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important not only from the engineering or computationahpof view
but also because theyfer great mathematical challenges. The notes, |
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first place and for making my visit so enjoyable and stimalati To
P.S. Datti, who cooperated in writing these notes and wosdati re-
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Chapter 1

The Traffic problem and a
first order nonlinear
equation

1.1 Introduction

Many physical laws occur as conservation laws. The mostrgesech 1
law in its differentiated form is given by

Ye+ (F(Y))x=0

whereY = (Y1,...,Yy) is a vector valued function af, t with x € R"
andF(Y) is a matrix valued function of. The termconservatiorcomes
from the fact that ifF(Y) —» 0 as|x| — thean|d>q is constant for
all time, that is, thes integrals are conserved.

In these notes we shall consider conservation laws in ontyitw
dependent variables, either time and one space variabloospace
variables.

The simplest case to treat is that of the single conservafipmtion
with the variableg, x. ThenY, F(Y) are scalar. We replacéby N and
consider

Ni + (F(N))xy =0, —co<X<oo, t>0 (1.1)

1



2 1. The Trdfic problem and a first order nonlinear equation

with N(x, t) € R.

We shall now formulate the tfidc problem, first proposed, by
Lighthill and Whitham [26]. LetN(x,t) denote the density, the num-
ber of vehicles passing through the positiwat timet on a highway.
Let u(x,t) be the average (local) velocity of the vehicles. Then in any
section 1, Xo] the conservation equatiostates that the total number of
cars is preserved, or

X2 X2 t

fN(x,tz)dx—fN(x,tl)dx—fN(xl,t)u(xl,t)dH

X1 X1 1
t2

N f N(X, t)U(xp, t)dlt = .

t1

Assuming the quantitiehl, u to be smooth, we obtain in the lintit —
to, that

X2

th(x, t)dx+ [Nul2 = 0.

X1

This is the integrated form of the conservation equation.xAs»> Xo,
we obtain

N¢ + (NU)y = O. (1.2)

We can always put this equation in the form[0f]1.1) if we useU(N).
This assumption seems to be reasonable since drivers gresaapto
increase or decrease their speed as the deNgitgcreases or increases
respectively. The maximum value afoccurs wherN = 0 (the maxi-
mum is, say, the maximum allowed speed). And whkis maximum

u = 0. Hence the graph df plotted againsN takes the form shown in
figure 1.1.
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UIII ax

-l /

O Nmax
Fig. 1.1.

Rewriting [T.2) as

N + (F(N))x = 0,

whereF(N) = NU(N) is the flux of cars, we see that= 0 whenN = 0
and whenN is maximum (in this cas&J(N) = 0). Hence the graph of3
the flux curvel(N) will look as in figure 1.2. It could have the shapes as
shown in figure 1.2 (a) and 1.2 (b), but these lead to certdiicdities

in the theory.

FA

Fig. 1.2.
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FA FA

Fig. 1.2 (a). Fig. 1.2 (b).

Consider the simplest case in which the flow is steady, hdepen-
dent of time. Then from (1.3), we obtain

F(N) = constant

In general, the liné(N) = constant, will cut the flux graph in two points
as shown in figure (1.3).

FA
/\ F(N) = Const
= ~
W s
Fig. 1.3.

If we require continuity inN, then we have to take eithdr= N; or
N = No. If we allow jump discontinuities iMN, then unigueness in the
solution will be lost as shown in figure (1.4). Then thick licen be a
condidate for the solution but the dotted line could also lbaradidate
for the solution.

So, for uniqueness, we need an additional condition whichlied
an Entropy Condition The terminology will become clear when we
study gas dynamics. Again this has to come from the physidheof
problem at hand.
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For the trdfic problem at hand, we would like to add teatropy
conditionthat infinite acceleration is impossible, i.e.

< oo(Or N > —00)
_— o0 _— —00).
OX OX

It turns out that there is then a unique solution to the ihitéue prob-
lem.

e e e e o

Fig. 1.4.

We also observe that for a given conservation law ffedéntiated
form there are several equivalent conservation laws ffemintiated 5
form. For example, consider

N; + (F(N))x = 0.

Let P(N) be any arbitrary integrable function b Put

N

Q(N) = fP(M)d M.

N,

Then

Qt = Q'(N)- N
dF
= P(N) - (—m - Ny)
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N
= —(R(N))x, whereR(N) = f P(M) - F'(M)dM.
N

Thus
Qt + RX = 0.

Hence to choose theorrect entropy condition, and thus to get uni-
gueness, we should look at the integrated form of the coaserviaw.

If we allow discontinuities in the solution, it is a so-calleeak so-
lution. We shall now give a precise definition of a weak solution for a
general first order nonlinear equation and then return téréfiéc prob-
lem again.

1.2 Weak Solutions

Consider a first order nonlinear equation
N+ (F(N))x =0, —oco<x<oo, t>0. (1.4)

Let N be a classical solution df{1.4). By this we mean tNaits aC?!
function in x, t variables and satisfieE_(1.4) identically. Let ng(x, t)
be anyC*®-function (everC? is enough) which vanishes for largé¢and
tandt = 0.

ff)((X,t){Nt + (F(N))x}dt dx= 0.

-0 0

Integrating by parts, we obtain

ffmm + xxF(N))dt dx= 0 (1.5)

-0 0

since the boundary terms vanish. Also, the entropy corrd%jga > —o0

becomes e
ffd)(x,t) . (Z—Tdtdx> —00

-0 0
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for all ® > o, C* function vanishing for largéx| andt andt = 0. This
again by integrating by parts, becomes

ffd)xN dt dx< co. (1.6)

—00 0
Motivated by this, we now define a weak solution.

Definition . A locally integrable functionN(x, t) is a weak solution of
(@3) if (.3) and[(1)6) hold under the conditions statedehe

Note that a classical solution (usually called strong soh)tis nec-
essarily a weak solution. Conversely, it can be seen thdtisf a weak
solution andN is of classC! thenN is necesaarily a strong solution.

1.3 Initial value problem

We now consider the problem of solving a general first ordeinear
equation
Nt +(F(N))x=0, —co<X<oo, t>0 (1.7)

with initial data
N(x,0) = d(X), —o0 < X< o0, (1.8)
If we putG(N) = F’(N), (T) can be written as
N + G(N)Ny = 0. (1.9)
This we solve by the method of characteristics. If we defineraeC
in x, t plane bydx/dt = G(N), we find that orC, (T.9) reduces to
dN _
dt
or N = constant ordx/dt = G(N). Since this mean&(N) is also a

constant we see that the characteristics are straight Viftbsslopes
(G(N))™L. If x(0) = £ we find that

0,

N(x,t) = ®(#) ondx/dt = G(N)
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with x(0) = &.
Hence we have a solution in implicit form given by

X =& +1G(D(¢))
N(x.1) = O(¢)

If we can determing = £(x, t) from the first equation, then we knaw
at (x, t) uniquely. But, however, this is not always the case; andlkiie
occurs if the characteristics intersect, as we shall see b¥ = R,
& = L are two points on th&-axis such that

(1.10)

G(@(L)) > G(®(R) > 0

tA P

Fig. 1.5.

(See figure (1.5)) then the characteristic througjintersects the
characteristic through at P. Thus the value of corresponding to the
point P is notunique.

However, if the characteristics fan out, then clearly theilkbe a
unigue characteristic through every point and the solutidhbe deter-
mined uniquely. If

G(®(L)) < G(®(R)) (1.11)

for L < Rthen the characteristics in thxet plane have decreasing slopes
and they never intersect. In such a case, we obtain a uniqusmgous
solution.

Since the solution is given implicitly by {T.J10) another wafytook-
ing at the breakdown, whef{I]111) does not hold is to try toesthe
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first equation Iin[I.Jl0) using implicit function theorem etfunctional
relation
f(x,1,£) =0

can be represented in a single-valued way by
§=9(x1)
if and only if f; # 0. Put

f(x.1,£) = tG(P(4)) - (x - &).

Then 4G do 9
Hence, if

dG _do

dN d¢

is always positive for all positivewe havef; > 0. On the other hand, if
this expression changes sign, there is a finite time, catlieaking time,
at which f; = 0. We note from the relations

@ - G(N) G(N)

C1+t'G 1+ t'G
that the derivatives itN will blow up at the time of breaking. We also
note that the breakdown in the solution can happen evenifitie data
are very smooth. Suppose the flux curve is convex, sdGhatF” < 0.
Now, if the initial data® is very smooth and tends to zero|gs— o,
then @ will change its sign and there is always a time at which the
solution will become singular.

This is true in higher dimensions also. John[F| [19] hasstigated
the question of how late with 3-space variables and a nalieguation,
a breakdown can occur. Note in the above tha®éds— 0 the breaking
timet — co. Klainerman|[[21L] has shown for the nonlinear analogue of
the wave equation.

Ny =

8°N
Nie = N+ > aj (YN, No) =0
N

aX]_an
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that if the number of space variables is greater than or dquél then 10
compact initial data can propagate smoothing for all timbisTeaves
open the anologous important question in 2 and 3 dimensions.

Exercise 1.1 Describe the solution of
Nt + (F(N))x =0
with

F(N)=16-N if N<4

=0 if N>4
for the initial data
a) N(x,0) = 2 - tanhx
b) N(x,0) =2 - tanhxif x <0

=2- % tanhxif x > 0.
Where does the discontinuity My move ?
Exercise 1.2 Work out the corresponding theory for
Ut + a(U)Uy + b(U)Uy = 0

and determine conditions @andb which lead to discontinuities for all
compact initial data.

We now return to our tffic problem and ask how the condition
([@11) should be interpreted as a condition on the denskgprae given
time.

We refer to the flux curve (see figure (1.2)). Suppésattains a
maximum value at densitil,.. ThenF is increasing in [ON,] and de-
creasing in N., Nvax]. Nwmax is the maximum density at which = 0.
HenceG(N) = dF/dN is decreasing in [(N,], equal to sero al, and
again decreasing (negatively) beyddd Hence the graph a&&(N) will
look as shown in figure (1.6).
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G A

N*

Fig. 1.6.

If the traffic problem is accelerating at the given time, i.e. cars to the
right going faster than those to the left thHnis a decreasing function
of x. Thus

N(L) > N(R)

for all pairsL, R such that. < Rand thus
G(N(L)) < G(N(R))

(unless the density has increased beybh) so that[I.11) holds and
we have a unique continuous solution. However, the tail ofGHN)
curve forN > N, was fixed up artificially to give us a smooth curve and
we should properly speaking ignore this region.

If the traffic is decelerating theN(L) < N(R) for all pairsL, R with
L < Rand we will not be able to obtain a continuous solution.

We are then forced back to re-examine our model. The congamval2
of the number of vehicles still holds, but we can allow digourities in
density.
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We have the conservation law

9§(Ndx— Fdi) = 0

for every closed curve in the x, t plane or equivalently

X2

d%fN(x,t)dx+[F(N)]§i =0 (1.12)

X1
for every segmentx, xo] if N has jump discontinuities. We ask for
piecewise smooth solutiond and investigate what happens across a
discontinuity inN as in the steady case. Such a discontinuity is called a
shockand the curve on which it lies is tl#hock curve

A discontinuity inN implies, of course, a discontinuity in the speed
U. These discontinuities represent instant or rather iefidiécelera-
tions. In many situations, the presence of a discontintyresents a
pile-up and to say the least, the model breaks down. Howeeesities
have been defined in an average sense and if tifiectrsa this enough
a sharp deceleration can occur and we can study what happéns t
Ofcourse, the relation of speed to densitgidethis narrow region rep-
resented by the discontinuity cannot be the old one.

On the other hand, one might also ask, why not allow discaiti@s
in an accelerating situation ? It is not quite clear that irafiit situation
one should not but again it involves violating the speed itdenslation
in some narrow region and this time we would lose uniqueness.

Let x = (t) be aCl-function representing the shocks curve. We
work with the conservation law given b (T1]112). Let < s(t) < % at
some time. Then fronf{L.12) we obtain

q s(t)- X
d—thdx+dex+ F(N)(x2) — F(N)(xy) = 0.
X1 s(t)+

Differentiating under the integral sign and taking the limits

X1 — S(t)-
Xo — S(t)+
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we obtain

—S(Nr—NL) + (FrR—F1) =0,
where we denotds/dt by S andNg, N, andFg, F_ are the correspond-
ing limiting values from right and left respectively. We thibave
_ Fr-F_
~ Nr-N_
S is calledshock speedand (Nr — N) shock strength The equation
(L13) is called gump condition

S

(1.13)

Exercise 1.3If N is a piecewise smooth weak solutionMyf(F (N))x =
0, show that the jump condition holds across the line of disnaity.
Further, show that as the shock strength goes to zero, tluk sipeed
becomes the characteristic speed.

We want to show that by allowing shocks we can solve any Initia
value problem uniquely and that we can study in particulaenetthe
shock travels and how strong it gets. We first look@tstant states

The simplest problem to solve is the transition from one taoms
density, sayNg to another constant densityy. The deceleration re-
quirement is thalNg > N_. The shock speed, b{ {T]13), is the slope
of the line segment connecting two points on the flux curve;faggre
(1.7).

FA

P

0 Nl N* NR
Fig. 1.7.

It is positive or negative depending on the relationshiploBndNg
to N.. A more important question is whether it is more or less tlnen t
speed of the tiféic.
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Generally speaking, relative to theffia ahead at time, the shock
is always retreating, i.eS < Ug. For, sinceF = NU.

_ Fr-Fu
~ Nr— N_ Ur
N (Ur—-Uy)

=————— <0, sinceN NL.
Ng — N, <\, R > NL

S-Ur

Similarly, S < U.. Thus, all tréfic ahead of the shock remains ahead but
all traffic behind it eventually hits it and decelerates. The patlohjgif
cars is illustrated in figure (1.8).

Shock Paths of vehicles
after crossing shock

Paths of vehicles
behind shock

\

Paths of vehicles
/ ahead of shocks

\\

Fig. 1.8.

1.4 Initial value problem with shock

We already know from the constant configuration (and it caprbeed
generally) that the vehicles after crossing the shock mévat@a slower
speed. However, the behaviour of characteristics is qufterdnt; they

hit the shock from both sides. In thet plane the slope of the charac-
teristic satisfieslx/dt = G(N) = dF/dN. From theG — N curve (figure
(1.7)), we see that not onfg(NR) < 0, butG(Ng) < S, for N > N, since

Nr > N_ andF is convex. Hence the characteristics ahead of a shock
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run into it. Behind the shock the reverse is trN,) > S and again
the characteristics hit the shock (figure (1.9)).

T t Shock

Fig. 1.9.
16
If we knew how tdlay downthe shock across overlapping character-
istics, we could solve thiitial value problem The shock starts when
the continuous method breaks down, i.e., whblidx becomes infinite
at some time and plane. Let this, for the sake of argumentQ89. (
Then initial slope of the shock is the characteristic slope we inte-
grate from this point (0,0). The shock velocity
dx _ _ FR - F|_
dt ~ 7 Ng-N_
_ F(®(R) - F(@(L)
D(£R) — O(£L)
where® is the given initial data andr(x,t), £, (X, t) are the abscissae
of the appropriate right and left characteristics. To finid tturve, a
useful approximation is often made. We use the subsdrpisdL in an
obvious manner and note two possibilities of getting Tagkpansions
for the shock speed in terms of the shock stremdgh- N, .

_Fr-FL _dF 1 d2F )

S= Ne— N, (d_N)R + E(W)R(NR — Np) +0((Nr — NL)?)
dF. 1 o°F

= (d_N)L + E(W)L(NL - NR) + On((NL _ NR)Z)
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17 asNr — N_. Adding the two expressions,

2= (), ). ) - 3((5), ().

(N — NL) + O((Nr — N)?).

or, expandin dz—F and dZ—F in terms of Nr — N), we see that
» EXp aNe ) anNe ), R~ NL),

S CRC

This means the shock speed is the average of the slopes ofdtubar-
acteristics with a second order error. Notd; ifs quadratic the formula
is exact.

To find the whole flow in theX, t)-plane, we now have a relatively
simple reciple:

1. CarryN along the characteristics coming from the initial line,,i.e
lines of slope dF/dN)™! = GL.

2. Note the region where they are crossed.

3. From the points on each linte= constant where such a region
starts, start a shock.

4. Integrate the dlierential equation for the shocks,

dx

a = g(X, t)?

1 . . .
whereg(x, t) = E(GR + GL) is a good approximation.

