ. The number of photons
scattering per unit time within the area dA is given by
the number density of photons, n times the area element
dA, times the thickness of the layer from which photons
arrive at the wall per unit time. The latter is given by
c cosθ, since only the perpendicular velocity component
brings them closer to the wall. Putting these terms to-
gether, we find for the momentum transfer to the wall
per unit time per unit area the expression

P(θ) = 2hν n cos2 θ . (178)

Averaging this expression over a half-sphere (only pho-
tons moving towards the wall can hit it) then yields

P =
1
3

hνn =
1
3
ρ . (179)

Then for radition, w = 1/3, implying ρrad ∝ a−4. This be-
havior also follows from a simple argument: the number
density of photons falls as n ∝ a−3, and the energy per
photon falls as hν ∝ a−1 because of cosmological redshift
(more on this below).

Next, we obtain an expression for the acceleration of
the universe. If we multiply our standard version of the
Friedmann equation by a2, we get

ȧ2 =
8πG
3c2 ρa2

−
kc2

R2
0

. (180)

Take the time derivative of (180)

2ȧä =
8πG
3c2

(
ρ̇a2 + 2ρaȧ

)
. (181)

divide by 2ȧa

ä
a

=
4πG
3c2

(
ρ̇

a
ȧ

+ 2ρ
)
, (182)

and substitutte from the fluid equation

ρ̇
a
ȧ

= −3(ρ + P) (183)

to obtain the acceleration equation

ä
a

= −
4πG
3c2 (ρ + 3P) . (184)

We see that if ρ and P are positive, the expansion of the
universe decelerates. Higher P produces stronger decel-
eration for given ρ, e.g., a radiation-dominated universe
decelerates faster than a matter-dominated universe.

In the remainder of this section, we consider a flat uni-
verse, i.e., k = 0. It is easily seen that for non-relativistic
matter, the solution to Friedmann equation (158) is given
by

a(t) =
( t

t0

)2/3
and ρ(t) =

ρ0

a3 =
ρ0t2

0

t2 , (185)

with

t0 =
2
3

1
H0

, (186)

where we have used (159). Following the same steps for a
bizarre universe, which is dominated today by radiation
pressure, yields the solution

a(t) =
( t

t0

)1/2
and ρ(t) =

ρ0

a4 =
ρ0t2

0

t2 . (187)

From this simple exercise we can picture the the time
evolution of the universe as follows. In the early
universe all matter is relativistic and radiation pressure
dominates: a(t) ∝ t1/2, ρrad ∝ t−2, and ρm ∝ a−3

∝ t−3/2.
The density of radiation then falls more quickly than
that of dust. On the other hand, when dust dominates:
a(t) ∝ t2/3, ρm ∝ t−2, and ρrad ∝ a−4

∝ t8/3, hence dust
domination increases.

EXERCISE 6.4 Using the Hubble flow v = H0r show
that the expansion of the universe changes the particle
number density according to ṅ = −3H0n.

In closing, we discuss how to measure distances in the
FRW spacetime. Consider a galaxy which is far away
from us, sufficiently far away that we may ignore the
small scale perturbations of spacetime and adopt the
FRW line element. In an expanding universe, the dis-
tance between two objects is increasing with time. Thus,
if we want to assign a spatial distance between two ob-
jects, we must specify the time t at which the distance
is the correct one. Suppose that you are at the origin,
and that the galaxy which you are observing is at a co-
moving coordinate position (r, θ, φ). We define a proper
distance, as the distance between two events A and B in
a reference frame for which they occur simultaneously
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(tA = tB). In other words, the proper distance dp(t) be-
tween two points in spacetime is equal to the length of
the spatial geodesic between them when the scale factor
is fixed at the value a(t). The proper distance between
the observer and galaxy can be found using the FRW
metric at a fixed time t,

ds2 = a2(t)
[
dr2 + S2

k(r) dΩ2
]
. (188)

Along the spatial geodesic between the observer and
galaxy, the angle (θ, φ) is constant, and thus

ds = a(t) dr . (189)

Likewise, using spatial variables (%, θ, φ) we have

ds = a(t)[1 − k(%/R)2]−1/2 dr (190)

The proper distance dp is found by integrating over the
radial comoving coordinate r

dp = a(t)
∫ r

0
dr = a(t) r , (191)

or using (165)

dp = a(t)


k−1/2 sin−1(

√
k%/R) for k = +1

% for k = 0
|k|−1/2 sinh−1(

√
|k|%/R) for k = −1

. (192)

In a flat universe, the proper distance to an object
is just its coordinate distance, dp(t) = a(t)%. Because
sin−1(x) > x and sinh−1(x) < x, in a closed universe
(k > 0) the proper distance to an object is greater than its
coordinate distance, while in an open universe (k < 0)
the proper distance to an object is less than its coordinate
distance.

EXERCISE 6.5 A civilization that wants to conquer
the universe, which is homogeneous and isotropic, and
hence is described by the FRW metric, is getting ready
to send out soldiers in all directions to invade all the
universe out to a proper distance dp. Every soldier
leaves the galaxy where the civilization was born, and
travels through the universe with its spaceship along a
geodesic, out to a distance dp from the original galaxy.
At the end of the invasion, which occurs at a fixed
time t, all the soldiers stand on a spherical surface at a
proper distance dp from their original galaxy. The total
volume that has been invaded is the volume inside this
spherical surface. What is the total volume invaded?
Answer this question for the following three cases:
(i) A flat metric (k = 0). (ii) A closed metric (k = +1)
with radius of curvature R at the cosmic time t when
the invaded volume and the proper distance dp are
measured. (iii) An open metric (k = −1) with radius
of curvature R at the cosmic time t when the invaded
volume and the proper distance dp are measured.

EXERCISE 6.6 Consider a positively curved universe
(k = 1), in which the sole contribution to the energy
density comes from non-relativistic matter. In this case
the energy density has the dependence ρm = ρm,0/a3.
(i) Write down Friedmann equation for this universe and
show that the parametric solution,

a(θ) =
4πGρm,0R2

0

3c4 (1 − cosθ) ,

t(θ) =
4πGρm,0R3

0

3c5 (θ − sinθ) , (193)

satisfies the Friedmann equation. Here θ is a dimen-
sionless parameter that runs from 0 to 2π, and R0 is
the present radius of curvature if we have normalized
the scale factor at present to a(t0) = 1. (ii) What is amax,
the maximum possible scale factor for this universe?
(iii) What is the maximum value that the physical radius
of curvature (aR0) reaches? (iv) What is the age of
the universe when this maximum radius is reached?
(v) What is tcrunch, the time at which the universe
undergoes a big crunch (that is a recollapse to a = 0)?
[Hint: Recall that ȧ = da/dt = da/dθ dθ/dt.]

EXERCISE 6.7 Consider a positively curved universe
(k = −1), in which the sole contribution to the energy
density comes from non-relativistic matter, and so the en-
ergy density has the dependence ρm = ρm,0/a3. (ii) Write
down Friedmann equation for this universe and show
that the parametric solution,

a(θ) =
4πGρm,0R2

0

3c4 (coshθ − 1) ,

t(θ) =
4πGρm,0R3

0

3c5 (sinhθ − θ) , (194)

satisfies the Friedmann equation. (ii) Compare the time
dependence of the scale factor for open, closed and
critical matter-dominated cosmological models in a
log-log plot.

C. Age and size of the Universe

In special (and general) relativity the propagation of
light is along a null geodesic (ds = 0). If we place the
observer at the origin (% = 0), and we choose a radial
null geodesic (dθ = dφ = 0), we have

cdt
a(t)

= ±
d%

[1 − k(%/R)2]1/2
, (195)

where + is for the emitted light ray and the − is for a re-
ceived one. Imagine now that one crest of the light wave
was emitted at time tem at distance %em, and received at
the origin %0 = 0 at t0, and that the next wave crest was
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FIG. 16: Cosmological redshift.

emitted at tem + ∆tem and received at t0 + ∆t0; see Fig. 16.
The two waves satisfy the relations:∫ t0

tem

dt
a(t)

= −
1
c

∫ %0

%em

d%√
1 − k(%/R)2

(196)

and ∫ t0+∆t0

tem+∆tem

dt
a(t)

= −
1
c

∫ %0

%em

d%√
1 − k(%/R)2

. (197)

Now, substract (196) from (197)∫ t0+∆t0

tem+∆tem

dt
a(t)
−

∫ t0

tem

dt
a(t)

= 0 (198)

and expand∫ t0+∆t0

tem+∆tem

dt
a(t)

=

∫ t0

tem

dt
a(t)

+

∫ t0+∆t0

t0

dt
a(t)

−

∫ tem+∆tem

tem

dt
a(t)

(199)

to obtain ∫ t0+∆t0

t0

dt
a(t)

=

∫ tem+∆tem

tem

dt
a(t)

. (200)

Any change in a(t) during the time intervals between
successive wave crests can be safely neglected, so that
a(t) is a constant with respect to the time integration.
Consequently,

∆tem

a(tem)
=

∆t0

a(t0)
, (201)

or equivalently

∆tem

∆t0
=

a(tem)
a(t0)

. (202)

The time interval between successive wave crests is the
inverse of the frequency of the light wave, related to its
wavelength by the relation c = λν. Hence, from (141) the
redshift is

z =
λ0

λem
− 1 =

a0

a(tem)
− 1 ; (203)

i.e., the redshift of a galaxy expresses how much the scale
factor has changed since the light was emitted.

The light detected today was emitted at some time tem
and, according to (203), there is a one-to-one correspon-
dence between z and tem. Therefore, the redshift z can
be used instead of time t to parametrize the history of
the universe. A given z corresponds to a time when our
universe was 1 + z times smaller than now.

Generally, the expressions for a(t) are rather compli-
cated and one cannot directly invert (203) to express the
cosmic time t ≡ tem in terms of the redshift parameter
z. It is useful, therefore, to derive a general integral
expression for t(z). Differentiating (203) we obtain

dz = −
a0

a2(t)
ȧ(t)dt = −(1 + z)H(t)dt , (204)

from which follows that

t =

∫
∞

z

dz
H(z)(1 + z)

. (205)

A constant of integration has been chosen here so that
z→∞ corresponds to the initial moment of t = 0.

To obtain the expression for the Hubble parameter H
in terms of z and the present values of H0 and Ωm,0, it is
convenient to write the Friedmann equation (158) in the
form

H2(z) +
kc2

a2
0R2

0

(1 + z)2 = Ωm,0H2
0
ρm(z)
ρm,0

, (206)

where the definitions in (162) and (203) have been used.
At z = 0, this equation reduces to

kc2

a2
0R2

0

= (Ωm,0 − 1)H2
0 , (207)

allowing us to express the current value of a0R0 in a
spatially curved universe (k , 0) in terms of H0 and
Ωm,0. Taking this into account, we obtain

H(z) = H0

√
(1 −Ωm,0)(1 + z)2 + Ωm,0 ρm(z)/ρm,0

= H0

√
(1 −Ωm,0)(1 + z)2 + Ωm,0(1 + z)3 . (208)

We can now complete our program by finding an ex-
pression for the comoving radial distance coordinate r as
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a function of the reshift z. Since photons travel on null
geodesics of zero proper time, we see directly from the
metric (166) that

r = −

∫
cdt
a(t)

= −

∫
c

dt
dz

(1 + z)dz = c
∫

dz
H(z)

, (209)

with H(z) given by (208).

As the universe expands and ages, an observer at any
point is able to see increasingly distant objects as the light
from them has time to arrive, see Fig. 17. This means
that, as time progresses, increasingly larger regions of
the universe come into causal contact with the observer.
The proper distance to the furthest observable point (the
particle horizon) at time t is the “horizon distance”, dh(t).

Again we return to the FRW metric, placing an ob-
server at the origin (% = 0) and letting the particle horizon
for this observer at time t be located at radial coordinate
distance %h. This means that a photon emitted at t = 0 at
%h will reach the observer at the origin at time t. Recalling
photons move along null geodesics (ds = 0) and consid-
ering only radially traveling photons (dθ = dφ = 0), we
find ∫ t

0

dt′

a(t′)
=

1
c

∫ %h

0

d%
[1 − k(%/R)2]1/2

, (210)

yielding

%h =


sin

[
c
∫ t

0 dt′/a(t′)
]

for k = +1

c
∫ t

0 dt′/a(t′) for k = 0

sinh
[
c
∫ t

0 dt′/a(t′)
]

for k = −1

. (211)

If the scale factor evolves with time as a(t) = tα, with
α > 1, we can see that the time integral in (211) diverges
as we approach t = 0. This would imply that the whole
universe is in causal contact. However, α = 1/2 and 2/3

in the radiation and matter-dominated eras, so there is a
horizon.

The proper distance from the origin to %h is given by

dh(t) = a(t)
∫ %h

0

d%
[1 − k(%/R)2]1/2

= a(t)
∫ t

0

cdt′

a(t′)
. (212)

For k = 0, using (185) and (187) we obtain dh = 2ct in the
radiation-dominated era, and dh(t) = 3ct in the matter-
dominated era. Now, substituting (186) into (185) we
have

a(t) =
(3

2
H0 t

)2/3

(213)

and so from (203) it follows that

t =
2
3

1
H0 (1 + z)3/2

. (214)

For the matter-dominated era, the proper horizon dis-
tance is

dh =
2c

H0 (1 + z)3/2
. (215)

For a flat universe with Ωm,0 = 1, we find that at present
time,

dh,0 = 2c/H0 = 1.85 × 1028h−1 cm = 6 h−1 Gpc . (216)

Note that because a0 = 1, we have %h,0 = dh,0.

EXERCISE 6.8 Consider a flat model containing only
matter, with Ωm,0 = 1, and present Hubble constant H0.
(i) What is the comoving distance to the horizon (z = ∞)?
(ii) What is the redshift at which the comoving distance
is half that to the horizon? (iii) What is the ratio of the age
of the universe at that redshift, to its present age? (iv) At
which redshift did the universe have half its present age?

In closing, we show that Hubble’s law is indeed an
approximation for small redshift by using a Taylor ex-
pansion of a(t),

a(t) = a(t0) + (t − t0)ȧ(t0) +
1
2

(t − t0)2ä(t0) + · · ·

= a(t0)
[
1 + (t − t0)H0 −

1
2

(t − t0)2q0H2
0 + · · ·

]
,

where q0 ≡ −ä(t0)a(t0)/ȧ2(t0) is the deceleration param-
eter (it is named “deceleration” because historically, an
accelerating universe was considered unlikely). If the
expansion is slowing down, ä < 0 and q0 > 0. For not too
large time-differences, we can use the Taylor expansion
of a(t) and write

1 − z ≈
1

1 + z
=

a(t)
a(t0)

≈ 1 + (t − t0)H0 . (217)

Hence Hubble’s law, z = (t0 − t)H0 = d/cH0, is valid as
long as z � H0(t0 − t) � 1. Deviations from its linear
form arises for z & 1 and can be used to determine q0.
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tem propagate along radial geodesics and arrive today with an apparent angular
separation !θ . The proper size of the object, l, is equal to the interval between the
emission events at the endpoints:

l =
√

−!s2 = a(tem) #(χem) !θ, (2.68)

as obtained from metric (2.2). The angle subtended by the object is then

!θ = l
a(tem) #(χem)

= l
a(η0 − χem) #(χem)

, (2.69)

where we have used the fact that the physical time tem corresponds to the conformal
time ηem = η0 − χem . If the object is close to us, that is, χem ≪ η0, then

a(η0 − χem) ≈ a(η0) , #(χem) ≈ χem,

and

!θ ≈ l
a(η0) χem

= l
D

.

We see that in this case !θ is inversely proportional to the distance, as expected.
However, if the object is located far away, namely, close to the particle horizon,
then η0 − χem ≪ η0, and

a(η0 − χem) ≪ a(η0) , #(χem) → #
(
χp

)
= const.

The angular size of the object,

!θ ∝ l
a(η0 − χem)

,

`

(✓0, �0)

(✓0 + �✓, �0)

�✓

(t1, %1)

(t0, %0 = 0)

FIG. 18: Extended object of given transverse size ` at comoving
distance %1 from the observer [95].

D. Angular diameter and luminosity distances

The angular diameter distance to an object is defined
in terms of the object’s actual size, `, and θ the angular
size of the object as viewed from earth. Consider a light
source of size ` at % = %1 and t = t1 subtending an angle
∆θ at the origin (% = 0, t = t0) as shown in Fig. 18. The
proper distance ` between the two ends of the object is
related to ∆θ by,

∆θ =
`

a(t1)%1
. (218)

We now define the angular diameter distance

dA =
`

∆θ
(219)

so that

dA = a(t1)%1 =
%1

1 + z
. (220)

In analogy with (210) we write∫ t1

0

dt
a(t)

=
1
c

∫ %1

0

d%
[1 − k(%/R)2]1/2

, (221)

From an examination point of view, only proficiency in
the k = 0 case will be expected. Hence,

%1 = c
∫ t1

0

dt
a(t)

= c
∫ z

0

dz
H(z)

, (222)

where in the last equality we used (209). Then, for a
flat universe filled with dust, the angular diameter as a
function of z is

∆θ(z) =
`H0

2c
(1 + z)3/2

(1 + z)1/2 − 1
. (223)

At low redshifts (z� 1), the angular diameter decreases
in inverse proportion to z, reaches a minimum at z = 5/4,
and then scales as z for z� 1; see Fig. 19

Perhaps the most important relation for observational
cosmology is that between the monochromatic flux den-
sity and luminosity. Start by assuming isotropic emis-
sion, so that the photons emitted by the source pass with
a uniform flux density through any sphere surround-
ing the source. We can now make a shift of the origin,
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z
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Fig. 2.12.

directions in the sky differs; this temperature difference depends on the angular
separation. The power spectrum is observed to have a series of peaks as the angular
separation is varied from large to small scales. The “first acoustic peak” is roughly
determined by the sound horizon at recombination, the maximum distance that a
sound wave in the baryon–radiation fluid can have propagated by recombination.
This sound horizon serves as a standard ruler of length ls ∼ H−1(zr ). Recombin-
ation occurs at redshift zr ≃ 1100. Since !0zr ≫ 1, we can set χem(zr ) = χp in
(2.70) and in a dust-dominated universe, where #

(
χp

)
= 2(a0 H0!0)−1 (see (2.9)),

we obtain

$θr ≃ zr H0!0

2H (zr )
≃ 1

2
z−1/2

r !
1/2
0 ≃ 0.87◦!

1/2
0 . (2.73)

We have substituted here H0/H (zr ) ≃
(
!0z3

r

)−1/2, as follows from (2.61). Note that
in Euclidean space, the corresponding angular size would be $θr ≃ tr/t0 ≈ z−3/2

r ,
or about 1000 times smaller.

The remarkable aspect of this result is that the angular diameter depends directly
only on !0, which determines the spatial curvature, and is not very sensitive to
other parameters. As we will see in Chapter 9, this is true not only for a dust-
dominated universe, as considered here, but for a very wide range of cosmological
models, containing multiple matter components. Hence, measuring the angular
scale of the first acoustic peak has emerged as the leading and most direct method
for determining the spatial curvature. Our best evidence that the universe is spatially
flat (!0 = 1), as predicted by inflation, comes from this test.

FIG. 19: For a flat univrese filled with dust dA(z) has a maximum
at z = 5/4, corresponding to the redshift at which objects of a
given proper size `will subtend the minimum angle ∆θ on the
sky. At redshifts z > 5/4 objects of a given proper size ` will
appear bigger on the sky with increasing z [95].

and consider the FRW metric as being centred on the
source. However, because of homogeneity, the comov-
ing distance between the source and the observer %1 is the
same as we would calculate when we place the origin at
our location. The photons from the source are therefore
passing through a sphere, on which we sit, of proper
surface area 4πa2

0%
2
1. However, the redshift still affects

the flux density in four further ways: (i) photon energies
are redshifted, reducing the flux density by a factor 1+z;
(ii) photon arrival rates are time dilated, reducing the
flux density by a further factor 1 + z; (iii) opposing this,
the bandwidth dν is reduced by a factor 1 + z, which in-
creases the energy flux per unit bandwidth by one power
of 1 + z; (iv) finally, the observed photons at frequency
ν0 were emitted at frequency (1 + z)ν0. Overall, the flux
density is the luminosity at frequency (1 + z)ν0, divided
by the total area, divided by (1 + z):

Fν(ν0) =
Lν([1 + z]ν0)

4πa2
0%

2
1(r)(1 + z)

=
Lν(ν0)

4πa2
0%

2
1(1 + z)1+α

, (224)

where the second expression assumes a power-law spec-
trum L ∝ ν−α. We can integrate over ν0 to obtain the
corresponding total or bolometric formulae

F =
L

4πa2
0%

2
1(1 + z)2

. (225)

The luminosity distance dL is defined to satisfy the rela-
tion (36). Thus,

dL = (1 + z)%1 = (1 + z)2dA , (226)

where we have taken a0 = 1.



36

VII. THE FORCE AWAKENS

Independent cosmological observations have un-
masked the presence of some unknown form of energy
density, related to otherwise empty space, which ap-
pears to dominate the recent gravitational dynamics of
the universe and yields a stage of cosmic acceleration.
We still have no solid clues as to the nature of such dark
energy (or perhaps more accurately dark pressure). The
cosmological constant is the simplest possible form of
dark energy because it is constant in both space and
time, and provides a good fit to the experimental data as
of today. In this section we will discuss the many obser-
vations that probes the dark energy and we will describe
the generalities of the concordance model of cosmology
with Λ , 0.

A. Supernova Cosmology

The expansion history of the cosmos can be deter-
mined using as a “standard candle” any distinguishable
class of astronomical objects of known intrinsic bright-
ness that can be identified over a wide distance range. As
the light from such beacons travels to Earth through an
expanding universe, the cosmic expansion stretches not
only the distances between galaxy clusters, but also the
very wavelengths of the photons en route. The recorded
redshift and brightness of each these candles thus pro-
vide a measurement of the total integrated exansion of
the universe since the time the light was emitted. A col-
lection of such measurements, over a sufficient range of
distances, would yield an entire historical record of the
universe’s expansion.

Type Ia supernovae (SNe Ia) are the best cosmological
yard sticks in the market. They are precise distance indi-
cators because they have a uniform intrinsic brightness
due to the similarity of the triggering white dwarf mass
(i.e., MCh = M�) and consequently the amount of nu-
clear fuel available to burn. This makes SNe Ia the best
(or at least most practical) example of “standardizable
candles” in the distant universe.

Before proceeding, we pause to present some nota-
tion. The apparent magnitude (m) of a celestial object
is a number that is a measure of its apparent bright-
ness as seen by an observer on Earth. The smaller the
number, the brighter a star appears. The scale used to
indicate magnitude originates in the Hellenistic practice
of dividing stars visible to the naked eye into six magni-
tudes. The brightest stars in the night sky were said to
be of first magnitude (m = 1), whereas the faintest were
of sixth magnitude (m = 6), which is the limit of human
visual perception (without the aid of a telescope). In
1856, Pogson formalized the system by defining a first
magnitude star as a star that is 100 times as bright as a
sixth-magnitude star, thereby establishing a logarithmic
scale still in use today [96]. This implies that a star of
magnitude m is 1001/5

' 2.512 times as bright as a star

lowed up. This approach also made it possible to use the
Hubble Space Telescope for follow-up light-curve observa-
tions, because we could specify in advance the one-square-
degree patch of sky in which our wide-field imager would
find its catch of supernovae. Such specificity is a require-
ment for advance scheduling of the HST. By now, the
Berkeley team, had grown to include some dozen collabo-
rators around the world, and was called Supernova Cos-
mology Project (SCP). 

A community effort
Meanwhile, the whole supernova community was making
progress with the understanding of relatively nearby su-
pernovae. Mario Hamuy and coworkers at Cerro Tololo
took a major step forward by finding and studying many
nearby (low-redshift) type Ia supernovae.7 The resulting
beautiful data set of 38 supernova light curves (some
shown in figure 1) made it possible to check and improve
on the results of Branch and Phillips, showing  that type
Ia peak brightness could be standardized.6,7

The new supernovae-on-demand techniques that per-
mitted systematic study of distant supernovae and the im-
proved understanding of brightness variations among
nearby type Ia’s spurred the community to redouble its ef-
forts. A second collaboration, called the High-Z Supernova
Search and led by Brian Schmidt of Australia’s Mount
Stromlo Observatory, was formed at the end of 1994. The
team includes many veteran supernova experts. The two
rival teams raced each other over the next few years—oc-
casionally covering for each other with observations when
one of us had bad weather—as we all worked feverishly to
find and study the guaranteed on-demand batches of 
supernovae.

At the beginning of 1997, the SCP team presented the
results for our first seven high-redshift supernovae.8 These
first results demonstrated the cosmological analysis tech-
niques from beginning to end. They were suggestive of an
expansion slowing down at about the rate expected for the
simplest inflationary Big Bang models, but with error bars
still too large to permit definite conclusions.

By the end of the year, the error bars began to tighten,
as both groups now submitted papers with a few more su-
pernovae, showing evidence for much less than the ex-
pected slowing of the cosmic expansion.9–11 This was be-
ginning to be a problem for the simplest inflationary
models with a universe dominated by its mass content.

Finally, at the beginning of 1998, the two groups pre-
sented the results shown in figure 3.12,13

What’s wrong with faint supernovae? 
The faintness—or distance—of the high-redshift super-
novae in figure 3 was a dramatic surprise. In the simplest
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Exploding White Dwarfs

Aplausible, though unconfirmed, scenario would explain
how all type Ia supernovae come to be so much alike,

given the varied range of stars they start from. A lightweight
star like the Sun uses up its nuclear fuel in 5 or 10 billion
years. It then shrinks to an Earth-sized ember, a white dwarf,
with its mass (mostly carbon and oxygen) supported against
further collapse by electron degeneracy pressure. Then it
begins to quietly fade away.

But the story can have a more dramatic finale if the white
dwarf is in a close binary orbit with a large star that is still
actively burning its nuclear fuel. If conditions of proximity
and relative mass are right, there will be a steady stream of
material from the active star slowly accreting onto the white
dwarf. Over millions of years, the dwarf’s mass builds up
until it reaches the critical mass (near the Chandrasekhar
limit, about 1.4 solar masses) that triggers a runaway ther-
monuclear explosion—a type Ia supernova.

This slow, relentless approach to a sudden cataclysmic
conclusion at a characteristic mass erases most of the orig-
inal differences among the progenitor stars. Thus the light
curves (see figure 1) and spectra of all type Ia supernovae
are remarkably similar. The differences we do occasionally
see presumably reflect variations on the common theme—
including differences, from one progenitor star to the next,
of accretion and rotation rates, or different carbon-to-oxy-
gen ratios.

Figure 3. Observed magnitude
versus redshift is plotted for

well-measures distant12,13 and
(in the inset) nearby7 type Ia su-
pernovae. For clarity, measure-
ments at the same redshift are

combined. At redshifts beyond
z = 0.1 (distances greater than
about 109 light-years), the cos-

mological predictions (indi-
cated by the curves) begin to

diverge, depending on the as-
sumed cosmic densities of

mass and vacuum energy. The
red curves represent models

with zero vacuum energy and
mass densities ranging from the
critical density rc down to zero
(an empty cosmos). The best fit

(blue line) assumes a mass 
density of about rc /3 plus a

vacuum energy density twice
that large—implying an accel-

erating cosmic expansion.

the

d

d

FIG. 20: Observed magnitude (and relative brightness) versus
redshift is plotted for well-measured distant [97, 98] and (in the
inset) nearby [99, 100] SNe Ia. For clarity, measurements at the
same redshift are combined. At redshifts beyond z = 0.1 (dis-
tances greater than about 109 ly), the cosmological predictions
(indicated by the curves) begin to diverge, depending on the
assumed cosmic densities of mass and vacuum energy. The red
curves represent models with zero vacuum energy and mass
densities ranging from ρc down to zero (an empty cosmos).
The best fit (blue line) assumes a mass density of about ρc/3
plus a vacuum energy density twice that large, implying an
accelerating cosmic expansion [101, 102].

of magnitude m + 1. The apparent magnitude, m, in the
band, x, is defined as

mx −mx,0 = −2.5 log10(Fx/Fx,0) , (227)

where Fx is the observed flux in the band x, whereas
mx,0 and Fx,0 are a reference magnitude, and reference
flux in the same band x, respectively. A difference in
magnitudes, ∆m = m1 − m2, can then be converted to a
relative brightness as I2/I1 ≈ 2.512∆m.

In Fig. 20 we show the observed magnitude (and rel-
ative brightness) versus redshift for well-measured dis-
tant and (in the inset) nearby SNe Ia. The faintness
(or distance) of the high-redshift supernovae in Fig. 20
comes as a dramatic surprise. In the (simplest) stan-
dard cosmological models described in Sec. VI B, the
expansion history of the cosmos is determined entirely
by its mass density. The greater the density, the more
the expansion is slowed by gravity. Thus, in the past, a
high-mass-density universe would have been expanding
much faster than it does today. So one should not have
to look far back in time to especially distant (faint) su-
pernovae to find a given integrated expansion (redshift).
Conversely, in a low-mass-density universe one would
have to look farther back. But there is a limit to how low
the mean mass density could be. After all, we are here,
and the stars and galaxies are here. All that mass surely
puts a lower limit on how far-that is, to what level of
faintness we must look to find a given redshift. How-
ever, the high-redshift supernovae in Fig. 20 are fainter
than would be expected even for an empty cosmos.
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cosmological models, the expansion history of the cosmos
is determined entirely by its mass density. The greater the
density, the more the expansion is slowed by gravity. Thus,
in the past, a high-mass-density universe would have been
expanding much faster than it does today. So one should-
n’t have to look far back in time to especially distant (faint)
supernovae to find a given integrated expansion (redshift). 

Conversely, in a low-mass-density universe one would
have to look farther back. But there is a limit to how low
the mean mass density could be. After all, we are here, and
the stars and galaxies are here. All that mass surely puts
a lower limit on how far—that is, to what level of faint-
ness—we must look to find a given redshift. The high-
redshift supernovae in figure 3 are, however, fainter than
would be expected even for an empty cosmos.

If these data are correct, the obvious implication is
that the simplest cosmological model must be too simple.
The next simplest model might be one that Einstein en-
tertained for a time. Believing the universe to be static, he
tentatively introduced into the equations of general rela-
tivity an expansionary term he called the “cosmological
constant” (L) that would compete against gravitational col-
lapse. After Hubble’s discovery of the cosmic expansion,
Einstein famously rejected L as his “greatest blunder.” In
later years, L came to be identified with the zero-point
vacuum energy of all quantum fields.

It turns out that invoking a cosmological constant al-
lows us to fit the supernova data quite well. (Perhaps there
was more insight in Einstein’s blunder than in the best ef-
forts of ordinary mortals.) In 1995, my SCP colleague Ariel
Goobar and I had found that, with a sample of type Ia su-
pernovae spread over a sufficiently wide range of dis-
tances, it would be possible to separate out the competing
effects of the mean mass density and the vacuum-energy
density.14

The best fit to the 1998 supernova data (see figures 3
and 4) implies that, in the present epoch, the vacuum en-
ergy density rL is larger than the energy density attribut-
able to mass (rmc2). Therefore, the cosmic expansion is now
accelerating. If the universe has no large-scale curvature,

as the recent measurements of the cosmic microwave back-
ground strongly indicate, we can say quantitatively that
about 70% of the total energy density is vacuum energy
and 30% is mass. In units of the critical density rc, one
usually writes this result as

WL ! rL/rc " 0.7 and Wm ! rm/rc " 0.3.

Why not a cosmological constant?
The story might stop right here with a happy ending—a
complete physics model of the cosmic expansion—were it
not for a chorus of complaints from the particle theorists.
The standard model of particle physics has no natural
place for a vacuum energy density of the modest magni-
tude required by the astrophysical data. The simplest es-
timates would predict a vacuum energy 10120 times greater.
(In supersymmetric models, it’s “only” 1055 times greater.)
So enormous a L would have engendered an acceleration
so rapid that stars and galaxies could never have formed.
Therefore it has long been assumed that there must be
some underlying symmetry that precisely cancels the vac-
uum energy. Now, however, the supernova data appear to
require that such a cancellation would have to leave a re-
mainder of about one part in 10120. That degree of fine tun-
ing is most unappealing.

The cosmological constant model requires yet another
fine tuning. In the cosmic expansion, mass density be-
comes ever more dilute. Since the end of inflation, it has
fallen by very many orders of magnitude. But the vacuum
energy density rL, a property of empty space itself, stays
constant. It seems a remarkable and implausible coinci-
dence that the mass density, just in the present epoch, is
within a factor of 2 of the vacuum energy density.

Given these two fine-tuning coincidences, it seems
likely that the standard model is missing some funda-
mental physics. Perhaps we need some new kind of accel-
erating energy—a “dark energy” that, unlike L, is not con-
stant. Borrowing from the example of the putative
“inflaton” field that is thought to have triggered inflation,
theorists are proposing dynamical scalar-field models and
other even more exotic alternatives to a cosmological con-
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Figure 4. The history of cosmic 
expansion, as measured by the
high-redshift supernovae (the black
data points), assuming flat cosmic
geometry. The scale factor R of the
universe is taken to be 1 at pres-
ent, so it equals 1/(1 + z). The
curves in the blue shaded region
represent cosmological models in
which the accelerating effect of
vacuum energy eventually over-
comes the decelerating effect of
the mass density. These curves as-
sume vacuum energy densities
ranging from 0.95 rc (top curve)
down to 0.4 rc. In the yellow
shaded region, the curves repre-
sent models in which the cosmic
expansion is always decelerating
due to high mass density. They as-
sume mass densities ranging (left to
right) from 0.8 rc up to 1.4 rc. In
fact, for the last two curves, the ex-
pansion eventually halts and re-
verses into a cosmic collapse.

