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Abstract

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions
can be described in terms of certain finite families of particular solutions and a set of constants, by means
of a particular type of mapping: the so-called superposition rule. Apart from this fundamental property, Lie
systems enjoy many other geometrical features and they appear in multiple branches of Mathematics and
Physics, which strongly motivates their study. These facts, together with the authors’ recent findings in the
theory of Lie systems, led to the redaction of this essay, which aims to describe such new achievements
within a self-contained guide to the whole theory of Lie systems, their generalisations, and applications.
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1. The theory of Lie systems

1.1. Motivation and general scheme of the work.It is a little bit surprising that the theory of
Lie systems[153, 154, 157, 224], which studies a very specific class of systems of first-order
ordinary differential equations, can be employed to investigate a large variety of topics [8, 12,
53, 55, 59, 98, 144, 202, 212]. Indeed, although being a Lie system is rather more an exception
than a rule [128], these equations frequently turn up in multiple branches of Mathematics and
Physics. For instance, linear systems of first-order differential equations, Riccati equations [86],
and matrix Riccati equations [103, 116, 117, 131] are Lie systems that very frequently appear in
the literature [62, 98, 112, 141, 207, 212, 234]. This obviously motivates the study of the theory of
Lie systems as a means to investigate the properties of various remarkable differential equations
and their corresponding applications.

The research on Lie systems involves the analysis of multiple interesting geometric and al-
gebraic problems. For example, the determination of the Liesystems defined in a fixed man-
ifold is related to the existence of finite-dimensional Lie algebras of vector fields over such a
manifold [157, 210]. Furthermore, the study of Lie systems leads to the investigation of folia-
tions [35], generalised distributions [38], Lie group actions [141], finite-dimensional Lie algebras
[40, 157, 210], etc. As a result of the analysis of the former themes, Lie systems provide meth-
ods to study the integrability of systems of first-order differential equations [40], Control Theory
[32, 61, 79, 187], geometric phases [98], certain problems in Quantum Mechanics [46, 51], and
other topics. Finally, it is remarkable that the theory of Lie systems has been investigated by
means of different techniques and approaches, like Galois theory [17, 19] or Differential Geom-
etry [38, 60, 186, 220].

When applying Lie systems to study more general systems of differential equations than
merely first-order ones (see for instance [34, 35, 52, 77, 202]), the interest of their analysis be-
comes even more evident. For example, in the research on systems of second-order differential
equations, which very frequently appear in Classical Mechanics, various relevant differential
equations can be studied by means of Lie systems. Dissipative Milne–Pinney equations [45],
Milne–Pinney equations [52], Caldirola–Kanai oscillators [54],t-dependent frequency harmonic
oscillators [55], or second-order Riccati equations [48, 225], are just some examples of such sys-
tems of second-order differential equations that have already been analysed successfully through
Lie systems.

The relevance of the above studies, along with the determination of new applications of Lie
systems, is twofold. On one hand, they allow us to obtain novel results about interesting differ-
ential equations. On the other hand, such examples may show us new features or generalisations
of the notions appearing in the theory of Lie systems that were not previously determined. Let us

[1]
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briefly provide a case in point. While studying second-orderdifferential equations by means of
Lie systems [52, 53, 202], a new type of ‘superposition-like’ expression describing the general
solution of certain systems of second-order differential equations appeared. These essays led to
the definition of a possible superposition rule notion for such systems whose main properties
are still under analysis [48]. In addition, these works carried out different approaches to analyse
second-order differential equations: by means of the SODE Lie system notion [52] and through
regular Lagrangians [54]. The relations between these approaches or even the existence of new
approaches is still an open question that must be investigated in detail [48].

Apart from the investigation of the above open problems, perhaps the most active field of
research into Lie systems is concerned with the developmentof new generalisations of the Lie
system and superposition rule notions. Quasi-Lie systems [34, 35, 42],t-dependent superposi-
tion rules [34], PDE Lie systems [38, 172], SODE Lie systems [52], partial superposition rules
[38, 153], quantum Lie systems [60], or stochastic Lie–Scheffers systems [144] are just a few
generalisations of such concepts that have been carried outin order to analyse non-Lie systems
with techniques similar to those ones developed for analysing Lie systems. Indeed, the list of
generalisations is much larger and even sometimes the superposition rule term has been used
with different, non-equivalent, meanings [198, 215].

In view of the above and many other reasons, the theory of Lie systems, along with its multiple
generalisations, can be regarded as a multidisciplinary active field of research which involves the
use of techniques from diverse branches of Mathematics and Physics as well as their applications
to Control Theory [25, 26, 32, 59, 61, 79, 119, 187, 212], Physics [39, 54, 58, 234], and many
other fields [31].

Our work starts by surveying briefly the historical development of the theory of Lie systems
and several of their generalisations. In this way, we aim to provide a general overview of the
subject, the main authors, trends, and the principal works dedicated to describing most of the
results about this theme. Special attention has been paid toprovide a complete bibliography,
which contains numerous references that cannot be easily found elsewhere. Furthermore, we
have detailed a full report containing the works published by the main contributors to the theory
of Lie systems: Lie [153]-[157], Vessiot [222]-[227], Winternitz [8, 9, 13, 112, 105, 173, 174,
233, 234, 235, 236], Ibragimov [120]-[125], etc. Additionally, we presented the main contents of
some works which have been written in other languages than English, e.g. [153, 222, 223, 225].

After our brief approach to the history of Lie systems, the fundamental notions of this theory
and other related topics are presented. More specifically, along with a recently developed differ-
ential geometric approach to the investigation of Lie systems [38], results about the application
of Lie systems to investigate Quantum Mechanics, partial differential equations (PDEs), systems
of second- and higher-order differential equations are discussed. This, together with the previous
historical introduction, furnishes a self-contained presentation of the topic which can be used
both as an introduction to the subject and as a reference guide to Lie systems.

Later on, in Chapter 2, our survey focuses on detailing the achievements obtained by the
authors who described a method to analyse second-order differential equations. Chapter 3 is
concerned with various applications of Lie systems in Quantum Mechanics. Subsequently, we
describe a theory of integrability of Lie systems in Chapter4. This theory is employed to inves-
tigate some systems of differential equations appearing inClassical Mechanics in Chapter 5 and
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various Schrödinger equations in Chapter 6. Finally, Chapters 7 and 8 describe the theory and ap-
plications of a new powerful technique, thequasi-Lie schemes, developed to apply the methods
for studying Lie systems to a much larger set of systems of differential equations. In the same
way as Lie systems, this method can straightforwardly be applied to the setting of second- and
higher-order differential equations and Quantum Mechanics. Finally, diverse applications of this
technique are performed in Chapter 8.

1.2. Historical introduction. It seems that Abel dealt with the superposition rule conceptfor
the first time, while analysing the linearisation of nonlinear operators [128]. Apart from this very
early treatment of one of the notions studied within the theory of Lie systems, the fundamentals of
this theory were laid down during the end of the XIX century bythe Norwegian mathematician
Sophus Lie [153, 154, 155, 157] and the French one Ernest Vessiot [222]-[228]. Indeed, Lie
systems are also frequently referred to asLie–Vessiot systemsin honour to their contributions.

The first study focused on analysing differential equationsadmitting a superposition rule
was carried out by Königsberger [137] in 1883. In his work, he proved that the only first-order
ordinary differential equations on the real line admittinga superposition rule that depends alge-
braically on the particular solutions are (up to a diffeomorphism) Riccati equations, linear and
homogeneous linear differential equations. Later on, in 1885, Lie proposed a special class of sys-
tems of first-order ordinary differential equations [153, pg. 128] whose general solutions can be
worked out of certain finite families of particular solutions and sets of constants [18, 220].

Despite the above mentioned achievements, these pioneering works did not draw too much
attention. Nevertheless, the situation changed from 1893.At that time, Vessiot and Guldberg
proved, separately, a slightly more general form of Königsberger’s main result. They demon-
strated that (up to a diffeomorphism) Riccati equations andlinear differential equations are the
only differential equations over the real line admitting a superposition rule [108, 124, 128, 222].
This result attracted Lie’s attention [154], who claimed that their contribution is a simple conse-
quence of his previous work [153]. More specifically, he stated that the systems which admit a
superposition rule are those ones that he had defined in 1885 [155]. In view of these criticisms,
Lie did not recognise the value of Vessiot and Guldberg’s discovery [128]. Nevertheless, some
credit to them must be given, as the theory of Lie does not easily lead to the case provided by
Vessiot and Guldberg [128].

Lie’s remarks gave rise to one of the most important results about the theory of Lie systems:
the today calledLie Theorem[157, Theorem 44]. This theorem characterises systems of first-
order ordinary differential equations admitting a superposition rule. In addition, it provides some
information on the form of such a superposition rule. In [157], Lie and Scheffers presented the
first detailed discussion about Lie systems. In recognitionof this work, some authors also call
Lie–Scheffers systems to Lie systems.

In spite of this important success, Lie Theorem, as stated byLie, contains some small gaps
in its proof as well as a slight lack of rigour about the definition of superposition rule. This was
noticed and fixed at the beginning of the XXI century by Cariñena, Grabowski, Marmo, Blázquez,
and Morales [18, 38].

After Lie’s reply, Vessiot recognised the importance of Lie’s work and proposed to callLie
systemsthose systems of first-order ordinary differential equations admitting a superposition rule
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[224]. Apart from this first ‘trivial result’, Vessiot furnished many new contributions to the theory
of Lie systems [223, 224, 226, 228] and he proposed various generalisations [225, 227, 228]. For
instance, he showed that a superposition-like expression can be used to analyse particular types
of second-order Riccati equations [225]. More specifically, he proved that some of these equa-
tions admit their general solutions to be worked out of families of four particular solutions, their
derivatives, and two real constants. As far as we know, this constitutes the first result concerning
the study of superposition rules for nonlinear second-order differential equations.

After a beginning in which a deep study of superposition rules and Lie systems was carried
out [108, 153, 154, 155, 222, 224, 225, 226, 227, 228], the topic was almost forgotten for nearly
a century. Just few works were devoted to the study of superposition rules [76, 80, 81, 82, 149,
197]. During the seventies, nevertheless, the interest on the topic revived and many authors fo-
cused again on investigating Lie systems, their generalisations, and applications to Mathematics,
Physics and Control Theory [127, 130, 175]. Among the reasons that motivated that rebirth of the
theory of Lie systems, we can emphasise the importance of theworks of Winternitz and Brocket.
On one hand, Brocket analysed the interest of Lie systems in Control Theory [25, 26], what ini-
tiated a research field that continues until the present [32,59, 61, 79, 119, 185, 187, 201, 212].
On the other hand, Winternitz and his collaborators made a huge contribution to the theory of Lie
systems and their applications to Physics, Mathematics andControl Theory [8, 9, 13, 14, 15, 21,
112, 114, 141, 234, 236].

In view of its important contributions, let us discuss in slight detail some of Winternitz’s
results. Using diverse results derived by Lie [156, 157], Winternitz and his collaborators devel-
oped and applied a method to derive superposition rules [202, 209, 210]. They also studied the
problem of classification of Lie systems through transitiveprimitive Lie algebras [210], a concept
that also appeared in some of his works about the integrability of Lie systems [21, 22]. Winternitz
also paid attention to the analysis of discrete problems andnumerical approximations of solutions
by means of superposition rules [179, 188, 202, 219] and, finally, he, and his collaborators, de-
veloped a new generalisation of the superposition rule notion, the so-calledsuper-superposition
rule, in order to study the general solutions of various types of superequations [12, 13].

Besides their theoretical achievements, Winternitzet al.applied their methods to the analysis
of multiple discrete and differential equations with applications to Mathematics, Physics and
Control Theory. For instance, many superposition rules were derived for Matrix Riccati equations
[8, 112, 141, 174, 188, 212], which play an important role in Control Theory, as well as for
diverse Lie systems, like projective Riccati equations [21], various superequations [12, 13], or
others [9, 14, 15, 99, 114]. Finally, it is also worth mentioning Winternitz’s research on Milne–
Pinney equations [202], which represents one of the first papers devoted to analysing second-
order differential equations through Lie systems.

Currently, many researches investigate the theory of Lie systems and other closely related
topics. Let us merely point out here some of them along with some of their works: Blázquez and
Morales [17, 18, 19], Cariñena [34, 37, 38], Clemente [32],Grabowski [37, 38, 39], Ibragimov
[120, 121, 123, 124], de Lucas [34, 35, 52], Lázaro-Camı́ and Ortega [144], Marmo [37, 38,
39], Odzijewicz and Grundland [172], Ramos [40, 59, 62], Ra˜nada [43, 52, 53, 55] and Nasarre
[57, 58]. As a result of their contributions, multiple interesting results about the fundamentals,
applications, and generalisations of the theory of Lie systems were furnished.
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Among the above works, it is interesting to describe briefly the content of [34, 37, 38]. The
book [37] presents an instructive geometric introduction to the basic topics of the theory of Lie
systems. The second one [38] provides multiple relevant contributions to the comprehension of
the theory of Lie systems. First, it fixes a remarkable gap in the proof of Lie Theorem. Addition-
ally, this work establishes that the superposition rule concept amounts to a certain type of flat
connection, what substantially clarifies its properties. The furnished demonstration of Lie The-
orem shows that the Lie system notion can be naturally extended to the case of PDEs. Finally,
this work led, more or less indirectly, to the characterisation of families of systems of first-order
differential equations admitting at-dependent superposition rule [35] and the definition of the
mixed and partial superposition rule notions [38, 52]. Finally, we can mention the usefulness of
theLie schemeconcept provided in [34], which enables us to generalise theLie system notion and
leads to the discovery of new properties for multiple systems of differential equations, including
non-Lie systems, appearing in Physics and Mathematics [34,42, 45, 48, 56].

Let us now turn to discuss some of the authors’ contributionsthat gave rise to the redaction
of this work. On one hand, Cariñena and his collaborators investigated the integrability of Lie
systems [40, 43, 47, 50, 54, 63], a generalisation of the Wei–Norman method devoted to the study
of Lie systems [57], the application of Lie systems techniques to analyse systems of second-order
differential equations [48, 49, 52, 53], and other topics like the analysis of certain Schrödinger
equations [46, 51, 59]. In this way, they provided a continuation of diverse previous articles
dedicated to some of these themes [77, 172, 202, 225] and theyopened several research lines
[59].

Besides the above contributions, Cariñena and his collaborators also developed numerous
applications of Lie systems to Classical Physics [39, 43, 44, 45, 52, 54, 55, 58, 62], Quantum
Mechanics [46, 51, 59, 60], Financial Mathematics [31], andControl Theory [60, 61].

Apart from the aforementioned generalisations of the Lie system notion that are related to
other works appearing in the literature [7, 172, 202, 225], anew approach to the generalisation
of the Lie system and superposition rule notions was carriedout by Cariñena, Grabowski and
de Lucas: the theory of quasi-Lie schemes [34]. One one hand,this approach provides us with
a method to transform differential equations of a certain type into equations of the same type,
e.g. Abel equations into Abel equations [56]. This can also be used to transform differential
equations into Lie systems [34], what leads to thequasi-Lie systemnotion. Such systems inherit
some properties from Lie systems and, for instance, they admit superposition rules showing an
explicit dependence on the independent variable of the system [34, 48].

Quasi-Lie schemes admit multiple applications. they can beused not only to analyse the
properties of Lie and quasi-Lie systems but also to investigate many other systems, e.g. nonlinear
oscillators [34], Emden-Fowler equations [42], Mathews-Lakshmanan oscillators [34], dissipa-
tive and non-dissipative Milne–Pinney equations [45], andAbel equations [56] among others. As
a consequence, various results about the integrability properties of such equations have been ob-
tained and many others are being analysed at present. Furthermore, the appearance oft-dependent
superposition rules led to the examination of the so-calledLie families, which cover, as particular
cases, Lie systems and quasi-Lie schemes. Additionally, they can be used to analyse the exact
solutions of very general families of differential equations [35].

As a result of all the above mentioned achievements, there exists today a vast collection of
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methods and procedures to analyse Lie systems from different points of view. All these tools can
be used to provide interesting results in Mathematics, Physics, Control Theory, and other fields.
At the same time, these applications motivate the development of new techniques, generalisa-
tions, and applications of this theory, that presents multiple and interesting topics to be further
investigated.

1.3. Fundamental notions about Lie systems and superposition rules. Our main purpose in
this section is to review the basic notions and the fundamental results concerning the theory of
Lie systems to be employed and analysed throughout our essay. Here, as well as in major part of
our essay, we mostly restrict ourselves to analysing differential equations on vector spaces and we
assume mathematical objects, e.g. flows of vector fields, to be smooth, real, and globally defined.
This will allow us to highlight the key points of our exposition by omitting several irrelevant tech-
nical aspects that can be detailed easily from our presentation. Despite this, numerous differential
equations over manifolds and diverse technical points willbe presented when relevant.

DEFINITION 1.1. Given the projectionsπ : (x, v) ∈ TRn 7→ x ∈ Rn andπ2 : (t, x) ∈
R × Rn 7→ x ∈ Rn, a t-dependent vector fieldX on Rn is a mapX : (t, x) ∈ R × Rn 7→
X(t, x) ∈ TRn such that the diagram

TRn

π

��
R× Rn

X

::
t

t
t

t
t

t
t

t
t π2 // Rn

is commutative, i.e.π ◦X = π2.

In view of the above definition, it follows thatX(t, x) ∈ π−1(x) = TxR
n and henceXt :

x ∈ Rn 7→ Xt(x) ≡ X(t, x) ∈ TRn is a vector field overRn for everyt ∈ R. From here, it is
immediate that eacht-dependent vector fieldX is equivalent to a family{Xt}t∈R of vector fields
overRn.

The t-dependent vector field concept includes, as a particular instance, the standard vector
field notion. Indeed, every vector fieldY overRn can be naturally regarded as at-dependent
vector fieldX of the formXt = Y for everyt ∈ R. Conversely, a ‘constant’t-dependent vector
fieldX overRn, i.e.Xt = Xt′ for everyt, t′ ∈ R, can be considered as a vector fieldY = X0

over this space.

As vector fields,t-dependent vector fields also admit local integral curves, see [29]. For each
t-dependent vector fieldX overRn, this gives rise to defining itsgeneralised flowgX , i.e. the
mapgX : R × Rn → Rn such thatgX(t, x) ≡ gXt (x) = γx(t) with γx(t) being the unique
integral curve ofX such thatγx(0) = x.

DEFINITION 1.2. A t-dependent vector fieldX overRn is said to beprojectableunder a projec-
tion p : Rn → Rn

′

if everyXt is projectable, as a usual vector field, under such a map.

The usage oft-dependent vector fields is fundamental in the theory of Lie systems. They
provide us with a geometrical object which contains all necessary information to study systems
of first-order differential equations. Let us start by showing how systems of first-order differential
equations are described by means oft-dependent vector fields.
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DEFINITION 1.3. Given at-dependent vector field

X(t, x) =

n∑

i=1

X i(t, x)
∂

∂xi
, (1.1)

overRn, its associated systemis the system of first-order differential equations determining its
integral curves, namely,

dxi

dt
= X i(t, x), i = 1, . . . , n. (1.2)

Note that there exists a one-to-one correspondence betweent-dependent vector fields and
systems of first-order differential equations of the form (1.2). That is, everyt-dependent vector
field has an associated system of first-order differential equations and each system of this type, in
turn, determines the integral curves of a uniquet-dependent vector field. Taking this into account,
we can hereby useX to refer to both at-dependent vector field and the system of equations
describing its integral curves. This simplifies our exposition and it does not lead to confusion as
the difference of meaning is clearly noticed from the context.

The following definition and lemma, whose proof is straightforward and it shall not be de-
tailed, notably simplify the statements and proofs of various results about the theory of Lie sys-
tems.

DEFINITION 1.4. Given a (possibly infinite) familyA of vector fields onRn, we denote by
Lie(A) the smallest Lie algebraV of vector fields onRn containingA.

LEMMA 1.5. Given a family of vector fieldsA, the linear spaceLie(A) is spanned by the vector
fields

A, [A,A], [A, [A,A]], [A, [A, [A,A]]], . . .

where[A,B] denotes the set of vector fields obtained through the Lie brackets between elements
of the families of vector fieldsA andB.

Throughout this work two different notions of linear independence are used frequently. In
order to state a clear meaning of each, we provide the following definition.

DEFINITION 1.6. Let us denote byX(Rn) the space of vector fields overRn. We say that the
vector fields,X1, . . . , Xr, onRn arelinearly independent overR if they are linearly independent
as elements ofX(Rn) when considered as aR−vector space, i.e. whenever

r∑

α=1

λαXα = 0

for certain constants,λ1, . . . , λr, thenλ1 = . . . = λr = 0. On the other hand, the vector fields,
X1, . . . , Xr, are said to belinearly independent at a generic pointif they are linearly independent
as elements ofX(Rn) when regarded as aC∞(Rn)−module. That is, if one has

r∑

α=1

fαXα = 0

over any open set ofRn for certain functionsf1, . . . , fr ∈ C∞(Rn), thenf1 = . . . = fr = 0.

In this essay, we frequently deal with linear spaces of the form Rn(m+1). Such spaces are
always considered as a productRn× m+1−times. . . ×Rn. Each point ofRn(m+1) is denoted by
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(x(0), . . . , x(m)), wherex(j) stands for a point of thej-th copy of the manifoldRn within
Rn(m+1).

Associated withRn(m+1), there exists a group of permutationsSm+1 whose elements,Sij ,
with i ≤ j = 0, 1, . . . ,m, act onRn(m+1) by permutating the variablesx(i) andx(j). Finally, let
us define the projections

pr : (x(0), . . . , x(m)) ∈ R
n(m+1) 7→ (x(1), . . . , x(m)) ∈ R

nm (1.3)

and

pr0 : (x(0), . . . , x(m)) ∈ R
n(m+1) 7→ x(0) ∈ R

n, (1.4)

to be employed in various parts of our work.
Once the fundamental definitions and assumptions to be used hereafter have been established,

we proceed to introduce the notion ofsuperposition rule, which plays a central role in the study
of Lie systems.

For each system of first-order ordinary homogeneous linear differential equations onRn of
the form

dyi

dt
=

n∑

j=1

Aij(t)y
j , i = 1, . . . , n, (1.5)

whereAij(t), with i, j = 1, . . . , n, is a family oft-dependent functions, its general solution,y(t),
can be written as a linear combination of the form

y(t) =

n∑

j=1

kjy(j)(t), (1.6)

with, y(1)(t), . . . , y(n)(t), being a family ofn generic (linearly independent) particular solutions,
and,k1, . . . , kn, being a set of constants. The above expression is calledlinear superposition rule
for system (1.5).

Linear superposition rules allow us to reduce the search forthe general solution of a linear
system to the determination of a finite set of particular solutions. This property is not exclusive
for homogeneous linear systems. Indeed, for each linear system

dyi

dt
=

n∑

j=1

Aij(t)y
j +Bi(t), i = 1, . . . , n, (1.7)

whereAij(t), B
i(t), with i, j = 1, . . . , n, are a family oft-dependent functions, its general solu-

tion, y(t), can be written as a linear combination of the form

y(t) =

n∑

j=1

kj(y(j)(t)− y(0)(t)) + y(0)(t), (1.8)

with, y(0)(t), . . . , y(n)(t), being a family ofn+1 particular solutions such thaty(j)(t)− y(0)(t),
with j = 1, . . . , n, are linearly independent solutions of the homogeneous problem associated
with (1.7), and,k1, . . . , kn, being a set of constants.

In a more general way, system (1.5) becomes (generally) a nonlinear system

dxi

dt
= X i(t, x), i = 1, . . . , n, (1.9)
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through a diffeomorphismϕ : Rn ∋ y 7→ x = ϕ(y) ∈ Rn. In view of the linear superposition
rule (1.6), the above system admits its general solution,x(t), to be described in terms of a family
of certain particular solutions,x(1)(t), . . . , x(m)(t), as

x(t) = ϕ




n∑

j=1

kjϕ
−1(x(j)(t))


 .

This clearly shows that there exist many systems of first-order differential equations whose gen-
eral solutions can be described, nonlinearly, in terms of certain families of particular solutions and
sets of constants. A relevant family of different equationsadmitting such a property are Riccati
equations [4, 64, 102, 112, 170, 189, 212] of the form

dx

dt
= b1(t) + b2(t)x+ b3(t)x

2, (1.10)

with x ∈ R̄ ≡ R∪{∞}. More specifically, for each of such Riccati equations, its general solution,
x(t), can be cast into the form

x(t) =
x1(t)(x3(t)− x2(t))− kx2(t)(x3(t)− x1(t))

(x3(t)− x2(t))− k(x3(t)− x1(t))
, (1.11)

where,x1(t), x2(t), x3(t), are three particular solutions of the equation andk ∈ R̄.
It is worth noting that, given a fixed family of three different particular solutions with initial

conditions withinR, if we only choosek in R, the above expression does not recover the whole
general solution of the Riccati equation, asx2(t) cannot be recovered.

The above examples show the existence of a certain type of expression, the so-calledglobal
superposition rule, which enables us to express the general solution of certainsystems of first-
order ordinary differential equations in terms of certain families of particular solutions and a set
of constants. Let us state a rigorous definition of this notion for systems of differential equations
in Rn.

DEFINITION 1.7. The system of first-order ordinary differential equations

dxi

dt
= X i(t, x), i = 1, . . . , n, (1.12)

is said to admit aglobal superposition ruleif there exists at-independent mapΦ : (Rn)m×Rn →
Rn of the form

x = Φ(x(1), . . . , x(m); k1, . . . , kn), (1.13)

such that its general solution,x(t), can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn), (1.14)

with, x(1)(t), . . . , x(m)(t), being any generic family of particular solutions of system (1.12) and,
k1, . . . , kn, being a set ofn constants to be related to initial conditions.

In order to grasp the meaning of the above definition, it is necessary to understand the sense
in which the term ‘generic’ is used in the above statement. Precisely speaking, it is said that
expression (1.14) is valid for any generic family ofm particular solutions if there exists an open
dense subsetU ⊂ (Rn)m such that expression (1.14) is satisfied for every set of particular
solutionsx1(t), . . . , xm(t), such that(x1(0), . . . , xm(0)) lies inU .
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Let us now show that the aforementioned examples admit a global superposition rule. Con-
sider the functionΦ : (Rn)n × Rn → Rn of the form

Φ(x(1), . . . , x(n); k1, . . . , kn) =

n∑

j=1

kjx(j). (1.15)

This mapping is a superposition rule for system (1.5). Indeed, note that for each set of particular
solutionsx(1)(t), . . . , x(m)(t), of (1.5) such that the point(x(1)(0), . . . , x(m)(0)) belongs to the
open dense subset

U =




(x(1), . . . , x(n)) ∈ (Rn)n

∣∣∣∣det




x1(1) . . . x1(n)
. . . . . . . . .

xn(1) . . . xn(n)


 6= 0




,

of (Rn)n, the general solutionx(t) of (1.5) can be written in the form (1.6). Likewise, a super-
position rule can be now proved to exist for the systems (1.9)obtained from (1.5) by means of a
diffeomorphism.

The functionΦ : (Rn)n+1 × Rn → Rn of the form

Φ(x(0), . . . , x(n); k1, . . . , kn) =

n∑

j=1

kj(x(j) − x(0)) + x(0), (1.16)

is a superposition function for the system (1.7). In fact, note that for each set of particular solu-
tions,x(0)(t), . . . , x(n)(t), of (1.7) such that the point(x(0)(0), . . . , x(n)(0)) belongs to the open
dense subset

U =




(x(0), . . . , x(n)) ∈ (Rn)n+1

∣∣∣∣det




x1(1) − x1(0) . . . x1(n) − x1(0)
. . . . . . . . .

xn(1) − xn(0) . . . xn(n) − xn(0)


 6= 0




,

of (Rn)n+1, the general solutionx(t) of (1.7) can be put in the form (1.8).
Finally, let us analyse the case of Riccati equations inR̄. This example differs a little from

previous ones, as it concerns a differential equation defined in the manifoldR̄ ≃ S1. Neverthe-
less, the generalisation of Definition 1.7 to manifolds is obvious. It is only necessary to replace
Rn by a manifoldN . In view of this, the mapΦ : R̄3 × R̄ → R̄ of the form

Φ(x(1), x(2), x(3); k) =
x(1)(x(3) − x(2))− kx(2)(x(3) − x(1))

(x(3) − x(2))− k(x(3) − x(1))
(1.17)

is a global superposition rule for Riccati equations inR̄. To verify this, it is sufficient to note that
given one of these equations with three particular solutions, x(1)(t), x(2)(t), x(3)(t), such that
(x(1)(0), x(2)(0), x(3)(0)) ∈ U , where

U =

{
(x(1), x(2), x(3)) ∈ R

3

∣∣∣∣ x(1) 6= x(2), x(1) 6= x(3) and x(2) 6= x(3)

}
,

its general solution can be cast into the form (1.11).
The aforementioned superposition rules illustrate that for each permutation of their argu-

ments,x(1), . . . , x(m), e.g. an interchange of the argumentsx(i) andx(j), one has, in general,
that

Φ(x(1), . . . , x(i), . . . , x(j), . . . , x(m); k) 6= Φ(x(1), . . . , x(j), . . . , x(i), . . . , x(m); k).
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Nevertheless, it can be proved (cf. [38]) that there exists amapϕ : k ∈ Rn → ϕ(k) ∈ Rn such
that

Φ(x(1), . . . , x(i), . . . , x(j), . . . , x(m); k) = Φ(x(1), . . . , x(j), . . . , x(i), . . . , x(m);ϕ(k)).

It is interesting to note that, if we consider Riccati equations to be defined on the real line,
a global superposition rule for such equations would be a mapof the formΦ : Rm × R → R.
Obviously, expression (1.17) does not give rise to a global superposition of this form. Indeed,
if we restrict (1.17) toR3 × R, we will not be able to recoverx(2)(t) from a set of different
particular solutions,x(1)(t), x(2)(t), x(3)(t), for anyk ∈ R. Even more, the function (1.17) is not
globally defined overR3 × R. Nevertheless, such a function is what in the literature is known as
a superposition rulefor Riccati equations over the real line [108, 157, 222].

In the literature, the superposition rule notion appears asa ‘milder’ version of aforemen-
tioned global superposition rule concept. In other words, superposition rules admit almost the
same properties as global superposition rules but, for instance, they may fail to recover cer-
tain particular solutions. Although it is enough to bear in mind the above example for Riccati
equations to understand fully the main difference between both notions, the precise definition
of a local superposition rule is very technical (see [18]) and it does not provide, in practice, a
much deeper knowledge about Lie systems. That is why, as everywhere else in the literature
[37, 108, 124, 125, 153, 157, 222, 223, 234], we will assume hereafter superposition rules to
recover general solutions and to be globally defined. This simplifies considerably our theoretical
presentation and it highlights the main features of superposition rules and Lie systems. Despite
these assumptions, a fully rigorous treatment can be easilycarried out and some technical remarks
will be discussed when relevant.

A relevant question now arises: which systems of first-orderordinary differential equations
admit a superposition rule? Several works have been devotedto investigating this question. Its
analysis was accomplished by Königsberger [137], Vessiot[222], and Guldberg [108]. They
proved that every system of first-order differential equations defined over the real line admit-
ting a superposition rule is, up to a diffeomorphism, a Riccati equation or a first-order linear
differential equation.

Apart from these preliminary results, it was Lie [153, 154, 157] who established the con-
ditions ensuring that a system of first-order differential equations of the form (1.12) admits a
superposition rule. His result, the today namedLie Theorem, reads in modern geometric terms as
follows.

THEOREM 1.8. (Lie Theorem) A system of first-order ordinary differential equations (1.12)
admits a superposition rule (1.13) if and only if its correspondingt-dependent vector field (1.1)
can be cast into the form

X(t, x) =

r∑

α=1

bα(t)Xα(x), (1.18)

with, X1, . . . , Xr, being a family of vector fields overRn spanning ar-dimensional real Lie
algebra of vector fieldsV .

Within the proof to his theorem [157, Theorem 44], Lie also claimed that the dimension of
the decomposition (1.18) and the numberm of particular solutions for the superposition rule are
related. More specifically, he proved that the existence of asuperposition rule depending onm
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particular solutions for a system (1.12) inRn implies that there exists a decomposition (1.18)
associated with a Lie algebraV obeying the inequalitydim V ≤ m · n, the referred to asLie’s
condition. Conversely, given a decomposition of the form (1.18), we can ensure the existence
of a superposition rule for system (1.12) whose number of particular solutions obeys the same
condition.

Although Lie Theorem solves theoretically the problem of determining whether a system
(1.12) admits a superposition rule, it does not provide a solution for many other questions con-
cerning the study of superposition rules. Let us briefly comment on some of these queries.

• From a practical point of view, it is not straightforward, solely in view of Lie Theorem, to
prove that a system of first-order differential equations does not admit a superposition rule.
Later on in this section, we will sketch a procedure to do so.

• Lie Theorem says nothing about the possible existence of multiple superposition rules for
the same system. What is more, it does not explain explicitlyhow to determine any of
such superposition rules (although its proof [157, Theorem4] furnishes some key hints).
These questions are addressed later in this Chapter, where we review a recent geometrical
approach to Lie systems developed in [38].

• A systemX(t, x) admitting a superposition rule may be written in the form (1.18) in one
or, sometimes, several different ways. Each one of these decompositions is related to a
different finite-dimensional Lie algebra of vector fieldsV . Such Lie algebras are generally
called theVessiot–Guldberg Lie algebrasassociated with a system. Lie Theorem does not
explain the possible relations amongst all possible Vessiot–Guldberg Lie algebras of a
system (1.12). In fact, only Lie’s condition suggests that each different Vessiot–Guldberg
Lie algebra may be related to different superposition rules. We will discuss these questions,
in a more extensive way, later in this section and next.

• Finally, it is worth noting that Lie Theorem cannot be used tocharacterise straightforwardly
systems of first-order differential equations of the formF i(t, x, ẋ) = 0, with i = 1, . . . , n.
Indeed, this is an open question of the research on Lie systems.

The discovery of Lie Theorem [157] in 1893 established definitively the Lie system notion,
which, on the other hand, had already been suggested long time ago by Lie [153], and whose
name was coined by Vessiot in [224] as a recognition to Lie’s success in characterising systems
admitting a superposition rule. The definition of this relevant notion goes as follows.

DEFINITION 1.9. A system of the form (1.12) is aLie systemif and only if its corresponding
t-dependent vector field, namely (1.1), admits a decomposition of the form (1.18).

In view of Lie Theorem, the above definition of Lie system can be rephrased by saying that a
system (1.12) is a Lie system if and only if it admits a superposition rule. From here, it is obvious
that the systems of first-order differential equations (1.5), (1.7) and (1.10), which admit the global
superposition rules (1.15), (1.16) and (1.17), respectively, are Lie systems. Let us analyse in detail
such examples. This brings us the opportunity to illustratediverse characteristics of Lie systems
and the Lie Theorem here and in forthcoming sections.

Consider again the homogeneous linear system (1.5). This system describes the integral
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curves of thet-dependent vector field

X(t, x) =

n∑

i,j=1

Ai j(t)x
j ∂

∂xi
, (1.19)

which is a linear combination of vector fields of the form

X(t, x) =

n∑

i,j=1

Ai j(t)Xij(x), (1.20)

of then2 vector fields

Xij = xj
∂

∂xi
, i, j = 1, . . . , n . (1.21)

Furthermore, one has that
[Xij , Xlm] = δimXlj − δljXim,

whereδim is the Kronecker delta function, i.e. the vector fields (1.21) close on an2-dimensional
Vessiot–Guldberg Lie algebra isomorphic to the Lie algebragl(n,R), see [62].

In view of decomposition (1.20), each system (1.5) is a Lie system. This is not a surprise, as
each system (1.5) admits the superposition rule (1.15) and Lie Theorem states that every system
admitting a superposition rule must be a Lie system. Moreover, in view of Lie’s condition, since
homogeneous linear systems inRn admit a superposition rule depending onn particular solu-
tions, their associatedt-dependent vector fields must take values insomeLie algebra of dimension
lower or equal ton2. Indeed, note that decomposition (1.20) shows thatX(t, x) takes values in a
Lie algebra isomorphic togl(n,R), what clearly obeys the Lie’s condition corresponding to the
superposition rule (1.15).

Note that we have italicised the last ‘some’ in the paragraphabove. We did it because we
wanted to stress that a Lie system can take values in different Lie algebras, some of which do not
need to satisfy the same Lie’s condition. This will become more clear with the next example.

Let us now turn to analyse an inhomogeneous system of the form(1.7). This system describes
the integral curves of thet-dependent vector field

X(t, x) =
n∑

i=1




n∑

j=1

Ai j(t)x
j +Bi(t)


 ∂

∂xi
, (1.22)

which is a linear combination witht-dependent coefficients,

Xt =
n∑

i,j=1

Ai j(t)Xij +
n∑

i=1

Bi(t)Xi , (1.23)

of the vector fields (1.21) and

Xi =
∂

∂xi
, i = 1, . . . , n . (1.24)

The above vector fields satisfy the commutation relations

[Xi, Xj ] = 0 , i, j = 1, . . . , n , [Xij , Xl] = −δlj Xi , i, j, l = 1, . . . , n .

This shows that the vector fields (1.21) and (1.24) span a Lie algebra of vector fields isomorphic
to the(n2+n)-dimensional Lie algebra of the affine group [62]. Then, in view of decomposition
(1.23), systems (1.7) are Lie systems.
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As systems (1.7) admit a superposition rule (1.16) depending onn + 1 particular solutions,
Lie’s condition implies that theirt-dependent vector fields must take values in some Lie algebra
of dimension lower or equal ton(n + 1). In fact, the above results easily show that this is the
case.

The previous example allows us to exemplify that a Lie systemmay admit multiple Vessiot-
Guldberg Lie algebras. Recall that every homogeneous linear system (1.5) is related to at-
dependent vector field taking values in a Lie algebra isomorphic to gl(n,R). Additionally, as
a particular instance of system (1.7), itst-dependent vector field also takes in the above defined
n2 + n-dimensional Lie algebra of vector fields. In other words, linear systems admit, at least,
two non-isomorphic Vessiot–Guldberg Lie algebras.