This procedure is quite straight forward until shocks isget. But

there the initial value problem can be restarted providedamesolve the

18  local problem with constant states on each side. Note iairdata have
a discontinuity then the two sides can be connected either &lyock

or by a degenerate solution ¢f (1110) with= tG(N) called a centered
wave. However, interaction shows that the number of shoeksedises.
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The real numerical diculty of the foregoing procedure lies in in-
verting the variable and finding as a function ofx, t. For this reason,
it is often preferable to use aftrence scheme. Before going into this,
we now give some existence and uniqueness theorems.

Remarks .We note the dference in shock speed if we usdfeient
conservation laws that are equivalent in the smooth casen Fr

N; + Fx =0,
we have seen thaf) satisfies

Qi+Tx=0
where

Q= fP(M)dM

and
N

T= fP(M)F’(M)dM.
Considering shock speeds, we see that

Tr—TL
S=_-R_L
Qr-QL

Nr
[ P(N)F’(N)dN
NL

Nr
[ P(N)dN

NL

In the limits asN,. — Nr we see tha$B tends to the characteristic speedg
the same for both the forms. But fdir # N, we can obtain a wide
range of shock speeds by the choicd@R).

To get uniqueness, as we shall see, we introduce the fokpearnn
tropy conditionto go with a specific weak conservation law:
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The characteristics starting on either side of the disaauity curve
(shock curve) when continued in the direction of increasimg t inter-
sect the line of discontinuity.

This means the characteristics issuing from a shock go beaclsy
in time (see figure (1.9)). This will be the case if

F’(NL) >S > F’(NR)

whereN., Nr are the values ol on left and right of the shock curve
respectively ané is the shock speed.

Hereafter, in this section, by a shock, we mean a discotyirsaitis-
fying the jump condition and this entropy condition. For fbdowing
results, which we are going to derive, we refer to P.D. La}.[ZBhe
most important feature there is the role of thenorm. A piecewise
continuous function such as a solution with shocks will hagefirst
derivatives inL! but not inL2. Consider

Ni+Fy=0, —co<X<oo, t>0. (1.14)
We assumé- is conveﬂ and aC2?-function.

Exercise 1.4Let f : (a,b) — R be aC?-function. Thenf is convex ff
f”7(x) > O for all x € (a, b). Further show that satisfies the inequality

f(x) > f(y) + (x=y)f'(y) (1.15)
forall x,y € (a,b).

Theorem .Let N M be two piecewise continuous solutions [0f {IL.14)
whose discontinuities are only shocks. ThEin- M||(t) is a decreasing
function of t where

IN = Mii() = f INGt) — M(x,ldx

(We assume the integral exists).

1n the trdfic problemF is concave but the problem can be transformed to this case.
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Corollary (Uniqueness Theorem)If N = M attime t= 0, then N= M.

Proof. Let x = yn(t) be the points such thaN(- M) has the sign of
(D)™ in yn(t) < X < Ypea(t). Then

Yn+1
IN-MI® = D22 [ (- My
Yn

There are two cases:

(i) SupposeN = M on a curve which is not a shock curve of either
solution. TherG(N) = G(M). Thus the two sets of characteristics
have the same slopes and hence coincide. Hence there is a seg-
ment or a point on every line= constant wher®&l = M. Ifitis a
point, the curve on whiciN = M is a characteristic; if it is a line
segment then the whole region swept out by the charactaristi
from the segment satisfidéé= M.

(ii) The curve whereN = M is a shock. Consider 21
d Yn+1
— _1\n _
SIN=MIO = D0 [ - Mgaxs
Yn

dyni1 dyn
Yne1  dt B (N h M)|Yna ’

+(N — M)

Consider the term in the bracket; from equation{lL.14) it is

Yn+1

f (F(M)X—F(N)x)dx+(N—M)ﬂ—{]i:ﬂ = [F(m)—F(N)+(N—M)‘;—{1§:”,
(1.16)

wherey, are now points of discontinuity dfl or M. The contribution

from other pointsy, vanishes becaus¢ = M andF(M) = F(N). Next

we calculate the contribution at the upper poipt;. SupposeN has

a discontinuity aty,,; and M does not; the other cases are analogous.

Now
dy o _ F(ND) - F(Ng)
dt NL-Nr

Yn
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Since (N— M) changes sign anill does not have a discontinuity a{, 1,
we must have
NR <M< N|_.

The contribution of the term in the bracket [n.(1. 16yat; is thus, with
N = N, given by

F(V) = F(N) + (N, — ) - O FOR)

NL - Nr
M — Nr NL-M
= F(M) - F(N F(N
(M) {NL—NR ( L)+NL—NR ( R)}

< 0, (by the convexity ofF sinceNg < M < NL). SinceM < N,
(NL— M) is positive and therefoneis even and hence the contribution is
negative. Arguing on the same lines, we find similarly that¢bntribu-
tion from the lower pointy, is also negative as well as the contribution
when bothN andM have shocks. This completes the proof. o

Remark. A similar estimate which yields uniqueness can be made un-
der alternative conditions dn, other than convexity.

Theorem (A minimum principle) Consider the initial value problem
Nt +Fyx=0, —-o0o<X<oo, t>0,
N(x, 0) = O(X).

Let N(x,t) be a continuous and flerentiable solution. Le® € L’ (It
syfices to assume thdt vanishes for large negative x). Put

y
1%y, 1) :ch(s)ds+tH(X—;y),

where
H(L) = MG(M) - F(M), M = G(L), G = dF/dM. (1.17)
Then Nxt) = G‘1(¥) where y minimizes(k,y,t). (Note GN) =

F’(N) is an increasing function of N by our assumption on F; so that
the inverse G exists).
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Proof. Let

X

U(xt) = f N(y, t)dy, (1.18)

—00

then
Uy = N. (1.19)

SinceN satisfies the dierential equation, we obtain
Ut + F(Uy) = 0; (1.20)
here we have adjusted the integration constant by putting
F@O)=0. (1.21)
If (CIT) is applied withUy and any numbeM, we obtain
F(Uy) > F(M) + (Ux — M)G(M).
Or using [1.2D),
Ut + G(M)Ux < MG(M) = F(M). (1.22)
Let y denote the intercept on theaxis of the line given bydx/dt =

G(M) or
(x=-y)/t=G(M), t>0. (2.23)

Integrating CI.2R) along this line w.rtfromt = 0, we obtain
U(x,t) — U(y, 0) < t{MG(M) — F(M)]. (1.24)

From [I.ZB), we have
G‘l(x—;y) — M. (1.25)

If H is defined by[(1.17), we see that
U(xt) < U(y,0) + tH(?’) Z (%Y, 1), (1.26)

We also note that

24
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dH/dL = G7(L).

Let G(0) = c; thenG~(c) = 0. SinceF(0) = 0, we haveH(c) = 0 and
this is its minimum value. The inequality in{1]126) holds & choices
of y. In particular for the value of for which M, given by [1.2b), equals
N(x,t), the sign of equality holds ilL{1:P4) along the whole cheastic
dx/dt = G(N) issuing from &, t). Therefore, the sign of equality holds
in (LZ8). This completes the proof. o

Remark 1. The above theorem holds also for generalised (weak) solu-
tions whose discontinuities are shocks. For, relafiom)li2the integral
form of the conservation law and so relati@n{1.26) is aldm\far gen-
eralised solutions. Since all discontinuities are shoskesyepoint , t)
can be connected to a poipton the initial line by a backward char-
acteristic (entropy condition). For this choice MF equality holds in

(L.28).

Remark 2. The converse of the result given in remBtk 1 is also true.

An estimate for larget. In the first theorem, we have found an explicit
formula for the solution of an initial value problem in terwisits initial
value. Recall

N(x ) = G‘l(gl) (1.27)

wherey minimizes

y
1(X,y,1) = fcl)(s)ds+ tH(%’). (1.28)

—00

We have also seen thét takes its minimum values &(0) = ¢ amd
H(c) = 0. Let

_ } AV _ } 7
k=367 = 5H"©. (1.29)

AssumingF is strictly convex, we havé& > 0. Suppose there are two
positive constantks, ko such that

2k < H” < 2Kks. (130)
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It follows then fromH(c) = 0, H’(0) = 0 that
H(L) > ki(L — ).

Thus ‘
tH(?’) > L(x-y - c?. (1.31)
Now we assume e L! and let||®|| denotes itd.*-norm. Then using
([@Z8) and[[1.31), we conclude
k
—|l®| + Tl(x—y— ct)? < 1(x Y, 1). (1.32)

But

X—ct
I(x,x—ct,t) = f@(s)dss |D||

—00

and hence by the minimum principle
(% y,1) <[Pl

at the minimizing functiory. Combined with[[T.31), we obtain

|¥ _q < { zl'('i”}l/z - i/t say (1.33)
From G™1) = H” < 2k, andG~%(c) = 0, we have
IG™HL)| < 2kelL -,
or
< 2™ -
<2k -m/Vt=m/Vt, say

Thus
IN(x, 1) < m/vt, from (T21)

26
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Now suppose thab vanishes outsideA, A); then

X

fd)(s)ds:o, if x-A

—00

= constant, ifx > A.
According to [1.3B), the minimum value wgflies in the interval
X—Cct—MVt<y< x—ct+mt

If X < ct—mvt— A, theny < —A, where the value of

y

fd)(s)ds

—00

is independent of and therefore the minimum dfis attained at the

: . L X— . . - .
point which m|n|m|ze5tH(Ty); this value isy = x — ct. Similarly, if
X > ct+ Myt + A, the minimizing value iy = x — ct. SinceG™(c) = 0,
we conclude fromN(x,t) = G‘l(xt;y) thatN(x,t) = O for x outside the
interval ct — MVt — A, ct+ MVt + A). This can be restated as: Every
solutionN whose initial value vanishes outside a finite interval, ratti
vanishes outside on terval whose length is/f)(and inside this interval
it is 0(1/ V).

In fact, the result can be improved. We state the theoremowith

proof.

Theorem. Define the 2-parameter family of functiongpq), p,g > 0
as

(x—ct)/tF"”(0), forct— +/pt< x<ct+ /i,
0, otherwise

M(x,t; p,q) ={

Let N(x, t) be any solution with shocks of

N+ (F(N))x =0
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where F is convex, KO) = c. Then

IN = M(p, Qli(t)

tends to zero as+ oo where|| - | is the L1-norm and

y
p =-2F"(0) myinfd)(s)ds

—00

o

g=-2F"(0) myax f d(s)ds
y

1.5 Modifications by diffustion and dissipation
Consider the first order nonlinear equation

Nt + NNy =0, —00 < X< 00, t >0, (1.34)
N(x, 0) = O(X),

whose solution is implicitly given by

X=E&+t1D(§)
N(x,t) = O(¢).
We have seen that however smodthmay be the solution becomess

discontinuous after a finite time, @ has compact support. We want to
consider a dferent model in which we add an exttessipative term

Nt + N NX = a’Nxx, (135)

wherea is a small positive number. This is the well-known Burgers’
eqguation that has been utilized by Burgers as a mathematiodél of
turbulence. By a nonlinear transformation (Cole-Hopf $farmation),

it is known that [1.3b) can be reduced to the linear heat emuat

\IJt = Of\Pxx, (136)
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where

Py
= —2a—.
N a ¥
Solving [1.36) a complete solution @ {T135) witt{x, 0) = ®(X) is given
by
J ey
N(X, t) = 0000—,
f e_)(/zadn

—00

where
n

XXt = f Oy ) + (x— )2/ 2t

(o]

Hence in the case of Burgers’ equation a solution existslftinae ever
for discontinuous (bounded, measurable) functidngdt can be shown,
by the method of steepest descent, thatras> 0 the solution of the
Burgers’ equation becomes, asymptotically, a solutiofLd3%).

Now instead of putting an extra dissipative term, we put pelisive
term and consider

Nt + NXX = ﬁNxxx. (1.37)

This is the Kortaweg-deVries equation, originally forntekh in the
study of shallow water theory. Recently, P.D. Lax and D. ren@e
have developed the theory of the connection between thigtiequand
shock theory in the limig — 0. Many other mathematical properties of
this equation have been studied in recent years.

1.6 Propagation of singularities in derivatives

Let Q = Q; QoI" be an open set inx(t) plane (see figure 1.10). Let
f(x,t) be a continuous function if2. Supposefy, f; are continuous in
Q, andQ, and have finite limits as they approathrom either side.
LetT be described by a smooth curve
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Fig. 1.10.

X = g(t). Let [] denote the jump acrog$s Then a calculation shows3o

d
gl f1=[5ds + [ (1.38)
Consider now the equation
N; + G(N)Nx =0 (1.39)

in Q. LetN be a continuous function i, having discontinuities iy,

N; acrossl’, and satisfying[{1.39) if2;, Q.. Applying (I.38) toN, we
abtain

[Nk]S" +[Ne] =0, (1.40)
since N] = 0.

SinceN satisfies[[1.39) i2; andQ,, we obtain as we approadh
that

[N¢] + G(N)[Ny] = O. (1.41)
LétA = [Ny]; then from [1.4D) N;] = —AS'. Thus from[[1.411), we obtain
—18 + G(N)1 = 0.

Assuminga # 0, we obtains’ = G(N). But then this curve is precisely
a characteristic. Hence the discontinuitiesNg, N; propagate along
characteristics.

Note. This is true in higher dimensions also.
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Let us look more closely at the singularitiesNg, N;. To do this,
we putp = Ny, g = N;. Then in the regions wheng, g are continuous
they satisfy the equations

pt + G(N)px + G'(N)p? = 0, (1.42)
a + G(N)gx + G'(N)pg=0 (1.43)

31 respectively. Solvind{1.42) by the method of charactesstve find

p= ondx/dt = G(N),

ft G/(N)dt - ¢

wherec is a constant. Note that the characteristics for these emqsat
and the original equation are the same. Note that since atntteeof
breakingp becomes infinite, the constantmust become the integral in
the denominator at that time.

1.7 Computing methods

Although we have obtained a method of solving a nonlineaaton,
it may be dificult to obtain the solution explicitly using the method
described. In practice, it is preferable to useféetience scheme.

We first consider a linear equation

where @' is a constant, with initial conditiotd(x,0) = ®(x). Let the
domain be approximated by a rectangle. Divide this rectaimib small
rectangles of lengthh’ and width 'k’ (see the figure 1.11). We want to
find an approximate value &f on this mesh of points.
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, 32
Let U(x,t) = U(hi,kj) = Ui’. The simplest way to approximate
ou/at, at (i, kj), would be by

ultt—ul
k
making an error of ordek. We shall this is too inaccurate. If a similar
approximation is made fo#U/dx we obtain the following dference
eqguation
j+1 j j j
U -y Ui —Ypn _

|
" +a H =0

or

ult=ul - ""—hk(ui'+1 -U)) (1.44)
Its simplicity lies in the fact that it requires the valuedyoan the first
row, which will be given by the initial data. Each evaluatidrowever,
gives an error of ordein? or k? = a?h?, say, and if one substitutes con-
secutively, the vaIudeJiJ is obtained and involves using the approxima-
tion j(j — 1)/2 times, i.e., making an error of ordgfj — 1)h?/2. Now, 33
if j is a mesh corresponding to final tinie j = T/k = T/h and, hence,
the error behaves lik&2. Therefore, we would have to ked@psmall in
order to avoid an error that is of the same size as the solutispite of
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this possibility, the scheme is sometimes useful becaugte simplic-
ity. Thus in moving from an ordinary fierential equation, we see that
we must make a scheme that has more consistent accuracy.
We look now instead for a scheme that is accurate in the exuati
consistent with the equaticio second order in the fierenceh taking
k, h of the same order of magnitude.
We note that a derivative is much more accurately descrilyed b
difference ratio that straddles equally the point where theoappation
is made. Thus using _ _
UiJ+1 _ Uij—l
2k
for 0U/ot the derivative is accurate to second ordek.inThis can be
seen as follows. Lat/(t) possess a Taylor’s series. Then

W(t + At) = W(E) + W' (t) - At + W (1) - (A1)%/2 + 0((A)),
W(t — At) = W(t) — W/(t) - At + W (1) - (A1)?/2 + O((AL)®).

On subtraction, we obtain

W(t + At) — W(t — At)

2
AT + O((At)<).

W (1) =

Thus, we are led to a scheme consistent t8)0(

j+1 j-1 j ]
lJi - U, jUi+1_Ui—1

kAT o

=0
or
vt =ut -l -ul ) (1.45)

Here ‘@' is considered as a function oft. This algorithm gives us a
new row of values from neighbours in the two preceding rows.

