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PREFACE.

Since the time of Newton and the BernouUis, problems have

been solved by methods to which the general name of the Calculus

of Variations has been applied. These methods were generalized

and systematized by Euler, Lagrange, Legendre and their fol-

lowers; but numerous difficulties arose. Some of these were re-

moved by Jacobi and his contemporaries. Still many of the

methods had to be extended and it was necessary to supply much

that was deficient and to make clear what remained obscure. The

progress of Analysis is indebted to the genius of Weierstrass for

the perfection of this theory.

While a student in the University of Berlin it was my privil-

ege to hear the lectures of Professor H. A. Schwarz on the Cal-

culus of Variations. In its presentation this eminent mathema-

tician followed his great teacher, Weierstrass, who had established

the theory on a firm foundation, free from objection, simple and

at the same time more comprehensive than it had been hitherto.

I also took the opportunity to study Weierstrass's lectures, of

which there were copies in the Mathematischer Verein.

Through the courtesy of Professor Ormond Stone abstracts

of this theory were published in Volumes IX, X, XI and XII of the

Annals of Mathematics^ and from time to time the Calculus of

Variations has been included in my University lecture courses.

I have delayed the publication of these lectures with the hope

that Weierstrass's lectures would be published by the commission
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to which has been intrusted the editing of his complete works.

This publication, however, seems remote, and commentaries on

the Calculus of Variations are becoming so numerous that I have

deemed it expedient to bring out my work at the present time.

As one would naturally expect, I have followed Weierstrass's

treatment of the subject; in many places, especially in the latter

part of the book, my lectures are little more than a repetition of

his. It is from the Weierstrassian standpoint that I have devel-

oped mv own ideas and have presented those derived from other

writers. Thus, instead of giving separate accounts of Legendre's

and Jacobi's works introductory to the general treatment, I have

produced their discoveries in the proper places in the text, and I

believe that by this means confusion has been avoided which

otherwise might be experienced by students who are reading the

subject for the first time. I hope that this exposition of the

fundamental principles may prove attractive. The reader will

then naturally desire a more extensive knowledge regarding the

literature and the various improvements that have been made by

successive mathematicians. He will wish to follow the methods

which they have employed^ and will seek further information re-

garding the historical development. References are given on

Pages 18 and 19 of the text from which the original sources are

easily obtained.

The necessary and suflBcient conditions as they arise for the

existence of a maximum or a minimum are illustrated by six

problems, which are worked out step by step in the theory. They

have been chosen to represent the different phases of the subject,

the exceptional cases which may occur, the discontinuous solu-

tions, etc. For example, in the first problem it is found that a

minimum may be offered by an irregular curve, whereas seemingly
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the problem is satisfied by a regular curve, the catenary. Atten-

tion is thereby called to the fact that although our integrals have

a meaning only when taken over regular curves, we have to guard

against discontinuous solutions, and consequently further condi-

tions for the existence of a maximum or a minimum must be

derived. The case of the discontinuous solution is considered in

this problem as also when the limits of integration are two con-

jugate points. Newton's problem is introduced to show that one

of the necessary conditions is not satisfied and that there is no

curve which fulfills the given requirements.

By the formulation of such problems in Chapter I we come

readily to the statement of the general problem of the Calculus

of Variations.

In the general discussion attention has been confined for the

most part to the realm of two variables, and in this realm only

the first derivatives of the variables have been admitted. Gener-

alizations and extensions are suggested which, as a rule, may be

executed with little difficulty.

The second part of the work beginning with Chapter XIII

treats of the theory of Relative Maxima and Minima, where the

isoperimetrical problems are considered. Here also the existence

of a field about the curve which is to maximize or minimize a

given integral is emphasized and the necessary and sufficient con-

ditions are derived and proved in a manner similar to that by

which the analogous conditions are found in the first part of

the work.

My wish in these lectures has been to give a connected and

simple treatment of what may be called the Weierstrassian

Theory of the Calculus of Variations. Many instructive theo-
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rems of older writers have been omitted. I regret too that there

has not been room to take up some of the investigations which

have recently appeared. It is seldom that the first edition of a

book is the final form in which an author wishes to leave his

work. As I expect to make additions and alterations in my

University lectures from time to time, I shall receive with pleas-

ure any suggestions that ma}' be offered.

In conclusion, I vrish to take the opportunity here of return-

ing my sincere thanks to the Board of Directors of the University

of Cincinnati for their liberality in the publication of this work.

My thanks are also due to Mr. Harold P. Murray, Manager

of the University Press, for his careful supervision of the printing.

Harris Hancock.
Auburn Hotei,,

Ctncinnati, O.

ApeilIS, 1904.
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CHAPTER I.

PRESENTATION OF THE PRINCIPAL PROBLEMS OF THE
CALCULUS OF VARIATIONS.

1. At the time when the DiflFerential Calculus, and in part

also the Integral Calculus, were being formulated, certain prob-

lems were proposed, which, although not belonging to the province

of the Theory of Maxima and Minima, had a marked semblance to

the problems of that theor)', and were often solvable by methods
belonging to it. The following was one of the first problems pro-

posed:

Problem I. Two points P^ and P-^ with coordinates {^x^^, y^)

and {xi,yi) respectively are given. Both points lie on the same
side of the axis of X in the plane-xy. It is required to join

Pt^and Pi by a curve which lies in the upper halfof the xy-plane

{axis ofX inclusive) such thatwhen theplane is turned through

one complete revolution about the axis of X, the zone generated

by this curve may have the smallest possible surface-area.

We may use this problem to illustrate the connection be-

tween the Calculus of Variations and the Theory of Maxima
and Minima; at the same time the difference between the two

theories is evident.

2. If we try to solve the problem of the preceding article by

the methods of the Theory of Maxima and Minima, we must pro-

ceed as follows:

Suppose that it is possible to draw a curve between P^ and P^

which satisfies the problem. Then every portion of this curve,

however small, must have the property of generating a surface of

smallest area. For, suppose a change is made in an arbitrary por-

tion of the curve, however small, and let the remaining portion of

the curve be unchanged. If by this change the surface-area gen-

erated by this arbitrary portion of curve is less than it was before,
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then the curve containing the deformed portion of curve generates

a smaller surface-area than the original curve. Also, if to one

value of X there belong several values of y, then^ instead of the

portion of curve belonging to the same

abscissa, we might take the straight

line vt^hich joins these two points. This

line would generate a surface of smaller

area than that generated by the curve

that passes through the same two

points. Hence the curve would gener-

ate a surface which did not have a min-

imum area. We may therefore consider

the curve as divided into portions such

that the projections of these portions on the axis of J^sTare all equal.

The above hypotheses being granted, we suppose that thea.

two points P' (x', y ) and P" (x", y")

are taken on the curve, and we find

another point P {x^ y) on the curve

such that x—x'=x"—x—l^x. We
suppose that P and P', P and P" are

joined together by straight lines, and

_^ later we suppose that these straight

lines are taken so close together that

there is a transition from the straight lines to the curve. The re-

maining portions of curve on the left-hand side of P' and on the

right-hand side of P" are supposed to remain unaltered.

The portions of surface-area generated by the straight lines

/''/^and PP" are

O

My'-^y) V ( [SxY^{y-yJ SindTiy+y") v' {tsx^ +(y"-yy.

In order to have a minimum the sum of these two expressions

when differentiated with regard to y must be zero ; i. e.,

n V ( b^xy- + iy-y' )^ -f 771/ ( tsxj + ^y'-yY
-njy' ^y) (y-y') __ ^ {y +y") ( /'- y) _^ r^-j

^{l^xy+{y-y'y v' (l^xy^{y"-yy

The quantity r may be determined from this equation as a func-
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tion of X, so that y^/{x\ say. We therefore have jv'=/ {x— l^x)

and y"= /{x-{- l^x). Hence by Taylor's Theorem,

y =/(x- l^x)=/{x)-/'{x) isx + K/" i.x) ( ISxY- ,

y"= /{x+ iSx) =/{x)+/'{x) rj^x + y^f" {x) ( l^xf^ ;

and consequently,

V ^y'^f\x) l^X-%/" {X) {l\xy+ ,

y'-y=/\x) t^x^y^f" (x) (/^xy+

Substituting these values in [^], we have, neglecting the factor ir.

/sxr l+fixf-/' (x)/" (x) /^x+

+ /^x^ 1+/' {xy+/'{x)/" (x)lSx +....

+ [2/(^)-r {^)^^ -:-K/' (x)isx-y/" (x)/^x^... .]

l^xV \J^f'{xf-f' {x)f" (x) A;c + . . . .

^

[2/(x)+/'(x) /\x + .. ..][/-(;>;) A;.+ y/"(x)i^x+ . . . j ^ ^
A X V l + f'{xy^/' (x)/" (x) ^x+....

Expand this expression in ascending powers of A a;, divide through

by A ;t; and then make iSx =o. We then have

or

l^rf (xy-f{x)f"ix)= o;

Therefore in order to have a minimum value,/ (;»;) or jy must sat-

isfy this differential equation; however, when jv satisfies this differ-

ential eqation we do not always have a minimum, as will be shown

later.

In other words, the differential equation {B'] is a necessary

consequence of the supposed existence of a minimal surface of rev-

olution. As a condition, however, it is not sufficient to assure the

existence of a curve giving such a surface.

Differentiate the equation [B] with regard to x, and we have
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dy d}y ^ (Py

dx ' dx^ dx^
or

dx dxix \dxy

Integrating, we have

d^y

d^

id^y
^ dx"

cwhere c^ is the constant of integration. Since y—e ^ and y^e
are two solutions of this last differential equation, the general

solution is

.1- X

y=Ci e'^ -^ Cjg ^
,

where c, and c-^ are constants. This last equation is that of the

catenary curve.

4. Thus, by the help of the Theory of Maxima and Minima,

we have, it is true, come to a certain result; but, on the other

hand, we have yet to ask whether this curve gives a true minimum;

and owing to the manner in which we have arrived at these con-

clusions, we have yet to see whether this curve only in a definite

portion or throughout its whole extent possesses the property re-

quired in the problem.

That we are justified in insisting upon this last statement is

seen from what follows later, where it will be shown that the

curve found above satisfies the required conditions only between
given limits.

A simple consideration shows that the method we have fol-

lowed above is not at all rigorous; since it presupposes, which of

itself is not admissible, that the curve which satisfies the prob-

lems is regular in its whole extent, for otherwise the portions of

curve between the two points {^x— l^x,y') and {x,y) could not be

replaced by straight lines joining these two points; also, the ex-

pansion by Taylor's Theorem would not have been admissible.

5. The characteristic difference between problems relative

to Maxima and Minima and the problems which have to do with
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the Calculus of Variations consists in the fact that, in the first

case,we have to deal with only a finite number of discrete points,

while in the Calculus of Variations, the question is concerning- a

continuous series of points.

If we wish to substitute in the place of the curve first a po-

lygonal line and afterwards apply to this line methods similar to

those used above, then it turns out that, after we have found a

line which satisfies all the conditions, it is necessary yet to prove
that the required limiting transition from polygonal line to curve
in reality results in a definite curve which satisfies the conditions

of the problem.

6. Bvery limiting transition, as from polygon to curve, is

made of itself, if we make use of the conception of integration,

since an integral represents the limiting value of a sum of quanti-

ties which, following a definite law, increase so as to become infi-

nite in number, the quantities themselves becoming smaller in a

corresponding manner.

If we therefore define the surface-area of the cuxv^ y—f {x),

which we have to find, by

5":^= 2 TtX y d s,

or Xi

3T-JW -(£)"-'

then this integral will have a definite value for every curve that

is drawn between /'o and P^, and consequently the problem may
be stated as follows:

Problem I. y is to be so determined as a function of x
that the above integral shall have the sm^allest possible value.

The solution of this problem will be given later. The two
methods given above have been chosen to make clear what there

is in common in the Theory of Maxima and Minima and the Cal-

culus of Variations, and also to show the difference between them.

In the Differential Calculus a definite function is given, and

a special value of the variable or variables (if there are more than

one variable) is sought, for which the function takes the greatest



CALCULUS OF VARIATIONS.

or least possible value; in the Calculus of Variation a function

is sought and an expression is given which depends upon this

function in a certain known manner. A definite integral is con-

sidered, in which the integrand depends upon the unknown func-

tion in a known manner, and it is asked what form must the un-

known function have in order that the definite integral may have

a maximum or a minimum value.

We treat only real values of the variables.

7. If A < ^3 and the point P2 corresponds to U and P^, to t^,

then Pj with reference to P-i is

known as a later point; and P-^

with reference to /j is known as

an earlier point.

As was shown in Art. 2, the

ordinate y of the required curve

O ~^ is a one-valued function of the

abscissa x. It often happens that one cannot know a priori that

one of the ordinates is a one-valued function of the other.

Poincare* has shown that it is always possible to express the two
variables x, y, when there is an analytic relation between them,

as one-valued functions of a third variable t. The only property

that is required of this variable is, when it traverses all valiies

between two given limits, the corresponding point {^x,y^ traverses

the curve from the initial point to the end point, and in such a

way that for a greater value of / there belongs a later point of

the curve.

For example, suppose that z^xy where x and y are two in-

dependent variables. Then in virtue of this equation there is no
way of expressing the dependence of one of these variables upon
the other without the introduction of transcendental functions.

But if we write

X-

then

or

.y'z=e-'

_log -g

y
t

*Poiiicar6 (Bulletin de la Soci^t^ Math^matique de France, T XI. 1883.) See also my
lectures on the Theory of Maxima and Minima, etc. Page 13.
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Thus X and y are one-valued functions of the variable t.

If then we introduce such a new variable t in the integral of
Problem I, that integral becomes

A

4

where we denote bv x' and y' the quantities -^ and -^ .

at at
We may now state Problem I as follows:

The quantities x and y are to be determined as one-valued
functions of a parameter t in such a way that the above inte-

gral will have the smallest possible value.

8. That we may learn the essential properties of the Calcu-
lus of Variations, we shall next formulate other simple problems;
then, while we seek the general characteristics of these problems,
we shall of our own accord come to a more exact statement of the
problems which the Calculus of Variations has to solve.

As a second problem may be given the very celebrated prob-

lem of the Calculus of Variations, that of the braehistochrone*
(curve of quickest descent), which may be stated as follows:

Problem II. Two points A and B are situated in a ver-

tical plane, the point B being situated lower than the point A

;

a curve is to be drawn between these points in such a manner
that a material point subject to the action of gravity and com-
pelled to move upon this curve with a given initial velocity,

shall go from the point A to the point B in the shortest possi-

ble time.

L/et the mass of the material point be 1, its initial velocity a^

the acceleration of gravity 2g, the time t, and the coordinates of

*Woodhouse (A Treatise on Ipsoperimetrical Problems and the Calculus of Varia-

tions, 1810) writes (p. 1): "The ordinary questions of maxima and minima were amongst
the first that eng'aged the attention of mathematicians at the time of the invention of the

Differential Calculus (1684), three years before the publication of the Principia. The first

problem relative to a species of maxima and minima distinct from the ordinar3' was pro-

posed by Newton in the Principia; it was that of the solid of least resistance. But the

subject became not matter of discussion and controversy till John Bernoulli (Acta Erudit.,

1696, p. 269) required the curve of quickest descent.''''
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A and B respectively {_o,o) and {a, b). Let the direction of the

positive F-axis be the direction of a falling body (due to gravity)

and let the positive ^-axis be directed toward the side on which

the point B lies. Then, according to the law of the Conservation

of Energy,

m-m-^^y---
or,

whence
b

J 1/4

(dx\

T^
I

^ ^^y dy.
y'^gy + a^

We have then as our problem: so determine x as a function

of y that the above integral shall have the smallest possible

value.

As regards the signs of the roots that appear in the above

integral, it is evident that these signs must be the same at the

beginning of the motion and may be taken positive. For on me-
chanical grounds it follows that the curve must at first descend;

consequently at the beginning of the motion y increases with in-

creasing t, and is therefore positive. Since 4^+ a^is always a

— I + (t~)» ^'^^ *^^" never

vanish, we may alwa^'s give to V\gy-^a!' the positive sign. Also

at the beginning of the motion the quantity A\ + ( t~ ) must have

the positive sign, since dt always represents a positive increment

of time. However, in the further course of the motion, it may hap-

pen that dy= o. Then the quantity .Jl + ( ;^ ) passes through

infinity, so that dy and ^n. + { ;^ ) may simultaneously change

their sign, while r'4^y-i-a^ continues with the positive sign.
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9. The assumption made in the statement of the problem

that B must lie below A is not essential. For the material point

has at ^ a certain velocity )8, which we may calculate from the

initial velocity a and the height of A above B. When the point

reaches B with this velocity it may rise again, and it will have the

original velocity when it has reached the height A on the other

side of B. The time which is necessary for the ascent is the same
as that required in the descent, if we assume that the curve along

which the ascent takes place is symmetrical with that of the

descent.

If, therefore, the point started from B, we could calculate

from )8, which is now the initial velocity, the velocity a at the

point A. We then have the curve in question, if we seek the curve

along which the point with the initial velocity ^8 reaches A in the

shortest time.

In the case of the present problem we see from physical con-

siderations that jv is a one-valued function of x. As this is not

possible in all cases, it is expedient to represent the curve here also

by two equations; that is, to consider x z.-aA y as one-valued func-

tions of a third variable t* where t is subject to the only condi-

tion, that when it goes through all values between two given lim-

its, the corresponding point x, y traverses the curve from the

beginning-point to the end-point and in such a way that to a

greater value of / there corresponds a later point of the curve.

The above integral becomes

A

J VAgy+a}
to

where we have written x' and y' for —— and -^ respectively.
at at

Our problem then is: Determine x andy as functions of a

parameter t in such a way that the integral just written m^ay

have the smallest possible value.

10. Problem III. Between two points on a regular sur-

facefix, y, z)=o, a curve is to be drawn so that its length is a

m,inimum.

* This t is, of course, different from the time / of the preceding' article.
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Consider the orthogonal coordinates x, y, 2 oi a. surface rep-

resented as one-valued regular functions* of two parameters u and

V. If we consider these as the rectangular coordinates of a point

on the plane, then to every point of the surface there will corre-

spond a definite point of the uv-plant, and these points in their

collectivity fill out a definite portion of the plane, which may be

looked upon as the image of the surface on the plane. To every

curve on the surface corresponds a curve in this part of the uv-
plane and reciprocally.

Further, consider u and v as one-valued functions of a quan-

tity t ; hence, to every value t there corresponds a point of the u v-

plane, and therefore, also, in case this point lies in the definite por-

tion of the u zz-plane, there is a corresponding definite point of the

surface.

Consequently if 4 and t^ are values of t which correspond to

the two fixed points on the surface, then the length of any curve

which lies between these two points is determined through

L

4

'I

where

Hl^W j?z[V i^i'
du )

I. du S \ du S

Q _ "dx dx dy dy dz dz
du dv du dv du dv'

-- m- m- 111
2

We have then to determine u and v asfunctions of t, so that L
is a minimtun.

11. In the case of the above problem it is necessary to apply
the representation there given, whereas in Problem I and Prob-
lem II the expression of x and y as one-valued functions of t may
be regarded as expedient. In Problem III the variables u and v

* See my lectures on the Theory of Maxima and Minima, etc. Pag-e 31.
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must he regarded as functions of a third variable. We cannot re-

gard V as a function of u, for we know nothing about the trace of

the curve. If we wished to regard v only as a double-valued fun-

ction of u, we would even then encounter many difficulties. Hence
the requirements must be made that u and v be so determined as

one-valued functions of t, that the integral in the preceding arti-

cle be a minimum.

12- Problem IV. Find theform of the surface ofrotation,
which, having an axis lying in a fixed direction, offers the least

resistance in moving through a liquid in the direction of the

axis, it being supposed that the resistance ofan element of sur-

face is proportional to the square of the com^ponent ofvelocity in

the direction of its normal.

This problem is due to Newton.*

It is assumed that the friction between the body and the fluid

and that within the fluid itself may be neglected.

Let the K-axis be the axis of rotation, ds an element of the

generating curve, B the angle between the normal and the F-axis,

so that -—— =cos Q.
ds

A zone of the surface is therefore given by

2'nxds^2TTX Vx''^ + y'^ dt.

The component of velocity in the normal direction is z'cos^,

and the resistance in the normal direction which the zone offers^ is

iP- cos^ Q 2ttx\/x''^ + y^ dt.

This quantity multiplied by cos 6 gives the resistance in the

direction of the F-axis. We consequently have the required re-

sistance of the body expressed by the integral

R C ^^
= -. r dt-

2'rrv' J x'^'+y'^

* Newton, Principia, Book II, prop. 34. Thus Newton was the first to consider a prob-

lem in the Calculus of Variations, and his problem involved a discontinuous solution.

Solutions of it have been given by Euler and almost all other writers on the Calculus of

Variations. We shaU see that one of the principal conditions for a minimum (the condi-

tion of Weierstrass) is not satisfied, and that there can never be amaximum or a minimum.
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Our problem then is to connect two points /^ and /^ by a

curve so that the zone which it generates about the F-axis offers

the least resistance. Neglecting the constant factor 2 tt z^, we
have to determine x andy as one-valuedfunctions of t so that

the integral

A

ji = I dt

to

shall be a minimum.

13. That which is common to the four problems stated above

consists in the determination of x and y as one-valued functions of

a quantity t in such a way that an integral dependent upon them
of the form

A

I=JF{,x,y,x\y')dt

4

will have the smallest possible value. Here 4 and A have fixed

values so that the corresponding coordinates x, y of the initial

and the final point of the curve are supposed to be known.
F{x,y, x' y') represents a one-valued regular function of the

four arguments x, y, x',y' of which x' andy' (since they represent

the direction of the tangent to the curve) are to be regarded as

unrestricted, while the region of the point x, y may be either the

whole plane or only a continuous portion of it.

14. The condition that t^, A should have fixed values is not

essential ; moreover both end-points may move, as in the case of

the third problem, if we give it the following form : Tzuo curves

are given on a surface; among all the possible curves between
the points of the one curve and the points of the other, that

curve is to be found which has the shortest length. We are

accustomed to call this the geodesic distance of two curves.

In order to solve this problem, we must first solve the special

Problem III, since, if a curve has the property of being of minimum
length such as is required above, it must also retain the same
property, if we consider the end-points fixed. Hence from III the

nature of the curve must be determined. The variation of the end-



CALCULUS OF VARIATIONS. 13

points gives in addition certain special properties which the curve

must possess.

For example, the shortest distance betw^een two curves which
lie in the same plane is clearly a straight line; through the varia-

tion of the end-points it follows that this straight line must be

perpendicular to both curves at the same time.

15. Essentially different from the four problems already

given is the following:

Problem V. It is required to draw a closed curve which
with a given periphery inscribes the greatest possible area.

Let X and y be one-valued functions of /, say x{^t^ and jv(/),

such that for two definite values 4 and t^ of t the corresponding

points X, y of the curve coincide, and that, if t goes from a smal-

ler value 4 to a greater value t^, the point x, y completely tra-

verses the curve in the positive direction. Then twice the area of

the surface included by the curve is expressed by the integral

A

/<»'=J(;l;y-;^';r') dt,

4

and the periphery of the curve is given by the integral

A

T'^^=^ Vx!^j^y^dt.

4

Our problem then is: So determine x and y as one-valued

functions of t that /"" shall have the greatest possible value,

while at the same time /'*' has a given value.

16. Problem VI. What form is taken by an indefinitely

thin, absolutely flexible, but inexpansible thread which is fixed

at both ends, if the action ofgravity alone acts upon it?

This problem offers the characteristics of a minimum, for

with stable equilibrium the center of gravity must be as low as

possible. If the F-axis is taken vertical with the direction up-

ward, and if 6" denotes the length of the curve, and f, 17 the coor-
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dinates of the center of gravity, then 17 is determined from the

equation

k

where t-^

S =^ Vl^y^ dt.

4

The problem may be stated thus: the variables x andy are

to be determined as one-valuedfunctions ofa quantity t in such
a way that the first of the above integrals has a minimum value,

while the second retains a given fixed value.

17. Problems V and VI are usually classified under the name,

Relative Maxima and Minima, a. term which requires no further

explanation. In general they are included in the following prob-

lem : Let F '*" i^x, y, x', y') and F ''' {x, y, x', y') be twofunctions of
the same character as thefunction F {x, y, x', y') of Art. ij. It

is required to determine x andy as one valued functions of a
quantity t in such a way that the integral

k
1^''''=^ F'''>'>{x,y,x',y')dt

4

has a m,axim.um or a m-inimum value, while at the sam-e time

the integral

k
r^^^j F^^\x,y,x',y') dt

to

conserves a given value.

18. We shall give in the sequel what we believe to be a rig-

orous treatment of the problems already formulated. The reader

may propose for himself natural extensions of what is given; for

example, instead of taking two variables, consider an integral hav-

ing as integrand a function of n variables. Further, subject these

variables to subsidiary conditions and also allow the second and
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higher derivatives of the variables with respect to a quantity t to

enter the discussion. Then double integrals which lead to the

study of Minimal Surfaces may be treated by methods of variation

(see Arts. 175 et seq.).

19. We may define the object of the Calculus of Variations in

a still more general manner by the introduction of a fundamental

conception, that of the variation of a curve. In former times the

Calculus of Variations was considered one of the most difficult

branches of analysis. It was wrongly thought that the difficulty

was in the supposed lack of clearness in the fundamental concep-

tions, especially in that of the variation of a curve. The difficul-

ties that arise are mostly in other directions.

In the Theory of Maxima and Minima we say that for a

definite system of values of the variables the value of a function

is a maximum or a minimum, if this value of the function for this

system of values is greater or smaller than it is for all the neigh-

boring systems of values.

We say* of a functionf{x) of one variable, it has, at a def-

inite position x=^a, a maxitnum or a minifnum value, if this

value for x=a is respectively greater or less than it is for all

other values of x which are situated in the neighborhood of

I

x—a
I
< 8 a5 near as we wish to a.

The analytical condition that /"(;»:) shall have for the position

x=^a

a maximutn, is expressed by /"(;»;)— /"(aXo/)
>for

I

x—a
I
<C 8.

a minifnum, is expressed by f{x)— f{afP'0; )

In the same way we say a function fix-^, x^., . . . . , x^) of n
variables has at a definite position x-^=a-^, Xi^a^, . . . ., x„=an, a
maximum or a minimum, if the value of the functionfor Xi=ai,

X2=a2, . . . ., x^^a^ is respectively greater or smaller than it is

for all other system,s ofvalues which are situated in the neigh-

borhood
I

x-^—a-^ \<i_\ {\—\,2, . . . ., n) as near as we wish to

the first position.

As here we speak of a neighboring system of values, so also

we speak in the Calculus of Variations of curves which lie in the

*See Lectures on the Theory of Maxima and Minima of Functions of Several Varia-

bles, p. 32.
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neighborhood of a given curve; and we require that an integral

in the case of a minimum shotild be less and in the case of a max-

imum greater when taken over the given curve than for any of

the neighboring curves.

In order to fix the conception of a neighboring curve, and to

make clear the analogy of the same with the conception of a

neighboring system of values, let us consider first, instead of the

given curve, a broken line A-^A^A^ .... A,,, and let us cause the

same to slide just a little from its original position.

Then in the new position every corner B^ will correspond to

a definite corner A^^ in the old position, and moreover the new
position Bt^ B2B2 .... B^ will be as little different from the old

position AxAiA:^ .... A^ as we wish, if we stipulate that the dis-

tance between any two corresponding points ^^ and B^ shall be

smaller than any quantity 8, where S is as small as we choose.

Now, by increasing the number of sides, let the broken line pass

into the given curve; then the points B-^, B^, .... B^ will also form

a curve which is little different from the first curve, and which we
consequently call neighboring to the first curve.

Therefore we can say a curve is neighboring to another curve,

or exists out of another curve through a variation* as small as we
choose, if to every point of the latter curve there corresponds a

definite point on the former curve, and also the distance between

any two corresponding points is smaller than S, where S is as small

as we wish.

The geometrical conception of a neighboring curve offers no

obscurity. In a similar manner it is easy to see that for every

change of the curve there is a corresponding change of the integral

j Fi^x.y, x',y') dt,

and that this change will be indefinitely small when the second

curve is neighboring to the first.

This change of the value of the integral must of course be a

continuous, negative one if the integral is to be a maximum, and a

continuous, positive one if the integral is to be a minimum.

*The notion of the variation of a curve was first introduced by Lagrange. He con-

sidered the required curve transposed into one that lies indefinitely near it by writing

instead of each point x, y of the curve another point .r+f , y~-^. This operation of transi-

tion he called a variation.
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20. Observing what has just been said, we may formulate the
problems of Arts. 13 and 17 as follows:

The variables x and y are to be deterinined as one-valued
functions of a quantity t in stick a way that when we define a
curve by the equations x^x{t), y=y{t), and cause the curve to

vary as little as we wish, the change which thereby takes place
in the integral

k
I^ JF{x,y,x',y') dt

4

^nust be continuously positive if a minimtim is to enter, and
continuously negative if we require a maximtim.

In the case of Relative Maxima and Minima, for every indefi-
nitely small variation of the curve for which the integral

k
r'' = JF'''{x,y,x',y')dt

4

conserves its value unchanged, the integral

k

F^^ = ^F''^{x,y,x,y')dt,

according as to whether a maximum or a minimum is to be

present, must be constantly smaller or constantly greater than
for the curve which is given by the equations x=x(t),y=y(t).

21. We must seek strenuous methods for the solution of the

problems presented above. The methods by means of which
Jacobi and the older mathematicians, Bernoulli and his contempo-

raries, Newton and Leibnitz, sought to solve these questions lead

only to the formation of certain differential equations and in pro-

pitious cases to the integration of such equations. But these

methods were not sufficient for a definitive determination as to

whether the curve which had been found in reality offered the

required properties.

We know that in the problems of the ordinary Theory of

Maxima and Minima it is not always necessary that a maximum
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or a minimum exist* It is certain that every variable has an

upper and a lower limit within any region for which this variable

has a meaning. Therefore there exists a limit / such that all val-

ues which a variable can assume are greater than I, and that every-

where in the neigrhborhood of / there are values which the variable

can assume. We call / the lower limit of the variable. In the same

way there is an tipper limit. These limits need not always be

reached. There are consequently two cases possible: Either the

values which are denoted as upper and lower limits may in reality

be reached by the variables, or the variables may only come indefi-

nitely near without ever reaching these limits. It is therefore in-

admissible to presuppose the existence of a maximum or a minimum.

For example, Newton's problem, cited above, has no solution, and

in the case of the first problem there is sometimes a minimum and

sometimes no such minimum exists.

PROBLEMS.

It is suggested that the student select two or three of the following problems and

apply the same methods of solution to them as will be done for the six problems already

proposed.

1. Problem of least action. Find the minimum value of the integral

«-/ V (x+a)(\+p^) dx.

d y
the limiting values of x and p ^^'TZ. being fixed, and determine under what conditions a

parabolic are is in realitj' a solution of the problem. The problem may also be stated as

follows: Determine the path of a particle for which the action I vds is a minimum be-

tween fixed points, if the velocity v at any point is that due to a faU from a straight line

.r-ra=o, the axis of X being vertically downwards. [See Todhunter, Researches in the

Calculus of Variations, p. 147; see also Quarterly Journal of Mathematics, Nov., 1868.]

The discontinuity here is very similar to that which we shall find in the case of Problem
I, p. 1.

2. Principle of least action in the elliptic motion of a planet. A particle is projected

from a given point with a given velocity and is attracted to a fixed point by a force vary-

ing inversely as the square of the distance. Determine the path of minimum action to a
second fixed point. [See Todhunter, Researches, etc., p. 160; Todhunter, History of the

Calculus of Variations, p. 2S1; Jellett, Calculus of Variations, p. 76; Jacobi, Crelle, vol. 17,

p. 68; Liouville's Journ., torn. Ill, p. 44; Delaunay, Liouville's Joum., tom. VI, p. 209.]

3. Determine the curve which renders the integral « = j yxds a maximum, when
I
yxds ;

*See Lectures, etc. (loc. cit.), p. 86.
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the variables are given fixed limits. [See Euler, Methodus Inveniendi Lineas Curvas
Maximi Minimive Gaudentes, Lausanne, 1794, p. 52; Woodhouse, A Treatise on Isoperi-

metrical Problems and the Calculus of Variations, p. 124.]

4. Given the length of a curve, determine its nature, when the volume generated

by its rotation about a fixed axis is a maximum or a minimum. [See Euler, Methodus,
etc., p. 196; Woodhouse, A Treatise, etc., p. 125; Moig-no et Lindelof, Calcul de Variations,

p. 216; Jellett, Calculus of Variations, p. 160.]

5. Required the curve that, by a revolution about a fixed axis, generates the great-

est or the least volume, the surface-area being constant. [See Euler, Methodus, etc., p.

194; Moigno et Lindelof, Calcul de Variations, p. 218; Delaunay, Liouville's Journ., torn.

VI, p. 315; Phil. Mag., 1866; Todhunter, Researches, etc., p. 68; Jellett, Calculus of Varia-

tions, p. 161 and note, p. 364.]

6. Find the curve which generates by its rotation the solid of greatest volume, the

length of the curve and its area being given. [See Lacroix, Calc. Diff'l et Int., Vol. II, p.

713; consult further the references above for this and the following problems.]

7. Find the curve of quickest descent when the length of the curve is given. [See

John Bernoulli's Works, Vol. II, p. 255; M^moires de I'Acad^mie des Sciences, Paris, 1718,

p. 120.]

8. A plane curve being given, determine a second curve of given length such that

the area inclosed between the two curves be a maximum.
9. Among all curves of the same length, find the one which, by its revolution about

an axis, will generate the greatest or the smallest surface-area.

10. It is required to maximize or minimize the integral

•^.

" = j <^U-,r,r) \ 1 +y' +z"dx,

->'«

where <^ is a given function of the variables x, y, z, which are connected by the equation

y"(ar, y, z)=o,f being a known function.

11. Find the curve of minimum length between two fixed points in space, the ra-

dius of curvature being a constant.

12. Find the form which a homogeneous body of given volume must take that its

attraction upon a material point in a definite direction be as great as possible.
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CHAPTER II.

EXAMPLES OF SPECIAL VARIATIONS OF CURVES. APPLI-

CATIONS TO THE CATENARY.

22. Let us consider again the integral of Art. 6,

JW'^-W^- ri]

Suppose that there is a minimum surface-area that is generated

by the rotation of a curve between the two fixed points Pg and Pi

and let this curve be r^^/( a;). Let tj be the distance between

this curve and any neighboring curve

measured on the jy-ordinate, and sup-

pose that 17 is a continuous function

of X subject to the conditions: that

for x=Xo, r)= o ; for x=Xi, -q—o ; and

X for all other points
| 17 |

< p , where

p may be as small as we choose.

-^0

x^

The integral of any neighboring curve corresponding to [1] is

7
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Hence the total variation caused in [1] when, instead oiy=z/{x),
we take a neighboring curve, is

X^ X(,

i^S has always a positive sign, since the surface in question is a

minimum.

23. Instead of the one neighboring curve, we may consider a

whole bundle of such curves, if for 17 we substitute e 17, where e is

independent of x and has any value between — 1 and + 1. The ex-

pression [3] becomes then

Xq Xq

and, developing A6" by Taylor's Theorem,

^S=.SS^^^'S+^^^S...... [5]

There is no constant term in this last development, since when c

is made zero in [4] the first and second integrals cancel each other.

85" is known as the Jirst variation

,

h^S is called the second variation, etc.

Instead of taking 17 a very small quantity, we may take e so

small that e 77 is as small as we choose.

With Lagrange (Misc. Taur., tom. II, p. 174), writing 17 = Sjy,

it is seen that the total change in r is e tj =e 8 j)/ — Aj'.

Remark. The sign of differentiation and the sign of varia-

tion may be interchanged; for example, the 1st derivative of a

variation is equal to the 1st variation of a derivative, as is seen

by writing

y)=ly, then ^==(8^)'= ^ (8r). [^1
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Again rj — Sy; change y into jy + eij, and consequently y' into

y + e Tj'. Hence -rj' is the first variation of y', so that

V=8y = s(|): [«]

and therefore from [i] and [n]

It follows too that owing to the presupposed existence of 17', we
must also assume the existence of the second differential coefficient

of r.

24. Returning to [41, writey=-^ , rj' —-^ . Then expand

-

ax ax

ing the expression under the sign of integration

( r-^erj)]' 1 J-(y-UeTj')2 —y \ 1 +y^

we have

S .

T ,

/ /
,

ry
I

(y + ^^)(y+£VK ( , 2. ,

) 1 i^(y + cV)Mc=o

Hence, equating the coefficients of the 1st power of 6 in [4] and in

[5] we have

as-

27r

which is a homogeneous function of the first degree in 17 and t]

.

The quantity t] cannot be indefinitely large, since then the devel-

opment would not be necessarily convergent; but see Art. 116.

In a similar manner we may find a definite integral for the

second variation, in which the integrand is an integral homoge-
neous function of the second degree in tj and 17'; similarly for the
third variation, etc.
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25. As a form of the integrals which were given in Problems
I, II, III and IV of the preceding Chapter, consider the integral

/=- j F(x,y,y) dx,

where Fi^x, y, y ) is a known function of x, y and y\ and where
the limits of this integral, x-^ and x^, are fixed. Hence, as above,

X\ Xi

A/=
I
F{x,y+ €T), y ^er)') dx — \F{x,y,y') dx

Xq Xq

=
I
[F(x,y— €7),y'-^eri')—F{x,yjy')] dx.

Xq

This expression, when expanded by Taylor's Theorem, is

X,

We also have, as in Art. 23,

1.2

and by comparing the coefficients of e in these two expressions, it

follows that
X,

«^=J(f " + §7'^')"-

In the particular case given in Art. 22, F— yvl+y'^. Hence

5— ^1 1 -L- y ^ and 5—7 — „ 'dy " dy
1 1 + /^
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and when these relations are substituted in (A) we have, as in

Art. 24,

^1

A

26. From the relation

it is seen that when c is taken very small, ^ is as near as we wish

to zero; and consequently when c is positive and indefinitely small,

A/ is positive. On the other hand, when e is indefinitely small and

negative. A/ is negative.

Hence the total variation A/ of the integral will be either

positive or negative according as e is positive or negative, so long

as S/is different from zero; and consequently there can be neither

a maximum nor a minimum value of the integral.

We know, however, if / is a maximum A/ is always negative,

and if / is a minimum A/ is always positive; and consequently in

order to have a maximum or a minimum value of the integral, S/

must be zero.

27. Applying the above result to the example given in Art.

22 we have

o=.[\ V\Zy-^^-l£^d^\dx. [6]
J I -^ ' I'l+y^ dx) ^ -•

Integrating by parts,

Xq Xf.
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and since, by hypothesis (see Art. 22), •»?=o at both of the fixed

points Po and /'j, we have

Hence [6] may be written

X.

[7]

28. We assert that in the expression above

must always be zero between the limits x^ and x^. For, assuming
that the contrary is the case; then, since t) is arbitrary, we may,
with Heine,* write

,=(.-..)u-.))v-iTy'-X(7W")}'

where *? becomes zero for the valued x=Xo and x^x^. Substitu-

ting this value of i? in [7] , we have

^1

an expression which is positive within the whole interval x^,. . . .x^.

The integrand in [8] , looked upon as a sum of infinitely small

elements, has all its elements of the same sign and positive; so

that the only possible way for the right-hand member of [8] to be

zero is that

d
^'l + y'

dx

•Heine, CreUe's Journal, bd. 54, p. 338.
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We therefore have a diflFerential equation of the second order for

the determination of the unknown quantity y.

29. This difEerential equation is a special case of the more

general differential equation, which may be derived from the in-

tegral

1=^^ F{^y,y')dx;

Xo

whence, as before (Arts. 25 and 27),

X(, Xq

As in Art. 27, we have

dF
dxldy'j '

or

dy dx\Jdy
e^=^r!4]. [9]

But

or

dF(y,y)=^^dy + ^^dy, [10]

Hence from [9]

,

or

dF(y,y')-d\y'^^,\=o,

and integrating,

Fiy,y')-y'^^,^C, [11]

where C is the constant of integration.
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The relation [11] exists only when the integrand of the given

integral does not contain explicitly the variable x; otherwise the

relation [10] would not be true, and then we could not deduce [11].

30. Applying this relation [11] to the special case above

(Art. 28) where

F{y,y'-)^yV\^y'\
we have

y 1 1 + r'^ — — ^-^ = m ,

m being the constant of integration, a quantity which will be con-

sidered more in detail later.

The above expression may be written

or y=m \ 1+y^. [I]

From [I] it follows directly that

fLm^=nt\^^: [II]

and [II] , differentiated with respect to x, is

Two solutions of this diflFerential equation are

y^e^'"^ and y^e~'^''^

,

so that the general solution is

y=.c^ e^/"+ Cj e
-^/'"

.

[Ill]

It appears that we have in this expression three arbitrary con-

stants, m, Ci, and c^ ; but from [II] we have, after substituting

for y and( — )
their values from [III],

m^=4 Cj Cj.
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Hence, writing in [III],

Ci= Yitn e"^"''"^ and c^^ Yitn e*"''"",

where x^ is a constant, we have

y^ I^wCe'""^"''^"" -- g-l"-^-''/™]
. [Ill']

The two constants Xq and m are determined from the two
conditions that the curve is to pass through the two fixed points

Po and P^.

31. From what was given in Art. 19 it would appear that

two neighboring curves are distinct throughout at least certain

portions of their extent. This implies the existence of a certain

neighborhood about the curve C that is supposed to offer a mini-

mum, within which this curve is not intersected by a neighboring

curve. Suppose that the curve C^ is derived from the curve C by

the substitution oi y^f.-r} for y (cf. Art. 22). Consider the family

of curves (C^) obtained by varying e between —1 and +1. For
sufficiently small values of € the curve C^ will lie within the neigh-

borhood presupposed to exist, and a portion of our family of curves

will lie within this neighborhood. This is a necessary conse-

quence of the supposed existence of a minimal surface of revolu-

tion. As a condition, however, it is not sufficient to assure the

existence of a curve giving such a surface. The fact that the sur-

faces generated by the curves C^ are all greater than that gener-

ated by the curve C does not prevent the existence of a neighbor-

ing curve constructed after a manner other than that by which
the curves C^ are produced, which would generate a surface of

revolution having less surface-area than that due to the revolution

of C.

It is useful to determine for just what curve C the above con-

dition may be satisfied, and while this does not prove that the

curve C gives a minimal surface of revolution, it will at least limit

the range of curves among which we may hope to find a generator

of a minimal surface. Further investigation of this more limited

range of curves may locate the curve or curves giving a minimal
surface^ if such exists, and in the other case may prove their non-

existence. In the further investigation we shall derive the suf-

ficient conditions to assure the existence of a maximum or a

minimum.
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32. The conclusions drawn from Art. 30 show that, if a curve

exists which offers the required minimal surface, that curve must
be a catenary. Since the catenary must pass through the two
fixed points /o and P^ , we may determine the constants fn and Xq

from the two relations (see formula [III'], Art. 30):

We shall see in the next Chapter that three cases arise according

as the solution of the above equations furnish us with two cate-

naries, one catenary, or no catenary.