FIG. 21: The history of cosmic expansion, as measured by the
high-redshift supernovae (the black data points), assuming flat
cosmic geometry. The scale factor a of the universe is taken to be
1 at present, so it equals 1/(1+z). The curves in the blue shaded
region represent cosmological models in which the accelerating
effect of vacuum energy eventually overcomes the decelerating
effect of the mass density. These curves assume vacuum energy
densities ranging from 0.95 ρc (top curve) down to 0.4 ρc. In the
yellow shaded region, the curves represent models in which
the cosmic expansion is always decelerating due to high mass
density. They assume mass densities ranging (left to right) from
0.8 ρc up to 1.4 ρc. In fact, for the last two curves, the expansion
eventually halts and reverses into a cosmic collapse [101].

If these data are correct, the obvious implication is
that the three simplest models of cosmology introduced
in Sec. VI B must be too simple. The next to simplest
model includes an expansionary term in the equation of
motion driven by the cosmological constant Λ, which
competes against gravitational collapse. The best fit to
the 1998 supernova data shown in Figs. 20 and 21 implies
that, in the present epoch, the vacuum energy density ρΛ

is larger than the energy density attributable to mass ρm.
Therefore, the cosmic expansion is now accelerating.

To accommodate SNe Ia data we must add an addi-
tional term into the Friedmann equation (158),

H2 =
8π
3

G
ρ

c2 −
kc2

a2R2
0

+
Λc2

3
. (228)

The Λ term also modifies the acceleration equation (184),
which becomes

ä
a

=
Λc2

3
−

4πG
3c2 (ρ + 3P) , (229)

and H(z) in (208) is now given by

H(z) = H0

{
Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + ΩΛ

+ (1 −Ω0)(1 + z)2
}1/2

, (230)

where

Ω = Ωm + Ωrad + ΩΛ , (231)

and Ωrad is the density fraction of relativistic matter
(radiation). We might note in passing that the quantity
kc2/(a2R2

0H2
0) is sometimes referred to as Ωk. This usage

is unfortunate, because it encourages us to think of
curvature as a contribution to the energy density of the
universe, which is incorrect.

EXERCISE 7.1 Imagine a class of astronomical objects
that are both standard candles and standard yardsticks.
In other words, we know both their luminosities L and
their physical sizes `. Recall that the apparent brightness
I of an object is its flux on Earth divided by its angular
area, or solid angle on the sky, i.e. I = F /θ2, where θ the
angular size. How does the apparent brightness depend
on redshift for a general cosmological model, for these
objects with fixed L and `?

B. Cosmic Microwave Background

The cosmic microwave background (CMB) radiation
was discovered in 1964 by Penzias and Wilson, using an
antenna built for satellite communication [103]. The ra-
diation was acting as a source of excess noise (or “static”)
in the radio receiver. Eventually, it became obvious
that the source of noise was actually a signal that was
coming from outside the Galaxy. Precise measurements
were made at wavelength λ = 7.35 cm. The intensity
of this radiation was found not to vary by day or night
or time of the year, nor to depend on the direction to a
precision of better than 1%. Almost immediately after
its detection it was concluded that this radiation comes
from the universe as a whole: a blackbody emission of
hot, dense gas (temperature T ∼ 3000 K, peak wave-
length λmax ∼ 1000 nm) redshifted by a factor of 1000 to
λmax ∼ 1 mm and T ∼ 3 K [104]. A compilation of exper-
imental measurements in the range 0.03 cm . λ . 75 cm
revealed an accurate blackbody spectrum, see Fig. 22.
Actually, according to the FIRAS (Far InfraRed Abso-
lute Spectrometer) instrument aboard the COBE (Cosmic
Background Explorer) satellite, which measured a temper-
ature of T0 = 2.726±0.010 K, the CMB is the most perfect
blackbody ever seen [106].

The CMB photons we see today interacted with matter
for the last time some 380 kyr after the bang. Photon
decoupling occurs when the temperature has dropped
to a point where there are no longer enough high energy
photons to keep hydrogen ionized: 1Hγ /� e−p+. This
era is known as recombination, even though the atomic
constituents had never been combined prior. The ion-
ization potential of hydrogen is 13.6 eV (i.e., T ∼ 105 K),
but recombination occurs at Trec ∼ 3000 K. This is
because the low baryon to photon ratio, η ≈ 5 × 10−10,
allows the high energy tail of the Planck distribution
to keep the comparatively small number of hydrogen
atoms ionized until this much lower temperature.

EXERCISE 7.2 (i) For blackbody radiation, the energy
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Figure 1. Precise measurements of the CMB spectrum. The line represents a 2.73 K
blackbody, which describes the spectrum very well, especially around the peak of inten-
sity. The spectrum is less well constrained at frequencies of 3 GHz and below (10 cm
and longer wavelengths). (References for this figure are at the end of this section under
“CMB Spectrum References.”)
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FIG. 22: The CMB blackbody spectrum as confirmed by mea-
surements over a broad range of wavelengths [105].

density per unit frequency is given by

uν dν =
8πhν3dν

c3[exp(hν/kT) − 1]
. (232)

Since the energy of one photon is hν, the number density
of photons is given by the same expression above
divided by hν. Calculate the present density of photons
in the universe, knowing that the CMB temperature is
T0 ' 2.726 K. [Hint: you will find it useful to know that∫

x2dx/(ex
− 1) ' 2.404.] (ii) If deuterium measurements

require a baryon to photon ratio of η = 5.5 × 10−10, what
must the current density of baryons be? (iii) Assuming
that the Hubble constant is H0 = 70 km s−1 Mpc−1,
calculate what Ωb is.

Before the recombination epoch the universe was an
opaque “fog” of free electrons and became transparent to
photons afterwards. Therefore, when we look at the sky
in any direction, we can expect to see photons that orig-
inated in the “last-scattering surface.” This hypothesis
has been tested very precisely by the observed distribu-
tion of the CMB; see Fig. 23. The large photon-to-nucleon
ratio implies that it is very unlikely for the CMB to be
produced in astrophysical processes such as the absorp-
tion and re-emission of starlight by cold dust, or the
absorption or emission by plasmas. Before the recombi-
nation epoch, Compton scattering tightly coupled pho-
tons to electrons, which in turn coupled to protons via
electomagnetic interactions. As a consequence, photons
and nucleons in the early universe behaved as a single
“photon-nucleon fluid” in a gravitational potential well
created by primeval variations in the density of matter.
Outward pressure from photons, acting against the in-
ward force of gravity, set up acoustic oscillations that
propagated through the photon-nucleon fluid, exactly
like sound waves in air. The frequencies of these oscilla-
tions are now seen imprinted on the CMB temperature
fluctuations. Gravity caused the primordial density per-
turbations across the universe to grow with time. The

FIG. 23: The CMB over the entire sky, color-coded to represent
differences in temperature from the average 2.726 K: the color
scale ranges from +300 µK (red) to 300 µK (dark blue), repre-
senting slightly hotter and colder spots (and also variations in
density.) Results are from the WMAP satellite [107] and the
Planck mission [108].

temperature anisotropies in the CMB are interpreted as a
snapshot of the early stages of this growth, which even-
tually resulted in the formation of galaxies [109, 110].

The full sky CMB temperature anisotropy map, as
measured by the Wilkinson Microwave Anisotropy
Probe (WMAP) [107] and the Planck mission [108], is
shown in Fig. 23. It is convenient to expand the differ-
ence ∆T(n̂) between the CMB temperature observed in
a direction given by the unit vector n̂ = (θ, φ) and the
present mean value T0 of the temperature in spherical
harmonics

∆T(n̂) ≡ T(n̂) − T0 =

∞∑
l=0

∑
|m|≤l

almYlm , (233)

where

T0 =
1

4π

∫
d2n̂ T(n̂) , (234)

alm =

∫
∆T(n̂) Ylm(n̂) dΩ , (235)

and where Ω denotes the solid angle parametrized by the
pair (θ, φ). The set {Ylm} is complete and orthonormal,
obeying ∫

dΩ Yl1m1 (Ω) Yl2m2 (Ω) = δl1l2 δm1m2 . (236)

Since ∆T(n̂) is real, we are interested in the real-valued,
orthonormal Ylm’s, defined by

Ylm(θ, φ) = N(l,m)


Pl

m(x)(
√

2 cos(mφ)) m > 0
Pl(x) m = 0
Pl

m(x)(
√

2 sin(mφ)) m < 0
,

(237)
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where

N(l,m) =

√
(2l + 1)(l −m)!

4π (l + m)!
(238)

is a normalization-factor,

Pm
l (x) =

(1 − x2)m/2

2ll!
dm+l

dxm+l
(x2
− 1)l (239)

is the associated Legendre polynomial, Pl = Pl
m=0 is the

Legendre polynomial, and x ≡ cosθ; for further details
see e.g. [111].

The lowest multipole is the l = 0 monopole, equal
to the average full-sky flux and is fixed by normal-
ization (234). The higher multipoles (l ≥ 1) and their
amplitudes alm correspond to anisotropies. A nonzero
m corresponds to 2 |m| longitudinal “slices” (|m| nodal
meridians). There are l+1−|m| latitudinal “zones” (l−|m|
nodal latitudes). In Fig. 24 we show the partitioning
described by some low multipole moments.

EXERCISE 7.3 At every point in the sky, one observes a
blackbody spectrum, with temperature T(θ). The largest
anisotropy is in the l = 1 (dipole) first spherical har-
monic, with amplitude 3.355±0.008 mK [113]. The dipole
is interpreted to be the result of the Doppler shift caused
by the solar system motion relative to the nearly isotropic
blackbody field, as broadly confirmed by measurements
of the radial velocities of local galaxies. Show that the
motion of an observer with velocity β = v/c relative to
an isotropic Planckian radiation field of temperature T0
produces a Doppler-shifted temperature pattern

T(θ) ≈ T0

[
1 + β cosθ +

β2

2
cos(2θ) + O(β3)

]
. (240)

It is easily seen that the alm coefficients are frame-
dependent. Note that a simple rotation in the φ coor-
dinate will change the sinφ, cosφ part of the spherical
harmonic for m , 0 and a rotation in the θ coordinate
will change the associated Legendre polynomial part for
l , 0. So only the ` = m = 0 monopole coefficient is co-
ordinate independent. To combat this problem, we use
the power spectrum defined by

Cl ≡
1

2l + 1

l∑
m=−l

a2
lm . (241)

A brief Cl initiation is provided in Fig. 26.

EXERCISE 7.4 Show that the power spectrum Cl is
invariant under rotations.

To get a rough understanding of the power spec-
trum we can divide up the multipole representation
into super-horizon and sub-horizon regions as shown in

Fig. 26. The angular scale corresponding to the particle
horizon size is the boundary between super- and sub-
horizon scales. The size of a causally connected region
on the surface of last scattering is important because it
determines the size over which astrophysical processes
can occur. Normal physical processes can act coherently
only over sizes smaller than the particle horizon. The rel-
ative size of peaks and locations of the power spectrum
gives information about cosmological parameters [114].
In Fig. 25 we show the influence of several cosmolog-
ical parameters on the power spectrum. For historical
reasons, the quantity usually used in the multipole rep-
resentation is

∆T ≡

[
l(l + 1)

2π
Cl

]1/2

. (242)

As an illustration, we sketch how to use the power
spectrum to determine the curvature of space. At re-
combination the universe is already matter-dominated,
so we can substitute zls ' 1100 into (215) to give an esti-
mate of the horizon distance at the CMB epoch

dh,ls =
2c

H0(1 + z)3/2
≈ 0.23 Mpc . (243)

This is the linear diameter of the largest causally con-
nected region observed for the CMB, `ls. Therefore, sub-
stituting (243) into (223) we find today’s angular diame-
ter of this region in the sky

θ =
1

(1 + z)1/2 − 1
= 0.03 ≈ 1.8◦ . (244)

The reason for this “causality problem” is that the uni-
verse expands slower than light travels. Namely, as we
have seen, when the age of the universe increases the
part observable to us increases linearly, ∝ ct, while the
scale factor increases only with t2/3 (or t1/2). Thus we
see more and more regions that were never in causal
contact for a radiation or matter-dominated universe.
We note that the sound horizon has approximately the
same angular size, because of vs ∼ c/

√
3. The sound

horizon serves as a ruler at fixed redshift zls to measure
the geometry of spacetime. Moreover, the fluid of pho-
tons and nucleons performs acoustic oscillations with its
fundamental frequency connected to the sound horizon
plus higher harmonics. The relative size of peaks and
locations then gives information about cosmological pa-
rameters. The first panel of Fig. 25 shows that, for a flat
universe (Ωtot ≈ 1, the first peak sits at θ ≈ 1◦ as we have
found in our simple estimate (244). In Fig. 25 we dis-
play a compilation of measurements of the CMB angular
power spectrum. The data agree with high significance
with models when they input dark energy as providing
≈ 70% of the energy in the universe, and when the total
energy density ρ equals the critical density. The data
also indicate that the amount of normal baryonic matter
in the universe Ωb is only 4% of the critical density. What
is the other 96%?
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FIG. 24: Nodal lines separating excess and deficit regions of sky for various (l,m) pairs. The top row shows the (0, 0) monopole,
and the partition of the sky into two dipoles, (1, 0) and (1, 1). The middle row shows the quadrupoles (2, 0), (2, 1), and (2, 2). The
bottom row shows the l = 3 partitions, (3, 0), (3, 1), (3, 2), and (3, 3) [112]. 16.5 Inflation
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Figure 16.4: The influence of several cosmological parameters on the angular power spectrum
of the CMB.

is the distance a photon travelled freely after its last scattering at tls. Thus the maximal
angular separation of a causally connected points is with l = ctls(1 + zls)

ϑ =
(1 + zls)tls

t0
≈ 0.02 ≈ 1◦ (16.13)

The reason for this “causality problem” is that the universe expands slower than light
travels: As the age of the universe increases, the part observable to us increases linearly, ∝ ct,
while the scale factor increases only with t2/3 or (t1/2). Thus we see more and more regions
that were never in causal contact for a radiation or matter-dominated universe.

The sound horizon has approximately the same angular size, because of vs ≈ c/
√

3. The
exact size depends among other on the cosmological model: The sound horizon serves as a
ruler at fixed redshift zls to measure the geometry of space-time. Moreover, the fluid of pho-
tons and nucleons performs acoustic oscillations with its fundamental frequency connected
to the sound horizon plus higher harmonics. The relative size of peaks and locations gives
information about cosmological parameters. Figure 16.4 shows the influence of several cos-
mological parameters on the angular power spectrum as function of ℓ ∼ π/ϑ. The first panel
shows that the first peak sits indeed at ℓ ≈ 100 (or ϑ ∼ 1◦) for a flat Universe, as we have
found in our simple estimate (16.13). Observations by the WMAP satellite confirm with high
significance the value for Ωb from BBN, for ΩΛ from type Ia supernovae, and that we live in
a flat Universe.

16.5 Inflation

Shortcomings of the standard big-bang model
• Causality or horizon problem: why are even causally disconnected regions of the universe

homogeneous, as we discussed for CMB?
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FIG. 25: Influence of several cosmological parameters on the
angular power spectrum of the CMB [16].

There is a strong astrophysical evidence for a signif-
icant amount of nonluminous matter in the universe
referred to as cold dark matter (CDM). For example,
observations of the rotation of galaxies suggest that they
rotate as they had considerably more mass than we can
see [115–117]. Similarly, observations of the motions
of galaxies within clusters also suggest they have
considerably more mass than can be seen [118]. The
most compelling evidence for CDM is that observed at
the Bullet Cluster [119]. In Fig. 28 we show a composite
image of the Bullet Cluster (1E 0657-558) that shows the
X-ray light detected by Chandra in purple, (an image
from Magellan and the Hubble space telescope of) the

optical light in white and orange, and the CDM map
(drwan up using data on gravitational lensing from
Magellan and European Space Observatory telescopes
at Paranal) in blue. Galaxy clusters contain not only the
galaxies (∼ 2% of the mass), but also intergalactic plasma
(∼ 10% of the mass), and (assuming the null hypothesis)
CDM (∼ 88% of the mass). Over time, the gravitational
attraction of all these parts naturally push all the parts
to be spatially coincident. If two galaxy clusters were to
collide/merge, we will observe each part of the cluster to
behave differently. Galaxies will behave as collisionless
particles but the plasma will experience ram pressure.
Throughout the collision of two clusters, the galaxies
will then become separated from the plasma. This is
seen clearly in the Bullet Cluster, which is undergoing
a high-velocity (around 4500 km/s) merger, evident
from the spatial distribution of the hot, X-ray emitting
gas. The galaxies of both concentrations are spatially
separated from the (purple) X-ray emitting plasma.
The CDM clump (blue), revealed by the weak-lensing
map, is coincident with the collisionless galaxies, but
lies ahead of the collisional gas. As the two clusters
cross, the intergalactic plasma in each cluster interacts
with the plasma in the other cluster and slows down.
However, the dark matter in each cluster does not
interact at all, passing right through without disruption.
This difference in interaction causes the CDM to sail
ahead of the hot plasma, separating each cluster into
two components: CDM (and colissionless galaxies) in
the lead and the hot interstellar plasma lagging behind.
What might this nonluminous matter in the universe
be? We do not know yet. It cannot be made of ordinary
(baryonic) matter, so it must consist of some other sort
of elementary particle [120] .

EXERCISE 7.5 We will examine galaxy rotation curves
and show that they imply the existence of dark mat-
ter. (i) Recall that the orbital period T is given by
T

2 = 4π2a3/GM. Write down an expression that relates
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on these scales.
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• the composition of the Universe: f(⌦B,⌦CDM ,⌦HDM ,⌦⌫ ,⌦�)

• the origin of structure

What makes these parameters even more important and what makes CMB-
cosmology such a hot subject is that in the near future measurements of the CMB
angular power spectrum will determine these parameters with the unprecedented
precision of a few % (Jungman et al. 1996).
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Figure 2. Simple Maps and their Power Spectra. If a full-sky CMB map

has only a dipole (top), it’s power spectrum is a delta function at ` = 1 . If a map

has only temperature fluctuations on an angular scale of ⇠ 7� (middle) then all of

the power is at ` ⇠ 10. If all the hot and cold spots are even smaller (bottom) then

the power is at high `.

3. What is the CMB power spectrum?

Similar to the way sines and cosines are used in Fourier decompositions of arbi-
trary functions on flat space, spherical harmonics can be used to make decompo-
sitions of arbitrary functions on the sphere. Thus the CMB temperature maps

5

FIG. 26: Left panel. Illustrative sky maps and their angular power spectra. If a full-sky CMB map has only a dipole (top), its
power spectrum is a delta function at l = 1. If a map has only temperature fluctuations on an angular scale of ∼ 7◦ (middle) then
all of the power is at l ∼ 10. If all the hot and cold spots are even smaller (bottom) then the power is at high l. Right panel
Simplified CMB power spectrum. The CMB power spectrum can be crudely divided into three regions. The Sachs-Wolfe Plateau
caused by the scale independence of gravitational potential fluctuations which dominate the spectrum at large super-horizon
scales. The horizon is the angular scale corresponding to ctls. The Doppler peaks on scales slightly smaller than the horizon are
due to resonant acoustic oscillations. At smaller scales there is nothing because the finite thickness of the surface of last scattering
averages small scale fluctuations along the line of sight. Diffusion damping (photons diffusing out of small scale fluctuations)
also suppresses power on these scales [114].

Angular scale (degrees)

Multipole index `

�
T

(µ
K

)

l

FIG. 27: A compilation of measurements of the CMB angular
power spectrum spanning the region 2 . l . 1500. The best fit
of the ΛCDM model is also shown.

the orbital period and the orbital velocity for a circular
orbit, and then write down an expression that relates the
orbital velocity with the mass enclosed within R. (ii) The
Sun is 8 kpc from the center of the Milky Way, and its
orbital velocity is 220 km/s. Use your expression from
(i) to determine roughly how much mass is contained

in a sphere around the center of the Milky Way with a
radius equal to 8 kpc? (iii) Assume that the Milky Way
is made up of only luminous matter (stars) and that the
Sun is at the edge of the galaxy (not quite true, but close).
What would you predict the orbital velocity to be for a
star 30 kpc from the center? and for 100 kpc? (iv) Obser-
vations show that galaxy rotation curves are flat: stars
move at the same orbital velocity no matter how far they
are from the center. How much mass is actually con-
tained within a sphere of radius 30 kpc? 100 kpc? Take
the orbital velocity at these radii to be the same as the
orbital velocity of the Sun. (v) What do you conclude
from all of this about the contents of our galaxy?

C. ΛCDM

The concordance model of cosmology predicts the
evolution of a spatially flat expanding Universe filled
with dark energy, dark matter, baryons, photons, and
three flavors of left- handed (that is, one helicity state
νL) neutrinos (along with their right-handed antineu-
trinos νR. The best fit to the most recent data from
the Planck satellite yields the following parameters:
Ωm,0 = 0.308 ± 0.013, Ωb,0h2 = 0.02234 ± 0.00023,
ΩCDM,0h2 = 0.1189 ± 0.0022, h = 0.678 ± 0.009, and
1 −Ω0 < 0.005 [121]. Note, however, that the data only
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FIG. 28: The Bullet Cluster.

measure accurately the acoustic scale, and the relation to
underlying expansion parameters (e.g., via the angular-
diameter distance) depends on the assumed cosmology,
including the shape of the primordial fluctuation
spectrum. Even small changes in model assumptions
can change h noticeably. Unexpectedly, the H0 inference
from Planck data deviates by more than 2σ from the
previous result from the maser-cepheid-supernovae
distance ladder h = 0.738 ± 0.024 [122]. In what follows
we will take as benchmark: ΩΛ ' 0.7, Ωm,0 ' 0.3, and
1 −Ω0 ' 0, and h ' 0.7. As shown in Fig. 29, this set of
parameters is in good agreement with cosmological and
astrophysical observations.

EXERCISE 7.6 The Sun is moving around the center
of the Milky Way galaxy along a roughly circular orbit
at radius R = 8 kpc, with a velocity v = 220 km s−1.
Let us approximate the mass distribution and gravita-
tional potential of the galaxy as spherically symmetric.
(i) What is the total mass inside R? (ii) If the mass
density varies with radius as ρ ∝ r−2, then what is
the density at radius R? Express it in units of proton
masses per cm3 (the proton mass is mp = 1.672×10−24 g).
(iii) For the benchmark cosmological model, with
ΩΛ ' 0.7 and H0 ' 70 km s−1 Mpc−1, what is the
density of the cosmological constant (or dark energy
accounting for it)? Express it in the same units as in

the previous question. (iv) The dark energy is spread
out uniformly in the universe and it causes a gravita-
tional repulsion which accelerates the expansion of the
universe. Do you think the cosmological constant may
be strongly affecting the dynamics of stars in our galaxy?

EXERCISE 7.7 Submillimeter Galaxies (SMGs), are
extremely dusty starburst galaxies that were discovered
at high redshifts (z ∼ 1 to 3). Assume the dust emission
from SMGs are well characterized by blackbodies at
a single dust temperature. If the observed spectrum
of a SMG peaks at 180 µm, what would be its dust
temperature if it is at a redshift of z = 2?

We now consider the benchmark model containing as
its only two components pressure-less matter and a cos-
mological constant, Ωm,0 + ΩΛ = 1. Hence, the curvature
term in the Friedmann equation and the pressure term
in the acceleration equation play no role. Multiplying
the acceleration equation (229) by 2 and adding it to the
Friedmann equation (228), we eliminate ρm,

2
ä
a

+
( ȧ

a

)2
= Λc2 . (245)

Next, we rewrite first the left-hand-side and then the
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FIG. 29: Shown are three independent measurements of
the cosmological parameters (ΩΛ,Ωm). The high-redshift
supernovae [123], galaxy cluster abundance [124] and the
CMB [125, 126] converge nicely near ΩΛ = 0.7 and Ωm = 0.3,
as shown by the 68.3%, 95.4%, and 99.7% confidence regions.
The upper-left shaded region, labeled “no big bang,” indicates
bouncing cosmologies for which the universe has a turning
point in its past [127]. The lower right shaded region corre-
sponds to a universe which is younger than long-lived radioac-
tive isotopes [128], for any value of H0 ≥ 50 km s−1 Mpc−1.Also
shown is the expected confidence region allowed by the future
SuperNova / Acceleration Probe (SNAP) mission [129].

right-hand-side as total time derivatives. Using

d
dt

(aȧ2) = ȧ3 + 2aȧä = ȧa2

[( ȧ
a

)2
+ 2

ä
a

]
, (246)

it follows that

d
dt

(aȧ2) = ȧa2Λc2 =
Λc2

3
d
dt

(a3) . (247)

Integration is now trivial,

aȧ2 =
Λc2

3
a3 + C . (248)

The integration constant, C = 8πGρm,0/3, can be deter-
mined most easily by setting a(t0) = 1 and comparing

(248) to the Friedmann equation (228), with t = t0. Now,
we introduce the new variable x = a3/2 such that

da
dt

=
dx
dt

da
dx

=
dx
dt

2x−1/3

3
, (249)

and (248) becomes

ẋ2
−

3
4

Λc2x2 +
9
4
C = 0 . (250)

Using an educated guess,

x(t) = A sinh(
√

3Λct/2) , (251)

we fix A =
√

3C/Λc. The scale factor is then

a(t) = A2/3 sinh2/3(
√

3Λc2t/2) . (252)

The time-scale of expansion is driven by tΛ = 2/
√

3Λc2.
The present age of the universe t0 follows from the nor-
malization condition a(t0) = 1 and is given by

t0 = tΛ tanh−1(
√

ΩΛ) . (253)

The deceleration,

q = −
ä

aH2 , (254)

is a key parameter for observational tests of the ΛCDM
model. We calculate first the Hubble parameter

H(t) =
ȧ
a

=
2

3tΛ
coth(t/tΛ) , (255)

and after that

q(t) =
1
2

[
1 − 3 tanh2(t/tΛ)

]
. (256)

Note that, as expected, for t → 0 we have q = 1/2, and
for t → ∞ we have q = −1. Perhaps more interesting is
the transition region from a decelerating to an acceler-
ating universe. As shown in Fig. 30 for ΩΛ = 0.7, this
transition takes place at t ≈ 0.55 t0. This can be easily
converetd to a redshift: z∗ = a(t0)/a(t∗) − 1 ≈ 0.7. Inter-
estingly, z∗ can be directly probed by SNe Ia observations.

EXERCISE 7.8 Consider the benchmark model, with
Ωm,0 ' 0.3, ΩΛ ' 0.7, with flat space geometry. What was
the redshift at which the universe had half its present
age?

VIII. HOT THERMAL UNIVERSE

Though we can see only as far as the surface of last scat-
tering, in recent decades a convincing theory of the origin
and evolution of the early universe has been developed.
Most of this theory is based on recent theoretical and
experimental advances in elementary particle physics.
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Figure 15.3: The deceleration parameter q as function of t/t0 for a ΛCDM model and various
values for ΩΛ (0.1, 0.3, 0.5, 0.7 and 0.9 from the top to the bottom).

The limiting behavior of q corresponds with q = 1/2 for t → 0 and q = −1 for t → ∞ as
expected to the one of a flat Ωm = 1 and a ΩΛ = 1 universe. More interesting is the transition
region and, as shown in Fig. 15.3, the transition from a decelerating to an accelerating universe
happens for ΩΛ = 0.7 at t ≈ 0.55t0. This can easily converted to redshift, z∗ = a(t0)/a(t∗) −
1 ≈ 0.7, that is directly measured by Supernova observations.

Exercises

1. Derive the relation between temperature and time in the early (radiation dominated)
universe using ρ = gaT 4 = gπ2T 4/30 as expression for the energy density of a gas with
g relativistic degrees of freedom in the Friedmann equation. What is the temperature
at t = 1 s? [Hints: The expression ρ = gπ2T 4/30 is valid for k = c = ! = 1. Then one
can measure temperatures in MeV/GeV and use s−1 = 6.6 × 10−25 GeV and G−1/2 =
MPl = 1.2 × 1019 GeV.]

129

t/t0

q(t)
⌦⇤ = 0.1

⌦⇤ = 0.9

FIG. 30: The deceleration parameter q as a function of
t/t0 for the ΛCDM model for various values of ΩΛ =
0.1, 0.3, 0.5, 0.7, 0.9 from top to bottom [16].

Hence, before continuing our look back through time,
we make a detour to overview the generalities of the
standard model of particle physics.2

A. SU(3)C ⊗ SU(2)L ⊗U(1)Y

The standard model (SM) is our most modern attempt
to answer two simple questions that have been perplex-
ing (wo)mankind throughout the epochs: What is the
Universe made of? Why is our world the way it is?

The elementary-particle model accepted today views
quarks and leptons as the basic (pointlike) constituents
of ordinary matter. By pointlike, we understand that
quarks and leptons show no evidence of internal struc-
ture at the current limit of our resolution. Presently,
the world’s largest microscope is the Large Hadron Col-
lider (or LHC), a machine that collides beams of protons
at a cenetr-of-mass energy

√
s = 13 TeV. Remarkably,

70% of the energy carried into the collision by the pro-
tons emerges perpendicular to the incident beams. At
a given transverse energy E⊥, we may roughly estimate
the LHC resolution as

`LHC ≈ }c/E⊥ ≈ 2 × 10−19 TeV m/E⊥
≈ 2 × 10−20 m . (257)

There are six quarks and six leptons, together with their
antiparticles. These twelve elementary particles are all
spin- 1

2 and fall naturally into three families or gener-
ations. Each generation consists of two leptons with
electric charges Q = 0 and Q = −1 and two quarks with

2 You can find a more extensive but still qualitative discussion in [13].
For a more rigorous treatment see e.g. [130–133].

Q = +2/3 and Q = −1/3. The masses of the particles in-
crease significantly with each generation, with the pos-
sible exception of the neutrinos [134]. The properties of
quarks and leptons are summarized in Table I.

Now, an understanding of how the world is put to-
gether requires a theory of how quarks and leptons inter-
act with one another. Equivalently, it requires a theory
of the fundamental forces of nature. Four such forces
have been identified. They can be characterized on the
basis of the following four criteria: the types of parti-
cles that experience the force, the relative strength of the
force, the range over which the force is effective, and
the nature of the particles that mediate the force. Two
of the forces, gravitation and electromagnetism, have an
unlimited range; largely for this reason they are famil-
iar to everyone. The remaining forces, which are called
simply the weak force and the strong force, cannot be
perceived directly because their influence extends only
over a short range, no larger than the radius of an atomic
nucleus. The electromagnetic force is carried by the pho-
ton, the strong force is mediated by gluons, the W and Z
bosons transmit the weak force, and the quantum of the
gravitational force is called the graviton. The main prop-
erties of the force carriers are summarized in Table II. A
comparison of the (approximate) relative force strengths
for two protons inside a nucleus is given in Table III.
Though gravity is the most obvious force in daily life, on
a nuclear scale it is the weakest of the four forces and its
effect at the particle level can nearly always be ignored.

In the SM quarks and leptons are allotted several addi-
tive quantum numbers: electric charge Q, lepton num-
ber L = Le + Lµ + Lτ, baryon number B, strangeness s,
charmness c, bottomness b, and topness t. For each par-
ticle additive quantum number N, the corresponding
antiparticle has the additive quantum number −N.

The additive quantum numbers Q and B are assumed
to be conserved in strong, electromagnetic, and weak
interactions. The lepton numbers are not involved in
strong interactions, but are strictly conserved in both
electromagnetic and weak interactions. The remainder,
s, c, b and t are strictly conserved only in strong and
electromagnetic interactions, but can undergo a change
of one unit in weak interactions.

The quarks have an additional charge which enables
them to interact strongly with one another. This charge
is a three-fold degree of freedom which has come to
be known as color [135], and so the gauge theory de-
scribing the strong interaction has taken on the name
of quantum chromodynamics (QCD). Each quark flavor
can have three colors usually designated red, green, and
blue. The antiquarks are colored antired, antigreen, and
antiblue. Each quark or antiquark carries a single unit
of color or anticolor charge, respectively. The quanta of
the color fields are called gluons (as they glue the quarks
together). There are eight independent kinds of gluons
in SU(3)C, each of which carries a combination of a color
charge and an anticolor charge (e.g. red-antigreen). The
strong interactions between color charges are such that
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TABLE I: The three generations of quarks and leptons in the Standard Model.

Fermion Short-hand Generation Charge Mass Spin

Quarks

up u I 2.3+0.7
−0.5 MeV

charm c II + 2
3 1.275 ± 0.025 GeV 1

2

top t III 173.21 ± 0.51 GeV
down d I 4.8+0.5

−0.3 MeV
strange s II −

1
3 95±5 MeV 1

2

bottom b III 4.18 ± 0.03 GeV

Leptons

electron neutrino νe I < 2 eV 95% CL
muon neutrino νµ II 0 < 0.19 MeV 90% CL 1

2

tau neutrino ντ III < 18.2 MeV 95%CL
electron e I 0.511 MeV
muon µ II −1 105.7 MeV 1

2

tau τ III 1.777 GeV

TABLE II: The four force carriers.