Its apparent disadvantage is that it requires the valuesvonaws
to start with, but we have only one. The simplest way to ges#wond
row is to use the first schemie(1144). This leads to an errordefrd? in
the second row. This error is just carried through, but natpounded.
From the algorithm, we see that the value at the pairjd {s obtained
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successively from a pyramid of mesh points and that the idtgoris
appliedj(j — 1)/2 times again; but the error is of ordet at each step,
and hence the error is of ordgfh®. Sincej ~ T/h, T being the final
time, we see that the net error is of ordher

This is then a consistent scheme but it is still possible ffoo be
unstable, i.e., to have the property that it amplifies thererr

Stability. (@.43) (and alsd{1.34)) is aftrence scheme with constant
codficients. A constant raised to a power plays the role that aorexp

tial plays in diferential equations. So, we look for solutions [0f (1.45)
in the form&'¢), i.e., U] = 1. Substituting this in[{I:45), we obtain &5
relation betwee and¢.

k
(== T,

Thus for every¢ there are two possible value for We are, of course,
looking for real solutions and we could generate the sahstiwith real
Z. But, clearly, if¢ andZ are complex, then

@ +E0)2 and €0 -E7)2V1,

will both be real solutions. Fof = 0, these solutions atéf' cos{ argé),

i€l sinf args). If we takel¢] = 1 and put arg/h = n, n = 0, £1,

+2, ... the corresponding values fgr= 0 then become cosih) and
sin(nih), which can be used to describe any initial data by a Fourier
series approximation. Let us consider first cdig). At an arbitrary row

j its value, since¢| = 1, is Re[exp/—1 inh)Z1] where we can také to

be either root of

1 ak, o _\Z
l=¢ 1_ F(e‘/_l.nh_e \/_1.nh)

=71 Z—EK V-1- sin(h). (1.46)

Note that the absolute value of the product of the roots isdl.if®ne
of the roots has absolute valudfdrent from 1, then there is a root with
absolute value greater than 1. SupppseT/k; then the solution is

|§|T/k Re[e\/—_l(inh) . e\/—_l-T/k-argg“].
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If the mesh siz&k shrinks, this solution behaves like exp(bg?)/k) 36
and it also oscillates. The exponential factor goes to ityfias T tends

to infinity. A small multiple of this solution even, say, ofdar k3, for
the sake of argument, still goes to infinity. Such a small iplaltcan
easily represent an error and hence, the error amplifieeasdish size
shrinks, i.e., the scheme is unstable unlg$s= 1. In that case set
¢ = exp(V=1®), with @ a real. From[{1.46), we then obtain

2V-1sin® = -2 \/—_161—hk sin(nh)

or "
sin® = _aF sin(hh).

. . ak o
But this has a solutionffi |F| < 1, and hence if this is the case the

difference scheme is stable. | I(| > 1, then there is a roat with
|| > 1 and the dference scheme is unstable.

What has been established here is the Courant-Friedrietvs-con-
dition for the particularly simple hyperbolic system of oeguation.

Note. If we look at the characteristics, we see that must be greater
than characteristic speed for stability. Otherwise, wetigiag to eval-
uate a solution at points whose domains of dependence mgaihts
from which we are drawing no data.

Exercise 1.5Find the stability criterion fol{1.44).
We now consider a flierence scheme for the nonlinear equﬁion

U+ Fy=0, —co<X<oo, t>0. (2.47)

HereU is a scalar andr(U) is smooth. Initial data will be prescribed

for (T.41):
U(x,0) = O(x). (1.48)

We know that in general smooth solutions [of (1.47) do nottdwisall
time however smootld may be; we have to consider weak solutions.
We recall the definition:

2The nonlinear system can be handled inthe same way both fgramal numeri-
cally proviced the speeds of propagation are always distinc
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Definition. A locally integrable functiorlJ(x, t) is a weak solution of

(CZ7) with initial datal[T48) if
f f (WU + Wi F)dxdt+ f W(x, 0)d(x)dx = 0 (1.49)

t>0

is satisfied for all smooth functiond which vanish for largex|, t and
t = 0; we call such functions, test functions.

We now propose and discuss dfdience scheme for getting an ap-
proximate solution td{1.47) with initial datB{1]148).

ChooseG : R — R, smooth enough, related by the reouire-
ment

G(u,...,u) = F(u). (1.50)
— e

2(— arguments.

For k an integer pulJx = U(x + kAx,t) whereAx is step size inx-
direction; similarly, letAt be step size it-direction. Define 38

1
G(x+ EAX) = G(U_gs1, U g Uy)

and 1
G(X — EAX) = G(U-[, U—€+ls ) Uf—l)'

We now consider the following fference analog of (1T.17)

% + i—i = (1.51)
where

AU = U(x t+ At) — U(x 1),

AG = G(x+ %Ax) -G(x- %Ax).
It follows from (T.51) that

U(x t+ At) = U(x t) — 1AG, (L51)
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whered = At/AX.
We claim that the dference schemé(1]51), as a consequence of
([@R0), is ‘consistent’ with the élierential equation[{L.47) in the fol-
lowing sense: denote by(x,t) the solution of the dference scheme
where, we have takeW(x,0) = ®(x). HereV is defined for non-
integer multiples of At, for the sake of convenience, as equa¥/{a, t’),
t’ = [t/At]At. OfcourseV depends omXx, At.
Then the following theorem holds.

Theorem.Assume that aax, At — 0, V(x,t) — U(x,t) boundedly a.e.
Then Ux, t) is a weak solution of {1.27) with initial datB{1148).

Proof. Multiply (L5T) throughout byt and by any test functiow and
then integrate with respect tato obtain

AV AG
fW(X’t)TthAt-i_fW(X’t)HdXAt:O

Now sum over allt which are integral multiples oAt and carry out
summation by parts in the first integral; we obtain

3 f W(X’t_AAti_W(X’t)V(x,t)dxAt— f W(x, 0)p(x)dx+

t>0
AG
W(x,t)—dx At = 0.
+Zf (x )Ax X

. 1 . 1 .
In the last integral replaceby x — =Ax in first term and byx + EAX in
second term; we finally obtain

W(X,t — At) — W(x, 1)
t; f o V(x, t)dx At—

- f W(x, 0)@(X)dx
B Z f W(x+1/2 AX) — W(Xx - 1/2 AX)
t

Gdxat
AX ’
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whereG stands foiG(Vy, ..., V), Vi,..., Vo, denoting values of/ at
2¢ points which are distributed symmetrically aroundt) and have dis-
tanceAx from each other. IV — U boundedly a.e. a&x, At — 0 so
doVsi,..., Vo and therefore

G(V1,...,Vy) - G(U,...,U)=FU) by (ChH0).
The proof is complete. O

The real dfficulty is to find whervV(x,t) — U(x,t) boundedly.

We turn to the problem of choosirgand minimizing the truncation 40
error. LetU(x,t) be an exact smoottCg is enough) solution of {L.47).
It will then satisfy diference equatiop (B1)] only approximately; the
deviation of right side from the left side is called truncation
error. It is easily seen that, in view di{1]150), then trummaterror is
0(At?). We shall now show, by taking = 1, thatG can be so chosen
that the truncation error is 8¢°). Let

1
U(X t+ At) = U(x, t) + At Uy + E(At)zutt +0(Atd) (1.52)

be a Taylor series up to terms of second order.
From [T.4Y), we obtain the following:

Ut+FX:O

1.53
Ut + (A%Uy)x = O. (1.53)

The second of these equations follows from the calculatiath w
dF/dU = A,

U = —=Fxt = —Fix = =(AUpx = —(AFy)x = —(A°Uy)x.

What is significant is that all derivatives are exact derivatives and
therefore can be approximated by exactlifferences. Substituting

(@53) in [I.52), we obtain

U(x t+At) = U(x 1) + (ALF + :—ZL(At)ZAZUX)X LO(A).  (L52)
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Comparing (I51]and(152)] we see that the truncation error i\&}),
iff

A 1
A—(i = (F + AU AU, ), + 0(AP%).

From this, we can easily determine the form t@anust take.

Theorem. The truncation error in the dierence schenf@.51)]is O(At®)
v/
G(a,b) = w + %/IAZ (b-a) (1.54)

plus terms which ar@(la — b|?) for (a — b) small.

The quantityA? in (C52) shall be taken as/2{A%(a) + A%(b)} for
the sake of symmetry more than anything else; any other ehedzild
make a diference that is quadratic ia ¢ b).

Denote the function if{1.54) b@,; any permissiblés can then be
written in the form

G=Go+ %Q(a, b)- (b-a) (1.55)

whereQ(a, b) vanishes fom = b. Substituting[[1.35) ifi (51}] we see
that

1 1
U(xt+At) = U(xt) + AAF + EAZAAZAU + 5AAQAU, (1.56)

whereA” = 1/2[T(AX) — T(-AX)] and A = T(%Ax) - T(—%Ax), T(9)
being the shift operator of the independent variable by apusts. We
shall callQ theartificial viscosity

The diference equatiol {1.66) expresses the valug¢ afftimet + At
as a nonlinear function & at timet; we shall write this as

U(t + At) = NU(). (1.56Y

The value of the solution of the fiierence equation at some later time

KAt is obtained from the initial values by the applicatiotimes power
of the operatoN.
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Our aim is to show that the fierence schem&J{1156) is convergent
if the size ofa is suitably restricted. In the case of linear equations it i
well-known and easy to show that convergence is equivatestiability
defined as the uniform boundedness of all powdfof N with some
fixed rangekAt < T, a problem which we have studied previously. In the
nonlinear case, following Von Neumann the convergenceestiheme
would depend on the stability of tHest variation of the operato.
The first variation ofN, by definition, is a linear dierence operator
with variable coéicients; Von Neumann has conjectured that such an
operator is stabldliall thelocalizedoperators associated with it, i.e., the
operators obtained by replacing the variablefoients by their value
at some given point, are stable.

We content ourselves with:

Theorem. If the Courant-Friedrichs-Lewy condition

AX

is satisfied, the gierence equatior.{1.56) satisfies Von Newmann'’s con-
dition of stability that the linearized equation is stable.

Proof. The first variation of the operatdt can be easily computed and
is given by

| + AAA + %/lZAZAZ +0(AX), (1.58)

whereA’, A are as before, and 8K) denotes an operator bounded i3
norm by|Ax|, provided we are perturbing in the neighbourhood of a
smoothly varying solution, i.e., one where neighbouringues difer

by O(AX). In this case, the influence of the additional viscosityrtés
0(AX); see Remarkl1 below.

To localise the operator[[1.38), we repladeby its value at some
point. After making a Fourier transform, the operat¢tecomes mul-
tiplication byi sina, and the operatat multiplication by 2 sin(1/2)«,
so that (¥2)A? becomes multiplication by ces— 1; herea = £Ax, &
being dual variable. Hence the amplification function of tperator
(L58)is

| +i1Asina + 12A%(cosa — 1) + 0(AX). (1.59)
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Since the eigenvaluds of A are real, the eigenvaluesof the matrix
(I29) are given by

M? = (1 — k*(1 - cosa))? + k? sir & + O(AX)
=1 - 2k*(1 - cosa) + k*(1 - cosa)? + k*(1 - cos a) + 0(AX)
=1— (k% - k(1 - cosa)? + 0(AX).

By our assumptior (L5 7) < 1. Thusv| < 1+ O(AX).
The proof of completed. m|

Remark 1. We have seen above that the quadratic ter@(g, b), ap-
pearing in a representation Gfa, b) influence neither the order of the
truncation error nor the stability of the scheme at pointemtthe so-
lution varies smoothly. The terms do influence, howeverhatgoints
where solution varies rapidly, e.g., across a shock. Fotaildé analy-
sis, we refer to Lax and Wendid24].

As a second example, we consider the Lax-Friedrichs scheme f
(CZ7). We add a dissipative teret)yx With € = 2Ax?/At. This scheme
is given by

j+1 j+1

At 1
U™ = U= e [F(UT ) = FUT )T+ 5(UTL, + U - 2U7), (1.60)

WhereU? abbrevated) (jAx, nAt). We want to establish convergence
via the contraction mapping principle. We wrife_(1.60) as

u™t=TU"). (1.60Y

(9] [
j= j=-

ThenT maps sequencit);}— to a sequencéT(U)}. according
to
A

{TU)}j =U; - AT

[F(Ujia) = F(Uj0] + 5(Ujea + U1 - 20))

Let ¢! be the space of all summable sequer{d‘.els}‘;:_m with usual or-

dering: ifU,V € ¢! sayU < V if U; <Vjforall j. Leta<0< band
put
C={Uef:a<Uj<bforall j).
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AssumingF(Uj) — F(U_j) — 0 asj — oo it can be seen easily that
Z {T)}; = Z Uj.
j=—co j=—co

ThusT isintegral preservingltis also easy to see thatAt/AX|F’(Q)| < 45
1,a< Q< Db, thenT is order preserving, i.ey < V.

T(U) < T(V). Then it follows, by the following theorem, thatis
also a contraction. Thus the scheme is convergent.

Theorem.Let Q be a measurable space with a positive measure and

T: LY(Q) — LYQ) satisfy
Tf=| f.
J7]

Let C L(QQ) be such that whenever fe@, max(f,g) € C. Then the
following statement are equivalent.

i) f,geC, f<ga.e. Tf)<T(g): order preserving.
i) [(Tf-Tg" < [(f-0g)* f,geC wherer =max(,O0).
Q Q

iy [ITf-Td < [If gl f,ge C: contraction.
o o

For proof, we refer to Crandall and Tartal [7].






Chapter 2

One Dimensional gas
dynamics

2.1 Equations of motion

These equations of motion completely characterise smootrement 46
of a fluid. They express the physical laws:

i) Conservation of mass,
ii) Conservation of momentum and
iif) Conservation of energy.

We first consider conservation of mass. For this, the ratdange
of mass in any volume element of the fluid is balanced by the flow
acrossoV, the boundary o¥. If n denotes the outward unit normal to
0V, then the normal component of velocity acréssis n- u, whereu =
(u1, Up, U3) is the velocity vector of the fluid (we are mainly interested
in 1, 2 or 3 dimensional flows). Then the net flow across the daon
between two timesg, to is

- f [ o waoet

t1 oV

41
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wherep is the density of the fluid ando- denotes the surface measure.
This must be balanced by the change in total mass betweeimtbst1,

to. Hence
to
([ paviz =~ [ [ ot at
\Y

t1 oV
or taking the limit ag; — ty,

%fpdV+fp@-g)d0':O.

\% ov

Using divergence theorem this can be written as

d
— | pdv+ [ div(udv = o. 2.1)
oo |

\%

In a similar way, the equation for the net change initheomponent of
the momentum is

d
— | puidV+ | [pui(n-u) + pry]do = 0. (2.2)
wfmo]

The first term is the rate of change of total momentum inaig¢he
second term is the transport of the momentum across the houadd
the third is the rate of change of momentum produced by thesprep.
Here, we are neglecting other forces such as gravity, vitycesc.

The total energy density per unit volume consists of thetldren-
ergyp|ul?/2 of the motion of particles plus the internal energyof the
molecular motion. For energy balance, we then have afteleciigg
heat conduction, viscosity, etc.

& [tz pav+ [(iu?+pen-us pn-wdr =0, (23
\% ov
The first term in the surface integral is again the contridoufirom en-

ergy transport across the boundary and the second term msitdef
work by the pressure at the boundary.
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If discontinuities are allowed in the flow, we have to workiw{E1)
- (Z3) (In fact they are not quite enough). But if all the qiides are
smooth, we can dierent under the integral sign. We then obtain the
differential equations

% + div(ou) = 0, 2.1(2))
9 N divienm e 2P g i
a(pu.) + div(pu;u) + % 0, i=123, (2.2(a))
%(pMZ/z 1 p6) + div[pu(plul?/2 + e + E)] -0 2.3(a))
48

2.2 Thermodynamical relations. Entropy:

Consider the quantitde + pd(1/p). When a small energy is added to
a mass of gas some of the energy is the work of changing theneolu
1/pto 1/p + d(1/p). This energy ipd(1/p); the restdeis heat put into
the system. Since the quantitie is a perfect dierential, there exist
functionsS(p, p), T(p, p) such that

de+ pd(1/p) = TdS (2.4)

T is the absolute temperature a8ds the entropy. The relatiofi{2.4)
may be viewed as a way of defining temperature and entropy ap to
arbitrary function.
Suppose we tregt, T = p~* as the independent variables, then we
will have
de= —pdr + adp+ Bdr,

whereq, 8 are given functions and we want to expresip+3dr asT dS,
whereT, S are functions ofp, 7. We want to show this representation
is essentially unique. First from the compatibility redets forde we
have

(=p+B)p = a, ()

and from the one fos we have 49
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(@/T): = (B/T)p
or L 1 X
(3)e = BF)p+ (ar = Bp)7 =0
o 1 1, 1
o(F)=B(F)p— 7 =0, from (x).

