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Abstract

Lie systems form a class of systems of first-order ordinafferintial equations whose general solutions
can be described in terms of certain finite families of pattic solutions and a set of constants, by means
of a particular type of mapping: the so-called superpasitide. Apart from this fundamental property, Lie
systems enjoy many other geometrical features and theyaappenultiple branches of Mathematics and
Physics, which strongly motivates their study. These fdaotgether with the authors’ recent findings in the
theory of Lie systems, led to the redaction of this essayclwlims to describe such new achievements
within a self-contained guide to the whole theory of Lie syss, their generalisations, and applications.
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1. The theory of Lie systems

1.1. Motivation and general scheme of the work.lt is a little bit surprising that the theory of
Lie systemg$153,[154, 157, 224], which studies a very specific class efesys of first-order
ordinary differential equations, can be employed to irigese a large variety of topic§1[8, 112,
53,/65/59, 98, 144, 202, 212]. Indeed, although being a Lstesy is rather more an exception
than a rule[[128], these equations frequently turn up in ipleltoranches of Mathematics and
Physics. For instance, linear systems of first-order difiéal equations, Riccati equations[[86],
and matrix Riccati equations [103, 116, 117,]131] are Lig¢esys that very frequently appear in
the literaturel[62, 98, 112, 141, 207, 212, P34]. This obsipmotivates the study of the theory of
Lie systems as a means to investigate the properties ofusar@narkable differential equations
and their corresponding applications.

The research on Lie systems involves the analysis of meltigeresting geometric and al-
gebraic problems. For example, the determination of thesymems defined in a fixed man-
ifold is related to the existence of finite-dimensional Ligedbras of vector fields over such a
manifold [157,/210]. Furthermore, the study of Lie systeradk to the investigation of folia-
tions [35], generalised distributioris |38], Lie group aas [141], finite-dimensional Lie algebras
[40,[157,210], etc. As a result of the analysis of the forrhenies, Lie systems provide meth-
ods to study the integrability of systems of first-ordereliéintial equation$ [40], Control Theory
[32,[61, 79/ 18i7], geometric phases|[98], certain problem3uantum Mechanics [46, b1], and
other topics. Finally, it is remarkable that the theory oé Isystems has been investigated by
means of different techniques and approaches, like Gadlewmy [17/ 19] or Differential Geom-
etry [38,60[ 186, 220].

When applying Lie systems to study more general systemsffarelntial equations than
merely first-order ones (see for instancel[34,[35/52[ 77])20% interest of their analysis be-
comes even more evident. For example, in the research censysif second-order differential
equations, which very frequently appear in Classical Maas various relevant differential
equations can be studied by means of Lie systems. Dissiphtiine—Pinney equation$ [45],
Milne—Pinney equations [52], Caldirola—Kanai oscillat{4], --dependent frequency harmonic
oscillators|[55], or second-order Riccati equatians [455]2are just some examples of such sys-
tems of second-order differential equations that havadirdeen analysed successfully through
Lie systems.

The relevance of the above studies, along with the detetiomaf new applications of Lie
systems, is twofold. On one hand, they allow us to obtain h@silts about interesting differ-
ential equations. On the other hand, such examples may shoew features or generalisations
of the notions appearing in the theory of Lie systems thaewet previously determined. Let us
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briefly provide a case in point. While studying second-ori#erential equations by means of
Lie systems[[52, 53, 202], a new type of ‘superposition:lgepression describing the general
solution of certain systems of second-order differentiplaions appeared. These essays led to
the definition of a possible superposition rule notion foctsgystems whose main properties
are still under analysis [48]. In addition, these works iegfout different approaches to analyse
second-order differential equations: by means of the SOREYstem notion [52] and through
regular Lagrangian$ [54]. The relations between theseoagpes or even the existence of new
approaches is still an open question that must be investigatdetail [48].

Apart from the investigation of the above open problemshaps the most active field of
research into Lie systems is concerned with the developofamtw generalisations of the Lie
system and superposition rule notions. Quasi-Lie syst@#s35, 42],t-dependent superposi-
tion rules [34], PDE Lie system5s [B8, 172], SODE Lie systeBf,[partial superposition rules
[38,[153], quantum Lie systems [60], or stochastic Lie—Heihe systems [144] are just a few
generalisations of such concepts that have been carrieid outler to analyse non-Lie systems
with techniques similar to those ones developed for anadykie systems. Indeed, the list of
generalisations is much larger and even sometimes the mgiton rule term has been used
with different, non-equivalent, meanings [198, 215].

In view of the above and many other reasons, the theory of\sieems, along with its multiple
generalisations, can be regarded as a multidisciplinaiyesiteld of research which involves the
use of techniques from diverse branches of Mathematics hysid3 as well as their applications
to Control Theory[[25, 26, 32, 59, 61,179, 119, 187,1212], RtyyB2,[ 54/ 58 234], and many
other fields[[31].

Our work starts by surveying briefly the historical devel@mnof the theory of Lie systems
and several of their generalisations. In this way, we aimraviple a general overview of the
subject, the main authors, trends, and the principal woddicaited to describing most of the
results about this theme. Special attention has been pagidoiade a complete bibliography,
which contains numerous references that cannot be easilydfelsewhere. Furthermore, we
have detailed a full report containing the works publishgdhe main contributors to the theory
of Lie systems: Lie[[153]:[187], Vessiot [222]-[227], Wernitz [&,[9,[13[ 112, 105, 178, 174,
233234, 2385, 236], Ibragimoy [120]-[125], etc. Additidlgawe presented the main contents of
some works which have been written in other languages thglidbne.qg.[[158, 222, 223, 225].

After our brief approach to the history of Lie systems, thedamental notions of this theory
and other related topics are presented. More specificddiggavith a recently developed differ-
ential geometric approach to the investigation of Lie syst¢38], results about the application
of Lie systems to investigate Quantum Mechanics, partfddintial equations (PDES), systems
of second- and higher-order differential equations areudised. This, together with the previous
historical introduction, furnishes a self-contained preation of the topic which can be used
both as an introduction to the subject and as a reference ¢mide systems.

Later on, in Chapter 2, our survey focuses on detailing theemements obtained by the
authors who described a method to analyse second-orderatiffal equations. Chapter 3 is
concerned with various applications of Lie systems in QuanMechanics. Subsequently, we
describe a theory of integrability of Lie systems in Chagtefhis theory is employed to inves-
tigate some systems of differential equations appearii@jassical Mechanics in Chapter 5 and
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various Schrodinger equations in Chapter 6. Finally, @ and 8 describe the theory and ap-
plications of a new powerful technique, thaasi-Lie schemesleveloped to apply the methods
for studying Lie systems to a much larger set of systems éérdifitial equations. In the same
way as Lie systems, this method can straightforwardly bdieghpo the setting of second- and
higher-order differential equations and Quantum Meclarkmally, diverse applications of this
technique are performed in Chapter 8.

1.2. Historical introduction. It seems that Abel dealt with the superposition rule conéept
the first time, while analysing the linearisation of nonneperators [128]. Apart from this very
early treatment of one of the notions studied within the th@bLie systems, the fundamentals of
this theory were laid down during the end of the XIX centurytbg Norwegian mathematician
Sophus Lie[[153,_154, 155, 157] and the French one Ernesiodd@22]-[228]. Indeed, Lie
systems are also frequently referred td_as-Vessiot systeniis honour to their contributions.

The first study focused on analysing differential equatiadmitting a superposition rule
was carried out by Konigsbergér [137] in 1883. In his work,gdroved that the only first-order
ordinary differential equations on the real line admittanguperposition rule that depends alge-
braically on the particular solutions are (up to a diffeoptasm) Riccati equations, linear and
homogeneous linear differential equations. Later on, B518ie proposed a special class of sys-
tems of first-order ordinary differential equatiohs [158, £28] whose general solutions can be
worked out of certain finite families of particular solut®and sets of constants [18, 220].

Despite the above mentioned achievements, these piogegoirks did not draw too much
attention. Nevertheless, the situation changed from 1893hat time, Vessiot and Guldberg
proved, separately, a slightly more general form of Kobégger's main result. They demon-
strated that (up to a diffeomorphism) Riccati equations larehr differential equations are the
only differential equations over the real line admittingupesrposition rule’ [108, 124, 128, 222].
This result attracted Lie’s attention [154], who claimedtttheir contribution is a simple conse-
quence of his previous work [153]. More specifically, heestathat the systems which admit a
superposition rule are those ones that he had defined in 18%$. In view of these criticisms,
Lie did not recognise the value of Vessiot and Guldberg'salisry [128]. Nevertheless, some
credit to them must be given, as the theory of Lie does notyelesid to the case provided by
Vessiot and Guldberg [128].

Lie's remarks gave rise to one of the most important restitgaitithe theory of Lie systems:
the today called.ie Theorem[157, Theorem 44]. This theorem characterises systemssf fir
order ordinary differential equations admitting a supsifen rule. In addition, it provides some
information on the form of such a superposition rule.[In [l 57e and Scheffers presented the
first detailed discussion about Lie systems. In recognitibthis work, some authors also call
Lie—Scheffers systems to Lie systems.

In spite of this important success, Lie Theorem, as stateldidyycontains some small gaps
in its proof as well as a slight lack of rigour about the defamitof superposition rule. This was
noticed and fixed at the beginning of the XXI century by Cané, Grabowski, Marmo, Blazquez,
and Morales([1€, 38].

After Lie’s reply, Vessiot recognised the importance of'ti@ork and proposed to callie
systemshose systems of first-order ordinary differential equaiadmitting a superposition rule
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[224]. Apart from this first ‘trivial result’, Vessiot furshed many new contributions to the theory
of Lie systems[[223, 224, 226, 228] and he proposed varionsrgésations [22%5, 2217, 228]. For
instance, he showed that a superposition-like expressinmbe used to analyse particular types
of second-order Riccati equations [225]. More specificdiy proved that some of these equa-
tions admit their general solutions to be worked out of fémsibf four particular solutions, their
derivatives, and two real constants. As far as we know, tristitutes the first result concerning
the study of superposition rules for nonlinear second-odiferential equations.

After a beginning in which a deep study of superpositionswrd Lie systems was carried
out [108) 153 154, 155, 222, 224, 225, 226,1227) 228], thie twps almost forgotten for nearly
a century. Just few works were devoted to the study of supéipo rules[[76, 80, 81, 82, 149,
197]. During the seventies, nevertheless, the intereshendpic revived and many authors fo-
cused again on investigating Lie systems, their genetiits and applications to Mathematics,
Physics and Control Theorly [127, 180, 175]. Among the resifitet motivated that rebirth of the
theory of Lie systems, we can emphasise the importance efdhies of Winternitz and Brocket.
On one hand, Brocket analysed the interest of Lie systemsiirGl Theory[[25] 26], what ini-
tiated a research field that continues until the present99261 /79[ 119, 185, 187, 201, 212].
On the other hand, Winternitz and his collaborators madege ksantribution to the theory of Lie
systems and their applications to Physics, Mathematic<amdrol Theoryl[[8, 9, 13, 14, 15, 1,
112,114,141, 234, 236].

In view of its important contributions, let us discuss inghli detail some of Winternitz's
results. Using diverse results derived by Lie [156,1157]ntfinitz and his collaborators devel-
oped and applied a method to derive superposition rules, [202[210]. They also studied the
problem of classification of Lie systems through transifivienitive Lie algebras[210], a concept
that also appeared in some of his works about the integpbflLie systems[2/l, 22]. Winternitz
also paid attention to the analysis of discrete problemswanterical approximations of solutions
by means of superposition rules [179, 188,1202] 219] andlyijriee, and his collaborators, de-
veloped a new generalisation of the superposition ruleongthe so-calleduper-superposition
rule, in order to study the general solutions of various typesipesequations [12, 13].

Besides their theoretical achievements, Wintereital. applied their methods to the analysis
of multiple discrete and differential equations with apptions to Mathematics, Physics and
Control Theory. For instance, many superposition rulegwerived for Matrix Riccati equations
[8, 112,141 174, 188, 212], which play an important role mn@ol Theory, as well as for
diverse Lie systems, like projective Riccati equationg],[2&rious superequations [12,113], or
others[[9[ 14 15, 99, 114]. Finally, it is also worth menti@nWinternitz's research on Milne—
Pinney equations [202], which represents one of the firseagevoted to analysing second-
order differential equations through Lie systems.

Currently, many researches investigate the theory of L&esys and other closely related
topics. Let us merely point out here some of them along withesof their works: Blazquez and
Morales [17[ 18, 19], Carifiena [34,]37.138], Clemente [&iabowski[37| 38, 39], Ibragimov
[120,[121) 128 124], de Lucas [34,135, 52], Lazaro-Cand @ntega [[144], Marmo[[37, 38,
39], Odzijewicz and Grundland [172], Ramas|[40] 59, 62]n&#&a[[43| 52, 53, 55] and Nasarre
[57,/58]. As a result of their contributions, multiple ingsting results about the fundamentals,
applications, and generalisations of the theory of Lieaystwere furnished.
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Among the above works, it is interesting to describe bridfly ¢ontent of [34, 37, 38]. The
book [37] presents an instructive geometric introductmihie basic topics of the theory of Lie
systems. The second one [38] provides multiple relevantriimnions to the comprehension of
the theory of Lie systems. First, it fixes a remarkable gapénproof of Lie Theorem. Addition-
ally, this work establishes that the superposition rulecet amounts to a certain type of flat
connection, what substantially clarifies its propertidse Turnished demonstration of Lie The-
orem shows that the Lie system notion can be naturally ergtbal the case of PDEs. Finally,
this work led, more or less indirectly, to the characteitsabf families of systems of first-order
differential equations admitting &dependent superposition rule [35] and the definition of the
mixed and partial superposition rule notions![38, 52]. Kinave can mention the usefulness of
theLie schemeoncept provided in [34], which enables us to generaliseitheystem notion and
leads to the discovery of new properties for multiple systefirdifferential equations, including
non-Lie systems, appearing in Physics and Mathemati¢cARB#5] 48, 56].

Let us now turn to discuss some of the authors’ contributtbas gave rise to the redaction
of this work. On one hand, Carifiena and his collaboratorsstigated the integrability of Lie
systems([40, 43, 417, 50,54,163], a generalisation of the M&iman method devoted to the study
of Lie systems([57], the application of Lie systems techeigjio analyse systems of second-order
differential equations [48, 49, 52, 153], and other topi&e lihe analysis of certain Schrodinger
equations[[46, 51, 59]. In this way, they provided a contiiraof diverse previous articles
dedicated to some of these themed [77.| 172] 202, 225] andottezyed several research lines
[59].

Besides the above contributions, Carifiena and his caltabis also developed numerous
applications of Lie systems to Classical Physics [39, 4348452 54| 55, 58, 62], Quantum
Mechanics([4B6, 51, 59, 60], Financial Mathematicd [31], @wahtrol Theory[[60,, 6/1].

Apart from the aforementioned generalisations of the Ligtesy notion that are related to
other works appearing in the literature [7, 172,1202,| 225]ea approach to the generalisation
of the Lie system and superposition rule notions was cawigdoy Carifiena, Grabowski and
de Lucas: the theory of quasi-Lie schenles [34]. One one hhisdapproach provides us with
a method to transform differential equations of a certapetinto equations of the same type,
e.g. Abel equations into Abel equations [56]. This can alscubed to transform differential
equations into Lie systems [34], what leads tod@si-Lie systemotion. Such systems inherit
some properties from Lie systems and, for instance, theyitaliperposition rules showing an
explicit dependence on the independent variable of thesys34, 48].

Quasi-Lie schemes admit multiple applications. they caruged not only to analyse the
properties of Lie and quasi-Lie systems but also to invagtignany other systems, e.g. nonlinear
oscillators [34], Emden-Fowler equations [42], Mathevwakshmanan oscillators [34], dissipa-
tive and non-dissipative Milne—Pinney equatidns [45], Abél equations [56] among others. As
a consequence, various results about the integrabilifygties of such equations have been ob-
tained and many others are being analysed at present. Fudfe the appearanceifiependent
superposition rules led to the examination of the so-calledamilies which cover, as particular
cases, Lie systems and quasi-Lie schemes. Additionably, tlan be used to analyse the exact
solutions of very general families of differential equasd35].

As a result of all the above mentioned achievements, thastsewday a vast collection of
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methods and procedures to analyse Lie systems from diffpoants of view. All these tools can

be used to provide interesting results in Mathematics, ieby€ontrol Theory, and other fields.
At the same time, these applications motivate the developwfenew techniques, generalisa-
tions, and applications of this theory, that presents pleltand interesting topics to be further
investigated.

1.3. Fundamental notions about Lie systems and superposith rules. Our main purpose in
this section is to review the basic notions and the fundaateesults concerning the theory of
Lie systems to be employed and analysed throughout our.¢4seg, as well as in major part of
our essay, we mostly restrict ourselves to analysing difféal equations on vector spaces and we
assume mathematical objects, e.qg. flows of vector fields gmipoth, real, and globally defined.
This will allow us to highlight the key points of our expositi by omitting several irrelevant tech-
nical aspects that can be detailed easily from our present@espite this, numerous differential
equations over manifolds and diverse technical pointsheilpresented when relevant.

DEFINITION 1.1. Given the projections : (z,v) € TR” — z € R™ andm, : (t,z) €
R x R™ — z € R", at-dependent vector field onR"™ is a mapX : (t,z) € R x R” —
X (t,x) € TR™ such that the diagram

TR"
Sk
R x R" T2 R™
is commutative, i.er o X = mo.

In view of the above definition, it follows thaX (¢, z) € #~!(x) = T,R™ and henceX; :
z € R" — X;(x) = X(t,x) € TR" is a vector field oveR" for everyt € R. From here, it is
immediate that eachdependent vector field is equivalent to a familyf X; }+cr of vector fields
overR™.

The t-dependent vector field concept includes, as a particutamte, the standard vector
field notion. Indeed, every vector field over R™ can be naturally regarded ag-@lependent
vector field X of the formX; = Y for everyt € R. Conversely, a ‘constant-dependent vector
field X overR™, i.e. X; = Xy for everyt,t’ € R, can be considered as a vector fi#ld= X,
over this space.

As vector fields¢-dependent vector fields also admit local integral curves [29]. For each
t-dependent vector field overR”, this gives rise to defining itgeneralised flowyX, i.e. the
mapg”X : R x R" — R" such thaty™ (t,z) = g (z) = ~.(t) with v,(¢) being the unique
integral curve ofX such thaty, (0) = «.

DEFINITION 1.2. At-dependent vector field overR™ is said to beprojectableunder a projec-
tionp : R™ — R if every X, is projectable, as a usual vector field, under such a map.

The usage ot-dependent vector fields is fundamental in the theory of kEeims. They
provide us with a geometrical object which contains all sseey information to study systems
of first-order differential equations. Let us start by shogvihow systems of first-order differential
equations are described by meang-dependent vector fields.
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DerINITION 1.3. Given a-dependent vector field
n
; 0
X(t,x) = X't x)— 1.1
(t ) ; (t2) 5= (1.1)

overR", its associated systeim the system of first-order differential equations deteing its
integral curves, namely,
dx?
dt
Note that there exists a one-to-one correspondence beti@ependent vector fields and
systems of first-order differential equations of the fokn®j1That is, every-dependent vector
field has an associated system of first-order differentiabtigns and each system of this type, in
turn, determines the integral curves of a unisqgependent vector field. Taking this into account,
we can hereby us& to refer to both a-dependent vector field and the system of equations
describing its integral curves. This simplifies our exgositand it does not lead to confusion as
the difference of meaning is clearly noticed from the cotitex
The following definition and lemma, whose proof is straightiard and it shall not be de-
tailed, notably simplify the statements and proofs of vasicesults about the theory of Lie sys-
tems.

= X(t,x), i=1,...,n. (1.2)

DEFINITION 1.4. Given a (possibly infinite) familyd of vector fields onR™, we denote by
Lie(A) the smallest Lie algebr# of vector fields orR™ containingA.

LEMMA 1.5. Given a family of vector fieldd, the linear spacé.ie(.A) is spanned by the vector
fields
A, [AA], (A [A AL [A, A, A, A, ...

where[.A, B] denotes the set of vector fields obtained through the Lieketabetween elements
of the families of vector fieldd and 5.

Throughout this work two different notions of linear indeplence are used frequently. In
order to state a clear meaning of each, we provide the faligwefinition.

DEFINITION 1.6. Let us denote b(R™) the space of vector fields ov&®™. We say that the
vector fields X, .. ., X;.,, onR™ arelinearly independent oveR if they are linearly independent
as elements af(R"™) when considered asR—vector space, i.e. whenever

S ar o
a=1

for certain constants\y, ..., A\, then\; = ... = \. = 0. On the other hand, the vector fields,
X4,...,X,, are said to bénearly independent at a generic poifithey are linearly independent
as elements af(R") when regarded as@> (R")—module. That is, if one has

Z faXa =0
a=1
over any open set d" for certain functionsfy, ..., f € C°(R"), thenf; = ... = f. = 0.

In this essay, we frequently deal with linear spaces of tmnf@"("+1), Such spaces are
always considered as a prodlRt x m+l-times xR™ Each point ofR*("+1) is denoted by
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(), ---»Z(m)), Wherez; stands for a point of thg-th copy of the manifoldR™ within
]Rn(m-&-l).

Associated withiR™(™+1) | there exists a group of permutatiofis ; whose elementsy;;,
withi < j =0,1,...,m, actonR"(™*+1) by permutating the variables;, andz;,. Finally, let
us define the projections

pr: ((L’(O), e ,l'(m)) S Rn(m+1) — ({E(l), ce ,:L'(m)) e RrR™™ (1.3)

and
prg : ({E(O), Ce ,l'(m)) S Rn(m+1) = (o) € Rn, (14)

to be employed in various parts of our work.

Once the fundamental definitions and assumptions to be @sedfter have been established,
we proceed to introduce the notionsfperposition rulewhich plays a central role in the study
of Lie systems.

For each system of first-order ordinary homogeneous lingfarential equations ofR™ of
the form

n

dyi i j .
o :z:A]’-(t)yj7 i=1,....,n, (1.5)
j=1
whereA;i (t),withz,5 = 1,...,n,is afamily oft-dependent functions, its general solutigfy,),
can be written as a linear combination of the form
y(t) = kiyg (), (1.6)
j=1

with, y1y(t), ...,y (t), being a family ofn generic (linearly independent) particular solutions,
and,ky, ..., k,, being a set of constants. The above expression is dallegr superposition rule

for system[(1.5).

Linear superposition rules allow us to reduce the searckhiogeneral solution of a linear
system to the determination of a finite set of particular Sohs. This property is not exclusive
for homogeneous linear systems. Indeed, for each line&grays

dy’ - i j i ;
E:;Aj(t)yj"‘B(t)’ i=1,...,n, (1.7)

whereA;l(t), Bi(t), with i, j = 1,...,n, are a family of--dependent functions, its general solu-
tion, y(t), can be written as a linear combination of the form

90 = 3 ks () (1) = 50 (0) + 000 (), (18)

with, y0)(t), - . ., yn) (1), being a family ofn. + 1 particular solutions such that;) (t) — yo) (1),
with j = 1,...,n, are linearly independent solutions of the homogeneousi@mo associated
with (I.4), and k1, ..., k,, being a set of constants.
In a more general way, system {[1.5) becomes (generally) knean system
dat
dt

= X'(t,x), i=1,...,n, (1.9)
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through a diffeomorphismp : R"* 5 y — = = ¢(y) € R™. In view of the linear superposition
rule (1.6), the above system admits its general solutiét), to be described in terms of a family
of certain particular solutions;1)(t), . .., () (t), as

2(t) = | 3 ki @ (1)

This clearly shows that there exist many systems of firsewodifferential equations whose gen-
eral solutions can be described, nonlinearly, in terms aégefamilies of particular solutions and
sets of constants. A relevant family of different equatiadmitting such a property are Riccati
equations[4, 64, 102, 1112, 170, 189, 212] of the form

d
d—‘f = by(t) + ba(t)z + by (t)2?, (1.10)
with z € R = RU{oo}. More specifically, for each of such Riccati equations, @seyal solution,

x(t), can be cast into the form

o(t) = 21 () (23(t) — wo(t)) — ko (t) (z3(t) — 21(1))

(23(t) — w2(t)) — k(zs(t) — 1 (t)) 7
where,z (t), z2(t), 3(t), are three particular solutions of the equation araR.
It is worth noting that, given a fixed family of three diffetgrarticular solutions with initial
conditions withinR, if we only choosek in R, the above expression does not recover the whole

general solution of the Riccati equation,sagt) cannot be recovered.

The above examples show the existence of a certain type oé&sipn, the so-calleglobal
superposition rulewhich enables us to express the general solution of cestaitems of first-
order ordinary differential equations in terms of certaimflies of particular solutions and a set
of constants. Let us state a rigorous definition of this motar systems of differential equations
in R™,

(1.11)

DEFINITION 1.7. The system of first-order ordinary differential eqoas
da’
dt

is said to admit global superposition rulé there exists &-independentmag : (R™)™ xR"™ —
R™ of the form

= X'(t,x), i=1,...,n, (1.12)

v =@z, T ks, ), (1.13)
such that its general solution(t), can be written as
x(t) = ©(xa)(t), ...,z (t); k1, ..o kn), (1.14)
with, (1) (%), ..., z(n)(t), being any generic family of particular solutions of systéni®) and,
ki,...,kn, being a set of, constants to be related to initial conditions.

In order to grasp the meaning of the above definition, it issssary to understand the sense
in which the term ‘generic’ is used in the above statemergciBely speaking, it is said that
expression(1.14) is valid for any generic familyrefparticular solutions if there exists an open
dense subsdl C (R™)™ such that expression (1]14) is satisfied for every set ofiquaar
solutionszy (t), . .., xm(t), such tha(z1(0), ..., 2, (0)) liesinU.
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Let us now show that the aforementioned examples admit absalperposition rule. Con-
sider the functiord : (R™)™ x R™ — R™ of the form

@(x(l),...,m(n);kl,...,kn) :ijx(j). (115)
j=1
This mapping is a superposition rule for systém]|(1.5). lnideete that for each set of particular

solutionsz (1 (t), . . ., () (t), of (1.8) such that the poirftz(1)(0), . .., 2(,,)(0)) belongs to the
open dense subset

1 1
Ty o Ty

U= (2@q),...,Tm) € (R")™|det #05y,
x?l) x?n)

of (R™)™, the general solutiom(¢) of (1.3) can be written in the forni (1.6). Likewise, a super-
position rule can be now proved to exist for the systdmg @b®ined from[(1)5) by means of a
diffeomorphism.

The function® : (R™)"*! x R™ — R" of the form

n
(I)(J?(O), ce T(n); kl, Ceey kn) = Z kj (:Z,‘(J) — :Z,‘(O)) + Z(0), (116)
j=1
is a superposition function for the systdm {1.7). In factertbat for each set of particular solu-
tions,z (o) (1), . . ., x(n) (1), of (L.A) such that the poirftz ) (0), . . ., #(,)(0)) belongs to the open
dense subset

1 1 1 1
_— Ty = %oy - Fm) T Lo
U= (m(o),...,m(n))G(R’)’ det #0,,
Thy — Ty -+ () ~ T(o)

of (R®)"*+1, the general solution(t) of (L7) can be put in the forri(1.8).

Finally, let us analyse the case of Riccati equationR.ihis example differs a little from
previous ones, as it concerns a differential equation deéfiméhe manifoldR ~ S*. Neverthe-
less, the generalisation of Definitibn 1.7 to manifolds isiohs. It is only necessary to replace
R™ by a manifoldN. In view of this, the mag : R? x R — R of the form
L T (@) —2e) — ke (e — )

Py 7e @i k) (2(3) — x2)) — k(z3) — (1))
is a global superposition rule for Riccati equation®iriTo verify this, it is sufficient to note that
given one of these equations with three particular solstiop (t), z(2)(t), z(3)(t), such that
((1)(0),2(2)(0), 23y (0)) € U, where

(1.17)

U= {(%1)7%(2)7%(3)) €R? | z() # 2(2), 7(1) # 4(3) and z(2) # »T(z)},

its general solution can be cast into the fokm (1L.11).

The aforementioned superposition rules illustrate thatefach permutation of their argu-
ments,z(y), ..., Tn), €.9. an interchange of the argumentg andz;), one has, in general,
that

@(x(l),...,x(i),...,x(j),...,x(m);k) 75 ‘I)(x(l),...,x(j),...,x(i),...,x(m);k).
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Nevertheless, it can be proved (¢f.[38]) that there existapy : £k € R® — ¢(k) € R™ such
that

(b(l‘(l),...,J,‘(Z'),...,x(j),...,l‘(m);k‘) = (b(l‘(l),...,.lﬁ(j),...,J)(i),...,l‘(m);@(k‘)).

It is interesting to note that, if we consider Riccati eqoiasi to be defined on the real line,
a global superposition rule for such equations would be a ofidpe form® : R™ x R — R.
Obviously, expression (1.1L7) does not give rise to a globpesosition of this form. Indeed,
if we restrict [I.1V) toR*® x R, we will not be able to recover ,)(t) from a set of different
particular solutionsy 1) (t), 22 (t), 23 (t), for anyk € R. Even more, the function (1.1.7) is not
globally defined oveR?® x R. Nevertheless, such a function is what in the literaturanisin as
asuperposition ruldor Riccati equations over the real line [108, 157,1222].

In the literature, the superposition rule notion appeara asilder’ version of aforemen-
tioned global superposition rule concept. In other wordpesposition rules admit almost the
same properties as global superposition rules but, foamtst, they may fail to recover cer-
tain particular solutions. Although it is enough to bear imdhthe above example for Riccati
equations to understand fully the main difference betwesh botions, the precise definition
of a local superposition rule is very technical (see [18)) #does not provide, in practice, a
much deeper knowledge about Lie systems. That is why, aywliere else in the literature
[37,[108, 124 124, 153, 156[7, 222, 223, 234], we will assunredfter superposition rules to
recover general solutions and to be globally defined. Thipbfies considerably our theoretical
presentation and it highlights the main features of supstipo rules and Lie systems. Despite
these assumptions, a fully rigorous treatment can be ezsitied out and some technical remarks
will be discussed when relevant.

A relevant question now arises: which systems of first-octdimary differential equations
admit a superposition rule? Several works have been detotieestigating this question. Its
analysis was accomplished by Konigsberger [137], Veqd22f], and Guldberg[[108]. They
proved that every system of first-order differential equiagi defined over the real line admit-
ting a superposition rule is, up to a diffeomorphism, a Riceguation or a first-order linear
differential equation.

Apart from these preliminary results, it was Lie [153, 158/llwho established the con-
ditions ensuring that a system of first-order differentiqliations of the form[{1.12) admits a
superposition rule. His result, the today nanhés Theoremreads in modern geometric terms as
follows.

THEOREM 1.8. (Lie Theorem) A system of first-order ordinary differential equatiofsI1i).
admits a superposition rule (11 3) if and only if its correspingt-dependent vector field(1.1)
can be cast into the form

X(t,z) = ba(t) Xo(z), (1.18)
a=1
with, X;,..., X,., being a family of vector fields ové™ spanning ar-dimensional real Lie

algebra of vector field¥ .

Within the proof to his theorem [157, Theorem 44], Lie alsairwled that the dimension of
the decompositio (1.18) and the numbeof particular solutions for the superposition rule are
related. More specifically, he proved that the existence safgerposition rule depending om
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particular solutions for a systerh (1112) [k implies that there exists a decompositibn (1.18)
associated with a Lie algeb#a obeying the inequalitdim V' < m - n, the referred to akie’s
condition Conversely, given a decomposition of the fofm (1.18), we easure the existence
of a superposition rule for systefn (I112) whose number diqdar solutions obeys the same
condition.

Although Lie Theorem solves theoretically the problem ofedeining whether a system
(@I.12) admits a superposition rule, it does not provide atgmi for many other questions con-
cerning the study of superposition rules. Let us briefly canbon some of these queries.

e From a practical point of view, it is not straightforward|edy in view of Lie Theorem, to
prove that a system of first-order differential equationssioot admit a superposition rule.
Later on in this section, we will sketch a procedure to do so.

e Lie Theorem says nothing about the possible existence dipteisuperposition rules for
the same system. What is more, it does not explain explibithy to determine any of
such superposition rules (although its praof [157, Theoférfiurnishes some key hints).
These questions are addressed later in this Chapter, wieerewew a recent geometrical
approach to Lie systems developedin/[38].

e A systemX (¢, z) admitting a superposition rule may be written in the fofni@).in one
or, sometimes, several different ways. Each one of thesendleasitions is related to a
different finite-dimensional Lie algebra of vector fields Such Lie algebras are generally
called theVessiot—Guldberg Lie algebrassociated with a system. Lie Theorem does not
explain the possible relations amongst all possible Viés&oldberg Lie algebras of a
system[(Z.12). In fact, only Lie’s condition suggests thatredifferent Vessiot—Guldberg
Lie algebra may be related to different superposition réswill discuss these questions,
in a more extensive way, later in this section and next.

e Finally, itis worth noting that Lie Theorem cannot be usedharacterise straightforwardly
systems of first-order differential equations of the fafitit, z, #) = 0, withi = 1,..., n.
Indeed, this is an open question of the research on Lie sgstem

The discovery of Lie Theorem [157] in 1893 established difiglly the Lie system notion,
which, on the other hand, had already been suggested loregagun by Lie [[158], and whose
name was coined by Vessiot in [224] as a recognition to Lie&sss in characterising systems
admitting a superposition rule. The definition of this relenotion goes as follows.

DEFINITION 1.9. A system of the forni{1.12) islae systemif and only if its corresponding
t-dependent vector field, namely (IL.1), admits a decomjpositi the form[[1.18).

In view of Lie Theorem, the above definition of Lie system candphrased by saying that a
system[(1.1R) is a Lie system if and only if it admits a supsitpan rule. From here, it is obvious
that the systems of first-order differential equatiéns) &%) and[(1.10), which admit the global
superposition rule§ (1.115), (1]16) abhd (1.17), respelgtiaee Lie systems. Let us analyse in detail
such examples. This brings us the opportunity to illustdiaterse characteristics of Lie systems
and the Lie Theorem here and in forthcoming sections.

Consider again the homogeneous linear sysfend (1.5). Thigrsydescribes the integral
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curves of the-dependent vector field

X(t,x) = ;1 A (t)a? % , (1.19)
which is a linear combination of vector fields of the form
X(ta) =Y A';(t) Xi(2), (1.20)
i,5=1
of then? vector fields 5
Xij:xjaa:i’ ,j=1,...,n. (1.21)

Furthermore, one has that
(Xij, Xim] = 0%, Xij — 5;- Xim,

whered!? is the Kronecker delta function, i.e. the vector fields ()} dase on aw?-dimensional
Vessiot—Guldberg Lie algebra isomorphic to the Lie algefita, R), seel[62].

In view of decompositior[{1.20), each systdm[1.5) is a Liesy. This is not a surprise, as
each systeni (11.5) admits the superposition fule {1.15) adtheorem states that every system
admitting a superposition rule must be a Lie system. Moreaveiew of Lie’s condition, since
homogeneous linear systemsift admit a superposition rule depending omarticular solu-
tions, their associateddependent vector fields must take valuesimelie algebra of dimension
lower or equal to22. Indeed, note that decompositidn (1.20) shows tét z) takes values in a
Lie algebra isomorphic tgl(n, R), what clearly obeys the Lie's condition corresponding t® th
superposition ruld(1.15).

Note that we have italicised the last ‘some’ in the paragraipbve. We did it because we
wanted to stress that a Lie system can take values in diffeferalgebras, some of which do not
need to satisfy the same Lie’s condition. This will becomearadear with the next example.

Let us now turn to analyse an inhomogeneous system of theffih This system describes
the integral curves of thedependent vector field

X(tx) =) A'(t) a7 + BY(t) % , (1.22)
1

i=1 \j=

which is a linear combination withdependent coefficients,

Xe= > A;(t)Xy+ > B(t)Xi, (1.23)
i,j=1 i=1

of the vector fields(1.21) and

0
X, =—, i=1,...,n. (1.24)
ox’
The above vector fields satisfy the commutation relations
[XtaXJ]:O7 i7j:17"'an7 [X7])Xl]:_6le17 i7jal:17"'7n'

This shows that the vector fields (1121) ahd (1.24) span albibaa of vector fields isomorphic
to the(n? + n)-dimensional Lie algebra of the affine group [62]. Then, iewif decomposition
(1.23), systemg(1].7) are Lie systems.
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As systems[(1]7) admit a superposition riile (I..16) dep@naiim -+ 1 particular solutions,
Lie’s condition implies that theit-dependent vector fields must take values in some Lie algebra
of dimension lower or equal ta(n + 1). In fact, the above results easily show that this is the
case.

The previous example allows us to exemplify that a Lie systesy admit multiple Vessiot-
Guldberg Lie algebras. Recall that every homogeneousrlisgstem [(1.b) is related to &
dependent vector field taking values in a Lie algebra isoimort gl(n, R). Additionally, as
a particular instance of systein (IL.7), itdependent vector field also takes in the above defined
n? + n-dimensional Lie algebra of vector fields. In other wordseér systems admit, at least,
two non-isomorphic Vessiot—Guldberg Lie algebras.

Now, we can illustrate how different superposition rulestfte same system may be asso-
ciated with multiple, non-isomorphic, Vessiot—Guldbelig blgebras and lead to distinct Lie’s
conditions. We showed that linear systems admit a lineagrfgsition rule which leads, in view
of Lie’s condition, to the existence of an associated Vés§aldberg Lie algebra of dimension
lower or equal to»2, which was determined. Nevertheless, the abovementicromohd Vessiot—
Guldberg Lie algebra for linear systems does not hold thiglitaon. On the contrary, this second
Vessiot-Guldberg Lie algebra shows that there must exigtcarsl superposition rule, namely
(@.8), which, along with this Vessiot—Guldberg Lie algelwatisfies a new Lie’s condition.

To sum up, Lie Theorem implies that a system admitting a fuqsétion rule is related to
the existence of, at least, one Vessiot—Guldberg Lie algshtisfying the Lie’s condition relative
to this superposition. Nevertheless, the system can posse® Vessiot—Guldberg Lie algebras,
some of which do not need to obey the Lie’s condition for treuased superposition rule. In that
case, the other Vessiot—Guldberg Lie algebras are relatethér superposition rules for which,
a new Lie's condition is satisfied.

In order to detail the last of the most usual examples of Letesys admitting a superposi-
tion rule, we now consider Riccati equatiofs (1.10). Theferdntial equations determine the
integral curves of the-dependent vector field di of the form

X(t,z) = (b1(t) + ba(t)x + b3 (t)xQ)a% . (1.25)
As Riccati equations admit a global superposition ruley thast satisfy the assumptions detailed
in Lie Theorem. Indeed, note that is a linear combination with-dependent coefficients of the
three vector fields

0 0 0
X1 = —  Xo—mp—. Xa.= 12> 1.26
1 axv 2 xamv 3 z 833’ ( )
which close on a three-dimensional Lie algebra with defimaigtions
(X1, Xo] = X1, [X1,X3] =2Xs, [Xo,X3]=Xs. (1.27)

Thus, as it was expected, Riccati equations obey the conditjiven by Lie to admit a super-
position rule. Moreover, Riccati equations are associatighl a Vessiot—Guldberg Lie algebra
isomorphic tos((2, R). Since this Lie algebra is three dimensional and Riccataéqns admit
a superposition rule depending on three particular soistid is immediate that the equations
(@.10) satisfy the corresponding Lie’s condition.

The existence of different Vessiot—Guldberg Lie algeboasfsystem of first-order ordinary
differential equations is an important question becausé@ tharacteristics determine, among
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other features, the integrability by quadratures of Lideys [31].

Let us now turn our attention to determine when a sysfem}1sita Lie system. In order
to analyse this question, it becomes useful to rewrite LiecFam in the following, abbreviated,
form.

PrRoOPOSITION1.10. (Abbreviated Lie Theorem) A systemX onR" is a Lie system if and only
if Lie({ X¢ }+er) is finite-dimensional.

In view of the above result, determining that(1.12) is noieadystem reduces to showing that
Lie({ Xt }+er) is infinite-dimensional. The standard procedure to proi@dbnsists in demon-
strating that there exists an infinite cha{t%; } ;en of linearly independent vector fields over
obtained through successive Lie brackets of elemenfXi}.cg. In order to illustrate how this
is usually made, consider the particular example based@asttidy of the Abel equation of the
first-type

d
d—‘: =2 +b(t)ad,  b(t) £0,
whereb(t) is additionally a non-constant function. These equati@scdbe the integral curves

of thet-dependent vector field

0
Xy = (22 + b(t)2®)—.
0= (@ 4+ b)) 5
Consider the chain of vector fields
0 0
Z1:.232—7 ZQZJ,‘B—, Zj:[Xlan—l]; j:3,4,5,...

Ox Ox
SinceZ; = 29*19/0z, it turns out thatLie({ X, }+cr) admits the infinite chain of linearly in-
dependent vector fieldSZ; } ;cr and, in consequence, in view of the abbreviated Lie Theorem,
Abel equations of the above type are not Lie systems.
There are many other relevant Lie systems associated wihriant systems of differential
equations appearing in the physical and mathematicahtitee. For instance, a non exhaustive
brief list of these Lie systems includes

Linear first-order systems and, more specifically, Ealestems[[6Z, 28].

Riccati equations [47, 222, 234] and coupled Riccati #gna of projective type [6].
Matrix Riccati equation$ [112, 141, 174, 188,1212,1234].

Bernoulli equations, several equations appearing iesapchanics [13], etc.

PN PE

Apart from the above instances, there are other importasiesys of differential equations
which can be studied through other Lie systems. Several i kie systems will be detailed
throughout next sections.

The determination of the general solution of any Lie systeduces to deriving a particular
solution of a particular type of Lie system defined in a LielgyoLet us analyse in detail this
claim.

Consider a Lie system related te-dependent vector field (1.118) ovRf and associated, for
simplicity, with a Vessiot—Guldberg Lie algebvamade up of complete vector fields. This gives
rise to a Lie group actio® : G x R™ — R"™ whose fundamental vector fields are exactly those
of V. Obviously, this implies that the Lie algebga~ T.G is isomorphic tol/. Choose now a
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basis{ai,...,a,} of gsuchthat : G x R” — R™ and
O (exp(—saqy),z) = gga)(x), a=1,...,7 sEeR, (1.28)

whereg(®) : (s,z) € R x R" 5 (@) (s,2) = g{*) () € R™ is the flow of the vector field¥,.
In this way, each vector field, becomes the fundamental vector field corresponding,tand
the mapp : g — V such thatp(a,) = X, fora =1,...,r, is a Lie algebra isomorphism.