Now, we can illustrate how different superposition rules for the same system may be asso-
ciated with multiple, non-isomorphic, Vessiot–Guldberg Lie algebras and lead to distinct Lie’s
conditions. We showed that linear systems admit a linear superposition rule which leads, in view
of Lie’s condition, to the existence of an associated Vessiot–Guldberg Lie algebra of dimension
lower or equal ton2, which was determined. Nevertheless, the abovementioned second Vessiot–
Guldberg Lie algebra for linear systems does not hold this condition. On the contrary, this second
Vessiot-Guldberg Lie algebra shows that there must exist a second superposition rule, namely
(1.8), which, along with this Vessiot–Guldberg Lie algebra, satisfies a new Lie’s condition.

To sum up, Lie Theorem implies that a system admitting a superposition rule is related to
the existence of, at least, one Vessiot–Guldberg Lie algebra satisfying the Lie’s condition relative
to this superposition. Nevertheless, the system can possess more Vessiot–Guldberg Lie algebras,
some of which do not need to obey the Lie’s condition for the assumed superposition rule. In that
case, the other Vessiot–Guldberg Lie algebras are related to other superposition rules for which,
a new Lie’s condition is satisfied.

In order to detail the last of the most usual examples of Lie systems admitting a superposi-
tion rule, we now consider Riccati equations (1.10). These differential equations determine the
integral curves of thet-dependent vector field on̄R of the form

X(t, x) = (b1(t) + b2(t)x+ b3(t)x
2)
∂

∂x
. (1.25)

As Riccati equations admit a global superposition rule, they must satisfy the assumptions detailed
in Lie Theorem. Indeed, note thatX is a linear combination witht-dependent coefficients of the
three vector fields

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2

∂

∂x
, (1.26)

which close on a three-dimensional Lie algebra with definingrelations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3. (1.27)

Thus, as it was expected, Riccati equations obey the conditions given by Lie to admit a super-
position rule. Moreover, Riccati equations are associatedwith a Vessiot–Guldberg Lie algebra
isomorphic tosl(2,R). Since this Lie algebra is three dimensional and Riccati equations admit
a superposition rule depending on three particular solutions, it is immediate that the equations
(1.10) satisfy the corresponding Lie’s condition.

The existence of different Vessiot–Guldberg Lie algebras for a system of first-order ordinary
differential equations is an important question because their characteristics determine, among
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other features, the integrability by quadratures of Lie systems [31].
Let us now turn our attention to determine when a system (1.12) is nota Lie system. In order

to analyse this question, it becomes useful to rewrite Lie Theorem in the following, abbreviated,
form.

PROPOSITION1.10. (Abbreviated Lie Theorem) A systemX onRn is a Lie system if and only
if Lie({Xt}t∈R) is finite-dimensional.

In view of the above result, determining that (1.12) is not a Lie system reduces to showing that
Lie({Xt}t∈R) is infinite-dimensional. The standard procedure to prove this consists in demon-
strating that there exists an infinite chain,{Zj}j∈N of linearly independent vector fields overR
obtained through successive Lie brackets of elements in{Xt}t∈R. In order to illustrate how this
is usually made, consider the particular example based on the study of the Abel equation of the
first-type

dx

dt
= x2 + b(t)x3, b(t) 6= 0,

whereb(t) is additionally a non-constant function. These equations describe the integral curves
of thet-dependent vector field

Xt = (x2 + b(t)x3)
∂

∂x
.

Consider the chain of vector fields

Z1 = x2
∂

∂x
, Z2 = x3

∂

∂x
, Zj = [X1, Xj−1], j = 3, 4, 5, . . .

SinceZj = xj+1∂/∂x, it turns out thatLie({Xt}t∈R) admits the infinite chain of linearly in-
dependent vector fields{Zj}j∈R and, in consequence, in view of the abbreviated Lie Theorem,
Abel equations of the above type are not Lie systems.

There are many other relevant Lie systems associated with important systems of differential
equations appearing in the physical and mathematical literature. For instance, a non exhaustive
brief list of these Lie systems includes

1. Linear first-order systems and, more specifically, Euler-systems [62, 98].
2. Riccati equations [47, 222, 234] and coupled Riccati equations of projective type [6].
3. Matrix Riccati equations [112, 141, 174, 188, 212, 234].
4. Bernoulli equations, several equations appearing in supermechanics [13], etc.

Apart from the above instances, there are other important systems of differential equations
which can be studied through other Lie systems. Several of such Lie systems will be detailed
throughout next sections.

The determination of the general solution of any Lie system reduces to deriving a particular
solution of a particular type of Lie system defined in a Lie group. Let us analyse in detail this
claim.

Consider a Lie system related to at-dependent vector field (1.18) overRn and associated, for
simplicity, with a Vessiot–Guldberg Lie algebraV made up of complete vector fields. This gives
rise to a Lie group actionΦ : G × Rn → Rn whose fundamental vector fields are exactly those
of V . Obviously, this implies that the Lie algebrag ≃ TeG is isomorphic toV . Choose now a
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basis{a1, . . . , ar} of g such thatΦ : G× Rn → Rn and

Φ(exp(−saα), x) = g(α)s (x), α = 1, . . . , r, s ∈ R, (1.28)

whereg(α) : (s, x) ∈ R × Rn 7→ g(α)(s, x) = g
(α)
s (x) ∈ Rn is the flow of the vector fieldXα.

In this way, each vector fieldXα becomes the fundamental vector field corresponding toaα and
the mapφ : g → V such thatφ(aα) = Xα for α = 1, . . . , r, is a Lie algebra isomorphism.

Let XR
α be the right-invariant vector field onG with (XR

α )e = aα, i.e. (XR

α)g = Rg∗eaα,
whereRg : g′ ∈ G 7→ g′g ∈ G is the right action ofG on itself. Then, thet-dependent right-
invariant vector field

XG(t, g) = −
r∑

α=1

bα(t)X
R
α (g), (1.29)

defines a Lie system onG whose integral curves are the solutions of the system onG given by

dg

dt
= −

r∑

α=1

bα(t)X
R
α (g). (1.30)

ApplyingRg−1∗g to both sides of the equation, we see that its general solution,g(t), satisfies that

Rg−1(t)∗g(t)ġ(t) = −
r∑

α=1

bα(t)aα ∈ TeG . (1.31)

Note that right-invariance implies that the knowledge of one particular solution of the above
equation, e.g. the particular oneg0(t), with g0(0) = g0, is enough to obtain the general solution
of the equation (1.31). Indeed, considerg′(t) = Rḡg0(t) for a givenḡ ∈ G. Such a curve obeys
that

dg′

dt
(t) = Rḡ∗g0(t)

(
dg0
dt

(t)

)
⇐⇒ dg′

dt
(t) = Rḡ∗g0(t)

(
−

r∑

α=1

bα(t)X
R
α (g0(t))

)
.

Taking into account thatRḡ∗g0X
R
α (g0) = XR

α (g0ḡ), one has that

dg′

dt
(t) = −

r∑

α=1

bα(t)X
R
α (Rḡg0(t)) = −

r∑

α=1

bα(t)X
R
α (g

′(t))

andg′(t) is another particular solution of (1.29) with initial condition g′(0) = Rḡg0. In conse-
quence, the general solutiong(t) for equation (1.31) can be written as

g(t) = Rḡg0(t), ḡ ∈ G.

That is, system (1.29) admits a superposition rule and, according to Lie Theorem, it must be
a Lie system. This is not surprising, as the vector fieldsXR

α span a Lie algebra of vector fields
isomorphic toV and, in consequence, system (1.30) describes the integral curves of at-dependent
vector field taking values in a finite-dimensional Lie algebra of vector fields.

The relevance of the Lie system (1.31) relies on the fact thatthe integral curves of thet-
dependent vector fieldX(t, x) can be obtained from one particular solution of equation (1.31).
More explicitly, the general solutionx(t) of the Lie systemX(t, x) readsx(t) = Φ(ge(t), x0),
wherex0 is the initial condition of the particular solution andge(t) is the particular solution of
equation (1.31) withge(0) = e.

Note that, in view of Ado’s Theorem [2], every finite-dimensional Lie algebra, e.g. the above
Vessiot–Guldberg Lie algebraV , admits an isomorphic matrix Lie algebra. Related to this matrix
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Lie algebra, there exists a matrix Lie groupḠ. In this way, the system describing thet-dependent
vector field (1.18) reduces to solving an equation of the form

Ȧ(t)A−1(t) = −
r∑

α=1

bα(t)Mα =⇒ Ȧ = −
r∑

α=1

bα(t)MαA,

with A(t) being a curve taking values in the matrix Lie groupḠ and,M1, . . . ,Mr, being a
basis closing the same structure constants as the elements,X1, . . . , Xr. Obviously, the above
equation becomes a homogeneous linear differential equation in the coefficients of the matrix
A. Consequently, determining the general solution of a Lie system reduces to solving a linear
problem.

Although the above process was described for Lie systems associated with Vessiot-Guldberg
Lie algebras of complete vector fields, it can be proved that asimilar process, with almost identi-
cal final results, can be applied to any Lie systemX(t, x). Indeed, this can be done by taking the
compactification ofRn in order to make all vector fields complete (as in the case of the Riccati
equation) or just by considering that the induced action is just a local one.

A generalisation of the method [57] used by Wei and Norman forlinear systems [231, 232]
is very useful for solving equations (1.31). Furthermore, there exist reduction techniques that
can also be used [40]. Such techniques show, for instance, that Lie systems related to solvable
Vessiot–Guldberg Lie algebras are integrable by quadratures ([40], Section 8). Finally, as right-
invariant vector fieldsXR project onto the fundamental vector fields in each homogeneous space
forG, the solution of equation (1.31) enables us to find the general solution for the corresponding
Lie system in each homogeneous space. Conversely, the knowledge of particular solutions of the
associated system in a homogeneous space gives us a method for reducing the problem to the
corresponding isotopy group [40].

1.4. Geometric approach to superposition rules.Let us now turn to review the modern geo-
metrical approach to the theory of Lie systems carried out in[38]. Although we here basically
point out the results given in that work, several slight improvements have been included in our
presentation.

A fundamental notion in the geometrical description of Lie systems is the so-calleddiago-
nal prolongationof a t-dependent vector field. Its definition and most important properties are
described below.

DEFINITION 1.11. Given at-dependent vector field overRn of the form

X(t, x(0)) =
n∑

i=1

X i(t, x(0))
∂

∂xi(0)
,

its diagonal prolongationto Rn(m+1) is thet-dependent vector field over this latter space given
by

X̂(t, x(0), . . . , x(m)) =

m∑

a=0

n∑

i=1

X i(t, x(a))
∂

∂xi(a)
.

Recall that every vector fieldX overRn can be regarded as at-dependent vector field in
a natural way. Evidently, it is immediate that the above definition can also be applied to define
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diagonal prolongations for vector fields overRn. Obviously, such diagonal prolongations turn
out to be vector fields overRn(m+1) as well.

Note that diagonal prolongations can be redefined in an intrinsic, and equivalent, way as
follows.

DEFINITION 1.12. Given at-dependent vector fieldX overRn, its diagonal prolongationto
Rn(m+1) is the uniquet-dependent vector field̂X overRn(m+1) such that:

• Thet-dependent vector field̂X is invariant under the action of the symmetry groupSm+1

overRn(m+1).
• The vector fieldsX̂t are projectable under the projectionpr0 given by (1.4) andpr0∗X̂t =

Xt.

LEMMA 1.13. For every two vector fieldsX,Y ∈ X(Rn), it is immediate that[X̂, Ŷ ] = [̂X,Y ].
In consequence, given a Lie algebra of vector fieldsV ⊂ X(Rn), the prolongations of its elements
toRn(m+1) span an isomorphic Lie algebra of vector fields.

Proof. It is straightforward and it is left to the reader.

LEMMA 1.14. Consider a family,X1, . . . , Xr, of vector fields overRn satisfying that their di-
agonal prolongations toRnm are linearly independent at a generic point. Given the diagonal
prolongations,X̂1, . . . , X̂r, toRn(m+1), the vector field

∑r
α=1 bαX̂α, withbα ∈ C∞(Rn(m+1)),

is also a diagonal prolongation if and only if the coefficients,b1, . . . , br, are constant.

Proof. Let us write in local coordinates

Xα =

n∑

i=1

Aiα(x)
∂

∂xi
, α = 1, . . . , r,

what implies that

X̂α =
n∑

i=1

m∑

a=0

Aiα(x(a))
∂

∂xi(a)
, α = 1, . . . , r.

Then,
r∑

α=1

bα(x(0), . . . , x(m))X̂α =

r∑

α=1

n∑

i=1

m∑

a=0

bα(x(0), . . . , x(m))A
i
α(x(a))

∂

∂xi(a)
,

which is a diagonal prolongation if and only if there exist functionsBj : x ∈ Rn 7→ Bj(x) ∈ R,
with j = 1, . . . , n, such that for each pair of indexesj anda,

r∑

α=1

bα(x(0), . . . , x(m))A
i
α(t, x(a)) = Bi(x(a)), a = 0, . . . ,m, i = 1, . . . , n.

In particular, the functionsbα(x(0), . . . , x(m)), with α = 1, . . . , r, solve the subsystem of linear
equations in the variables,u1, . . . , ur, given by

r∑

α=1

uαA
i
α(x(a)) = Bi(x(a)), a = 1, . . . ,m, i = 1, . . . , n.

The coefficient matrix of the above system ofm ·n equations withr unknowns has rankr ≤ m ·n
since thepr∗(X̂α) are linearly independent. Hence, the solutions,u1, . . . , ur, are completely
determined in terms of the functionsBi(x(a)), with a = 1, . . . ,m, and i = 1, . . . , n, and do
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not depend onx(0). But since the prolongations are invariant under the actionof the symmetry
groupSm+1, functionsuα = bα(x(0), . . . , x(m)), with α = 1, . . . , r, must satisfy this symmetry.
Consequently, they cannot depend on the variablesx(1), . . . , x(m), and therefore they must be
constant.

LEMMA 1.15. For every family of vector fields,X1, . . . , Xr ∈ X(Rn) linearly independent over
R, there exists an integerm such that their prolongations toRnm are linearly independent at a
generic point.

Proof. Denote byX̂q
α the diagonal prolongation toRnq of Xα and defineσ(q) to be the maxi-

mum number of vector fields, among the familŷXq
α, linearly independent at a generic point of

Rnq.
By reduction to the absurd, we assume that each family,X̂q

1 , . . . , X̂
q
r , of diagonal prolonga-

tions are linearly dependent at a generic point ofRqn, in other words,1 ≤ σ(q) < r for everyq.
Therefore, the functionσ(q) must admit a maximump < r for a certain integer̄m, i.e.p = σ(m̄).
We can assume, without loss of generality, that,X̂m̄

1 , . . . , X̂
m̄
p , are linearly independent at generic

point of Rnm̄. Moreover, the vector fields,̂Xm̄+1
1 , . . . , X̂m̄+1

p , are also linearly independent at
a generic point ofRn(m̄+1) and, asσ(m̄) is a maximum, it must beσ(m̄ + 1) = σ(m̄). In
consequence, there existp uniquely defined functions̄f1, . . . , f̄p ∈ C∞(Rn(m̄+1)) obeying the
equation

f̄1X̂
m̄+1
1 + . . .+ f̄pX̂

m̄+1
p = X̂m̄+1

p+1 . (1.32)

This forces the left-hand side to be a diagonal prolongation. Additionally, sinceX̂m̄
1 , . . . , X̂

m̄
p ,

are linearly independent in a generic point, Lemma (1.14) applies and it turns out that,̄f1, . . . , f̄p,
must be constant. Then, projecting the above expression bypr0, it follows that,X1, . . . , Xp+1,

are linearly dependent overR. This violates our initial assumption and thereby we conclude that
our initial premise, i.e.σ(q) < r for everyq, must be false and there must exist an integerm such
that the diagonal prolongations of,X1 . . . , Xr, toRnm become linearly independent at a generic
point, what proves our lemma.

The above lemma already contains the key point to prove the following result.

LEMMA 1.16. If σ(q) < r, thenσ(q) < σ(q + 1).

Proof. It is immediate thatσ(q) ≤ σ(q + 1). Now, by reduction to absurd, if we assumep =

σ(q) < r andσ(q) = σ(q + 1), one can pick up, among thêXq
α, a family of p vector fields

linearly independent at a generic point ofRnq. We can assume, with no loss of generality, that
they areX̂q

1 , . . . , X̂
q
p . Consequently, as in the above lemma, we can write

f̄1X̂
q+1
1 + . . .+ f̄pX̂

q+1
p = X̂q+1

p+1 ,

for certain uniquely defined functions̄f1, . . . , f̄r ∈ C∞(Rn(m+1)). In a similar way to the proof
of the former lemma, this yields that,X1, . . . , Xp+1, are linearly dependent overR. This is in
contradiction with our initial assumption. In consequence, if p < r, the vector fieldX̂q+1

p+1 is
linearly independent at a generic point with respect to the previous vector fields andσ(q + 1) >

σ(q).

Taking into account the above two lemmas, it follows trivially thatσ(q) grows monotonically
until it reaches the maximumr. This gives rise to the following proposition.



20 J.F. Cariñena and J. de Lucas

PROPOSITION 1.17. For every family of vector fieldsX1, . . . , Xr ∈ X(Rn) linearly indepen-
dent overR, there exists an integerm ≤ r such that their prolongations toRnm are linearly
independent at a generic point.

The above proposition constitutes an explicit proof for vector fields overRn of the analog
result for vector fields over manifolds pointed out in [38]. Let us now turn to describe a geometric
interpretation of the superposition rule notion.

Consider at-dependent vector field (1.1) associated with the system

dxi

dt
= X i(t, x), i = 1, . . . , n, (1.33)

describing its integral curves. Recall that the above system admits a superposition rule if there
exists a mapΦ : Rn(m+1) → Rn of the formx = Φ(x(1), . . . , x(m); k1, . . . , kn) such that its
general solution,x(t), can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn),

with, x(1)(t), . . . , x(m)(t), being a generic family of particular solutions andk1, . . . , kn, a set of
constants associated with each particular solution.

The mapΦ(x(1), . . . , x(m); ·) : Rn → Rn can be inverted, at least locally around points of
an open dense subset ofRnm, to give rise to a mapΨ : Rn(m+1) → Rn,

k = Ψ(x(0), . . . , x(m)),

where we writex(0) instead ofx andk = (k1, . . . , kn) in order to simplify the notation. Note
that the mapΨ is defined so that

k = Ψ(Φ(x(1), . . . , x(m); k), x(1), . . . , x(m)).

Hence, the mapΨ defines ann-codimensional foliation on the manifoldRn(m+1).
As the fundamental property of the mapΨ states that

k = Ψ(x(0)(t), . . . , x(m)(t)), (1.34)

for any(m + 1)-tuple of generic particular solutions of system (1.33), the foliation determined
byΨ is invariant under permutations of its(m+ 1) arguments,x(0), . . . , x(m). Moreover, when
differentiating expression (1.34) with respect to the variablet, we get

m∑

a=0

n∑

j=1

Xj(t, x(a)(t))
∂Ψk

∂xj(a)
(p̄(t)) = X̂tΨ

k(p̄(t)) = 0, k = 1, . . . , n,

where(Ψ1, . . . ,Ψn) = Ψ and p̄(t) = (x(0)(t), . . . , x(m)(t)). Thus, the functionsΨ1, . . . ,Ψn

are first-integrals for the vector fields{X̂t}t∈R defining ann-codimensional foliationF over
Rn(m+1) such that the vector fields{X̂t}t∈R are tangent to its leaves.

The foliationF has another important property. Given a leafFk corresponding to the level set
of Ψ determined byk = (k1, . . . , kn) ∈ Rn and a point(x(1), . . . , x(m)) ∈ Rmn, there exists a
unique point(x(0), x(1), . . . , x(m)) ∈ Fk, namely,

(Φ(x(1), . . . , x(m); k), x(1), . . . , x(m)) ∈ Fk.

Consequently, the projection onto the lastm · n factors, i.e. the mappr given by (1.3), induces
diffeomorphisms betweenRnm and each one of the leavesFk. In other words, the foliationF is
horizontal with respect to the projectionpr.



Lie systems: theory, generalisations, and applications 21

The foliationF corresponds to a connection∇ on the bundlepr : Rn(m+1) → Rnm with zero
curvature. Indeed, the restriction of the projectionpr to a leaf gives a one-to-one map that gives
rise to a linear map among vector fields onRnm and ‘horizontal’ vector fields tangent to a leaf.

Note that the knowledge of this connection (foliation) gives us the superposition rule without
referring to the mapΨ. If we fix a pointx(0)(0) andm particular solutions,x(1)(t), . . . , x(m)(t),

thenx(0)(t) is the unique point inRn such that the point(x(0)(t), x(1)(t), . . . , x(m)(t)) belongs
to the same leaf as(x(0)(0), x(1)(0), . . . , x(m)(0)). Thus, it is onlyF that really matters when the
superposition rule is concerned.

On the other hand, if we have a connection∇ on the bundle

pr : Rn(m+1) → R
nm,

with zero curvature, i.e. a horizontal distribution∇ onRn(m+1) that it is involutive and can be
integrated to give a foliation onRn(m+1) such that the vector fieldŝXt belong to∇, then the
procedure described above determines a superposition rulefor system (1.33). Indeed, letk ∈ Rn

enumerates smoothly the leavesFk of the foliationF, then we can defineΦ(x(1), . . . , x(m); k) ∈
Rn to be the unique pointx(0) of Rn such that

(x(0), x(1), . . . , x(m)) ∈ Fk.

This gives rise to a superposition ruleΦ : Rnm × Rn → Rn for the system of first-order differ-
ential equations (1.33). To see this, let us observe the inverse relation

Ψ(x(0), . . . , x(m)) = k,

which is equivalent to(x(0), . . . , x(m)) ∈ Fk. If we fix k and take a generic family of particular
solutions,x(1)(t), . . . , x(m)(t), of equation (1.33), thenx(0)(t), defined with the aid of the con-
dition Ψ(x(0)(t), . . . , x(m)(t)) = k, satisfies (1.33). In fact, letx′(0)(t) be the solution of (1.33)

with initial valuex′(0) = x(0). Since thet-dependent vector fieldŝX(t, x) are tangent toF, the
curve(x(0)(t), x(1)(t), . . . , x(m)(t)) lies entirely within a leaf ofF, so inFk. But a point of a leaf
is entirely determined by its projection bypr, thenx′(0)(t) = x(0)(t) andx(0)(t) is a solution.

PROPOSITION1.18. Giving a superposition rule depending onm generic particular solutions
for a Lie system described by at-dependent vector fieldX is equivalent to giving a zero curvature
connection∇ on the bundlepr : R(m+1)n → Rnm for which the vector fields{X̂t}t∈R are
horizontal vector fields with respect to this connection.

Although we rejected to investigate in full detail the difference between global superposition
rules and superposition rules, it is interesting to commentbriefly this theme here. Note that a
rigorous analysis of the above discussion shows that a global or ‘simple’ superposition rule gives
rise to a zero curvature connection. Nevertheless, on the contrary, a zero curvature connection
only ensures the existence of a superposition rule. This is due tothe connection, which only
guarantees the existence of a series oflocal first-integrals that give rise to a superposition rule.
In order to ensure the existence of a global superposition rule, some extra conditions on the
connection must be required as well (see [18]).

1.5. Geometric Lie Theorem. Let us now prove the classical Lie theorem [157, Theorem 44]
from a modern geometric perspective by using the previous results. The following theorem con-
stitutes a review of the geometric version of the Lie Theoremgiven in [38, Theorem 1]. Our aim
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in doing so is to include in our exposition one of the main results of the theory of Lie systems
and, at the same time, to furnish a slightly more detailed proof of this theorem.

MAIN THEOREM 1.19. (Geometric Lie Theorem)A system (1.33) admits a superposition rule
depending onm generic particular solutions if and only if thet-dependent vector fieldX can be
written as

Xt =
r∑

α=1

bα(t)Xα, (1.35)

where the vector fields,X1, . . . , Xr, form a basis for anr-dimensional real Lie algebra.

Proof. Suppose that system (1.33) admits a superposition rule (1.14) and letF be its associated
foliation overRn(m+1). As the vector fields{X̂t}t∈R are tangent to the leaves ofF, the vector
fields ofLie({X̂t}t∈R) span a generalised involutive distribution

Dp =
{
Ŷ (t, p)|Y ∈ Lie({X̂t}t∈R)

}
∈ TpR

n(m+1),

whose elements are also tangent to the leaves ofF. Since the Lie bracket of two prolongations is a
prolongation, we can choose, among the elements ofLie({X̂t}t∈R), a finite family,X̂1, . . . , X̂r,
that gives rise to a local basis of diagonal prolongations for the distributionD. As the mappr
projects each leaf of the foliationF into Rnm diffeomorphically, we get that the vector fields
pr∗(X̂α), with α = 1, . . . , r, are linearly independent at a generic point ofRnm. These vector
fields close on the commutation relations

[X̂α, X̂β] =

r∑

γ=1

fαβγX̂γ , α, β = 1, . . . , r,

for certain functionsfαβγ ∈ C∞(Rn(m+1)). In view of Lemma 1.14, these functions must be
constant, let us sayfαβγ = cαβγ , and, taking into account the properties of diagonal prolonga-
tions, one has that,X1, . . . , Xr, are linearly independent vector fields obeying the relations

[Xα, Xβ ] =

r∑

γ=1

cαβγXγ , α, β = 1, . . . , r.

Since, at each time,̂Xt is spanned by the vector fields,̂X1, . . . , X̂r, there aret-dependent func-
tionsbα ∈ C∞(R× Rn(m+1)), with α = 1, . . . , r, such that

X̂t =

r∑

α=1

bαX̂α.

But eachX̂t is a diagonal prolongation, so, using Lemma 1.14, one gets that the functions,
b1, . . . , br, depend only on the time and thus

X̂t =

r∑

α=1

bα(t)X̂α. (1.36)

From here, it is immediate that (1.35).
To prove the converse property, assume that thet-dependent vector fieldX can be put in the

form (1.35), where the vector fields,X1, . . . , Xr, are linearly independent overR and span a
r-dimensional Lie algebra.
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As the vector fields,X1, . . . , Xr, are linearly independent overR, there exists, in view of
Proposition 1.17, a minimal numberm ≤ r, such that their diagonal prolongations toRnm are
linearly independent at a generic point (what yields thatr ≤ n · m). Moreover, the diagonal
prolongations,X̂1, . . . , X̂r, to Rn(m+1) are linearly independent and they form a basis for an
involutive distributionD. This distribution leads to a(n(m+1)− r)-codimensional foliationF0

onRn(m+1). As the codimension ofF0 is at leastn, we can consider ann-codimensional foliation
F whose leaves include those ofF0. The leaves of this foliation project onto the lastm · n factors
diffeomorphically and they are at leastn-codimensional. Hence, according to Proposition 1.18,
foliation F defines a superposition rule depending onm particular solutions.

Note that the converse part of the previous proof shows that all systems described byt-
dependent vector fields of the form (1.36) share a common superposition rule. More specifi-
cally, all sucht-dependent vector fields give rise to the same distributionD over the same space
Rn(m+1), and this straightforwardly ensures the existence of a common superposition rule for all
of them. This fact will be analysed more extensively in the second part of our work, where certain
families of systems of differential equations that admit at-dependent common superposition rule,
the referred to asLie families, are investigated.

1.6. Determination of superposition rules.Note that the previous geometric demonstration
of Lie Theorem also contains information about the superposition rules associated with a Lie
system. Let us analyse this fact more carefully.

Consider a Lie system inRn associated with at-dependent vector fieldX . In view of Lie
Theorem, such at-dependent vector field can be written in the form

X(t, x) =

n∑

i=1

r∑

α=1

bα(t)X
i
α(x)

∂

∂xi
,

where the vector fieldsXα(x) =
∑n
i=1X

i
α(x)∂/∂x

i span ar-dimensional Lie algebra of vec-
tor fields. Now, the geometric proof of Lie Theorem shows thatthe above decomposition gives
rise to a superposition rule depending onm generic particular solutions withr ≤ m · n. More
exactly, the numberm coincides with the minimal integer that makes the diagonal prolongations
ofX1, . . . , Xr, toRmn to become linearly independent at a generic point. In different words, the
only functionsf1, . . . , fr ∈ C∞(Rnm) such that

r∑

α=1

fαX
i
α(x(a)) = 0 , a = 1, . . . ,m, i = 1, . . . , n, (1.37)

at a generic point(x(1), . . . , x(k)) aref1 = . . . = fr = 0.
Let us illustrate our above comments by means of a simple example. Consider the Riccati

equation

ẋ = b1(t) + b2(t)x+ b3(t)x
2,

which describes the integral curves of thet-dependent vector field

Xt = b1(t)
∂

∂x
+ b2(t)x

∂

∂x
+ b3(t)x

2 ∂

∂x
.

Recall that the vector fields{Xt}t∈R take values in the three-dimensional Lie algebraV spanned
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by the vector fields

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2

∂

∂x
.

Consequently, we can determine the number of particular solutions for a superposition rule for
Riccati equations by considering the minimalm such that corresponding system (1.37) admits
only the trivial solution. Form = 2, this system reads

f1 + f2x(1) + f3x
2
(1) = 0 , f1 + f2x(2) + f3x

2
(2) = 0,

and it has non-trivial solutions. Nevertheless, the systemfor the prolongations toR3, that is,

f1 + f2x(1) + f3x
2
(1) = 0 , f1 + f2x(2) + f3x

2
(2) = 0 , f1 + f2x(3) + f3x

2
(3) = 0 ,

does not admit any non-trivial solution because the determinant of the coefficients, i.e.∣∣∣∣∣∣∣




1 x(1) x2(1)
1 x(2) x2(2)
1 x(3) x2(3)




∣∣∣∣∣∣∣
= (x(2) − x(1))(x(2) − x(3))(x(1) − x(3)),

is different from zero when the three pointsx(1), x(2), andx(3) are different. Thus, we get that
m = 3 and the superposition rule for the Riccati equation dependson three particular solutions.
Obviously, the relationsm ≤ dimV ≤ m · n are valid in this case.

Once the numberm of particular solutions has been determined, the superposition rule can be
worked out in terms of first-integrals for the diagonal prolongations,X̂1, . . . , X̂r, overRn(m+1).
Finally, it is worth noting that when the vector fields,̂X1, . . . , X̂r, overRn(m+1) admit more
thann common first-integrals, the systemX admits more than one superposition rule (see [38]).

1.7. Mixed superposition rules and constants of the motion.Roughly speaking, amixed su-
perposition ruleis at-independent map describing the general solution of a system of first-order
differential equations in terms of a generic family of particular solutions of various systems
(generically different ones) of first-order differential equations and a set of constants. Obviously,
mixed superposition rules include, as particular instances, the standard superposition rules related
to Lie systems.

DEFINITION 1.20. Amixed superposition rulefor a system of first-order differential equations
determined by at-dependent vector fieldX overRn0 is a t-independent mapΦ : Rn1 × . . . ×
Rnm × Rn0 → Rn0 of the form

x = Φ(x(1), . . . , x(m); k1, . . . , kn0
),

such that the general solution,x(t), of systemX can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn0
),

with, x(1)(t), . . . , x(m)(t), being a generic family of curves satisfying that eachx(a)(t) is a par-
ticular solution of the system determining the integral curves for at-dependent vector fieldX(a)

overRna , with a = 1, . . . ,m.

As a particular example of mixed superposition rule, consider the linear system of differential
equations

dxi

dt
=

n∑

j=1

Aij(t)x
j +Bi(t), i = 1, . . . , n, (1.38)
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whose general solution,x(t), can be written as

x(t) = y(1)(t) +

n∑

j=1

kjz(j)(t),

in terms of one particular solutiony(1)(t) of (1.38), any family ofn linearly independent partic-
ular solutions,z(1)(t), . . . , z(n)(t), of the homogeneous linear system

dzi

dt
=

n∑

j=1

Aij(t)z
j , i = 1, . . . , n,

and a set ofn constants,k1, . . . , kn.

We here aim to give a method to obtain a particular type of mixed superposition rule for a Lie
system in terms of particular solutions of another Lie system. Additionally, we relate our results
to the commentary given in [38, Remark 5], where it was brieflydiscussed that the solutions of
a certain first-order differential equation on a manifold may be obtained in terms of solutions of
other first-order systems by constructing a certain foliation.

Consider the system onRn0 given by

dxi

dt
=

r∑

α=1

bα(t)X
i
α(x), i = 1, . . . , n0, (1.39)

determining the integral curves of thet-dependent vector field

X(t, x) =

r∑

α=1

n0∑

i=1

bα(t)X
i
α(x)

∂

∂xi
, (1.40)

where the vector fieldsXα(x) =
∑n0

i=1X
i
α(x)∂/∂x

i, close on ar-dimensional Lie algebraV ,
i.e. there existr3 constantscαβγ such that

[Xα, Xβ ] =

r∑

γ=1

cαβγXγ , α, β = 1, . . . , r.

We here aim to derive a particular type of mixed superposition rule of the formΦ : (Rn1)m ×
Rn0 → Rn0 for the above Lie system in such a way that its general solution, x(t), can be
expressed as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn),

where,x(1)(t), . . . , x(m)(t), are a generic family of particular solutions of a Lie system deter-
mined by at-dependent vector fieldX(1) on Rn1 . Let us assume that systemX(1) takes the
particular form

X
(1)
t =

r∑

α=1

bα(t)X
(1)
α , (1.41)

where the vector fieldsX(1)
α ∈X(Rn1) obey the same commutation relations as the vector fields

Xα, that is,

[X(1)
α , X

(1)
β ] =

r∑

γ=1

cαβγX
(1)
γ , α, β = 1, . . . r, (1.42)
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It is important to clarify when such at-dependent vector fieldX(1) exists. Let us prove its exis-
tence. On one hand, Ado’s Theorem states that for every finite-dimensional Lie algebraV , e.g.
the one spanned by the vector fieldsXα, there exists an isomorphic matrix Lie algebraVM of
n1 × n1 square matrices. Now, since the homogeneous linear system

ẏ = A(t)y,

whereA(t) takes values inVM is a Lie system associated with a Lie algebra of vector fields
isomorphic toVM (see [31]), it follows immediately that we can always determine a family
of linear vector fields onRn1 obeying relations (1.42). In terms of this family, we can build
up at-dependent vector field of the form (1.41). Apart from thet-dependent vector fieldX(1)

t

constructed in the aforementioned way, there might exist other ones made of through finite-
dimensional Lie algebras of vector fields admitting a basis whose elements obey relations (1.42).

Proposition 1.17 ensures the existence of a minimalm such that the diagonal prolongations
of theX(1)

α toRn1m are linearly independent at a generic point. Let us denote such prolongations
by

X̃α =

m∑

a=1

X i(1)
α (x(a))

∂

∂xi(a)
, α = 1, . . . , r,

and define the vector fields oñN = Rn0 × Rn1m of the form

Yα = Xα +

m∑

a=1

X i(1)
α (x(a))

∂

∂xi(a)
, α = 1, . . . , r.

where we have considered the vector fieldsXα andX(1)
α as vector fields oñN in the natural way.

From the above definition, one has

[Yα, Yβ] =

r∑

γ=1

cαβγYγ , α, β = 1, . . . , r.

Consequently, the system of differential equations that determines the integral curves of thet-
dependent vector field

Yt =

r∑

α=1

bα(t)Yα,

is a Lie system associated with a Vessiot-Guldberg Lie algebra isomorphic toV .
Define the involutive distributioñV on Ñ of the form

Ṽx̃ = 〈(Y1)x̃, . . . , (Yr)x̃〉, x̃ ∈ Ñ ,

whose rank isr, around a generic point of̃N . Additionally, asr ≤ m · n1, we may choose,
at least locally,n0 common first-integrals of the vector fields,Y1, . . . , Yr, giving rise to an0-
codimensional local foliationF overRn0 × Rn1m, whose leaves project diffeomorphically onto
Rnm1 through the projection

p : (x, x(1), . . . , x(m)) ∈ Ñ 7→ (x(1), . . . , x(m)) ∈ R
n1m.

Additionally, the vector fieldsYα are tangent to the leaves of this foliation.
On one hand, it is immediate that the above results lead to defining a flat connection∇ on the

bundlep : Ñ → Rn1m. On the other hand, as it happened in the case of superposition rules (see
Section 1.4), for every point(x(1), . . . , x(m)) ∈ Rn1m and a leaveFk, with k = (k1, . . . , kn0

),
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of the foliationF , there exists a unique pointx(0) in Rn0 such that(x(0), x(1), . . . , x(m)) ∈ Fk.
This gives rise to the definition of a map

x(0) = Φ(x(1), . . . , x(m); k1, . . . , kn0
).

Mutatis mutandis, the same arguments showed at the end of the Section 1.4 applyhere, and it can
easily be proved that given a generic set ofm particular solutions of systemX(1), the general
solution ofX can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn0
),

what shows thatΦ is a particular type of mixed superposition rule. In this way, we have also
shown that, as claimed in [38, Remark 5], a flat connection∇ on a bundle of the formN0×N1×
. . .×Nm → N1 × . . .×Nm can be used to obtain the solutions of a first-order system inN0 by
means of particular solutions of other first-order systems inN1, . . . , Nm.

1.8. Differential geometry on Hilbert spaces.In order to provide some basic knowledge to de-
velop the main results of the applications of the theory of Lie systems to Quantum Mechanics, we
report in this section some known concepts of the Differential Geometry on infinite-dimensional
manifolds. For further details one can consult [51, 60, 138].

As far as Quantum Mechanics is concerned, the separable complex Hilbert space of states
H can be seen as a (infinite-dimensional) real manifold admitting a global chart [23]. Infinite-
dimensional manifolds do not enjoy the same geometric properties as finite-dimensional ones,
e.g. in the most general case, and given an openU ⊂ H, there is not a one-to-one correspon-
dence between derivations onC∞(U,R) and sections of the tangent bundleTU . Therefore, some
explanations must be given before dealing with such manifolds.