This is a first order equation for’T which we may solve providea +
B% # 0, which is a reasonable thermodynamic assumption. Qrnise
determineds is found fromdS = («/T)dp + (8/T)dr. With respect to
uniqueness, suppose we have two such representalig@sndT’, S’.
ThenTdS = T'dS’ or S;/Sp = S;/S;, and hence~(S,S’) = 0 for
someF or with an assumption of monotonicity’ = s(S) and then

T . .
T = dyds’ Thus the temperature and entropy are uniquely determined

up to a scaling factog(S).

Suppose, we know for some medium tkasg a function ofr andsS,
wherer = 1/p, specific volume. Then we see thats also a function
of p, S. We assume

p=f(S) or p=dS).

It is a fundamental property of almost all media that, entragmaining
constant, pressure is an increasing functiop of equivalently decreas-
ing function ofr. Thus

f,>0 and g, <O.

For any value ofS, the functiong(r, S) is generally convex w.r.t.r.
Henceforth, we shall assume this:

O(r,S) > 0.

Alternative forms of equations of motion:
Introducing the operator

b_o ,. .9
Dt at ' ax’
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the equationg(Z.1{a)) F(Z-3[a)) can be written as

Dp 8Uj

i R 2.
Dt * 0X; 0 (2.5)
Dy, ap .

—+—=0 =123 2.6
,0 Dt + 6X| ] I 9 ] ] ( )
De duj

+p-— =

o€ - 2.7
P ax =2 (2.7)

or using [Z5),[[Z]7) can be written as

Then from the thermodynamic relatidn{2.4), we obtain

DS

= =0 (2.8)

This is to say, entropy remains constant following a paticFlows
satisfying [Z.B) are calleddiabatic It follows from that, if the fluid
initially has uniform entropy then entropy remains constaroughout
as long as the flow is continuous. In such a cpse f(p). Such flows
are calledsentropic

2.3 One dimensional flow

The equations reduce to

prt (pu)X = O’

(ou)t + (pUP)x + px = 0, (2.9)
St+US, = 0.

The second equation iR{2.9) can be written, using the finsagon, as 51

Pl + Ul + Py = 0.
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The third equation follows fronf{2.8). It is convenient teeys u. Then
the system[{2]19) may be written as

Pt + Upy + pc2Uy = 0,

pUt + Px + puty = 0, (2.9(2))
St + USy = 0,

wherec? = (Ap/dp)s-= constani C IS called the sound speed. System
(Z:9(@)) is a typical nonlinear hyperbolic system.

Another such ta system, the Lundquist equations, occuragneto-
hydrodynamics. It involves coupling Maxwell's equationghwthe clas-
sical equations of gas dynamics.

Let E, B stand for electric and magnetic field vectors andJiet
denote the electric current and the flow velocity. plfs pressure and
¢ = dp/dp is the sound velocity, then the equations are

‘39—'?+(v.u)5—(B-V)u=o,

p%+Vp+Bx(VxB)=O,

dp

2 . — 2 . fr
c/p 6t+CV u=0,
ds

— =0.

dt

Another related hyperbolic system occurs in the theory aflelv water
where [Z5) and{216) hold with the depth playing the role exfigity p
andp/p? is constant.

We turn to the study of the systefn (Z.9(a)). We consider liepitt
flow so that the third equation drops out. Adding and subst@the
other two equations, we arrive at

pt + (U+ C)px + pC{ur + (U + C)uy} = O,
Pt + (U—C)px — pc{L; + (U - C)uy} = 0.

We choose the characteristi€s, C_ so that the derivatives are along
them. Thus for

dx
C+. a—U"'C,
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dx
Cc_: a =uU-cC
and then
dp du
a-’-pCa—o on C,
dp du
a—pCa—o on C_.

Integrating these two equations, we obtain

{(p) + u = constant orC,,
{(p) —u = constant orC_,

- [

The quantitieg(p) + u are calledRiemann invariants

where

Exercise 2.1Reduce the systenfi (Z.9(a)) (omitting the last equatics)
for slow speeds nearly constant density to the wave equétianor in

p). Show also that discontinuities in derivatives propageité sound
speed.

Exercise 2.2Find the speeds of propagation of the one dimensional
Lundquist equations.

Simple Waves. Piston Problem: In addition to being isentropic, if
the flow has one Riemann invariant constant throughout,dhgien is
called asimple wave Such a wave lies next to a constant state since
all the characteristics of one kind issuing from the cortsttatte carry a
constant Riemann invariant.

To illustrate, how such waves can be produced, we considguith
ton problem as a basic model. Consider the waves producetieby t
movement of a piston at the end of a tube and gas at rest in saocbns
state ahead of it. Provided shocks do not appear, the waugsaceon-
stant Riemann invariant from the constant state ahead.
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Initially, the gas has velocity = 0, sound speed, andS = S; in
s > 0,t = 0. The piston path is itself a particle path and the flow is
isentropic.

Sinceu — ¢ < u the C_ characteristics start on the- axis in the
uniform region (see figure 2.1). On each

{(p) — u = constant; (2.10)

Sinceu = 0 initially, we conclude that the constantd&yg), wherepg
corresponds to the initial density. Since this constartiéssame foC_
characteristics, we conclude thp) — u is the Riemann invariant that
is constant throughout. We now use the other charactetesfind the
other quantities.

Piston

N
>
X

0 u=0, c=cy, S=5
Fig. 2.1.

For thoseC, which originate from thex-axis, we see that

(o) + u = €(po) (2.11)

From [Z10),[Z711), we conclude that 0, ¢ = ¢y in the region covered
by theseC, characteristics. LeE? separate th€, characteristics that
meet the piston from those which meet theaxis.

Since the image of the flow ip(u) space lies entirely on the curve
{'(0) — u = constant each point on the curve represents a curve in the
flow. At that point the value of(p) + u determinedl, p and hence the
slopedx/dt = u + ¢, of C, which is constant along that characteristic.
Hence
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0, U are constant on each, : dx =u+cC.

To complete the solution, we should use the boundary camditi 55
given on the piston. Let the piston path be givenxby X(t). Then the
boundary condition is

u= Xt on x=X().
With this, we can obtain the complete solution:

X=(X(®)+0) (t—1)
u = X(r)

Since theC, characteristics are straight lines with the slapedt
increasing withy, it is clear that the characteristics will overlapuiin-
creases on the piston i.e. X{t) > 0 for anyt (this is the case when the
piston accelerates into the gas). This is typical of noalirngreaking,
(see p8) and shocks will be formed. We need to reexamine the ar
ments leading to the constancy of entropy and of one of then&im
invariants. But for motions wittX(t) < 0, we have constructed a com-
plete solution.

2.4 Shock conditions

We suppose the flow is one dimensional and allow jump discoitigs,
denoted by {, in the flow. We must work with the equations—R.1) -
(Z3). Let the regiorV collapse on a slit around the discontinuity and
we find the discontinuity conditions:

—U[p] +[pu] =0
~Ulpu] + [pu? +p] =0
—U[p?/2 + pe] + [(pu?/2 + pe+ p)u] = 0,
whereU is the discontinuity velocity. We denote by subscripts (Q), 56
the two states. As a particle moves across the discontjnitiitgoves

from thefront of the discontinuity across the discontinuityldehindthe
discontinuity. The entropy mustcreasein this direction.
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For convenience, we introduce the relative velocities
vi=U -, i:O,l.

In the velocity frame where the discontinuity is at restcsithe equa-
tions are independent of the coordinate system, we obtaim the
above

poVo = p1v1 =M, (2.12)

wheremis themass fluxthrough the surface;
POV + Po = p1Vi + pL = P, (2.13)
wherep is totalmomentum fluand finally theenergy fluxcondition:
M(V3/2 + € + Poto) = M(V3/2 + €1 + pa71). (2.14)

According to the second law of thermodynamics entropy cdwp iR
crease. Hence across a discontinuity

So<S,

or
mS < mS; (2.15)

Two two types of discontinuity surfaces are distinguishgdhe cases
m = 0 andm # 0. The casen # 0 corresponds to mass flowing across
and the discontinuity surfaces are callgtbeckfronts; the casen = 0
corresponds to eontactor slip surface.

We first consider the case of a shook,= 0. Then from equation

13), we obtain
1 1
5\%+60+ Po7o = E\é+el+ P171.
If we introduceenthalpy i = e + pr, we then obtain
VE/2+i0=V2/2+i1 (2.16)
If we use [Z.IR) and{Z13), we obtain

T0(Po — P1) = Vo(v1 — Vo),
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71(Po — P1) = V1(v1 — Vo)

and hence adding these two equations, we obtain

(to+71) (PL— Po) = V5 — V5 (2.17)
Equation [ZI6) becomes
(p1— po) (to+71)/2 =11 —p, (2.18)
or, sincei = e+ pr,
(to—71) (P1+ Po)/2 = €1 — €. (2.19)

Since [ZIB) and{Z.19) involve only thermodynamical qitiast they
are particularly useful. They were first studied by Hugomind [Z.1D)
is called theHugoniot relation The relation[[2.]19) can be intepreted by
stating that the increase in energy across a shock is due tedtk done
by the mean of the pressures in performing¢benpression.

The most common example considered is a polytropic gas,wth 58
A(S)p”. We note the following relations: (refer Seﬁ)n

logA=S/c,, e=p/(y-Lp, =ryplp,

wherec, is the specific heat at constant volume. It is often usefuk® u
formulas for polytropic gases with the parameter

U -ug
Co

which is theMach numbeof the shock relative to the flow ahead and is
a useful measure of strength. Usifig(2.12) dnd{2.13) andefisition
of M, we arrive at the following:

M =

lul—uo _2(M?-1)
@  (y+1M’
p1/po = (y + DM?/{(y — 1)M? + 2},

1See, Fliigge, S. (Ed.), Encyclopedia of Physics, &|ISpringer—Verlag (1959).
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(P1 = Po)/Po = 2y(M? = 1)/(y + 1),
(2yM? — (y - DIV2 - {(y - )M? + 22

C =
1/Co &y + DM
Introducing an alternative strength parameter
z= P~ Po
Po
the above set of equations can be written as
1/2
M = {1+ (Y’L—l)z} , (2.20)
2y
Ui — Up z
= , 2.21
To T e (@21
1 -1
prlpo = {1 Nt )Z} / {1 L )Z}, (2.22)
2y 2y
2
(1+2)(1+ 2))Y
C1/Co = - (y;yl)z (2.23)

59 From the relation foiS, obtained fromA, and the relation[{Z.22), we
obtain 0-1)
(1+2)(1+ Vz—y)z}

1
(1+ %572y

SinceS; > Sp across a shock, we obtain, as is easily seen by expanding
thatz > 0. Hencep; > po, and from the above relations, we then obtain

(S1-So)/c, = Iog{ (2.24)

p1>po, C1 > Cy, Uy > Ug, M > 1.

From [Z2D), it is clear thall > ug+cy. From the relationd{Z. 20 (Z121)
and [Z2ZB), it then follows that,

up +cp > U

Thus a polytropic shock is always compressive with> pg and it is
supersonic viewed from ahead and subsonic from behind.

These facts are true quite generally, but we will discuss Ititier,
when we study the Riemann problem.
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2.5 Contact Discontinuities

If the mass fluxm through the surface of discontinuity is zero, then
vi = Vg = 0, so thatu; = ug = U. Then we haveyy = p; from (ZI3) 60
and [ZIh) is automatically satisfied. Such a discontinsityface as
indicated before, is called@ntactor slip surface

The flow velocity is continuous across the contact surfanesni
dimensional flow, but in higher dimensions the tangentiahgonent of
the velocity vector may dfer a discontinuity across a contact surface,
while the normal component relative to the surface is alveays. For
details see, e.g., Courant—Friedrichis [6].

2.6 Shock Reflection

A simple example of determining a flow with shocks is providsd
the reflection of a shock from a wall which can also be solverttyx
A shock with a state behind of prescribed velocity hits a vaaitl is
reflected. We seek the pressure after reflection.

Let the subscripts A refer to the states ahead of and behind the
incident shock, and subscript 2 refer to the state behinddfiected
shock, see figure 2.2.
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(2)

Refiected shock

~ >:L,
(1)
Incident shock
(0) Wall z =0
Fig. 2.2.
61 If the shock strength of the incident shockzis= (p1 — po)/ po, the

state (1) can be determined by the relatidns{2.20)-(2124).

Zr = (P2 — P1)/P1

is the strength of the reflected shock, we obtain, with slétabange in
the sign of the velocities since the reflected shock travetlsé opposite
direction to the incoming shock, froi(Z]21) that
|U1 - U2| _ R
C - 1 1/2°
e

Next to the wall, the gas must be at rest and hance ug = 0. Now, u;
andc; can be found in terms &. After doing this, we obtain

Z _ ZrR
N +2) @+ G52 y(1y O

This is a quadratic iar and it is easily seen that the relevant solution is

Z

(y-1)z
1+ 72_)/|

ZR:
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For weak shockg, — 0 and hencer ~ z and

P2 — Po = 2(P1 — Po)-

So, for the acoustic case, the pressure is doubled as is m@lirk Also 62

o 2
for strong shockg, — oo. This implieszg = yl) and therefore
P2 Jy-1 _3
poy-1

for y = 1.4. Hence there is a large gain in pressure after reflectiors. Th
phenomenon is even more striking in spherically symmeiiggiwhen
a shock is reflected at the center of symmetry.

2.7 Hugoniot Curve. Shock Determinacy
We recall the Hugoniot relatioh {Z119):

e — € = (10— 71) (P1 + Po)/2.

We regard all quantities such as enegggntropyS etc. as functions of
7, p. We define théHdugoniot function

H(z, p) = &(r, p) — &0 — Po) + (7 — 70) (P + Po)/2.

If (70, pPo) is fixed, the graph of the points, (p) which satisfyH(r, p) = 0

is the Hugoniot curve As we shall see wittp > pg it represents all

possible states that can be reached with §o) ahead of theshock For

p < po the curve represents the states that can be aheag, @f). The

big advantage in considering this curve is that it involveselocities.
For polytropic gases, we have

oo PT_pr(l-4)
(y-1) u?
where 63
> (y-1)

C(y+1)
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Hence

2uPH(r, p) = (t - u’70)P — (to — #°7) Po.
Hence the Hugoniot curve, specifically the Hugoniot curvihwenter
(70, Po), is a rectangular hyperbola with the left asymptote

7= 419 = Tmin > 0.

(See figure 2.3)
PA

(10 =7)(p = po) = (u1 — uo)?

(1 —70)(po —p) = (u1 — Uo)2
PO === Phe
7
'

I
|
|
| Bock state with state (0) in front
|
|

> T

Tmin T

Fig. 2.3. The Hugoniot curve is the heavy curve.

We shall see that under wide conditions on the Hugoniot ctiree
state ¢, p) that can lie ahead or behindg( pg) and connected by a
shock, can be found exactly.
64 The precise statements are:

1. The state (0), i.e., inwhich{, po) is given, and the shock velocity
U determine the complete state (1) on the other side of thekshoc
front.

2. The state (0) and the velocity determine the speed of the shock
front and the complete state (1) if it is specified whetherstage
(0) should be ahead of or behind the shock front.
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3. The state (0) and the pressuymedetermine the speed of the shock
front and the complete state (1).

To prove these statements, we make the following assungpton
the Hugoniot curvéH(r, p) = 0 with center €o, po):

(H1) Along the Hugoniot curve, the pressure varies from zerofin-
ity and the value of exceedsmin.

(H2) The Hugoniot curve is strictly decreasing, i.ﬁ—dp < 0 along the
T
curve.

(H3) Every ray through(, po) igtersects the Hugoniot curve at exactly
one point and atr{, po), % > 0.
dr?
(All three conditions are satisfied by the polytropic gases)
We are now in a position to prove statements (1) - (3) madeebov
providedwe assume pressure increases across a shbéidlows from
the shock conditiof{Z.12) and{2]13) that

-n? = pg = 2= (2.25)
T1— 70
So, to find {1, p1), we need to find the intersection of the curve witts
the line through o, pn) and with slope-n?. Then (H3) assumes there
is just one such intersection. The veloaditycan then be found through
Z712),u; = U — mry. This proves statement (1).
As far as second statement is concerned, it can be easilederi

from (Z12) and[(Z13) that
—(10 = 71) (Po — P1) = (V1 — Vo). (2.26)

From the data givenuf — up)? = (v1 — Vo)?, is known. Hence to find
(1, p1) it suffices to find the intersection of the hyperbola

(to— 1) (Po — P) = —(v1 — Vo)°

with the Hugoniot curve. The slope of the hyperbolanis> 0. Hence
from (H2), it follows that there are just two such intersens, corre-
sponding to the two possibilities that the state (0) liesaahaf or behind
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the shock front (see figure 2.3). The shock velocity and thie $fl) can
then be found easily using shock conditions.