Let X} be the right-invariant vector field off with (X}), = a,, i.e. (X}), = Rgecaa,
whereR, : ¢’ € G — ¢'g € G is the right action of5 on itself. Then, the-dependent right-
invariant vector field

=Y ba(t)XE(9), (1.29)
a=1
defines a Lie system o8 whose integral curves are the solutions of the syster@ given by
= ba(t) X2 (9)- (1.30)
a=1

Applying R,-1,, to both sides of the equation, we see that its general salytio), satisfies that

Ryt (tyeq(nyd(t Z ba(t)an € TG . (1.31)

Note that right-invariance implies that the knowledge o€ grarticular solution of the above

equation, e.g. the particular ogg(t), with go(0) = go, is enough to obtain the general solution
of the equation(1.31). Indeed, considéft) = R;go(t) for a giveng € G. Such a curve obeys

that

dg’ dg dg’
Taking into account thaRg*goXR( 0) = X2(gog), one has that
Z ba (1) X5 (Rggo(t) = = Y ba (1) X5 (' (1))
a=1

andg’(t) is another partlcular solutlon di(1129) with initial cotidn ¢’(0) = Rjgo. In conse-
guence, the general solutigiit) for equation[(1.31) can be written as

g(t) = Rggo(t), g€ q.
That is, system[({1.29) admits a superposition rule and,rdgwpto Lie Theorem, it must be
a Lie system. This is not surprising, as the vector fietfs span a Lie algebra of vector fields
isomorphictol” and, in consequence, systém (1.30) describes the integvalsof a-dependent
vector field taking values in a finite-dimensional Lie algebf vector fields.

The relevance of the Lie systein (11.31) relies on the fact tthatintegral curves of the
dependent vector fiel& (¢, z) can be obtained from one particular solution of equafioB)1.
More explicitly, the general solution(t) of the Lie systemX (¢, ) readse(t) = ®(g(t), xo),
wherez, is the initial condition of the particular solution agd(t) is the particular solution of
equation[(1.31) witly. (0) = e.

Note that, in view of Ado’s Theorem|[2], every finite-dimensal Lie algebra, e.g. the above
Vessiot—Guldberg Lie algebiid, admits an isomorphic matrix Lie algebra. Related to thigrixa
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Lie algebra, there exists a matrix Lie groGpIn this way, the system describing theependent
vector field [1.IB) reduces to solving an equation of the form

A(t)A Zb M, = A = — Zb t)Y M4 A,
a=1
with A(t) being a curve taking values in the matrix Lie groGpand, M, ..., M,, being a

basis closing the same structure constants as the eleniénts,., X,.. Obviously, the above

equation becomes a homogeneous linear differential emuatithe coefficients of the matrix
A. Consequently, determining the general solution of a LiEteay reduces to solving a linear
problem.

Although the above process was described for Lie systenosiassd with Vessiot-Guldberg
Lie algebras of complete vector fields, it can be proved tlsandar process, with almost identi-
cal final results, can be applied to any Lie syst&ift, «). Indeed, this can be done by taking the
compactification ofR™ in order to make all vector fields complete (as in the case®Riccati
equation) or just by considering that the induced actionss & local one.

A generalisation of the method [57] used by Wei and Normadifi@ar systems [231, 232]
is very useful for solving equations_(1131). Furthermoheré exist reduction techniques that
can also be used [40]. Such techniques show, for instanatl_th systems related to solvable
Vessiot—Guldberg Lie algebras are integrable by quadrat{id0], Section 8). Finally, as right-
invariant vector fieldsY® project onto the fundamental vector fields in each homogesispace
for G, the solution of equatiof (1.B1) enables us to find the gérehation for the corresponding
Lie system in each homogeneous space. Conversely, the édgevbf particular solutions of the
associated system in a homogeneous space gives us a metheddoing the problem to the
corresponding isotopy groupp [40].

1.4. Geometric approach to superposition rules.Let us now turn to review the modern geo-
metrical approach to the theory of Lie systems carried oB&}). Although we here basically
point out the results given in that work, several slight immments have been included in our
presentation.

A fundamental notion in the geometrical description of Lystems is the so-callediago-
nal prolongationof a t-dependent vector field. Its definition and most importaoperties are
described below.

DerINITION 1.11. Given &-dependent vector field ov&™ of the form

its diagonal prolongatiorto R™("™+1) js thet-dependent vector field over this latter space given
by
> 0
X(t,x(o),...,x(m) ZZX tl'(a) 8 7
a=0 i=1

Recall that every vector field over R™ can be regarded astadependent vector field in
a natural way. Evidently, it is immediate that the above diédim can also be applied to define
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diagonal prolongations for vector fields ovRf. Obviously, such diagonal prolongations turn
out to be vector fields ovék™(™+1) as well.

Note that diagonal prolongations can be redefined in anngitrj and equivalent, way as
follows.

DEeFINITION 1.12. Given a-dependent vector field overR", its diagonal prolongatiorto
R™™+1) js the unique-dependent vector field overR™("+1) such that:

e Thet-dependent vector field is invariant under the action of the symmetry gratjp 1
overR™(m+1),
e The vector fieldsX;, are projectable under the projectipm, given by [1.4) an@ro*)?t =
X;.
LEMMA 1.13. For every two vector field&, Y € X(R™), it is immediate thatX, }7] = [X,/?]
In consequence, given a Lie algebra of vector fi#lds X(R"), the prolongations of its elements
to R*("+1) span an isomorphic Lie algebra of vector fields.

Proof. It is straightforward and it is left to the readar.

LEMMA 1.14. Consider a family X1, ..., X,., of vector fields oveR" satisfying that their di-
agonal prolongatlons tR"™™ are Ilnearly independent at a generlc point. Given the dizao
prolongations X1, . .., X,., to R"(™+1), the vector field " _, b Xa, Withb, € C°(R™(m+1),
is also a diagonal prolongatlon if and only if the coefflcmrbtl, ..., b., are constant.

Proof. Let us write in local coordinates

ZAl 8331, a=1,...,r

what implies that

”‘_ZZN T(q)) 8 z ) a=1,...,r

i=1 a=0
Then,

I R T n m ) 8
Z ba(x(o)a s 7x(m))Xa = Z Z Zba(x(o)a s ax(m))Ag(x(a))ax—é)v
a=1 a

a=1i=1 a=0
which is a diagonal prolongation if and only if there existétionsB? : x € R" — BY(z) € R,
with j = 1,...,n, such that for each pair of indexg¢sanda,

Zba(l'(o),...,{E(m))Aé(t,(E(a)):Bi(l’(a)), a:O,...,m, izl,...,n.

In particular, the functionéa(x(o), cZ(my), With o = 1, r, solve the subsystem of linear
equations in the variablesy, . . ., u,, given by

Zua a:(a) Bi(x(a)), a=1,....m, 1=1,...,n.

The coefficient matrlx of the above systemmfn equations with- unknowns has rank < m-n
since thepr, (X, ) are linearly independent. Hence, the solutioms,. . ., u,., are completely
determined in terms of the functiorﬁi(x(a)), witha = 1,...,m,and: = 1,...,n, and do



Lie systems: theory, generalisations, and applications 19

not depend o (q. But since the prolongations are invariant under the aatfathe symmetry
groupS,, 41, functionsu,, = bo (), - - -, T(m)), Witha = 1,.. ., r, must satisfy this symmetry.
Consequently, they cannot depend on the variables. . ., z(,,), and therefore they must be
constant.m

LEMMA 1.15. For every family of vector fieldsy, . .., X, € X(R™) linearly independent over
R, there exists an integen such that their prolongations tR™ are linearly independent at a
generic point.

Proof. Denote by)?g the diagonal prolongation tR"? of X, and defines(¢) to be the maxi-
mum number of vector fields, among the famity, linearly independent at a generic point of
R™4,

By reduction to the absurd, we assume that each fanﬁ”lfy,. .. ,)?;?, of diagonal prolonga-
tions are linearly dependent at a generic poirk@f, in other wordsl < o(q) < r for everyg.
Therefore, the function(g) must admit a maximum < r for a certain integem, i.e.p = o(m).

We can assume, without loss of generality, th%iﬁ, cee X’Igﬁ, are linearly independent at generic
point of R"™. Moreover, the vector fieldsY7"+!, ... ,)?gl“, are also linearly independent at
a generic point oR*(™+1) and, aso(m) is a maximum, it must be(m + 1) = o(m). In
consequence, there exjstniquely defined functiongy, ..., f, € C>=(R"(™+1)) obeying the
equation

fl)?f”l + ..+ fp)?;”“ = )?;,Tgl. (1.32)
This forces the left-hand side to be a diagonal prolongataiditionally, since)?{”, . ,X’ZT,
are linearly independent in a generic point, Lemma{1.14)iepand it turns outthaf;, . . ., fp,
must be constant. Then, projecting the above expressignyt follows that, X1, ..., Xp41,

are linearly dependent ov&:. This violates our initial assumption and thereby we codelthat
our initial premise, i.es(¢q) < r for everygq, must be false and there must exist an integeuch
that the diagonal prolongations of; . . ., X,., to R"™ become linearly independent at a generic
point, what proves our lemma

The above lemma already contains the key point to prove tl@img result.
LEMMA 1.16. If o(q) < r, theno(q) < (g + 1).

Proof. It is immediate that(¢) < o(¢ + 1). Now, by reduction to absurd, if we assume=
o(q) < rando(q) = o(¢ + 1), one can pick up, among thEZ, a family of p vector fields
linearly independent at a generic point®®?. We can assume, with no loss of generality, that

they are)?f, ..., X/1. Consequently, as in the above lemma, we can write

AXI 4+ 4 fX0T = X4
for certain uniquely defined functionfs, ..., f, € C>(R™(™+1), In a similar way to the proof
of the former lemma, this yields thak;, ..., X, i, are linearly dependent ov&. This is in
contradiction with our initial assumption. In consequerite < r, the vector fieIdXZ‘fﬁ is

linearly independent at a generic point with respect to tlegipus vector fields and(q + 1) >
o(q). =

Taking into account the above two lemmas, it follows trilyighat o (¢) grows monotonically
until it reaches the maximum This gives rise to the following proposition.
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PrROPOSITION1.17. For every family of vector fieldX, ..., X, € X(R™) linearly indepen-
dent overR, there exists an integer. < r such that their prolongations t&™"™ are linearly
independent at a generic point.

The above proposition constitutes an explicit proof forteedields overR™ of the analog
result for vector fields over manifolds pointed outlin/[38tlus now turn to describe a geometric
interpretation of the superposition rule notion.

Consider a-dependent vector fiel@(1.1) associated with the system

dxt ,

cft = X'(t,x), i=1,...,n, (1.33)
describing its integral curves. Recall that the above systdmits a superposition rule if there
exists a mapp : R*(m+1) — R" of the formz = ®(z(1), ..., %(m); k1, - . ., kn) such that its

general solutionz(t), can be written as
x(t) = (I)(J?(l)(t), . ,x(m)(t); ki, . kn),

with, z1)(t), ..., z(m)(t), being a generic family of particular solutions ahd . . ., k,,, a set of
constants associated with each particular solution.
The mapd(xz(y),...,Tum);-) : R® — R™ can be inverted, at least locally around points of

an open dense subset®?™, to give rise to a ma@ : R™™+1) — R?,

k= \I’(J?(O), ce ,Z‘(m)),
where we writer gy instead ofr andk = (ki,...,ky) in order to simplify the notation. Note
that the mapV is defined so that

k= \I’((I)(J?(l), ceey J,‘(m); k),x(l), ce ,Z‘(m)).
Hence, the ma@ defines am-codimensional foliation on the manifoRi*("+1).
As the fundamental property of the mépstates that

k= \I/(:Z?(O) (t),... s & (1m) (1)), (1.34)
for any (m + 1)-tuple of generic particular solutions of systdm (1.33 fbliation determined
by ¥ is invariant under permutations of its» + 1) argumentsy ), . . . , (). Moreover, when
differentiating expression (1.84) with respect to the allet, we get

m n k R
DD Xt (1) OV (1) = R @) =0, k=1,....m,

a=0 j=1
where(¥!, ... ¥™) = ¥ andp(t) = (z(o)(t), .- -, z(m)(t)). Thus, the functiong’?, ... v"
are first-integrals for the vector fields,}.cr defining ann-codimensional foliatior§ over
R™(m+1) such that the vector field@?t}teR are tangent to its leaves.
The foliationF has another important property. Given a Igafcorresponding to the level set
of U determined byt = (k1,...,k,) € R" and a poin{z (), ..., z,)) € R™", there exists a
unigue point(xz (o), T(1), - - -, T(m)) € Sk, NAMely,

J
3x(a)

(@(m(l), ces T(m)s k‘), T(1)s--- ,x(m)) € Sk-
Consequently, the projection onto the last n factors, i.e. the mapr given by [1.8), induces
diffeomorphisms betweeR"™™ and each one of the leav@s. In other words, the foliatioff is
horizontal with respect to the projectipmn.
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The foliationF corresponds to a connecti§hon the bundlgr : R™*™+1 — R™™ with zero
curvature. Indeed, the restriction of the projectigrto a leaf gives a one-to-one map that gives
rise to a linear map among vector fieldsRA™ and ‘horizontal’ vector fields tangent to a leaf.

Note that the knowledge of this connection (foliation) gives the superposition rule without
referring to the ma. If we fix a pointz o (0) andm particular solutionsg 1) (t), . . ., () (t),
thenz o) (1) is the unique point ilR™ such that the pointz ) (), (1) (%), . .., 7(n)(t)) belongs
to the same leaf ag: () (0), 2(1)(0), . . ., () (0)). Thus, itis onlyg that really matters when the
superposition rule is concerned.

On the other hand, if we have a connectidron the bundle

pr: R7z(m+1) — Rn

with zero curvature, i.e. a horizontal distribution R™(™+1 that it is involutive and can be
integrated to give a foliation oR™(™*1) such that the vector fieldg’t belong toV, then the
procedure described above determines a superpositiofordgstem[(1.33). Indeed, léte R™
enumerates smoothly the leasof the foliations, then we can defin@(z(yy, ..., z(y); k) €
R™ to be the unique pointy of R™ such that

(@), T(1)s -+ T(m)) € Sk-
This gives rise to a superposition rube: R™™ x R™ — R™ for the system of first-order differ-
ential equationg (1,33). To see this, let us observe theseuelation

\I/({E(O), ce ,(L’(m)) = k,
which is equivalent tdz gy, . . ., () € Sk- If we fix k and take a generic family of particular
solutions,z(1) (%), . .., z(m) (t), of equation[(1.33), them ) (t), defined with the aid of the con-
dition W(z () (), - .., z(m)(t)) = k, satisfies[(1.33). In fact, let(, (¢) be the solution of (1.33)
with initial valuex’(o) = z(9). Since thel-dependent vector fieldX (¢, z) are tangent t@, the
curve(z o) (t), z(1)(t), ..., () (t)) lies entirely within a leaf of, so in§. But a point of a leaf
is entirely determined by its projection lpy, thenm’(o) (t) = z(0)(t) andz (o) (t) is a solution.

PrROPOSITION1.18. Giving a superposition rule depending an generic particular solutions
for a Lie system described by-alependent vector field is equivalentto giving a zero curvature
connectionV on the bundlepr : R(m+Hn —y R"™ for which the vector field$ X, },cr are
horizontal vector fields with respect to this connection.

Although we rejected to investigate in full detail the difface between global superposition
rules and superposition rules, it is interesting to comnieiefly this theme here. Note that a
rigorous analysis of the above discussion shows that a bhobsimple’ superposition rule gives
rise to a zero curvature connection. Nevertheless, on thgarg, a zero curvature connection
only ensures the existence of a superposition rule. This is duleet@onnection, which only
guarantees the existence of a seriefooél first-integrals that give rise to a superposition rule.
In order to ensure the existence of a global superposititey Bome extra conditions on the
connection must be required as well (Se€ [18]).

1.5. Geometric Lie Theorem. Let us now prove the classical Lie theordm [157, Theorem 44]
from a modern geometric perspective by using the previosidtise The following theorem con-
stitutes a review of the geometric version of the Lie Theogaren in [38, Theorem 1]. Our aim
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in doing so is to include in our exposition one of the main hssof the theory of Lie systems
and, at the same time, to furnish a slightly more detailedfobthis theorem.

MAIN THEOREM1.19. (Geometric Lie Theorem)A system[(1.33) admits a superposition rule
depending omn generic particular solutions if and only if thedependent vector field can be
written as

Xi =Y ba(t)Xa, (1.35)
a=1
where the vector fieldsy, . . ., X,., form a basis for am-dimensional real Lie algebra.

Proof. Suppose that systeiin (1133) admits a superposition[ruld)(arid letF be its associated
foliation overR™(m+1)  As the vector fieldd X, }:cr are tangent to the leaves 8f the vector
fields ofLie({ X; }+cr) Span a generalised involutive distribution

D, = {?(t, pY € Lie({)?t}teR)} € T,Rm+D),

whose elements are also tangent to the leav@s 8ince the Lie bracket of two prolongatlons isa
prolongation, we can choose, among the eIemenIaaﬁ{Xt}teR) a finite fam|Iy,X1,... X,,
that gives rise to a local basis of diagonal prolongatiomgte distributionD. As the mappr
projects each leaf of the foliatiof into R™™ diffeomorphically, we get that the vector fields
pr*()?a), with o = 1,...,r, are linearly independent at a generic poinfR§f". These vector
fields close on the commutation relations

XavXﬂ Zfaﬂ’y v 04,6:1,...,7’,

for certain functionsf,s, € C=(R""+1). In view of Lemm& L4, these functions must be
constant, let us say.s, = cagy, and, taking into account the properties of diagonal prgéon
tions, one has thaf{y, ..., X, are linearly independent vector fields obeying the relation

[Xa, Xs] = anﬂv o a,Bf=1,...,r

Since, at each time; is spanned by the vector fieldﬁl, e ,)?7«, there arg-dependent func-
tionsb, € C®(R x R™™+D) with o = 1,...,r, such that

= baXa.
a=1

But eachX; is a diagonal prolongation, so, using Lemma1.14, one gelstte functions,
b1,...,b,., depend only on the time and thus

= Z b (t) Xa. (1.36)
a=1

From here, it is immediate that (1135).

To prove the converse property, assume that{tilependent vector field can be put in the
form (1.35), where the vector field¥, ..., X,., are linearly independent ové& and span a
r-dimensional Lie algebra.
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As the vector fields X, ..., X,, are linearly independent ové, there exists, in view of
Propositiod 1.1I7, a minimal number < r, such that their diagonal prolongationsR8™ are
linearly independent at a generic point (what yields that n - m). Moreover, the diagonal
prolongations X1, ..., X,, to R®™+1) are linearly independent and they form a basis for an
involutive distributionD. This distribution leads to @n(m + 1) — r)-codimensional foliatiorF
onR™(™m+1) Asthe codimension @, is at least:, we can consider am-codimensional foliation
§ whose leaves include those®f. The leaves of this foliation project onto the last »n factors
diffeomorphically and they are at leastcodimensional. Hence, according to Proposifion]1.18,
foliation § defines a superposition rule dependingomparticular solutionss

Note that the converse part of the previous proof shows thatyastems described by
dependent vector fields of the for (1.36) share a commonrgapiion rule. More specifi-
cally, all sucht-dependent vector fields give rise to the same distribuflaver the same space
R™(™m+1) | and this straightforwardly ensures the existence of a comsuperposition rule for all
of them. This fact will be analysed more extensively in theosel part of our work, where certain
families of systems of differential equations that adnticlependent common superposition rule,
the referred to akie families are investigated.

1.6. Determination of superposition rules. Note that the previous geometric demonstration
of Lie Theorem also contains information about the supeétiposrules associated with a Lie
system. Let us analyse this fact more carefully.

Consider a Lie system ilR™ associated with a-dependent vector fiel&. In view of Lie
Theorem, such &dependent vector field can be written in the form

S IP NGRS

i=1 a=1
where the vector fieldX,, (z) = Y"1, X' (2)d/9z" span ar-dimensional Lie algebra of vec-
tor fields. Now, the geometric proof of Lie Theorem shows thatabove decomposition gives
rise to a superposition rule dependingrangeneric particular solutions with < m - n. More
exactly, the number coincides with the minimal integer that makes the diagonalomgations
of Xq,...,X,, toR™" to become linearly independent at a generic point. In diffiewords, the
only functionsfy, ..., f, € C°°(R™) such that

Zfa w(T@) =0, a=1,....m, i=1,...,n, (1.37)

at a generic pointz(yy, ..., zx)) aref; = ... = fr = 0.
Let us illustrate our above comments by means of a simple pkar@onsider the Riccati
equation
T =0b (t) + bg(t) x + b3(t)$2,
which describes the integral curves of théependent vector field

0 0 0
X; = bl(t)% + bg(t)x% + b3(t)$2%.

Recall that the vector fieldsX; }:cr take values in the three-dimensional Lie algebirapanned
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by the vector fields
0 0 5 0
5w 2Ty M= gy

Consequently, we can determine the number of particulatisolk for a superposition rule for
Riccati equations by considering the minimalsuch that corresponding systelm (1.37) admits
only the trivial solution. Forn = 2, this system reads
it fazqy + fxfy =0, fi+ forx(e) + f3xly = 0,
and it has non-trivial solutions. Nevertheless, the sydtarthe prolongations t&®?, that is,
At foxqy + f3zty =0, it foxe) + 3zl =0,  fi+ fors) + faals =0,
does not admit any non-trivial solution because the detearmiiof the coefficients, i.e.

X, =

1 {E(l) {E(21)

1 oz aly || = (2@ —z0)(@e —xe) (@) — 23),

1 {E(g) {E%?))
is different from zero when the three pointg), z(), andz s are different. Thus, we get that
m = 3 and the superposition rule for the Riccati equation dependsree particular solutions.
Obviously, the relations: < dim V' < m - n are valid in this case.

Once the number of particular solutions has been determined, the supdrposule can be
worked out in terms of first-integrals for the diagonal prtgat|onsX1, .. )A(,,, overR™(m+1),
Finally, it is worth noting that when the vector f|eIdX,1, .. X,,, overIR{"(m“) admit more
thann common first-integrals, the systefhadmits more than one superposition rule (seé [38]).

1.7. Mixed superposition rules and constants of the motionRoughly speaking, aixed su-
perposition rules at-independent map describing the general solution of asyefdirst-order
differential equations in terms of a generic family of peutar solutions of various systems
(generically different ones) of first-order differentigeations and a set of constants. Obviously,
mixed superposition rules include, as particular instanttee standard superposition rules related
to Lie systems.

DEFINITION 1.20. Amixed superposition ruleor a system of first-order differential equations

determined by a-dependent vector field overR"™ is at-independent mag : R™* x ... x
R™m x R™ — R™ of the form

T = (b(l‘(l), PN ,x(m); kl, PN 7kno)7
such that the general solutian(t), of systemX can be written as

{E(t) = @((E(l)(t), e ,{E(m) (t); kl, ey kno),
with, z(1) (), ..., zn)(t), being a generic family of curves satisfying that eagh (¢) is a par-
ticular solution of the system determining the integraMesrfor at-dependent vector field ()
overR", witha=1,...,m.

As a particular example of mixed superposition rule, comside linear system of differential
equations

dz’ - i j i .
- =Y Alt)a + B'(t), i=1,...,n, (1.38)
j=1
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whose general solutiort), can be written as

z(t) = ya(t +Z’“(a>

in terms of one particular solutiayp ) (¢) of CI:ES), any family ofn linearly independent partic-
ular solutionsz (%), . . ., z(n)(t), of the homogeneous linear system
%:ZA;-(t)zj, i=1,...,n,
7j=1
and a set ofy constantsk, . .., k.

We here aim to give a method to obtain a particular type of chsugerposition rule for a Lie
system in terms of particular solutions of another Lie systadditionally, we relate our results
to the commentary given in_[38, Remark 5], where it was bridfscussed that the solutions of
a certain first-order differential equation on a manifoldyrba obtained in terms of solutions of
other first-order systems by constructing a certain faiati

Consider the system dR™° given by

=Y ba(t)Xi(x), i=1,...,n0, (1.39)
a=1

determining the integral curves of thelependent vector field

T no a
=YD balt) )5 (1.40)

a=1i=1

where the vector fieldX, (z) = Y0, X} (x)0/dz", close on a-dimensional Lie algebr#’,
i.e. there exist constants:, 3, such that

[Xo, Xg] = an[g,y s a,B=1,...,r

We here aim to derive a partlcular type of mixed superpasitide of the form® : (R™)™ x
R™ — R™ for the above Lie system in such a way that its general saluti¢t), can be
expressed as

{E(t) = (I)((L'(l)(t), e ,(L’(m)(t); kl, ey kn),

where,z(1)(t), ...,z (t), are a generic family of particular solutions of a Lie systeeted-
mined by at-dependent vector fiel&K (1) on R™ . Let us assume that systef(!) takes the
particular form

xM = Z ba( (1.41)

where the vector fieIdXél)ex(R"l) obey the same commutation relations as the vector fields
X, thatis,

X, xV) = anm M =11 (1.42)
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It is important to clarify when such @adependent vector field (V) exists. Let us prove its exis-
tence. On one hand, Ado’s Theorem states that for everyiitensional Lie algebr¥, e.g.
the one spanned by the vector fieldg, there exists an isomorphic matrix Lie algebifg of
n1 X ni square matrices. Now, since the homogeneous linear system
y=A(t)y,

where A(t) takes values iV, is a Lie system associated with a Lie algebra of vector fields
isomorphic toV,, (see [31]), it follows immediately that we can always detexena family
of linear vector fields orR™* obeying relations[{1.42). In terms of this family, we canldui
up at-dependent vector field of the foria_(1141). Apart from theependent vector fieI;Xt(”
constructed in the aforementioned way, there might exiserobnes made of through finite-
dimensional Lie algebras of vector fields admitting a basiese elements obey relatiofs (1.42).

Propositiod_1.1I7 ensures the existence of a minimaluch that the diagonal prolongations
of theXél) toR™™ are linearly independent at a generic point. Let us denatle grolongations
by

" m ) a
X, =) x'® ‘
«a az::l a (x(a))ax%a) s

a=1,...,7

and define the vector fields oW = R™ x R™™ of the form

m ; a
Yo = Xo + ZXd(l)(x(a))Wa

a=1 (a)

a=1,...,m

where we have considered the vector fieKLsandef) as vector fields otV in the natural way.
From the above definition, one has

[Ya,Yﬂ]zz%ﬁva, a,B=1,...,7
y=1

Consequently, the system of differential equations th&trd@nes the integral curves of the
dependent vector field

Yi =Y ba(t)Ya,
a=1

is a Lie system associated with a Vessiot-Guldberg Lie ayetomorphic td/.
Define the involutive distributiofy on N of the form

Vi:<(yl)iv~“a(y;")i>v (Z’GN,

whose rank ig-, around a generic point a¥. Additionally, asr < m - ny1, we may choose,
at least locallyny common first-integrals of the vector fields;, .. ., Y., giving rise to ang-
codimensional local foliatiodF overR™ x R™™ whose leaves project diffeomorphically onto
R™™1 through the projection

p: (m,m(l),...,x(m)) € ]\7 — ({E(l),...,l’(m)) e R™m™,

Additionally, the vector field&?, are tangent to the leaves of this foliation.

On one hand, it is immediate that the above results lead toidgfa flat connectio¥ on the
bundlep : N — R™™_ On the other hand, as it happened in the case of superpogitas (see
Sectior[LH), for every poirit(1), ..., z(,)) € R™™ and a leaveFy, with k = (k1. ..., kn,),
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of the foliation.F, there exists a unique pointy) in R™* such thatz g, z(1y, . - -, Z(m)) € Fi-
This gives rise to the definition of a map

.13(0) = @(x(l), .e ,a:(m); /{51, vy kno)-
Mutatis mutandisthe same arguments showed at the end of the Séciibn 1.4tmmelyand it can

easily be proved that given a generic semoparticular solutions of systen¥ (1), the general
solution of X can be written as

x(t) = @(x(l)(t), ... ,x(m)(t); ki,..., k‘no),
what shows thafb is a particular type of mixed superposition rule. In this ywag have also
shown that, as claimed in [38, Remark 5], a flat conneclicon a bundle of the formvVy x N7 x
...X N, = N1 x...x N, can be used to obtain the solutions of a first-order systeiyihy
means of particular solutions of other first-order system¥i, ..., N,,.

1.8. Differential geometry on Hilbert spaces.In order to provide some basic knowledge to de-
velop the main results of the applications of the theory efdystems to Quantum Mechanics, we
report in this section some known concepts of the Diffeedi@eometry on infinite-dimensional
manifolds. For further details one can consult [51,[60, 138]

As far as Quantum Mechanics is concerned, the separableleoidpbert space of states
H can be seen as a (infinite-dimensional) real manifold admitt global chart [23]. Infinite-
dimensional manifolds do not enjoy the same geometric ptigseas finite-dimensional ones,
e.g. in the most general case, and given an dpen #, there is not a one-to-one correspon-
dence between derivations 61 (U, R) and sections of the tangent bun@l& . Therefore, some
explanations must be given before dealing with such madsfol

On one hand, given a poiat € H, akinematic tangent vectarith foot point¢ is a pair
(p,v) with ¢ € H. We callT,# the space of all kinematic tangent vectors with foot pgint
It consists of all derivativeg(0) of smooth curves : R — H with ¢(0) = ¢. This fact gives a
reason for the name of kinematic.

From the concept of kinematic tangent vector we can providedefinition of smooth kine-
matic vector fields as follows: Amooth kinematic vector fielsan elemen¥ € X(#H) = I'(n),
with TH the so-callekinematic tangent bundiend = : TH — H the projection of this bundle.
We define &inematic vector fieldX as a mapX : H — T%H such thatr o X = Idy. Given
ay € H, we will denote from now orX (¢) = (¢, Xy), with X, being the value ofX () in
TyH.

Similarly to the Differential Geometry on finite-dimenselmmanifolds, we say that a kine-
matic vector fieldX onH admits a local flow on an open subgétC # if there exists a map
FIX : R x U — H such thatFiX (0,+) = ¢ for all ¢ € U and

Xy a FZX(S,z/J):i FUZE (),

ds|,_g ds|,_g

with FIX () = FIX(s,z).

Let us use all these mathematical concepts to study Quantechahics as a geometric the-
ory. Note that the Abelian translation group Binprovides an identification of the tangent space
TwH at any pointp € H with H itself. Furthermore, through such an identificatiorfofwith
TwH at any¢ € H, a continuous kinematic vector field is simply a continuoapd : H — H.
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Starting with a bounde@-linear operatord on 7, we can define the kinematic vector field
X4 by X} = Ay € H ~ T,H. In other words, we have

XA peH— (1, XY) e TH~HDH.

Usually, operators in Quantum Mechanics are neither coatis nor defined on the whole space
‘H. The most relevant case happens wHea a skew-self-adjoint operator of the fouin= —i H.
The reason is th& can be endowed with a natural (strongly) symplectic stmactand then such
skew-self-adjoint operators are singled out as the lineator fields that are Hamiltonian. The
integral curves of such a Hamiltonian vector fiefd* are the solutions of the corresponding
Schrodinger equation [28, 51]. Even wheris not bounded, ifd is skew-self-adjoint it must be
densely defined and, by Stone’s Theorem, its integral cuamestrongly continuous and defined
inall H.

Additionally, these kinematic vector fields related to skesif-adjoint operators admit local
flows, i.e. any skew-self-adjoint operatdrhas a local flow

d

FIl(y) = exp(sA)(¢)  as EFZ.?W)) = Aexp(sA)(v) = A(FI (). (1.43)

We remark that given two constanits;, € R and two skew-self-adjoint operators and
B, we get thatY *+#8 = \X4 4 X B, Moreover, skew-self-adjoint operators considered as
vector fields are fundamental vector fields relative to thealiaction of the unitary groufy (#)
on the Hilbert spac@!.

Let us turn to define the Lie bracket of two kinematic vectaideX 4 and X ? associated
with two skew-self-adjoint operators and B, correspondingly. In order to simplify the notation,
and as it shall be clear from the context, we hereafter damattethe commutator of operators,
i.e.[A, B] = AB—BA, and the Lie bracket of vector fielix 4, X 7] in the same way. In view of
the previous remarks, we can declare the Lie bracket of véields related to skew-self-adjoint
operators to be

(X4, X5 = x1BAL
It is worth noting that the above formula is equivalent to stendard one

2
(X, Y]y = ld—Q (FIY 0 FI*, 0 FIY o FX(v)), (1.44)
2ds*|,_,

for finite-dimensional Differential Geometry when the ridiand side is properly defined. In-
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deed, the above formula yields

o 1d?

v 2ds?|,_,
1 d? — (—sB)™ — (—sA)
ﬁ?rxggﬁﬁ— 2

— (sB)" — (sA)ms
(Z ) (E5F)e

ns =0 ng =0

[XA,XB] exp (—sB)exp (—sA) exp (sB) exp (sA) ( psi)

L Ceap s BA) ()
2ds?|,_,

1 d? 2
23|, (s°[B, A]) (¥) = [B, A](¥),

when the above expressions are properly defined. From wiverebtain again

(x4, X5 = - x5l (1.45)

as we defined.

1.9. Quantum Lie systems.The theory of Lie systems can be applied to investigate acpiat
class oft-dependent Hamiltonians satisfying a specific set of camit the so-calledquantum
Lie systemslet us now precisely define this notion and sketch some qfrdperties.

We call at-dependent HamiltoniaH (¢) at-parametric family of self-adjoint operatoFs, :
H— H.

DEFINITION 1.21. We say that thedependent Hamiltoniaf (¢) is aquantum Lie systerif it

can be written as
)= ba(t)Ha, (1.46)
a=1

where the operatondd,, are a family of skew-self-adjoint operators #ihgiving rise to a basis
of a realr-dimensional Lie algebra of operatdrsunder the commutator of operators, i.e.

[iH,,iHg) = anm iH,,  a,f=1,...m (1.47)
for certainr? real structure constants s,. We callV aquantum Vessiot-Guldberg Lie algebra
associated withH (¢).

Each quantum Lie systelfi (¢) leads to a Schrodinger equation

@ _

= —iH( Zb (t)iHao), (1.48)

describing the integral curves for the kmemamtependentvectorfield OH given by

X, = Z ba ()X,
a=1
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where X, is the vector field associated with the operatai,,. In view of the relation[{1.45)
and the commutation relatioris (1147), we obtain

[Xo, Xg] = —X[HA =N g X0, 8=1,...,n. (1.49)
y=1

In consequence, the vector fields, span arr-dimensional Lie algebra of vector fields. In addi-
tion, the structure constants for the basks, | « = 1,. .., r} coincide with those of the quantum
Vessiot—Guldberg Lie algebra for the ba&i¢l, |a =1,...,r}.

Given the Lie algebr&’, consider an isomorphic Lie algebgaorresponding to a connected
Lie groupG. Choose a basi, |a = 1,...,r} of the Lie algebrél.G ~ g such that the Lie
brackets of its elements, denoted[hy], obey the relations

[, a8] = anﬁvaw a,pf=1,...,r (1.50)
y=1

It can be proved that there exists a unitary acion G x ‘H — H such that eaclX,, is the
fundamental vector field associated with the elemgniccording to the relatiob (1.60). Indeed,
note that, fixed the basig, | « = 1,...,r}, each elemeny, in a sufficiently small ope/
containing the neutral element 6f can be putin a unique way as

g =exp(—p1a1) X ... X exp(—prar).

Now, we define

P (exp(—fiada), V) = exp(—ipaHa )V, a=1,...,rm

As G is connected, every element can be written as a productmfegits inU, what, in view of
the above relations, gives rise to an action G x H — H.

Similarly to the procedure carried out to show that solvirigeasystem reduces to working
out a particular solution for an equation in a Lie group (seeti®n[1.3), it can be proved that
solving the Schrodinger equation for a quantum Lie systé(n) reduces to determining the
solution of the equation itw given by

Ry-1,,0=— Z bo(t)a, = alt), g(0) =e.

More specifically, the particular solution of the Schrégbnequatior{1.48) with initial condition
Yo readsy, = ®(g(t), o), whereg(t) is the solution of the above equation.

1.10. Superposition rules for second and higher-differendl equations. Although the theory
of Lie systems is mainly devoted to the study first-ordereddhtial equations, it can also be
applied to investigate various systems of second-ordéerdifitial equations, e.g. the so-called
SODE Lie systems. This allows us to derittelependent and-independent constants of the
motion, exact solutions, superposition rules or mixed gupstion rules for these equations,
etc. Moreover, our methods to study systems of second-ditferential equations can also be
generalised to study systems of higher-order differeetjalations.

Vessiot pioneered the analysis of systems of second-oiffiereshtial equations by means of
the theory of Lie systems [225]. Additionally, this themesvedso briefly examined by Winternitz,
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Chisholm and Common[T[7, 202]. Apart from these few works ghalysis of systems of second-
order differential equations through the theory of Lie syss was not deeply analysed until the
beginning of the XXI century, when the SODE Lie system coneexs defined and employed to
investigate various systems of second-order differeptialations([36, 44, 45, 4B, 52,153]. This
allowed us to recover previous results from a new clarifyiegspective as well as to obtain some
new achievements.

The description of the general solution of systems of seawddr differential equations in
terms of certain families of particular solutions and sdteanstants appears in the study of
some systems in Physics and Mathematics|[115, 194]. Nealegh, these results are frequently
obtained througlad hocprocedures that neither explain their theoretical meanorghe possi-
bility of their generalisation. This section is concerneithvthe application of the theory of Lie
systems to SODE Lie systems in order to review, through a géteal unifying approach, some
achievements previously obtained in the literature. Ndy ¢imis provides a deeper theoretical
understanding of these works, but it also offers several agvievements concerning these and
other related topics.

Recall that the theory of Lie systems initially aimed to stggistems of first-order differential
equations admitting its general solution to be expresséerins of certain families of particular
solutions and a set of constants. Nevertheless, this ggoisanot exclusive for systems of first-
order differential equations. For instance, each secoddrdifferential equation of the form
& = a(t)z, with a(t) being at-dependent real function, satisfies that its general soiui(t),
can be cast into the form

x(t) = kiw(q)(t) + kaw(g)(t), (1.51)

with, k1, k2, being a set of constants aney) (t), z(2)(t), being a family of particular solutions
whose initial conditiongx(;)(0), (1)(0)) and (z(2(0), Z(2)(0)) are two linearly independent
vectors of'R. Note also that such a superposition rule leads to the existef many other non-
linear superposition rules for other systems of seconévatifferential equations. For instance,
the change of variables= 1/x transforms the previous system intp— 2¢% = —a(t)y? admit-
ting, in view of the above linear superposition rule and theve& change of variable, its general
solution to be written as
y(t) = (ki (8) + kays '(8) (1.52)

in terms of certain familiegy(1)(t), y(2)(t), of particular solutions and a set of two constants.

Consequently, in view of the previous examples and othes thra can be found, for instance,
in [34,[43], it is natural to define superposition rules focasd-order differential equations as
follows.

DEFINITION 1.22. We say that a second-order differential equation
it = Fi(t,x, &), i=1,...,n, (1.53)
onRR™ admits a global superposition rule if there exists a lragTR™" x R?” — R™ such that
its general solution:(¢) can be written as
w(t) = W(zay(t), ., Ty (), Ty (), -y Bmy (E)s K1y oo F2n), (1.54)

in terms of a generic family;1)(), .. ., 2 (t), of particular solutions, their derivatives, and a
set of2n constants.
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In order to understand the previous definition, it is neagskaestablish the precise mean-
ing for ‘generic’ in the above statement. Formally, it iscsghat expression (1.54) is valid for
a generic family of particular solutions when it holds foregy family of particular solutions,
21(t), ..., zm(t), satisfying thatz;(0), £1(0), .. .,z (0), £,,(0)) € U, with U being an open
dense subset ¢fTR™)™.

There exists no characterisation for systems of SODEs dbtine (1.53) admitting a super-
position rule. In spite of this, there exists a special clafssuch systems, the so-call&DDE
Lie system$52], accepting such a property. Even though this fact has eoadly used in the
literature, it has been proved very recently![48]. We nexnith the definition of the SODE Lie
system along with a proof for showing that every SODE Lieaysadmits a superposition rule.
In addition, some remarks on the interest of this notion édhain properties are discussed.

DEFINITION 1.23. We say that the system of second-order differentinhgons [(1.58) is a
SODE Lie system if the system of first-order differential atjons

it =o',
T i=1,....n, (1.55)
o' = F'(t, z,v),

obtained from[(1.53) by defining the new variablés= ¢!, withi = 1,...,n, is a Lie system.

PrROPOSITION1.24. Every SODE Lie systeiin (1]153) admits a superposition®uld TR™)™ x
R?" — R" of the form¥ = 7o ®, whered : (TR")™ x R*" — TR" is a superposition rule for
the systeni (1.55) and: TR™ — R" is the projection associated with the tangent burifii®.

Proof. Each SODE Lie systeri (1.63) is associated with a first-orgiem of differential equa-
tions [2Z.IB) admitting a superposition rue: (TR™)™ x R?" — TR". This allows us to de-
scribe the general solutiam:(t), v(t)) of system[(1.55) in terms of a generic $et, (¢), v, (1)),
witha =1, ..., m, of particular solutions and a set2f constants, i.e.

(2(t), 0(8)) =  (21(0), -, @ (£), 01(8); -, O (B)s Ky -, i), (1.56)

Each solutiong,, (¢), of the second-order system (1.53) corresponds to one dpdoa solution
(xp(t),vp(t)) of the system of first-order differential equatiohs (1.56) aice versa. Further-
more, since one has that,(t),v,(t)) = (z,(¢), <, (t)), it turns out that the general solution
z(t) of (1.53) can be written as

() =mo® (x1(t),...,xm(t), 21(t), ..., Tm (t); k1, .-, kan), (1.57)
in terms of a generic family, (¢), with a = 1,...,n, of particular solutions of (1.53). That is,
the map¥ = 7 o @ is a superposition rule for the system of SODES {[L.3).

Since every autonomous system is related to a one-dimaisiessiot—Guldberg Lie algebra
[34], a corollary follows immediately.

COROLLARY 1.25. Every autonomous system of second-order differential tiapsof the form
#' = Fi(x, 1), withi = 1,..., n, admits a superposition rule.

The above result is, in practice, almost useless. Actuidly superposition rule ensured by
Propositio_1.24 relies on the derivation of a superpasitide for an autonomous first-order
system of differential equations. Applying the method sketl in Sectioh 116, it is found that
determining this superposition rule implies working outla¢ integral curves of a vector field on
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(TR™)2. Although the solution of this problem is known to exist, éteplicit description can be
as difficult as solving the initial system (indeed, this isialty the case). Consequently, deriving
explicitly a superposition rule for the above autonomoustesy frequently depends on the search
of an alternative superposition rule for the associatetidirder system.

Many superposition rules for second-order differentiala@pns do not present an explicit
dependence on the derivatives of the particular soluti@ossider, for instance, either the linear
superposition ruld (1.51) for the equatidn= a(t)x, or the affine one,

z(t) = k1(x1(t) — 22(t)) + ka(z2(t) — x3(t)) + x3(t),

for & = a(t)z+b(t). Such superposition rules are calleglocity free superposition rules even
free superposition rules'he conditions ensuring the existence of such superpastitiles is an
interesting open problem. Let us provide a brief analysmiathe existence of such superposition
rules.