In the first place, it may be shown that the catenary nearest

the ^-axis can never furnish a minimal surface. The second case

arises from the coincidence of the two catenaries just mentioned,

and it will be seen that an infinite number of curves may in this

case be drawn between the two points, each of which gives rise to

the same rotation-area. These results are due to Todhunter (see

references at the beginning of the next Chapter).
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CHAPTER III.

PROPERTIES OF THE CATENARY.

33. Owing to certain theorems that have been discovered by

Lindelof and other writers, some of the very characteristics of a

minimal surface of rotation, which are sought in the Calculus of

Variations, may be obtained for the case of the revolution of the

catenary without the use of that theory. We shall give these

results here, as they offer a handy method of comparison when we
come to the results that have been derived through the methods

of the Calculus of Variations.

In presenting the subject-matter of this Chapter, the lectures

given by Prof. Schwarz at Berlin are followed rather closely. The
results are derived by Todhunter in a somewhat different form

in his Researches in the Calculus of Variations, p. 54; see also

the prize essay of Goldschmidt, Monthly Notices of the Royal As-

tronomical Society, Vol. 12, p. 84; Jellett, Calculus of Variations,

1850, p. 145; Moigno et Lindelof, Calcul des Variations, 1861^ p.

204; etc.

34. Take the equation of the catenary which "was given in

the preceding Chapter, Art. 30^ in the form*

It follows at once that

m -^ =: ± Vy'^—m^= >^w[e '"'"='''''''" _e-(x-x,')/m-|_
ax

On the right-hand side of the equation stands a one-valued func-

tion, but on the left-hand side, a two-valued function. It is there-

fore necessary to define the left-hand side so that it will be a one-

valued function corresponding to the right-hand side.

"Throughout this discussion the A'-axis is taken as the directrix.
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If we make x "^x^, then is

31

> (x—3to')/m >e- -(x—Xii')/m

and consequently Vy^—m^ is positive. But when x<ix^, it is seen

that
, (x—Xo'j/m<e -(x—x„')/m

and then Vy^—rn^ is negative. It therefore follows that there is

only one root of -— = 0, and this is for the value x=Xa. The
ax

corresponding value of y is in.

dy
This value m is the smallest value that v can have; for ^-—

o

"^ ax

is the condition for a maximum or a minimum value^ and since
d'^y

d^
is positive for x=Xq, it follows that w is a minimum value of y.

Further, since Vy'^—m^ is continuously positive or continuously

negative, there is no maximum value of y. The tangent to the

curve at the point x=Xo, y—tn is parallel to the ^-axis, since at

this point -— = o.
dx

35. At every point of the curve we have

dy , V y^—rri^
-^ = tan T =—^
dx in

Hence, to construct a tangent at any point of the catenary, for ex-

ample at P, drop the perpen-

dicular PQ, and describe the

semi-circle on PQ as diameter.

Then, with radius equal to m,

draw a circle from Q as center,

which cuts the semi-circle at

R; join R and P- The line

RP is the required tangent.

Again *.=rf^+<»"= { 1+^'}d^=^

:

consequently

m
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and integrating,

m \e (x—Xi,')/m a —(x—x„')/m
] __ -I/ y2_ •^W'

where s^ denotes that the arc is measured from the lowest point

of the catenary.

The geometrical locus of ^ is a curve which cuts all the tan-

gents to the catenary at right angles, and is therefore the orthog-

onal trajectory of this system of tangents. This trajectory has

the remarkable property that the perpendiculars QR, etc., of

length m, which are employed in the construction of the tangents

to the catenary, are themselves tangent to the trajectory.

This trajectory possesses also the remarkable property that,

if we rotate it around the X-axis, the surface of rotation has a

constant curvature,

Further, PN, the normal to the catenary,

= rsecT = ^, andm

P =b-mr m
<Py

dx"-

or PN :^ PC (see figure).

where fC is the length of the radius of curvature.

36. The geometrical construction of the catenary. Take
an ordinate equal to 2m. This determines the point /"(see figure).

With P as center and ra-

dius equal to m, describe

a circle. This intersects

PB at a point A, say. On
the circumference of this

circle take a point A-^,

very near A, and draw
the line PA^By, and on

this line extended take

/'i such that P,A,=A^B^.

With radius P-^A-^ draw
another circle, and on
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this circle take a point A^, very

near the point A^, and draw the line

PiA^B^. Take on this line extended

the point P^, so that P^A^^A^B^,
etc. The locus of the points A is

the required catenary.

The accompanying figure shows
approximately the relative posi-

tions of the catenary, its evolute

and the trajectory.

37. It appears trom the previous article that a catenary is

completely determined when we know any point on it and the tan-

gent at this point. This may be proved analytically as follows:

Let ^^ ^ be a point through which passes a straight line, mak-

ing with the j'f-axis an angle whose tangent is k. The conditions

that a catenary pass through this point and have the given line as

tangent are:

-^ 2 -

-(x—Xo'l/m
],

k = y'^Yi [e'--^"'
—Xo')/m ~(x—Xo')/m

]•

For brevity write e'''~''°''^'"=.^^so that the above conditions become

y = I^{z+z-% k = ^{z-z-%

Hence,

therefore

and

We therefore have

^^— 2k2 — 1 — 0;

z^k±Vl^k^

z-^=-k±V\ + k\

y = ± fn V' 1 + k'

Since y and m are both positive, it follows that we may take

only the upper sign. Consequently, if we write

k = tan a,

we have
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sin a -i-

1

z = tan a -j- 1 1 + tan^ a=
cos a

sin a— 1
-z '=tana— V 1 + tan^ a=

cos a

and

m = -^ — y cos a.

1 1 -!- tan^ a

Further, since lo^ 2 has one and only one real value for a defi-

nite value of 2, the constant x^ is determined uniquely from

X — Xn 1 1 sin a -j- 1
log^ = log-

^
;» cos a

and the quantities x^ and ^w determine uniquely a catenary which

has the given line as tangent at the point x,}'.

38. In particular, consider the catenary that has the K-axis

as the axis of symmetry, and let the two points /o s^nd P^ be at

equal heights on the curve so that their coordinates are, say

( —a, b > and {a, h).

The equation of the catenary is now, since x^= o,

and consequently

b = ^(e^^"' - e-^''^ ) = <i>
(m), say, [1]

where we regard a as constant and m variable.

We wish to determine whether this last equation gives a real

value or real values for m. We see that (f>{fn) is infinite when
m—O and also when ni=<xi.

Further

or

<f)'
( m ) = 1

2m^ W m" " ' (2n)\m''

so that <t>'{m) is negative infinity when m is zero; is unity when
m is infinite, and changes sign once and only once as m passes
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from zero to infinity. The least value that (f>(fn) can have is for

the value of m that satisfies <f>'{fn)=o.

If, then, the given value of d is greater than the least value

of ^{m), there are two values of m vt'hich satisfy [1] ; if the given

value of b be equal to the least value of <f>{m), there is only one

value of ffi/ and if the given value of b is less than the least value

of <f>{fn), there is no possible value of ?n.

Moigno and Lindelof have shown that the value of — which

satisfies

w

,a/ni

a _

111

,—a/nl

m •

g-a/m)^^

1.19968. . . . ; and then from [1] it follows

and therefore - = 1.50888. . . =tan (56° 28')

is approximately

that —=1.81017.

approximately (see Todhunter, loc. cit.. Art. 60). Thus there are

two catenaries satisfying the prescribed conditions, or one or

«o«e^ according as -is greater than, equal to, or less than 1.50888. .

.

b

a

a

If we write Jt = tan (56° 28'), it is seen that>'=^:»; and

j^'= —^ X are the two tangents to the catenary that may be drawn
through the origin.

As the ratio b/a is independent of ntj it also follows that all

the catenaries of the form y=in/2 (e'"''"-'-e~''''"'), which may be

derived by varying m, have the same two tangent lines through

the origin, the points of contact being ;i; = ±1.19968. ... ^/ and

r= 1.81017.... w.

39. Returning to the catenary i'=>^w[c''=-'"'''^'"4-e~'''-"°''^'"],

we shall see that also here there are three cases which come under

investigation according as:
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P'.

I. Two catenaries may be drawn through the fixed points;

II. One catenary may be drawn through these points;

III. No catenary may be drawn through the two points.

We may assume that jVi^ jVo. ^i>.^o- ^or if Xi<^Xo, we would

/ only have to change the direc-

tion of the ^-axis which we
name positive and negative; or

we might consider the case of

Po and /*!', where /\' is the

image of Pi\ that is, the point

symmetrically situated to /\

on the other side of the ro-or-

dmate.

40. From the equation of the catenary it follows that

\

and

Therefore

y^=y2mle ^^'-^'""^+ g-(=c,-x,')/m
j ^

jKo —^W fh^ fg (xo—Xo')/m g—(xn—Xo')/m"l 2.p

v' y^—rn^ —±y2fn[e^''° ^"')/m n—(xo—Xo')/ni
]; [I]

and from this relation it is seen that Vy^—tn^ has a positive or

negative sign according as Xf^—Xo^o. Hence, also,

{xa—x^)/m=±\og nat [(>'o+ v'jJ'o^— w^)/w] [a]

41. Under the assumption that y-t^yo, we must first show
that such a figure as the one which follows cannot exist in the

present discussion. We know that

That Xi—Xa is necessarily positive is

seen from the fact that the ordinate

y^=in corresponds to the value x^,

and is a minimum. (See Art. 34.)

Suppose that x^ >^i. By hypoth-

esis y^^yoi and further fn^yf,, and con- ''
'' '•

sequently m^y^. The form of the curve is then that given in the

figure; and we have within the interval x^ to x^ a value of x, for

which the ordinate y is greater than it is at the end-points, y
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must therefore have within this interval a maximum value. But
we have shown (Art. 34) that there is no maximum value* of y;
hence,

and there cannot be the minus sign as in equation [I] ; hence,

(;ri-V)/w=+lognat [{y^^Vy^^-m^) /m\. [d]

42. Eliminate x\ from [a] and [^] and noting that in [a\

there is the ± sign, we have two different functions of m, which
may be written

:

A (w)=log nat [( >'i+ 1/ y^—rn^ )/m\

—log nat [(>'o+ Vy^—m^ )/m\ — {x^—Xo)/m ,

and /j (w)=log nat [( y^+ V y^—m^ )/w]

+ log nat [( Jo + v/y^— ni^ Ym] — (x^— x^)/m,

two functions of a transcendental nature, which we have now to

consider. We must see whether y^(»?)=o,/^(7»)=c have roots

with regard to in; that is^ whether it is possible to give to ^w posi-

tive real values, so that the equations f^{ni)^o, f-i{rn)=o will be

satisfied. If it is possible thus to determine tn^ we must then see

whether the values x^ which may be derived from equations \a\

and [5] are one-valued.

The first derivative oif-^{m) is

mLi/jKo—^ V y^—rnr ^ J

On the right-hand side of this expression 1/m is positive, also

(^x-^—Xf^)/m is positive, and

is positive, '\i yC^y^.
V 1- myyi V\-myy^

Hence/i(m) is positive in the interval o jo

* In other words, >-, cannot be greater than y„ and at the same time jr/ greater than j:,.



38 CALCULUS OF VARIATIONS.

Further, y^(o)=log nat2>',— log oat (^1=0)
—log nat2>'o-rlog nat (m=o)
— [{zi-Xo)/m]t^^,i = — CO.

43. It is further seen th.a.t/[(m) continuously increases with-

in the interval o. . . .Vo, so that — 00 is the least value that /i{fn)

can take.

Again

Xi— X(,
/(>'o)=log nat

Then if

When

-y^'

y^
[11]

I- /i(>'o)<<3./(w) has no root;

II. f-^ i^y^) = o,/i{^m) has one root, m^=zy^
;

III. fiiyo) > o./i (w) has a root, m^<^y^.

AijKo) <C<?^ ^1 is outside of the catenary;

/i(j^'o)= o, /\ is on the catenary;

A (>'n ) > <5^ /'i is within the catenary.

This mav be show as follows :

y=j4 yo[e'
,(x— x„)/y„ j^ /,—(x—Xo)/y•']

;

since when;)^=w^ ^=^0'; and, therefore, when jv=ji'o=w, ;i;=;»;o.

We also have

y^--y„^= % y^- [e (''-""'/vn _g-(x-x„)/y„-] 2_

Hence

where the positive sign is to be taken, when x>Xo, and the nega-
tive sign, when x<CX(,.
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We also have x—Xo=yo log nat [(^-j-v y^—yo )/>'oJ •

Comparing this equation with equation [II] above, and noticing

the figure, it is seen that, when

Xx—Xo=y<i log nat [(jVH- i yi—yo)/yo\^ then P^ is on the catenary.

^1—^o>>'olog nat [(jKi-j-
^'"^ yi—yo)/yo\^ then P^ is outside the cat-

enary,

^1—^o<jKolog nat \{,yi^\' yi—yo)/yo\^ then /\ is within the cat-

enary.

Hence, whenyi(;t')>o, there is one and only one real root in the

interval o. . . .y^, and we can draw through the points Pi and P(,

a catenary, for which the abscissa of the lowest point is <Cxq.

44. The discussion off-iim). We saw (Art. 42) that

fiim) = log [(JV1+ Vy^—m^ym^ -}-log [(>'«+ V y^--m^ym\
— {xi—x^ym.

Therefore

m \^v y^—mr V y^—rrr J

When in changes from o to y^, the quantity V y}/ rri?'—\ contin-

uously decreases, and consequently — -^^ becomes greater
Vy^/fi^—X

and greater. Hence if the expression —m^f-^i^m) takes the value

o, it takes it only once in the interval from o to jVo- That this ex-

pression does take the value o within this interval is seen from

the fact that, for in=o, —trP- f-l {^m)=L —{^x^—x^ , where x^—x^o,
so that —in^f-l{m) has a negative value; but, for m^y^,
— nP'f^i^y^)—^^, so that the expression must take the value

zero between these two values of m.

Let /A be this value of m which satisfies the equation, so that

Vy^—v^' Vy^—v''-

which is an algebraical equation of the eight degree in /a, or an

algebraical equation of the fourth degree in \i?.
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45. An approximate geometrical construction for the root

,/>, that lies between o and y^ In

the figure it is seen that the tri-

angles Pq Q^ Ao and Po Qo Q are

similar, as are also the triangles

Pi Q\ A I and P^ Q^ C\; hence, if m
is the length of the line Qq C^=

Qi Q, we have

yr,m

1/ y^— m^

and

GiA=
y^m

V y,' m'-

By taking equal lengths

So C^=^ Qi Cx on the two semi-circles and prolonging P^ C^ and /\ Cj

until they intersect, we have as the locus of the intersections a

certain curve. This curve must intersect the A'-axis in a point S,

say. Noting that

it follows that

— ^i — Xf),

which, compared with the equation _
[A] above, shows that

46. Graphical representation

of the functions f{ni) andfi^m).
The lengths m are measured on

the A'-axis. Equation [c] gives

y^'( ;>/„)= CO ; that is, the tangent to

the curve y—f{x) at the point y^
is parallel to the axis of y. Fur-
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ther,/i((?)= — CO, so that the negative half of the axis of jy is asym-
ptotic to the curve yz=f.^(^x). The branch of the curve is here

algebraic, since ;^'=/i (;?;), for x=^o, is algebraically infinite.

47. Consider next the cvrve y^^f-J^m). It is seen that/i( jVo)

=y^(>'o); and also y^'(;v'o)=— co , so that the tangent at this point*

is also parallel to the axis of the y. Further, the negative half of

the axis of the y is an asymptote to the curve; but the branch of

the curve jv=y^(^w) is transcendental at the point m=o; because

logarithms enter in the development of this function in the neigh-

borhood of m=^o, as may be seen as follows:

/^{m) = \og [{y^+ Vy^—m')/m\^\og \iy<,^v yo'—ni'') /m\-
l(x^~Xo)/m] = ~l{x^—Xo)/m]—2 log m+P(m),

where P{m) denotes a power series in positive and integral as-

cending powers of fn/ hence, the function behaves in the neigh-

borhood of m=o as a logarithm.

48. We saw that

1 r _y^^

m'-Vv y^-

m
+

y^rn

rtv' V yo m'-
{x-,—x^)\.

For the value ^w=/x the expression within the brackets is zero,

and when tn=^o, this expression becomes —(xi—Xo), and is nega-

tive. As seen above in the interval m=o to m=^yo, the expression

yiffi +
y^m — {x^ — x^)

V yi — pt^ V yo — w^

becomes greater and greater, so that

between the value m=o and ?w=/i., it

is negative.

Furthermore, /zim) is positive

between m=o and w=/i., and negative

between ^w=ju. and m^yo.
Hence f-lrn) increases between

fn=o and ni=i^, and decreases be-

tween m=i^ and m=yo\ and conse-

quently y^(fi) is a maximum.

TL
\/!L.

\

/

r
I /
! /

/

f.f"^

/

i/

*The distance >„ is, of course, measured on the A'^axis.
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49. We must consider the function f^{m ) when m is given

different values and see how many catenaries may be laid between

the points Po and P-^.

We have:

Case I. /2(>)<c.

In this case fj^m) is nowhere zero, and there is no root of

y^(/w) which we can use. There
is also no root of f-^ijn), since

/?(Jo) < o and /zCjFo) = /iCjo), so

that f-k.y^-^0, and there is no

root (see Art. 43).

Case II. y^(^)=o.

All values of m other than

/* cause f-irn) to be negative, so

that there is a root and only one

root of the equation f-l^tri) = o,

and consequently only one cate-

nar)'. In this case fiifri) can

never be zero ; since f-^y^ <C o, and

f^y^^f-i^y^, so that fl^y^<^o,v}\t\i. the. result similar to that

in Case I.

Case III. /Ih-)>o.

We have here two catenaries. One root ofy^(/«)=o lies be-

tween o and /x, and often another between /x and y^, as is seen from

what follows:

/2(-l-c)= — 00 and fz{y.)>o.

Since y^(;w) continuously increases in the interval +o. . . .^ it can

take the value o only once within this interval.

In the interval fi. . . yo^/z^m) continuously decreases, so that

if /^(;>'o)>-o^ there is no root oifi{m)^^o within this interval; but

if_/^(j>'o)f o^ then there is one and onlj' one root within this inter-

val, and in the latter case there are two catenaries.

We must next consider the roots of /i\nt). Wheny^(j)'o)<o^
then \s./xiyQ)<io, so that there is no root oi/i{m)=o. But when

Aiyo)= 0j then /i(yo)=o; and/j(w)=o has the root m=jVo, which
was just considered.
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Therefore:

(When /2{yo)<Oj/2(m)has two roots; and when /^(>'o)= ^.

A)</2(m)has a root in addition to the root which belongs to

U(ro)=/(>'o).
^\ (But when/^(jyo)>'?. then there is only one root for_/^(w)=:o,

(which lies between o. . . .M-; this root is denoted by fn^.

50. From the formula ( Art. 42 ) for y^(m ) and y^(w ) we have

:

/2(m)=/,(m)+2 log [(>•„+! ;^'„2_w2)/w].

We consider the values of m within the interval o....Vo; for

m=:0,{^o+ y' _yo^—m'^)/m= oo ; and for m^y^,, (>'o+ V ya—m^^/m
= 1. Consequentl)% within this interval log [(>'o+ i ;>'n^— m^)/;»]
is positive, and therefore alsoy^(w)>/"i(m); and since y^(wi)= c^

it follows that/i(mi)<<?.

On the other hand,/i(j>^o)=y^(>'o); and since y^( jFo)> o^ we
have /i(j>'o)>o. Moreover, within the interval o . . . . y^, f^{m)
continuously increases, and/i( +c>)<o^ so that within the interval

o . . . .m-^, f-^m) has no root, and within the interval ?»i....jVoi

one root.

Hence, under j5), /ji^fn) has a root ^w, within the interval

o. . . ./i, and only one root, and/i(;w) has a root between ^ and ^o.

and only one, making a total under the heading B^ of two cat-

enaries.

We have the following summary:

1". y^(/^)<o^ no catenary;

2". /ii'^)^ o, one catenary;

3°- Aii^)^^^ tw-o catenaries.

51. (9w /Ae consideration of the intersection of the tangents

drawn to the catenary at the points P^ and P^

.

Case I. As shown above, ft

there is no catenary, so that the

consideration of the tangents is

without interest.

Case II. f^{^)=o.

Here the catenary enjoys the

remarkable property that the

tangents drawn at the points P^
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and (^1 intersect on the A'-axis. In order to show this, we must

retiirn to the construction of the tangents at the points P^, and/*!.

It was seen (Art. 45) that points ^o and B^ were found on the semi-

circumferences PoBaQo and P^B^Q^ such that Q^ B^= Q-^ B^ (m=fji in

this case), and that then the lines PoBg and /^^i w-ere the required

tangents, which intersect on the AT-axis.

Case III. /2U)>o.

A) fly,)^o.

Then, as already shown,y^(^w)=c> has two roots, one of which

lies between o and /x, and the other

between /t and y^ . Let these roots

be m-^ and m-^ respectively. For the

root Wi, we have

y^i^\
.

QoT,=
Vy.'- -m-;

Q.T,
yifn^

Vy^ -m-:

We assert that here the inter-

'T section of the tangents at P^ and
/*! lies on the other side of the X-axis from the curve.

In order to show this we need only prove that
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52. On the consideration of the root Wj

.

r. When/,(j,^„)ft,.

The root lies within the interval [l. . . .y^ and here fzim) is

negative within the interval; therefore —m^f-^im) is positive, and
consequently

V y^* — m-2, V y}—m}
\X^—X^Y>0;

therefore

so that 7" is on the same side of the J^-axis as the curve.

2°. When/j ( y^) >o; then the

root m^ is a root of the equation

f.^(^ni)^o, so we have here to con- ^_

sider the sign of

V y^' — mi

V y^— m{
within the interval o. . . .jVo-

We have proved that within this interval fiint) is positive,

and since

y--^ y^^ {x,-x,)\

iince

^ Li/ yŷ^ — m} V y} — m}

is positive, it follows that

r yx'^x y^'rnr

y{—m.

is negative. Hence

Vy^— m.^
Xi— Xf))

- /°/^^ <(^.-^o).
i/ yi^— ^2- V y^ — mi

Consequently

^0^^ y-'^-' >{x,-x,).
V y^—m} Vy^ — m^
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Since — -^^ ^ is a positive quantity, it follows a fortiori \.\izX

V y^ — mi
yx 1^2

+ ^"^^ >U.-^o).

and the intersection lies on the same side of the ^-axis as the

curve.

53. We have seen that two catenaries having the same direc-

trix cannot intersect in more than two points /{, and P^. Denote

as above the smaller parameter of these two curves by m^ and the

larger by m-2,. Then it is seen that Q, the curve of smaller par-

ameter, comes up from below and crosses Cj, the catenary of larger

parameter, and, having crossed

Cj, never finds its way out again.

For, consider the tangent PT to

the curve Q as the point P moves
along this curve. This tangent

must at first intersect C2, but at

the vertex it is parallel to the

A'-axis and evidently has no point

in common with Cj. Hence, for

some position between these two
positions the tangent to G must also be tangent to €2- We see

that there are two tangents common to Q and Q, and we shall

next show that they intersect on the directrix.

54. Draw the common tangent A T^ and draw a tangent A 7\

to the curve C^. Then between these lines we may lay an infinite

number of catenaries that have the same directrix. One of these
catenaries must be C2, for it touches A T^ and is the only catenary
that can be drawn through the point of tangency made by A To
(Art. 37). Consequently A T^ is the other common tangent to both
curves.

We see also that the points P^ and P^ are beyond the points
of contact of C, with the two common tangents, while for Cj the
points of contact of the tangents are beyond P^ and P-^. It is also
seen that, as the two curves Q and Cj tend to coincide, the com-
mon tangents to the distinct curve become tangents to the single
curve at the points P^ and P^ (see Art. 51). If we call ^ the value
of m corresponding to this latter curve^ we have m^p- ^l^ m^.
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55. Suppose we have two catenaries which are not coincident

and which have the same parameter m. Denote their equations by

These catenaries intersect in only one point. For we have at once

therefore

or

g(x—x„')/in
I g—(x—Xo')/m__g(x—x„")/in , g—(x—x/')/m

gx/m Pg—XoVm g—Xo"/m"| __g—x/m r^Xo'Vin gXo'/ra"|

1 V & """Z™ p Xo'/m ~|

p—(x„'+x„"Vml _gXo'/m
I
gXo'Vra

y-,Xo"/ra -,Xo'/m
,2x/m ^ ^
' ~l TTl

p—Xo /m p—Xo /ni

Therefore g2x/in__ g(xo'+Xo")/ni

and consequently
(x„"-x„')/2m _L g—(x„"-x„72m"|

which are the coordinates of one point.

56. Lindelof's Theorem ( 1860 ).

If we suppose the catenary to revolve around the .AT-axis, as

also the lines /{, T and P-^ T, then the surface-area generated by

the revolution of the catenary is equal to the sum of the surface-

areas generated by the revolution of the two lines P^ T and P^ T
about the ^-axis.

Suppose that with 7" as center ofsimilarity (Aehnlichkeits-

-^ punkt), the curve P^ Pi is sub-

jected to a strain so that P^

goes into the point P^, and P^

into the point P-^, the distance

Pq Pa being very small and
equal, say, to a=/\ /*/.

Then

P^T: Po'T=l : 1-a.
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To abbreviate, let

Mq denote the surface generated by /*« T; M^ that generated by P^ T\

M^ denote the surface generated by P-^ T; M-l that generated by P^ T;

6" that by the catenary P^P^; S' that by the catenary P^ P/.

From the nature of the strain, the tangents P^ T and P^ T are

tangents to the new curve at the points P^ and P-l, so thatwe may
consider P^P^ P^P^ as a variation of the curve P^Pi

.

It is seen that

^ : S' =1: (1-a)^

M, : ^/o'-l : (l-a)2;

M^ : M^=l : (l-af\2

Now from the figure we have as the surface of rotation of /Jj/o'/'i-^i'

where [^a^)] denotes a variation of the second order.

Therefore

Hence
Sll-(l-ay] =M,[l-(l-ay] +M,[l-{l~ay] + [( a^)],

and consequently
2aS=2aAf,+2aM,+ l(a?}'\,

or finally

a result which is correct to a differential of the first order.

In a similar manner

so that

S~S'=( Mo-M,' )+ ( M^-M;-) ;

or

s={m,-m:~)+s'^^m^-m;)

is an expression which is absolutely correct.

57. Another proof

.

We have seen that

7i^ - 7i^ -(-->-. w
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and (see Fig. in Art. 45)

,2

PoS =—^g
; P,S= y^

. [2]

The surfaces of the two cones are, therefore, equal to

y<^ -y^-^ ^„A yi -y^""
and

V y}—\i^ V y^—\i^

The surface generated by the catenary is

Xx

J 'Zyj^ds.

X.

In the catenary ds^y/m dx (see Art. 35), so that

X, X,

\2y IT ds = \{2y^ ir dx)/in

Xa Xn

"1

=2Trf m^/A [e
^''^"-^»'' ^" +2+e -z'^-'"''' /"

]dx/m
Xcs

= 7r[±jv V y^—m^+mx^

= n-[_yi V y^—w? +y^V y^—m^+m{xx—Xo)], [^]

where we have taken the + sign with jKo V y^—rn^ because x^—x^

is negative, hence e(^-*«')/>«_e-(»-=^»')/°' in \A\ is negative.

But from [1]

X\— Xa — — = ~r

V y^—i^ V y^—v:
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Substituting in [^],we have, after making ???=/x, for the area gen-

erated by the revolution of the catenary

ttI >'l
Ji h'

y y^— ^^
:yoV ^'o'^—i^^ +

yoi^

v V— M^]

which, as shown above, is the sum of the surface-areas of the

two cones.

58. Let us consider* again the following figure, in which the

strain is represented. In order to have a minimum surface of rev-

olution, the curve which we rotate must satisfy the differential

equation of the problem. If, then, we had a minimum, this would
be brought about by the rotation of the catenary; for the catenary

is the curve which satisfies the differential equation. But in our

figure this curve can produce no minimal surface of revolution for

two reasons: 1° because, drawing tangents (in Art. 59 it is proved

that there exists an infinite number) which intersect on the X-axis,

it is seen that the rotation of PoP\ is the same as that of the two
lines P^ T and P^ T, as shown ^
above, so that there are an infi-

nite number of lines that may
be drawn between /•„ and P^

which give the same surface of

revolution as the catenary be-

tween these points; 2° because

between /o a^nd P\ lines may be

drawn which, when caused to

revolve about the X-axis, would
produce a smaller surface-area

than that produced by the rev-

olution of the catenar}'. For the surface-area generated by the

revolution of P^P-l is the same as that generated by P^P^'Pl'Pl.
But the straight lines P^P^' and PlP^' do not satisfy the differen-

tial equation of the problem, since they are not catenaries. Hence
the first variation along these lines is < o, so that between the points

* See also Todhunter, Researches iu the Calculus of Variations, p. 29.
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Po'. Pd' and P^, P-l' curves may be drawn whose surface of rotation

is smaller than that generated by the straight lines /o'/'o" and

pip:'.

The Case II, given above and known as the transition case,

i. e., where the point of intersection of the tangents pass from one

side to the other side of the j'^-axis, affords also no minimal surface,

since, as already seen, there are, by varying the quantity a (Art. 56),

an infinite number of surfaces of revolution that have the same area.

59. In Case III we had two roots of m, which we called m^
and ^»2, where m^^m-^. We consider first the catenary with par-

ameter m^. This parameter satisfies the inequality

2 /**7 2 -x/ ^f 2 A*7_ 2V y^ — m^'- y y} — m/

The equation of the tangent to the curve is

dy _ y' — y
ax X — X

where x' and y' are the running coordinates. The intersection of

this line with the ^-axis is

I _ y '_ yX — X — — —;;—/ , , or X — X
-J / _, ,

dy/ax dy/dx

X = X — m
I (x-x„')/m_ g-(x-x/)/mJ

J. e.,

Hence, when x=.xd, ;r'= — oo, and when ;i:= + co, ;t'== + oo.

On the other hand, dx'/dx is always positive, so that x' always

increases when x increases, and the tangent passes from — oo along

the ^-axis to + oo, and never passes twice through the same point.

It is thus seen that there are an infinite number of pairs of points

on the catenary between the points Pt> and P^ such that the tan-

gents at any of these pairs of points intersect on the ^-axis, and

there can consequently be no minimum. Such pairs of points are

known as conjugate points.

When 'm=m2, the tangents intersect above the X-axis, and

there is in reality a minimum, as will be seen later.
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60. Application. Suppose we have two rings of equal size

attached to the same axis which passes perpendicularly through

their centers. If the rims

of these rings are connected

by a free film of liquid (soap

solution), what form does

the film take?

By a law in physics the

film has a tendency to make
its area as small as possible.

Hence, only as a minimal

surface will the film be in

a state of equilibrium. Let
O be midway between O'

and O" . The film is sym-

metric with respect to the

00" and OL axes and has

the form of a surface of

revolution about the 00"
axis, this surface being a

catenoid. The line OL is the

axis of symmetry of the gen-

erating catenary. Construct

the tangents OP" and OP'
from the origin to the cate-

nary. Only when P' and P"
are situated beyond the rims

of the circles will the generat-

ing arc of the catenary be free

from conjugate points, and

only then will we have a minimal surface and a position of stable

equilibrium of the film.

61. We saw (Art. 38) that all catenaries having the same
axis of symmetry and the same directrix may be laid between two
lines inclined approximately at an angle tan ~'

(3/2) to the directrix

and which pass through the intersection of the directrix and the
axis of symmetry. All catenaries under consideration then are en-

sconced within the lines OP' and OP" and have these lines as tan-

gents. The arcs of these catenaries between their points of con-
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tact with O T' and O T" do not intersect one another. Through
any point P^ inside the angle T' O T" will evidently pass one of

these arcs, and the same arc (on account of the axis of symmetry
OL of the catenary ) will contain the point P-^ symmetrical to P^ on

the other side of OL. The arc P^Px contains no conjugate point

(Chap. IX, Art. 128), and therefore generates a minimal surface

of revolution. Further, this is the only arc of a catenary through

the points P^, and /\ which generates a minimal surface.

Suppose that we started out with our two rings in contact

and shoved them along the axis at the same rate and in opposite

directions from the point O. As long as P^ and P-^ are situated

within the angle T'OT" (or what is the same thing, as long as

PoOPx< T'O T") then the tangents at P^ and P^ meet on the upper

side of the X-axis and there exists an arc of a catenary which

gives a minimal surface of revolution and the film has a tendency

to take a definite position and hold itself there. But as soon as

the angle PoOP^ becomes equal to or greater than T'O T" this ten-

dency ceases and the equilibrium of the film becomes unstable. As
a matter of fact (see Art. 101), the only minimum which now ex-

ists is that given by the surface of the two rings, the film having

broken and gone into this form.
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CHAPTER IV.

PROPERTIES OF THE FUNCTION F{^X,y, x',y).

' 62. Consider the general integral of Art. 13:

4

where /^ is a given function of the four arguments, x, y, x\ y', the

quantities x' and y' being written for dx/dt and dy/dt; further

we must regard i^ as a one-valued regular function of these four

arguments, one-valued not in the analytical sense, but only for real

values of the arguments; x and y are defined for the whole plane

or for a connected portion of it, while x' and y' are to be consid-

ered as variables that are not limited, since they determine the

direction of the tangent, and it is supposed that we may go in any

direction from the point x, y. In our problem new assumptions

are made regarding x and y, but not regarding x' and y'* We
further assume that the functions x, y, x' and y', are capable of

being differentiated, and that the curve is regular throughout its

whole extent, or is composed of regular portions. Consequently

X and y considered as functions of t and written x{^ t), y{ t) are one-

valued regular functions of / throughout its whole extent or

throughout the regular portions ; in the latter case we shall limit

ourselves to one regular portion. If we did not make this assump-

tion, the curve could not be the subject of mathematical investiga-

tion, since there is no method of treating irregular curves in their

generality ; and, if we wish the rules of the differential and integral

* A limitation has to be made, however, if for certain values of x', y' the function F
becomes infintely large. Such cases must be excluded from the present discussion.
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calculus to be sufficient, then we must first apply our investigation
to such functions, to which the rules are applicable without any
limitation

; that is, to functions having the above properties.

63. If we find a curve which is regular and which satisfies

the conditions of the problem, then it still remains as a supple-
ment to prove that it is the only curve which satisfies the condi-

tions of the problem.

For example, it is found that of all regular closed curves of

given perimeter the circle is the one which encloses the greatest

surface-area; a priori, however, it is not known that a regular

curve satisfies the problem. We know that of all polygons with
a given number of sides and having a given perimeter the regular

polygon has the greatest surface-area, and we thus come to the

conclusion that the circle, to which the polygon approaches when
the number of sides is increased, will have the greatest surface-

area of all the closed curves ; however, no one will recognize in

this a rigorous proof, and in fact there still remains a peculiar

artifice to prove this property of the circle.

64. The chief difficulty in all analysis consists in giving a

strenuous proof that the necessary conditions, that have been

found for the existence of a certain property, are also sufficient.

In analytical researches we make conclusions in the following man-

ner : If the analytical quantities exist, which are required

through the problems that have been set, then they must have

certain properties ; this gives the necessary conditions for the

sought functions. It remains yet reciprocally to prove : If the

conditions for an analytical object (curve, surface, etc. ) are ful-

filled, then the analytical object satisfies the conditions of the

problem.

We therefore presuppose in our investigations, that the re-

quired functions are regular in their whole extent, and we seek

the necessary conditions for the function which are given from

the problems. Finally we will free ourselves from the limitations

as far as it is possible, and see whether also the functions which

have been found correspond to the conditions of the problem.

65. The development of a mathematical idea is, as a rule,

first suggested by a concrete instance. We assume, for example,

the existence in nature of something which we call the area of a

limited plane. This area we express by a mathematical formula.
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We extend our formula and talk of the area of a curved surface.

The mathematical formula exists. That to which it corresponds

in nature may or may not have an objective existence. The word
"area," however, is defined for us, and is limited by the mathe-

matical formula. When the formula ceases to be intelligible,

ceases to have a meaning and to give a value, then also does the

idea "area" cease to exist for us. We must always presuppose

those limitations to be involved in our symbols which permit of

the formula having a meaning.

66. Only for regular curves do we compare our integrals;

for such curves alone have they a meaning. Among this class of

curves we seek one which gives a maximum or a minimum value of

our integral. And when we put our theory into practice we as-

sume the non-existence of quantites other than those which our

theory has actuall)'^ compared. Here we run a risk.

It may be that in some particular problem we have assigned

a certain role; it may be also that, as far as our theory goes, we
are correct in assuming the possibility of the existence of all the

regular curves that are compared with one another and that their

roles relative to one another has not been misstated. But it may
be that there exists in nature the possibility of quantities other

than those defined by our definite integrals along regular curves,

and these quantities may have the same essential properties rela-

tive to the problem in question as our various definite integrals.

It may be also that to one of these quantities nature has assigned

that very role which w^e have been seeking among our definite

integrals.

When we apply any mathematical theory to objective reality,

we make assumptions in the way of continuity, differentiation, etc.,

regarding the possibilities which are permitted in nature. The
question arises, do our hypotheses include all possibilities?

67. We may emphasize the fact that in the development of a
general theory, as a rule its scope is not determined beforehand.
The quantities and functions to which we must apply the opera-

tions involved are named a priori, but formulas are developed on
the supposition that the operations involved are feasible and have
a meaning. The scope of the formulae is afterwards defined by
the territory in which all the steps involved have some significa-
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tion, or by the exclusion of any realm in which they would be in-

capable of interpretation.

68. We will now prove some important properties of the func-

tion F (Art. 62). In the problems which we have discussed the fol-

lowing is to be observed : the value of the integral, which is to be
a minimum, depends in all cases only upon the form of the curve
which is to be determined, not upon the manner in which x, y are

represented as functions of a quantity /.

For example, if in the first problem we write the integral in

the form
X,

JWi+ (§)''='--

Xff

then t is exactly equal to x, and it is clear that the value of this

integral is the same as it was for the previous form (Art. 7).

If we write for t any function of another quantity t of such a

nature that to the values 4 and /j of / the values Tq and t^ of t cor-

respond, and that the curve with increasing t will be traversed in

the Scune direction as in the first case with increasing t, then the

integral must remain unaltered, if it is to be independent of the

manner in which x, y are represented as functions of the quantity

t; that is, we must have as the integral / of Art. 62

The simplest function of this kind that we can write for ^^is t=^kT,

where k represents any arbitrary but positive quantity. Hence

considering x, y as functions of r in the left-hand side of 1), we

have

h ^1

r„/ dx dy\.. f;^)', ^ ^ dx \ dy\,.

J ^f'>'^ TV dt)
^^
=J ^y^'^'-k -dr'TcdrS

^^'
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hence

J I dr dr^ J I k dT' k dj)

Since this equation must be true for any arbitrary positive

vakie of k, which however is not necessarily a constant, but may
be any continuous positive function, it follows that the functions

to be integrated must themselves be equal for every positive value

of /',• and consequently

f{x V
"^'"^ '^^^-UfIx r i— i-^V'^

V'^' Tt- dr)
~^^y^^^'

j^ ^i^' J. ar)
'

or, writing k=-\ /k

.

3 ) F(x, y, kx . ky' ) =k F{x,y, x ,y' ).

That is, if the integral / is to depend only upon the form of

the curve (or in other words, upon the analytical connection be-

tween X and jv), then F{x, y, x , y'), with regard to x and y
7nust be a homogeneous /unction of the first degree. This con-

dition is also sufficient to assure that the integral depends only

upon the form of the curve; for consider x,y first expressed as func-

tions of a quantity t and then as functions of a quantity t, and if

the.se functions are of such a nature that the curve is traversed

from the beginning-point to the end-point when t takes all values

from ta to t-^, and r all values Tq to Tj, then we can write dt/dT= k,

if t increases at the same time as t . Since ^ is a positive quantity,

the correctness of the expression 2) follows from the existence of

3) and at the same time also the correctness of 1).

It follows also that

dF{x,y,kx;,ky') _ j
ZF{^x,y,x',y') _ dF(x,y,x',y')

d(kx') d(kx') ~' dx'

-.--F^'-''{x,y,x!,y'). say.

In the same way the partial derivative of F with respect to

its fourth argument is invariantive and may be denoted by
F'-\x, y, X , y ).
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69. The condition that F{x,y,x',y) must be a homoge-
neous function of the first degree with regard to x' and r' is gen-

erally expressed in another manner. In fact, it is nothing else

than the condition of integrability of F. For if F{x,v, x ,y') dt
is to be an exact differential, so that, say, Fi^x, y,x' , y )—d^, then

the equation

F ( x,y,x',y' )= ( d^/dx) x' + ( d<i>/dy )y' -l ( d<^/dx' ) x" ;- id'i>/dy' )y"

must exist identically.

Since no second differential quotient is present in F, it fol-

lows that d(f>/dx'= o and d^/dy'= o, /'. e., 4> does not contain ex-

plicitly x' or y'j and therefore

F{x, y, x\ y'

)

^ {d<^/dx )
x'

-;-

(

d(^/dy )y'.

But this is nothing more than that /^ is a homogeneous function

of the first degree in x ,
y'

.

This is everywhere the case in the examples given in Chap. I.

70. If the curve is of such a nature that one may regard the

one coordinate as a one-valued function of the other and in such a

way that for every value of x between two limits x^ and x^, there

corresponds only one definite value of y, and that x continuously

increases when we traverse the curve from the beginning-point

to the end-point, then we may choose for t the quantity x itself,

and therefore write the integral in the form

X,

4) / -- f Fix, y, 1, dy/dx) dx,

Xf^

as it is usually written.

71. This representation is not always true, since the above

conditions which are necessary are not always fulfilled; for ex-

ample, in the fourth problem of Chapter I we must distribute the

)-et unknown curve into several parts, and this is not always con-

venient.

On the other hand, a representation such as given above is

always possible, if we introduce the quantity /, since one could in-

troduce as the variable / the arc 5 of the curve measured from the
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beginning-point. Besides in the form 4) it sometimes unavoid-

ably happens that dy/dx and consequently F becomes infinite

within the limits of integration; on the other hand it is generally

possible so to choose t that this is not the case.

For these reasons, in spite of the fact that many developments

become more cumbrous, it is preferable to treat the integral / in

the form

A

f --= jF {x, y, x',y') dt;

4

for on the other hand its great symmetry overbalances the fault

just mentioned.

72. Analytical condition for F{x, y, x ,
y').

In the relation (Art. 68)

F{x, y, kx\ ky^=kF{x, y, x\y'),

write k=l + hj then is

F[x,y,(l + /t)x',(l+A)y']=(l + h)F(x,y,x',y'),
or,

where
F=F(x,y,x',y').

Therefore equating the coefficients of h :

which again is the condition of homogeneity.

73. DifEerentiate the above equation [1] first with regard to
x' and then with regard to y', which is allowable, since i^ is a
regular function, and x', y' vary in a continuous manner, and we
have

[2]

^ d-F ,
, d^'F

a.) ^^-i-,x -;-

^'P ' . ^-F , (
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CHAPTER V.

THE VARIATION OF CURVES EXPRESSED ANALYTICALLY.

THE FIRST VARIATION.

74. In Chapter II we considered examples of special variations.

The method followed provided for the displacement of a curve in

one direction only, in the direction parallel to the X-axis, and is

consequently applicable only to the comparison of integrals along

curves obtained from one another by such a deformation.