To prove statement (3), assume the state (O)@nare given. The
assumptions (H1) and (H2) assert that there is exactlyrgseich that
H(r1, p1) = 0. The other quantities to determine the state (1) completel
are then found essentially as above.

We shall discuss a few more qualitative statements abougitbek
transition using the Hugoniot relation; in particular, soof the proper-
ties of the shock transistion were already discussed in dieresection
for polytropic gases. The main thing we are going to prove liethe
following:

The increase of entropy across a shock is
of the third order in the shock strength
and the shock is compressive.

By the shock strength, here, we mean one of the quantitites
pP1—po, PL—Po, OF |vi—Vol

We can consider, because of (H2), the Hugoniot curve as5(7);
in particular, we can consideras independent variable. Now along the
Hugoniot curvedH = 0. So,

2de+ (r —1o)dp+ (p— po)dr = 0.
Butde+ pdr = TdS and therefore we obtain
2TdS - (p- po)dr + (r — 10)dp=0 (2.27)

and hence
dS=0 at @, po), thecenter (2.28)

Differentiating[[Z.27), we obtain
2d(TdS) + (r — 7g)d’p = 0, (2.29)
and hence again at the centeg, (o)

d(TdS) =dTdS+ TS =0



2.7. Hugoniot Curve. Shock Determinacy 59

and therefore fron{{Z.28)
s =0.

Thus the change in entropy is at least of third order. We shasvaf 67
third order. Diferentiating[[Z.29), we obtain, at the centay, (),

2TdS + drd?p = 0.
Thus sincedl?p/dr? > 0 at (ro, po), we have
#S=20 if drs0 at (o, po)

which proves entropy change is of third order exactly.

Furthermore, since the entropy must increase, we mustdwave0
which means the shock is compressive and hence the uppehhitine
Hugoniot curve represents states behind the stgi@d) as was asserted
earlier.

Exercise. Piston at uniform speed: It is a simple exercise to find the
flow if a piston is moved with uniform speddto a gas at rest. The
speed of the flow behind the shock is that of the piston and sarevan
case 2.

Remark. We need the notion of vorticity in three dimensions. The vor-
ticity is defined by
w = curlu.

Claim. The change in vorticity across a shock is also of third order.
a steady flow the vorticity vectes and velocity vector satisfy

1
V(ul?/2) + (w X U) + =Vp = constant.
P

Note that ifw = O, i.e., if the flow is irrotational, we have Bernoulli's
law. Taking a scalar product with a vectdr|é| = 1, lying in the shock 68
surface and letting-] to denote dference across the shock, we have

d d
[520u?/2+ plp) = P (U/p)] - [¢- Ux )] =0,
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where the dferentiation w.r.t. arc length along the shock is denoted by
d/ds; but since

[u?/2 + p/p] = —[€]

and
de+ pd(1/p) = TdS

we obtain ds
[T = - Exul.

Thus the change iw is of third order in the shock strengthdf = 0 on
the side since we may choose co-ordinates so that u is locaityal.

2.8 Riemann Problem

We now turn to another important initial value problem, thierRann
problem. It is also referred as the shock tube problem. Iinisartant
both theoretically as we shall see and because of its paddity; it is
the main device for producing fast chemical reaction frorfitke Rie-
mann problem can be stated as follows:

Given two states they can always be connected
by a “fan wave” consisting of a centered
rare-faction wave, a shock and a discontinuity.

The two diferent states will be separated by a thin diaphragm up to
timet = 0. Then the diaphragm is instantaneously removed and we have
to find the flow. Without loss of generality we can always assuhat
Ur = 0 andpr < pL. The subscript, L refer to right and left states
respectively.

We first define astate behindor S B curve associated with a state
(tr, Pr)- It consists of two branches, the upper branch#far rr is a
Hugoniot curve and for > rritis a curvep = p(r) at constant entropy
and corresponds to a centered rarefaction wave leading franpr)
and on whichu = £(p), see sectio 2.3, is a constant.

Any point on theS Bcurve, thus defines a unigue transition from
(tr, pr) t0 @ new state by means of a shock or a rarefaction. For the
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right side, these must be facing so that particle paths émeenm, i.e., to
the right.

Similarly, we define atate behincor S Beurve for ¢, p.) in the
same way again remembering to face the appropriate waeestoithe
left.

We also define a map from ti®Bcurve of (g, pr) to that of ¢, p.)
on the linesp = constant. Since th& Bcurves are easily seen to be
monotonic, this map is invertible and is representedry if 7 lies
on theS Bceurve of (g, pr) and by71(7) if 7 lies on theS Bcurve of
(tu, pu)- See figure 2.4.

The solution of the Riemann problem is found in thep) plane by
connecting tr, pr) to (r, pL) by at

PA

(TrsPR)

Fig. 2.4.

70
most two in between states, each representing states behinmk) and
(rL, pL) respectively and connected by a slip or contact discoityinu
which appears as the horizontal lipe= constant. The velocity in the
two states must be the same. From the right hand side, itésrdigted
either by the shock condition

u=[(pr-p) (r - 7RI
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usingur = 0 or by the rarefaction formula
U= —{r(tr) + (r(7)

and on the left side by

u-u = -[(p. - p) (r - T)]*"?

or
u—uL =€ (r) = &L(r).

We note that these formulas are continuous at rgr andr = 7 re-
spectively. We further note that we connot “add in” rarafactwaves
or shock waves as part of the states to be connected becausenat
match the velocities.

To solve the Riemann problem we have only to show that we can
always find a horizontal segment where the values af the intersec-
tions with the twoS Bcurves are the same.

But for p — o these intersections correspond to the shock portions
of the S Bcurves, the two values afare approaching their minima and
the diference betweenon the leftS Bcurve (i.) and on the rightyg)
satisfies

U, —0R— —oo.

On the other hand as — ~ a line p = constant intersects the two
rarefaction sections of th® Bcurves. BotlYr(r) and¢ (r) — 0 since

P
(= fc/pdp.
0

UL — Or = uL + €L(1L) + (R(TR).

Hence

Hence if
u. + fL(TL) + fR(TR) >0

there is always a solution. On the other hand if

uL < —fu(rL) — (r(TR)
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we have two completed rarefaction waves and there is a vaou e+
tween.

Thus every Riemann problem can be solved. The configurasians
as follows:

If u_ lies in the interval

[~6L(r) + 6L(F(R)), ((pr— PGEH(aL) G2 - R)YA

we have a rarefaction from the left and a shock from the rigftis
includes the case_ < 0 sincer{rgr) < 7.. If u_ liesin

[-0L(L) = (r(TR), CL(T(TR)) — €L(TL)]

we have two rarefactions possibly with a vacuum and if

uL > {(pr— PG (L)) GH(rL) - TRIY?

there are two shocks.

It is also quite easy to show thd{li. — Tr) > O provided the Hugo-
niot curves are star-shaped, which shows that within thesctd fan
waves our solution is unique.

However, full uniqueness follows only by using a contrattibeo-
rem, see, for example, Oleinik134] or Keyfilz]20].

2.9 Solution of initial value problem

It was originally proposed by Godunov that the initial valjp®blem 73
(IVP) should be solved approximately by considering théidhidata
as approximately piecewise constant and then solving & $&emann
problems, each by what we shall call a fan solution.
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Y
)

Fig. 2.5.

This solution is considered up to timt where At/Ax < 1/2S
whereS is the maximum of shock speeds or characteristic speeds that
occur. This cuts out intersections. At the next tinvee have to replace
the resulting data again by a piecewise constant solutidarns out that
we must choose this value and place it @nd it must be chosen as the
state values at a random point between thées((See Fig. 2.5). Alter-
natively (Liu) the values at a point that sweeps out the Vleregularly
will do.

We assume this set up and state the theorem, show what gctuall
happens in some special cases but first a few summary remarks.

The approach is based on Léx][23]. We are looking for a weak
solution of

u+ (F(W)x =0 (2.30)

satisfying an entropy condition (stated below). Hars ann -vector
andF is a vector valued function. We assume this system is hyfierbo
i.e., the matrix=’(u) hasn real and distinct eigenvalues for alln some
relevant domain. We arrange these eigenvaldgs), in increasing or-
der

A <A<...<dn (2.31)

We also assume the systef (2.30) is genuinely nonlinear émsesto
be chosen. A weak solution df{2]36) means a bounded medsurab
functionu such that

f(XtU +xxF(u)dx=0 (2.32a)
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for y € C3” and a weak solution with initial value(x, 0) = ¢(x) means
a weak solution satisfying

f(,\gtu + yxF(W)dx+ fX(x, 0)p(X)dx =10 (2.32b)

t>0

for all smooth vectorg vanishing for largex| + t. A piecewise continu-
ous solution is a weak piecewise continuous solution andénsatisfies
the jump condition across a discontinuity:

Sluc] = [Ful, k=1,2,....n, (2.33)

wheresS is the speed of propagation of discontinuity afjalgnotes the
jump across the discontinuity.

We now formulate an entropy condition by requiring the fafing
to hold: For somé&, | < k < n,

A(Ug) > S > Ak(ur)
while (2.34)
Ak-1(Ur) < S < Akea(wr)

Hereu, andu, are the states to the left and right of the discontinuing
respectively. The eigenvalugss are also called characteristic speeds.
The condition [[(Z234) says tHe" characteristic meets the discontinuity
from the left and than — (k — 1) characteristic from the right, the total
being equal tor{ + 1) and thus i + 1) quantities will determine (%
unknowns and the ‘shock speed’. This agrees with gas dysaamd
combustion.

A discontinuity across whiciL{ZZB3) arld (2.34) hold is ahlek—th
shock ands will be called a shock speed.

Suppose for somie 1 < k < n, grag, A« # 0 and isnotorthogonal to
r the corresponding eigenvector. If this is so, weld&jan isgenuinely
nonlinear We normalise so that

rg-grad, A = 1. (2.35)

If on the otherhandy - grad, Ax = 0 we say th&!" fan islinearly degen-
erate
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We consider an example from gas dynamics. The equations read
(See[2.9(3)))
Pt + UpPx + pCUy = 0
PUt + Px + puly = 0
St + Sxu=0.

Here the matrix¥’(u) is given by
u pc 0
pt u 0
0 0O u

andA = uis an eigenvalue and the corresponding eigenvector is given

by
0
H
us

whereus # 0 is arbitrary. Thus the characteristic field corresponding
to this eigenvalue is linearly degenerate. (This actuadk to special
difficulties in computation, see, e.g., Harten [17]).

We now state the main result.

Theorem 1. The set of states; which are connected to,Uor |u, —

us| syficiently small through a k - shock from a smooth one parameter
family u = u(e), —e, < € < 0, u(0) = ug; the shock speed is also a
smooth function of.

Remark. The entropy condition gives the one sided interval.

We now turn to an important class of solutions, centred aatafn
waves; these are the solutions which depend only on the(sati,)/(t—
to), Xo, to are the centre of the wave.

Letu be a rarefaction wave centred at the origin:
u(x, t) = h(x/t). (2.36)

Substituting this in[(Z-36), we see that
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—%(h’ + %F’(u)h’ -0 (2.37)

where’ denotes dferentiation with respect t6 = x/t. Thusé = A is
an eigenvalue of’(u) andh’ is a corresponding eigenvectdris called
ak - rarefaction wave

in view of (Z3%), we can take

h = r(h). (2.38)

Puta = A(u,); (Z338) has a unique solution satisfying the initial cendi
tion
h(1) = up; (2.39)
his defined for alk close enough ta.
Let e > O be such thah is defined forl + €; write u, = h(2 + ¢€).
We now construct the following piecewise smooth functigr, t)
fort > 0 (See Figure 2.6).

u for x<at
u(xt) =<h(x/t) for At <x< A+ et (2.40)
u for (A+ét x

t
T =M\

ur,

x=(A+e)

Uy

Y
8

Fig. 2.6.

This functionu satisfies the dierential equation[{Z:86) in each ofs
three regions, and is continuous across the lines sepathinregions.
We shall say that i the statesi; andu, are connected by a centrid
rarefaction wave.
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Theorem 2. There exists to every state a one parameter family of
states W = U(e), 0 < € < &, connected to uby a k - rarefaction wave.

We now turn to another important problem, Riemann problam, i
which the initial value given are

u=u, for x<0O
u=u for x>0.

Theorem 3. There always exists a solution (a fan wave) to the Riemann
problem iflug — uy| is syficiently small.

The proof uses only the implicit function theorem and wer riefe
Lax [23].

Norms: What can we expectu, € L1, not L?, at best sinces has
jump discontinuities. This suggests looking for a solutioof bounded
variation.

We now state a theorem due to Glimm and for the proof we refer to
Glimm [15].

Theorem 4(Glimm). Let {Z30) be hyperbolic, strictly (genuinely) non-
linear and F be smooth in a neighbourhood of W, a constant vector.
Then there is a k< oo and aé > 0 with the following property:

If the initial values (x, 0) are given so tht

di = |u(., 0) — V|| + T.V.U(., 0) < 6,

then there exists a weak solution Bf(2.36) for alt * O with initial
values ((x, 0) such that

lu—¥le < KJu(., 0) — V|eo (2.41a)
T.V. u(,t) < K(T.Vu(,,0), t>0 (2.41b)
f|u(x, t1) — u(x, to)|dx < K]ty — t|(T.V.u(., 0)) (2.41¢)

2T.V. = Total variation
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For a restricted class including gas dynamics and if
lu(.,0) = Ylo(1 + T.V.U(.,0)) < 6
then there exists a solution satisfyilg (Z¥1a) dnd (2.41b)

We now describe an approximate method developed by Glim to
solve any initial value problem(x, 0) = uy(X) when the oscillation of
Uo(X) is small. The solutioru is obtained as the limit of approximate
solutionsup, ash — 0, which are constructed as follows:

() un(x,0) is a piecewise constant approximatiorutgx)
Un(x,0)=m; for jh<x<(j+1)h, j=0+1,..., (2.42)

wherem; is some kind of mean value af,(x) in the interval
(ih, (j + Dh).

(I For 0 <t < h/A4, un(x 1) is the exact solution of{ZB0) with ini-
tial valuesu(x, 0) given by [Z4R); herd is an upper bound for 8o
2|Ak(u)]. This exact solution is constructed by solving the Rie-
mann IVP’s,

mj_y for x<jh,

. (2.43)
m; for jh,x

u(x,0) = {

j =0,+1,.... Since the oscillation afi; is small,m;_; andm; are
close and so by Theorelh 3, this IVP has a solution consisfing o
constant states separated by shocks or rarefaction wastgsgs
from the pointsx = jh,t = 0 (See Figure 2.7). As long as

t<h/a (2.44)

these waves do not intersect each other and so the solufitims o
IVP (Z43) can be combined into a single exact solutign
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N

Fig. 2.7.

“

(1) We repeat the process, with= h/1 as new initial time in place of
t=0.

It is not at all obvious that this process yields an approxéma
solution uy which is defined for allt; to prove this one must
show that the oscillation af(x, nh) remains small, uniformly for
n=12,...and so that one can solve Riemann IVIPS{R.43). This
estimate turns out to depend very sensitively on the kindvef a
erage used to compute the mean valugs Glimm has used the
following method to computen;:

A sequence of random numbers, ay, ... uniformly distributed
in[0,1] is chosenmrj1 then mean value ai(x, nh/1) over the in-
terval (jh, (j + 1)h) is taken to be

m? = u(jh + anh, nh/2). (2.45)
Glimm proves the following.

Theorem 5. A subsequence of,wonverges in L with respect to x, to
a weak solution oflfZ:30), uniformly in t, and for almost dlloices of

{an}.
For the proof we refer to Glimni_[15] and we illustrate here loy a
example; see Lax23].
Consider a Riemann IVP
u for x<0O
u for x>0

u(x,0) = {
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whereu, andu; are so chosen that the exact solutiononsists of the
two statedu,, U, separated by a shock,

u if x<st
1) = ) 2.46
ux 1) {ur if x> st ( )

where s is the shock speed. We may take> |g. Assumes > 0. 82
Glimm’s recipe gives

Uy if X<J1h
u if Jih<x

Un(x, h/2) = {

where

{1 if a1 <s/A
1_

0 if s/Ai<a

Repeating this proceduretimes, we obtain

u for x< Jyh,

Un(X, nh/A) =
n( /) {ur for Jsh< x

whereJ, = number ofa] s, j=1,2,...,n,such thatrj, s/A. Since{a;}
is a uniformly distributed random sequence inlp

In S
o2
n A
with probability 1; this tells the approximate solution dsralmost surely
to the exact solution.