Force Boson Short-hand Charge Mass Spin
Electromagnetic photon γ 0 0 1

Weak W W±
±1 80.385 ± 0.015 GeV 1

Weak Z Z0 0 91.1876 ± 0.0021 GeV 1
Strong gluon g 0 0 1

Gravitation graviton G 0 0 2

in nature the quarks (antiquarks) are grouped into com- posites collectively called hadrons [136–138]:

{
qq̄ (quark + antiquark) mesons integral spin→ Bose-Eisntein statistics [139, 140]
qqq (three quarks) baryons half-integral spin→ Fermi-Dirac statistics [141, 142]

. (258)

In QCD each baryon, antibaryon, or meson is colorless.
However, these colorless particles may interact strongly
via residual strong interactions arising from their com-
position of colored quarks and/or antiquarks. On the
other hand the colorless leptons are assumed to be struc-
tureless in the SM and consequently do not participate
in strong interactions.

One may wonder what would happen if we try to
see a single quark with color by reaching deep inside
a hadron. Quarks are so tightly bound to other quarks
that extracting one would require a tremendous amount
of energy, so much that it would be sufficient to cre-
ate more quarks. Indeed, such experiments are done
at modern particle colliders and all we get is not an iso-
lated quark, but more hadrons (quark-antiquark pairs or
triplets). This property of quarks, that they are always
bound in groups that are colorless, is called confinement.
Moreover, the color force has the interesting property
that, as two quarks approach each other very closely (or
equivalently have high energy), the force between them

TABLE III: Relative force strength for protons in a nucleus.

Force Relative Strength
Strong 1

Electromagnetic 10−2

Weak 10−6

Gravitational 10−38

becomes small. This aspect is referred to as asymptotic
freedom [143, 144].

Before proceeding we note that aside from binding to-
gether quarks inside the hadrons, the strong force indi-
rectly also binds protons and neutrons into atomic nuclei.
Such a nuclear force is mediated by pions: spin-0 mesons
with masses mπ0 = 135.0 MeV and mπ± = 139.6 MeV.

Electromagnetic processes between electrically
charged particles are mediated by massless neutral
spin-1 photons. The interaction can be described by
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a local U(1)EM gauge theory called quantum electro-
dynamics (QED). The symmetry properties of QED
are unquestionably appealing [145–151]. Moreover,
QED has yielded results that are in agreement with
experiment to an accuracy of about one part in a
billion [152], which makes the theory the most accurate
physical theory ever devised. It is the model for theories
of the other fundamental forces and the standard by
which such theories are judged.

Every quark and lepton of the SM interact weakly. The
weak interaction, mediated by the massive W+, W− and
Z0 vector bosons, fall into two classes: (i) charge-current
(CC) weak interactions involving the W+ and W− bosons
and (ii) neutral current (NC) weak interactions involving
the Z0 boson. The CC interactions, acting exclusively on
left-handed particles and right-handed antiparticles, are
described by a chiral SU(2)L local gauge theory, where
the subscript L refers to left-handed particles only.3 On
the other hand, the NC interactions act on both left-
handed and right-handed particles, similar to the elec-
tromagnetic interactions. In fact the SM assumes that
both the Z0 and the photon arise from a mixing of two
bosons, W0 and B0, via the electroweak mixing angle θW :

γ = B0 cosθW + W0 sinθW ,

Z0 = −B0 sinθW + W0 cosθW . (259)

The electroweak interaction is described by a local gauge
theory: SU(2)L ⊗ U(1)Y, where the hypercharge U(1)Y
symmetry involves both left-handed and right-handed
particles [153–155]. Experiment requires the masses of
the weak gauge bosons W and Z to be heavy so that weak
interactions are very short-ranged. The W and Z gauge
bosons acquire masses through spontaneous symmetry
breaking SU(2)L × U(1)Y → U(1)EM. The breaking of
the symmetry triggers the Higgs mechanism [156, 157],
which gives the relative masses of the W and Z bosons
in terms of the electroweak mixing angle,

MW = MZ cosθW , (260)

while the photon remains massless. In addition, by cou-
pling originally massless fermions to the scalar Higgs
field, it is possible to produce the observed physical
fermion masses without violating the gauge invariance.

The conspicuously well-known accomplishments of
the SU(3)C ⊗ SU(2)L ⊗ U(1)Y SM of strong and elec-
troweak forces can be considered as the apotheosis of the
gauge symmetry principle to describe particle interac-
tions. Most spectacularly, the recent discovery [158, 159]
of a new boson with scalar quantum numbers and cou-
plings compatible with those of a SM Higgs has possibly

3 A phenomenon is said to be chiral if it is not identical to its mirror
image. The spin of a particle may be used to define a handedness
for that particle. The chirality of a particle is right-handed if the
direction of its spin is the same as the direction of its motion. It is
left-handed if the directions of spin and motion are opposite.

plugged the final remaining experimental hole in the SM,
cementing the theory further.

In summary, the fundamental particles can be classi-
fied into spin-1/2 fermions (6 leptons and 6 quarks), and
spin-1 gauge bosons (γ, W±,Z0, and g). The leptons have
18 degrees of freedom: each of the 3 charged leptons
has 2 possible chiralities and its associated anti-particle,
whereas the 3 neutrinos and antineutrinos have only
one chirality (neutrinos are left-handed and antineutri-
nos are right-handed). The quarks have 72 degrees of
freedom: each of the 6 quarks, has the associated an-
tiparticle, three different color states, and 2 chiralities.
The gauge bosons have 27 degrees of freedom: a photon
has two possible polarization states, each massive gauge
boson has 3, and each of the eight independent types of
gluon in QCD has 2. The scalar spin-0 Higgs boson, with
a mass mH ' 126 GeV, has 1 degree of freedom.4

B. Equilibrium thermodynamics

The Universe we observe had its beginning in the big
bang, the cosmic firewall. Because the early universe was
to a good approximation in thermal equilibrium, particle
reactions can be modeled using the tools of thermody-

4 Recently, ATLAS [160] and CMS [161] announced the observation
of a peak in the diphoton mass distribution around 750 GeV, using
(respectively) 3.2 fb−1 and 2.6 fb−1 of data recorded at a c.m. en-
ergy

√
s = 13 TeV. The diphoton excesses could be interpreted as

the decay products of a new massive particle z, with spin 0, 2, or
higher [162]. Assuming a narrow width approximation ATLAS gives
a local significance of 3.6σ, or else a global significance of 2.0σwhen
the look-elsewhere-effect in the mass range Mz/GeV ∈ [200 − 2000]
is accounted for. Signal-plus-background fits were also imple-
mented for a broad signal component with a large decay width. The
largest deviation from the background-only hypothesis corresponds
to Mz ∼ 750 GeV with a total width Γtotal ∼ 45 GeV. The local and
global significances evaluated for the broad resonance fit are roughly
0.3 higher than that for the fit using the narrow width approximation,
corresponding to 3.9σ and 2.3σ, respectively. The CMS data gives a
local significance of 2.6σ and a global significance smaller than 1.2σ.
More recently, ATLAS and CMS updated their diphoton resonance
searches [163–165]. ATLAS reanalyzed the 3.2 fb−1 of data, targeting
separately spin-0 and spin-2 resonances. For spin-0, the most signif-
icant deviation from the background-only hypothesis corresponds
to Mz ∼ 750 GeV and Γtotal ∼ 45 GeV. The local significance is now
increased to 3.9σ but the global significance remains at the 2σ level.
For the spin-2 resonance, both the local and global significances are
reduced down to 3.6σ and 1.8σ, respectively. The new CMS analysis
includes additional data (recorded in 2015 while the magnet was not
operated) for a total of 3.3 fb−1. The largest excess is observed for
Mz = 760 GeV and Γtotal ≈ 11 GeV, and has a local significance of 2.8σ
for spin-0 and 2.9σ spin-2 hypothesis. After taking into account the
effect of searching for several signal hypotheses, the significance of
the excess is reduced to < 1σ. CMS also communicated a combined
search with data recorded at

√
s = 13 TeV and

√
s = 8 TeV. For the

combined analysis, the largest excess is observed at Mz = 750 GeV
and Γtotal = 0.1 GeV. The local and global significances are ≈ 3.4σ
and 1.6σ, respectively. This could be the first observation of physics
beyond the SM at the LHC.
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namics and statistical mechanics. It will be helpfull then
to take a second detour and revise some concepts of sta-
tistical thermodynamics.

Consider a cubic box of volume V, and expand the
fields inside into periodic waves with harmonic bound-
ary conditions. The density of states in k-space is

dN = g
V

(2π)3 d3k , (261)

where g is a degeneracy factor and k is the Fourier trans-
form wavenumber. The equilibrium phase space distri-
bution (or occupancy) function for a quantum state of
energy E is given by the familiar Fermi-Dirac or Bose-
Einstein distrubutions,

f =
1

e(E−µ)/(kT) ± 1
, (262)

where T is the equilibrium temperature, k is the Boltz-
mann constant, µ is the chemical potential (if present),
and ± corresponds to either Fermi or Bose statistics.
Throughout we will consider the case |µ| � T and ne-
glect all chemical potentials when computing total ther-
modynamic quantities. All evidence indicates that this
is a good approximation to describe particle interactions
in the super-hot primeval plasma [166] .

The number density of a dilute weakly-interacting gas
of particles in thermal equilibrium with g internal de-
grees of freedom is then

n =
1
V

∫
f dN

= g
1

(2π})3

∫
∞

0

4πp2dp
eE/(kT) ± 1

= g
1

2π2}3c3

∫
∞

mc2

(E2
−m2c3)1/2

eE/(kT) ± 1
E dE , (263)

where in the second line we have changed to momentum
space, ~p = }~k, and in the third line we used the relativistic
relation E = m2c4+p2c2. The analogous expression for the
energy density is easily obtain since it is only necessary
to multiply the integrand in (263) by a factor of E for the
energy of each mode,

ρ =
g

2π2}3c3

∫
∞

mi

(E2
−m2c4)1/2

eE/(kT) ± 1
E2 dE . (264)

Recalling that the pressure is the average value of the
momentum transfer 〈p〉2c2/E in a given direction, we
have

P =
g

6π2}3c3

∫
∞

mi

(E2
−m2c4)3/2

eE/(kT) ± 1
dE , (265)

with the factor of 1/3 associated with the assumed
isotropy of the momentum distribution.

Let us now compute the above expressions in two
asymptotic limits: relativistic and non-relativistic par-
ticles, which will be sufficient for our discussion of

how the different particle species evolve in the primeval
plasma. For kT � mc2, the particles behave as if they
were massless and the Bose-Einstein and Fermi-Dirac
distributions reduce to

f (y) =
1

ey ± 1
, (266)

where we have defined y = |~p |/(kT). Using∫
∞

0

zn−1

ez − 1
dz = Γ(n) ζ(n) (267)

and ∫
∞

0

zn−1

ez + 1
dz =

1
2n (2n

− 2) Γ(n) ζ(n) , (268)

we obtain

n =

(
kT
c

)3 4πg
(2π})3

∫
∞

0

y2dy
ey ± 1

= A±
ζ(3)
π2 g

(
kT
}c

)3

,

ρ = B±
π2g

30(}c)3 (kT)4 ,

P =
1
3
ρ , (269)

where ζ(3) ≈ 1.2 and A− = 1 for bosons, and A+ =
3/4 for fermions, B− = 1 for bosons and B+ = 7/8 for
fermions.5

For kT � mc2, the exponential factor dominates the
denominator in both the Bose-Einstein and Fermi-Dirac
distributions in (262), so that the bosonic or fermionic
nature of the particles becomes indistinguishable. Fur-
thermore, we have

E = (p2c2 + m2c4)1/2 = mc2

(
1 +

p2

m2c2

)1/2

' mc2 +
p2

2m
. (270)

Defining x = |~p |/
√

2mkT, for the number density we
obtain the Boltzmann distribution

n = e−mc2/(kT)(2mkT)3/2 4πg
(2π})3

∫
∞

0
e−x2

x2dx

=
g
}3

(
mkT
2π

)3/2

e−mc2/(kT) , (271)

5 The Gamma function is an extension of the factorial function for
non-integer and complex numbers. If s is a positive integer, then
Γ(s) = (s−1)!. The Riemann zeta function of a real variable s, defined
by the infinite series ζ(s) =

∑
∞

n=1 1/ns, converges ∀s > 1. Note that
(268) follows from (267) using the relation 1

ex+1 = 1
ex−1 −

2
e2x−1

.
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where we have used∫
∞

0
xne−x2

dx =
1
2

Γ
(1 + n

2

)
, (272)

with n = 2 and Γ(3/2) =
√
π/2. From (270) it is easily

seen that to leading order ρ = mc2n in this case.
To obtain the associated pressure, note that to leading

order |p2c2
|/E ' |p|2/m, so that

P ' e−mc2/(kT)(2mkT)5/2 4πg
(2π})3

1
3m

∫
∞

0
x4e−x2

dx

= e−mc2/(kT)(2mkT)5/2 4πg
(2π})3

1
3m

3
√
π

8

=
g
}3

(
mkT
2π

)3/2

e−mc2/(kT) kT

= nkT , (273)

where we have used Γ(5/2) = 3
√
π/4. Note that (273)

is just but the familar result for a non-relativistic perfect
gas, P = nkT. Since kT � mc2, we have P � ρ and the
pressure may be neglected for a gas of non-relativistic
particles, as we had anticipated.

For a gas of non-degenerate, relativistic species, the
average energy per particle is

〈E〉 =
ρ

n
=

 π4k
30ζ(3) T ' 2.701 T for bosons

7π4k
180ζ(3) T ' 3.151 T for fermions

, (274)

whereas for a non-relativistic species

〈E〉 = mc2 +
3
2

kT . (275)

The internal energy U can be considered to be a func-
tion of two thermodynamic variables among P, V , and
T. (These variables are related by the equation of state.)
Let us choose V and T to be the fundamental variables.
The internal energy can then be written as U(V,T). Let
us differentiate this function:

dU =

(
∂U
∂V

)
T

dV +

(
∂U
∂T

)
V

dT . (276)

This equation can be combined with the first law (167)
to give

TdS =

[(
∂U
∂V

)
T

+ P
]

dV +

(
∂U
∂T

)
V

dT . (277)

Now, since the internal energy is a function of T and V
we may therefore choose to view S as a function of T and
V, and this gives rise to the differential relation

dS =

(
∂S
∂T

)
V

dT +

(
∂S
∂V

)
T

dV . (278)

Substituting (278) into (277) and equating the dV and dT
parts gives the familiar

∂U
∂T

= T
∂S
∂T

(279)

and

S =
U + PV

T
, (280)

where we have used the relation for extensive quatities
(∂S/∂V = S/V and ∂U/∂V).6 It is useful to define the
entropy density s = S/V, which is thus given by

s = ρ + P . (281)

For photons, we can compute all of the thermody-
namic quantities rather easily

nγ =
2ζ(3)
π2

(
kTγ
}c3

)
= 60.42

(
kT
hc

)3

= 20.28
(T

K

)3

photons cm−3 ,

ργ =
π2

15
(kTγ)4

(}c)3 = 0.66
(kTγ)4

(}c)3 ,

〈Eγ〉 =
ρ

n
= 3.73 × 1016

( T
K

)
erg ,

Pγ =
1
3
ργ ,

sγ =
4
3
ργ
Tγ
. (282)

In the limit kT � mic2, the total energy density can be
conveniently expressed by

ρrad =

∑
B

gB +
7
8

∑
F

gF

 1
(c})3

π2

30
(kT)4

=
1

(}c)3

π2

30
gρ(T) (kT)4 , (283)

where gB(F) is the total number of boson (fermion)
degrees of freedom and the sum runs over all boson
(fermion) states with mic2

� kT. The factor of 7/8 is due
to the difference between the Fermi and Bose integrals.
(283) defines the effective number of degrees of freedom,
gρ(T), by taking into account new particle degrees of
freedom as the temperature is raised. The change in
gρ(T) (ignoring mass effects) is given in Table IV [167].

6 Recall that an extensive property is any property that depends on the
size (or extent) of the system under consideration. Take two identical
samples with all properties identical and combine them into a single
sample. Properties that double (e.g., energy, volume, entropy) are
extensive. Properties that remain the same (e.g., temperature and
pressure) are intensive.
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TABLE IV: Effective numbers of degrees of freedom in SM.

Temperature New particles 4gρ(T)

T < me γ’s + ν’s 29
me < T < mµ e± 43
mµ < T < mπ µ± 57
mπ < T < T∗c π’s 69
Tc < T < mcharm - π’s + u, ū, d, d̄, s, s̄ + gluons 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345
mW,Z < T < mHiggs W±,Z 381
mH < T < mtop H0 385
mt < T t, t̄ 427

*Tc corresponds to the confinement–deconfinement transition
between quarks and hadrons.

At higher temperatures, gρ(T) will be model dependent.

EXERCISE 8.1 If in the next 1010 yr the volume of the
universe increases by a factor of two, what then will be
the temperature of the blackbody radiation?

C. The first millisecond

The history of the universe from 10−10 seconds to today
is based on observational facts: the fundamental laws
of high energy physics are well-established up to the
energies reached by the LHC. Before 10−10 seconds, the
energy of the universe exceeds 13 TeV and we lose the
comfort of direct experimental guidance. The physics
of that era is therefore as speculative as it is fascinating.
Herein we will go back to the earliest of times - as close
as possible to the big bang - and follow the evolution of
the Universe.

It is cear that as a→ 0 the temperature increases with-
out limit T → ∞, but there comes a point at which the
extrapolation of classical physics breaks down. This is
the realm of quantum black holes, where the thermal
energy of typical particles of mass m is such that their de
Broglie wavelength is smaller than their Schwarzschild
radius. Equating h/mc to 2Gm/c2 yields a characteristic
mass for quantum gravity known as the Planck mass
MPl.7 This mass scale, together with the corresponding
length }/(MPlc) and time }/(MPlc2) define the system of

7 Strictly speaking this is not quite the Planck mass. It is a factor of
√
π larger. However, this heuristic derivation gives the right order

of magnitude.

Planck units:

MPl ≡

√
}c
G
' 1019 GeV ,

`Pl ≡

√
}G
c3 ' 10−35 m ,

tPl ≡

√
}G
c5 ' 10−43 s . (284)

The Planck time therefore sets the origin of time for the
classical big bang era. It is inaccurate to extend the classi-
cal solution of Friedmann equation to a = 0 and conclude
that the universe began in a singularity of infinite den-
sity.

At t ∼ 10−43 s, a kind of phase transition is thought to
have occured during which the gravitational force con-
densed out as a separate force. The symmetry of the four
forces was broken, but the strong, weak, and electro-
magnetic forces were still unified, and there were no
distinctions between quarks and leptons. This is an
unimaginably short time, and predictions can be only
speculative. The temperature would have been about
1032 K, corresponding to particles moving about every
which way with an average kinetic energy of

kT ≈
1.4 × 10−23 J/K 1032 K

1.6 × 10−10 J/GeV
≈ 1019 GeV , (285)

where we have ignored the factor 2/3 in our order of
magnitude calculation. Very shortly thereafter, as the
temperature had dropped to about 1028 K, there was
another phase transition and the strong force condensed
out at about 10−35 s after the bang. Now the universe
was filled with a soup of quarks and leptons. About this
time, the universe underwent an incredible exponential
expansion, increasing in size by a factor of & 1026 in a
tiny fraction of a second, perhaps ∼ 10−34 s.

As a matter of fact, the favored ΛCDM model implic-
itly includes the hypothesis of a very early period in
which the scale factor of the universe expands exponen-
tially: a(t) ∝ eHt. If the interval of exponential expansion
satisfies ∆t & 60/H, a small casually connected region
can grow sufficiently to accommodate the observed ho-
mogeneity and isotropy [168]. To properly understand
why this is so, we express the comoving horizon (210) as
an integral of the comoving Hubble radius,

%h ≡ c
∫ t

0

dt′

a(t′)
= c

∫ a

0

da
Ha2 = c

∫ a

0

1
aH

d ln a . (286)

At this stage it is important to emphasize a subtle dis-
tinction between the comoving horizon %h and the co-
moving Hubble radius c/(aH). If particles are separated
by distances greater than %h, they never could have com-
municated with one another; if they are separated by
distances greater than c/(aH), they cannot talk to each
other now. This distinction is crucial for the solution to
the horizon problem which relies on the following: It is
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5.1.2 Flatness Problem Revisited

Recall the Friedmann Equation (41) for a non-flat universe

|1 � ⌦(a)| =
1

(aH)2
. (49)

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away

from it). This solves the flatness problem! The solution ⌦ = 1 is an attractor during inflation.

5.1.3 Horizon Problem Revisited

A decreasing comoving horizon means that large scales entering the present universe were inside the

horizon before inflation (see Figure 2). Causal physics before inflation therefore established spatial

homogeneity. With a period of inflation, the uniformity of the CMB is not a mystery.

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 7: Left: Evolution of the comoving Hubble radius, (aH)�1, in the inflationary universe. The

comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is

therefore a mechanism to ‘zoom-in’ on a smooth sub-horizon patch. Right: Solution of

the horizon problem. All scales that are relevant to cosmological observations today were

larger than the Hubble radius until a ⇠ 10�5. However, at su�ciently early times, these

scales were smaller than the Hubble radius and therefore causally connected. Similarly,

the scales of cosmological interest came back within the Hubble radius at relatively recent

times.

5.2 Conditions for Inflation

Via the Friedmann Equations a shrinking comoving Hubble radius can be related to the acceleration

and the the pressure of the universe

d

dt

✓
H�1

a

◆
< 0 ) d2a

dt2
> 0 ) ⇢+ 3p < 0 . (50)

The three equivalent conditions for inflation therefore are:

27

FIG. 31: Evolution of the comoving Hubble radius, c/(aH),
in the inflationary universe. The comoving Hubble sphere
shrinks during inflation and expands after inflation. Inflation
is therefore a mechanism to zoom-in on a smooth sub-horizon
patch [169].

possible that %h is much larger than c/(aH) now, so that
particles cannot communicate today but were in causal
contact early on. From (286) we see that this might hap-
pen if the comoving Hubble radius in the early universe
was much larger than it is now so that %h got most of its
contribution from early times. Hence, we require a phase
of decreasing Hubble radius, as illustrated in Fig. 31. The
shrinking Hubble sphere is defined by d(aH)−1/dt < 0.
From the relation d(aH)−1/dt = −ä/(aH)2 we see immedi-
ately that a shrinking comoving Hubble radius implies
accelerated expansion ä > 0. This explains why inflation
is often defined as a period of accelerated expansion. The
second time derivative of the scale factor may of course
be related to the first time derivative of the Hubble pa-
rameter according to

ä
a

= H2(1 − ε) , (287)

where ε ≡ −Ḣ/H2. Acceleration therefore corresponds
to ε < 1. All in all, H is approximately constant during
inflation whereas a grows exponentially, and so this
implies that the comoving Hubble radius decreases
just as advertised. Now, consulting (184) we infer that
ä > 0 requires a negative pressure: P < −ρ/3. To see
how this can be realized in various physics models see
e.g. [169, 170].

EXERCISE 8.2 (228) can be rearranged to give

8πGρ
3c2H2 −

kc2

H2a2R2
0

+
Λc2

3
= 1 (288)

and so using (231) we rewrite (288) as

Ω − 1 =
kc2

a2R2
0H2

. (289)

Now let us make a tremendous approximation and as-
sume that Friedmann equation is valid until the Planck
era. From (289) we read that if the universe is perfectly
flat, then Ω = 1 at all times. However, if there is even
a small curvature term, the time dependence of Ω − 1 is
quite different. In particular, for the radiation dominated
era we have, H2

∝ ρrad ∝ a−4 and Ω−1 ∝ a2, whereas dur-
ing matter domination, ρm ∝ a−3 and Ω − 1 ∝ a. In both
cases Ω − 1 decreases going backwards in time. Since
we know that Ω0 − 1 is of order unity at present, we can
deduce its value at tPL,

|Ω − 1|T=TPl

|Ω − 1|T=T0

≈

a2
Pl

a2
0

 ≈  T2
0

T2
Pl

 ≈ O(10−64) . (290)

This means that to get the correct value of Ω0 − 1 ∼ 1 to-
day, the value of Ω−1 at early times has to be fine-tuned
to values amazingly close to zero, but without being
exactly zero. This has been dubbed the flatness problem.8
Show that the inflationary hypothesis elegantly solve
the flatenss fine-tuning problem.

After the very brief inflationary period, the universe
would have settled back into its more regular expan-
sion. For 10−34 s . t . 105 yr, the universe is thought
to have been dominated by radiation. This corresponds
to 103 K . T . 1027 K. We have seen that the equa-
tion of state can be given by w = 1/3. If we neglect the
contributions to H from Λ (this is always a good approxi-
mation for small enough a) then we find that a ∼ t1/2 and
ρrad ∼ a−4. Substituting (283) into (158) we can rewrite
the expansion rate as a function of the temperature in
the plasma

H =

(
8πGρrad

3

)1/2

=

(
8π3

90
gρ(T)

)1/2

T2/MPl

∼ 1.66
√

gρ(T) T2/MPl , (291)

where we have adopted natural units (} = c = k = 1).
Neglecting the T-dependence of gρ (i.e. away from mass
thresholds and phase transitions), integration of (291)
yields (187) and the useful commonly used approxima-
tion

t '

 3M2
Pl

32πρrad

1/2

' 2.42
1
√gρ

( T
MeV

)−2

s . (292)

At about 10−10 s the Higgs field spontaneously ac-
quires a vacuum expectation value, which breaks the
electroweak gauge symmetry. As a consequence, the
weak force and electromagnetic force manifest with dif-
ferent ranges. In addition, quarks and charged lep-
tons interacting with the Higgs field become massive.

8 A didactic explanation of the flatness fine-tuning problem is
given [171].
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The fundamental interactions have by then taken their
present forms.

By the time the universe was about a microsecond old,
quarks began to condense into mesons and baryons. To
see why, let us focus on the most familiar hadrons: nu-
cleons and their antiparticles. When the average kinetic
energy of particles was somewhat higher than 1 GeV,
protons, neutrons, and their antiparticles were contin-
ually being created out of the energies of collisions in-
volving photons and other particles. But just as quickly,
particle and antiparticles would annihilate. Hence the
process of creation and annihilation of nucleons was in
equilibrium. The numbers of nucleons and antinucle-
ons were high: roughly as many as there were electrons,
positrons, or photons. But as the universe expanded
and cooled, and the average kinetic energy of particles
dropped below about 1 GeV, which is the minimum en-
ergy needed in a typical collision to create nucleons and
antinucleons (940 MeV each), the process of nucleon cre-
ation could not continue. However, the process of anni-
hilation could continue with antinucleons annihilating
nucleons, until there were almost no nucleons left; but
not quite zero!

Manned and unmanned exploration of the solar sys-
tem tell us that it is made up of the same stuff as the Earth:
baryons. Observational evidence from radio-astronomy
and cosmic ray detection indicate that the Milky Way,
as well as interstellar space, and distant galaxies are also
made of baryons. Therefore, we can cautiously conclude
that the baryon number of the observable universe is
B > 0. This requires that the early qq̄ plasma contained a
tiny surplus of quarks. After all anti-matter annihilated
with matter, only the small surplus of matter remained

η =
nB − nB̄

nγ
= 5 × 10−10 excess baryons

photons
. (293)

The tiny surplus can be explained by interactions in the
early universe that were not completely symmetric with
respect to an exchange of matter-antimatter, the so-called
“baryogenesis” [172].

At this stage, it is worthwhile to point out that if some
relativistic particles have decoupled from the photons,
it is necessary to distinguish between two kinds of rel-
ativistic degrees of freedom (r.d.o.f.): those associated
with the total energy density gρ, and those associated
with the total entropy density gs. At energies above
the deconfinement transition towards the quark gluon
plasma, quarks and gluons are the relevant fields for
the QCD sector, such that the effective number of inter-
acting (thermally coupled) r.d.o.f. is gs(T) = 61.75. As
the universe cools down below the confinement scale
ΛQCD ∼ 200 MeV, the SM plasma transitions to a regime
where mesons and baryons are the pertinent degrees of
freedom. Precisely, the relevant hadrons present in this
energy regime are pions and charged kaons, such that
gs(T) = 19.25 [173]. This significant reduction in the de-
grees of freedom results from the rapid annihilation or
decay of more massive hadrons which may have formed

during the transition. The quark-hadron crossover tran-
sition therefore corresponds to a large redistribution of
entropy into the remaining degrees of freedom. To con-
nect the temperature to an effective number of r.d.o.f. we
make use of some high statistics lattice simulations of a
QCD plasma in the hot phase, especially the behavior
of the entropy during the changeover [174]. Concretely,
the effective number of interacting r.d.o.f. in the plasma
at temperature T is given by

gs(T) ' r(T)
(
gB +

7
8

gF

)
, (294)

where the coefficient r(T) is unity for leptons, two for
photon contributions, and is the ratio s(T)/sSB for the
quark-gluon plasma [175]. Here, s(T) and sSB are the en-
tropy density and the ideal Stefan-Bolzmann limit shown
in Fig 32. The entropy rise during the confinement-
deconfinement changeover can be parametrized, for
150 MeV < T < 500 MeV, by

s
T3 '

42.82
√

392π
e−C1 + 18.62

C2
2[

eC2 − 1
]2 eC2 , (295)

where C1 = (TMeV − 151)2 /392 and C2 = 195.1/(TMeV −

134). For the same energy range, we obtain

gs(T) ' 47.5 r(T) + 19.25 . (296)

In Fig. 32 we show gs(T) as given by (296). The
parametrization is in very good agreement with phe-
nomenological estimates [176, 177].

The entropy density is dominated by the contribution
of relativistic particles, so to a very good approximation

s =
2π2

45
gs(T) T3 . (297)

Conservation of S = sV leads to

d
dt

(sa3) = 0 (298)

and therefore that gs(T)T3a3 remains constant as the uni-
verse expands. As one would expect, a non-evolving
system would stay at constant number or entropy den-
sity in comoving coordinates even though the number
or entropy density is in fact decreasing due to the ex-
pansion of the universe. Since the quark-gluon energy
density in the plasma has a similar T dependence to that
of the entropy (see e.g. Fig. 7 in [174]), hereafter we
simplify the discussion by taking g = gρ = gs.

After the first millisecond has elapsed, when the ma-
jority of hadrons and anti-hadrons annihilated each
other, we entered the lepton era.

D. Neutrino decoupling and BBN

After the first tenth of a second, when the temper-
ature was about 3 × 1010 K, the universe was filled
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FIG. 32: Left. The parametrization of the entropy density given in Eq. (295) (dashed line) superposed on the result from
high statistics lattice simulations [174] (solid line). Right. Comparison of gs(T) obtained using (296) (dashed line) and the
phenomenological estimate of [176, 177] (solid line) [178].

with a plasma of protons, neutrons, electrons, positrons,
photons, neutrinos, and antineutrinos (p, n, γ, e−, e+,
ν, and ν). The baryons are of course nonrelativistic
while all the other particles are relativistic. These par-
ticles are kept in thermal equilibrium by various elec-
tromagnetic and weak processes of the sort ν̄ν 
 e+e−,
νe− 
 νe−, nνe 
 pe−, γγ 
 e+e−, γp 
 γp, etc. In
complying with the precision demanded of our phe-
nomenological approach it would be sufficient to con-
sider that the cross section of reactions involving left-
handed neutrinos, right-handed antineutrinos, and elec-
trons is σweak ∼ G2

FE2, where GF = 1.16 × 10−5 GeV−2 is
the Fermi constant. If we approximate the energy E of
all particle species by their temperature T, their velocity
by c, and their density by n ∼ T3, then the interaction
rate of is [166]

Γint,ν(T) ≈ 〈vσ〉 nν ≈ G2
FT5 . (299)

Comparing (299) with the expansion rate (291), calcu-
lated for g(T) = 10.75, we see that when the tempera-
ture drops below some characteristic temperature Tdec

νL

neutrinos decouple, i.e. they lose thermal contact with
electrons [179–181]. The condition

Γint,ν(Tdec
νL

) = H(Tdec
νL

) (300)

sets the decoupling temperature for left handed neutri-
nos: Tdec

νL
∼ 1 MeV.

The much stronger electromagnetic interaction contin-
ues to keep the protons, neutrons, electrons, positrons,
and photons in equilibrium. The reaction rate per nu-
cleon, Γint,N ∼ T3α2/m2

N, is larger than the expansion rate
as long as

T >
m2

N

α2MPl
∼ a very low temperature , (301)

where the non-relativistic form of the electromagnetic
cross section, σ ∼ α2/m2

N, has been obtained by dimen-
sional analysis, with α the fine structure constant. The

nucleons are thus mantianed in kinetic equilibrium. The
average kinetic energy per nucleon is 3T/2. One must be
careful to distinguish between kinetic equilibrium and
chemical equilibrium. Reactions like γγ → pp̄ have
long been suppressed, as there are essentially no anti-
nucleons around.