PROPOSITION 1.26. Every system of SODES (1153) admitting a free superposititmis a
SODE Lie system.

Proof.
Suppose that system (1153) admits a superposition ruleecdithcial form

2t =0 (xy,..., ek, ..., kon), i=1,...,n. (1.58)
In such a case, the general solutiofy,), of the system could be expressed as
() = O (21 (t),. .oy xm(t); ki, ... Kkan), i=1,...,n. (1.59)

Definep(t) = (z1(t),...,xm(t), 21(t),. .., 4m(t)) andv’ = i’ fori = 1,..., n. Take the time
derivative in the above expression. This yields

v ZZ( if;i (t))), i=1,...,n, (1.60)

a=1j=1

where we have used tha®i /dv! = 0, fori,j = 1,...,n, anda = 1,...,m. Consequently,
there exists a function

m
7 .
D (21, oy Ty V1, ey Uy E E (vga ) i=1,...,n,
xa

a=1j=1
such that

{xi(t) = @ (21(8), ..z (t); K1y .o Kan),

t=1,...,n.

Vi(t) = O (21(1), .., T (8), 01 (), - v () K,y - Kon),
Therefore, systen (2.113) admits a superposition rule[aid) becomes a SODE Lie system.

Apart from the SODE Lie system notion, there exists anothethiod to study certain second-
order differential equations admitting a regular Lagrangiike Caldirola—Kanai oscillators or
Milne—Pinney equations [52, B7]. Although this method aatrbe used for studying all systems
of second-order differential equations, it provides somditéoonal information that cannot be
derived by means of SODE Lie systems when it applies, e.grrimdtion on ther-dependent
constants of the motion of the systemI[97].
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1.11. Superposition rules for PDEs.The geometrical formulation of the theory of Lie systems
enables us to extend the Lie system notion to partial difféseequations. Here, we briefly
analyse this generalisation and its properf{ies[[38} 185].
Consider the system of first-order PDEs of the form
ort
ote
whose solutions are mapst) : R® — R"™. Whens = 1, the above system of PDEs becomes
the system of ordinary differential equatiohs (1.33). Thremdifference between these systems
is that fors > 1 there exists, in general, no solution with a given initiahdition. For a better
understanding of this problem, let us gui(1.61) in a moreegarand geometric framework.
Let .. be the trivial fibre bundle

P =R® xR" 5 R®.

= Xi(t,x), reR™ t=(t',...,t°) € R, (1.61)

A connectionY” on this bundle is a horizontal distribution ovVEF;.. . i.e. as-dimensional distri-
bution transversal to the fibres. This distribution may biedrined by the horizontal lifts of the
vector fieldso/0t* onR?, i.e.

0
g T Xalt2),

n i a
= ;Xa(t,x) o

The solutions of systeri (1.61) can be identified with integmamanifolds of the distributio’’,
(t, Xo(t,z)), teR’, z€R".

Xolt,z) =

where

It is now clear that there is a (obviously unique) solution(b®1) for every initial data if and
only if the distributionY” is integrable, i.e. the connection has a trivial curvatlités means that

[Xa, Xo) = Zfab(

for some functiong,. in Pg... Butthe commutator@(a, Xb] are clearly vertical, whileX . are
linearly independent horizontal vector fields, 5. = 0, which yields the integrability condition
in the form of the system of equatiop¥,, X;] = 0, i.e. in local coordinates,

0X3 (y o _ 9Xa (xie0) 2% y — x4 ) 2Xa _
S (1) = — (t,x)+j§::1 <Xa(t,x) o7 (be) = X (to) 2 (tw) | =0, (1.62)

Let us assume now that we analyse a system of first-order PDX&e torm [1.61) that satisfies
integrability conditions[(1.62). Then, for a given initiglue, there exists a unique solution of
system[(1.61). Furthermore, it is immediate that the gedoadinterpretation for superposition
rules for first-order described in Sectidn (1.4) can be galised straightforwardly to the case of
PDEs. In consequence, Proposifion 1.18 takes now the fiigpferm.

PrRoPOSITION1.27. Giving a superposition rule for system (11.61) obeying irdbdity condi-
tion (1.62) is equivalent to giving a connection on the bena!: R™(™+1) — R™™ with a zero
curvature such that the family of vector fieldsX,): | t € R®,a = 1,..., s} are horizontal.
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Also the proof of Lie Theorem remains unchanged. Therefoeayet the following analogous
of Lie Theorem for PDEs.

THEOREM 1.28. The systen (1.61) of PDEs defined®hand satisfying the integrability con-
dition (1.62) admits a superposition rule if and only if trector fields{ (X, ):} onR™ depending
on the parametet € R®, can be written in the form

(Xa)e =Y ui()Xa, a=1,..s, (1.63)
a=1

where the vector fieldX, span a finite-dimensional real Lie algebra.

Note that the integrability condition fdr, (¢, z) of the form [1.68) can be written as
> (@)@ = @) +u@ug (t)el,] X, =o.
a,B,y=1
We now turn to illustrate the above results by means of aqdati example. Consider the
following system of partial differential equations &% associated with th&'L(2, R)-action on
Ra
Uy = a(x,y)u2 —l—b(x,y)u—i—c(x,y),
uy = d(z,y)u’ + ez, y)u+ f(z,y) .
This equation can be written in the form of a ‘total differi@hequation’

(1.64)

(a(z, y)u® + bz, y)u + c(z, y))dz + (d(z,y)u? + e(z, y)u + f(2,y))dy = du.
The integrability condition only states that the one-form
w = (a(z,y)u® + bz, y)u + c(z,y))dz + (d(z, y)u® + e(z, y)u + f(z,y))dy

is closed for an arbitrary functiom = u(z, y). If this is the case, there is a unique solution with
the initial conditionu(zo, yo) = uo and there is a superpaosition rule giving a general solution a
a function of three independent solutions exactly as in #se ©f Riccati equations:

(u) — u))ue)k + up)(uE) —uw)
(uy — ue)k + (uE) —ue)

2. SODE Lie systems

We already pointed out that the theory of Lie systems is rgaleticated to the analysis of sys-
tems of first-order differential equations. In spite of ttéach a theory can also be applied to
studying a variety of systems of second-order differerggalations. This can be done in sev-
eral ways that rely, as a last resort, on using some kind nstoamation to convert systems of
second-order differential equations into first-order ofa;(54, 77/ 100, 202]. A class of such
systems that can be investigated by means of these tecsragei¢he referred to as SODE Lie
systems, which were theoretically analysed in Seéfion 1nltBis chapter, we focus on analysing
several instances of SODE Lie systems in order to derinéependent constants of the motion,
exact solutions, superposition rules, and other properiibis allows us not only to study the
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mathematical properties of such systems, but also to pedwials to analyse the diverse physical
or control systems modelled through such equations.

Among the above applications to SODES, one must be emphdasiseuse of the referred
to asmixed superposition rule§his recently described notion enables us to express thergle
solution of SODE Lie systems in terms of particular solusiafi the same, or other, SODE Lie
systems. In this way, this new concept can be employed tysa#he properties of the general
solutions of certain SODEs appearing in the Physics andenaltical literature [11%, 194]. As
a consequence of such an analysis, new results can be abtaideother known ones will be
recovered, in a systematic way, which will enhance theirausidnding.

The following section is dedicated to the application of theory of Lie systems to SODE
Lie systems in order to review, through a geometrical uniyapproach, some results previously
obtained in the literature by means afi hocmethods and to provide new ones. The whole
chapter can be divided into two parts: The first one is devintélde application of the geometric
theory of Lie systems for deriving superposition rules,stants of the motion and exact solutions
for various SODE Lie systems. More specifically, we stueyjependent harmonic oscillators,
generalised Ermakov systems and Milne—-Pinney equationsiding a new superposition rule
for the latter. The second part is concerned with the studyaaplication of mixed superposition
rules.

2.1. The harmonic oscillator with t-dependent frequency.Perhaps, the one-dimensiontal
dependent frequency harmonic oscillator is the most siSRQI®E which allows us to illustrate
the application of the SODE Lie system notion. Let us makeofiieis fact to show, clearly, how
this notion applies and to analyse thoroughly the propedfesuch a system.

The equation of the motion for a one-dimensional harmonddllaesor with ¢t-dependent fre-
quencyw(t) takes the formi = —w?(¢)z. In view of Definition[1.28, this equation is a SODE
Lie system if and only if the system of first-order differegquations

T =,
{ (2.1)

0 = —w?(t)z,
is a Lie system. This feature depends on the properties oftlependent vector field ovarR
given by
0

_ 9 2
X(t,z,v) =vao W (t)x%,

which describes the integral curves of systéml(2.1). It imadiate that
Xi = X1 4w () X3, (2.2)

whereX; and X3 are the vector fields
0 0
Xi=v— X3 =—x—.
L=V 3 Ov

These vector fields obey the commutation relations
[X17X3]:2X27 [XQaX?)] :X?); [leXQ]:Xla (23)
with X5 being the vector field o R given by

1 0 0
X2—§<$%—U%>
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According to the commutation relatiorls_(2.3) and decontjorsi2.2), it follows thatX;
defines a Lie system associated with a Vessiot—Guldberglgébeal” = (X7, X5, X3). Hence,
one-dimensional harmonic oscillators witli-dependent frequency are SODE Lie systems.

Determining the general solution of every SODE Lie systeduces to working out the
solution of an equation on a Lie group. Unsurprisingly, sitice general solution of a SODE
Lie system is straightforwardly related to the solution dfia system whose solution can be
obtained from a equation in a Lie group. Let us illustratedaim in detail through the example
of harmonic oscillators.

Since system (211) is a Lie system, its general solution eawdrked out by means of the
solution of an equation on a certain Lie group (see SeLiigh Recall that as the elementsi6f
are complete, there exists a Lie group action : G x TR — TR whose fundamental vector
fields are exactly those correspondindfolt is easy to check that this action can be chosen to
bed : SL(2,R) x TR — TR, with

(50 0)-05 D))= ()

Indeed, if we take the basis

0 -1 1/ -1 0 0 0
al_(o 0 )) a’2_§< 0 1)) a’3_(1 0)7 (24)

of the Lie algebra of x 2 traceless matrices (the usual representation of the Lebadg((2, R)),
its elements satisfy the same commutation relations asabtwrfields, X, X», X3. Further-
more, it can be easily verified that the vector fields, X, and X5 are the fundamental vector
fields associated with the matrices, az, a3, according to our conventioh (1.128).

Once the actior®, is determined, it enables us to write the general solutign), v(t)) of
system[(Z.11) in the form

z(t)) Zo i Zo
<v(t)> =& (g(t)7 (%)) , with (v()) e TR, (2.5)

whereg(t) is the solution of the Cauchy problem

3
Rg—l*g = - Z ba(t)aav g(o) =6,
a=1

on SL(2,R). This immediately gives us the general solutief), of the equation[{2]1) from
expressior[(2]5). Moreover, this process is easily geisedhto every SODE Lie system.

Apart from the above Lie group approach, the SODE Lie systetion furnishes us with
a second approach to investigate one-dimensitdaipendent frequency harmonic oscillators.
This is based on determining a superposition rule for thesisem[(2.11).

Recall that a superposition rule for a Lie system can be wbrkg by means of a set of
first-integrals for certain diagonal prolongations of theetor fields of an associated Vessiot—
Guldberg Lie algebr#’. As it was discussed in Sectibn1l.6, the way to obtain thesteifitegrals
requires to determine the minimal integersuch that the prolongations B"™ of the elements
of a basis of the Lie algebrd become linearly independent at a generic point. This yitids
dim V' < m - n. Additionally, if we consider the diagonal prolongationssaich a basis to
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R™™+1) these elements are again linearly independent at a ggruénicand a family ofn-n—r
first-integrals appears. These first-integrals allow usstemnine a superposition rule.

We next illustrate the above process by means of the studwamihdnic oscillators. In ad-
dition, we analyse in parallel the problem of findittihdependent constants of the motion for
systems made of some copies of the initial system. This prollill be proved to be related to
the above process and, in addition, will permit us to shoerggting properties about harmonic
oscillators.

Consider two copies of the same one-dimensional harmoniltader, i.e.

i o= —w(t Ty,
{ (i’g = —C:JQEt%{EQ. (26)
This system of SODEs, which corresponds to a two-dimenisofropic harmonic oscillator
with a t-dependent frequenay(t), is related to the following system of first-order differiaht
equations

j"l = U1,
j"Q = V2,
2.7
1']1 = —w2(t)$1, ( )
1']2 = —w2(t)$2.
Its solutions are the integral curves of thdependent vector field
0 0 0 0
X2d _ v v 2 ¢ ) + e
¢ i 8.231 + 2 8.232 w ( )xl 8’()1 v ( )(L’Q 8’()2 ’
which is a linear combination
Xt = XP WP () X3, (2.8)
with X?¢ and X2? being the vector fields
0 0 0 0
X2d — _ _ X‘Qd — oy — -
L v 81‘1 * 2 83:2 ’ 3 i 8’()1 2 8’()2 ’
satisfying the commutation relations
[P X3 =2Xx3¢, (X3 X3 = X34, (XY X3 = X (2.9)

whereX, reads

0q 1 0 0 0 0
X34 = > (xla—xl—f—xga—xz —vla—vl — Vg 8—vg> .
The previous decomposition of tedependent vector field 2¢ has been obtained by consid-
ering the new vector fieldsY??, X2¢, X2¢ to be diagonal prolongations tBR? of the vector
fields, X1, X», X3. In this way, we get that the commutation relatidns](2.9)thessame ag (2.3)
and, in view of decomposition (2.8), thisdlependent vector field defines a Lie system related to
a Lie algebra of vector fields isomorphic4f{2, R).
The distribution associated with the Lie systéfi?, i.e.

Vol = (X, (X3, (X39)),  p € TR,

has rank lower or equal to the dimension of the Lie algébriore specifically, it has rank three
in an open dense of subsSER?. Hence, there exists a local non-trivial first-integral coam to
all the vector fields of the above distribution. Furthermahés first-integral is &-independent
constant of the motion of systefn (R.7). Let us analyse thitestent more carefully. Given a
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constant of the motiod” : (z1, vy, 72, v2) € TR? = F(x1,v1,22,v2) € R of system[(27), it
follows that

& dv', OF o
=3 (05500 + o) 55 6100 ) = X2106(0) =0,
wherep(t) = (x1(t),v1(t), z2(t),v2(t)). If F is a first-integral for the systerh (2.7), whatever
w(t) is, thenF must be a first-integral of the vector fields®£?, X2¢ and, therefore, ok 27
Consequently, there exists, at least locally, a funclidhat is a constant of the motion for ev-
ery system[(217) and such th# is incident to the distribution generated by the??, X234, X2¢
i.e.dF(X??) = dF(X23?) = dF(X2%) = 0in a certain dense open subgebf TR2.
SinceX3¢F = 0, there is a functiod (¢, 21, x2) such thatF (z1, z2, v1,v2) = F(£, 21, 72),
with & = 21v9 — 29v1. Next, in view of conditionX?¢F = 0, we have

oF o
N om oy
and there exists afunctioﬁ(é) such thatF (¢, 1, x2) = F(£). As2 X2 = [X24 X24], the

conditionsX 2¢F = X24F = 0 imply X2¢F = 0 and hence (z1, x2, v1, v2) = 210 — 201 IS

a first-integral which physically corresponds to the angolamentum. Additionally, this first-
integral allows us to solve the second-order differentiplationi: = —w?(t)x by means of a
particular solution. Actually, ifz1(¢) is a non-vanishing solution of this equation, every other
particular solutionzo(t) gives rise to a particular solutiofx (¢), v1(t), z2(t), v2(t)) of system
(2.1). As the first-integral’ is constant along this particular solution, we have thdt) obeys
the equation

d .
1(t) % =kt i (D,
whose solution reads
t dC
a:tzk'xt—kkxt/—, 2.10
2(t) 1(1) 1(1) 20 (2.10)

what gives us the general solution to theependent frequency harmonic oscillator in terms of a
particular solution.

In order to look for a superposition rule, we must consideyséesn made of some copies of
(2.1) and obtain at least as matiindependent constants of the motion as the dimension of the
initial manifold. Also, it must be possible to obtain the iednles of the initial manifold explicitly
in terms of the other variables and such constants. Reealith numbem of particular solutions
to obtain a superposition rule satisfies that the diagormdbpgations of the vector fields;, X,
and X5 to R™™ are linearly independent in a generic point.

In the case of two copies of thedependent harmonic oscillator, the condition on the prolo
gations of the vector fieldsY;, Xz, X3, that is,\; X7 + \x X3¢ + A3 X2¢ = 0, implies that
A1 = A2 = A3 = 0. Therefore, the one-dimensional oscillator admits a ugsétion rule involv-
ing two particular solution and, in view of our previous rigsuwe need to study three copies of
thet-dependent harmonic oscillatér (2.1) so as to obtain a paséion rule. Consider therefore
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the system of first-order ordinary differential equations

J:‘l = 1,
1']1 = —w2(t)$1,
ii)g = U2,
211
1']2 = —w2(t)$2, ( )
T = w,
3 _ 2
v = —w(t)x,
whose solutions are the integral curves forttd=pendent vector vector field
. 0 0 0 0 0
x3d _ . < v e - 2 (e - W2 (e
¢ U18x1+v28x2+v8x wi (B oy wi (B Ovg w ()xav’

which is a linear combinationX?? = X3¢ + w?(¢) X34, with X3¢ and X3¢ being the vector
fields
0 0

0 0
X3 =) — fvg— + v=— X3 = )~ —pg— —x—
! ! o * 3 L ou, 2 vy ov’

obeying the commutation relations
X =2 X3, (X X = X3 (X X = X
where the vector field(3¢ is defined by

s 1,0 0 90 9 0 9
2 2 18x1 26x2 oz 181)1 2 Ova ov /)’

We can determine the first-integrals for these three vector fields as solutions of the sys-
tem of PDESX{F = X39F = 0, becaus€ X3¢ = [X$? X39] and the previous rela-
tions automatically imply the conditioX3F = 0. This last condition yields that there ex-
ists a functionF” : R®> — R? such thatF(z1,z2,z,v1,v0,v) = F(&,&, 21,12, 2) With
&1(x1, e, x,v1,v2,v) = xv1 — 210 ANAE2 (21, T2, T, V1, V2, V) = TV — T2v. IN View of this, the
conditionX$¢F = 0 transforms into

i.e. the functiong; andé, are first-integrals (Of coursé€,= x1v2 — xov; is also a first-integral).
They produce a superposition rule, because from

Uy — v = ki,
r1v —vnx = ko,
we get the expected superposition rule for two solutions
ks
r=c1 2+ 222, v=rc1v1 +c202, i =7 k = x1v2 — 2201 .

2.2. Generalised Ermakov system.Let us now turn to study the so-called generalised Ermakov
system, i.e.

.1

i = fy/n) — P (),
1 (2.12)
i=goly/®) - w?(t)y,
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which has been broadly studied in [104, 191.,]192] 193] [198,/206]. Although this system is,
in general, more complex than the standard Ermakov systénchwvill be discussed later, its
analysis is easier from our point of view and it is therefdtelged now. More exactly, our aim
is to recover by means of our methods its known constant ofomotvhich is used next to study
the Milne—Pinney equation and to obtain a superpositioa rul

For the sake of simplicity, let us consider the generalisedekov system of? . This system
can be written as a system of first-order differential ecpureti

T = vy,
Y = Uy,

by = —w?(t)z + :713 fy/z), (2.13)

by = —w(t)y + %g@/x),

in TR% by introducing the new variables, = & andv, = y. Therefore, we can study its
solutions as the integral curves fot-@lependent vector field; on TR?. of the form

0 0 1 0 1 0
X = Ug — Y a - 2 -3 - ? 3 BN
= e g v g (00 + 5 10/9)) o+ (00 + 390/)
which can be written as a linear combination
X; = Ny + w?(t) N3,

whereN; and N3 are the vector fields

0 0 1 0 1 0 0
N — U7 Ya_ Y a “a - N = L= — -
1= Urge Uy 3y + 5 fly/z) 7o y3g(y/x) g, BT e Ve
Note that these vector fields generate a three-dimensiealdlie algebra with the third generator

NV I )
279 \Mox yay “Ov,  Yov, )

In fact, as
[N1, N3] = 2Nz, [N, Na] = Ny, [N2,N3] = N3,

they generate a Lie algebra of vector fields isomorphig/{®, R) and thus the generalised Er-
makov system is a SODE Lie system.

As Lie system[(Z.13) is associated with an integrable dhistion of rank three in a generic
point of a four-dimensional manifold, there exists, attéasally, a first-integral ' : TR2 — R,
for anyw?(¢). Such a first-integrak” satisfiesV; F' = 0 for i = 1,2, 3, but as{Ny, N3] = 2N it
is sufficientto imposéV, F' = N3F = 0 to getNoF' = 0. Then, if N3 F' = 0 we have

oF OF
x 8—% +vy 8—vy =0,
and the associated system of characteristics is
dr _dy _dvs _dv,

0 0 T Y



42 J.F. Carifiena and J. de Lucas

In view of this, we conclude that there exists a function R* — R such thatF'(z, y, vy, vy) =

F(z,y,& = zvy — yv,) and, taking this into account, the conditidf ' = 0 reads
oF oF y x oF
0S8 40,50+ (<Lt + Satul)) 5 =o.
We can therefore consider the associated system of chasticte
dr dy d€
ve vy =% fy/e)+ mely/x)

and using that
—ydr+xdy d_x _ @

3 Ve vy
we arrive to
—ydx +xdy dg
& —EO me®
ie.
vd(3) d
& —ED

and integrating we obtain the following first-integral

1o ("] L .(1 1 _
< ] { <3f<<>+cg(<)] w=c (@14

with v = xz/y. This first-integral allows us to determine, by means of gaades, a solution of
one subsystem in terms of a solution of the other equation.

2.3. Milne—Pinney equation. We call Milne-Pinney equation the second-order ordinanyline
ear differential equation [163, 182]

k
. 2
¥=—w(t)r + 3 (2.15)

wherek is a non-zero constant. This equation describes-teolution of an isotonic oscilla-
tor [28,[181] (also called pseudo-oscillator), i.e. an lesitir with an inverse quadratic potential
[204]. This oscillator shares with the harmonic one the progpof having a period indepen-
dent of the energy [68], i.e. they are isochronous systerdsiarthe quantum case, they have
an equispaced spectrum_[10]. The equation (2.15) appedhe istudy of certain Friedmann—
Lemaitre—Robertson—Walker spaced [85], certain scallardosmologies [115], and many other
works in Physics and Mathematics (see [147] and referehegsih).

The Milne—Pinney equation is defined Bri = R — {0} and it is invariant under parity, i.e. if
z(t) is a solution, then-x(¢) is a solution too. That means that it is sufficient to restiiatselves
to analysing this equation iR .

As usual, we can relate the Milne-Pinney equation to a sysfdirst-order differential equa-
tions onTR ;-

T = w,

k
S 2
v = —wi(t)r+ et
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by introducing a new auxiliary variable = . Then, thet-dependent vector field ofR
describing its integral curves reads

0 kY 0
X, = v— —w? — ) =.
¢ U8x+< w(t)x+x3> v
This is a Lie system becausg can be written as(; = L; + w?(¢) L3, where the vector fields
L, andL3 are given by

0 k 0 0
L —o— + 2 In — —p 2
! U8x+x38v’ 3 xav’
and satisfy
[L1,Ls] = 2Ly, [Li,Ly) = L1, [Lo,Ls]= Ls,
with

1 0 0
L2_§<m%_”%>’

i.e. they span a 3-dimensional real Lie algebra of vectaddiedomorphic tal(2, R).

Let us choose the bas[s(P.4) fdf2, R), which satisfies the same commutation relations as
the vector fields,L, Ly, L3. Actually, it is possible to show that eadh, is the fundamental
vector field corresponding ta, with respect to the actio® : (A, (z,v)) € SL(2,R) x TR} —
(z,v) € TR4 given by

_ ¢ -+ [(Bo + )00+ o) + k(05/a)]
(6v+yx)? + k(6/x)? , with A= ( o B ) )

k62 x2 v
i ”%5” #2a+ (1 )

wherex is +1 or 0, depending on the initial poir{tz, v) and the element of the growf.(2, R)
that acts on it. In order to obtain an explicit expressiondar terms ofA and(x, v), we can use
the below decomposition for every element of the grSu2, R)

1 1 0 2/2 0
A = exp(—aia1) exp(aszaz) exp(—azaz) = < 0 all ) < 1 ) < ‘ 0 e/ )7

<

as

from where we obtain that; = v anda; = /6. As we know that
D (exp(—azaz), (z,v))
is the integral curve of the vector field, starting from the poinfz, v) parametrised by, it is
straightforward to check that
(z1,v1) = ®(exp(—anas), (z,v)) = (exp(as/2)x, exp(—as/2)v),
and in a similar way
(z2,v2) = ®(exp(asas), (x1,v1)) = (21, agz1 + v1).

Finally, we want to obtair{z,v) = ®(exp(—aia1), (z2,v2)), and taking into account that
the integral curves of,; satisfy that

Sdv d
T Y da, (2.16)
k v
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it turns out that whert > 0 we haver? + k/z? = v2 + k/x3 = X with A\ > 0. Thus, using this
fact and[[2.16) we obtain
k'/2dv
P

and integrating betweernv, andv,
v . A () . 1
(/\ _ 1—]2)1/2 =m k1/2 + ()\ _ U%)l/Q T kL/2

(a1 A + vaxa]) .

As k = sign[v], we see that is given by

K = sign[ag A + va|ze|] = sign g(ﬂt’}/ +v6)? + kj—f + %(v& +xv)| -

System[(Z.T5) has no non-trivial first-integrals independé w(¢), i.e. there is no function
I:U c TR; — RsuchthatX, I = 0 for X determined by any functian(¢). This is equivalent
todI(L,) = 0 on an operlU, with o« = 1,2, 3. Thus, the first-integrals we are looking for hold
thatdI, is incident to the involutive distributio®,, ~ ((L1),, (L2)p, (L3),) generated by the
fundamental vector fields,, in U. In almost any point we obtain that, = T, TR. Then, as
dI, = 0in a generic poinp € U C TRy, the only possibility isi/ = 0 and thereford is a
constant first-integral.

2.4. A new superposition rule for the Milne—Pinney equation Our aim now is to show that
there exists a superposition rule for the Milne—Pinney &qudZ.15) for the casé > 0 [53,
163,[182] in terms of a pair of its particular solutiohs|[4%he case: < 0 can be analogously
described.

In fact, one sees from the first-integral (4.14) that in theipalar case off = g = &, if a
particular solutione; is known, there is @-dependent constant of motion for the Milne—Pinney

equation given by (see e.@. [53]):
z\2 1\ 2
(:71) +(2) ] .. (2.17)

If another particular solutiom, of the equation[{2.15) is given, then we have another

dependent constant of motion
z\2 To\ 2
(—) + (—) ] .. (2.18)
i) x

Moreover, the two solutions; andz, provide a function of which is a constant of the motion
and generalises the Wronski#in of two solutions of the equatiop (2]15)

G e

Remark that for any real numberthe inequality(c — 1/a)? > 0 implies

I = (J)l.l? — J.,‘l.l?)z + k

I, = (1‘2.13 — ii)g.l?)z + k

I3 = (1‘1.1.32 — .1?2j?1)2 +k

9 1
Oé+—2>2,
(67
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and the equality sign is valid if and only|if| = 1,
9 1
a*+ — =2+ |af=1.
«

Therefore, as we have considered- 0, we see thal; > 2k, fori = 1,2, 3. Moreover, as the
solutionsz () andz,(t) are different solutions of the Milne—Pinney equation, riout that
I3 > 2k.

The knowledge of the two first-integrals and -, together with the constant value bf for
a pair of solutions of equatiof (ZJ15), can be used to obkarstiperposition rule for the Milne—
Pinney equation. In fact, given two particular solutiansandz- , the first-integral[(2.118) allows
us to write an explicit expression farin terms ofx, x5 andl,

2

1 1
j::jzgﬁi\/—k%HQ - —k

- =,
T2 x5 x5 x

and using such an expression with the first-intedral {2.4/@)see, after a careful computation,
thatz satisfies the following fourth degree equation

(I2 — 4Kzt — 2(I1 I, — 2I3k) 2222 + (17 — 4k?)a;—

—2((IyI3 — 211 k)a? + (I I3 — 2Lok)23)x? + (I3 — 4k*)z* =0, (2.20)
where we have used thaf is constant along pairs of solutions,(t), z»(t), of the Milne—Pinney
equation.

Hence, we can obtain from the condition (2.20) the expredsiothe square of the solutions

of the Milne—Pinney equation in terms of any pair of its parkar positive solutions by means of
a superposition rule

2% = kya} + kool + 2\/)\12[—k(x‘11 +a3) + [ 2222, (2.21)
where the constants andks are given by
LIz —2hLk LIz —2hk
YTk TR a2

and\;s is a constant which reads as follows

kikols + k(—1+ k? + k3
A2 = Aok, ko 5, k) = —— 12( 12 Ltk
7_

= SD(II;IZ;Ivak) )

where the functior is given by
LI Is — (I? + 12 + I2)k + 4k°
o(I, I; I3, k) = = ((Il?;__ ik—g)zg) ha .

It is important to remark that ik; < 0 thenks > 0 and if k; < 0 thenk; > 0, i.e. if
ki1 < 0thenlyI3 < 211k, and thusly < 2kI;/I5. Therefore\o(12 — 4k?) = 113 — 2kIy >
II3 — 4K%*1, /I3 = I, (12 — 4k?) > 0, and thus, ad; > 2k, k2 > 0. Similarly we obtain that
ko < 0impliesk; > 0.

The parity invariance of (2.15) is displayed by (2.21), vrhiives us the solutions

2 = k1a} + kot £ 24/ Mol —k(a? + 2d) + L ada}). (2.22)

In order to ensure that the right-hand term of the above ftamsipositive, which gives rise to
a real solution of the Milne—Pinney equation, the constanendk; in the preceding expression
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should satisfy some additional restrictions. In partigutaey must obeying
Ma[~k(21(0) + 23(0)) + I3 27(0)23(0)] > 0

and

k123 (0) + ka3 (0) £ 24/ Mz [h (24 (0) + 23(0)) + L3 23 (0)23(0) ] > 0.
If these conditions are satisfied, then, differentiatingression[(2.22) it = 0 for 2y = x1(t)
andzs = xo(t) solutions of the Milne—Pinney equatidn (2.15), it can becklee that:(0) is also
a real constant. As(t) is a solution with real initial conditions, ther(¢) given by [2.2P) is real
in an interval oft and thus all the obtained conditions are valid in an inteofal
If we take into account that we have considergd> 0, we can simplify the study of such
restrictions by writing[(2.22) in terms of the variablesandz = (z;/x2)? as

2 = 232 (klz ko2 2| k(22 1)+ I3 z]) :

and the preceding conditions turn out to bg[—k(22 + 1) + I3z] > 0 andkyz + ke &
2y/Ai2[—k(z2 + 1)+ I3 2] > 0.

Next, in order to gef\o[—k(22 + 1) + I3 2] > 0, we first notice that this expression is not
definite because its discriminanti§, (I3 — 4k%) > 0, and this restricts the possible valuesiof
andk, for a givenz. With this aim we define the polynomi#(z) given by

P(z) = —k(z2+1) + I3 2,

with roots

s I3 — 4k?
B 2k ’
which can be written in terms of the variablg = I5/2k as

2y =az /a3 — 1.

As az > 1, thenas > /a2 — 1 > 0 and thusz.. > 0. The sign of the polynomiaP(z) is
displayed in Fig. 1.
The regionR . x R, splits into three regions,

A={(z1,22) € Ry xRy |21 > /2+ :Z:Q}U{(:zrl,:zrg) ERy xRy |21 < \/z- 12},

B={(x1,22) e Ry xRy | /2—za < x1 < /2 T2}
separated by the region

C ={(z1,72) € Ry xRy |21 = /Z7 22} J{(21,72) € Ry x Ry | 21 = \/2- 30}

of the straight liness; = /z} x2 andx; = /z_ 2. The condition to make\;, P(z) non-
negative in regiord, where the polynomiaP takes negative values, is to chodseandk, so
that A2 (k1, ko, I3, k) < 0. Similarly, asP is positive in regionB we have to choosk; andk,
such that\5(k1, k2, I3, k) > 0. Finally, asP vanishes in regiod, there is no restriction on the
coefficientsk; andks.

Once we have stated the conditions fgs P(z) to be non-negative we still have to impose
the condition

zZ = ZzZ4

krz + ko £ 2/ A12[k(22 4+ 1) + I3 2] > 0. (2.23)
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1 S=mx1 = \/Z1 22
t=x1 =./aszrs
B )/ T=x1 = \/Z_To
A(-) B(+)
/ B(+)
/ A(-)

€2

Fig. 1. Sign of the polynomiaP(x1, x2).

In order to study these conditions, we study the sign of thenmonial

PIS,k(z, kl, kg) = (klz + k2)2 — 4)\12[—k(22 + ].) + IgZ]
o 4P(Z)Ig
12— 4k2?

4P(2)k ) 4P(z)k
= =/l - =—=.
E\NTEoae T P o
As we remarked before, the constahtsk, cannot be both negative. L&t denote the set

K:Rz —{(k‘l,kg) ERQ | k1 < O,k‘g < 0}
and consider three cases:

+ (aky + bks)?
where

1. If (1, 22) € A, thenasP(z) < 0, it must bel;2 < 0 in order to satisfyA\;2 P(z) > 0. In
this case, ifK; and K are the sets

Klz{(kl,kg)éK; —m>|ak1+bk2|} 5

KQZ{(klakQ)eK; _m<|ak1+bk2|} .
We find the following particular cases

(a) If (kl,k‘g) c Ky, thenPI&k(z, kl,k‘g) > 0.
(b) If (kl,k‘g) c Ko thenPI&k(z,kl, kg) <0,
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that can be summarised by means of Figure 2.

A2

Ky

Ky
K,

K2 )\1

K,

Ky

Fig. 2. Sign of the polynomiaPy, »(z, k1, k2) in K.

2. If (z1,2z2) € B, asP(z) is positive, them\;2 must also be positivey;2 > 0. Thus for
(kl, kg) € K1 UKo, P[3’k(z, k1, kg) > 0.
3. If ((El, {EQ) € C, then for(kl, kg) € K1 UKo, PIS,k(z, k1, kg) > 0.

In those cases in whicRy, x(z, k1, k2) > 0, we can assert that

k12 + ka| > 2¢/Ma[—k(22 + 1) + I3 2]

but we still have to impose that z + A2 > 0 for (2.23) to be positive. Nevertheless, this is very
simple, because if the paik,, k2) does not satisfy; z + k2 > 0, the pair of opposite elements
(—k1, —k2) does it, while the other conditions are invariant under thaengek; — —Fk; with
i=1,2.

In those cases in whicRy, x(z, k1, k2) < 0 we can assert that

[kaz + kol < 2/ Aaz[—k(ad + o) + I a3

and in this case the unique valid superposition rule is

1/2
1‘:|$2|(]ClZ—FkQ+2\/)\12[—k(22+1)+132:]) R

which is equivalent to

1/2
T = <k1x% + kox2 + 2\/)\12[—k(x‘11 +a5) + I3 2323 ]> :
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Note that if we had considered no restriction fon k2, we would have obtained real and
imaginary solutions of the Milne—Pinney equation.

Expression(Z.22) provides us with a superposition ruléfeipositive solutions of the Pinney
equation[(Z.15) in terms of two of its independent particplasitive solutions. Therefore, once
two particular solutions of the equation (2.15) are knowe, an write its general solution.
Note also that, because of the parity symmetry[of (2.15) sthgerposition[(2.22) can be used
with both positive and negative solutions. In all these wagsobtain non-vanishing solutions
of (2.13) whenk > 0. Mutatis mutandisthe above procedure can also be applied to analyse
Milne—Pinney equations when< 0.

A similar superposition rule works for negative solutiofi$tiine—Pinney equatiori (2.15):

1/2
r=- (klx% + kox2 + 2\//\12(—]6(1‘411 +a3)+ I3 aﬁx%)) : (2.24)
where once agaimn; andz. are arbitrary solutions.

2.5. Painleve-Ince equations and other SODE Lie systemsn this section we show a new
relevant instance of SODE Lie systems including, as pdaidastances, some Painlevé—Ince
equations[[93]. In the process of analysing that this paldiccase of Painlevé—Ince is a SODE
Lie system, we find a much larger family of SODE Lie systemsalvtirequently occur in the
mathematical and physical literature.

Consider the family of differential equations

i+ 3xd + 2 = f(1), (2.25)

with f(¢) being anyt-dependent function. The interest in these equations isvatet by their
frequent appearance in Physics and Mathematics [66, 7., TBd different properties of these
equations have been deeply analysed since their first amélyd/essiot and Wallenberg [224,
229] as a particular case of second-order Riccati equatimrinstance, these equations appear
in [L06] in the study of the Riccati chain. There, it is statedt such equations can be used to
derive solutions for certain PDEs. In addition, equatio282 also appears in the book by Davis
[86], and the particular case witf(¢t) = 0 has recently been treated through geometric methods
in [41,[686].

The results described in previous sections can be useddy diffierential equations (2.25).
Let us first show that the above differential equations ar®BQie systems and, in view of
Proposition 1, they admit a superposition rule that is detiiccording to definitioh 1.53, equa-
tion (2.25) is a SODE Lie system if and only if the system

T=v, (2.26)
0= —3zv — 2> + f(1), '
determining the integral curves of thalependent vector field of the form

XPI(taxav) :Xl(m,v)+f(t)X2(x,v), (227)
with 5 5 5
o 3\ 2 - 2
Xl_“ax (3a:v+x)av, X5 Bk

is a Lie system.
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In view of the decomposition (Z.27), all equatiohs (2.2%) 8ODE Lie systems if the vector
fields X; and X, are included in a finite-dimensional real Lie algebra of gedieldsV'. This
happens if and only iLie({ X7, X>}) span a finite-dimensional linear space. We consider the
family of vector fields oril'R given by

0 N _9
X1—v%_(3xv+x)%, Xz_av,
X3:—£+3xg, X4:x2—2x2£,
Ox Ov Ox v
p 9 ) 9 (2.28)
2 _ 2y 0 2 4y 0
X5 =(v+2z )% (v+ 3z )%, XG—Q.%‘(U—‘y-.%‘)ax-‘rQ(U x)av,
7] 7] 7] 7]
X7—%—x%, X8—2$8—+4Ua

whereXs = [X1, Xo], —3X4 = [X1,X3], X5 = [X1,X4], X6 = [X1, X5], X7 = [X2, X5],
Xs = [X2, Xg], and then the vector field¥,, ..., X5, are linearly independent ov&®. Their
commutation relations read

(X1, Xo] = X, (X1, X3] = =3Xy4,  [X1,X4] = X5, (X1, Xs5] = X,
1
[X1, X6] =0, [X1, X7] = 5)(8, [X1, Xs] = —2X1, [X2,X3]=0
[X2, X4] =0, [X2, X5] = X7, [X2, X6] = Xs, [X2,X7] =0
1
o, Xs] = 40Xz, [Xa, Xa]=—Xr,  [Xo,Xs]=—5Xs,  [Xa,Xe] = —2X;, &2
(X3, X7] = —2X2,  [X3, Xs] = 2X5, (X4, X5] = —Xu, [X4, Xe] =
(X4, X7] = X5, (X4, X5] =0, [X5,X6] =0, (X5, X7] = —3X4,
[Xs5, Xs] = —2X5, (X6, X7] = —2X5, [Xe, Xs] = —4XGs, [X7, Xs] = 2X7,
In other words, the vector fields(y, ..., Xg, span an eight-dimensional Lie algebra of vector

fieldsV containingX; andX,. Therefore, equatiof (2.P5) is a SODE Lie system. Moredker,
elements of the following family of traceless réak 3 matrices

0 -1 0 0 0 O
M= 0 0 -1 |, My = 0 0 0 |,
0 0 o -1 0 o.
0 0 O 1 -1 0 O
Ms=[1 0 0 |, M,y = -3 0 2 0 |,
0 -1 0. 0o 0 -1.
01 0 0 0 2
Ms=1|10 0 -1 |, Mg=1| 0 0 0 |,
0 0 o 0 00
0 0 0 2 0 0
My=| -1 0 0|, Mg=|0o0 o0 ,
0o -1 0. 0 0 -2
obey the same commutation relations as the correspondutgnelds, X, ..., X, i.e. the

linear mapp : sl(3,R) — V, such thatp(M,) = X,, with @ = 1,...,8, is a Lie algebra
isomorphism. Consequently, the finite-dimensional Lieehta of vector field$” is isomorphic
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to sl(3,R) and the systems of differential equations describing thegial curves for the-
dependent vector fields

8
X(t,x,v) = ba(t)Xa(z,v), (2.30)
a=1

are Lie systems related to a Vessiot—Guldberg Lie algebragsphic tos((3, R).

Many instances of the family of Lie systenis (2.30) are asdediwith interesting SODE
Lie systems with applications to Physics or related to résaale mathematical problems. In all
these cases, the theory of Lie systems can be applied tdiggtesthese second-order differential
equations, recover some of their known properties, andsiplys provide new results. Let us
illustrate this assertion by means of a few examples.

Another equation appearing in the Physics literature([[21.228] which can be analysed by
means of our methods is

F 4 3xi + 23 4+ A\ =0, (2.31)
which is a special kind of Liénard equati@nt f(z)& + g(x) = 0, with f(z) = 3z andg(z) =
z® + A\i12. The above equation can also be related to a generalisedofoam Emden equation
occurring in the thermodynamical study of equilibrium cgnfiations of spherical clouds of gas
acting under the mutual attraction of their molecules [88].
As in the study of equationk (2]25), by considering the nesiatsée v = , equation[(2.31)
becomes the system
{ T =w,
(2.32)

= —3xv — 2> — \z,

describing the integral curves of the vector fisld= X; — A\ /2(X7 4+ X3) included in the
family (6.13).

Finally, we can also treat the equation
i+ 3zd +2® + f(t) (@ +2%) + g(t)x + h(t) =0, (2.33)

describing, as particular cases, all the previous exanfb84. The system of first-order differ-
ential equations associated with this equation reads

{ b= —3zv — 2% — f(t)(v+22) — g(t)z — h(t). (2.34)

Hence, this system describes the integral curves of-tlependent vector field
1 1
Xt = X1 —h(t) Xz — Zf(t) (Xg —2Xy) — 59(75) (X7 4+ X3).

Therefore, equation (2.B3) is a SODE Lie system and the yhafoie systems can be used to
analyse its properties.

Some particular cases of systdm (2.33) were pointed ou@2n134]. Additionally, the case
with f(t) = 0, g(t) = w?(t) andh(t) = 0 was studied in[[71] and it is related to harmonic
oscillators. The case witl(t) = 0 andh(t) = 0 appears in the catalogue of equations possess-
ing the Painlevé property [126]. Additionally, our resgéneralises Vessiot's contributidn [225]
describing the existence of an expression determining¢heml solution of a system like (2]33)
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(but with constant coefficients) in terms of four of their fp@xlar solutions, their derivatives and
two constants.