On one hand, given a pointφ ∈ H, a kinematic tangent vectorwith foot pointφ is a pair
(φ, ψ) with ψ ∈ H. We callTφH the space of all kinematic tangent vectors with foot pointφ.
It consists of all derivativeṡc(0) of smooth curvesc : R → H with c(0) = φ. This fact gives a
reason for the name of kinematic.

From the concept of kinematic tangent vector we can provide the definition of smooth kine-
matic vector fields as follows: Asmooth kinematic vector fieldis an elementX ∈ X(H) ≡ Γ(π),
with TH the so-calledkinematic tangent bundleandπ : TH → H the projection of this bundle.
We define akinematic vector fieldX as a mapX : H → TH such thatπ ◦ X = IdH. Given
aψ ∈ H, we will denote from now onX(ψ) = (ψ,Xψ), with Xψ being the value ofX(ψ) in
TψH.

Similarly to the Differential Geometry on finite-dimensional manifolds, we say that a kine-
matic vector fieldX on H admits a local flow on an open subsetU ⊂ H if there exists a map
FlX : R× U → H such thatFlX(0, ψ) = ψ for all ψ ∈ U and

Xψ =
d

ds

∣∣∣∣
s=0

FlX(s, ψ) =
d

ds

∣∣∣∣
s=0

FlXs (ψ),

with FlXs (ψ) = FlX(s, x).
Let us use all these mathematical concepts to study Quantum Mechanics as a geometric the-

ory. Note that the Abelian translation group onH provides an identification of the tangent space
TφH at any pointφ ∈ H with H itself. Furthermore, through such an identification ofH with
TφH at anyφ ∈ H, a continuous kinematic vector field is simply a continuous mapX : H → H.
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Starting with a boundedC-linear operatorA onH, we can define the kinematic vector field
XA byXA

ψ = Aψ ∈ H ≃ TψH. In other words, we have

XA : ψ ∈ H 7→ (ψ,Xψ) ∈ TH ≃ H⊕H.

Usually, operators in Quantum Mechanics are neither continuous nor defined on the whole space
H. The most relevant case happens whenA is a skew-self-adjoint operator of the formA = −iH .
The reason is thatH can be endowed with a natural (strongly) symplectic structure, and then such
skew-self-adjoint operators are singled out as the linear vector fields that are Hamiltonian. The
integral curves of such a Hamiltonian vector fieldXA are the solutions of the corresponding
Schrödinger equation [23, 51]. Even whenA is not bounded, ifA is skew-self-adjoint it must be
densely defined and, by Stone’s Theorem, its integral curvesare strongly continuous and defined
in all H.

Additionally, these kinematic vector fields related to skew-self-adjoint operators admit local
flows, i.e. any skew-self-adjoint operatorA has a local flow

FlAs (ψ) = exp(sA)(ψ) as
d

ds
F lAs (ψ) = Aexp(sA)(ψ) = A(FlAs (ψ)). (1.43)

We remark that given two constantsλ, µ ∈ R and two skew-self-adjoint operatorsA and
B, we get thatXλA+µB = λXA + µXB. Moreover, skew-self-adjoint operators considered as
vector fields are fundamental vector fields relative to the usual action of the unitary groupU(H)

on the Hilbert spaceH.

Let us turn to define the Lie bracket of two kinematic vector fieldsXA andXB associated
with two skew-self-adjoint operatorsA andB, correspondingly. In order to simplify the notation,
and as it shall be clear from the context, we hereafter denoteboth the commutator of operators,
i.e.[A,B] = AB−BA, and the Lie bracket of vector fields[XA, XB] in the same way. In view of
the previous remarks, we can declare the Lie bracket of vector fields related to skew-self-adjoint
operators to be

[XA, XB] = X [B,A].

It is worth noting that the above formula is equivalent to thestandard one

[X,Y ]ψ =
1

2

d2

ds2

∣∣∣∣
t=0

(FlY−s ◦ FlX−s ◦ FlYs ◦ FXs (ψ)), (1.44)

for finite-dimensional Differential Geometry when the right-hand side is properly defined. In-
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deed, the above formula yields

[
XA, XB

]
ψ
=

1

2

d2

ds2

∣∣∣∣
s=0

exp (−sB) exp (−sA) exp (sB) exp (sA) ( psi)

=
1

2

d2

ds2

∣∣∣∣
s=0

(
∞∑

n1=0

(−sB)n1

n1!

)(
∞∑

n2=0

(−sA)n2

n2!

)

(
∞∑

n3=0

(sB)n3

n3!

)(
∞∑

n4=0

(sA)n4

n4!

)
(ψ)

=
1

2

d2

ds2

∣∣∣∣
s=0

(
−s2AB + s2BA

)
(ψ)

=
1

2

d2

ds2

∣∣∣∣
s=0

(
s2[B,A]

)
(ψ) = [B,A](ψ),

when the above expressions are properly defined. From where,we obtain again

[XA, XB] = −X [A,B], (1.45)

as we defined.

1.9. Quantum Lie systems.The theory of Lie systems can be applied to investigate a particular
class oft-dependent Hamiltonians satisfying a specific set of conditions, the so-calledquantum
Lie systems. Let us now precisely define this notion and sketch some of itsproperties.

We call at-dependent HamiltonianH(t) a t-parametric family of self-adjoint operatorsHt :

H → H.

DEFINITION 1.21. We say that thet-dependent HamiltonianH(t) is aquantum Lie systemif it
can be written as

H(t) =

r∑

α=1

bα(t)Hα, (1.46)

where the operatorsiHα are a family of skew-self-adjoint operators onH giving rise to a basis
of a realr-dimensional Lie algebra of operatorsV under the commutator of operators, i.e.

[iHα, iHβ ] =

r∑

γ=1

cαβγ iHγ , α, β = 1, . . . , r, (1.47)

for certainr3 real structure constantscαβγ . We callV a quantum Vessiot–Guldberg Lie algebra
associated withH(t).

Each quantum Lie systemH(t) leads to a Schrödinger equation

dψ

dt
= −iH(t)ψ = −

r∑

α=1

bα(t)iHαψ, (1.48)

describing the integral curves for the kinematict-dependent vector field onH given by

Xt =
r∑

α=1

bα(t)Xα,
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whereXα is the vector field associated with the operator−iHα. In view of the relation (1.45)
and the commutation relations (1.47), we obtain

[Xα, Xβ ] = −X [iHα,iHβ ] =

r∑

γ=1

cαβγXγ , α, β = 1, . . . , n. (1.49)

In consequence, the vector fieldsXα span anr-dimensional Lie algebra of vector fields. In addi-
tion, the structure constants for the basis{Xα | α = 1, . . . , r} coincide with those of the quantum
Vessiot–Guldberg Lie algebra for the basis{iHα | α = 1, . . . , r}.

Given the Lie algebraV , consider an isomorphic Lie algebrag corresponding to a connected
Lie groupG. Choose a basis{aα |α = 1, . . . , r} of the Lie algebraTeG ≃ g such that the Lie
brackets of its elements, denoted by[·, ·], obey the relations

[aα, aβ] =
r∑

γ=1

cαβγaγ , α, β = 1, . . . , r. (1.50)

It can be proved that there exists a unitary actionΦ : G × H → H such that eachXα is the
fundamental vector field associated with the elementaα, according to the relation (1.50). Indeed,
note that, fixed the basis{aα | α = 1, . . . , r}, each elementg, in a sufficiently small openU
containing the neutral element ofG, can be put in a unique way as

g = exp(−µ1a1)× . . .× exp(−µrar).
Now, we define

Φ(exp(−µαaα), ψ) = exp(−iµαHα)ψ, α = 1, . . . , r.

AsG is connected, every element can be written as a product of elements inU , what, in view of
the above relations, gives rise to an actionΦ : G×H → H.

Similarly to the procedure carried out to show that solving aLie system reduces to working
out a particular solution for an equation in a Lie group (see Section 1.3), it can be proved that
solving the Schrödinger equation for a quantum Lie systemH(t) reduces to determining the
solution of the equation inG given by

Rg−1∗gġ = −
r∑

α=1

bα(t)aα ≡ a(t), g(0) = e.

More specifically, the particular solution of the Schrödinger equation (1.48) with initial condition
ψ0 readsψt = Φ(g(t), ψ0), whereg(t) is the solution of the above equation.

1.10. Superposition rules for second and higher-differential equations. Although the theory
of Lie systems is mainly devoted to the study first-order differential equations, it can also be
applied to investigate various systems of second-order differential equations, e.g. the so-called
SODE Lie systems. This allows us to derivet-dependent andt-independent constants of the
motion, exact solutions, superposition rules or mixed superposition rules for these equations,
etc. Moreover, our methods to study systems of second-orderdifferential equations can also be
generalised to study systems of higher-order differentialequations.

Vessiot pioneered the analysis of systems of second-order differential equations by means of
the theory of Lie systems [225]. Additionally, this theme was also briefly examined by Winternitz,
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Chisholm and Common [77, 202]. Apart from these few works, the analysis of systems of second-
order differential equations through the theory of Lie systems was not deeply analysed until the
beginning of the XXI century, when the SODE Lie system concept was defined and employed to
investigate various systems of second-order differentialequations [36, 44, 45, 48, 52, 53]. This
allowed us to recover previous results from a new clarifyingperspective as well as to obtain some
new achievements.

The description of the general solution of systems of second-order differential equations in
terms of certain families of particular solutions and sets of constants appears in the study of
some systems in Physics and Mathematics [115, 194]. Nevertheless, these results are frequently
obtained throughad hocprocedures that neither explain their theoretical meaningnor the possi-
bility of their generalisation. This section is concerned with the application of the theory of Lie
systems to SODE Lie systems in order to review, through a geometrical unifying approach, some
achievements previously obtained in the literature. Not only this provides a deeper theoretical
understanding of these works, but it also offers several newachievements concerning these and
other related topics.

Recall that the theory of Lie systems initially aimed to study systems of first-order differential
equations admitting its general solution to be expressed interms of certain families of particular
solutions and a set of constants. Nevertheless, this property is not exclusive for systems of first-
order differential equations. For instance, each second-order differential equation of the form
ẍ = a(t)x, with a(t) being at-dependent real function, satisfies that its general solution,x(t),
can be cast into the form

x(t) = k1x(1)(t) + k2x(2)(t), (1.51)

with, k1, k2, being a set of constants and,x(1)(t), x(2)(t), being a family of particular solutions
whose initial conditions(x(1)(0), ẋ(1)(0)) and (x(2)(0), ẋ(2)(0)) are two linearly independent
vectors ofTR. Note also that such a superposition rule leads to the existence of many other non-
linear superposition rules for other systems of second-order differential equations. For instance,
the change of variablesy = 1/x transforms the previous system intoyÿ−2ẏ2 = −a(t)y2 admit-
ting, in view of the above linear superposition rule and the above change of variable, its general
solution to be written as

y(t) =
(
k1y

−1
1 (t) + k2y

−1
2 (t)

)−1
, (1.52)

in terms of certain families,y(1)(t), y(2)(t), of particular solutions and a set of two constants.
Consequently, in view of the previous examples and other ones that can be found, for instance,

in [34, 43], it is natural to define superposition rules for second-order differential equations as
follows.

DEFINITION 1.22. We say that a second-order differential equation

ẍi = F i(t, x, ẋ), i = 1, . . . , n, (1.53)

onRn admits a global superposition rule if there exists a mapΨ : TRmn ×R2n → Rn such that
its general solutionx(t) can be written as

x(t) = Ψ(x(1)(t), . . . , x(m)(t), ẋ(1)(t), . . . , ẋ(m)(t); k1, . . . , k2n), (1.54)

in terms of a generic family,x(1)(t), . . . , x(m)(t), of particular solutions, their derivatives, and a
set of2n constants.
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In order to understand the previous definition, it is necessary to establish the precise mean-
ing for ‘generic’ in the above statement. Formally, it is said that expression (1.54) is valid for
a generic family of particular solutions when it holds for every family of particular solutions,
x1(t), . . . , xm(t), satisfying that(x1(0), ẋ1(0), . . . , xm(0), ẋm(0)) ∈ U , with U being an open
dense subset of(TRn)m.

There exists no characterisation for systems of SODEs of theform (1.53) admitting a super-
position rule. In spite of this, there exists a special classof such systems, the so-calledSODE
Lie systems[52], accepting such a property. Even though this fact has been broadly used in the
literature, it has been proved very recently [48]. We next furnish the definition of the SODE Lie
system along with a proof for showing that every SODE Lie system admits a superposition rule.
In addition, some remarks on the interest of this notion and its main properties are discussed.

DEFINITION 1.23. We say that the system of second-order differential equations (1.53) is a
SODE Lie system if the system of first-order differential equations

{
ẋi = vi,

v̇i = F i(t, x, v),
i = 1, . . . , n, (1.55)

obtained from (1.53) by defining the new variablesvi = ẋi, with i = 1, . . . , n, is a Lie system.

PROPOSITION1.24. Every SODE Lie system (1.53) admits a superposition ruleΨ : (TRn)m ×
R2n → Rn of the formΨ = π ◦Φ, whereΦ : (TRn)m×R2n → TRn is a superposition rule for
the system (1.55) andπ : TRn → Rn is the projection associated with the tangent bundleTRn.

Proof. Each SODE Lie system (1.53) is associated with a first-order system of differential equa-
tions (2.13) admitting a superposition ruleΦ : (TRn)m × R2n → TRn. This allows us to de-
scribe the general solution(x(t), v(t)) of system (1.55) in terms of a generic set(xa(t), va(t)),
with a = 1, . . . ,m, of particular solutions and a set of2n constants, i.e.

(x(t), v(t)) = Φ (x1(t), . . . , xm(t), v1(t), . . . , vm(t); k1, . . . , k2n). (1.56)

Each solution,xp(t), of the second-order system (1.53) corresponds to one and only one solution
(xp(t), vp(t)) of the system of first-order differential equations (1.55) and vice versa. Further-
more, since one has that(xp(t), vp(t)) = (xp(t), ẋp(t)), it turns out that the general solution
x(t) of (1.53) can be written as

x(t) = π ◦ Φ (x1(t), . . . , xm(t), ẋ1(t), . . . , ẋm(t); k1, . . . , k2n) , (1.57)

in terms of a generic familyxa(t), with a = 1, . . . , n, of particular solutions of (1.53). That is,
the mapΨ = π ◦ Φ is a superposition rule for the system of SODEs (1.53).

Since every autonomous system is related to a one-dimensional Vessiot–Guldberg Lie algebra
[34], a corollary follows immediately.

COROLLARY 1.25. Every autonomous system of second-order differential equations of the form
ẍi = F i(x, ẋ), with i = 1, . . . , n, admits a superposition rule.

The above result is, in practice, almost useless. Actually,the superposition rule ensured by
Proposition 1.24 relies on the derivation of a superposition rule for an autonomous first-order
system of differential equations. Applying the method sketched in Section 1.6, it is found that
determining this superposition rule implies working out all the integral curves of a vector field on
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(TRn)2. Although the solution of this problem is known to exist, itsexplicit description can be
as difficult as solving the initial system (indeed, this is usually the case). Consequently, deriving
explicitly a superposition rule for the above autonomous system frequently depends on the search
of an alternative superposition rule for the associated first-order system.

Many superposition rules for second-order differential equations do not present an explicit
dependence on the derivatives of the particular solutions.Consider, for instance, either the linear
superposition rule (1.51) for the equationẍ = a(t)x, or the affine one,

x(t) = k1(x1(t)− x2(t)) + k2(x2(t)− x3(t)) + x3(t),

for ẍ = a(t)x+b(t). Such superposition rules are calledvelocity free superposition rulesor even
free superposition rules. The conditions ensuring the existence of such superposition rules is an
interesting open problem. Let us provide a brief analysis about the existence of such superposition
rules.

PROPOSITION 1.26. Every system of SODEs (1.53) admitting a free superpositionrule is a
SODE Lie system.

Proof.
Suppose that system (1.53) admits a superposition rule of the special form

xi = Φix(x1, . . . , xm; k1, . . . , k2n), i = 1, . . . , n. (1.58)

In such a case, the general solution,x(t), of the system could be expressed as

xi(t) = Φix(x1(t), . . . , xm(t); k1, . . . , k2n), i = 1, . . . , n. (1.59)

Definep(t) = (x1(t), . . . , xm(t), ẋ1(t), . . . , ẋm(t)) andvi = ẋi for i = 1, . . . , n. Take the time
derivative in the above expression. This yields

vi(t) = ẋi(t) =

m∑

a=1

n∑

j=1

(
vja(t)

∂Φix

∂xja
(p(t))

)
, i = 1, . . . , n, (1.60)

where we have used that∂Φix/∂v
j
a = 0, for i, j = 1, . . . , n, anda = 1, . . . ,m. Consequently,

there exists a function

Φiv(x1, . . . , xm, v1, . . . , vm) =

m∑

a=1

n∑

j=1

(
vja
∂Φix

∂xja

)
, i = 1, . . . , n,

such that{
xi(t) = Φix(x1(t), . . . , xm(t); k1, . . . , k2n),

vi(t) = Φiv(x1(t), . . . , xm(t), v1(t), . . . , vm(t); k1, . . . , k2n),
i = 1, . . . , n.

Therefore, system (2.13) admits a superposition rule and (1.53) becomes a SODE Lie system.

Apart from the SODE Lie system notion, there exists another method to study certain second-
order differential equations admitting a regular Lagrangian, like Caldirola–Kanai oscillators or
Milne–Pinney equations [52, 97]. Although this method cannot be used for studying all systems
of second-order differential equations, it provides some additional information that cannot be
derived by means of SODE Lie systems when it applies, e.g. information on thet-dependent
constants of the motion of the system [97].
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1.11. Superposition rules for PDEs.The geometrical formulation of the theory of Lie systems
enables us to extend the Lie system notion to partial differential equations. Here, we briefly
analyse this generalisation and its properties [38, 185].

Consider the system of first-order PDEs of the form

∂xi

∂ta
= X i

a(t, x), x ∈ R
n, t = (t1, . . . , ts) ∈ R

s , (1.61)

whose solutions are mapsx(t) : Rs → Rn. Whens = 1, the above system of PDEs becomes
the system of ordinary differential equations (1.33). The main difference between these systems
is that fors > 1 there exists, in general, no solution with a given initial condition. For a better
understanding of this problem, let us put (1.61) in a more general and geometric framework.

LetP s
Rn be the trivial fibre bundle

P s
Rn = R

s × R
n → R

s .

A connectionȲ on this bundle is a horizontal distribution overTP s
Rn . i.e. as-dimensional distri-

bution transversal to the fibres. This distribution may be determined by the horizontal lifts of the
vector fields∂/∂ta onRs, i.e.

Xa(t, x) =
∂

∂ta
+Xa(t, x),

where

Xa(t, x) =
n∑

i=1

X i
a(t, x)

∂

∂xi
.

The solutions of system (1.61) can be identified with integral submanifolds of the distributionX ,

(t,Xa(t, x)) , t ∈ R
s, x ∈ R

n .

It is now clear that there is a (obviously unique) solution of(1.61) for every initial data if and
only if the distributionY is integrable, i.e. the connection has a trivial curvature.This means that

[Xa, Xb] =

r∑

c=1

fabc Xc

for some functionsfabc in P s
Rn . But the commutators[Xa, Xb] are clearly vertical, whileXc are

linearly independent horizontal vector fields, sofabc = 0, which yields the integrability condition
in the form of the system of equations[Xa, Xb] = 0, i.e. in local coordinates,

∂X i
b

∂ta
(t, x)− ∂X i

a

∂tb
(t, x) +

n∑

j=1

(
Xj
a(t, x)

∂X i
b

∂xj
(t, x)−Xj

b (t, x)
∂X i

a

∂xj
(t, x)

)
= 0 . (1.62)

Let us assume now that we analyse a system of first-order PDEs of the form (1.61) that satisfies
integrability conditions (1.62). Then, for a given initialvalue, there exists a unique solution of
system (1.61). Furthermore, it is immediate that the geometrical interpretation for superposition
rules for first-order described in Section (1.4) can be generalised straightforwardly to the case of
PDEs. In consequence, Proposition 1.18 takes now the following form.

PROPOSITION1.27. Giving a superposition rule for system (1.61) obeying integrability condi-
tion (1.62) is equivalent to giving a connection on the bundlepr : Rn(m+1) → Rnm with a zero
curvature such that the family of vector fields{(Xa)t | t ∈ Rs, a = 1, . . . , s} are horizontal.
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Also the proof of Lie Theorem remains unchanged. Therefore,we get the following analogous
of Lie Theorem for PDEs.

THEOREM 1.28. The system (1.61) of PDEs defined onRn and satisfying the integrability con-
dition (1.62) admits a superposition rule if and only if the vector fields{(Xa)t} onRn depending
on the parametert ∈ Rs, can be written in the form

(Xa)t =

r∑

α=1

uαa (t)Xα , a = 1, . . . s , (1.63)

where the vector fieldsXα span a finite-dimensional real Lie algebra.

Note that the integrability condition forYa(t, x) of the form (1.63) can be written as
r∑

α,β,γ=1

[
(uγb )

′(t)− (uγa)
′(t) + uαa (t)u

β
b (t)c

γ
αβ

]
Xγ = 0.

We now turn to illustrate the above results by means of a particular example. Consider the
following system of partial differential equations onR2 associated with theSL(2,R)-action on
R̄,

ux = a(x, y)u2 + b(x, y)u + c(x, y) ,

uy = d(x, y)u2 + e(x, y)u+ f(x, y) .
(1.64)

This equation can be written in the form of a ‘total differential equation’

(a(x, y)u2 + b(x, y)u + c(x, y))dx+ (d(x, y)u2 + e(x, y)u+ f(x, y))dy = du .

The integrability condition only states that the one-form

ω = (a(x, y)u2 + b(x, y)u+ c(x, y))dx + (d(x, y)u2 + e(x, y)u+ f(x, y))dy

is closed for an arbitrary functionu = u(x, y). If this is the case, there is a unique solution with
the initial conditionu(x0, y0) = u0 and there is a superposition rule giving a general solution as
a function of three independent solutions exactly as in the case of Riccati equations:

u =
(u(1) − u(3))u(2)k + u(1)(u(3) − u(2))

(u(1) − u(3))k + (u(3) − u(2))
.

2. SODE Lie systems

We already pointed out that the theory of Lie systems is mainly dedicated to the analysis of sys-
tems of first-order differential equations. In spite of this, such a theory can also be applied to
studying a variety of systems of second-order differentialequations. This can be done in sev-
eral ways that rely, as a last resort, on using some kind of transformation to convert systems of
second-order differential equations into first-order ones[52, 54, 77, 100, 202]. A class of such
systems that can be investigated by means of these techniques are the referred to as SODE Lie
systems, which were theoretically analysed in Section 1.10. In this chapter, we focus on analysing
several instances of SODE Lie systems in order to derivet-independent constants of the motion,
exact solutions, superposition rules, and other properties. This allows us not only to study the
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mathematical properties of such systems, but also to provide tools to analyse the diverse physical
or control systems modelled through such equations.

Among the above applications to SODEs, one must be emphasised: the use of the referred
to asmixed superposition rules. This recently described notion enables us to express the general
solution of SODE Lie systems in terms of particular solutions of the same, or other, SODE Lie
systems. In this way, this new concept can be employed to analyse the properties of the general
solutions of certain SODEs appearing in the Physics and mathematical literature [115, 194]. As
a consequence of such an analysis, new results can be obtained and other known ones will be
recovered, in a systematic way, which will enhance their understanding.

The following section is dedicated to the application of thetheory of Lie systems to SODE
Lie systems in order to review, through a geometrical unifying approach, some results previously
obtained in the literature by means ofad hocmethods and to provide new ones. The whole
chapter can be divided into two parts: The first one is devotedto the application of the geometric
theory of Lie systems for deriving superposition rules, constants of the motion and exact solutions
for various SODE Lie systems. More specifically, we studyt-dependent harmonic oscillators,
generalised Ermakov systems and Milne–Pinney equations, providing a new superposition rule
for the latter. The second part is concerned with the study and application of mixed superposition
rules.

2.1. The harmonic oscillator with t-dependent frequency.Perhaps, the one-dimensionalt-
dependent frequency harmonic oscillator is the most simpleSODE which allows us to illustrate
the application of the SODE Lie system notion. Let us make useof this fact to show, clearly, how
this notion applies and to analyse thoroughly the properties of such a system.

The equation of the motion for a one-dimensional harmonic oscillator with t-dependent fre-
quencyω(t) takes the form̈x = −ω2(t)x. In view of Definition 1.23, this equation is a SODE
Lie system if and only if the system of first-order differential equations

{
ẋ = v,

v̇ = −ω2(t)x,
(2.1)

is a Lie system. This feature depends on the properties of thet-dependent vector field overTR
given by

X(t, x, v) = v
∂

∂x
− ω2(t)x

∂

∂v
,

which describes the integral curves of system (2.1). It is immediate that

Xt = X1 + ω2(t)X3, (2.2)

whereX1 andX3 are the vector fields

X1 = v
∂

∂x
, X3 = −x ∂

∂v
.

These vector fields obey the commutation relations

[X1, X3] = 2X2 , [X2, X3] = X3 , [X1, X2] = X1, (2.3)

with X2 being the vector field onTR given by

X2 =
1

2

(
x
∂

∂x
− v

∂

∂v

)
.
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According to the commutation relations (2.3) and decomposition (2.2), it follows thatXt

defines a Lie system associated with a Vessiot–Guldberg Lie algebraV = 〈X1, X2, X3〉. Hence,
one-dimensional harmonic oscillators with at-dependent frequency are SODE Lie systems.

Determining the general solution of every SODE Lie system reduces to working out the
solution of an equation on a Lie group. Unsurprisingly, since the general solution of a SODE
Lie system is straightforwardly related to the solution of aLie system whose solution can be
obtained from a equation in a Lie group. Let us illustrate ourclaim in detail through the example
of harmonic oscillators.

Since system (2.1) is a Lie system, its general solution can be worked out by means of the
solution of an equation on a certain Lie group (see Section 1.3). Recall that as the elements ofV
are complete, there exists a Lie group actionΦL : G × TR → TR whose fundamental vector
fields are exactly those corresponding toV . It is easy to check that this action can be chosen to
beΦL : SL(2,R)× TR → TR, with

ΦL

((
α β

γ δ

)
,

(
x

v

))
=

(
α β

γ δ

)(
x

v

)
=

(
αx+ βv

γx+ δv

)
.

Indeed, if we take the basis

a1 =

(
0 −1

0 0

)
, a2 =

1

2

(
−1 0

0 1

)
, a3 =

(
0 0

1 0

)
, (2.4)

of the Lie algebra of2×2 traceless matrices (the usual representation of the Lie algebrasl(2,R)),
its elements satisfy the same commutation relations as the vector fields,X1, X2, X3. Further-
more, it can be easily verified that the vector fieldsX1, X2 andX3 are the fundamental vector
fields associated with the matrices,a1, a2, a3, according to our convention (1.28).

Once the actionΦL is determined, it enables us to write the general solution(x(t), v(t)) of
system (2.1) in the form

(
x(t)

v(t)

)
= ΦL

(
g(t),

(
x0

v0

))
, with

(
x0

v0

)
∈ TR, (2.5)

whereg(t) is the solution of the Cauchy problem

Rg−1∗ġ = −
3∑

α=1

bα(t)aα, g(0) = e,

on SL(2,R). This immediately gives us the general solution,x(t), of the equation (2.1) from
expression (2.5). Moreover, this process is easily generalised to every SODE Lie system.

Apart from the above Lie group approach, the SODE Lie system notion furnishes us with
a second approach to investigate one-dimensionalt-dependent frequency harmonic oscillators.
This is based on determining a superposition rule for the Liesystem (2.1).

Recall that a superposition rule for a Lie system can be worked out by means of a set of
first-integrals for certain diagonal prolongations of the vector fields of an associated Vessiot–
Guldberg Lie algebraV . As it was discussed in Section 1.6, the way to obtain these first-integrals
requires to determine the minimal integerm such that the prolongations toRnm of the elements
of a basis of the Lie algebraV become linearly independent at a generic point. This yieldsthat
dim V ≤ m · n. Additionally, if we consider the diagonal prolongations of such a basis to
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Rn(m+1), these elements are again linearly independent at a genericpoint and a family ofm·n−r
first-integrals appears. These first-integrals allow us to determine a superposition rule.

We next illustrate the above process by means of the study of harmonic oscillators. In ad-
dition, we analyse in parallel the problem of findingt-independent constants of the motion for
systems made of some copies of the initial system. This problem will be proved to be related to
the above process and, in addition, will permit us to show interesting properties about harmonic
oscillators.

Consider two copies of the same one-dimensional harmonic oscillator, i.e.
{
ẍ1 = −ω2(t)x1,

ẍ2 = −ω2(t)x2.
(2.6)

This system of SODEs, which corresponds to a two-dimensional isotropic harmonic oscillator
with a t-dependent frequencyω(t), is related to the following system of first-order differential
equations 




ẋ1 = v1,

ẋ2 = v2,

v̇1 = −ω2(t)x1,

v̇2 = −ω2(t)x2.

(2.7)

Its solutions are the integral curves of thet-dependent vector field

X2d
t = v1

∂

∂x1
+ v2

∂

∂x2
− ω2(t)x1

∂

∂v1
− ω2(t)x2

∂

∂v2
,

which is a linear combination
X2d
t = X2d

1 + ω2(t)X2d
3 , (2.8)

with X2d
1 andX2d

3 being the vector fields

X2d
1 = v1

∂

∂x1
+ v2

∂

∂x2
, X2d

3 = −x1
∂

∂v1
− x2

∂

∂v2
,

satisfying the commutation relations

[X2d
1 , X2d

3 ] = 2X2d
2 , [X2d

2 , X2d
3 ] = X2d

3 , [X2d
1 , X2d

2 ] = X2d
1 , (2.9)

whereX2 reads

X2d
2 =

1

2

(
x1

∂

∂x1
+ x2

∂

∂x2
− v1

∂

∂v1
− v2

∂

∂v2

)
.

The previous decomposition of thet-dependent vector fieldX2d has been obtained by consid-
ering the new vector fields,X2d

1 , X2d
2 , X2d

3 , to be diagonal prolongations toTR2 of the vector
fields,X1, X2, X3. In this way, we get that the commutation relations (2.9) arethe same as (2.3)
and, in view of decomposition (2.8), thist-dependent vector field defines a Lie system related to
a Lie algebra of vector fields isomorphic tosl(2,R).

The distribution associated with the Lie systemX2d
t , i.e.

V2d
p = 〈(X2d

1 )p, (X
2d
2 )p, (X

2d
3 )p〉, p ∈ TR2,

has rank lower or equal to the dimension of the Lie algebraV . More specifically, it has rank three
in an open dense of subsetTR2. Hence, there exists a local non-trivial first-integral common to
all the vector fields of the above distribution. Furthermore, this first-integral is at-independent
constant of the motion of system (2.7). Let us analyse this statement more carefully. Given a
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constant of the motionF : (x1, v1, x2, v2) ∈ TR2 7→ F (x1, v1, x2, v2) ∈ R of system (2.7), it
follows that

dF

dt
(p(t)) =

2∑

j=1

(
dxi

dt
(t)

∂F

∂xi
(p(t)) +

dvi

dt
(t)
∂F

∂vi
(p(t))

)
= X2d

t I(p(t)) = 0,

wherep(t) = (x1(t), v1(t), x2(t), v2(t)). If F is a first-integral for the system (2.7), whatever
ω(t) is, thenF must be a first-integral of the vector fields ofX2d

1 , X2d
3 and, therefore, ofX2d

2 .

Consequently, there exists, at least locally, a functionF that is a constant of the motion for ev-
ery system (2.7) and such thatdF is incident to the distribution generated by the,X2d

1 , X2d
2 , X2d

3 ,
i.e.dF (X2d

1 ) = dF (X2d
2 ) = dF (X2d

3 ) = 0 in a certain dense open subsetU of TR2.

SinceX2d
3 F = 0, there is a function̄F (ξ, x1, x2) such thatF (x1, x2, v1, v2) = F̄ (ξ, x1, x2),

with ξ = x1v2 − x2v1. Next, in view of conditionX2d
1 F̄ = 0, we have

v1
∂F̄

∂x1
+ v2

∂F̄

∂x2
= 0

and there exists a function̂F (ξ) such thatF̄ (ξ, x1, x2) = F̂ (ξ). As 2X2d
2 = [X2d

1 , X2d
3 ], the

conditionsX2d
1 F̂ = X2d

3 F̂ = 0 imply X2d
2 F̂ = 0 and henceF (x1, x2, v1, v2) = x1v2 − x2v1 is

a first-integral which physically corresponds to the angular momentum. Additionally, this first-
integral allows us to solve the second-order differential equationẍ = −ω2(t)x by means of a
particular solution. Actually, ifx1(t) is a non-vanishing solution of this equation, every other
particular solutionx2(t) gives rise to a particular solution(x1(t), v1(t), x2(t), v2(t)) of system
(2.7). As the first-integralF is constant along this particular solution, we have thatx2(t) obeys
the equation

x1(t)
dx2
dt

= k + ẋ1(t)x2 ,

whose solution reads

x2(t) = k′x1(t) + k x1(t)

∫ t dζ

x21(ζ)
, (2.10)

what gives us the general solution to thet-dependent frequency harmonic oscillator in terms of a
particular solution.

In order to look for a superposition rule, we must consider a system made of some copies of
(2.1) and obtain at least as manyt-independent constants of the motion as the dimension of the
initial manifold. Also, it must be possible to obtain the variables of the initial manifold explicitly
in terms of the other variables and such constants. Recall that the numberm of particular solutions
to obtain a superposition rule satisfies that the diagonal prolongations of the vector fieldsX1, X2

andX3 toRnm are linearly independent in a generic point.

In the case of two copies of thet-dependent harmonic oscillator, the condition on the prolon-
gations of the vector fields,X1, X2, X3, that is,λ1X2d

1 + λ2X
2d
2 + λ3X

2d
3 = 0, implies that

λ1 = λ2 = λ3 = 0. Therefore, the one-dimensional oscillator admits a superposition rule involv-
ing two particular solution and, in view of our previous results, we need to study three copies of
thet-dependent harmonic oscillator (2.1) so as to obtain a superposition rule. Consider therefore
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the system of first-order ordinary differential equations




ẋ1 = v1,

v̇1 = −ω2(t)x1,

ẋ2 = v2,

v̇2 = −ω2(t)x2,

ẋ = v,

v̇ = −ω2(t)x,

(2.11)

whose solutions are the integral curves for thet-dependent vector vector field

X3d
t = v1

∂

∂x1
+ v2

∂

∂x2
+ v

∂

∂x
− ω2(t)x1

∂

∂v1
− ω2(t)x2

∂

∂v2
− ω2(t)x

∂

∂v
,

which is a linear combination,X3d
t = X3d

1 + ω2(t)X3d
3 , with X3d

1 andX3d
3 being the vector

fields

X3d
1 = v1

∂

∂x1
+ v2

∂

∂x2
+ v

∂

∂x
, X3d

3 = −x1
∂

∂v1
− x2

∂

∂v2
− x

∂

∂v
,

obeying the commutation relations

[X3d
1 , X3d

3 ] = 2X3d
2 , [X3d

2 , X3d
3 ] = X3d

3 , [X3d
1 , X3d

2 ] = X3d
1 ,

where the vector fieldX3d
2 is defined by

X3d
2 =

1

2

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x

∂

∂x
− v1

∂

∂v1
− v2

∂

∂v2
− v

∂

∂v

)
.

We can determine the first-integralsF for these three vector fields as solutions of the sys-
tem of PDEsX3d

1 F = X3d
3 F = 0, because2X3d

2 = [X3d
1 , X3d

3 ] and the previous rela-
tions automatically imply the conditionX3d

2 F = 0. This last condition yields that there ex-
ists a functionF̄ : R5 → R2 such thatF (x1, x2, x, v1, v2, v) = F̄ (ξ1, ξ2, x1, x2, x) with
ξ1(x1, x2, x, v1, v2, v) = xv1 −x1v andξ2(x1, x2, x, v1, v2, v) = xv2−x2v. In view of this, the
conditionX3d

1 F = 0 transforms into

v1
∂F̄

∂x1
+ v2

∂F̄

∂x2
+ v

∂F̄

∂x
= 0 ,

i.e. the functionsξ1 andξ2 are first-integrals (Of course,ξ = x1v2 − x2v1 is also a first-integral).
They produce a superposition rule, because from

{
xv2 − x2v = k1,

x1v − v1x = k2,

we get the expected superposition rule for two solutions

x = c1 x1 + c2 x2 , v = c1 v1 + c2 v2 , ci =
ki
k
, k = x1v2 − x2v1 .

2.2. Generalised Ermakov system.Let us now turn to study the so-called generalised Ermakov
system, i.e.





ẍ =
1

x3
f(y/x)− ω2(t)x,

ÿ =
1

y3
g(y/x)− ω2(t)y,

(2.12)
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which has been broadly studied in [104, 191, 192, 193, 194, 205, 206]. Although this system is,
in general, more complex than the standard Ermakov system, which will be discussed later, its
analysis is easier from our point of view and it is therefore studied now. More exactly, our aim
is to recover by means of our methods its known constant of motion, which is used next to study
the Milne–Pinney equation and to obtain a superposition rule.

For the sake of simplicity, let us consider the generalised Ermakov system onR2
+. This system

can be written as a system of first-order differential equations




ẋ = vx,

ẏ = vy ,

v̇x = −ω2(t)x+
1

x3
f(y/x),

v̇y = −ω2(t)y +
1

y3
g(y/x),

(2.13)

in TR2
+ by introducing the new variablesvx = ẋ andvy = ẏ. Therefore, we can study its

solutions as the integral curves for at-dependent vector fieldXt onTR2
+ of the form

Xt = vx
∂

∂x
+ vy

∂

∂y
+

(
−ω2(t)x+

1

x3
f(y/x)

)
∂

∂vx
+

(
−ω2(t)y +

1

y3
g(y/x)

)
∂

∂vy
,

which can be written as a linear combination

Xt = N1 + ω2(t)N3,

whereN1 andN3 are the vector fields

N1 = vx
∂

∂x
+ vy

∂

∂y
+

1

x3
f(y/x)

∂

∂vx
+

1

y3
g(y/x)

∂

∂vy
N3 = −x ∂

∂vx
− y

∂

∂vy
.