For T > me ∼ 0.5 MeV ∼ 5 × 109 K, the number of
electrons, positrons, and photons are comparable, ne− ∼

ne+ ∼ nγ. The exact ratios are of course easily supplied by
inserting the appropriate “g-factors.” Because the uni-
verse is electrically neutral, ne− − ne+ = np and so there is
a slight excess of electrons over positrons. When T drops
below me, the process γγ→ e+e− is severely suppressed
by the Boltzmann factor e−me/T, as only very energetic
photons in the “tail-end” of the Bose distribution can par-
ticipate. Thus positrons and electrons annihilate rapidly
via e+e− → γγ and are not replenished (leaving a small
number of electrons ne− ∼ np ∼ 5 × 10−10nγ). As long
as thermal equilibrium was preserved, the total entropy
remained fixed. We have seen that sa3

∝ g(T)T3a3 =
constant. For T & me, the particles in thermal equilib-
rium with the photons include the photon (gγ = 2) and
e± pairs (ge± = 4). The effective total number of particle
species before annihilation is gbefore = 11/2.On the other
hand, after the annihilation of electrons and positrons,
the only remaining abundant particles in equilibrium are
photons. Hence the effective number of particle species
is gafter = 2. It follows from the conservation of entropy
that

11
2

(Tγa)3
∣∣∣∣∣
before

= 2 (Tγa)3
∣∣∣∣∣
after

. (302)

That is, the heat produced by the annihilation of electrons
and positrons increases the quantity Tγa by a factor of

(Tγa)|after

(Tγa)|before
=

(11
4

)1/3

' 1.4 . (303)

Before the annihilation of electrons and positrons, the
neutrino temperature Tν is the same as the photon tem-
perature Tγ. But from then on, Tν simply dropped like
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a−1, so for all subsequent times, Tνa equals the value
before annihilation,

(Tνa)|after = (Tνa)|before = (Tγa)|before . (304)

We conclude therefore that after the annihilation pro-
cess is over, the photon temperature is higher than the
neutrino temperature by a factor of(

Tγ
Tν

)∣∣∣∣∣∣
after

=
(Tγa)|after

(Tνa)|after
' 1.4 . (305)

Therefore, even though out of thermal equilibrium,
the neutrinos and antineutrinos make an important
contribution to the energy density.

EXERCISE 8.3 By assuming that neutrinos saturate
the dark matter density derive an upper bound on the
neutrino mass [182].

The energy density stored in relativistic species is customarily given in terms of the so-called effective number of
neutrino species, Neff , through the relation

ρrad =

[
1 +

7
8

( 4
11

)4/3

Neff

]
ργ , (306)

and so

Neff ≡

(
ρrad − ργ

ρν

)
'

8
7

∑
B

′ gB

2

(TB

Tν

)4

+
∑

F

′ gF

2

(TF

Tν

)4

, (307)

whereρν denotes the energy density of a single species of massless neutrinos, TB(F) is the effective temperature of boson
(fermion) species, and the primes indicate that electrons and photons are excluded from the sums [183, 184]. The
normalization of Neff is such that it gives Neff = 3 for three families of massless left-handed standard model neutrinos.
For most practical purposes, it is accurate enough to consider that neutrinos freeze-out completely at about 1 MeV.
However, as the temperature dropped below this value, neutrinos were still interacting with the electromagnetic
plasma and hence received a tiny portion of the entropy from pair annihilations. The non-instantaneous neutrino
decoupling gives a correction to the normalization Neff = 3.046 [185–188].

Near 1 MeV, the CC weak interactions,

nνe 
 pe−, ne+ 
 pν̄e, n
 pe−ν̄e (308)

guarantee neutron-proton chemical equilibrium. Defining λnp as the summed rate of the reactions which convert
neutrons to protons,

λnp = λ(nνe → pe−) + λ(ne+
→ pν̄e) + λ(n→ pe−ν̄e) , (309)

the rate λpn for the reverse reactions which convert protons to neutrons is given by detailed balance:

λpn = λnp e−∆m/T(t), (310)

where ∆m ≡ mn −mp = 1.293 MeV. The evolution of the fractional neutron abundance Xn/N ≡ nn/nN is described by
the balance equation

dXn/N(t)
dt

= λpn(t)[1 − Xn/N(t)] − λnp(t)Xn/N(t) , (311)

where nN is the total nucleon density at this time, nN = nn + np. The equilibrium solution is obtained by setting
dXn/N(t)/dt = 0:

Xeq
n/N(t) =

λpn(t)
λpn(t) + λnp(t)

=
[
1 + e∆m/T(t)

]−1
. (312)

The neutron abundance tracks its value in equilibrium until the inelastic neutron-proton scattering rate decreases
sufficiently so as to become comparable to the Hubble expansion rate. At this point the neutrons freeze-out, that is
they go out of chemical equilibrium. The neutron abundance at the freeze-out temperature TFO

n/N = 0.75 MeV can be
approximated by its equilibrium value (312),

Xn/N(TFO
n/N) ' Xeq

n/N(TFO
n/N) =

[
1 + e∆m/TFO

n/N

]−1
. (313)
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Since the ratio ∆m/TFO
n/N is of O(1), a substantial fraction of neutrons survive when chemical equilibrium between

neutrons and protons is broken.
At this time, the photon temperature is already below the deuterium binding energy ∆D ' 2.2 MeV, thus one

would expect sizable amounts of D to be formed via n p→ Dγ process. However, the large photon-nucleon density
ratio η−1 delays deuterium synthesis until the photo–dissociation process become ineffective (deuterium bottleneck).
Defining the onset of nucleosynthesis by the criterion

e∆D/TBBNη ∼ 1 , (314)

we obtain TBBN ≈ 89 keV. Note that (314) ensures that below TBBN the high energy tail in the photon distribution,
with energy larger than ∆D, has been sufficiently diluted by the expansion. At this epoch, N(T) = 3.36, hence the
time-temperature relationship (292) dictates that big bang nucleosynthesis (BBN) begins at

tBBN ' 167 s ≈ 180 s , (315)

as widely popularized by Weinberg [22].
Once D starts forming, a whole nuclear process network sets in [189, 190]. When the temperature dropped below
∼ 80 keV, the universe has cooled sufficiently that the cosmic nuclear reactor can begin in earnest, building the
lightest nuclides through the following sequence of two-body reactions

p n→ γD,
p D→3Heγ, D D→3He n, D D→ p T,
TD→4He n, 4He T→7Liγ,
3He n→ p T, 3He D→4He p, 3He 4He→7Beγ,
7Li p→4He 4He, 7Be n→7Li p,

...

. (316)

By this time the neutron abundance surviving at freeze-out has been depleted by β-decay to

Xn/N(TBBN) ' Xn/N(TFO
n/N) e−tBBN/τn , (317)

where τn ' 887 s is the neutron lifetime. Nearly all of these surviving neutrons are captured in 4He because of its
large binding energy (∆4He = 28.3 MeV) via the reactions listed in (316). Heavier nuclei do not form in any significant
quantity both because of the absence of stable nuclei with A=5 or 8, which impedes nucleosynthesis via n 4He, p 4He
or 4He 4He reactions, and because of the large Coulomb barrier for reactions such as 4He T → 7Li γ and 3He 4He
→

7Be γ. By the time the temperature has dropped below ∼ 30 keV, a time comparable to the neutron lifetime, the
average thermal energy of the nuclides and nucleons is too small to overcome the Coulomb barriers; any remaining
free neutrons decay, and BBN ceases. The resulting mass fraction of helium, conventionally referred to Yp, is simply
given by

Yp ' 2Xn/N(tBBN) = 0.251 , (318)

where the subscript p denotes primordial. The above calculation demonstrates how the synthesized helium abun-
dance depends on the physical parameters. After a bit of algebra, (318) can be rweritten as [189]

Yp ' 0.251 + 0.014 ∆Neff
ν + 0.0002∆τn + 0.009 ln

( η

5 × 10−10

)
. (319)

In summary, primordial nucleosynthesis has a single
adjustable parameter: the baryon density. Observations
that led to the determination of primordial abundance
of D, 3He and 7Li can determine η. The internal
consistency of BBN can then be checked by comparing
the abundances of the other nuclides, predicted using
this same value of η, with observed abundances.
Interestingly, in contrast to the other light nuclides, the

BBN-predicted primordial abundance of 4He is very
insensitive to the baryon density parameter. Rather, the
4He mass fraction depends on the neutron-to-proton
ratio at BBN because virtually all neutrons available at
that time are incorporated into 4He. Therefore, while D,
3He, and 7Li are potential baryometers, 4He provides a
potential chronometer.
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EXERCISE 8.4 Suppose that the difference in rest
energy of the neutron and proton were 0.1293 MeV,
instead of 1.293 MeV, with all other physical parameters
unchanged. Estimate the maximum possible mass
fraction in 4He, assuming that all available neutrons are
incorporated into 4He nuclei.

EXERCISE 8.5 A fascinating bit of cosmological
history is that of Gamow’s prediction of the CMB in
the late 1940s [191–193]. Unfortunately, his prediction
was premature; by the time the CMB was actually
discovered, his prediction had fallen into obscurity.
This problem reproduces Gamow’s line of argument.
Gamow knew that nucleosynthesis must have taken
place at a temperature TBBN ≈ 109 K. He also knew
that the universe must currently be t0 ∼ 1010 years
old. He then assumed that the universe was flat and
radiation dominated, even at the present time. (i) With
these assumptions, what was the energy density of the
universe at the time of nucleosynthesis? (ii) What was
the Hubble parameter at the time of nucleosynthesis?
(c) What was the age of the universe at BBN? (iv) Given
the present age, what should the present temperature
of the CMB be? (v) If we then assume that the universe
changed from being radiation dominated to matter
dominated at a redshift zeq > 0, will this increase or
decrease the CMB temperature, for fixed values of TBBN
and t0?

The observationally-inferred primordial fractions
of baryonic mass in 4He (Yp = 0.2472 ± 0.0012,
Yp = 0.2516 ± 0.0011, Yp = 0.2477 ± 0.0029, and
Yp = 0.240 ± 0.006) [194–196] have been constantly
favoring Neff

ν . 3 [197]. Unexpectedly, two recent inde-
pendent studies yield Yp values somewhat higher than
previous estimates: Yp = 0.2565±0.001(stat)±0.005(syst)
and Yp = 0.2561 ± 0.011 [198–200]. For τn = 885.4 ± 0.9 s
and τn = 878.5 ± 0.8 s, the updated effective
number of light neutrino species is reported as
Neff = 3.68+0.80

−0.70 (2σ) and Neff = 3.80+0.80
−0.70 (2σ), re-

spectively. The most recent estimate of Yp yields
Neff = 3.58 ± 0.25(68%CL),±0.40(95.4%CL),±(99%CL).
This entails that a non-standard value of Neff is preferred
at the 99% CL, implying the possible existence of
additional types of neutrino species [201].

EXERCISE 8.6 We have seen that he best multi-
parameter fit of Planck data yields a Hubble constant
which deviates by more than 2σ from the value obtained
with the HST. The impact of the Planck h estimate is par-
ticularly important in the determination of Neff . Com-
bining observations of CMB data the Planck Collabora-
tion reported Neff = 3.15 ± 0.23 [121]. However, if the
value of h is not allowed to float in the fit, but instead is
frozen to the value determined from the maser-cepheid-
supernovae distance ladder, the Planck CMB data then
gives Neff = 3.62 ± 0.25, which suggests new neutrino-
like physics (at around the 2.3σ level) [202]. The hints

of extra relativistic degrees of freedom at BBN and CMB
epochs can be explained, e.g., by means of the right-
handed partners of the three, left-handed, SM neutrinos.
In particular, milli-weak interactions of these Dirac states
may allow the νR’s to decouple much earlier, at a higher
temperature, than their left-handed counterparts [203].
Determine the minimum decoupling temperature of the
right-handed neutrinos which is consistent with Planck
data at the 1σ level.

E. Quantum black holes

As we have seen, black holes are the evolutionary end-
points of massive stars that undergo a supernova explo-
sion leaving behind a fairly massive burned out stellar
remnant. With no outward forces to oppose gravita-
tional forces, the remnant will collapse in on itself.

The density to which the matter must be squeezed
scales as the inverse square of the mass. For example,
the Sun would have to be compressed to a radius of 3 km
(about four millionths its present size) to become a black
hole. For the Earth to meet the same fate, one would need
to squeeze it into a radius of 9 mm, about a billionth its
present size. Actually, the density of a solar mass black
hole (∼ 1019 kg/m3) is about the highest that can be cre-
ated through gravitational collapse. A body lighter than
the Sun resists collapse because it becomes stabilized by
repulsive quantum forces between subatomic particles.

However, stellar collapse is not the only way to form
black holes. The known laws of physics allow matter
densities up to the so-called Planck value 1097 kg/m3,
the density at which the force of gravity becomes so
strong that quantum mechanical fluctuations can break
down the fabric of spacetime, creating a black hole with
a radius ∼ 10−35 m and a mass of 10−8 kg. This is the
lightest black hole that can be produced according to the
conventional description of gravity. It is more massive
but much smaller in size than a proton.

The high densities of the early universe were a pre-
requisite for the formation of primordial black holes but
did not guarantee it. For a region to stop expanding and
collapse to a black hole, it must have been denser than av-
erage, so the density fluctuations were also necessary. As
we have seen, such fluctuations existed, at least on large
scales, or else structures such as galaxies and clusters
of galaxies would never have coalesced. For primordial
black holes to form, these fluctuations must have been
stronger on smaller scales than on large ones, which is
possible though not inevitable. Even in the absence of
fluctuations, holes might have formed spontaneously at
various cosmological phase transitions – for example,
when the universe ended its early period of accelerated
expansion, known as inflation, or at the nuclear density
epoch, when particles such as protons condensed out of
the soup of their constituent quarks.

The realization that black holes could be so small
prompted Stephen Hawking to consider quantum ef-
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fects, and in 1974 his studies lead to the famous conclu-
sion that black holes not only swallow particles but also
spit them out [204, 205]. The strong gravitational fields
around the black hole induce spontaneous creation of
pairs near the event horizon. While the particle with
positive energy can escape to infinity, the one with neg-
ative energy has to tunnel through the horizon into the
black hole where there are particle states with negative
energy with respect to infinity.9 As the black holes ra-
diate, they lose mass and so will eventually evaporate
completely and disappear. The evaporation is generally
regarded as being thermal in character,10 with a temper-
ature inversely proportional to its mass MBH,

TBH =
1

8πGMBH
=

1
4 π rs

, (320)

and an entropy S = 2πMBH rs, where rs is the
Schwarzschild radius and we have set c = 1. Note that
for a solar mass black hole, the temperature is around
10−6 K, which is completely negligible in today’s uni-
verse. But for black holes of 1012 kg the temperature is
about 1012 K hot enough to emit both massless particles,
such as γ-rays, and massive ones, such as electrons and
positrons.

The black hole, however, produces an effective po-
tential barrier in the neighborhood of the horizon that
backscatters part of the outgoing radiation, modifing the
blackbody spectrum. The black hole absorption cross
section, σs (a.k.a. the greybody factor), depends upon
the spin of the emitted particles s, their energy Q, and
the mass of the black hole [210]. At high frequencies
(Qrs � 1) the greybody factor for each kind of particle
must approach the geometrical optics limit. The inte-
grated power emission is reasonably well approximated
taking such a high energy limit. Thus, for illustrative
simplicity, in what follows we adopt the geometric op-
tics approximation, where the black hole acts as a perfect
absorber of a slightly larger radius, with emitting area
given by [210]

A = 27πr2
s . (321)

Within this framework, we can conveniently write the
greybody factor as a dimensionless constant normalized
to the black hole surface area seen by the SM fields Γs =
σs/A4, such that Γs=0 = 1, Γs=1/2 ≈ 2/3, and Γs=1 ≈ 1/4.

All in all, a black hole emits particles with initial total
energy between (Q,Q + dQ) at a rate

dṄi

dQ
=

σs

8π2 Q2
[
exp

( Q
TBH

)
− (−1)2s

]−1

(322)

9 One can alternatively think of the emitted particles as coming from
the singularity inside the black hole, tunneling out through the event
horizon to infinity [206].

10 Indeed both the average number [204, 205] and the probability dis-
tribution of the number [207–209] of outgoing particles in each mode
obey a thermal spectrum.

per degree of particle freedom i. The change of variables
u = Q/T, brings Eq. (322) into a more familar form,

Ṅi =
27 Γs TBH

128π3

∫
u2

eu − (−1)2s du. (323)

This expression can be easily integrated using (267) and
(268), and yields

Ṅi = A±
27 Γs

128π3 Γ(3) ζ(3) TBH . (324)

Therefore, the black hole emission rate is found to be

Ṅi ≈ 7.8 × 1020
( TBH

GeV

)
s−1 , (325)

Ṅi ≈ 3.8 × 1020
( TBH

GeV

)
s−1 , (326)

Ṅi ≈ 1.9 × 1020
( TBH

GeV

)
s−1 , (327)

for particles with s = 0, 1/2, 1, respectively.
At any given time, the rate of decrease in the black

hole mass is just the total power radiated

dṀBH

dQ
= −

∑
i

gi
σs

8π2

Q3

eQ/TBH − (−1)2s , (328)

where gi is the number of internal degrees of freedom of
particle species i. A straightforward calculation gives

ṀBH = −
∑

i

gi B±
27 Γs

128π3 Γ(4) ζ(4) T2
BH . (329)

Assuming that the effective high energy theory contains
approximately the same number of modes as the SM (i.e.,
gs=1/2 = 90, and gs=1 = 27), we find

dMBH

dt
= 8.3 × 1073 GeV4 1

M2
BH

. (330)

Ignoring thresholds, i.e., assuming that the mass of the
black hole evolves according to (330) during the entire
process of evaporation, we can obtain an estimate for the
lifetime of the black hole,

τBH = 1.2 × 10−74 GeV−4
∫

M2
BH dMBH . (331)

Using } = 6.58×10−25 GeV s, (331) can then be re-written
as

τBH ' 2.6 × 10−99 (MBH/GeV)3 s
' 1.6 × 10−26 (MBH/kg)3 yr . (332)

This implies that for a solar mass black hole, the lifetime
is unobservably long 1064 yr, but for a 1012 kg one, it is
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∼ 1.5 × 1010 yr, about the present age of the universe.
Therefore, any primordial black hole of this mass would
be completing its evaporation and exploding right now.

The questions raised by primordial black holes
motivate an empirical search for them. Most of the mass
of these black holes would go into gamma rays (quarks
and gluons would hadronize mostly into pions which
in turn would decay to γ-rays and neutrinos), with an
energy spectrum that peaks around 100 MeV. In 1976,
Hawking and Don Page realized that γ-ray background
observations place strong upper limits on the number
of such black holes [211]. Specifically, by looking at
the observed γ-ray spectrum, they set an upper limit
of 104/pc3 on the density of these black holes with
masses near 5 × 1011 kg. Even if primordial black holes
never actually formed, thinking about them has led to
remarkable physical insights because they linked three
previously disparate areas of physics: general relativity,
quantum theory, and thermodynamics [212].

EXERCISE 8.7 Very recently, it has become evident
that a promising route towards reconciling the apparent
mismatch of the fundamental scales of particle physics
and gravity is to modify the short distance behavior of
gravity at scales much larger than the Planck length.
Such modification can be most simply achieved by intro-
ducing extra dimensions (generally thought to be curled-
up) in the sub-millimiter range [213]. In the canonical
example, spacetime is a direct product of ordinary 4-
dimensional spacetime and a (flat) spatial n-torus with
circumferences of length 2πri (i = 1, ...,n), generally of
common linear size ri = rc. The SM fields cannot propa-
gate freely in the extra dimensions without conflict with
observations. This is avoided by trapping the fields to
a 3-dimensional brane-world. Applying Gauss’ law at
r � rc and r � rc, it is easily seen that the effective
Planck scale is related to the fundamental scale of grav-
ity M∗ simply by a volume factor,

rc =
(MPl

M∗

)2/n 1
M∗

= 2.0 × 10−17
(TeV

M∗

) (MPl

M∗

)2/n

cm , (333)

so that M∗ can range from ∼ TeV to 1019 GeV, for
rc ≤ 1 mm and n ≥ 2. If nature gracefully picked a suffi-
ciently low-scale gravity, the first evidence for it would
likely be the observation of microscopic black holes pro-
duced in particle collisions [214]. Although the black
hole production cross section, O(M−1

W ), is about 5 orders
of magnitude smaller than QCD cross sections,O(Λ−1

QCD),
it was proposed that such black holes could be produced
copiously at the LHC [215, 216] and in cosmic ray colli-
sions [217, 218], and that these spectacular events could
be easily filtered out of the QCD background. To a first
approximation it is reasonable to assume that the evap-
oration process is dominated by the large number of SM
brane modes [219, 220]. Therefore, the emission rate

per degree of particle freedom i of particles of spin s
with initial total energy between (Q,Q + dQ) can be ap-
proximated by (322). The characteristic temperature of
a 4 + n-dimensional black hole is [221]

TBH =
n + 1
4π rs

, (334)

where

rs =
1

M∗

MBH

M∗

2nπ(n−3)/2Γ( n+3
2 )

n + 2

1/(1+n)

, (335)

is the Schwarzschild radius [222]. As in the conve-
tional 4-dimensional case, we can conveniently rewrite
the greybody factor as a dimensionless constant, Γs =
σs/A4⊂4+n, normalized to the black hole surface area

A4⊂4+n = 4π
(n + 3

2

)2/(n+1) n + 3
n + 1

r2
s (336)

seen by the SM fields [219]. The upper limit on the
accretion rate for a 4 + n-dimensional black hole is

dM
dt

∣∣∣∣∣
accr
≈ π

(n + 3
2

)2/(n+1) n + 3
n + 1

r2
s ε , (337)

where ε is the nearby quark-gluon (or parton) energy
density [223]. The highest earthly value of energy den-
sity of partonic matter is the one created at the LHC,
εLHC < 500 GeV/fm3. Consider the case with n = 6,
which is well motivated by string theory [224]. (i) Show
that the black holes that could be produced at the LHC
(or in any forseeable accelerator built on Earth) would
evaporate much too quickly to swallow the partons
nearby. (ii) Determine the black hole lifetime. [Hint: For
n = 6, you can evaluate the numerical results of [225] at
〈Q〉 and normalize the cross sections results to the cap-
ture area A4⊂4+n to obtain Γs=1/2 ≈ 0.33 and Γs=1 ≈ 0.34.]

IX. MULTI-MESSENGER ASTRONOMY

For biological reasons our perception of the Universe
is based on the observation of photons, most trivially by
staring at the night-sky with our bare eyes. Conventional
astronomy covers many orders of magnitude in pho-
ton wavelengths, from 104 cm radio-waves to 10−14 cm
gamma rays of GeV energy. This 60 octave span in pho-
ton frequency allows for a dramatic expansion of our
observational capacity beyond the approximately one
octave perceivable by the human eye.

The γ-ray sky has been monitored since 1968. The
pioneering observations by the third Orbiting Solar Ob-
servatory (OSO-3) provided the first γ-ray sky map,
with 621 events detected above 50 MeV [226]. In ad-
dition, these observations revealed the existence of an
isotropic emission. The presence of an isotropic diffuse
γ-ray background (IGRB) has been confirmed by the
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FIG. 33: The open symbols represent the total extragalactic
γ-ray background for different foreground (FG) models as re-
ported by the Fermi Collaboration [230]. For details on the
modeling of the diffuse Galactic foreground emission in the
benchmark FG models A, B and C, see [230]. The cumulative
intensity from resolved Fermi-LAT sources at latitudes |b| > 20◦
is indicated by a (grey) band. The solid symbols indicate
the neutrino flux reported by the IceCube Collaboration [231].
The best fit to the data (extrapolated down to lower energies),
Φ(Eν) = 2.06+0.4

−0.3×10−18(Eν/105 GeV)−2.46±0.12 GeV−1 cm−2 s−1 sr−1,
is also shown for comparison [232].

Small Astronomy Satellite 2 (SAS-2) [227] and the the
Energetic Gamma Ray Experiment Telescope (EGRET)
on board of the Compton Gamma Ray Observatory
(CGRO) [228, 229]. Very recently, the Fermi-LAT has
released a new measurement of the IGRB spectrum from
100 MeV to 820 GeV at Galactic latitude |b| > 20◦ [230];
see Fig. 33. The LAT has also measured the extragalac-
tic γ-ray background (EGB), which is the sum of the
IGRB and the flux from detected sources. For the first
time a deviation from a power-law shape in the high-
energy part of the EGB and IGRB has been observed
as an exponential cut off with a break energy of about
Eγ = 280 GeV. The origin of the IGRB is not yet fully
understood. This leaves intringuing puzzles for the next
generation of GeV γ ray instruments to uncover [233].
What happens at higher energies?

Above a few 100 GeV the universe becomes opaque to
the propagation of γ rays, because of e+e− production on
the radiation fields permeating the universe; see Fig. 34.
The pairs synchrotron radiate on the extragalactic mag-
netic field before annihilation and so the photon flux is
significantly depleted. Moreover, the charged particles
also suffer deflections on the ~B-field camouflaging the
exact location of the sources. In other words, the injec-
tion photon spectrum is significantly modified en route
to Earth. This modification becomes dramatic at around
106 GeV where interaction with the CMB dominates and
the photon mean free path is smaller than the Galactic
radius.

Therefore, to study the high energy behavior of dis-
tance sources we need new messengers. Nowadays the
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best candidates to probe the high energy universe are
cosmic rays, neutrinos, and gravitational waves. Of
course in doing multi-messenger astronomy one has to
face new challenges. It is this that we now turn to study.

A. Cosmic rays

In 1912 Hess carried out a series of pioneering balloon
flights during which he measured the levels of ionizing
radiation as high as 5 km above the Earth’s surface [235].
His discovery of increased radiation at high altitude re-
vealed that we are bombarded by ionizing particles from
above. These cosmic ray particles are now known to con-
sist primarily of protons, helium, carbon, nitrogen and
other heavy ions up to iron.

Below 105 GeV the flux of particles is sufficiently
large that individual nuclei can be studied by detectors
carried aloft in balloons or satellites. From such direct
experiments we know the relative abundances and the
energy spectra of a variety of atomic nuclei, protons,
electrons and positrons as well as the intensity, energy
and spatial distribution of X-rays and γ-rays. Measure-
ments of energy and isotropy showed conclusively that
one obvious source, the Sun, is not the main source.
Only below 100 MeV kinetic energy or so, where the
solar wind shields protons coming from outside the
solar system, does the Sun dominate the observed
proton flux. Spacecraft missions far out into the solar
system, well away from the confusing effects of the
Earth’s atmosphere and magnetosphere, confirm that
the abundances around 1 GeV are strikingly similar
to those found in the ordinary material of the solar
system. Exceptions are the overabundance of elements
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like lithium, beryllium, and boron, originating from the
spallation of heavier nuclei in the interstellar medium.

EXERCISE 9.1 Consider a simple model of cosmic rays
in the Galaxy (height H � radius R) in which the net
diffusion of cosmic rays is mainly perpendicular to the
Galactic disk. In this case the density of cosmic rays
depends only on the vertical coordinate z and follows
the diffusion equation

∂n
∂t

= D
∂2n
∂z2 + Q(z, t) , (338)

where D = βcλ/3 is the diffusion coefficient, λ is the
mean free path, and the source term is given by Q(z, t).
Use the approximation Q(z, t) = Q0δ(z) to describe a
time-independent concentration of stars close to z = 0,
δ(z) is the Dirac delta function (see Appendix F). (i) Find
the steady-state solution to the diffusion equation given
a vanishing cosmic ray density at the edges of the Galaxy,
n(z = +H) = n(z = H) = 0. (ii) Calculate the cosmic-ray
column density

N =

∫ +H

−H
n(z)dz (339)

and determine the average residence time τres from
N = Q0τres. What is the mean free path for H = 500 pc
and τres = 107 yr?

Above 105 GeV, the flux becomes so low that only
ground-based experiments with large apertures and
long exposure times can hope to acquire a significant
number of events. Such experiments exploit the atmo-
sphere as a giant calorimeter. The incident cosmic radia-
tion interacts with the atomic nuclei of air molecules and
produces extensive air showers which spread out over
large areas. Already in 1938, Auger concluded from the
size of extensive air showers that the spectrum extends
up to and perhaps beyond 106 GeV [236, 237]. Nowa-
days substantial progress has been made in measuring
the extraordinarily low flux (∼ 1 event km−2 yr−1) above
1010 GeV. Continuously running experiments using both
arrays of particle detectors on the ground and/or fluo-
rescence detectors which track the cascade through the
atmosphere, have detected events with primary particle
energies somewhat above 1011 GeV [238].

The Pierre Auger Observatory employs the two de-
tection methods [239]. It consists of an array of about
1, 600 water Cherenkov surface detectors (SD) deployed
over a triangular grid of 1.5 km spacing and cover-
ing an area of 3, 000 km2 [240]. A SD event is formed
when at least 3 non-aligned stations selected by the local
station trigger are in spatial and temporal coincidence.
The ground array is overlooked by 24 fluorescence tele-
scopes, grouped in four sites, making up the fluores-
cence detector (FD) [241]. The FD observes the longitu-
dinal development of the shower in the atmosphere by
detecting the fluorescence light emitted by excited nitro-
gen molecules and Cherenkov light induced by shower

FIG. 35: Compilation of measurements of the differential en-
ergy spectrum of cosmic rays. The dotted line shows an E−3

power-law for comparison. Approximate integral fluxes (per
steradian) are also shown.

particles in air. The two detection methods have differ-
ent strengths, and together allow for large statistics data
samples and unrivaled control over systematic uncer-
tainties.

The FD provides a calorimetric measurement of the
primary particle energy, only weakly dependent on theo-
retical models. The most common strategy to determine
the nature of the primary cosmic ray is to study the longi-
tudinal shower profile of the electromagnetic component
in the atmosphere. The slant depth is the amount of at-
mosphere penetrated by a cosmic ray shower at a given
point in its development, and is customarily denoted by
the symbol X. The value of X is calculated by integrat-
ing the density of air from the point of entry of the air
shower at the top of the atmosphere, along the trajectory
of the shower, to the point in question. The depth of the
shower maximum Xmax is the position of the maximum
of energy deposition per atmospheric slant depth of an
extensive air shower. Lighter primaries penetrate the
atmosphere deeper than heavier primaries. In addition,
due to the larger number of nucleons and the larger cross
section, the event-by-event fluctuations of Xmax should
be smaller for heavier nuclei. Therefore, the first two
moments of the Xmax distribution, which are the mean
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〈Xmax〉 and standard deviation σ(Xmax) provide good dis-
criminators between different primary cosmic rays; for
details see e.g. [242].

The mechanism(s) responsible for imparting an en-
ergy of more than one Joule to a single elementary par-
ticle continues to present a major enigma to high energy
physics [243]. It is reasonable to assume that, in order
to accelerate a proton to energy E in a magnetic field B,
the size R of the accelerator must encompass the gyro
radius of the particle: R > Rgyro ∼ E/B, i.e. the accel-
erating magnetic field must contain the particle’s orbit.
By dimensional analysis, this condition yields a maxi-
mum energy E ∼ γBR. The γ-factor has been included
to allow for the possibility that we may not be at rest
in the frame of the cosmic accelerator, resulting in the
observation of boosted particle energies. Opportunity
for particle acceleration to the highest energies is limited
to dense regions where exceptional gravitational forces
create relativistic particle flows. All speculations involve
collapsed objects and we can therefore replace R by the
Schwarzschild radius R ∼ GM/c2 to obtain E < γBM.

At this point a reality check is in order. Such a dimen-
sional analysis applies to the Fermilab accelerator: 10
kilogauss fields over several kilometers (covered with a
repetition rate of 105 revolutions per second) yield 1 TeV.
The argument holds because, with optimized design and
perfect alignment of magnets, the accelerator reaches ef-
ficiencies matching the dimensional limit. It is highly
questionable that nature can achieve this feat.

Given the microgauss magnetic field of our galaxy,
no structures are large or massive enough to reach the
energies of the highest energy cosmic rays. Dimensional
analysis therefore limits their sources to extragalactic
objects. A common speculation is that there may be
relatively nearby active galactic nuclei powered by a
billion solar mass black holes. With kilo-Gauss fields we
reach 1011 GeV. The jets (blazars) emitted by the central
black hole could reach similar energies in accelerating
sub-structures boosted in our direction by a γ-factor of
10, possibly higher.

EXERCISE 9.2 (i) Derive the magnetic field strength
needed to hold a charge on a circular orbit of radius
R given its momentum p. Assume that the magnetic
field is uniform, that the motion of the particle is
perpendicular to the magnetic field and let β ∼ 1.
(ii) Given the circumference (∼ 26.659 km) of the LHC,
determine the uniform magnetic field strength needed
to keep 7 TeV protons in orbit. (iii) Using this magnetic
field strength find what would be the required size
needed for an LHC-like accelerator to launch particles
to cosmic-ray energies ∼ 1011 GeV. Compare this with
the orbits in the solar system and estimate the cost of the
accelerator. (iv) Which of the following astrophysical
objects are able to keep ultrahigh energy cosmic rays
in orbit? Neutrons stars (R ∼ 10−13 pc, B ∼ 1012 G),
AGN jets (R ∼ 1 kpc, B ∼ 10−5 G), supernova remnants
(R = 1 pc B ∼ 10−4 G). Consider protons and iron nuclei

of energy 1011 GeV and that you are at rest in the frame
of the cosmic accelerator.

The almost structureless power law spectrum spans
many decades of energy, 101 GeV < E < 1011 GeV. A
close examination of Fig. 35 reveals three major features:
(i) the steepening of the spectrum dubbed the knee cen-
tered at 106.6 GeV [244]; (ii) a pronounced hardening
of the spectrum at about 109.6 GeV, the so-called ankle
feature [245]; (iii) a cutoff around 1010.6 GeV [246, 247].
Three additional more subtle features have been recently
spotted between the knee and the ankle: a harden-
ing of the spectrum at around 107.3 GeV [248, 249] fol-
lowed by two softenings at ≈ 107.9 GeV [248, 249] and
≈ 108.5 GeV [250, 251]. The latter is traditionally referred
to as the second knee.