We shall now give a more general form to the variations em-

ployed and shall seek strenuous methods for the solution of the

general problem of variations proposed in Chapter I. After de-

riving the necessar}' conditions we shall then proceed to discuss

the stifficient conditions. In order to develop the conditions for

the appearance of a maximum or a minimum of the integral

H
1) I -^. jJF{x,y,x\y')dif,

it is necessary to study more closely the conception of the varia-

tion of a curve and fix this conception analytically.

By writing instead of each point x, y oia. curve (presupposed
regular) another point x-^^, y-{-T}, we transform the first curve

into another regular curve. This second curve is neighboring the

first curve if we make sufficiently small the quantities ^ and tj

which like x and y we consider as one-valued continuous functions

of/.

75. The following is one of the methods of effecting this re-

sult. Let ^ and 17 be continuous functions of t and also of a quan-
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tity k. We further suppose that i and t) vanish when k=o for
ever}^ value of /, for example

^=k iiit) ; 17 r-_=/^ &.(/),

u and V being finite and continuous functions of /.

The functions u and v and consequently also | and t] are sub-
ject to further conditions. It is in general required to construct
a curve between two given points which first may be regarded as
fixed. Later the condition of their variability may be introduced.
Consequently we have to consider only such values of t that f , t]

and consequently u, v vanish on the limits.

If for X, y we vi-rite x^-^, .I'-l-i?,, then for x\ y' we must write
*^'+ r.y+ V- Further, the function F(x+^, y-\-y], x -rt.

y' -r)'

)

must be developed in powers of ^, tj, |' and 17'. For the conver-
gence of this series, it is necessary that f, 77,

^' and 7?' have finite

values.

Now, if we write

^=k sin t/k" ; ri=k cos t/t\

then we have

-J}=k^~" cos t/t'\ ^= -^''"" sin t/ k\

so that, whereas ^ and 17 have infinitely small values for infinitely

small values of ^, the quantities —^ , -^ vacillate for «= 1 be-
dt at

tween +1 and —1 and become infinite for «>-l. We shall conse-

quently consider only such special variations in which u and v

are functions of / alone, and which with their derivatives are finite

and continuous between the limits 4 and t^. We thus restrict, in

a great measure, the arbitrariness of the indefinitely small variations

of the curve, and thus exclude a great many neighboring curves

from the discussion. However, there exist among all the possible

neighboring curves also such which satisfy the above conditions,

and with these we shall first establish the necessary conditions and

later show that the necessary conditions thus established are also

sufficient for the establishment of the existence of a maximum or

a minimum value of the integral. (See Arts. 134 et seq.)
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76. We have instead of one neighboring curve a whole bun-

dle of such curves if we make the substitutions

y y +ei?
,

x' x' + ^^\
y' \y'+^v',

and let e, a quantity independent of the variables in F(x,y, x\y'),

vary between +1 and —1.

The total variation that is thereby introduced in the integral

of the preceding article is

k

to

which developed b}^ Maclaurin's Theorem is

4

Further (see Art. 25)

1.2

hence, equating coefficients of e,

4
But

4 i
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SO that 2) becomes

^fdF >
,
dF 7-

or

4
where

r -^ _ -^ / aF\

/// //
77. Owing to the hypotheses that x'^ y',-ri ~r vary in a con-

at at
tinuous manner with t [that is, within the portion of curve con-

sidered no sudden change enters in the direction of the curve] , the

first variation of the integral / may be transformed in a remark-

able manner.

We had

r -^^ dSdF\
' ~ dx dt\ dx' \

and also (Art. 72)

Therefore

/^(^.^.^'.y) =
^'|5+y|f,.

dF yJ!^, y ^'F

dx dx'dx dy'dx'

dF
and differentiating ^5—, with respect to /, we have

ax

d(dF\ _ d^F dx d^F dy d^F dx' d'F dy
~dAdx)~ dxdx' dt dydx' dt dx'^ dt dy'dx' dt'
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Hence,

'
'" '•'

\dxdy' dydx'l \dx'' dt
~' dy'dx' dt J

Writing^ = y'^F, (Art. 73 ), and ^^, = -x'v'F,, and de-
dx^ oy ax

fining G by the equation

d^F d^F p(,,'dx' ,dy'\

dxdy' dydx' 'V dt dt J'

it is seen that
G,= y'G.

In a similar manner it may be shown that

G. = -x'G.

78. Lemma. If 4>{t) and i|/(/) are two continuous func-

tions of t between the limits 4 cind t^ and if the integral

k

J<f>(t) ^lj(t) dt

to

is always zero, in whatever m.anner t/i(/) is chosen, then neces-

sarily <f>{
t) must vanish for every value of t between 4 and t^.

The following proof, due to Prof. Schwarz, is a geometrical

interpretation of a method due to Heine.*

Suppose it possible that the function (j>{t) has a finite value

for a point t—t' situated between 4 and t^. Then owing to the

continuity of (l>{t} we can find an interval t'—d. . . .t'-\-d within

which 4'{t) also has a finite value.

We write the integral in the form

A t'-d t' + d
f^{t) ^{t) dt=j'<l>(t) t/»(/) dt+fif>(t) i|»(/) dt

to 4 t'—d

^fcl>{t)^{,t)dt.

t'+d
'Heine, Crelle, bd. 54, p. 338.
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The second integral on the right hand side may be written

t' -^d

M
J»/»(

i) dt,

t'-d

where M is the mean value of ^( t) for a value of t within the in-

interval t' —d. . . .t' ^d.

We shall show that it is possible to determine a function i/»(/)

which will render this integral positive and greater than the sum
of the first and third integrals in the above expression, while at

the same time »/»( 4) = »!»( /,) = o.

Let us form the equation

d'-S
;>^-i + ^.i>'=^.

which represents the parabola y = 1 — — and the .Y-axis.

Consider next the equation

where e is a small quantity. By taking c sufficiently small, this

curve can be made to approach as near as we wish the parabola

and the ^-axis.
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Solving the above equation for y, we have as the two roots

(two branches)

The branch
2

is symmetrical with respect to the K-axis, and for values of x, such

that —dLxL^d, the ordinate of any point of the curve is greater

than the corresponding ordinate of the parabola.

For the parabola ;»'=1 + -^., the integral

+d

j ydx=A/3d.

-d

It follows then that for the curve we must have

^d

J[ (i-}i)WKf-S'*"']*>it
-d

for \x\-=d, we have>'=e; and from the inequality

it follows for \x\'> d, that>' is positive and <€. For the lower
branch y is negative and the curve

follows the parabola to infinity as shown in the figure. It is how-
ever the upper branch which we use, since y is less than e, as soon
as X passes the value d on either side of the origin.
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Instead of the integral last written, take the integral which
has the same value

t'-d

Writing

we have

h t'—d t'-^d /i

^^{t)x{t)dt^^4>{t)x{t)dt-^\<l>{t)x{t)dt+\<i>{t)x{t)dt

4 4 t'~d f+d

t'~d t'+d A

=M' \x{t)dt+ M \x{t)dt +M"\x{t)dt

4 t'-d t'^d

+M"{<^-\{t,-t'-d),

where M\ M and M" are mean values of <^(^) in the respective in-

tervals and where [•< e ] denotes that the quantity that stands

within the brackets is less than e.

It is seen that by taking e sufficiently small that the sign of

A

the integral J ^ ( /) x ( /) ^^f is determined by that ofM 4/3 fi?and

4

consequently this integral is different form zero.

Instead of the function x(/), write

where fn and n are positive integers.
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We see that i/(( 4)= c>=t|>(/i), and as above, it follows that

f<f>(t. xjj( t )clt^O.

4

Hence, on the supposition that <^( / )^o for a point of the curve

alonjj^ which we integrate, it follows that a function »//(/) can be

found which causes the above integral to be different from zero.

But as this integral was supposed to be zero for all functions

i/»(/f ), it follows that we must have ^{t")= o for all values of t be-

tween tf, and /,

.

79. In the expression

1.2

unless 8/ and e always retain the same sign, it is necessary that

8/ be zero in order that A/ be continuously negative or continu-

ously positive ; i. e., in order that the integral / be a maximum or

a minimum ( see Art. 26 ).

Substitute for G-^ and G2 their values in terms of G from Art.

77, in the expression for 8/ of Art. 76, and we have

If we suppose that the points P^, and P^ are fixed so that

$=o=r) for them, then the boundary terms vanish. Further, since

y^—x'ri is an arbitrary and continuous function of t, it follows

from the above lemma that, in order for 8/ to be zero, G=^o for

every point of the curve within the interval 4- • • A- G can not

have a finite value different from zero for isolated points on the

curve, since this portion of curve must be continuous in order that

the integral may have a meaning.

The differential equation G=^o of the second order is a ne-

cessary conditionfor a maximum or a minimum value of I, and
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will afford the required curve if such curve exists. We note
that it is independent of the manner of variation, as the quantities

^ and 1) do not appear in it.

From the relation (see Art. 77)

k

8/=J {G^^-^G.j])dt^o.

to

it follows that

I
Gi$dt-ir \ G-^i]dt^ o.

to tg

Among all possible variations there are those for which -q^o,

and consequentlv

A

fG,^dt=^o.

k

As above we have then

Gi--=o,

and similarly

Further, if we multiply y'G=G^ and —!^G=Gt, respectively

by v' and — ,r', we have by addition

{y"-^x"-)G^o.

and as x and y cannot both vanish simultaneously, it follows that

G=o. Hence^ the equations Gi=o, G2=o on the one hand, and

G^o on the other, are necessary consequences of one another.

The equations (7i=o=6^2 ^^^ often more convenient than

G=^o; especially is this the case if the function F does not con-

tain explicitly one of the two quantities x and y. If .-c, for instance,

is wanting, then -^—= f , and from

^ dF d dF
ox dt ox

d F
it follows that -^7 =- constant.
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80. The curvature at any point of a curve is denoted by

xy —y X

p [x'^+ y'^y/^'

and owing to the equation

we have

d^F d^J^ T^ ( I II II i\

1 dydx' dxdy'

an expression which depends upon ;t:,>'^;r'^jv' alone and not upon the

higher derivatives.

It is thus seen that through the equation G^o, a definite

relation is expressed between the curvature of a curve at a
point, the coordinates and the direction of the tangent of the

curve at this point.

81. Let a point P on the curve be transformed by a variation

into the point P\ and let the displacement PP' be denoted by v ;

further, let the components in the x and y directions be ^ and 17,

while w-s. and w^ denote the components of this displacement in the

direction of the normal and the tangent to the curve at the point P.

Let X denote the angle between these directions and let the

direction cosines of the normal be denoted by

d X
'dt

dy
It

v(^r -^ (f
J

" ~mw}
X V

; /. e., by -p and ^
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Then from analytical geometry,

Wr=^ cos X+ 7, sin X=^' ^+->^'^
,

zVjf=T} COS \—i sin X

and therefore

and w^T+ tt^N=^^+V-

These expressions substituted in the formula for 8/ (Art. 79) give

8/=— I WjiGds +

to

,dF ,dF
F Wr ,

oy ex
A

From this it is seen that only the component of the variation

which is in the direction of the normal enters under the inte-

gral sign.

82. By means of the formula below we will prove that the

variation in the direction of the tangent bringsforth only such
termsfor the first variation that arefreefrom, the sign of in-

tegration.

As in Art. 76, write

A

or ^[^F . ^F ., ZF dF ,\ ,,

4

and, substituting in this expression £=2/—— , tj — v -f-, we have
ds ds

k

Ci IdF dx dFdy\
,

dF d I ^dx\ ^dF d 1^ dy \\ ,,
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Noting that

k

^^^(^^)=[if^^];:-f^^iif)*J 'dx dt

it is seen that

K

^^ Cj dxVdF dldF\\^dy\dF d{dF\\.,

4

+
\_dx' ds ^ dy' dsX^

J'
= \G{y'^-x'r))dt+

But

\jdx' ds ^ ay ^s J,;

,> , t dx , dy v[ idx ^i dy\j.—

so that everything under the sign of integration drops out, leaving

s. [dF dx
,
dF dy~V^

Hence, if we make a sliding of the curve by the substitution

X

y

and resolve this sliding into two components, of which the one is

parallel to the direction of the tangent and the other is parallel

to the direction of the normal, then the result of the sliding in the

direction of the tangent is seen only in the terms which have
reference to the limits, and all these terms are exact differentials

under the sign of integration, while the eflEect due to a sliding in

the direction of the normal is shown in the formula of the preced-

ing article.

83. The expression for the first variation has been obtained
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on the hypothesis that the elements of integration have for each
point of the path of integration a one-valued meaning. In case

the path involved, discontinuities, it could be resolved into a finite

number of portions of regular curve, and along each portion S/
would have a meaning similar to that of the preceding article. It

is assumed, then, that the required curve, which is to furnish a

maximum or a minimum value of the integral, is regular in its

whole trace, or, at least, that it consists of regular portions of

curve. In the latter case we shall at first limit ourselves to the

consideration of one such portion. Within this portion of curve

not only x,y but also x!,
y' will be one-valued functions of t. This

assumption is already implicitly contained in the assumption of

the possibility of the development of A/ by Taylor's Theorem;
for otherwise the derivatives of F according to x' and y' for the

curve which has to be developed could not be formed.

That these assumptions have been made is due to the fact

that otherwise the curve could not be the object of a mathemat-

ical investigation, since there are no methods of representing ir-

regular curves in their entire generality. If therefore one is con-

tented with the rules of differentiation and integration, he must

extend these considerations over only such functions to which the

rules may be applied, that is, to the functions having the proper-

ties above. There are many problems in geometry and mechanics

for which the above hypotheses cannot be made.

84. The following problem proposed by Euler illustrates

what has just been said

:

Required a curve connecting two fixed points such that the

area between the curve, its evolute and the radii of curva-

ture at its extremities may be a minimum.

The analytical solution of this problem is the arc of a cycloid,

if indeed there exists a minimum. We shall now show that such

is not the case. For join the two fixed points A and ^ by a

straight line which divide into n equal parts, and draw alternately

above and below the line n semi-circles having the n parts of the

line as diameters.
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All the radii of curvature of each semi-circle, *. e., of each por-

tion of curve which is to be a minimum, intersect on the line A B
and it is evident that

2 \ln]
•n AB^

must be a minimum.

If we increase the number n sufficiently, we may make the

above expression become arbitrarily small; and in the limit « = c»

the curve will tend to become the straight line AB. From this it

is evident that there is not present a minimum surface-area.

85. The same result would have been obtained, if instead of

the straight line AB we had taken the arc of a cycloid through

these points, and had then drawn a system of small cycloids

having their cusps along the large cycloid. (See Todhunter, Re-

searches in the Calculus of Variations, p. 252.) The reason that

a minimum is not given through the large cycloid is due to the

fact that such a minimum is ofiEered by an irregular curve, and that

this irregular curve is not included in our analytical research.* It

follows that our assumption made regarding the regularity of the

curve is out of place and leads to something untrue.

But in spite of the not improbable possibility that the curve

which is to satisfy a given proposition is irregular, we must make
the hypothesis that the curve is regular, since we come to analyt-

ical difEerential equations only by limiting our investigations to

such regular curves, and the most general theory of functions

teaches that in turn through these diflEerential equations are de-

fined the analytical functions which in their whole extent have ex-

isting derivatives.

86. To avoid any misunderstanding, we repeat what we have
already said in the previous Chapter: it is not asserted that

there is anything in the nature of the problem whereby one may
a priori conclude that the required curve must be regular. Hav-
ing these hypotheses, we fix our ideas and draw deductions. After
the solution of the problem has been effected, we have to make in

' See also Moigno et Liadelof, Calcul de Variations, p. 252.
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addition a special proof that the derived curve has all the required

properties, and that this curve is the only one which has them.

The chief difficulty in all such problems, as we have shown
above in the special problem of approximation (or of the passing

to a limit), consists in showing that the regular curve that has

been found, found indeed from the necessary conditions, also at the

same time satisfies the sufficient conditions, and therefore satis-

fies all the requirements of the problem.
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CHAPTER VI.

THE FORM OF THE SOLUTIONS OF THE DIFFERENTIAL
EQUATION G=0.

87. Before we proceed to the development of further condi-

tions for the existence of a maximum or a minimum of the integral

k

r=^^F{x,y^x!^y')dt, [1]

4

we shall endeavor to investigate more closely the nature and form

of the differential equation G=^o.

We assume that a curve satisfying the differential equation

> + ^'(-'^-^t)= ''' radx dy dy dx'

for which F-^ is different from zero, is known. Let A be the

initial point of the curve, and let AA' be the direction of the curve

at A. We suppose that the differen-

tial equation G=o takes iits simplest

form, if we regard one of the coordi-

nates as a one-valued function of the

other. In the integral f above, the

X dependence of the quantities x,y upon
C* the quantity t is subject only to the

condition that a point is to traverse the curve from the beginning-

point to the end-point, when t, continuously increasing, goes

from 4 to ti.
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In an infinite number of ways we may introduce in the place
of / another variable t, where

It is only necessary that the function / be so formed, that with
increasing t also t increases. In place of t we may reciprocally
introduce again

The form of the integral / and of the differential equation G=o
does not change with these transformations.

Under certain conditions we may choose for t the coordinate
X iself as independent variable, this being the case when on trav-
ersing the curve from the initial-point to the end-point, x contin-
uously increases. In particular, we may take as the X-axis the
tangent at the initial point A and take the direction of the curve
as the positive direction of the X-axis. Since we consider only
regular curves or curves composed of regular portions^ it follows,
if the point P traverses the curve starting from the point A, that
its distance from the normal at A continuously increases for a cer-

tain portion of curve. Hence for this portion of curve, if we take
the positive direction of the normal at A as the positive F-axis,

there is only one value of ^ for every

value of X. Consequently for a definite

portion of curve we may always assume
that, by a suitable choice of the system
of coordinates, the second coordinate

may be regarded as a one-valued func-

tion of the first. We have therefore

only to mcike a transformation of coor- A.

dinates.

Let the coordinates of the new origin of coordinates be a, 6,

and further let

x=a+gu+£-'v,y=5+h'U+h'v, [3]

where u and v are the new coordinates.

If X is the angle between the X-axis and the «-axis^ we have

the well-known relations

^=cos X, A=sin X, ^'=— sin X^ h'=cos X. [4]
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The integral / becomes then^ since u may be regarded as the

independent variable,

u

o

which we shall for brevity denote by

u

o

If we further write -7— = v' then [5] becomes
au

u

1=^ /{u,v,v')du. [5-]

o

We have a differential equation to determine z' as a function

of u, if we apply to this integral the same methods as were used

in Arts. 74-80 of the last Chapter.

Let the curve be subjected to a sliding in the direction only

of the ordinate v, and therefore write v-\-v in the place of v, where
z' is a very small quantity which vanishes at the end-point and the

initial-point of the portion of curve under consideration. The in-

tegral which has been subjected to variation is

We next develop A/ according to powers of v and —7— • The

aggregate of the terms of the first dimension is

o
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or, since

3/ ^^_^/- 3/\ - d df
dv' du du \ "dv' I du dv'

'

we have

The quantity in the square brackets vanishes, because v=o on the

limits. Further, we must have

Since v is arbitrary, subjected only to the condition that it must
vanish on the limits, it follows from the lemma of the preceding

Chapter that

_^d/ _d£ _^^
du dv' dv

or

dv'^ du ^ dvdv' ^ dudv' dv '
^ ^

88. If one of the coordinates can be regarded as a one-valued

function of the other, the equation [2"] may take the place of the

form [2] for G=o.
cP'fWe shall now show that the quantity -^ which enters in [2"]
ov

is identical with F-^, provided that in the function F {^x,y, x',
y'~)

X and y may be regarded as functions of u alone.

Since f{u,v,v')^F{a+gu+g'v, b+hu+h'v, g+g'v'.h+h' v')

^F{x,y,x',y'),

it follows that

3/ _ 9^^' , 3^ h'W " dx'^^ dy'

and consequently

3y _3!^^'. + 2-^^yA'+ ^h'\
W^~ W^^ + ^ ^x'dy'

^"^ ^ dy'^
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On the other hand by its definition F^ was determined by any of

the relations

:

From this it follows that

|Z= {g'^y^-2^'h'x'y+h''x''}F,

= {g'y'-h;x'YF,

^{g'h-h'gYF,
= {—sin^X— cos^X}^i^i;

or finally,

^'-^ -F rsi

Hence [2"] may be written

^ du dvdv' dudv' dv
Since we have

I _dv
du'

and /{u,v,v')^F{x,y,x',y'),

where ^r^jV are determined in terms of u,v from [3], it follows

that

^^ d^v
^

d^F dv
^

d^F ^F ^c [2*]
dt^ dvdv' du dudv' dv

89. In the theory of differential equations it is known that

every differential equation of the form [2*] may be integrated in

the form of a power-series of the independent variable u.

As a special case we have the following :

Suppose 1) that at the initialpoint of the curve represented

by the power-series which is to beformed, we have

u = o,v=^ba,

where bg is an arbitrary constant;
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2) that the direction of the curve at the initialpoint is deter-

mined by the arbitrary constant

dv _ ,

du
= 2'o.

then V for sufficiently small values of u may be expressed in
the power-series

v=b^JrVo u+...., [9]

where we have assumed that F^ is different from zero at the
initial point {o, bo).

The second and higher derivatives of v on the position

(o, bo, Vo) may all be derived from the differential equation [2*].

Hence, in [9] we have z' as a power-series in u, whose coefficients

contain^ besides the constants had in each problem, only the two
arbitrary constants bo and Vo, which change from curve to curve.

90. If we substitute the expression for v given by equation

[9] in the formulae [3] , we have x and y expressed in terms of u.

In these expressions there appear the constants g, g , h, h', which
depend upon \ and also upon the coordinates a, b of the origin of

the u, V system of coordinates^ and the two constants of integra-

tion bo and Vo, defined in Art. 89. These latter constants vary from
curve to curve. In these formulae, just as in Art. 89, we can ascribe

only small values to the quantity u.

We know, however^ as is seen in the theory of functions^ that

if a curve is given only in a small portion^ its continuation is

thereby completely determined. We therefore need to know the

curve only for indefinitely small «'s in order to be able to follow

its trace at pleasure.

The coordinates x, y of the curve may be represented as func-

tions of / and two arbitrary constants a and ^. Instead of «, we
may introduce an arbitrary function of another quantity^ if only

this quantity increases in a continuous manner, when the curve is

traversed from the beginning-point to the end-point. As already

mentioned, the two constants of integration vary from curve to

curve. If we determine suitably these constants, we can compel

the curve, which satisfies the differential equation G=o, to pass

through two prescribed points.
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In this manner we have a clear representation of the manner

in which the analytical expressions giving x and y are derived

;

X and y are found in general from the equation G—O in the form

x^^<^t,a,^~), y=^{^t,o.,^\ [10]

At the same time it is seen that up to a certain point, at least, x

and y are one-valued and regular functions of ^ and of the two con-

stants of integration a and yS, so that eventually we can also differ-

entiate with respect to these two constants.

91. It seems desirable here in connection with what was
given in Arts. 89, 90 to consider the exceptional case, viz., the one

in which

is equal to zero for the origin {u=o, v=b^ of the curve which

satisfies the equation G^=^o.

We shall see that this is only an exceptional case by showing
the following

:

If we draw around the point («=(?^ f=^o) a small circle, then

this circle may be so distributed into sectors that within each sec-

tor ^=^ is not equal to zero. For we may regard the radius of a

sufficiently small circle about the initial point («=<7^ v—6o) of the

curve in question as the initial direction of this curve. If for v

we write in [8] the power-series given in [9] , we have, by putting

Fj^=o, an equation for the determination of v^,', that is, the quan-

tity which fixes the initial direction. This equation has either no
real roots, and then there will exist no curve starting from the

point {u=Oj v—ba), or Fy vanishes for single z'o"s, and then the

radii determine separate sectors. Within these sectors curves may
be drawn starting from the point {u—o, v=b^) in every direction,

for which F-^ is different from zero. Consequently one can always
assign limits for v^ within which the corresponding curves, satis-

fying the equation G=o and starting from the point {u=o, v=b^)^
have at the origin, at least, an F^ different from zero.
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92. Finally we shall show that the curves starting from the
same point («=o, v=b^) which satisfy the equation G^o lie com-
pletely separated from one another at their initial point.

If we draw a small circle around the point («=o, v^b^)

,

then on its periphery we can easily determine the point u, v in

which it is cut by one of the curves in question. For let p be the
radius of the small circle, so that

u^^{v-h,y=p\ [11]

Writing for v the power-series [9] , we have

p^=(l+z;o'='V+C3«^+....,
or

p^l/l + Z^o'^W + («)2-f

We may revert this series and have u expressed as a function
of p, so that

and therefore \ [12]

v-h^ ''^ P+(p\"+...

These series are convergent for all p's within a certain limit po ,

so that therefore u and Vj the coordinates of the point to be deter-

mined upon the periphery of the circle with the radius p, are

uniquely found for all values of p<Cipo- Consequently at the be-

ginning, at least, the curves which belong to a sector in reality lie

completely separated from one another.

93. The form of the differential equation G — o, where s

is introduced as the independent variable insteadof t. If we in-

troduce instead of t another variable t by writing t equal to a func-

tion of T, we arrive at the same differential equation G ^= o. It

is usually advantageous to introduce the length of arc 5 as the

independent variable.

Since (Art. 68) the derivatives of the function Fw'ith. respect

to its third and fourth arguments are invariantive, we have ( writ-

iner k = — = —- in the formulae of Art. 68)^
Vx'^ + y^ ds
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a
'
^^^'y^^'^y'^ = 7NA ^^^-^^ ^^)'dx

9

From this it is seen that -,^-1- ' ;>—r are independent of the manner
ox ay

in which x and ;>' are expressed as functions of /, and depend only

upon the point in question of the curve and the direction of the

tangent at this point. We have at once

d^F _ d" ^ / dx dy\ 1

dx' dy g ^;r g^ \
' ' ds ds I ds

ds ds dt
and since

^_ 1 d'F<yX,y,x',y'^
'~

x'y' dx'dy'

it follows that

fJ^Y= ^ ^l_F(x^y^^,^]-
\dt) dxdy ^dx^idy \ ' ' ds ds J

ds ds ds ds

If further we write

^dx^dy
ds ds

we have

f(xv~,^\~-'^ ^F(xv'^,^y\,
^V'^'ds ds)- ds ds^'V'^'Ts Ts)'

Hence the equation G=o becomes

a12

V'^'ds ds] o -.dx^V'y'dsds)
ds ds

,
Idxd'^y dyd^x\r:.l dx dy\

^\dsdi-dsd^r\'''y^ds' dsh'-
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94. From the above equation the second and all higher deri-

vatives of X and y with respect to 5 may be explicitly expressed in

terms of a;,>',^, f'

•

as as

For, from the relation

(fr+(g)-'
it follows, through diflFerentiation, that

ds d^ ^ ds d^ '

'--'

If, for brevity, we write

^' f(x y^ ^A- ^'
f(x y^ a

dxd^ V ' VsVs/ a^a^ V ' ' ds ds)
ds ds

^(--i-i)'
we may write the differential equation of the last article in the

form:

\' ^'ds"ds)\dsd^~ds dsy ~ V ' ^' ^' ds)-

With the aid of [*] , we have

ds' ^A '
^' ds' dsl~ds ^ \^' •^' ds' ds) ' /

V [»v]

ds' A '
•^' ds' dsl~ ds I '

^' ds ds/-)

It requires no further explanation to show how from these

relations one can express the third and higher derivatives of x and

y with respect to 5 in terms of x, y, -r and -^ .

95. If, then, /\ nowhere vanishes, and like /^ is a continuous



88 CALCULUS OF VARIATIONS.

function of its arguments, and if H never becomes infinite (see

Art. 149), it follows that ——r and —4 can never become infinitely

large, and are also continuous functions of the arc.

It follows that the curve has no singular point within the in-

terval in question and that the curvature nowhere becomes infi-

nitely large. This may be shown in the following manner : Let
the points x^^, y^ of the curve correspond to the value Sa of 5^ then

owing to the equations [«] of the preceding article, the curve in

the neighborhood of this point may be represented by the equa-

tions

x=x^-^A {s—SoY -f ,

y=y^+B{s-s^y + ....,

where the constants A and B do not vanish simultaneously.

When the values of -^ and -4- derived from these equations are
ds ds

substituted in

it follows that

l=,i.\A^-^B^) {s-s.y^^ j.A.is-s.y^' + ....,

and since this equation is true for all points in the neighborhood
of Xa, y^, it is seen that

A^=A^=....^o,
and that further

|Li=l, A^'+B^^l.

Hence the coordinates of every point of the curve situated in the

neighborhood of x^^, y^ may be represented through the regular

functions

x=x^+A{s—s<,)^ ,

y=y^^B{s-Sa)+.... ,

where A and B do not simultaneously vanish. Since this is true

for every point x^, yo, it follows that the curve can have no singu-

lar points. Hence also the quantities x' a.ndy' can not both vanish
at the same time.
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CHAPTER VII.

REMOVAL OP CERTAIN LIMITATIONS THAT HAVE BEEN MADE.
INTEGRATION OF THE DIFFERENTIAL EQUATION 6^=0

FOR THE PROBLEMS OF CHAPTER I.

96. In the derivation of the formulae of Chapter V, it was
presupposed that the portion of curve under consideration changed
its direction in a continuous manner throughout its whole trace

;

that is, ;»:', y' varied in a continuous manner. We shall now
assume only that the curve is composed of

regular portions of curve ; so that, there-

fore, the tangent need not vary continu-

ously at every point of the curve. Then it

may be shown as follows that each por-

tion of curve must satisfy the differential equation G=o. For if

the curve consists of two regular portions AC and CB, then among
all possible variations of AB there exist those in which CB re-

mains unchanged^ and only AC is subjected to variation.

As above, we conclude that this portion of curve must satisfy

the differential equation G—o. The same is true of CB.

We may now do away with the restriction that the curve

consists of one regular trace, and assume that it consists of a

finite number of regular traces.

97. Suppose that the function F does not contain explicitly

the variable x, and consequently -^=^o. Instead of the equation

G=o, let us take Gi=o, or

dF ddF ^— — ——. = o.

ox at ax
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It follows that

^—J
= constant,

ox

the constant being independent of // a priori, however, we do

not know that -^.^-r does not undergo a sudden change at points of
ax

,

discontinuity of x' and y' . Consequently, the more important is

the following theorem for the integration of the differential equa-

tion G^o

:

Even if x', y', and thereby also the direction of the curve,

suffer at certain points sudden changes, nevertheless, the quan-

tities ^—,, ^—7 vary in a continuous manner throughout the
ox ay

whole curve for which G=o.

If /' is a point of discontinuity in the curve, then on both

sides of /' we take the points t and t in such a manner that

within the portions t. . . .
/' and t' . . . .t

there is no other discontinuity in the direc-

tion of the curve. Then a possible varia-

tion of the curve is also the one by which

/q. . . .T and t' .... 4 remain unaltered and */ \b
only the portion t .... t' is varied. Here
the points r and / are supposed to remain fixed, while /' is sub-

jected to any kind of sliding.

The variation of the integral

I^ §F{x, y,x', y')dt,

4

then depends only upon the variations of the sum of the integrals

f r'

^F{x,y, x',y ) dt +/i^ {x,y, x',/ ) dt.

T /'
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Since the first variation of this expression must vanish, we neces-
sarily have (Art. 79)

t'

0=^ JG{y' i-x' n)dt + JG (y ^-x' v) dt
T /'

Since G=o along the whole curve, it follows that

[dF .dF -^^'

,

[dF >
,
dF y'

The quantities ^ and tj are both zero at the fixed points t and t'
;

and, if we denote the values that may belong to the quantity ^4"

'

dx
according as we approach the point t' from the points r or t' by

m] -mi
the above expression becomes

where {f)' and (17)' are the values of f and tj at the point t' . Since

the quantities (f)' and (17)' are quite arbitrary, it follows that

their coefficients in the above expression must respectively vanish,

so that

that is, the quantities -^r-r and ^^—jvary in a continuous manner
ox oy

by the transitionfrom one regular part ofthe curve to the other,

even if x' and y' at this point suffer sudden changes.
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This is a new necessary condition for the existence of a max-

imum or a minimum of the integral I, which does not depend upon

the nature of the differential equation G — o.

98. The question naturally arises : How is it possible that

the functions -^^-j, -;^—f, which depend upon x' and y' , vary in
ox ay

a continuous manner, even when x' and y' experience discon-

tinuities? To answer this question we may say that the compo-

sition of these functions is of a peculiar nature, viz., the terms

which contain x\ y' are multiplied by functions which vanish at

the points considered. This is illustrated more clearly in the

example treated in Art. 100. The theorem is of the greatest

importance in the determination of the constant. In the special

dp
case of the preceding article, where 3—^ = constant^ it is clear

ox
that this constant must have the same value for all points of the

curve. The theorem may also be used in many cases to prove that

the direction of the curve nowhere changes in a discontinuous

manner, and consequently does not consist of several regular por-

tions but of one single regular trace. This is also illustrated in

the examples which follow (Arts. 100 et seq.).

99. We may give here a summary of what has been obtained

through the vanishing of the first variation as necessary conditions

for the existence of a maximum or a minimum of the integral I:

1) The curve offering the maximum or minimum must
satisfy the differential equation

^_ d'^F d'F
^
j,l ,dy' ,dx'\

^ = d^'-dy^'^^\''dt-^^r'^

or, what is the same thing, the two equations

aF dldF\_^ ^—9^ d ldF\
^'=dx dt\dx']~^' ^^=^~di\dyi'

2) The two derivatives of the function F with respect to

x! and y' must vary in a continuous m,anner even at the points
where the direction of the curve does not vary continuously.
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In order to establish the criteria by means of which it may be

ascertained whether the curve determined through the equation

G = o offers a maximum or a minimum, we must investigate the

terms of the second dimension in A / of Chapter V. First, how-
ever, to make clear what has already been written, we may apply

our deductions to some of the problems already proposed.

SOLUTION OF THE DIFFERENTIAL EQUATION G=^0 FOR THE
PROBLEMS OF CHAPTER I.

100. Let us consider Problem I of Art. 7. The integral

which we have to minimize is

yVx'^ + y'^dt. [1]

Hence
F = yVx'^+y\ [2]

and consequently

dF _ yx'
.

dF _ yy
dx' y'x'^ + y'^' Sy Vx'^' + y'^' [3]

From this it is seen that ^^-y and ^^—^ are proportional to the direc-
ax ay

tion cosines of the tangent to the curve at any point xit), y{t);

and, since -^ and -^r-r must vary everywhere in a continuous man-
ax ay

ner, it follows also that the direction of the curve varies every-

where in a continuous manner except for the case where y — o.

But the quantity Vx''^-{- y''^ varies in a discontinuous manner if x'

and y' are discontinuous ; at the same time, however, y is equal to

zero, as is more clearly seen in the figure below.

Since F does not contain x explicitly, we may use the equation

G, = o, or 1^ = -^=:=^ [4]
ox. y'x^ -I-

y'^

where /8 is the constant of integration. Hence
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The solution of this equation is the catenary

:

-.), }

[5]

[6]

where a is a second arbitrary constant.

101. A discontinuous solution. If we take the arc 5 as

independent variable instead of the variable t, the differential

equation of the curve is

dx o

Suppose that ^=o, which value it must retain within the

whole interval t^. . . .t^. Further, since y^o at the point /i. it

dx
follows that ---=cos^=<? (where ^ is the angle which the tan-

as
gent makes with the X-axis), and that cos<^ must remain zero

until y=o ; that is^ the point which describes the curve must move
along the ordinate P^Mq to the point

dx
Mq. At this point -—- cannot, and

ds

H.

must not, equal zero if the point is

to move to P^. Hence, at M^ there

is a sudden change in the direction

of the curve, as there is again at

the point M-^. The curve giving

the minimum surface of revolution is consequently, in this case,

offered by the irregular' trace P^M^M-^P^. The case where ^=o
may be regarded as an exceptional case. The unconstrained lines

P^M^ and P-^M-^, i. e., x—x^ and x—x^ satisfy the condition G—O,
since y'G=G^, and for these values G-^=o ; also for these lines,

y^o. But G-^o for the restricted portion MJ^-^ and is, in fact,

equal to 1.

102. We may prove as follows that the two ordinates and
the section of the X-axis give a minimum. This is seen at once

when we have shown that the first variation for all allowable

deformations is positive. The problem is a particular case of

Art. 79.
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The first variation may be decomposed into several parts
(cf. Arts. 79 and 81):

p.

Now all the boundary terms are zero, since

ZF _ yx' dF _ yy'

dx' ~ Vx'^
-I-

y'i' 3/ ~
Vx'^ ^y'^

'

and therefore both are zero at the points Mo and M^, while i and tj

are zero at Pq and P,. In the first and third integrals G^=o; in

the second this function equals unity, and if we reverse the limits,

ds is positive, as is also zc/n- Hence^ the first variation S/ is

always positive.

When the arbitrary constant ^^o, the curve consists of one

regular trace that lies wholly above the >Y-axis. Further investi-

gation is necessary to determine when this curve offers in reality

a minimum.

103. In the second problem (Art. 9)^ we have for the time

of falling the integral

J V^gy+a*
to

That this expression may, in reality, express the time of fall-

ing (the time and, therefore, also the increment dt being essentially

a positive quantity), the two roots that appear under the inte-

gral sign must always have the same sign. Since VAgy+ a^ can
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always be chosen positive, it follows that Vx^+y'^ must be posi-

tive within the interval 4 • • • • A-

It might happen, however, if we express x and _y in terms of /,

that x' and y might both vanish for a value of t within the inter-

val 4 • • • • 4- In this case the curve has at the point x, jy, which
belongs to this value of /, a singular point, at which the velocity

of the moving point is zero.

Suppose that this is the case for /=/, and that the corre-

sponding point is Xq, jVo) so that we have

x=Xo+a(t—t' )'"+....,

where m^2, and at least one of the two quantities a and b is dif-

ferent from zero.

Then is

and

Vx'^+y^ ^m V a^ + b" {t-t'Y-^ +

Here we may suppose V a^ -^ b^ positive.

If now m is odd, then for small values of t—t', the expression

on the right is positive, and hence V x''^ + jv'^ always has a positive

sign.

If on the contrary m is even, equal to 2, say, then the curve

has at the point x^, jKo a, cusp, since here V x''^ + y^ has a positive

or a negative value according as f^ t' or t<Cit'.

If therefore the above integral is to express the time, V x''^ + y^
cannot always be put equal to the same series of /, but must after

passing the cusp be put equal to the opposite value of the series.

We therefore limit ourselves to the consideration of a portion of

the curve which is free from singular points.

Such limitations must often be made in problems, since other-

wise the integrals have no definite meaning. Hence with this sup-

position V x''^ +y^ will never equal zero.

We may then write :
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and consequently

XdF ^ 1

dF ^ 1 >>'
^ "-

-^

From this we may conclude, in a similar manner as in the first

example, that ^5—r. -^^-r are proportional to the direction cosines
ox ay

of the tangent of the curve at the point x, y. Since now -^^-y , ^5

—

-,

ox oy
vary in a continuous manner along the whole curve, and since, fur-

ther, V \gy Ar ^ has a definite value which is different from zero,

it follows also that the direction of the required curve varies in a

continuous manner, or the curve must consist of one single trace.

Also here F is independent of x, and consequently we employ

the differential equation Gi^o, from which we have

ZF 1 x'
C, [4]

dx' VAgy + a? Vx'^ + y'^

where C is an arbitrary constant.

If C is equal to zero, then in the whole extent of the curve C
must equal zero ; and consequently, since VA-gy+ a^ is neither o

nor 00, — ^ = cos a must always equal zero; that is, the
Vx'^ + y'^

curve must be a vertical line. Neglecting this self-evident case,

C must have a definite value which is always the same for the

whole curve and different from zero.

From [4] , it follows that

dx" = C'iig^' + ol') (dx" + df),

or, if we absorb \g in the arbitrary constant and write

^ = a, and 4^C^=c^,

we have
, , ^

\:—Z:l, dx'=c'{y+a){dx'+dy^);
whence

,r,

c{y+a)dy
[-5-I
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In order to perform this last integration, write

ff
"^y

[6]

V{_y^a) \X-c\y^a)-\
therefore

dx = {y^a)di>. [5"]

In the expression for d^, write

2c\y+a) = \-t [7]

Then is

2[l_c^(^+a)] = l+ ^, [8]

and
2c^dy=^-dl [9]

Therefore

and hence

[10]

[11]

Here the constant of integration may be omitted, since ^ itself is

fully arbitrary.

Hence,

^+a =— (1-cosf),

and, from [5"], > [12]

^+ ^0= 2^ (^— sin <^);

equations, which represent a cycloid.

The constants of integration x^j, c are determined from the

condition that the curve is to go through the two points A and B.

Now develop x andy in powers of </> : then injv the lowest power is

<f>^,
and in ;«; it is <^; so that the curve has in reality a cusp for <i>=o,

and this is repeated for <f>=2'n-, Att,

A and B must lie between two consecutive cusps (Art. 104).

The curve may be constructed, if we draw a horizontal line

through the point —x^, —a, and construct on the under side of

this line a circle with radius l/(2c^), which touches the horizontal

line at the point —Xo, —a. I^et this circle roll in the positive
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X-direction on the horizontal line, then the original point of contact

describes a cycloid which goes through A and B and which satis-

fies the differential equation.

104. That the points A and B cannot lie upon different loops

of a cycloid may be seen as follows : For simplicity, let the initial

velocity a be zero and shift the origin of coordinates so as to get

rid of the constants.

The equation of the cycloid is then

x=r{4* — sin <f)),)

y=r{l—cos 4>\)

where we have written r in the place of 1/(2 c^).

The cycloidal arc is seen from the accompanying figure. Take

j{ two points lying upon dif-

ferent loops very near and

symmetrically situated
with respect to an apex,

and let us compare the

time it would take to

travel from one of these points to the other by the way of the

apex with the time taken over a straight line joining them. The
parameters of the two points may be expressed by

<J)o=2tt — xj/o,

The time required to go by the way of the apex is

i/2^J ^ :y ^2gJ V y

Now

and

so that

4

dx=r (1— cos <^) d^,

dy=r^va.
(f> d<f>,

ds=Vdx'+ dy =2r sin(<^/2) d<f>,
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and consequently

^ g ^ g s

The component of velocity across the horizontal line from <^o to <^i

is fz;^1 or, since ^ = sin ^ and v^=^2gy, this component is

[_ ds J as 2

equal to

[V2gr Vl-cos<f> sin| p = 2y'^ sin^^.

The length of the line to be traversed from <^o to <^i is

Xi—Xo=r[<i>i—<j>o—sm <^i + sin «^oJ=2r[»|»o—sin i/»o].

Hence, the time required is

^ ^ 2 r (xlfQ—sm ^a)

' 2i/7^sinX«/'o/2)

'

and consequently

7\ 2 r (\lio—sin xftp) ^ «/>o
— sin i/<o

2i/^sin^^ • 2^i/'„ 2V'osin^-^
T

2V s:r sin" if • ^\\
g

3! 5!
"^

Hence,
^%-hW--^

r'0
7\ 3!

*[t-Kfy--]"
or

r ^3 (-^^-••y
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It follows, therefore, for small values of i/»o that

T,< T.