Note that these vector fields generate a three-dimensional real Lie algebra with the third generator

N2 =
1

2

(
x
∂

∂x
+ y

∂

∂y
− vx

∂

∂vx
− vy

∂

∂vy

)
.

In fact, as

[N1, N3] = 2N2, [N1, N2] = N1, [N2, N3] = N3 ,

they generate a Lie algebra of vector fields isomorphic tosl(2,R) and thus the generalised Er-
makov system is a SODE Lie system.

As Lie system (2.13) is associated with an integrable distribution of rank three in a generic
point of a four-dimensional manifold, there exists, at least locally, a first-integral,F : TR2

+ → R,
for anyω2(t). Such a first-integralF satisfiesNiF = 0 for i = 1, 2, 3, but as[N1, N3] = 2N2 it
is sufficient to imposeN1F = N3F = 0 to getN2F = 0. Then, ifN3F = 0 we have

x
∂F

∂vx
+ y

∂F

∂vy
= 0 ,

and the associated system of characteristics is

dx

0
=
dy

0
=
dvx
x

=
dvy
y
.
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In view of this, we conclude that there exists a functionF̄ : R3 → R such thatF (x, y, vx, vy) =
F̄ (x, y, ξ = xvy − yvx) and, taking this into account, the conditionN1F = 0 reads

vx
∂F̄

∂x
+ vy

∂F̄

∂y
+

(
− y

x3
f(y/x) +

x

y3
g(y/x)

)
∂F̄

∂ξ
= 0 .

We can therefore consider the associated system of characteristics

dx

vx
=
dy

vy
=

dξ

− y
x3 f(y/x) +

x
y3 g(y/x)

,

and using that
−y dx+ x dy

ξ
=
dx

vx
=
dy

vy
,

we arrive to
−y dx+ x dy

ξ
=

dξ

− y
x3 f(

y
x) +

x
y3 g(

y
x )
,

i.e.

−
y2d

(
x
y

)

ξ
=

dξ

− y
x3 f(

y
x) +

x
y3 g(

y
x)

and integrating we obtain the following first-integral

1

2
ξ2 +

∫ u [
− 1

ζ3
f

(
1

ζ

)
+ ζ g

(
1

ζ

)]
dζ = C , (2.14)

with u = x/y. This first-integral allows us to determine, by means of quadratures, a solution of
one subsystem in terms of a solution of the other equation.

2.3. Milne–Pinney equation. We call Milne-Pinney equation the second-order ordinary nonlin-
ear differential equation [163, 182]

ẍ = −ω2(t)x +
k

x3
, (2.15)

wherek is a non-zero constant. This equation describes thet-evolution of an isotonic oscilla-
tor [28, 181] (also called pseudo-oscillator), i.e. an oscillator with an inverse quadratic potential
[204]. This oscillator shares with the harmonic one the property of having a period indepen-
dent of the energy [68], i.e. they are isochronous systems and, in the quantum case, they have
an equispaced spectrum [10]. The equation (2.15) appears inthe study of certain Friedmann–
Lemaı̂tre–Robertson–Walker spaces [85], certain scalar field cosmologies [115], and many other
works in Physics and Mathematics (see [147] and references therein).

The Milne–Pinney equation is defined onR∗ ≡ R−{0} and it is invariant under parity, i.e. if
x(t) is a solution, then−x(t) is a solution too. That means that it is sufficient to restrictourselves
to analysing this equation inR+.

As usual, we can relate the Milne-Pinney equation to a systemof first-order differential equa-
tions onTR+ 




ẋ = v,

v̇ = −ω2(t)x +
k

x3
,
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by introducing a new auxiliary variablev ≡ ẋ. Then, thet-dependent vector field onTR+

describing its integral curves reads

Xt = v
∂

∂x
+

(
−ω2(t)x +

k

x3

)
∂

∂v
.

This is a Lie system becauseXt can be written asXt = L1 + ω2(t)L3, where the vector fields
L1 andL3 are given by

L1 = v
∂

∂x
+

k

x3
∂

∂v
, L3 = −x ∂

∂v
,

and satisfy
[L1, L3] = 2L2, [L1, L2] = L1, [L2, L3] = L3,

with

L2 =
1

2

(
x
∂

∂x
− v

∂

∂v

)
,

i.e. they span a 3-dimensional real Lie algebra of vector fields isomorphic tosl(2,R).
Let us choose the basis (2.4) forsl(2,R), which satisfies the same commutation relations as

the vector fields,L1, L2, L3. Actually, it is possible to show that eachLα is the fundamental
vector field corresponding toaα with respect to the actionΦ : (A, (x, v)) ∈ SL(2,R)×TR+ 7→
(x̄, v̄) ∈ TR+ given by




x̄ =

√
k +

[
(βv + αx)(δv + γx) + k(δβ/x2)

]2

(δv + γx)2 + k(δ/x)2
,

v̄ = κ

√
(δv + γx)2 +

kδ2

x2

(
1− x2

δ2x̄2

)
,

with A ≡
(
α β

γ δ

)
,

whereκ is ±1 or 0, depending on the initial point(x, v) and the element of the groupSL(2,R)
that acts on it. In order to obtain an explicit expression forκ in terms ofA and(x, v), we can use
the below decomposition for every element of the groupSL(2,R)

A = exp(−α1a1) exp(α3a3) exp(−α2a2) =

(
1 α1

0 1

)(
1 0
α3 1

)(
eα2/2 0

0 e−α2/2

)
,

from where we obtain thatα3 = γδ andα1 = β/δ. As we know that

Φ(exp(−α2a2), (x, v))

is the integral curve of the vector fieldL2 starting from the point(x, v) parametrised byα2, it is
straightforward to check that

(x1, v1) ≡ Φ(exp(−α2a2), (x, v)) = (exp(α2/2)x, exp(−α2/2)v),

and in a similar way

(x2, v2) ≡ Φ(exp(α3a3), (x1, v1)) = (x1, α3x1 + v1).

Finally, we want to obtain(x̄, v̄) = Φ(exp(−α1a1), (x2, v2)), and taking into account that
the integral curves ofL1 satisfy that

x3dv

k
=
dx

v
= dα1, (2.16)
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it turns out that whenk > 0 we havēv2 + k/x̄2 = v22 + k/x22 ≡ λ with λ > 0. Thus, using this
fact and (2.16) we obtain

k1/2dv

(λ− v2)3/2
= dα1,

and integratingv betweenv2 andv̄,

v̄

(λ− v̄2)1/2
= α1

λ

k1/2
+

v2
(λ − v22)

1/2
=

1

k1/2
(α1λ+ v2|x2|) .

As κ = sign[v̄], we see thatκ is given by

κ = sign[α1λ+ v2|x2|] = sign

[
β

δ
(xγ + vδ)2 +

kδβ

x2
+

|x|
δ
(vδ + xγ)

]
.

System (2.15) has no non-trivial first-integrals independent of ω(t), i.e. there is no function
I : U ⊂ TR+ → R such thatXtI = 0 forX determined by any functionω(t). This is equivalent
to dI(Lα) = 0 on an openU , with α = 1, 2, 3. Thus, the first-integrals we are looking for hold
thatdIp is incident to the involutive distributionVp ≃ 〈(L1)p, (L2)p, (L3)p〉 generated by the
fundamental vector fieldsLα in U . In almost any point we obtain thatVp = TpTR+. Then, as
dIp = 0 in a generic pointp ∈ U ⊂ TR+, the only possibility isdI = 0 and thereforeI is a
constant first-integral.

2.4. A new superposition rule for the Milne–Pinney equation. Our aim now is to show that
there exists a superposition rule for the Milne–Pinney equation (2.15) for the casek > 0 [53,
163, 182] in terms of a pair of its particular solutions [44].The casek < 0 can be analogously
described.

In fact, one sees from the first-integral (2.14) that in the particular case off = g = k, if a
particular solutionx1 is known, there is at-dependent constant of motion for the Milne–Pinney
equation given by (see e.g. [53]):

I1 = (x1ẋ− ẋ1x)
2 + k

[(
x

x1

)2

+
(x1
x

)2
]
, . (2.17)

If another particular solutionx2 of the equation (2.15) is given, then we have anothert-
dependent constant of motion

I2 = (x2ẋ− ẋ2x)
2 + k

[(
x

x2

)2

+
(x2
x

)2
]
, . (2.18)

Moreover, the two solutionsx1 andx2 provide a function oft which is a constant of the motion
and generalises the WronskianW of two solutions of the equation (2.15)

I3 = (x1ẋ2 − x2ẋ1)
2 + k

[(
x2
x1

)2

+

(
x1
x2

)2
]
. (2.19)

Remark that for any real numberα the inequality(α− 1/α)2 ≥ 0 implies

α2 +
1

α2
≥ 2 ,
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and the equality sign is valid if and only if|α| = 1,

α2 +
1

α2
= 2 ⇐⇒ |α| = 1 .

Therefore, as we have consideredk > 0, we see thatIi ≥ 2 k, for i = 1, 2, 3. Moreover, as the
solutionsx1(t) andx2(t) are different solutions of the Milne–Pinney equation, it turns out that
I3 > 2k.

The knowledge of the two first-integralsI1 andI2, together with the constant value ofI3 for
a pair of solutions of equation (2.15), can be used to obtain the superposition rule for the Milne–
Pinney equation. In fact, given two particular solutionsx1 andx2 , the first-integral (2.18) allows
us to write an explicit expression forẋ in terms ofx, x2 andI2

ẋ = ẋ2
x

x2
±
√
−kx

2

x42
+ I2

1

x22
− k

1

x2
,

and using such an expression with the first-integral (2.17),we see, after a careful computation,
thatx satisfies the following fourth degree equation

(I22 − 4k2)x41 − 2(I1I2 − 2I3k)x
2
1x

2
2 + (I21 − 4k2)x42−

− 2((I2I3 − 2I1k)x
2
1 + (I1I3 − 2I2k)x

2
2)x

2 + (I23 − 4k2)x4 = 0 , (2.20)

where we have used thatI3 is constant along pairs of solutions,x1(t), x2(t), of the Milne–Pinney
equation.

Hence, we can obtain from the condition (2.20) the expression for the square of the solutions
of the Milne–Pinney equation in terms of any pair of its particular positive solutions by means of
a superposition rule

x2 = k1x
2
1 + k2x

2
2 ± 2

√
λ12[−k(x41 + x42) + I3 x21x

2
2 ], (2.21)

where the constantsk1 andk2 are given by

k1 =
I2I3 − 2I1k

I23 − 4k2
, k2 =

I1I3 − 2I2k

I23 − 4k2
,

andλ12 is a constant which reads as follows

λ12 = λ12(k1, k2; I3, k) =
k1k2I3 + k(−1 + k21 + k22)

I23 − 4k2
= ϕ(I1, I2; I3, k) ,

where the functionϕ is given by

ϕ(I1, I2; I3, k) =
I1I2I3 − (I21 + I22 + I23 )k + 4k3

(I23 − 4k2)2
.

It is important to remark that ifk1 < 0 thenk2 > 0 and if k2 < 0 thenk1 > 0, i.e. if
k1 < 0 thenI2I3 < 2I1k, and thusI2 < 2kI1/I3. Therefore,λ2(I23 − 4k2) = I1I3 − 2kI2 >

I1I3 − 4k2I1/I3 = I1(I
2
3 − 4k2) > 0, and thus, asI3 > 2k, k2 > 0. Similarly we obtain that

k2 < 0 impliesk1 > 0.
The parity invariance of (2.15) is displayed by (2.21), which gives us the solutions

x2 = k1x
2
1 + k2x

2
2 ± 2

√
λ12[−k(x41 + x42) + I3 x21x

2
2 ] . (2.22)

In order to ensure that the right-hand term of the above formula is positive, which gives rise to
a real solution of the Milne–Pinney equation, the constantsk1 andk2 in the preceding expression
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should satisfy some additional restrictions. In particular, they must obeying

λ12[−k(x41(0) + x42(0)) + I3 x
2
1(0)x

2
2(0) ] ≥ 0

and

k1x
2
1(0) + k2x

2
2(0)± 2

√
λ12[−k(x41(0) + x42(0)) + I3 x21(0)x

2
2(0) ] > 0.

If these conditions are satisfied, then, differentiating expression (2.22) int = 0 for x1 = x1(t)

andx2 = x2(t) solutions of the Milne–Pinney equation (2.15), it can be checked thatẋ(0) is also
a real constant. Asx(t) is a solution with real initial conditions, thenx(t) given by (2.22) is real
in an interval oft and thus all the obtained conditions are valid in an intervalof t.

If we take into account that we have consideredx2 > 0, we can simplify the study of such
restrictions by writing (2.22) in terms of the variablesx2 andz = (x1/x2)

2 as

x2 = x22

(
k1z + k2 ± 2

√
λ12[−k(z2 + 1) + I3 z ]

)
,

and the preceding conditions turn out to beλ12[−k(z2 + 1) + I3 z ] ≥ 0 and k1z + k2 ±
2
√
λ12[−k(z2 + 1) + I3 z ] > 0.
Next, in order to getλ12[−k(z2 + 1) + I3 z ] ≥ 0, we first notice that this expression is not

definite because its discriminant isλ212(I
2
3 − 4k2) ≥ 0, and this restricts the possible values ofk1

andk2 for a givenz. With this aim we define the polynomialP (z) given by

P (z) = −k(z2 + 1) + I3 z,

with roots

z = z± =
I3 ±

√
I23 − 4k2

2k
,

which can be written in terms of the variableα3 = I3/2k as

z± = α3 ±
√
α2
3 − 1.

As α3 > 1, thenα3 >
√
α2
3 − 1 > 0 and thusz± > 0. The sign of the polynomialP (z) is

displayed in Fig. 1.
The regionR+ × R+ splits into three regions,

A = {(x1, x2) ∈ R+ × R+ | x1 >
√
z+ x2}

⋃
{(x1, x2) ∈ R+ × R+ | x1 <

√
z− x2} ,

B = {(x1, x2) ∈ R+ × R+ | √z−x2 < x1 <
√
z+ x2}

separated by the region

C = {(x1, x2) ∈ R+ × R+ | x1 =
√
z+ x2}

⋃
{(x1, x2) ∈ R+ × R+ | x1 =

√
z− x2}

of the straight linesx1 =
√
z+ x2 andx1 =

√
z− x2. The condition to makeλ12P (z) non-

negative in regionA, where the polynomialP takes negative values, is to choosek1 andk2 so
thatλ12(k1, k2, I3, k) ≤ 0. Similarly, asP is positive in regionB we have to choosek1 andk2
such thatλ12(k1, k2, I3, k) ≥ 0. Finally, asP vanishes in regionC, there is no restriction on the
coefficientsk1 andk2.

Once we have stated the conditions forλ12P (z) to be non-negative we still have to impose
the condition

k1z + k2 ± 2
√
λ12[−k(z2 + 1) + I3 z ] > 0. (2.23)
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PSfrag replacements

t ≡ x1 =
√
α3x2

r ≡ x1 =
√
z−x2

s ≡ x1 =
√
z+x2

x1

x2

A(−)
B(+)

B(+)

A(−)

Fig. 1. Sign of the polynomialP (x1, x2).

In order to study these conditions, we study the sign of the polynomial

PI3,k(z, k1, k2) = (k1z + k2)
2 − 4λ12[−k(z2 + 1) + I3z]

=
4P (z)I3
I23 − 4k2

+ (ak1 + bk2)
2 ,

where

a =

√
− 4P (z)k

I23 − 4k2
+ z2, b =

√
1− 4P (z)k

I23 − 4k2
.

As we remarked before, the constantsk1, k2 cannot be both negative. LetK denote the set

K = R
2 − {(k1, k2) ∈ R

2 | k1 < 0, k2 < 0}
and consider three cases:

1. If (x1, x2) ∈ A, then asP (z) ≤ 0, it must beλ12 ≤ 0 in order to satisfyλ12P (z) ≥ 0. In
this case, ifK1 andK2 are the sets

K1 =

{
(k1, k2) ∈ K;

√
− 4P (z)I3
I23 − 4k2

> |ak1 + bk2|
}
,

K2 =

{
(k1, k2) ∈ K;

√
− 4P (z)I3
I23 − 4k2

< |ak1 + bk2|
}
.

We find the following particular cases

(a) If (k1, k2) ∈ K1, thenPI3,k(z, k1, k2) > 0.
(b) If (k1, k2) ∈ K2 thenPI3,k(z, k1, k2) < 0,
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that can be summarised by means of Figure 2.

PSfrag replacements

λ1

λ2

K1

K1

K1

K2

K2

K2

Fig. 2. Sign of the polynomialPI3,k(z, k1, k2) in K.

2. If (x1, x2) ∈ B, asP (z) is positive, thenλ12 must also be positive,λ12 ≥ 0. Thus for
(k1, k2) ∈ K1 ∪K2, PI3,k(z, k1, k2) > 0.

3. If (x1, x2) ∈ C, then for(k1, k2) ∈ K1 ∪K2, PI3,k(z, k1, k2) > 0.

In those cases in whichPI3,k(z, k1, k2) > 0, we can assert that

|k1z + k2| > 2
√
λ12[−k(z2 + 1) + I3 z ]

but we still have to impose thatλ1z + λ2 > 0 for (2.23) to be positive. Nevertheless, this is very
simple, because if the pair(k1, k2) does not satisfyk1z + k2 > 0, the pair of opposite elements
(−k1,−k2) does it, while the other conditions are invariant under the changeki → −ki with
i = 1, 2.

In those cases in whichPI3,k(z, k1, k2) < 0 we can assert that

|k1z + k2| < 2
√
λ12[−k(x41 + x42) + I3 x21x

2
2 ]

and in this case the unique valid superposition rule is

x = |x2|
(
k1z + k2 + 2

√
λ12[−k(z2 + 1) + I3 z ]

)1/2
,

which is equivalent to

x =

(
k1x

2
1 + k2x

2
2 + 2

√
λ12[−k(x41 + x42) + I3 x22x

2
1 ]

)1/2

.
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Note that if we had considered no restriction onk1, k2, we would have obtained real and
imaginary solutions of the Milne–Pinney equation.

Expression (2.22) provides us with a superposition rule forthe positive solutions of the Pinney
equation (2.15) in terms of two of its independent particular positive solutions. Therefore, once
two particular solutions of the equation (2.15) are known, we can write its general solution.
Note also that, because of the parity symmetry of (2.15), thesuperposition (2.22) can be used
with both positive and negative solutions. In all these wayswe obtain non-vanishing solutions
of (2.15) whenk > 0. Mutatis mutandis, the above procedure can also be applied to analyse
Milne–Pinney equations whenk < 0.

A similar superposition rule works for negative solutions of Milne–Pinney equation (2.15):

x = −
(
k1x

2
1 + k2x

2
2 ± 2

√
λ12(−k(x41 + x42) + I3 x21x

2
2)

)1/2

, (2.24)

where once againx1 andx2 are arbitrary solutions.

2.5. Painleve-Ince equations and other SODE Lie systems.In this section we show a new
relevant instance of SODE Lie systems including, as particular instances, some Painlevé–Ince
equations [93]. In the process of analysing that this particular case of Painlevé–Ince is a SODE
Lie system, we find a much larger family of SODE Lie systems which frequently occur in the
mathematical and physical literature.

Consider the family of differential equations

ẍ+ 3xẋ+ x3 = f(t), (2.25)

with f(t) being anyt-dependent function. The interest in these equations is motivated by their
frequent appearance in Physics and Mathematics [66, 71, 134]. The different properties of these
equations have been deeply analysed since their first analysis by Vessiot and Wallenberg [224,
229] as a particular case of second-order Riccati equations. For instance, these equations appear
in [106] in the study of the Riccati chain. There, it is statedthat such equations can be used to
derive solutions for certain PDEs. In addition, equation (2.25) also appears in the book by Davis
[86], and the particular case withf(t) = 0 has recently been treated through geometric methods
in [41, 66].

The results described in previous sections can be used to study differential equations (2.25).
Let us first show that the above differential equations are SODE Lie systems and, in view of
Proposition 1, they admit a superposition rule that is derived. According to definition 1.53, equa-
tion (2.25) is a SODE Lie system if and only if the system

{
ẋ = v,

v̇ = −3xv − x3 + f(t),
(2.26)

determining the integral curves of thet-dependent vector field of the form

XPI(t, x, v) = X1(x, v) + f(t)X2(x, v), (2.27)

with

X1 = v
∂

∂x
− (3xv + x3)

∂

∂v
, X2 =

∂

∂v
,

is a Lie system.
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In view of the decomposition (2.27), all equations (2.25) are SODE Lie systems if the vector
fieldsX1 andX2 are included in a finite-dimensional real Lie algebra of vector fieldsV . This
happens if and only ifLie({X1, X2}) span a finite-dimensional linear space. We consider the
family of vector fields onTR given by

X1 = v
∂

∂x
− (3xv + x

3)
∂

∂v
, X2 =

∂

∂v
,

X3 = −
∂

∂x
+ 3x

∂

∂v
, X4 = x

∂

∂x
− 2x2 ∂

∂v
,

X5 = (v + 2x2)
∂

∂x
− x(v + 3x2)

∂

∂v
, X6 = 2x(v + x

2)
∂

∂x
+ 2(v2 − x

4)
∂

∂v
,

X7 =
∂

∂x
− x

∂

∂v
, X8 = 2x

∂

∂x
+ 4v

∂

∂v
,

(2.28)

whereX3 = [X1, X2], −3X4 = [X1, X3], X5 = [X1, X4], X6 = [X1, X5], X7 = [X2, X5],
X8 = [X2, X6], and then the vector fields,X1, . . . , X8, are linearly independent overR. Their
commutation relations read

[X1, X2] = X3, [X1, X3] = −3X4, [X1, X4] = X5, [X1, X5] = X6,

[X1, X6] = 0, [X1, X7] =
1

2
X8, [X1, X8] = −2X1, [X2, X3] = 0,

[X2, X4] = 0, [X2, X5] = X7, [X2, X6] = X8, [X2, X7] = 0,

[X2, X8] = 4X2, [X3, X4] = −X7, [X3, X5] = −
1

2
X8, [X3, X6] = −2X1,

[X3, X7] = −2X2, [X3, X8] = 2X3, [X4, X5] = −X1, [X4, X6] = 0,

[X4, X7] = X3, [X4, X8] = 0, [X5, X6] = 0, [X5, X7] = −3X4,

[X5, X8] = −2X5, [X6, X7] = −2X5, [X6, X8] = −4X6, [X7, X8] = 2X7,

(2.29)

In other words, the vector fields,X1, . . . , X8, span an eight-dimensional Lie algebra of vector
fieldsV containingX1 andX2. Therefore, equation (2.25) is a SODE Lie system. Moreover,the
elements of the following family of traceless real3× 3 matrices

M1 =




0 −1 0

0 0 −1

0 0 0.


 , M2 =




0 0 0

0 0 0

−1 0 0.


 ,

M3 =




0 0 0

1 0 0

0 −1 0.


 , M4 = −1

3




−1 0 0

0 2 0

0 0 −1.


 ,

M5 =




0 1 0

0 0 −1

0 0 0.


 , M6 =




0 0 2

0 0 0

0 0 0.


 ,

M7 =




0 0 0

−1 0 0

0 −1 0.


 , M8 =




2 0 0

0 0 0

0 0 −2.


 ,

obey the same commutation relations as the corresponding vector fields,X1, . . . , X8, i.e. the
linear mapρ : sl(3,R) → V , such thatρ(Mα) = Xα, with α = 1, . . . , 8, is a Lie algebra
isomorphism. Consequently, the finite-dimensional Lie algebra of vector fieldsV is isomorphic
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to sl(3,R) and the systems of differential equations describing the integral curves for thet-
dependent vector fields

X(t, x, v) =

8∑

α=1

bα(t)Xα(x, v), (2.30)

are Lie systems related to a Vessiot–Guldberg Lie algebra isomorphic tosl(3,R).
Many instances of the family of Lie systems (2.30) are associated with interesting SODE

Lie systems with applications to Physics or related to remarkable mathematical problems. In all
these cases, the theory of Lie systems can be applied to investigate these second-order differential
equations, recover some of their known properties, and, possibly, provide new results. Let us
illustrate this assertion by means of a few examples.

Another equation appearing in the Physics literature [71, 72, 218] which can be analysed by
means of our methods is

ẍ+ 3xẋ+ x3 + λ1x = 0, (2.31)

which is a special kind of Liénard equationẍ+ f(x)ẋ+ g(x) = 0, with f(x) = 3x andg(x) =
x3 + λ1x. The above equation can also be related to a generalised formof an Emden equation
occurring in the thermodynamical study of equilibrium configurations of spherical clouds of gas
acting under the mutual attraction of their molecules [88].

As in the study of equations (2.25), by considering the new variablev = ẋ, equation (2.31)
becomes the system {

ẋ = v,

v̇ = −3xv − x3 − λ1x,
(2.32)

describing the integral curves of the vector fieldX = X1 − λ1/2(X7 + X3) included in the
family (6.13).

Finally, we can also treat the equation

ẍ+ 3xẋ+ x3 + f(t)(ẋ + x2) + g(t)x+ h(t) = 0, (2.33)

describing, as particular cases, all the previous examples[134]. The system of first-order differ-
ential equations associated with this equation reads

{
ẋ = v,

v̇ = −3xv − x3 − f(t)(v + x2)− g(t)x− h(t).
(2.34)

Hence, this system describes the integral curves of thet-dependent vector field

Xt = X1 − h(t)X2 −
1

4
f(t) (X8 − 2X4)−

1

2
g(t) (X7 +X3).

Therefore, equation (2.33) is a SODE Lie system and the theory of Lie systems can be used to
analyse its properties.

Some particular cases of system (2.33) were pointed out in [72, 134]. Additionally, the case
with f(t) = 0, g(t) = ω2(t) andh(t) = 0 was studied in [71] and it is related to harmonic
oscillators. The case withg(t) = 0 andh(t) = 0 appears in the catalogue of equations possess-
ing the Painlevé property [126]. Additionally, our resultgeneralises Vessiot’s contribution [225]
describing the existence of an expression determining the general solution of a system like (2.33)
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(but with constant coefficients) in terms of four of their particular solutions, their derivatives and
two constants.

Finally, it is worth noting that the second-order differential equation (2.33) is a particular
case of second-order Riccati equations [66, 106]. Such equations were analysed through Lie
systems in [77]. The approach carried out in that paper is based on the use of certainad hoc
changes of variables which transform second-order Riccatiequations into some Lie systems. The
advantage of our approach here is that it allows us to study equations (2.33) without using, as
it was performed in [77], anyad hoctransformations. In addition, our presentation along with
the theory of quasi-Lie schemes can be used to perform a quitecomplete study of second-order
Riccati equations in a systematic way [48].

2.6. Mixed superposition rules and Ermakov systems.Let us now turn to show how the theory
developed in Section 1.7 for mixed superposition rules works. By adding some, probably differ-
ent, Lie systems to an initial one, we get new Lie systems thatadmit constants of motion which
do not depend on thet-dependent coefficients of these systems and relate the different solutions
of the constituting Lie systems. Moreover, if we add enough copies, these constants of the motion
can be used to construct a mixed superposition rule.

We here investigate Ermakov systems. These systems are formed by a second-order homoge-
neous linear differential equation and a Milne–Pinney equation, i.e.





ẍ = −ω2(t)x +
k

x3
,

ÿ = −ω2(t)y,
(x, y) ∈ R

2
+.

These systems have been broadly studied in Physics and Mathematics since its introduction until
the present day. In Physics they appear in the study of Bose-Einstein condensates and cosmologi-
cal models [109, 115, 152] and in the solution oft-dependent harmonic or anharmonic oscillators
[87, 96, 101, 150, 192, 204]. A lot of works have also been devoted to the usage of Hamiltonian
or Lagrangian structures in the study of such systems, see e.g. [194]. Here we recover a constant
of the motion, the so-calledLewis-Ermakov invariant[150], which appears naturally.

In order to use the theory of Lie systems to analyse Ermakov systems, consider the system of
ordinary first-order differential equations [87, 146]





ẋ = vx,

ẏ = vy,

v̇x = −ω2(t)x +
k

x3
,

v̇y = −ω2(t)y,

(2.35)

defined overTR2
+ and built by adding the new variablesẋ = vx andvy = ẏ to the Ermakov

systems and satisfying the conditions explained in Section1.7. Its solutions are the integral curves
for thet-dependent vector field

Xt = vx
∂

∂x
+ vy

∂

∂y
+

(
−ω2(t)x+

k

x3

)
∂

∂vx
− ω2(t)y

∂

∂vy
,
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which is a linear combination witht-dependent coefficients,Xt = X1 + ω2(t)X3, of

X1 = vx
∂

∂x
+ vy

∂

∂y
+

k

x3
∂

∂vx
, X3 = −x ∂

∂vx
− y

∂

∂vy
.

Taking into account the vector field

X2 =
1

2

(
x
∂

∂x
+ y

∂

∂y
− vx

∂

∂vx
− vy

∂

∂vy

)
,

the vector fieldsX1, X2 andX3 span a three dimensional Lie algebra isomorphic tosl(2,R). In
this way, this system is a SODE Lie system related to a Lie algebra of vector fields isomorphic to
sl(2,R).

The vector fields,L1, L2, L3, associated with the Milne–Pinney equation (see Section 2.3)
span a distribution of rank two onTR+. Consequently, there is no local first-integralI such that
(L1 + ω(t)2(t)L2)I = 0 for any givenω(t). In other words, Milne–Pinney equations do not
admit a commont-independent constant of the motion.

By adding the othersl(2,R) linear Lie system appearing in the Ermakov system, i.e. the
harmonic oscillator witht-dependent angular frequencyω(t), the distribution spanned byX1, X2

andX3 has rank three over a dense open subset ofTR2
+. Therefore, there is a local a first-integral.

This one can be obtained fromX1F = X3F = 0. But X3F = 0 implies that there exists a
function F̄ : R3 → R such thatF (x, y, vx, vy) = F̄ (x, y, ξ), with ξ = yvx − xvy , and then
X1F = 0 is written

vx
∂F̄

∂x
+ vy

∂F̄

∂y
+ k

y

x3
∂F̄

∂ξ

and we obtain the associated system of characteristics

k
y dx− x dy

ξ
=
x3 dξ

y
=⇒ d(y/x)

ξ
+
x dξ

ky
= 0 .

From here, the following first-integral is found [150]

ψ(x, y, vx, vy) = k
(y
x

)2
+ ξ2 = k

(y
x

)2
+ (yvx − xvy)

2 ,

which is the well-known Ermakov–Lewis invariant [87, 146, 192].
Once we have obtained a first-integral, we can obtain new constants by adding new copies

of any of the systems we have already used. For instance, consider the system of first-order
differential equations 




ẋ = vx,

ẏ = vy,

ż = vz,

v̇x = −ω2(t)x +
k

x3
,

v̇y = −ω2(t)y,

v̇z = −ω2(t)z,

(2.36)

which corresponds to the vector field

Xt = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

x3
∂

∂vx
− ω2(t)

(
x
∂

∂vx
+ y

∂

∂vy
+ z

∂

∂vz

)
.
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Thet-dependent vector fieldXt can be expressed asXt = N1 + ω2(t)N3 whereN1 andN3 are

N1 = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

x3
∂

∂vx
, N3 = −x ∂

∂vx
− y

∂

∂vy
− z

∂

∂vz
.

These vector fields generate a three-dimensional real Lie algebra with the vector fieldN2 given
by

N2 =
1

2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− vx

∂

∂vx
− vy

∂

∂vy
− vz

∂

∂vz

)
.

In fact, they span a Lie algebra isomorphic tosl(2,R) because

[N1, N3] = 2N2, [N1, N2] = N1, [N2, N3] = N3 .

The distribution spanned by these fundamental vector fieldshas rank three in a open dense
subset ofTR3

+. Thus, there exist three local first-integrals for all the vector fields of the latter
distribution. In other words, system (2.36) admits threet-independent constants of the motion
which turn out to be the Ermakov invariantI1 of the subsystem involving variablesx andy, the
Ermakov invariantI2 of the subsystem involving variablesx andz, i.e.

I1 =
1

2

(
(yvx − xvy)

2 + k
( y
x

)2)
, I2 =

1

2

(
(xvz − zvx)

2 + k
( z
x

)2)
,

and the WronskianW = yvz − zvy of the subsystem involving variablesy andz. They define
a foliation with three-dimensional leaves. We can use this foliation to obtain in terms of it a
superposition rule. That is reached by describingx in terms ofy, z and the integralsI1, I2,W ,
i.e.

x =

√
2

|W |
(
I2y

2 + I1z
2 ±

√
4I1I2 − kW 2 yz

)1/2
. (2.37)

This can be interpreted, as pointed out by Pinney [182], as saying that there is a superposition
rule allowing us to express the general solution of the Milne–Pinney equation in terms of two in-
dependent solutions of the corresponding harmonic oscillator with the samet-dependent angular
frequency.

2.7. Relations between the new and the known superposition rule. We can now compare the
known superposition rule for the Milne–Pinney equation

x(t) =

√
2

|W |
(
I2y

2
1(t) + I1y

2
2(t)±

√
4I1I2 − kW 2 y1(t)y2(t)

)1/2
, (2.38)

wherey1(t) andy2(t) are two independent solutions of

ÿ = −ω2(t)y, (2.39)

and (2.22) and check that actually the latter reduces to the former whenx1 andx2 are obtained
from solutionsy1 andy2 of the associated harmonic oscillator equation.

Let y1 andy2 be two solutions of (2.39) andW its Wronskian. Consider the two particular
positive solutions of the Milne–Pinney-equationx1(t) andx2(t) given by

x1(t) =

√
2

|W |

√
C1y21(t) + C2y22(t),

x2(t) =

√
2

|W |

√
C2y21(t) + C1y22(t),

(2.40)
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whereC1 < C2 and we additionally impose

4C1C2 = kW 2 . (2.41)

Thet-dependent constant of the motionI3 given by (2.19) for the two particular solutions of
the Milne–Pinney equation can then be expressed as a function of the solutionsy1 andy2 of the
t-dependent harmonic oscillator and its WronskianW . After a long computationI3 turns out to
be

I3 =
4(C2

1 + C2
2 )

W 2
, (2.42)

and then using the explicit form (2.40) of the particular solutions and taking into account the
constant (2.42) in (2.22) we obtain that

k1x
2
1 + k2x

2
2 ± 2

√
λ12(−k(x41 + x42) + I3x21x

2
2) =

2

W 2
(C1k1 + C2k2)y

2
1

+ (C1k2 + C2k1)y
2
2)±

2

W 2

√
4(C1k1 + C2k2)(C1k2 + C2k1)− kW 2y1y2. (2.43)

Consequently, from the superposition rule (2.22), we recover expression (2.37):

x =

√
2

|W |

√
µ1y21 + µ2y22 ±

√
4µ1µ2 − kW 2y1y2, (2.44)

where {
µ1 = (C1k1 + C2k2),

µ2 = (C1k2 + C2k1).

Once we have stated the superposition rule, we still have to analyse the possible values ofλ1 and
λ2 that we can use in this case. If we use the expression (2.42) weobtain after a short calculation
the following valuesz±

z+ =
4C2

2

kW 2
, z− =

4C2
1

kW 2
. (2.45)

Now if we writey21 andy22 in terms ofx21, x
2
2 andW from the system (2.40) we obtain

1

C2
1 − C2

2

(
C1 −C2

−C2 C1

)(
x21
x22

)
=

(
y21
y22

)
. (2.46)

Therefore, asC2 > C1 the condition ofy21 and, y22 being positive is
{
C1x

2
1 ≤ C2x

2
2

C2x
2
1 ≥ C1x

2
2

(2.47)

and it is satisfied ifx21/x
2
2 ≤ C2/C1 = 4C2

2/kW
2 = z+ andx21/x

2
2 ≥ C1/C2 = 4C2

1/kW
2 =

z−, because of (2.41). Thus,(x1, x2) ∈ B and therefore the only restrictions fork1, k2 are
λ12 ≥ 0 andk1x21 + k2x

2
2 ≥ 0. Obviously, by means of the change of variables (2.40) this

last expression is equivalent toµ1y
2
1 + µ2y

2
2 ≥ 0 and thusµ1 andµ2 cannot be simultaneously

negative. Furthermore,λ12(I23 − 4k2) = 4µ1µ2 − kW 2. As we have said thatλ12 ≥ 0 then
4µ1µ2 ≥ kW 2, i.e.µ1µ2 is positive and thus,µ1 andµ2 are positive. In this way we recover
the usual constants of the known superposition rule of the Milne–Pinney equation in terms of
solutions of an harmonic oscillator.
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2.8. A new mixed superposition rule for the Pinney equation.In this section we derive a
mixed superposition rule for the Milne–Pinney equation in terms of a Riccati equation. Consider
again thet-dependent Riccati equation

dx

dt
= b1(t) + b2(t)x + b3(t)x

2 (2.48)

which has been studied in [50, 63] from the perspective of thetheory of Lie systems. We have
already mentioned that this Riccati equation can be considered as the differential equation de-
termining the integral curves for thet-dependent vector field (1.25). This vector field is a linear
combination witht-dependent coefficients of the three vector fields,X1, X2, X3, given by (1.26),
which close on a three-dimensional real Lie algebra with defining relations (1.27). Consequently,
this Lie algebra is isomorphic tosl(2,R). Note also that the commutation relations (1.27) are the
same as (2.3).

Take now the following particular case of Riccati equation

dx

dt
= 1 + ω2(t)x2 .