The variations of the spectral index reflect various as-
pects of cosmic ray production, source distribution, and
propagation. The first and second knee have unequiv-
ocal explanations, as reflecting the maximum energy of
Galactic magnetic confinement or acceleration capabil-
ity of the sources, both of which grow linearly in the
charge Z of the nucleus; the first knee being where pro-
tons drop out and the second knee where the highest-Z
Galactic cosmic rays drop out. As the energy increases
above the second knee to the ankle, the nuclear com-
position switches from heavy to light [252] whereas the
cosmic ray arrival directions are isotropic to high accu-
racy throughout the entire range [253–255]. Lastly, as the
energy increases above the ankle, not only does the spec-
trum harden significantly, but the composition gradually
becomes heavier (interpreting the data using conven-
tional extrapolations of accelerator-constrained particle
physics models) [256, 257].

The observed evolution in the extragalactic cosmic
ray composition and spectral index presents a complex
puzzle. A pure proton composition might be compati-
ble with the observed spectrum of extragalactic cosmic
rays [258] when allowance is made for experimental un-
certainties in the energy scale and the fact that the real lo-
cal source distribution is not homogeneous and continu-
ous [259] (although the sharpness of the ankle is difficult
to accommodate). However, a pure proton composition
is incompatible with the Xmax and σ(Xmax) distributions
reproted by the Auger Collaboration [256, 257] unless
current extrapolations of particle physics are incorrect.
On the other hand, models which fit the spectrum and
composition at highest energies, predict a deep gap be-
tween the end of the Galactic cosmic rays and the onset of
the extragalactic cosmic rays. Models can be devised to
fill this gap: fine-tuning is required to position this new
population so as to just fit and fill the gap [260, 261], un-
less we consider interactions in the region surrounding
the accelerator as illustrated in Fig. 36.

The discovery of a suppression above 1010.6 GeV
was first reported by the HiRes and Auger collabora-
tions [246, 247] and later confirmed by the Telescope Ar-
ray Collaboration [263]; by now the significance is well
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cosmic ray

source environment EBL/CMB detection

FIG. 36: Sources (yellow stars) inject cosmic ray nuclei with a power law in energy into a surrounding region of radiation and
turbulent magnetic fields. After propagation through this local environment and intergalactic space, these cosmic rays and their
spallation products are detected at Earth. The photon energies in the source environment are characteristically of much higher
energy than in the extragalactic background light (EBL) [262].

in excess of 20σ compared to a continuous power law
extrapolation beyond the ankle feature [264]. This sup-
pression is consistent with the Greisen-Zatsepin-Kuzmin
(GZK) prediction that interactions with cosmic back-
ground photons will rapidly degrade cosmic ray en-
ergies [265, 266]. Intriguingly, however, there are also
indications that the source of the suppression may be
more complex than originally anticipated. The trend to-
ward heavier composition above the ankle could reflect
the endpoint of cosmic acceleration, with heavier nuclei
dominating the composition near the end of the spec-
trum, which coincidentally falls off near the expected
GZK cutoff region [267]. If this were the case, the sup-
pression would constitute an imprint of the accelerator
characteristics rather than energy loss in transit. It is also
possible that a mixed or heavy composition is emitted
from the sources, and photodisintegration of nuclei and
other GZK energy losses suppress the flux.

The main reason why this impressive set of data fails
to reveal the origin of the particles is undoubtedly that
their directions have been scrambled by the microgauss
Galactic magnetic fields. However, above 1010 GeV pro-
ton astronomy could still be possible because the ar-
rival directions of electrically charged cosmic rays are
no longer scrambled by the ambient magnetic field of
our own Galaxy. Protons point back to their sources
with an accuracy determined by their gyroradius in the
intergalactic magnetic field B,

θ '
d

Rgyro
=

dB
E
, (340)

where d is the distance to the source. Scaled to units
relevant to the problem,

θ
0.1◦

'
(d/Mpc) (B/nG)

E/1011.5 GeV
. (341)

Speculations on the strength for the inter-galactic mag-
netic field range from 10−7 to 10−9 G. For the distance
to a nearby galaxy at 100 Mpc, the resolution may

therefore be anywhere from sub-degree to nonexistent.
Moreover, neutrons with energy & 109 GeV have a
boosted cτn sufficiently large to serve as Galactic mes-
sengers [268].11 The decay mean free path of a neu-
tron is cγn τn = 9.15 (En/109 GeV) kpc, the lifetime being
boosted from its rest-frame value, τn = 886 s, to its lab
value by γn = En/mn. It is therefore reasonable to expect
that the arrival directions of the very highest energy cos-
mic rays may provide information on the location of their
sources.12

B. Cosmic neutrinos

For a deep, sharply focused examination of the
universe a telescope is needed which can observe a
particle that is not much affected by the gas, dust,
and swirling magnetic fields it passes on its journey.
The neutrino is the best candidate. As we have seen,
neutrinos constitute much of the total number of
elementary particles in the universe, and these neutral,
weakly-interacting particles come to us almost without
any disruption straight from their sources, traveling
at very close to the speed of light. A (low energy)
neutrino in flight would not notice a barrier of lead fifty
light years thick. When we are able to see outwards in
neutrino light we will no doubt receive a wondrous new
view of the universe.

EXERCISE 9.3 In 1987, the astronomical world was
electrified with the news of a supernova exploding in
the Large Magellanic Cloud, a dwarf galaxy companion
to the Milky Way, at a distance of 150,000 ly. It was the
nearest supernova to have gone off in 400 yr, and was
studied in great detail. Its luminosity was enormous;

11 Neutron astronomy from the nearby radio galaxy Centaurus A may
also be possible [269].

12 For a more extensive discussion of this subject see e.g. [270].
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the explosion released as much visible light energy in
a few weeks as the Sun will emit in its entire lifetime
of 1010 yr. It was easily visible to the naked eye from
the Southern hemisphere. However, models of the
mechanisms taking place in the supernovae predict
that the visible light represents only 1% of the total
energy of the supernova; there is 100 times more energy
emitted in the form of neutrinos, in a blast lasting only
a few seconds. (i) Calculate the total amount of energy
emitted by the supernova in neutrinos. Express your
answer in Joules. (ii) Each neutrino has an energy
of roughly 〈Eν〉 ∼ 1.5 × 10−12 J. Calculate how many
neutrinos are emitted by the supernova. (This is an easy
calculation, but will give you a very large number).
(iii) Kamiokande is one of the largest neutrino detectors.
In 1987, it consisted of 2.140 kton of water (it has
since been expanded). Calculate how many electron
neutrinos should have been detected by Kamiokande if
the detection efficiency at 〈Eνe〉 ia bout 60% [271].

We have seen that MeV neutrinos are are produced by
nuclear reaction chains in the central core of stars. Mov-
ing up in energy, neutrinos would also be inevitably
produced in many of the most luminous and energetic
objects in the universe. Whatever the source, the ma-
chinery which accelerates cosmic rays will inevitably
also produce neutrinos, guaranteeing that high energy
neutrinos surely arrive to us from the cosmos.

Neutrino detectors must be generally placed deep un-
derground, or in water, in order to escape the back-
grounds caused by the inescapable rain of cosmic rays
upon the atmosphere. These cosmic rays produce many
muons which penetrate deeply into the earth, in even the
deepest mines, but of course with ever-decreasing num-
bers with depth. Hence the first attempts at high energy
neutrino astronomy have been initiated underwater and
under ice [272].

The IceCube facility is located near the Amundsen-
Scott station below the surface of the Antarctic ice sheet
at the geographic South Pole [273]. The main part of the
detector is the InIce array, which covers a cubic kilometer
of Antarctic glacial ice instrumented with digital opti-
cal modules (DOMs) that detect Cherenkov ligh [274].
The DOMs are attached to km-long supply and read-
out cables called strings. Each string carries 60 DOMs
spaced evenly along 1 km. The full baseline design of
86 strings was completed in December 2010. In addi-
tion to the InIce array, IceCube also possesses an air
shower array called IceTop which comprises 80 stations,
each of which consists of two tanks of water-ice instru-
mented with 2 DOMs to detect Cherenkov light [275].
The hybrid observations of air showers in the InIce and
IceTop arrays have mutual benefits, namely significant
air shower background rejection (for neutrino studies)
and an improved air shower muon detection (for cosmic
ray studies).

In 2012, the IceCube Collaboration famously an-
nounced an observation of two ∼ 1 PeV neutrinos dis-

covered in a search for the nearly guaranteed cosmo-
genic neutrinos (which are expected to produced as sec-
ondaries in the GZK chain reaction [276]) [277]. The
search technique was later refined to extend the neu-
trino sensitivity to lower energies [278, 279], resulting
in the discovery of an additional 26 neutrino candi-
dates with energies between 50 TeV and 2 PeV, constitut-
ing a 4.1σ excess for the combined 28 events compared
to expectations from neutrino and muon backgrounds
generated in Earth’s atmosphere [280]. Interpretation
of these results, however, does not appear to be en-
tirely straightforward. For instance, if one makes the
common assumption of an unbroken E−2

ν neutrino en-
ergy spectrum, then one expects to observe about 8-9
events with higher energies than the two highest energy
events observed thus far. The compatibility between Ice-
Cube observations and the hypothesis of an unbroken
power-law spectrum requires a rather steep spectrum,
Φ(Eν) ∝ E−2.3 [281]. Very recently, the IceCube results
have been updated [282–284]. At the time of writing, 54
events have been reported in four years of IceCube data
taking (1347 days between 2010 – 2014). The data are con-
sistent with expectations for equal fluxes of all three neu-
trino flavors [285]. The best-fit power law is E2

νΦ(Eν) =
2.2±0.7×10−8(Eν/100 TeV)−0.58 GeV cm−2 s−1sr−1 and re-
jects a purely atmospheric explanation at more than 5.7σ.
Splitting the data into two sets, one from the northern
sky and one from the souther sky, allows for a satisfac-
tory power law fit with a different spectral index for each
hemisphere. The best-fit spectral index in the northern
sky is γN = 2.0+0.3

−0.4, whereas in the southern sky it is
γS = 2.56 ± 0.12 [283]. The discrepancy with respect to
a single power law corresponds to 1.1σ and may indi-
cate that the neutrino flux is anisotropic [286, 287]. The
largest concentration of events is at or near the Galactic
center, within uncertainties of their reconstructed arrival
directions [288–290]. There are numerous proposed ex-
planations for the origin of IceCubes events [291]. How-
ever, considerably more data are yet required before the
final verdict can be given.

C. Gravitational waves

Ever since Newton in the XVII century, we have
learned that gravity is a force that acts immediately
on an object. In Einstein theory of general relativity,
however, gravity is not a force at all, but a curvature
in space [61]. In other words, the presence of a very
massive body does not affect probed objects directly; it
warps the space around it first and then the objects move
in the curved space. Inherit from such a redefinition of
gravity is the concept of gravitational waves: as mas-
sive bodies move around, disturbances in the curvature
of spacetime can spread outward, much like a pebble
tossed into a pond will cause waves to ripple outward
from the source. Propagating at (or near) the speed of
light, these disturbances do not travel through spacetime
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FIG. 37: Initial configuration of test particles on a circle of
radius L before a gravitational wave hits them.
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x

FIG. 38: The effect of a plus-polarized gravitational wave on a
ring of particles. The amplitude shown in the figure is roughly
h = 0.5. Gravitational waves passing through the Earth are
many billion billion times weaker than this.
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FIG. 39: The effect of cross-polarized gravitational waves on a
ring of particles.
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h h+ +
FIG. 40: Two linearly independent polarizations of a gravita-
tional wave are illustrated by displaying their effect on a ring of
free particles arrayed in a plane perpendicular to the direction
of the wave. The figure shows the distortions in the original
circle that the wave produces if it carries the plus-polarization
or the cross-polarization. In general relativity there are only 2
independent polarizations. The ones shown here are orthog-
onal to each other and the polarizations are transverse to the
direction of the wave.

as such – the fabric of spacetime itself is oscillating!
The simplest example of a strong source of gravita-

tional waves is a spinning neutron star with a small
mountain on its surface. The mountain’s mass will cause
curvature of the spacetime. Its movement will stir up
spacetime, much like a paddle stirring up water. The
waves will spread out through the universe at the speed
of light, never stopping or slowing down.

As these waves pass a distant observer, that observer
will find spacetime distorted in a very particular way:
distances between objects will increase and decrease
rhythmically as the wave passes. To visualize this effect,
consider a perfectly flat region of spacetime with a group
of motionless test particles lying in a plane, as shown in
Fig. 37. When a weak gravitational wave arrives, passing
through the particles along a line perpendicular to the
ring of radius L, the test particles will oscillate in a cru-
ciform manner, as indicated in Figs. 38 and 39. The area
enclosed by the test particles does not change, and there
is no motion along the direction of propagation. The
principal axes of the ellipse become L + ∆L and L − ∆L.
The amplitude of the wave, which measures the fraction
of stretching or squeezing, is h = ∆L/L. Of course the
size of this effect will go down the farther the observer is
from the source. Namely, h ∝ d−1, where d is the source
distance. Any gravitational waves expected to be seen
on Earth will be quite small, h ∼ 10−20.

The frequency, wavelength, and speed of a gravita-
tional wave are related through λ = cν. The polarization
of a gravitational wave is just like polarization of a light
wave, except that the polarizations of a gravitational
wave are at 45◦, as opposed to 90◦. In other words, the
effect of a cross-polarized gravitational wave (h×) on test
particles would be basically the same as a wave with
plus-polarization (h+), but rotated by 45◦. The different
polarizations are summarized in Fig. 40.

In general terms, gravitational waves are radiated by



64

very massive objects whose motion involves accelera-
tion, provided that the motion is not perfectly spheri-
cally symmetric (like a spinning, expanding or contract-
ing sphere) or cylindrically symmetric (like a spinning
disk). For example, two objects orbiting each other in a
quasi-Keplerian planar orbit will radiate [292, 293]. The
power given off by a binary system of masses M1 and

M2 separated a distance R is [294]

P = −
32
π

G4

c5

(M1 M2)2(M1 + M2)
R5 . (342)

For the Earth-Sun system R is very large and M1 and M2
are relatively very small, yielding

P = −
32
π

(6.7 × 10−11 m3

kg s2 )4

(3 × 108 m/s)5

(6 × 1024 kg 2 × 1030 kg)2(6 × 1024 kg + 2 × 1030 kg)
(1.5 × 1011m)5 = 313 W . (343)

Thus, the total power radiated by the Earth-Sun system
in the form of gravitational waves is truly tiny compared
to the total electromagnetic radiation given off by the
Sun, which is about 3.86 × 1026 W. The energy of the
gravitational waves comes out of the kinetic energy of
the Earth’s orbit. This slow radiation from the Earth-
Sun system could, in principle, steal enough energy to
drop the Earth into the Sun. Note however that the
kinetic energy of the Earth orbiting the Sun is about
2.7 × 1033 J. As the gravitational radiation is given off,
it takes about 300 J/s away from the orbit. At this rate,
it would take many billion times more than the current
age of the universe for the Earth to fall into the Sun.

Although the power radiated by the Earth-Sun system
is minuscule, we can point to other sources for which the
radiation should be substantial. One important example
is the pair of stars (one of which is a pulsar) discovered
by Hulse and Taylor [295]. The characteristics of the orbit
of this binary system can be deduced from the Doppler
shifting of radio signals given off by the pulsar. Each
of the stars has a mass about 1.4 M�. Also, their orbit
is about 75 times smaller than the distance between the
Earth and Sun, which means the distance between the
two stars is just a few times larger than the diameter of
our own Sun. This combination of greater masses and
smaller separation means that the energy given off by the
Hulse-Taylor binary will be far greater than the energy
given off by the Earth-Sun system, roughly 1022 times as
much.

The information about the orbit can be used to predict
just how much energy (and angular momentum) should
be given off in the form of gravitational waves. As the
energy is carried off, the orbit will change; the stars will
draw closer to each other. This effect of drawing closer is
called an inspiral, and it can be observed in the pulsar’s
signals. The measurements on this system were carried
out over several decades, and it was shown that the
changes predicted by gravitational radiation in general
relativity matched the observations very well, providing
the first experimental evidence for gravitational waves.

Inspirals are very important sources of gravitational
waves. Any time two compact objects (white dwarfs,

neutron stars, or black holes) come close to each other,
they send out intense gravitational waves. As the ob-
jects come closer and closer to each other (that is, as R
becomes smaller and smaller), the gravitational waves
become more and more intense. At some point these
waves should become so intense that they can be di-
rectly detected by their effect on objects on the Earth.
This direct detection is the goal of several large experi-
ments around the world.

The great challenge of this type of detection, though,
is the extraordinarily small effect the waves would pro-
duce on a detector. The amplitude of any wave will fall
off as the inverse of the distance from the source. Thus,
even waves from extreme systems like merging binary
black holes die out to very small amplitude by the time
they reach the Earth. For example, the amplitude of
waves given off by the Hulse-Taylor binary as seen on
Earth would be roughly h ≈ 10−26.However, some grav-
itational waves passing the Earth could have somewhat
larger amplitudes, h ≈ 10−20 [292, 293]. For an object
1 m in length, this means that its ends would move by
10−20 m relative to each other. This distance is about a
billionth of the width of a typical atom.

A simple device to detect this motion is the laser in-
terferometer, with separate masses placed many hun-
dreds of meters to several kilometers apart acting as
two ends of a bar. Ground-based interferometers are
now operating, and taking data. The most sensitive is
the Laser Interferometer Gravitational Wave Observa-
tory (LIGO) [296]. This is actually a set of three devices:
one in Livingston, Louisiana; the other two (essentially
on top of each other) in Hanford, Washington. Each con-
sists of two light storage arms which are 2 to 4 km in
length. These are at 90◦ angles to each other, and consist
of large vacuum tubes running the entire 4 kilometers. A
passing gravitational wave will then slightly stretch one
arm as it shortens the other. This is precisely the motion
to which an interferometer is most sensitive.

On September 14, 2015 at 09:50:45 UTC gravitational
waves were detected by both of the twin LIGO de-
tectors [297]. The waves originated in the collision
and merger of two black holes (with 29 and 36 M�)
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approximately 400 Mpc from Earth. About 3 times the
mass of the sun was converted into gravitational waves
in a fraction of a second, with a peak power output
about 50 times that of the whole visible universe. This
detection inaugurates a new era of astronomy in which
gravitational waves are tools for studying the most
mysterious and exotic objects in the universe.

EXERCISE 9.4 (i) Estimate the power radiated in grav-
itational waves by a neutron star of M? = 1.4M� orbiting
a black hole of MBH = 20M�, assuming the orbital radius
is R = 6GMBH/c2. (ii) If the kinetic energy of the neutron
star orbiting the black hole is about 7× 1047 J, how much
time will it take the neutron star to fall into the black
hole?

D. Looking ahead

The recent observation of a diffuse astrophysical flux
of high energy neutrinos and the direct detection of grav-
itational waves represents the first light in the nascent
field of multimessenger astronomy. The search for
correlations in the different data sample has already
started [298–301]. Thus far, there are no excesses beyond
randomly expected.

An in-depth exploration of the neutrino universe re-
quires a next-generation IceCube detector. IceCube-
Gen2 is based upon the robust design of the current
detector [302]. The goal for this new observatory is to de-
liver statistically significant samples of very high energy
astrophysical neutrinos, in the 106 GeV . Eν . 109 GeV
range, and yield hundreds of neutrinos across all fla-
vors at energies above 100 TeV. This will enable detailed
spectral studies, significant point source detections, and
new discoveries. Companion experiments in the deep
Mediterranean are moving into construction phase, and
the space-based CHerenkov from Astrophysical Neutri-
nos Telescope (CHANT) is in the R&D phase [303].

Resolving the fundamental questions of UHECR com-
position and origins, and investigating particle physics
above accelerator energies, will require both enhanced
experimental techniques implemented at the existing ob-
servatories, as well as a significant increase in exposure
to catch the exceedingly rare highest energy events. In

the very near future the upgrade of the Pierre Auger
Observatory, named Auger Prime, will allow: (i) a pre-
cise reconstruction of mass dependent energy spectrum;
(ii) the identification of primaries, event-by-event, up to
the highest energies; (iii) a systematic study of arrival
direction(s) of an enhanced proton data sample [304].

Even before we know the results from Auger Prime it
seems clear that still larger aperture observatories with
much better energy and Xmax resolution will be called
for in order to measure the spectra and composition dis-
tribution of individual sources. It is inspiring to note
that some 5 million UHECRs above about 5.5×1010 GeV
strike the Earth’s atmosphere each year, from which we
currently collect only about 50 or so with present ob-
servatories. In this sense, there exists some 5 orders of
magnitude room for improvement! It may well be that
the best hope to make inroads in this area is to take the
search for UHECR sources into space from which a huge
volume of atmosphere can be viewed using the fluores-
cence technique. To this end several path finder efforts
are underway to develop the requisiste technologies. For
example, in 2017 a NASA/CNES supported mission to fly
a super-pressure stratospheric ballom with a fluorescence
detector will take place. Such ballons can fly for hun-
dreds of days, and may observed the first air showers
from above. Eventually these technologies may lead to
a permanently orbiting satellite to detect UHECRs. An
optimist might even imagine an eventual constellation
of satellites to tap the remaining 5 orders of magnitude
of UHECR “luminosity”, accessing naturally occuring
particle beams at energies far in excess available to ter-
restrial colliders with an event rate opening up a new
window on beyond-the-standard-model phenomena.
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Answers and Comments on the Exercises

1.1 This is a simple application of Kepler’s third law. For a = 30.066 AU, (23) gives 164.85 yr. The answer is given to
five significant figures, the same number as we have for the semi-major axis. (ii) The exact same calculation for Pluto
gives 248.1 yr, to four significant figures. (iii) The ratio of orbital times is 248/164.8 = 1.505 to four significant figures.
This is quite close (within 0.3%) to a ratio of 3 : 2. That is, every time Pluto makes two orbits around the Sun, Neptune
makes three orbits. These resonances are actually quite common in the Solar System. It turns out that many of the
gaps in Saturns rings are due to resonances with the various moons of Saturn, and more complicated resonances
explain some of the stunning detailed features seen in those rings. (iv) The eccentricity of the orbit is very close to
zero, so we are not surprised that the aphelion distance, a(1 + e) = 30.4 AU, is very close to the semi-major axis. Here,
the number of significant figures is subtle. You might think that the eccentricity is known to only a single significant
figure, so that the aphelion should be given to the same significance. In fact, what counts in this calculation is the
quantity 1 + e, which has three significant figures. (v) The perihelion is a(1 − e) = 39.48(10.250) AU = 29.61 AU, and
the aphelion, similarly, is a(1 + e) = 49.35 AU. The perhelion distance of Pluto is less than the aphelion distance of
Neptune, so indeed, Pluto is sometimes a bit closer to the Sun than is Neptune. It only gets a little inside Neptune’s
orbit, and it turns out that it was last inside Neptune’s orbit from 1979 to 1999.

1.2 This is another application of Kepler’s third law; we have a period (24 hours) and want to find a radius of the
orbit. However, note that this is not an orbit around the Sun, and so Kepler’s third law in its original form is not
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valid. Rather, we can use Newton’s form of Kepler’s third law:

a3 =
GM⊕T 2

4π2 . (344)

where M⊕ is the mass of the Earth and we will approximate as T ≈ 90, 000 s. Thus a ∼ 4.2 × 107 m. Are we done?
Well, we were asked for the distance from the Earth’s surface, whereas what we have calculated is from the Earth’s
center. So we need to subtract from this the radius of the Earth, 6371 km, leaving roughly 35, 629 km. Besides, we
are asked to express this number in Earth radii; dividing by 6371 km gives about 5.6 Earth radii.

1.3 (i) The radius of the orbit was R ≈ 6371 km + 200 km ≈ 6600 km. The circumference of this circular orbit is
2πR = 4.2× 104 km. So, the station has done 8.6× 104 orbits. Now, how long does each orbit take? This is the inverse
of the problem we have done in exercise 1.2. We know the semi-major axis of the orbit (the radius for a circular orbit),
and can use Kepler’s law applied to the Earth to find the period:

TMir =

(
4π2

GM⊕

)1/2

a3/2
≈ 5, 400 s = 90 minutes. (345)

So, if every orbit takes roughly 90 minutes, 8.6 × 104 orbits take 4.6 × 108 s, or 15 yr, rounding off to the needed
precision. (ii) We found that the period of each orbit was close to 90 minutes. Therefore, it made 16 turns per day.
Now, what would an orbit of 20 revolutions per day look like? Let’s find the radius of this orbit. The period of this
orbit is shorter by 16/20 from 90 minutes for Mir (or 72 minutes). We can find its orbital radius the hard way by using
the full Newton’s version of Kepler’s law again, or else, we can remember that Kepler’s law holds for both orbits
around the Earth, so we can find the ratio of both expressions. Namely:(

Tnew sat

TMir

)2

=
(anew sat

aMir

)3
⇒ anew sat = aMir

(
Tnew sat

TMir

)2/3

= 0.86aMir = 5, 700 km . (346)

This would have been a nice circular orbit, except for the fact that it is 700 km underground.

2.1 The Earth radius is R⊕ ' 6378 km and we consider the two measurements separated 784 km in latitude. Then
the two cities are separated by 7◦ in latitude. If we interpret the 7◦ separation in terms of stellar parallax then the
distance to the Sun would be d ≈ 784 km/ tan 7◦ ∼ 6, 385 km. If we interpret night and day as the Sun revolving
around a flat disk, then the Sun will crash into the Earth.

2.2 (i) The solar constant isF� = 1.3×103 W/m2. (ii) The absolute luminosity is L� = 3.7×1026 W. (iii) The Sun-Mars
distance is D = 1.524 AU. Then

F = F�

(
dSun−Earth

dSun−Mars

)2

= 590 W m−2 . (347)

(iii) The power is P = F Asolar panels ε = 767 W, where Asolar panels = 1.3 m2 and ε = 0.2 is the efficiency.

2.3 Let D1 be the distance between Mercury and Saturn when they are closest to each other and D2 the distance
when they are further appart. (i) Then the distance from Mercury to the Sun is DMS = (D2−D1)/2 = 3.2 lm ' 0.385 AU.
(ii) The distance between Saturn and the Sun is DSS = D1 + DMS = 79.5 lm ' 9.57 AU. NASA’s MESSENGER
spacecraft slammed into the surface of Mercury on the 30 April 2015 bringing a groundbreaking mission to a
dramatic end. The probe crashed at 3:26 pm red-sox time (1926 GMT), gouging a new crater into Mercury’s heavily
pockmarked surface. This violent demise was inevitable for MESSENGER, which had been orbiting Mercury
since March 2011 and had run out of fuel. The 10-foot-wide (3 meters) spacecraft was traveling about 8,750 mph
(14,080 km/h) at the time of impact, and it likely created a smoking hole in the ground about 52 feet (16 m) wide in
Mercury’s northern terrain. No observers or instruments witnessed the crash, which occurred on the opposite side
of Mercury from Earth. Cassini is the fourth space probe to visit Saturn and the first to enter orbit, and its mission is
ongoing as of 2016. It has studied the planet and its many natural satellites since arriving there in 2004.

2.4 The observed luminosity from the Sun when it is not eclipsed is πR2
�
σT4
�

. When Jupiter passes in front of the
Sun, it blocks an area of size πr2

J , and the observed luminosity decreases to π(R2
�
− r2

J )σT4
�

, where rJ = 71, 492 km. The
fractional decrease in the apparent surface brightness is

∆I
I�

=
π(R2

�
− r2

J )σT4
�

πR2
�
σT4
�

− 1 = −
r2

J

R2
�

≈ −0.01 , (348)
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The eclipse only reduces the brightness by about 1%.

2.5 (i) The range of distances consistent with the measured parallax angle is 1/0.006 pc < D < 1/0.004 pc,
or equivalently 167 pc < D < 250 pc. (ii) The faintest stars that can be detected with the HST have apparent
brightnesses which are 4 × 1021 fainter than the Sun. This implies that the HST apparent brightness lower threshold
is Ith = 2.5 × 10−22 I�. For a star ? like the Sun, L? = L�. Hence using (36) and the ratio method the distace to the
star is found to be dL = d

√
I�/Ith = 6.3 × 1010 AU = 306 kpc = 106 ly, where d = 1 AU is the Earth-Sun distance

and 1 pc = 206265 AU = 3.262 ly. (iii) For Cepheids, LC = 2 × 104L�. Because we want to calculate the limiting dis-
tance for observing this object we take IC = Ith and so dL = d

√
(LCI�)/(L�Ith) = 8.94×1012 AU = 43.4 Mpc = 1.41×108 ly.

2.6 (i) As the Earth moves, the direction to which we point to Eris changes. In order to do calculations, we need to
know how fast the Earth travels around the Sun. This can be done simply by remembering that the Earth travels the
circumference of the Earth’s orbit in the time of one year, thus the speed is given by the distance divided by the time,

v ≈
2π × 1.5 × 108km

3 × 107 s
= 30 km/s, (349)

to one significant figure (we made the standard approximation that π ≈ 3). At this speed, how far does Earth move
in 5 hours (i.e. 18, 000 s)? Rounding to 20, 000 s, the answer is ` = 600, 000 km. The parallax diagram is a long skinny
triangle, with the 600, 000 km of the Earth’s path at the base, the distance d to Eris its length, and a 7.5′′ angle at its
apex. If we measure angles in radians and if the angles are small, then there is a very simple relation between the
long side d and short side ` of long skinny triangles: θ = `/d. Now, since 7.5′′ ≈ 4 × 10−5 radians, the distance to
Eris is d = `/θ ≈ 1.5 × 1010 km. There are 1.5 × 108 km in an AU, so the distance to Eris is 100 AU. (For this problem,
we can take the distance from the Sun to Eris, and from the Earth to Eris, as essentially the same). The semi-major
axis of Plutos orbit is 40 AU; Eris is quite a bit more distant. Interestingly, Eris is on a highly elliptical orbit, e = 0.44
(much larger than any of the other planets in the Solar System) and is currently very close to aphelion. Its perhelion
is actually within the orbit of Pluto, but it will not be there for another 280 years, given its 560-year orbital period.
(ii) The brightness of the Sun as seen at Eris is given by the inverse square law: I = L�/(4πd2). This is the amount of
energy per unit time per unit area received at Eris. The cross sectional area of Eris is πr2, and thus the total energy
per unit time falling on Eris is the product of the apparent brightness and that area, namely: L�r2/(4d2). However,
only a fraction a of that light is reflected, the rest is absorbed. So our final answer is: r2aL�/(4d2). (iii) What we
have calculated in part (ii) is the luminosity (in reflected light, at least), of Eris. We are observing it a distance d
away (again, we are taking the approximation that the distance from the Sun to Eris, and from Eris to the Earth, are
essentially the same). So its brightness just follows from the inverse square law, namely:

IEris = aL�
( r

2d

)2 1
4πd2 = aL�

r2

16πd4 . (350)

The brightness of a distant asteroid falls off as the inverse fourth power of the distance. This is why these distant
guys took so long to be discovered; they are really faint. (iv) Let’s solve (350) for r

r = 4πd2

√
πb
aL�
∼ 1.5 × 105 m . (351)

This is seriously large, larger than Pluto itself. The discovery of Eris (named after the goddess of strife and discord
in Greek mythology) set off a controversy in the astronomical community about whether it should be called a planet,
and what the definition of a planet is. Reams have been written on this subject. The basic problem is that the concept
of a planet has evolved as we have learned more, and we now realize that things that might conceivably be called
planets now fall into a variety of categories:

• terrestrial planets, relatively small rocky objects in the inner solar system, including Mercury, Venus, Earth and
Mars;

• gas giants, much much larger and more massive bodies in the outer part of the solar system, including Jupiter,
Saturn, Uranus and Neptune (many have argued that Uranus and Neptune should be in their own category of
ice giants as they are actually mostly frozen gas, not vaporous gas like Jupiter and Saturn);

• dwarf planets, some found in the main asteroid belt between Mars and Jupiter, but a class to which Pluto, Eris,
and other recent discoveries belong.
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And this list does not yet include the massive moons of the Earth, Jupiter, and Saturn (the largest of which are
considerably larger than Pluto), or the planets discovered around other stars. The term planet is now too broad to
allow a single, all-encompassing clean definition, and our field has become richer with the discovery of Eris and
its brethren. (v) The diameter of Eris is DEris ≈ 3, 000 km, and the distance is d = 100 AU. Imagining the triangle
covering the diameter of Eris on one end, and Earth at the other vertex, the angular size of Eris is then

θ = DEris/d = 2 × 10−7
≈ 40 milliarcseconds , (352)

where we used the conversion 1 radian ≈ 200, 000 arcseconds. This is at the very limit of the resolution of HST, so
you can resolve it (in fact, HST did). (vi) This is a simple application of Newton’s form of Kepler’s third law, which
relates the period and semi-major axis of an orbiting body to the mass of the object it orbits. Here we are given the
period and the semi-major axis, and we need to calculate the mass. Solving for the mass gives:

M =
4π2a3

GT 2 . (353)

However, do we have the semi-major axis? What were given is the angle the semi-major axis subtends in our HST
images. Another opportunity to use the small-angle formula. Consider a very long skinny triangle, with length given
by the distance from the Earth to Eris (100 AU) and interior angle 0.53′′; we want to find the base of the triangle. It is:

a = θd = 0.53 arcsec
1 radian

2 × 105 arcsec
1.5 × 1010 km = 37, 000 km . (354)

If we plug this into (353) we find:

M =
4π2
× (3.7 × 107 m)3

6.674 × 10−11 m3 s−2 kg−1
× (15.8 days × 86, 400 s/day)2

= 1.6 × 1022 kg . (355)

This is remarkable: Eris is a bit more massive than is Pluto.