Finally, it is worth noting that the second-order differi@hequation[(2.33) is a particular
case of second-order Riccati equations [66.] 106]. Suchtieqsawere analysed through Lie
systems in[[7[7]. The approach carried out in that paper isdas the use of certaiad hoc
changes of variables which transform second-order Riegaiations into some Lie systems. The
advantage of our approach here is that it allows us to studgtens [2.38) without using, as
it was performed in[[77], angd hoctransformations. In addition, our presentation along with
the theory of quasi-Lie schemes can be used to perform a cpiitglete study of second-order
Riccati equations in a systematic way [48].

2.6. Mixed superposition rules and Ermakov systemsLet us now turn to show how the theory
developed in Sectidn 1.7 for mixed superposition rules wolly adding some, probably differ-
ent, Lie systems to an initial one, we get new Lie systemsatatit constants of motion which
do not depend on thiedependent coefficients of these systems and relate tlegeattf solutions
of the constituting Lie systems. Moreover, if we add enougphies, these constants of the motion
can be used to construct a mixed superposition rule.

We here investigate Ermakov systems. These systems areddoyra second-order homoge-
neous linear differential equation and a Milne—Pinney ¢guai.e.

k
. _ 2
i = —w )+ et

2
i} (z,y) € RY.
j = —w(t)y,

These systems have been broadly studied in Physics and ivatiles since its introduction until
the present day. In Physics they appear in the study of Bosstein condensates and cosmologi-
cal models[109, 115, 152] and in the solutiort-afependent harmonic or anharmonic oscillators
[87,196, 101, 150, 192, 204]. A lot of works have also been thvto the usage of Hamiltonian
or Lagrangian structures in the study of such systems, gel84]. Here we recover a constant
of the motion, the so-calleldewis-Ermakov invarianil50], which appears naturally.

In order to use the theory of Lie systems to analyse Ermaksiesys, consider the system of
ordinary first-order differential equatioris [87, 146]

T = vy,
Y= Uy,
(2.35)
. 2
Uy = —w (t)T + o2
i]ll = —W2(t)y,

defined overTJR%r and built by adding the new variablés= v, andv, = y to the Ermakov
systems and satisfying the conditions explained in Sefiarits solutions are the integral curves
for thet-dependent vector field

L kN9 2,2
Xt_vm8m+vy8y+< w (t)x+x3) Ov, @ (t)yavy’
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which is a linear combination with-dependent coefficients(; = X; + w?(¢) X3, of

0 0 kE 0 0 0
Xl—Uz-%—FUya—y—FFa—vw’ X3——J)8’Uw _ya—’uy

Taking into account the vector field

Y )
2= 53 \"ox yay ””"avm U”avy ’

the vector fieldsX;, X, and X5 span a three dimensional Lie algebra isomorphigi(d, R). In
this way, this system is a SODE Lie system related to a Lietaigef vector fields isomorphic to
s[(2,R).

The vector fieldsL1, Lo, L3, associated with the Milne—Pinney equation (see Se€tidn 2.3
span a distribution of rank two 6fiR .. Consequently, there is no local first-integfaduch that
(L1 + w(t)?(t)La)I = 0 for any givenw(t). In other words, Milne—Pinney equations do not
admit a common-independent constant of the motion.

By adding the othesl((2,R) linear Lie system appearing in the Ermakov system, i.e. the
harmonic oscillator witlt-dependent angular frequencyt), the distribution spanned by, X»
andX; has rank three over a dense open subsgfisf. Therefore, there is a local a first-integral.
This one can be obtained froki; F' = X3F = 0. But X3F = 0 implies that there exists a
function £ : R3 — R such thatF'(z,y, ve,v,) = F(z,y,£), with ¢ = yv, — av,, and then
X1 F = 0is written

0 OF 4 OF v OF
T oz Yoy 3 O

and we obtain the associated system of characteristics

kyda:—xdy _ x3 dé N d(y/x) n zdf _0.
3 Y 3 ky
From here, the following first-integral is found [150]
Y2 2 Y\?2 2
V(@ Y, vz, 0y) =k (;) +& =k (E) + (yve — 7vy)7,

which is the well-known Ermakov—-Lewis invariant [87, 1482].

Once we have obtained a first-integral, we can obtain newtantssby adding new copies
of any of the systems we have already used. For instanceideoribe system of first-order
differential equations

T = Uy,

y = Vy,

z = Vz,

k (2.36)

. 2
Uy = —w(t)xr+ et
oy = _w2 (t)yv
v, = —wi(t)z,

which corresponds to the vector field

0 0 0 k 0

— vy F U + = — w(t) xi+ i+,zi
x YOy 0z a3 0u, Oy yavy ov, )

Xi = vy
t?fa
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Thet-dependent vector field; can be expressed 8 = N; + w?(t) N3 whereN; and N3 are
0 0 0 kE 0 0 0 0
N1 =v3— Yo 25 — =, N3=-— — Y= — .
! U'8x+v"8y+v 6z+x3 Oy, 3 xf)vw yc?vy Zavz
These vector fields generate a three-dimensional real gebah with the vector fieldv, given
by

vl 0, 0, 0 9 0 9
2= Ox yay 0z " Ou, Y Ovy v, )
In fact, they span a Lie algebra isomorphiat®, R) because
[N1, N3] = 2Ny, [Ni,Nz] = N1, [Nz, N3] = Ns.

The distribution spanned by these fundamental vector fieddsrank three in a open dense
subset oiTRfjr. Thus, there exist three local first-integrals for all thetee fields of the latter
distribution. In other words, systerh (2136) admits thtéedependent constants of the motion
which turn out to be the Ermakov invariaht of the subsystem involving variablesandy, the
Ermakov invariant, of the subsystem involving variablesandz, i.e.

I = % <(va —avy)? + k (%)2) . L= % <(va —zu)? 4+ k (%)2> :

and the WronskiamV” = yv, — zv,, of the subsystem involving variablgsandz. They define
a foliation with three-dimensional leaves. We can use tbigtion to obtain in terms of it a
superposition rule. That is reached by describing terms ofy, z and the integral$;, I, W,

i.e.
V2
W]
This can be interpreted, as pointed out by Pinney[[182], gimgdhat there is a superposition
rule allowing us to express the general solution of the MilPianey equation in terms of two in-
dependent solutions of the corresponding harmonic osmillgith the same-dependent angular
frequency.

1/2
x (12y2 T 22+ AL, — kW2 yz) . (2.37)

2.7. Relations between the new and the known superpositionile. We can now compare the
known superposition rule for the Milne—Pinney equation

x(t) = % (l92(®) + hy3(6) & VAL L — kW2 y1(t)y2(t))1/2 . (239

wherey; (t) andy(t) are two independent solutions of
i =—w(t)y, (2.39)

and [2.2R) and check that actually the latter reduces todimedr whenr; andx, are obtained
from solutionsy; andy- of the associated harmonic oscillator equation.

Let y; andys be two solutions ofi[{2.39) and’ its Wronskian. Consider the two particular
positive solutions of the Milne—Pinney-equatief(t) andz(t) given by

1(0) = S5O0+ Ca0),

(2.40)

V2
Ta(t) = W\/Czy%(t) + Chy3(t),
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whereC; < Cs and we additionally impose
4C1Cy = kW2 (2.41)

Thet-dependent constant of the motidngiven by [2.19) for the two patrticular solutions of
the Milne—Pinney equation can then be expressed as a faraftibe solutiong;; andy. of the
t-dependent harmonic oscillator and its WronsKi&n After a long computatiors turns out to
be
4(C? +C3)

w2 ’
and then using the explicit forni (2}40) of the particularusioins and taking into account the
constant[(2.42) if(2.22) we obtain that

Iy = (2.42)

2
klx% + kzl’% + 2\/)\12(—/€(1"11 + l’%) + Igl’%x%) = W(Clkl + Czkg)y%

2
+ (C1k2 + Czkl)yg) + W\/Zl(clkl + CQkQ)(Cle + Czkl) — kWleyQ. (2.43)
Consequently, from the superposition rile (2.22), we recexpressior (2.37):

=W \/u1y1 + p2ys £ VA pe — kW2y1ys, (2.44)

where
{/ﬂ = (C1k1 + Caky),

= (Crkg + Caky).
Once we have stated the superposition rule, we still havedtyse the possible values bf and
A2 that we can use in this case. If we use the expresion| (2.48ptaén after a short calculation
the following values.

4C3 4C%

TR T T

Now if we write y? andy3 in terms ofz?, x3 andW from the system(2.40) we obtain

1 Cl —CQ .2?% o y%
Ct - C2<—02 G ><$§ S\ ) (2.40)

Therefore, ag’, > C; the condition ofy? and, y2 being positive is
{ 01.231 S 02152

(2.45)

and it is satisfied ifc? /23 < Cy/Cy = 4C3/kW? = 2, anda?/z3 > C1/Cy = 4C3 /kW? =

z_, because ofl{2.41). Thu$z1,22) € B and therefore the only restrictions fég, ko are

A2 > 0 andki2? + kex3 > 0. Obviously, by means of the change of variables(2.40) this
last expression is equivalent tay? + p2y3 > 0 and thusu; andus cannot be simultaneously
negative. Furthermore\;o (13 — 4k?) = 4uius — kW2, As we have said that;s > 0 then
dpipe > kW2, i.e. uips is positive and thusy; and s, are positive. In this way we recover
the usual constants of the known superposition rule of theé#Pinney equation in terms of
solutions of an harmonic oscillator.
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2.8. A new mixed superposition rule for the Pinney equation.In this section we derive a
mixed superposition rule for the Milne—Pinney equatioreimis of a Riccati equation. Consider
again the-dependent Riccati equation

‘Cil‘f = by(t) + ba(t)z + by (t)z? (2.48)
which has been studied in [50,]63] from the perspective othkery of Lie systems. We have
already mentioned that this Riccati equation can be corsidas the differential equation de-
termining the integral curves for thedependent vector field (1.25). This vector field is a linear
combination witht-dependent coefficients of the three vector fies, X5, X3, given by [1.26),
which close on a three-dimensional real Lie algebra withiiagi relations[(1.27). Consequently,
this Lie algebra is isomorphic (2, R). Note also that the commutation relations (1.27) are the
same ad (213).

Take now the following particular case of Riccati equation

d

d—f =1+w?(t)2?.

This Riccati equation reads in terms of thg as the equation of the integral curves of the
dependent vector field; = X; +w? () X3. Thus, we can apply the procedure of the Sedfioh 1.7
and consider the following differential equation®? x TR

i =1+ w?(t)a?,

By =1+ w?(t)a2,
i3 =1+ w?(t)a?,

T =,

k
S 2
U= —w (t)x—i—g,

where(z1, z2, 23) € R3, x € R, and(z,v) € TR, . According to our general recipe, consider
the following vector fields

0 0 0 0 k 0

M, = — . _ _ _

! 8x1+8x2+8x3+v8x+x36v’

M 0 +z 0 +x 0 +1 xg—vg

2 T 0 T B0 2 \"or Yow )
) ) B

My = oz = +aiy —+aig - —ag

that, by construction, satisfy same commutation relatasisefore, i.e.
[My, M3] = 2Ms,  [My, Ms] = My, [Ma, M3] = M3,

and the full system of differential equations can be undecstas the system of differential
equations for the determination of the integral curves efitdependent vector field/(t) =
M; + w?(t)Mj3. The distribution associated with this Lie system has rdm&e in almost any
point and then there exist locally two first-integrals. A&/> = [M;, M3], itis enough to find the
common first-integrals fok/; andMs, i.e. a functionF : R> — R such thatM; F = M3 F = 0.
We first look for first-integrals independent of. i.e. we suppose that depends just on
x1, x2,x andwv. Using the method of characteristics, the conditidgF’ = 0 implies that the
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characteristics system is
drq drs dv  dx

2 2
x] x5 —x 0
That means that for such a first-integral fof;, which depends o, 22, x andwv, there is a
function ' : R* — R such thatF(z1, 22, z,v) = F(I, Iz, I3), with I1, I, andI3 given by
Ilzi—i, IQZL—E, I3:£L'
T T2 x1 x
Now, in terms ofF, the conditionM; F = M, F = 0 implies
ol 0F 20, 0F OF OF , k\OF
—_— =+ — L -2L)L1——|(I;+—=]=— =0. 2.49

”( I; oI 138[2+813>+(1 T <2+I§ I, (2.49)
Thus the linear term om and the other one must vanish independently. The methodasf ch
acteristics applied to the first term implies that there tex&s mapF : R? — R such that

— ~

F(Il,IQ,Ig) = F(Kl,KQ) where
Ky =— Ko = I12.

Finally, taking into account the last resultid; £’ = 0, we get
kK,\ OF k\ OF
K}~ K+ — | =— — (K + — | =— =
( 1 1+ K22>8K1 ( 2+K2> By 0,
and by means of the method of characteristics expredsid)(wolves

dK, K2+ Ky — kiél
dK, B Ko + Kiz
which gives us the first-integral
k+ K3
=K
Cl 2+ K1K2 )

that in terms of the initial variables reads
P
x (x1 — z2)2?
If we repeat this procedure with the assumption that thgmaleloes not depend an we obtain
the following first-integral
k+ (zs — 2)%a?

Cy = (x?, - %) x? + (1 — 23)22

Itis a long but easy calculation to check that both are firgrals ofM;, M, and M3. We can
obtain now the general solutianof the Milne—Pinney equation in terms ®f , x5, 3, C1, Cs, as

- \/(Cl (x1 — 22) — Ca(x1 — x3))2% + k(x2 — 23)?
(Cy — C1)(x2 — x3) (w2 — 1) (21 — x3) ’

whereC; andC; are constants such that, onegt), x2(¢t) andzs(¢) have been fixed, they make
x(0) given by the latter expression be real.

Thus we have obtained a new mixed superposition rule whiables us to express the gen-
eral solution of the Pinney equation in terms of three sohgiof Riccati equations and, of course,
two constants related to initial conditions which detereniach particular solution.
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3. Applications of quantum Lie systems

In Section§ 1.0 arild 1.8, it is proved that we can make use gibmetric theory of Lie systems to
treat a certain kind of Schrodinger equations, thoseedltd the so-called quantum Lie systems.
In this section we use this point of view to investigate QuamMechanics.

First, we develop the geometric theory of reduction for quanLie systems. Reduction
techniques have already been put into practice to studyysteems[[40| 47, 50, 63]. In these
works, a variety of reduction methods and other closelytedltopics are analysed. Most of these
methods are based on the properties of a special type of &fersyin a Lie group associated with
the Lie system under study. As quantum Lie systems can alselated to such a type of Lie
system in a similar way as any Lie system, we can apply mosteofmethods developed in the
aforementioned works to analyse Quantum Lie systems. $hiseimain purpose of the present
section.

In detail, we start by analysing the reduction techniquecdfeantum Lie systems and we
complete some previous classic achievements about the pinext show that the interaction
picture can be explained from this geometrical point of viewerms of this reduction technique.
Furthermore, the method of unitary transformations isys® from our perspective to exemplify
that quantum Lie systems associated with solvable Lie atgetf linear operators, in similarity
with the classical case, can be exactly solved. On the otiredt,fsystems related to non-solvable
Lie algebras can be solved in particular cases. Both casebeanalysed to reproduce some
results on the method of unitary transformations in paldiccases found in the literature.

3.1. The reduction method in Quantum Mechanics.We here review the reduction techniques
explained, for example, in_[40, 51,163]. While in some presgiovorks certain sufficient condi-
tions to perform a reduction process were explaihed [40Q,163F we show that these conditions
are also as necessary [51]. Additionally, we use the gedrrettuction technique to explain the
interaction picture used in Quantum Mechanics and we reviem a geometric point of view,
the method of unitary transformations.

In Sectior LB it was shown that the study of Lie systems cardbaced to that of finding the
solution of the equation

Ry1g0 =~ balt)an = a(t) € TG (3.1)
a=1

with ¢g(0) = e.

The reduction method developed in[40] shows that given atisol z(¢) of a Lie system on
a homogeneous spac#/ H, the solution of the Lie system in the grodfy and therefore the
general solution in the given homogeneous space, can beagédao that of a Lie system in the
subgroupH. More specifically, if the curvg(t) in G is such thati(t) = ®(g(t), #(0)), with
® being the given action off in the homogeneous space, thgn) = g(t)g’(t), whereg’(¢)
turns out to be a curve ¥ which is a solution of a Lie system in the Lie subgrolpof G.
Actually, once the curvg(¢) in G has been fixed, the curg&(t), that takes values i, satisfies
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the equation [40]

R 1=1yg g = —Ad _1 <Zb aa + R§1*§g> = a/(t) c TeH (32)

This transformation law can be understood in the languadbeotheory of connections. It
has been shown in [40, 60] that Lie systems can be relatedhtvections in a bundle and that the
group of curves i, which is the group of automorphisms of the principal bur@le R [60],
acts on the left on the set of Lie systems@nand defines an induced action on the set of Lie
systems in each homogeneous spacé&fdvlore specifically, ifz(¢) is a solution of a Lie system
in a homogeneous spadédefined by the curve(t) in g, then for each curvg(t) in G such that
g(0) = e we see that'(¢t) = ®(g(¢), z(¢)) is a solution of the Lie system defined by the curve

a/(t) = Rg-1.59 + Ad(g)a(t), (3.3)
which is the transformation law for a connection.

In conclusion, the aim of the reduction method is to find am@natrphismg(¢) such that the
right-hand side in[{3]3) belongs ©. H = § for a certain Lie subgroufy of G. In this way, the
papers|[40, 60] gave a sufficient condition for obtaining ttesult. In this section we study the
above geometrical development in Quantum Mechanics ancetegrdine a necessary condition
for the right-hand side ir.(3.3) to belongfio

Quantum Lie systems are thosdependent self-adjoint Hamiltonians such that

- zr:ba(t)Hav (34)
a=1

with iH, closing under the commutator of operators on a finite-dinoeras real Lie algebra
of skew-self-adjoint operatoiig. Therefore, by regarding these operators as fundamerdtdrve
fields of a unitary action of a connected Lie groGpwith Lie algebrag isomorphic toV, we
can relate the Schrbdinger equation to a differential #gnan G determined by curves it .G

given bya(t) Zb )a,, by considering-i H,, as fundamental vector fields of the basis of

g givenby{a, |a = 1 , T}

Now, the precedlng methods enable us to transform the proioi a new one in the same
groupG, for each choice of the cungt) but with a new curve’(t). The action ofG on H is
given by a unitary representatiéh and therefore thedependent vector field determined by the
originalt-dependent HamiltoniaH (t) becomes a new one withdependent Hamiltoniad’ (¢).

Its integral curves are the solutions of the equation
dy’

E == —ZH/(t)LZJ/,

where
—iH'(t) = —iU(g(t)) H(®)U (3(t) + U(g() U (3(t))
That is, from a geometric point of view, we have related a Ljistesm on the Lie group
G to certain curvea(t) in T.G and the corresponding system # determined by a unitary
representation aff to another one with different cuné(t) in T.G and its associated one #.
Let us choose a basis @f.G given by{c, | & = 1,...,r} with » = dim g, such that
{ca | @ =1,...,s} be abasis of . H, wheres = dim §, and denotdc® | « = 1,...,r} the
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dualbasisofc, | @ =1,...,r}. Inorder to findg such that the right-hand term 6f(B.3) belongs
to T.H for all ¢, the condition forg is

¢ (Ad(g)a(t) + Ry-1.59) =0, a=s+1,...,r.

Now, if 6% is the left invariant 1-form oidz induced frome®, the previous equation implies
=—1

d
g—l <R§_1*ea(t)_ flt ):07 Oé:S-f—].,...,T’.

Let beg = g1, the latter expression implies th&...a(t) — g is generated by left invariant
vector fields onG from the elements of. Then, givenr’ : G — G/H, the kernel ofrl is
spanned by the left invariant vector fields @rgenerated by the elementspfThen it follows

w5 (Rgea(t) — g) = 0. (3.5)

Therefore, if we use that? o X2 = — XL o 7L, whereX ! denotes the fundamental vector
field of the action of7 in G/ H and X2 denotes the right-invariant vector field@whose value
in e is a,,, We can prove that”(g) is a solution orGG/H of the equation

drh(3) < _
— = ; ba(t) X1 (7" (7)) .- (3.6)

Thus, we obtain that given a certain solutigi¢) in h related to the initial(¢) by means of
g(t) according tay(t) = g(t)g'(t), then the projection t6&'/ H of §(t), i.e.7%(§(t)), is a solution
of (3.8). This result shows that whenevg(t) is a curve inH, theng(¢) satisfies equation (3.6).
Moreover, as it has been shown[in[40]gift) satisfies[(316), theg( (¢) is a curve inH satisfying
(3.2). The previous result shows that such a condition fomiang [3.2) is not only sufficient but
necessary too. Thus, we provide a new result which comptlet¢®ne found in [40].

Finally, it is worth noting that even when this last proof heesen developed for Quantum
Mechanics, it can also be applied to ordinary differentéala&ions, because it appears as a con-
sequence of the group structure of Lie systems which is tiie $ar both quantum and ordinary
Lie systems.

3.2. Interaction picture and Lie systems. As a first application of the reduction method for Lie
systems, we analyse here how this theory can be applied taiextpe interaction picture used
in Quantum Mechanics. This picture has been proved to beeffegtive in the developments
of perturbation methods. It plays a rble when thgdependent Hamiltonian can be written as a
linear combination witl-dependent coefficients of a simpler Hamiltonfnand a perturbation
V(t). In the framework of Lie systems, we can analyse what happém thet-dependent
Hamiltonian is

H(t)=H, +V(t) = H + Z ba(t) Hy = Z bo(t)Ha, bi(t) =1,

where the set of skew-self-adjoint operatprs H, | = 1,...,r} is closed under commutation
and generates a finite dimensional real Lie algebra. That&tuis very similar to the case of
control systems with a drift term (hef€,) that are linear in the control functions. The functions
b.(t) correspond to the control functions.
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According to the theory of Lie systems, take a bdsis |« = 1,...,r} of the Lie algebra
with corresponding associated fundamental vector fieldd,. The equation to be studied in
T.G is the one[(3]1) and whether we defidét) = g(¢)g(¢), whereg(t) is a previously chosen
curve, it obeys a similar equation fgt(¢) given by [3.3B).

If, in particular, we choosg(t) = exp(a;t), we find the new equation il G

Ry-1.gg" = —Ad(exp(ait)) <Zb ) = —exp(ad(aq)t <Zb ) . (3.7

Correspondingly, the action 6f on?# by a unitary representation defines a transformatiofon
in which the state); transforms inta), = exp(iH;t)1; and its dynamical evolution is given by
the vector field corresponding to the right-hand side_of)(3rvparticular, if{as, ..., a,} span
an ideal of the Lie algebrg the problem reduces to the corresponding normal subgroGp i

3.3. The method of unitary transformations. A second application of the theory of Lie systems
in Quantum Mechanics and, in particular, of the reductiothme is to obtain information about
how to proceed to solve a quantum Lie Hamiltonian. Let uswdishere a general procedure to
accomplish this task.

Every Schrodinger equation of Lie type is determined by @ dlgebrag, a unitary repre-
sentation of its connected and simply connected Lie gi@um #H, and a curven(t) in T.G.
Depending ory, there are two cases. dfis solvable, we can use the reduction method in Quan-
tum Mechanics to obtain the general solutiory i not solvable, it is not known how to integrate
the problem in terms of quadratures in the most general dieseertheless, it is possible to solve
the problem completely for some specific curves as for itgdhhappens for the Caldirola—
Kanai Hamiltonian[[1118]. A way of dealing with such systenossist in trying to transform the
curvea(t) into another one’(t), easier to handle, as it has been done in the previous section
for the interaction picture. In a more general case thanrttegaction picture, although any two
curvesa(t) anda’(t) are always connected by an automorphism, the equationndiefag the
transformation can be as difficult to solve as the initialigpeon. Because of this, it is interesting
to look for a curve that:

1. Itdetermines an easily solvable equation.
2. It can be transformed through an explicitly known transfation into the curve associated
with our initial problem.

This is the topic of next three sections, where conditiorrssfioch Schrodinger equations are
analysed. In any case, we can always express the solutidmedhitial problem in terms of
a solution of the equation determining the transformatiorcertain cases, for an appropriate
choice of the curvg(t) the new curvey/(¢) belongs toT.H for all ¢, where H is a solvable
Lie subgroup ofG. In this case we can reduce the problem frgro a certain solvable Lie
subalgebr# of g. Of course, in order to do this, a solution of the equatiorediiction is needed,
but once this is known we can solve the problem completelgims of it. Other methods have
alternatively been used in the literature, like the Lewisdenfeld (LR) method. However, this
method seems to offer a complete solution only ifs solvable. Ifg is not solvable, the LR
method offers a solution which depends on a solution of segysif differential equations, like
in the method of reduction.
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To sum up, given a Lie system an associated with a Lie alggbrdnose Lie grouf acts,
by unitary operators, o, and determined by a curwgt) in T.G, the systematic procedure to
be used is the following:

o If g is solvable, we can solve the problem easily by quadratwésppears in[94, 107].

e If gis not solvable, we can try to solve the problem for a givewelike in the Caldirola—
Kanai Hamiltonian in[[118], by choosing a curgét) transforming the curve(t) into
another one easier to solve, like in the interaction pictifréhis does not work we can
try to reduce the problem to an integrable case like intdependent mass and frequency
harmonic oscillator or quadratic one dimensional Hamiltann [52,[96/ 211/, 238].

3.4.t-dependent operators for quantum Lie systems.In this section we apply our methods to
obtain thet-dependent evolution operators of several problems fontida Physics literature in
an algorithmic way.

We first provide a simple example in order to illustrate thémpeints of our theory. Next,
we analyseé-dependent quadratic Hamiltonians. These Hamiltoniassri® a very large class
of physical models. Sometimes, one of these physical masldisscribed by a certain family of
guadratic Hamiltonians associated with a Lie subalgebagefators of the one given for general
guadratic Hamiltonians. If this Lie subalgebra is solvatie differential equations related to it
through the Wei—Norman methods are solvable too and-#welution operator can be explicitly
obtained. In these cases, we can find the explicit solutidhexfe problems in the literature using
different methods for each case. We also describe some agpes to study these quantum Lie
systems in the non-solvable cases.

3.5. Initial examples. We start our investigation by studying the motion of a p#etieith a
t-dependent mass under the action gfdependent linear potential term. The Hamiltonian de-
scribing this physical case is
P2
H(t) =
®) 2m(t)

The Lie algebra associated with this example is a centransibn of the Heisenberg Lie

algebra. A basis for the Lie algebra of vector fields relatetthis physical model is

+S(HX.

P2
=iy, Zy=iP Zy=iX, Zy=il,
which closes on a Lie algebra under the commutation relation
[Z1,Z5] = 0, [Z1, Z3) = 275, [Z1,Z4) = 0,
(22, Z3] = Za, (Z2,Z4) =0,
[Z3, Z4) = 0.

This Lie algebra is solvable, and then, the related equaitdmained through the Wei—Norman
method, can be solved by quadratures for any pairdependent coefficienta(t) andS(t). The
solution of the associated Wei-Norman system allows us taiohet-evolution operator and
the wave function solution of thiedependent Schrodinger equation.

This t-dependent Hamiltonian has been studied in [221] for somiicpéar cases usingd-
hocmethods and in general in [94]. Here, we investigate it tgtotlhe Wei—Norman method. Its
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equation in the group with T.G ~ V, is

. 1
Rgfl*gg = —F(t)al - S(t)a3 = ClMS(t) )
whereth,ei, ..., a4, are a basis gf closing on the same commutation relations as the operators,
Z1, ..., Z4. The factorisation

9(t) = exp(v2(t)az) exp(—vs(t)as) exp(—va(t)as) exp(—vi(t)ar),
allows us to solve the equation ¢n by the Wei—Norman method to get

o1
Ul—m7
. Ug
v2—m(t)7
v3 = S(t),
2
@4 = —S(t)’l}g — #B(t) 5

with initial conditionsv; (0) = v2(0) = v3(0) = v4(0) = 0. The solution of this system can be
expressed using quadratures because the related grouyakleo
tdu
vi(t)= | —,
W= J, mtw

o) = f s ([ o),

v (t) = /0 S(u)du,

wilt) == [ S < /0 uﬂfg;) < /0 US(w)dw)) du - /Otgni?m (/ous(”)dv>2’

and thet-evolution operator is
U(g(t)) = exp(v2(t)Z2) exp(—v3(t) Z3) exp(—va(t) Zs) exp(—v1(t) Z1)

= exp(ivz(t) P) exp(—ivs(t) X) exp(—iva(t)]) exp(—ivi(t) —-).

2
3.6. Quadratic Hamiltonians. After dealing with an easy example before, we can proceed now
in a similar way in order to treat thedependent quadratic Hamiltonian given by [237] (se€é [59])

2 2
H(t) = o(t) -+ 50 TR 1) T sP e X+ o), (39)

whereX andP are the position and momentum operators satisfying the adation relation
[X,P]=il.

It is important to solve this quantum quadratic Hamiltonkztause it frequently appears in
Quantum Mechanics.

In order to prove tha{(319) is a quantum Lie system, we mustkhhat thist-dependent
Hamiltonian can be written as a sum witlhlependent coefficients of some self-adjoint Hamilto-
nians closing on a real finite-dimensional Lie algebra ofrafmes.
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As we can write
H(t) = at) Hy + B(t) Hy +(t) Hz — 6(t) Hy + €(t) Hs + ¢(t) He,
with the Hamiltonians
X2

1
1{1:—7 ngz(XP—FPX), HgZT,

Hy=-P, H; =X, Hg =1,
satisfying the commutation relations
[iHy,iHs) = iHy,  [iHs,iHs) = iHs, [iHs,iHy) = iHs, [iHy,iHs) = —iHg,
[iHy,iHs) = 2i Hy, [iHo,iHy| = —% H,, [iHs,iHs) =0,

[iHy,iH,) = 0, [iHs,iHs] = % Hs,
[iHy,iHs) = —iHy,

and[iH,,iHg] =0, =1,...,5, we get thatd (¢) is a quantum Lie system.

This means that the skew-self-adjoint operataik, generate a six-dimensional real Llie
algebra of operators. Now, we can relate them to the Hasis . ., ag} for an abstract real Lie
algebra isomorphic to the one spanned by-thél,. This basis is chosen in such a way that

[ahaQ] = ai, [az7a3] = ag, [ag,a4] = as, [a4,a5] = —ae, [35,36] =0,
[a1,a3] =222, [ag,a4] = —% as, [ag,as] =0, [ag,26] =0,

[a1,a4] = 0, [az, a5] = %a'f)v [as, ag] = 0,

[a1,a5] = —a4, [az,a6] =0,

[a1,a6] = 0.

This six-dimensional real Lie algebra is a semidirect surthefLie algebral(2, R) spanned by
{a1, as, a3} and the Heisenberg—Weyl Lie algebra generateflayas, ag }, which is an ideal.

In order to find the-evolution provided by thé-dependent Hamiltoniah (3.9) we should find
the curvey(t) in G, with T.G ~ V/, such that

6
Rg_l*gg:_zba(t)aa ) g(O):e,
a=1
with

bi(t) = a(t), ba(t) = B(t), bs(t) = (), ba(t) = —06(t), bs(t) = €(t), bg(t) = o(t).

This can be carried out by using the generalised Wei—Normethadl, i.e. by writing the
curveg(t) in G in terms of a set of second class canonical coordinatesnBtarice,

g(t) = exp(—wv4(t)aq) exp(—vs(t)as) exp(—wvg(t)ag) x
x exp(—v1(t)a1) exp(—vz(t)az) exp(—vs(t)as), (3.10)

and a straightforward application of the above mentioned-Merman method technique leads
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to the system

. . 1

b1 = by + by vy + by, v4:b4+§b2v4+b1v5,

. . 1

Vg = by + 2bz vy, v5=b5—b3v4—§b2v5, (3.11)
. v . 1 5 1 9

v3:62b3, ngbg—b5’l}4+§b3?}4—§b1?}5,

with v1(0) = v2(0) = v3(0) = v4(0) = v5(0) = vs(0) = 0.
If we consider the following vector fields
0 0 1,0

Xi=+—4vs5— — =
! 8’01 +U56v4 2U5 ({91)67
[ R N ST B )
2= 18’01 61)2 2 48’04 2 581}57
1
X3:v%i+2v1i+ev2i_v4i+_vii’
vy Ovy dus Ovs 2 *0vg (3.12)
P |
4 = 81]4’
0 0
X5=5——vig -,
81]5 v48’U5
0
Xg = —
6 8'[)6,

we can check that these vector fields satisfy the same cortiorutalations as the corresponding
{aq|a=1,...,6} and thus, systerh (3.]11) is a Lie system related to the sanedébra as the
t-dependent Hamiltoniah (3.9) or its corresponding equdtia Lie group.

Now, once the functions, (t), with « = 1, ..., 6, have been determined, thevolution of
any state is given by

Yy = exp(—v4(t)iHy) exp(—vs(t)iHs) exp(—ve(t)iHg) X
x exp(—v1 (t)iHy) exp(—va(t)iHa) exp(—vs(t)iHs)wo,

and thus

Y = exp(va(t)iP) exp(—v5(t)iX) exp(—wve(t)il)x

P2 PX+XP X?
X exp (—vl(t)iT) exp (—’Ug(t)i+> exp (_Ug(t)iT) Yo (3.13)

3.7. Particular cases.t-dependent quadratic Hamiltonians describe a very laagsaf physical
models. Sometimes, one of these physical models is deddoipe certain family of quadratic
Hamiltonians that can be regarded as a quantum Lie systabededb a Lie subalgebra of the one
given for general quadratic Hamiltonians. If they are aisged with a Lie solvable subalgebra,

then the system of differential equations related to ittigtothe Wei—Norman method is solvable
too and the-evolution operator can be explicitly obtained. In thistetwe treat some instances
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of this case through a unified approach. In these instan@esawalso find the explicit solutions
of these problems in the literature, but by differadthocmethods.
Once we have obtained the solution for a generic quadraticilitmian H (¢), we can review
the solution for a system with constant mass and linear piateyiven by
P2

H(t)= o~ +S(t)X, (3.14)

to obtain, in view of equation§ (3.111),

vi(t) = —

va(t) =0,

v3(t) =0, t )

va(t) = %/0 </0 S(v)dv) du,

vs(t) = / S(u)du,

=2 [ (st [ (['stan)ar)au— = [ ([ sn)

which give thet-evolution operator if we substitute them into thevolution operatof(3.13).

Now we can consider particular instances of thitependent Hamiltonian. For example, for
the curves with constant massandS(t) = geo + g € cos(wt), studied in[[107], we obtain

t
t) = — £)=0, wv3(t)=0
u(t)=—, v)=0, v)=0,
va(t) = ﬁqu(Qe +eow?t? — 2ecos(wt)),  ws(t) = g(eowt + esin(wt))
and
—g2
ve(t) = T (4e5w’t® — 3e(e — deg)wt +

3e(4e + 2e(w?t? — 2) — 3e cos(wt)) sin(wt)) .

The procedure to obtain a solution with arbitrary non-cansimass and'(t) = g¢eo +
ge cos(wt) was pointed out in [107] and solved [n]94]. From our point &w, the most general
solution comes straightforwardly from expressibn](3.&¢duse all cases in the literature are
particular instances of our approach with general funstioft) and.S(t).

Now, we can obtain the wave function solution of this systéfknow that the wave function
solutiony; with initial conditiong is

Pi(x) = Ulg(t))y(x,0)
P2

= exp(ivg(t)) exp(—v4(t)iP) exp(—vs5(t)iX) exp <—v1 (t)27> Po(x).

However, if we express the initial wave functign(z) in the momentum space &s(p), the
solution will take a similar form as before but with(g(¢)) in the momentum representation. In
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this case the solution with initial conditiaty (p) is
¢e(p) = U(g(t))do(p)
P2

= exp(—ivg(t)) exp(va(t)iP) exp(—vs5(t)iX) exp <—iv1 (t) 7) ¢o(p)

2
= exp(—ivg(t)) exp(va(t)iP) exp(—vs5(t)iX) exp <—iv1 (t)%) do(p)

vs(t))?
= exp(—ivg(t)) exp(va(t)iP) exp (—im (t) W) do(p + vs(t))
= exp <—z’v6(t) +dva(t)p — i1 (t)%) $o(p + vs(t)).

3.8. Non-solvable Hamiltonians and particular instances.In the preceding section the differ-
ential equations associated with thdependent quantum Hamiltonians were Lie systems related
to a solvable Lie algebra. Thus, it was proved that the difiéal equations obtained were inte-
grable by quadratures through the Wei—-Norman method. $fdbies not happen, it is not easy
to obtain a general solution. Now, we describe some exangflason-solvable’'t-dependent
quadratic Hamiltonians. In general we do not obtain a gésehation in terms of the-dependent
functions of the quadratic Hamiltonians. Neverthelessshaw that for some instances of them,
whose coefficients satisfy certain integrability condisg52,54], the differential equations can
be integrated.

As a first case, consider the Hamiltonian for a forced harmosctillator with¢-dependent
mass and frequency given by

H(t)

This case, either with or withoutdependent frequency, has been studied in[[78, [107, 238].
The equations describing the solutions of this Lie systerthbymethod of Wei—Norman are

p? 1 2 2
- 2 4 im(t)w X"+ f(t)X.

v :L m(t)w?(t)v?
1 m(t) + (t) (t) 1

vy = 2m(t)w?(t)vy,

Vg = %m(t)wQ(t)vz — f(t)vg — #(t)vg,
with initial conditionsv; (0) = v2(0) = v3(0) = v4(0) = v5(0) = ve(0) = 0, where the fac-
torisation [3.ID) has been used. The solution of this sys@mmot be obtained by quadratures
in the general case because the associated Lie algebrasslwalble. Nevertheless, we can con-
sider a particular instance of this kind of Hamiltonian, slkecalled Caldirola—Kanai Hamiltonian
[118]. In this case, for the particuladependencer(t) = e~ "'mg, w(t) = wo and f(¢) = 0 the
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Hamiltonian reads
H(t) = P—Qe”t + 1moe*”toﬂX2
2mg 2 0
In this case the solution is completely known and is given by

267"15
mo(r + @ coth (£o)) 7

t t
va(t) = rt + 2logwy — 2log (rsinh <§@0> + @ cosh <§Qo>) ,
2mow?
7 + &g coth (@) ’
va(t) =0, ws(t) =0, we(t)=0,

wherewy = /r? — 4w3. This example shows that the problem may also be exactlyedolv
for particular instances of curves inof Lie systems with non solvable Lie algebras. Another
example is the following one

U1 (t) =

U3 (t) =

P2 mwd
2m  2(t + k)2
for which the solution of the Wei—Norman system reads
2(k 4+ t)((k 4+ t)“° — k%)
m(k* (o — 1) + (k + t)*0 (@ + 1))’
va(t) = (1 + @o) log(k +t) — (1 + @) log k + 2log(2k“° @)
—2log(k*° (wo — 1) + (k +t)*° (o + 1)),
2mw (k +t)“0 — ko
V3 (t) = —— ——
ko k%o (wo— 1)+ (K +t)*o(wo + 1)
va(t) =0, ws(t)=0, we(t)=0,
where nowwy = /1 — 4w?.
Other examples of Hamiltonians, which can be studied by athod, can be found in [118].
We just mention two examples which can be completely solved

H(t) = X2,

p? 1
Hl(t) = 2—777,0 + 2TTL()(I—] + VCOS(UJot))X
Hy(t) = P2 +l TrEX? ()X
2 = 2m06 2WL06 Wo

The first one corresponds to a Paul trap which has been stindj@i] and admits a solution in
terms of Mathieu'’s functions. The second one is a dampedi@kldKanai Hamiltonian analysed
in [221].

3.9. Reduction in Quantum Mechanics. Quite often, when a quantum Lie system is related
to a non-solvable Lie algebra, it is interesting to solvenitérms of (unknown) solutions of
differential equations. Next, we study some examples of mwroceed with the method of
reduction in order to deal with problems in this way. So, weaabthat the reduction method can
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be applied not only to analyse systems of differential équatbut also enables to solve certain
quantum problems in an algorithmic way.
Consider a harmonic oscillator withdependent frequency whose Hamiltonian is given by

P2 1
As a particular case of the Hamiltonian described in Sei@h this example is related to an

equation in the connected Lie group associated with thediegnt sum ofs[(2, R), spanned by
the elementgay, a, az}, with the Heisenberg Lie algebra generated by the idealas, ag }

Ry-1.,9 = —a1 — Q*(t)ag, g(0) =e. (3.15)
Since the solution of this equation starts from the ideratitg{a;, as, a3} close on &((2, R) Lie
algebra, then thedependent HamiltoniaH () is related to the grouf L(2, R).
As a particular application of the reduction technique wé perform the reduction from

G = SL(2,R) tothe Lie group related to the Lie subalgebra (a;). To obtain such a reduction,
we have shown in Sectign 3.1 that we have to solve an equatiGiiH, namely

drl(9) B 2 _
2 = L b 0XE ) @16)

whereX ! are the fundamental vector fields of the actioaf G on G/ H. Now, we are going to
describe this equation in a set of local coordinates. Hitstn open neighbourhodd of e € G
we can write any element of this open in a unique way as

g = exp(—csag) exp(—caaz) exp(—cia1), (3.17)

where the matrices,,, with a = 1,2, 3, are given by[(Z}4).

This decomposition allows us to establish a local diffegohégm between an open neigh-
bourhoodV C G/H and the set of matrices given lyp(—csas) exp(—coaz). Now, the de-
composition[(3.117) reads in matrix terms as

a BY 1 0 ec2/2 0 1 o
v 8 ) \—e3 1 0 e c2/2 0 1
. ec2/2 0 1

T\ —cge/2 em2/2 0o 1 )"

If we express:, ¢z, c3 in terms ofa, 3,7 andé, we obtain thats = —v/a, co = loga?, and
¢1 = B/a. Consequently, we get

(55)=-Cra D)0 )00 )

Thus, we can define the projectiatt : U € G — G/H given by

w5 2)-(2 2

which allows us to represent the element§:gfH , locally, as the2 x 2 lower triangular matrices
with determinant one. Now, givek, : ¢'H € G/H — g¢'H € G/H as\,ont =nto L,
the fundamental vector fields defineddty H by a; andas through the action\ : (g,¢'H) €
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G x G/H — )\,(¢'H) € G/H are given by

xteta) = g w (oo (57) = (3 e )
xbeta) =g o (ewmn (2 0)) = (5 0).

and the equation o C G/H is described by

(5 o )= (aign ot )

Therefore, we need to obtain a solution of the system
a=—-0%t)a,
{ Y=
Then, taking into accounE(3.118), if; is a solution of the systen) (3119), the curyg) that

satisfiesg(t) = g(t)h(t), whereh(t) is a solution of an equation defined on the Lie group with
Lie algebrah = (a4), reads

o (a1 0\ ec2/2 0 B c
g(t) = ( & ol ) = ( Ceger/2 gmerl? ) = exp (a_1a3> exp(—2log aqaz),

and the curve which acts on the initial equatiorbih(2, R) to transform it into one in the men-
tioned Lie subalgebra is given lgyt) = g—1(¢),

(3.19)

g(t) = exp(2log ay az) exp (—% a3> .
1

This curve transforms the initial equation in the group giby (3.I5) into the new one given by

E3),i.e.

ay
which corresponds to thedependent Hamiltoniaf’ (t) = P2 /(2a3(t)). The induced transfor-
mation in the Hilbert spac#l that transformd{ (¢) into H'(t) is

1 .
exp <z 08 a1 (PX + XP)) exp (—z’&XQ) .
2 2041

Both results can be found in [96].
There are other possibilities of choosing different Lieagkbras ofj in order to perform the
reduction, however the results are always given in termssol@ation of a differential equation.