From this it is evident that a path of the particle including an
apex cannot give a minimum.

105. Corresponding to the two constants that are contained

in the general solution of the differential equation G—o of Art. 103,

it is seen that we have all the curves of the family G=^o, if we
vary r and slide the cycloid along the A'-axis.

We shall now show that only one of these cycloids can contain

the two points A and B on the same loop. Suppose that the

ordinates of the points A and B to be such that DB '^ AC, and

c . D consider any other cycloid

with the same parameter r

described about the hori-

zontal X-axis with the ori-

gin at O. Through O draw
a chord parallel to AB and

X move this chord through

parallel positions until

it leaves the curve. We
note that in these posi-

tions the ordinate A'

C

increases continuously,

since it can never reach the lowest point of the cycloid, and that

the arc A'B' continuously diminishes. Consequently the ratio

^'.5': ^'C continuously diminishes. When yi' coincides with the

origin this ratio is infinite, and is zero when the chord becomes

tangent to the curve.

Then for some one position we must have

A'B' ^ AB
A'C'~ AC

Since the points A and B are fixed, the length AB and the direc-

tion AB are both determined.

If A'B'=AB, then A'C'=AC, and a cycloid can be drawn

through A and B as required. But if A'B'^AB, then our cycloid

does not fulfill the required conditions.
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Next choose a quantity / such that

r:r'=AC:A'C'.

With O as the center of similitude increase the coordinates of our

cycloid parameters in the ratio r : r'. These coordinates then

become
X — r'{(f> — sin 4>),

y = r\l — cos (^),

which are the coordinates of a new cycloid.

The latter cycloid is similar to the first, since the transforma-

tion moves the ordinate A'C and the chord A'B' parallel to them-

selves. Their transformed lengths are respectively

— A'C'=AC and ^A'B'^AB,
r r

giving us a cycloid with the requisite lengths for the ordinate

^C and the chord AB.

Further, there is but one cycloid which answers the required

conditions. For, if we already had A'B'=AB and A'C'=:AC, the

only value of r' which could then make — A'B' = AB is r' = r.
r

Hence through the two points A and B there can be constructed

one and only one cycloid-loop with respect to the X-axis*

106. Problem III. Problem of the shortest line on a

surface. This problem cannot in general be solved, since the

variables in the differential equation cannot be separated and the

integration cannot be performed. Only in a few instances has one

succeeded in carrying out the integration and thus represented

the curve which satisfies the differential equation.

This, for example, has been done in the case of the plane, the

sphere and all the other surfaces of the second degree.

As a simple example, we will take the problem of the shortest

line between two points on the surface of a sphere. The radius

of the sphere is put equal to 1, and the equation of the sphere is

given in the form

* This proof is due to Prof. Schwarz.
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Now writing

:

a;=cos «, \

y=smu cosz',> [1]

^=sinu sin 2;,)

then «=constant and z'=constant are the equations of the parallel

circles and of the meridians respectively.

The element of arc is

ds= Vdu^+ sin^w diP', [2]

and consequently the integral which is to be made a minimum is

k

L=jVu'^+ v'^ sin^ u dt

;

[3]

to

so that here we have

and

F=
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If this is not the case, then always c^o. It is easy to see that

c< 1 ; we may therefore write sin c instead of c, and have

v' sin^ u • r^T= sin c, [oj

or

If we write

then is

Vu'^+ sin^uv'^

dv= ^"^^cdu
1-7-j

^vo.u i/sin^?^—sin^c

cos «<=:cos c cos Zf, [8]

r sin c dzu

1 — cos^ c cos^w

since 1 may be replaced by sin^ zy-|-cos^ w, "we have

dw -, tan wsm c — d
r sin c dw cos^ w sin c

sin^ w + cos^ w sin^ c sin^ c+ tan^ w ^ tan^w
sin^c

Therefore

v-^ =. tan-(^^^),
V sm c /

where /3 represents an arbitrary constant.

It follows that

tan(z;-^) = :tan_Z6;
^^-j

sm c

Eliminating Zf by means of [8] , we have

tan u cos (z^—/8)—tan c. [10]

This is the equation of the curve which we are seeking, expressed

in the spherical coordinates «, v.

In order to study their meaning more closely, we may express

u, V separately through the arc s, where s is measured from the

intersection of the zero meridian with the shortest line.

Through [7] the expression [2] goes into

sin u du
ds:

i^sin^w—sin^c



CALCULUS OF VARIATIONS. 105

and this, owing to the substitution [8], becomes

ds=^ dw,

and, therefore, if ^ is a new constant,

s—b=w. [11]

Hence, from equations [8] and [9] we have the following
equations :

cos «==cosc cos (5— ^), \

cot (z;—j8)=:sin c cot {s—b).)

But these are relations which exist among the sides and the

angles of a right-angled spherical triangle.

If we consider the meridian drawn from the north pole^

which cuts at right angles the curve we are seeking, then this

meridian forms with the curve, and any other meridian, a triangle^

to which the above relations may be applied.

Therefore, the curve which satisfies the differential equation

must itself be the arc of a great circle. The constants of integra-

tion c, b, /S are determined from the conditions that the curve is

to pass through the two points A and B.

The geometrical interpretation is: that c is the length of the

geodetic normal from the point u=o to the shortest line ; s—b.
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the arc from the foot of this normal to any point of the curve,

that is, the difference of length between the end-points of this arc

;

and v—fi, the angle opposite this arc.

If we therefore assume that the zero meridian passes through

A, then b is the length of arc of the shortest line from A to the

normal, and 13 the geographical longitude of the foot of this

normal.

107. We may derive the same results by considering the dif-

ferential equation G=o.

Since

we have



and we have

or 2)
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cot u(zu+ zi/) + ^^ z=0,
du

5 4- cot u du—0.

Integrating the last equation, it follows that

and consequently^

3) w^sin2«=Cni + «^').

Suppose that A is the north pole of the sphere, u the angular

distance measured from A along the arc of a great circle, and v

the angle which the plane of this great circle makes with the plane

of a great circle through the point B.

Hence for all curves of the family G—O that pass through A,

we must have C=o, since sin u=o for u—o. It follows also that

zu=o, and consequently,

dv
sin u —— = 0,

du
or

2^=constant.

Hence, as above, A and B must lie on the arc of a great circle.

Next, if A is not taken as the pole, then always C^o, and is less

than unity. It follows then at once from equations 1) and 3) that

ds^=du^+ sin^ u dip-^du^ [1+ w^]

,

or

sin u du
ds--

l/sin^ «— sin^ C

(where we have written sin^ C for C^),

and
sin C du

dv =
sin u i/sin^ «— sin^ C
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Writing cos «=cos C cos t, these two equations when integrated

become, as in the last article,

cos «^=cos C cos {s—6),

cot (z*—/8)=sin Ccot(s— 5).

108. Problem IV. Surface of rotation which offers the

least resistance. To solve this problem we saw (Art 12) that

the integral

to

must be a minimum.

We have here

F
x'^+y^'

and we see that i^ is a rational function of the arguments x' and y.
For such functions Weierstrass has shown that there can never

be a maximum or a minimum value of the integral. But leaving

the general problem for a later discussion (Art. 173), we shall

confine our attention to the problem before us.

We may determine the function Fi from the relation

d^F , ,j^

dx'dy
It is seen that

„ _ 2xx'{Zy^-x'^')
'" {x'^^y^r '

We may take x positive, and also confine our attention to a

portion of curve along which x increases with t, so that ;*;' is also

positive.

Consequently F^ has the same sign as "iy^—x'^, or of 3 sin^ X

—cos^ X, where X is the angle that the tangent to the curve at the

point in question makes with the ^-axis.

Fi is therefore positive, if
|
tan X|>-—= ,

V3

and is negative, if
|
tan X

|
<;—=

,

for the portion of curve considered.
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We shall see later (Art. 117) that F^ must have a positive

sign in order that the integral be a minimum. Hence, for the

present problem,
|
tan X

|
must be greater than —= for the portion

1/3
of curve considered ; and as this must be true for all points of the

curve at which x' has a positive sign, the tangent at any of these

points cannot make an angle greater than 30° with the X^-axis (see

Todhunter, Researches in the Calculus of Variations^ p. 168).

109. We shall next consider the difEerential equation G=o of

the problem.

Since F does not contain explicitly the variable y, we may
best employ the equation

,^ ^ dF d dF

We have at once

dy
or

7 = constant,

2xx^^y'

{x'^^y'^y
= c.

Now, if there is any portion of the surface offering resistance,

which lies indefinitely near the axis of rotation, then the constant

must be zero, since x—o makes C=o.

If C=o, we have

x'^ y'=^o,

and consequently

x'=o or y'=o.

From this we derive

;i;=const. or ^=:Const.

In the first case, the surface would be a cylinder of indefinite

length, with the K-axis as the axis of rotation, and with an indefi-

nitely small radius (since by hypothesis a portion of the surface

lies indefinitely near the K-axis); in the second case, the resisting-

surface would be a disc of indefinitely large diameter. These

solutions being without significance may be neglected, and we
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may^ therefore, suppose that the surface offering resistance has

no points in the neighborhood of the F-axis. This disproves the

notion once held that the body was egg-shaped.

110. We consider next the differential equation

where C is different from zero. We may take x positive, and as

the constant C must always retain the same sign (Art. 97), it

follows that the product x'y' cannot change sign.

Instead of retaining the variable t, let us write

t = -y,
and

dx _
dy

The differential equation is then

—2x1^
(«'+!)'

= C.

That we may write —y'va. the place of /, is seen from the fact that

x!.y' cannot change sign, and consequently either x is continuously

increasing with increasing y, or is continuously decreasing when
y is increased. Hence, corresponding to a given value of y there

is one value of x.

We have then

and

or

dx _ dx_ dy_ _ dy_ ^(\_'2 -2
-x -^\

du dy du du 2

consequently

^
2 I

log« + u-^ + i/iu~*\+ Ci.
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The equations

Cx = —— {u + 2u-^+u-^),

y
c

(log «+«^-2+^ «-^) +Ci,

determine a family of curves, one of which is the arc, which gen-

erates the surface of revolution that gives a minimum value, if

such a minimum exists. For such a curve we have all the real

points if we^give to u all real values from o to +00. Among these

values is i/3, and as we saw above, it is necessary that

—^ =—>—= continuously,
ax u 1/3

or

—<—= continuously.

In other words, if the acute angle which the tangent at any point

of the arc makes with the ^-axis is less than 30", it must continue

less than 30° for the other

points of the arc, and if it

is greater than 30" for any

point of the arc^ it must
remain greater than 30° for

all points of the arc. Hence,

if P is the point at which
the inclination of the tan-

gent with the ^-axis is 30°,

we shall have on one side

of P that portion of curve

for which the inclination

is less than 30°, and on the

other side the portion of curve for which the inclination is greater

than 30°. The arc in question must belong entirely to one of the

two portions.
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CHAPTER VIII.

THE SECOND VARIATION ; ITS SIGN DETERMINED BY THAT

OF THE FUNCTION F^.

111. The substitution x-\-i.^, y-\-irf for x,y causes any point

of the original curve to move along a straight line, which makes

an angle with the ^-axis whose tangent is -^.

This deformation of the curve is insufiEcient, if we require

that the point move along a curve other than a straight line.

To avoid this inadequacy we make the more general substi-

tution (by which the regular curve remains regular) :

X

y

where, like i, rj in our previous development (Art. 75), the quan-

tities fi, 17,, ^2' '?2. • • • are functions of t, finite, continuous^ one-

valued and capable of being differentiated (as far as necessary)

between the limits 4. . . . /j. These series are supposed to be con-

vergent for values of c such that |c|<Cl.

That such substitutions exist may be seen as follows :

Since the curve is regular, the coordinates of consecutive

points to Po and P^ may be expressed by series in the form, say^
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where the coefficients of the powers of e are constants and the
series are convergent.

Suppose, now, that we seek to determine the functions of t

2\
,^+ efi+ ?rT^2+

such that for t^t^ and t^t^, the expressions (C) will be the same
as (^) and (^9).

This may be done, for example, by writing

fi = /f2 + Oi if + a,,

and then determine a^, Oj, ^Si, ^^ in such a way that

4' + oi 4 + oj = ^o"'; 4' + A 4 + A =- 4'^

4' + ai /i + a, = a^W; t^ + A 4 + A = -^i'^'-

From this it is seen that

ax = -(4 + 4)+^V^^, etc.

In the same way we may determine quadratic expressions in t for

^2, 172. etc.

The substitutions thus obtained are of the nature of those

which we have assumed to exist, and may evidently be constructed

in an infinite number of different ways.



114 CALCULUS OP VARIATIONS,

112. Making the above substitutions in the integral

it is seen that

4

F{x,y,x',y'')\dt

2! 31

By Taylor's Theorem we have

y+^Vi+-^V2 + ----) -F{x,y,x',y')

The coefficient of e in this expression is the integrand of 8/ and is

zero ; while the coefficient of -^ involves terms that are the first
21

partial derivatives of F, and also those that are the second partial

derivatives of F.
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The first partial derivatives of F that belong to this co-

efficient, when put under the integral sign, may be written in

the form

dF t ,
dF ., dF

,
dF
7^.] dt

to

(see Art. 79), and this expression is also zero, if we suppose that

the end-points remain fixed.

113. The coefficient of ^ in the preceding development of F
by Taylor's Theorem is, neglecting the factor — , denoted by h^F.

We have then

.^ ^zj7 ^^F t. r. d^F t ,

d'F J ,

d^F.n, r, d'F ., ,

dy

,
d^F ^ i:,\

The subscripts may now be omitted and the formula simplified by

the introduction of the function /\, which (Art. 73) was defined

by the relations:

2)
d^F ,,p.

ax ay

dJF = c<!^F,;
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and by introducing the new notation

:

3) ^-dxdy'^"" y ^'-
dx'dy^^ "" ^'

tion G^o),

N^^,-x'x"F,;
oyay

/y2/j* /y '1/

where x"^y" are used for ,,, , -^.

We have then

+2 F, iy'y" | f+ ;»;' ;.;"^ V-^'/' ^V-/ ^"^1')

To get an exact differential as a part of the right-hand mem-
ber of this formula, we write

an expression which, differentiated with respect to t, becomes

2[Z|f+^(IV+^0+A^^V]=^-^f^-^f^-^V.
We further write

5) w^y' ^—r)x',

where (see Art. 81) w is, neglecting the factor

—

,
tVip

Vx''^ + y''^

amount of the sliding of a point of the curve in the direction of

the normal.

Differentiating with respect to t, we have

du
~di

(t IX) ft J* If t ^f / /-rr^y i-x"r}+y' ^'-x'rj',
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from which it follows that

117

Then the expression for the second variation becomes

If further we write in this expression

6)

d^F p^y,^ dL

M,
dxdy

ay

+ F,x"y

dt'

„ ,.„ dM
dt'

N -^-^-F x"^ -—

dR
dt

'

we have finally

114. It follows from 3) that

Owing to the homogeneity of the function F (Chap. IV), it

is seen from Euler's Theorem that

and consequently,

-^'If^-'lf"

a^.y^+y 3^^

dx dxdx' dxdy'
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and therefore

^ = Lx'^My'.
ox

In a similar manner we have

^ = Mx'^Ny'.
ay

Differentiating with regard to /, the above expression becomes

dAdx/dx^^dxdy-^^dxdx' ^dxdy'-^

= ^x'+^y'+Lx"+My",

which, owing to 3)^ is

or from 6)
x' L^+y Mi=o.

In an analagous manner it may be shown that

x Mi+y Ni= o.

From these expressions we have at once

y2- x'y~ x'^~^'

where F2 is the factor of proportionality.

It follows that

(L,=y'^F,,

7) }M, = -xyF^

[n^ = x"' F:^.

The quantity F^ is defined through these three equations and
plays an essential role in the treatment of the second variation.
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Owing to the relation 7)

A ^^ + 2M^ ^^ + A^i -q'^ becomes F^ v?,

and consequently,

115. The second variation of the integral has therefore the
form

4 to

We suppose that the end-points are fixed so that at these
points ^=^o=7], and we further assume that the curve subjected to
variation consists of a single regular trace, along which then

is everywhere continuous, so that

h: -

'

Consequently the above integral may be written

If the integral /=J F{x,y, x',y') dt is to be a maximum or

4

a minimum for the curve G=o, it is necessary, when the curve is

subjected to an indefinitely small variation, that the variation A /,

which is caused to exist therefrom, have always the same sign, in

whatever manner ^, rf are chosen; and consequently the second

variation SV must have continuously the same sign as A /.
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We have repeatedly seen that

^'-i^'+i^'+
and for any other value of «, for example, tj,

A./= -^SV + -^S3/+
^

21 3!

If, further, 8V is negative while A/ is positive, then we may
take £i so small that the sign of \/ depends only upon the first

term on the right in the above expansion, and consequently is

negative. Therefore the integral / cannot be a maximum or a

minimum, since the variation of it is first positive and then

negative.

Hence, neglecting for a moment the case when S^I=o, we have

the following theorem:

ly the integral I is to be a maximum or a m^inimum, its

second variation must be continuously negative or continuously

positive.

When SV vanishes for all possible values of f, ij, it is neces-

sary also that 8^/ vanish, since the integral / is to be a maximum
or a minimum, and, as in the Theory of Maxima and Minima, we
would then have to investigate the fourth variation. In this case

the conditions that have to be satisfied are so numerous that a

mathematical treatment is very complicated and difficult.

Hence, it is seen that after the condition S/=o is satisfied, it

follows that

for the possibility of a maxvmum,, 8^/ must be negative, and
for the possibility of a minimum, 8V must be positive.

These conditions are necessary, but not sufficient.

116. In Art. 75 we assumed that ^, ij, f', r{ were continuous

functions of t between the limits t^. . . .t-^. Owing to the assumed
existence of ^', 17', we must presuppose the existence of the second

derivatives of x and y with respect to t (see Art. 23). From this
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it also follows that the radius of curvature must vary in a contin-

uous manner. These assumptions have been tacitly made in the
derivation of the equation 8) in the preceding article. We shall

now free ourselves from the restriction that ^' and f] are contin-

uous functions of t, retaining, however, the assumptions regarding
the continuity of the quantities x, y, f, tj, x\ y\ x", y"

.

The theorem that -;=r—j and ^:r-7- vary in a continuous manner for
ox oy

the whole curve (Art. 97) in most cases gives a handy means of

determining the admissibility of assumptions regarding the con-

tinuity of x' and^'. If, at certain points of the curve G=^o,x' and
y' are not continuous, it is always possible to divide the curve into

such portions that x' and y' are continuous throughout each por-

tion. Yet we cannot even then say that x!' and y" are continuous

within such a portion, as has been assumed to be true in the above

development. If, however, ;c" and y" within such a portion of

curve are discontinuous, we have only to divide the curve into

other portions so that within these new portions x!' and y" no

longer sufFer any sudden springs. In each of these portions of

curve the same conclusions may be made as before in the case of

the whole curve, and consequently the assumption regarding the

continuous change of x!' ,
y" throughout the whole curve is not

necessary. But if we had limited ourselves to the consideration

of a part of the curve in which x, y, x', y', x", y" vary in a contin-

uous manner, the continuity of |', >?' in the integration of the

integral

would have been assumed. These assumptions need not neces-

sarily be fulfilled, since the variation of the curve is an arbitrary

one, and it is quite possible that such variations may be intro-

duced, where ^', rj' become discontinuous, as often as we please.

We may, however, drop these assumptions without changing the

final results, if only the first named conditions are satisfied. Since

the quantities Z, M, N depend only upon x, y, x', y', x", y", and

since these quantities are continuous, it follows that the introduc-

tion of the integral X^dtin the form given above is always
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admissible. For if i', >?' were not continuous for the whole trace

of the curve, which has been subjected to variation, we could sup-

pose that this curve has been divided into parts, within which the

above derivatives varied in a continuous manner, and the integral

would then become a sum of integrals of the form

where /o, /o^^, .... are the coordinates of the points of division

of corresponding values of /. But since |, rj vary in a continuous

manner, we have through the summation of these quantities

exactly the same expression

\\Le+2M^r,+Nv'yi

as before. The quantities $', 17' are also found under the sign of

integration in the right-hand side of 8); but owing to the concep-

tion of a definite integral, we may still write it in this form^ even

when these quantities vary in a discontinuous manner ; however,

in performing the integration, we must divide the integral corre-

sponding to the positions at which the discontinuities enter into

partial integrals. Therefore, we see that the possible discontinuity

of $', T)' remains without influence upon the result, if only x, y,
;»' y\ x", y", i, t) are continuous. Consequently any assumptions
regarding the continuity of f ', ij' are superfluous ; however, in an
arbitrarily small portion of the curve which is subjected to varia-

tion, the quantities i' and 17' must not become discontinuous an
infinite number of times^ since such variation of the curve has been^

necessarily, once for all excluded.

117. Following the older mathematicians, Legendre, Jacobi,

etc., we may give the second variation a form in which all terms
appearing under the sign of integration will have the same sign
(plus or minus).

To accomplish this, we add an exact differential -^ (w^z*)
at
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under the integral sign in 8), and subtract it from R, the integral
thus becoming

to

The expression under the sign of integration is an integral

homogeneous quadratic form in w and —^. We choose the quan-
dt

tity V so that this expression becomes a perfect square ; that is,

9) e.-^. (/-. + !)= .,

and consequently,

10) 8=/=j'/-.(^ + .^)'^.+ [^^..>]\

/<

We shall see that it is possible to determine a function v, which
is finite^ one-valued and continuous within the interval t^. . . .t^,

and which satisfies the equation 9). The integral 10) becomes
accordingly, if the end-points remain fixed,

10.) 8>/=jV.(^+.|.J*
A0

Hence the second variation has the same sign as /\, and it is clear

that /or the existence of a maximum F^ m-ust be negative, and
for a minimum^ this function must be positive within the in-

terval 4. . • • A. ^«^ i'n case there is a m^axim-um or a m,inim.um,

F^ cannot change sign within this interval.

This condition is due to Jacobi. Legendre had previously

concluded that we have a maximum when a certain expression cor-

responding to /\ was negative, and a minimum when it was posi-
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tive. It is questionable whether the diflferential equation for v is

always integrable. Following Jacobi we shall show that such is

the case.

118. Before we go farther, we have yet to prove that the

transformation, which we have introduced, is allowable. In spite

of the simplicity of the equation 9) we cannot make conclusions

regarding the continuity of the function v, which is necessary for

the above transformation. • It is therefore essential to show that

the equation 9) may be reduced to a system of two linear differ-

ential equations, which may be reverted into a linear differential

equation of the second order, since for this equation we have

definite criteria of determining whether a function which satisfies

it remains finite and continuous or not.

Write

U

where u^ and u are continuous functions of t, and w^^o within the

interval 4. . . . /j.

Equation 9) becomes then

or

Since one of the functions u, u^ may be arbitrarily chosen, we
take u so that

11) F,^^-u, = o,

then, since u^o, we have

12) ^ + ^'- = o.



CALCULUS OF VARIATIONS. 125

From 11) and 12) it follows that

or

where i^i and F^ are to be considered as given functions of t. We
shall denote this difFerential equation by /= o. After u has been
determined from this Equation, «i may be determined from 11),

and from -^ = z; we have z' as a definite function of t.u

119. The expression which has been derived for v seems to
contain two arbitrary constants, while the equation 9) has only
one. The two constants in the first case, however, may be replaced
by one, since the general solution of 13) is

and hence from 11)

an expression which depends only upon the ratio of the two
constants.

It follows from the above transformation that

14

)

SV == (f, (^ - i5^ ^Ydt
;^

J ^\dt u dt) '

to

but this transformation has a meaning only when it is possible to

find a function u within the interval 4- • • • A) which is different

from zero, and which satisfies the differential equation J=o.

120. If we have a linear differential equation of the second

order
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and if _j'i and y^ are a fundamental system of integrals of this

equation, then we have the well known relation due to Abel (see

Forsyth's Differential Equations, p. 99)

or

y^^ yz

dy,^ dy^

dx ' dx

= Ce
-/p(^) (

If A =0, then we would have y^= cy^, and the system is no longer

a fundamental system of integrals. This determinant can become
zero only at such positions for which P(^x) becomes infinitely large;

or a change of sign for this determinant can enter only at such

positions where P{x^ becomes infinite.

In the differential equationy= o we have Z*—— (log F^), and

if 2^1, «j form a fundamental system of integrals of this differen-

tial equation, then

du2 dui _ C
~dt

~
'^^It ~ T^'

A = Ui -j^ — «2

It follows that Fi cannot become infinite or zero within the

interval under consideration or upon the boundaries of this inter-

val. Hence, it is again seen that Fi cannot change sign within

the interval 4- • • • A-

If Fi and F2 are continuous within the interval 4 • • • • Ai "w^e

have, through differentiating the equation J—O, all higher deriva-

tives of u expressed in terms of u and —— . Hence, if values of u
dt

du
and ——- are given for a definite value of t, say /', we have a

dt
power-series P {t—t') for u (see Art. 79), which satisfies the

equation J=^ o.

121. Suppose that F-^^ has a definite, positive or negative
value for a definite value t' oi t situated within the interval

4 ti, then on account of its continuity it will also be positive



CALCULUS OF VARIATIONS. 127

or negative for a certain neighborhood of /', say t'—r^. . . .Z'+tj.

We may vary the curve in such a manner that within the interval

t'—T^. . . . Z'+Tj it takes any form^ while without this region it re-

mains unchanged.

Consequently the total variation, and therefore also the second

variation of /, depends only upon the variation within the region

just mentioned, and in accordance with the remarks made above^

since we may find a function u of the variable t, which is contin-

uous within the given region, which satisfies the differential equa-

tion J—o, and which is of such a nature that u and —r- have given
at

values for /= f, it follows that the transformation which was in-

troduced is admissible, and we have

A

^''-/^{w-wlf^'-
4

This quantity is evidently positive when F^ is positive^ and

negative when Fi is negative, so long as

idw_duw\^^
(Art. 132).

{dt at u)

We have then for the total variation

where {t V^ ^'. vli denotes an expression of the third dimension in

the quantities included within the brackets.

For small values of e it is seen that A/ has the same sign as

the first term on the right-hand side of the above equation. We
have, therefore, the following theorem :

The total variation Mo/ the integral I is positive when

Fi is positive, and negative when F^ is negative throughout the

whole interval 4. ... 4-
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If F^ could change sign for any position within the interval

4 .... 4. then there would be variations of the curve for which A /
is positive^ and others for which A / is negative. Hence, for the

existence of a maximum or a minimum of / we have the following

necessary condition

:

In order that there exist a maximum or a minimum of the

integral I taken over the curve G^^o within the interval to. . . .ti,

it is necessary that F^ have always the same sign within this

interval; in the case of a maxim,um F^ must be continuously

negative, and in the case of a minimum this function must be

continuously positive.

In this connection it is interesting to note a paper by Prof.

W. F. Osgood in the Transactions of the American Mathematical

Society, Vol. II, p. 273, entitled:

"(9« afundamentalproperty ofa minimum in the Calculus

of Variations and the proof ofa theorem of Weierstrass' s.'"

This paper, which is of great importance, may be much
simplified.
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CHAPTER IX.

CONJUGATE POINTS.

122. The condition given in the preceding Chapter is not

sufficient to establish the existence of a maximum or a minimum.
Under the assumption that F^ is neither zero nor infinite within

the interval 4- • • • A. suppose that two functions <^i(/) and <^j(/)

can be found which satisfy the differential equation 13) of the last

Chapter, so that, consequently,

is the general solution oij—o. Then, even if within the limits of

integration it can be shown that u is not infinite, it may still hap-

pen that, however the constants c^ and Cj be chosen, the function

u vanishes, so that the transformation of the z;-equation into the

^-equation is not admissible ; consequently nothing can be deter-

mined regarding the appearance of a maximum or a minimum. We
are thus led again to the necessity of studying more closely the

function u defined by the equation J^o, in order that we may
determine under what conditions this function does not vanish

within the interval /« A-

It is seen that the equation/= o is satisfied, if for u we write

Ui= —Fi u' [see Art. 118, equation 11 )]

,

and consequently

V = —^ = — Fi—
u u

is a solution of the equation in v.
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The integral 10) of the last Chapter may be then written

A

J \lV U } L M J4

t I

From this we see that if— = — . or if zf = Cu, then the second
w u

variation is free from the sign of integration ; in other words, the

second variation is free from the integral sign, if we make any

deformation (normal [Art. 113, equation 5)] to the curve) such

that the displacement is proportional to the value of any integral

of the differential equation J— o.

Again, if we deform any one of the family of curves G ^^o

into a neighboring curve belonging to the family, we have an ex-

pression which is also free from the integral sign. For (see Arts.

79 and 81), if we write p = Vx'^ + y'^=~, we have
at

and consequently,

^F=p^.SG+GHp..)+[^^ 8(f1^ + ,^)];'.

Hence, ii 8G= o, we have here also

^Hi^^-M:
It may be shown as follows that the curve SG= o is one of

the family of curves G = o. The curves belonging to the family

of curves G = are given (Art. 90) by

X = 4,{t,a,^), ^ = ,/,(/, a, ^),

where a and fi are arbitrary constants. We have a neighboring
curve of the family when for a, /3 we write a + e a', /8 4- c /8'. Then
the function G becomes

G + ^G=G + ^ZG + e{ )+
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Hence, when e is taken very small, it follows that

is a solution of SG—o, since it is a solution of G-\-AG=o and of

G=o.

Now we may always choose normal displacements — which

will take us from one of the curves G—o to a neighboring curve

8G=o. From this it appears that there is a relation between the

differential equations 8 G=o and J ^^^^o.

123. In this connection a discovery made by Jacobi (Crelle's

Journal, bd. 17, p. 68) is of great use. He showed that with the

integration of the differential equation G=o, also that of the dif-

ferential equation y= o is performed. We are then able to derive

the general expression for «, and may determine completely

whether and when u^o. We shall next derive the general solu-

tion of the equation J=o, it being presupposed that the differen-

tial equation G=o admits of a general solution. We derived the

first variation in the form

hi=^ ^Gwdt+
1

y\
to

We may form the second variation by causing in this expression

G alone to vary, and then w alone, and by adding the results.

It follows that

h-'r=^\hGw+Ghw) dt+\ 1^'. (0

4

Since the differential equation G—o is supposed satisfied, we

have
t. r -,,

hU=^ hGwdt+\ V. {a)

4
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We had (Art. 76)

r _9^ d{dF\
'~dx dAdx'i'

r _ 9^ d{ ZF\^~
-dy dAdy'r

and also

Gi= y' G, G^=— x' G.

When in the expression for G-^, the substitutions
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and if we take into consideration 3), 4)^ 6) and 7) of the last

Chapter, we may write the above result in the form

:

In an analogous manner, we have

When these values are substituted in («V), we have

Hence from (a) we have

By the previous method we found the second variation to be

[see formula 8) of the last Chapter]

These two expressions should agree as to a constant term.

The difference of the integrals is

4 ^

-=/-#i-.^)-'^'-j'--(tr^'^

but since

j#i^.^)---»^-s^-J^-(sr*'
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it is seen that

The formula (6) is

BG^^,^-±(^/^).

When we compare this with 12") of the preceding Chapter,

the differential equation for u, viz.:

7- d { T^ du \

'-^^""-d-A^^wh

it is seen that as soon as we find a quantity w for which 8G=o,
we have a corresponding integral of the diflEerential equation for u.

125. The total variation of G is

^G=G (x+€^^+ -^^2+ ^J'+ ^Vi+-^Vi+ .

^"+^i^" + -^i."+...,y'+er,,"+^v." +....)

- G {x,y, x',y', x",y")^ehG + |-S^G^ + . . . .,

where hG, as found in the preceding article, has the value

Suppose that the equation G = ois integrable, and let

be general expressions which satisfy it, where a, /3 are arbitrary

constants of integration. The difEerential equation G— o will be

satisfied, if we suppose that a and /3, having arbitrarily fixed

values, are increased by two arbitrarily small quantities c8a and
e 8 /3 ; that is, the functions
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are also solutions of G — o.

126. Now choose the variation of the curve (Art. Ill) in

such a way that

and, whatever be the values of Sa and 8y8, we determine fi,^2,%,T72,

etc., by the relations:

> (in)

da op I

For all values of a and ^ the difEerential equation G = o \%

satisfied; hence, the values of fi, tj^, etc., just written, when sub-

stituted in AG^ above must make the right-hand side of that equa-

tion vanish identically, and consequently also 86^. Hence, the

corresponding normal displacement w^y'^^—id'i]^ transforms one

of the system of curves 6^==o to another one of the same system.

Since Sa and S^S are entirely arbitrary, the coeflEcients of Sa

and S/3 must each vanish in the expansion of A (7 above. Owing
to (**V) w=;v'^i— ^'•»?i becomes

-=(^'a-!-^'l!)^"+(^'i-*'i)^''-

Writing this value of w in the equation 86^= o, we have
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By equating the coefficients of 8a and Bp respectively to zero, we
have the two equations:

where, for brevity, we have written

2)

It is seen at once that ^i(^) and O^ii) are the solutions of

the differential equation

If ^\§-i\F^^\-F.u = o.

Hence it is seen that the general solution of the differential

equation for u is had from the integrals of the differential equa-

tion G^=o, through simple differentiation.

127. We have next to prove that the two solutions ^i (/) and

^2 (^) are independent of each other. In order to make this proof

as simple as possible, let x be written for the arbitrary quantity /.

Then the expressions x=^{t,a, p), y= \^(^t, a, p,), etc., become

x=x,y = y^{x,a,fi\

ax

If 6i and O-,, are linearly dependent upon each other, we must
have

02 = constant 0^,
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from which it follows, at once, that

$1 02 — 02 01 = o,

where the accents denote differentiation with respect to x ; or,

On the other hand, ;>/==«/» (x, a, fi) is the complete solution of

the differential equation, which arises out of 0^= —x' G = o,

when :*; is written for t; that is, of

M'^-w^"-dx

but here a and j8 are two arbitrary independent constants, and

consequently »/» and i/»' ==: —^ are independent of each other with

respect to a and fi, so that the determinant

*/»! ^2 — "h ^i

is different from zero. Consequently 6^ and fi^ are independent of

each other, since the contrary assumption stands in contradiction

to the result just established. Hence, the general solution of the

differential equation /=o, is of the form

where Cj and c^ are arbitrary constants.

128. Following the methods of Weierstrass we have just

proved the assertion of Jacobi ; since, as soon as we have the com-

plete integral of G=o, it is easy to express the complete solution

of the differential equation /=o.

The constants Cj and C2 may be so determined that « vanishes

on a definite position t', which may lie somewhere on the curve

before we get to t^. This may be effected by writing

c,=-0,{n c,=0m
The solution of the equation J=o becomes

3) u=dit') 0it) - 02{n eit) = @u n
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It may turn out that @ (/, ^') vanishes for no other value of

/ ; but it may also happen that there are other positions than t' at

which @(/, ^') becomes zero. If t" is the first zero position of

( ^, /') which follows t\ then t" is called the conjugate point to /'.

Since /' has been arbitrarily chosen, we may associate with
every point of the curve a second point, its conjugate. This being

premised, we come to the following theorem, also due to Jacobi

:

If within the interval 4. . . . /i there are no two points which
are conjugate to each other in the above sense, then it is possi-

ble so to determine u that it satisfies the differential equation

J^=o, and nowhere vanishes within the interval 4- • • ^i-

129. Let the point / = /' be a zero position of the function

u = %{^t,t'\

and let t" be a conjugate point to t', then 0(/, ^') will not again

vanish within the interval t' . . . . t". Take in the neighborhood of

the point t' a point /'+ t, where
- T>o, then the point which is

f t"
conjugate to t'+ r can lie only

on the other side of t". This may be shown as follows :

li u= ®{t, t') is a solution of the equation

then is

u= @(t,t' + T)

a solution of the same equation ; that is, of

j-~ d^u
,
dF, du r~.

-

since u differs from u only through another choice of the arbi-

trary constants Cj and Cj.

If r is chosen sujB&ciently small, then (if'+r, /') is different

from zero^ and consequently also (/', Z'+ t) :^o.
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Eliminate /'j from the two equations above, and we have

Now write

5) ^^ du - du

and the above equation becomes

V Fy

which, when integrated, is

7\ „. fi?« - du C

The constant C in this expression cannot vanish, for, in that case,

u = const, u,

or

©(/, /') = const. 0(/;, Z'+ t).

Since, however, ©(/, /') vanishes for t=t', it results from the
above that 0(/', /'4-t) = o, which is contrary to the hypothesis,

and consequently C cannot vanish.

It is further assumed that F^ does not change its sign or

become zero within the interval 4- • • • A- If -^i vanishes without
a transition from the positive to the negative or vice versa within

the stretch /o- • • • A» then in general no further deductions can be

drawn, and a special investigation has to be made for each par-

ticular case.

In the first case, however, v has a finite value, and the equa-

tion 7), when divided through by «^ becomes

du - du J u
11 u fl>

—
dt dt__ « _ C

IP-
" dt ~ F^u^'
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an expression, which, when integrated, is

dt

t'+r

Since the function u does not vanish between t' and t", it follows

from the last expression that u cannot vanish between the limits

/'+ T and t". Accordingly, if there is a point conjugate to t'+ r,

it cannot lie before t" . If, therefore, we choose a point t'" before

t" and as close to it as we wish, then i^ will certainly not vanish

within the interval t' A^r . . . . t'".

If t' is a point situated immediately before 4, and if we deter-

mine the point t" conjugate to /', and choose a point t^ before t"

and as near to it as we wish,

, 7,— then from the preceding it is

" ^ clear that no points conju-

gate to each other lie within

the interval 4- • -^n the boundaries excluded. We may then, as

shown above, find a function u, which satisfies the differential

equation y=(? and which vanishes neither on the limits nor within

the interval 4- ^i- The transformation of Art. 117 is therefore

admissible, and the sign of 8Y depends only upon the sign of F^.

130. We may investigate a little more closely the relation

of Art. 120, where
du^ dui C

In the interval under consideration, boundaries included, we assume
that Fi does not become zero or infinite, and consequently retains

the same sign. Further, the constant C has always the same value

and is different from zero, since u^ and «2 are linearly independent.

It follows at once that —^ cannot be zero at the same time
dt

that «i is zero; for then C would be zero contrary to our

hypothesis.

Owing to the form

dt\u-2, / 1*2 Fi
'
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it is clear that -7-.\ — )
has the same sign as ~ . We may take

this sign positive, since otherwise owing to the expression

du^ dux _ C
1*-,^r^ =

we

dt "^'dt F^

would have
;j^ (

—
) Positive. We may assume then that the

U\
indices have been placed upon the «'s, so that —^ is always on the

increase with increasing /.

uThe ratio —^ will become infinite for the zero values of U-,

U'i

(see Art. 120). Since this quotient is always increasing with in-

creasing values of t, the trace of the corresponding curve must

pass through + go, and return again (if it does return) from — oo.

Values of t, for which this quotient has the same value, may be

called congruent.

It is evident, as shown in the accompanying figure, that such

values are equi-distant from two values of t, say 4 and t^, which

make «2= o. The abscissae are values of t, and the ordinates are

the corresponding values of the ratio

131. To summarize : We have supposed the cases excluded

in which F^ is zero along the curve under consideration. If this

function were zero at an isolated point of the curve, it would be a

limiting case of what we have considered. If it were zero along a
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stretch of this curve, we should have to consider variations of the

third order, and would have, in general, neither a maximum nor a

minimum value unless this variation also vanished, leaving us to

investigate variations of the fourth order. We exclude these

cases from the present treatment, and suppose also that F-^ and F^
are everywhere finite along our curve (otherwise the expression

for the second variation, viz.

—

^ {F^w"" + F^w") dt,

would have no meaning).

We also derived in Art. 124 the variation of G in the form

and when this is compared with the differential equation

12-) o = F,u-f^
(^^w) ^^^^ ^^^- ^^^^'

it is seen that if an integral u of the differential equation 12")

vanishes for any value of /, the corresponding integral w of the

equation hG=o vanishes for the same value of t.

In Art. 126 we had

w =y^, - x'-n, = hadlt) + 8)8 ^j(/),

where the displacement ^i, tjj takes us from a point of the curve

G=^o to a point of the curve ZG= o. Consequently the normal
displacement zt^u can be zero only at a point where the curves

G = and hG = o intersect.

At such a point we must have

8a^i(0 + 8/8^2(/)=0.

When one of the family of curves G = o has been selected, the two
associated constants a and /8 are fixed. These are the constants
that occur in ^i(^) and Bj^f). If , further, the curve passes through
a fixed point P^, the variable t is determined, and consequently the

functions ^i(/) and O-i^t') are definitely determined, so that the
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ratio Sa
: 8^ is definitely known from the above relation. There

may be a second point at which the curves G=o and BG^o inter-
sect. This point is the point conjugate to Po (see Art. 128).

132. The geometrical significance of these conjugate points
is more fully considered in Chapter XI. Writing the second vari-
ation in the form

A

we see that the possibility of — — -^ = o is when «= Czu. Now
w is zero at both of the end-points of the curve, since at these
points there is no variation, but u is equal to zero at P^ only when
/\ is conjugate to P^. Hence, unless the two curves G = o and
hG= o intersect again at P^, u is not equal to zero at P^, and con-
sequently

\W 11/

In this case, if F^ has a positive sign throughout the interval
to. .

. .ti, there is a possibility of a minimum value of the inte-

gral I, and there is a possibility of a maximum value when Fi
has a negative sign throughout this interval.

133. Next, let P^ be conjugate to P^, so that at both of the
limits of integration we have u=o=w. We may then take u=w
at all other points of the curve, so that consequently

A

8V =\F,w^i^^-^ Jdt= o.

4

We cannot then say anything regarding a maximum or a minimum
until we have investigated the variations of a higher order.*

* It is sometimes possible to establish the existence or the non-existence of a maximum
or a minimum by other methods ; for example, the non-existence of a minimum is seen in
Case II of Art. 58. In a very instructive paper (Trans, of the Am. Math. Soc, Vol. II, p.
166) Prof. Osgood has shown that there is a minimum in the case of the g-eodesics on an
ellipsoid of revolution (due to the fact that the curve must lie on the ellipsoid). Prof.
Osgood says (p. 166) that Kneser's Theorem "to the effect that there is not a minimum"
is in general true. It seems that each separate case must be examined for itself, and in
general nothing can be said regarding a maximum or a minimum.
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Next, suppose that a pair of conjugate points are situated

between P^ and Pj, and let these points be P' and P". We may
then make a displacement of the curve so that

w — kw from /{, to P',

W — U + kw from P' to P" and

w = kw from P" to /\,

where >& is an indeterminate constant. The quantity w is sub-

jected only to the condition that it must be zero at P^ and /*!, and

u must be a solution of the difEerential equation J= o, and is zero

at the conjugate points P' and P".

The second variation takes the form

t'

W^k'fiF, w'^ + F2 w") dt

t"

+ f {(F, u'^ + F2u') + 2k (F^ u' w' + F^uw)
t'

^k^iF^w'^+F^w'^S dt

+ k^{Fi w"" + ^2 vJ^) dt.

t"

In the preceding article we saw (cf. also Art. 117) that

t"

^{F^u'^ + F^u^)dt=o,

t'

and we may therefore write 8^/ in the form

8V =2kfiF^ u' w' -\-F^uw) dt^ k^ M,

where i^ is a finite quantity.
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The integral

t"

J (7^1 u' w' -{- F2U w) dt

t'

may be written

/"

t'

and since, in virtue of the formula 12") of Art. 118, the expres-

sion under this latter integral sign is zero, it follows that

m ^2k\ F^u'w\" + k'-M.