2.7 (i) The luminosity is not isotropic, because the solid angle subtended by the blackbody from different directions
will be different, and the surface brightness should be constant, so each observer will see a different flux depending
on the direction. (ii) The maximum flux will be seen along the z-axis, because that is where the subtended solid
angle is greatest. The solid angle is Ω = π(a/dL)2, because the blackbody appears as a circular disk of angular radius
a/dL � 1. In addition, using a � dL, the flux is simply F =

∫
I dΩ (because we can approximate cosθ ' 1, where θ

is the angle between each point and the center of the observed object, whenever the object observed has an angular
size much smaller than 1 radian). Using I = B = (σT4/π) at the surface of the blackbody, F = IΩ = σT4(a/dL)2.
(iii) The minimum flux will be seen along any direction along the equator, where the subtended solid angle will be
smallest. Now, the projected image of the ellipsoid is an ellipse, with solid angle Ω = π(ab/d2

L), so just as before,
F = IΩ = σT4(ab/d2

L). (iv) Everyone sees the same apparent surface brightness, I = σT4/π. (v) The total luminosity is
the area times σT4. All we need is to find the area of the ellipsoid, which can be done for example by dividing the
ellipsoid into thin rings of radius x parallel to the x − y plane. For the area A we find:

A = 2 × 2π
∫ a

0
r dr

1 +

(
dz
dr

)21/2

, (356)

where z = b(1 − r2/a2)1/2, and

L = (σT4) 4π
∫ a

0
dr r

[
a2
− x2(1 − q2)

a2 − x2

]1/2

, (357)

where q = b/a. If you have the patience, the integral can actually be solved. (vi) The galaxy is different because it is
made of individual stars, and each star is spherical (or even if they are oblate because they are rotating, they should
have their spin axes randomly oriented and uncorrelated). The condition NR2

� ab guarantees that stars do not
block each other, so the flux observed is the sum of the flux from each star and the luminosity is isotropic. This is true
also for any optically thin gas, where each atom emits isotropically. Therefore, the flux is the same for all observers
along different directions:

F =
L

4πd2
L

, (358)
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where L is the total luminosity of the galaxy, and the apparent surface brightness is different. If all the luminosity is
contained within the oblate ellipsoid, the average apparent surface brightness within the projected ellipsoid as seen
by the observer on the z-axis is

I = F/Ω =
L

4π2a2 , (359)

and for the observer on the equator,

I = F/Ω =
L

4π2ab
. (360)

The apparent surface brightness is higher when the galaxy is seen edge-on because the surface density of stars is
greater, since the line of sight crosses a greater pathlength through the galaxy. (vii) The answer would be modified
because stars would block each other so some stars would be occulted. This would be a really compact galaxy since
its mean surface brightness would be similar to that of the Sun, and the stellar atmospheres would be actually heated
by the other stars in the galaxy significantly. The galaxy would not be stable because every star would on average
have a physicall collision with another star once every orbit (a good recipe for making a big black hole and some
fireworks, more on this below).

2.8 Taking the log10 of (34) we have

log10 L = log10(4πR2σT4) = log10(4πσ) + log10 R2 + log10 T4 = log10(4πσ) + 2 log10 R + 4 log10 T . (361)

If R is constant then log10(4πσ) + 2 log10 R = constant. Then, for constant R, the slope of log10 L vs. log10 T plot is 4,
but since in the HR diagram T is plotted increasing to the left the slope is −4.

3.1 From the inverse Lorentz transformation (42) we get

tanθ =
sinθ0

γ(β − cosθ0)
. (362)

Using the identity 1 + tan2 θ = sec2θ it is straightforward to obtain (44).

3.2 The distribution in the S system is given by

dN
dΩ

=
dN
dΩ0

dΩ0

dΩ
, (363)

so we need d cosθ0/d cosθ. Invert (44) to obtain

cosθ0 =
β + cosθ
β cosθ + 1

and so
dN
dΩ

=
κ(1 − β2)

(1 + β cosθ)2 . (364)

This is for a source moving away from O. To get the result for motion towards O, just replace β→ −β.

3.3 To show that for v� c the Doppler shift in wavelength is approximately v/c we use the binomial expansion:

λ′ = λ (1 + v/c)1/2 (1 − v/c)−1/2
≈ λ

[
1 +

v
2c

+ O

(
v2

c2

)] [
1 −

(
−

v
2c

)
+ O

(
v2

c2

)]
≈ λ[1 + v/c + O(v2/c2)] , (365)

and so ∆λ/λ ≈ v/c.

3.4 The wavelengths from single electron energy level transitions are inversely proportional to the square of the
atomic number of the nucleus. Therefore, the lines from singly-ionized helium are usually one fourth the wavelength
of the corresponding hydrogen lines. Because of their redshift, the lines have 4 times their usual wavelength (i.e.,
λ′ = 4λ) and so 4λ = λ

√
(1 + v/c)/(1 − v/c)⇒ v = 0.88 c.

3.5 Let

pµ =

(
hν
c
,−

hν
c

cosθ,−
hν
c

sinθ, 0
)

(366)
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be the momentum 4-vector for the photon as seen in S and

p′µ =

(
hν′

c
,−

hν′

c
cosθ′,−

hν′

c
sinθ′, 0

)
(367)

in S′. Do the direct Lorentz transformation from S → S′ to get ν′ cosθ′ = νγ(cosθ + β), ν′ sinθ′ = ν sinθ, and
ν′ = νγ(1 + β cosθ). Use the last relation to eliminate ν and ν′ giving

cosθ′ =

(
β + cosθ

1 + β cosθ

)
and sinθ′ =

sinθ
γ(1 + β cosθ)

. (368)

For small β, this gives cosθ′ ≈ cosθ+β sin2 θ. Now, usingθ′ = θ−α, sinceα is small we have cos(θ−α) = cosθ+α sinθ,
and so α ≈ β sinθ. This is in agreement with the data of Bradley [305], a result which caused problems for the æther
theory of electromagnetic waves (for details see e.g. [27]).

3.6 The universality of Newton’s law of gravitation tells us that all the equations and conclusions derived for the
Sun and Earth interaction also hold for any system consisting of a star and a single planet orbiting around it. In
particular, the period T of the planet is the same as the period of the star: the time it takes each of them to complete
one orbit around their common center-of-mass. The period is the easiest parameter to determine, since precisely
what is detected is a periodic motion of the star. (At least this is true in theory; in practice, determining the period
from a finite set of observations can prove tricky.) The other quantity that we are usually able to estimate fairly
accurately is the mass M of the star, based on the spectral type and luminosity of the star. From (23) it follows that
the ratio T2/a3 is not exactly the same for all planets, but is very close to 4π2/(GM), since the ratio m/M is, almost
by definition of a planet, very close to zero. (i) As a consequence, the first fact about the unseen planet that we can
infer immediately from the knoweledge of M and T is its distance from the star, a = [(GMT2)/(4π2)]1/3 = 0.046 AU.
(ii) In the simplest case of a nearly circular orbit, the planet describes a circle of radius a at constant velocity v,
and the star describes a circle with constant velocity V, both orbits having period T. Then vT = 2πa, and since T
determines a, by Kepler’s third law, we also have the velocity v of the planet. Then, from (3) we conclude that
vm = VM so that we could determine the mass m of the planet, if we knew the value of V. If the plane of the orbit
contained our line of sight, then V would simply be the maximal radial velocity. In general, if i denotes the angle
of inclination between the normal to the plane of the orbit and our line of sight to the star, then the maximal radial
velocity would be K = V sin i, and hence we can deduce the quantity m sin i = KM/v. Using the measured value of i
we get m = 0.63MJ, where MJ = 1.898×1027 kg is the mass of Jupiter. (iii) From (348) it follows that r =

√

0.02R2 ≈ 1.5rJ.

4.1 The flux density of neutrinos at Earth is

Fν =
1038 neutrinos/s

4πd2 = 3.5 × 1010 neutrinos
cm2 s

, (369)

where d is the Sun-Earth distance. Thus, the flux of neutrinos passing through the brain per second is

Fν = Fν Abrain = 3.5 × 1010 neutrinos
cm2 s

πD2
brain

4
≈ 6.2 × 1012 neutrinos

s
, (370)

where we have assumed that the diameter of the brain is Dbrain ' 15 cm.

4.2 The equation of hydrostatic support is (63). For a constant density, we can set M(r) = 4ρ0πr3/3. Separation of
variables and integration from the center to the surface (where P = Ps = 0) yields∫ Ps

Pc

dP = 0 − Pc = −

∫ R

0

4
3

Gρ0πr3ρ0

r2 dr =
4
3
πGρ2

0

∫ R

0
rdr = −

4
6
πGρ2

0R2 . (371)

Substituting ρ0 by M/V = M/(4πR3/3) we obtain the result

Pc =
3

8π
G

M2

R4 . (372)

(ii) The mass within a radius r is

M(r) =

∫ r

0
ρ(x)4πx2 dx = 4πρc

(
1
3

r3
−

1
4

r4

R

)
. (373)
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For r = R the total mass of the star is found to be M = πρcR3/3 and therefore we can express the central density in
terms of M and R

ρc =
3
π

M
R3 , with which M(r) = 12M

(1
3
ξ3
−

1
4
ξ4

)
, (374)

where ξ = r/R is the scaled radius. The integral of the equation of hydrostatic support is then

Pc = 12M
3
π

M2

R4 G
∫ 1

0

( 1
3ξ

3
−

1
4ξ

4)(1 − ξ)

ξ2 dξ =
5

4π
G

M2

R4 . (375)

4.3 From (73) we have

P =
1
3

nmv2 =
2
3

n〈E〉 , (376)

where n is the particle density. For a non-relativistic degenerate electron gas we have

P =
2
3

ρ

µemp
〈E〉 =

1
20

( 3
π

)2/3 h2

me

(
ρ

µemp

)5/3

, (377)

where ρ is the mass density. Equating the two relations and solving for 〈E〉 gives

〈E〉 =
3

40

( 3
π

)2/3 h2

me

(
ρ

µemp

)2/3

. (378)

Using the numerical value of the density of Sirius B we obtain: 〈E〉 = 155.27 keV. This corresponds to a Lorentz
factor γ = 1.30 and β = 0.64. The electrons are thus mildly relativistic. The non-relativistic approximation agrees
with the full relativistic result to an accuracy of 20% (note that the derivation of the equation of state uses the electron
momentum). For larger densities the non-relativistic equation of state is surely not appropiate and we need to use
the relativistic one.

4.4 By setting Pc = P we obtain

α
G
π

M2

R4 =
1
8

( 3
π

)1/3

hc
(
ρ

µemp

)4/3

=
1
8

( 3
π

)1/3

hc
(

3
4πµemp

)4/3 M4/3

R4 , (379)

with α = 3/8 and 5/4 for constant and linear density, respectively. Solving for M yields

MCh = α−3/2 9
256π

√
3
2

(
hc
G

)3/2 (
1

µemp

)2

. (380)

This evaluates numerically to Mconst
Ch = 0.44M� and Mlinear

Ch = 0.07M�. For a constant density, the value is about a
factor of 3 smaller than the exact result.

4.5 A type Ia supernova explosion is 10 billion times more luminous than the Sun (for a few days). Using the
result of exercise 2.5 we write D = d

√
(LIaI�))/(L�Ith) = 6.32 × 1015 AU = 3.07 Gpc = 1011 ly, where Ith is the limiting

brightness for detection with HST.

4.6 (i) The radius of the blast wave can be read off the figures taking into account the height of the tower. Note
that the shock wave is not at the border of the fireball, but at the end of the compression layer that is growing with
time (seen as a faint layer in e.g. the figure at 0.053 s). Using a ruler we estimate the numbers given in Table V,
with an estimated precision of 6 m (corresponding to the 1/16th inch sub-division of the ruler). (ii) The Sedov-Taylor
expansion is described by (98). In a log-log plot this corresponds to a line log10 r = a+b log10 t, with a = 1/5 log10(E/ρ1)
and b = 2/5. The fitted slope, b = 0.42, is indeed close to the value expected for the Sedov-Taylor phase of 2/5 = 0.4
(least-square fitting of a power law with error bars yields 0.40 ± 0.02, i.e. perfect compatibility within one standard
deviation). The best value of a is the one minimizing the squared distances to the data points:

d
da

 N∑
i=1

[
log10(ri) − a − b log10(ti)

]
2

= −2
N∑

i=1

[
log10(ri) − a − b log10(ti)

]
(381)
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TABLE V: Expansion of the shock front as a function of time.

time (s) shock radius (m)
0.006 75
0.016 108
0.025 138
0.053 200
0.062 206
0.090 218

d

da

 
NX

i=1

(lg(ri) � a � b lg(ti)

!2

= �2
NX

i=1

lg(ri) � a � b lg(ti),

leading to

a =

P
lg(ri) � b

P
lg(ti)

N

In [4]: a = (np.sum(yLog) - 2/5.*np.sum(xLog))/len(yLog)

print "a=", a

a= 2.77687821514

Let’s superimpose this result with the data points.

In [5]: plt.figure()

plt.errorbar(x, y, yerr=6, fmt=’o’)

plt.xlim(0, 0.1)

xFit = np.arange(0.001, 0.1, 0.001)

yFit = 10**a*xFit**(2/5.)

plt.plot(xFit, yFit)

plt.xlabel(’t [s]’)

plt.ylabel(’r [m]’)

plt.show()

Solving a for E yields

E = 105a 4⇡

25
⇢0.

The density of air at 1100 m above sea level is about 1.1 kg/m3 and 1 ton TNT equivalent is 4.184⇥ 109 J.
Therefore

5

FIG. 41: Expansion of the shock front as a function of time [306].

leading to

a =
1
N

[∑
log10(ri) − b

∑
log10(ti)

]
= 2.77 (382)

The results of the fit are shown in Fig. 41. Solving a for E yields E = 105aρ1. The density of air at 1, 100 m above sea
level is about 1.1 kg/m3 and 1 ton TNT equivalent is 4.184 × 109 J. Therefore, E = 7.78 × 1013 J = 18, 595 ton TNT.
The official yield estimate of Trinity is 16, 800 ton TNT < E < 23, 700 ton TNT [39]. Note that the Sedov–Taylor
expression was derived on the basis of a spherical explosion, whereas in this case the blastwave expands hemispher-
ically. Following the orignal reasoning by Taylor [39], we have implicitely assumed “. . . that it may be justifiable to
assume that most of the energy associated with the part of the blast wave which strikes the ground is absorbed there.”

5.1 (i) Differentiating ~σ(u, v) with respect to u and v yields

∂~σ
∂u

(u, v) ≡ ~σu(u, v) =


− sin u sin v
cos u sin v

0

 and
∂~σ
∂v

(u, v) ≡ ~σv(u, v) =


cos u cos v
sin u cos v
− sin v

 . (383)

The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives

E = ~σu · ~σu = sin2 v, F = ~σu · ~σv = 0, G = ~σv · ~σv = 1 . (384)
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The line element may be expressed in terms of the coefficients of the first fundamental form as ds2 = sin2 v du2 + dv2.
(ii) The surface area is given by

A =

∫ π

0

∫ 2π

0

√

EG − F2du dv =

∫ π

0

∫ 2π

0
sin v du dv = 2π(− cos v)

∣∣∣∣∣∣
π

0

= 4π . (385)

The coefficients of the second fundamental form are

e = ~σuu · n̂ = sin2 v, f = ~σuv · n̂ = 0, g = ~σvv · n̂ = 1 . (386)

(iii) The Gaussian curvature is

K =
det II
det I

=
eg − f 2

EG − F2 = 1 . (387)

5.2 (i) The coefficients of the first fundamental form are

E = tanh2 u, F = 0, G = sech2 u . (388)

The line element is ds2 = tanh2 u du2 + sech2 u dv2. (ii) The surface area is

A = 2
∫ 2π

0

∫
∞

0
sechu tanhu du dv = 4π (389)

which is exactly that of the sphere. (iii) The coefficients of the second fundamental form are

e = −sechu tanhu, f = 0, g = sechu tanhu . (390)

The Gaussian curvature is K = −1.

5.3 We have

d
dt
||γ̇||2 =

d
dt

(~̇γ · ~̇γ) = 2~̈γ · ~̇γ . (391)

Since γ is geodesic, ~̈γ is perpendicular to the tangent plane which contains ~̇γ. Hence, ~̈γ · ~̇γ = 0. Subsequently,
d||γ̇||2/dt = 0. Therefore, the speed ||γ̇|| is constant.

5.4 The tangent plane is spanned by ~σu and ~σv. By definition the curve γ is a geodesic if ~̈γ · ~σu = ~̈γ · ~σv = 0. Since
~̇γ = u̇~σu + v̇~σv, it follows that ~̈γ · ~σu = 0 becomes[

d
dt

(u̇~σu + v̇~σv)
]
· ~σu = 0 . (392)

We rewrite the left hand side of the above equation:[
d
dt

(u̇~σu + v̇~σv)
]
· ~σu =

d
dt

[
(u̇~σu + v̇~σv) · ~σu

]
− (u̇~σu + v̇~σv) ·

d~σu

dt

=
d
dt

(Eu̇ + Fv̇) − (u̇~σu + v̇~σv) · (u̇~σuu + v̇~σuv)

=
d
dt

(Eu̇ + Fv̇) −
[
u̇2(~σu · ~σuu) + u̇v̇(~σu · ~σuv + ~σv · ~σuu) + v̇2(~σv · ~σuv)

]
. (393)

We have that

~σu · ~σuu =
1
2
∂
∂u

(~σu · ~σu) =
1
2

Eu, ~σv · ~σuv =
1
2

Gu, ~σu · ~σuv + ~σv · ~σuu = Fu . (394)

Substituting them into (393), we obtain[
d
dt

(u̇~σu + v̇~σv)
]
· ~σu =

d
dt

(Eu̇ + Fv̇) −
1
2

(Euu̇2 + 2Fuu̇v̇ + Guv̇2) . (395)
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This establishes the first differential equation (113). Similarly, (114) can be established from[
d
dt

(u̇~σu + v̇~σv)
]
· ~σv = 0 . (396)

5.5 For the parametrization in (115) the first fundamental form is found to be ds2 = dθ2 + cos2 θdφ2, with E = 1,
F = 0, and G = cos2 θ. We restrict to unit-speed curves γ(t) = ~σ(θ(t), φ(t)), so that

Eθ̇2 + 2Fθ̇φ̇ + Gφ̇2 = θ̇2 + φ̇2 cos2 θ = 1 . (397)

If γ is a geodesic, then (114) is satisfied. Here (114) reduces to

d
dt

(φ̇ cos2 θ) = 0, or equivalently φ̇ cos2 θ = ζ, (398)

where ζ is a constant. There are two cases: (i) ζ = 0; then φ̇ = 0. In this case, φ is constant and γ is part of a meridian.
(ii) ζ , 0. Substituting (398) into the unit-speed condition (397), we have

θ̇2 = 1 −
ζ2

cos2 θ
. (399)

Combining the above with (398), along the geodesic it holds that(
dφ
dθ

)2

=
φ̇2

θ̇2
=

1
cos2 θ(cos2 θ/ζ2 − 1)

. (400)

Integrate the derivative dφ/dθ:

φ − φ0 = ±

∫
dθ

cosθ
√

cos2 θ/ζ2 − 1
, (401)

where φ0 is a constant. The substitution u = tanθ yields

φ − φ0 = ±

∫
du√

ζ−2 − 1 − u2
= sin−1

 u√
ζ−2 − 1

 , (402)

which leads to

tanθ = ± sin(φ − φ0)
√
ζ−2 − 1 . (403)

Multiply both sides of the above equation by cosθ:

sinθ = ±
√
ζ−2 − 1(cosφ0 cosθ sinφ − sinφ0 cosθ cosφ) . (404)

Since ~σ(θ, φ) = (xy, z), we have

z = ∓(sinφ0

√
ζ−2 − 1) x ± (cosφ0

√
ζ−2 − 1) y . (405)

Clearly, z = 0 when x = y = 0. Therefore, γ is contained in the intersection of S2 with a plane through the center of
the sphere. Hence it is part of a great circle.

5.6 (132) gives the rate at which a clock at radius r ticks relative to one infinitely far away. Here we are asked to
compare the rate of a clock at radius r relative to one at the radius of the Earth (i.e., at the Earth’s surface). We can
think about this by considering the rate of each of these clocks relative to a distant clock. That is, the clock on the
Earth’s surface has a rate a factor √

1 −
1
c2

2GM⊕
R⊕

(406)
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slower than the distant clock, while the clock at radius r has a rate√
1 −

1
c2

2GM⊕
r

. (407)

Note that both these expressions are less than one, but because r > R⊕, the stationary clock at radius r ticks faster
than that at the Earth’s surface. Indeed, the relative rate of the two is just the ratio of these two expressions√(

1 −
1
c2

2GM⊕
r

) (
1 −

1
c2

2GM⊕
R⊕

)−1

. (408)

Again, the expression in (408) is greater than 1. (ii) Circular motion at speed v at a radius r gives rise to an acceleration
v2/r, which we know is due to gravity. Thus if the astronaut has a mass m, Newton’s second law yields

GM⊕m
r2 = m

v2

r
, or solving for v gives v =

√
GM⊕

r
. (409)

The time dilation in special relativity is due to the by now familiar factor (1 − v2/c2)1/2, which gives√
1 −

GM⊕
rc2 . (410)

Note again how similar this looks to the expression above for time dilation due to gravity. Again, this is the rate that
an orbiting clock at radius r ticks relative to a stationary clock at the same radius. (iii) In part (408), we calculated
the ratio of rates of stationary clocks at radius r and R⊕ (due to general relativity), while in part (410), we calculated
the ratio of the rates of an orbiting clock at radius r to a stationary clock at the same radius. Therefore, the ratio of
the rate of an orbiting clock at radius r to a stationary one on the ground is simply the product of these two results;
namely, √(

1 −
2GM⊕

rc2

) (
1 −

2GM⊕
R⊕c2

)−1 (
1 −

GM⊕
rc2

)
. (411)

(iv) We now simplify (411). We will do this in pieces, starting from (408) we can write:√(
1 −

1
c2

2GM⊕
r

) (
1 −

1
c2

2GM⊕
R⊕

)−1

≈

√(
1 −

1
c2

2GM⊕
r

) (
1 +

1
c2

2GM⊕
R⊕

+ · · ·

)
. (412)

We then use (1 − x)(1 − y) ≈ 1 − (x + y) to re-write (412) as√
1 −

GM⊕
c2

(
2
r
−

2
R⊕

)
. (413)

This then gets multiplied by (410), yielding√
1 −

GM⊕
c2

(
3
r
−

2
R⊕

)
≈ 1 −

GM⊕
2c2

(
3
r
−

2
R⊕

)
. (414)

However, we do need to justify the use of the various approximations we have made. We dealt with a variety of
expressions of the form 1 − x; in every case x is of the form (GM⊕)/(rc2). The smallest r we considered, and therefore
the largest the expression (GM⊕)/(rc2), is r = R⊕. So we plug in numbers at r = R⊕ to obtain

GM⊕
R⊕c2 =

2
3

10−10 m3 s−2 kg−1
× 6 × 1024 kg

6.4 × 106 m × (3 × 108 m/s)2 ≈ 7 × 10−9 , (415)

which is indeed a number much much smaller than 1. (v) We are asked to find the radius at which (414) is
equal to unity. This clearly holds when 3/r − 2/R⊕ = 0, or r = 1.5R⊕. Given the radius of the Earth is 6, 400 km,
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the critical radius r = 1.5R⊕ is at a distance of 9, 600 km from the Earth’s center, or 3, 200 km above the Earth’s
surface. Now, (414) is less than 1 for r < 1.5R⊕, and so astronauts on the space shuttle age less than those staying home.

5.7 (i) The Schwarzschild radius of a black hole of mass M is RSch = 2GM/c2. The volume of a sphere of this radius
is just the familiar 4πR3

Sch. The density is the mass divided by the volume, giving:

ρBH = M ×
[

4
3
π

(2GM
c2

)3]−1

=
3c6

32πG3M2 . (416)

The more massive the black hole, the smaller the density. Thus there is a mass at which the black hole has the density
of paper, which is what we are trying to figure out. (ii) The density is the mass per unit volume. If we can figure out
the volume of a square meter of paper (whose mass we know, 75 g), we can calculate its density. The volume of a
piece of paper is its area times its thickness. The thickness is 0.1 mm, or 10−4 m, and so the volume of a square meter
of paper is 10−4 m3. Therefore, the density of paper is

ρ =
7.5 × 10−2 kg

10−4 m3 = 7.5 × 102 kg/m3 , (417)

similar to (but slightly less than) the density of water (remember, paper is made of wood, and wood floats in water).
(iii) Here we equate (416) with (417) and solve for the mass

M =

√
3c6

32πG3ρ
≈ 3 × 1038 kg , (418)

where we have made all the usual approximations of π = 3, 32 = 10, and so on. We need to express this in solar
masses, so we divide by M� = 2 × 1030 kg to obtain M ≈ 1.5 × 108M�. A black hole 150 million times the mass of the
Sun has the same density as a piece of paper. We know the Hitchhiker’s Guide to the Galaxy is science fiction, but
do such incredibly massive black holes actually exist? Indeed they do: the cores of massive galaxies (including our
own Milky Way) do contain such enormous black holes. Actually, the most massive such black hole known to exist
is in the core of a particularly luminous galaxy known as M87, with a mass of 3 billion solar masses. We still have to
calculate the Schwarzschild radius of a black hole. We could plug into the formula for a Schwarzschild radius and
calculate away, but here we outline a simpler approach. We know the Schwarzschild radius is proportional to the
mass of a black hole, and we happen to remember that a M� mass black hole has a Schwarzschild radius of 3 km,
(129). So a 150 million M� black hole has a Schwarzschild radius 150 million times larger, or 4.5 × 108 km. We are
asked to express this in terms of AU; 1 AU = 1.5 × 108 km, so the Schwarzschild radius of such a black hole is 3 AU.
(iv) We know the entire mass of the black hole. If we can calculate the mass of a single piece of paper, the ratio of
the two gives the total number of pages. So we now turn to calculate the mass of a single piece of paper. We know
that a square meter of paper has a mass of 75 g. How many square meters is a standard-size sheet? One inch is
2.5 cm = 2.5 × 10−2 m. So 8.5 × 11 inch2

≈ 100 inch2
≈ 6 × 10−2 m−2. Thus the mass is

Mass of a piece of paper = 7.5 × 10−2 kg/m2
× 6 × 10−2 m2

≈ 5 × 10−3 kg. (419)

That is, a piece of paper weighs about 5 g. We divide this into the mass we calculated above:

Number of sheets of paper =
Mass of rule book

Mass per page
=

3 × 1038 kg
5 × 10−3 kg/page

= 6 × 1040 pages . (420)

Strictly speaking, if the rule book is printed on both sides of the page, we should multiply the above result by a
factor of two. That is one seriously long set of rules! Finally, note that because the density of a more massive black
hole is smaller (416), the mass and number of pages of the Brockian Ultra Cricket rule book as given by (420) is really
just a lower limit. That is, if the rule book were even larger than what we have just calculated, it would still collapse
into a black hole.

5.8 (i) The Schwarzschild radius of a 3M� black hole is RSch = 2GM/c2 = 9 km. If you remember that for 1 M� black
hole the Schwarzchild radius is 3 km, you can scale from there. (ii) Using the Newton’s law of gravitation, we can
write the difference in gravitational forces acting on two bodies of mass m which are located at distances r1 and r2
from the massive body of mass M

δF ≡ F1 − F2 =
GmM

r2
1

−
GmM

r2
2

= GmM

 1
r2

1

−
1
r2

2

 . (421)
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We are interested in the difference in gravitational forces in two locations that are close to each other, since the height
of the person falling into the black hole is small compared to the Schwarzchild radius. We take r2 = r1 + ∆, where
∆� r1. Now, we simplify (421); dropping the subscript 1 we have

δF = GmM
[

1
r2 −

1
(r + ∆)2

]
= GmM

(r + ∆)2
− r2

r2(r + ∆)2 = GmM
r2 + 2r∆ + ∆2

− r2

r2(r + ∆)2 ≈ GmM
2∆

r3 . (422)

In obtaining this expression, we used the approximations r + ∆ = r(1 + ∆/r) ≈ r and 2r∆ + ∆2 = 2r∆[1 + ∆/(2r)] ≈ 2r∆,
because ∆ � r. Next, we use (422) to find the distance rcrit from the black hole where the relative stretching force
between your head and your legs is equal to some critical force

δFcrit = GmM
2∆

r3
crit

and so rcrit =
(2GmM∆

δFcrit

)1/3

. (423)

Finally, we can plug in the numbers. The mass of the black hole is M = 3M⊕ = 6 × 1030 kg. The mass of the body
is m = 70 kg, δFcrit = 10 kN. The critical radius is then, rcrit ≈ 2000 km or recalling that the the Schwarzchild radius
for 3M� black hole is RSch ∼ 10 km, we have rcrit ∼ 200RSch. Note, that in this case a significant amount of stretching
occurs already relatively far from the black hole. (iii) The force with which the metal plate is pulling on you is given
by the Newton’s second law, F = mspg, where msp is the mass of the steel plate, and g ∼ 10 m/s2 is the gravitational
acceleration on the Earth. Thus msp = 10 kN/(10 m/s2) = 1, 000 kg, or 1 ton. If you still have hard time imagining how
much weight 10 kN is, this is the weight of a typical car. So, imagine attaching a car to your feet: not pleasant. Most
likely this is enough to kill or at the very least severely disable a person. (iv) We can apply the formula for rcrit from
(423). Now the mass of the black hole is 1.3 × 106 times larger, so the radius increases by (1.3 × 106)1/3

≈ 100 times.
The answer is then rcrit = 2 × 105 km. In terms of the Schwarzchild radii, remember that RSch is linearly proportional
to the mass. For 4 million solar mass black hole, the Schwarzchild radius is then 1.3 × 106

× 10 km ≈ 107 km and so
rcrit ≈ 2 × 10−2 RSch. Since rcrit < RSch, the “spaghettification” happens inside the Schwarzchild radius. (v) As we saw
in (iv), the radius at which the tidal force reaches 10 kN grows as the third root of the mass of the black hole, but the
Schwarzchild radius grows linearly with the mass of the hole. In part (iii) for the 3M� hole the critical radius was
outside RSch, while in part (iv) for 4 × 106M� hole the critical radius was inside. Thus, there should be a minimum
mass of the hole, at which rcrit = RSch, i.e., we can just barely pass through the horizon before getting fatally stretched.
We find this mass setting rcrit = RSch, which leads to(2GmMmin∆

δFcrit

)1/3

=
2GMmin

c2 , (424)

and so

Mmin =

(
c3

2G

) ( m∆

δFcrit

)1/2

= 2 × 1034 kg = 104M� . (425)

So, if you fall into a 104M� black hole, you will be killed right as you go through the horizon. If the black hole is
more massive, then you can go through the horizon while still alive, and enjoy the sights! Sadly, you will not have
much time to enjoy the view anyways, because you will be crushed by the singularity in 0.01 s seconds for this
104M� black hole. This time is proportional to mass of the hole.

5.9 (i) The Schwarzschild metric is given by (123). Firstly, we have dt = 0, dr = 0, dθ = 0, and θ = π/2, and so (123)
simplifies to

ds2 = r2 sin2 θ dφ2 = r2dφ2 . (426)

Now, to find the circunference we can integrate this function from 0 ≤ φ ≤ 2π,

C =

∫ 2π

0
Rdφ = 2πR . (427)

(ii) Secondly, we have dt = 0, dθ = 0, and dφ = 0, and so (123) simplifies to

ds2 =
(
1 −

2GM
rc2

)−1

dr2
→ ds =

(
1 −

2GM
rc2

)−1/2

dr . (428)
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This can also be rewritten as

Rphys =

∫ R

0

(
1 −

2GM
rc2

)−1/2

dr . (429)

If we multiply both top and bottom by rc2 and divide top and bottom by 2GM we get an expression of the form

Rphys =

∫ R

0

√
rc2/(2GM)

rc2/(2GM − 1)
dr . (430)

Now, let

ξ =
rc2

2GM
⇒

2GM
c2 dξ = dr . (431)

(430) can be made to look like (133) and (134) by multiplying the denominater by −1 and taking the absolute value
of this function; namely

Rphys =
2GM

c2

∫ α

0

√
ξ

1 − ξ
dξ =

2GM
c2

∫ 1

0

√
ξ

1 − ξ
dξ +

∫ α

0

√
ξ

1 − ξ
dξ

 . (432)

It follows that

Rphys =
2GM

c2

[
π
2

+ ln
(√
α − 1 +

√
α
)

+
√

α − 1
√
α
]
, (433)

where α = Rc2/(2GM); equivalently,

Rphys =
2GM

c2

π2 + ln


√

Rc2

2GM
− 1 +

√
Rc2

2GM

 +

√
Rc2

2GM
− 1

√
Rc2

2GM

 . (434)

(iii) Finally, we use the answers of (i) and (ii) to compute Π where

C = 2ΠRphys . (435)

Using (427) we find

2πR = 2ΠRphys = 2Π
2GM

c2

π2 + ln


√

Rc2

2GM
− 1 +

√
Rc2

2GM

 +

√
Rc2

2GM
− 1

√
Rc2

2GM

 , (436)

and solving for Π we have

Π = π
Rc2

2GM

π2 + ln


√

Rc2

2GM
− 1 +

√
Rc2

2GM

 +

√
Rc2

2GM
− 1

√
Rc2

2GM

−1

, (437)

which can also be written as

Π = πξ
[
π
2

+ ln
(√
ξ − 1 +

√
ξ
)

+
√
ξ − 1

√
ξ
]−1

. (438)

(iv) A plot of Π versus R/RSch is shown in Fig. 42. We can see that Π approaches the value of π measured in a flat
space, as ξ→∞.