4. Integrability conditions for Lie systems

The main aim of this chapter is concerned with the descriptibthe main aspects of the inte-
grability theory for Lie systems detailed in_[47] and basedlive geometrical understanding of
Riccati equations.

The Riccati equation can be considered as the simplestneanldifferential equation_[40,
50]. It is, basically, the only first-order ordinary differgal equation admitting a nonlinear su-
perposition rule[[157, 234]. In spite of its apparent simipyi its general solution cannot be
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described by means of quadratures with the exception of s@meparticular cases [63, 132,
169,183( 214, 239].

The relevance of Riccati equation becomes evident when keeitdo account its frequent
appearance in many fields of Mathematics and Physi¢s [57 1748 184] 203, 207, 216, 234].
This also implies the necessity of a theory of integrabititpviding all those integrable cases
that might lead to solvable physical models.

4.1. Integrability of Riccati equations. In order to provide a first insight into the study of in-
tegrability conditions for Riccati equations, we reviewdisome very well-known results about
this topic.
Recall that Riccati equations are first-order differergigliations of the form
dz 9
E = b1 (t) + bz(t)x + bg(t)x . (41)
A first particular example of Riccati equation integrableduadratures is the one withh = 0.
In fact, in such a case, Riccati equation reduces to an ingemeous linear equation, which can
be explicitly integrated by means of two quadratures.
Additionally, the change of variable = —1/z transforms the above Riccati equation into
the new one

CCZZ—Q: = bl(t) w? — bg(lf) w + bg(t).
Consequently, if we suppose that = 0 in equation[(4.11), that is, if we consider a Bernoulli
equation, the mentioned change of variable leads to anradtéglinear equation.

Another known property on the integrability of Riccati etjoas establishes that given a
particular solutione, (t) of (4.), the change = z1(t) + 2 permits us to transform a Riccati
equation into a new one for which the coefficient of the terdejpendent of is zero, i.e.

0 @bat) (1) + ba(1))z + (1) 2

and, as we pointed out previously, this equation reduces timfdomogeneous linear equation
with the change of variables = —1/u. Consequently, the knowledge of a particular solution
of a Riccati equation allows us to find its general solutionnbgans of two quadratures. It is
worth recalling that this property can be more generallyasatbod by means of the theory of
Lie systems. Indeed, this theory states that the knowletlg@articular solution of a Lie system
enables us to reduce the initial equation into a ‘simpleg,@®e Sectidn 1.2 dr [40].

If we know two particular solutions;; (¢) andz» (t), of equation[{411), its general solution can
be determined with one quadrature. Indeed, the changeiablar = (z — 21 (t))/(x — z2(t))
transforms the original equation into a homogeneous lidé@arential equation and, hence, the
general solution can be immediately found.

Finally, giving three particular solutions; (¢), z2(t), x3(¢), the general solution can be writ-
ten, without making use of any quadrature, in terms of thegugsition rule[(T.111).

The simplest case of Riccati equation, i.e. the one Witlh; andbs being constant, has been
fully studied and it is integrable by quadratures, see imgla [64]. This can be viewed as the
consequence of the existence of a constant (maybe complexips, permitting us to reduce the
equation into an inhomogeneous linear one. Note also that,similar way, separable Riccati
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equations of the form
dx

G = ele+a+ad?),

with () being a non-vanishing function, are integrable, becausgalmit a constant solution
again, which enables us to transform the equation into atimhomogeneous one again. On
the other hand, the integrability of the above equation dsm lbe related to the existence of a
t-reparametrisation, reducing the problem to an autonoranas

4.2. Transformation laws of Riccati equations.We here describe an important property of
Lie systems, in the particular case of Riccati equatiorasyiph a relevant rdle for establishing
integrability criteria:The groupgG of curves in a Lie groug~ associated with a Lie system acts
on the set of the related Lie systems

More explicitly, consider a familyX;, X, X3, of vector fields onR, e.g. the set given
in (1.28), spanning the Vessiot-Guldberg Lie algebra oftmetields associated with Riccati
equations and isomorphic (2, R). In terms of this family, each Riccati equatidn {4.1) is re-
lated to at-dependent vector fiel&; = by (¢) X1 + b2(t) X2 + bs(t) X3, which can be consid-
ered as a curveéb, (1), bo(t), bs(t)) in R3. Each elementd of the group of smooth curves in
SL(2,R),i.e. A € G = Map(R, SL(2,R)), transforms every curve(t) in R into a new one
7' (t) = ®(A(t), »(t)) by means of the actio® : (A, x) € SL(2,R) x R — ®(A,z) € Rofthe
form:

ax+ﬁ x#_éa JT#OO,
YT +6 vy
(A, x) =< a/y T = 00, where A = < @ g) (4.2)
5 v
00 x=——,
v

Moreover, the abovedependent change of variables transforms the Riccatitiequi. 1) into a
new one witht-dependent coefficients, b}, b5 given by

by = 0%bg — 6yby + 42 by + 70 — 57,

by = —2B8b3 + (ad + B) by — 2ay by + d& — ad + B3 — 78, (4.3)

V) = 2bs —afB by +a’ by + aff — Bi .
Indeed, the above expressions define an affine action of theogr on the set of Riccati equa-
tions. In other words, given the elements, A, € G, transforming the coefficients of a general
Riccati equation by means of two successive transformaabthe above type, e.g. first by,
and then byA,, gives exactly the same result as doing only one transfoomatith the element
Ay - Aq of G, seel[63, 151].

The groupg also acts on the set of equations of the fofm ({1.31)5d@r{2, R). In order to
show this, note first thai acts on the left on the set of curvesSii (2, R) by left translations, i.e.
given two curvesA(t), A(t) C SL(2,R), the curveA(t) transforms the curvel(t) into a new
oneA’(t) = A(t)A(t). Moreover, if A(t) is a solution of equation (1.B1), then the cur¥ét)
satisfies a new equation like_(1131) but with a different tighnd sidex’(¢). Differentiating the
relationA’(t) = A(t) A(t) and taking into account the form ¢f(1]31), we get that, imwed the
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basis[(Z.4), the relation between the cura@g anda’(t) in sI(2,R) is

. 3
a/(1) = Aa() A (1) + ANA (1) = = 3 W (t)aa (4.4)

which yields the expressioris (#.3). Converselylift) = A(t)A(t) is the solution for the equa-
tion corresponding to the curwg(t) given by the transformation rule_(4.4), thel{t) is the
solution of the equation (1.81) determined by the cutfg.

Summarising, we have shown that it is possible to assoc&th Riccati equation with an
equation on the Lie grou§L(2,R) and to define an infinite-dimensional group of transforma-
tions acting on the set of Riccati equations. Additionatys process can be easily derived in a
similar way for any Lie system, see [47].

4.3. Lie structure of an equation of transformation of Lie systems. Let us construct a Lie
system describing the curves $1.(2, R) which transform the Riccati equation associated with
an equation or6L(2,R) characterised by the cure€t) C s[(2,R) into the Riccati equation
associated with the curv€(t) C sl(2,R). By means of this Lie system, we later explain the
results derived in_[47] in order to describe, from a unifiethpof view, the developments of the
works [40/50].

Multiply equation [4.#) on the right byl (¢) to get

A(t) = a/ (O A(t) — A(t)a(t) . (4.5)

If we consider the above equation as a system of first-ordfarential equations in the coeffi-
cients of the curvel(t) in SL(2,R), with

A= (0 50 ) s - sono =1

7(t)
then systenm(4]5) reads
& babe g b, 0 o
Bl_| & == o0 b G (4.6)
4 - Y _ bl +bo )
0 R A S Y

The solutiong)(t) = (a(t), 8(¢),v(t), 6(t)) of the above system relating two given Riccati equa-
tions are associated with curvesSd.(2, R), i.e. they are such that, at any timej — 8y = 1.
Nevertheless, we can drop such a restriction for the timego&s it can be implemented by a re-
straint on the initial conditions for the solutions and, benwve can treat the variables,3, v, 9,

in the system[(4]6) as being independent. In this case, ittéar system can be regarded as a
Lie system linked to a Lie algebra of vector fields isomorgbigl((4, R). Nevertheless, it may
also be understood as a Lie system related to a Lie algebractdnfields isomorphic to a Lie
subalgebra ofl((4, R). Indeed, consider the vector fields

9 N
N —53 785 Nl—’Ya—‘HS%
9 9 P 1 9 59
g %0 ) NQ_?(@ +g85 5 ~%)
N3 = 8 N3:—Oéa—’y—ﬂ%7
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spanning a Vessiot-Guldberg Lie algebra of vector fieldsizghic tog = s((2, R) ®sl(2,R) C
gl(4,R). Consequently, the linear system of differential equa@#) is a Lie system ofR*
associated with a Lie algebra of vector fields isomorphig, teee[[47].

If we denotey = (a, 8,7, 6) € R*, system[(4)6) is a differential equation BA of the form
dy
dt

with NV being thet-dependent vector field
3

Z t)Ng + b, (t)NL).

The vector field§ Ny, N2, N3, Nl, N/}, Ni} span a regular distributioP with rank three in
almost any point oR* and thus there exists, at least locally, a first-integradfothe vector fields
in the distributionD. The method of characteristics allows us to determine thiaffirst-integral
can be

= N(t,y), 4.7)

I:y=(a,B,7,0) €R* = dety=ad—pBycR.
Moreover, this first-integral is related to the determinafrd matrix A € SL(2,R) with coeffi-
cients given by the componentsipf= («, 3,7, d). Therefore, if we have a solution of the system
(4.8) with initial condition such thadet y(0) = «(0)6(0) — 5(0)y(0) = 1, thendety(t) = 1
at any timet and the solution can be understood as a curvefif2, R). Summarising, we have
proved the following theorem.

THEOREM 4.1. The curves inSL(2,R) transforming equation (1.31) into a new equation of

the same form characterised by a cuw/ét) = — Zi:1 b, (t)a, are described through the
solutions of the Lie systems
dy 3
=N L ()N (y 4.
y (ty) = aE 1 )+ § bl ( (4.8)

such thatdet y(0) = 1. Furthermore, the above Lie system is related to a non-fddvelessiot—
Guldberg Lie algebra isomorphic td(2,R) @ sl(2, R).

A consequence of the above Theorem is the following comgli@hose proof is omitted and
left to the reader.

COROLLARY 4.2. Given two Riccati equations associated with curvgs) anda(t) in sI(2, R),
there always exists a curvé(t) in SL(2,R) transforming the Riccati equation related 46t)
into the new one associated with(t). Furthermore, ifA(0) = I, this curve is uniquely defined.

Even if we know that given two equations on the Lie gratip(2, R) there always exists
a transformation relating both, in order to obtain such aewve need to solve the differential
equation[(4.]7) which, unfortunately, is Lie system reldi@@ non-solvable Vessiot—Guldberg.
Consequently, it is not easy to find its solutions in genesafar instance, it is not integrable by
guadratures.

Nevertheless, many known and new properties on integrabiinditions for Riccati equa-
tions can be determined by means of Thedrerh 4.1. Furthertingr@rocedure to obtain the Lie
system[(4.]7) can be generalised to deal with any Lie systéaterketo a Lie grougs with Lie
algebrag (cf. [47]).
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4.4. Description of some known integrability conditions. Note that Lie systems o' of the

form (1.31) determined by a constant curse= —Eizlcaaa, are integrable and, therefore,

3
the same happens for curves of the fatth) = —D (anaa , whereD = D(t) is a non-

vanishing function, as areparametrisation reduces tﬁélproblem to the previous one

Our aim now is to determine the curvet) in SL(2,R) transforming the equation on
SL(2,R) characterised by a curvgt) into the equation o5 (2, R) characterised by’ (t) =
—D(c1a1 + coag + czag), with D = D(t) a non-vanishing function andics # 0. As the
final equation is associated with a solvable one-dimensidessiot-Guldberg Lie algebra, the
transformation establishing the relation to such a finagrable equation allows us to find by
quadratures the solution of the initial equation and, tfoees the solution for its associated Ric-
cati equation. In order to get the transformation betweetRilscati equations linked to the before
equations orb (2, R), we look for particular curved(t) in SL(2,R) satisfying certain condi-
tions in order to get an integrable equatibn{4.6). Nevéetse under the assumed restrictions, we
may obtain a system of differential equations which doesadatit any solution. In such a case,
the conditions ensuring the existence of solutions willcdiég integrability conditions. As an
application we show that many known achievements aboutitiegiiability of Riccati equations
can be recovered and explained in this way.

We have already showed that Riccati equatidnd (4.1), with = 0, are reducible to linear
differential equations and therefore they are always natielg [57]. Hence, they are not interest-
ing in the study of integrability conditions and we can focus attention on reducing Riccati
equations withb; b3 # 0 into integrable ones by means of the action of a cun&i2, R). With
this aim, consider the family of curves with= 0 and~ = 0, i.e. take curves i L(2, R) of the
form

A(t) = ( O‘ét) 58) ) CSL2,R),  a(t)i(t) = 1.

The curveA(t) in SL(2,R) determines a-dependent change of variableskngiven by
2'(t) = ®(A(t), ). In view of the action[(4]2), and as5 = 1, we get that the previous change
of variables reads

' =a*(t)r =Gt)r, G(t)= % > 0. (4.9)
In view of the relations[{413), the initial Riccati equatiis transformed, by means of the curve

A(t), into the new Riccati equation withdependent coefficients
Vy=ao’by, by=adby+ad—ad,  by=0bs.

Moreover, the functiona(t) andd(t) are solutions of the systen (#.7), which in this case reduces
to

a e 0 a
_ by +bs /
A I I S 0 (4.10)
0 b0 MEe 0
0 0 by b 0

The existence of solutions for the above system relatedetmexhts ofS L (2, R) that satisfy the
required conditions determines the integrability of a Ricequation by the method described.
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Thus, let us analyse the existence of such solutions to geétimtegrability conditions.
From some of the relations of the above system, we get that

—b1a+b,15: 0, —b/30[+b35: 0.
As «a(t) = 1, these relations imply thaf b5 = b; b3 and
by b3
=12 =G>0.

o =
by b
Hence, the transformation formulés (4.3) reduce to

By=a2by, by=by+2%, b, =a. (4.11)
(0%

Then, in order to exist &#dependent functio® and two real constants andcs, with ¢yc3 # 0,
such thab}, = Dcs andb; = Dc;, the functionD must be given by

[b1b
D2(3103 =bbs— D=+ ﬁ,
C1C3

where we have used théith, = b1b3. On the other hand, d§/b; = o? > 0, we have to fix the
signk of the functionD in order to satisfy this relation, i.eg(c; D) = sg(b1). Therefore,
Kk =sg(D) =sg(b1/c1)-

Also, asbibs = b} %, we get thakg(b1bs) = sg(cic3). Furthermore, in view of relations (4111),
« is determined, up to a sign, by

DCl C1 b3 1/4
=/ =|— . 4.12
“ by <C3 bl) ( )
and therefore the change of variables](4.9) reads
I D(t)cl
bi(t)

Finally, as a consequence bf(4.11), in ordertpto be the produd¥, = ¢, D, we see that

; bib
by + 25 = keyy | 222 (4.14)
« C1C3

Using [4.12) and the above equality, we see that the intéiyatondition is

C1C3 1 b3 Z.71
— b+ = =-—= = )
\ 5105 [”2 <b3 blﬂ fic2
Conversely, if the above integrability condition is validdaD?c,c3 = b1bs, the change of

variables[[4.13) transforms the Riccati equation](4.1) itt' /dt = D(t)(c1 + coy’ + c3y'?),
with ¢;¢3 # 0. To sum up, we have proved the following theorem.

T. (4.13)

THEOREM4.3. The necessary and sufficient conditions for the existenadrahsformation
¥ =G({t)x, G() >0,

relating the Riccati equation

d
d_f = by (t) + ba(t)z + ba(t)x?,  bibz #0,
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to an integrable one given by
dz’

= D(t)(c1 + cox’ + czz’?), ciec3 #0,  D(t) #0, (4.15)

wherec, o, c3 are real numbers and(¢) is non-vanishing functions, are

1 (i .
D2(3103 = by1bs, by + = b—3 — b—l ac = KCy. (416)
2 \bs b

wherex = sg(D) = sg(b1/c1). The transformation is then uniquely defined by

b3 (t)Cl
I _
b1 (t)Cg v

From previous results, the following corollary follows.

COROLLARY 4.4. A Riccati equation[{4.15) with,;b3 # 0 can be transformed into a Riccati
equation of the forn{4.15) bytadependent change of variablgs= G(t)y, with g(¢) > 0, if

and only if
1 1(bs by
byt -2 -2 ) =k, 4.17
¢|b1b3|<2 2<b3 b)) i

for a certain real constank. In such a case, the Riccati equation {4.1) is integrable tigdya-
tures.

In view of Theoreni 413, if we start with the integrable Ri¢eajuation[[4.15), we can obtain
the set of all Riccati equations that can be reached from imbgns of a transformation of the

form (4.9).

COROLLARY 4.5. Given an integrable Riccati equation

dz
i D(t)(c1 + cox + c32?), cies 20, D(t) #0,

with D(t) a non-vanishing function, the set of Riccati equations tvitian be obtained with a
transformationz’ = G(t)z, with G(¢) > 0, are those of the form

dz’ bi(t) D(t
$_b1(t)+<1() ()

E = - 4+ CQD(t)) J?I +

D2(t)cics
bi(l) D) !

b1 (t) ’

and the functiort is then given by
D61
ok
Therefore, starting with an integrable equation, we caregae a family of solvable Riccati
equations whose coefficients are parametrised by a noshiagi functionb;. Moreover, the
integrability condition to check if a Riccati equation bes to this family can be easily verified.
The previous results can now be used for a better compraireasome integrability con-
ditions found in the literature. Let us illustrate this atelby reviewing some well-known integra-
bility conditions through our methods.

G:

e The case of Allen and Stein
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The main achievements of the articlé [4] can be recovereditfirour more general approach.
In that work, a Riccati equation (4.1), withbs > 0 andby, b, being differentiable functions
satisfying the condition

1 (b b
i (i -B) c

=C, (4.18)
Vbibs
whereC is a real constant, was transformed into the integrable one
/
% = /bi(t)bs(t) (1+ Ca' +2") (4.19)

through at-dependent linear transformation of the form

’ b3(t)

If a Riccati equation obeys the integrability conditionI@), such an equation also satisfies
the assumptions of Corollary 4.4 and, therefore, the iteitjty condition given in Theorein 4.3
with

Cl = C3 = ]., Cy — C, D = vV blbg.

Consequently, the correspondinglependent change of variables described by Thebrem 4.3
reads

= b3 (t)

bi(t)

showing that the transformation inl [4] is a particular calsew results. This is not surprising, as
Theoreni 4.8 shows that if such-@lependent change of variables is used to transform a Riccat
equation[(4.1) into one of the form{4]15), this change ofaldles must be one of the forn{4]113)
and the initial Riccati equation must satisfy integrapitionditions[(4.16).

z,

e The case of Rao and Ukidave

Rao and Ukidave stated in their wofk [190] that a Riccati ¢gigua{4.1), withb b3 > 0, can
be transformed into an integrable one

dz’ 1
ar cb1b3 (1 + ka' + —113'2) ,
dt c
through at-dependent linear transformation
1
I — [
KON
if there exist two real constantsandk such that the following integrability condition is satisfie
b
by = —, (4.20)
CcvU
with v(¢) being a solution of the differential equation
d
d—: = kby () + ba(t)v. (4.21)

Note that, in view of[(4.20), necessarity> 0 and if the integrability condition$ (4.20) and
(4.23) hold with constants and .k and a negative solution(t), the same conditions are valid
for the constants, —k and a positive solutior-v(¢). Consequently, we can restrict ourselves to
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studying the integrability conditions (4.120) and (4.21) positive solutions;(¢) > 0. In such a
case, the above method usesdependent linear change of coordinates of the forn (4.0 tlaa
final Riccati equation are of the type described in our wbrtR®t Therefore, the integrability
conditions derived by Rao and Ukidave have to be a partidnt&ance of the integrable cases
described by Theorem4.3.

Using the value ob(t) in terms of the constantand the functiong; andbs obtained with
the aid of the formuld{4.20) and equatién (4.21), we get that

1 1(bs by
— |+ = = —— = —ksg(b )
|b1bs] ( ) <b3 b1>> sg(bo) Ve

Hence, the Riccati equations holding conditidns (4.20) @n2ll) satisfy the integrability condi-
tions of Corollary 4.b. Moreover, if we choose

.D2 = Cblbg, Cc1 = ]., Co = —k, C3 = C_l,

thenD = /cb,b3 and the only possible transformatidn (4.9) given by Thedeireads

Cb3 (t)
bt)

1_ [ebs
v o b1 '
In this way, we recover one of the results derived by Rao andave in [190].

In short, many integrability conditions found in the literee can be described by our more
general methods.

= (t)r =

and hence,

4.5. Integrability and reduction. Now we develop a similar procedure to the one derived above,
but now we assume the solutions of systeml(4.6) to be includlbh a two-parameter subset of
SL(2,R). As a result, we recover some known integrability condgiand review, from a more
general point of view, the integrability method describeHid].

As we did previously, let us try to relate the Riccati equaifd.1) to an integrable one as-
sociated, as a Lie system, with a cue/ét) = —D(¢)(c1a1 + ceas + c3ag), with ¢; # 0 and
a non-vanishing functio® = D(¢). Nevertheless, we consider solutions of systeml (4.7) with
v =0, « > 0, and related to a curve ifiL(2,R), i.e. we analyse transformations

p_alt) PR _ B(t)
x zmx—km:a (t):z:—i—m.

In this case, using the expression in coordindies (4.6)steay[4.8), we get that

b —bo /
ol b, 0

& ) «
0| | - 0 _bé+b2 bs o |’ '
J (R — J

wheret, = Dc; ande; € R for j = 1,2,3. As we supposé; # 0, the third equation of the
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above system yields

a_bs_ b3

) bg DCgl
Sincead = 1 so that the solution of(4.8) is related to an elemen$ 6{2, R), andb;, = Dcs,
the above expression implies

b-
2 3

_ " 4.23
YT Des (4.23)

Therefore« is determined by the values 65(¢), D andcs. Additionally, the first differential
equation of systeni (4.22) determingé terms ofa and the coefficients of the initial and final

Riccati equations, i.e.
1 (. bh—bo
8= ™ (a -7 a> .

Taking into account the relatioh (4123) and&s= 1, we can definéd/ = 3/« and rewrite the
above expression as follows

% = <b2(t) + 222) D — ¢sD* — 2b3(t)M D.

Considering the differential equation fhin terms ofM, we get the equation

dM _ c1C3

Finally, aséa = 1 is a first-integral of systeni_(4.8), if the system for the ahtes) and D
and all the abovementioned conditions are satisfied, theevial= o~ obeys its corresponding
differential equations of the systef (41.22). Summarisiveghave stated the following theorem.

D? + by(t)M — bs(t) M2,

THEOREM4.6. Given a Riccati equatio_(4.1) there exists a transfornratio
¥ =G@t)x + H(t), G(t) >0,
relating it to the integrable equation
d /!
d_xt = D(t)(c1 + oz’ + c32'?), (4.24)

with ¢s # 0, and D a non-vanishing function, if and only if there exist funogd> and M
satisfying the system

dD bs(t) 2
T <b2(t) + bg(t)) D —coD 2b3(t)MD,
am €163 2 _ 2
0 bi(t) + bg(t)D (t) + ba(t)M — bs(t)M*=.
The transformation is then given by
o =B ). (4.25)
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If we consider; = 0 in equation[(4.24), the system determining the curn&iii2, R) which
performs the transformation of Theoréml4.6 reads

D bs(t)
E = <b2(t) + b3(t)> D — 62D2(t) — 2b3(t)MD, (426)
dM

—= = —hut) +ba(t)M — by(t) M.

Note that this system does not involve any integrabilityditon, since there always exists a
solution for every initial condition. Nevertheless, findisuch solutions can be as difficult as
solving the initial Riccati equation. Therefore, we needssume some simplification in order to
find a particular solution. Let us put, for instandd, = b, /b,. In this case, the first differential
equation of the above system does not depenti/oand reduces to

dD bs(t) )
— = (—bg(t) + bZ(t)) D — 3D

whose solutions read

ex LA dY 1
D(t) = 2 (t) /) . A = <—b2(t) + b3(t)> .
C+co fg‘ exp (fot A(t’)dt’) dr’ bs(t)

Meanwhile, as\f = b, /bs must satisfy the second equation[in (4.26), we obtain that

d (by
Z(32)=-n

which gives rise to an integrability condition. This sumisas one of the integrability conditions
considered in[189].

Let us recover, from our point of view, the result that estdials that the knowledge of a
particular solution of the Riccati equation allows us toaidbits general solution. In fact, under
the change of variablel® = —z, the system {4.26) becomes

Ciz_lt) = <b2(t) * Zi%) D = eaD" 4 2ba(t)zD, (4.27)
‘jl_j — bi(t) + ba(D) + by ()22

Each particular solution of the previous system takes tha {®, (¢), z,(t)), with z,,(¢) being a
particular solution of the Riccati equatidn (4.1). Therefgiven such a particular solution (),
the functionD,, = D, (t), corresponding t0D,(t), z,(t)), satisfies the equation

dt b ()

which is is a Bernoulli equation and, therefore, is inte¢gdly quadratures. Consequently, the
knowledge of a particular solution,(t) of the Riccati equatior{(411) allows us to determine
a particular solution D, (t), z,(t)) of system[(4.27) and, in view of the change of variables
xr = —M, a particular solutioiD,,(t), M, (t)) = (D,(t), —z,(t)) of system[(4.26). Finally, the
functionsM,,(t) andD(t) lead to the change of variablés (4.25) described in ThebréwHich

dDp _ <b2(t) n b (1) " 2b3(t)xp(t)> D, — CQDIQ)7 (4.28)
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transforms the initial Riccati equatidn (#.1) into anotbaee related to a solvable Lie algebra of
vector fields.

The above process describes a reduction process similae tone derived in_[40], but our
method allows us to obtain a direct reduction into an intelgrRiccati equatiori (4.24) through a
particular solution.

There exist many ways to impose conditions on the coeffisiefithe second equation in
(4.21) to obtain a particular solution easily. For instaritcéhere exists a real constansuch that
for thet-dependent functionls , b, andbs we have thab, +byc+ bsc? = 0, thencis a particular
solution, for example:

1. by + bs + b3 = 0 implies thatc = 1 is a particular solution.
2. k2by + koksby + k§b3 = 0 means that = k3 /k» is a particular solution.

This sketches some cases found.in [40,1214].
As a first application of the above method, we can integradilecati equation

%§=—%+(1+%)x—x% (4.29)
related to Hovy’s equation [200]. This Riccati equation @drthe particular constant solution
x,(t) = 1. Using such a particular solution in equatién (4.28) andhigkfor instance¢; = 0
andc; = 0, we can obtain a particular solution for equatibn(4.28), &,,(t) = t"e~*. Hence,
(t"e~t, 1) is a particular solution of systei (4127) related to equef@29) andt"e~t, —1) is

a solution of the systeni (4.26). In this way, Theofeni 4.Gest#hat the transformatioh (4125),
determined by thd,,(t) = t"e~* andM,,(¢t) = —1, of the form

x' = —t""eleg H(x — 1), (4.30)
relates the solutions of equatidn (4.29) to those of theyhatele equation
d /
d—i = e Hnega?.
If we fix ¢c3 = 1, the solution of the above equation reads
1
/
)= —————
"= a0

whereK is an integration constant afifa, b) is the incomplete Euler's Gamma function

I(a,t) = / tele=t qt’
t

In view of the change of variables(4]30), the solutiaiis) of the Riccati equatiori (4.29) and
' (t) are related through the expressigt) = —t~"e’c; * (z(t)—1). Therefore, if we substitute
the general solution’(¢) in this expression, we can derive the general solution ferRftcati
equation[(4.29), that is,

e tn

R TR RES

4.6. Linearisation of Riccati equations. To finish this chapter, we shall analyse the problem
of the linearisation of Riccati equations through the linfractional transformation$ (4.9). As
a main result, we establish various integrability condii@nsuring that a Riccati equation can
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be transformed into a linear one by means of a diffeomorplis® associated with a linear
fractional transformation of a certain class.

As a first insight in the linearisation process, notice thatdllary[4.2 states that there exists
a curve inSL(2,R), and therefore a-dependent linear fractional transformation Rntrans-
forming each given Riccati equation into any other one (anparticular, into a linear one). This
clearly implies that Riccati equations are always linesdris by means of this class of transfor-
mations. Nevertheless, as Lie systém](4.7) describing sadlsformations is related to a non-
solvable Lie algebra of vector fields, determining such agdfarmation can be as difficult as
solving the Riccati equation to be linearised.

Let us try to transform a given Riccati equation into a lingfierential equation by means
of a linear fractional transformation_(4.2) determined lmpastant vectofa, 3, v, §) € R* with
ad — B~y = 1. In this case, determining the conditions ensuring thetemee of solutions of
system([(4.17) performing such a transformation is an ea&y késreover, as solving system (4.7)
also becomes straightforward, we can determine some igaddity conditions and, when these
conditions hold, specify the corresponding change of et

Note that ag«, 3,7, d) is a constant, we hawe = 3 = 4 = § = 0 and, in view of [4.5),
the diffeomorphism ofR performing the transformation is related to a vector in temkl of the
matrix

bt g b, 0
_bl by+ba 0 b
B = 2 , 1 , 4.31
0 0 _bz-gbz bs ( )
0 0 S

2
where we assumk # 0,b3 # 0. We omit the study of the cadg (¢)bs(t) = 0 in an open
interval because, as it was shown in Sedfioh 4.1, this cdg®isn to be integrable.

The necessary and sufficient condition ker B to be non-trivial isdet B = 0. Therefore, a
short calculation shows thdim ker B > 0 if and only if —b3 + b2(t) + 4b1b3)? = 0. Thus,
by = +1/b3 — 4b1bs andb}; is fixed, up to a sign, by the valuesf, b, andbs. Let us study the
kernel of the matrixB in the positive and negative cases 56r

¢ Positive caseThe kernel of matrix{(4.31) is given by the vectors

/ 2_4 _ 2_4
<5b—1+5b2+vg; hbs 5 62+V222 blb?’,a), 5,BER.
1 1

b1

Recall that we are only considering the constant elemeritsrd®, therefore there should be two
real constanté’; and K5 such that

K1:5b_/1+ﬁb2+\/b%—4b1b3’ Ky — —bz-f-\/b%—llblbg7 (4.32)
b1 2bq 2by

Moreover, in order to relate these vectors to elemenfi(2, R), we have to impose the condi-

tion det(Kl,ﬁ, _5K2, (5) = 5(K1 + ﬁKQ) =1.

The second condition if_(4.B2) imposes a restriction on tedfficients of the initial Riccati
equation to be linearisable by a constant linear fractitmakformation(4]2). Then, if this is sat-
isfied, we can choosg, v, K, andb), to satisfy the other conditions. Thus, the only linearizati
condition is the second one in(4132).
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e Negative caseln this caseker B reads

<5m<+ﬁb2—~v@§:233575,—5_b2_'V@g:i@]%¥6>7 5BER

W 2b1 2bl

and now the new conditions reduce to the existence of twacealtantd<; and K5 such that
oby by — /b3 — 4b1b3 —by — /b3 — 4b1b3
A T ,
1 1 1

with 6(K; + 8K3) = 1. If the second expression of the above conditions is satisfie can
proceed in a similar fashion as for the positive case to olke transformation that performs the
linearisation of the initial Riccati equation.

Summarising:

THEOREM 4.7. The necessary and sufficient condition for the existence diff@omorphism
on R of linear fractional type associated with a transformation SL(2,R) transforming the
Riccati [4.1) into a linear differential equation is the stdnce of a real consta# such that

_ /b2 — .
K = b2 E Vb —dbibs (4.33)

2by

As a Riccati equatiori (4].1) satisfies the above conditiondf anly if K is a constant partic-
ular solution, we get the following corollary:

COROLLARY 4.8. A Riccati equation can be linearised by means of a diffeoimierp onR of
the form [4.2) if and only if it admits a constant particulanstion.

Ibragimov showed that a Riccati equation{4.1) is linedlisdy means of a change of vari-
ablesz = z(x) if and only if the Riccati equations admits a constant sohufiL25]. Additionally,
we have proved that in such a case, the change of variablebecadescribed by means of a
transformation of the typé& (4.2).

5. Lie integrability in Classical Physics

In spite of their apparent simplicity, the methods devetbfigoughout the previous chapter re-
duce the analysis of certain integrability conditions fazdati equations to studying integrability
conditions for an equation o6L(2,R). Moreover, these methods can also be applied to any
other Lie system related to the same equatiol @2, R). For instance, we here use the results
on integrability of Riccati equations to studydependent (frequency and/or mass) harmonic os-
cillators (TDHOSs), which are associated with the same kinebpiations or6' L(2, R) as Riccati
equations. As a particular application of our results, wepdpt-dependent constants of the mo-
tion for certain one-dimensional TDHOs and the solutionsaféwo-dimensional TDHO. Also,
our approach provides a unifying framework which allows aigypply our developments to all
Lie systems associated with equationsih(2, R) and generalise our methods to study any Lie
system.
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5.1. TDHO as a SODE Lie system.Let us prove that every TDHO is a SODE Lie systems (see
[87,43),52]). Each TDHO is described by-alependent Hamiltonian of the form

P’ 1 2 2
Ht)=—/——+-F
() = gy 2 PO
whose Hamilton equations read
_OH _ p
81;H m(t) (5.1)
The solutions of the above system are integral curves for-ttependent vector field
0 0
Xi=p—— F(t)w’r—
t p 3x ( )w xap7
overT*R. Let X9 XHO and X O be the vector fields
0 1 0 0 0
XHO —p—  XHO— _(p— —p_— XHO — _p— 5.2
1 p3x7 2 D) xax pap ) 3 xap’ (5.2)

which satisfy the commutation relations

(X7, X{9) =2x7°, (X0, X0 = Xx{°, [xJ° Xx§°) = X}°,

and therefore span a Lie algebra of vector field€© isomorphic tos((2,R). Then, thet-
dependent vector field € associated with syster (5.1) can be written as

1
m(t)

i.e. itis a linear combination withrdependent coefficients

XHO(t) = P(t)w? X HO 4 XHO . (5.3)

3
XMO(t) =) " ba()X 1O, (5.4)
a=1

with by (t) = 1/m(t), ba(t) = 0 andb3(t) = F(t)w?. Hence, TDHOs are SODE Lie systems.
Consider the basi&, ag, asg} for sl(2,R) given in [2.4). Its elements satisfy the same com-
mutation relations as the vector field§?©. Denote by®?© : SL(2,R) x T*R — T*R the
action that associates eagh with the fundamental vector field 7©, i.e. each one-parameter
subgroupexp(—ta,) acts onT*R with infinitesimal generatoX €. It can be verified that this

action reads @HO<<:§)’<;)>:<:§)<;>.

Obviously, the linear map© : sl(2,R) — VHO that maps each, to X, is a Lie algebra
isomorphism.
The action®’© allows us to relatd (5l 1) to an equation 8h(2, R) given by
3
Ra-1,aA ==Y ba(t)as,  A0)=1. (5.5)
a=1

Thus, if A(t) is the solution of[(515) and we denate= (z, p) € T*R, then the solution starting
from £(0) is &(t) = ®HO(A(t),£(0)) (see e.g.[[40]). In summary, systeim (5.1) is a Lie system
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in T*R related to an equation a#iL(2, R) and the solution of equatiofn (5.5) allows us to obtain
the solutions of({5]1) in terms of the initial condition by ams of the actio® €.

5.2. Transformation laws of Lie equations onSL(2,R) Eacht¢-dependent harmonic oscillator
(5.1) can be considered as a curveRihof the form(b; (t), ba(t), b3(t)) through the decomposi-
tion (5.4). Then, we can transform each cugy® in T*R, by an elementi(¢) of G as follows:

_ - (alt) B . [ a)z(t) + B(t)p(t)
1£ () _< 3(t) o(t) ) €5 o400 = ( F(t)z(t) +6(t)p(t)>' (56)

The above change of variables transforms the TDHQ (5.1)antanalogous TDHO with new
coefficients, b}, b5 given by

by =6%bs — 0y by + 7% by + 76 — 07,

by =—2B6bs + (@b + B7) by — 2a7 b1 + 6a — ad + By — 3,

b, =B%bs — aBby +a* by +af — fa .
The solutions of the transformed TDHO are of the fadA (¢), £(t)), with £(¢) being a solution
of the initial TDHO. Additionally, the above expressiondide an affine action (see e.g. [151] for
the general definition of this concept) of the graiipn the set of TDHOS [63]. This means that
in order to transform the coefficients of a TDHO by means of tiansformations of the above
type, first through4; and then by means of,, it suffices to do the transformation induced by
the productds A, .

The result of this action off can also be studied from the point of view of the equations

in SL(2,R). First, G acts on the left on the set of curvesSi(2, R) by left translations, i.e. a
curve A(t) transforms the curvel(t) into a new oned’(t) = A(t)A(t). Therefore, ifA(t) is
a solution of [5.b6), characterised by a curfe) < s[(2,R), then the new curve satisfies a new
equation like [(55) but with a different right-hand sidé(t), and thus it corresponds to a new
equation onSL(2,R) associated with a new TDHO. Of cours#,(0) = A(0)A(0), and if we
want A’(0) = Id, we have to impose the additional conditidii0) = Id. In this wayG acts on
the set of curves iy SL(2,R) ~ s[(2,R). It can be shown that the relation between both curves
a(t) anda’(t) in sl(2, R) is given by [40]

3
al(t) ==Y b (Haa = A(t)a(t) A~ (t) + A A (t). (5.7)

Summarising, it has been shown that it is possible to as®gdima one-to-one way, any
TDHO with an equation in the Lie groupL(2, R) and to define a grou@ of transformations on
the set of such TDHOs induced by the natural linear actiofilof2, R).

Recall that, in view of Theorem 4.1, systelm {5.7) can be dgghas a system of first-order
ordinary differential equations in the coefficients of theve in SL(2, R) of the form

q a(t)  A(t) )
A(t) = .
0= 50 o
Moreover, we can enunciate the following results, which argraightforward application to

TDHOs of Theoreni 4]1 and Corollary #.2 formulated for thelysia of certain Lie systems on
SL(2,R) related to Riccati equations.
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THEOREMS.1. The curvesirb L(2, R) transforming a TDHO related to an equation on this Lie
group determined by a curvgt) into a new TDHO associated with an equation 86,(2, R)
determined by the curé(t), with
3 3
a'(t) = — Z b (t)ae , a(t) = — Z b (t)ae,
a=1 a=1
are given by the integral curves of thelependent vector field
3
N(t) = (ba(t)Na + b, (N | (5.8)
a=1

such thatlet A(0) = 1. This system is a Lie system associated with a non-solvabkddebra of
vector fields isomorphic tel(2, R) & sl(2,R). Moreover, such curves also transform the TDHO
related to the curve(t) into the new one linked t@'(¢).

COROLLARY 5.2. Given two TDHOs associated with the curu¢s) anda’(t) in s[(2, R), there
always exists a curve ifL(2, R) transforming the first TDHO into the second one.

We must remark that even if we know that given two equatiorthénlLie groupSL(2, R)
there always exists a transformation relating both, in oraéind such a curve we need to solve
the system of differential equations providing the intégraves of [5.8). This is the solution of
a system of differential equations that is a Lie system eelab a non-solvable Lie algebra in
general. Hence, it is not easy to find its solutions, i.e. iymat be integrable by quadratures.

The result of Theorem 5.1, i.e. that the system of diffeed@uations describing the trans-
formations of Lie systems ofiL(2,R) is a matrix Riccati equation associated, as a Lie system,
with a Lie algebra isomorphic t(2, R)®sl(2, R), suggests us a method to find some sufficiency
conditions for integrability of the TDHOs to be explainedkne

5.3. Description of some known integrability conditions. We now study some cases when it
is possible to find curved(t) in SL(2,R) transforming a given TDHO related to an equation
on SL(2,R) characterised by a curvgt) into a new TDHO associated with an equation on
SL(2,R) characterised by a curve of the typt) = —D(¢)(c1a1 + coas + csaz). This is
possible if the system determined by {5.8) can be solvediyedbie transformation establishing
the relation to such a TDHO allows us to find the solution ofdlven equation by quadratures.
We first restrict ourselves to studying cases in which theveut(t) lies in a one-parameter
subset ofSL(2,R). The results we show next are a direct translation to thedveonk of TDHO

of Theoreni 4.1 describing certain integrability propesti¢ Riccati equations (see al$o [50]).

THEOREMA.3. The necessary and sufficient conditions for the existenagrahsformation

¢ = MO(Ag(1),6), €= ( ’ )

with
- | at) 0
Ap(t) = < 0 al(t) ) , a(t) >0, (5.9)
relating the TDHO associated with thiedependent vector field
X, =0b; (t)Xl + bQ(t)XQ + bg(t)Xg, (510)
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whereb, (t)bs(t) has a constant sign, i.&; (¢)bs(t) # 0, to another integrable one given by
X/(t) = D(t)(61X1 + co X9 + 63X3) , (5.11)
with, ¢1, ¢o, c3, being real numbers such thatcs # 0, are

b (1) bl<t>>zc ba (t)ba(1)

D(teres =bi(t)balt), ba(®) + 5 <b3(t) ()

Then, the transformation is uniquely defined by

(bsgtgm ) 1/4 0

A +) = by (t)cs

o(t) . (bg(t)cl)_1/4
bl(t)c;’,

Note that one coefficient, either or c3, can be reabsorbed with a redefinition of the function
D. As a straightforward application of the preceding thegresmich can be found in a similar
way as those ir [50], we obtain the following corollaries:

COROLLARY 5.4. A TDHO [5.1) withby (¢)bs(t) # 0 is integrable by a-dependent change of
variables

¢ =M% (A(1), ),

with Ao given by[5.B), if and only
cic3 1(bs(t) bi(t)\|
b |22 (bg(t) - bl(t)ﬂ = o2, (5.12)

for certain real constants,, co, andcs. In this case

D(t) = /h(ﬁfi’z(ﬂ,

dgl o (32/2 C1 /
—=D() ( s a2 > ¢ (5.13)

COROLLARY 5.5. Given an integrable TDHO characterised by-dependent vector field(5J11),
the set of TDHOs which can be obtained throughdependent transformation

¢ =oM0(4(t),9),
with 4, given by[[5.P), are those of the form

X =b1(t) X1 + <bl(t) - % + CzD(t)> Xo +
Thus,A(t) reads

and the new system is

@~ DO Xs. (5.14)

(ngtgm ) 1/4 0

Ao(t) = 1{t)es

o(?) . (b;,(t)cl)*l/“
bl(t)c;’,

Therefore, starting from an integrable system we can findahwly of ¢-dependent vector
fields [5.1%) describing solvable TDHO systems whose caeffis are parametrised by (¢).
Givena TDHO, itis easy to check whether it belongs to suchréljaand can be easily integrated.
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The integrability conditions we have described here arsseeguirements on the initiat
dependent functions, that allow us to solve the initial TDHO exactly bytedependent trans-
formation of the form

¢ = SO (exp(U(t)0), €),
with somev € s[(2, R) and¥(¢), in such a way that the initial TDHO systen (5.1) in the valeab
¢ is transformed into another one in the variabl@ssociated, as a Lie system, with a Vessiot—
Guldberg Lie algebra isomorphic to an appropriate Lie sydtada ofs((2, R) in such a way that
the equation ig’ can be integrated by quadratures and, consequently, tiéi@qiné is solvable
too.