One would like to prove more about the solution of the invialue
problem. In particular the uniqueness of the solution. Soeselts are
contained in DiPerna]8] but they are not applicable to theega initial
value problem because they do not admit shock formationsirwihe
flow.

2.10 Combustion. Detonations and deflagrations

In this section, we present a brief account of the elementagry of 83
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detonation and deflagration waves. Thedgedifrom shocks as the in-
creased pressure releases energy and converts one gasdtiteran a
chemical reaction. We denote this energy, per unit massnbegy of
formation, byg and the total energy

E=e+g

whereeis internal energy. In this case the equations of the gasndina
are

pt+ (oU)x =0
(pu); + (0% + p)x = O, (2.47)
Ec+ ((E+ pu)x =0,

wherep is the densityu is the velocity, p is the gas pressure. Bt
depends on the precise nature of the gas and is given by

E = pE + pU?/2.

Let the subscript 0 refer to unburnt gas and 1 to burnt gastheet
unburnt gas be to the right of the reaction zone antllbe the velocity
of the reaction zone. Then the two laws of conservation ofsnzemsl
momentum are identical with the corresponding laws for kHoants
and we have

Po + PoV3 = P1 + p1V5 (2.49)
wherevi = y — U, i = 0,1, are the relative velocities. The law of

conservation of energy now takes the form:
EO (10, Po) + Poto + V2/2 = ED(z1, p1) + prra+V2/2  (2.50)

whereE® andE© are two diferent energy functions. As in the case of
shock fronts we consider the Hugoniot function

H(1, P1; To, Po) = EP(r1, p1) = E9 (76, Po) + (t1 — 70)(P1 + Po)/2.
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It should be stressed that the conservation of endrgyl(2s5@ntirely
different from that in the case of shock fronts but that any laviveldr
from the conservation of mass and momentum still holds.

Using [Z48) and{Z2.49)[ {Z.b0) can be written as
H(r1, p1; 7o, Po) = 0. (2.51)

As in the previous case, the graph of,(p1) in the @, p) plane, which
satisfies[[Z.81) for fixedr{, po) will be called theHugoniot curve with
center(ro, pPo). For polytropic gases, we have

pr
= — > 1.
e — vy >
. -1
If we setA = go— g1 (A < O for an exothermic process) apéi= )/Tl
Y

we find

0= ZHZH = —Po(7o — #271) + pa(r1 - #270) - 2l12A- (2.52)

As in the previous case, this is a rectangular hyperbolas filnie the 85
point (ro, po) does not lie on the hyperbola because of the extra term due
to A. Infact, if A <0, (ro, po) lies below the Hugoniot curve; see figure
2.8. We assume this in general.

The lines through(, po) tangent tdH = 0 are calledRayleigh lines
Their points of tangencys; andS,, are calledChapman-Jouguet (CH)
points The portionp > po, T > 7o, Of the Hugoniot curve is omitted
because it corresponds to the impossible case in wifch 0. Here we
have used the relation

P = Po — pl’
To—T1
which follows from [2.48) and{2.49). The upper portion o tHugo-
niot curve corresponds ttetonationgincrease in pressure); the portion
aboveS; corresponds to strong detonations and befwo weak det-
onations. The lower portion of the Hugoniot curve corresfsoto de-
flagrations (decreases in pressure). These two pieces apgkar to be
playing the role of a “state behind” curve and we might apate that
shocks and detonations are linked while deflagrations anplsiwaves
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are related. However, considerations of the internal n@shaappears
to eliminate deflagrations and weak detonations exceptdnigpcases.

The relative speeds of fronts governed by the Hugoniot ccawvebe
determined by dferentiation.

Py

Detonation
branch

Deflogration
branch

................ So

CJ point

Fig. 2.8. The Hugoniot curve for exothermic gas flow

86
First of all,

O0=dH(r,p) = TdS+ %{(T —1o)dp+ (p— po)dr}.

Thus for a Chapman-Jouguet process wherer,)dp+ (p— po)dr =0
we havedS = 0. So at this point

1
T-To Or Or T

p_po_ﬂ):a_p lci'
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Thus by the mechanical conditions
V% = _Ti(p_ Po)/ (T — 7o) = Ci

That is, the state behind is sonic relative to the front. Gnather hand
V5 = ~75(P = Po)/ (v — 7o)
and along the Hugoniot curve
dv] = 75((P - Po)dr — (7 - T)dp)

so thatv, has stationary value for a Chapman-Jouguet process andgur-
thermore it is a minimum. Hence the flow ahead of a strong okwea
detonation is supersonic and of a strong or weak deflagradicub-
sonic provided the Hugoniot curve has the usual convexity.

By looking at the Hugoniot curve for the state behind in a Emi
way we find thatv? is monotonic on each branch. Hence the flow is
supersonic behind a weak detonation, subsonic hebind agstteto-
nation, supersonic behind a strong deflagration and sub$atind a
weak deflagration. See Fig. 2.9.



76 2. One Dimensional gas dynamics
t
Supersonic Subsonic
A 4
1 . 7
Detonation ' / Detonation
front front
Supersonic Supersonic
T x
Weak detonation (a) Strong detonation
t . .
Subsoni Deflogration Supersonic  Deflogration
ubsonic front front
Subsonic Subsonic
Weak deflogration azb) Strong deflogration
Fig. 2.9.
88 This leads to Figure 2.9 which shows the way the three cleract

istics can leave and enter a front. Each characteristicriying one
datum. Thus for a strong detonation, one piece of data mugivea
along with the state in front and the two remaining quargitiee then
determined. See the corresponding shock wave problem.

2.11 Riemann problem with detonations and defla-
grations
We assume there are only two gases, burnt and unburnt, anthéha

unburnt gas is on the right withg = 0. Then there are the following
possibilities:
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To the right of the contact discontinuity or slip line either
a) a strong detonation or

b) a CJ detonation followed by a rarefaction wave or

c) ararefaction wave

and on the left either a shock or a rarefaction.

This includes the unlikely case (c) when the pressure in thneiunt
gaspg exceeds that in the burp . Weak detonations and all deflagra-
tions have been eliminated for other reasons to be discusterd

The S Bcurve for the left state is the same in secfiod 2.8. FH
curve for the right state row consists of the strong detonakiranch
connected at the Chapman-Jouguet point to an adiabatie pusvp(r)
and there is also the rarefaction curve throggtfor use in case (c).

Exactly the same kind of argument then shows the Riemann pr&gh
lem for the casepr < p. can be used again, i.e., connecting the two
continuous curves by a line segment and matching up the vaitie
which are given by the same formulas unless thereds-al detonation
when

g = c(r", S%) = lca(r, S7) + lea(T, S),

andu; as before.

Here,r*, S* are the specific volume and entropy at the Chapman-
Jouguet detonation arfid ; is the ¢’ corresponding to that state.

The originale shock wave argument continues to workgor> p.
if a shock or rarefaction on the left and a rarefaction on tbbtrare
generated. The excluded case is the two-shock case bebauseburnt
gas is detonated. For

u < [(pL - PETR))GE(R) - 712

there will be a solution without detonations. uf does not satisfy this
inequality, then there is a detonation. However, uniqueigkcking.
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2.12 Internal mechanism

We now investigate why only certain processes take placeodking
into the internal mechanism of the front. We look for steat#yessolu-
tions in one dimension where we now assume the flow has vigarsil
heat conductivity. Let the temperature éieThe conservation of mass
remains the same as before:

PV = poVo = M, a constant.

We seek a continuous flow that moves from a constant state-atoco

to a constant state at = +c0. We assume the flow is moving from
right (unburnt) to left (burnt) and the reaction front hasfixvelocity,
som > 0, andx = + is aheadx = —~ is behind. The conservation of
momentum is given by

dv
PV +p- s, = P aconstant,

whereu is the codicient of viscosity.

Next, at any stage the gas has internal en&\¢) and the energy
balance is influenced by heat conduction. Denoting tthe codficient
of heat conduction, the energy balance is written as:

do 1 dv
1= + mE® V2 —u—)}=m0O=
Adx+ (E'“(0) + > }+v{p ’udx} Q= constant.

Following Friedrichs (se€e]11]), we assume the balance d&etw
burnt and unburnt gases is

de
—V& +(1-¢)S@®) =0,

where we try to avoid specifying too much ab&). So, we have
three autonomous equations and they hsimgular points exactly at
possible end states.

We write EQ(6,) = E, andEW(6;) = E; and investigate the sin-
gular points and find that at = —c (state ‘0’) there are in general
solutions behaving like

X X X
e@nx gt g,
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wherea; > 0, @y = 0 and

a3 <0 if Vo<

Here the sflix 0 corresponds to the unburnt gas amds the sound
speed in the unburnt gas.

The manifold of regular solutions (i.e., tending to const@nx —
—o0) has two free parametersv§ > ¢, and only one ifv, < ¢,. Call
the number of parameteyg. Analogously, at the other end, we find the
manifold of regular solutions has one free parametey i¥ c; and two
if vi < ¢yp; call the number of free parameters

When can we even hope to find a solution going from state (0) to
state (1)? We have three quantities to solve for. We mustsap®-y,)
initial conditions to leave the state (0) amg parameters characterise
regular solution at-co. But one is used up by an arbitrary shift xn
Hence §; —1) parameters are to be chosen subject toys3 conditions.
Sowe need1 — 1 > 3—y,, i€, 4—yo —y1 < 0 or elsesome other
quantity must be specially choserhus:

Strong detonation vy > Co, o =2
4-yo-v1=0
V1 <C, vy1= 2

Weak detonation vp > Cy, vo =2
4—ys—-v1=1
Vi1 =>2C1, y1= 1
92

Strong deflagration v <cy, vo=1
4-vo—-y1=2
vi2c, =1

Weak deflagration vo <cy, vo=1
4-yo-rn=1
Vi<C, y1=2
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So over determinacy the internal mechanism matchesnterde-
terminacy of the characteristic problem as give§ BA11.
When the topology of the solution curves is worked out, ihtuout

that
(i) All strong detonations are possible,

(i) CJdetonations are only possible if one of the parameterdigatis
a special condition,

(iif) Weak detonations are not possible except under veegispcon-
ditions,

(iv) Weak deflagrations are as in (iii) and

(v) Strong deflagrations do not exist.



Chapter 3

Two dimensional steady flow

3.1 Equations of motion

The next in simplicity to one dimensional flow is a two dimemsil 93
steady flow which is also irrotational. We use the followingtations
throughout this chapter.

Let p be the density of the gas amlbe the pressure. They are
considered as functions of the cartesian co-ordingtgsletu, v denote
the velocity components along theaxis andy-axis respectively. The
eqguations of motion reduce to

Conservation of mass:

(oW + (pv)y = 0. (3.2)

Conservation of momentum:
(ou)x + (puV)y + px = 0 (3.2a)
(ouN)x + (0VP)y + py = O. (3.2b)

We restrict ourselves to situations with weak shocks andmass
the flow is isentropic, i.e.p = p(p) with p’(0) > 0. The irrotational
condition implies

Uy = V. (3.3)

81
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With these assumptions the equations for momentum reduce to
1
Ul + VU + ;Csz =0,
1,
uvx+vvy+l—)c,oy=0,
wherec = (dp/dp)Y/? is the sound speed. Equivalently,
1 c?
V(Z(W? + V) + f—dp) =0,
2 P
which in turn implies Bernoulli's law

1. 1., .
5" = 2(u +V2) +i(p)

is constant, whergp) = f fdp andq” is the speed at zero density.
We recall that across a steady shock the following relatiaid:

[o(d-U)-f] =0, (3.4)

[(G-U)xH] =0, (3.5)

[o((G - U)-M?+p] =0, (3.6)

[51d-UF +e(pp) + 21 =0, 37)
P

whered = (u, V) is the velocity vectorlJ is the shock speedis normal

to the shock and-J denotes the jump across the shock. Using the fact

that the entropy and vorticity changes are to be neglects Chapter
B, we see thaf{3 7) may be written as

51~ UP +i(e)] = 0

or equivalently,

[q°1-[q-U=0.
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In a frame of reference where the normal component of thekshec
locity is zero, we have the tangential componend if continuous and
so [q] - U = 0. Henceq' is continuous. This, along with the assump-
tion that the entropy is constant, replaces the conservafienergy and
the normal momentum equation. In fact energy and normal mame
eqguations are not conserved. We are left with the two shooHitions
given by the conservation of mass and the continuity of theeatial
component of velocity.

Thus we need to consider the flow which satisfies the consenvat
laws:

(pu)x + (pV)y = O, (3.1a)
Uy — Vyx =0, (3.3a)
in their integrated form whereas a functions of the spegds given by
Bernoulli's law
1, . 1. 5 o
54 +i(p) = 5a° where o = U? + V2.

Equation [[3:3a) implies there is a functiop&, y), called thepotential
function such that
x=U, ¢y=V.
Similarly, (3I&) implies, there exists a functig(, y), called thestream
function such that
Yy =puU,  —Yx=pV.
The shock conditions reduce to the conditions:

¢,y are continuous.

From the definitions of, ¢ we see that if we introduce = u—- v-1v 96
the equations of motion reduce to
V=1dy
do + =wdz 3.8
) 59

wherez = x+ V-1y, andp(jw|) is given by Bernoulli's law. Froni{318)
any number of alternative equations are easily written dowthe basis

of the perfect dierential properties of(3.8) as we shall see in the section
on hodograph transformations.
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3.2 Classifications of flow equations

From Bernoulli’s law,
(udu+vdy + fdp =0.
P

Using the mass equation(B.1) and the above we obtain theiegua

(€ — UP)ux — UMUy + V) + (€% = V) = 0 (3.9)
or for the potential the well-known governing nonlinear equation:
(G — UD)hyx — 2uVpy + (G2 — V¥)hyy = O, (3.10)

wherec, u, v are functions oW¢. It is convenient to introduce thdach
number M
M = g/c.

The characteristics of the partialfidirential equation[{3:10) are given

by
dy uvxc®vM2-1
dx 2 -2
The equation{3.30) is hyperbolic, elliptic or parabolické > 1,M < 1
or M = 1 respectively. In the first case, the flow is said teshbpersonic
in the second subsonic and in the thgdnic Among these, the first
two types of flows are more or less thoroughly studied andhbery
is understood if not complete. But when bdth> 1 andM < 1 occur
in a single flow, we call itransonic This mixed case has many open
problems.

(3.11)

Remark. By Bernoulli's law,

qdq+ fd,o =0.
P
Therefore, ,
d B q
o =r- 5

At the sonic lineg? = ¢?, therefore, as in the case of a scalar conserva-
tion equation (Chaptéd 1pg has a maximum.
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3.3 Supersonic Flow

The supersonic case is equivalent to the hyperbolic systeenhave
already studied where we may treabr y as a “time” variable. Thus
Cauchy problems may be solved. The characteristics are giw€.11):

dy uvxc®vM2-1

dx c2 — U2

By looking at the case = 0, the path of a particle is given by
dy/dx = 0, we see that the path bisects the characteristics. Ndtashas
M — 1 the characteristics become perpendicular to the directiadhe
flow and tangent to each other.

There are simple waves, Riemann invariants and a solutidheto
analogue of the Riemann problem and the piston problem. kenve
the two elementary flows of greatest interest corresponidediow past
a bend in the wall (see the figures below).

(a)

Wall

Fig. 3.1.



99

100

86 3. Two dimensional steady flow

A continuous flow is described by a simple wave whenever itlis a
jacent to constant state. An inward bend (Fig. 3.1(a)) catse char-
acteristics to form a cusped envelope and hence a shock. #waml
bend (Fig. 3.1(b)) has a continuous rarefaction wave plyssiiding at
zero density and the escape velocity which, by Bernoubig, lis equal
to g*. A sharp straight bend yields a rarefaction wave or a sttaikyhck
(Figures 3.2 (a) and 3.2(b)).

(a) (b)
Fig. 3.2.

These problems are easily solved by noting that the imagbeof t
rarefaction wave if a characteristic in the ¥¢)-plane and the image of
the possible states behind the shock is given by a so cstleck polar
It is convenient to look at these if, Q) - plane, wherd is the flow angle
tarm(v/u).

3.4 Shock polar

From the discontinuity conditions in the form

[puldy/dx—[pv] = 0,
[u] + [vVIdy/dx =0,

wheredy/dx is the slope of the shock, we find that with an initial state
(0o, 0) with po = p(qo), if the state behind the shock iggoso, gsing),
then

Pe + ol

cosf = ———.
a Go(p + Po)

(3.12)
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In the limit of a weak shock, we note that a shock can becomé& wea
in two ways: either the shock becomes characteristic or tnedh both
sides becomes sonic. To see this, we set

F=p00 Fo=p00o, F/Fo=1+6G and q/go=1+dp.