5.10 (i) From Fig. 10 estimate an initial position of about 32 ly at a time 2002.12 and 45 ly at 2002.73. The apparent
velocity is therefore vapp ≈ 13 ly/0.61 yr = 21 ly/yr = 21c, which is in agreement with the value vapp = (25.6 ± 4.4)c
given in [80] reporting this measurement. The apparent velocity of the blob is thus highly superluminal. (ii) The
light emitted at point A at time ti,1 will reach the observer located at a distance d1 at time t1 = d1/c; see Fig. 43. The
blob travels with “true” velocity v from A to B a distance H which takes a time

∆tA→B = ti,2 − ti1 =
1
v

L
sinθ

, (439)
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Π vs.  ξ
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Figure 1: 1 Plot of π versus R
rs

(d). Plot Π as a function of ξ ≡ R/rs for ξ ∈ [1,103] (use log axes for the x axis). What
happens t0 Π as ξ→ ∞?

the plot is given in figure 1.

and we can see that Π approaches the true value of π that is measured in a flat space.

Problem #2 [Time to fall into a black hole]

We haven’t spent too much time discussing black holes in great detail. But take it as agiven that

a particle initially at rest at infinity follows a trajectory that always obeys

(
1− 2GM

rc2

)
dt

dτ
= 1

this is a constant of the motion, and is actually closely related to the total energy of the

particle.

(a). Rewrite the Schwarzschild metric in the context of a particle falling in from infinity

along a direct radial line. Your metric should only have a dτ term and a dr term.

3

FIG. 42: Π is not a constant [307].

where the only hypothesis is that the signal travels at the speed of light c. The remaining distance to the observer is
d2 = d1 − L/ tanθ and therefore the light from position B will arrive at

t2 =
1
v

L
sinθ

+
1
c

(
d1 −

L
tanθ

)
. (440)

The time difference between the signals from A and B is

∆t = t2 − t1 =
1
v

L
sinθ

+
1
c

L
tanθ

= L
(c − v cosθ

vc sinθ

)
= L

(
1 − β cosθ

v sinθ

)
, (441)

where β = v/c, and the apparent transverse velocity is therefore

βapp =
1
c

L
∆t

=
β sinθ

1 − β cosθ
. (442)

(iii) Using x = tanθ/2, (442) can be re-written with standard trigonometry as βapp = 2βx/[(1 − β) + (1 + β)x2] so that
after a bit of algebra it follows that

vapp = kc⇔ [(1 + β)x − β/k]2 = (β/k − γ−1) (β/k + γ−1) , (443)

where γ = (1 − β2)−1/2 is the Lorentz factor. The left hand term is positive and the equation in x admits at least
one solution if β/k ≥ γ−1. Superluminal motion vapp ≥ c (i.e. k ≥ 1) is then possible as long as γβ ≥ βapp. A direct
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20 1. VERY HIGH ENERGY BLAZARS

Figure 4. Schematic view of the motion of an emit-
ting region along a direction at angle θ from the line
of sight. The signal emitted at ti,1 (resp. ti,2) travels
for d1/c (resp. d2/c) before arriving at t1 (resp. t2). A
displacement of L is observed between t1 and t2, for an
effectively travelled distance of H.

in Fig. 4. The apparent velocity vapp is given by Eq. (1.1):

(1.1) vapp =
L

t2 − t1
=

L

(ti,2 + d2
c ) − (ti,1 + d1

c )
=

L

(ti,2 − ti,1) − d1−d2
c

where the only hypothesis is that the signal travels at the speed of light
c. The “true” velocity of the emitting region is vi = H/(ti,2−ti,1). Then
using Eq. (1.1), the apparent velocity is:

(1.2) vapp =
H sin θ

H/vi − H cos θ/c
=

vi sin θ

1 − vi
c cos θ

Calling β = vi/c, and using t = tan θ/2, Eq. (1.1) can be re-written
with standard trigonometry vapp/c = 2βt/

£
(1 − β) + (1 + β)t2

§
, so

that after a bit of algebra:

(1.3) vapp = kc ⇔ [(1 + β)t − β/k]2 = (β/k − 1/γ) × (β/k + 1/γ)
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FIG. 43: The situation in exercise 5.10.

consequence of the previous equation is γ ≥ βapp, which proves that, even for moderate superluminal motions, the
true velocity is relativistic. The angle that maximizes the apparent transverse velocity can be found by differentiating
vapp and solving for θmax, we have

dvapp

dθ
=

β cosθ
1 − β cosθ

−
β2 sin2 θ

(1 − β cosθ)2 = 0⇒ cosθmax = β . (444)

The maximum apparent transverse velocity is therefore

βmax
app =

β sinθmax

1 − β cosθmax
=
β
√

1 − cos2 θmax

1 − β cosθmax
=
β
√

1 − β2

1 − β2 = βγ . (445)

Therefore,

βmax
app = βγ = γ

√
1 − 1/γ2 ⇒ γ =

√
1 + β2

app , (446)

that is to say the plasma blob moves with a highly relativistic Lorentz factor of at least ∼ 21.

6.1 (i) Imagine a circle with radius x around the observer. A fraction s(x), 0 ≤ s(x) ≤ 1, is covered by trees. Then
we’ll move a distance dx outward, and draw another circle. There are 2πnxdx trees growing in the annulus limited
by these two circles. They hide a distance 2πxnDdx, or a fraction nDdx of the perimeter of the circle. Since a fraction
s(x) was already hidden, the contribution is only [1 − s(x)]nDdx. We get

s(x + dx) = s(x) + [1 − s(x)] n D dx , (447)

which gives a differential equation for s:

ds(x)
dx

= [1 − s(x)] n D . (448)

This is a separable equation which can be integrated:∫ s

0

ds
1 − s

=

∫ x

0
n D dx . (449)



87

TABLE VI: Redshifts of the four galaxies in exercise 6.2

Galaxy λ (Å) λ (Å) z z z
first line second line first line second line average

1 4100 4135 0.042 0.041 0.042
2 4145 4185 0.053 0.054 0.053
3 4215 4255 0.071 0.072 0.071
4 4318 4360 0.097 0.098 0.098

This yields the solution

s(x) = 1 − e−nDx . (450)

This is the probability that in a random direction we can see at most to a distance x. This function x is a cumulative
probability distribution. It is as if we have compressed the 2-dimensional forest into an imaginary 1-dimensional
structure, with a characteristic mean free path. The corresponding probability density is its derivative ds/dx. The
mean free path λ is the expectation of this distribution

λ =

∫
∞

0
x

ds(x)
dx

dx =
1

nD
. (451)

For example, if there are 2000 trees per hectare, and each trunk is 10 cm thick, we can see to a distance of 50 m, on
average. (ii) The result can be easily generalized into 3 dimensions. Assume there are n stars per unit volume, and
each has a diameter D and a surface A = πD2 perpendicular to the line of sight. Then we have

s(x) = 1 − e−nAx , (452)

where λ = (nA)−1. For example, if there were one sun per cubic parsec, the mean free path would be 1.6 × 104 pc.
If the universe were infinite old and infinite in size, the line of sight would eventually meet a stellar surface in any
direction, although we could see very far indeed.

6.2 (i) The relation between luminosity, distance, and brightness is given by the inverse-square law, namely

brightness =
luminosity

4πdistance2 . (453)

Here we are given the luminosity of each galaxy (the four are the same, namely 4 × 1037 J/s), and the brightness, in
units of Joules/meters2/second. Solving for the distance gives

distance =

(
luminosity

4π brightness

)1/2

, (454)

and so we find: galaxy #1, distance = 6.5 × 1024 m = 210 Mpc; galaxy #2, distance = 8.4 × 1024 m = 270 Mpc; galaxy
#3, distance = 1.1 × 1025 m = 360 Mpc; galaxy #4, distance = 1.5 × 1025 m = 490 Mpc. (ii) The redshift is given by
z = (λ − λ0)/λ0, where λ0 = 3935 Å and 3970 Å for the two calcium lines. The measured wavelengths for each of
the two lines in each of the galaxies, the corresponding redshift from each of the lines, and the average redshift are
given in Table VI. (iii) The redshift is equal to the velocity of recession divided by the speed of light. So we can
calculate the velocity of recession as the redshift times the speed of light. The Hubble constant is given in Table VII.
The four galaxies give consistent values of the Hubble constant, at about 60 km/s/Mpc. Not identical to the modern
value of 70 km/s/Mpc, but close. That seemed quite straightforward; so why is there such controversy over the
exact value of the Hubble constant? The difficult point is getting an independent measurement of the luminosity
of each galaxy. The problem stated that each of the galaxies has the same luminosity of the Milky Way. That is
only approximately true; the numbers were adjusted somewhat to make this come out with a reasonable value for H0.

6.3 (i) In the “local Universe” approximation where we pretend that cosmological redshifts are Doppler
shifts and it is a good approximation to pretend that galaxies which are getting more distant from us due
to the expansion of space are flying away from us at a given velocity, we can use the Hubble’s law. Then
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TABLE VII: Determination of the Hubble constant.

Galaxy Redshift Velocity (km/s) Distance (Mpc) H0 (km/s/Mpc)
1 0.042 12600 210 60
2 0.053 15900 270 59
3 0.071 21300 360 59
4 0.098 29400 490 59

for the closer galaxy, we get H0 = 580 km/s/35 Mly = 17 km s−1 Mly−1. For the farther galaxy, we get
H0 = 25, 400 km/s/1, 100 Mly = 23 km s−1 Mly−1. (ii) The calculation from the more distant galaxy. Reason: peculiar
velocities are always a few hundred km/s. They are random, so they could be anywhere from minus a few hundred
to plus a few hundred. Potentially, this could be a large fraction of the 580 km/s of the closer galaxy. However, it
will be a small fraction of the 25,400 km/s of the more distant galaxy. It is noteworthy that closer galaxies tend to be
brighter and therefore the measurements are less likely to suffer from observational errors. While this is true, the
exercise presents numbers to (at least approximately) equivalent significant figures in both cases. It may well have
taken a lot more telescope time and effort to get the numbers on the more distant galaxy, but you have them. The
peculiar velocity issue, however, is an intrinsic effect that perfect observations cannot get around. We will always
have to deal with galaxies moving about in the universe even if we have amazing data. (iii) We use the value of
H0 derived from the distant galaxy to calculate the receding v for the closer galaxy, v = H0d = 805 km/s, which
implies the peculiar velocity of the nearby galaxy is vpec = −220 km/s, that is 220 km/s toward us. (iv) Assuming
that 220 km/s of the 25,400 km/s we observed for the more distant galaxy were due to peculiar velocity, from (144)
we have H0 = 25, 620 km/s/1, 100 Mly = 23.3 km/s/Mly. Note that 1, 100 Mly only has two significant figures and so
the difference is smaller than the precision of our measurement. This is a specific illustration of why, given that all
galaxies will tend to have peculiar velocities of a few hundred km/s, more distant galaxies give you a more reliable
estimate of the Hubble constant.

6.4 The Hubble flow v = H0r induces the flux vn through the surface 4πr2 of a sphere with radius r, and thus
Ṅ = 4πr2vn. These particles escape from the sphere containing the total number of particles N = Vn. Hence
Ṅ = −4πr2vn = 4πr3ṅ/3, or ṅ = −3vn/r = −3H0n.

6.5 At the final time of the invasion, t, the invaders are at proper distance dp, and therefore comoving distance
r = dp/a(t); see (191). (i) For a flat space, the proper volume is obviously the usual one in Euclidean geometry,

V =
4π
3

d3
p . (455)

(ii) In a closed universe, and if R is the comoving radius of curvature, the proper area of a sphere at comoving
coordinate r is 4π a2(t) R2 sin2(r/R), and the proper distance between two spheres at r and r + dr is just a(t)dr,
as obtained from the FRW metric. Therefore, the proper volume of each spherical shell between r and r + dr is
4πa3(t)R2 sin2(r/R)dr, and the proper volume of the sphere is

V = 4πa3(t)R2
∫ r

0
sin2(r/R)dr = 4πa3(t)R3

∫ r/R

0
sin2(r/R) d(r/R) = 4πa3R3

[
dp

2aR
−

sin(2dp/a/R)
4

]
. (456)

(iii) In an open universe, the calculation is just like for the closed universe but with the substitution sin(r/R) by
sinh(r/R),

V = 4πa3(t)R3
∫ r/R

0
sinh2(r/R) d(r/R) = 4πa3R3

(
sinh(2dp/a/R)

4
−

dp

2aR

)
. (457)

6.6 For the case when the universe contains only matter with negligible pressure, the energy density changes as
ρm(t) = ρm,0/a3(t). Multiplying (158) by a2(t), we have

(ȧ)2 =
8πGρm,0

3c2a
−

c2

R2
0

. (458)
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Now, using ȧ = (da/dt) = (da/dθ)(dθ/dt), we find the left-hand-side of (458) is

(ȧ)2 =
c2

R2
0

sin2 θ

(1 − cosθ)2 =
c2

R2
0

1 + cosθ
1 − cosθ

, (459)

where the last equality follows from sin2 θ = 1 − cos2 θ = (1 − cosθ)(1 + cosθ), and the right-hand-side of (458) is

8πGρm,0

3c2a
−

c2

R2
0

=
c2

R2
0

( 2
1 − cosθ

− 1
)

=
c2

R2
0

1 + cosθ
1 − cosθ

. (460)

So the two sides of (458) are indeed equal, confirming that this parametric solution given as a(θ) and t(θ) is indeed a
solution of Friedmann’s equation. (ii) The maximum value of a occurs at θ = π, and is

amax =
8πGρm,0R2

0

3c4 . (461)

(iii) Correspondingly, the maximum value of the proper radius of curvature is

amaxR0 =
8πGρm,0R3

0

3c4 . (462)

(iv) The age of the universe at θ = π is

tmax =
4π2Gρm,0R3

0

3c5 . (463)

(v) The big crunch happens when θ = 2π, and we then have

tcrunch =
8πGρm,0R3

0

3c5 . (464)

6.7 Multiplying (158) by a2(t), we have

(ȧ)2 =
8πGρm,0

3c2a
+

c2

R2
0

. (465)

Now, using the relations

sin(ix) =
ei(ix)
− e−i(ix)

2i
=

e−x
− ex

2i
= −

ex
− e−x

2i
= −

1
i

sinh x = i sinh x (466)

cos(ix) =
ei(ix) + e−i(ix)

2
=

e−x + ex

2
= cosh x , (467)

cosh2 x − sinh2 x = cos2(ix) − [sin(ix)/i]2 = cos2(ix) + sin2(ix) = 1 (468)

we can rewrite (459) as

(ȧ)2 =
c2

R2
0

sinh2 θ

(coshθ − 1)2 =
c2

R2
0

coshθ + 1
coshθ − 1

, (469)

and the right-hand-side of (465) is

8πGρm,0

3c2a
+

c2

R2
0

=
c2

R2
0

( 2
coshθ − 1

+ 1
)

=
c2

R2
0

coshθ + 1
coshθ − 1

. (470)
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Figure 3. The time dependence of the scale factor for open, closed and critical
matter-dominated cosmological models. The upper line corresponds to k = °1, the
middle line to the flat k = 0 model, and the lowest line to the recollapsing closed
k = +1 universe. The log scale is designed to bring out the early-time behaviour,
although it obscures the fact that the closed model is a symmetric cycloid on a
linear plot of R against t.

5.4 Radiation-dominated universe

The universe cannot be dominated by matter at early times, because it contains some relativistic
particles (photons). The number density of particles of all kinds scale as n / R°3. However, the
energy (and hence mass) of relativistic particles is redshifted, thus obeying E / R°1. Therefore,
the energy-mass density corresponding to radiation scales as Ω / R°4, rather than the Ω / R°3

law for pressureless matter. This shows us that the early universe was inevitably radiation
dominated: even if radiation makes a very small contribution to the overall mass budget of the
universe today, it would have been relatively more important in the past. There must have been
a time at which the densities in matter and radiation were equal, with the radiation dominating
at early times and the matter at later times.

We already solved Friedmann’s equation for pressureless matter. If we include radiation,
we may as well stick to the simplest case, which is the k = 0 flat universe. This will always be a
good approximation to the early phases of the universe, as can be seen by going back to the basic
form of Friedmann’s equation: Ṙ2 = 8ºGΩR2/3°kc2. For matter and radiation, ΩR2 / R°1 and
R°2 respectively. At small R, the density term therefore completely overwhelms the curvature

16

a(t)/A

ct/(2⇡A)

FIG. 44: The time dependence of the scale factor for open, closed and critical matter-dominated cosmological models. The upper
line corresponds to k = −1, the middle line to the flat k = 0 model, and the lowest line to the recollapsing closed k = +1 universe.
The log scale is designed to bring out the early-time behaviour, although it obscures the fact that the closed model is a symmetric
cycloid on a linear plot of a against t. We have setA = 4πGρm,0R3

0/(3c2) [308].

The two sides of (458) are indeed equal, confirming that this parametric solution given as a(θ) and t(θ) is indeed a
solution of Friedmann’s equation. (ii) A comparison of the scale factors in (185), (193), and (194) corresponding to
solutions with k = 0, k = 1, and k = −1, respectively is exhibited in Fig. 44.

6.8 (i) For the model with Ωm,0 = 1, the comoving distance is

r = c
∫ z

0

dz
H(z)

=
c

H0

∫ z

0

dz
(1 + z)3/2

=
2c
H0

(
1 −

1
√

1 + z

)
. (471)

The comoving distance to the horizon, at a = 0 or z = ∞, is r = 2c/H0. (ii) For this model, half the comoving distance
to the horizon is r = c/H0, and the redshift at which the comoving distance has this value is obtained as:

1 −
1

√
1 + z

=
1
2
⇒ z = 3 . (472)

(iii) For this same model, and at z = 3, the age of the universe is obtained from

t(z) =

∫
∞

z

dz
(1 + z) H(z)

=
2
3

1
H0

1
(1 + z)3/2

. (473)

The present age of the universe is of course t0 = 2/(3H0), and so the ratio of the age at z = 3 to its present age is just

t(z = 3)
t0

=
1

(1 + z)3/2
=

1
8
. (474)

(iv) From the same equation as above, we find

t(z)
t0

=
1

(1 + z)3/2
=

1
2
⇒ z = 22/3

− 1 = 0.5874. (475)
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Note that all these equations are of course valid only for the specific model that is flat and contains only matter, with
Ωm,0 = 1.

7.1 The flux of one of these objects is F = L/(4πd2
L), and its angular size is θ = `/dA. Hence, the apparent surface

brightness is I ∝ F /θ2, or

I = constant ×
F

θ2 = constant ×
d2

A

d2
L

= constant × (1 + z)−4 , (476)

where in the last equality we have used (226). Note that L, `, and 4π are constants and so can be absorbed in
the constant of proportionality. Therefore, the apparent surface brightness I will always decrease with redshift as
(1 + z)−4 compared to the intrinsic surface brightness B, without any dependence on the cosmological model.

7.2 (i) The number density of photons per unit frequency is equal to the energy density per unit frequency divided
by hν, or

nνdν =
8πν2dν

c3{exp[hν/(kT)] − 1}
. (477)

The total number density is found by integrating over frequency, which gives

n =
8π
c3

∫
ν2dν

exp[hν/(kT)] − 1
. (478)

Substituting x = hν/(kT), we find

n =
8π
c3

(
kT
h

)3 ∫
x2dx

ex − 1
. (479)

For T0 = 2.725, we find 410.4 cm−3. (ii) The current density of baryons must then be

nb = 5.5 × 10−10 410.4 cm−3 = 2.25 × 10−7 cm−3 . (480)

(iii) Every baryon weighs approximately like the mass of a proton (this is not exact because, for example, the helium
nuclei weigh a little less than 4 protons because of the helium nucleus binding energy, but the difference is rather
small). So the density of baryons is nbmp = 3.78 × 10−31g/cm3. The critical density is 3H2

0/(8πG) = 9.2 × 10−30 g/cm3,
so Ωb = 0.041.

7.3 To analyze the measurement of our own galaxy through the CMB, it is useful to consider the density Nγ(~p )
of photons in phase space, defined by specifying that there are Nγ(~p )d3p photons of each polarization (right or left
circularly polarized) per unit spatial volume in a momentum-space volume d3p centered at ~p. Since |~p | = hν/c and
4πh3ν2dν/c3 is the momentum-space volume between frequencies ν and dν, (477) gives

Nγ(~p ) =
1
2

nT(c|~p |)/h)
4πh3ν2/c3 =

1
h3

1
exp[|~p|c/(kT) − 1]

, (481)

where nT is the number density of photons in equilibrium with matter at temperature T at photon frequency between
ν and ν + dν, and the factor 1/2 takes account of the fact that nT includes both possible polarization states. This is
of course the density that would be measured by an observer at rest in the radiation background. The phase space
volume is Lorentz invariant, and the number of photons is also Lorentz invariant, so Nγ is a scalar, in the sense that
a Lorentz transformation to a coordinate system moving with respect to the radiation background that takes ~p to ~p ′
also takes Nγ to N′γ , where

N′γ(~p ′) = Nγ(~p ) . (482)

If the Earth is moving in the x-direction with a velocity (in units of c) of β, and we take ~p to be the photon momentum
in the frame at rest in the CMB and ~p ′ to be the photon momentum measured on Earth, then from (42) it follows that

|~p ′| = γ(1 − β cosθ)|~p | (483)
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where θ is the angle between p and the x-axis. Thus

N′γ(~p ′) =
1
h3

1
exp[|~p ′|c/(kT′)] − 1

, (484)

where the temperature is a function of the angle between the direction of the photon and the Earth’s velocity

T = T′γ(1 − β cosθ) . (485)

This means that the temperature T(θ) observed in the direction θ, is given in terms of the average temperature T0 by

T(θ) = T0

√
1 − β2

1 − β cosθ
= T0

(
1 − β2

)1/2 (
1 − β cosθ

)−1
≈ T0

(
1 − β2/2 + · · ·

) (
1 + β cosθ + β2 cos2 θ + · · ·

)
≈ T0

[
1 + β cosθ + β2

(
cos2 θ − 1/2

)
+ · · ·

]
. (486)

Using the trigonometric relation cos2 x = (1 + cos 2x)/2 we obtain (240). The motion of the observer (us) gives rise to
both a dipole and other, higher order corrections. The observed dipole anisotropy implies that [109]

~v� − ~vCMB = 370 ± 10 km/s towards φ = 267.7 ± 0.8◦, θ = 48.2 ± 0.5◦ , (487)

where θ is the colatitude (polar angle) and it is in the range 0 ≤ θ ≤ π and φ is the longitude (azimuth) and it is in
the range 0 ≤ φ ≤ 2π. Allowing for the Sun’s motion in the Galaxy and the motion of the Galaxy within the Local
Group, this implies that the Local Group is moving with

~vLG − ~vCMB ≈ 600 km/s towards φ = 268, θ = 27◦ . (488)

This “peculiar” motion is subtracted from the measured CMB radiation, after which the intrinsic anisotropy is
isolated (Fig. 23), and revealed to be about few parts in 105. Even though miniscule, these primordial perturbations
provided seeds for the structure of the Universe.

7.4 For a discrete set of directions in the sky, the normalized intensity function is I(Ω) = 1
N

∑N
i=1 δ(~ui,Ω). The

spherical harmonic coefficients acan be written as

ām
l =

1
N

N∑
i=1

Ym∗
l (~ui) , (489)

where ~ui is the unit vector to the ith direction, 1 ≤ i ≤ N. Next, we construct an estimation of the corresponding
power spectrum by squaring the am

l ’s followed by a sum over m:

C̄l ≡
1

2l + 1

∑
|m|≤l

|ām
l |

2 =
1

N2(2l + 1)

∑
|m|≤l

∣∣∣∣∣∣∣
N∑

i=1

Ym∗
l (~ui)

∣∣∣∣∣∣∣
2

. (490)

Because all the sums are finite they could be rearranged and expanded to

C̄l =
1

N2(2l + 1)

N∑
i=1

∑
|m|≤l

|Ym
l (~ui)|2 +

2
N2(2l + 1)

∑
i< j

∑
|m|≤l

Ym∗
l (~ui)Ym

l (~u j) . (491)

The formula for addition of spherical harmonics is given by [111]

Pl(~x · ~y) =
4π

2l + 1

∑
|m|≤l

Ym∗
l (~x)Ym

l (~y) . (492)

Now, since Pl(1) = 1 we set the unit direction vectors ~x and ~y to be equal in (492) to obtain

2l + 1
4π

=
∑
|m|≤l

|Ym
l (~x)|2 . (493)
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Combining (491), (492), and (493) leads to

C̄` =
1

4πN
+

1
2πN2

∑
i< j

Pl(~ui · ~u j) . (494)

Experimentally, only ām
l and C̄l could be measured, but these are estimates of their continuous counterparts am

l ,Cl
respectively. Therefore, since inner products are invariant under rotations, it follows that the Cl are also invariant
under rotations [309].

7.5 (i) The circumference of a circle of radius a is 2πa, so the orbital speed is the circumference divided by period:

v =
2πa
T

=
2πa√

4π2a3/(GM)
=

√
GM

a
. (495)

(ii) According to the Birkoff’s theorem, the orbit about a mass distributed within a sphere is the same as if the mass is
all concentrated in the center of the sphere. So, we can use the velocity formula derived in (i), and invert it to obtain
the mass enclosed by an orbit:

M(a) =
a
G

v2 . (496)

The enclosed mass at 8 kpc is then M(8 kpc) ≈ 2 × 1041 kg = 1011M�. (iii) If the mass enclosed by the orbit stays at
1011M� as the radius increases, which follows from the fact that the Sun is at the edge of the luminous galaxy, then at
different radii the velocity given by (496) will decrease with square root of the distance. At 30 kpc, it is v ≈ 110 km/s.
At 100 kpc, we have v ≈ 60 km/s. (iv) Let’s look again at (496), which says that if the orbital velocity stays the same,
the mass enclosed will increase linearly with a as the radius of the orbit grows. We already calculated the mass
enclosed by 8 kpc orbit in part (ii). So, at 30 kpc, the mass enclosed will be 30 kpc/8 kpc times larger, or 3.8× 1011M�.
At 100 kpc, the mass enclosed will 100 kpc/8 kpc times larger, or 1.3 × 1012M�. (v) We see that the mass of the
gravitating matter is increasing linearly with radius, and exceeds by more than factor of 10 the mass of the luminous
matter (e.g. stars and gas). We thus infer that the outer halo of the galaxy is dominated by invisible dark matter.

7.6(i) The total mass inside R is obtained from GM(R)/R = v2
c (R). The answer can of course be found by substituting

for the value of G and everything else in your favorite system of units, and if you are lucky not to make any mistake
you may even get the right answer. Often, it is faster and safer to work it out using proportionality comparing to an
example that you know and love. What could this example be but the Earth moving around the Sun? For the Earth,
with M� and an orbit of 1 AU the velocity is 30 kms−1 (if you did not know how fast the Earth moves around the
Sun, this is a good number to remember). So, the mass inside radius R is

M(R) = 8 × 1010M� (497)

(ii) If the density at R is ρ0, then the density at any other radius r is ρ0(R/r)2, so the mass inside R is

M(R) = 4π
∫ R

0
drr2ρ0

(R
r

)2

= 4πρ0R3 . (498)

Hence the density at R is

ρ0 =
M(R)
4πR3 = 0.51 mp cm−3 . (499)

The result is most easily computed remembering that the solar mass contains 1.19 × 1057 proton masses (another
useful number to remember), and a parsec is 3.086 × 1016 m. (iii) The density is

ρΛ = ΩΛ

3H2
0

8πG
= 5.5 × 10−6 ΩΛ mp cm−3 = 4 × 10−6 mp cm−3 . (500)

(iv) Because the dark energy is spread out uniformly, whereas the dark matter and baryonic matter are highly
concentrated in the inner parts of galaxies, the density of dark energy is very small compared to the density of matter
inside the radius of the solar orbit in the Milky Way. The dark energy therefore must have a tiny dynamical effect.
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7.7 The relation between the emitted Tem and the observed Tobs is

Tem = Tobs(1 + z) =
2.9 × 10−3 mK

λobs
max

(1 + z) , (501)

where in the last equality we used Wien’s displacement law [17]. For λobs
max = 180 µm and z = 2, we have Tem ' 48 K.

If we did not account for redshift, we would have thought the galaxy was only at 16 K.

7.8 In the benchmark model, at the present moment, the ratio of the vacum energy density to the energy density
in matter is

ρΛ

ρm,0
=

ΩΛ

Ωm,0
≈ 2.3 . (502)

In the past, however, when the scale factor was smaller, the ratio of densities was

ρΛ

ρm(a)
=

ρΛ

ρm,0/a3 =
ρΛ

ρm,0
a3 . (503)

If the universe has been expanding from an initial very dense state, at some moment in the past, the energy density
of matter and Λ must have been equal. This moment of matter-Λ equality occurred when

a3
mΛ =

Ωm,0

ΩΛ
=

Ωm,0

1 −Ωm,0
≈ 0.43 . (504)

where we have used the normalization a0 = 1 for the present. Next, we generalize (205) to write the age of the
universe at any redshift z, for a flat model with matter and a cosmological constant,

t(z) =
1

H0

∫
∞

z

dz

(1 + z)
√

Ωm,0(1 + z)3 + ΩΛ

=
1

H0
√

ΩΛ

∫
∞

z

dz

(1 + z)
√

1 + (Ωm,0/ΩΛ)(1 + z)3
. (505)

With the change of variables y =
√

1 + (Ωm,0/ΩΛ)(1 + z)3 we find 2ydy = 3(y2
− 1)dz/(1 + z) and so

t =
2

3H0
√

ΩΛ

∫
∞

y

dy
y2 − 1

. (506)

The integral can be solved analytically as:

−

∫
dy

y2 − 1
=

1
2

ln
[

y + 1
y − 1

]
, (507)

which yields for t

t =
2

3H0
√

ΩΛ

ln

 1√
y2 − 1

+
y√

y2 − 1


∣∣∣∣∣∣∣
√

1+Ωm,0(1+z)3/ΩΛ

∞

=
2

3H0
√

ΩΛ

ln


√

ΩΛ

Ωm,0(1 + z)3 +

√
1 +

ΩΛ

Ωm,0(1 + z)3

 . (508)

Using (203) and (504) we can rewrite (508) as

H0t =
2

3
√

1 −Ωm,0
ln

[
(a/amΛ)3/2 +

√
1 + (a/amΛ)3

]
=

2

3
√

1 −Ωm,0
ln A , (509)

and so

H0t0 =
2

3
√

1 −Ωm,0
ln A0 , (510)
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where we have defined

A0 = a−3/2
mΛ

+
√

1 + a−3
mΛ
' 3.35 . (511)

Now, we want to find the value of a for which t = t0/2. This implies

ln A =
1
2

ln A0 , (512)

where

A = x +
√

1 + x2 with x =
( a

amΛ

)3/2
. (513)

(512) implies A =
√

A0 and so

x +
√

1 + x2 =
√

A0 ⇒ 1 + x2 =
(√

A0 − x
)2

⇒ x =
A0 − 1

2
√

A0
' 0.64 , (514)

yielding

a = amΛx2/3 = 0.56 and z =
1
a
− 1 = 0.78 . (515)

We see that the redshift at which the age of the universe was half the present age is larger in this benchmark model
than in the model with Ωm,0 = 1, see (475). This is because in the benchmark model, which contains vacuum energy,
the universe has started to accelerate recently, roughly since the epoch at a = amΛ. The universe took a longer time to
expand to a = 0.56 and then it picked up speed again in its expansion up to the present a0 = 1.

8.1 We have seen in (282) that sγ ∝ T3, so that Sγ ∝ VT3. For a reversible adiabatic expansion, the entropy of the
(non-interacting) CMB photons remains unchanged. Hence, when V doubles, T will decrease by a factor (2)−1/3. So
after 1010 yr the average tempreature of the blackbody will become 〈T〉 = 2.2 K.

8.2 Since during inflation the Hubble rate is constant

Ω − 1 =
kc2

a2H2R2
0

∝ a−2 . (516)

On the other hand, (290) suggests that to reproduce today’s observed value Ω0−1 ∼ 1 the initial value at the beginning
of the radiation-dominated phase must be |Ω−1| ∼ 10−54. Since we identify the beginning of the radiation-dominated
phase with the end of inflation we require

|Ω − 1|t=tf ∼ 10−54 . (517)

During inflation

|Ω − 1|t=tf

|Ω − 1|t=ti

=
( ai

af

)2
= e−2H∆t . (518)

Taking |Ω − 1|t=ti of order unity, it is enough to require that ∆t & 60/H to solve the flatness problem. Thus, inflation
ameliorates the fine-tuning problem, by explaining a tiny number O(10−54) with a number O(60).