Further, by hypothesis, F^ retains the same sign within the

interval t' . . . . t", and does not become zero within or at these

limits, the function u' is different from zero at the limits (Arts.

130 and 152), and of opposite sign at these limits, since u, always

retaining the same sign, leaves the value zero at one limit and

approaches it at the other limit. Consequently \^Fi «/'] is finite

and of opposite signs at the two points P' and P", and it remains

only that w be chosen finite and with the same sign, so that

/^l
«' zf be different from zero. Hence by the proper choice

of k we may effect displacements for which 8V is positive, and

also those for which it is negative.

Hence when our interval includes {not, however, both as

extremities) a pair of conjugate points, we have definitely estab-

lished that the curve in question can give rise to neither a maxi-

mum nor a m^inimum.

The above semi-geometrical proof is due to a note given by

Prof. Schwarz at Berlin (1898-99); see also Lefon V of a course

of Lectures given by Prof.Picard at Paris (1899-1900) on ''Equa-

tions aux dirivies partielles."
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CHAPTER X.

THE CRITERIA THAT HAVE BEEN DERIVED UNDER THE ASSUMP-

TION OF CERTAIN SPECIAL VARIATIONS ARE ALSO

SUFFICIENT FOR THE ESTABLISHMENT

OF THE FORMULA HITHERTO

EMPLOYED.

134. The methods which we have followed would indicate

that the whole process of the Calculus of Variations is a process

of progressive exclusion. We first exclude curves for which G is

different from zero and limit ourselves to curves which satisfy the

differential equation G =^o. From these latter curves we exclude

all those along which F-^ does not retain the same sign. If, for

any curves not yet excluded, Fi—O at isolated points, we have sim-

ply a limiting case among those to which our conclusions apply.

li Fi = o for a stretch of curve not excluded by the above condi-

tion, we have to subject the curve to additional consideration in

which the third and higher variations must be investigated. We
further exclude all curves, in which conjugate points are found sit-

uated between the limits of integration, as being impossible gen-

erators of a maximum or a minimum. The cases in which no such

pairs of points are to be found, or where such points are the limits

of integration, require further investigation. This leads us to a

fourth condition, a condition due to Weierstrass, which is dis-

cussed in Chapter XII. In this process of exclusion let us next see

whether the variations admitted are sufficient for the general

treatment under consideration.

135. As necessary conditions for the appearance of a maxi-

mum or a minimum, the following theorems have been established

:
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1) x,y as functions of t must be determined in such a
manner that they satisfy the differential equation G=o.

2) Along the curve that has been so determ^ined the func-
tion Fy cannot be positivefor a maximum nor can it be negative

for a minimum; m^oreover, the case that F^ = o at isolated

points or along a certain stretch, cannot in its generality be

treated, but the problems that thus arise m,ust be subjected to

special investigation.

3) The integration may extend at mostfrom a point to its

conjugate point, but not beyond this point.

The last two conditions, which were derived from the con-

sideration of the second variation, require certain limitations. On
the one hand, a proof has to be established that the sign of A/ is

in reality the same as the sign of SV, if we choose for |, 17, etc., the

most general variations of all those special variations, for which

the developments hitherto made were true ; it then remains to

investigate whether and how far the criteria which have been

established remain true for the case where the curve varies quite

arbitrarily.

136. We return to the proof of the theorem proposed in the

preceding article. We have, in the case of the investigations

hitherto made, always assumed that ^, tj, f ', 17' were sufficiently

small quantities, since only under this assumption can we develop

the right-hand side of

A

4

in powers of these quantities. This means not only that the

curve which has been subjected to variation must lie indefinitely

near the original curve, but also that the direction of the two

curves can differ only a little from each other at corresponding

points. We retain the same assumptions, and limit ourselves

always to special variations.
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We shall first prove that for all these variations the sign of

A/ and that of S^/ agree, so that for these variations the criteria

already found are also sufficient. However, we no longer assume

that the variations are expressible in the form e^, etj, where e

denotes a sufficiently small quantity.

Since the curvature of the original curve does not become

infinitely large at any point (see Art. 95), and since further the

original curve and the curve w^hich has been subjected to variation

deviate only a little from each other at corresponding points both

in their position and the direction of their tangents, it follows

that with each point of the original curve is associated the point

of the curve that has been varied, in which the latter curve is cut

by the normal drawn through the point on the first curve.

The equation of the normal at the point x, y is

{X-x^x!^ (y-y)y = o;

and from the remarks just made, the point x -\- ^, y -\- r] is to lie on

this normal^ so that

^x' + r}y=^o.

If we consider this equation in connection with the defini-

tion of w :

w — iy — 7) x',

it follows that the variations may be represented in the form

^^ -\- y^ x^ + y^

In these expressions —j^ ^ is an indefinitely small quantity,

since x' and y cannot both vanish at the same time (Art. 95), and

it varies in a continuous manner with A L<ikewise the derivative

of this quantity with respect to ^ is an indefinitely small quantity

which, however, may not be everywhere continuous.
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Under the assumption that $, -q, |'= ^, -q' =^ are suffi-
dt dt

ciently small quantities, we may develop the total variation of the
integral

k

4

with respect to the powers of f, t}, f ',
-q'

; and, if we make use of

Taylor's Theorem in the form

i

1

where F-^^^ = -=—^— , we have, since the terms of the first dimen-
ax^axj

sion vanish, a development of the form

2) A/:== (j{l-e)\_FUx+^ty+ ^-n,x'+ ^^',y'+ ^ri')^+...-]de,dt.

137. If we further develop i^.i, etc., with respect to powers
of e, it is found that the aggregate of terms that do not contain c

is identical with h^F which was obtained in Chapter VIII,

Integrating with respect to e, we may represent the other

terms as a quadratic form in ^, ij, f', ->?', whose coefl&cients also

contain these quantities and in such a way that they become

indefinitely small with these quantities.

Next, writing in A/ the values of ^, -q given in 1) and the fol-

lowing values of $', -q also derived from 1):

^ - x'^^ y'^ dt ^ dt V;c'^ +yr
^^

'- _^__dvj ., d I x! \
"f--

x'^ + y'^ dt dt \x'' + yV'
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we have

4) ^I^^{F.(^f)\F.J^dt

4

+

4

where /, g, h denote functions which still contain w and —|^, and

in such a way that they become indefinitely small at the same time

as these quantities.

138. After a known theorem* in quadratic forms,

\'i

may always, through linear substitutions not involving imaginaries,

be brought to the form

in such a way that at the same time the relation

is true, and where^ and y^ are roots of the quadratic equation in x:

Since the coefficients in this equation become simultaneously small

with w and -^, t
at

of this equation.

with w and -j-, the same must also be true of /i and /j, the roots

*Such substitutions are caUed by Cayley orthogonal (Crelle, bd. 32, p. 119); see also

Euler, Nov. Comm. Petrop., IS, p. 275; 20, p. 217; Cauchy, Exerc. de Math., 4, p. 140;

Jacobi, Crelle, bd. 12, p. 7; bd. 30, p. 46; Baltzer, Theoiie und Anwendungen der Determi-

nanten, 1881, p. 187; Rodrigves, Liouv. Journ., t. S, p. 405; Hesse, Crelle, bd. 57, p. 175.
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If / is the mean value between f^ and /z, which also becomes
div

~dt

indefinitely small with w and ^~, we may bring the expression

to the form

and consequently we have for A/ the expression

4 4

or finally

to

and thus we have for A/ the same form as we had before for 8V
(Art. 115).

139. We assume now that the necessary conditions for the

existence of a maximum or a minimum are satisfied; that therefore

along the whole curve G^o, the function F^ is different from zero

or infinity, and always retains the same sign ; that a function u
may be determined which satisfies the equation

and nowhere vanishes within the interval 4 .... /j or upon the

boundaries of this interval.

If we therefore understand by ^ a positive quantity, and

write

l= — k + l-\-h,
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then the expression for A / above becomes

4

+

4
J(^+^){(^)"+^}*-

If k is given a fixed value, then we may choose ^, i] so small

that the absolute value of the quantity / that depends upon them
is less than k. The quantity k-\- 1 is therefore positive, and con-

sequently also the second integral of the above expression. We
have yet to show that the first integral is also positive, if F^> o.

After a known theorem in differential equations it is always

possible, as soon as the equation

dt (^^w)-^^^=^

is integrated through a continuous function u of t, which within

and on the boundaries of the interval 4 .... /i nowhere vanishes,

also to integrate the differential equation

through a continuous function of t, which, if k does not exceed

certain limits, deviates indefinitely little throughout its whole
trace from u, and may therefore be represented in the form

« = « + (/, ^),

where (^t, k) becomes indefinitely small at the same time as k for

all values of t that come into consideration.

The function u will therefore vanish nowhere within the in-

terval 4- • • • A- In this manner a certain limit has also been estab-

lished for k, which it cannot exceed ; but if the condition is also
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added that k must be so small that F^—k has the same sign as

i^i, then ^, T) may always be chosen so small that \l\<^k.

The first integral may then be transformed in a manner sim-
ilar to that in which the integral 8) of Art. 115 was transformed
into 14) of Art. 119, and we thus have

rr t-\ i _.
di dt u )

A/=C(F,-k)i^-^^^^di

4

A

+j('^«{(^r+"'}*
4

which shows that A/ for all indefinitely small variations of the

curve^ which have been brought about under the given assump-

tions, is positive if /\ is positive. If F^ is negative, the same
determinations regarding k remain ; only k must be chosen nega-

tive and
I
/ 1 -< — k. Both integrals on the right of the above

equation are then negative, and consequently A/ is itself negative.

We have therefore proved the assertion made above :
//" in

the interval t^. . . .t^ the necessary conditions which were derived

from the consideration of the second variation of the integral

for the existence of a maximum or a m-inimum, are satisfied,

then the sign of the total variation will be the same as the

sign of the second variation for all variations of the curve

which have been so chosen, that not only the distances between

corresponding points on the original curve and the curve sub-

jected to variation are arbitrarily small, but also the directions

of both curves at corresponding points deviate from, each other

by an arbitrarily small quantity.

It has thus been shown that the three conditions given in

Art. 135 are necessary for the existence of a maximum or a mini-

mum. A further examination will give a fourth condition (Weier-

strass's condition, see Chapter XII) whose fulfillment is also suf-

ficient. This condition, if fulfilled, is then decisive, after we have

first assured ourselves that the other three conditions are satisfied.
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APPLICATION OF THE ESTABLISHED CRITERIA TO THE PROB-
LEMS I, II, III AND IV, WHICH WERE PROPOSED IN CHAPTER

I AND FURTHER DISCUSSED IN CHAPTER VII.

140. Problem I. The problem of the minimal surface

of rotation.

As the solution of the equation G=o, we found (Art. 100)

the two simultaneous equations of the catenary :

1)
j
X = o. + ^t = <^{t, a, /?),

\ y =^/2(e' + e-') = xl>{t, a, fi).

We have, therefore (Art. 125),

ff(/) = )8, UO = h UO = t,

^'it)=^/2(e'-e-'), U^)=o, U0=y2ie'+e");

2) -{ and consequently,

e,(t)=ri,'(t)U0-ni)W)=^^/2(e^-e-')=y,

d,{t)=.^p'(t)U^)-<f>'(t)rij,(t) = ty-:y.

If, now, Xo, jyo, V. 7o are the values of x,y, x\y' which correspond
to the value 4, then is

3) ®{t,t,) = e,{t,)eif)-dit,)eit^

or, since

t= X—a
fi = x'^x: [cf.2)],

we have

4) e(/, 4) = l/^iy:{xy'-yx') ~y'(x,y,'-yX)l

In order to find the point conjugate to t^ we have to write in

this expression for x, y, x', y' their values in terms of t and then
solve the equation €>(/, /,) = o.
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To avoid this somewhat complicated calculation, however, we
may make use of a geometrical interpretation (Art. 58). The
equation of the tangent to the catenary at the point x^, y^, is

yo{X— x^) - V( Y-y^) = o.

Therefore, the tangent cuts the .AT-axis in the point determined

through the equation

>'o'^o=^o>'o'— JJ'oV-

The tangent at any point of the catenary cuts the ^-axis at a

point determined by the equation

y X— xy —yx .

If, now, the point x, y is to be conjugate to x^, y^, then its coordi-

nates must satisfy 4), which becomes

y,'y'(X-X,)^o.

Hence, since ^-q' andjv' do not vanish (Art. 101), we have

that is, the conjugate points of the catenary have the property

that the tangents drawn through them cut each other on the

X-axis. We thus have an easy geometrical method of determining

the point conjugate to any point on the catenary.

Further we have

F.= ^^
i^x'^+yy

and since y is always positive, and x',y' cannot simultaneously

vanish, it follows that F^ is always positive and different from

zero and infinity. Hence, the portion of a catenary that is situated

between two conjugate points, when rotated about the ^-axis,

generates a surface of smallest area (cf. Art. 167).

At the same time in this problem it is seen how small a role

the condition regarding F, has played in the strenuous proof rel-

ative to the existence of a minimum.
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141. Problem II. Problem of the brachistochrone.

In this problem the expression for F-^ is found to be

1 1
1) F,=

{Vx'^^y'^f V \gy-Vo^

We assumed from certain a priori reasons that between the

points A and B of the curve there could be present no cusp (see

also Art. 104); that is^ no point for which x' and y' are both

equal to zero simultaneously. For such an arc of the curve ^i is

then always positive and different from zero and infinity, since the

quantities under the square root sign are always finite and differ-

ent from zero (see also Art. 95).

We obtained (Art. 103) the solution of the equation G^ = o in

the form

2)

(;t = a + y8 (/ - sin O = <^(^f, a, ^),

ijK + a = ^(l-cos /)= »/, (i-, a, /8),

where here t is written in the place of <^, and a in the place of

— Xf,, and /8 instead of l/(2c^); a is a given quantity which is

determined through the initial velocity.

We consequently have

(/>' (/)=/3 (1-cos /), <^i (0=1, «^2 (0= ^-sin /;

i//'(if)=;8sin t, i//i (2f)=0, 1^3 (/)=1— cos /;

3) \ 6'i (if)=;Ssin t,

^2(/)=/8sin t{t-^\n /)-/8(l-cos tf

=2/3 sin(if/2) [icos(t/2)-2 sin(//2)];

and therefore

@ (t, 4) =4/3^ sinA sini- |cos-| (/cos^- 2 sin|-J

— COSy
I
4 COS 4 s4)}.
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With the positions which we have assumed for A and B both
4 and t are different from o and 2 tt, and consequently the equa-
tion for the determination of the point conjugate to 4 has the form

cos-;
2
k(/cos^-2sini-)-cos|-(4cos|--2sin|-) = ^,

or

4) ^_2tan^=4-2tanA

which is a transcendental equation for the determination of /.

We easily see that there is no other real root within the in-

terval o. . .
.2-^ except /=4, since the derivative of t—2 tan(^!/2),

namely, 1
^ , . . is negative, so that i — 2 tan ( t/2^ continu-

COS ( T

/

^ J

ously decreases, if t deviates from 4, and can never again take the

value 4—2 tan (4/2).

Consequently there is no point conjugate to the point 4 on

the arc of the cycloid upon which 4 lies, and therefore every arc

of the cycloid situated between two cusps of this curve has the

property that a material point which slides along it from a point

A reaches another point B of the curve in the shortest time (Art.

168).

In this problem we see that the condition F^^o was sufficient

to establish the existence of a minimum. The case where the

initial velocity is zero^ and the point A is situated at one of the

cusps will be discussed later (Art. 169).

142. Problem III. Problem of the shortest line on the

surface of a sphere.

In this problem we find that

1) ^.=
sin^ u

(i/«'2+ z;'2sin^«*)^

This expression cannot become infinitely large, since u and v'

cannot simultaneously vanish.

However, the function F-, will vanish if sin «^ = o ; that is,
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when u—0 or tt. Consequently, in this case, we must so choose

the system of coordinates that u nowhere along the trace of the

curve becomes equal to zero or to tt. If this has been done, then

Fi for the whole stretch from ^4 to ^5 is positive, and does not

become zero or infinitely large.

The equation G^o furnishes the arc of a great circle, whose

equations are (see Art. 106):

cos u=cos, c cos (s— (5),

cot (z;—y8)— sin c cot {s—b) ;

2) \ or,

«=arc cos ]cos c cos {s—b)\=^ {s, a, ^),

z;= ^-|-arc cot ]sin c cot (s— 5) [ =1/* (s, a^ )8).

Accordingly, we have

cos c sin (5—^)
</>'(s)=

t/1—cos^ c cos^ (5—^)
Ms)-

sins cos {s—5)

i/l—cos^ c cos^ (s—d)

sm c

^,(s)=

1— cos^ c cos^ (5—^)

'

cos c sin (5

—

6) cos (5

—

6) , / \ ,

1—COS^ C COS^ (5— 5)

and consequently

^1(5) = cos (5—5)
^.

/ ^_ —cos c sin (5— 5)

1/1—cos^ccos^(5— 5) i/l—cos^c cos^ {s—b)

Hence, since for the point A we have 5 = 5o = o, it follows that

cos c sin 5
3) (5, 5o) = -

i/ 1 — cos^c cos^5 1/1 — COS^C C0S^(5—5)

Therefore, in order to find the point conjugate to the point 5o= 0,

we have to solve the equation 0(5, 5o) = o with respect to 5.



CALCULUS OP VARIATIONS. 159

Since the denominator of 3) cannot become infinite, the con-

jugate point is to be determined from the equation sins=<?. We
consequently have 5 = tt as the point conjugate to s = o; that is,

the point conjugate to A is the other end of the diameter of the

circle drawn through A.

Hence the arc of a great circle through the points A and B,

measured in a direction fixed as positive, is the shortest distance

upon the surface of the sphere only when these points are not at

a distance of 180** or more from each other, a result which is of

itself geometrically clear.

We may remark that the condition that i^i cannot vanish is

clearly in this case unnecessary ; since the arc of a great circle

possesses the property of a minimum independently of the choice

of the system of coordinates with respect to which ^1, say, at

some point of the curve vanishes.

143. From the figure in Art. 107 it is clear that when A is

the pole of the sphere, the family of curves passing through A and

satisfying the differential equation G = o {i. e., arcs of great cir-

cles) intersect again only at the other pole. In the next Chapter

it will appear that the two poles are conjugate points. This,

together with what was given in the preceding article, may be

taken as a proof that the arcs of great circles can meet only at

opposite poles.

144. Problem IV. Problem of the surface offering the

least resistance.

In this problem let us write (Art. 110)

a=-C/2, /8=-Ci,

x = a.\t^ 2t-^ + r^] = «^( t, a, y8),

jK = a[log / + r^ -h 5^/"^] - )8 = »/»( t, a, y8).

so that

Hence,
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and

@(^^ Q ^ x'jypx^ - x^y^) - x^jy'x — x'y)
a

Now the tangent to the curve at any point x^, y^ is

yo{X- xo) — Xoi V— yo) = o,

and the intercept on the F-axis is

-''o -^ ^= '''o j^'o — yo ^0-

The tangent to the curve at any point x, y cuts the K-axis where

x^ Y= x'y — y'x.

We therefore have for the determination of the point conjugate

to x,^, yo the equation

x'xo'Vo = Xo'x'V, or ro=V.

As in Art. 140, this gives an easy geometrical construction for

conjugate points.
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CHAPTEJR XI.

THE NOTION OP A FIELD ABOUT THE CURVE WHICH OFFERS A
MAXIMUM OR A MINIMUM VALUE OF THE INTEGRAL.

THE GEOMETRICAL MEANING OF THE
CONJUGATE POINTS.

145. In Chapter IX we showed that the neighboring curves,

which pass through a fixed point A and belong to the family of

curves G ^^ o, intersect again in a point B, if B is the point conju-

gate to A. We shall now consider more fully this property of

conjugate points.

We may first introduce the notion of a field about the curve

which is to cause the integral to have a maximum or a minimum
value.

We have assumed for all points belonging to that portion of

the curve for which the integral in question is to be a maximum
or a minimum that the function F{x, y, x\ y') is regular in x, y,

x' and y' and that F^ along

this portion of curve is neith-

er zero nor infinite. Excep-

tions to these assumptions

are left for special investi-

gation. From this, in con-

nection with the necessary

conditions already estab-

lished, it is seen that the

portion of curve can have no

singular points (see Art. 95).

Such a portion of curve has therefore at every point only a single

normal which cuts the curve, and the radii of curvature of all
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points have a lower limit which is different from zero (Art. 80).

Consequently, we may determine on both sides of the normal

drawn through the point C of the curve AB two points D and D'

in such a way that the normal within the interval DD' is not cut

by any other normal to the curve in the neighborhood of the point

C. Consider lengths similar to DD' drawn for all points along the

curve ; then the surface bounded by the points D and D', which
follow one another and which envelop completely the curve AB,
has the property that within it no two normals drawn through

two points of the curve that lie very close together intersect.

146. We represent the curve AB, which satisfies the differ-

ential equation G = o, by the equations

1) x = <l>(t,a, ft), y = xfs{t,a,P), {t=t,....t,),

and one of the neighboring curves, which also satisfies the differ-

ential equation G = o,hy the equations

2) ^=</.(Aa + a',^ + /3'), y^^\,{t,a + o!,^ + ^').

Both curves are to pass through the same point A. If for

the first curve there corresponds to the point A a definite value

4 of t, there will correspond to the same point for the second curve

another value, say 4+ '''•

The condition that the first curve shall cut the second curve

is expressed by the two equations

:

3) J<^(4
+ t', a+a',^+y8')-<^(4,a,y8)=0.

U (4+ t', a+a', ^+0)-yp (4 a, fi)= 0;

or, developed in powers of t', a and ^'

:

i f (4) T' + <f>, (4) a'+ <l>, (4) y8'+ (r', a', /3'),= 0,

4) <

(f (4) r'+ V/i (4) a'+ xf,, (4) ^' + (r', a', fi'\=o,

where {t', a, ^'\ denotes the terms of the second and higher

powers of t', a and y8'.
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147. We may solve the equations 4) with respect to t', a'

and /8' as follows. Suppose we have two equations

a x-\-by-\-c ^+ (x, y, 2\=o,

a' x-\-b' y+c' 2!-\-{x,y,z)i=o,

where one of the three determinants a b'—a' b, a d—a' c, b c'—b' c

is different from zero. It follows,* then, that we may express all

values X, y, z which satisfy the two equations, and in which x, y, z
do not exceed certain limits through three power-series of a single

quantity.

We may choose for this quantity 5 = Ci^r+Cjjv+ Ca z, where

Ci, c-2, and C3 need satisfy the only condition

:

<z, b, c

a\ b\ d ^o.

For brevity, write (cf. Art. 126)

then the three expressions corresponding in equations 4) to the

determinants

a b'—a! b, a d—a! c, b d—b' c

are

5)

<^' (4) '/'I (4)-^ (4) «/>! (4) = -^1 (4),

<^'(4)'/'2(4)-f (4)<^2(4) = -^2(4),

)'/'2(4)-'/'i(4)«^3(4)=-^3(4),

of which ^1(4) and ^2(4) cannot both simultaneously vanish

(Art. 127).

We may accordingly write

Ci = o, c-f! + C3^' = ^1,

•See my lectures on the Theory of Maxima and Minima, etc., p. 102 and p. 21.
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and further impose upon the constants Cj and Cj the condition

^'(4). <^i(4), ^2(4)

6) ^/''(4), '/'i(4), '/'X^)

If we consider only the linear terms in equations 4), we have

f(4) r' + <^X4) <^' + <^2(4) )8' = o,

f(4)r' + t/»i(4)a +»/'3(4)/8'=:(?,

Cjtt' + C3/8' = ^1.

From these equations we have as first approximations for t', a!

and /8' the values

/ t' = —^1^3(4).

7)
I

a' =+>?;, ^,(4),

( /3'=-.{:,^,(4);

and therefore, finally,

7") }a'=+k, ei 4) + k,^Pi k„ 4 ),

( ^'=-k,d,{Q + k,^Plk„ 4),

where /\(^i, 4). ^2(^1. 4) and PsC-^;!, 4) are power-series in k^

and 4-

If we write these expressions in equations 2), or, what is the

same thing, in

8)
j

;r = «/.(/; + t', a + a', ^ + ;8'),

where, now, / may take values less than 4. then we have

9) < _
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In these equations the symbol (t,^;^) is used to represent quanti-
ties which for every value of t become indefinitely small at the
same time as ^i.

When ^1=0, the curve represented by equations 9) becomes
the original curve, and we see that ^^ can be taken so small that
the two curves at corresponding points, that is, at points that
belong to the same value of /, may come as near to each other as
we wish. We shall show in the following Article that by this

process we have derived all the curves that satisfy the diflFerential

equation G^o, which go through the point A and are neighboring
the first curve.

148. Instead of the quantity ^i we may substitute a power-
series in t', a, fi' which is subjected only to the condition that if

Ci, Cj, C3 are the coefl&cients of the linear terms in t', a, ^', the de-

terminant

<^'(4), <f>U), UO
^'(^o), ^lU), U^o)

Ci, C2, C3

=1=0.

This condition is satisfied by the power-series which expresses
the trigonometric tangent of the angle which the initial directions

of the two curves at the point A^t^ include with each other.

For, denoting this tangent by k, we have

^ _ dxp dxo __ Xq yo—yo Xp

l^^A^ Xo x^+ j>/o>o'

dx^ dxo

f(4), nto)

f(4). f(4)

r'+ a'+ /8'+ (r',a',^')z

It is assumed that the curve is regular at the point A, so that

the quantities <^'(4) and V''(4) are not simultaneously zero, and

consequently <^'(/o)^+ ^'i^oT is different from zero.
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Hence, the determinant of the equations 4) and 10) is

<f>"U) + riio)

f(4),

f(4),

^"(4)- ^'(4)

<^'(4), 'A'(4)

</'i(4).

'I'i(4).

<^i'(4), V'i'(4)

<^'(4), '/''(4)

<^2(4).

'/'2(4).

<^;(4), V'/(4)

<^'(4), f(4)

Multiply the first horizontal row by t/»"(4), the second by —</>"( 4).

and add them both to the third row, which then becomes

+

f(4), Wo)

«^2'(4), ^M)

f(4), '/''(4)

or, what is the same thing,

Hence, the above determinant is

1

+

<^2(4)> '/'2(4)

na n4)

10)
fX4)+'l''X4)

[^/(4)^2(4)-^;(4)^i(4)]

C

an expression which ( loc. cit. ) is different from zero.

We may accordingly write k in the place of k-^, and find in the

same way as above

:

!x= x + k/iit, k)
_

149. In Art. 89 the form of the solution of the differential

equation G= o was given. It follows that a curve which satis-

fies the equation G= o is completely determined as soon as its

initial point and the direction of the tangent at this point are

known.
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Let a, b be the coordinates of A and X (see Fig. of Art. 87)

the angle which the initial direction makes with the ^-axis ; fur-

ther, take instead of the coordinates x, y 2. new system of coordi-

nates /, V with a new origin at A in such a way that

!t^=.(yX—a)cosX.— (jv—5) sin X,

z/= ( ;»:— a) sin X+ ( jV— <5) cos X.

;

or

{x=^a-\-t cosX-|-z^ sinX,

y=b—t sin 'k-^-v cos X.

Now if we choose t as the independent variable, then is

;i;=cosX^ — smX, -^7 ^ tti ^^'^'^^

dt dt dt^

I . .
dv

,
dy' dh) ^^ ,

.

•V=— sinXH—-- cosx -Tr=^3^ ^^^^!^
dt dt dr

and consequently

, dy' ,dx' d'^v
X —— v = .

dt ^ dt dt^

The differential equation G=^o, i. e.,

becomes then

^2», / . , . dv
14) o = ----^FAa +t co^x+ z/ smX, b—t&m\ + v cosx, cosx + -^

sinX, -sinX + ^cosx) + ^(/, v,^] (Art. 94).

Following the method of integration given in Chapter VI, we

solve the above equation in such a way that when t=o, both v=o

and —^o, the z;-axis being the direction of the tangent at the

dt
point A.
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Hence, if F-^ {a, d, cosX, — sin x) has a finite value different from

zero^ and ii H it, v, ——
|
does not become infinitely large at the

point A, as we have assumed was the case, since F^ together with

its derivatives, of which H consists, is a regular function of its

arguments, it follows that there is only one power-series of t that

satisfies the differential equation, and which with its first deriva-

tive vanishes for /= o.

This power-series has the form

v=P P(t).

Writing this value of v in the equations 13), they become

!x=^a+t cos \ + AiP+ ,

y= d—t&m\ + Bi t^+ ,

where the constants Ai, Bi, . . . . are definitely determined.

Thus the equations 15) completely determine the curve which

satisfies the differential equation G=o, where a, b are the coordi-

nates of its initial point and \ the angle which its initial direction

makes with the X-axis.

From this it follows at once that through equations 11) we
have all the neighboring curves of the original curve which pass

through the same initial point and satisfy the differential equation

150. We may therefore give k an upper limit in such a way
that all curves belonging to a value of k below this limit and sat-

isfying the differential equation G=^o lie completely in the surface

which envelops the original curve.

This makes it possible to bring about a one-valued relation

between both curves in such a way that, corresponding to every

point of the original curve, we may determine the point of the

neighboring curve at which this curve is cut by the normal at a

point on the first curve.

Let X, y be the coordinates of a point P on the original curve,

and x+ i,y+ r) the coordinates of the corresponding point on the

neighboring curve.
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If P' is the point corresponding to P, its coordinates are

^ + f=<^(/ + -r, a+a', 13+^'),

y + yj=xlj(t + T,a + a', ^ + /8');

and besides, since {X— x)x'+ ( V—y)y= o is the equation of the

normal, and X=^x+ i, K= r+ tj is a point on it, we have

x'i +/v = o.

Hence, ^, rj and r are to be determined from the equations

/ f = f(/) r + <^i(0 a'+ (/..(O /8'+ . . . .,

16) \v = ^\t)r + Ut)^'^Ui)^'+----,

The last of these equations combined with the first and second

gives

17) o=[<i>'\i)+ rlj'Xt)-]T+ ^/{t) + it,n

when for a', /8' we have written from 7"
) their power-series in ^.

Since the portion of curve A B has no singularity, and conse-

quently ^'\t)-\-^\t^ nowhere vanishes, we may from equation

17) express t and therefore also f and -17 as power-series in k. If,

then, we limit ourselves to curves with which k remains within a

certain limit, we may always determine the point where such a

curve is cut by a normal of the original curve.

151. We ask if it is possible for the second curve to intersect

the first curve. For this to be the case the length PP' must be

zero ; that is, ^, 17 must for some value of / be equal to zero. Hence

we have so to choose the quantities /, t, t', a', /8' that the equations

4) and 16), when in 16) ^ and 17 are put equal to zero, are satisfied.

The terms of like dimension in 4) and 16) are homogeneous

functions of t', a', /3' and of r, a' )8' respectively; these equations

may be written

:
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where v, t>, q, v-^, p^, q^ represent functions of r', a', /8'; and v^, pz-, qz,

Z's. A' 92 are functions of t, a', /8', which with these functions and

therefore also with k, become infinitely small.

The first two of these equations express that the two neigh-

boring curves pass through the initial point A, and the last two
that they are to go through another point.

In order that these four equations exist simultaneously, their

determinant must vanish. This determinant, when in it we make
k=^o, is :

f(4),



CALCULUS OP VARIATIONS. l7l

very near the original curve will cut this curve in the neighborhood
of C, as soon as there is a point C in the interval AB which is

conjugate to A. For one can then alwaj^s find for ^ a value
sufficiently small that, with very small values of h, the sign of
e{f—A, to)+ k{t'— h, 4, k) is the same as the sign of @(t'—h, t^),

and the sign of %(t'+ k, to)+ k(f+ h, 4, k) is the same as that of
&{f+ h, 4)- But when the function @{t, 4) passes through the
value zero it changes its sign, as is seen in the following Article.

Hence, it follows, as @(t', 4) is to be zero, that the expression

®(^. 4) + ^(^. 4. ^) must vanish once within the interval f— h. . .

f+ h; or, in other words : //, in the interval AB of the original
curve, there is a point t^t' conjugate to the initial point, then
all the curves which lie very close to the first curve, which sat-

isfy the differential equation G=o and which have the same
initial point A, will cut again the first curve in the neighbor-
hood of the point t' . Consequently the conjugate point is noth-
ing other than the limiting position which the points of inter-

section of a neighboring curve with the original curve approach,

if we make smaller and smaller the angle which the initial

directions of the two curves make with each other.

If there is no such limiting position within the interval AB,
then there is no conjugate point within this interval.

152. It remains yet to show that the point A cannot itself be

this limiting position; that is, of all the neighboring curves there

cannot be one which cuts the original curve as close as we wish

to A. Analytically this case may be expressed in the following

manner : If at the point t the original curve is cut by a neighbor-

ing curve, we have the equation

o,

o, «/''(4)+ z'i. «/'i(4)+A. V'2(4) + ?i

<f>'(t)-\-V2, O, <f>lU)+p2^ <^2(^) + ?2

a determinant which becomes Q(/, 4)=^. when k=o. If for t, t',

a, /8' expressed as power-series in k, their values be substituted in

the determinant, it becomes an equation in t and k. Further, since
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<f>'{t), (i)i{t), .... ^2{^) 3.re power-series in t which are regular

functions in the neighborhood of 4, the determinant may be de-

veloped in a power-series in /— 4and ^, which converges for suf-

ficiently small values of /—4and k. If in the neighborhood of the

original curve there exist curves which cut this curve as near as

we wish to A, then, after sufficiently small limits have been given

to t—^o and ^, it is possible to find values for these quantities

within the given limits for which the equation is satisfied.

If we write 2"= 4, the quantities v, p, q are respectively equal

to v-i, p2i ?2 and the quantities v-^, p-^, q-^ to v^,, p^, q^.

When this is the case, the determinant has the form

o , a , b , c

0,
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it follows that

where A is a constant different from zero.

We further have, since

d

the relation

jf
e{<, t,)=eit,) e:(t)-e,(i,)e,xi),

[#.«(''•>],.. = ^/Tfr

which is different from zero.

It is thus seen that the derivative of @(/, 4) does not vanish

on the positions at which the function itself vanishes.

At the same time it is shown that the equation 19) is not sat-

isfied, so long as ^ and /— 4 remain within finite limits; and con-

sequentl)"^ a neighboring curve cannot intersect the original curve

a second time indefinitely near the initial point through which

both curves pass.

As there is a great range of choice regarding the variable /,

and as the constants a and /3 may be chosen in many ways, it is

possible to give many forms to the function ©. To be strictly

rigorous, it would yet remain to prove that the solution of the

equation 0(/, 4) leads always to the same conjugate point, what-

ever be the form of 0; the geometrical significance of these points,

however, make such a proof superfluous.
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CHAPTER XII.

A FOURTH AND FINAL CONDITION FOR THE EXISTENCE OF A

MAXIMUM OR A MINIMUM, AND A PROOF THAT THE
CONDITIONS WHICH HAVE BEEN GIVEN

ARE SUFFICIENT.

153. In the preceding Chapter we considered the family of

curves that have the same initial point A and satisfy the differen-

tial equation G = o. These deviate very little from one another

in their initial direction. We saw that the curves again intersect

only in the neighborhood of points that are the conjugates of A,
the conjugate point along any curve being the limiting position of

the point of intersection of this curve and a neighboring curve

when the angle between their initial directions becomes infinitesi-

mally small. All points that lie on these curves before the points

that are conjugate to A form a connected portion of surface ; that

is, if /'i is a point belonging to this collectivity of points, a bound-

ary may be described about P^ so that all points within this

boundary also belong to the collectivity of points.

For, let

X = <f>(t, a, ft), jv = »/»(/, a, /3)

be the equations of a given curve which satisfies G^^o, and let

the coordinates of a point on this curve be

X, = <^( A, a, /3), y^ = t/»( /i, a, P).

Further, let x^ -\- ^, y^ -\-
ri be the coordinates of another point P^

that lies in the neighborhood of P^, so that ^, 17 are quantities

arbitrarily small.
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We may then (Art. 151) draw a curve between A and P^

which satisfies the differential equation G—o, if we can determine
four quantities r, t', a', /3' as power-series in f, 17 in such a way that

the following equations are true

:

O = f(4) t'+ M4) a'+ <^2(4) )8'+ (r', a', ^')„

O = f(4) t'+ ,A,(4) a'+ riflQ P'+ (r', a', )8')„

^= f(A) r + <^,(A) a'+ U^,) ^'+ (t, a', y8')„

V=^'{A) r + U^,) a'+ ^a(A) ^'+ (r, a\ fi'\.

Since the determinant of these equations (Art. 151) is — ©(/"j, 4)
and is different from zero, the point ^j not being conjugate to 4,

it follows that the quantities t, t', a, yS' may be developed in power-

series in $, T) which are convergent for small values of these quan-

tities.

Consequently a curve may be drawn through A and P2 which

satisfies the differential equation G ^= o, and this curve will be

neighboring the first curve and will deviate as little as we wish

in direction from its initial direction, if ^, tj, and consequently also

T, t', a', fi\ are sufficiently small.

If we form the determinant for the curve AP2, which, when

put equal to zero, is the equation for the determination of the

point conjugate to A, it is seen that this determinant also may be

developed as a power-series in f, 17, which becomes —®{ti, 4) when
^=rj=o. The function €)(/], t^) is different from zero when suf-

ficiently small values are ascribed to $, t). Consequently within

the interval AP2, there is present no point which is conjugate to A.

We may therefore envelop the interval situated between two

conjugate points of the original curve by a narrow surface area,

which is of such a nattire that a curve, and only one, may be

drawn from the point A to any point within it, which satisfies

the differential equation G=o, is neighboring the first curve

and deviates in its initial direction only a little from it.

154. Let a portion of curve Po^i. satisfying the differential

equation G=o, be given, which is of such a nature that for no
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point on it F-^^o or oo, and stippose that the point conjugate to /{,

does not lie before P^. Between P^^ and /\ take an arbitrary point

P2 and draw through P2 a regular curve.*

On this curve we choose a point P^ so close

to P2 that a curve may be drawn through

/'o and P^ which satisfies the difEerential

equation G = o, and which lies entirely

within the strip of surface defined above.

Let us consider the change in the integral

when we take it over Pf^P^^P^P^, instead of over P^P-^. We may
denote an integral taken over a curve that satisfies the differential

equation by /, and one over an arbitrary curve by /, and we may
denote the direction of integration by added indices. We have
therefore to compute the expression

A/=/o3+ 732— /02,

or

P P P P P P-'o-*3 'o-'a '3*1

an expression which (Art. 79)

p, p. p, p,

where ^, 77 are measured in the direction from P^ to P^.

At the point P^ and along the curve P^ P^ in the direction P^ P^

we have

ef=-^; dl-\-{dlf,

^l=-y;dt + {dty,

dt denoting that this differential is taken with respect to the

curve P^Pz-

If we consider the arguments in F expressed as functions of 7
along the curve P3/2, it follows that

^Fdt = F(yX.,,y2,x{,y;^dl^(^dlf.

p p
^ The shaded curves do not satisfy the differential equation G = o.
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Hence at the point P^, which is an arbitrary point of the curve

/o/*i, we have

t.I^\^F{x^,y^,x;.yi^-\^; ~ F{x,, y,, x^,y^)

+3^2' ^ F{x^, y^, X,', y,') ^dt +{d t)\ (a)

The function F is homogeneous of the first order (Art. 68)
with respect to its third and fourth arguments, so that (see
Art. 72)

F{x^, y^, X,,' y,') = x,' /^^ {x„ y,, x,', y,') + y,' F^^ (x„ y„ x,',y,').

We define by ^{x, y, x', y', x' y') the expression

1) ^ix,y,x',y',x',y')=x'{F^\x,y, x',y')-F^'Xx,y,x',y')\

+y'\F^\x, y, x', y')-F»\x, y, x', y')\.

Hence at the point P2 it follows that

A/= ^(x, y, x', y', x', y') d J+{d tf,

when in the function <b we have substituted for the arguments
those values that belong to the point P^. The direction-cosines of

the curve P^ Pz at P^ are denoted by

^2 .^A r, _ yiA=—===^ and ^2 =
Vx;^ + y^^ Vx^^ + y^;^

and those of the curve P^P^ at P2 by p2 ^^^ Qi- It is evident from

a consideration of the right-hand side of the formula defining <s

above (and cf. Art. 68) that

§i^^iy:^^^^^iyi = Six,y,p, g,p, g).

155. If further we denote by cr the differential of arc P^Pz,

we have finally

2) M=S{x,y,p,q,p,q)<r+i(Ty.
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Accordingly, if we take o- sufficiently small; that is, if we
choose the point P^ very close to P2, then we may always bring it

about that the change in the integral has the same sign as that of

the function S.

The point P^ was an arbitrary point on the curve P^Px, and

/j/'a also represented an arbitrary direction.

It follows that if for any point P^ and for any direction at P^

the function (f were negative, and for any other point and direc-

tion positive, then the given curve could vary in such a manner

that the change in the integral is at one time positive and at

another time negative. We have, therefore, the following theorem :

If the integral taken over the curve P^Pi which satisfies the

differential equation G—o is to be a maximum or a minimum,
then the function & m^ust have the same sign for every point

of the curve, and at every point of the curve for any direction,

and this sign m.ust be negative for a maximum and positive

for a minimum,.

156. That the above condition is sufficient to assure the

existence of a maximum or a minimum may be shown as follows :

Let /*o(I)^i be a curve which
satisfies the four conditions al-

ready established (and recapit-

ulated in Art. 174), and let

Po(II)-^i be any arbitrary curve

that lies in the field about the

curve /'o(I)/'i. It is subject only

to the condition that it must be

a regular curve and lie wholly in

the given field.

By varying the parameters a and /8 we can construct a system
of curves as near as we like to one another, all satisfying the dif-

ferential equation G = 0. These curves cut the curve Po(II)-'^i in

two (or perhaps more) points. They do not cut the curve Z'oCl)^!

or intersect among themselves within the field in question. The
function <5 must have the same sign along each of these curves as

it has along the curve Pj^V)Px. For, take an arbitrary point P on
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any of these curves. Then on the curve Po{l)Pi there is a point
for which the quantities x, y, p, q differ only a little from the
quantities that belong to the point P, and consequently (F has the
same sign for both points.

Consider now the variation in our integrals as we pass from
PoCl)^! to PJ't.P^P^ and from P^P^P^P, to P^P^PsPu etc. As we saw
in the preceding article, the variation caused by passing from
Poil)P, to PoP,P,P,

P, q being the direction - cosines of the tangent to the curve

/'o(II)/\ at the points P-i and P^, which, we notice, have opposite

signs at these points.

If we denote the integration along the curves by the curves

themselves, it is seen at once that the variation in these integrals

may be expressed by

PoPzPzP^ - P,(J)Px = [<^]'° cr + [<r]'- o- + (o)^

where the first cr is the length from P^ to P^, and the second from

P3 to P,.

Similarly the differences in the integrals along

PoA/'sPi - PoPzPzPi = l^V' o- + [<F]'' o- + {a-y,

PoPtP,Pi - PoP^PsPi = [<^] '* o- + [<^] '• o- + ( <^)'.