Then we obtain from{3.12)

op- oG

cosh=1+ ——
2+6p+0G

or
el 1_0pC
2 22+0p+dG

To a first order approximation, we have
0G = 6p- po - dF/dq.

Hence, if the shock is weak we hage-»> 0 andsp — 0, and we obtain
6” = (6p)*(~dF/da),

and the shock is characteristic with
6 = +6p(-dF/dg)*/?,

provideddF/dq # 0. However, if the velocities on both sides of theo1
shock are close to sonic, if we approach the limit approgisiat

0 = (6p)°.

Note that in the normal shock cage- 0 andéG = 0. The shock polar
for the polytropic case is as illustrated in Fig. 3.3 (SeesHE]).
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Fig. 3.3.SHOCK POLAR

An important problem is the detached problem. Suppose agiiia
or wing is moving in a fluid with supersonic speed. If the peotije (or
wing) is round the speed vanishes at the tip (stagnatiort)pdihere is a
shock in front,notan attached shock. The shock is curved and the flow
is constant in front because of the curvature behind thekshbe flow
is not strictly isentropic or irrotational. If the shockestigth is moderate
a situation that occurs if the speed at infinity is not too high may
still use the conditions of irrotationality and isentrophhen there is a
subsonic region around the nose.

Shock

Supersonic region
_ _Sonic line
=<

Region \="Stagnation point

-
N~ A

Sonic line
Supersonic region

Fig. 3.4. DETACHED SHOCK OVER A BLUFF BODY
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The problem is to solvé(3.1) arld(B.3), a mixed system, watmiol-
ary conditionudy— vdx = 0 on the object. The shock is a free boundary
in the flow represented in the v place by the shock polar. Frofn(3112)
one sees that the flow behind the shock is subsonic on thesaxilere
is a region of subsonic flow. However, like the nozzle flow dised in
§12 there are no transonicfliculties such as those described®if+11.
See Bauer et all 1]

3.5 Equations in the hodograph plane

By the hodograph plane, we shall mean eithew) or (g, 0) or even
(o(q), ) plane, whichever is convenient since they correspondiplsi
mappings except near= 0. However neaq = 0, the equation for the 103
potential¢ behaves likeA¢p = 0 and we have a very complete under-
standing of the flow. The special functior{q) is chosen to simplify the
equations. Fron(3.8), we obtain

\/_dw

g leV-Y(dp + ——2) = dx+ V—1dy.

Hence the left hand side is a perfecffeiential. Considering, ¢ as
functions ofo, 8, whereo = o(q), we find

«/_e(¢ L YW ‘/_lﬁe

N=Woyd40 4 o leV (g, + @)d

is a perfect dierential. This requires

_leﬁ€(¢e+ \/__1!#9 Vo =10 \/_e(¢ y—"7 \/_w‘f
P P
Thus,
@ Heto +p tq e =0, (3.13)

g e - q ¢, = 0. (3.14)
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For the transonic range, it is convenient to introduce

q
o= fq_lp dg

Then equationd(3:13) and{3114) reduce to

¢€ = lﬁow
and
¢O’ = _K(O-)lljev
where 1 dioq)
"

is a function ofo- only. Thus
K(O-) Yoo+ Yoo = 0. (315)

Note that the equation is elliptic or hyperbolic accordirgkdo) is
positive or negative, i.e., asis positive or negative. Note also that the
characteristics of{3.15) are given by

0=+« f v—K(o)do + constant (3.16)
(0]

The Legendre Transformation: In solving perturbation problems,
it will be convenient to use the Legendre transformationclvhive in-
troduce now. Recall equations(3.1a) ahdl(3.9). If we regaydas
functions ofu, v the equations reduce to

Xv_yu = O (3.17)

(S — W)y + UMXy + Yu) + (¢ = VP)x, = 0.
By 1), there is a functiog(u, v), Legendre transformatigrsatisfy-
ing
X=Xus Y = Xv-
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The relation between the potentiabndy is then given by
¢ =XUu+yv—y

as is easily seen. Similarly, we can introdudesgendre transformation
¥ such that the stream functigncan be written as

Y = —pXV+pyu-— .

It is clear that we can consider bgghy as functions ofj, 6. 105
Combining the definitions gof, y with 3.8), we find that

dy = xdu+ ydv= x(cosfdq— gsinodd) + y(— sinddqg — qcosedo),

dy = yd(pu) — xd(pv) = y(cose (’0(?) dqg - siné - pqdo)
(pq)

— X(- sind——dq — cosbpq d).

From which it follows that

- (d(”“) Y xa= (00 o

We set
d(eq)

dé =dg/pqg and K = pg—r- dq
and the equations become
RX@ = _/%6'7 X& :)?97

whereK, & are not the same 46 ando but have the same basic prop-
erties.
Furthermore, A
Kxeo + x56 = 0. (3.18)

We shall use this equation later in connection with pertiiobaprob-
lems.

See Berd[[2] for more details on these equations and for eamil
on subsonic and transonic theory.
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3.6 Small Disturbalce equation
Von Karman’s model nonlinear mixed equation 106

PxPxx + dyy = 0, (3.19)

elliptic for ¢y > 0, hyperbolic forg, < 0, can be derived froni{3.8) by
expanding? about ‘0’ andq about the sonic value,. From

pde + V=1dy = pge V-Ydz
we have withp = CoX — ¢, ¥ = poCoY + ¥,
(0o +p = po) (CodX — d@) + i(poCody + i)
1d%(pq)

:(poqo+§W|o(q-co)2+...) (1-i0+..)dz

so that from the highest order terms
—pods + idy = [A(d - o) — poGoif]dz— B(q — Co)dx

where 1
A= §d2<pq)/olq2 lo and B=dp/dds - Co.

Here, we have used
d(pq)/dgo =0 and do = Co.
Thus
Podx = B(q - Co) — A(q — Co)?
YUx = —poQot
—PoPy = PolUol
Yy = A - Co)>.

The small disturbance equations are obtained by elimigatirg and
thus

02 = pg?B?Ayy, to first order ingy o« (g - ¢o)?,
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Pody = Yx.

But A < 0 so that after rescaling(— x andy — (—3p5B?A™1)~1/2y)
we obtain

1 _ _
¢3 = (—Spo B2 A HYY2(=205 MYy,
1 I
pol=5p5 BPA ) 20y = .

These equations in turn yield (3119).
On the other hand, by expanding the hodograph equations tamob

0o =~y
bo = Yo

3.7 Transonic flow

We limit our discussion to a few problems centered aroundstraic
wing flow.

The first question is whether we can find a wing shape which at a
prescribed subsonic speed at infinity has a smooth flow. EHrpetal
observation suggested in the forties that perhaps sucladystiew did
not exist as the speed came close to sonic at infinity andiyosaper-
sonic in a region next to wing. However, Lighthil[[25] shosvbow to
construct such a wing shape. But this wing was not consulymiesibly 108
because the prevailing sense was that in any case it woulddiahle.
Frankl’ and Guderley/[110]/116], proposed that the exptenmafor the
instability lay in the fact that the boundary value problemsvill-posed
in the sense of Hadamard if the flow was required to be smodtiis T
we proved by the author [29].

The implication was that in general flows with transonic oegi
would have shocks, not detached as in supersonic flow bubgviis
the supersonic region or cutting iffo This is in fact the case and the
shocks have a strongdfect on the drag. However, thiffect is much less
than the drag produced at supersonic speeds by the datdawd sSo
that it has proved very useful to use such wings[In [33], Niand has
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designed an algorithm for finding, not a transonic wing, bstreooth
transonic cross-sections.

In the following sections, we shall discuss the relevantrioiauy
value problems and the related general theory of mixed emsatThen
we shall describe the design of aerofoil shapes develop&hbgbedian
et al., and the method introduced by Murman and Cole for fondie
flows at df design Mach numbers.

3.8 General theory of boundary value problems for
mixed equations

The mixed equations were first investigated by Tricomi, 8€#, for the
eguation that bears his name and is the hodograph equatitrefsmall
disturbance equation:

Yo + Yoo =0, (320)

109 seetheendof 7.
A sample theorem on a boundary value problem which illussrat
that the standard Dirichlet problem would be over deterchise

o

\

63

9
> ()
\
\
\
& G2 '\
Characteristics

Fig. 3.5. TRICOMI PROBLEM

Theorem. Suppose satisfies[[(3.20), whergis prescribed on the curve
Cz and the characteristic & Let D be the region enclosed by the curves
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C3,C1 and G (C, is also a characteristic). Suppose the argi€ star-
likel] with respect to the origin:

6do — odfd > 0.

Under these conditions, the solution is unique §gt, ¥y continuous
throughout the closure of D (See Garabedianl [13]).

It is reasonable to expect such a theorem. Consider thaistifiler
mixed equation (Lavrente'v, Bitsadze [22]).

(Sgno')lﬁee +¢oe =0 (321)

and the same boundary data. HEseandC, are the straight character-
istics. LetF be the value ofy ono = 0. ThenG = dy/do|o = 0 found 110
by solving an elliptic problem is a linear functional Bf in o = 0.
On the other hand solving the wave equation,dot 0, one finds that
the data orC, alone determine another linear relation betwé&eand
G. It is reasonable to expect that one can elimiratand solve for-
uniguely. Theny is easily seen to be unique.

There are a variety of methods for proving the theorem andl als
establishing the existence of the solution. The method vaé ske is
by an estimate. Without loss of generality, we can considembnho-
mogeneous equation with homogeneous boundary data. Wierd¢hne
eguation as a system by setting

w = (w,w2)' With w1 = s, w2 =¥

and thus
Au)g + Ba)g =f
(3.22)
w1dd + wrdoc=0 on C,+Cjs
where
o 0 0 1
a=(g %)e-(2 ) 629

1This condition means, as a point moves al@gnthe counterclockwise direction
the angle which it makes theaxis is increasing.
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which is a symmetric system.

We seek a matri with a certain property: Take the ‘scalar product’
of 322) withC, where AC and BC are symmetric. Integrate by parts
over the domairD. Apply the boundary condition. Choo$&so that
the boundary and area integrals are positive definite. [Rethat area
integral byQ(w, w). Then

Qw,w) (f,Cuw),
where () is defined for any two column vector functions
f=(f.f)\ 9= (0.9
by
(1.9 = [[(hor+ fag)x oy
D

Thus if f = 0 thenw = 0 which proves uniqueness.
We now proceed to fin€. If

C= (C11 C12)
Co1 C22
we find
1 1
(Cw, Awg) = (ACw, wg) = E(ACCU, w) - 5((AC)960, w),
providedAC is symmetric, i.e.¢gC12» = —Cp1, and
1 1
(Cw, Bw,) = E(BCw, W)o — 5((BC))<Tw, w),

providedBC is symmetric, i.ec;1 = Cpo. Hence the boundary term is,
by Green'’s theorem,

% f wio(bdo + ) + 2wiwa(ocdo — bdd) — w3(bdor — cdh).

Herecy1 = ¢» = bandc;o = c.
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The contribution to this term fror@, + C3z wherey = 0 and we may
write
w1 = ado, wy = —adl (3.25)

% f a?(bdo — cdd) (odo? + d6?).
C2+C3

And the integral on the characteristl wheredd + v—odo = 0is

_% f{( Voowi — )2 (b + c V=) dor.

Cy
Hence to fulfil the required positivit must satisfy:
(AC)q + (BC),- is a negative definite matrix
bdor—-cdd >0 on C,+Cs
(b+cvV-0)do<0 on Cj.
We then find the explicit requirements,
by —(0¢)y <0
-bp+c, =0 (3.26)
(oG + by)? < (0bg — (00)r)(—bg + C5)
in D and the boundary conditions

(bdo- — cd) (cdo? +de?) <0 on C,+Cs
(b— Vv=0€) =20 on C

The choiceb = 4, ¢ = o for o > 0, c = 0 for o £ 0 satisfies these
requirements. This completes the uniqueness theorem. tNatehe
requirements would also be fulfilled@, was not characteristic but sat-
isfied onlyocdo? + d#? > 0 and that the star-shaped condition©pn 113
could be freed up by changirgandc.

A weak solutionw € H, of (3.22) and[(3.25) satisfies

—(Lv,w) = (v, f)
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for all smooth vectors such that
vi=0 on Cy+GCj3
and, since the matriR + v—o B is singular, such that
Vo —ViV=0c=0 on Cy,

whereL = A 0/96 + Bd/do andH, is defined below.

This is the adjoint problem. To use the projection theorewoitild
sufice to find a Hilbert space for whicl,(f) would be a bounded linear
functional of Lv for v satisfying boundary conditions. Bu,(f) is a
bounded linear functional i in some weighted_?-space and in its
corresponding space. So, we have to find an appropriate spatech
vis bounded in terms dfv if

vi=0 on Ci+Cyr+ C3. (3.27)

We proceed to the detalils.
Let H, be the Hilbert space of all pairs of measurable functioas
(uz, up) for which the norm

ull? = ff(ru% + U3)dd dor
D

is finite; the inner product is given by

(uv), = f f (ruyvi + Upv)dé do,
D

wherer? = 62 + o2
LetV be the set of all function = (w1, w») with continuous deriva-
tives and such that

w=(0,0) at r=0,
wi=0 on Ci+Cy+Cg,
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and

1
ff(;('—w)i + (Lw)3)dd dor < o
D
Let H* denote the Hilbert space of all measurable functioas(uy, u,)

for which L
ol = { f f Cig + B0 dorp?
D

is finite; the inner product is

(u,v)* = f f (%ulvl + UV2)d6O do-.
D

Note thatLV c H*. We now state the following.

Theorem . There exists a weak solution §f(3.22) abhd (B.25) for every
feH"

To prove the theorem we require the following lemma whichbeil
proved later.

Lemma.ForallveV, f e H*
(v, ) < BIILVI| = I fII,

where B is a constant.

Proof of the Theorem; Forv € V define 115
G(Lv) = (v, f).

By the lemmaG is bounded oLV c H*. Thus by Hahn-Banach the-
oremG can be extended td* as a bounded linear functional. Thus by
classical Riesz’'s representation theorem there is B* such that

(Lv,t) = (v, f) forall veV.

The functionw defined byw, = —t1/Q, w, = —to will belong toH. and
satisfies-(Lv, w) = (v, f). Thusw is the required weak solution and this
completes the proof.



116

100 3. Two dimensional steady flow

Proof of the Lemma: By Schwarz’s inequality, we obtain
(v, D) < VLI
Thus the proof will be complete if we prove the a-priori esttm
IVl < BIILV[",

whereB is a constant.
We proceed to do this, Set

v=CV. (3.28)
Again consider
(Lv, V) = (A + Bv,, V) = (A(CV)g + B(CV),, V).

Again by rearranging terms properly, we can integrate bysparhe
boundary condition{317) becomb®; + cV, = 0. Set

(LV,\7) = |1+ |2,

wherel; is area integral antb is surface integral. It is easy to see that
if (B:28) is satisfied them, is positive definite; alsd, is non-negative.
Thus

|(LV’ \7)| 2 Il-

On the other hand, for any> 0,
- 2 1
I(Lv, V)] < AJILvi[® + ZIIVII*

and hence
%2 1 2
l1 £ ALV + ZIIVII*, A1>0.

Thus if |[V]. can be estimated in terms of then by choosingt suf-

ficiently large, we can estimat|], in terms of||Lv||*. For the same
choice ofb andc one can estimat¥l|. in terms ofl,. This estimate is
obtained by the same method as was used in the uniquenessntheo
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Once the existence of the weak solution has been estahlished
proceeds to determine whether it has in fact some betteegiep but
we shall not do that here except to say that since the smastiprep-
erties are local, elliptic methodsféige in elliptic regions, hyperbolic in
hyperbolic regions, and that the solution is a strong soiutverywhere.

For general description, see Moraweiz[30]. See also O8héf¢r
a different approach.

3.9 The boundary value problems of transonic wing
flow

The two most important boundary value problems for trarcseving
flow are for the nonlinear solution and for the linearized fivout it.

In the physical plane, the flow potentiakatisfies[(3.110), the bound417
ary conditiond¢/dn = 0 on the wing and at infinity¥¢ is prescribed.
We know from incompressible flow that we need, for a well-piseb-
lem, the additional condition (the Kutta-Joukowski cormmti) that the
circulation at infinity adjusts itself so that the flow past engvwith a
cusp at the trailing edge has finite velocity. For comprésdibws by
Bernoulli's law, no infinite velocity is possible any way atie circula-
tion adjustment is chosen to prevent.

It is not unreasonable to anticipate that the problem is dnter-
mined on the basis of the boundary value problems discussdidre
There are two possibilities: Shocks in general and spegiabsh solu-
tions.