This Riccati equation reads in terms of theXi as the equation of the integral curves of thet-
dependent vector fieldXt = X1+ω

2(t)X3. Thus, we can apply the procedure of the Section 1.7
and consider the following differential equation inR3 × TR+




ẋ1 = 1 + ω2(t)x21,

ẋ2 = 1 + ω2(t)x22,

ẋ3 = 1 + ω2(t)x23,

ẋ = v,

v̇ = −ω2(t)x +
k

x3
,

where(x1, x2, x3) ∈ R3, x ∈ R+ and(x, v) ∈ TxR+. According to our general recipe, consider
the following vector fields

M1 =
∂

∂x1
+

∂

∂x2
+

∂

∂x3
+ v

∂

∂x
+

k

x3
∂

∂v
,

M2 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+

1

2

(
x
∂

∂x
− v

∂

∂v

)
,

M3 = x21
∂

∂x1
+ x22

∂

∂x2
+ x33

∂

∂x3
− x

∂

∂v
,

that, by construction, satisfy same commutation relationsas before, i.e.

[M1,M3] = 2M2, [M1,M2] =M1, [M2,M3] =M3,

and the full system of differential equations can be understood as the system of differential
equations for the determination of the integral curves of the t-dependent vector fieldM(t) =

M1 + ω2(t)M3. The distribution associated with this Lie system has rank three in almost any
point and then there exist locally two first-integrals. As2M2 = [M1,M3], it is enough to find the
common first-integrals forM1 andM3, i.e. a functionF : R5 → R such thatM1F =M3F = 0.

We first look for first-integrals independent ofx3. i.e. we suppose thatF depends just on
x1, x2, x andv. Using the method of characteristics, the conditionM3F = 0 implies that the
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characteristics system is
dx1
x21

=
dx2
x22

=
dv

−x =
dx

0

That means that for such a first-integral forM3, which depends onx1, x2, x andv, there is a
functionF̄ : R3 → R such thatF (x1, x2, x, v) = F̄ (I1, I2, I3), with I1, I2 andI3 given by

I1 =
1

x1
− 1

x2
, I2 =

1

x1
− v

x
, I3 = x .

Now, in terms ofF̄ , the conditionM1F =M1F̄ = 0 implies

v

(
−2I1
I3

∂F̄

∂I1
− 2I2

I3

∂F̄

∂I2
+
∂F̄

∂I3

)
+ (I1 − 2I2)I1

∂F̄

∂I1
−
(
I22 +

k

I43

)
∂F̄

∂I2
= 0. (2.49)

Thus the linear term onv and the other one must vanish independently. The method of char-
acteristics applied to the first term implies that there exists a mapF̂ : R2 → R such that
F̄ (I1, I2, I3) = F̂ (K1,K2) where

K1 =
I1
I2
, K2 = I2I

2
3 .

Finally, taking into account the last result inM1F̂ = 0, we get
(
−K2

1 −K1 +
kK1

K2
2

)
∂F̂

∂K1
−
(
K2 +

k

K2

)
∂F̂

∂K2
= 0,

and by means of the method of characteristics expression (2.49) involves

dK1

dK2
=
K2

1 +K1 − kK1

K2

2

K2 +
k
K2

which gives us the first-integral

C1 = K2 +
k +K2

2

K1K2
,

that in terms of the initial variables reads

C1 =
(
x2 −

v

x

)
x2 +

k + (x2 − v
x )

2x4

(x1 − x2)x2
.

If we repeat this procedure with the assumption that the integral does not depend onx2 we obtain
the following first-integral

C2 =
(
x3 −

v

x

)
x2 +

k + (x3 − v
x)

2x4

(x1 − x3)x2
.

It is a long but easy calculation to check that both are first-integrals ofM1,M2 andM3. We can
obtain now the general solutionx of the Milne–Pinney equation in terms ofx1, x2, x3, C1, C2, as

x =

√
(C1(x1 − x2)− C2(x1 − x3))2 + k(x2 − x3)2

(C2 − C1)(x2 − x3)(x2 − x1)(x1 − x3)
,

whereC1 andC2 are constants such that, oncex1(t), x2(t) andx3(t) have been fixed, they make
x(0) given by the latter expression be real.

Thus we have obtained a new mixed superposition rule which enables us to express the gen-
eral solution of the Pinney equation in terms of three solutions of Riccati equations and, of course,
two constants related to initial conditions which determine each particular solution.
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3. Applications of quantum Lie systems

In Sections 1.9 and 1.8, it is proved that we can make use of thegeometric theory of Lie systems to
treat a certain kind of Schrödinger equations, those related to the so-called quantum Lie systems.
In this section we use this point of view to investigate Quantum Mechanics.

First, we develop the geometric theory of reduction for quantum Lie systems. Reduction
techniques have already been put into practice to study Lie systems [40, 47, 50, 63]. In these
works, a variety of reduction methods and other closely related topics are analysed. Most of these
methods are based on the properties of a special type of Lie system in a Lie group associated with
the Lie system under study. As quantum Lie systems can also berelated to such a type of Lie
system in a similar way as any Lie system, we can apply most of the methods developed in the
aforementioned works to analyse Quantum Lie systems. This is the main purpose of the present
section.

In detail, we start by analysing the reduction technique forquantum Lie systems and we
complete some previous classic achievements about the topic. We next show that the interaction
picture can be explained from this geometrical point of viewin terms of this reduction technique.
Furthermore, the method of unitary transformations is analysed from our perspective to exemplify
that quantum Lie systems associated with solvable Lie algebras of linear operators, in similarity
with the classical case, can be exactly solved. On the other hand, systems related to non-solvable
Lie algebras can be solved in particular cases. Both cases can be analysed to reproduce some
results on the method of unitary transformations in particular cases found in the literature.

3.1. The reduction method in Quantum Mechanics.We here review the reduction techniques
explained, for example, in [40, 51, 63]. While in some previous works certain sufficient condi-
tions to perform a reduction process were explained [40, 63], here we show that these conditions
are also as necessary [51]. Additionally, we use the geometric reduction technique to explain the
interaction picture used in Quantum Mechanics and we review, from a geometric point of view,
the method of unitary transformations.

In Section 1.3 it was shown that the study of Lie systems can bereduced to that of finding the
solution of the equation

Rg−1∗g ġ = −
r∑

α=1

bα(t)aα ≡ a(t) ∈ TeG (3.1)

with g(0) = e.

The reduction method developed in [40] shows that given a solution x̃(t) of a Lie system on
a homogeneous spaceG/H , the solution of the Lie system in the groupG, and therefore the
general solution in the given homogeneous space, can be reduced to that of a Lie system in the
subgroupH . More specifically, if the curvẽg(t) in G is such that̃x(t) = Φ(g̃(t), x̃(0)), with
Φ being the given action ofG in the homogeneous space, theng(t) = g̃(t)g′(t), whereg′(t)
turns out to be a curve inH which is a solution of a Lie system in the Lie subgroupH of G.
Actually, once the curvẽg(t) in G has been fixed, the curveg′(t), that takes values inH , satisfies
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the equation [40]

Rg′−1∗g′ ġ′ = −Ad(g̃−1)

(
r∑

α=1

bα(t)aα +Rg̃−1∗g̃
˙̃g

)
≡ a′(t) ∈ TeH . (3.2)

This transformation law can be understood in the language ofthe theory of connections. It
has been shown in [40, 60] that Lie systems can be related to connections in a bundle and that the
group of curves inG, which is the group of automorphisms of the principal bundleG × R [60],
acts on the left on the set of Lie systems onG, and defines an induced action on the set of Lie
systems in each homogeneous space forG. More specifically, ifx(t) is a solution of a Lie system
in a homogeneous spaceN defined by the curvea(t) in g, then for each curvēg(t) in G such that
ḡ(0) = e we see thatx′(t) = Φ(ḡ(t), x(t)) is a solution of the Lie system defined by the curve

a′(t) = Rḡ−1∗ḡ ˙̄g +Ad(ḡ)a(t), (3.3)

which is the transformation law for a connection.
In conclusion, the aim of the reduction method is to find an automorphism̄g(t) such that the

right-hand side in (3.3) belongs toTeH ≡ h for a certain Lie subgroupH of G. In this way, the
papers [40, 60] gave a sufficient condition for obtaining this result. In this section we study the
above geometrical development in Quantum Mechanics and we determine a necessary condition
for the right-hand side in (3.3) to belong toh.

Quantum Lie systems are thoset-dependent self-adjoint Hamiltonians such that

H(t) =
r∑

α=1

bα(t)Hα, (3.4)

with iHα closing under the commutator of operators on a finite-dimensional real Lie algebra
of skew-self-adjoint operatorsV . Therefore, by regarding these operators as fundamental vector
fields of a unitary action of a connected Lie groupG with Lie algebrag isomorphic toV , we
can relate the Schrödinger equation to a differential equation inG determined by curves inTeG

given bya(t) = −
r∑

α=1

bα(t)aα by considering−iHα as fundamental vector fields of the basis of

g given by{aα |α = 1, . . . , r}.
Now, the preceding methods enable us to transform the problem into a new one in the same

groupG, for each choice of the curvēg(t) but with a new curvea′(t). The action ofG onH is
given by a unitary representationU , and therefore thet-dependent vector field determined by the
originalt-dependent HamiltonianH(t) becomes a new one witht-dependent HamiltonianH ′(t).
Its integral curves are the solutions of the equation

dψ′

dt
= −iH ′(t)ψ′,

where
−iH ′(t) = −iU(ḡ(t))H(t)U †(ḡ(t)) + U̇(ḡ(t))U †(ḡ(t))

That is, from a geometric point of view, we have related a Lie system on the Lie group
G to certain curvea(t) in TeG and the corresponding system inH determined by a unitary
representation ofG to another one with different curvea′(t) in TeG and its associated one inH.

Let us choose a basis ofTeG given by{cα | α = 1, . . . , r} with r = dim g, such that
{cα | α = 1, . . . , s} be a basis ofTeH , wheres = dim h, and denote{cα | α = 1, . . . , r} the
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dual basis of{cα | α = 1, . . . , r}. In order to find̄g such that the right-hand term of (3.3) belongs
toTeH for all t, the condition for̄g is

cα
(
Ad(ḡ)a(t) +Rḡ−1∗ḡ ˙̄g

)
= 0 , α = s+ 1, . . . , r .

Now, if θα is the left invariant 1-form onG induced fromcα, the previous equation implies

θαḡ−1

(
Rḡ−1∗ea(t)−

dḡ−1

dt

)
= 0 , α = s+ 1, . . . , r .

Let beg̃ = ḡ−1, the latter expression implies thatRg̃∗ea(t)− ˙̃g is generated by left invariant
vector fields onG from the elements ofh. Then, givenπL : G → G/H , the kernel ofπL∗ is
spanned by the left invariant vector fields onG generated by the elements ofh. Then it follows

πL∗g̃(Rg̃∗ea(t)− ˙̃g) = 0 . (3.5)

Therefore, if we use thatπL∗ ◦XR
α = −XL

α ◦ πL, whereXL
α denotes the fundamental vector

field of the action ofG in G/H andXR
α denotes the right-invariant vector field inG whose value

in e is aα, we can prove thatπL(g̃) is a solution onG/H of the equation

dπL(g̃)

dt
=

r∑

α=1

bα(t)X
L
α (π

L(g̃)) . (3.6)

Thus, we obtain that given a certain solutiong′(t) in h related to the initialg(t) by means of
g̃(t) according tog(t) = g̃(t)g′(t), then the projection toG/H of g̃(t), i.e.πL(g̃(t)), is a solution
of (3.6). This result shows that wheneverg′(t) is a curve inH , theng̃(t) satisfies equation (3.6).
Moreover, as it has been shown in [40], ifg̃(t) satisfies (3.6), theng′(t) is a curve inH satisfying
(3.2). The previous result shows that such a condition for obtaining (3.2) is not only sufficient but
necessary too. Thus, we provide a new result which completesthat one found in [40].

Finally, it is worth noting that even when this last proof hasbeen developed for Quantum
Mechanics, it can also be applied to ordinary differential equations, because it appears as a con-
sequence of the group structure of Lie systems which is the same for both quantum and ordinary
Lie systems.

3.2. Interaction picture and Lie systems.As a first application of the reduction method for Lie
systems, we analyse here how this theory can be applied to explain the interaction picture used
in Quantum Mechanics. This picture has been proved to be veryeffective in the developments
of perturbation methods. It plays a rôle when thet-dependent Hamiltonian can be written as a
linear combination witht-dependent coefficients of a simpler HamiltonianH1 and a perturbation
V (t). In the framework of Lie systems, we can analyse what happenswhen thet-dependent
Hamiltonian is

H(t) = H1 + V (t) = H1 +

r∑

α=2

bα(t)Hα =

r∑

α=1

bα(t)Hα, b1(t) = 1,

where the set of skew-self-adjoint operators{−iHα |α = 1, . . . , r} is closed under commutation
and generates a finite dimensional real Lie algebra. The situation is very similar to the case of
control systems with a drift term (hereH1) that are linear in the control functions. The functions
bα(t) correspond to the control functions.
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According to the theory of Lie systems, take a basis{aα |α = 1, . . . , r} of the Lie algebra
with corresponding associated fundamental vector fields−iHα. The equation to be studied in
TeG is the one (3.1) and whether we defineg′(t) = ḡ(t)g(t), whereḡ(t) is a previously chosen
curve, it obeys a similar equation forg′(t) given by (3.3).

If, in particular, we choosēg(t) = exp(a1t), we find the new equation inTeG

Rg′−1∗g′ ġ
′ = −Ad(exp(a1t))

(
r∑

α=2

bα(t)aα

)
= − exp(ad(a1)t)

(
r∑

α=2

bα(t)aα

)
. (3.7)

Correspondingly, the action ofG onH by a unitary representation defines a transformation onH
in which the stateψt transforms intoψ′

t = exp(iH1t)ψt and its dynamical evolution is given by
the vector field corresponding to the right-hand side of (3.7). In particular, if{a2, . . . , ar} span
an ideal of the Lie algebrag, the problem reduces to the corresponding normal subgroup inG.

3.3. The method of unitary transformations. A second application of the theory of Lie systems
in Quantum Mechanics and, in particular, of the reduction method is to obtain information about
how to proceed to solve a quantum Lie Hamiltonian. Let us discuss here a general procedure to
accomplish this task.

Every Schrödinger equation of Lie type is determined by a Lie algebrag, a unitary repre-
sentation of its connected and simply connected Lie groupG on H, and a curvea(t) in TeG.
Depending ong, there are two cases. Ifg is solvable, we can use the reduction method in Quan-
tum Mechanics to obtain the general solution. Ifg is not solvable, it is not known how to integrate
the problem in terms of quadratures in the most general case.Nevertheless, it is possible to solve
the problem completely for some specific curves as for instance it happens for the Caldirola–
Kanai Hamiltonian [118]. A way of dealing with such systems consist in trying to transform the
curvea(t) into another onea′(t), easier to handle, as it has been done in the previous section
for the interaction picture. In a more general case than the interaction picture, although any two
curvesa(t) anda′(t) are always connected by an automorphism, the equation determining the
transformation can be as difficult to solve as the initial problem. Because of this, it is interesting
to look for a curve that:

1. It determines an easily solvable equation.
2. It can be transformed through an explicitly known transformation into the curve associated

with our initial problem.

This is the topic of next three sections, where conditions for such Schrödinger equations are
analysed. In any case, we can always express the solution of the initial problem in terms of
a solution of the equation determining the transformation.In certain cases, for an appropriate
choice of the curvēg(t) the new curvea′(t) belongs toTeH for all t, whereH is a solvable
Lie subgroup ofG. In this case we can reduce the problem fromg to a certain solvable Lie
subalgebrah of g. Of course, in order to do this, a solution of the equation of reduction is needed,
but once this is known we can solve the problem completely in terms of it. Other methods have
alternatively been used in the literature, like the Lewis-Riesenfeld (LR) method. However, this
method seems to offer a complete solution only ifg is solvable. Ifg is not solvable, the LR
method offers a solution which depends on a solution of a system of differential equations, like
in the method of reduction.
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To sum up, given a Lie system an associated with a Lie algebrag, whose Lie groupG acts,
by unitary operators, onH, and determined by a curvea(t) in TeG, the systematic procedure to
be used is the following:

• If g is solvable, we can solve the problem easily by quadratures as it appears in [94, 107].
• If g is not solvable, we can try to solve the problem for a given curve like in the Caldirola–

Kanai Hamiltonian in [118], by choosing a curvēg(t) transforming the curvea(t) into
another one easier to solve, like in the interaction picture. If this does not work we can
try to reduce the problem to an integrable case like in thet-dependent mass and frequency
harmonic oscillator or quadratic one dimensional Hamiltonian in [52, 96, 211, 238].

3.4.t-dependent operators for quantum Lie systems.In this section we apply our methods to
obtain thet-dependent evolution operators of several problems found in the Physics literature in
an algorithmic way.

We first provide a simple example in order to illustrate the main points of our theory. Next,
we analyset-dependent quadratic Hamiltonians. These Hamiltonians describe a very large class
of physical models. Sometimes, one of these physical modelsis described by a certain family of
quadratic Hamiltonians associated with a Lie subalgebra ofoperators of the one given for general
quadratic Hamiltonians. If this Lie subalgebra is solvable, the differential equations related to it
through the Wei–Norman methods are solvable too and thet-evolution operator can be explicitly
obtained. In these cases, we can find the explicit solution ofthese problems in the literature using
different methods for each case. We also describe some approaches to study these quantum Lie
systems in the non-solvable cases.

3.5. Initial examples. We start our investigation by studying the motion of a particle with a
t-dependent mass under the action of at-dependent linear potential term. The Hamiltonian de-
scribing this physical case is

H(t) =
P 2

2m(t)
+ S(t)X .

The Lie algebra associated with this example is a central extension of the Heisenberg Lie
algebra. A basis for the Lie algebra of vector fields related to this physical model is

Z1 = i
P 2

2
, Z2 = iP, Z3 = iX, Z4 = iI,

which closes on a Lie algebra under the commutation relations

[Z1, Z2] = 0, [Z1, Z3] = 2Z2, [Z1, Z4] = 0,

[Z2, Z3] = Z4, [Z2, Z4] = 0,

[Z3, Z4] = 0.

This Lie algebra is solvable, and then, the related equations obtained through the Wei–Norman
method, can be solved by quadratures for any pair oft-dependent coefficientsm(t) andS(t). The
solution of the associated Wei-Norman system allows us to obtain thet-evolution operator and
the wave function solution of thet-dependent Schrödinger equation.

This t-dependent Hamiltonian has been studied in [221] for some particular cases usingad-
hocmethods and in general in [94]. Here, we investigate it through the Wei–Norman method. Its
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equation in the groupG with TeG ≃ V , is

Rg−1∗g ġ = − 1

m(t)
a1 − S(t)a3 ≡ aMS(t) ,

where th,ea1, . . . , a4, are a basis ofg closing on the same commutation relations as the operators,
Z1, . . . , Z4. The factorisation

g(t) = exp(v2(t)a2) exp(−v3(t)a3) exp(−v4(t)a4) exp(−v1(t)a1),
allows us to solve the equation inG by the Wei–Norman method to get

v̇1 =
1

m(t)
,

v̇2 =
v3
m(t)

,

v̇3 = S(t) ,

v̇4 = −S(t)v2 −
v23

2m(t)
,

with initial conditionsv1(0) = v2(0) = v3(0) = v4(0) = 0. The solution of this system can be
expressed using quadratures because the related group is solvable

v1(t) =

∫ t

0

du

m(u)
,

v2(t) =

∫ t

0

du

m(u)

(∫ u

0

S(v)dv

)
,

v3(t) =

∫ t

0

S(u)du,

v4(t) = −
∫ t

0

S(u)

(∫ u

0

dv

m(v)

(∫ v

0

S(w)dw

))
du−

∫ t

0

du

2m(u)

(∫ u

0

S(v)dv

)2

,

(3.8)

and thet-evolution operator is

U(g(t)) = exp(v2(t)Z2) exp(−v3(t)Z3) exp(−v4(t)Z4) exp(−v1(t)Z1)

= exp(iv2(t)P ) exp(−iv3(t)X) exp(−iv4(t)I) exp(−iv1(t)
P 2

2
).

3.6. Quadratic Hamiltonians. After dealing with an easy example before, we can proceed now
in a similar way in order to treat thet-dependent quadratic Hamiltonian given by [237] (see [59])

H(t) = α(t)
P 2

2
+ β(t)

X P + P X

4
+ γ(t)

X2

2
+ δ(t)P + ǫ(t)X + φ(t)I, (3.9)

whereX andP are the position and momentum operators satisfying the commutation relation

[X,P ] = i I .

It is important to solve this quantum quadratic Hamiltonianbecause it frequently appears in
Quantum Mechanics.

In order to prove that (3.9) is a quantum Lie system, we must check that thist-dependent
Hamiltonian can be written as a sum witht-dependent coefficients of some self-adjoint Hamilto-
nians closing on a real finite-dimensional Lie algebra of operators.
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As we can write

H(t) = α(t)H1 + β(t)H2 + γ(t)H3 − δ(t)H4 + ǫ(t)H5 + φ(t)H6,

with the Hamiltonians

H1 =
P 2

2
, H2 =

1

4
(XP + PX), H3 =

X2

2
,

H4 = −P , H5 = X , H6 = I ,

satisfying the commutation relations

[iH1, iH2] = iH1, [iH2, iH3] = iH3, [iH3, iH4] = iH5, [iH4, iH5] = −iH6,

[iH1, iH3] = 2iH2, [iH2, iH4] = − i

2
H4, [iH3, iH5] = 0,

[iH1, iH4] = 0, [iH2, iH5] =
i

2
H5 ,

[iH1, iH5] = −iH4 ,

and[iHα, iH6] = 0, α = 1, . . . , 5, we get thatH(t) is a quantum Lie system.
This means that the skew-self-adjoint operatorsiHα generate a six-dimensional real LieV

algebra of operators. Now, we can relate them to the basis{a1, . . . , a6} for an abstract real Lie
algebra isomorphic to the one spanned by the−iHα. This basis is chosen in such a way that

[a1, a2] = a1, [a2, a3] = a3, [a3, a4] = a5, [a4, a5] = −a6, [a5, a6] = 0,

[a1, a3] = 2 a2, [a2, a4] = −1

2
a4, [a3, a5] = 0, [a4, a6] = 0,

[a1, a4] = 0, [a2, a5] =
1

2
a5, [a3, a6] = 0,

[a1, a5] = −a4, [a2, a6] = 0,

[a1, a6] = 0 .

This six-dimensional real Lie algebra is a semidirect sum ofthe Lie algebrasl(2,R) spanned by
{a1, a2, a3} and the Heisenberg–Weyl Lie algebra generated by{a4, a5, a6}, which is an ideal.

In order to find thet-evolution provided by thet-dependent Hamiltonian (3.9) we should find
the curveg(t) in G, with TeG ≃ V , such that

Rg−1∗g ġ = −
6∑

α=1

bα(t) aα , g(0) = e ,

with

b1(t) = α(t) , b2(t) = β(t) , b3(t) = γ(t) , b4(t) = −δ(t) , b5(t) = ǫ(t) , b6(t) = φ(t) .

This can be carried out by using the generalised Wei–Norman method, i.e. by writing the
curveg(t) in G in terms of a set of second class canonical coordinates. For instance,

g(t) = exp(−v4(t)a4) exp(−v5(t)a5) exp(−v6(t)a6)×
× exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3), (3.10)

and a straightforward application of the above mentioned Wei–Norman method technique leads
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to the system




v̇1 = b1 + b2 v1 + b3 v
2
1 , v̇4 = b4 +

1

2
b2 v4 + b1 v5 ,

v̇2 = b2 + 2 b3 v1 , v̇5 = b5 − b3 v4 −
1

2
b2 v5 ,

v̇3 = ev2 b3 , v̇6 = b6 − b5 v4 +
1

2
b3 v

2
4 −

1

2
b1 v

2
5 ,

(3.11)

with v1(0) = v2(0) = v3(0) = v4(0) = v5(0) = v6(0) = 0.
If we consider the following vector fields

X1 =
∂

∂v1
+ v5

∂

∂v4
− 1

2
v25

∂

∂v6
,

X2 = v1
∂

∂v1
+

∂

∂v2
+

1

2
v4

∂

∂v4
− 1

2
v5

∂

∂v5
,

X3 = v21
∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
− v4

∂

∂v5
+

1

2
v24

∂

∂v6
,

X4 =
∂

∂v4
,

X5 =
∂

∂v5
− v4

∂

∂v6
,

X6 =
∂

∂v6
,

(3.12)

we can check that these vector fields satisfy the same commutation relations as the corresponding
{aα |α = 1, . . . , 6} and thus, system (3.11) is a Lie system related to the same Liealgebra as the
t-dependent Hamiltonian (3.9) or its corresponding equation in a Lie group.

Now, once the functionsvα(t), with α = 1, . . . , 6, have been determined, thet-evolution of
any state is given by

ψt = exp(−v4(t)iH4) exp(−v5(t)iH5) exp(−v6(t)iH6)×
× exp(−v1(t)iH1) exp(−v2(t)iH2) exp(−v3(t)iH3)ψ0,

and thus

ψt = exp(v4(t)iP ) exp(−v5(t)iX) exp(−v6(t)iI)×

× exp

(
−v1(t)i

P 2

2

)
exp

(
−v2(t)i

PX +XP

4

)
exp

(
−v3(t)i

X2

2

)
ψ0. (3.13)

3.7. Particular cases.t-dependent quadratic Hamiltonians describe a very large class of physical
models. Sometimes, one of these physical models is described by a certain family of quadratic
Hamiltonians that can be regarded as a quantum Lie system related to a Lie subalgebra of the one
given for general quadratic Hamiltonians. If they are associated with a Lie solvable subalgebra,
then the system of differential equations related to it through the Wei–Norman method is solvable
too and thet-evolution operator can be explicitly obtained. In this section we treat some instances
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of this case through a unified approach. In these instances, we can also find the explicit solutions
of these problems in the literature, but by differentad hocmethods.

Once we have obtained the solution for a generic quadratic HamiltonianH(t), we can review
the solution for a system with constant mass and linear potential given by

H(t) =
P 2

2m
+ S(t)X , (3.14)

to obtain, in view of equations (3.11),

v1(t) =
t

m
,

v2(t) = 0,

v3(t) = 0,

v4(t) =
1

m

∫ t

0

(∫ u

0

S(v)dv

)
du,

v5(t) =

∫ t

0

S(u)du,

v6(t) = − 1

m

∫ t

0

(
S(u)

∫ u

0

(∫ v

0

S(w)dw

)
dv

)
du− 1

2m

∫ t

0

(∫ u

0

S(v)dv

)2

du ,

which give thet-evolution operator if we substitute them into thet-evolution operator (3.13).

Now we can consider particular instances of thist-dependent Hamiltonian. For example, for
the curves with constant massm andS(t) = qǫ0 + q ǫ cos(ωt), studied in [107], we obtain

v1(t) =
t

m
, v2(t) = 0 , v3(t) = 0 ,

v4(t) =
q

2mω2
(2ǫ+ ǫ0ω

2t2 − 2ǫ cos(ωt)) , v5(t) =
q

ω
(ǫ0ωt+ ǫ sin(ωt)) ,

and

v6(t) =
−q2

12mω3

(
4ǫ20ω

3t3 − 3ǫ(ǫ− 4ǫ0)ωt +

3ǫ(4ǫ+ 2ǫ0(ω
2t2 − 2)− 3ǫ cos(ωt)) sin(ωt)

)
.

The procedure to obtain a solution with arbitrary non-constant mass andS(t) = qǫ0 +

qǫ cos(ωt) was pointed out in [107] and solved in [94]. From our point of view, the most general
solution comes straightforwardly from expression (3.8), because all cases in the literature are
particular instances of our approach with general functionsm(t) andS(t).

Now, we can obtain the wave function solution of this system.We know that the wave function
solutionψt with initial conditionψ0 is

ψt(x) = U(g(t))ψ(x, 0)

= exp(iv6(t)) exp(−v4(t)iP ) exp(−v5(t)iX) exp

(
−v1(t)i

P 2

2

)
ψ0(x).

However, if we express the initial wave functionψ0(x) in the momentum space asφ0(p), the
solution will take a similar form as before but withU(g(t)) in the momentum representation. In
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this case the solution with initial conditionφ0(p) is

φt(p) = U(g(t))φ0(p)

= exp(−iv6(t)) exp(v4(t)iP ) exp(−v5(t)iX) exp

(
−iv1(t)

P 2

2

)
φ0(p)

= exp(−iv6(t)) exp(v4(t)iP ) exp(−v5(t)iX) exp

(
−iv1(t)

p2

2

)
φ0(p)

= exp(−iv6(t)) exp(v4(t)iP ) exp
(
−iv1(t)

(p+ v5(t))
2

2

)
φ0(p+ v5(t))

= exp

(
−iv6(t) + iv4(t)p− iv1(t)

(p+ v5(t))
2

2

)
φ0(p+ v5(t)).

3.8. Non-solvable Hamiltonians and particular instances.In the preceding section the differ-
ential equations associated with thet-dependent quantum Hamiltonians were Lie systems related
to a solvable Lie algebra. Thus, it was proved that the differential equations obtained were inte-
grable by quadratures through the Wei–Norman method. If this does not happen, it is not easy
to obtain a general solution. Now, we describe some examplesof ‘non-solvable’t-dependent
quadratic Hamiltonians. In general we do not obtain a general solution in terms of thet-dependent
functions of the quadratic Hamiltonians. Nevertheless, weshow that for some instances of them,
whose coefficients satisfy certain integrability conditions [52, 54], the differential equations can
be integrated.

As a first case, consider the Hamiltonian for a forced harmonic oscillator witht-dependent
mass and frequency given by

H(t) =
P 2

2m(t)
+

1

2
m(t)ω2(t)X2 + f(t)X .

This case, either with or withoutt-dependent frequency, has been studied in [78, 107, 238].
The equations describing the solutions of this Lie system bythe method of Wei–Norman are

v̇1 =
1

m(t)
+m(t)ω2(t)v21 ,

v̇2 = 2m(t)ω2(t)v1,

v̇3 = ev2m(t)ω2(t),

v̇4 =
1

m(t)
v5,

v̇5 = f(t)−m(t)ω2(t)v4,

v̇6 =
1

2
m(t)ω2(t)v24 − f(t)v4 −

1

2m(t)
v25 ,

with initial conditionsv1(0) = v2(0) = v3(0) = v4(0) = v5(0) = v6(0) = 0, where the fac-
torisation (3.10) has been used. The solution of this systemcannot be obtained by quadratures
in the general case because the associated Lie algebra is notsolvable. Nevertheless, we can con-
sider a particular instance of this kind of Hamiltonian, theso-called Caldirola–Kanai Hamiltonian
[118]. In this case, for the particulart-dependencem(t) = e−rtm0, ω(t) = ω0 andf(t) = 0 the
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Hamiltonian reads

H(t) =
P 2

2m0
ert +

1

2
m0e

−rtω2
0X

2 .

In this case the solution is completely known and is given by

v1(t) =
2ert

m0(r + ω̄0 coth (
t
2 ω̄0))

,

v2(t) = rt+ 2 log ω̄0 − 2 log

(
r sinh

(
t

2
ω̄0

)
+ ω̄0 cosh

(
t

2
ω̄0

))
,

v3(t) =
2m0ω

2
0

r + ω̄0 coth (
t
2 ω̄0)

,

v4(t) = 0 , v5(t) = 0 , v6(t) = 0 ,

where ω̄0 =
√
r2 − 4ω2

0. This example shows that the problem may also be exactly solved
for particular instances of curves ing of Lie systems with non solvable Lie algebras. Another
example is the following one

H(t) =
P 2

2m
+

mω2
0

2(t+ k)2
X2 ,

for which the solution of the Wei–Norman system reads

v1(t) =
2(k + t)((k + t)ω̄0 − kω̄0)

m(kω̄0(ω̄0 − 1) + (k + t)ω̄0(ω̄0 + 1))
,

v2(t) = (1 + ω̄0) log(k + t)− (1 + ω̄0) log k + 2 log(2kω̄0 ω̄0)

− 2 log(kω̄0(ω̄0 − 1) + (k + t)ω̄0(ω̄0 + 1)) ,

v3(t) =
2mω2

0

k

(k + t)ω̄0 − kω̄0

kω̄0(ω̄0 − 1) + (k + t)ω̄0(ω̄0 + 1)

v4(t) = 0 , v5(t) = 0 , v6(t) = 0 ,

where nowω̄0 =
√
1− 4ω2

0 .
Other examples of Hamiltonians, which can be studied by our method, can be found in [118].

We just mention two examples which can be completely solved

H1(t) =
P 2

2m0
+

1

2
m0(U + V cos(ω0t))X

2 ,

H2(t) =
P 2

2m0
ert +

1

2
m0e

−rtω2
0X

2 + f(t)X .

The first one corresponds to a Paul trap which has been studiedin [95] and admits a solution in
terms of Mathieu’s functions. The second one is a damped Caldirola–Kanai Hamiltonian analysed
in [221].

3.9. Reduction in Quantum Mechanics.Quite often, when a quantum Lie system is related
to a non-solvable Lie algebra, it is interesting to solve it in terms of (unknown) solutions of
differential equations. Next, we study some examples of howto proceed with the method of
reduction in order to deal with problems in this way. So, we obtain that the reduction method can
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be applied not only to analyse systems of differential equations but also enables to solve certain
quantum problems in an algorithmic way.

Consider a harmonic oscillator witht-dependent frequency whose Hamiltonian is given by

H(t) =
P 2

2
+

1

2
Ω2(t)X2 .

As a particular case of the Hamiltonian described in Section1.8, this example is related to an
equation in the connected Lie group associated with the semidirect sum ofsl(2,R), spanned by
the elements{a1, a2, a3}, with the Heisenberg Lie algebra generated by the ideal{a4, a5, a6}

Rg−1∗gġ = −a1 − Ω2(t)a3, g(0) = e. (3.15)

Since the solution of this equation starts from the identityand{a1, a2, a3} close on asl(2,R) Lie
algebra, then thet-dependent HamiltonianH(t) is related to the groupSL(2,R).

As a particular application of the reduction technique we will perform the reduction from
G = SL(2,R) to the Lie group related to the Lie subalgebrah = 〈a1〉. To obtain such a reduction,
we have shown in Section 3.1 that we have to solve an equation inG/H , namely

dπL(g̃)

dt
=

3∑

α=1

bα(t)X
L
α (π

L(g̃)) (3.16)

whereXL
α are the fundamental vector fields of the actionλ of G onG/H . Now, we are going to

describe this equation in a set of local coordinates. First,in an open neighbourhoodU of e ∈ G

we can write any element of this open in a unique way as

g = exp(−c3a3) exp(−c2a2) exp(−c1a1), (3.17)

where the matricesaα, with α = 1, 2, 3, are given by (2.4).
This decomposition allows us to establish a local diffeomorphism between an open neigh-

bourhoodV ⊂ G/H and the set of matrices given byexp(−c3a3) exp(−c2a2). Now, the de-
composition (3.17) reads in matrix terms as

(
α β

γ δ

)
=

(
1 0

−c3 1

)(
ec2/2 0

0 e−c2/2

)(
1 c1
0 1

)

=

(
ec2/2 0

−c3ec2/2 e−c2/2

)(
1 c1
0 1

)
.

If we expressc1, c2, c3 in terms ofα, β, γ andδ, we obtain thatc3 = −γ/α, c2 = logα2, and
c1 = β/α. Consequently, we get
(
α β

γ δ

)
=

(
1 0

γ/α 1

)(
α 0

0 α−1

)(
1 β/α

0 1

)
=

(
α 0

γ α−1

)(
1 β/α

0 1

)
.

Thus, we can define the projectionπL : U ⊂ G→ G/H given by

πL
(
α β

γ δ

)
=

(
α 0

γ α−1

)
H, (3.18)

which allows us to represent the elements ofG/H , locally, as the2× 2 lower triangular matrices
with determinant one. Now, givenλg : g′H ∈ G/H 7→ gg′H ∈ G/H asλg ◦ πL = πL ◦ Lg,
the fundamental vector fields defined inG/H by a1 anda3 through the actionλ : (g, g′H) ∈
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G×G/H 7→ λg(g
′H) ∈ G/H are given by

XL
1 (π

L(g)) =
d

dt

∣∣∣∣
t=0

πL
(
exp(−ta1)

(
α β

γ δ

))
=

(
γ 0

0 −γ/α2

)
,

XL
3 (π

L(g)) =
d

dt

∣∣∣∣
t=0

πL
(
exp(−ta3)

(
α β

γ δ

))
=

(
0 0

−α 0

)
,

and the equation onV ⊂ G/H is described by
(
α̇ 0

γ̇ −α̇α−2

)
=

(
γ 0

−Ω2(t)α −γα−2

)
.

Therefore, we need to obtain a solution of the system
{
α̈ = −Ω2(t)α,

γ = α̇ .
(3.19)

Then, taking into account (3.18), ifα1 is a solution of the system (3.19), the curveg̃(t) that
satisfiesg(t) = g̃(t)h(t), whereh(t) is a solution of an equation defined on the Lie group with
Lie algebrah = 〈a1〉, reads

g̃(t) =

(
α1 0

α̇1 α−1
1

)
=

(
ec2/2 0

−c3ec2/2 e−c2/2

)
= exp

(
α̇1

α1
a3

)
exp(−2 logα1a2),

and the curve which acts on the initial equation inSL(2,R) to transform it into one in the men-
tioned Lie subalgebra is given bȳg(t) = g̃−1(t),

ḡ(t) = exp(2 logα1 a2) exp

(
− α̇1

α1
a3

)
.

This curve transforms the initial equation in the group given by (3.15) into the new one given by
(3.3), i.e.

a′(t) = − a1
α2
1(t)

,

which corresponds to thet-dependent HamiltonianH ′(t) = P 2/(2α2
1(t)). The induced transfor-

mation in the Hilbert spaceH that transformsH(t) intoH ′(t) is

exp

(
i
logα1

2
(PX +XP )

)
exp

(
−i α̇1

2α1
X2

)
.

Both results can be found in [96].
There are other possibilities of choosing different Lie subalgebras ofg in order to perform the

reduction, however the results are always given in terms of asolution of a differential equation.