PoP2yP2.+^Pl-P^Pz^2P2v-lPx= [<F] '^.^^ CT + [<F] '^k-I (T^{a)\
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Adding these results together, we have the difference in the inte-

grals along

Po{ll)Pr - Po(l)Pr ^^^cr + (ay,

(T being a differential of arc along the curve Po{Il)Pi. This is a

verification of the theorem stated at the end of the last Article.

We also see that, if we had not assured ourselve that none of

the intermediary curves intersect, the signs of the cr's would not

all have been alike, and consequently the sum total of all these tr's

would not have constituted the curve Pa{Il)Pi.

157. Another form of the function (S".

We have seen in the Integral Calculus that

/(A. Qx) -/{Po, Qo) = 1 df{p, g)

A' Qo

=J(/'"[A+>^(A-A),?o+>^(?i-?o)](A-A)

k—o

+/'"[A+'^(A-A).?o+'^(?i-?o)](?i-?o))^>^-

Hence, if we write

i 9k =g+ k{g-q)= {l—k)q+ kq,
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it is seen that

F^\x, y, A q)-F^\x, y, p, g)= J^/rui) (^, y^ p^^ g^) (^p_p^^

k=o

+ F^'\x, y, p^, g^)(^-q)) dk,

F^\x,y,prg)-F^\x,y,p, ^) ^J(ir«i)(^, ^^^^, g^)G-P)

k=o

+ F'-^\x,y,p^, g^){q-q)) dk.

Note that (see Art. 73)

^'^"=?.' ^1, i^'^''= -A ?. ^1. F'-^^p^ F„

and further that i^'^^^i^'^'.

By substituting these values in the above expressions, and in

turn the resulting quantities in the expression for <£, we have

Six,y,p, g, A g)=-/> [F^'\x,y,p, g)-F^\x,yp, g)]

+'g [F^\x, y, p, 'g)-F'\x, y, p, ^)]

k=:0

The expression in the square brackets is

{g^P-P^g)\.gJ^P-p)-pJ.9-9)^=i'^-^)i9p-p'g)\

and consequently
k^i

3) S{x, y, A ?. A q)={9P-P gy ^^(^^ y^ A' ?k) (l--^^) ^^•
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This expression for <s in the form of a definite integral is de-

fective, in that it has a meaning only when F^ remains finite for

all values of ^^ and q^^, 2J& k varies between o and 1. For^ exam-

ple, if k=.y^, th^n p^= p-^y^ip-p)^y2{p+p), ^ndiip^- p,

then pi^=:o\ in the same way for k=^y and g^=z— q, then also

Qi^ = o. These two arguments being zero, F^ becomes infinite

(cf. Art. 73). Further, if the two directions p, q and p, q coincide,

then <F becomes zero of the second order.

If OP_ a^d OP are vectors of unit length with components

p, q and p, q, then the components of OP', when p' travels along

the line PP, are p^, q^, k varying between o and 1.

158. Another form was given

by Weierstrass to the expression

(F, in which he avoided the defect

mentioned above, by integrating

along the arc of a circle instead of

along the straight line pp. If we
integrate along the arc of a circle

of unit radius from the point P to

the point P we obtain an expression

for <F which is universally true.

We have as before, if POX^= t, POX
and -77 = w = + 7r.

>=T— T {mod. 2 7r)

^{x, y, p, q, p, q)=pVF'\x, y, p, q)-F^\x, y, /, ^)]

4- ~qVF^\x, y, p, q)-F^\x, y, p, ^)]
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= COS T [F^% X, y, cos r, sin r) —F^\x, y, cos t, sin t)]

+ sin ; [i^<^'(;i;, jv, cos ;, sin — i^«)(-^,
jv, cos T, sin t)]

X=a)

=cost
j ^x-'^'^'L^. :>'. cos(t + x), sin(T + \)]

X=o

X=<i)

+ sinT
j

^x7^'^'[;r, _>', cos(t +x), sin(T + x)].

X=o

But, if F'^' denotes the derivative of F with respect to its third

argument, etc.,

d-^ F'>' [x, y, cos (t + x), sin (t + x)]

= [— ^<!"s!cos sin(r + x) + i^<|i|',,i„ cos(t + x)] dK

= [— sin^(T + x) — sin(T + x) cos^(t + x)] F^dx.

= — sin(T +x) Fi[x, y, cos (t + x), sin(T +x)] dx;

similarly,

dy, F® [;r, y, cos (r + x), sin (t + x)]

=cos(t + x) Fi[x,y,cos{T + x), sin(T + x)] dx..

Hence, it follows that

X=<i)

S(x,y,p, q,i>,
~q)=

j
[—cosr sin(r + x) + sin^ cos(t + x)] F^dx

X=o

X=<D

=
j
sin (t — T — x) Fi dx

x=o

x=«

=
j
sin(w— x) iF,[;j;,;>/, cos(t + x), sin(T + x)]rfx.
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If we write

ct)—X=X.

,

the integral just written is

sin X' Fi Ix, y, cos (t — X'), sin (i-— X')] d)J

\'=o

=Fi[x, y, cos ( T— X/), sin ( t— X2')] i d cos X',

where X2' is intermediary between and <u.

We therefore have finally

4) (5 {x, y, p, q, p, ^)= (1— cos w) F^ [x, y, cos ( ; — x/), sin (t— Xj')] •

If then Fi [x, y, cos ( t— X'), sin ( i-— X')] has a constant sign

between o and w^ it follows also that S (^x, y, p, q, p, q) has this

sign, since Xj' is one of the values of x' within this interval.

The above formula is true for all values of o) situated between
— TT and -\-TT, and since cos (t — Xj') and sin (t— Xj') cannot both be

zero at the same time, it is seen that

Fi[x,y, cos(t— X2'), sin(i^— Xj')] =^Q°,

and consequently the expression 4) for <F has not the same defect

as the one given in the preceding article.

159. For any displacement of the curve cj^o, and conse-

quently 1—cos w is a positive quantit}^ Hence (T has the same

sign as F^. If F-\x, y, cos{t —\), sin^r — x)^ is found by ex-

amination to have always the same sign independently of
cos {t—\), sin{T—x) for every point of the curve within the

interval in question, then we may be convinced that there is a
maxim.um, or a m^inimum- of the integral without the deriva-

tion and examination of the function (F. By this process, how-
ever, we have shown without the second variation that the
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function Fi {x, y, p, g) can change its sign for no point on the

curve, and for no direction of the tangent to the curve at a

point.

160. It is evident that if F-^, considered as a function of its

third and fourth arguments, has a definite sign, then ^ has also

the same sign ; but if ^ retains a definite sign, p and q being

fixed while p and q are varied, it does not then follov?- that F-^

always has a definite sign. This is illustrated in the following

example, due to Schwarz :

Let

=(a-f/8 COST sinV) i/;t;'^+y^

It follows that

= (a+2^cos3r) ^-,^-L^,

and, since ;c'^+ y^=cos^X+ sin^X=l,

x=w

S{x,y,p,q,p,q)= 1 sin(a)— x)i^i [;t;,jy, cos (t+ x), sin ( t+ A.)] d\

\=o

= 1 sin (ti>— x) (a+2/8 cos 3x) ^x,

x = o

where we have written t + X =X or t =0 ; i. e., we have taken the

;^-axis as the initial direction, from which w is measured.

Noting that

sin(o>4-2x)+ sin (w—4x)=2sin (to — x) cos 3x,
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it is seen that

S{x,y,p, q, p, ip)=(l— C0S6j) [a+ y8 (cos w+ cos^w)].

The greatest and least values that cos a>+ cos^ w can have are

2 and ~%, the corresponding values of w being o and % tt. Hence,

if we we make a=l and /8=1, the function <s is situated between

the values

^ (1—cos oi) and 3 (1—cos w),

and can consequently vanish only for w= o, and is never negative-

On the other hand, 1 + 2 cos 3t changes sign repeatedly, for exam-

ple, when T=40*.

161. The proof stated at the end of Art. 155 is of para-

mount importance in the determination whether there exists a

true maximum or minimum. The proof of the sufficiency of this

theorem, as illustrated in Art. 156, was given in a somewhat differ-

ent form by Prof. Schwarz. Owing to its importance we add

another proof, taken from the lectures of Weierstrass.

Let OOjl be the curve which satisfies the differential equation

G=o, and let OjSl be the arbitrary curve in the field, as defined

in Art. 156. Let 3 be any point on the arbitrary curve, whose co-

ordinates we consider as functions of length of arc s (instead of t,

as before). The point Oj is taken between and 1 so that the

curve 0i31 may lie wholly within the

field, since the field might terminate

in a point at 0. From the point we
draw a curve to 3 which satisfies the

differential equation G=o. We con-

sider the sum of integrals /os+ Zai as

a function of 5. This function we denote by J (s). Further, take

on the arbitrary curve a point 2 in the neighborhood of the point

3 and before it. Join the points and 2 by a curve which satisfies

the differential equation G=^o. Then, if we denote the increment

of s by cr, it is seen that

5) §{S — 0-) - J(5)=/o2+4-/o3-/3,= /o2—/o3+ Iiz

=^{x2,y2,pz,g3,p2, Qi) o- + (o'?-
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In the same manner take a point 4 immediately after the point 3
on the arbitrary curve and join this point with the point by a
curve which satisfies the differential equation G = o. Then we
have

6) J(5-0-)_J(5)==/o,-/o3-/3.

It therefore follows that

lim J(^-*^)-/(-5) lim /(^+^)-/(-5)
7) O"=0 rr

"=0— (7

— ^{x^,yi,pz,qz,pz, gz)\

that is, the quantity —(5(^3, jKs, P%, <!>., Pt,', Q3) is the differential

quotient of the function
j (5) at the point 3.

If, then, along the curve Oi31 the function d" is nowhere

positive, the function \{^s) continuously diminishes when the

point 3 slides from Oj toward the point 1.

Let the point Oj, which was taken very near the point 0, co-

incide with this point ; then we can say :

If the function ^ is nowhere positive and is not zero at

every point of the arbitrary curve 031^ the integral taken over

the original curve is always greater than the integral extended

over the curve 031 ; and if the function <s is not negative and
not zero at evevy point of the curve 031^ then the integral taken

over the original curve 01 is continuously less than the integral

extended over the arbitrary curve 031.

162. It remains yet to see if it is possible for the function (F

to vanish along the whole curve 031. It appears from the for-

mula 3) that this is possible only when along the whole curve we
have _ _ _

{pq-qpy =0, or pq-qp = 0.

In this case every curve 03 which satisfies the differential equation

G—o has a common tangent at the point 3 with the curve 031.
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We shall show that the curve MN which is formed of the

points conjugate to the point has this property, and that no
curve having this property can be drawn from within the

region that is bounded by MN. In other words, <F is equal to

zero along the curve MN, but is not equal to zero for all the

points of any other curve that can be drawn within the region

that is enveloped by MN.

All the curves that satisfy the differential equation G = o,

which pass through one point, and whose initial directions differ

from one another by very small quantities, may be represented

(Art. 148) in the form

x=i^{t, k), :y = ^it, k\

where the values of k are within certain limits.

To each curve corresponds a different value of k. If, there-

fore, we fix a value of k and take a second value k-\-k\ the curve

which corresponds to this value may be expressed by the equations

x^i=^^(^t\T\k^k'^,

y+ V=^(^+r',k+k'),

where the same value of t corresponds to the initial directions of

both curves.

If the latter curve is cut by the former^ we must have

0=<l>'it)r'+^^k' + (r',k'\,

= ^'(t)r' + ^^k' + {r',k'\.

The determinant of the linear terms of the equations just

written gives, when put equal to zero, the equation for the deter-

mination of the point conjugate to the initial point, i. e.,
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The smallest root of this equation, which is greater than the

value to of t, gives the value of /, which belongs to the conjugate
point. If this value is t^, then the coordinates of the point are

x = j>{t^, k), y^xf,{ti, k).

If we consider t^ as a function of ky defined through the equation

(^), and if we give to ^ a series of values, the two equations just

written represent the curve that is constituted of the points con-

jugate to 0.

The direction-cosines of the tangent to this curve are propor-

• • dX d'v
tional to the quantities —r- . —rr • But we also have

dk dk

dx ^ d(f>(i„ k) dti 8<^(A, k)

dk d t^ dk d k '

dy ^ d^{t^, k^ dt, a^KA. k)

dk 3 ^1 dk d k '

Multiply the first of these equations by ^^^f^'
^^ = i/»'(A), and

subtract from it the second after it has been multiplied by

^&i3 = ^'{t^y We have then, with the aid of M),

Since <^'(A)) ^'(A) are proportional to the direction-cosines of

the tangent at a point t^ of the curve through 4 and /j, which sat-

isfies the differential equation G=o, it follows from the above

equation that the tangents to both curves at the point /j coincide.

Hence, the locus of the conjugate points to is the envelope of
the curves through 0, which satisfy the differential equation

G=o.

163. Let x=f{u) and r=^(«) be an arbitrary curve 031,

which passes through the point 0, and is situated entirely within

the region bounded by the envelope. Further, suppose that 031

does not coincide throughout its whole extent with any of the

curves passing through 0, which satisfy the differential equation
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G^=o. Suppose, however, that 031 is touched by the curves that

pass through and satisfy the differential equation G—o. At the

point of contact we must have

and

di du dt du

The values of / and u, which belong to the point of contact,

are determined as functions of k through the first two equations.

These equations, being true for sufficiently small values of k,

may be differentiated with respect to k, and we thus have :

9<^ dt d(j> _ df du
d t dk dk du dk '

d^ dt dxj) _ dg du
dt dk dk du dk

'

If we multiply the first of these equations by -^ and the

second by f— and add^ we have with the aid oi (B)
du

d^ dg_d^ df ^^
dk du dk du

If between this equation and the equation (j9) we eliminate

the quantities —f- and -^, we have
du du

di dk dt dk

an equation, which served for the determination of the point con-

jugate to the initial point. Consequently the point of contact

of the curve, that passes through and satisfies the differen-

tial equation G=o, with the arbitrary curve must be the point

conjugate to 0.

But this is possible only if the curve x= f{^u^, y=^ g{u) co-

incides with the envelope ; while according to our supposition the

curve 031 is to lie entirely within the region that is bounded by
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the envelope. It follows that there can be within the region no
curve 031 such that each of the curves which satisfies the differ-

ential equation G^=o, and which joins the point with a point of

031, touches 031 at the same time.

Hence, the quantity qp— Pq can be everywhere zero only

when the arbitrary curve between and 1 coincides throughout

its whole extent with one of the curves that passes through and
satisfies the differential equation G=^o. But since, within the strip

of surface inclosing the field as we have defined it, there can be

only one curve draw^n through and 1 which satisfies the differen-

tial equation G^o, it follows that the arbitrary curve 031 can

coincide only w^ith the original curve 01, and then it is not a varia-

tion of that curve. It therefore follows that the function (F can-

not vanish for all the points of the curve that has been sub-

jected to variation.

164. It is not necessary that the curve 031 be a single trace

of a regular curve in its whole extent. If we assume that 031 is

composed of an arbitrary number of regular portions of curve, the

integral may be regarded as the sum of the integrals over the sin-

gle portions, and the conclusions made above are also applicable.

It may happen that one of the portions of curve coincides

throughout its whole extent with a portion of one of the curves

that goes through and satisfies the differential equation G — O.

If this is the case for 23, for ex-

ample, so that (5 is equal to zero

along 23, then we may replace

this portion of curve b}' an arbi-

trary portion of curve 2'3, which

lies very near 23. Then the the-

orem proved above is true for the

curve 02'31, viz., that

-^03 < A2' + -' 2'3 >

according as the function <F is nowhere positive or nowhere nega-

tive along the curve 02'31. Now, if we bring the curve 2'3 as near

c=o
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to the curve 23 as we wish, the absolute value of the difference

As — ht — h'T, can be made smaller than any arbitrarily small quan-

tity S; and, in accordance with^what was proved above, in the first

case the difference /03 — hr —-^r^ is certainly not negative, and in

the second case it is not positive.

If we shove the point 3 further along the arbitrary curve

toward 1, then, when 3 takes a position in the neighborhood of 4,

it follows again that /04 — /03 — I^^ is greater or less than zero, and,

as above, we see that the integral /qi, extended over the curve that

satisfies the differential equation (9 = <?, is greater or less than the

integral taken over the arbitrary curve 0231, according as the

function S is nowhere negative or nowhere positive.

165. Further, it is not necessary that the single portions of

the curve which has been subjected to variation be regular in

order that our conclusions be correctly drawn, if only the coordi-

nates can be expressed as functions of some quantity, and if these

functions have derivatives. Finally, if we consider the variation

made quite arbitrary, so that only the positions of the points are

given, while it is not known whether their coordinates have deriv-

atives, then indeed the integral taken over this curve has no longer

any meaning. But the meaning of the integral may be extended

so that it has a signification even in this case. For if at first we
assume that the coordinates of the curve, which has been sub-

jected to variation, are expressible through functions that have

derivatives, then the integral taken over the curve is

JF[/{t\g{t),/'{t),g'{t)-]dt.

to

This integral distributed into a sum of integrals (corresponding

to the intervals t^. . . .t.^, t^. . . .t-^, . . . . , t,, . . . . ^j) is equal to

JFdt + JFdt +.... + JFdt. ( c)

We assume that the points x^, y^; x^, y-^;.

respond to the values t^, T^,. . . .t„, t^.
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We then have:

^1 -xo =/'(4)(^i-4)+ (n-4)[Ti-4].

y^ -;>'o=^'(4)('ri-4)+(Ti— 4)[ti-4],

where [t^ — t^_i] denotes a quantity which becomes indefinitely

small at the same time with t, — t,_i .

For the first of the integrals in the expression (C) we write:

X'=X,'+ Xo"{ t~t,) + {t-to) [t- 4]

,

y'=-yo+yoV-^o)+{i-0[i-fo];

for the second integral we write

x= X,+ X,'{i-T,) + (i-T^)[t—T,'],

y^ yi+ yr{i-'ri)+{i-r,)[t-T,],

and similarly for the other integrals.

These expressions we write in the sum of integrals (C), and,

developing them in power-series, we have through integration

(ti— 4)/'(^o.>'o, ^o',>'o')+('-2-^i)^(^i.;>'i. V, j>'i')+ • • • •

+ (^l—rn)^(Xn,yn, X^
, yj)

plus a similar number of terms, which become indefinitely small

of the second order with respect to the quantities t,— t,_i.

We may therefore write the integral in the form

i^ {
2<^ "'- "^-^^ ^ ^^^-^' ^'-^' '''^-^' y'^-''^\

T=1.X n+1
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where we must understand by to the value 4. and by 4+i the

value t^.

Since r^ — Ty_i are positive quantities, and the functions F in

regard to x^, yl . . . . are homogeneous of the first degree, we may
write the above limit in the form

T=I,2 n+1

or, since

the above expression is

7*=Q0

166. The integral in the above form has a more general

meaning than the one hitherto employed, with which, however, it

coincides in every particular where that one has a meaning. We
may assume, with respect to any arbitrary variation, a series of

points Xq, jKo; ^1, jKi; . . . .x„, jf„; ^n+i' jVn+i of such a nature that the

distance between, say, two successive points does not exceed a

certain quantity S.

We then form the sum

If we make 8 smaller and smaller by increasing the number of

points, it may happen that this sum approaches a definite limit.

We call this limit the value of the integral taken over the curve.

It may also happen that the limit does not approach a definite

value; for example, it may vacillate between two values. We
then say the integral taken over this curve has no meaning.

If we think of the series of points that are taken upon the

curve, joined together successively by a broken line, the integral

taken over this broken line will approach the same limit as will

the integral taken over the curve, if the integral has a meaning.
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If, therefore, a curve 01 is given, which satisfies all the con-

ditions that have hitherto been made for a maximum or a mini-

mum, and if this curve varies in an arbitrary manner, then if the

integral taken over the curve, which has been subjected to varia-

tion, has a meaning as defined above, we ma)' draw a broken line,

the integral over which deviates as little as we wish from the

integral taken over the curve that has been caused to vary and to

which the theorem of Art. 161 is applicable. Consequently we
may say, in the case ofa maximum, the integral taken over the

curve subjected to variation cannot be greater than the inte-

gral taken over the original curve, and in the case of a m,ini-

mum,, it cannot be less than the integral taken over the origi-

nal curve.

Since we may make the region as narrow as we wish within

which all the variations are to lie, we ma)'^ assume that upon the

curve which has been varied a point 3 lies so near to 01 (but not

upon it) that two curves 03, 31 can be drawn between the points

and 3 and between 3 and 1, which also satisfy all the conditions

of the problem.

For the sake of brevity, let us assume that we have to do

with a maximum. Then, as we have just seen, the integrals over

03 and 31 cannot at all events be smaller than the integrals over

the corresponding parts of the curve which has been varied ; but,

after the preceding theorems, the integral taken over 01 is greater

than the sum of the integrals taken over 03 and 31, and conse-

quently also greater than the integral over the curve that has been

varied. A maximum is therefore in reality present.

167. We may now investigate the behavior of the function

<r in the case of the four problems which we last considered in

Arts. 140-144.

The problem of the surface of rotation of minimum area.

We saw that the catenary between limits, within which were

situated no pair of conjugate points, was the curve that described

a surface of minimum area when rotated around the axis of the

half-plane. From the point P^ we may draw in any direction a

curve which satisfies the differential equation 6^ = o (a catenary);
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the function F-^ is positive for each of these curves as soon as we
limit ourselves to the half-plane in which y is positive. A true

minimum will therefore in reality enter. For if p, q are the direc-

tion-cosines of the tangent to the catenary at any point, p, q those

of the tangent to any arbitrary curve through the same point, then,

owing to the relations

F^\x, y, x', y )=_4£_= , F^\x. y. x', y'\. yy
Vx'^ + y'^' ^

'^'
'^ ' Vx'^ + y'^

it follows that

F^\x, y, p, q)= yp, F^\x, y, p, q)= yq,

since

P'+q^^l;

and consequently

^ {x, y, p, g, p, q)= y {(p -p) p +{g-q) g \= y \l-{pp +qg)\.

The expression pp+ qg is the cosine of the angle between the

two tangents. Hence we see that the function (S" is negative for

no point which comes under consideration, and for no two direc-

tions p, q and p, q.

If, therefore, y=^o for no point of the curve, our former con-

clusions are applicable, and a true minimum of the integral has, in

reality, been found.

168. The Braehistockrone. We saw that this curve is the

cycloid

x=g + r{l—?,mt),

;^'-|-<z=r(l— cos /).

We assume that the point A, from which the moving point

starts, having an initial velocity proportional to the quantity

y a, is the origin of coordinates, and that the F-axis is the direc-

tion of gravity. We saw that the cycloid could then be generated

by a point described by a circle which rolls upon the straight line

y^= — a. If <z is different from zero, an arc of a cycloid may be

constructed through A in any direction. If the curve passes
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through a singular point it does not minimize the integral, as was
shown in Art. 104. If A and B are not singular points, the func-

tion /^^ has a positive value different from zero everywhere along

this curve and in the neighborhood of it in every direction.

Between two arbitrary points (see Art. 105), when the quan-

tity a is given, there can alwaj'-s be drawn one, and only one,

arc of a cycloid which has no singular points between these two
points. If, therefore, a is different from zero, and consequently

A and B are not singular points, then (see Art. 159) it follows

that the curve, in reality, causes the integral to have a minimum
value. Suppose that ^4 or ^ is a singular point; then at this

point F-^ becomes infinite, a case which we consider in the next

Article.

169. Suppose ^ is a singular point and a=o. Draw an arbi-

trary curve between A and B. Take upon this curve in the

neighborhood of y^ a point ^
^

v4i, and through A-^ and B
draw a cycloid which cuts

the ^-axis at A-l. The ma-

terial point under the action

of gravity passes through
^^'^^'^J+uH:

—

~^-^
A^ with the same velocity

which it would have at an equal distance below the X-axis if it

traversed the cycloid drawn through A and B.

The following notation may be introduced

:

/oi to denote the time of falling between A I and B upon the

cycloid A^B,

/o/ to denote the time of falling between A and A^ upon the arbi-

trary curve AB,

I to denote the time of falling between A^ and B upon the

cycloid A-^B,

I' to denote the time of falling between A-^ and B upon the arbi-

trary curve AxB.
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We proved that

and therefore, if we write

it follows that

Now, let the point A^ approach nearer and nearer the point A, so

that the integral / approaches the limit /d, while /o/ becomes in-

definitely small. We must then have

That / is greater than I^^ may be seen as follows: As soon as

G^o along a portion of curve, we may always vary it in such a

way that the increment in the corresponding integral may have

any sign. If, then, G^o along the whole curve AA^B, we may
substitute another curve, for which, if /" is the value of the inte-

gral which belongs to it,

But since we also have

it follows that

T"> T
^ =-'011

r>io.

If, on the other hand, G=o along the whole curve AA^B, then

this curve must consist of several cycloidal arcs ; since, if it were

only one, the curves AA^B and AB would be identical. These

arcs must have different tangents at the point where they come
together ; for, since this point cannot lie on the X-axis, a consecu-

tive point having the same direction must lie on the same cycloidal

arc. If corners were present, however, they could be so rounded off

that there would be a shorter path between the two points, and

consequently, the velocity being the same, the time of falling

would be shorter.
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Hence the arc of a cycloid also minimizes the time of falling

between A and B in the case where ^ is a singular point ; that is,

when the material point starts from A with an initial velocity

that is zero.

The conclusions just made are also applicable, if j5 is a singu-

lar point ; for it makes no difference whether the material point

ascends from B to A or falls from A to B, if we allow the mate-
rial point to go back with the same initial velocity with which it

arrived at B. On the way back it will reach A with its original

velocity. Its velocity will be the same in both cases at all points

of the curve, but directed toward opposite directions. The inte-

gral taken over the curve has the same value in both cases ; and
consequently the curve which caused the integral to have a mini-

mum value will also, in the second case, minimize the integral.

170. The problem of the geodesic line on a sphere offers

here nothing of special interest. It is found that the function <s

retains a positive sign along the arc of a great circle situated be-

tween two poles.

171. Problem of the surface of revolution which offers

the least resistance.

In this problem

xx;^

and since

it follows that

F{x,y,x\y'^^-^^^^,^.

f'+ q'^h

F{x.y.p.q)=-^,=xp\

^^x{f + 2pW\

^^ = -2xfq.
dq
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Substituting these values in

^{x,y,p,q,p, g) = F{x,y,p,q)-p^-g -^

,

we have

<^(^, 7. P, q, A g)=x[f-pp'-2pp'g'+2qfq\

=xip{p-'-p-') + 2p'g{p~g-Pqy\

=xip\f{p-'-\-g')-PKP'+ g')\+2p-'q{Pq-Pq)']

=x{pg-pg)[p{pq+ pq)-2p-'q'\

=x{pq-pq)ip{pq-p~q){p'^q')+ 2ppq(,p''+ q')

-^P'qiP'+q')']

=x(pq- pq) lKk-pq\P^+ q')-2p'Kpq- fq)

+ 2pqg{pq-pq)'\

=x{pq-pg)\p{p^+g^)-2p^pj,2pgg'\

=x(,Pq~Pqy\_p{q'-P^) + 2Pq~q'].

Writing

co?,T=p, sinT=^, cost=^, sinT=^,

we have

S{x,y,p, q,p, q)=~x ^\ti{t — rf CO^{r -\- 2r).

Therefore the sign of (f is the same as that of —cos(t + 2t), and

may be either positive or negative by properly choosing t, an

angle which depends upon p, q.

At every point of the curve for which x^o the function

<s can have different signs, and consequently a maximum or a
minimum value of the integral does not exist. We saw in Art.

109 that X m-ust be differentfrom zerofor allpoints of the arc.

172. Legendre {^Mimoire sur la m^anihre de distinguer les

maxima des minima dans le Calcul des Variations^ showed
that by taking a zigzag line for the generating curve, the resistance

could be made as small as we wish.
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Suppose that the arc P^P-^, had

the desired property of generating

a surface of least resistance, and

suppose that the tangent to this

curve is nowhere parallel to the

A'-axis. Writing p=^~, it fol-
dy

lows that p^o along the arc P1P2.

We have then (Art. 108)

X-,

^.-J^,--Jr+ P'
dx.

h X,

Since p is finite and continuous along the arc in question, it

follows that

therefore

^
1+ /^

has the same properties along the arc, and

^2

^""1+aO iTA
^1

where p^ is a mean value of p, lying between the points P^ and P-^

of the curve.

Between the ordinates at P^ and P2 draw a line parallel to the

K-axis, and on this line take a point /"j whose ordinate is longer

than those of the points P^ and P^. Draw the straight lines P^P^

dx
and P2P3, and let Pi and P2 be the values of -j- for these hues.

dy

The integral (Fdt taken over the broken line PyP^Pz may be de-

noted by /i3 + Ij2, where

^5

J.
_ Cp^xdx _ p^ W- X,')
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minimum of resistance—a resistance less than any other neighbor-
ing surface. The (^-criterion shows that no minimum exists in

the sense of giving a resistance less than that given bj' any neigh-
boring curve within a limited neighborhood.

173. In the general case, when F{x, y, x\ y') is a rational

function of .*;' and y', neither a maximum nor a minimum can exist.

For in this case

is also a rational function of p and g and homogeneous in these

quantities of the first degree. Consequentl3%

^{x, >', ^p, kq) = k (5 (x, j^^ x\ y\
and therefore

<^(^. J' —A -q)=—^{x,y,p,q).

It is thus seen that we have only to reverse the direction of the

displacement to effect a change of sign in the function (s.

174. We have now completely solved the four problems that

were proposed in Chapter I, and at the same time one of the prin-

cipal parts of the Calculus of Variations has been finished. After

stating succinctly the four criteria that have been established, we
shall take up the second part, which has as its object the theoret-

ical and practical solution of problems, a general type of which
were the Problems V and VI of Chapter I.

These criteria may be summarized as follows (cf. Art. 125):

There exists a fninimum or a maximum value of the integral

k
I = JF{x,y,x\y')dt^

to

where F is a one-valued, regular function of its four argu-

ments and homogeneous of the first degree in x' and y' , if

1) the differential equation G=o is satisfiedfor every point

of the curve;
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2) Fi is positive or negative throughout the whole interval,

f . • • . A /

3) there are no conjugate points of the curve within the

interval 4. . . . /j (^limits included^;

4) the function © is positive or negative throughout the

whole interval t^,. . . .ti.

In this discussion we have excluded the cases where

1) the extremities of the curve are conjugate points;

2) Fi=^o for some point of the curve;

3) Fi=^o for som-e stretch of the curve;

4) (S'=o for some point or stretch of the curve.

A general treatment of the first three cases would require the

extension of the theory to variations of a higher order. Otherwise

particular devices must be employed in every example in which
one of the above exceptional cases is found.

175. Before we begin the consideration of Relative Maxima
and Minim,a, we may, at least, indicate the natural extensions and
generalizations of the theory which has already been presented

:

Instead of the determination of a structure of the first kind* in

the domain of two quantities, it may be required to determine a
structure of the first hind in the domain of n quantities.

If a structure of the first kind is determined in the domain of

the n quantities x^, x-^,. . ., x^,, then n—loi these quantities may
be expressed as functions of the remaining one, say, Xi.

Writing

u- Cf{x X X ^^^ ^^3 clxA ,

J \ dxi dxi dxj

* See my Lectures on the Theory of Maxima and Minima of Functions of Several
Variables, pp. IS and 86.
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it is seen that u is so connected with the n—1 functions that

dxx V ^' ^'
'

°' dxi ' dxi
''

cixiJ

'

The difference of the values of u at the initial-point and at the

end-point of the structure is expressed by a definite integral.

This integral takes the form, when we consider the x's ex-

pressed as functions of t, say, Xi==^Xi{i), x-^^^Xii^t),. . ., Xa—Xa{t),

A
I = /^(^i. ^. . ^n, V, x-l, , x^') dt.

The function F must be a one-valued, regular function of its argu-

ments in the whole or a limited portion of the fixed domain.

The value of the integral / is independent of the manner in

which the variables x-^, Xt_, . . . . , x^ have been expressed as functions

of /. It therefore follows after the analogon of Art. 68 that the

function F is subjected to the further restriction

:

Icr \Xxi X21 . . . . , x„, Xi , X2 f
• • • , x^ )

^f yX-i^t X^t . . . . , ^n, ICX-^ , KX2 ,•••-, i^X.^ ),

where ^ is a positive constant.

The indicated generalization of the problem given in Art. 13

may accordingly be expressed as follows

:

The n quantities Xi,X2,....,x^ are to be determined asfunc-
tions of a quantity t in such a manner that for the analytical

structure that is defined through the equations

Xx=Xi(t),X2=X2(t), , x„=xXO^

the value of the integral

k
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is a maximum or a m.inim,um,; in other words, if one causes

the above analytical structure to vary indefinitely little, the

change in the integral thereby produced must in the case of a
maximum be constantly negative, and in the case ofa minim^um
it must be constantly positive. Further, the function F is to be

considered a one-valued, regularfunction of its arguments,and
indeed, with respect to x^, x^, . . . ., xj, a homogeneous function

of the first degree.

176. The treatment of the above problem is found to be

the complete analogon of the problem given in Art. 13. A greater

complication arises when there are present equations of condition

among the variables x^, X2, . . . ., x^. An example of this kind we
had in Problem III of Chapter I.

This problem may be expressed thus : Among all the curves

in space which belong to the surface

f{x,y, 2)^0,

determine that onefor which the integral

t,

to

is a minimum,.

The general problem may be formulated as follows : Among
the structures of the first kind in the domain of the quantities

Xi, X2,...., x„,for which the m equations

f{xi, X2, xJ= o iH-=l, 2, m; m<n^l)

exist, that one is to be determined for which the integral

y= I r \X-^, X2, . . . . , Xa, Xi , X2 , . , x^ ) at

to

is a maximum or a minimum.
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This problem may be reduced to the one of the preceding

Article in an analogous manner as is done in Art. 10 for the case

of the shortest line upon a surface. The in equations of condition

may be satisfied by introducing for the variables x^, X2,....,x^

functions of n—m new variables after the method given in the

Lectures on the Theory of Maxima and Minima, etc., Chapter I,

Art. 15. The new variables are independent of one another, so

that the above integral may be replaced by one in which the

variables are free from extraneous conditions ; or we may proceed

as was done in the Theory of Maxima and Minima where the vari-

ables are subject to subsidiary conditions (loc. cit., p. 54).

177. The more general problem of the Calculus of Variations,

in so far as it has to do with the structures of the first kind, may
be stated as follows:

Among the structures of the first kind in the domain of
the n quantities x^, X2, . . . . , x„, for which definite equations of
condition exist, not only among the n quantities themselves, but

also among their first derivatives, that structure is to be deter-

mined for which the integral

k
I = \ r \Xi, X21 . . . . , x^, Xi , Xj, . . .

.
, x^ ) dt

to

becomes a maximum or a minimum

It may be easily shown that the apparently more general case

in which /^ is a function of x^, x-^,. . . ., x^ and of the first and

higher derivatives of these quantities, is contained in the problem

just stated. For the sake of simplicity, take the case where only

two variables are involved and write

u-H-y'%'% )'-
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If in this integral we express x and y as functions of /, we have

dt dx ' df- dx^ dx

We may consequently change the integral u into

k

u = JF{x, y, x', y, x", y", ....)dt.

We further have

We may therefore write

^-^F{x,y.x,,yJ-^.'^)dk

with the equations of condition

:

dx __ dy _
It-'''' 'dt' ^"

If, then, there appear in F only the first and second derivatives,

it is seen that F depends upon the four functions x, y, Xi, y^ which

are to be determined, while at the same time the two equations of

condition just written must be satisfied. One of the classes of

problems belonging to the general problem just stated is the one

which was formulated in Art. 17 and which is treated in the fol-

lowing Chapters.

178. It may be mentioned finally that the problem of the

Calculus of Variations may be further generalized, if we require

the determination of structures of a higher kind. For example,
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in the simplest case the three quantities x, y, z may be determined

as functions of two independent variables u and v. We have then

instead of the single integral the double integral

J J \ du ^ du ' du ' dv ' dv ' dv /

which must be a maximum or a minimum.

The treatment of this problem would give a theory of Mini-

mal Surfaces.
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Relative Maxima and Minima.

CHAPTER XIII.

STATEMENT OF THE PROBLEM. DERIVATION OP THE

NECESSARY CONDITIONS.

179. The nature of many problems whicli arise in the Calcu-

lus of Variations presents subsidiary conditions which limit the

arbitrariness that we have hitherto employed in the indefinitely

small variations of the analytical structure. Such problems are

the most difficult and at the same time the most interesting that

occur. These last conditions which enter into the requirement for

a maximum or a minimum are in general of a double nature. On
the one hand, it may be proposed that among the variables there

are to exist equations of condition, as indicated in Arts. 176 and
177. On the other hand, we may require that the maximum or

the minimum in question satisfy a further condition, viz., it must
cause another given integral to have a prescribed value. Such
cases are usually called Relative Maxima and Minima.

If we limit our discussion to the region of two variables, then

the problem which we have to consider may be expressed as fol-

lows (cf. Art. 17):

Let F^^\x,y, x', y) and F^'^\x,y, x',y) be twofunctions of
the same nature as the function Fi^x, y,x', y^ hitherto treated.

The variables x and y are to be so determined as one-valued

functions of t that the curve defined through the equations

x=x{t)j y= y(t) will cause the integral
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1) I'''= ^F'\x,y,x\y')dt

4

to be a maximum or a m^inim-um, while at the same tim-e for
the sam,e equations the integral

2) I''' = ^F'\x,y,x\y'^dt

4

will have a prescribed value; that is, for every indefinitely

small variation of the curve for which the second integral re-

tains its sign unaltered, the first integral, according as a max-
imum or a m-inimum is to enter, m-ust be continuously smaller
or continuously greater than it isfor the curve x^x{t), y=y{t).

180. We must first show that it is possible to represent

analytically the variations of a curve for which the integral /'^'

retains a constant value.

In the place of the variables x, y let us make the substitution

X -{-i, y + r). The variation of the second integral is accordingly

t, _ t, _

3) A/W = jG^Wtt;^/ + J(|, ^, f, ~ri'),dt,

to tg

where ( i, ^, I', ^')2 denotes that the terms within the brackets are

of the second and higher dimensions in $, ^, |', ^'.

We have so to determine I and i; that A/'^'=(?. Por this pur-

pose we write

4)
{ r)=e7) + eiTji4-e2i72+ ,

where e, Cj, . . . . are arbitrary constants and the functions f, ^1, . . .
.

,

Tj, Tji, . . . . are functions similar to the quantities |, 17 of the preced-

ing Chapters and vanish for t—to and t—ti. Now write
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and

W=yi—x'r) = ezu-\- €iZfi+ €2^2+

Hence, from 3) we have

4
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If, then,for the curve which is derived through the solu-

tion of the differential equation G^'^^=o there also enters a max-
imum or a minimum value of the integral /'^'^ and consequently

G^^^^=o, it is in general not possible so to vary the curve that the

second integral remains unaltered.

This case is excluded from the present discussion, and is left

for special investigation in each particular problem.

181. Let us limit ourselves for the present to the simplest

case vv^here

and if we denote the integrals in the expansion of A/'" that are

associated with the coefficients e'cj^ by Wlf, the equation corre-

responding to (vi) of the last article is

which series we suppose convergent for sufficiently small values

of e and Ci.

Suppose next we express Cj in terms of c by the series

{B) 61= A,e+ A2e^+^c'+

Then, when this value of Cj is substituted in {A"), by equating the

coefficients of the different powers of c to zero, we have

W^^+h^W^l^^o,

IV^^+ h,Wir-h h,^W^+ h,W^= o.

Hence, denoting the quotients —-77^ by F^, where JV^^^o, we

have

hi = Ko,

h^ = F^-\- hiVu+hi^Vo^,
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Further, the equation (A") may be written

(A') e, = e F,o + €2 V^ + ee, V,, + e^^ V^ +

Let us compare this series with the series

(C) ^- ^e, = - g-g

Suppose from this series we have e^ expressed in terms of c in the

form

(^') Ci = h^e + A^V + ^jV + .

where the ^"s have been derived from the coefficients of powers
of e and e^ as the ^'s in (-5) are formed from the coefficients V
in {A').

The series (-5*) is convergent for

+ <1.

If, then, the coefficients V of (^*) are in absolute value less than

the corresponding coefficients in (C), the coefficients h in (^) are

less in absolute value than the coefficients ^'in(^*), and therefore

the series (^) is convergent.

Now the coefficients of e^e/ in (^4*) and (C) are respectively

y^., and {'V)^.

where the symbol ( j denotes

for sufficiently small values of r and r^, if

m.fn—l. . . .m— n+l
n\

Hence,

r
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and

the series {B) is convergent, and when substituted in the expres-

sion for A/'^ causes this expression to vanish.

182. The expression for Cj as a function of e is had from the

relation

«i = r^ s:
- ^ - ^—

\ r r^/

Hence, it follows that

g^ _

or

r.

Of the two roots we choose the one with the lower sign in order

that ei equal zero with e. This root may be written

fi 1^1+ g r

[
r, e\ K / \g^ \/i r, e \n

^n+^ rl^ \r(ri+ g)l/ Xr^+g rlj

It is seen that the expression under the radical is finite, continuous

and one-valued for values of « such that

^< and _i^<(^:L__Ay
r r^+g

183. Returning to the substitutions

'7 = «'7 + ^ii/i.

we assume that the functions ^, ^i, ,;, ijj become zero at the end-

points (or limits) of the curve and are so chosen that W^^ does
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not vanish within the limits of integration. We have then at once

from (A") the power-series

El ^ + ^/'(0.
01

where the power-series P{t) vanishes with

From this we have

6) \

"'

If we subject the integral /'"' to the same variation, we have [cf.

formula (A")]

A/'<"^efF,?' + CifFof +(c, 6,),,

and consequently

A/(o)_e(?f^?'_^fr„?')+(e),.
01

Ifj then, the integral /"" is to have a maximwrn or a minimum
value, it is necessary that

''01

be equal to zero.

We have, therefore, the necessary condition

J^(0>From this it is seen that the quotient ", is independent of the
^10

arbitrary functions |, tj, since it does not vary if we write for f, 17

as functions of t other functions ^1, tji. Consequently it follows

that the value of the above quotient depends only upon the

nature of the curve x=x{t), y=y{t).
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184. We might generalize the problem treated above by re-

quiring the curve x^x{t), y=y{t) which minimizes or maxi-
mizes the integral

A
r^^ = ^F'^\x,y,x',y')dt,

4

while at the sam,e tim,e the following integrals have a pre-

scribed value:

A
r^'^^F'\x,y,x\y')dt,

A

I^^' = ^F'\x,y,x\y')dt,

A
m^^F^>^\x,y,x\y'^dt,

to

the /unctions /^*", /"'*',
. . .

.
,
/'('') being of the same nature as the

function F defined in Chapter I.

We must now consider the deformation of the curve caused

by the variations

We have, then, if we write w^=y'^^— x'% (* — 1, 2, . .
. ,

/i), and sup-

pose that the fs and tj's vanish for t = t^ and /= Ai

A A

M'''^ = ejG^'^wdt + e,jG''^w,dt+....