The problem with shocks for a general aerofoil has only baeki¢d
numerically. There is some indication that its perturbatpoblem is
well-posed, see Morawetz [27]. ]

There exist numerical codes (“analysis” codes) for solvthg
boundary value problem using artificial viscosity or penaitethods.
The original viscosity method of Murman and Cdlel[32] is désed in
§ 12. It's basic ideas have been incorporated and consigenadudiified
by Jameson 18] and can now be used on three dimensionalepnsbl
Bristeu et al.[[4] has used finite elements and a penalty rdetho



118

102 3. Two dimensional steady flow

The lag of the theory behind numerical experiment is notisuny
especially when one realizes how limited the theory is witspect to
one dimensional flow.

In the case of no shocks, the problem can be looked at in the-hod
graph plane. under the hodograph transformation,§segthe prob-
lem transforms into a free boundary value prolﬂemonsider the sym-
metric wing section which has a singly curved image in thedgoaph
plane. The equation, say fer, (3I3), is linear. There is a prescribed
singularity at the image point of the point at infinity. Theupolary con-
dition ¢ = 0 is imposed on the axis= 0 and the unknown image of the
wing, see Fig. 3.6. But there is a second boundary conditeratse
the flow angled is a prescribed function of the arc length on the wing.
Using [3:8), this yields, on the free boundary,

do = q(o)e V"L dX(0) + V=1dY(H)),

wherex = X(0), y = Y(6) describe the wing. This is only one condition
since tar® = dY/dX. Then using

d¢ = ¢ ,d0 — Kyrydo
we have the extra condition a@n
—,-do + Kyrgdo = (o).

Solutions for special shapes known siger-critical airfoils cor-
responding to smooth flow pasta wing can be found. One sohes t
boundary value problem without the last condition (3.3ljpgsome
smooth boundary and a well posed problem. But we know f§@hthat
we cannot expect to solve the problem with full Dirichlet diions.
Instead use the following procedure:

2This approach has been explored by Brezis and StampaEifita fgibsonic flows
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%
% 4

Fig. 3.6.

119
Solve the boundary value problem:

K¢99+¢(m=0 in D
Yy=0 on C1+Cr+C3+Cy+Cs,

with prescribed singularity at (0-.,). HereC; + C, andC3 + C4 are
smooth arcs satisfying

odo? + de? = 0,

andCs is a slit ono-axis s.t.oe £ 0 < 00 0nCs.

The rest of the boundary dd consists of two characteristids.
andI', issuing from the origin untilC,, C3 are intersected. It can be
shown by the methods of the preceding section that this isllapesed
problem. The singularity at (0-.,) is a bit messy (see Gilbarg_]14];
but for our purposes it stices to treat it like the incompressible flow
singularity which would require taking(o-.,) = 1 and

Yo — V=1p, — Al + V=10)%2 = 0(1p + V-10*?) (3.32)

whereA is related to the prescribed speed of the wing). 120



121

104 3. Two dimensional steady flow

We now have part of a flow and part of a supercritical wing image
(C1+Co+C3+Cy) in the hodograph plane. To choose the wing, we con-
tinue the solutiony across the characteristic gdp, andTI'_, by solving
the appropriate Goursat problem. It is not unreasonablepeat that
there will be curve joiningC, to C3 on whichy = 0 especially if the
hyperbolic region is small. At this stage we have solved taolgraph
problem. The next stage is to find the physical image udigg).(3A
short calculation shows that this will fail € (c")y3 +y2 changes sign (a
limiting line occurs wheré (o")y? + y2 = 0). But again for sfiiciently
small hyperbolic regions this does not happen and we do irfifzat a
physical flow.

In the next section, we describe the method used by Garabewlia
generate smooth flows. Fung et al.1[12] has used the idea dfdfidst
a purely subsonic flow with a sonic line separating two sulzs@yions
adjusting the equation of state and then continuing the flom fthe
sonic line into the smaller region using the right equatidistate and
finding a new profile.

There are other possibilities for generating superctitidgag sec-
tions all involving some form of unique continuation.

Having constructed a smooth flow and a wing section, one way or
another, one asks what happens to this flow when it is a diedushy
by changing its tilt (angle of attack) or by changing its spaeinfinity
(Mach number). The evidence both numerical and experirhenthat
a shock develops at the rear sonic point on the wing profilecieases
the drag (and hence the fuel consumption). Theoreticablyettare no
results on the nature of this shock flow.

3.10 Perturbation boundary value problem

It would be useful to know what flows close to supercriticah¢®th
transonic) flows look like. First one looks at the generakyn&ation
problem assuming that the nearby flow is smooth. This leadsctin-
tradiction. Then one asks what actually happens.

First, the perturbation equation has to be determined. Tieetd
method from equation$(3.9) is tedious. Instead, for theebdge po-
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tential
X(U,V) = XU+ yv—g¢(Xy)
we see that the perturbation Legendre potewjiedatisfies

Ox = OX.U+ 0Y.V — ¢x0X — dydy — 66

in terms of a perturbation potenti&p and the perturbationsx, y. But
¢x = uandgy = vso thatoy = —d¢ to first order. Thus, in the hodograph
variablesf, ¢ of the undisturbed flowsincedy satisfies[(3.118) so does
6¢. Thus

R (68)e + (6¢)55 = O. (3.33)
On the perturbed boundary given by 122

y=Y(X)+Y(X)

we find o6 p
%(X,Y + 5Y) + %(5(?) = O,

or to first order 5 5

At infinity, if there is a change in Mach number at infinity, thds a
prescribed singularity of order/3 as in the unperturbed case; 4€€(3.32).

If we restrict ourselves to solutions with continuous datiies (no
shocks) then one finds by using the methods of the first seofitinis
chapter, that the problem is ill-possed if we fix the Mach naménd
change the profile, i.esY # 0. For the symmetric profile see Morawetz
[28], for the non-symmetric case CodK [5]. Very partial fesexist if
we change Mach number, Moraweiz|[29, 111].

The simplest proof amounts to showing that the solution iguety
determined up to a one parameter family by the prescribealalaside
a “characteristic gap”, i.e., by data @1 + C, + C3 + C4, see Fig. 3.6,
sinceo” = (o). Therefore the functio@Y(x) cannot be arbitrary in
the gap sincé¢ is determined by unique continuation frdm, I'_. A
more elaborate proof shows th&(x) = 0 in the gap ifsY = 0 on
Cl+Cz+Cg+C4+C5.
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The next question is how to find a well-posed perturbatiorblerm 123
that represents a disturbance with shocks. The answer gyolies in
finding a suitable singular perturbation for the case wherthe whole
boundary the value ofY is given arbitrarily. This might be accom-
plished by admitting singularities into the perturbaticlocities at the
places where shocks are expected, i.e., the points whemotiie line
hits the profile. Thus the perturbation flow velocities wobk&la small
variation on the unperturbed flow velocities but not righttat sonic
points on the boundary. Se€e[31] where such a singular Détigitob-
lem is solved.

3.11 Design by the method of complex characteris-
tics

The method of complex characteristics has been introdundduaed
successfully by Bauer et &fl[1], in the computation of flowd @no-
files. It began with the computation of flows with Mach numbexager
than one at infinity where the object was to determine themubdglow
behind an analytical shock, séet. Its full strength came in the com-
putation of supercritical airfoils, i.e., transonic bubsk free with some
Mach number less than one at infinity. We sketch here the iptas
involved in one of the early computations.

We are given a velocity at infinity for a flow. The object is todfian
airfoil and a smooth flow past it with this velocity at infinignd with
somewhat indefinitely specified characteristics:

124 (i) alarge supersonic region,

(ii) alarge decrease in the pressure (a large increases wethcity)
to control boundary layer separation on the forward end, and

(iif) asubsonic cusped trailing edge with the streamlimafthe upper
surface meeting the one from the lower surface smoothly.

In the most recent work the object has been to specify thaedspee
a function of arc length along the airfoil but we will not dabe this.
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We write the equations of motiof(8.3) ahd {3.9) as

SU,+TUy =0,
where
u c2-—u? —uv —uv -\
u_(v)s_( 5 1) and T_(_l 5 )

and put this system in characteristic form formally. Thislgs the char-
acteristic equations

+A =0, Us—A_Ve=0,
Yo+ ie%e e =AY (3.35)
Yy +4-%,=0, u,—-a,v, =0,

where

UV C+/0f — 2

= —g5 2

Thus in the subsonic region whegé < ¢ the characteristics are com-
plex. Note that, r are functions ofy, v.

Claim. &, n may be chosen so that in the real plane the solution is reas

Proof. Letw = u— V-1v, w* = u+ V-1v. Suppos& = &(w, w*) and
write

i (w, w") = 11(w, 0*) + V=L(w, ")
A(w, w*) = 11(w, W) — ‘/—_1/12(60, w"),

with 17 = uv/(c® - u?), 1> = c/q2 — c2, Re@® - ¢?) > 0. If u,vare real,
thenA4, A, are real and

A (w, ") = 1_(w*, )
where a bar above denotes the complex conjugate. Hence

Uz (w, 0*) = A_(w, W )Ve(w, w")
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and changing values of the variahle—» w*, w* — © and because
andv are real, we obtain

Us(w, w*) = A (w, w*) Ve(w, w*)

or
Ur(w, 0") = (0, 0" )Vg(w, w").

This showsy = g_is a possible characteristic variable in the subsonic
region. m|

A simple example: Consider the Cauchy Riemann equations

uX+Vy:0,

Hered, = + V-1 and therefore

Ve + V=1x: =0, Us— V-1v; =0,
yy— V=1x,=0, u,+ V-1v, = 0.

So,w = u— V-1v, w = u+ V—1v are characteristic co-ordinates.

Note. Various problems could be solved in some limited region ghor
ample, a Cauchy or Goursat problem. Now consider the alligat
gion. Therel. are complex but the system remains valid. We consider
X,¥,Uu,v as complex quantities. Note that = u® + v andc?(q) is an
analytic function ofg. Of course, we look for solutions which are real
forrealx,y.

Remarks. (1) Since the solution is analytic and independent of the
path the number of actually used real variables can be redoce
three

(2) A. are analytic in some slit domain because of the singularitie
atq+c = 0. This surfaceg + ¢ = 0 forms a two dimensional
manifold in four dimensional space(w").
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We examine a dierence scheme for a Goursat problem and first
consider the real case. Thefdrence scheme is given by

p(P) - p(Q) + 2. (Q)(q(P) — a(Q)) =0,
p(P) - p(R) + 1-(R)(q(P) - q(R)) = 0,

where we use, q as variables. We want to solve fp(P) andq(P), see 127
Fig. 3.7.

Fig. 3.7.

Here the data is prescribed ér= 0,7 = 0 (For the Goursat problem
see Garabedian [113] pp 118-119). We can solvep{®), q(Q) provided
A, # A_ or equivalentlyg? # c2.

In the complex case, the same argument holds, but note that we
should takeA¢ = An in the elliptic region. How do we guarantee that
we have a real solutior y for realu, v? Note that the equations fary
are linear and they have real ¢heients ifu,v are real. Hence Rg)
and Rey) are solutions and these are real.

In practice, it has proved better to prescribe

X(&,m0) = £(£) + 9(0)
X(§o,m) = 9(n) + f(o)s

and to get real solutions in the real plane by choodig = @
The following problems arise:

(i) How to choosef so that a stagnation point appears before a sin-
gularity?
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128 (i) How to choosef so that the streamlines of the profile join smooth-
ly at a trailing edge?

One usually chooses as a trifilg the corresponding data for the
Cauchy-Riemann equations and then adjust.

Remark. Existence up to a singular point follows by a Cauchy-Kowa-
lewski type of argument for a Goursat problem.

3.12 Numerical solution with shocks: GF design
computations

We now consider the problem of computing flows for supeaitair-
foils at of design, e.qg., with dierent velocities at infinity than specified.
This problem was open for a number of years and the first noaleso-
lution of a nonlinear mixed equation with shock was given byrMan
and Cole[[32]. We treat a similar case. Consider the smallidiance

equation, [[3.79),

Ox Pxx + dyy = 0

which is elliptic forgyx > 0, hyperbolic forg, < 0. Suppose we have the
following data on the boundary of the region (see Figure:3.8)

() ¢y(%,0) € C3
(ii) dy(x.b) =0 (3.36)
(iif) #x(0,y) and ¢x(ay) are given

The values oy on the shaded segment corresponds to a given shape of
airfoil y = Y(X) in the small disturbance approximation.
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¢, given ¢z given

Y

o 11111111

¢y € CF°
Fig. 3.8.
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Remark. Even for this boundary value problem, there is still no exis-
tence theorem establishing a weak solution.

Let Uij represent an approximation ferat the mesh poik = iAX,
y = jAy. The form of diference scheme proposed for the elliptic region
is:

1 U, -ul, ul-ul, 1 j+1 i -1
E([(T) - (T) 1+ W[Ui -2U; +U; ]1=0,
(3.37)
a second order accurate scheme. Note that in this forms fifezetice
analogue o@ﬁ $2dy — ¢ydx = 0. This is in so called conservation form.

In the hyperbolic region weetard the x-differences and use

1 U-j _ U-j_ U-j_ _ U-j_ 1
ZAX[( i ~ i 1)2_( i lAX i 2)2] + n >
(ay)

1 o] i1y _
Ut -2ul +ull1=0
(3.38)
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This is accurate to second order for some equation of the form

26+ dyy = (0D (3:39)

wheree = 0 for ¢« > 0. The scheme thus introducasicicial dissipa-
tion but only in the supersonic region, cf. ChaptégI5 and 7.

Exercise.Investigate the one dimensional form Bf(3.39) and see how
the solution depends on the parameter.

The object is to prescribe appropriate boundary conditiosiag
@38) and then to solvé(3137) arld (3.38) td)lk For this a particular
relaxation method is used which we will interpret as a timpeselent
problem on the original equation. Consider

bxt = Pxdxx + dyys

with the same boundary conditions. Then solve numericallgiffer-
encing the following:

But = Pxdxx I NALS TS (N+ DAL (3.40)
b=y N (N+ DALt (N+ AL (3.41)

HereAt is small. Define

¢*—{ ¢ in nAt<t<(n+ 1At (3.42)

"1 ¢ in (n+DAt<t<(n+2At

This is an alternating direction scheme and it turns outifltae quan-
tities are smooththis alternate direction scheme implies

" —> ¢ as At— 0.

However, we do hot expect a smooth solution; a shock occuracioss
this shockgy increases in accordance with the entropy condition if the
difference have been retarded in the direction and if the shock can
be described by = X(y). Furthermore one belives thatapproaches a
steady state @s— oo and this steady state is the desired solution.
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If we now difference the alternating direction time dependent
scheme in time and space we get a particular relaxation sefarfind-
ing U/

Alternative schemes have been suggested by Engquist, (8her
who show in fact that there exists a solution for theifetience scheme.
The main ideas of this method have been used by JamEsbn [@8] an
others to solve the full equations and in recent work the otettas been
applied to three dimensional flows where the computirtficdilties are
very great.

3.13 Nozzle flow

Another transition flow from subsonic to supersonic occara hozzle
but with much more stable behaviour.

The simplest example is a Meyer flow (see Bérs [2]) where tlsere
an elegant exact solution. From(3.8) one finds the equat@rs 6 as
functions of¢,  and one finds neay = c that

Sw = 9¢, S Sf’ = 9¢,
wheresS is related tar. For everyA,

2
S:A¢+A7¢/2
3
9=A2¢¢/+%¢/3

is a solution. The flow in the, ¢ plane has, of course, as streamlinas2
the horizontalgy = constant. Thus the wall of the corresponding flow
in ¢,y plane consists of two straight lines.

The sonic line is a parabola and the characteristics tareg)? =

4 : .
§o-3 and there are four of them passing through- 0, v = 0 given
by ¢ = i%g{/z. Hence the mapping into the hodograph plane is not

. . 4 ..
one-to-one but there is a fold and the regi8n< 50-3 is coveredthree
times.
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To design a general nozzle with prescribed speed at infinigy,
therefore solve

Klﬁ(%f + wrro— =0

in the hodograph plane, 8. Specify the singularity at., by analogue
with incompressible flow (see the Figure 3.9). Leave out e made
by the characteristics through the origin.

=0 v=M

x > ()
\’ PN /
//\<\

Characteristics
Fig. 3.9.

133 Next continue the flow across the characteristics to get tyerk
ending on the characteristics. Continue the flow on the ikt into
the whole quadrant bounded by four characteristics.
To continue the flow, one uses hyperbolic methods. The flow can
be terminated by a shock and the outgoing flow from the nozildes
subsonic.
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