4. Integrability conditions for Lie systems

The main aim of this chapter is concerned with the description of the main aspects of the inte-
grability theory for Lie systems detailed in [47] and based on the geometrical understanding of
Riccati equations.

The Riccati equation can be considered as the simplest nonlinear differential equation [40,
50]. It is, basically, the only first-order ordinary differential equation admitting a nonlinear su-
perposition rule [157, 234]. In spite of its apparent simplicity, its general solution cannot be
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described by means of quadratures with the exception of somevery particular cases [63, 132,
169, 183, 214, 239].

The relevance of Riccati equation becomes evident when we take into account its frequent
appearance in many fields of Mathematics and Physics [57, 159, 176, 184, 203, 207, 216, 234].
This also implies the necessity of a theory of integrabilityproviding all those integrable cases
that might lead to solvable physical models.

4.1. Integrability of Riccati equations. In order to provide a first insight into the study of in-
tegrability conditions for Riccati equations, we review here some very well-known results about
this topic.

Recall that Riccati equations are first-order differentialequations of the form

dx

dt
= b1(t) + b2(t)x+ b3(t)x

2. (4.1)

A first particular example of Riccati equation integrable byquadratures is the one withb3 = 0.
In fact, in such a case, Riccati equation reduces to an inhomogeneous linear equation, which can
be explicitly integrated by means of two quadratures.

Additionally, the change of variablew = −1/x transforms the above Riccati equation into
the new one

dw

dt
= b1(t)w

2 − b2(t)w + b3(t).

Consequently, if we suppose thatb1 = 0 in equation (4.1), that is, if we consider a Bernoulli
equation, the mentioned change of variable leads to an integrable linear equation.

Another known property on the integrability of Riccati equations establishes that given a
particular solutionx1(t) of (4.1), the changex = x1(t) + z permits us to transform a Riccati
equation into a new one for which the coefficient of the term independent ofz is zero, i.e.

dz

dt
= (2 b3(t)x1(t) + b2(t))z + b3(t) z

2,

and, as we pointed out previously, this equation reduces to an inhomogeneous linear equation
with the change of variablesz = −1/u. Consequently, the knowledge of a particular solution
of a Riccati equation allows us to find its general solution bymeans of two quadratures. It is
worth recalling that this property can be more generally understood by means of the theory of
Lie systems. Indeed, this theory states that the knowledge of a particular solution of a Lie system
enables us to reduce the initial equation into a ‘simpler’ one, see Section 1.2 or [40].

If we know two particular solutions,x1(t) andx2(t), of equation (4.1), its general solution can
be determined with one quadrature. Indeed, the change of variablez = (x− x1(t))/(x− x2(t))

transforms the original equation into a homogeneous lineardifferential equation and, hence, the
general solution can be immediately found.

Finally, giving three particular solutions,x1(t), x2(t), x3(t), the general solution can be writ-
ten, without making use of any quadrature, in terms of the superposition rule (1.11).

The simplest case of Riccati equation, i.e. the one withb1, b2 andb3 being constant, has been
fully studied and it is integrable by quadratures, see in example [64]. This can be viewed as the
consequence of the existence of a constant (maybe complex) solution, permitting us to reduce the
equation into an inhomogeneous linear one. Note also that, in a similar way, separable Riccati
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equations of the form
dx

dt
= ϕ(t)(c1 + c2 x+ c3 x

2) ,

with ϕ(t) being a non-vanishing function, are integrable, because they admit a constant solution
again, which enables us to transform the equation into a linear inhomogeneous one again. On
the other hand, the integrability of the above equation can also be related to the existence of a
t-reparametrisation, reducing the problem to an autonomousone.

4.2. Transformation laws of Riccati equations.We here describe an important property of
Lie systems, in the particular case of Riccati equations, playing a relevant rôle for establishing
integrability criteria:The groupG of curves in a Lie groupG associated with a Lie system acts
on the set of the related Lie systems.

More explicitly, consider a familyX1, X2, X3, of vector fields onR, e.g. the set given
in (1.26), spanning the Vessiot-Guldberg Lie algebra of vector fields associated with Riccati
equations and isomorphic tosl(2,R). In terms of this family, each Riccati equation (4.1) is re-
lated to at-dependent vector fieldXt = b1(t)X1 + b2(t)X2 + b3(t)X3, which can be consid-
ered as a curve(b1(t), b2(t), b3(t)) in R3. Each element̄A of the group of smooth curves in
SL(2,R), i.e. Ā ∈ G ≡ Map(R, SL(2,R)), transforms every curvex(t) in R into a new one
x′(t) = Φ(Ā(t), x(t)) by means of the actionΦ : (A, x) ∈ SL(2,R)×R 7→ Φ(A, x) ∈ R̄ of the
form:

Φ(A, x) =





αx+ β

γ x+ δ
x 6= − δ

γ
, x 6= ∞,

α/γ x = ∞,

∞ x = − δ

γ
,

where A =

(
α β

γ δ

)
. (4.2)

Moreover, the abovet-dependent change of variables transforms the Riccati equation (4.1) into a
new one witht-dependent coefficientsb′1, b

′
2, b

′
3 given by





b′3 = δ2 b3 − δγ b2 + γ2 b1 + γδ̇ − δγ̇ ,

b′2 = −2 βδ b3 + (αδ + βγ) b2 − 2αγ b1 + δα̇− αδ̇ + βγ̇ − γβ̇ ,

b′1 = β2 b3 − αβ b2 + α2 b1 + αβ̇ − βα̇ .

(4.3)

Indeed, the above expressions define an affine action of the groupG on the set of Riccati equa-
tions. In other words, given the elementsA1, A2 ∈ G, transforming the coefficients of a general
Riccati equation by means of two successive transformations of the above type, e.g. first byA1

and then byA2, gives exactly the same result as doing only one transformation with the element
A2 · A1 of G, see [63, 151].

The groupG also acts on the set of equations of the form (1.31) onSL(2,R). In order to
show this, note first thatG acts on the left on the set of curves inSL(2,R) by left translations, i.e.
given two curvesĀ(t), A(t) ⊂ SL(2,R), the curveĀ(t) transforms the curveA(t) into a new
oneA′(t) = Ā(t)A(t). Moreover, ifA(t) is a solution of equation (1.31), then the curveA′(t)

satisfies a new equation like (1.31) but with a different right hand sidea′(t). Differentiating the
relationA′(t) = Ā(t)A(t) and taking into account the form of (1.31), we get that, in view of the
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basis (2.4), the relation between the curvesa(t) anda′(t) in sl(2,R) is

a′(t) = Ā(t)a(t)Ā−1(t) + ˙̄A(t)Ā−1(t) = −
3∑

α=1

b′α(t)aα , (4.4)

which yields the expressions (4.3). Conversely, ifA′(t) = Ā(t)A(t) is the solution for the equa-
tion corresponding to the curvea′(t) given by the transformation rule (4.4), thenA(t) is the
solution of the equation (1.31) determined by the curvea(t).

Summarising, we have shown that it is possible to associate each Riccati equation with an
equation on the Lie groupSL(2,R) and to define an infinite-dimensional group of transforma-
tions acting on the set of Riccati equations. Additionally,this process can be easily derived in a
similar way for any Lie system, see [47].

4.3. Lie structure of an equation of transformation of Lie systems. Let us construct a Lie
system describing the curves inSL(2,R) which transform the Riccati equation associated with
an equation onSL(2,R) characterised by the curvea(t) ⊂ sl(2,R) into the Riccati equation
associated with the curvea′(t) ⊂ sl(2,R). By means of this Lie system, we later explain the
results derived in [47] in order to describe, from a unified point of view, the developments of the
works [40, 50].

Multiply equation (4.4) on the right bȳA(t) to get

˙̄A(t) = a′(t)Ā(t)− Ā(t)a(t) . (4.5)

If we consider the above equation as a system of first-order differential equations in the coeffi-
cients of the curvēA(t) in SL(2,R), with

Ā(t) =

(
α(t) β(t)

γ(t) δ(t)

)
, α(t)δ(t) − β(t)γ(t) = 1,

then system (4.5) reads




α̇

β̇

γ̇

δ̇


 =




b′
2
−b2
2 b3 b′1 0

−b1 b′
2
+b2
2 0 b′1

−b′3 0 − b′
2
+b2
2 b3

0 −b′3 −b1 − b′
2
−b2
2







α

β

γ

δ


 . (4.6)

The solutionsy(t) = (α(t), β(t), γ(t), δ(t)) of the above system relating two given Riccati equa-
tions are associated with curves inSL(2,R), i.e. they are such that, at any time,αδ − βγ = 1.
Nevertheless, we can drop such a restriction for the time being as it can be implemented by a re-
straint on the initial conditions for the solutions and, hence, we can treat the variables,α, β, γ, δ,
in the system (4.6) as being independent. In this case, this linear system can be regarded as a
Lie system linked to a Lie algebra of vector fields isomorphicto gl(4,R). Nevertheless, it may
also be understood as a Lie system related to a Lie algebra of vector fields isomorphic to a Lie
subalgebra ofgl(4,R). Indeed, consider the vector fields

N1 = −α
∂

∂β
− γ

∂

∂δ
, N ′

1 = γ
∂

∂α
+ δ

∂

∂β
,

N2 = 1

2

(
β

∂

∂β
+ δ

∂

∂δ
− α

∂

∂α
− γ

∂

∂γ

)
, N ′

2 = 1

2

(
α

∂

∂α
+ β

∂

∂β
− γ

∂

∂γ
− δ

∂

∂δ

)
,

N3 = β
∂

∂α
+ δ

∂

∂γ
, N ′

3 = −α
∂

∂γ
− β

∂

∂δ
,
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spanning a Vessiot-Guldberg Lie algebra of vector fields isomorphic tog ≡ sl(2,R)⊕sl(2,R) ⊂
gl(4,R). Consequently, the linear system of differential equation(4.6) is a Lie system onR4

associated with a Lie algebra of vector fields isomorphic tog, see [47].
If we denotey ≡ (α, β, γ, δ) ∈ R4, system (4.6) is a differential equation onR4 of the form

dy

dt
= N(t, y), (4.7)

with N being thet-dependent vector field

Nt =

3∑

α=1

(bα(t)Nα + b′α(t)N
′
α) .

The vector fields{N1, N2, N3, N
′
1, N

′
2, N

′
3} span a regular distributionD with rank three in

almost any point ofR4 and thus there exists, at least locally, a first-integral forall the vector fields
in the distributionD. The method of characteristics allows us to determine that this first-integral
can be

I : y = (α, β, γ, δ) ∈ R
4 7→ det y ≡ αδ − βγ ∈ R.

Moreover, this first-integral is related to the determinantof a matrixĀ ∈ SL(2,R) with coeffi-
cients given by the components ofy = (α, β, γ, δ). Therefore, if we have a solution of the system
(4.6) with initial condition such thatdet y(0) = α(0)δ(0) − β(0)γ(0) = 1, thendet y(t) = 1

at any timet and the solution can be understood as a curve inSL(2,R). Summarising, we have
proved the following theorem.

THEOREM 4.1. The curves inSL(2,R) transforming equation (1.31) into a new equation of
the same form characterised by a curvea′(t) = −

∑3
α=1 b

′
α(t)aα are described through the

solutions of the Lie systems

dy

dt
= N(t, y) =

3∑

α=1

bα(t)Nα(y) +

3∑

α=1

b′α(t)N
′
α(y). (4.8)

such thatdet y(0) = 1. Furthermore, the above Lie system is related to a non-solvable Vessiot–
Guldberg Lie algebra isomorphic tosl(2,R)⊕ sl(2,R).

A consequence of the above Theorem is the following corollary, whose proof is omitted and
left to the reader.

COROLLARY 4.2. Given two Riccati equations associated with curvesa′(t) anda(t) in sl(2,R),
there always exists a curvēA(t) in SL(2,R) transforming the Riccati equation related toa(t)
into the new one associated witha′(t). Furthermore, ifĀ(0) = I, this curve is uniquely defined.

Even if we know that given two equations on the Lie groupSL(2,R) there always exists
a transformation relating both, in order to obtain such a curve we need to solve the differential
equation (4.7) which, unfortunately, is Lie system relatedto a non-solvable Vessiot–Guldberg.
Consequently, it is not easy to find its solutions in general as, for instance, it is not integrable by
quadratures.

Nevertheless, many known and new properties on integrability conditions for Riccati equa-
tions can be determined by means of Theorem 4.1. Furthermore, the procedure to obtain the Lie
system (4.7) can be generalised to deal with any Lie system related to a Lie groupG with Lie
algebrag (cf. [47]).



Lie systems: theory, generalisations, and applications 75

4.4. Description of some known integrability conditions.Note that Lie systems onG of the
form (1.31) determined by a constant curve,a = −

∑3
α=1cαaα, are integrable and, therefore,

the same happens for curves of the forma(t) = −D
(

3∑

α=1

cαaα

)
, whereD = D(t) is a non-

vanishing function, as at-reparametrisation reduces the problem to the previous one.
Our aim now is to determine the curves̄A(t) in SL(2,R) transforming the equation on

SL(2,R) characterised by a curvea(t) into the equation onSL(2,R) characterised bya′(t) =
−D(c1a1 + c2a2 + c3a3), with D = D(t) a non-vanishing function andc1c3 6= 0. As the
final equation is associated with a solvable one-dimensional Vessiot-Guldberg Lie algebra, the
transformation establishing the relation to such a final integrable equation allows us to find by
quadratures the solution of the initial equation and, therefore, the solution for its associated Ric-
cati equation. In order to get the transformation between the Riccati equations linked to the before
equations onSL(2,R), we look for particular curves̄A(t) in SL(2,R) satisfying certain condi-
tions in order to get an integrable equation (4.6). Nevertheless, under the assumed restrictions, we
may obtain a system of differential equations which does notadmit any solution. In such a case,
the conditions ensuring the existence of solutions will describe integrability conditions. As an
application we show that many known achievements about the integrability of Riccati equations
can be recovered and explained in this way.

We have already showed that Riccati equations (4.1), withb1b3 ≡ 0, are reducible to linear
differential equations and therefore they are always integrable [57]. Hence, they are not interest-
ing in the study of integrability conditions and we can focusour attention on reducing Riccati
equations withb1b3 6= 0 into integrable ones by means of the action of a curve inSL(2,R). With
this aim, consider the family of curves withβ = 0 andγ = 0, i.e. take curves inSL(2,R) of the
form

A(t) =

(
α(t) 0

0 δ(t)

)
⊂ SL(2,R) , α(t)δ(t) = 1.

The curveĀ(t) in SL(2,R) determines at-dependent change of variables inR given by
x′(t) = Φ(Ā(t), x). In view of the action (4.2), and asαδ = 1, we get that the previous change
of variables reads

x′ = α2(t)x = G(t)x , G(t) ≡ α(t)

δ(t)
> 0. (4.9)

In view of the relations (4.3), the initial Riccati equations is transformed, by means of the curve
Ā(t), into the new Riccati equation witht-dependent coefficients

b′1 = α2 b1 , b′2 = α δ b2 + α̇ δ − α δ̇ , b′3 = δ2 b3 .

Moreover, the functionsα(t) andδ(t) are solutions of the system (4.7), which in this case reduces
to




α̇

0

0

δ̇


 =




b′
2
−b2
2 b3 b′1 0

−b1 b′
2
+b2
2 0 b′1

−b′3 0 − b′
2
+b2
2 b3

0 −b′3 −b1 − b′
2
−b2
2







α

0

0

δ


 . (4.10)

The existence of solutions for the above system related to elements ofSL(2,R) that satisfy the
required conditions determines the integrability of a Riccati equation by the method described.
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Thus, let us analyse the existence of such solutions to get these integrability conditions.
From some of the relations of the above system, we get that

−b1α+ b′1δ = 0, −b′3α+ b3δ = 0.

As α(t) = 1, these relations imply thatb′1 b
′
3 = b1 b3 and

α2 =
b′1
b1

=
b3
b′3

≡ G > 0 .

Hence, the transformation formulas (4.3) reduce to

b′3 = α−2 b3 , b′2 = b2 + 2
α̇

α
, b′1 = α2b1 . (4.11)

Then, in order to exist at-dependent functionD and two real constantsc1 andc3, with c1c3 6= 0,
such thatb′3 = Dc3 andb′1 = Dc1, the functionD must be given by

D2c1c3 = b1b3 =⇒ D = ±
√
b1b3
c1c3

,

where we have used thatb′1b
′
3 = b1b3. On the other hand, asb′1/b1 = α2 > 0, we have to fix the

signκ of the functionD in order to satisfy this relation, i.e.sg(c1D) = sg(b1). Therefore,

κ = sg(D) = sg(b1/c1).

Also, asb1b3 = b′1b
′
3, we get thatsg(b1b3) = sg(c1c3). Furthermore, in view of relations (4.11),

α is determined, up to a sign, by

α =

√
Dc1
b1

=

(
c1
c3

b3
b1

)1/4

. (4.12)

and therefore the change of variables (4.9) reads

x′ =
D(t)c1
b1(t)

x . (4.13)

Finally, as a consequence of (4.11), in order forb′2 to be the productb′2 = c2D, we see that

b2 + 2
α̇

α
= κc2

√
b1b3
c1c3

. (4.14)

Using (4.12) and the above equality, we see that the integrability condition is
√
c1c3
b1b3

[
b2 +

1

2

(
ḃ3
b3

− ḃ1
b1

)]
= κc2 .

Conversely, if the above integrability condition is valid andD2c1c3 = b1b3, the change of
variables (4.13) transforms the Riccati equation (4.1) into dx′/dt = D(t)(c1 + c2y

′ + c3y
′2),

with c1c3 6= 0. To sum up, we have proved the following theorem.

THEOREM 4.3. The necessary and sufficient conditions for the existence ofa transformation

x′ = G(t)x, G(t) > 0,

relating the Riccati equation

dx

dt
= b1(t) + b2(t)x + b3(t)x

2 , b1b3 6= 0,
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to an integrable one given by

dx′

dt
= D(t)(c1 + c2x

′ + c3x
′2) , c1c3 6= 0, D(t) 6= 0, (4.15)

wherec1, c2, c3 are real numbers andD(t) is non-vanishing functions, are

D2c1c3 = b1b3,

(
b2 +

1

2

(
ḃ3
b3

− ḃ1
b1

))√
c1c3
b1b3

= κc2. (4.16)

whereκ = sg(D) = sg(b1/c1). The transformation is then uniquely defined by

x′ =

√
b3(t)c1
b1(t)c3

x .

From previous results, the following corollary follows.

COROLLARY 4.4. A Riccati equation (4.15) withb1b3 6= 0 can be transformed into a Riccati
equation of the form (4.15) by at-dependent change of variablesy′ = G(t)y, with g(t) > 0, if
and only if

1√
|b1b3|

(
b2 +

1

2

(
ḃ3
b3

− ḃ1
b1

))
= K, (4.17)

for a certain real constantK. In such a case, the Riccati equation (4.1) is integrable by quadra-
tures.

In view of Theorem 4.3, if we start with the integrable Riccati equation (4.15), we can obtain
the set of all Riccati equations that can be reached from it bymeans of a transformation of the
form (4.9).

COROLLARY 4.5. Given an integrable Riccati equation

dx

dt
= D(t)(c1 + c2x+ c3x

2), c1c3 6= 0, D(t) 6= 0,

with D(t) a non-vanishing function, the set of Riccati equations which can be obtained with a
transformationx′ = G(t)x, withG(t) > 0, are those of the form

dx′

dt
= b1(t) +

(
ḃ1(t)

b1(t)
− Ḋ(t)

D(t)
+ c2D(t)

)
x′ +

D2(t)c1c3
b1(t)

x′2 ,

and the functionG is then given by

G =
Dc1√
b1
.

Therefore, starting with an integrable equation, we can generate a family of solvable Riccati
equations whose coefficients are parametrised by a non-vanishing functionb1. Moreover, the
integrability condition to check if a Riccati equation belongs to this family can be easily verified.

The previous results can now be used for a better comprehension of some integrability con-
ditions found in the literature. Let us illustrate this claim by reviewing some well-known integra-
bility conditions through our methods.

• The case of Allen and Stein
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The main achievements of the article [4] can be recovered through our more general approach.
In that work, a Riccati equation (4.1), withb1b3 > 0 andb0, b2 being differentiable functions
satisfying the condition

b2 +
1
2

(
ḃ3
b3

− ḃ1
b1

)

√
b1b3

= C, (4.18)

whereC is a real constant, was transformed into the integrable one

dx′

dt
=
√
b1(t)b3(t)

(
1 + Cx′ + x′2

)
, (4.19)

through at-dependent linear transformation of the form

x′ =

√
b3(t)

b1(t)
x .

If a Riccati equation obeys the integrability condition (4.18), such an equation also satisfies
the assumptions of Corollary 4.4 and, therefore, the integrability condition given in Theorem 4.3
with

c1 = c3 = 1, c2 = C, D =
√
b1b3.

Consequently, the correspondingt-dependent change of variables described by Theorem 4.3
reads

x′ =

√
b3(t)

b1(t)
x ,

showing that the transformation in [4] is a particular case of our results. This is not surprising, as
Theorem 4.3 shows that if such at-dependent change of variables is used to transform a Riccati
equation (4.1) into one of the form (4.15), this change of variables must be one of the form (4.13)
and the initial Riccati equation must satisfy integrability conditions (4.16).

• The case of Rao and Ukidave:

Rao and Ukidave stated in their work [190] that a Riccati equation (4.1), withb1b3 > 0, can
be transformed into an integrable one

dx′

dt
=
√
cb1b3

(
1 + kx′ +

1

c
x′

2
)
,

through at-dependent linear transformation

x′ =
1

v(t)
x,

if there exist two real constantsc andk such that the following integrability condition is satisfied

b3 =
b1
cv2

, (4.20)

with v(t) being a solution of the differential equation

dv

dt
= kb1(t) + b2(t)v . (4.21)

Note that, in view of (4.20), necessarilyc > 0 and if the integrability conditions (4.20) and
(4.21) hold with constantsc andk and a negative solutionv(t), the same conditions are valid
for the constantsc, −k and a positive solution−v(t). Consequently, we can restrict ourselves to
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studying the integrability conditions (4.20) and (4.21) for positive solutionsv(t) > 0. In such a
case, the above method uses at-dependent linear change of coordinates of the form (4.9) and the
final Riccati equation are of the type described in our work (4.15). Therefore, the integrability
conditions derived by Rao and Ukidave have to be a particularinstance of the integrable cases
described by Theorem 4.3.

Using the value ofv(t) in terms of the constantc and the functionsb1 andb3 obtained with
the aid of the formula (4.20) and equation (4.21), we get that

1√
|b1b3|

(
b2 +

1

2

(
ḃ3
b3

− ḃ1
b1

))
= −ksg(b0)

√
c.

Hence, the Riccati equations holding conditions (4.20) and(4.21) satisfy the integrability condi-
tions of Corollary 4.5. Moreover, if we choose

D2 = cb1b3, c1 = 1, c2 = −k, c3 = c−1,

thenD =
√
cb1b3 and the only possible transformation (4.9) given by Theorem4.3 reads

x′ = α2(t)x =

√
cb3(t)

b1(t)
x,

and hence,
1

v
=

√
cb3
b1
.

In this way, we recover one of the results derived by Rao and Ukidave in [190].

In short, many integrability conditions found in the literature can be described by our more
general methods.

4.5. Integrability and reduction. Now we develop a similar procedure to the one derived above,
but now we assume the solutions of system (4.6) to be includedwithin a two-parameter subset of
SL(2,R). As a result, we recover some known integrability conditions and review, from a more
general point of view, the integrability method described in [40].

As we did previously, let us try to relate the Riccati equation (4.1) to an integrable one as-
sociated, as a Lie system, with a curvea′(t) = −D(t)(c1a1 + c2a2 + c3a3), with c3 6= 0 and
a non-vanishing functionD = D(t). Nevertheless, we consider solutions of system (4.7) with
γ = 0, α > 0, and related to a curve inSL(2,R), i.e. we analyse transformations

x′ =
α(t)

δ(t)
x+

β(t)

δ(t)
= α2(t)x+

β(t)

δ(t)
.

In this case, using the expression in coordinates (4.6) of system (4.8), we get that




α̇

β̇

0

δ̇


 =




b′
2
−b2
2 b3 b′1 0

−b1 b′
2
+b2
2 0 b′1

−b′3 0 − b′
2
+b2
2 b3

0 −b′3 −b1 − b′
2
−b2
2







α

β

0

δ


 , (4.22)

whereb′j = D cj andcj ∈ R for j = 1, 2, 3. As we supposeb′3 6= 0, the third equation of the
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above system yields
α

δ
=
b3
b′3

=
b3
Dc3

.

Sinceαδ = 1 so that the solution of (4.8) is related to an element ofSL(2,R), andb′3 = Dc3,
the above expression implies

α2 =
b3
Dc3

. (4.23)

Therefore,α is determined by the values ofb3(t), D andc3. Additionally, the first differential
equation of system (4.22) determinesβ in terms ofα and the coefficients of the initial and final
Riccati equations, i.e.

β =
1

b3

(
α̇− b′2 − b2

2
α

)
.

Taking into account the relation (4.23) and asαδ = 1, we can defineM = β/α and rewrite the
above expression as follows

dD

dt
=

(
b2(t) +

ḃ3(t)

b3(t)

)
D − c2D

2 − 2b3(t)MD.

Considering the differential equation iṅβ in terms ofM , we get the equation

dM

dt
= −b1(t) +

c1c3
b3(t)

D2 + b2(t)M − b3(t)M
2 .

Finally, asδα = 1 is a first-integral of system (4.8), if the system for the variablesM andD
and all the abovementioned conditions are satisfied, the valueδ = α−1 obeys its corresponding
differential equations of the system (4.22). Summarising,we have stated the following theorem.

THEOREM 4.6. Given a Riccati equation (4.1) there exists a transformation

x′ = G(t)x +H(t) , G(t) > 0 ,

relating it to the integrable equation

dx′

dt
= D(t)(c1 + c2x

′ + c3x
′2), (4.24)

with c3 6= 0, andD a non-vanishing function, if and only if there exist functionsD andM
satisfying the system





dD

dt
=

(
b2(t) +

ḃ3(t)

b3(t)

)
D − c2D

2 − 2b3(t)MD,

dM

dt
= −b1(t) +

c1c3
b3(t)

D2(t) + b2(t)M − b3(t)M
2.

The transformation is then given by

x′ =
b3(t)

D(t)c3
(x +M(t)) . (4.25)
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If we considerc1 = 0 in equation (4.24), the system determining the curve inSL(2,R) which
performs the transformation of Theorem 4.6 reads





dD

dt
=

(
b2(t) +

ḃ3(t)

b3(t)

)
D − c2D

2(t)− 2b3(t)MD,

dM

dt
= −b1(t) + b2(t)M − b3(t)M

2.

(4.26)

Note that this system does not involve any integrability condition, since there always exists a
solution for every initial condition. Nevertheless, finding such solutions can be as difficult as
solving the initial Riccati equation. Therefore, we need toassume some simplification in order to
find a particular solution. Let us put, for instance,M = b1/b2. In this case, the first differential
equation of the above system does not depend onM and reduces to

dD

dt
=

(
−b2(t) +

ḃ3(t)

b3(t)

)
D − c2D

2

whose solutions read

D(t) =
exp

(∫ t
0
A(t′)dt′

)

C + c2
∫ t
0 exp

(∫ t′′
0 A(t′)dt′

)
dt′′

, A(t) =

(
−b2(t) +

ḃ3(t)

b3(t)

)
.

Meanwhile, asM = b2/b3 must satisfy the second equation in (4.26), we obtain that

d

dt

(
b2
b3

)
= −b1 ,

which gives rise to an integrability condition. This summarises one of the integrability conditions
considered in [189].

Let us recover, from our point of view, the result that establishes that the knowledge of a
particular solution of the Riccati equation allows us to obtain its general solution. In fact, under
the change of variablesM = −x, the system (4.26) becomes





dD

dt
=

(
b2(t) +

ḃ3(t)

b3(t)

)
D − c2D

2 + 2b3(t)xD,

dx

dt
= b1(t) + b2(t)x+ b3(t)x

2.

(4.27)

Each particular solution of the previous system takes the form (Dp(t), xp(t)), with xp(t) being a
particular solution of the Riccati equation (4.1). Therefore, given such a particular solutionxp(t),
the functionDp = Dp(t), corresponding to(Dp(t), xp(t)), satisfies the equation

dDp

dt
=

(
b2(t) +

ḃ3(t)

b3(t)
+ 2b3(t)xp(t)

)
Dp − c2D

2
p, (4.28)

which is is a Bernoulli equation and, therefore, is integrable by quadratures. Consequently, the
knowledge of a particular solutionxp(t) of the Riccati equation (4.1) allows us to determine
a particular solution(Dp(t), xp(t)) of system (4.27) and, in view of the change of variables
x = −M , a particular solution(Dp(t),Mp(t)) = (Dp(t),−xp(t)) of system (4.26). Finally, the
functionsMp(t) andD(t) lead to the change of variables (4.25) described in Theorem 4.6 which
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transforms the initial Riccati equation (4.1) into anotherone related to a solvable Lie algebra of
vector fields.

The above process describes a reduction process similar to the one derived in [40], but our
method allows us to obtain a direct reduction into an integrable Riccati equation (4.24) through a
particular solution.

There exist many ways to impose conditions on the coefficients of the second equation in
(4.27) to obtain a particular solution easily. For instance, if there exists a real constantc such that
for thet-dependent functionsb1, b2 andb3 we have thatb1+b2c+b3c2 = 0, thenc is a particular
solution, for example:

1. b1 + b2 + b3 = 0 implies thatc = 1 is a particular solution.
2. k22b1 + k2k3b2 + k23b3 = 0 means thatc = k3/k2 is a particular solution.

This sketches some cases found in [40, 214].
As a first application of the above method, we can integrate the Riccati equation

dx

dt
= −n

t
+
(
1 +

n

t

)
x− x2. (4.29)

related to Hovy’s equation [200]. This Riccati equation admits the particular constant solution
xp(t) = 1. Using such a particular solution in equation (4.28) and taking, for instance,c1 = 0

andc2 = 0, we can obtain a particular solution for equation (4.28), e.g.Dp(t) = tne−t. Hence,
(tne−t, 1) is a particular solution of system (4.27) related to equation (4.29) and(tne−t,−1) is
a solution of the system (4.26). In this way, Theorem 4.6 states that the transformation (4.25),
determined by theDp(t) = tne−t andMp(t) = −1, of the form

x′ = −t−netc−1
3 (x− 1), (4.30)

relates the solutions of equation (4.29) to those of the integrable equation

dx′

dt
= e−ttnc3x

′2.

If we fix c3 = 1, the solution of the above equation reads

x′(t) =
1

K − Γ(1 + n, t)
,

whereK is an integration constant andΓ(a, b) is the incomplete Euler’s Gamma function

Γ(a, t) =

∫ ∞

t

t′a−1e−t
′

dt′.

In view of the change of variables (4.30), the solutionsx(t) of the Riccati equation (4.29) and
x′(t) are related through the expressionx′(t) = −t−netc−1

3 (x(t)−1). Therefore, if we substitute
the general solutionx′(t) in this expression, we can derive the general solution for the Riccati
equation (4.29), that is,

x(t) = 1− e−ttn

Γ(n+ 1, t) +K
.

4.6. Linearisation of Riccati equations. To finish this chapter, we shall analyse the problem
of the linearisation of Riccati equations through the linear fractional transformations (4.9). As
a main result, we establish various integrability conditions ensuring that a Riccati equation can
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be transformed into a linear one by means of a diffeomorphismon R associated with a linear
fractional transformation of a certain class.

As a first insight in the linearisation process, notice that Corollary 4.2 states that there exists
a curve inSL(2,R), and therefore at-dependent linear fractional transformation onR, trans-
forming each given Riccati equation into any other one (and,in particular, into a linear one). This
clearly implies that Riccati equations are always linearisable by means of this class of transfor-
mations. Nevertheless, as Lie system (4.7) describing suchtransformations is related to a non-
solvable Lie algebra of vector fields, determining such a transformation can be as difficult as
solving the Riccati equation to be linearised.

Let us try to transform a given Riccati equation into a lineardifferential equation by means
of a linear fractional transformation (4.2) determined by aconstant vector(α, β, γ, δ) ∈ R4 with
αδ − βγ = 1. In this case, determining the conditions ensuring the existence of solutions of
system (4.7) performing such a transformation is an easy task. Moreover, as solving system (4.7)
also becomes straightforward, we can determine some linearisability conditions and, when these
conditions hold, specify the corresponding change of variables.

Note that as(α, β, γ, δ) is a constant, we havėα = β̇ = γ̇ = δ̇ = 0 and, in view of (4.6),
the diffeomorphism onR performing the transformation is related to a vector in the kernel of the
matrix

B =




b′
2
−b2
2 b3 b′1 0

−b1 b′
2
+b2
2 0 b′1

0 0 − b′
2
+b2
2 b3

0 0 −b1 − b′
2
−b2
2



, (4.31)

where we assumeb1 6= 0, b3 6= 0. We omit the study of the caseb1(t)b3(t) = 0 in an open
interval because, as it was shown in Section 4.1, this case isknown to be integrable.

The necessary and sufficient condition forkerB to be non-trivial isdetB = 0. Therefore, a
short calculation shows thatdim kerB > 0 if and only if −b22 + b′23 (t) + 4b1b3)

2 = 0. Thus,
b′3 = ±

√
b22 − 4b1b3 andb′3 is fixed, up to a sign, by the values ofb1, b2 andb3. Let us study the

kernel of the matrixB in the positive and negative cases forb′2.
• Positive case: The kernel of matrix (4.31) is given by the vectors

(
δ
b′1
b1

+ β
b2 +

√
b22 − 4b1b3
2b1

, β,−δ−b2 +
√
b22 − 4b1b3
2b1

, δ

)
, δ, β ∈ R.

Recall that we are only considering the constant elements ofkerB, therefore there should be two
real constantsK1 andK2 such that

K1 = δ
b′1
b1

+ β
b2 +

√
b22 − 4b1b3
2b1

, K2 =
−b2 +

√
b22 − 4b1b3
2b1

, (4.32)

Moreover, in order to relate these vectors to elements inSL(2,R), we have to impose the condi-
tion det(K1, β,−δK2, δ) = δ(K1 + βK2) = 1.

The second condition in (4.32) imposes a restriction on the coefficients of the initial Riccati
equation to be linearisable by a constant linear fractionaltransformation (4.2). Then, if this is sat-
isfied, we can chooseβ, γ,K1 andb′2 to satisfy the other conditions. Thus, the only linearisation
condition is the second one in (4.32).
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• Negative case: In this case,ker B reads
(
δb′1
b1

+ β
b2 −

√
b22 − 4b1b3
2b1

, β,−δ−b2 −
√
b22 − 4b1b3
2b1

, δ

)
, δ, β ∈ R,

and now the new conditions reduce to the existence of two realconstantsK1 andK2 such that

K1 =
δb′1
b1

+ β
b2 −

√
b22 − 4b1b3
2b1

, K2 =
−b2 −

√
b22 − 4b1b3
2b1

,

with δ(K1 + βK2) = 1. If the second expression of the above conditions is satisfied, we can
proceed in a similar fashion as for the positive case to obtain the transformation that performs the
linearisation of the initial Riccati equation.

Summarising:

THEOREM 4.7. The necessary and sufficient condition for the existence of adiffeomorphism
on R̄ of linear fractional type associated with a transformationon SL(2,R) transforming the
Riccati (4.1) into a linear differential equation is the existence of a real constantK such that

K =
−b2 ±

√
b22 − 4b1b3
2b1

. (4.33)

As a Riccati equation (4.1) satisfies the above condition if and only ifK is a constant partic-
ular solution, we get the following corollary:

COROLLARY 4.8. A Riccati equation can be linearised by means of a diffeomorphism onR of
the form (4.2) if and only if it admits a constant particular solution.

Ibragimov showed that a Riccati equation (4.1) is linearisable by means of a change of vari-
ablesz = z(x) if and only if the Riccati equations admits a constant solution [125]. Additionally,
we have proved that in such a case, the change of variables canbe described by means of a
transformation of the type (4.2).

5. Lie integrability in Classical Physics

In spite of their apparent simplicity, the methods developed throughout the previous chapter re-
duce the analysis of certain integrability conditions for Riccati equations to studying integrability
conditions for an equation onSL(2,R). Moreover, these methods can also be applied to any
other Lie system related to the same equation onSL(2,R). For instance, we here use the results
on integrability of Riccati equations to studyt-dependent (frequency and/or mass) harmonic os-
cillators (TDHOs), which are associated with the same kind of equations onSL(2,R) as Riccati
equations. As a particular application of our results, we supply t-dependent constants of the mo-
tion for certain one-dimensional TDHOs and the solutions for a two-dimensional TDHO. Also,
our approach provides a unifying framework which allows us to apply our developments to all
Lie systems associated with equations inSL(2,R) and generalise our methods to study any Lie
system.
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5.1. TDHO as a SODE Lie system.Let us prove that every TDHO is a SODE Lie systems (see
[37, 43, 52]). Each TDHO is described by at-dependent Hamiltonian of the form

H(t) =
p2

2m(t)
+

1

2
F (t)ω2x2 ,

whose Hamilton equations read




ẋ =
∂H

∂p
=

p

m(t)
,

ṗ = −∂H
∂x

= −F (t)ω2x.