5.4. Some applications of integrability conditions to TDHG. As a first application, we show
that the usual approach to the solution of the classicali@ddd-Kanai Hamiltonian [27, 133] can
be explained through our method (the solution of the quardase can be obtained in a similar
way). Next, we will also apply our approach to get integraiilgHOs.
The Hamiltonian of &-dependent harmonic oscillator is
Hit) = 1 o L R (t)e? (5.15)

S 2m(t) 2 ' '
For instance, a harmonic oscillator with a damping term [BZ] with equation of motion
d
E(moi) + mout + kx =0, k = mow?,
admits a Hamiltonian description, withtadependent Hamiltonian

2

1
H(t) = . exp(—ut) + 3o exp(ut)w?z?,

2m0
i.e.m(t) in (5I3) corresponds ta(t) = mq exp(ut). In this case equations (5.1) are
, oH
T= 5 T e exp(—put)p,
Dy (5.16)
p = T or —mg exp(ut) z,

and thef-dependent coefficients of the associated Lie system read
1
bi(t) = p— exp(—put), ba(t) =0, bs(t) =mow?exp(ut).
Therefore, a$; (t)b3(t) = w?, by = 0 and
bs by
2 _ 2 =9
bs by M

we see that[{5.12) holds if we set = ¢3 = 1,¢c2 = u/w and the functionD is a constant,
D = w. Hence, this example reduces to the system

iy )" ) ()

which can be easily integrated. If we put = (12 /4) — w?, we get

( 2 () ) B cosh(@t) + %Sinh(wt) gsinh((ut) ( 2(0) )
) ) —%sinh((ut) cosh(&t) — %sinh(wt) p'(0)
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and, in terms of the initial variables, we obtain

x(t) = e—Ht/2 (Cosh(@t) + isinh(wt)) Vmowxo + gsinh(c?nf) Po .
/Mmow 20 w /mow

We can also study a TDHO described by thdependent Hamiltonian

1 1
H(t)==p*+ §F(t)w2x2 . F(t) >0,

2
where we assume, for simplicityy = 1. Thet-dependent vector field is
0 0
X, =p—=— — F(t)w?r—
t p 81) ( )(JJ xap?

which is a linear combination
X, = F(t)w? X0 + X[HO
i.e. thet-dependent coefficients ib (5]10) are
bi(t)=1, by(t)=0, bs(t)=F(t)w?,
and the condition fof" to satisfy [5.1PR) is

Therefore /' must be of the form
Fit)= ———
®) (L — cowt)?
and the Hamiltonian, which can be exactly integrated, is

2 1 0J2
H(t) = % + mez'
The corresponding Hamilton equations are
T =p,
w2
(L=t "

and thet-dependent change of variables to perform is

2 = d x
TV L—cowt”

b= -

, L — cowt
p = Tp
In consequence,
dz’ w c .,
dt L — cowt (Em +p), (5.17)
dp’ w ( , €2 ,) '
w_ % (g2
dt L — cowt 2P )

and, under the-reparametrisation,

0 /f wdt’ L K’
7(t) = S — -
o L—cowt' ¢ L —cowt )’
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the system[(5.17) becomes

de’ ¢ ,
ar 27 TP
—dpl :—J/‘I——CQ /
dr 2p,

which is equivalent to a transformed Caldirola—Kanai défgial equation through the change
T+ wtandce — p/w. In any case, the solution is

(1) = (cosh(fur) + ;—;sinh(@ﬂ) 2’ (0) + %sinh(far)p’(O),

wherew = 4/ % — 1. Finally,

w(r(t)) = ) £ {(cosh(&T(t)) + SZsinh(Br(1))) #/(0) + Zsinh(@r(1)p'(0) |

Let us analyse another integrability condition that, aspgheceding one, arises as a com-
patibility condition for a restricted case of the systematigéng the integral curves of (3.8).
Nevertheless, this time, the solution is restricted to apammeter set of matrices S7.(2, R)
that is not a group in general.

In this way, we deal with a family of transformations

_ v O
wo=( 7 4y

) , V(t) >0, (5.18)
whereu; is a constant, i.e. we want to relate thdependent vector field
X; = X9 4 F(t)w? X9,
characterised by the coefficients[in (5.10)
bl = 1, bg = O7 bg = F(t)wQ,

to an integrable one characterisedyyb, andb’, or more explicitly, to the-dependent vector
field
X = D(t)(chl + Cng) R

i.e.by = Dey, by =0, anddy = Dcs. Moreover, ife; # 0, we can reabsorb its value redefining
D and assuming; = 1.

Under the action of{5.18), the original system transfomts the following system
by = V25 +u Ve +uiby — iV,

U1 1%
by =by+2e2b —2—
2 21+ V 1 V;
V=g

As by = b, = 0 andb; = 1, the second equation yields = wu;, i.e. V(t) = uit + ug
with ug € R. Moreover, using this condition on the first equation togethithb; = 1, we get
by, = V2bs. Then, as the third equation gives us the valu®ais D = b} = 1/V2, we see that
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by = Des = V2F(t)w?. Therefore ' has to be proportional tut + ug) 4,
k C3
Flt)= ——— k=2
®) (urt +ug)t’ w2
Let assume: = 1 and thuscs = w?. Then, thet-dependent transformatiofy (¢) performing

this reduction is
r__r
V(t)’
p = —uix + V(t)p.

Under this transformation, the initial system becomes

dx’ _ p/
dt — V2(t)’
dp/ W
dt VR

Using thet-reparametrisation

boat 1 /1 1
T(t): —V2 7 :_<__—>7
o V() wi\ug V()
we get the following autonomous linear system
dx’ ,
dr
d_p/ 2./
dr
whose solution is

o (7_) B COS(OJ’T) sini}wr) ! (0)
( P (1) ) N ( —wsin(wr) cos(wT) ) ( p'(0), )
Thus, we obtain that

x(t) =V (t) (cos(w T(t))z_z + %sin(w 7(t))(—urzo + u0p0)> .

5.5. Integrable TDHOs andt-dependent constants of the motion.The autonomisations of the
transformed integrable systems obtained above enableamngiructt-dependent constants of
the motion. Indeed, in previous cases, a TDHO was transfdbinte a Lie system related to an
equation orSL(2,R)

Ra-1,44 = —D(t) (1 My + caa1 + csa1) ,
associated with a TDHO determined by thdependent vector field
X =D(t)(e1 X1 + c2a X2+ c3X3).
Eacht-dependent first-integrdl(¢) of this differential equation satisfies

dl oI
—=—+X,I=0.
@~ T =0

Thus, the functior is a first-integral of the vector field dR x T*R

1 0

Yt = Cle(t) + CQXQ(t) + Cng(t) + m&
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As R x T*R is a three-dimensional manifold and the differential emumatve are studying is
determined by a distribution of dimension one, there esislg@ast locally) two independent first-
integrals. Next, we will analyse some integrable cases heid torresponding constants of the
motion.

e CaseF'(t) = (uit + ug) 2

In this case we obtain that, according to Theofenh 5.3ttependent vector field of the
initial TDHO is transformed into the following one,
w U1
X, = —— (XHO__XHO XHO)
¢ w1t + ug ! w 2 s
and thus, using the method of characteristics, we obtaifotlmving constants of the motion for
this TDFHO:

Ul (ul + Uot)w/ul
p/ l’l +x/2 _’_p/27 I2 _ )

__U ((%(El—Qp/)-i-Q(D{E/)%

I

with @ = 1/ 1 — 1.

e CaseF'(t) = (uit + ugp)~*:

In this case we see that threlependent vector field of the initial TDHO is transformetbin
1
X =
LV
and thus, using the method of characteristics, we get th@nfirlg ¢-dependent constants of the
motion for the initial TDHO

(XHO +u2x[1°),

T w 2 2

I = arcsin< rw ) + v .
VIOWWL)  wV(t)
As we have twa-dependent constants of the motion oRex T*R and the solutions in this space
are of the form(¢, z(t), p(t)), we can obtain the solutions for our initial system.

5.6. Applications to two-dimensional TDHQO's. In this section we apply our previous geomet-
rical methods to analyse the following two-dimensiofidependent harmonic oscillator

2 2 2,.2 2,.2
_ D1 | P3| WiT] +wix)

H(t, 21,72, p1,p2) = 5 T5 T Tovae

with w; andws being constant ant (¢t) = w1t + ug. Nevertheless, our approach is also valid for
the corresponding generalisation ta-alimensional TDHOs. This Hamiltonian is related to an
uncoupled pair of TDHOs and therefore the same developni¢hedast section applies again.

In this way, we obtain that its Hamilton equations read

Z; = Pi,

UJ? i:1725

pi = _V4—(t)xi7



94 J.F. Carifiena and J. de Lucas

and can be transformed into the system

dx 1,
4 T T Pis
dt V2(t) .
1=1,2,
dpi _ @},
. V2)Y
by means of the-dependent change of variables
o = TP
LoV i=1,2.

P = —uiz; + V(t)pi,
The solutions of the latter system are integral curvestefl@pendent vector field in the distribu-
tion generated by the vector field

X = —wfa:/la—p,l —|—p'18ix,1 - w%méaip,z —|—p'28ix,2.

If we consider the problem as a differential equatiorliriR?, the constants of the motion are
first-integrals for the vector field +9/0t overR x T*R?. Then, as we have a distribution of rank
one over a five-dimensional manifold, there exist, at leasally, four functionally independent
first-integrals. Additionally, three of them can be chosemé¢t-independent ones (in terms of
the variables], =4, p!, p5). The constants of the motion for the initial TDHO corresging to
some of such first-integrals read

2
Wi Tq 2 .
Ii == ; — i s = 172,
(V(t)) + (V()p; —urx;) 1

and
7 1 . ( T1w1 ) 1 . Towa
12 =—arCcsi{ ———— | — —arcsm | ———| .

wi V()WL wa V()12
This first-integral is constant along the solutions. Newelgss, in order for the function to be
correctly definedw; /ws needs to be rational. Finally, with the aid bf(5.19), we catai two
t-dependent constants of the motion of the form

7 Wi . Thw; .

I; = + arcsin ( L ) 1=1,2.

V(t)ur VT

As a consequence, we can explicitly obtain tkevolution of the system. Indeed, either frdin
or I, we reach the following solutions far, andzs

xi(t):Msin<Ii— i ) i=1,2.

Wy V(t)u1
The properties of these solutions become clearer when we thiem in the following way
VL . (= i .
xi(t)ZL\/_'sm Ii—wi , i=1,2,
w; ug (urt + ug)

and we realise that the quotient(t)/x2(t) is at-independent constant of the motiondf /wo
is rational.

These two equations can be considered as the parametrasegpation of a curve on the
configuration spac€ = RZ. In the general case; andz, evolve in an independent way and
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the behaviour of the curve becomes blurred. In the rationse cthe evolutions of, andzy are
correlated in such a way that thhedependent coupling functiafi; is preserved. The particular
form of this curve will depend on the relation betwagnandug. If u; = 0 it will be a Lissajous
curve. Ifu; # 0 it can be considered as a curve obtained by the addition @figgoamplitudes

to the oscillations of the corresponding Lissajous curve.dah refer to them ag—dependent
Lissajous’ figures. Nevertheless, it is not totally cleaetbter this term is appropriate, since these
new curves are ‘not closed'.

6. Integrability in Quantum Mechanics

Some papers have recently been devoted to applying theytbédie systems[[38, 157, 234]
to Quantum Mechanics [5L, 60]. As a result, it has been prélvadthe theory of Lie systems
can be used to treat some types of Schrodinger equatianspoticalled quantum Lie systems,
to obtain exact solutiong;evolution operators, etc. One of the fundamental propefound is
that quantum Lie systems can be investigated by means ofieqsian a Lie group. Through this
equation we can analyse the properties of the associateddober equation, e.g. the type of
Lie group allows us to know if a Schrodinger equation canbegrated([51].

Lately, a lot of attention has also been dedicated to theystfichtegrability of Lie systems
and, in particular, of Riccati equatioris [40,/ 47] 50]. Ingbgapers, as in previous sections, it
has been shown that integrability conditions for Lie system the case of Riccati equations,
appear related to some transformation properties of tteceged equations iIfL(2, R). Never-
theless, as we have pointed out in this work and it was shoJ#vinthe same procedure used to
investigate Riccati equations can be applied to deal wiyhLas system.

Therefore, in the case of a quantum Lie system, there exiségjaation on a Lie group as-
sociated with it[[51]. The transformation properties irtigegted in the theory of integrability of
Lie systems can be used to study integrability conditiongfmntum Lie systems. All results ob-
tained in Chaptdrl4, can be generalised to apply to the qoecdise and some non-trivial integral
models can be obtained. The aim of this chapter is to show bapply the theory of integra-
bility of Lie systems so as to investigete quantum Lie systefdl our results are illustrated by
means of the analysis of several types of spin Hamiltonians.

We must stress the practical importance of this method: dbks us to obtain non-trivial
exactly solvable-dependent Schrodinger equations. This fact allows usvestigate physical
models by means of non-trivial exact solutions. It also jtes a procedure to avoid using nu-
merical methods for studying Schrodinger equations inyntases.

6.1. Spin Hamiltonians. In this section we investigate a particular quantum medzasiystem

whose dynamics is given by Schrodinger—Pauli equalioh \8® first prove that this Hamilto-

nian corresponds to a quantum Lie system and we next appth#uey of integrability of Lie

systems to such a system to recover some exact known saaimhprove some new ones.
The system under study is described by#tependent Hamiltonian

H(t) = By(t)Sz + By(t)Sy + B.(t)S:,
with S, S, andS, being the spin operators. Let us denSte= S, S; = Sy, andSs = S, then
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thet-dependent HamiltoniaH (¢) is a quantum Lie system, because the spin operators are such

that
3

[iS),1S%] = — Z €K1 151, Jk=1,2,3, (6.1)
=1
with €;1; being the components of the fully skew-symmetric Levi-@wviensor and where we
have assumedl = 1. The Schrodinger equation corresponding to thilependent Hamiltonian

is
W = ()5 (0) — 1B, (1)S, () — 1B (1)S-(v), (6.2)

which can be seen as a differential equation determiningntiegral curves of the-dependent
vector field in a (maybe infinite-dimensional) Hilbert spa¢given by

Xi = Bo(t) X7 + By (1) X5 + B.() X5",
with
(X7 M)y = =iSa(¥),  (X3T)y = —iSy(v), (X5)y = —iS:(¥).
Thet-dependent vector field can be written as a linear combination

3
=> bt X",
k=1

of the vector fieldsX; 7, with b (t) = B,(t), ba(t) = By(t) andbs(t) = B.(t), and therefore
our Schrodinger equation is a Lie system related to a quanessiot—Guldberg Lie algebra
isomorphic tosu(2).

Take the basis fosu(2) given by the following skew-self-adjoirzt x 2 matrices

'=9\i o) 279\ -1 0 )’ 579\ o0 —i )

These matrices satisfy the commutation relations
Vj,Vk ijleh jk=1,2,3,

which are similar to[(6]1). Hence, we can define an acié# : SU(2) x H — H such that
O (exp(cpvi), ¥) = exp(cpiHy) (1)), k=1,2,3,

for any real constants , co andcs. Moreover,

d d
Bl (I)SH —it —
G| o e -

getting that eacLX,fH is the fundamental vector field associated with Thus, the equation on
SU(2) related, by means @, to the Schrodinger equatidn (B.2) is

exp(—itHy,)(®) = —iHy(¢) = (X7 )y,
t=0

el = Z bi(t yesu2),  g(0)=e. (6.3)

It was shown in[[51], and prewously in our work, that the gv@uof curves in the group of a
Lie system, in this casé = Map(RR, SU(2)), acts on the set of Lie systems associated with an
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equation in the Lie groufr in such a way that, in a similar way to what happenedin [40lrae
g € G transforms the initial equatiop (6.3) into the new one cbimsed by the curve

a/(t) = —Ad(g <Zbk ) z*gdt Zbk Vi, (6.4)

Once again, this new equation is related to a new Schroqu;mtlon inH determined by a

new Hamiltonian
3
"(t) =D b (t)Sk
k=1

Additionally, the curvej(t) in SU(2) induces a-dependent unitary transformatiéi(t) on
‘H transforming the initiat-dependent Hamiltoniaf (¢) into H'(t).

Summarising, the theory of Lie systems reduces the probfesetermining the solution of
Schrddinger equations related to spin Hamiltonia#{g) to solving certain equations in the Lie
groupSU (2). Then, the transformation properties of the equation$lif{2) describe the trans-
formation properties off (¢t) by means of certainrdependent unitary transformations described
by curvesinSU (2).

Note that the theory here developed for spin Hamiltoniandaeestraightforwardly employed
to analyse any quantum Lie system. In this case, our proeeduarains essentially the same. Itis
only necessary to replacd/(2) by the new Lie grougr associated with the quantum Lie system
under study.

6.2. Lie structure of an equation of transformation of Lie systems. Our aim now is to prove
that the curves iU (2) relating the equations defined by two cureés) anda’(t) in T;SU(2),
respectively, can be found as solutions of a Lie system &dmdiftial equations.
Recall that the matrices &fU (2) are of the form
§:< “ b*), a,beC, (6.5)
—-b* «a
with |a|?+|b|? = 1 and that the elements @i (2) are traceless skew-Hermitian matrices, namely,
real linear combinations of the matricés; | £ = 1,2,3}. Then, the equatiol (6.4) becomes a
matrix equation that can be written
dg 2
g= Z b (v + > b(t)gveg " (6.6)
k=1

Multiplying both sides of this equatlon lyyon the right, we get

_ 3 3
== bpt)veg+ Y br(t)gve . (6.7)
k=1

k=1
If we consider a reparametrisation of thdependent coefficients gf
a(t) = z1(t) +iy1(t),
b(t) = {EQ(t) + iyg(t),
for real functionse; andy;, with j = 1,2, a straightforward computations shows thatl(6.7) is a
linear system of differential equations in the new variabig x5, y; andys that can be written
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as follows
T 0 b/2 — by —bs + bé —b1 + bll xr1
To 1 by — b/2 0 —b1 — bll bs + b/3 X2
- =5 ’ ’ ’ . (6.8)
N 2 bg—by by+b 0 —by — b %
Yo by —by —bz—by by 4 0 Y2

Only the solutions of the above system obeying tiat- 23 + y7 + y5 = 1 describe curves
in SU(2) and, consequently, are related to solutions of syster. (8ef)ertheless, we can forget
such a restriction for the time being, because it can be aatioally implemented later in a more
suitable way. Therefore, we can deal with the four variainléise preceding system of differential
equations[(€]8) as if they were independent. This linearesyof differential equations is a
Lie system associated with a Lie algebra of vector figldg, R), but the solutions with initial
condition related to a matrix in the subgro§p’(2) always remain in such a subgroup. In fact,
consider the set of vector fields

N1:l<—y2 0 y1i+$2—+$1i>
2 8.231 8.232 8y1 8y2 ’
N2=1<—$2 0 + 1i y2—+y1i>
2 Oz Oxo oY1 dy2 )’
N3—1<—y1 0 +y2i+$1i—$2i>
2 15) ({91’2 6y1 6y2 ’
, 1 0 0 0
N1:§<y28—x1_y16m 28y1 xa—g/g )
V=2 (ol a2 +yn
2 2 2 6m1 e ({91’2 Y2 6y1 y 6y2 ’
R R M)
3=\ 0x1 ¥ 015 18y1 v dy2 )’

for which the non-zero commutation relations are given by:
[N1, No] = —N3, [N2, N3] = — N1, [N3, N1] = —No,
[N{aNé]:_Név [NévNé]:_Niv [NéaN{]:_Né'

Note that[N;, N;] = 0, for j,k = 1,2,3, and therefore the system of linear differential
equations(6J8) is a Lie system @t associated with a Lie algebra of vector fields isomorphic to
g = su(2) @su(2), i.e. the Lie algebra decomposes into a direct sum of two Igietaas isomor-
phic tosu(2, R), the first one is generated W, N2, N3} and the second one §yV{, Nj, N3}.

If we denotey = (z1,72,y1,7y2) € R*, the system[(6]8) can be written as a system of
differential equation irR*:

dy
i
with N; being thet-dependent vector field given by
3
N(t,y) =Y (bk()Ni(y) + b () Ni,(v)) -
k=1

The vector field{ N1, N3, N3, N7, Ni, N} span a distribution of rank three in almost any

point of R* and consequently there exists, at least locally, a firggiratl for all the vector fields

N(t,y), (6.9)
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(63). It can be verified that such a first-integral is glopalefined and reads(y) = 7 +

z3 + v} + y3. Hence, given a solutiop(t) of system[(69) with an initial conditiof(y(0)) =

2?2 + 23 +y? +y32 = 1, thenI(y(t)) = 1 at any timet and this solution describes a curve in
SU(2). Therefore, we have found that the curvesSEi (2) relating two different equations on
SU(2) associated with two Schrodinger equations of the form) (622 be described by means
of the solutiong(¢) of (€9) with I(y(0)) = 1, and vice versa:

THEOREM6.1. The curves irSU (2) relating two equations on the grouflU (2) characterised
by the curves isu(2) of the form

3
al(t) = — Z by (t) v, a(t) = — ) bi(t)vy
k=1

E
I w
—

are the solutionsy(¢), of the system

dy
— = N(t

L (t,y),
with

3

N(t,y) =Y (be(t)Ni(y) + i () Ni (1)) ,
k=1

satisfying that/ (y(0)) = 1. This is a Lie system related to a Lie algebra of vector fiesdsrior-

phic tosu(2) & su(2).

COROLLARY 6.2. Given two Schidinger equations corresponding to two spin Hamiltonians,
there always exists a curve B (2) transforming one of them into the other.

Although the above corollary ensures the existence iflapendent unitary transformation
mapping a given Spin Hamiltonian into any other one, obt&jrsuch a transformation involves
solving system((6]9) explicitly. This Lie system is relatech non-solvable Lie algebra and, con-
sequently, it is not easy to find its solutions in general. iBwvof this, it becomes interesting
to determine integrability conditions which allow us tos®khis system and obtain the corre-
sponding transformation. This illustrates the interesthef integrability conditions derived in
next sections, which will be used to derive exact solutiamsbme physical problems involving
Spin Hamiltonians.

6.3. Integrability conditions for SU(2)Schrodinger equations. Let g(¢) be a curve inSU (2)
transforming the equation o/ (2) defined by the curve(t) into another characterised h¥(t)
according to the rulé (6.6). if (¢) is the solution of the equation iU (2) characterised by (¢),
theng(t) = g 1(t)g'(¢) is a solution for the equation ifi/ (2) characterised by(t).

If a’(t) lies in a solvable Lie subalgebraf(2), we can derivg’(¢) in many ways[[40] and,
onceg’(t) is obtained, the knowledge of the curgg&) transforming the curve(t) into a’(¢)
provides the curvg(t) solution of the equation 08U (2) determined bw(t).

Therefore, starting from a curvé(t) in a solvable Lie subalgebra sfi(2) and using[(619),
with curves in a restricted family of curves #U/(2), we can relate’(t) to other possible curves
a(t), finding, in this way a family of equations o0 (2), and thus spin Schroddinger equations
on#, that can be exactly solved.
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Let us assume some restrictions on the family of solutiomesiof the systenfi (6.9), e.g. we
chooseb = 0. Consequently, there are instances of this system whichotladmit a solution
under these restrictions, i.e. it is not possible to contieetcurvesa(t) anda’(t) by a curve
satisfying the assumed restrictions. This gives rise toesoompatibility conditions for the ex-
istence of one of these special solutions, either algelanaditor differential ones, between the
t-dependent coefficients af (t) anda(t) satisfied by explicitly solvable models found in the
literature. Therefore, our approach is useful to providactly integrable models found in the
literature and, as we will see next, to derive new ones.

The two main ingredients to be taken into account in the falhg sections are:

1. The equations which are characterised by a cuaig) for which the solution can be
obtained We here consider that(¢) is associated with a one-dimensional Lie subalgebra
of su(2).

2. The restriction on the set of curves considered as solutiftise equation(6]9We next
look for solutions of[(6.9) related to curves in a one-paremsubset 06U (2).

Consider the below example: suppose that we want to conmggaaa(t) with a final family
of curves of the formy/(t) = —D(t)(c1v1 + cava + c3vs), with ¢, co, ¢3, being real numbers.
In this case, systeri (8.9), which describes the cugygsc SU(2) that transform the equation
described bw.(t) into the equation determined hy(¢), reads

dy : /
=5 = 2 sONk(y) + D(t) Y _ cxNi(y) = N(t.v). (6.10)
k=1 k=1
Note that the vector field
3
N'=>" Ny,
k=1

satisfies that
[Ny, N'] =0, k=1,2,3.

Hence, Lie systeni (6.10) is related to a Lie algebra of ve@tts isomorphic tau(2) ¢ R. As
this Lie system is associated with a non-solvable Vessidtkserg Lie algebra, it is not integrable
by quadratures and the solution cannot be easily found irgémeral case. Nevertheless, it is
worth noting that[(6.710) always has a solution.

In this way, we can consider some instances[of (6.10) for e resulting system of
differential equations can be integrated by quadraturescs consider that is related to a
one-parameter family of elements®¥/ (2). Such a restriction implies thaf (6]10) not always has
a solution, because sometimes it is not possible to corrfecanda’(t) by means of the chosen
one-parameter family. This fact imposes differential algtlbraic restrictions on the initiat
dependent functionky, with & = 1,2, 3. These restrictions will describe known integrability
conditions and other new ones. So, we can develop the idefg®055] in the framework of
Quantum Mechanics. Moreover, from this point of view, we fiad new integrability conditions
that can be used to obtain exact solutions.
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6.4. Application of integrability conditions in a SU(2)Schrodinger equation. In this section
we restrict ourselves to the casét) = —D(¢)vs, i.e.

bi(t) =0, by(t) =0, bs(t) = D(t). (6.11)

Hence, the system of differential equations6.8) desugilhe curveg relating a Schrodinger
equation toH’ (¢t) = D(t)S, is

T 0 —by —bs3 + D —by X1
To 1 bo 0 —by bs + D X9
| L , 6.12
Y1 2 bg —D b1 0 —bg Y1 ( )
U2 by —b3 — D ba 0 Y2

We see that, according to the result of Theokenh 6.1¢thependent vector field corresponding
to such a system of differential equations can be writtenle&ar combination witli-dependent
coefficients of the vector field¥;, N», N3 and Ni:

3
N(t,y) = Y bu(t)Ni(y) + D(t)N5(y)-
k=1

Thus, systen{(6.12) is associated with a Lie algebra of vdietds isomorphic tar(1) & su(2).
This Lie algebra is smaller than the initial ohe (6.8), biig itot solvable and the system is as dif-
ficult to solve as the initial Schrodinger equation. Theref in order to get exact solvable cases,
we need to perform some kind of simplification once again, lgygneans of the imposition of
some extra assumptions on the variables. This may resulsystem of differential equations
whose solutions are incompatible with our additional ctinds. The necessary and sufficient
conditions on theé-dependent functions , bo, b3, b}, b5, andd; ensuring the existence of a solu-
tion compatible with the assumed restrictions on the vigmgive rise to integrability conditions
for spin Hamiltonians.

For instance, suppose that we impose on the solutions to Heeione-parametric subset
A, C SU(2) given by

L —bigin Y
A, = {( e,ffb? € o3 ) }be [0,2@}. (6.13)

sin 3 cos 3
wherey is a fixed real constant such that4 27n, withn € Z, because in such a cade = +I1d.
In view of the definition of the setd., and in terms of the parametrisati¢n {6.5), we have

T1 = cos %, y1 =0, x9= —sin % cosb, yo =sin % sin b. (6.14)
The elements ofA, are matrices ilSU(2) and the system of differential equations we obtain
reads

0 0 —b2 —b3 + D —b1 X1
{ﬁg 1 b2 0 —b1 b3 + D i)
= — . .1
0 2| bs—D b1 0 —bsy 0 (6.15)
Y2 b1 —b3—D ba 0 Y2
and then we get two integrability conditions for the systeni§):
0 = —boxy — b1yo,
2t (6.16)

0= (b3 — D)(El + b1xo — bays.
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We can write the component8,(t), By (t), B (t)) of the magnetic field in polar coordinates,
B, (t) = B(t) sin (t) cos ¢(t),
By (t) = B(t)sin0(t) sin ¢(t),
B.(t) = B(t)cos(t),
with § € [0, 7) and¢ € [0, 27).
The first algebraic integrability condition reads, in patapbrdinates, as follows:
B(t) sin §(t) sin % (cos @(t) sin b(t) — sin ¢(t) cosb(t)) =0
and thus,
B(t)sin6(t) sin  sin(b(t) — $(1)) =0,

from where we see th&{t) = ¢(t). In such a case, the second algebraic integrability canditi
in (6.18) reduces to
(B. — D)cosg — Bsin%sin@ =0

and then, the-dependent coefficierd is
B
D= = COS (1 + 9) . (6.17)
Ccos 3 2
Finally, we have to take into account the differential irltmg'lity condition

. 1
Tg = 3 (bg cos 5 + (b3 + D) sin 5 sin b)

which after some algebraic manipulation leads to

B (sin(9+ 7) N cos(3 + 9)) |

2 sin 3 cos 2

and then o) )
; sin(6(t) + v
t)=B(t) —————
o) = BO) — 3 =
which is a far larger set of integrable Hamiltonians thandhe of the exactly solvable Hamilto-
nians of this type found in the literature. As a particulaample, wher$ and B are constant, we
find

, (6.18)

b= pinO@+y _ (6.19)
sy
and consequently,
o = wt + ¢p.
In this way, we get that the-dependent spin HamiltoniaH (¢) determined by the magnetic
vector field
B(t) = B(sin 6 cos(wt), sin 0 sin(wt), cos 6).
is integrable.

Another interesting integrable case is that givergby 7, that is, the magnetic field moves
inthe X Z plane, se€ [20, 139, 140]. In such a case, in view of the iantslify conditions[[6.1P),
the angular frequency reads

é = Bcotany = w.
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The last one of the most known integrable cases of Spin Hamiglh is given by a magnetic
field in a fixed direction, i.eB(t) = B(t)(sin 6 cos ¢, sin 0 sin ¢, cos #). Obviously, this case
satisfies integrability conditiof (6.119) far= —6.

Apart from the previous cases, the integrability condi{{6d8) describes more, as far as we
know, new integrable cases. For instance, consider thevaéisé fixed andB non-constant. In
this case, the correspondififyt) is integrable if

¢ sin(0+7)
B(t)  siny
that is, if we fixy = w/2 we have that

w=¢ = B(t)cos§ = ¢(t) = cos@/t B(t")dt'.

Furthermore, we can considéft) = ¢ and B constant. In this case, we get that the
dependent HamiltoniaH (¢) is integrable if thep(¢) holds the condition

¢5=Bcost:>¢(t):Bsint.

Indeed, note that in this case the integrability conditi®d8) trivially follows fory = —1/2.

To sum up, we have shown that there exists a large familird#pendent integrable spin
Hamiltonians that includes, as particular cases, mangiatde cases known up to now. Addi-
tionally, it is easy to check whethertadependent spin Hamiltonian satisfies the integrability
condition [4.3B) and then, it can be integrated.

6.5. Applications to Physics.Let us use the above results in order to solvedgpendent spin
Hamiltonian

H(t)=B()-S,
which broadly appears in Physics: the one characterisedggmetic field
B(t) = B(sin 6 cos(wt), sin 0 sin(wt), cos 0), (6.20)

thatis, a magnetic field with a constant modulus rotatinggtheO 7 axis with a constant angu-
lar velocityw. Such Hamiltonians have been applied, for instance, toyaadhe spin precession
in a transversé-dependent magnetic field [208], investigate the adialzgiproximation and the
unitary of thet-evolution operator through such an approximation [16@] 1&tc.
In the previous section we showed that thidependent Hamiltonian is integrable. Indeed,
the integrability condition[(6.19) can be written as
sin 6
tany = ——,
% —cosf
where we recall that has to be a real constant. In the case of our particular madiedd (6.20)
the angular frequency, = ¢, the angled and the modulus3 are constants. Thereforeis a
properly defined constant, the integrability conditibrl@.holds and the value of is given by
equation[(6.211) in terms of the parameté&tsf andw, which characterise the magnetic vector
field (€.20).
We have already shown that#(¢) satisfies[(6.19), theil (¢) is integrable, because it can
be transformed by means oftadependent change of variables determined by a cyftein

(6.21)
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the setA,, into a straightforwardly integrable Schrodinger equatietermined by &dependent
HamiltonianH’(t) = D(t)S.. For simplicity, let us parametrise the elementslofin a new way.
Considers = (01,02, 03) andn € R?, where the matrices; are the Pauli matrices,, 0,/, 0.
We have

€% = Id cos ¢ + io - nsin .
So, forn = (O‘LT\/O‘TZ;@ with real constanta;, as and taking into account that = “’7* vy = “’79

andvs = 2=, we get

) 2 s s 2
1P iy O 9
€"7 sIn 2 COsS 2

(6.22)

0 cos? —e~ " gin &
exp(a1vy + agva) = exp 250 ‘n) =

with § = v/a? + a3 and—e ™" = (iaq + aa)/y/a? + 3. In terms of§ andy the variablesy;
andas can be writtenv; = d sin ¢ andas = —4 cos ¢. Hence, in view of{(6.22), we see that we
can describe the elements4f as

< cost —ePisin}

e’ sin 2 cos 3

whereb and~ are real constants. For magnetic vector fiel[ds {6.20)#hependent change of
variables transforming the initidlf (¢) into an integrabled’(t) = D(¢)S, is determined by a
curve in A, with v determined by equation (6]19) aht) = ¢(¢). Thus, such a curve id,
takes the form

> = exp(ysinbvy — ycosbva), (6.23)

t — exp(ysin(wt) v — v cos(wt) va) (6.24)
We want to emphasise that the abevdependent change of variables9#/(2) transforms the
equation inSU (2) determined by the initial curve
a(t) = —Bg(t)vi — By(t)ve — B.(t)vs,
into and a new equation iU (2) determined by a curv&€ (t) = —D(t)vs. Such a-dependent

transformation inSU (2) induces a-dependent unitary change of variablestintransforming
the initial Schrodinger equation determined by thdependent HamiltoniaH (¢), i.e.

9y

57 = HO).
into the new Schrodinger equation

a !/

V= ()W) = D)5, (). (6.25)

The relation betweert andv’ is given by the correspondintgdependent change of variables in
‘H induced by curvd(6.24), i.e.

¢ = exp(ysin(wt) S, — v cos(wt) .5y ). (6.26)
In view of expressior (6.17), we see that
D = B(cosf — tan% sin 0),
and from [6.211) and the relations

2tand —14+/1 + tan?
BTSN B EV T
1 —tan*2 2 tany

tany =
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we obtain

~y 1 w w? w
tan—- = — | —= 30 £ 4/ — —2—cosf+1].
MY T e ( B +cos B2 B + )
If we substitute the above expression in the latter expsadsir D, it turns out that
D =w+\w?—2wBcosf + B2.

That is,D becomes a constant. Thus, the general solutidior the Schrédinger equatiopn (6125)
with initial conditiont)y, is

V'(t) = exp (—itDS.) ¥,
and the solution for the initial Schrodinger equation wiititial condition ¢y can be obtained
undoing the-dependent change of variables (6.26) to get

Wy = exp (—iysinwt Sy + iy coswt Sy) exp (—iDLS,) .

7. The theory of quasi-Lie schemes and Lie families

7.1. Introduction. Several important systems of first-order ordinary difféi@requations can
be studied through the theory of Lie systems. Moreover, ttiheory was recently applied to
study SODE Lie systems, quantum Lie systems, some parffatelitial equations, etc. These
last successes allow us to recover, from a unifying pointiefvyseveral results disseminated
throughout the literature and to prove multiple new prapsmf systems of differential equations
appearing in Physics and Mathematics. Apart from theseesses, there are still some reasons
to go further in the generalisation of the theory of Lie sysde

e Lie systems are important but rather exceptioridie theory of Lie systems investigates
very interesting equations with many applications, é-dependent frequency harmonic
oscillators, Milne—Pinney equations, Riccati equatiats, Nevertheless, it fails to study
many other (nonautonomous) interesting systems, likeimeat oscillators, Abel equa-
tions, or Emden equations.

e The theory of Lie systems does not allow us to investigarpapition rules involving an
explicitt-dependencerhich appears in various interesting systems, e.g. disegslilne—
Pinney equation, Emden—Fowler equatians [42], secondrdritcati equations [48, 1P6],
whose properties are worth analysing.

e Lie systems have an associated group-dépendent changes of variables enabling us to
transform each particular Lie system into a new one of theesalass, e.g. the group of
curves inSL(2,R) transforms a Riccati equation into a new Riccati equatiosiriilar
property frequently applies to integrate differential atijons, like Abel equations [74]. A
natural question arises: Is there any kind of systems oédidifftial equations more general
than Lie systems admitting an analogue property?

The theory of quasi-Lie schemes [34] and the Generalised’h&prem [[35], which gives
rise to thelLie family notion, provide an answer to these problems. More spedificplasi-Lie
schemes, quasi-Lie systems and Lie families are integebtigause:
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e The theory of quasi-Lie schemes and the Generalised Lier&mepermit us to inves-
tigate a very large family of differential equations incind Lie systemsMore specifi-
cally, this family includes, for instance, the following mdie systems: Emden—Fowler
equations[34, 42], nonlinear oscillators [34], dissipafliine—Pinney equations [34, 45],
second-order Riccati equations[48], Abel equations [8%], Moreover, not only quasi-Lie
schemes and Lie families can be applied to investigate isygste first-order ordinary dif-
ferential equations, but they can also be employed, foair#, to investigate second-order
differential equations [42, 45].

e The theory of quasi-Lie schemes and the Generalised Lier@meteat, in a natural way,
systems admitting &dependent superposition rul&hese theories show that many dif-
ferential equations admitiadependent superposition rule, e.g. Abel equation's [35id
pative Milne—Pinney equations [34], Emden-Fowler equeti@l2], second-order Riccati
equations[48], etc.

e The quasi-Lie scheme concept permits us to transform aretitial equation within a
fixed family, e.g. a first-order Abel equation into a new onth wifferentt-dependent coef-
ficients This feature generalises the transformation properfikgecsystems and enables
us to derive integrability conditions for differential esfions from a unified point of view.

Consequently, the theory of quasi-Lie schemes and the @kset Lie Theorem represent
powerful methods to study first- and higher-order differ@raquations.

7.2. Generalised flows and-dependent vector fields. Recall that a nonautonomous system of
first-order ordinary differential equations ®¥ is represented in modern differential geometric
terms by ai-dependent vector field = X (¢, z) on such a space. On a non-compact manifold,
the vector fieldX,(z) = X (¢, ), for a fixedt, is generally not defined globally, but it is well
defined on a neighbourhood of every paifgt € R™ for sufficiently smallt. It is convenient to
add the variabléto the manifold and to consider thetonomisatiomf our system, i.e. the vector
field

— 0
X(t,z) = 7 + X(t, ),
defined on a neighbourho@®* of {0} x R™ in R x R™. The vector fieldX; is then defined on
the open set aR",
U = {xo € R™ | (t,20) € U},
forallt € R. If UX = R" for all t € R, we speak about globalt-dependent vector fieldhe
system of differential equations associated withttoependent vector field (¢, ) is written in
local coordinates ,
dx’
dt
whereX (t,z) = > | X*(t,2)0/0z" is locally defined on the manifold for sufficiently small
A solution of this system is represented by a cuswe> ~y(s) in R™ (integral curve) whose
tangent vectofy at¢, so at the point(¢) of the manifold, equalX (¢, v(¢)). In other words,

Y(t) = X(t,7(t)). (7.1)
Itis well-known that, at least for smootk we work with, for eachx, there is a unique maximal
solutiony? (t) of system[(7.11) with the initial valuey, i.e. satisfyingyy° (0) = zo. This solution

= X'(t,x), i=1,...,n,
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is defined at least fars from a neighbourhood df. In caseyy° (¢) is defined for alt € R, we
speak about global¢-solution

The collection of all maximal solutions of the systdm [7.lJeg rise to a (local) generalised
flow ¢X onR™. By ageneralised flowy on R™ we understand a smoothdependent family;,
of local diffeomorphisms oR", g.(z) = g¢(¢,x), such thatgy = idg~. More preciselyg is
a smooth map from a neighbourhobd of {0} x R™ in R x R™ into R"™, such thaty; maps
diffeomorphically the open submanifold’ = {zo € R" | (¢t,z0) € U9} onto its image, and
go = idgr~. Again, for eachry € R"™ there is a neighbourhodd,, of z in R™ ande > 0 such
thatg, is defined o, for t € (—¢, €) and mapd/,,, diffeomorphically ontay; (U, ).

If U7 = R™ forall ¢t € R, we speak aboutglobal generalised flowin this casegy : t € R
g+ € Diff(R™) may be viewed as a smooth curve in the diffeomorphism gioiff{R™) with
go = idz.

Here it is also convenient tautonomisdhe generalised flow extending it to a single local
diffeomorphism

g(t,x) = (t,g(t, x)) (7.2)
defined on the neighbourhod@ of {0} x R™ in R x R™. The generalised flow* induced by
thet-dependent vector field is defined by

g (t,w0) = 7% (1) - (7.3)
Note that, forg = ¢, equation[(7.3) can be rewritten in the form:
Xe=X(t,x)=grogy ' (7.4)

In the above formula, we understodfl andg; as maps fronR”™ into TR"™, whereg;(z) is the
vector tangent to the curve— g(s, z) at g(¢, ). Of course, the compositiof o g; *, called
sometimes theight-logarithmic derivativeof ¢ — g, is only defined for those points € R"
for which it makes sense. But this is always the case for seiffity small¢, at least locally.