A

4- c/i

Jg^"^
Wndt + (€,ei,..., c^ )2,

4
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4 4

4

M^ = o^ejG^^'zudf + e,jG'^zUidt+ ....

4 4

4

A A

4 4

A

+ e^ jG'-'')7V^,dl+ {€, e^,. . .,e^ j^.

4

By means of the last ^ equations, if the determinant

A

jG^'^Widf

4 (i. j = 1.2, ^

is different from zero, we may, for sufficiently small values of

Ci, €2,. . . ., e^, express these quantities as convergent power-series

in c*

These power-series when substituted in A/"" cause it to have

the form
A/'" = eZ»+(e)2,

where
A

jG^'^w^dl

4

n
(i. j = 0, 1, juand w© = w).

*Cf. Lectures on the Theory of Maxima and Minima of Functions of Several Vari-

ables, p. 21.
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In order that the integral /'^' have a maximum or a minimum value,

it is therefore necessary that

This determinant, when expanded, may be written in the form

4

A
where X; is the first minor of | G' w dt in the determinant D.

4

Hence, as before (cf. Art. 79, where we had G=o), we have here

\ 6^°' + Xi 6^'^+ . . . . +^M 6^M=o.

185. Similarly, if in Art. 183 we denote the quotient —^ by

X and then give to W^^^ and W^^ their values, we have

4
JCG^'O-XG'^') w dt=o.

4

From this it follows that

G''-\G'^ =^0.

We may prove a very important theorem regarding the con-

stant X, viz -.—it has one and the same value for the whole curve;

i. e., we always have the same value of >^, whatever part of the

curve x=x (t), y=y (t) we may vary. Consider the values of t

laid off on a straight line, and suppose that the constant X has a

definite value for, say, the interval 4 4 which also corresponds

to a certain portion of curve. This value (see Art. 183) is inde-

pendent of the manner in which

the portion of curve 4 • • • • 4 has

^ *3 been varied. Next consider an

interval t' t" which includes the interval 4 4; then, there

belongs to all the possible variations of the interval t f , also
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that variation by which t' 4 and t^ /" remain unchanged

and only t^, t^, varies. As X has a definite value for this inter-

val and is independent of the manner in which the curve has been

varied, it must have the same value for t' . . . .
/'.

186. The differential equation G""— XG^'''=o is the same as

the one we would have if we require that the integral

to

have a maximum or a minimum value, where F is written for the

function
/r(o)_x^(i).

Through this differential equation (See Art. 90) ;r and y are

expressible in terms of / and X and two constants of integration a

and /8 in the form
;r=^ (A a, A X),

The curve represented by these equations is a solution of the prob-

lem, when indeed a solution is possible.

187. We prove next a very important theorem which often

gives a criterion whether a sudden change in direction can take

place or not within a stretch where the variation is unrestricted

(cf. Art. 97). Suppose that on a position ^=/, where the varia-

tion is unrestricted, a sudden change in direction is experienced.

On either side of / take two points t^ and t-^ so near to f that

within the intervals i^. . . .f and / . . . . /j a similar discontinuity in

change of direction is not had. Among the possible variations

there is one such that the whole curve remains unchanged except

the interval /j . . . . /j, which is, of course, varied in such a way that

the integral /*'' retains its value. The variation of the integral
/"" depends then only upon the variation of the sum of integrals

f h
//-'»> {^x,y, x', y ) dt+JF'" (x, y, x', y') dt.

/i t'
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We cause a variation in the stretch A .... /j by writing

V^^V+ ^iVi,

where we assume that

U)
^. ^1. '?. Vi are all zero for i—ti and /=/2,

f. fi> ''Ji are zero for t— /„

_'>j#:o for t— ti.

We may then always determine e^.as a power-series in « so that

If by <^ we denote an expression of the form <^*'— X<^"*, we have
(Art. 79)

If the curve x=x(t),y=y{t) minimizes or maximizes the inte-

gral /'•", it is necessary that the coefficient of e on the right-hand side

of the above expression be zero. Since G=o for unrestricted vari-

ation, it follows from the assumption {A) that

If in the assumptions (^) we assume for t=ti that r)—o and $^o,

we have an analogous equation for x'.

It therefore follows (cf. Art. 97) that

r3(/^""-x/''^') ']-_ ra(/^""-x/^'^')"| +

L dx' Jt'~L Sx' Jf'

ra(/r(o)_x/''i!)1- _ r a (/-'»' -x/^'")"|+

L a;»/' Jf L dy J/
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We have then the theorem : Along those positions which arefree
to vary of the curve which satisfies the differential equation

G=o, the quantities ^—j and -^—-. vary everywhere in a contin-
o X oy

uous manner, even on such positions of the curve where a sud-

den change in its direction takes place.

188. It is obvious that these discontinuities may all be

avoided, if we assume that ^, tj, fj, f]^ vanish at such points. This

we may suppose has been done. We may also impose many other

restrictions upon the curve ; for example, that it is to go through

certain fixed points, or that it is to contain certain given portions

of curve, or that it is to pass through a certain limited region.

In all these cases there are points on the curve which cannot vary

in a free manner. But whatever condition may be imposed upon

the curve, the following theorem is true.

All points which are free to vary {and there always exist

suchpoints^ must satisfy the differential equation G^ '"'—\G "' =o,

andfor all such points the constant \ has the same value.

189. The second variation. We assume that the variations

at the limits and at all points of the curve where there is a dis-

continuity in the direction, vanish. We also suppose that the

variations ^, 17 have been so chosen that A/'''=o.

We then have (cf. Art. 115):

A

A

2

and consequently

J [/.«(^J+^?^'] </.+«,.

\

4

"1

A/'o'= e [S/'0-xS/'i'] +
| J[/^, (^J

+ F,vi^ ^/+(c)3.
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Since

4

it follows that

This last integral may be written at once (Art. 119) in the form

A

A/'"'

where «< is determined from the differential equation (Art. 118)

It follows here as a necessary condition for the existence of a

maximum or a minimum that F-^ for all portions of the curve at

which there is free variation, must in the first case be everywhere

negative and in the second case everywhere ^05*Wz'e and must also

be different from o and oo. In order that this transformation of

the integral be possible the equationy=o must admit of being in-

tegrated in such a way that u is different from zero on all portions

of curve, which vary freely (Art. 128).

We shall determine in Chapter XVII whether the three neces-

sary conditions thus formulated are also sufficient for a maximum
or a minimum value of the integral /'*'. By means of the example

in the next Chapter, we shall also show that if there exists a curve,

for which the first integral has a maximum or a minimum value

while the second integral retains a given value, then the curve is de-

termined through the three conditions, which are the same here as

those formulated in Art. 135. The behavior of the <F-function is

then decisive regarding whether there in reality exists a maximum
or a minimum.
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CHAPTER XIV.

THE ISOPERIMETRICAL PROBLEM.

190. The isoperimetrical problem may be briefly stated as

follows

:

Determine the curve of given length which maximizes or

minimizes a certain definite integral.

For example, it may be asked : Among all curves of a given

length joining two points, what is the form of the one which
produces a minimum surface of revolution about a definite

axis; or, along what arc ofgiven length joining two fixed points

does a particle under the influence of gravity descend in the

shortest time ?

We shall consider here the Problem V of Chapter I, which
may be again stated as follows : Suppose that any portion of the

plane is bounded in such a way that one can gofrom any point

in it to any other point without crossing the boundaries. In

this portion of plane a line returning into itself is to be so con-

structed that having a given length it incloses the greatest

possible surface-area.

Let X and y be such functions of t that for two definite values

4 and /j the corresponding points fall together, and that while t

goes from the smaller value 4 to the greater value t^, the point x,y

traverses in a positive direction the whole curve from the initial

point to the end-point.



CALCULUS OF VARIATIONS. 225

The surface-area, inclosed by the curve, is expressed by the

integral

1) /«>' =
| J(^y-;v^')^/,

and its perimeter by

A

2) n'=^Vx'^^ y'^dt.

4

The problem proposed consists in expressing x and y as functions

of t in such a manner that the first integral shall have the greatest

possible value, while at the same time the second integral retains

a given value.

It makes no difference vi^here the origin of coordinates has

been chosen ; for by a transformation of the origin the second

integral remains unchanged while the first integral is changed
only by a constant. This does not alter the maximum property

of the integral.

One may also add other conditions ; for example : That the

curve go through a certain number of fixed points in a given

order, or that it is to include certain portions of curve in a
given order, etc. The curve will then contain portions along which

the variation is not free.

191. The function F is here

F^t (xy'-~ x'y)-\ V x'^ + y'\

Instead of this function we may substitute another, since

d{xy)_^
dt

-"^y+y^

and consequently.

- {xy'-x'y)= - —{xy)-yx'.



226 CALCULUS OF VARIATIONS.

Now, if we integrate between the limits to. . . .t^, the first term of

the right-hand side of the above equation vanishes, since the end-

point and the initial-point of the curve coincide. It follows, then,

that

2 j {xy- y x') d t^- jy x' d t.

We may consequently give the function F the value

3) F^ -x'y- \ Vx'^+y'\

From this we have

dF \x' dF \y'

dx' -^
Vx'^^-y'^' 9/ Vx'^^y'^'

dF dF
But since (Art. 187) g

—

i and g

—

i vary in a continuous manner

along the portions of curve that vary freely, since also \ has the

same constant value for the whole curve (Art. 185), and since the

quantities that are multiplied by x are nothing other than the

direction-cosines of the tangent to the curve, it follows that the

curve at every point, where the variation is free, changes its direc-

tion in a continuous manner.

192. The function F^ has the value

4) ^1=
(^Vx'^^y'^y

It is evident that F^ does not change sign, and since a maximum
is to enter and consequently F^ is to be continuously negative, it

follows that A must be a positive constant.

193. In order to find the curve itself, we have to integrate

the differential equation G^""—xC'= o. This equation is equiva-

lent (Art. 79) to the two equations

d_dF^_d^^^ ddF d F ^^
dtdx' dx ' dt dy' dy
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Since F does not contain x explicitly, the first of these equations

gives

<\ :^—, = const., or y -\ =b,
' dx' ^ ^ Vx'^+y^

dF
where 6 is an arbitrary constant. Since ^—j varies in a continuous

ox
manner for a portion of curve where there is free variation, it fol-

lows that the constant 5 retains the same value throughout such

a portion of curve. The curve may, however, consist of separate

portions which are free to vary, and for these the constant d may
have different values.

If we take as the independent variable the arcs of curve meas-
ured from the origin, we have from 5),

6) ^=_i(^_^),
as k

and consequently, since ( —— ) + ( —7- ) =1, it follows that

and

ds^ X^ ^^ ^ A ds

It is seen at once, if we integrate the last equation, that

7) ^ = hx-a),
as A

where a is an arbitrary constant ; and consequently the equation

of the curve is

8) {x-af +{y-dy=\\

From the nature of the curve it is evident that A is a positive

constant.



228 CALCULUS OF VARIATIONS.

194. An immediate consequence is the theorem of Steiner,

that those portions of the cure, which are free to vary, must be

the arcs of equal circles. These circles may have different cen-

ters, since a and b are not determined. Each such arc of the circle

may, however, lie on different sides of the chord joining two end-

points ; we have, therefore, to ascertain which of the two arcs is

the one required.

The solutions of the differential equation are

x—a- --\ cos^--^° = x cos /,

y—b^\ sin" = X sin t,

as is seen from equations 6) and 7), when differentiated. Since A

is positive, s increases with t and since with increasing / the curve

is traversed in the positive direction, we must take that arc for

which this is also true. Let C be the center of the circle, A^ the

initial-point, and A-^ the end-point of the arc. That arc will be the

right one which lies on the positive side of C A-^, that is, on the

side of the increasing /'s. For if A is the angle which the radius
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CAi makes with the A'-axis, and if x^, y^ are the coordinates of

the point A^, then we have

cos ti= -{xi—a),
A

sin /i^-(yi—d'),
A.

and further the angle, which the tangent A^ B^ drawn to the arc

at the point A^ includes with the ^-axis is t-^-\--- Consequently we
have

cos(A+|)= -sin A==-^(>'.-^)= (^^X.

sin(/,+ |)=^cos A=^(^.-«)= (g)^,

formulae, which have the right signs. This would not be true if

we took the other arc and also the tangent which is drawn in the

other direction. Hence that arc is always to be taken^ which,

looking out from the center, is traversed in the positive direction.

195. If no conditions are imposed upon the curve and it is

required to find among all isoperimetrical lines that one which
offers the greatest surface-area, then the question is not of an ab-

solute maximum, since the curve may be shoved anywhere in the

plane without an alteration in its shape. The problem may be

stated more accurately by saying that the integral which repre-

sents the surface-area is not to admit of a positive increment,

when allpossible variations are introduced. The problem thus

formulated leads to exactly the same necessary conditions as be-

fore, namely that the first variation is to vanish, and consequently

we have the same differential equation to solve. We have also

the same condition for \. Since the second variation can never be

positive, and consequently F-^ can not change its sign, we conclude

as above that x is positive. Since the whole curve is free to vary

and since -^—-. and n,
—

-. are continuous functions for the whole trace,
ox oy

the constants a and b are the same for the whole curve; however,

they remain undetermined. We have, consequently, the following

result:
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If there exists a closed curve which with a given periphery
includes the greatest surface-area, this curve is a circle.

196. However, it has not as yet been proved that this prop-

erty belongs to the circle. The treatment of the second variation

is not sufficient, since only such variations have been employed
vi^here the distance betvi^een two corresponding points, and also

the difEerence in direction at these points do not exceed certain

limits.

The further proof has to be made that every other curve

forms the boundary of a smaller surface-area. The proof that the

circle has this maximum property, ( a proof which is omitted in

all previous solutions of the problem), has been considered so dif-

ficult that its solution has been denied to be in the province of the

Calculus of Variations. We shall, however, in the next Chapter

show that in the theorems already treated a means of overcoming

this difficulty is ofFered. It will be seen that without the use of

the second variation the desired result is reached in all cases

where the function ^i does not change sign, not only at any point

of the curve but also for any direction at any point.
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CHAPTBR XV.

RESTRICTED VARIATIONS. THE THEOREMS OF STEINER.

197. We shall consider in this Chapter some special cases of

y». restricted variations. Sup-

pose first that the path of

integration is taken over

two traces PoPi, and P^P^,.

We have for the first vari-

ation of the integral (Art.

79)

-J'
4

Since the variation along the traces (Co) and (Ci) is free, it fol-

lows that G^^o for them, and consequently

In order then for the first variation to be zero, it is necessary that

La^ -dj' J^+Lay "ay y°'

198. If /irst the conditions of the problem leave P2 free to

vary in any direction, we must have, since ^ and 17 are arbitrary,

dF-_ dF+
. aZ~_ If.^

dx' ~dx' dy ~dy' '

or, the curve consists of a single trace
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Secondly, if the conditions of the problem require P^, to re-

main upon a fixed curve ( C), then since the displacement is in the

direction of the tangent

to this curve, the expres-

sion

\dx'
U ^ ^^^o

may be replaced by

CdF dF . T

where \ is the angle betvsreen the fixed curve and the J^-axis.

199. We may apply the above results to the function

Fix,y,x',y) = /(x,y) Vx''+y\

In the first case, w^here the point P2 can move at pleasure, we have

dF+_dF-
dx' ~dx' '

dF +_dF-
dy dy '

or

r/Ujv) x'-rj/{x,y) x'lr

|_ y^x'^+y^j L Vx'^+y^j '

r/(x,y)yYr/(x,y)y'Y

so that, unless /"(;!;, y) vanishes at Pj, we must have

cos T"*" = cos T"

sin T"*" = sin t"

and therefore

where t + and t ~ are the angles that the tangents to the variable

curve at the point Pj make with the ^-axis. From this it follows

that Po Pi and P2 Pi are not different traces but constitute a single

curve with one tangent at the point P^.. In the second case, where

P2 is constrained to lie upon the fixed curve (C) (see Fig. in the

preceding article), we have

/(^.7)[cos T cos X+ sin T sin \]:-
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From this it follows, unless/{x,^)=o at the point P^, that

cos (r—x)~=cos (t—x)+,

or

(t-x)-=±(t—\)+ [modTr].

It is seen that the tangents to the two traces Pq ^2 and P^ P^ at the

point P2 have either one and the same tangent at P-i and are parts

of one and the same curve, so that this case is the same as if P-^

were not constrained, or they make with the tangent to the fixed

curve equal angles T-^P^^M-^ and T-iP^M-i.

A limiting case is where r=A., when again P^ P^ and P^ /\ form
a continuous curve touching the fixed curve at the point P2. The
function <F is here

—t
y yr x x'

S{x,y,M,M)=Ax,y)^-^=^,:^^g^--^^,^^^^

=/'(x,^) 1—cos (t—x) = o, when t=x.

200. Suppose that the path of integration coincides in part

with one or more fixed curves, for example, with the curve ( C).
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Then we cannot say that G—o for the path of integration from

Pj to /"j, but from the expression

hl=f Gwdt

it is evident that for the possibility of a maximum, w and G must
have opposite signs, and the same signs for the possibility of a

minim'Um.

201. In the general case, we made the substitutions

X

y

Suppose that some point P of the path of integration is con-

strained to remain on a fixed curve, and, for simplicity, suppose

that

for /=/
; fi=|j= =f^ = o,

and Tji^Tjj^ .... =17^ =<?,

but f =^ o and 17 :^ o at /.

Our previous equations (Art. 184) become now

A

^^'"=n ^^^+^^]^+-r^"^^^
L dx' ^+ dy'

+
€1
J 6^ "" zfi ^/+ . . . + c^xj 6^«" w^ dt+ (£2),

Ta zr(i) a 77(1) "1-

[^^'^+^^^]>-J'^"-'
4

A A
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to

t, A

4 'o

As in our previous discussion (Art. 184), it follows that

m^-w^hS'"'"-'']-

Since further

4^'^-^''']:-^'-'

k

J ] Ao 6^'"+A, C'"+ . . . . + x^ (;('') } wdt=o,

4
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we have

\_ ox ox ax J +

If we write

and denote by t', the angle which the tangent to the fixed curve at

the point P' makes with the ^-axis, the above expression becomes

fdF , dF . ,y^—^cos T + ,5—, sin T =0.
\_dx oy J +

If the point P' were not restricted, then ^ and 17 w^ould be arbi-

trary, and we would have here

which results compare with those of Art. 199.

202. We saw in the previous Chapter, if there existed a

closed curve which with a given length bounded a maximum sur-

face-area, that this curve was a circle. We supposed that it was
possible for the circle to be situated entirely within the boundary

of a given region. Suppose that this is not the case. The curve

must then at least touch the given boundaries in two points or

have a portion of the boundary in common. For we saw that the

curve consisted of arcs of equal radii, and if these arcs did not

touch the boundaries, there would necessarily be discontinuous

changes in the direction of the variable curve. At such places,

however, the surface-area could be increased without changing

the perimeter.

203. Regarding the nature of the curve when it touches the

boundaries, Steiner has given the two following theorems :

1 ) If the curve coincides with a portion of the boundary

,

then thefree portions of this curve are arcs of circles of equal
radii, which are tangent to the boundary at the points of con-

tact.
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2) If the curve touches the boundary of the region in a
point, then both parts of the curve are arcs of circles of equal
radii, and the tangents to these two arcs at the point of contact

with the boundary make with the tangent to the boundary at

this point, equal angles.

Steiner proved these thorems in a synthetic manner, and

remarked that a synthetic-geometrical treatment seemed necessary,

because the principles of the Calculus of Variations were not suf-

ficient. Such remarks were, in a measure, justifiable, since up to

that time only curves had been considered which satisfied the dif-

ferential equation throughout their whole extent, and, therefore,

no analytical means were known for the treatment of curves which

in part coincided with given curves. However, there was no rea-

son for saying that a method for the treatment of such problems

was not within the province of the Calculus of Variations.

204. We shall show that the principles of the Calculus of

Variations are sufficient to establish Steiner's theorems by proving

two theorems due to Weierstrass, which are more general than

the theorems of Steiner, and which have reference to the behavior

of a curve at the points where it touches the boundary. The two
theorems of Steiner are special cases of these theorems.

Suppose that the curve which satisfies the differential equa-

tion approaches the boundary at the

point 1 and coincides with it up to

the point 2. On the part of the curve

which is traversed before we come to

the boundary at 1, we take a point so

near to 1 that between and 1 there

is no sudden change in the direction

of the curve.

The portion of curve 012 shall be so varied that we come to

the boundary along another path from to a point 3 before 1 or

from to a point 4 after 1 and then traverse the boundary to 2.

205. As we have already seen (Art. 161) the variation there-

by produced in the integrals /'"' and /"* may be expressed as fol-

lows: Let />i, ^1 be the direction-cosines of the curve 01 at the
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point 1; />!, g^ the direction-cosines of the boundary at this point

;

Xi, yi the coordinates of the point 1, and o- the element of length of

the boundary. Then we have, if the boundary is approached be-

fore the point 1 [see formula 5) Art. 161]

k

1 A

and if the boundary is approached after the point 1 [see formula

6) Art. 161]

A

.A/'«= -6'!''(;r,^,A,^.,A,9,V+ ^G^'"«^^^+('^.f.>?.^.^X•

Hence for case 1) : A/;-'=A/"- xA/!»^= (<^ «» -\<^ '»')o-+ ( 0-, ^, -r,, ^,^ ) ,

\ at at 1

2

for case 2: A/'<"=A/««-xA/»= _(<F<'"-A<F'^')o-+(o-.f.^.^,^) •

\ at at/2

If the curve is to cause /'"' to have a maximum or a minimum
value while /'" remains unchanged, then (cf. Art. 189) A/"*' must

have the same sign for both of the above variations. Hence, if the

curve satisfies the diflEerential equation 6^™—x G^'"=o, and if we
write

then the function <s must be zero at the point 1 of the boundary,

because otherwise we could choose o-, ^, ij, —^ , -^ so small that the
at at
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sign of the whole expression depended upon the sign of the linear

term, which in the first case is positive and in the second negative.

206. We saw (Art. 157) that

1

1

If J ^i(;ti, jKi, />k, ?k) (1—^) ^^ is different from o, (which must

be determined in each separate case), it follows that

?iA—A?i=^>
and therefore,

A=-A.?i=-?i-
We wrote (Art. 157)

A=(l->t)/^+^A

and consequentl)% if we take the lower sign, so thatA=— An

^1 = —gu then it may happen that F^ becomes infinitely large

within the limits of integration, because for the value i:=}i both

pi^ and $'k are zero (see Art. 157).

In general, we have

A=A. ^1=^1 (cf. Art. 199).

A special investigation must be made in the other case for every

particular problem. We, therefore, have the theorem :

// the curve which satisfies the differential eguation ap-

proaches the boundary at a point and then coincides with a

portion of the boundary, the direction at the point of contact

can suffer no discontinuous change.

The same result is derived in an analogous manner for the

point where the curve leaves the boundary after having coincided

with a portion of it.
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207. We have tacitly assumed that there is no sudden change
in the direction of the boundary at the point 1. But if this is the

case and if ^2> ^j arethe direction-cosines with which one approaches
the point 1, and^j, q-^ those with which one leaves the point 1, then

we have for A/'*" the expression:

in the first case: A/«»= <F(^„ y^, p^, g^, p^, ^2)0-+ ( \ ;

in the second case : A/'*"= — <S'( j^i , jj^i , /, , ^1 , /, , ^1 )o-+ ( )z.

In a following Chapter (Art. 221), it will be proved that, if a

maximum or a minimum is to appear, the function S{x,y,p, q,p,q)
must have continuously the same sign for every point of the curve

which is varied and for arbitrary directions p, q along it; in the

first case this sign must not be positive, and in the second case it

must not be negative.

From this it follows, for the case of both maximum and min-

imum, that we must again have

while <F(;»;i,jVi,/i, ^1, ^2, ^2) remains arbitrary.

For, if we are seeking a minimum, after the theorem just

cited, the function ^{,Xx, y^.p^ qi. A' ?i) cannot be negative; but
it cannot be positive because in virtue of the equation

/'**' would for certain variations experience a negative change.

Hence we must have:

The same is true of the point where the curve leaves the boundary^

so that we have the same results for the end-point as those just

given for the initial-point. The results may be stated as follows:

If the curve for which there is to appear a maximum or a
m^inimum meets the boundary and traverses a portion ofit, then
at the point where itfirst comes to the boundary and at the point
where it leaves the boundary, the two curves must be so situated

that the tangents are the sam^efor both curves. But if at these
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points there is a discontinuous change in direction of the bound-
ary curve, then the direction of the curve as it approaches the

boundary and that of the boundary at the point of approach
may be quite arbitrary.

This is the first of Weierstrass' theorems.

208. We consider next the case where the curve meets the

boundary in one point and then leaves it. Let 1 and 1 2 be the two
portions of curve that satisfy the differential equation and meet
the boundary at the point 1. Take the points and 2 so near to

1 that within the intervals 1 and 1 2 there are no sudden changes
in direction. We vary the curve 1 2 by going from the point 1

to a point 3 on the boundary. The point 3 is connected with the

points and 2 by curves which do not necessarily satisfy the dif-

ferential equation, but are subject to the condition that the in-

tegral /'" remains unaltered by this variation.

Let p, q be the direction of 1 at 1,

^1, qx the direction of 1 2 at 1,

and let the coordinates x, y which belong to the different points

be indicated by the corresponding indices.

Then, as we have already seen (Arts. 79 and 154)

I^-n^=F''\x,,y,,p, q) (x,-x,)

/^-I^=-F^Hx„y„p„ q,) (x,-x,)

-F-(x,,y.,A,q.)(y.-y.H{tv,§,^\;

and consequently

/^\-i^=[F'H^uyi,p, g)-F^''i^i,yupi, ?i)J (^3-^1)

+ [/^'^ (xu yu p, q)-F''' {x„ y,, p„ q,) ] {y,-y,)

,
/> d^ d'n\
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If we assume that Pq\—pvq is different from zero, and con-

sequently that the tangents to the two portions of curve 1 and

1 2 at the point 1 do not coincide, then we may write

yz~yx--=Q^-\-qxK

The geometrical meaning of S and \ is seen, if we consider

that in virtue of the two above relations^ the length 1 3 is the

geometrical sum of the two lengths />S, ^S and/j 8i, q^ Sj and that

consequently S and Sj are the coordinates of the line 1 3 with re-

spect to an oblique system of coordinates whose positive axes have

the directions^, q and/>j, ^i, and are consequently represented by

the tangents of the two portions of curve at the point 1. If we
write these values for X:^— x-^, y^—y-^^ in the above expressions, we
have

+ (e^.t^,^U(FS-
' dt dt/2

<^x8,+ (^,
^d^dn\
^'dt'dt)2

209. The straight line whose equation is <s 8— (Fi 8i=o divides

the plane into two halves ; for the points of one-half, <S'8— <S'i8,>o,

and for the other half, (S^S— <Si8i-<o. The point 1 which the curve

has in common with the boundary can move only along the

boundary. If the direction of the tangent to the boundary at the

point 1 was different from the direction of the straight line

<5'8— (FiSj=<3, which may be called the dividing line, then by slid-

ing the point 1 in opposite directions the quantity <F8— (FiS^ would
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be either positive or negative ; and since this quantity (neglecting

a constant factor) is the distance from the dividing line, it is seen

that it becomes infinitely small of the first order with $, tj.

We may, therefore, choose i, rj so small that

/») r(o)

'on— -'012

has the same sign as <sS— ^, Sj, and, therefore, may be either posi-

tive or negative. Hence we must have

Accordingly, the direction of the tangent to the boundary curve

must coincide with that of the dividing line.

The sines of the angles which the dividing line makes with

the 8 and S,-axes, that is, with the tangents to the two portions of

curve at the point where they meet the boundary, are to each

other as <5i is to <F, if the two angles are measured in opposite

directions.

Weierstrass' second theorem may accordingly be stated as

follows :

If the curve which satisfies the differential equation meets

the boundary in only one point and then leaves it, the tangents

to the two portions of curve at this point, make with the tang-

ent to the boundary at the same point, angles whose sines are

to each other as <Fi is to S.

The second theorem of Steiner relative to the isoperimetrical

problem is only a special case of this theorem. In this problem

we have <Fi=<F so that the two angles which the two tangents to

to the curves make with the tangent to the boundary curve are

equal.

210. We have shown that the curve in every point where the

variation is free satisfies one and the same differential equation

and that the constant X has the same value for the whole curve

(Art. 185). This leads to a certain paradox: If we reverse the

isoperimetrical problem and seek the shortest line among all

those lines which inclose a given surface-area, we come to the

differential eqation of the isoperimetricalproblem.
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We have /^=F(«-X/^«>' in the place of i^=F'<»-A./^''' which
occurred before; still on this account the nature of the difEerential

equation is not changed, since there is only a change in the con-

stants. It is, however, a priori clear that the solution of the two
problems must be the same; for, if it were possible to keep the

surface-area constant and shorten the perimeter, it is evident that

with the original perimeter we could have inclosed a greater sur-

face-area. Hence, the curve, which has been derived from the

differential equation of the first problem, satisfies also the inverse

problem. We consequently have as the solution of the second

problem the theorem: The curvej wherever there is free varia-

tion, consists of arcs of circles which have equal radii.

211. Problem. Three points 1, 7,, 3 not lying in the same
straight line are given in the plane and it is required to draw
a line through them in a definite order, which includes a given

surface-area and at the sam-e time has the shortest possible

length.

We know that a circle W, say, fulfils these requirements, if

the given area is the same as that included by a circle, which is

determined by the three points 1, 2, 3.

But if the surface-area is greater or smaller than W, then the

arcs of circles must be drawn outward or inward. If, however^
the area is very small, we cannot draw arcs of circles so as to in-

close this area without crossing

one another, and we do not ad-

mit into consideration the areas

that are described in the op-

posite directions.

The problem may be solved

as follows : The curve, al-

though not being limited by
further conditions, need not

vary everywhere in a free man-
ner, and, consequently, it is not

necessarily constituted out of

arcs of circles. For if we assume that the curve is not to cross

itself, then of itself it may offer barriers which obstruct free

variation.
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If, for example, the curve 12 3 partially overlaps so that

the portion 1 3 coincides up to the point 2 with the portion 1,

then among all possible variations, there are present those where
1 remain unchanged and only 1 3 varies ; and since the curve is

not to cross itself, the variation of the portion 1 2 can take place

only on the side of 1 on which the point 3 lies, and, consequentl}^

the freedom of the variation of the curve is essentially limited.

In itself the requirement that the curve is not to cut itself is

not necessary, as the integrals that appear have a meaning also

for this case.

If there are overlapping portions of curve, then we may allow

such variations to enter that points coincident before the variation

may also coincide after the variation, without the second integral

changing its value. We shall investigate the kind of differential

equation that is thereby produced for these portions of curve.

212. The following investigation is also applicable to the

case where the second integral is not present. We have simply

to make \=o.

We introduce the variations

It has been shown that the first variation of iT"" is identical with

8j(ir(o)_x/^(«)^if,

provided that Ci can be expressed as a power-series in e in such a

way that the total variation of the second integral vanishes.

This 8/'*" can be brought to the form

In the former treatment ^ and tj were entirely arbitrary, except

that at certain points and along certain portions of curve they van-

ished. Wherever they were arbitrary it was necessary that G=o.



246 CALCULUS OF VARIATIONS.

In the case before us we have in addition those portions of

curve which overlap the curve several times without crossing it.

The differential equation, which these portions of curve satisfy,

may be obtained as follows:

We have, since dt is a positive increment of t (Art. 68),

F{^x,y, x',y)df=F(x,y, x'dt,y'di)= F{^x,y, dx, dy).

Let 1 2 be a portion of curve that is traversed several times. The
integral over this portion of curve, after it has been traversed

once from the point 1 to the point 2, may be written in the form

^ F{x,y, dx, dy)=j F(x,y, dx, dy).

The portion of the integral taken over the curve in the opposite

direction is

1

jF(x,y,dx,dy).
2

If this portion of curve is traversed /u. times in the first direction

and V times in the second, and if all the variations except those

that relate to this portion of curve be put equal to zero, then the

variation of the whole integral is equal to the variation of the sum

of integrals:
2 1

fif F{x, y, dx, dy ) + vfF(x, y, dx, dy).

1 2

But since
1 2

fF{x,y, dx,dy)=fF(x,y,~dx,—dy),
2 1

the above sum is equal to

2 2

fif F{x,y, dx, dy) +vfF{x,y,—dx,— dy);

1 1

or, if we put

IJiF(x,y, dx, dy)+ v F{x, y,—dx,—dy)^F{x, y, dx, dy).
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the sum is

2

J F{x,y, dx, dy).

1

The portion of curve 1 2 is traversed only once for this integral,

and consequently the variations are quite free. The interval 1 2
must therefore satisfy the differential equation which is derived

for the function F{x,y, x',y') in the same manner as in the former
investigations, where F{xyy,x',y') was the function considered.

213. If, for example, the problem is to determine the curve
which with a given surface-area has the shortest perimeter

,

then

F(^x.,y, dx, dy)=\/dx^-[-dy^~\ydx,

and for yi.=v,

F{x,y, dx, dy)=fi[Vdx^+dy^—\ydx+ Vdx^+ dy^+Xydx]

=2fJiVdx^+dy^.

Consequently the differential equation leads to a straight line.

But if /A ^ J/, we have

F=(fi+ v) Vdx^+dy^—\(ii—v)ydx.

The corresponding differential equation is of the form

where Xj=X
^~

; it, therefore, leads to the arc of a circle which
fl+V

has a different radius than the one belonging to the portions of

curve where the variation is free.

This case, however, does not in reality appear unless there

are certain modifications ; for, if we traverse such an arc of circle

twice in opposite directions, the portion of surface-area thereby

obtained is zero. We may, however, shorten the perimeter by

taking instead of the arc of a circle the chord which joins its end-

points, this being the first solution above. If, further, the same

arc of circle was traversed several times, then in case there are
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not special modifications, we may neglect the first two times or

the first 2n times that the arc is traversed (owing to which the

perimeter is shortened) without changing the surface-area,

Taking also into consideration the case where ft— j'=l, when
a straight line enters, we have to see which of these portions of

curve (straight line or arc) can be used to form the required curve

and how they are to be grouped. We have then to seek all pos-

sible kinds of combinations and make proof of their admissibility.

We consider any configuration and cause it to vary. Since the

nature of the curve is known and only the end-points of the in-

dividual portions are undetermined, we have to subject these to

variations. The previous theorems are fully sufficient for carry-

ing this out. We, therefore, have a means of determining whether

such a configuration of the individual portions is, or is not possible.

Since the individual portions satisfy their differential equa-

tions, the first variations of the corresponding integrals will de-

pend only upon the variation of the end-points; and, if we apply

this to all the portions of the curve, we will have a linear function

of all the variations of the coordinates of the individual end-points.

These end-points may be subjected to further restrictions;

for example, they may be compelled to lie upon given curves, etc.

By the application of previously developed theorems, we have

certain equations for the determination of the possible position of

the end-points of the individual portions and w^e may thus see

whether a definite configuration is, or is not possible.

214. At all events, for the grouping which has been thus de-

termined the first variation of the integral vanishes, but this does

not of itself denote that a maximum or a minimum has appeared.

This determination is a problem in the usual Theory of Maxima and

Minima. Since, as soon as the individual portions of curve have

been found, we can also determine the integrals for them whose
values depend only upon the constants \ that have been introduced

and the coordinates of the end-points. We have thus an ordinary

function of a finite number of variables, and the question is whether
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this function really satisfies the conditions of a maximum or a min-

imum. This subject is treated in the Theory of Maxima and Min-
ima, involving several variables.

Thus we may at least determine whether or not a certain

formation of the curve satisfies the problem. For example, a curve

is required to pass in a definite order through the points 1, 2 and
3 and which having the smallest possible perimeter is to inscribe

a given surface-area. The curve in question consists of three por-

tions which pass through 1 and 2, 2 and 3, 3 and 1. These por-

tions are the arcs of circles with equal radii, if the given surface

-

area is sufficiently large. This radius is to be determined from
the given value of the surface.

The integral /"*' is a function of the constants that appear,

and it may be shown that this integral is in reality a minimum
when the constants have been correctly determined.

But if the surface-area is not sufficiently large, then the por-

tions of curve must partially overlap one another, and the portions

along which this happens are straight lines. The curve cannot

end in points which are perfectly free to vary; for if this were the

case, we could so vary the point that the surface-area remained

the same while its length became shorter. These points must lie

along straight lines which pass

through the three given points.

It is thus found that the

curve consists in reality of three

arcs of circles which are described

with equal radii and which mutu-

ally touch one another and go

oflF into straight lines that pass

through the given points, asshown
in the figure.

215. It is seen that the solution of the problem is independent

of the position of the points 1, 2, 3 relative to one another; for we
can slide the points 1, 2, 3 backward and forward upon the straight

lines without causing the curve to lose the property of having the

minimum length. It is essential only in what manner the points
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are chosen where the straight lines come together with the arcs

of the circles. These points corresponding to the points 1, 2, 3

may be denoted by 1', 2', 3'. If the portion 2' 1' 1 be considered as

a fixed boundary and the end-point of 3' 1' varies along it, it fol-

lows from a theorem already given ( Art. 206 ), that 3'1' must so touch

the boundary, that the curve 3' 1' 1 does not change its direction

abruptly. Hence every two arcs of circles must touch at the

points where they come together. Since the radii of the arcs of

circles are equal, it follows that the three centers of the arcs of

circles form an equilateral triangle, and consequently the three

arcs of circles are of equal length. Therefore every two straight

lines form an angle of 120° with each other, and thus the solution

of the problem is uniquely determined. The above problem was
proposed by Todhunter in the Mathematical Tripos Examination

of 1865. It is treated by him (Researches in Calculus of Varia-

tions, pp. 44 et seq. ).
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CHAPTER XVI.

THE DETERMINATION OP THE CURVE OF GIVEN LENGTH
AND GIVEN END-POINTS, WHOSE CENTER OF

GRAVITY LIES THE LOWEST.

216. To solve the problem of this Chapter, let the F-axis be

taken vertically with the positive direction upward, and denote by
6" the length of the whole curve. If the coordinates of the center

of gravity are x^, y^, then y^ is determined from the equation

A A

yo^sf yVx'^'+y'^ dt, where S=§ Vx'^+y'^ dt

The problem is: So determine x andy asfunctions of t that the

first integral will be a minimum while the second integral re-

tains a constant value. (See Art. 16).

The property that the center of gravity is to lie as low as

possible must also be satisfied for every portion of the curve; for

if this were not true, then we could replace a portion 1 2 of the

curve by a portion of the same length but with a center of gravity

that lies lower, with the result that the center of gravity of the

whole curve could be shoved lower down, and consequently the

original curve would not have the required minimal property.

We have here

F--=(^y-\)Vx!^^y'\
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and therefore

dx' v'x'^+y'^ ' 9^' 9/ ~ ( Vx'^+y'^y ' 9/ ~
Vx'^+y'^'

We exclude once for all the case where the two given points

lie in the same vertical line, because then the integral for 5" does

not express for every case the absolute length of the curve ; for

example, when a certain portion of the curve overlaps itself.

Similarly we exclude the case where the given length ^ is exactly

equal to the length between the two points on a straight line ; for,

in this case, the curve cannot be varied and at the same time retain

the constant length.

217. Since Fi must be positive, a minimum being required,

it follows that (_j'—X)>o. Since further, -^—-, and -^—- vary in a
ax ay

continuous manner along the whole curve, and since these quan-

tities difEer from the direction-cosines only through the factor

y— X, which varies in a continuous manner, it follows that the

curve changes everywhere its direction in a continuous manner.

The function F is the same as the function F which appeared

in Art. 7, except that here we have y— X instead of jk in that prob-

lem. Since the differential equation here must be the same as in

the problem just mentioned, we must have as the required curve

x=a±pt,

{y=X+y2l3(ei+e-0,

the equation of a catenary.

Since _>'—X >-c», it follows that /S is a positive constant. For 5"

we have the value

A

I
4
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218. We have next to investigate whether and how often a

catenary may be passed through two points and have the length

S/ that is, whether and in how many different ways it is possible

to determine the constants a, /8, X in terms of ^ and the coordinates

of the given points. If we denote the coordinates of these points

by Oo, do, Ui, ^1, then is

S= l\^ie^^-e-i.)-(e'.-e-'^)].

It follows that

We have assumed that /i^/o, and consequently we have to take

the upper or lower sign according as a-^—a^o or ay^—a^^Co. It is

clear that we may always take a^~a^o, since we may interchange

the point a^i b^ with the point a^, do, and vice versa.

We shall accordingly take the upper sign. If we write

2
'^

2

then /A is a positive quantity and we have

«i — ^o= +2/aA

S=Nei'-e~''\ (e'' + e\

b,-bo _ i-g-^- ^_ l-^"
S 1 + e-^' l+e"'

d /b,— bo\ 4

'A S Jdv\ S ) {e'+e-'}
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Since this derivative is continuously positive, the expression ^
<-.

varies in a continuous manner from —1 to +1, while v increases

from — 00 to + co . Hence for every real value of v there is one

and only one real value of
^"~ " which is situated between —1 and

-f 1, and vice versa to every value of
'"~ ° situated between — 1

and + 1 there is one and only one real value of v. Since we ex-

cluded the case where vS" was equal to the length along a straight

line between the two given points, it follows that S is always

greater than ^i—^ and consequently '"7 "
is in reality a proper

fraction. Hence v is uniquely determined through ^~ "
.

219. We have further

^S* _ (g**—g~^) {ev+e-")

Ui—^0 2/i 2

or

2/x g]— gp gi— gp

^M^^y
^"-^"^

S'l' A-^oV vs'-{6,-6oy

The right-hand side is a given positive quantity which we may
denote by M. It is seen that

d ( 2ti \_
^
[(/x-l)e^+ (/. + l)g-^]

By its definition n is always greater than o. If /x is situated

between 1 and oo, the right-hand side of the equation is always

negative. Since further the differential quotient of the expression

(/i— l)e''+ (/^+ l)e~'' is never less than o while /* varies from o to 1,

it is seen that this expression increases continuously when fi varies

from <? to 1; hence the differential quotient of ——— is continu-
ei'—e~i'

ously negative, and consequently

d_

djx \ei^—e "/
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Consequently the expression ^^, or the quantity M, con-

tinuously decreases from 1 to o while /* takes the values from oto oo,

and therefore to every value of M lying between o and 1 there is

one and only one value of /x situated between o and oo

.

Since by hypothesisM is always a positive proper fraction, it

follows from the above that /i is uniquely determined through the

given quantities. Through /t and v and the other given quantities

we may also determine uniquely a, ;8, X; and consequently if ^ is

taken sufficiently large, it is possible to lay one and only one cate-

nary between the given points which satisfies the given condi-

tions.

If, then, there exists a curve which is a solution of the problem,

this curve is a catenary. We have not yet proved that in reality

for this curve the first integral is a minimum. The sufficient cri-

teria for this will be developed in the next Chapter.
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CHAPTER XVII.

THE SUFFICIENT CONDITIONS.

220. In a similar manner as in the case of free variation (see

Art. 159) there is also a way of solving completely the general

problem of restricted variation without making use of the second

variation. Let the differential equation be found through the vari-

ation of the integrals. The required curve must necessarily sat-

isfy this equation. Let the portion of curve under consideration

be so limited that for every point of it /^*" and F'** are regular

functions in x,y, x',y' and for no point on it the function F^ be-

comes zero or infinite. The case where the portion of curve con-

tains singular points will be left for a special investigation in each

particular problem.