(5.1)

The solutions of the above system are integral curves for thet-dependent vector field

Xt = p
∂

∂x
− F (t)ω2x

∂

∂p
,

overT∗R. LetXHO
1 , XHO

2 andXHO
3 be the vector fields

XHO
1 = p

∂

∂x
, XHO

2 =
1

2

(
x
∂

∂x
− p

∂

∂p

)
, XHO

3 = −x ∂
∂p

, (5.2)

which satisfy the commutation relations

[XHO
1 , XHO

3 ] = 2XHO
2 , [XHO

1 , XHO
2 ] = XHO

1 , [XHO
2 , XHO

3 ] = XHO
3 ,

and therefore span a Lie algebra of vector fieldsV HO isomorphic tosl(2,R). Then, thet-
dependent vector fieldXHO associated with system (5.1) can be written as

XHO(t) = F (t)ω2XHO
3 +

1

m(t)
XHO

1 , (5.3)

i.e. it is a linear combination witht-dependent coefficients

XHO(t) =

3∑

α=1

bα(t)X
HO
α , (5.4)

with b1(t) = 1/m(t), b2(t) = 0 andb3(t) = F (t)ω2. Hence, TDHOs are SODE Lie systems.
Consider the basis{a1, a2, a3} for sl(2,R) given in (2.4). Its elements satisfy the same com-

mutation relations as the vector fieldsXHO
α . Denote byΦHO : SL(2,R) × T∗R → T∗R the

action that associates eachaα with the fundamental vector fieldXHO
α , i.e. each one-parameter

subgroupexp(−taα) acts onT∗R with infinitesimal generatorXHO
α . It can be verified that this

action reads

ΦHO
((

α β

γ δ

)
,

(
x

p

))
=

(
α β

γ δ

)(
x

p

)
.

Obviously, the linear mapρHO : sl(2,R) → V HO that maps eachaα to Xα is a Lie algebra
isomorphism.

The actionΦHO allows us to relate (5.1) to an equation onSL(2,R) given by

RA−1∗AȦ = −
3∑

α=1

bα(t)aα, A(0) = I. (5.5)

Thus, ifA(t) is the solution of (5.5) and we denoteξ = (x, p) ∈ T∗R, then the solution starting
from ξ(0) is ξ(t) = ΦHO(A(t), ξ(0)) (see e.g. [40]). In summary, system (5.1) is a Lie system
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in T∗R related to an equation onSL(2,R) and the solution of equation (5.5) allows us to obtain
the solutions of (5.1) in terms of the initial condition by means of the actionΦHO.

5.2. Transformation laws of Lie equations onSL(2,R). Eacht-dependent harmonic oscillator
(5.1) can be considered as a curve inR3 of the form(b1(t), b2(t), b3(t)) through the decomposi-
tion (5.4). Then, we can transform each curveξ(t) in T∗R, by an element̄A(t) of G as follows:

If Ā(t) =

(
ᾱ(t) β̄(t)

γ̄(t) δ̄(t)

)
∈ G, Θ(Ā, ξ)(t) =

(
ᾱ(t)x(t) + β̄(t)p(t)

γ̄(t)x(t) + δ̄(t)p(t)

)
. (5.6)

The above change of variables transforms the TDHO (5.1) intoan analogous TDHO with new
coefficientsb′1, b

′
2, b

′
3 given by





b′3 =δ̄2 b3 − δ̄γ̄ b2 + γ̄2 b1 + γ̄ ˙̄δ − δ̄ ˙̄γ ,

b′2 =− 2 β̄δ̄ b3 + (ᾱδ̄ + β̄γ̄) b2 − 2 ᾱγ̄ b1 + δ ˙̄α− ᾱ ˙̄δ + β̄ ˙̄γ − γ̄ ˙̄β ,

b′1 =β̄2 b3 − ᾱβ̄ b2 + ᾱ2 b1 + ᾱ ˙̄β − β̄ ˙̄α .

The solutions of the transformed TDHO are of the formΘ(Ā(t), ξ(t)), with ξ(t) being a solution
of the initial TDHO. Additionally, the above expressions define an affine action (see e.g. [151] for
the general definition of this concept) of the groupG on the set of TDHOs [63]. This means that
in order to transform the coefficients of a TDHO by means of twotransformations of the above
type, first throughA1 and then by means ofA2, it suffices to do the transformation induced by
the productA2A1.

The result of this action ofG can also be studied from the point of view of the equations
in SL(2,R). First,G acts on the left on the set of curves inSL(2,R) by left translations, i.e. a
curveĀ(t) transforms the curveA(t) into a new oneA′(t) = Ā(t)A(t). Therefore, ifA(t) is
a solution of (5.5), characterised by a curvea(t) ∈ sl(2,R), then the new curve satisfies a new
equation like (5.5) but with a different right-hand side,a′(t), and thus it corresponds to a new
equation onSL(2,R) associated with a new TDHO. Of course,A′(0) = Ā(0)A(0), and if we
wantA′(0) = Id, we have to impose the additional condition̄A(0) = Id. In this wayG acts on
the set of curves inTISL(2,R) ≃ sl(2,R). It can be shown that the relation between both curves
a(t) anda′(t) in sl(2,R) is given by [40]

a′(t) = −
3∑

α=1

b′α(t)aα = Ā(t)a(t)Ā−1(t) + ˙̄A(t)Ā−1(t) . (5.7)

Summarising, it has been shown that it is possible to associate, in a one-to-one way, any
TDHO with an equation in the Lie groupSL(2,R) and to define a groupG of transformations on
the set of such TDHOs induced by the natural linear action ofSL(2,R).

Recall that, in view of Theorem 4.1, system (5.7) can be regarded as a system of first-order
ordinary differential equations in the coefficients of the curve inSL(2,R) of the form

Ā(t) =

(
α(t) β(t)

γ(t) δ(t)

)
.

Moreover, we can enunciate the following results, which area straightforward application to
TDHOs of Theorem 4.1 and Corollary 4.2 formulated for the analysis of certain Lie systems on
SL(2,R) related to Riccati equations.
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THEOREM5.1. The curves inSL(2,R) transforming a TDHO related to an equation on this Lie
group determined by a curvea(t) into a new TDHO associated with an equation onSL(2,R)
determined by the curvea′(t), with

a′(t) = −
3∑

α=1

b′α(t)aα , a(t) = −
3∑

α=1

bα(t)aα,

are given by the integral curves of thet-dependent vector field

N(t) =

3∑

α=1

(bα(t)Nα + b′α(t)N
′
α) , (5.8)

such thatdet Ā(0) = 1. This system is a Lie system associated with a non-solvable Lie algebra of
vector fields isomorphic tosl(2,R)⊕ sl(2,R). Moreover, such curves also transform the TDHO
related to the curvea(t) into the new one linked toa′(t).

COROLLARY 5.2. Given two TDHOs associated with the curvesa(t) anda′(t) in sl(2,R), there
always exists a curve inSL(2,R) transforming the first TDHO into the second one.

We must remark that even if we know that given two equations inthe Lie groupSL(2,R)
there always exists a transformation relating both, in order to find such a curve we need to solve
the system of differential equations providing the integral curves of (5.8). This is the solution of
a system of differential equations that is a Lie system related to a non-solvable Lie algebra in
general. Hence, it is not easy to find its solutions, i.e. it may not be integrable by quadratures.

The result of Theorem 5.1, i.e. that the system of differential equations describing the trans-
formations of Lie systems onSL(2,R) is a matrix Riccati equation associated, as a Lie system,
with a Lie algebra isomorphic tosl(2,R)⊕sl(2,R), suggests us a method to find some sufficiency
conditions for integrability of the TDHOs to be explained next.

5.3. Description of some known integrability conditions.We now study some cases when it
is possible to find curves̄A(t) in SL(2,R) transforming a given TDHO related to an equation
on SL(2,R) characterised by a curvea(t) into a new TDHO associated with an equation on
SL(2,R) characterised by a curve of the typea′(t) = −D(t)(c1a1 + c2a2 + c3a3). This is
possible if the system determined by (5.8) can be solved easily. The transformation establishing
the relation to such a TDHO allows us to find the solution of thegiven equation by quadratures.
We first restrict ourselves to studying cases in which the curve Ā(t) lies in a one-parameter
subset ofSL(2,R). The results we show next are a direct translation to the framework of TDHO
of Theorem 4.1 describing certain integrability properties of Riccati equations (see also [50]).

THEOREM 5.3. The necessary and sufficient conditions for the existence ofa transformation

ξ′ = ΦHO(Ā0(t), ξ), ξ =

(
x

p

)
,

with

Ā0(t) =

(
α(t) 0

0 α−1(t)

)
, α(t) > 0 , (5.9)

relating the TDHO associated with thet-dependent vector field

Xt = b1(t)X1 + b2(t)X2 + b3(t)X3, (5.10)
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whereb1(t)b3(t) has a constant sign, i.e.b1(t)b3(t) 6= 0, to another integrable one given by

X ′(t) = D(t)(c1X1 + c2X2 + c3X3) , (5.11)

with, c1, c2, c3, being real numbers such thatc1c3 6= 0, are

D2(t)c1c3 = b1(t)b3(t), b2(t) +
1

2

(
ḃ3(t)

b3(t)
− ḃ1(t)

b1(t)

)
= c2

√
b1(t)b3(t)

c1c3
.

Then, the transformation is uniquely defined by

Ā0(t) =




(
b3(t)c1
b1(t)c3

)1/4
0

0
(
b3(t)c1
b1(t)c3

)−1/4


 .

Note that one coefficient, eitherc1 or c3, can be reabsorbed with a redefinition of the function
D. As a straightforward application of the preceding theorem, which can be found in a similar
way as those in [50], we obtain the following corollaries:

COROLLARY 5.4. A TDHO (5.1) withb1(t)b3(t) 6= 0 is integrable by at-dependent change of
variables

ξ′ = ΦHO(Ā0(t), ξ),

with Ā0 given by (5.9), if and only
√

c1c3
b1(t)b3(t)

[
b2(t) +

1

2

(
ḃ3(t)

b3(t)
− ḃ1(t)

b1(t)

)]
= c2 , (5.12)

for certain real constantsc1, c2, andc3. In this case

D(t) =

√
b1(t)b3(t)

c1c3
,

and the new system is
dξ′

dt
= D(t)

(
c2/2 c1
−c3 −c2/2

)
ξ′ . (5.13)

COROLLARY 5.5. Given an integrable TDHO characterised by at-dependent vector field (5.11),
the set of TDHOs which can be obtained through at-dependent transformation

ξ′ = ΦHO(Ā0(t), ξ),

with Ā0 given by (5.9), are those of the form

Xt = b1(t)X1 +

(
ḃ1(t)

b1(t)
− Ḋ(t)

D(t)
+ c2D(t)

)
X2 +

D2(t)c1c3
b1(t)

X3 . (5.14)

Thus,Ā0(t) reads

Ā0(t) =




(
b3(t)c1
b1(t)c3

)1/4
0

0
(
b3(t)c1
b1(t)c3

)−1/4


 .

Therefore, starting from an integrable system we can find thefamily of t-dependent vector
fields (5.14) describing solvable TDHO systems whose coefficients are parametrised byb1(t).
Given a TDHO, it is easy to check whether it belongs to such a family and can be easily integrated.
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The integrability conditions we have described here arise as requirements on the initialt-
dependent functionsbα that allow us to solve the initial TDHO exactly by at-dependent trans-
formation of the form

ξ′ = ΦHO(exp(Ψ(t)v), ξ),

with somev ∈ sl(2,R) andΨ(t), in such a way that the initial TDHO system (5.1) in the variable
ξ is transformed into another one in the variableξ′ associated, as a Lie system, with a Vessiot–
Guldberg Lie algebra isomorphic to an appropriate Lie subalgebra ofsl(2,R) in such a way that
the equation inξ′ can be integrated by quadratures and, consequently, the equation inξ is solvable
too.

5.4. Some applications of integrability conditions to TDHOs. As a first application, we show
that the usual approach to the solution of the classical Caldirola–Kanai Hamiltonian [27, 133] can
be explained through our method (the solution of the quantumcase can be obtained in a similar
way). Next, we will also apply our approach to get integrableTDHOs.

The Hamiltonian of at-dependent harmonic oscillator is

H(t) =
1

2

p2

m(t)
+

1

2
m(t)ω2(t)x2 . (5.15)

For instance, a harmonic oscillator with a damping term [27,133] with equation of motion

d

dt
(m0ẋ) +m0µẋ+ kx = 0, k = m0ω

2,

admits a Hamiltonian description, with at-dependent Hamiltonian

H(t) =
p2

2m0
exp(−µt) + 1

2
m0 exp(µt)ω

2x2,

i.e.m(t) in (5.15) corresponds tom(t) = m0 exp(µt). In this case equations (5.1) are




ẋ =
∂H

∂p
= 1

m0
exp(−µt)p,

ṗ = −∂H
∂x

= −m0 exp(µt)x,
(5.16)

and thet-dependent coefficients of the associated Lie system read

b1(t) =
1

m0
exp(−µt) , b2(t) = 0 , b3(t) = m0ω

2 exp(µt) .

Therefore, asb1(t)b3(t) = ω2, b2 = 0 and

ḃ3
b3

− ḃ1
b1

= 2µ ,

we see that (5.12) holds if we setc1 = c3 = 1, c2 = µ/ω and the functionD is a constant,
D = ω. Hence, this example reduces to the system

d

dt

(
x′

p′

)
=

(
µ/2 ω

−ω −µ/2

)(
x′

p′

)
,

which can be easily integrated. If we putω̄2 = (µ2/4)− ω2, we get

(
x′(t)
p′(t)

)
=




cosh(ω̄t) +
µ

2ω̄
sinh(ω̄t)

ω

ω̄
sinh(ω̄t)

−
ω

ω̄
sinh(ω̄t) cosh(ω̄t)−

µ

2ω̄
sinh(ω̄t)




(
x′(0)
p′(0)

)
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and, in terms of the initial variables, we obtain

x(t) =
e−µt/2√
m0ω

((
cosh(ω̄t) +

µ

2ω̄
sinh(ω̄t)

)√
m0ωx0 +

ω

ω̄
sinh(ω̄t)

p0√
m0ω

)
.

We can also study a TDHO described by thet-dependent Hamiltonian

H(t) =
1

2
p2 +

1

2
F (t)ω2x2 , F (t) > 0,

where we assume, for simplicity,m = 1. Thet-dependent vector fieldX is

Xt = p
∂

∂x
− F (t)ω2x

∂

∂p
,

which is a linear combination

Xt = F (t)ω2XHO
3 +XHO

1 ,

i.e. thet-dependent coefficients in (5.10) are

b1(t) = 1 , b2(t) = 0 , b3(t) = F (t)ω2 ,

and the condition forF to satisfy (5.12) is

1

2

Ḟ

F
= c2 ω

√
F .

Therefore,F must be of the form

F (t) =
1

(L− c2ωt)2

and the Hamiltonian, which can be exactly integrated, is

H(t) =
p2

2
+

1

2

ω2

(L − c2ωt)2
x2 .

The corresponding Hamilton equations are




ẋ = p,

ṗ = − ω2

(L− c2ωt)2
x,

and thet-dependent change of variables to perform is




x′ =

√
ω

L− c2ωt
x,

p′ =

√
L− c2ωt

ω
p.

In consequence, 



dx′

dt
=

ω

L− c2ωt

(c2
2
x′ + p′

)
,

dp′

dt
=

ω

L− c2ωt

(
−x′ − c2

2
p′
)
,

(5.17)

and, under thet-reparametrisation,

τ(t) =

∫ t

0

ωdt′

L− c2ωt′
=

1

c2
ln

(
K ′

L− c2ωt

)
,
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the system (5.17) becomes 



dx′

dτ
=
c2
2
x′ + p′,

dp′

dτ
= −x′ − c2

2
p′,

which is equivalent to a transformed Caldirola–Kanai differential equation through the change
τ 7→ ω t andc2 7→ µ/ω. In any case, the solution is

x′(τ) =
(
cosh(ω̃τ) +

c2
2ω̃

sinh(ω̃τ)
)
x′(0) +

1

ω̃
sinh(ω̃τ)p′(0),

whereω̃ =

√
c2
2

4 − 1. Finally,

x(τ (t)) =

√
L− c2ωt

ω

[(
cosh(ω̃τ (t)) +

c2

2ω̃
sinh(ω̃τ (t))

)
x
′(0) +

1

ω̃
sinh(ω̃τ (t))p′(0)

]
.

Let us analyse another integrability condition that, as thepreceding one, arises as a com-
patibility condition for a restricted case of the system describing the integral curves of (5.8).
Nevertheless, this time, the solution is restricted to a one-parameter set of matrices ofSL(2,R)
that is not a group in general.

In this way, we deal with a family of transformations

Ā0(t) =

(
1

V (t) 0

−u1 V (t)

)
, V (t) > 0 , (5.18)

whereu1 is a constant, i.e. we want to relate thet-dependent vector field

Xt = XHO
1 + F (t)ω2XHO

3 ,

characterised by the coefficients in (5.10)

b1 = 1, b2 = 0, b3 = F (t)ω2,

to an integrable one characterised byb′1, b
′
2 andb′3, or more explicitly, to thet-dependent vector

field

Xt = D(t)(c1X1 + c3X3) ,

i.e. b′1 = Dc1, b′2 = 0, andb′3 = Dc3. Moreover, ifc1 6= 0, we can reabsorb its value redefining
D and assumingc1 = 1.

Under the action of (5.18), the original system transforms into the following system




b′3 = V 2b3 + u1V b2 + u21b1 − u1V̇ ,

b′2 = b2 + 2
u1
V
b1 − 2

V̇

V
,

b′1 =
1

V 2
b1 .

As b2 = b′2 = 0 andb1 = 1, the second equation yieldṡV = u1, i.e. V (t) = u1t + u0
with u0 ∈ R. Moreover, using this condition on the first equation together with b1 = 1, we get
b′3 = V 2b3. Then, as the third equation gives us the value ofD asD = b′1 = 1/V 2, we see that
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b′3 = Dc3 = V 2F (t)ω2. Therefore,F has to be proportional to(u1t+ u0)
−4,

F (t) =
k

(u1t+ u0)4
, k =

c3
ω2

.

Let assumek = 1 and thus,c3 = ω2. Then, thet-dependent transformation̄A0(t) performing
this reduction is 



x′ =

x

V (t)
,

p′ = −u1x+ V (t)p.

Under this transformation, the initial system becomes




dx′

dt
=

p′

V 2(t)
,

dp′

dt
= − ω2x′

V 2(t)
.

Using thet-reparametrisation

τ(t) =

∫ t

0

dt′

V 2(t′)
=

1

u1

(
1

u0
− 1

V (t)

)
,

we get the following autonomous linear system




dx′

dτ
= p′,

dp′

dτ
= −ω2x′,

whose solution is
(
x′(τ)

p′(τ)

)
=

(
cos(ωτ) sin(ωτ)

ω

−ω sin(ωτ) cos(ωτ)

)(
x′(0)

p′(0) ,

)
.

Thus, we obtain that

x(t) = V (t)

(
cos(ω τ(t))

x0
u0

+
1

ω
sin(ω τ(t))(−u1x0 + u0p0)

)
.

5.5. Integrable TDHOs andt-dependent constants of the motion.The autonomisations of the
transformed integrable systems obtained above enable us toconstructt-dependent constants of
the motion. Indeed, in previous cases, a TDHO was transformed into a Lie system related to an
equation onSL(2,R)

RA−1∗AȦ = −D(t) (c1M0 + c2a1 + c3a1) ,

associated with a TDHO determined by thet-dependent vector field

Xt = D(t)(c1X1 + c2X2 + c3X3).

Eacht-dependent first-integralI(t) of this differential equation satisfies

dI

dt
=
∂I

∂t
+XtI = 0.

Thus, the functionI is a first-integral of the vector field onR× T∗R

Xt = c1X1(t) + c2X2(t) + c3X3(t) +
1

D(t)

∂

∂t
.
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As R × T∗R is a three-dimensional manifold and the differential equation we are studying is
determined by a distribution of dimension one, there exist (at least locally) two independent first-
integrals. Next, we will analyse some integrable cases and their corresponding constants of the
motion.

• CaseF (t) = (u1t+ u0)
−2:

In this case we obtain that, according to Theorem 5.3, thet-dependent vector field of the
initial TDHO is transformed into the following one,

Xt =
ω

u1t+ u0

(
XHO

1 − u1
ω
XHO

2 +XHO
3

)

and thus, using the method of characteristics, we obtain thefollowing constants of the motion for
this TDFHO:

I1 = −u1
ω
p′ x′ + x′2 + p′2, I2 =

(u1 + u0t)
ω/u1

(
(u1

ω x
′ − 2p′) + 2ω̄x′

) 1

ω̄

,

with ω̄ = ±
√

u2

1

4ω2 − 1.

• CaseF (t) = (u1t+ u0)
−4:

In this case we see that thet-dependent vector field of the initial TDHO is transformed into

Xt =
1

V 2(t)

(
XHO

1 + ω2XHO
3

)
,

and thus, using the method of characteristics, we get the following t-dependent constants of the
motion for the initial TDHO

I1 =

(
xω

V (t)

)2

+ (V (t)p− u1x)
2
,

I2 = arcsin

(
xω

V (t)
√
I1

)
+

ω

u1V (t)
.

(5.19)

As we have twot-dependent constants of the motion overR×T∗R and the solutions in this space
are of the form(t, x(t), p(t)), we can obtain the solutions for our initial system.

5.6. Applications to two-dimensional TDHO’s. In this section we apply our previous geomet-
rical methods to analyse the following two-dimensionalt-dependent harmonic oscillator

H(t, x1, x2, p1, p2) =
p21
2

+
p22
2

+
ω2
1x

2
1 + ω2

2x
2
2

2V 4(t)
,

with ω1 andω2 being constant andV (t) = u1t+u0. Nevertheless, our approach is also valid for
the corresponding generalisation to an-dimensional TDHOs. This Hamiltonian is related to an
uncoupled pair of TDHOs and therefore the same development of the last section applies again.
In this way, we obtain that its Hamilton equations read





ẋi = pi,

ṗi = − ω2
i

V 4(t)
xi,

i = 1, 2,



94 J.F. Cariñena and J. de Lucas

and can be transformed into the system




dx′i
dt

=
1

V 2(t)
p′i,

dp′i
dt

= − ω2
i

V 2(t)
x′i,

i = 1, 2,

by means of thet-dependent change of variables



x′i =

xi
V (t)

,

p′i = −u1xi + V (t)pi,
i = 1, 2.

The solutions of the latter system are integral curves of at-dependent vector field in the distribu-
tion generated by the vector field

X = −ω2
1x

′
1

∂

∂p′1
+ p′1

∂

∂x′1
− ω2

2x
′
2

∂

∂p′2
+ p′2

∂

∂x′2
.

If we consider the problem as a differential equation inT∗R2, the constants of the motion are
first-integrals for the vector fieldX+∂/∂t overR×T∗R2. Then, as we have a distribution of rank
one over a five-dimensional manifold, there exist, at least locally, four functionally independent
first-integrals. Additionally, three of them can be chosen to bet-independent ones (in terms of
the variablesx′1, x

′
2, p

′
1, p

′
2). The constants of the motion for the initial TDHO corresponding to

some of such first-integrals read

Ii =

(
ωixi
V (t)

)2

+ (V (t)pi − u1xi)
2
, i = 1, 2,

and

I12 =
1

ω1
arcsin

(
x1ω1

V (t)
√
I1

)
− 1

ω2
arcsin

(
x2ω2√
V (t)I2

)
.

This first-integral is constant along the solutions. Nevertheless, in order for the function to be
correctly defined,ω1/ω2 needs to be rational. Finally, with the aid of (5.19), we can obtain two
t-dependent constants of the motion of the form

Īi =
ωi

V (t)u1
+ arcsin

(
x′iωi√
Ii

)
i = 1, 2.

As a consequence, we can explicitly obtain thet-evolution of the system. Indeed, either from̄I1
or Ī2, we reach the following solutions forx1 andx2

xi(t) =
V (t)

√
Ii

ωi
sin

(
Īi −

ωi
V (t)u1

)
, i = 1, 2.

The properties of these solutions become clearer when we write them in the following way

xi(t) =
V (t)

√
Ii

ωi
sin

(
Īi −

ωi
u1(u1t+ u0)

)
, i = 1, 2,

and we realise that the quotientx1(t)/x2(t) is a t-independent constant of the motion ifω1/ω2

is rational.
These two equations can be considered as the parametric representation of a curve on the

configuration spaceQ = R2. In the general casex1 andx2 evolve in an independent way and
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the behaviour of the curve becomes blurred. In the rational case, the evolutions ofx1 andx2 are
correlated in such a way that thet–dependent coupling functionI12 is preserved. The particular
form of this curve will depend on the relation betweenu1 andu0. If u1 = 0 it will be a Lissajous
curve. Ifu1 6= 0 it can be considered as a curve obtained by the addition of growing amplitudes
to the oscillations of the corresponding Lissajous curve. We can refer to them as ‘t–dependent
Lissajous’ figures. Nevertheless, it is not totally clear whether this term is appropriate, since these
new curves are ‘not closed’.

6. Integrability in Quantum Mechanics

Some papers have recently been devoted to applying the theory of Lie systems [38, 157, 234]
to Quantum Mechanics [51, 60]. As a result, it has been provedthat the theory of Lie systems
can be used to treat some types of Schrödinger equations, the so-called quantum Lie systems,
to obtain exact solutions,t-evolution operators, etc. One of the fundamental properties found is
that quantum Lie systems can be investigated by means of equations in a Lie group. Through this
equation we can analyse the properties of the associated Schrödinger equation, e.g. the type of
Lie group allows us to know if a Schrödinger equation can be integrated [51].

Lately, a lot of attention has also been dedicated to the study of integrability of Lie systems
and, in particular, of Riccati equations [40, 47, 50]. In these papers, as in previous sections, it
has been shown that integrability conditions for Lie systems, in the case of Riccati equations,
appear related to some transformation properties of the associated equations inSL(2,R). Never-
theless, as we have pointed out in this work and it was shown in[47], the same procedure used to
investigate Riccati equations can be applied to deal with any Lie system.

Therefore, in the case of a quantum Lie system, there exists an equation on a Lie group as-
sociated with it [51]. The transformation properties investigated in the theory of integrability of
Lie systems can be used to study integrability conditions for quantum Lie systems. All results ob-
tained in Chapter 4, can be generalised to apply to the quantum case and some non-trivial integral
models can be obtained. The aim of this chapter is to show how to apply the theory of integra-
bility of Lie systems so as to investigete quantum Lie systems. All our results are illustrated by
means of the analysis of several types of spin Hamiltonians.

We must stress the practical importance of this method: It enables us to obtain non-trivial
exactly solvablet-dependent Schrödinger equations. This fact allows us to investigate physical
models by means of non-trivial exact solutions. It also provides a procedure to avoid using nu-
merical methods for studying Schrödinger equations in many cases.

6.1. Spin Hamiltonians. In this section we investigate a particular quantum mechanical system
whose dynamics is given by Schrödinger–Pauli equation [39]. We first prove that this Hamilto-
nian corresponds to a quantum Lie system and we next apply thetheory of integrability of Lie
systems to such a system to recover some exact known solutions and prove some new ones.

The system under study is described by thet-dependent Hamiltonian

H(t) = Bx(t)Sx +By(t)Sy +Bz(t)Sz ,

with Sx, Sy andSz being the spin operators. Let us denoteS1 = Sx, S2 = Sy andS3 = Sz , then
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thet-dependent HamiltonianH(t) is a quantum Lie system, because the spin operators are such
that

[iSj , iSk] = −
3∑

l=1

ǫjkl iSl, j, k = 1, 2, 3, (6.1)

with ǫjkl being the components of the fully skew-symmetric Levi-Civita tensor and where we
have assumed~ = 1. The Schrödinger equation corresponding to thist-dependent Hamiltonian
is

dψ

dt
= −iBx(t)Sx(ψ)− iBy(t)Sy(ψ)− iBz(t)Sz(ψ), (6.2)

which can be seen as a differential equation determining theintegral curves of thet-dependent
vector field in a (maybe infinite-dimensional) Hilbert spaceH given by

Xt = Bx(t)X
SH
1 +By(t)X

SH
2 +Bz(t)X

SH
3 ,

with
(XSH

1 )ψ = −iSx(ψ), (XSH
2 )ψ = −iSy(ψ), (XSH

3 )ψ = −iSz(ψ).
Thet-dependent vector fieldX can be written as a linear combination

Xt =
3∑

k=1

bk(t)X
SH
k ,

of the vector fieldsXSH
k , with b1(t) = Bx(t), b2(t) = By(t) andb3(t) = Bz(t), and therefore

our Schrödinger equation is a Lie system related to a quantum Vessiot–Guldberg Lie algebra
isomorphic tosu(2).

Take the basis forsu(2) given by the following skew-self-adjoint2× 2 matrices

v1 ≡ 1

2

(
0 i

i 0

)
, v2 ≡ 1

2

(
0 1

−1 0

)
, v3 ≡ 1

2

(
i 0

0 −i

)
.

These matrices satisfy the commutation relations

[vj , vk] = −
3∑

l=1

ǫjklvl, j, k = 1, 2, 3,

which are similar to (6.1). Hence, we can define an actionΦSH : SU(2)×H → H such that

ΦSH(exp(ckvk), ψ) = exp(ckiHk)(ψ), k = 1, 2, 3,

for any real constantsc1, c2 andc3. Moreover,

d

dt

∣∣∣∣
t=0

ΦSH(exp(−itvk, ψ) =
d

dt

∣∣∣∣
t=0

exp(−itHk)(Φ) = −iHk(ψ) = (XSH
k )ψ ,

getting that eachXSH
k is the fundamental vector field associated withvk. Thus, the equation on

SU(2) related, by means ofΦSH , to the Schrödinger equation (6.2) is

Rg−1∗gġ = −
3∑

k=1

bk(t)vk ≡ a(t) ∈ su(2), g(0) = e. (6.3)

It was shown in [51], and previously in our work, that the group G of curves in the group of a
Lie system, in this caseG = Map(R, SU(2)), acts on the set of Lie systems associated with an



Lie systems: theory, generalisations, and applications 97

equation in the Lie groupG in such a way that, in a similar way to what happened in [40], a curve
ḡ ∈ G transforms the initial equation (6.3) into the new one characterised by the curve

a′(t) ≡ −Ad(ḡ)

(
3∑

k=1

bk (t)vk

)
+ Rḡ−1∗ḡ

dḡ

dt
= −

3∑

k=1

b′k (t)vk, (6.4)

Once again, this new equation is related to a new Schrödinger equation inH determined by a
new Hamiltonian

H ′(t) =

3∑

k=1

b′k(t)Sk .

Additionally, the curvēg(t) in SU(2) induces at-dependent unitary transformation̄U(t) on
H transforming the initialt-dependent HamiltonianH(t) intoH ′(t).

Summarising, the theory of Lie systems reduces the problem of determining the solution of
Schrödinger equations related to spin HamiltoniansH(t) to solving certain equations in the Lie
groupSU(2). Then, the transformation properties of the equations inSU(2) describe the trans-
formation properties ofH(t) by means of certaint-dependent unitary transformations described
by curves inSU(2).

Note that the theory here developed for spin Hamiltonians can be straightforwardly employed
to analyse any quantum Lie system. In this case, our procedure remains essentially the same. It is
only necessary to replaceSU(2) by the new Lie groupG associated with the quantum Lie system
under study.

6.2. Lie structure of an equation of transformation of Lie systems. Our aim now is to prove
that the curves inSU(2) relating the equations defined by two curvesa(t) anda′(t) in TISU(2),
respectively, can be found as solutions of a Lie system of differential equations.

Recall that the matrices ofSU(2) are of the form

ḡ =

(
a b

−b∗ a∗

)
, a, b ∈ C, (6.5)

with |a|2+|b|2 = 1 and that the elements ofsu(2) are traceless skew-Hermitian matrices, namely,
real linear combinations of the matrices{vk | k = 1, 2, 3}. Then, the equation (6.4) becomes a
matrix equation that can be written

dḡ

dt
ḡ−1 = −

3∑

k=1

b′k(t)vk +

3∑

k=1

bk(t)ḡvkḡ
−1. (6.6)

Multiplying both sides of this equation bȳg on the right, we get

dḡ

dt
= −

3∑

k=1

b′k(t)vkḡ +

3∑

k=1

bk(t)ḡvk . (6.7)

If we consider a reparametrisation of thet-dependent coefficients ofḡ

a(t) = x1(t) + i y1(t),

b(t) = x2(t) + i y2(t),

for real functionsxj andyj , with j = 1, 2, a straightforward computations shows that (6.7) is a
linear system of differential equations in the new variablesx1, x2, y1 andy2 that can be written
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as follows



ẋ1
ẋ2
ẏ1
ẏ2


 =

1

2




0 b′2 − b2 −b3 + b′3 −b1 + b′1
b2 − b′2 0 −b1 − b′1 b3 + b′3
b3 − b′3 b′1 + b1 0 −b2 − b′2
b1 − b′1 −b3 − b′3 b2 + b′2 0







x1
x2
y1
y2


 . (6.8)

Only the solutions of the above system obeying thatx21 + x22 + y21 + y22 = 1 describe curves
in SU(2) and, consequently, are related to solutions of system (6.7). Nevertheless, we can forget
such a restriction for the time being, because it can be automatically implemented later in a more
suitable way. Therefore, we can deal with the four variablesin the preceding system of differential
equations (6.8) as if they were independent. This linear system of differential equations is a
Lie system associated with a Lie algebra of vector fieldsgl(4,R), but the solutions with initial
condition related to a matrix in the subgroupSU(2) always remain in such a subgroup. In fact,
consider the set of vector fields

N1 =
1

2

(
−y2

∂

∂x1
− y1

∂

∂x2
+ x2

∂

∂y1
+ x1

∂

∂y2

)
,

N2 =
1

2

(
−x2

∂

∂x1
+ x1

∂

∂x2
− y2

∂

∂y1
+ y1

∂

∂y2

)
,

N3 =
1

2

(
−y1

∂

∂x1
+ y2

∂

∂x2
+ x1

∂

∂y1
− x2

∂

∂y2

)
,

N ′
1 =

1

2

(
y2

∂

∂x1
− y1

∂

∂x2
+ x2

∂

∂y1
− x1

∂

∂y2

)
,

N ′
2 =

1

2

(
−x2

∂

∂x1
+ x1

∂

∂x2
− y2

∂

∂y1
+ y1

∂

∂y2

)
,

N ′
3 =

1

2

(
y1

∂

∂x1
+ y2

∂

∂x2
− x1

∂

∂y1
− x2

∂

∂y2

)
,

for which the non-zero commutation relations are given by:

[N1, N2] = −N3, [N2, N3] = −N1, [N3, N1] = −N2,

[N ′
1, N

′
2] = −N ′

3, [N ′
2, N

′
3] = −N ′

1, [N ′
3, N

′
1] = −N ′

2 .

Note that[Nj , N ′
k] = 0, for j, k = 1, 2, 3, and therefore the system of linear differential

equations (6.8) is a Lie system onR4 associated with a Lie algebra of vector fields isomorphic to
g ≡ su(2)⊕ su(2), i.e. the Lie algebra decomposes into a direct sum of two Lie algebras isomor-
phic tosu(2,R), the first one is generated by{N1, N2, N3} and the second one by{N ′

1, N
′
2, N

′
3}.

If we denotey ≡ (x1, x2, y1, y2) ∈ R4, the system (6.8) can be written as a system of
differential equation inR4:

dy

dt
= N(t, y), (6.9)

with Nt being thet-dependent vector field given by

N(t, y) =

3∑

k=1

(bk(t)Nk(y) + b′k(t)N
′
k(y)) .

The vector fields{N1, N2, N3, N
′
1, N

′
2, N

′
3} span a distribution of rank three in almost any

point ofR4 and consequently there exists, at least locally, a first-integral for all the vector fields
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(6.9). It can be verified that such a first-integral is globally defined and readsI(y) = x21 +

x22 + y21 + y22 . Hence, given a solutiony(t) of system (6.9) with an initial conditionI(y(0)) =
x21 + x22 + y21 + y22 = 1, thenI(y(t)) = 1 at any timet and this solution describes a curve in
SU(2). Therefore, we have found that the curves inSU(2) relating two different equations on
SU(2) associated with two Schrödinger equations of the form (6.2) can be described by means
of the solutionsy(t) of (6.9) withI(y(0)) = 1, and vice versa:

THEOREM 6.1. The curves inSU(2) relating two equations on the groupSU(2) characterised
by the curves insu(2) of the form

a′(t) = −
3∑

k=1

b′k(t)vk , a(t) = −
3∑

k=1

bk(t)vk

are the solutions,y(t), of the system

dy

dt
= N(t, y),

with

N(t, y) =

3∑

k=1

(bk(t)Nk(y) + b′k(t)N
′
k(y)) ,

satisfying thatI(y(0)) = 1. This is a Lie system related to a Lie algebra of vector fields isomor-
phic tosu(2)⊕ su(2).

COROLLARY 6.2. Given two Schr̈odinger equations corresponding to two spin Hamiltonians,
there always exists a curve inSU(2) transforming one of them into the other.

Although the above corollary ensures the existence of at-dependent unitary transformation
mapping a given Spin Hamiltonian into any other one, obtaining such a transformation involves
solving system (6.9) explicitly. This Lie system is relatedto a non-solvable Lie algebra and, con-
sequently, it is not easy to find its solutions in general. In view of this, it becomes interesting
to determine integrability conditions which allow us to solve this system and obtain the corre-
sponding transformation. This illustrates the interest ofthe integrability conditions derived in
next sections, which will be used to derive exact solutions for some physical problems involving
Spin Hamiltonians.

6.3. Integrability conditions for SU(2)Schrödinger equations. Let ḡ(t) be a curve inSU(2)

transforming the equation onSU(2) defined by the curvea(t) into another characterised bya′(t)
according to the rule (6.6). Ifg′(t) is the solution of the equation inSU(2) characterised bya′(t),
theng(t) = ḡ−1(t)g′(t) is a solution for the equation inSU(2) characterised bya(t).