8.3 The effective number of neutrinos and antineutrinos is gνL = 6 and the temperature of the cosmic neutrino
background is Tν = 0.7 Tγ ≈ 1.9 K. Now, from (269) we have

nν =
3
4
ζ(3)
π2 gνL

(
kTν
}c

)3

≈ 45.63
(Tν

K

)3

≈ 313 neutrinos/cm3 . (519)

If neutrinos saturate the dark matter density the upper bound on the neutrino mass is then

mν <
0.26 ρc

nν
≈

2.6 × 10−27 kg/m3

3.13 × 108 neutrino/m3 ≈ 10−35 kg
neutrino

×
9.38 × 108eV/c2

1.67 × 10−27 kg
∼ 5.6 eV/c2 . (520)
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where we have used mp = 938 MeV/c2 = 1.67 × 10−27 kg to obtain the result in natural units.

8.4 If we change the difference between the proton and neutron mass to ∆m = 0.129 MeV while all other parameters
remain the same, then the time of freeze-out of the neutron abundance occurs at the same temperature TFO

n/N =

0.75 MeV. Therefore, the neutron abundance freezes out at nn/np = e−0.1293/0.75 = 0.84. If there were no neutron
decays and all neutrons combined to form helium, the maximum primordial 4He abundance would then be

Ymax
p =

2nn

nn + np
= 0.91 . (521)

Note that neutrons would in fact not decay, they would be stable because the difference with the mass of the proton
would be less than the mass of the electron. It would be rather unfortunate if the neutron had a mass so close to the
proton mass: almost all the matter in the universe would have turned to helium in the beginning of the universe,
and main-sequence stars would not live very long with the very small amount of hydrogen they would have left.
The Sun would live for less than 1 billion years and the planet Earth would not have had enough time to sustain life
on it for us to be here now.

8.5 (i) From (282), the energy density of photons at the time of BBN was

ργ,BBN = 0.66
(kTBBN)4

(}c)3 = 7.56 × 1020 J/m3 , (522)

where TBBN ≈ 109 K. Note that in reality we should also account for the neutrinos, but Gamow did not know much
about the three families of neutrinos and their interactions. A better estimate of the energy density at BBN goes
as follows. The effective number of neutrinos and antineutrinos is 6, or 3 times the effective number of species of
photons. On the other hand, the fourth power of the neutrinos temperature is less than the fourth power of the
photon temperature by a factor of 3−4/3. Thus the ratio of the energy density of neutrinos and antineutrinos to that
of photons is

ρν/ργ = 3−4/3 3 = 0.7 . (523)

Hence the total energy density after electron positron annihilation is

ρBBN ' ρν,BBN + ργ,BBN = 1.7ργ,BBN ' 1.3 × 1021 J/m3 . (524)

(ii) Since the universe was radiation dominated, the critical density at BBN had to be equal to this radiation density,
so

3c2H2

8πG
= ρBBN (525)

This gives a Hubble parameter at the time of BBN in Gamow’s radiation dominated universe of H = 2.17 × 10−3 s−1.
(iii) Readjusting (187), the time for BBN is found to be

tBBN,G =
1

2H
= 231 s . (526)

(iv) For a present age t0 ≈ 1010 yr, the temperature is given by

3c2H2
0

8πG
=

3c2

32πGt2
0

= 0.66
(kT0,G)4

(}c)3 (527)

which gives T0,G = 27 K. Note that actually this temperature just depends on t0 and the assumption of a flat,
radiation-dominated universe, but it does not depend on TBBN. (v) If the universe changed from being radiation
dominated to matter dominated at some redshift zeq, then at the present time the matter density is greater than the
radiation density by a factor 1 + zeq; so ρrad = ρmc2/(1 + zeq). In a flat universe with only matter and radiation, the total
density has to be equal to the critical density, therefore ρrad + ρmc2 = ρrad(2 + zeq) = ρc. So,

ρrad =
3H2

0c2

8πG
1

2 + zeq
= 0.66

(kT0)4

(}c)3 , (528)
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and the radiation temperature is smaller by a factor (2 + zeq)−1/4.

8.6 The effective number of neutrino species contributing to r.d.o.f. can be written as

Neff = 3

1 +

(
TνR

TνL

)4 . (529)

Taking into account the isentropic heating of the rest of the plasma between νR decoupling temperature Tdec
νR

and the
end of the reheating phase,

δNν = 3

 g(Tdec
νL

)

g(Tdec
νR

)

4/3

, (530)

where Tdec
νL

is the temperature at the end of the reheating phase (when left-handed neutrinos decouple), and we have
taken Neff = 3 + δNν. To be consistent with Planck data at 1σwe require Neff < 3.68. We take g(Tdec

νL
) = 10.75 reflecting

(e−L + e+
R + e−R + e+

LνeL + ν̄eR + νµL + ν̄µR + ντL + ν̄τR + γL + γR). From (530) the allowable range is g(Tdec
νR

) > 33. This is
achieved for r(Tdec

νR
) > 0.29. Using (295) this can be translated into a decoupling temperature: Tdec

νR
> 185 MeV.

8.7 At a given time, the rate of decrease in the BH mass is just the total power radiated

dṀBH

dQ
= −

∑
i

gi
σs

8π2 Q3
[
exp

( Q
TBH

)
− (−1)2s

]−1

. (531)

Integration of (531) leads to

ṀBH = −
∑

i

gi B±
Γs

8π2 Γ(4) ζ(4) T4
BH A4⊂4+n . (532)

The net change of the BH mass is therefore

dMBH

dt
=

dMBH

dt

∣∣∣∣∣
accr

+
dMBH

dt

∣∣∣∣∣
evap

. (533)

Substituting MBH ∼
√

ŝ into (532), where
√

ŝ is the center-of-mass energy of the constituents of the protons (quarks
and gluons), a rather lengthy but straightforward calculation shows that dM/dt > 0⇔ ε > 1010 GeV/fm3. Note that
the energy desnity of partonic matter produce at the LHC is more than 7 orders of magnitude smaller. (ii) Since the
ratio of degrees of freedom for gauge bosons, quarks and leptons is 29:72:18 (the Higgs boson is not included), from
(532) we obtain a rough estimate of the mean lifetime,

τBH ≈ 1.67 × 10−27
(MBH

M∗

)9/7 (TeV
M∗

)
s . (534)

then (534) indicates that black holes that could be produced at the LHC would evaporate instantaneously into visible
quanta. For further thoughts on this subject [310, 311].

9.1 (i) For a steady state, ∂n/∂t = 0 and

∂2n
∂z2 = −

Q0

D
δ(z) . (535)

Integration yields

∂n
∂z

= A −
Q0

D
Θ(z) , (536)

where A is an integration constant and Θ(z) the Heaviside step function (see Appendix F). A second integration leads
to

n(z) = B + Az −
Q0

D
zΘ(z) , (537)
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where B is an integration constant. From n(−H) = 0 we can conclude that B = AH and so

n(z) = AH + Az −
Q0

D
zΘ(z) . (538)

On the other hand, n(+H) = 0 yields

2AH −
Q0

D
H = 0 (539)

or

A =
1
2

Q0

D
. (540)

Then the particle density in the range −H ≤ z ≤ H is

n(z) =
1
2

Q0

D
(H + z) −

Q0

D
zΘ(z) , (541)

which can be rewritten as

n(z) =
1
2

Q0

D
(H − |z|) (542)

(ii) The column density is

N =

∫ +H

−H
n(z) dz = 2

∫ H

0

1
2

Q0

D
(H − z)dz =

Q0H2

2D
. (543)

Using N = Q0τres we have

τres =
H2

2D
⇒ D =

H2

2τres
. (544)

Using Dβcλ/3 the mean free path is

λ =
3
2

H2

βcτres
. (545)

For H = 500 pc, τres = 107 yr and β ∼ 1 the mean free path is about 0.1 pc.

9.2 (i) The equation of motion is

d~p
dt

= ~F =
d
dt

(γm~v) = Ze(~v × ~B) (546)

where e is the elementary charge and Z is the charge number. The acceleration in a magnetic field is always
perpendicular to the velocity, ~v ⊥ ~̇v = ~a and hence γ̇ = 0. Therefore

γm~̇v = Ze(~v × ~B) . (547)

For ~v ⊥ ~B we can write down the component-wise differential equations which read as

v̇x =
Ze
γm

vyB and v̇y = −
Ze
γm

vxB . (548)

The solution is

vx = v sin
(

ZeB
γm

t
)

and vy = v cos
(

ZeB
γm

t
)
, (549)
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which leads to

x = −
vγm
ZeB

cos
(

ZeB
γm

t
)

and y =
vγm
ZeB

sin
(

ZeB
γm

t
)
. (550)

The radius is therefore

R =
√

x2 + y2 =
vγm
ZeB

≈
cγm
ZeB

, (551)

where in the last step we set v ≈ c. (ii) For a given radius R, the magnetic field strength can thus be expressed as

B =
cγm
ZeR

. (552)

For R ' 27 km/(2π) and cγmp = E/c we can calculate the average magnetic field at the LHC, BLHC ≈ 5.43 T. Note that
in reality the particles in a collider are not in a uniform magnetic field, but the collider ring is composed of alternating
sections for bending, accelerating and focussing the particles. Therefore the actual magnetic field strengths needed
are slightly larger than the ones calculated above. At the LHC, the magnets produce a field of 8.7 Tesla. (iii) Useful
formulae for the radius of a particle in a magnetic field can be be obtained by introducing E = γmc2 and evaluating
the numerical constants, which gives the rule of thumb for particle physics detectors

R = 3.3 m
E/(GeV)
Z(B/T)

, (553)

and the rule of thumb for cosmic ray acceleration (sometimes called the Hillas criterion [312])

R = 1.1 kpc
(E/EeV)
Z(B/µG)

(554)

The radius of a collider, with the average magnetic field of the LHC, that is expected to launch particles to 1011 GeV
would be 6 × 1010 m. This radius is comparable to the Sun-Mercury distance, which is 5.76 × 1010 m (see exercise
2.3). Hence, such a collider would be priceless! (iv) The maximum attainable energies in the given astrophysical
objects are: for neutron stars, Ep

max ∼ 1011 GeV and E56Fe
max ∼ 2.6 × 1012 GeV; for AGN jets, Ep

max ∼ 1010 GeV and
E56Fe

max ∼ 2.6 × 1011 GeV; for supernova remnants Ep
max ∼ 107 GeV and E56Fe

max ∼ 2.6 × 108 GeV.

9.3 (i) We are told that the energy emitted by the supernova in visible light is equal to that emitted by the Sun in
1010 yr. We can look up the luminosity of the Sun (energy emitted per second), and simply multiply by the 1010 yr,

Total energy emitted in visible light = 4 × 1026 J/s × 1010 yr ×
3 × 107 s

1 yr
≈ 1044 J . (555)

The energy associated with the neutrinos is 100 times larger still than that, namely 1046 J. (ii) If each neutrino has an
energy of 〈Eν〉 ∼ 1.5 × 10−12 J, the total number of neutrinos emitted by the star is ∼ 7 × 1057. (iii) These neutrinos are
emitted essentially all at once, and thereafter, travelling at the speed of light, they expand into a huge spherical shell
of ever-increasing radius. Thus, by the time they impinge on the Earth, they are spread out over a spherical shell of
radius 150, 000 ly. The number density on the shell is:

Number
Surface Area

=
7 × 1057 neutrinos

4
π(1.5 × 105 ly × 1016 m/ly ≈ 2.5 × 1014 neutrinos/m2 . (556)

That is, every square meter on the Earth’s surface was peppered with 250 trillion neutrinos from the supernova. The
detector has 2.14 kton of water (Ntarget ∼ 1.28 × 1033 free target nucleons) and so using the average cross section for
weak interactions we have

1
3

Number
Surface Area

σweak Ntarget =
1
3
· 2.5 × 1014

· 5 × 10−48
( Eν

MeV

)2

1.28 × 1033
∼ 46 electron neutrinos . (557)

When the discovery of the supernova was first announced, Bahcall, Dar, and Piran (DBP) immediately realized the
possibility that Kamiokande could have detected the neutrinos from it. They locked themselves in their office, took
the phone off the hook, did essentially the calculation that you have just done, and sent a paper off tol Nature, all
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within 24 hours. They wanted to make a prediction about the neutrinos, untainted by any news that the neutrinos
actually were found. Indeed, a few days later, the news of IMB [313] and Kamiokande [314] detection came out.
The two detectors in deep mines recorded a total of 19 neutrino interactions over a span of 13 seconds. The BDP
paper was published on 1987 March 12 (the supernova itself went off on February 23), and has the following
understated but triumphal final sentence: “Note added in proof: Since this paper was received on 2 March, the
neutrino burst was found by the Kamiokande experimental group, with properties generally consistent with the
calculated expectations” [315]. Making a rough correction for the 60% efficiency reduces the expected number of
events to 28, within about a factor of 2 of the actual detection.

9.4 Substituting M? and MBH in (342) we obtain P = 2.4 × 1047 W. At this emission rate the neutron star will fall
into the black hole in t ≈ 2.9 s.
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5.1 Kepler’s laws

2. The line connecting the Sun and a planet sweeps out equal area in equal time.

3. The “Harmonic Law” states the squared orbital period P of planets measured in years
equals to the third power of their major axis measured in astronomical units, (P/yr)2 =
(a/AU)3.

Kepler noted already that his laws describe also the motion of the Saturn moons, if in the
Harmonic Law the appropriate units are used. Newton used later the Harmonic Law to derive
the 1/r2 dependence of the gravitational force. We will follow the opposite way and discuss
how Kepler’s laws follow from Newton’s law for gravitation.

Ellipses:
An ellipse may be defined by the condition r + r′ = 2a, i.e. as the set of points

with a constant sum 2a of the distances r and r′ to the two focal points F and F ′.
Additionally to its major axis a, an ellipse is characterized either by its minor axis b
or its eccentricity e. The latter two quantities can be connected by considering the
two points at the end of the minor axis b: Then r = r′ = a and r2 = b2 + (ae)2 or

b2 = a2(1 − e2) . (5.1)

F ′ F
!!

a ae

b r′
r

ϑ

!

Any point of an ellipse can be specified by the distance r to one of its focal points
and an angle ϑ that is measured counter-clockwise beginning from the major axis.
From the figure, one obtains immediately (with cos(180◦ − ϑ) = − cos(ϑ))

r′2 = r2 + (ae + a)2 + 2r(2ae + a) cos ϑ . (5.2)

Eliminating r′ with the help of r + r′ = 2a and solving for r one obtains

r =
a(1 − e2)

1 + e cos ϑ
. (5.3)

As starting point, we recall how a two-body problem can be reduced to an one-body problem
in the case of a central force.
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FIG. 45: An ellipse is defined by the condition r + r′ = 2a,
which describes the set of points with a constant sum 2a of the
distances r and r′ to the two focal points F and F′ [16].

Appendix A: Properties of the ellipse

An ellipse is the set of all points for which the sum
of the distances from two fixed points (foci) is constant,
see Fig. 45. Additionally to its major axis a, an ellipse is
characterized either by its minor axis b or its eccentricity
e. The latter two quantities can be connected by consid-
ering the two points at the end of the minor axis b, for
which r = r′ = a and r2 = b2 + (ae)2 or

b2 = a2(1 − e2) . (A1)

Any point of an ellipse can be specified by the distance r
to one of its focal points and an angle ϑ that is measured
counter-clockwise beginning from the major axis. From
Fig. 45, using cos(π − ϑ) = − cosϑ, we have

r′ 2 = r2 + (ae + a)2 + 2r(2ae + a) cosϑ . (A2)

Eliminating r′ with the help of r + r′ = 2a and solving for
r we obtain

r =
a(1 − e2)

1 + e cosϑ
. (A3)

Appendix B: Geometry of radiation

The solid angle Ω is the two dimensional analog of the
conventional one dimensional angle ϑ. Just as the angle
ϑ is defined as the distance along a circle divided by the
radius of that circle, so the solid angle Ω is analogously
defined as the area on the surface of a sphere divided by
the radius squared of that sphere. The units for ϑ and Ω
are radians (r) and steradians (sr), respectively; although
it should be noted that both of these measures of angle
have no actual dimensions. Since the total surface area
of a sphere of radius R is 4πR2, the total solid angle in
one sphere is 4π sr.

Consider a differential area dA on the surface of a
sphere, in the form of a thin ring centered about the
symmetry axis. This ring can be thought of as the inter-
section of the spherical surface with two cones, one of
half-angle ϑ, and other of half-angle ϑ + dϑ. The width
of this ring is Rdϑ, and the radius of the ring is R sinϑ.
The differential solid angle is then

dΩ =
dA
R2 =

(2πR sinϑ)(Rdϑ)
R2 = 2π sinϑdϑ. (B1)

The solid angle inside a cone of half-angle ϑc can be
determined by integrating

Ω =

∫
dΩ =

∫ π

0
2π sinϑ dϑ = −2π cosϑ

∣∣∣∣∣ϑc

0

= 2π(1 − cosϑc) . (B2)

It is often of interest to consider the small-angle approx-
imation, where ϑc � 1. In this limit, cosϑc ≈ 1 − ϑ2

c/2.
Therefore, the solid angle of a cone with small half-angle
ϑc is Ω ≈ πθ2

c .

Appendix C: Conservation of mass and momentum

Consider a fluid with local density ρ(t, x, y, x) and local
velocity ~u(t, x, y, z). Consider a control volume V (not
necessarily small, not necessarily rectangular) which has
boundary S. The total mass in this volume is

M =

∫
ρdV . (C1)

The rate-of-change of this mass is just

∂M
∂t

=

∫
∂ρ

∂t
dV . (C2)

The only way such change can occur is by stuff flowing
across the boundary, so

∂M
∂t

=

∫
ρ~u · d~S . (C3)

We can change the surface integral into a volume integral
using Green’s theorem, to obtain

∂M
∂t

= −

∫
~∇ · (ρ~u)dV . (C4)

Note that (C2) and (C4) must be equal no matter what
volume V we choose, so the integrals must be pointwise
equal. This gives us an expression for the local conser-
vation of mass

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 , (C5)

which is sometimes called continuity equation.
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We can go through the same process for momentum
instead of mass. We use Π to represent momentum, to
avoid conflict with P which represents pressure. The
total momentum in the control volume is:

Πi =

∫
ρ ui dV , (C6)

where the index i runs over the three components of the
momentum. The rate-of-change thereof is just

∂Πi

∂t
=

∫
∂(ρui)
∂t

dV . (C7)

We (temporarily) assume that there are no applied forces
(i.e. no gravity) and no pressure (e.g. a fluid of non-
interacting dust particles). We also assume viscous
forces are negligible. Then, the only way a momentum-
change can occur is by momentum flowing across the
boundary,

∂Πi

∂t
=

∫
(ρui)~u · dS =

∫
(ρuiu jd jS) . (C8)

We are expressing dot products using the Einstein sum-
mation convention, i.e. implied summation over re-
peated dummy indices, such as j in the previous expres-
sion. We can change the surface integral into a volume
integral using Green’s theorem, to obtain

∂Πi

∂t
= −

∫
∇ j(ρuiu j)dV . (C9)

Note that (C7) and (C9) must be equal no matter what
volume V we choose, so the integrands must be point-
wise equal. This gives us an expression for the local
conservation of momentum,

∂Πi

∂t
=
∂(ρui)
∂t

= −∇ j(ρuiu j) . (C10)

We can understand this equation as follows: each com-
ponent of the momentum-density ρui (for each i sepa-
rately) obeys a local conservation law. There are strong
parallels between (C5) and (C10). Note that the ∇ j oper-
ator on the right-hand-side is differentiating two veloci-
ties (ui and u j) only one of which undergoes dot-product
summation (namely summation over j). Using vector
component notation (such as ∇ ju j) is a bit less elegant
than using pure vector notation (such as ~∇ · ~u) but in this
case it makes things clearer.

We now consider the effect of pressure. It contributes
a force on the particles in the control volume, namely

Fi =

∫
PdiS = −

∫
∇iPdV . (C11)

A uniform gravitational field contributes another force,
namely

Fi =

∫
ρgidV . (C12)

These forces contribute to changing the momentum, by
the second law of motion:

Π′i
dt

= Fi . (C13)

Note the tricky notation: we write d/dt rather than ∂/∂t,
and Π′ rather than Π, to remind ourselves that the three
laws of motion apply to particles, not to the control vol-
ume itself. The rate-of-change of Π, the momentum in
the control volume, contains the Newtonian contribu-
tions, (C11) and (C12) via (C13), plus the flow contribu-
tions (C10).

Combining all the contributions we obtain the main
result, Euler’s equation of motion:

∂(ρui)
∂t

+ ∇ j(ρuiu j) = −∇iP + ρgi . (C14)

One sometimes encounters other ways of expressing
the same equation of motion. Rather than emphasizing
the momentum, we might want to emphasize the ve-
locity. This is not a conserved quantity, but sometimes
it is easier to visualize and/or easier to measure. If we
expand the left-hand-side we have

ρ
∂ui

∂t
+ ui

∂ρ

∂t
+ ui∇ j(ρu j) + ρu j∇ jui = ρgi − ∇iP, (C15)

where the second and third terms cancel because of con-
servation of mass (C5), leaving us with

ρ
∂ui

∂t
+ ρu j∇ jui = −∇iP + ρgi . (C16)

Converting from component notation to vector notation,
we obtain

ρ
∂~u
∂t

+ ρ
(
~u · ~∇

)
~u = −~∇P + ρ~g . (C17)

If we now consider a plane-parallel (∂/∂y = 0, ∂/∂z = 0,
∂/∂x = d/dx) steady-state (∂/∂t = 0) flow and we ignore
gravity, (C5) and (C17) become

d
dx

(ρu) = 0 , (C18)

and

u
du
dx

= −
1
ρ

dP
dx

; (C19)

respectively. (C18) immediately gives

ρu = constant→ ρ1u1 = ρ2u2 . (C20)

Using

d
dx

(ρu2) = 2ρu
du
dx

+ u2 dρ
dx

= ρu
du
dx

+ u
(
ρ

du
dx

+ u
dρ
dx

)
= ρu

du
dx

+ u
d

dx
(ρu)

= ρu
du
dx

(C21)
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(C19) can be rewritten as

ρu
du
dx

+
dP
dx

=
d
dx

(ρu2 + P) = 0 . (C22)

This leads to

ρu2 + P = constant→ ρ1u2
1 + P1 = ρ2u2

2 + P2 . (C23)

Appendix D: Kruskal coordinates

One elegant coordinate substitution is the replacement
of r and t by the Kruskal coordinates x and y, which are
defined by the following two equations [316]

xy =
( r

2M
− 1

)
er/(2M) (D1)

and

x/y = et/(2M) . (D2)

The angular coordinates θ and φ are kept the same.
Hereafter, we adopt geometrodynamic units G = c = 1.
By taking the ln of (D1) and (D2), and partially differen-
tiating with respect to x and y, we read off

dx
x

+
dy
y

=
dr

r − 2M
+

dr
2M

=
dr

2M(1 − 2M/r)
(D3)

and

dx
x
−

dy
y

=
dt

2M
. (D4)

The Schwarzschild metric (123) is now given by

ds2 = −16M2
(
1 −

2M
r

) dx
x

dy
y
− r2dΩ2

= −
32M3

r
e−r/(2M) dx dy − r2dΩ2 . (D5)

Note that, in the last expression, the zero and the pole
at r = 2M have cancelled out. The function r(x, y) can
be obtained by inverting the algebraic expression (D1)
and is regular in the entire region xy > −1. In particular,
nothing special seems to happen on the two lines x = 0
and y = 0. Apparently, there is no physical singularity or
curvature singularity at r → 2M. We do notice that the
line x = 0, θ and φ both constant, is lightlike, since two
neighboring points on that line obey dx = dθ = dφ = 0,
and this implies that ds2 = 0, regardless the value of dy.
Likewise, the line y = 0 is lightlike. Indeed, we can also
read off from the original expression (123) that if r = 2M,
the lines with constant θ and φ are lightlike, as ds2 = 0
regardless the value of dt. The line y = 0 is called the
future horizon and the line x = 0 is the past horizon.

An other important point to highlight is that (D2) at-
taches a real value for the time t when x and y both have

0 2M

t

r

ho
riz

on

y

xxy  = −1

fut
ure
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xy = −1

ΙΙ

Ι
0
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Figure 2: a ) The black hole in the Schwarzschild coordinates r, t . The horizon
is at r = 2M . b ) Kruskal-Szekeres coordinates; here, the coordinates of the
horizon are at x = 0 and at y = 0 . The orientation of the local lightcones is
indicated. Thin red lines are the time = Constant limes in the physical part
of space-time.

(6.3) and is regular in the entire region x y > °1 . In particular, nothing special seems to
happen on the two lines x = 0 and y = 0 . Apparently, there is no physical singularity
or curvature singularity at r ! 2M . We do notice that the line x = 0, µ and ' both
constant, is lightlike, since two neighboring points on that line obey dx = dµ = d' = 0 ,
and this implies that ds = 0 , regardless the value of dy . similarly, the line y = 0 is
lightlike. Indeed, we can also read oÆ from the original expression (6.1) that if r = 2M ,
the lines with constant µ and ' are lightlike, as ds = 0 regardless the value of dt .
The line y = 0 is called the future horizon and the line x = 0 is the past horizon (see
Section 10).

An other important thing to observe is that Eq. (6.4) attaches a real value for the
time t when x and y both have the same sign, such as is the case in the region marked
I in Fig. 2 b , but if x y < 0 , as in region II , the coordinate t gets an imaginary part.
This means that region II is not part of our universe. Actually, t does not serve as a
time coordinate there, but as a space coordinate, since there, dt2 enters with a positive
sign in the metric (6.1). r is then the time coordinate.

Even if we restrict ourselves to the regions where t is real, we find that, in general,
every point (r, t) in the physical region of space-time is mapped onto two points in the
(x, y) plane: the points (x, y) and (°x,°y) are mapped onto the same point (r, r) . This
leads to the picture of a black hole being a wormhole connecting our universe to another
universe, or perhaps another region of the space-time of our universe. However, there are
no timelike or light like paths connecting these two universes. If this is a wormhole at all,
it is a purely spacelike one.

12

FIG. 46: Left.The black hole in the Schwarzschild coordinates
(t, r). The event horizon is at r = 2M. Right. Kruskal coordi-
nates. Here, the coordinates of the horizon are at x = 0 and at
y = 0. The orientation of the local lightcones is indicated. Thin
red lines are the time = constant lines in the physical part of
spacetime [317].

the same sign, such as is the case in the region marked I
in Fig. 46, but if xy < 0, as in region II, the coordinate t
gets an imaginary part. This means that region II is not
part of our universe. Actually, t does not serve as a time
coordinate there, but as a space coordinate, since there,
dt2 enters with a negative sign in the metric (123). r is
then the time coordinate.

Even if we restrict ourselves to the regions where t is
real, we find that, in general, every point (r, t) in the phys-
ical region of spacetime is mapped onto two points in the
(x, y) plane: the points (x, y) and (−x,−y) are mapped
onto the same point (r, r). This leads to the picture of
a black hole being a “wormhole” connecting our uni-
verse to another universe, or perhaps another region of
the spacetime of our universe [318]. However, there are
no timelike or light like paths connecting these two uni-
verses [319]. If this is a wormhole at all, it is a purely
spacelike one.

Appendix E: Geometry of S3 and H3

Herein we provide a geometric interpretation of the
hyper-sphere S3 and the hyperbolic hyper-plane H3. The
explanation given herein will build upon the content of
the exquisite book by Kolb and Turner [166].

We begin by studing the familiar two dimensional
surfaces. To visualize the two sphere it is convenient
to introduce an extra fictitious spatial dimension and
to embed this two-dimensional curve space in a three-
dimensional Euclidean space with cartesian coordinates
x1, x2, x3. The equation of the two sphere S2 of radius R
is

x2
1 + x2

2 + x2
3 = R2 . (E1)

The line element in the three-dimensional Euclidean
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space is

ds2 = dx2
1 + dx2

2 + dx2
3 . (E2)

If x3 is taken as the fictitious third spatial coordinate, it
can be eliminated from ds2 by the use of (E1)

ds2 = dx2
1 + dx2

2 +
(x1dx1 + x2dx2)2

R2 − x2
1 − x2

2

. (E3)

Now, introduce the coordinates % and θ defined in terms
of x1 and x2 by

x1 = % cosθ and x2 = % sinθ . (E4)

Physically, % andθ correspond to polar coordinates in the
x3-plane; x2

3 = R2
− %2. In terms of the new coordinates,

(E3) becomes

ds2 =
R2d%2

R2 − %2 + %2dθ2 . (E5)

Note the similarity between this metric and the spatial
hypersurface with k = 1 in (164).

Another convenient coordinate system for the two
sphere is that specified by the usual polar and azimuthal
angles (θ, φ) of spherical coordinates, related to xi by

x1 = R sinθ cosφ, x2 = R sinθ sinφ, x3 = R cosθ .
(E6)

In terms of these coordinates, (E2) becomes

ds2 = R2
[
dθ2 + sin2 θdφ

]
. (E7)

This form makes manifest the fact that the space is the
two sphere of radius R.

The equivalent formulas for a space of constant neg-
ative curvature can be obtained with the replacement
R→ iR in (E1). The metric corresponding to the form of
(E5) for the negative curvature case is

ds2 =
R2d%2

R2 + %2 + %2dθ2 . (E8)

and the metric in the form corresponding to (E7) is

ds2 = R2
[
dθ + sinh2 θdφ2

]
. (E9)

The embedding of the hyperbolic plane H2 in an Eu-
clidean space requires three fictitious extra dimensions,
and such an embedding is of little use in visualizing the
geometry. While H2 cannot be globally embedded in
R3, it can be partailly represented by the pseudosphere
(112).

The generalization of the two-dimensional models
discussed above to three spatial dimensions is trivial.
For the three sphere S3 a fictitious fourth spatial di-
mension is introduced and in cartesian coordinates the
three sphere is defined by R2 = x2

1 + x2
2 + x2

3 + x2
4. The

spatial metric of a four-dimeniosnal Euclidean space is
ds2 = dx2

1 + dx2
2 + dx2

3 + dx2
4. The fictitious coordinate can

be removed to give

ds2 = dx2
1 + dx2

2 + dx2
3

+
(x1dx1 + x2dx2 + x3dx3)2

R2 − x2
1 − x2

2 − x2
3

. (E10)

In terms of coordinates x1 = % sinθ cosφ, x2 =
% sinθ sinφ, x3 = % cosθ, the metric is given by the
spatial part of (164) with k = 1. In terms of a coor-
dinate system that employs the 3 angular coordinates
(χ, θ, φ) of a four-dimensional spherical coordinate sys-
tem, x1 = R sinχ sinθ cosφ, x2 = R sinχ sinθ sinφ,
x3 = R sinχ cosθ, x4 = R cosχ, the metric is given by

ds2 = R2
[
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

]
. (E11)

The substitution χ = r/R leads to the spatial part of (166)
with k = 1.

As in the two-dimensional example, the three-
dimensional open model is obtained by the replacement
R → iR, which gives the metric in the form (164) with
k = −1, or in the form (166) with sinχ → sinhχ. Again
the space is unbounded and R sets the curvature scale.
Embedding H3 in an Euclidean space requires four ficti-
tious extra dimensions.

Appendix F: Dirac Delta Function

Dirac’s delta function is defined by the following prop-
erty

δ(t) =

{
0 t , 0
∞ t = 0

, (F1)

with ∫ t2

t1

dt δ(t) = 1 (F2)

if 0 ∈ [t1, t2] (and zero otherwise). It is “infinitely
peaked” at t = 0, with the total area of unity. You can
view this function as a limit of Gaussian

δ(t) = lim
σ→0

1
√

2π σ
e−t2/(2σ2) , (F3)

or a Lorentzian

δ(t) = lim
ε→0

1
π

ε

t2 + ε2 . (F4)

The important property of the delta function is the
following relation∫

dt f (t) δ(t) = f (0) , (F5)
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which is valid for any test function f (t) that is bounded
and differentiable to any order, and which vanishes out-
side a finite range. This is easy to see. First of all, δ(t)
vanishes everywhere except t = 0. Therefore, it does not
matter what values the function f (t) takes except at t = 0.
You can then say f (t) δ(t) = f (0) δ(t). Then f (0) can be
pulled outside the integral because it does not depend
on t, and you obtain the right-hand-side. This equation
can easily be generalized to∫

dt f (t) δ(t − t0) = f (t0) . (F6)

Mathematically, the delta function is not a function,
because it is “too singular.” Instead, it is said to be a
“distribution.” It is a generalized idea of functions, but
can be used only inside integrals. In fact,

∫
dt δ(t) can be

regarded as an “operator” which pulls the value of a test
function at zero. Put it this way, it sounds perfectly legit-
imate and well-defined. But as long as it is understood

that the delta function is eventually integrated, we can
use it as if it is a function.

The step (Heaviside) function,

Θ(x) =

{
1 x ≥ 0
0 x < 0

, (F7)

is the “primitive” (at least in symbolyc form) of the δ(x).
Equivalently, Θ′(x), has the symbolic limit δ(x), as we
show next. For any given test function f (x), integration
by parts leads to∫ +∞

−∞

Θ′(x) f (x)dx = −

∫ +∞

−∞

Θ(x) f ′(x)dx

= −

∫
∞

0
f ′(x)dx = f (0) ; (F8)

therefore Θ′(x) = δ(x).