Let us observe that equatidn (I7.4) defines, in fact, a oratoeorrespondence between gen-
eralised flows and-dependent vector fields modulo the observation that theaiteswfg; o g; *
andX; need not to coincide. In any case, howeyen g; * and X, coincide in a neighbourhood
of any point for sufficiently smal. One can simply say that tigermsof X andg;og; * coincide,
where the germ in our context is understood as the class ofsmonding objects that coincide
on a neighbourhood df0} x R™in R x R™.

Indeed, for a givery, the corresponding-dependent vector field is defined by {7.4). Con-
versely, for a givenX, the equation[(7]14) determines the germ of the generalisedit, )
uniquely, as for each = z, and for smallt equation[[7}4) implies that — g(¢, o) is the
solution of the system defined by with the initial valuez. In this way we get the following.

THEOREM7.1. Equation [Z.4) defines a one-to-one correspondence bettheggerms of gen-
eralised flows and the germs ©flependent vector fields &i*.

Any two generalised flows andh can be composed: by definitidp o k), = g; o h:, where, as
usual, we viewy, o h; as a local diffeomorphism defined for points for which the position is
properly defined. Itis important to emphasise that in a rgéginhood of any point it really makes
sense for sufficiently smaitl As generalised flows corresponditaependent vector fields, this
gives rise to an action of a generalised flovon at¢-dependent vector fiel&, giving rise to
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hx X, defined by the equation

g X =hogX. (7.5)
To obtain a more explicit form of this action, let us obsevatt
d(hog* _ . . - -
(a0 = W2T0 0 (0 )0 = (o g + DRG)) o (607 o i,

and therefore
(hxX)¢ = hy o byt + Dhy (g5 0 (¢7); ) o by Y,

(haX)e = heohy '+ (he)u(X0) | (7.6)

where(h;). is the standard action of diffeomorphisms on vector fieldsa Islightly different
form, this can be written as an actionieflependent vector fields ardependent vector fields:

(9% X)) = Y+ (g7)4(Xy) . (7.7)

For globalt-dependent vector fields on compact manifolds, the lattinelea group structure in
globalt-dependent vector fields. This is an infinite-dimensionalague of a group structure on
paths in a finite-dimensional Lie algebra, which has beed ase source for a nice construction
of the corresponding Lie group in [90]. Since every gensealiflow has an invers¢g—!); =
(g:)~ %, so generalised flows, or better to say, the correspondinggggorm a group and the
formula [Z.T) allows us to compute thedependent vector field (right-logarithmic derivative)
X, ! associated with the inverse. It is thelependent vector field

X, =—(g) (X)) (7.8)

*

For t-independent vector field¥; = X, for all t we have(g{¥).X = X and also we get the
well-known formula
X1'=-X.

Note that, by definition, the integral curves lof X are of the formh;(~(t)), wherev(¢) are
integral curves of{. We can summarise our observation as follows.

THEOREM7.2. The equation[(7]6) defines a natural action of generalisesidlont-dependent
vector fields. This action is a group action in the sense that

(goh)xX = gx(hxX).
The integral curves o4 X are of the formh,(y(¢)), for v(¢) being an arbitrary integral curve
for X.

The above action of generalised flows tdependent vector fields can also be defined in an
elegant way by means of the corresponding autonomisatibis.namely easy to check the
following.

THEOREM 7.3. For any generalised flowe and anyt-dependent vector field on a manifold
R", the standard actiorh, X of the diffeomorphism, being the autonomisation @f, on the
vector fieldX, being the autonomisation df, is the autonomisation of thedependent vector
fieldhy X:

nX =T X.
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7.3. Quasi-Lie systems and scheme®y a quasi-Lie systerwe understand a paftX, g) con-
sisting of at-dependent vector field on a manifoldR™ (the systemhand a generalised flow
onR"™ (thecontrol) such thayy4 X is a Lie system.

Since for the Lie systempy X we are able to obtain the general solution out of a number
of known patrticular solutions, the knowledge of the coninalkes possible the application of a
similar procedure for our initial system possible. Inddetd® = ®(x1,...,xm; k1, ..., k,) be
a superposition function for the Lie systgmg X, so that, knowingn solutionsz iy, . .., Z(m),
of gx X, we can derive the general solution of the form

Zo) = q)({f(l), s Tm)s ki,... kn).
If we now knowm independent solutions;(y), ..., z(y), of X, then, according to Theorem

[7.3,Z.(t) = g:(z4(t)) are solutions ofjx X, producing a general solution gf X in the form
Q(Z(1y, .- T(m)i k1, ..., kn). Itis now clear that

o)) = g7 0 @(g(x (1)) Gt (@) (8)); K1, - - - i) (7.9)
is a general solution ok . In this way we have obtainedtedependent superposition ruler the
systemX . We can summarise the above considerations as follows.

THEOREM7.4. Any quasi-Lie systeifdX, g) admits ai-dependent superposition rule of the form
(7.9), whered is a superposition function for the Lie systggX.

Of course, the abovedependent superposition rule is practically uselessiidirig the gen-
eral solution of a systenX only if the generalised flowg is explicitly known. An alternative
abstract definition of a quasi-Lie system asdependent vector field for which there exists a
generalised flowy such thaty4 X is a Lie system does not have much sense, as eVempuld
be a quasi-Lie system in this context. For instance, givere@pendent vector field’, the pair
(X, (g%)~1) is a quasi-Lie system becaugg®); ' o g¥ = idg~, thus(g¥),' X = 0, which is
a Lie system trivially. On the other hand, findifg*)~! is nothing but solving our systedd
completely, so we just reduce to our original problem. Ircice, it is therefore crucial that the
control g comes from a system which can be integrated effectivelyrdbhee, however, many
cases when our procedure works well and provides a geomldtrterpretation of mangd hoc
methods of integration. Consider, for instance, the folllmscheme that can lead to ‘nice’ quasi-
Lie systems.

Take a finite-dimensional real vector spacef vector fields orR™ and consider the family,
V(R), of all t-dependent vector field& on R™ such thatX; belongs toV" on its domain, i.e.
Xy € Vjyx or,inshort,X € V(R). We will say that these aredependent vector fields taking
values inV. Thet-dependent vector fields &f(R) depend on a finite family of control functions.
For example, take a bas{sY, ..., X, } of V and consider a generaddependent system with
values inV determined by = b(t) = (b1(t),...,br(t)) @s

(X = ba()Xe.
a=1

On the other hand, the nonautonomous systems of diffetetfisations associated with €
Vl]yx are not Lie systems in general,lif is not a Lie algebra itself. If we additionally have
a finitely parametrised family of local diffeomorphism, say= g(a1,...,ax), then any curve
a = a(t) = (a1(t),...,ax(t)) in the control parameters, defined for smalgives rise to a
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generalised flow§ = g(a(t)). Let us additionally assume that there is a Lie algélyraf vector
fields contained ir. We can look for control functions(t) such that for certaih(t) we get that
giX” has values iV, for eacht. Let us denote this as

95 X" € Vh(R). (7.10)

Consequently, each pafiX®, g*) becomes a quasi-Lie system and we can gedapendent
superposition rule for the corresponding syst&th

Let us observe that in the case when all the generalised fi6wseservel/, i.e. for each
t-dependent vector field® € V(R) alsogy X € V(R), the inclusion[{Z.10) becomes a differ-
ential equation for the control functiomst) in terms of the functions(t). This situation is not
SO rare, as it may seem at first sight. Suppose, for instanaewe find a Lie algebr&l” c V
such tha{l¥, V] € V and that the-dependent vector fields with valuesliti can be effectively
integrated to generalised flows. In this case, adgpendent vector fielt* with values inT#/
gives rise to a generalised flay# which, in view of transformation rulé {(4.7), preserves the s
of t-dependent vector fields with valuestih For eachh = b(¢) the inclusion[(Z.10) becomes
therefore a differential equation for the control functior- a(t) which often can be effectively
solved.

DEFINITION 7.5. LetW,V be finite-dimensional real vector spaces of vector fieldRbnWe
say that they form guasi-Lie schem$ (W, V) if the following conditions are satisfied

1. W is a vector subspace of.
2. W is a Lie algebra of vector fields, i.8¥, W] C W.
3. W normalised/, i.e.[W,V] C V.

If V is a Lie algebra of vector fields, we simply call the quasi-¢dédemeS(V, V') aLie scheme
S(V).

NoTE 7.6. Although the normaliser df in V is the largest Lie algebra of vector fields that we
can use a8$V/, for practical purposes it is sometimes useful to considezler Lie subalgebras.

DEFINITION 7.7. We call theggroup of the schemg&(1V, V') the group5 (W) of generalised flows
corresponding to thedependent vector fields with valueslin.

MAIN THEOREM7.8. (Main property of a scheme)Given a quasi-Lie schem&(1V, V), then
gxX € V(R") for everyt-dependent vector field € V(R) and each generalised floy e
G(W).

The proof for this is obvious and follows straightforwaréigm the fact that ify¥ is the gen-
eralised flow of a-dependent vector field € W (R) and X takes values iV, then, according
to the formulal(Z7)g} X takes values iV as well, agW, V] c V andV is finite-dimensional.

In some applications, it turns out to be interesting to useeengeneral class of transforma-
tions than those described BYWW). Nevertheless, such transformations keep the main propert
of the generalised flong(1V), namely, for a given schem#&(W, V') they transform elements of
V(R) into elements of this space.

Recall that given a Lie algebra of vector fields C X(R™), there always exists, at least
locally in R™, a group actionb : G x U — U, with G a Lie group with Lie algebrg, whose
fundamental vector fields are those 16t (cf. [144] and Section 112). For simplicity, we shall
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suppose, as usual, that this action is globally definel'grand we will write® : G x R™ — R"
and define the restriction malp, : € R" — ®,(z) = ®(g,z) € R for everyg € G.

LEMMA 7.9. Given a schem&(V, V), an elemeny € exp(g), and a vector fieldX € V(R),
then®,. X € V(R).

Proof. As g € exp(g), there exists an elemeate g such thaly = exp(a). Consider the curve
h:se0,1] — exp(sa) € G. By means of the actiof® : G x R — R", whose fundamental
vector fields are the Lie algebra of vector fields the curveh(s) induces the generalised flow
RY 2z € R" s ®(exp(sa),z) € R" of the vector field
0

75 Szohf(aﬂ =9 S:O(I’(QXP(S a), x)
and, obviouslyy” € W. Taking into account the relationi[1, p. 91]

0

—hY X =hY
a — % — 8%
we define, for each, the vector fieIdZ =hY

—S8*

(WY o X))o = X, +/ 75% 79 (2)ds' = X, +/ (hY [V, X]).ds.

Y(z) =

[, XJ,

X to get

If we call Z(” rY .. ([Y, X]) and apply the above expression¥o X|, we get

XD = X+ [ L2 s

=Y, X]. + /0 (Y [V, [V, X]])ads’.

Deflnng in an analogous way and applying all these results to thialifdrmula forhY ,, X
we obtain

(RY . X))o = Xp + [V, X]os +

— 8%

%[Y [V, X]las® + ;, Y, [V, [V, X]]]as® + ...

By means of the properties of the scheme, we obtain that eachitelongs td’(R), i.e.
Y[Y,.... [V, X].. ]| e V(R),

and therefore
&, X =hl, X € V(R).

Note that every curve(t) in G determines a diffeomorphism & x R™ of the form®,, ;) :
(t,r) € R x R™ = (t,®44x) € R x R™. Therefore, given a-dependent vector field <
X:(R™) and a curveg(t), this curve transforms into a new vector field{’ such thatX’ =
) X. For the sake of simplicity, we hereby dendfé = g4 X andg; : z € R" s @4z €
R™. Obviously, in similarity with equatior {7.6), we havex X); = ¢: 0 g; ' + gi(X) and the
set of curves irG makes up an infinite-dimensional group acting®o(R"™).

PROPOSITION7.10. Given a schem§(WW, V), a curveg(t) in G, and at-dependent vector field
X € V(R), thengx X € V(R).
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Proof. As formula [Z.6) remains valid for the action of curugg) included inexp(g), proving
thatg4 X belongs td/ (R) can be reduced to checking that the corresponding termg, ' and
gixX are inV(R). On one handy; o g;* € W(R) c V(R) and, by means of Lemnia 7.9, we
get thatg;. X € V(R) for eacht. Consequently, we see that X € V(R). Since every curve
g(t) C G decomposes as a prodyct g, - ... - g, Of curvesy; C exp(g), withj =1,...,p, it
follows thatg4 X € V(R) for every curvgy(t) C G. m

DEFINITION 7.11. Given a schem&(W, V'), we call symmetry group of the schenSgum (1),
the set oft-dependent transformatiods, ;) induced by the curveg(t) in G and an actiorb
associated with the Lie algebra of vector fields

In order to simplify the notation, we hereby denotetitependent transformatidry, ;) with
the curvey.

DEFINITION 7.12. Given a quasi-Lie schem®&(WW, V) and at-dependent vector fieldk €
V(R), we say thatX is aquasi-Lie system with respect&W, V) if there exists a@-dependent
transformatiory € Sym (W) and a Lie algebra of vector field$ C V such that

g*X S Vo(R)

We emphasise that X is a quasi-Lie system with respect to the schef®/, V), it auto-
matically admits a@-dependent superposition rule in the form given[by|(7.9).

7.4.t-dependent superposition rules.Minor modifications in the geometric approach to Lie
systems detailed in Sectign1L.5 allow us to derive a new theased on the so-calléde family
concept, in order to treat a much larger family of systemsiféémntial equations including Lie
and quasi-Lie systems. Roughly speaking, Lie families ate of systems of differential equa-
tions admitting a common superposition rule witdependence. This theory clearly generalises
the superposition rule notion and provides a charact@isadescribed by the so-call€sener-
alised Lie Theoremof families of systems admitting such a property. Next, wevjgle a brief
description of this theory and summarise its main resutisflirther details, seé [35].
Consider the family of nonautonomous systems of first-oodéinary differential equations
onR", parametrised by the elemenmtsf a setA, of the form
dx?
dt
describing the integral curves of the familywflependent vector fields’; } 4ea given by

Ya(t,xz) = Z Y (¢, x)%
i=1

=Yi(t,x), i=1,...,n, deA (7.11)

Let us state the fundamental concept to be studied alongéhifon:

DEFINITION 7.13. We say that the family of nonautonomous systéms](adiits acommon
t-dependent superposition riféhere exists a map : R x R*(™m+1) 5 R j.e.

{E:q)(t,fl'(l),...,m(m);kl,...,kn), (712)

such that the general solutian(t), of any systent’; of the family [7.11) can be written, at least
for sufficiently small, as

z(t) = D(t, x(l)(t), s Tm) t); k1, kn),
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with {z(,)(t) |a = 1,...,m} being any generic family of particular solutionsXif and the set
{k1,...,kn} beingn arbitrary constants to be associated with each particalatisn. A family
of systems[(7.11) admitting a commodependent superposition is calletia family.

DEFINITION 7.14. Given &-dependentvector field = > |, Y(¢,2)9/0z" onR™, we define
its prolongation tdR x R™(™+1) as the vector field o x R™("+1) given by

0
Y/\(t,l'(o),...,l’(m) ZZY tl'(a) 8 7 y

a=0 =1

and its autonomisatiorY,, as the vector field oR x R™™+1) of the form

?(t,x(o),...,x(m —|—Zzyzt$ 8

a=0 i=1
The Implicit Function Theorem states that, given a commdapendent superposition rule
® : R x R"m+1D — R of a Lie family {Yy}4ea, the map®(t, z(y), ..., z(m); ) : R — R,
which readsz )y = ®(t,2(1),...,2um); k), can be inverted to give rise to a map : R x
R™(m+1) _ R™ given by

k= \Il(ta Ty -- ,CL’(m)),
with &k = (k1, ..., k,) being the only point irR™ such that
Zo) = (I)(t, Z(1)s---5T(m)5 k)

As the fundamental property of the médisays thatl (¢, z(o) (t), . . . , () (t)) is constant for any
(m + 1)-tuple of particular solutions of any system of the famllyi(T)), the foliation determined
by ¥ is invariant under the permutation of its» + 1) arguments{z(,|a = 0,...,m} and
differentiating the preceding expression we get

ZZYdtx(a) v =0, j=1,....,n, deA, (7.13)
a=0 i=1 8:1:
with & = (o', ..., o").

The relation[[7Z.13) shows that the functions of the{set|i = 1,...,n} are first-integrals
for the vector fields, that is, Y, Wi = 0,withi = 1,...,n. Therefore, they generically define
ann-codimensional foliatiof onR x R™™+1) sych that the vector field&l, are tangent to the
leavesy;, of this foliation, withk € R™,

The foliationF has another important property. Given the levelFebf the map¥ corre-
sponding tak = (k,. .., k,) € R™ and a generic poirnt, z(y), . .., 7(,n)) Of R x R™", there is

only one pointz gy € R™ such that(t, (o), (1), .., Z(m)) € Sk- Then, the projection onto the
lastm - n coordinates and the time
7 (¢, Z(0),- - - ,a:(m)) e R x R*m+D) (t,x(l), . ,x(m)) € R x R"™,

induces local diffeomorphisms on the leagsof § into R x R™™,

This property can also be seen as the fact that the foligtioorresponds to a zero curvature
connectionV on the bundler : R x R*™*D — R x R™™, Indeed, the restriction of the
projectiont to a leaf gives a one-to-one map. In this way, we get a linegr among vector
fields onR x R™™ and ‘horizontal’ vector fields tangent to a leaf.
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Note that the knowledge of this connection (foliation) gwes thecommoni-dependent su-
perposition rulewithout referring to the map. If we fix the pointxz(0) andm particular
solutions;z(1)(t), . . ., () (t), for a system of the family, then, () is the unique curve iiR"
such that

(t, Z(0) (t), (1) (t), - ,l’(m)(t)) c R x R™"™
belongs to the same leaf as the pdihtz () (0), 2(1)(0), . .., 2, (0)). Thus, itis only the folia-
tion § what really matters when treammonrt-dependent superposition ruleconcerned.
On the other hand, if we have a zero curvature conned&fiem the bundle

7R x RM™HD) 5 R x R™™,

i.e. if we have an involutive horizontal distributiof on R x R™(™+1) that can be integrated to
give a foliation§ onR x R™(™+1) and such that the vector fiel&g are tangent to the leaves of the
foliation, then the procedure described above determirmsranoni-dependent superposition
rule for the family of nonautonomous systems of first-order défeial equationg (7.11).

Indeed, letk € R™ enumerate smoothly the leavgs of F, i.e. there exists a smooth map
v R" — R x R™™+1 such that(R™) intersects everg), in a unique point. Then, if ) € R™
is the unique point such that

(t, T(0), T (1)« - ,l’(m)) S Sk,
this fact gives rise to &dependent superposition rule
l’(o) = q)(t, l’(l), e ,l'(m); k)

for the family of nonautonomous systems of first-order cadindifferential equationg (7.11).
To see this, let us observe that the Implicit Function Theosaows that there exists a function
T : R x R*™+D 5 R such that

\Il(ta Z0)s--- ,(L’(m)) = ka

which is equivalent to say thdt, z(g),...,z)) € Jk. If we fix a certaink € R™ and take
certain solutionsg ) (t), . . ., () (t), of a particular instance of (Z.111), theqy) (¢) defined by
means of the conditio’ (¢, x(¢) (t), . . ., (m) (t)) = k also satisfies such an instance. Indeed, let

x’(o) (t) be the solution with initial value, (0) = z (). Since the vector fields, are tangent to

(0)
3. the curve
t (txo)(t), za)(t), .. T(m) (1))

lies entirely in a leaf ofF, so inJ;. But the point of one leaf is entirely determined by its
projectionr, sox(y, (t) = x(o)(t) andz(g)(t) is a solution.

PrROPOSITION7.15. Giving at-dependent superposition rule(7112) for a family of systein
differential equationd(7.11) is equivalent to give a zewovature connection on the bundie:
R x Rm+Dn _, R x R™™ for which theY; are ‘horizontal’ vector fields.

In general it is difficult to determine whether a family offéifential equations admits a com-
mont-dependent superposition rule by means of the above Ptapost is therefore interesting
to find a characterisation of Lie families by means of a momveaient criterion, e.g. through
an easily verifiable condition based on the properties oftlependent vector fieldsY, }oca-
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Finding such a criterion is the main result of the theory a&f families. It is formulated as Gen-
eralised Lie Theorem and based on the following lemmas dgagow. The first two ones are
straightforward, a complete detailed proof for the third ba found in[[35].

LEMMA 7.16. Given twot-dependent vector fields andY onR", the commutatofX, Y] on
R x R*(™+1) js the prolongation of @&-dependent vector field onR", [X,Y] = Z".

LEMMA 7.17. Given a family of-dependent vector field,, ..., X,, onR", their autonomi-
sations satisfy the relations

[X Xk tl’ ngkl Xltfl') j,k:].,...,T,

fgr somet;dependentfunctloryskl : R — R, if and only if theirt-prolongations taR x R™(m+1),
Xi,...,X,, obey analogous relations

[X Xk tl’ ngkl Xltfl') j,k:].,...,T
=1

Moreovery",_, fiu(t) =0forall j,k=1,...,r

LEMMA 7.18. Consider a family ot-dependent vector f|eld¥ﬂ, ..., Y., with ¢t-prolongations
Yl, . Y to R x R™™+1) suych that their prolectlonm(Y) are linearly independent at a
genenc pointinR x R™™. Then>~"_, b;Y;, withb; € C(R x R"™), is of the formy " (resp.
17) for a t-dependent vector fieltl on R™, if and only if the function$; only depend on the
variablet, thatis,b; = b;(t), and}__, b; = 0 (resp.,>7_; b; = 1).

MAIN THEOREM7.19. (Generalised Lie Theorem)The family of systemis (7]11) admits@m-

mont-dependent superposition rif@nd only if the vector field§Y ;} 4c o can be written in the
form

=Y baa(t)Xalt,z),  dEA,
a=1

whereby,, are functions of the single variabtesuch that) ") _, bso = 1 and, Xy, ..., X, are
t-dependent vector fields satisfying

[X o, X5](t, ) Zf”‘ﬂ’y ~(t, ), a,B=1,...,m, (7.14)

for certain functionsf,z, : R — R.

The denomination of the above theorem comes from the fatigwiroposition, which shows
that each Lie system can be embedded into a Lie family. Inraxmérmulate this result, let
us denote by5, (W, V; Vp) the set of quasi-Lie systems of the scheff{&V, V') such that there
exists ag satisfying thatyx X € V5(R) with V4 a Lie algebra of vector fields included In.
Again, complete proof of this proposition can be found.in][35

PrOPOSITION7.20. The family of quasi-Lie systen¥§(W, V'; Vo) is a Lie family admitting the
commort-dependent superposition rule of the form

é_‘](ﬁ’x(lﬁ s 5x(M)7k) = 9;1 © (b(gt(x(l)7 s 7gt)x(m)7k)a
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for anyt-independent superposition rudfeassociated with the Lie algebra of vector fieldsby
Lie Theorem.

8. Applications of quasi-Lie schemes and Lie families

The theory of quasi-Lie schemes, quasi-Lie systdms$ [34]thadheory of Lie families[[35]
can be used to investigate a very large set of differentiahggns, namely, nonlinear oscillators
[34], dissipative Milne—Pinney equations [34] B5| 45],@&t-order Riccati equations [48], Abel
equations [35], Emden equations|[34] 42], etc. As we showdltk previous section, these theo-
ries enable us to obtatadependent superposition rules, constants of the moti@ttsolutions,
integrability conditions, etc. The main aim in this chapseto show that the possibilities of ap-
plication of these methods are very wide and we can obtaimalaege set of results from a
unified point of view.

More exactly, in previous sections it was proved that MilRigwey could be studied by means
of the theory of Lie systems (see also][43]). Nevertheldsgetexist dissipative Milne—Pinney
equations that cannot straightforwardly be studied thindhgs theory. In this section, we provide
a quasi-Lie scheme to treat these dissipative Milne—Piegemgtions. Then, we use this quasi-Lie
scheme to relate these equations to usual Milne—PinneyiiegaaBy means of this relation, we
obtain at-dependent superposition rule for dissipative Milne—Binequations.

Apart from dissipative Milne—Pinney equations, we alsastigate nonautonomous nonlin-
ear oscillators. We show that some of these differentiabiqns can be transformed into au-
tonomous nonlinear oscillators. This result was alreadiyved by Perelomov [180], but here we
recover it from a more general point of view. More specifigalle obtain that the nonautonomous
nonlinear oscillators analysed by Perelomov can be seeiffagedtial equations obeying an in-
tegrability condition derived by means of a quasi-Lie schem

As a last application of the quasi-Lie scheme notion, weresttely analyse Emden equa-
tions. We provide a quasi-Lie scheme to obtagtependent constants of the motion by means of
particular solutions that obey an integrability conditidhe method developed also enables us to
obtain Emden equations with a fixedlependent integral of motion. Kummer—Liouville trans-
formations are also obtained by means of our scheme and ntla@yproperties are recovered.

Finally, in the last two sections of this chapter, we applgnomont-dependent superposition
rules to study some first- and second-order differentiahéiqus. In this way, we will show how
they can be used to analyse equations which cannot be stogliegtans of the usual theory of
Lie systems. Additionally, some new results for the studybél and Milne—Pinney equations
are provided.

8.1. Dissipative Milne—Pinney equations.In this section, we study the so-called dissipative
Milne—Pinney equations. We show that the first-order ongimtifferential equations associated
with these second-order ones in the usual way, i.e. by cerisigl velocities as new variables,
are not Lie systems. However, the theory of quasi-Lie sclseta@ be used to deal with such
first-order systems. Here we provide a scheme which enalldés transform a certain kind
of dissipative Milne—Pinney equations, considered as-dirder systems, into some first-order
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Milne—Pinney equations already studied by means of theyhafd_ie systems[[53]. As a result
we get at-dependent superposition rule for some of these dissgatilne—Pinney equations.

Let us establish the problem under study. Consider the Yaofitlissipative Milne—Pinney
equations of the form

Z=a(t)t+b(t)x+ c(t)% . (8.1)

We are mainly interested in the cage) # 0, so we assume thaft) has a constant sign for
the set of values afthat we analyse.

Usually, we associate such a second-order differentightmuwith a system of first-order
differential equations by introducing a new variabland relating the differential equatidn (B.1)
to the system of first-order differential equations

(8.2)

{ b = a(t)o+b(t)e + c(t)x_lg.

Let us search for a quasi-Lie scheme to handle the abovasyREEmember that we need to
find linear space®/pism andVpisu of vector fields such that

1. Wobism C Vbism.
2. [Wpism, Wpism] C Wpism.
3. [Wbism, Vbism] C Vbism.-

Also, in order to treat systerf (8.2) through this scheme, awetio ensure that thedependent
vector field
c(t)\ 0

0 t
Xt = ’U% —+ (a(t)v —+ b(t)x =+ ?> % y

whose integral curves are solutions for the sysfem (8.23ydéh thatX; € Vpiom for everyt in
an open interval oR.
Consider the vector spaé®);sn spanned by the vector fields

0 0 10 0 0
Xi=v—, Xo=2—, Xz=——, Xys=v—, Xs=z—
1= Yy 2= %5y I 1= Y% 5T T or
and the two-dimensional vector subspdkg;\i C Vpism generated by
0 0
i=X1=v— Yo=Xo=ao—.
1 1 UaU, 2 2 mav
It can be seen thal/pis\ is a Lie algebra,
[Ylv YQ] = _YQ )
and, additionally, as
[Y1, X3] = — X3, [Y1, X4] = X4, [Y1,X5] =0,
[Y2, X3] =0, [Ya, X4] = X5 — X4, [Y2, X5] = —Xo,

the linear spacé/pis\ is invariant under the action of the Lie algeldid,isn on Vpisw, i-€.
[Woism, Vbism] C Vbism. Thus, the vector spaces

Vpism = (X1, ..., X5) and Wpism = (Y1, Y2)
of vector fields form a quasi-Lie schenS¢ Wpism, Vbism )- Let us observe that
X = a(t)X1 + b(t)XQ + C(t)Xg + X4
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and thusX e VDisM(R)-

We stress that the vector spddesm is not a Lie algebra, because the commutaay, X,]
does not belong tdp;s- MoreoverV” = (X3, ..., X4) is not a Lie algebra of vector fields due
to a similar reason, i.6X3, X4] ¢ V". Additionally, there exists no finite-dimensional real Lie
algebral’’ containingV”. Thus, system{(8l2) is not a Lie system, but we can use the-gigas
schemeS (Whpism, Vbism ) to investigate it.

The key tool provided by the schent$®Wp;a, Vbism) IS the infinite-dimensional group

G(Whpism ) of generalised flows for thedependent vector fields with valueslin, i.e. a4 (t)Y: +
as(t)Ys, which leads to the group efdependent changes of variables

T

G = {ata@s0) ={ T = T e 050 =000 =1},

v af

According to the general theory of quasi-Lie schemes, theseoust-dependent changes of
variables enable us to transform systéml(8.2) into a newakied values in/p;s,

Xt/ = a'(t)X1 + bl(t)XQ + C/(t)Xg + d/(t)X4 + 6/(t)X5 . (83)
The new coefficients are
/() = alt) = Bi0) - 17,
oy () Bt) Bt B)
"O=20 Y " el e
) = £
c (t) - Oé(t)7
d'(t) = a(t),
e'(t) = B(t).
The integral curves for thedependent vector field (8.3) are solutions of the system
W~ s ety

’ 2 5
il_vt (b(t) (t)@ 0N @> '+ (8.4)
alt)\ , c@) 1
+ (a(t) —B(t) — w) v+ all) 75
As it was said in Section 7.3, we use schemes to transformadiresponding systems of first-
order differential equations into Lie ones. So, in this cage must find a Lie algebra of vector
fieldsVy C Vbism and a generalised flow € G(Wpism) such thatyx X € V(R). This leads
to a system of ordinary differential equations for the fimes«(¢), 5(t) and some integrability
conditions on the initial functions(t), b(t) andc(t) for such at-dependent change of variables
to exist.

In order to find a proper Lie algebra of vector fields C V', note that Milne—Pinney equa-
tions studied in[[53] are Lie systems in the family of diffetial equations defined by systems
(8.2) and therefore it is natural to look for the conditioeeded to transform a given system of
(8.2), described by the-dependent vector fiel&;, into one of these first-order Milne—Pinney
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equations of the form

i = f(t),
. k (8.5)
0 = —we+ (1),
wherek is a constant, i.e. a system describing the integral cumea f-dependent vector field
with values in the Lie algebra of vector fields [53]

1
Vo = (X4 + k X3, X, §(X5 - X1)).
As a result, we get that = 0, « = f and, furthermore, the functiors a andc must satisfy
ko? = ¢, & —aa =0, (8.6)

which yield thatc andk have the same sign. The second condition is a differentigton fora
and the first one determinedn terms ofa. Therefore, both conditions lead to a relation between
¢ anda providing the integrability condition

c(t) = kexp <2/a(t) dt> (8.7)
and showing, in view of(814)[(8.5) and (8.6), that

a(t) = exp ( / a(t) dt) and  w(t) = —b(t) exp (- / a(t)dt) :

where we choose the constants of integration in order ta@Bt= 1 as required.
Summarising the preceding results, under the integrahilindition [8.7), the first-order
Milne—Pinney equation

{ T = v,
. 1
v = a(t)v+bt)r + c(t)ﬁ,
can be transformed into the system
da’
e ([a(t)dt) ',
dv’ , k
- = b(t)exp (— [ a(t)dt) =’ + exp ([ a(t) dt) s

by means of the-dependent change of variables

! (eXp (/ a(t) dt) ’O> N { ﬁ: _ Zcp (f a(t)dt) v.

We stress the fact that the previous change of variablesdgt@plar instance of the so-called
Liouville transformation[[164].
The final Milne—Pinney equation can be rewritten throughttheparametrisation

(1) = / exp ( / alt) dt) dt,

as
w
d k
v
= = exp (—2 fa(t)dt) b(t(r))x' + pE
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These systems were analysed[inl [50] and there it was showaghrthe theory of Lie systems
that they admit the constant of the motion
7\ 2
— (= = \2 o
I= (v —v2') +k (;) ,
where(z, v) is a solution of the system

_:?7,

% = exp <—2/a(t) dt> b(t) 7,

which can be written as a second-order differential eqnatio

fo ~exp (—Q/a(t) dt) bt)z.

If we invert thet-reparametrisation, we obtain the following differentiguation
T —a(t)r —b(t)x =0, (8.8)

which is the linear differential equation associated wité initial Milne—Pinney equation.
As it was shown in[[583], we can obtain, by means of the theotyi@kystems, the following
superposition rule

, V2

|Z102 — U1 72|
and as the-dependent transformation performed does not change th&blaz, we get the
t-dependent superposition rule

V2a(t)

B |5?1j?2 — T172]

1/2
x (IQE% + Ilfg + \/4_[1]2 - k({fl?jg - 1_}1?72)2 (f’lffg) ,

1/2
k . .
<IQ$% + Il.fg + \/4[1[2 — OzQ—(t)(i‘lj?Q — .flii‘g)Q .1?1:1)2) s

in terms of a set of solutions of the second-order linearesydB.8).
Summing up, the application of our scheme to the family ofigative Milne—Pinney equa-

tions
k

3

i = a(t)d + b(t)z + exp (Z/G(t) dt)

shows that this family admitstadependent superposition principle:

1/2

V2al(t k ) .

T = # Lyt + Lys £ [AlL L — —(y192 — y291) Y192 :
Y192 — Y211 a?(t)

in terms of two independent solutiops, y-» for the differential equation
§—a(t)g—b(t)y=0.

So, we have fully detailed a particular application of thedty of quasi-Lie schemes to
dissipative Milne—Pinney equations. As a result, we prevdt-dependent superposition rule for
a family of such systems. Another paper dealing with suchporaach to dissipative Milne—
Pinney equations and explaining some of their propertindesound in[[45].
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8.2. Non-linear oscillators. As a second application of our theory, we use quasi-Lie selsdm
deal with a certain kind of nonlinear oscillators. The maujeative of this section is to explain
sevaral properties of a family efdependent nonlinear oscillators studied by Perelomdy86].
We also furnish a, as far as we know, new constant of the médicthese systems.

Consider the subset of the family of nonlinear oscillatokestigated in [180]:

& =b(t)x + c(t)a", n#0,1.

The cases = 0, 1, are omitted because they can be handled with the usualtbébie systems.
As in the section above, we link the above second-order ardidifferential equation to the first-

order system
T =,
. (8.9)
0 =b(t)x + c(t)x".
Let us provide a quasi-Lie scheme to deal with systém$ (B@)sider the vector spadé;o
spanned by the linear combinations of the vector fields
0 0 0 0

_.9 n? x. -0l x, = X5 = o=
o0 T o 37 Vo 4= v

X —
! ov’ Ox
on'TR and take the vector subspddéyo C Vno generated by

Xy =

0 0 0
Yl—X4—’U%, }/Q—Xl—x%, Yg—Xf)—fL'%

Therefore Wy is a solvable Lie algebra of vector fields,
[Yi7§/2]:_§/27 [Y17Y23]:0) [Y27Y23]:_Y27
and taking into account that
[Y1, Xo] = —Xo, Y1, X5] = X3, [V, Xo] =0,
Yo, X3] = X5 — Xy, [V3,Xo] =nXo, [V3,X3]=—Xj3,
we see thaly o is invariant under the action 8y, i.e.[Wxno, Vo] C Vno. In this way we
get the quasi-Lie schem®& Wy o, Vo).
Now, we have to go over whether the solutions of system (8®)raegral curves for &

dependent vector field € Vyo)(R). In order to check this, we realise that the system](8.9)
describes the integral curves for thdependent vector field

0 ny O
X = Von + (b(t)x + c(t)x )%,

which can be written as
X = b(t)X1 + C(t)XQ + X3. (8.10)

Note also thafXs, X3] ¢ Vo andV” = (X, X2, X3) is not only a Lie algebra of vector
fields, but also there is no finite-dimensional Lie algebfaincluding V. Thus, X cannot be
considered as a Lie system and we conclude that the first-nodinear oscillator

r = v,
v = b(t)x+ c(t)z™.
describing integral curves of thedependent vector field (which is not a Lie system)
Xt = b(t)Xl —|— C(t)XQ —|— X3
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can be described by means of the quasi-Lie sch&éyo, Vo).

Now, the group of generalised flowg W ) associated witt (Wx o, Vivo) is made of the
t-dependent transformations

g(e(t), B(£),7(t)) =

{ x=~(t)x / B(t),y(t) > 0,5(0) = v(0) = 1,a(0) = 0.

v=pRBt)0 + at)x

Let us restrict ourselves to the casg) = 4(t) andj(t) = 1/~(t) and apply these transfor-
mations to the systerh (8.9). The theory of quasi-Lie systeiffsus that

g9(a(t), B(t), ()% X € VNo(R).

Indeed, thesé-dependent transformations lead to the systems

dx’ 1 o

o _ 1y

dt - 72(1) (8.11)
dv’

o (V(0)b(t) = F(t)y()2" + c(t)y" T ()",
which are related to the second-order differential equatio

Y()E = =2v(t)y(t)" + (Y (£)b(t) — () 1)z + c(t)y" T (t)a"™ .

But the theory of quasi-Lie schemes is based on the searclyefieralised flowy € G(Wxo)
such thatyy X becomes a Lie system, i.e. there exists a Lie algebra of véetds Vy, C Vyo
suchthayx X € V5 (R). For instance, we can try to transform a particular instarfitiee systems
(8.13) into a first-order differential equation associatéth a nonlinear oscillator with a zere
dependent angular frequency, for example, into the firdeiosystem
dx’ ,
dt
dv’
dt

(8.12)

related to the nonlinear oscillator

with dr/dt = f(t).
The conditions ensuring such a transformation are
YBb(E) = 5(1) =0, ct) = coy” "I (@), (8.13)
with f(t) = ~;2(t), wherey; is a non-vanishing particular solution foft)b(t) — 4(t) = 0.
We must emphasise that just particular solutions witf0) = 1 and+;(0) = 0 are related
to generalised flows i (Wxo ). Nevertheless, any other particular solution can also leel us

to transform a nonlinear oscillator into a Lie system as vegest The Lie systeni (8.112) is the
system associated with thelependent vector field

_ 1 / 8 m 8
O ( ow O av’) |
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As a consequence of the standard methods developed forabgytbf Lie systems [52], we
join two copies of the above system in order to get the firsgrals

1 c n .
Ii:§U;2_n—ﬁ1x:: * i=1,2,
and
) 1 1 1 cor ™t
I3 = ! H —5_51+ [ L
N yp(n+1 2" " n+1 L(n+1)
/ 1 1 1 m—+1
- 2 Hyp —7_71+ y Con 5
VI n+1"2 n+1" I(n+1)

whereHyp(a, b, ¢, d) denotes the corresponding hypergeometric functionsringef the initial
variables these first-integrals fog X read

1 . . Co .
L= ()i — 5 (t)z)? — ————a™ i=1,2, 8.14
2(’71() Y1 (t)ws) T (8.14)

and

1 T 11 1 coxy ! )
I3 = —=H R 1 + y

9 1 1 1 cox;”rl ))
——ZHyp|——,=,1+ ,— . (8.15
v P (n+1 2 n+1" AP L(n+1) (8.15)
As a particular application of conditions (8113), we cansidar the following example of
[180], where theg-dependent Hamiltonian

1 2(t (s
H(t) _ 5}72 + WT()x2 +02’71 (¢ +2)(t)x5,

with v; being such thaf; () + w?(t)71(t) = 0, is studied. The Hamilton equations for the latter

Hamiltonian are .
=P,
{ b= sy (0 WP, @10
which are associated with the second-order differentiabéign for the variable: given by
- —chfyl_(SH) (t)z*! — w2 (t)x. (8.17)

Note that here the variabjeplays the same role asin our theoretical development and the latter
differential equation is a particular case of our Emden &goa with

bt) = —w?(t),  c(t) = —sc®y; "), n=s—1. (8.18)
Let us prove that the above coefficients satisfy the cont[@.13B):
1. By assumptiony?(t)y: (t) 4 #1(t) = 0. Asw?(t) = —b(t), theny, (t)b(t) — 1 (t) = 0.
2. If we fix cg = —sc?, in view of conditions[{8.18), we obtair(t) = covy; " (1).

Therefore, we get that thedependent frequency nonlinear oscillafor (8.17) can dxesformed
into a new one with zero frequency, i.e.

2 ../
d:z:_ 2 15—1
d2——scx ,
-
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reproducing the result given by Perelomov [180]. The chait¢éhe t-dependent frequencies
is such that it is possible to transform the initiaflependent nonlinear oscillator into the final
autonomous nonlinear oscillator. Then, we recover herk faguencies as a result of an inte-
grability condition. Moreover, in view of the expressiof@gs1d), [8.1b) and (8.18), we get a, as
far as we know, new-dependent constants of the motion for these nonlinealiatses.

with

8.3. Dissipative Mathews—Lakshmanan oscillatorsIn this section we provide a simple appli-
cation of the theory of quasi-Lie schemes to investigatetiiependent dissipative Mathews-
Lakshmanan oscillator

(1+X2?)i — Ft)(1 + AeH)d — (\r)i? + w(t)z = 0, A > 0. (8.19)

More specifically, we supply some integrability conditidgaselate the above dissipative oscilla-
tor to the Mathews—Lakshmanan ohel[65,(67,/142] 161]

(14 MzH)i — ()i + kz =0, A >0, (8.20)

and by means of such a relation we get a, as far as we know{-gependent constant of the
motion.

Consider the system of first-order differential equatidatesl to equatiori{8.19) in the usual
way, i.e.

T =,
Azv? x (8.21)
- _
v (Bv+ 14+ A\z2 w(t) 1+ Az?’
and determining the integral curves for thdependent vector field
Azv? x 0 0
X:=|F(t ——— W) —— | =— —.
! ( ()v+1+)\x2 w()1+/\x2>8v+v8x

Let us provide a scheme to handle the sysfem[8.21). Corthieleector spac®” spanned by the

vector fields
0 Azv? 9 T 0 0
Xi=vote ¢+ 2 9 x, =TT Xy —p
! U8x+1+)\x28v’ 2T a2 o0’ 3=

and the linear spadd” = (X3). The commutation relations
[Xs, X1] = X, [X5, Xo] = —Xo,

imply that the linear spacdd’, V. make up a quasi-Lie schenf§W, V). As thet-dependent
vector field X, reads in terms of the bas[s (8]22)

Xt = F(t)Xg - w(t)Xg + Xl,

(8.22)

we get thatX; € V(R).
The integration ofX’3 shows that
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and thet-dependent changes of variables related to the contra@j§1df) transform the system

@.23) into

¥ = a(t),
. y(¢) w(t) o Ax'v'?
O U B LU SR L
Y ( ®) a(t) Y a(t) 1+ \x'? o )1 + Az?
Suppose that we fix — F'(t)a = 0. Hence, the latter becomes

i = a(t),

. w(t) o \x'v'?
= — t .