221. Let and 1 be the end-points of the portion of curve

in question. Through an arbitrary point

2 of this curve we draw any regular curve

and on it take a point 3 so near to 2 that

we may join and 3 by a curve which sat-

isfies the differential equation. The line

3 2 1 is a possible variation of 1. The
change which an integral

to

suffers through this variation, takes the form (Art. 205)
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where o- is the length of 2 3 taken in the positive direction; p^, q^

denote the direction-cosines of 2 at 2; /"j, Qi, those of 3|2 at 2 and

x^, y-i the coordinates of 2.

If we have two integrals, and if the variation is such that one

of the two integrals remains unchanged, and if /"'", <F'^', 6^'^' denote

the corresponding quantities for the second integral, then we have

I

4

A

4

Hence if, as usual, we denote the quantity <s""— XiS""' by ^, then is

and, if the curve satisfies the differential equation 6^'"'— X6^'"=o, it

follows that

A/..=^.+ (.,f.,.|,|)_

From this equation it is seen that the function S{x,y,p, g,P,g)

along the whole portion of curve cannot have opposite signs for

any two pairs of values p, g, as A/'* must always have the same

sign.
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222. As in Art. 157, we may write (F in the form

1

^{x,y,p, q,p, q) = {qp-pgy^ \_J^l\x,y,p^, g^)

-xFi\x,y,p^,q^)'\{\-k)dk,

where A=(l— >^)/+^A <2^={'^— ^)Q+ ^q-

It follows at once from the preceding Article that

Fr{x,y,p, q)-\Ft\x,y,p, q)

cannot have values with diflEerent signs for any values of p, q.

The converse, however, is not true. (See Art. 160). The
condition that (s cannot change its sign in so far as every arbitary

direction p, q is concerned has a further significance.

For erect lines along the curve 1 perpendicular to the plane

of this curve. On these perpendiculars take lengths equal in value

to the second integral, where in each case the integration is taken

from to the foot of the perpendicular. Then to the curve 1

there corresponds a curve in space 1', where the points in space

are marked by indices corresponding to the points in the plane.

Thus to every curve through the point and lying in this

plane there corresponds a curve in space. We say that a curv^e in

space satisfies the difEerential equation of the problem if its pro-

jection satisfies the differential equation G^""—x6^'^'=o, although

X need not have the same value for all the curves.

223. Now suppose that we can envelop the curve 1' in space

in the following manner : The point is to lie on the boundary,

and the point 1' within the space enveloped ; further, it is to be

possible to draw from to every point within this enveloped space

at least one curve which satisfies the differential equation ; and,

when such a curve has been drawn from to any point P within

the enveloped space, it must be possible to draw a curve between

and a point neighboring to P which also satisfies the differential

equation. This curve must lie everywhere as near as we wish to

the first curve, and the associated x's can differ from one another

only by arbitrarily small quantities.
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If the end-point describes a continuous curve in the enveloped
space, then we may draw a series of curves, corresponding to the

successive positions of the end-point, which satisfy the differential

equation.

224. We shall show in the next Chapter that there must ex-

ist an enveloped space as described above, if the curve 1 is to

offer a maximum or a minimum. There are exceptional cases

which are to be treated separately.

We may at first assume the existence of such a space in order
to make the essential points as clear as possible. We saw above
that the function ^(;»;, ;>',/,$', /,5>) along the whole curve for arbi-

trary values of p, q could not have different signs. From this we
infer that in general S(^x,y,p, q,p,q) will not have values with
different signs for other curves which satisf}^ the differential equa-
tion. The deviation in the directions of these curves from the

position of the original curve, of course, lies within certain limits,

and the corresponding x's vary sufl&ciently little from the \ of the

original curve. This will certainly be true if the integral

1

c

is everywhere different from zero along the first curve.

Excepting the case where the above integral becomes zero, we
have as a further necessary condition that it must be possible to

envelop the portion of curve 1 by a portion of surface, on the

boundary of which the point lies, so that within this portion of

surface the function ^ (x, y, P, q-,P, ^) does not have values with

different signs along any of the curves that pass through 0, and

lie within the portion of surface in question, it being assumed that

they all satisfy the differential equation, and that the difference in

value of X is sufl&ciently small for all the curves. (See Art. 156).

225. The same considerations are also true for a point 6

which lies before along the same curve 1, so that then 1 lies

wholly within the corresponding portion of surface, and our orig-

inal enveloped space, including the point 1', may be so formed as

to lie wholly within the space enveloped by this second surface.
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Suppose that the integration of the above integrals begins

now with the point instead of with the point as before. Keep-
ing our former notation, let the point 0' correspond in space to

and join 0' and 1' by a regular curve which lies wholly within the

enveloped space.

This curve is quite arbitrary and is subjected to the condition

that if 2 is the projection of any point 2' upon the ;t:;)/-plane, the

sum

is equal to the length of the perpendicular projecting the point 2',

where we use the notation f to represent an integral that is taken

over a definite curve that satisfies the differential equation and /
one that is taken over an arbitrary curve, and where the indices

represent the limits and the direction of the integration. A curve

that satisfies the differential equation may be drawn from to

every point 2' of the curve in the enveloped space and this curve

also with the exception of the point lies within the enveloped

portion of space. These curves are to have the property, which
after the assumptions is always possible, that beginning with 1'

the following curves are always variations of the preceding.

226. We regard the coordinates of the points of the projec-

tion of the arbitrary curve as functions of the length of arc counted

from the point 1, and we consider the sum /m+ Zji-

It follows from the fixed relation regarding the point in space

that, wherever the point 2 may lie upon the curve 021, we always
have _

r (1)
I

71(1)_ rji)
-'02 ~r-'2i —-'001 '

There is consequently no variation in the integral /'^'.

Let the length of the^portion 1 2 increase by cr. The change
thereby produced in I^+ f-n is equal to

<^(^2.J^'2,A'?2.A.?2) °'+(°''^''^'^'^) '

where /j, gj ^^e the direction-cosines of 2 at 2, pi, Qx those of 1 2
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at 2. Again let the length of arc 1 2 decrease by a. The change
thereby experienced in /52+ /21 is equal to

— <F(;r2, ;j/2,^2, ^2, ^2. 92) o" +(o-. f. ^. ^. ^)^-

Since i, t), -r,^ -jI become indefinitely small with cr, the quantity
df ctt

<^('^2)>'2) A' ?2^A' ^2) represents the differential quotient of the

sum /52+ /21, this sum being considered as a function of the length

of arc 12 (see Art. 161).

If the point 2 coincides with 1, then is hi-^-hx^^Tin, and if 2

coincides with 0, we have

-^62+ -^ 21= -^ 60+ Ai •

Hence it follows :

V) If S along 021 is not positive and not everywhere zero,

that

^ 01> -' 60+ -^ 01 )

2) 1/ ^ along 021 is not negative and not everywhere zero,

that

'di*C-'oo+ -'oi'

227. It will be shown in the next Chapter that we may as-

sume the strips of surface enveloping 1 so narrow that the

point may be joined with any other point within this enveloped

space by one curve, and only one, w^hich satisfies the diflEerential

equation. The curve must of course lie wholly within the envel-

oped space. This assumed, it follows that the integral /m is ident-

ical with /ooi, and further, that the integral l^ is identical with

the portion of the integral /qoi, which is taken over the portion of

curve 0.

We therefore have

in case 1) /oi>7oi;

in case 2) /oi<-4i-

The maximal and minimal property of the curve that satisfies the

differential equation is accordingly proved except in the case where

along the whole curve the function (T is zero.
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228. We shall show that for the case where in the constructed

realm the integral

1

is not zero, the function <s cannot be zero along a whole curve be-

tween and 1; or what is the same, that it is not possible every-

where along the curve to have

pg-pq=o.

After we have proved this theorem for a regular curve, we may
extend it for a curve composed of regular portions; since, as has

often been shown, sudden changes in the direction along the curve

under consideration have no influence upon the deductions that

have been drawn.

Finally, the same is also true for arbitrary curves which can

be drawn between and 1 and which lie suflBciently near the curve

that satisfies the differential equation, but this is true in so far

only as the two integrals have a meaning for these curves.

229. In a similar manner as was shown in Art. 165, the mean-

ing of the integrals may be extended, if for these integrals are

substituted sums of integrals which are taken over portions of reg-

ular curves that join a series of points on the curves under consid-

eration. It remains then to show, when these sums approach

finite fixed values by increasing the number of points and dimin-

ishing the distance between such points, that these limiting values

are at the same time the values of the original integrals. Of
course, the limiting value which is thus determined for the second

integral /'" must be identical with the value that was prescribed

for it.

If the integrals taken over an arbitrary curve have in this

sense a definite value, it is clear that, for example in case of a

maximum, the integral /*' taken over this curve cannot be greater

than the integral taken over the curve which satisfies the differ-

ential equation. For we could form a curve out of regular portions

of curve, the integral over which would be as little different from
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the integral /"" as we wished, and consequently would also be

greater than the integral taken over the curve which satisfies the

differential equation. This is not possible after the hypothesis.

Hence, that integral must be smaller than this one, as we may
again show as follows : I^et 2 be a point of the arbitrary curve

sufficiently near 1, then we may draw two portions of curve which
satisfy the differential equation, the one from to 2 and the other

from 2 to 1, the corresponding curves in space being 0' 2' and 2' 1'.

Around 0' 2' and 2' 1' we may limit a portion of space in a similar

manner as was done around 0' 1' and with the analogous proper-

ties. If the portion of space about 0' 1' is taken sufficiently small,

the arbitray curve will lie within the portion of space which en-

velops 0' 2' and2'l'.

The integral taken over this curve is, consequently^ after

what w^as given above, not greater than the integral taken over

the two portions of curve which satisfy the differential equation

;

but this is smaller than /m, and consequently also the integral of

the arbitary curve is smaller than /m.

We must point out here a limitation which has been tacitl)'^

made : We traced the curve 2 1 in such a way that the corre-

sponding curve in space lay in the portion of space defined above.

Now, there may be curves 02 1 in a region about 1 taken arbitra-

rily small, such that the corresponding curves in space do not

fall within the limited portion of space, and for such variations

the maximal and minimal properties are not derived through our

conclusion». Our proof has reference only to such variations in

which the change of the value of the second integral becomes in-

definitely small at corresponding points at the same time with the

variation of the coordinates.



264 CALCULUS OF VARIATIONS.

CHAPTER XVIII.

PROOF OF TWO THEOREMS WHICH HAVE BEEN ASSUMED IN THE
PREVIOUS CHAPTER.

230. In the present Chapter proofs are given of the theorems:

1°. That it is possible to construct a portion ofspace about
a curve, which satisfies the differential equation of the problem^

in such a way that it is always possible to join any point in this

limited space and the initial point by one and only one curve

which likewise satisfies the differential equation.

2°. The function S cannot vanish along an entire curve

within such a portion of space.

Let the coordinates x, y oi 2l. curve which satisfies the differ-

ential equation be expressed as functions of a quality t. These
functions contain three arbitrary constants: the two constants a

and ;8 of integration and the constant \. If then x, y and z are

the coordinates of the corresponding point in space, we have

t

1) x^^{t, a, ;8, x), y=^{t, a, A x), z^fF^'\x,y, x',y')dt,

to

where ^—4 corresponds to the point 0. By changing the three

constants we have another curve in space. The requirement that

the projection of this latter curve should go through the point

gives two relations between the increments a', )8', x', t^ of the con-

stants a, /3, X, 4) where 4+To is the value of / in the new equation

that corresponds to the point 0.
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231. The equations of the new curve in space are :

and, if Xo, y^ are the coordinates of 0,

3)
\
( >'o = «/'(4 + To. a+ a', )8+ /8', X+ x').

These equations represent for sufficiently small values of Tq, a', ^\ X',

which satisfy the last two equations, all curves in space which
satisfy the differential equations and whose projection upon the

;c_j'-plane in its initial direction deviates very little from the initial

direction of the projection of the original curve.

We may express To, a' and /8' as power-series in X' and the trig-

onometrical tangent of the angle which the two initial directions

form with each other. If this tangent is denoted by k, we have,

as in Art. 148,

4) [f (4)^+V'(4r]>&= [f(4)f'(4)-f(4>/'"(4)]To

+ [f(4)M4)-f(4)«l'i'(4)]'-'

+ ['/''(4)<^3'(4)-'^'(4)«l'3'(4)] A'+ [To, a', )8', x']„

where <^3=|^,'/'3=|^.

232. Since the two curves are to go through the same initial

point, we have further
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The determinant of the linear terms on the right-hand side of the

equations 4) and 5) is

f(4)fX4)-'^'(4)fXaf(4)<^i'(4)-<^X4)'^iX4),'l''(4)<^;(4)-'^'(4)V'X4)

In this determinant write

6) dM=^ni)Uf)-4>V)U0.
(t=1.2,3)

If we multiply the second horizontal row by »/'"(4)) the third by
— <^"(4) and add both to the first, the determinant may then be

written

^'(4) . <^i(4) . <^2(4)

'P'i^o) , V'i(4) > «l'2(4)

or,

^2(4)^i'(4)-^i(4)^;(4).

This quantity is not zero, as we shall see later [see the third of

of equations 13) in Art. 237].

Hence we may express t^, a, ^' as power-series in ^, X' so that

for any pair of values ^, X', which have been taken sufficiently

small, there corresponds a curve in space.

From the differential equation it follows in a similar manner
as was shown in Art. 149, that for one pair of values ^, x' there

corresponds only one curve, and that every curve is completely

determined through the initial point and the initial direction. We,
therefore, conclude, as in Art. 149, that the equations 4) and 5)
afford us all the curves which are neighboring the original curve,

which have the same end-point with it, and which satisfy the

differential equation.
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233. We have now to choose the constants in such a way
that the new curve in space will go through a point x+ ^,y+ r), z-\-t,

which lies in the neighborhood of any point x, y, z situated on the

old curve. If then we give to / a definite value and take sufficiently

small values for |, 17, 4, the following equations must be satisfied:

7)

0= f(4)^o+'/'i(4)a'+«/'2(4))8'+ 'l'3(4)^'+ (^o.a',/8',x'X,

^ dx'
^

But

Hence, if we write

8)

it follows that

9)

^1

/
(v=l,2.3)

OX

a/r(i)

ay-v+®,i A 4y +H i, 4) /8'+ e3( /, t,) \'

+ (r,a',/8',x'),.

If we substitute instead of $ and 17 their power-series in t, a', /8', x'

in equation 9), the determinant of the linear terms on the right-

hand side of equations 8) and 9) become after a slight transforma-

tion

10) D{U,t) =

<^'(4)

f(4)
o

o

o

o

o

o

<^i(4)

'/'i(4)

^2(4)

^'2(4)

0i(4,O , ®2(4,0 , ©3(4,/)
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We assume that this determinant does not vanish for arbitrary-

values of t. This case and the formulae which would follow from
it we leave as an exception for future investigation.

234. The first value of t after 4 for which Z?(4, t) vanishes

we call the conjugate to 4-

We see then that if the upper limit t-^ of the integrals lies be-

fore the point that is conjugate to /o. the curve can envelop a

portion of space having the property desired.

Since in this case, if f, ij, t are chosen sufficiently small, one

can always express t, t,,, a', y8', a' as power-series in £, »?, C and con-

sequently can construct one and only one curve in space which
satisfies the differential equation, which passes through the point

and the point x-\-i,y-\--r]^ 2-\-l, and which deviates in its position

arbitrarily little from the original curve. To these difEerent

curves in space there correspond different functions Z>(4, /). If,

however, the curves lie sufficiently near the original curve, the

functions D which correspond to them will not vanish for any

point along them, so that through any point in a sufficiently small

neighborhood of any point of these curves a curve starting from

can be drawn which satisfies the differential equation.

235. It remains yet to be proved that, if the point conjugate

to 4 lies between 4 and t-^, we cannot have a maximum or a mini-

mum value of the integral.

Since the point can be chosen arbitrarily near and since the

point conjugate to t varies in a continuous manner with 4> it is

necessary only to show that t-^ cannot lie between and the point

conjugate to it. We then will have proved everything except the

case where 4 coincides with the point conjugate to 0. This case

we must again leave for a special investigation, since the curve

may or may not offer a maximum or a minimum, (cf. Art. 132.)

A rigorous proof of what has been said requires a close inves-

tigation of the function Z?(4. i)-

236. The curve in space which we had through variation of

the constants is determined through the initial direction of its
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projection at the point and through the differential equation

G'°^ —{k+\')G'^^ =0, which it must satisfy. From this the proper-

ties of the function -0(4, ^) may also be inferred.

We perform the changes which C*"—X C^' suffers when a, /3, X

undergo the changes a, )8', x'. The equation G^'°'—X G^^ must van-

ish for arbitrary values of a', jS', x'.

We have

^G^G'>Xx+i,:y+v)-G^'K^,:y)-x[G%x+^,y+v)-G^'\x,:y)]

-x'G%x,:y).

In a similar manner as was shown on page 133, formula (3), we have

G^%x+i,:y+v)-G^r^,^)=-Fr{y^-x'v)-^^(Fr^^^^^^)

and consequently

The terms of the first dimension in the development of

y i—x' Tj in powers of t, a, 0, x' are

which we represent by w. We then have

Since this quantity must be zero for arbitrary values of a', j8', x',

the coefficients of the individual terms in this expression when de-

veloped in power-series must be zero. If we limit ourselves to

the linear terms, and use the functional sign for the function itself
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when there can be no confusion, we have the following three dif-

ferential equations:

12)

{ pd^Q., dF, de,
Q

If we multiply the first of these equations by 6^, the second by

—01 and add the results, we have

iH'-'-^i-'-'M-'-^''

Similarly, if we multiply the second equation by 6^ and the third

by —^2' we have upon adding,

dt
[F iff

^^2 a dO^X^
g ^(1)

Finally, if we multiply the first equation by 62 and the second by

—di, we have through addition,

dt [^.(^'f-^'f)]--

237. From these equations it follows that

13) ^

k

0, (4, /) =.

J^,
G w dtJ\j,

(

e,^ -e, ^^T.

,

dt]y.

.^•("f-^'f)"^-
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The constant C cannot be zero ; for then we would have

271

dt
('°« "')=#.( '"8 ")•

or d^^Ci dj.

But, as is easily shown, the determinant Z?(4> ^) oiay be brought

to the form

14) Dito,t)

UO . ^2(4) , ^3(4)

®i(4,0 , ©2(4,0 , ©3(4,

If then ^i(/)= Q 0^ ( ^), it would also follow that 0i( 4, if)= Cie^C 4, ^).

and the determinant D{ta,t) would vanish, since two vertical rows

differ from each other only by a constant factor; and this is true

for arbitrary values of t, which case we have excluded. Hence
the constant C cannot be zero.

238. We next prove that the determinant Z?( 4, ^) changes

sign, when it vanishes. We have

IS) f,D(t,.ty

+

^x(4)
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Consequently the first of the determinants vanishes, leaving

@i(4, ^) , ®2U,^) , ©3(4,0

0iU) , ^2(4) , ^3(4)

We introduce the following notation:

^,Z^(4,0-

16)

We can then write

D{t,,t)=.^/^{t) ®^{t„t),

v=3

^^i?(4,0=2/^'(0®v(4,0;

consequently

17) /3(0 ^^/?(4,^)-/3'(^)/?(4,/)=[/3(O/l'(^)-/l(^)/3'(^)]0l(4,^)

-H [/3(0/A -/2( 0/3'( 0] ®2( 4, 0.

or

18)
dt L /3(/) J

[/3( 0//( -/i(t)M i)] Qx( 4, /^)+ [fl t)f;{ t)-fl 0/;( 0] e,( 4,

239. The numerator of the right-hand side of the above

expression is equal to F^ multiplied by the square of a certain ex-

pression, which we shall now determine.
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Let us write

^,(4) , ^.(4) , ^3(4)

19) E= e,(t) , e,{t) , e,{t)

o^{t) , e^{t) , eat)

=0.V)Mt) +emAit) + em/It).

From 16) it follows at once that

19") o^e,{t,)/at)+e,{t,)Mt)^e,{t,)/it),

and consequently

20) ei 4) E^ \e^{ t) e,{ t,)-e^{ t) e,( 4)]/,( t)

+ W{t)eit,)-e^{t)eit,y\/lt)

=/3(0//(0-/(0/3'(0.

Similarly, we have

21) -er{to)E=/it)/^{t)-Mt)/^{t).

Accordingly, the expression 18) may be written:

22^ ^ [D{t,j)'\_ p [^,(4)e,(4,0-g,(4)e),(4,/)]
^^^ dAf^r [/3(0]^

But owing to the relations 13)

8,(4, /)=[/-, 1^3(0 e^{t)-e,{t) ^3'(0}]^;

e,(/o, t)=^F,\eit) e^{t)-e,{t)e^{t)y^^,

it follows that

e^{ 4) Hto, t)-m) ®2(4, 0=[^i ^3( /){u 4) ^i'( t)-e,{ 4) e,'(
0} jj^

-[/^i ^3'(
1 02i 4) ^.(0- ^i( 4) e^i t)}]^
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240. Further we have

= [f, { e,{ t) e,'( t)-e,i t) e,'( t) y^^ei 4)

But owing to the third relation in 13) the expression F-i\ 6-Ji^ f) 6\{ i)

— 6^{t)6^{t)\ is independent of t, so that the first term of the

right-hand expression is zero, and consequently

23) d^t,) 0i(4, t)-eit,) ©,(/o, t)=F,{t) .F,E.

Hence the equation 22) becomes

24^ d[D{t„ty\_F,{t)E}^ dtl/it) J- [/,{t)y

241. Suppose that Z>(4, i) is zero of the ki^ order for the

value /=/ so that the development of D(^t^, t) begins with t— f to

the h{'^ power.

If theny^(/) does not vanish for ^=/, the development of

begins with the (^— l)*.!' power. But this expression is equal to

Fi E'^, and since according to our assumptions F-^ does not become

zero or infinity for any point within the interval 4. . . . /j, it is seen

that /\i£"^ must begin with an even power. Hence k—\ is an

even integer, and consequently k is an odd integer, and therefore

D{ta,t) must change signs when it vanishes.
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Suppose next thaty^(/) vanishes for /=/, then/3'(/) cannot
vanish; for from the equations [see 16)]

it would follow, if ^i(/o) and ^2(4) are not simultaneously zero, that

But this equation, as also the simultaneous vanishing of fli(^) and
&2{t) for the value ^=4, contradicts the equation 13)

for, as we have seen, C is difiFerent from o and F^ is neither zero

nor infinity.

Hence y^( /) and y^'( t) do not vanish simultaneously. If then

y^(/) vanishes for /=/', the development of^(/) in powers of t—f
begins with the first power.

We may therefore write

/,{t)=c{t-i')+

It follows that the development of

begins with the term

cA{k-l) {t-tfy,

except when k—\, in which case the coeflBcient of this term is

zero. In this case nothing has been shown, but see the next

article.
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For i:=l it is evident that Z>(/o. ^) changes sign on vanish-

ing.

242. We shall next show that if y^ (/) vanishes, E can be zero

only when at the same time/j {t)=o= /^{t). We saw in the pre-

ceding article that the quantities B^ (4) and 6^ (4) cannot both be

zero. If then tfi (4) >o, it follows, from the relation [formula 21)]

that, when E=o andy^(/)=o^ alsoyi(/)=o, and also from

o=elu)/lt)+e,{t,)A{t)+elt,)/lt),

that/, (0=0.

Similarly, when 6i{t(t)>o, it is seen from the equation

/lt)f;{t)-A{t)/^{t)=^6M) E,

that/(/)=o, if E=o==/i{t), and, consequently, also/(/)=o.

But if E does not vanish for t^t', then k=o, and, consequently,

also Z>(4, /) does not vanish for /=/. We have thus shown that

D(io^ i) does not vanish for /=/. It follows, therefore, that

D(^to, /) changes sign on vanishing except when we have simul-

taneously

In this case it has not been proved whether it changes sign or

does not. We must, consequently, consider each separate case for

itself (see Art. 255).

243. If we assume that at least one of the quantities /(/),

AiO'Ai^) is different from zero, we can give the geometrical sig-

nificance of conjugate points :

When the constants a, j8, X are increased by a, /8', X', new curves

in space are produced. The condition that one of these curves

cuts the original curve in the point /' is [see equations 7) and 9)]

expressed through the following equations :



CALCULUS OF VARIATIONS. 277

'o=f(4)r„+ <^i(4)a'+ <^,(4)^'+ «^3(4)X'+(r„,a',^',X')2,

or, if we eliminate To and t,

O=tfi(4)a'+e,(4))8'+ 03(4)x'+ (a',)8',x')2,

^==<>,(r)a'+ fl,(r)^'+ (?3(/')x' + (a',)8',x')a.

O=0i(4,if)a'+ 0,(4,/)/8'+03(4,Ox' + (a',/8',x')2.

The elimination of a' and y8' gives

26) o=^D{t,J')x' +{xX

or

o=Z?(4,/')+(x').

If Z)(/o. tf') is different from zero, we may take for X' a limit as

small as we wish such that, for every X' whose absolute value is

less than the prescribed limit, we always have

\D{t„r)\>\{\')\.

Consequently no value of /' can be found which satisfies equation

26).

If then / is a definite value of /' for which Z?(/o, /") is differ-

ent from zero, there will be no value of /' within a certain interval

^— Tj, . . . . / +T2 which satisfies the equation 26). Hence among all

the curves in space for which a', ^', x' have sufficiently small values

there will be none which cuts the original curve in the neighbor-

hood of ^'.

It is quite different, however, if we take for t" an interval

t'—T. . . .i'+T which contains /', the point conjugate to to, within

which, therefore, Z?(4, t")=o. For then D{to, t") has opposite
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signs for t"=t'—T and ^"=/'+t. Hence after an arbitrarily small

value T has been fixed, we can always choose x' so small that also

has opposite signs for t"— t'—t and t"— ^ -\-t, and consequently

there will be within this interval a value of t" for which the

equation

is satisfied.

Hence, if we limit an interval ever so small about the point

conjugate to and take arbitrarily small upper limits for a', /8', X',

then among the admissible curves there are always such which
start from and cut the original curve within this interval. In-

deed, if a, /8', A.' are less than a certain quantity, then all the curves

in space, for which a', ^', x' have values not greater than this fixed

quantity and which go through the point 0, cut the original curve

within this interval. This upper limit for a', )8', x' becomes infi-

nitely small at the same time with this interval, so that the point

conjugate to can be defined as the point which the points of
intersection of neighboring curves approach.

244. In a similar manner we may prove that a portion of

space as small as we choose may be taken around a point of the

curve in space which is not conjugate to 0, and that the points

along the curves in space, which are conjugate to 0, do not

lie within this limited portion of space, if a', ^', x' are taken suf-

ficiently small; but when we limit a portion of space as small as

we wish about the point that is conjugate to 0, the points along the

curves in space that are conjugate to will with sufficiently small

a', /8', x' all lie within this interval.

It also follows that, if in Z>(4. t) the quantity 4 varies in a

continuous manner, the first value of t, for which D{^t^, i) vanishes,

varies in a continuous manner. This follows at once from

Z>(4+t,/)=Z>(4,0+ (t,0.

where (t, i) becomes infinitely small with t for every value of /.

For t—t'—T and t—t'+r, where t' is the point conjugate

to the point 4, the function D{to,t) has different signs, however
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small T is; and if we take t sufficiently small, it follows that

-^(4. ^) + (t, tias different signs for /=/—t and i^f+ r and
must therefore vanish for some value of / within the interval

/— T. . . . /+ T. The change in the conjugate point is consequently

arbitrarily small for a sufficiently small increment in 4-

245. We come next to the proof of the theorem that aportion

of curve which includes 4 cind the point conjugate to it may
always be so varied that A/™ may be both positive and negative,

while Z'^' rem^ains unchanged.

Let us write as in Arts. 180, 181:

We have accordingly

k A

A/<«= £ \G'^*wdt^e^ JG^'^Zi/i^^+Ce, £1)2.

Now choose w so that

A

27) Kc'^'-^wdt^o.

to

Then from the condition that A/'^'=i?, it follows that we may ex-

press Ci as a power-series in e which begins with a power higher

than the first in e.

Hence (see Art. 180), it follows that

zy=ew+(c)2,

and, from Art. 189, that

A
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or, what is the same thing :

where X; is an arbitrarily small quantity over which we have yet

a choice.

246. We shall now show that if /j lies beyond the point con-

jugate to 4, the absolute value of k may be chosen so small that

besides satisfying the condition

A

J'
4

the quantity w will satisfy also the condition

29) r \F,(^y+(j^,-i^)w^\dt=o

4

without being everywhere zero. If c is chosen sufficiently small,

which we are always able to do, it is then seen that the quantity

A
A/*" has the same sign as k e^j v/di, and consequently the same

4
sign as kj which may be either positive or negative.

Since w vanishes for 4 and 4, and since

dt tj-.

dw~\ !:•(dw^
,

^ d { j~, dw\
''^'"^r'^\-dt)^'"Ttv^-diy

it follows that instead of 29), we may write:

4

4
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and instead of this equation and the equation

A

4

we may write the two equations:

A

30) { 4

to

where e^ is a quantity independent of t.

247. Now let e^ (A k), 0^ (A ^), &3 (A k) be three functions of t

which satisfy the three differential equations :

31) i ^^(F,^^02U^))-{F,-k)eU^)=o,

It follows from the theory of differential equations that for a

series of values of t for which F^ is neither zero nor infinite

tf, (/, k\ 0^{t, k), 03 (/, k) differ from the three functions ^i (/), 02 (t),

03 (/) by quantities which become infinitely small at the same time

with k.

Again, let /' be the point conjugate to 4. and write for the

stretch from 4 to /", where /" is a point situated before the point f,

zu^ei fli( t, k) + Cj 02( t, k) + €3 03{ t, k),

and for the stretch from f to A let

zy=o.
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It is clear that w is not everywhere zero unless 61=0=62=^3. since

owing to the differential equations 31 ) which d^{t, k),0-j{t, k),e3{t,k)

satisfy, a linear relation for the series of values of t can exist

only if for these values 6^'''=o, a case which we excluded (Art. 180).

248. The quantity w satisfies the differential equation

dt
{^^^)-(^2-'^)^-G^'=o.

It must also satisfy the additional conditions that w=o for 4 3-nd

for /", and that

4
But we have

f t" t" t"

Jg ' zvdf^^e^f G''^ eX t,Jc) dt\ e^f G^'' 6^ f,k) df+ e^fG^'' d^{ t, k) dt.

to *o 4 '0

If we write

t"

JQ'^6Xt,k)=&XioJ".k),
f

(v=i.2.3)

then from what was seen above, the functions @,(/o,/', ^) differ

from @v( 4. /') by a quantity which becomes infinitely small with k.

The conditions which remain to be fulfilled are:

/ o= e^d^{to, k) + eT,dj{to, k) -\-e^dj,{to, k\

32) <|
o= e,e,{f,k) + e^eit",k) + e,ei^',k\

{ o=e,%,{t,, r, k)+ e^%lt,, t'\ k)+ e,%li„ t" , k).

The determinant of these equations differs from D^Iq, /') by

a quantity which becomes infinitely small with k (Art. 237).
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For f=i—k and f=t'-Vk the quantity /?(/«, /") has different

signs, and consequently we may take k so small that the determi-

nant of the equation 32) has different signs for t"= t'—k and
t"= t' -\-k and consequently vanishes for a value of t" situated be-

tween t'—k and f -{-k.

We may therefore take /" along the curve before t-^ in such a

way that the equations 32) are satisfied by values of e-^, e^ and e^,

which are not all zero.

If then, returning to equation 28), e is chosen sufficiently

small, itfollows that A/^"'' has the sign of k and since this is

arbitrary, there are among the admissible variations of the

curves those for which 7'°' has a negative increm-ent and also

thosefor which the increment of 1°' is positive.

The portion of curve 01 cannot therefore extend beyond the

point which is conjugate to 0. If we exclude the case where 1

coincides exactly with the point that is conjugate to 0^ itfollows

that 1 must lie before the point that is conjugate to 0. We may
then choose sonear to that 1 lies also before the point that

is conjtigate to 0. Along such a portion of curve the ftmction
D(^tQ, t) does not vanish and consequently we may envelop such

a portion of curve in a portion of space which has the required

properties.

249. It only remains, excluding exceptional cases, to show
that the function S{x,y,p,q,p,q^ cannot vanish along an entire

curve within the portion of space defined above.

If we exclude the possibility of the integral

1

j\Fl\x,y,p^, q^)-XFl%x,y,p,,, q^)\ (l-k)dk

becoming zero along a portion of the curve in question, then for S
to vanish, it is necessary that pq—Pg=o along the whole curve;

that is, the direction of the projection of the arbitrary curve in

space must coincide at every point with the direction of the pro-

jection of the curve that satisfies the differential equation.
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If x,y, 2, :r,,jVi, 21 are the coordinates of the two curves ex-

pressed as functions of their lengths of arc 5=/ and 5'= /, say,

then at the point in question we must have

_ ^ dx _ dxi dy _ dy-^
' 'dt~~dV' di~Wx=x„y=yi, -^^__^,

But since

t

2 = jF^%x,y,x',y')di,

and

2,= fF^'\x„y,,x,',y,')dt',

it follow,s also that

dz dzx
.

~dt~~di'

i. e., the two curves in space have at every point also the same
direction.

The quantities

</.(/, + T, a+a', |8+ )8', X+ \'),

^.(A+ T, a+a', ;3+/8', X+\'), .

f,+T

represent the coordinates of the neighboring curve in space in the

neighborhood of the point A.

The point A is now taken as any arbitrary point. If in the

above expressions we consider t, a', ;8', X' as functions of a quantity

k which become infinitely small with k, then for successive values

of k these expressions are the coordinates of the points of a cer-
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tain curve which goes through l^; and indeed every curve that
passes through /j can be expressed in this manner, if the functions
of i; are suitably chosen.

250. If now there is to be a curve in space along which S=o,
then its direction at the point r, a,

fi',
X', as we saw above, must

coincide at this point with the direction of the curve which satis-

fies the differential equation determined through a',
fi',

\'.

The direction-cosines of the latter curve are proportional to
the following quantities:

and those of the first curve to:

r f(/i+r, a+ a',fi+fi\ x+x')^r + ^; where in^ onlv a', /8' andx'
dk dk dk -

are to be considered as de-

pendent upon k.

dk dk

dy'
"^
) dk

J I dx dk^ dy dk^ dx' dk + dy' dki '

+

where in —^i, -^, -^ only a, /8', X' are to be considered as depen-
dk dk dk ^

dent upon k, the increment due to t being already explicitly ex-

pressed. If we integrate by parts the expression that stands under

the integral sign of the last of the above quantities, and take

into consideration the definitions 8) of Art. 233, it is seen that the
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direction-cosines of the arbitrary curve are proportional to the

quantities

dk dk

b) \
dk dk

251. If the direction of the two curves are to coincide at the

point in question, then the three minors formed from the quantities

a) and &) must vanish. But these minors are identical with the

minors formed from the quantities

ox ay

d^ dx}, dF"^ d<i> dF'^^ d^ da' dfi' d\'

dk ' dk ' dx' dk^ dy' dk'^ ' dk ^ ^ dk ^ ^ dk'

Accordingl}', the three quantities of the first row are proportional

to the corresponding quantities of the second row.

If we make k^o, the above quantities become

ax ay

+«,(,., ,)(^) +«,(,, ,)(^)^+e,(,,.)(f)^.
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Hence, if we let p denote the factor of proportionality, we have

l„=e.(co(^).+eX4.0(f).+«.(4,0(|^),

where the third equation is reduced to this form b)^ the applica-

tion of the other two.

252. Since the curve which satisfies the differential equation

must pass through the point 4. we must in virtue of equations 5)
and 6) have the relation

and from this it follows that

Eliminate p from the first two equations in 33) and write for the

diflEerences that appear their values in terms of the ^'s defined by

the relations 6).

The determinant of the resulting equation, of the last of the

equations 33), and of equation 34) is identical vv-ith JD ( 4, A )• [See

formula 14), Art. 237]. Hence if D{iQ,t^) does not vanish, these

equations have no other solution except

\dJi:}o ^dkk \dkh

The same conclusions may also be drawn from any small value of

k to which the values t, a', y8', x' correspond; there enters here in-

stead of the quantity Z?(4, A) the quantity

Z?(4,A+ T,a-|-a', )8+ ;3', A+X').
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Since this determinant for sufficiently small values of t, a', ^', x'

is different from zero, it also follows that

da' ^ d^ ^ dx' ^
dk dk dk

But the quantities a', ^', x' do not vary with k and are consequently

zero, since they are zero for k—O; this means that the curve along

which the function <s is to be zero must coincide with the original

curve which satisfies the differential equation. It is then no vari-

ation of this curve and the arbitrariness of the quantities p, q
which is essential to the meaning of the function <s is entirely

lost.

If D^to, ti)= o, then A would be the point conjugate to 4; and

since this would be true for every point /, of the arbitrary curve,

it would follow that the arbitrary curve was formed from the

points that are the conjugates of the initial point and would con-

sequently lie without or at least on the boundary of the portion of

space under consideration.

It is seen that there is no curve within our^ assumed portion

of space along which the function S{x,y, p, q, P,q) vanishes every-

where. The purport of this Chapter is thus completed. It has

also been shown that the conditions necessary and sufficient for

the existence of a maximum or a minimum are in the Theory of

Relative Maxima and Minima the analogues of those enumerated

in Art. 174.

253. We shall now finish the proof of the maximal and min-

imal properties of the two problems already considered, viz., the

isoperimetrical problem and the problem offinding the curve

whose center ofgravity lies lowest.

In the case of the isoperimetrical problem we have

F= —yx'—xVx'^+y\

dF xx' ,.

ax Vx^Ary^
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Z F y'

ay v/;tr'2+y^

x=a+\ cos i , jf=b+ x.s{n t,

S{x, y, p, g,p, g)^\ {pp^-qq-l )

In these expressions X is a positive constant; further, x' and y'

do not vanish simultaneously at any point of the curve, so there is

no exceptional case which requires a special investigation. The
expression//-!-^ is the cosine of the angle between the two direc-

tions p, q and p, q, so that <? has for no point and no direction a

positive value. As we have already seen, this is one of the require-

ments for a maximum.

254. Let two points and 1 be connected by the arc of a

circle of given length, which together with a fixed curve, that

joins the two points, incloses a surface-area. The integral taken

over the whole periphery is represented by (see Art. 191)

A

/ -yx'dt,

and it is required to prove that one cannot connect the two points

by a curve of the same length which includes a greater area with
the fixed curve. The proof is immediate as soon as the following

is shown. If an arbitrary curve of the prescribed length is drawn
between the two points, then we may draw through any point 2

of this curve the arc of a circle which also goes through and
which has the same length as the portion of the arbitrary curve

situated between and 2-

If we let the point 2 traverse the arbitrary curve, the succes-

sive arcs of circles are variations of one another and their lengths

differ indefinitely little from one another. If the point 2 is suffi-

ciently near the initial point, the corresponding arc of circle be-

comes the arc of circle for which the maximal property is to be

proved.
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This is all done as soon as we stipulate that each arc of circle

is to be traversed once only and is to be constructed as indicated

in Art. 229. Then indeed there is only one arc of circle having

the given length that can be laid between the points and 2- The
arcs of circles corresponding to the successive lengths are varia-

tions of one another, and their lengths at corresponding points

differ indefinitely little from one another, and consequently the arcs

of circles, if the point 2 coincides with /j, pass in a continuous

manner into the original arc of circle drawn between and 1.

255. Regarding the determinant Z?(4. t)i we have here

a;=a +Xcos/ ,
y^^b-\-\%va.t

,

A

0j(4, /)=sin /—sin 4, ©2(4- 0— cos 4—cos t, ©3(41 0=^—4.

/i(/f)=:XHsin 4—sin /),/2(/)=X^(cos i—cos 4),y3(/)=X^ sin(/— 4).

From these expressions we have

X cos 4 . ^ sin 4 .
X

D(to,t)= kcost , xsin/ , X

sin /—sin 4 . cos 4— cos / , /—

4

= x4(/-4)sin(/-4)+2cos(/-4)-2|

=4x2sin^-^ j__Jcos ^-2 - sm-^|.

It is seen from this that the first time after 4 that D ( 4, t)

vanishes, is for the value /=4+ 27r; consequently /=4+ 27r is the

point conjugate to the initial-point.

In reality, if we consider the initial and the end-point coincid-

ing so that the curve satisfying the differential equation is a com-

plete circle, then this curve does no longer offer a maximum, at

least, in the sense that with every arbitrarily small variation of

the curve the variation would be smaller; since we could slide at

pleasure the curve congruent to itself, and therefore vary the

curve without altering the perimeter or the surface-area.
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It is interesting to observe that a case appears in this problem
which could not be decided in the general treatment; namely, where
/ii.i\ ^(^)> /sC^) simultaneously vanish with D{t^, t) (see Art.

242).

In reality for /=4-f-2'T, we have

D{t„ t)=o, /,{t)=/M=/,{t)^o.

Nevertheless, D^tg, /) changes sign when it passes through zero;

for the vanishing of Z'(4,/) is effected by making the factor

sin "
zero. But this factor changes sign, while the second fac-

tor retains its sign for /=/o+ 2'r.

256. In the problem of finding the curve whose center of
gravity lies lowest, we had (Art. 216)

15 =(JK-X)-4= =(^-X)A-|^ =(>^-X)^=^=(>'-X),;

x^o-^^t
,
;j/=\+|(e'+ e-0

;

^(,x,y,p, q,p, q)={y-K) [1-ipp+ qg)].

We saw that jk—X>o, and further x' and y' do not vanish

simultaneously at any point Consequently F^ is everywhere differ-

ent from o and oo. Since Pp^qq represents the cosine of the angle

between the two directions p, q and p, q, its absolute value cannot

exceed unity, and in general is less than unity, so that the function

S is nowhere negative, as must be the case for a minimum. We
have already seen in Art. 219, if the length of arc is sufficient-

ly great, that between two arbitrarily given points one curve

and only one may be drawn which satisfies the differential equa-

tion. It then follows that there can be no conjugate points and

consequently the catenary in its whole trace has the desired min-

imal property.
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257. That there are no conjugate points is also seen from
the consideration of the determinant D{to, /). For we have

e,{t) = ~fi,G(1).

e.(/o./)=2 f+^:^-;^;°+C) B,(4.o=2 ^"<^^;+^:7-^^^^°-f7'> .

ex 4,0—

2

^"'^f+^l]r;7^^'+f°> .

From these quantities we have

D(ta,t^=—- J—Pi 7T multiplied by the determinant

e'_e-^ ,
t(^ef—e-t)-{et^e-'), 2

g/ _|_ e-i— (f?'"+ e"^.), ta{e'—e-*)— /((e^- + e"'-), e-''{e'+ e"')— e-^(e'« + e~ '«)

or

D{t„t)^ -2P^[et-t. j^e-^t-K)-^ (e/-'.- ^('-^.) )-
2|

The equation D{to,t)=o, or

^^

—

-^{e 2 +e 2 ) — (^ J — ^ 2 )= o

has no real root except t=ta, that is, there exists no point conju-

gate to the point /=4.
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