Y a(t) 14 a2 +af )1—|—)\x’2

Let us try to search conditions for ensuring the above systesietermine the integral curves for
at-dependent vector field of the forii(¢, z) = f(t)X (z) with X € V, e.g.

i’ = f(tn',
. x’ ' v
=7 (1 + Az'? 1 +>\x’2> '
In such a casex(t) = f(t), w(t) = —a?(t) and thereforev(t) = —exp (2 [ F(t)dt). The
t-reparametrisatiodr = f(t)dt transforms the previous system into the autonomous one
do’
ar
dv' o Ax'v"?
dr 1+ A2 + 14+ a2’
determining the integral curves for the vector fidld= X; + X, and related to a Mathews—
Lakshmanan oscillato (8.20) with= 1. The method of characteristics shows, after brief calcu-
lation, that this system has a first-integral
14+ \a'?

A AN
I($7U)—W7

that reads in terms of the initial variables and the varigbdes at-dependent constant of the
motion

a?(t) + Ao (t)z?

a2(t) + 2
for the t-dependent dissipative Mathews—Lakshmanan oscillatd8j&jetting a, as far as we
know, newt-dependent constant of the motion.

I(t,z,v) =

8.4. The Emden equation.In this and following sections we analyse, from the perspeaif
the theory of quasi-Lie schemes, the so-called Emden axqusabif the form

Z=a(t)t+bt)z", n#l. (8.23)
These equations can be associated with the system of fitet-differential equations
T = w,
{ v = a(t)v+b(t)x". (8.24)

This system was already studied in[[34] 42] by means of quiasschemes. We hereafter
summarise some of the results of these papers, which cotieedetermination of-dependent
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constants of the motion by means of particular solutionducile particular cases of Emden
equations, etc.
Consider the real vector spadé;,,q, spanned by the vector fields
0 0 0 0

0
Xi=o2, Xo=a"2 Xs=v—, Xi=uv—, Xs=a—.
1= 25 2= % 5y 3= Y8z 4= Yy 5= Tos

Thet-dependent vector field determining the dynamics of syd&B#j can be written as a linear
combination
X = a(t)X4 + X3+ b(t)XQ
Moreover, the linear spad®r,.q C Vema Spanned by the complete vector fields,
0 0 0
Y:X: —_— Y:X: —_— Y:X5: -
1 4 U(%v 2 1 xavv 3 m@x
is a three-dimensional real Lie algebra of vector fields wétbpect to the ordinary Lie Bracket
because these vector fields satisfy the relations

[YMY2]LB = —Ya, [YMYES]LB =0, D/vaé]LB = —Ya.
AlSO [Wgmd, Vemd]Ls C VeEma because
(Y1, Xo|pp = =X, Y1, Xs]p = X35, [Y2,Xa]p 5 =0,
Yo, X3l p = X5 — Xu, [Y3,Xo| g =nXa, [V3,X3] 5=—X5.
So we get a quasi-Lie schenéWgma, VeEma) Which can be used to treat the Emden equations

(8.22). This suggests that if we perform thdependent change of variables associated with this
guasi-Lie scheme, namely,

x = t)a’,
{ - git;v,Jra(t)x/ V() B(t) > 0,1, (8.25)
the original system transforms into

(20 _30) ., 50,

v,

dat  \y(®) () (1)
(el AOY el (0 a) a0\, g
it ‘<(” =0 B(t)) +ﬁ(t)<(t) 0] a(t)+v(t)) (6.20)
L WOV e
OB

The key point of our method is to choose appropriate funstions and~, in such a way
that the system of differential equations (8.26) become®aystem. A possible way to do so,
consists in choosing, 5 and~ so that the above system becomes determinedtbgegpendent
vector fieldX; = f(¢)X, whereX is a true vector field ang(¢) is a non-vanishing function
(on the interval of under study). As it is shown in next section, this cannot gae done and
some conditions must be imposed on the initidlependent functionsgy, 5 and~, ensuring the
existence of such a transformation. These restrictiorstizantegrability conditions.

Suppose that, for the time being, this is the case. Therdfuzesysten(8.26) is

dx’
e f(@t) (cria’ + cr0'),

dv/ m ! !
o F@)(caoz’™ + cpx’ + ca1v")

(8.27)
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and it is determined by thiedependent vector field
Xt = f(t)Xv
with

_ 0
X = (enn2’ + c12v") == + (€222 + ¢’ + c210)

ox' o'

Under thet-reparametrisation,
t
TZ/ f(tHat',

system[(8.2]7) is autonomous. The new autonomous systeiffiareditial equations is determined
by the vector fieldX on TR and therefore there exists a first integral. This can be obtaby

means of the method of characteristics, which provides tlagacteristic curves where the first-
integrals for such a vector fieldl are constant. These characteristic curves are determjned b

da’ B dv’
en® +cipv et + ! + copa’™
which can be written as
(co1v" + ¢z’ + c222'™)da’ — (c112” + c120)dv’ = 0. (8.28)

This expression can be straightforwardly integrated if

0
%(6210/ + ¢’ + co2'™) = —%(cum’ + c120") = 21 = —c11. (8.29)
Under this condition we obtain the integral of the motion @28), namely
1/2 le x/n-{-l
I = —0127 + C"L‘T + CQl’UliZ)/ + CQQn—H. (830)

Finally, if we write the latter expression in terms of thetimli variablesz, v andt, we get a
constant of the motion for the initial differential equatio

If we do not wish to impose conditiof (8]29), we can altenglyi integrate equation (8.28)
by means of an integrating factor, i.e. we look for a functjefx’, v'), such that

— (p(co1v’ + cpt’ + co0a™)) (—p(er1z’ + c12v')).

ov’ ~ o
Thus the integrating factor satisfies the partial diffelsdm@quation

ou
—u(cm/ + ¢’ + copx’™) + —/(011113’ +c12v") = —p(enn + e21).

ov'’ oz’
If c11 + c21 = 0, the integral factor can be chosen to pe= 1 and we get the latter first-
integral [8.3D). On the other handcif; + c21 # 0, we can still look for a solution for the partial
differential equation fop: and obtain a new first-integral.

8.5.t-dependent constants of the motion and particular solutios for Emden equations. The
main purpose of this section is to show that the knowledgeparéicular solution of the Emden
equation allows us to transform it into a Lie system and tavéest-dependent constant of the
motion.
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If we restrict ourselves to the casét) = 0 in the system of differential equation (8126), it

reduces to
dz’ @) , | B®)
—— = ——=T + —=v,
dt v(t) v(t)

d (a(t) B(t)) oy D)

dt. B B(1)

In order to transform the original Emden—Fowler differahgquation into a Lie system by
means of our quasi-Lie scheme, we try to write the transfdrdifferential equation in the form

dz’
= =W (ctiz’ + ci2v'),

v’ (8.32)
v
o =) (222" + €210')
where thec;; are constants. This system of differential equations camebeced to an au-

tonomous one as, under thelependent change of variables,

= Far,

the latter differential equation becomes

(8.31)

da’ , ,
& =T + c12v,

8.33
W (6:39)
E = Co2X =~ + Co1V".

In order for system[{8.31) to be similar to systdm (8.32), weklfor functionsc, 8 and~y
satisfying the conditions,

fyen =200 Fyenn =20,
7n t e t (8.34)
fyem =005, e =a - 55
The conditions in the first line lead to
B(t) = —=25(), (8.35)
C11
and using this equation in the last relation we obtain
f(t)zﬁ—i@ (8.36)
co1 e () .
On the other hand from the three first relationgin (B.34) we ge
ft) = ~2Den 7°(0) (8.37)

emern ()
The equality of the right-hand sides 6f(8.36) ahd (8.37)se@® the following equation for

the functiony:

i = alt)y + b

C22C12
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Suppose that we make the choice, with = —c1; as indicated in[(8.29),
c2=-1, en=1 can=-1 c=1 (8.38)

and thugci1c22)/(co1c12) = 1. Therefore we find that must be a solution of the initial equation
(8.23). In other words, if we suppose that a particular smfut,,(¢) of the Emden equation is
known, we can choosg(t) = z,(t). Then, according to the expressién (8.35) and our previous
choice [8.3B), the corresponding functiénurns out to be

B(t) = —ip(t).
Finally, in view of conditions[(8.34), we get that
A0 oy 2O
c11(t) c228(t)

and taking into account our choide (8.38) ar(d) = x,(¢), we obtain the condition satisfied by
the particular solution:

ap () = @2 (t). (8.39)

The system of differential equatioris (8.32) for such a oh@38) of the constants:;; | 7,7 =
1,2} is the equation for the integrals curves for théependent vector field

X = f(t) <(m’ + ) % — (v + 2") %) .

The method of the characteristics can be used to find theafmitpfirst-integral for this vector
field and, in view of[(8.30), we get

1 1
I(2' V') = n—_’_lx'”"‘l + 51/2 + ', n¢{-1,1},
1
I(z',v") zlogx’+§v’2+x’v’, n=—1,

and, if we express this integral of motion in terms of thei@iariables and, we obtain a, as far
as we know, new-dependent constant of the motion for the initial Emden &qna

xntl 2 o,
R T A R N
It ,v) =log (xpa)) TEn  noan "¢

So, the knowledge of a particular solution for the Emden #qnanables us first to obtain a
constant of the motion and then to reduce the initial Emderagagn into a Lie system. Thus, all
Emden equations are quasi-Lie systems with respect to theeabentioned scheme.

8.6. Applications of particular solutions to study Emden egations. This section is devoted

to illustrating the usefulness of the previous theory alifmtlen equations. More specifically,
we detail several Emden equations for which one is able tcefipakrticular solution satisfying an
integrability condition and use is made of such a solutiooriter to derive-dependent constants
of the motion. In this way we recover several results appeari the literature about Emden—
Fowler equations from a unified point of view [42].
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We start with a particular case of the Lane-Emden equation
2
=i 5. (8.41)

The more general Lane-Emden equation is generally written a
. 2.
E=—1d + f(z)

and the example here considered correspond$id = —z™, n # 1, which is one of the most
interesting cases, together with thatfifr) = —e~#*. Equation[[8.411) appears in the study of
the thermal behaviour of a spherical cloud of gas [135] aad &l astrophysical applications. A
particular solution for[(8.41) satisfying(8139):s (t) = (2t)~'/2. If we substitute this expres-
sion forz,(¢) and the corresponding one fog(¢) into thet-dependent constant of the motion

(8.40), we get that

44328

I'(t,z,v) = + 4t30% 4 4?20

is a t-dependent constant of the motion proportionalfo (8.4@) also proportional to the-
dependent constants of the motion found.in [11]34] 158].
We study from this new perspective other Emden equatiorestigated in[[145]. Consider
the particular instance
—Li — 22
t+ K
A particular solution for this Emden equation satisfyind3® is
4

zp(t) = t+r K2

In this case @&-dependent constant of the motion is

1 . 1 5
I'(t,z,v) = §x3(t+K)6+ §v2(t+K)6—|—2xv(t+K)",

which is proportional to the one found by Leachlin [145].
Now another Emden equation foundfin [145],

_ _Lx _ ng
2(t+ K) ’
admits the particular solution
1
zp(t) = V2T KA

which satisfies[(8.39). The correspondindependent constant of the motion is given by
I'(t,z,v) = (K +t)32(10(K + t)v? + svz + 2(K + t)z'°)
which is proportional to that given i [145].
Let us turn now to consider the Emden equation
i = —L:i: — 7,

3(t+ K)

which admits a particular solution of the form
1
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which obeys[(8.39) and leads to theependent constant of the motion
I'(t,x,v) = (K +t)°3(12(K + t)v? + Svz + 323(K +1)).

Finally we apply our development to obtaintalependent constant of the motion for the

Emden equation
1

Y 8.42
K+ Kst " (8.42)
with )
Ky=_"=
n+3
We can find a particular solution of the form
K,
2y(t) = —————, v #0.
In order forx, (¢) to be a particular solution we must have the following relati
(I/ + ].)I/KQK?? - VK2K3 Kél

(K1 + Kst)"+2 — (Ki + Kst)"*2  (Ki + Kst)™
and thus
v+2=nv and v(v +1)K2Ky = vK K3 — K7

From these equations we get

2 22
V= —7, Kyt= " .
n—1 (n+3)2
Under these conditions it can be easily verified tht) = 272! (t). Thus, at-dependent con-
stant of the motion is

I/(t x v) = (Kl + K3t)2(”+1)/("*1) LH + ’U_2 +
Y n+1 2
) vz

K Kat (n+3)/(n—1
+( 1+ 3) n+37

(8.43)

which can also be found in [145].

Another advantage of our method is that it allows us to olEaiden equations admitting a
previously fixedi-dependent constant of the motion.

Suppose that we want to construct an Emden equation adgnéttpreviously chosen partic-
ular solution,z,,(t), satisfyingi?(t) = xp*!(t) for certainn € Z — {1, —1}. We can integrate
this equation to get all possible particular solutions Wwrian be used by means of our method,

i.e. )
1— a1
%@:<K+ 2%) .

We consider functiong(t) andb(t) such that

&y = a(t)ip + b(t)x,.
For the sake of simplicity, we can assume @} = —1. Then we get

Ty +
M@:J%—&
P



132 J.F. Carifiena and J. de Lucas

If we substitute the chosen particular solution in the almy@ession, we obtain

3+n
)= —a——.
0= 3T )
which leads to an Emden equation equivalertio (8.42) anddependent constant of the motion
for this equation is again (8.43). In this way we recover thges studied in this section.

8.7. The Kummer-Liouville transformation for a general Emden-Fowler equation. As far
as we know, the most general form of the Emden—Fowler equatiasidered nowadays is
Z+pt)x + qt)z = r(t)z". (8.44)

This generalisation arises naturally as a consequencercafobie@me. Indeed, the above second-
order differential equation is associated with the systéfirsi-order differential equations

ey (8.45)
b= —p(t)v — q(t)z +r(t)z",
which determines the integral curves for theéependent vector field
Xy = —p(t)Xa —q(t) X1 + 7)) X2 + X3,

This t-dependent vector field is a generalisation of the one diudi@revious sections. Under
the set of transformations (8125), the initial systém (BlEcomes the new system

da’ _ (a(t) ’Y(t)) o 4 B0

v,

7 =\ " aw)" T
W (e WY, e (el )
at ‘( P~ 2 ﬂ(t)) +ﬁ(t)< PO~ 20 "o
5O a0 070
2(0) (t)a@)) T ©
If we choosex = 4, the system reduces to
da’ _ B()
e ()
@ (A0 B 0 (A0 a0
it ‘( PO~ 5@ B(t)) +B(t)< P~ 3 q“)fw))
(07" (1)
o)

When the functiony(t) is chosen in such a way that= —q(t)y — p(t)7, i.e.~ is a solution of
the associated linear equation, we obtain

' _ B,
dt ) (8.46)
' (A B o 4 PO () '
i = (703G 58+
Finally, if the functiong(t) is such that
—p(t)—ﬂ—@ZO,
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we obtain
da’ _ B(t) s
dr (8.47)
' _ (0 m
dt B(t) ’
which is related to the second-order differential equation
@ - ’YnJrl (t) m
arz "R T
with
t
B .
T(t :/ dt'.
=]

The new form of the differential equation is called the cdnalform of the generalised Emden—
Fowler equation.

This fact is obtained by means of an appropriate Kummer-liilgutransformation in the
previous literature, but we obtain it here as a straightésdvapplication of the properties of
transformation of quasi-Lie schemes thereby underscahiagheoretical explanation of such a
Kummer-Liouville transformation.

8.8. Constants of the motion for sets of Emden-Fowler equaiis. In this section we show
that under certain assumptions on thgependent coefficientgt) andb(¢) the original Emden
equation can be reduced to a Lie system and then we can obfiest+iategral which provides
us with at-dependent constant of the motion for the original system.

In fact consider the system of first-order differential etipras

v,

da’ _ <a(t) ﬁ(t)) o 4 B0

dat  \y(®) () (1)

W _ (o) BWY L al) (el &) A0

i ‘(m (D) 5@)) +ﬂ(t)<(t) (D) a(t)+v(t))
L D)

B(t)

This system describes all the systems of differential égnathat can be obtained by means of
the set oft-dependent transformations we got through the sch&MEg,,.q4, Vemad). We recall
that thet-dependent change of variable which we use to relate the Emgleation[(8.24) with
the latter system of differential equation is

x =v(t)z,

v =Bt + alt).
As in previous papers on this topic, we try to relate the tatystem of differential equations to
a Lie system determined bytedependent vector field of the forii’(t,z) = f(t)X (z) and we
supposef (t) to be non-vanishing in the interval we study. So the systediffefrential equations
determining the integrals curves for thislependent vector field is a Lie system and we can use
the theory of Lie systems to analyse its properties.
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As a first example we can consider that we just use the setrodfoiamations withy(¢) = 1
anda(t) = 0. In this case systeri (B125) is

dz’ ,
P B(t)v
& < " ﬁ(ﬂ) TR
We fix 5(¢) to be such that .
B _
a(t) — m = O,

i.e. 5(t) is (proportional to)

Therefore we get

/ t
% = exp </ a(t')dt’) v,

‘% = b(t) exp <— /t a(t’)dt’) '

In order to get the last system of differential equationsésadibe the integral curves forta
dependent vector fieldy’ (¢, z) = f(t)X (z), for a given functioru(t) a necessary and sufficient

condition is ,
b(t) exp (—2/ a(t')dt') =K,

with K being a real constant. Under this assumption the last systeames

/ t
% = exp (/ a(t’)dt') v,

/ t
Cil_vt = exp (/ a(t’)dt') Ka'".

We introduce the-reparametrisation

T(t) = /1t exp </t a(t”)dt”) dt’

and the latter system becomes

dz’ ,
ar
ccli_v’ _ Kam
-
which admits a first-integral
I - EU/Q B x/n+1
2 n+1’

In terms of the initial variables, the correspondingependent constant of the motion is

I =exp <—2 /t a(t’)dt’> <%y2 —b(t) f:) :




Lie systems: theory, generalisations, and applications 5

which is similar to that found ir [16].
Suppose that we restrict the transformatidns (8.25) to #see(¢) = 0. In this case the
system of first-order differential equatios (8.26) beceme
do’ () , BQE) ,
— = ——=x + —=,
dt () (@)
dv’ B\ ., b
— = lalt) - =% |V + —S—=2'"
it < “ =50 50

In order for this system of differential equations to detiergrthe integral curves foriadependent

vector field of the formX' (¢, z) = f(¢) X () we need that

y(t) (t)
enf(t) = -L12, ciaf(t) = —%,
QO t Z(;) » (8.48)
car () = a(t) — %, con f(t) = %.
From these relations, or more exactly from those of the finst we getf(¢) as
__ 13 _ 1B
1) = ciny(t) ez y(t)
and therefore .
Y(t) = —i (t).
We choose;;; = —1 ande;s = 1 so that
B(t) = 4(). (8.49)
In view of this and using the third and second relations fi8A8) we get
cn Bl) _ oy BO)
a2 ® ~ Y7 B

and thus, as a consequencdof (8.49), the last differewfigt®n becomes
c21 M — (t) ’Y(t)

y(t)

c12 (1)
and, as;o = 1 and fixingeo; = 1, we obtain

%bg(W) = af(t),

which can be rewritten as

Hence we have

and in view of [8.4D)

B(t) = ! exp ( / t a(t’)dt’) .

\/2 [ exp (7 atnyarr) dr

13
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So far we have only used three of the four relations we fouhd.féurth and second relations
lead to the integrability condition: there exist a constapt= K such that

B bt ()

V(1) B(t)
Therefore, using the above expressionsyfgy andg(t), we get

(n+3)/2

b(t) exp (—2 / t a(t)dt’) <2 / " exp < / ' a(t”)dt”)) K. (850)

So under this assumption we have connected the initial Eradgeation with the Lie system,

da’ , ,

)
de/ ! m
W~ !+ Ka),

and then the method of characteristics shows that it adhetfinist-integral
I/ _ _11/2 4 K x/n-&-l 4 ’U/J?/
2 n+1 ’

In terms of the initial variables the corresponding coristéithe motion is

I= (%xQ - nb(——i)lmnﬂ> exp (—2/t a(t’)dt’) /t exp </t/ a(t")dt”) dt’
- %x:’cexp (— /ta(t')dt') (8.51)

and in this way we recover the result foundinl[16]. If we nowmsidler the particular case= —3
we get that the integrability conditioh (8]50) implies thizére is a constadt” such that

b(t) exp <—2 /t a(t)dt') =K,

and the correspondingdependent constant of the motion is then given by

I= (%xQ + @x2> exp <—2 /t a(t’)dt’) /t exp (/t a(t”)dt”) dt’
— %mx exp (— /t a(t’)dt') ,

8.9. A t-dependent superposition rule for Abel equations.Let us now turn to illustrate the
results of our theory of Lie families by deriving a commbdependent superposition rule for a
Lie family of Abel equations, whose elements do not admitadard superposition rule except
for a few particular instances. In this way, we single out thiar theory provides new tools
for investigating solutions of nonautonomous systems fiéidintial equations than cannot be
investigated by means of the theory of Lie systems.

which is equivalent to that one found in ]16].
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With this aim, we analyse the so-called Abel equations offitst-type [24,[74], i.e. the

differential equations of the form

dx

dt
with as(t) # 0. Abel equations appear in the analysis of several cosmmbgiodels([73, 111,
148] and other different fields in Physi¢s [70, 84] 91),(92 ], 1240]. Additionally, the study of
integrability conditions for Abel equations is a reseammbi¢ of current interest in Mathematics
and multiple studies have been carried out in order to aadtys properties of the solutions of
these equations|[5, 69,174,175, 215].

Note that, apart from its inherent mathematical interést knowledge of particular solutions
of Abel equations allows us to study the properties of thdsesigal systems that such equations
describe. Thus, the expressions enabling us to easilyrob&av solutions of Abel equations by
means of several particular ones, like commalependent superposition rules, are interesting to
study the solutions of these equations and, therefore, itlaied physical systems.

Unfortunately, all the expressions describing the gerssiaition of Abel equations presently
known can only be applied to study autonomous instanceswamreover, they depend on families
of particular conditions satisfying certain extra cormtits, se€ [7%, 215]. Taking this into account,
commor-dependent superposition rules represent an improvenigntagpect to these previous
expressions, as they enable us to treat nonautonomous dudegiens and they do not require the
usage of particular solutions obeying additional condgio

Recall that, according to Theorém 71.19, the existence ofrawant-dependent superposition
rule for a family of ¢--dependent vector field§Y,;}4.ca requires the existence of a system of
generators, i.e. a certain settelependent vector fieldX(y, . . ., X, satisfying relationd(7.14).
Conversely, given such a set, the familytedependent vector fields whose autonomisations
can be written in the form

Y/C(ta J)) = Zbcj(t)Xj(t; JJ), Zbcj(t) =1,

= ap(t) + a1(t)x + as(t)2? + az(t)2?®, (8.52)

admits a commotrdependent superposition rule and becomes a Lie family.
Consequently, a Lie family of Abel equations can be deteeahjfor instance, by finding two
t-dependent vector fields of the form

Xa(t,) = (bolt) + bi (02 + baft)a? + bo(0)a) 2
5” (8.53)
Xalt, ) = (B(0) + (02 + By(0)a? + By(0)2%) -, (1) 0,
such that
X1, X5] = 2(X; — X)), (654)

Let us analyse the existence of such ta@ependent vector field&; and X, with commu-
tation relations[(8.34). In coordinates, the Lie bradkét, X] reads

[(byby — bybs)az* + (2(bhby — bsb)) — bs + bh)a® + (—3(bhbs — bobs) + (byby — bobh)

— by + DY) x? 4 (=2bhbg + 2bobly, — by + BY)x — blby + bob — bo + 65]83.
X
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Hence, in order to satisfy conditioh (8154},b> — b5b; = 0, e.g. we may fixb, = b3 = 0.
Additionally, for the sake of simplicity, we assurble = 1. In this case, the previous expression
takes the form

. . . . .0
[2b12% + (3bo + byby + bh)x? + (2bobly — by + b)) — byby + boby — by + bg]a—,
X
and, taking into account the values choserbfoibs andb;, assumption(8.54) yields = 1 and

by = 3bg + b,
20} — 1) = 2bbly + b,
2(bfy — bo) = —bly + boby — by + b}
As this system has more variables than equations, we caa fiy $ome values of the variables
in order to simplify it and obtain a particular solution. Imig way, takingby(t) = t, the above
system reads
by = by — 3t,
by =20, — 1) — 2tb),
by = 2(bfy — t) + by — tb + 1.
This system is integrable by quadratures and one can chatk gdmits the particular solution
Vo(t) =3(1+1¢), b)) =31+t)>+1, byt)=(1+1t)>+¢
Summing up, we have proved that thdependent vector fields

)
Xi(t, o) = (t+7)5-,
e e (8.55)

Xo(t,z) = (14+t)>+t+BA+)? + Do +3(1+t)z? + x3)%,
satisfy [8.5#) and, therefore, the familywetlependent vector fields

Yo (t, ) = (1 = b(t)) X1 (x) + b(t) X2(2)
is a Lie family. The corresponding family of Abel equatioss i
Cclit (t+2z)+bt)(1+t+ ). (8.56)
According to the results proved in Section]1.5, in order teedaine a commor-dependent
superposition rule for the above Lie family, we have to deiae a first-integral for the vector
fields of the distributiorD spanned by theprolongations??l and X, onR x R*(m+1) for a
certainm so that thet-prolongations ofX; and X> to R x R™ are linearly independent at
a generic point. Taking into account expressidns (8.5%),mtolongations of the vector fields
X, and X, to R x R? are linearly independent at a generic point and, in view 48 the
t- proIongauonle and X, to R x R3 span an involutive generalised distributitnwith two-
dimensional leaves in a dense subseRof R3. Finally, a first-integral for the vector fields in
the distributionD will provide us a common-dependent superposition rule for the Lie family
(8.58). B _
Since, in view of [8.5M), the vector field§; and X, span the distributiorD, a function
G : R x R? — Ris a first- -integral of the vector fields of the distributionif and only if G is a
first-integral ofX; andX; — Xo, i.e. X;G = (Xg — Xl)G 0.



Lie systems: theory, generalisations, and applications 9 13

The conditionX; G = 0 reads

oG +({t+zo)— oG +(t+x1)8G 0

ot Oxo Oxq ’
and, using the method of characteristics [129], we notettieaturves on whicld: is constant,
the so-callectharacteristicsare solutions of the system

d(Eo dl’l d(El‘
ttao tta | di
which readz;(t) = et —t — 1, with i = 0,1 and, & € R. Furthermore, these solutions are
determined by the implicit equatiogs = e ~*(xo +t + 1) and&; = e (21 +t + 1). Therefore,
there exists a functiofi's : R? — R such thatG(¢, 7o, 71) = G2(&,£1). In other words, each
first-integralG of X; depends only of, and¢;.

Taking into account the previous fact, we look for simuliaune first-integrals of the vector
field X, — X, and X1, that is, for solutions of the equati¢; — X )G = 0 with G depending
on ¢, and¢;. Using the expression of, — X, inthe system of coordinatds, &, &1 }, we get
that

dt =

=t+z;, i=0,1,

30G2 38G2 B

0 85 fl aé— a

and, applying again the method of characteristics, we oltitait there exists a functidrs : R —

R such thatG(t, zo, 21) = Ga2(&,&1) = G3(A), whereA = 2! ((zo+t+1) 72— (21 +t+1)72).
Finally, using this first-integral, we get that the commntetlependent superposition rule for the
Lie family (8.58) reads

(X2 — X1)G =¢

k= 62t(($0 4t 4+ 1)72 —(z1+t+ 1)*2)7

with k& being a real constant. Therefore, given any particulat&wiw, (¢) of a particular instance
of the family of first-order Abel equations{8]58), the gerlaolution,z(¢), of this instance is

x(t) = ((ml(t) +t+ 1)_2 + ke_zt)

Note that our previous procedure can be straightforwardhegalised to derive comman
dependent superposition rules for generalised Abel egp=lL66], i.e. the differential equations
of the form

Uy,

Ccli—f =ap(t) + a1 (t)x + as(t)z?® + ... + a,(t)z", n > 3.
Actually, their study can be approached by analysing thetemce of two vector fields of the

form
0

%a
0
Ya(t, ) = (bp(t) + by () + ... + LAOED by (t) # 0,
obeying the relatiofiy;, Y2] = 2(Y>—Y7) and following a procedure similar to the one developed
above.

Yi(t,x) = (bo(t) + by (t)x + ... + by (t)a™)

8.10. Lie families and second-order differential equation. Commont-dependent superposi-
tion rules describe solutions of nonautonomous systemssofdider differential equations. Nev-
ertheless, we shall now illustrate how this new kind of sppsition rules can also be applied to
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analyse families of second-order differential equatidhsie specifically, we shall derive a com-
mont-dependent superposition rule in order to express the geselution of any instance of a
family of Milne—Pinney equation$ [30, 75, 195, 196] in teraisach generic pair of particular
solutions, two constants, and the variahlée. the time. In this way, we provide a generaliza-
tion to the setting of dissipative Milne—Pinney equatiohthe expression previously derived to
analyse the solutions of Milne—Pinney equationsin [44].

Consider the family of dissipative Milne—Pinney equatif@®[195/ 196, 217] of the form
i=—Fi+w’r+e g3, (8.57)

with a fixed¢-dependent functiof” = F'(¢), and parametrised by an arbitrardependent func-
tion w = w(t). The physical motivation for the study of dissipative MikiRinney equations
comes from its appearance in dissipative quantum mechf8)id43,171| 2113], where, for in-
stance, their solutions are used to obtain Gaussian sotutid non-conservative-dependent
guantum oscillators [171]. Moreover, the mathematicapprties of the solutions of dissipative
Milne—Pinney equations have been studied by several afram different points of view as
well as for different purposes [34, 144,145, 83, 1110.1195/ IPHR)]. As relevant instances, con-
sider the workd[[45, 195] which outline the state-of-theeéthe investigation of dissipative and
non-dissipative Milne—Pinney equations. One of the mahiexements on this topic (see [195,
Corollary 5]) is concerned with an expression describirgglneral solution of a particular class
of these equations in terms of a pair of generic particulartems of a second-order linear dif-
ferential equations and two constants. Recently, the yhefoquasi-Lie schemes and the theory
of Lie systems has enabled us to recover this latter resdlb#imer new ones from a geometric
point of view [34)52].

Note that introducing a new variable= z, we transform the family{8.57) of second-order
differential equations into a family of first-order ones

T =,
{ (8.58)

0= —Fv+w’r+ e 23,
whose dynamics is described by the familytafependent vector fields 6RR parametrised by
w of the form
Y, = (—Fv+e_2Fx_3+w2x) 3—i—vg, weAN=C™(®).
v Ox
Let us show that the above family is a Lie family whose commgpesposition rule can be used
to analyse the solutions of the family (8157).

In view of Theoreni 7.19, if the family of systems related te #bove family of-dependent
vector fields is a Lie family, that is, it admits a commedependent superposition rule in terms of
m particular solutions, then the family of vector fieldsRrnx R™(™+1) given byLie({Y,, }wea)
spans an involutive generalised distribution with leavlasokr < n -m + 1.

Note that the distribution spanned by Ell is generated by the vector fieldfs andYz, with

Y = (—FU +e 23 —i—x) % +“a%’ Ys = (—FU—!—e*QFx*‘g) % —|—v%,
sinceY,, = (1 — w?)Y; + w?Y;. The prolongationYy, Y>] is not spanned by; andY; and, so
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we have to include the prolongatidf® = [Y7, Y»] to the picture, where

0 0
Yg—x%—(v—i—xF)av

In the casen = 0, the distribution spanned by the vector fieIGT’s, }72, Y4, does not admit a
non-trivial first-integral. In the case. > 0, the vector f|eldsY1, Yg, Y3 ; do not span the linear
spaceLie({Y, }wea) and we need to add a new prolongatiéf = [Y7, [Y7, Y3]] to the previous
set, with

Yy = (20 + xF)&%: +(2e 73 — 22 — F(v+aF) — mF)%

The vector fieldsy;, Yz, V3", Y}, satisfy the commutation relations
[}71,372- =Yy,

_}717 YBA_ = Y4Av

Vi v)] = (@4 B2 1209 — (FF + F)(Y: - Ya),

-17271/3/\- = 2(?1 - 172) + Y,

'YQ, YN = @+ B2 1 2B)Y) — (FE + F)(Y; - Ya),
VAR ] = 2y —2(Y; — Ya)(4 4+ F? + 2F).

Consequently, the vector field§, Y», Y3, Y, span the linear spadsic({Y,, bwen)- Addingf/l

to each prolongation of the previous set, that is, by comigehe vector fleld§(1 Yl, Xg

Yg, X3 Y1 + Y, andX4 = Y1 + Y}, we get the family of- prolongatlonle, X2,X3, X4,
which spans the vector fields of the familye({Y,, }cs). The commutation relations among
them read

X1, X | = X3 — Xi,

-)?1,553_ 2554—5(17

X0, Xu| = —(FF+ F 4+ F2 420X, + (FF + F)Xo + (4 + F2 + 2F) X3,
Xy, X3] = 2X, — 2X5 — X3 + Xu,

X0, Xu| = —(1+ F2 4 2F 4 FE+ )X, + (FF + F)Xo + (1 + F2 + 2F) X3,

Xy, Xy| = —3Xs+ (44 F2 £ 20) Xy + (8 + F + FF + 2% 1 4F) Xot
+(=9—3F? —6F — FF — F)X,.

As a consequence of Lemima 7.17, we get that the vector fié]ds¥, X3 and X, satisfy the
same commutation relations as the vector fieWds X», X3, X4. Hence, in view of Theorem
[7.19, the family[(8.58) is a Lie family and the knowledge ofirtavial first-integrals of the vector
fields of the distributiorD spanned b)Xl, Xo, X3, X4 provides us with a commandependent
superposition rule.

Let us now turn to determine the aforementioned commdapendent superposition rule.
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As the vector fieldsX;, X; — X, and their successive Lie brackets span the whole distoibuti
D, a functionG : R x TR? — R is a first-integral for the vector fields of such a distributid
and only if it is a first-integral for the vector field$; and X, — X;. Therefore, we can reduce
the problem of finding first-integrals for the vector fieldgtd distributiorD to finding common
first-integrals for the vector fieldsX; andX; — Xo.

Let us analyse the implications 6f being a first-integral of the vector field

- - 2 9
X1 — X2 = Zl’l—
i=0 v

The characteristics of the above vector field are the soiataf the system

%:@:@, d(L’():O, dm1:0, d(L’QZO, dt:(),

i) X1 X9
that is, the solutions are curveslinx TR? of the forms +— (¢, zg, x1, 22, v0(8), v1(s), v2(s)),
with g2 = xova(s) — x2v(s) and&io = z1v2(s) — zovy (s) for two real constant§y, andé;s.
Thus, there exists a functial, : R® — R such thatG(p) = Ga(t, zg, 21, 22, f02, £12), With
p € R x TR3, £g2 = Tov2 — T2vp, aNdE s = x1v9 — v122. IN Other words( is a function of
t, 0,1, T2, 802, 12

The functionG also satisfies the conditioﬁlG = 0 which, in terms of the coordinate system

{t, w0, 21,22, 02812, v2}, reads

ot i) 61'0 i) 8%1 vza—fl'z_
. _ 8G . _ i) i) 6G
s (G e (Pl
|: §12 € .2?? Jﬁg 8§12 602 € .2?8 1‘% 8502
That s, defining the vector fields

= 0 G20 b 0 | g or (T2 T\ O
=1 87& i) 81‘1 X9 81‘0 + |: F512 ¢ 3 8§12

ai a3
. 0
g, —e—2F (%2 _FoN| 9
+ |: §02 € (1’3 xg 8502,

29 0z a9 0x1 Oxo’

8G + (.1?01]2 — fog) 8_G + (1‘1’()2 —512) 8G + 8G

the conditionX;G = 0 implies that=1 G5 + v2=22G2 = 0 and, agi, does not depend am, the
functionG must simultaneously be a first-integral 6y and=5, i.e.Z;G = 0 and=2G = 0.

Applying the method of characteristics to the vector figld we get thatf" can just depend
on the variables, £p2, {12, Aoz = xo/x2 and Aja = x1/x2. In other words, there exists a
function G5 : R® — R such thatG(t, xo,T1,T2,V0, V1, ’Ug) = Gy (t, xo, 1,22, 502, 512) =
G3(t, 02,12, Doz, A12).

We are left to check the implications of the equatirG = 0. With the aid of the coordinate
system{t, o2, 12, Aoz, A12, v2, 22}, the previous equation can be cast into the f@&p&r =
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%T1G3 + Y2G3 =0, where

1
0 _ _ 0
T, = Z <—§¢2 RN e (AL — Ap) @) ;

=0
. 0 . 0 0
Yo =—Fég— — Fépo— + —.
? iz 0812 b0z 002 t o
As G5 only depends on the variablésAgz, A1, £12, o2, We have thal'; G = 0 andY G = 0.
Repeatingmutatis mutandishe previous procedures in order to determine the impbaoatiof

being a first-integral of"; andY 5, we finally get that the first-integrals of the distributibnare

functions ofI;, I, and!, with
x 2 Z; 2
xX; i)

I= ezF(xlvg — x2v1)2 +

I, = eQF(xovi — xiv0)2 +

and

Definingv, = ef'vy, 11 = ef'v; andoy = ef'vg, the above first-integrals read
X 2 X; 2
(=)« (2)] e
Z; Zo
X 2 xr 2
(=)@
i) I

Note that these first-integrals have the same form as the aoresdered in[[52] fork = 1.
Therefore, we can apply the procedure done there to obtain th

I; = (z0¥; — mi00)° +

and

I = (1‘1’(72 — 1‘2’(71)2 +

with \15 being a function of the form

kikol + (=1 + k% + k3
Aok, ko, ) = 1R2 32_4 1 2)7
and where the constanits andk. satisfy special conditions in order to ensure thais real [44].
Expression(8.39) permits us to determine the generalisalut(t), of any instance of family

(8.51) in the form

z(t) = \/lm%(t) + koxd(t) + 2\/A12[—(x‘11(t) +a5(t) + T23(t)x3(t)], (8.60)

(i) (26)

xo(t) x1(t) ’

in terms of two of its particular solutions; (¢), z2(¢), its derivatives, the constants and k.,
and the variable (included in the constant of the motidi.

Note that the role of the constahin expression[(8.80) differs from the roles playediy
andks. Indeed, the value df is fixed by the particular solutions (), 22 (¢) and its derivatives,

with

I =0 @y (t)in(t) — wa(t)in (t)® +
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while, for every pair of generic solutions (¢) andxz(t), the values ok, andk, range within
certain intervals ensuring thaft) is real.

It is clear that the method illustrated here can also be aegplh analyse solutions of any
other family of second-order differential equations retbto a Lie family by introducing the new
variablev = &. Additionally, it is worth noting that in the cadé(¢) = 0 the family of dissipative
Milne—Pinney equation§(8.67) reduces to a family of MilR@ney equations broadly appearing
in the literature (se€ [147] and references therein), ap@xipressior (8.60) takes the form of the
expression obtained ih [44] for these equations.

9. Conclusions and outlook

Apart from providing a quite self-contained introductiarthe theory of Lie systems, this essay
describes most of the results concerning this theory andeiteeralisations developed by the
authors and other collaborators along very recent yeaithisnvay, our work presents a state-
of-art of the subject and establishes the foundations fopoesent research activity. Let us here
discuss some of the topics which we aim to analyse in a claseefand their relations to the
contents of this essay.

The theory of superposition rules for second- and highdewdifferential equations has just
been initiated [48. 49, 52, 77, 202, 225] and many questibaatahis topic must still be clarified.
As an example, we can point out that there exist several appes to study systems of second-
order differential equations by means of the theory of Listsgns nowadays. For instance, one
can use the SODE Lie system notionl[52], which allows us tdystuparticular type of systems
of second-order differential equations. In addition, ieaend-order differential equation admits
a regular Lagrangian, the corresponding Hamiltonian fdatan can lead to a system of first-
order differential equations which can also be a Lie systdh [Analysing the relations between
the results obtained through both approaches is still an ppablem.

As a consequence of the above considerations, it becanmrestitgy to study a class of Lie
systems describing the Hamilton equations of a certaintypelependent Hamiltonians. These
systems are defined in a symplectic manifold and this stregitovides us with new tools for
investigating such Lie systems. In addition, these toatsmaemployed to study the integrability
and super-integrability of these particular Lie systemst @m is to analyse such relations in
depth in the future.

After analysing the Lie systems defined in symplectic mdd#pa natural question arises:
What are the properties of those Lie systems describingdhgiens of a system in a Poisson
manifold (N, {-, -}) of the form

Ccli—fz{x,ht}, x €N,
where, for every € R, the functionh; : N — R belongs to a finite-dimensional Lie algebra of
functions (with respect to the Poisson bracket). This elmgling question has led to the analysis
of the properties of such Lie systems by means of the Poidsoctgre of the manifold, what
represents an interesting topic of research.

In [12,[13] Winternitzet al. proposed, for the first time, a new type of superpositions;utee
referred to asuper-superposition ruleshat describe the general solution of a particular family
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of systems of first-order differential equations in superiftdds. These articles gave rise to many
interesting unanswered questions. Although it seemslileageometric theory developed in [38]
could easily be generalised to describe the propertisa@ér-superposition rulesultiple non-
trivial technical problems arise. We hope to solve such lgrok in the future and to develop a
geometric theory of Lie systems in graded manifolds.

In [38, Remark 5], it was proposed to accomplish the study @&¢kBund transformations
through a slight modification of the methods carried out talgse superposition rules geometri-
cally, i.e., by means of a certain type of flat connectionsThpic deserves a further analysis in
order to determine more exactly its relevance and apptinati

Since their first appearance in_[34], quasi-Lie schemes baes employed to investigate
multiple systems of differential equations: nonlinearibsors [34], Mathews-Lakshmanan os-
cillators [34], Emden equations [42], Abel equatiohs| [Sdiksipative Milne—Pinney equations
[45], etc. There are still many other applications to be @ankd, e.g. we expect to apply this
theory to study Abel equations in depth. In addition, it wblbk interesting to continue the anal-
ysis of the theory of quasi-Lie schemes and, for instancdet@lop new generalisations of this
theory. Indeed, we are already investigating a generalisé&br the analysis of certain quantum
systems, e.g. the quantum Calogero-Moser system. In additiwould be interesting to study
the generalisations of this theory to analyse stochastieSaheffers systems [144] or Control Lie
systems[[79].

As we pointed out at the beginning of this essay, being a Lséesy is rather more an excep-
tion than a rule. In addition, just a few, but relevant, Listgyns are known to have applications
in Physics, Mathematics and other branches of science.egaestly, one of our main purposes
remains to find new instances of Lie systems with remarkabdications. It seems to us that
there still exist multiple applications of Lie systems aimdthe future, we aim to determine some
of them.

To finish, we hope to have succeeded in showing that the thafdrie systems, after more
than a century of existence, is still an active and intemgdield of research.
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