If a′(t) lies in a solvable Lie subalgebra ofsu(2), we can deriveg′(t) in many ways [40] and,
onceg′(t) is obtained, the knowledge of the curveḡ(t) transforming the curvea(t) into a′(t)

provides the curveg(t) solution of the equation onSU(2) determined bya(t).
Therefore, starting from a curvea′(t) in a solvable Lie subalgebra ofsu(2) and using (6.9),

with curves in a restricted family of curves inSU(2), we can relatea′(t) to other possible curves
a(t), finding, in this way a family of equations onSU(2), and thus spin Schrödinger equations
onH, that can be exactly solved.
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Let us assume some restrictions on the family of solution curves of the system (6.9), e.g. we
chooseb = 0. Consequently, there are instances of this system which do not admit a solution
under these restrictions, i.e. it is not possible to connectthe curvesa(t) anda′(t) by a curve
satisfying the assumed restrictions. This gives rise to some compatibility conditions for the ex-
istence of one of these special solutions, either algebraicand/or differential ones, between the
t-dependent coefficients ofa′(t) anda(t) satisfied by explicitly solvable models found in the
literature. Therefore, our approach is useful to provide exactly integrable models found in the
literature and, as we will see next, to derive new ones.

The two main ingredients to be taken into account in the following sections are:

1. The equations which are characterised by a curvea′(t) for which the solution can be
obtained. We here consider thata′(t) is associated with a one-dimensional Lie subalgebra
of su(2).

2. The restriction on the set of curves considered as solutionsof the equation (6.9). We next
look for solutions of (6.9) related to curves in a one-parameter subset ofSU(2).

Consider the below example: suppose that we want to connect agivena(t) with a final family
of curves of the forma′(t) = −D(t)(c1v1 + c2v2 + c3v3), with c1, c2, c3, being real numbers.
In this case, system (6.9), which describes the curvesḡ(t) ⊂ SU(2) that transform the equation
described bya(t) into the equation determined bya′(t), reads

dy

dt
=

3∑

k=1

bk(t)Nk(y) +D(t)

3∑

k=1

ckN
′
k(y) = N(t, y). (6.10)

Note that the vector field

N ′ =

3∑

k=1

ckN
′
k,

satisfies that

[Nk, N
′] = 0, k = 1, 2, 3.

Hence, Lie system (6.10) is related to a Lie algebra of vectorfields isomorphic tosu(2)⊕ R. As
this Lie system is associated with a non-solvable Vessiot-Guldberg Lie algebra, it is not integrable
by quadratures and the solution cannot be easily found in thegeneral case. Nevertheless, it is
worth noting that (6.10) always has a solution.

In this way, we can consider some instances of (6.10) for which the resulting system of
differential equations can be integrated by quadratures. We can consider thatx is related to a
one-parameter family of elements ofSU(2). Such a restriction implies that (6.10) not always has
a solution, because sometimes it is not possible to connecta(t) anda′(t) by means of the chosen
one-parameter family. This fact imposes differential and algebraic restrictions on the initialt-
dependent functionsbk, with k = 1, 2, 3. These restrictions will describe known integrability
conditions and other new ones. So, we can develop the ideas of[50, 55] in the framework of
Quantum Mechanics. Moreover, from this point of view, we canfind new integrability conditions
that can be used to obtain exact solutions.
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6.4. Application of integrability conditions in a SU(2)Schrödinger equation. In this section
we restrict ourselves to the casea′(t) = −D(t)v3, i.e.

b′1(t) = 0, b′2(t) = 0, b′3(t) = D(t). (6.11)

Hence, the system of differential equations (6.8) describing the curves̄g relating a Schrödinger
equation toH ′(t) = D(t)Sz is




ẋ1
ẋ2
ẏ1
ẏ2


 =

1

2




0 −b2 −b3 +D −b1
b2 0 −b1 b3 +D

b3 −D b1 0 −b2
b1 −b3 −D b2 0







x1
x2
y1
y2


 . (6.12)

We see that, according to the result of Theorem 6.1, thet-dependent vector field corresponding
to such a system of differential equations can be written as alinear combination witht-dependent
coefficients of the vector fieldsN1, N2, N3 andN ′

3:

N(t, y) =

3∑

k=1

bk(t)Nk(y) +D(t)N ′
3(y).

Thus, system (6.12) is associated with a Lie algebra of vector fields isomorphic tou(1)⊕ su(2).
This Lie algebra is smaller than the initial one (6.8), but itis not solvable and the system is as dif-
ficult to solve as the initial Schrödinger equation. Therefore, in order to get exact solvable cases,
we need to perform some kind of simplification once again, e.g. by means of the imposition of
some extra assumptions on the variables. This may result in asystem of differential equations
whose solutions are incompatible with our additional conditions. The necessary and sufficient
conditions on thet-dependent functionsb1, b2, b3, b′1, b

′
2 andb′3 ensuring the existence of a solu-

tion compatible with the assumed restrictions on the variables give rise to integrability conditions
for spin Hamiltonians.

For instance, suppose that we impose on the solutions to be inthe one-parametric subset
Aγ ⊂ SU(2) given by

Aγ =

{(
cos γ2 −e−bi sin γ

2

ebi sin γ
2 cos γ2

) ∣∣∣∣ b ∈ [0, 2π)

}
. (6.13)

whereγ is a fixed real constant such thatγ 6= 2πn, withn ∈ Z, because in such a caseAγ = ±Id.
In view of the definition of the setsAγ and in terms of the parametrisation (6.5), we have

x1 = cos
γ

2
, y1 = 0, x2 = − sin

γ

2
cos b, y2 = sin

γ

2
sin b. (6.14)

The elements ofAγ are matrices inSU(2) and the system of differential equations we obtain
reads




0

ẋ2
0

ẏ2


 =

1

2




0 −b2 −b3 +D −b1
b2 0 −b1 b3 +D

b3 −D b1 0 −b2
b1 −b3 −D b2 0







x1
x2
0

y2


 . (6.15)

and then we get two integrability conditions for the system (6.15):

0 = −b2x2 − b1y2,

0 = (b3 −D)x1 + b1x2 − b2y2.
(6.16)
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We can write the components(Bx(t), By(t), Bz(t)) of the magnetic field in polar coordinates,

Bx(t) = B(t) sin θ(t) cosφ(t),

By(t) = B(t) sin θ(t) sin φ(t),

Bz(t) = B(t) cos θ(t),

with θ ∈ [0, π) andφ ∈ [0, 2π).
The first algebraic integrability condition reads, in polarcoordinates, as follows:

B(t) sin θ(t) sin
γ

2
(cosφ(t) sin b(t)− sinφ(t) cos b(t)) = 0

and thus,
B(t) sin θ(t) sin

γ

2
sin(b(t)− φ(t)) = 0,

from where we see thatb(t) = φ(t). In such a case, the second algebraic integrability condition
in (6.16) reduces to

(Bz −D) cos
γ

2
−B sin

γ

2
sin θ = 0

and then, thet-dependent coefficientD is

D =
B

cos γ2
cos
(γ
2
+ θ
)
. (6.17)

Finally, we have to take into account the differential integrability condition

ẋ2 =
1

2

(
b2 cos

γ

2
+ (b3 +D) sin

γ

2
sin b

)
,

which after some algebraic manipulation leads to

φ̇ =
B

2

(
sin(θ + γ

2 )

sin γ
2

+
cos(γ2 + θ)

cos γ2

)
,

and then

φ̇(t) = B(t)
sin(θ(t) + γ)

sin γ
, (6.18)

which is a far larger set of integrable Hamiltonians than theone of the exactly solvable Hamilto-
nians of this type found in the literature. As a particular example, whenθ andB are constant, we
find

φ̇ = B
sin(θ + γ)

sin γ
≡ ω (6.19)

and consequently,
φ = ωt+ φ0.

In this way, we get that thet-dependent spin HamiltonianH(t) determined by the magnetic
vector field

B(t) = B(sin θ cos(ωt), sin θ sin(ωt), cos θ).

is integrable.
Another interesting integrable case is that given byθ = π

2 , that is, the magnetic field moves
in theXZ plane, see [20, 139, 140]. In such a case, in view of the integrability conditions (6.19),
the angular frequencẏφ reads

φ̇ = B cotanγ = ω.
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The last one of the most known integrable cases of Spin Hamiltonian is given by a magnetic
field in a fixed direction, i.e.B(t) = B(t)(sin θ cosφ, sin θ sinφ, cos θ). Obviously, this case
satisfies integrability condition (6.19) forγ = −θ.

Apart from the previous cases, the integrability condition(6.18) describes more, as far as we
know, new integrable cases. For instance, consider the casewith θ fixed andB non-constant. In
this case, the correspondingH(t) is integrable if

φ̇

B(t)
=

sin(θ + γ)

sin γ
,

that is, if we fixγ = π/2 we have that

ω = φ̇ = B(t) cos θ =⇒ φ(t) = cos θ

∫ t

B(t′)dt′.

Furthermore, we can considerθ(t) = t andB constant. In this case, we get that thet-
dependent HamiltonianH(t) is integrable if theφ(t) holds the condition

φ̇ = B cos t⇒ φ(t) = B sin t.

Indeed, note that in this case the integrability condition (6.18) trivially follows forγ = −1/2.
To sum up, we have shown that there exists a large family oft-dependent integrable spin

Hamiltonians that includes, as particular cases, many integrable cases known up to now. Addi-
tionally, it is easy to check whether at-dependent spin Hamiltonian satisfies the integrability
condition (4.33) and then, it can be integrated.

6.5. Applications to Physics.Let us use the above results in order to solve at-dependent spin
Hamiltonian

H(t) = B(t) · S,
which broadly appears in Physics: the one characterised by amagnetic field

B(t) = B(sin θ cos(ωt), sin θ sin(ωt), cos θ), (6.20)

that is, a magnetic field with a constant modulus rotating along theOZ axis with a constant angu-
lar velocityω. Such Hamiltonians have been applied, for instance, to analyse the spin precession
in a transverset-dependent magnetic field [208], investigate the adiabaticapproximation and the
unitary of thet-evolution operator through such an approximation [160, 178], etc.

In the previous section we showed that thist-dependent Hamiltonian is integrable. Indeed,
the integrability condition (6.19) can be written as

tan γ =
sin θ

φ̇
B − cos θ

, (6.21)

where we recall thatγ has to be a real constant. In the case of our particular magnetic field (6.20)
the angular frequency,ω = φ̇, the angleθ and the modulusB are constants. Thereforeγ is a
properly defined constant, the integrability condition (6.19) holds and the value ofγ is given by
equation (6.21) in terms of the parametersB, θ andω, which characterise the magnetic vector
field (6.20).

We have already shown that ifB(t) satisfies (6.19), thenH(t) is integrable, because it can
be transformed by means of at-dependent change of variables determined by a curveg(t) in
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the setAγ into a straightforwardly integrable Schrödinger equation determined by at-dependent
HamiltonianH ′(t) = D(t)Sz . For simplicity, let us parametrise the elements ofAγ in a new way.
Considerσ = (σ1, σ2, σ3) andn ∈ R3, where the matricesσi are the Pauli matrices,σx, σy, σz .
We have

eiσ·nφ = Id cosφ+ iσ · n sinφ.

So, forn = (α1,α2,0)√
α2

1
+α2

2

with real constantsα1, α2 and taking into account thatv1 = iσx

2 , v2 =
iσy

2

andv3 = iσz

2 , we get

exp(α1v1 + α2v2) = exp

(
i
δ

2
σ · n

)
=

(
cos δ2 −e−iϕ sin δ

2

eiϕ sin δ
2 cos δ2

)
(6.22)

with δ =
√
α2
1 + α2

2 and−e−iϕ = (iα1 + α2)/
√
α2
1 + α2

2. In terms ofδ andϕ the variablesα1

andα2 can be writtenα1 = δ sinϕ andα2 = −δ cosϕ. Hence, in view of (6.22), we see that we
can describe the elements ofAγ as

(
cos γ2 −e−bi sin γ

2

ebi sin γ
2 cos γ2

)
= exp(γ sin b v1 − γ cos b v2), (6.23)

whereb andγ are real constants. For magnetic vector fields (6.20), thet-dependent change of
variables transforming the initialH(t) into an integrableH ′(t) = D(t)Sz is determined by a
curve inAγ with γ determined by equation (6.19) andb(t) = φ(t). Thus, such a curve inAγ
takes the form

t 7→ exp(γ sin(ωt) v1 − γ cos(ωt) v2) (6.24)

We want to emphasise that the abovet-dependent change of variables inSU(2) transforms the
equation inSU(2) determined by the initial curve

a(t) = −Bx(t)v1 −By(t)v2 −Bz(t)v3,

into and a new equation inSU(2) determined by a curvea′(t) = −D(t)v3. Such at-dependent
transformation inSU(2) induces at-dependent unitary change of variables inH transforming
the initial Schrödinger equation determined by thet-dependent HamiltonianH(t), i.e.

∂ψ

∂t
= −iH(t)(ψ),

into the new Schrödinger equation

∂ψ′

∂t
= −iH ′(t)(ψ′) = −iD(t)Sz(ψ

′). (6.25)

The relation betweenψ andψ′ is given by the correspondingt-dependent change of variables in
H induced by curve (6.24), i.e.

ψ′ = exp(γ sin(ωt) iSx − γ cos(ωt) iSy)ψ. (6.26)

In view of expression (6.17), we see that

D = B(cos θ − tan
γ

2
sin θ),

and from (6.21) and the relations

tanγ =
2tanγ2

1− tan2 γ2
⇒ tan

γ

2
=

−1±
√
1 + tan2γ

tanγ
,
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we obtain

tan
γ

2
=

1

sin θ

(
− ω

B
+ cos θ ±

√
ω2

B2
− 2

ω

B
cos θ + 1

)
.

If we substitute the above expression in the latter expression forD, it turns out that

D = ω ±
√
ω2 − 2ωB cos θ +B2.

That is,D becomes a constant. Thus, the general solutionψ′
t for the Schrödinger equation (6.25)

with initial conditionψ′
0 is

ψ′(t) = exp (−itDSz)ψ′
0,

and the solution for the initial Schrödinger equation withinitial conditionψ0 can be obtained
undoing thet-dependent change of variables (6.26) to get

ψt = exp (−iγ sinωt Sx + iγ cosωt Sy) exp (−iDtSz)ψ0.

7. The theory of quasi-Lie schemes and Lie families

7.1. Introduction. Several important systems of first-order ordinary differential equations can
be studied through the theory of Lie systems. Moreover, thistheory was recently applied to
study SODE Lie systems, quantum Lie systems, some partial differential equations, etc. These
last successes allow us to recover, from a unifying point of view, several results disseminated
throughout the literature and to prove multiple new properties of systems of differential equations
appearing in Physics and Mathematics. Apart from these successes, there are still some reasons
to go further in the generalisation of the theory of Lie systems:

• Lie systems are important but rather exceptional. The theory of Lie systems investigates
very interesting equations with many applications, e.g.t-dependent frequency harmonic
oscillators, Milne–Pinney equations, Riccati equations,etc. Nevertheless, it fails to study
many other (nonautonomous) interesting systems, like nonlinear oscillators, Abel equa-
tions, or Emden equations.

• The theory of Lie systems does not allow us to investigate superposition rules involving an
explicit t-dependencewhich appears in various interesting systems, e.g. dissipative Milne–
Pinney equation, Emden–Fowler equations [42], second-order Riccati equations [48, 126],
whose properties are worth analysing.

• Lie systems have an associated group oft-dependent changes of variables enabling us to
transform each particular Lie system into a new one of the same class, e.g. the group of
curves inSL(2,R) transforms a Riccati equation into a new Riccati equation. Asimilar
property frequently applies to integrate differential equations, like Abel equations [74]. A
natural question arises: Is there any kind of systems of differential equations more general
than Lie systems admitting an analogue property?

The theory of quasi-Lie schemes [34] and the Generalised LieTheorem [35], which gives
rise to theLie familynotion, provide an answer to these problems. More specifically, quasi-Lie
schemes, quasi-Lie systems and Lie families are interesting because:
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• The theory of quasi-Lie schemes and the Generalised Lie Theorem permit us to inves-
tigate a very large family of differential equations including Lie systems. More specifi-
cally, this family includes, for instance, the following non-Lie systems: Emden–Fowler
equations [34, 42], nonlinear oscillators [34], dissipative Milne–Pinney equations [34, 45],
second-order Riccati equations [48], Abel equations [35],etc. Moreover, not only quasi-Lie
schemes and Lie families can be applied to investigate systems of first-order ordinary dif-
ferential equations, but they can also be employed, for instance, to investigate second-order
differential equations [42, 45].

• The theory of quasi-Lie schemes and the Generalised Lie Theorem treat, in a natural way,
systems admitting at-dependent superposition rule. These theories show that many dif-
ferential equations admit at-dependent superposition rule, e.g. Abel equations [35], dissi-
pative Milne–Pinney equations [34], Emden-Fowler equations [42], second-order Riccati
equations [48], etc.

• The quasi-Lie scheme concept permits us to transform a differential equation within a
fixed family, e.g. a first-order Abel equation into a new one with differentt-dependent coef-
ficients. This feature generalises the transformation properties of Lie systems and enables
us to derive integrability conditions for differential equations from a unified point of view.

Consequently, the theory of quasi-Lie schemes and the Generalised Lie Theorem represent
powerful methods to study first- and higher-order differential equations.

7.2. Generalised flows andt-dependent vector fields.Recall that a nonautonomous system of
first-order ordinary differential equations onRn is represented in modern differential geometric
terms by at-dependent vector fieldX = X(t, x) on such a space. On a non-compact manifold,
the vector fieldXt(x) = X(t, x), for a fixedt, is generally not defined globally, but it is well
defined on a neighbourhood of every pointx0 ∈ Rn for sufficiently smallt. It is convenient to
add the variablet to the manifold and to consider theautonomisationof our system, i.e. the vector
field

X(t, x) =
∂

∂t
+X(t, x) ,

defined on a neighbourhoodUX of {0} × Rn in R× Rn. The vector fieldXt is then defined on
the open set ofRn,

UXt = {x0 ∈ R
n | (t, x0) ∈ UX} ,

for all t ∈ R. If UXt = Rn for all t ∈ R, we speak about aglobal t-dependent vector field. The
system of differential equations associated with thet-dependent vector fieldX(t, x) is written in
local coordinates

dxi

dt
= X i(t, x) , i = 1, . . . , n,

whereX(t, x) =
∑n
i=1X

i(t, x)∂/∂xi is locally defined on the manifold for sufficiently smallt.
A solution of this system is represented by a curves 7→ γ(s) in Rn (integral curve) whose

tangent vectoṙγ at t, so at the pointγ(t) of the manifold, equalsX(t, γ(t)). In other words,

γ̇(t) = X(t, γ(t)). (7.1)

It is well-known that, at least for smoothX we work with, for eachx0 there is a unique maximal
solutionγx0

X (t) of system (7.1) with the initial valuex0, i.e. satisfyingγx0

X (0) = x0. This solution
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is defined at least fort’s from a neighbourhood of0. In caseγx0

X (t) is defined for allt ∈ R, we
speak about aglobal t-solution.

The collection of all maximal solutions of the system (7.1) gives rise to a (local) generalised
flow gX onRn. By a generalised flowg onRn we understand a smootht-dependent familygt
of local diffeomorphisms onRn, gt(x) = g(t, x), such thatg0 = idRn . More precisely,g is
a smooth map from a neighbourhoodUg of {0} × Rn in R × Rn into Rn, such thatgt maps
diffeomorphically the open submanifoldUgt = {x0 ∈ Rn | (t, x0) ∈ Ug} onto its image, and
g0 = idRn . Again, for eachx0 ∈ Rn there is a neighbourhoodUx0

of x0 in Rn andǫ > 0 such
thatgt is defined onUx0

for t ∈ (−ǫ, ǫ) and mapsUx0
diffeomorphically ontogt(Ux0

).
If Ugt = Rn for all t ∈ R, we speak about aglobal generalised flow. In this caseg : t ∈ R 7→

gt ∈ Diff(Rn) may be viewed as a smooth curve in the diffeomorphism groupDiff(Rn) with
g0 = idRn .

Here it is also convenient toautonomisethe generalised flowg extending it to a single local
diffeomorphism

g(t, x) = (t, g(t, x)) (7.2)

defined on the neighbourhoodUg of {0} × Rn in R× Rn. The generalised flowgX induced by
thet-dependent vector fieldX is defined by

gX(t, x0) = γx0

X (t) . (7.3)

Note that, forg = gX , equation (7.3) can be rewritten in the form:

Xt = X(t, x) = ġt ◦ g−1
t . (7.4)

In the above formula, we understoodXt andġt as maps fromRn into TRn, whereġt(x) is the
vector tangent to the curves 7→ g(s, x) at g(t, x). Of course, the compositioṅgt ◦ g−1

t , called
sometimes theright-logarithmic derivativeof t 7→ gt, is only defined for those pointsx0 ∈ Rn

for which it makes sense. But this is always the case for sufficiently smallt, at least locally.
Let us observe that equation (7.4) defines, in fact, a one-to-one correspondence between gen-

eralised flows andt-dependent vector fields modulo the observation that the domains ofġt ◦ g−1
t

andXt need not to coincide. In any case, however,ġt ◦ g−1
t andXt coincide in a neighbourhood

of any point for sufficiently smallt. One can simply say that thegermsofX andġt◦g−1
t coincide,

where the germ in our context is understood as the class of corresponding objects that coincide
on a neighbourhood of{0} × Rn in R× Rn.

Indeed, for a giveng, the correspondingt-dependent vector field is defined by (7.4). Con-
versely, for a givenX , the equation (7.4) determines the germ of the generalised flow g(t, x)

uniquely, as for eachx = x0 and for smallt equation (7.4) implies thatt 7→ g(t, x0) is the
solution of the system defined byX with the initial valuex0. In this way we get the following.

THEOREM 7.1. Equation (7.4) defines a one-to-one correspondence betweenthe germs of gen-
eralised flows and the germs oft-dependent vector fields onRn.

Any two generalised flowsg andh can be composed: by definition(g ◦ h)t = gt ◦ ht, where, as
usual, we viewgt ◦ ht as a local diffeomorphism defined for points for which the composition is
properly defined. It is important to emphasise that in a neighbourhood of any point it really makes
sense for sufficiently smallt. As generalised flows correspond tot-dependent vector fields, this
gives rise to an action of a generalised flowh on a t-dependent vector fieldX , giving rise to
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h⋆X , defined by the equation
gh⋆X = h ◦ gX . (7.5)

To obtain a more explicit form of this action, let us observe that

(h⋆X)t =
d(h ◦ gX)t

dt
◦ (h ◦ gX)−1

t =
(
ḣt ◦ gXt +Dht(ġ

X
t )
)
◦ (gX)−1

t ◦ h−1
t ,

and therefore
(h⋆X)t = ḣt ◦ h−1

t +Dht
(
ġXt ◦ (gX)−1

t

)
◦ h−1

t ,

i.e.
(h⋆X)t = ḣt ◦ h−1

t + (ht)∗(Xt) , (7.6)

where(ht)∗ is the standard action of diffeomorphisms on vector fields. In a slightly different
form, this can be written as an action oft-dependent vector fields ont-dependent vector fields:

(gY⋆X)t = Yt + (gYt )∗(Xt) . (7.7)

For globalt-dependent vector fields on compact manifolds, the latter defines a group structure in
globalt-dependent vector fields. This is an infinite-dimensional analogue of a group structure on
paths in a finite-dimensional Lie algebra, which has been used as a source for a nice construction
of the corresponding Lie group in [90]. Since every generalised flow has an inverse,(g−1)t =

(gt)
−1, so generalised flows, or better to say, the corresponding germs, form a group and the

formula (7.7) allows us to compute thet-dependent vector field (right-logarithmic derivative)
X−1
t associated with the inverse. It is thet-dependent vector field

X−1
t = −(gXt )−1

∗ (Xt) . (7.8)

For t-independent vector fieldsXt = X0 for all t we have(gXt )∗X = X and also we get the
well-known formula

X−1 = −X .

Note that, by definition, the integral curves ofh⋆X are of the formht(γ(t)), whereγ(t) are
integral curves ofX . We can summarise our observation as follows.

THEOREM 7.2. The equation (7.6) defines a natural action of generalised flows ont-dependent
vector fields. This action is a group action in the sense that

(g ◦ h)⋆X = g⋆(h⋆X) .

The integral curves ofh⋆X are of the formht(γ(t)), for γ(t) being an arbitrary integral curve
for X .

The above action of generalised flows ont-dependent vector fields can also be defined in an
elegant way by means of the corresponding autonomisations.It is namely easy to check the
following.

THEOREM 7.3. For any generalised flowh and anyt-dependent vector fieldX on a manifold
Rn, the standard actionh∗X of the diffeomorphismh, being the autonomisation ofh, on the
vector fieldX, being the autonomisation ofX , is the autonomisation of thet-dependent vector
fieldh⋆X :

h∗X = h⋆X .



Lie systems: theory, generalisations, and applications 109

7.3. Quasi-Lie systems and schemes.By a quasi-Lie systemwe understand a pair(X, g) con-
sisting of at-dependent vector fieldX on a manifoldRn (thesystem) and a generalised flowg
onRn (thecontrol) such thatg⋆X is a Lie system.

Since for the Lie systemg⋆X we are able to obtain the general solution out of a number
of known particular solutions, the knowledge of the controlmakes possible the application of a
similar procedure for our initial system possible. Indeed,let Φ = Φ(x1, . . . , xm; k1, . . . , kn) be
a superposition function for the Lie systemg⋆X , so that, knowingm solutionsx̄(1), . . . , x̄(m),

of g⋆X , we can derive the general solution of the form

x̄(0) = Φ(x̄(1), . . . , x̄(m); k1, . . . , kn) .

If we now knowm independent solutions,x(1), . . . , x(m), of X , then, according to Theorem
7.3, x̄a(t) = gt(xa(t)) are solutions ofg⋆X , producing a general solution ofg⋆X in the form
Φ(x̄(1), . . . , x̄(m); k1, . . . , kn). It is now clear that

x(0)(t) = g−1
t ◦ Φ(gt(x(1)(t)), . . . , gt(x(m)(t)); k1, . . . , kn) (7.9)

is a general solution ofX . In this way we have obtained at-dependent superposition rulefor the
systemX . We can summarise the above considerations as follows.

THEOREM7.4. Any quasi-Lie system(X, g) admits at-dependent superposition rule of the form
(7.9), whereΦ is a superposition function for the Lie systemg⋆X .

Of course, the abovet-dependent superposition rule is practically useless for finding the gen-
eral solution of a systemX only if the generalised flowg is explicitly known. An alternative
abstract definition of a quasi-Lie system as at-dependent vector fieldX for which there exists a
generalised flowg such thatg⋆X is a Lie system does not have much sense, as everyX would
be a quasi-Lie system in this context. For instance, given at-dependent vector fieldX , the pair
(X, (gX)−1) is a quasi-Lie system because(gX)−1

t ◦ gXt = idRn , thus(gX)−1
⋆
X = 0, which is

a Lie system trivially. On the other hand, finding(gX)−1 is nothing but solving our systemX
completely, so we just reduce to our original problem. In practice, it is therefore crucial that the
control g comes from a system which can be integrated effectively. There are, however, many
cases when our procedure works well and provides a geometrical interpretation of manyad hoc
methods of integration. Consider, for instance, the following scheme that can lead to ‘nice’ quasi-
Lie systems.

Take a finite-dimensional real vector spaceV of vector fields onRn and consider the family,
V (R), of all t-dependent vector fieldsX on Rn such thatXt belongs toV on its domain, i.e.
Xt ∈ V|UX

t
or, in short,X ∈ V (R). We will say that these aret-dependent vector fields taking

values inV . Thet-dependent vector fields ofV (R) depend on a finite family of control functions.
For example, take a basis{X1, . . . , Xr} of V and consider a generalt-dependent system with
values inV determined byb = b(t) = (b1(t), . . . , br(t)) as

(Xb)t =

r∑

α=1

bα(t)Xα .

On the other hand, the nonautonomous systems of differential equations associated withX ∈
V |UX

t
are not Lie systems in general, ifV is not a Lie algebra itself. If we additionally have

a finitely parametrised family of local diffeomorphism, sayg = g(a1, . . . , ak), then any curve
a = a(t) = (a1(t), . . . , ak(t)) in the control parameters, defined for smallt, gives rise to a
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generalised flowgat = g(a(t)). Let us additionally assume that there is a Lie algebraV0 of vector
fields contained inV . We can look for control functionsa(t) such that for certainb(t) we get that
ga
⋆
Xb has values inV0 for eacht. Let us denote this as

ga⋆X
b ∈ V0(R). (7.10)

Consequently, each pair(Xb, ga) becomes a quasi-Lie system and we can get at-dependent
superposition rule for the corresponding systemXb.

Let us observe that in the case when all the generalised flowsga preserveV , i.e. for each
t-dependent vector fieldXb ∈ V (R) alsoga⋆X

b ∈ V (R), the inclusion (7.10) becomes a differ-
ential equation for the control functionsa(t) in terms of the functionsb(t). This situation is not
so rare, as it may seem at first sight. Suppose, for instance, that we find a Lie algebraW ⊂ V

such that[W,V ] ⊂ V and that thet-dependent vector fields with values inW can be effectively
integrated to generalised flows. In this case, anyt-dependent vector fieldY a with values inW
gives rise to a generalised flowga which, in view of transformation rule (7.7), preserves the set
of t-dependent vector fields with values inV . For eachb = b(t) the inclusion (7.10) becomes
therefore a differential equation for the control functiona = a(t) which often can be effectively
solved.

DEFINITION 7.5. LetW,V be finite-dimensional real vector spaces of vector fields onRn. We
say that they form aquasi-Lie schemeS(W,V ) if the following conditions are satisfied

1. W is a vector subspace ofV .
2. W is a Lie algebra of vector fields, i.e.[W,W ] ⊂W .
3. W normalisesV , i.e. [W,V ] ⊂ V .

If V is a Lie algebra of vector fields, we simply call the quasi-LieschemeS(V, V ) a Lie scheme
S(V ).

NOTE 7.6. Although the normaliser ofV in V is the largest Lie algebra of vector fields that we
can use asW , for practical purposes it is sometimes useful to consider smaller Lie subalgebras.

DEFINITION 7.7. We call thegroup of the schemeS(W,V ) the groupG(W ) of generalised flows
corresponding to thet-dependent vector fields with values inW .

MAIN THEOREM 7.8. (Main property of a scheme)Given a quasi-Lie schemeS(W,V ), then
g⋆X ∈ V (Rn) for everyt-dependent vector fieldX ∈ V (R) and each generalised flowg ∈
G(W ).

The proof for this is obvious and follows straightforwardlyfrom the fact that ifgY is the gen-
eralised flow of at-dependent vector fieldY ∈ W (R) andX takes values inV , then, according
to the formula (7.7),gY⋆X takes values inV as well, as[W,V ] ⊂ V andV is finite-dimensional.

In some applications, it turns out to be interesting to use a more general class of transforma-
tions than those described byG(W ). Nevertheless, such transformations keep the main property
of the generalised flowsG(W ), namely, for a given schemeS(W,V ) they transform elements of
V (R) into elements of this space.

Recall that given a Lie algebra of vector fieldsW ⊂ X(Rn), there always exists, at least
locally in Rn, a group actionΦ : G × U → U , with G a Lie group with Lie algebrag, whose
fundamental vector fields are those ofW (cf. [144] and Section 1.2). For simplicity, we shall
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suppose, as usual, that this action is globally defined onRn, and we will writeΦ : G×Rn → Rn

and define the restriction mapΦg : x ∈ Rn 7→ Φg(x) = Φ(g, x) ∈ Rn for everyg ∈ G.

LEMMA 7.9. Given a schemeS(W,V ), an elementg ∈ exp(g), and a vector fieldX ∈ V (R),
thenΦg∗X ∈ V (R).

Proof. As g ∈ exp(g), there exists an elementa ∈ g such thatg = exp(a). Consider the curve
h : s ∈ [0, 1] 7→ exp(s a) ∈ G. By means of the actionΦ : G× Rn → Rn, whose fundamental
vector fields are the Lie algebra of vector fieldsW , the curveh(s) induces the generalised flow
hYs : x ∈ Rn 7→ Φ(exp(s a), x) ∈ Rn of the vector field

Y (x) =
∂

∂s

∣∣∣∣
s=0

hYs (x) =
∂

∂s

∣∣∣∣
s=0

Φ(exp(s a), x)

and, obviously,Y ∈W . Taking into account the relation [1, p. 91]

∂

∂s
hY−s∗X = hY−s∗[Y,X ],

we define, for eachs, the vector fieldZ(0)
−s = hY−s∗X to get

(hY−s∗X)x = Xx +

∫ s

0

∂

∂s′
Z

(0)
−s′(x)ds

′ = Xx +

∫ s

0

(hY−s′∗[Y,X ])xds
′.

If we callZ(1)
−s = hY−s∗([Y,X ]) and apply the above expression to[Y,X ], we get

(hY−s∗[Y,X ])x = [Y,X ]x +

∫ s

0

∂

∂s′
Z

(1)
−s′(x)ds

′

= [Y,X ]x +

∫ s

0

(hY−s′∗[Y, [Y,X ]])xds
′.

DefiningZ(k)
−s in an analogous way and applying all these results to the initial formula forhY−s∗X

we obtain

(hY−s∗X)x = Xx + [Y,X ]xs+
1

2!
[Y, [Y,X ]]xs

2 +
1

3!
[Y, [Y, [Y,X ]]]xs

3 + . . .

By means of the properties of the scheme, we obtain that each term belongs toV (R), i.e.

[Y, [Y, . . . , [Y,X ] . . .]] ∈ V (R),

and therefore

Φg∗X = hY1∗X ∈ V (R).

Note that every curveg(t) in G determines a diffeomorphism onR× Rn of the formΦg(t) :

(t, x) ∈ R × Rn 7→ (t,Φg(t)x) ∈ R × Rn. Therefore, given at-dependent vector fieldX ∈
Xt(R

n) and a curveg(t), this curve transformsX into a new vector fieldX ′ such thatX ′ =

Φg(t)X. For the sake of simplicity, we hereby denoteX ′ = g⋆X andgt : x ∈ Rn 7→ Φg(t)x ∈
Rn. Obviously, in similarity with equation (7.6), we have(g⋆X)t = ġt ◦ g−1

t + gt∗(X) and the
set of curves inG makes up an infinite-dimensional group acting onXt(R

n).

PROPOSITION7.10. Given a schemeS(W,V ), a curveg(t) inG, and at-dependent vector field
X ∈ V (R), theng⋆X ∈ V (R).
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Proof. As formula (7.6) remains valid for the action of curvesg(t) included inexp(g), proving
thatg⋆X belongs toV (R) can be reduced to checking that the corresponding termsġt ◦ g−1

t and
gt∗X are inV (R). On one hand,̇gt ◦ g−1

t ∈ W (R) ⊂ V (R) and, by means of Lemma 7.9, we
get thatgt∗X ∈ V (R) for eacht. Consequently, we see thatg⋆X ∈ V (R). Since every curve
g(t) ⊂ G decomposes as a productg = g1 · . . . · gp of curvesgj ⊂ exp(g), with j = 1, . . . , p, it
follows thatg⋆X ∈ V (R) for every curveg(t) ⊂ G.

DEFINITION 7.11. Given a schemeS(W,V ), we call symmetry group of the scheme,Sym(W ),
the set oft-dependent transformationsΦg(t) induced by the curvesg(t) in G and an actionΦ
associated with the Lie algebra of vector fieldsW .

In order to simplify the notation, we hereby denote thet-dependent transformationΦg(t) with
the curveg.

DEFINITION 7.12. Given a quasi-Lie schemeS(W,V ) and at-dependent vector fieldX ∈
V (R), we say thatX is aquasi-Lie system with respect toS(W,V ) if there exists at-dependent
transformationg ∈ Sym(W ) and a Lie algebra of vector fieldsV0 ⊂ V such that

g⋆X ∈ V0(R).

We emphasise that ifX is a quasi-Lie system with respect to the schemeS(W,V ), it auto-
matically admits at-dependent superposition rule in the form given by (7.9).

7.4. t-dependent superposition rules.Minor modifications in the geometric approach to Lie
systems detailed in Section 1.5 allow us to derive a new theory, based on the so-calledLie family
concept, in order to treat a much larger family of systems of differential equations including Lie
and quasi-Lie systems. Roughly speaking, Lie families are sets of systems of differential equa-
tions admitting a common superposition rule witht-dependence. This theory clearly generalises
the superposition rule notion and provides a characterisation, described by the so-calledGener-
alised Lie Theorem, of families of systems admitting such a property. Next, we provide a brief
description of this theory and summarise its main results. For further details, see [35].

Consider the family of nonautonomous systems of first-orderordinary differential equations
onRn, parametrised by the elementsd of a setΛ, of the form

dxi

dt
= Y id (t, x), i = 1, . . . , n, d ∈ Λ. (7.11)

describing the integral curves of the family oft-dependent vector fields{Yd}d∈Λ given by

Yd(t, x) =

n∑

i=1

Y id (t, x)
∂

∂xi
.

Let us state the fundamental concept to be studied along thissection:

DEFINITION 7.13. We say that the family of nonautonomous systems (7.11)admits acommon
t-dependent superposition ruleif there exists a mapΦ : R× Rn(m+1) → Rn, i.e.

x = Φ(t, x(1), . . . , x(m); k1, . . . , kn), (7.12)

such that the general solution,x(t), of any systemYd of the family (7.11) can be written, at least
for sufficiently smallt, as

x(t) = Φ(t, x(1)(t), . . . , x(m)(t); k1, . . . , kn),
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with {x(a)(t) | a = 1, . . . ,m} being any generic family of particular solutions ofYd and the set
{k1, . . . , kn} beingn arbitrary constants to be associated with each particular solution. A family
of systems (7.11) admitting a commont-dependent superposition is called aLie family.

DEFINITION 7.14. Given at-dependent vector fieldY =
∑n
i=1 Y

i(t, x)∂/∂xi onRn, we define
its prolongation toR× Rn(m+1) as the vector field onR× Rn(m+1) given by

Y ∧(t, x(0), . . . , x(m)) =

m∑

a=0

n∑

i=1

Y i(t, x(a))
∂

∂xi(a)
,

and its autonomisation,̃Y , as the vector field onR× Rn(m+1) of the form

Ỹ (t, x(0), . . . , x(m)) =
∂

∂t
+

m∑

a=0

n∑

i=1

Y i(t, x(a))
∂

∂xi(a)
.

The Implicit Function Theorem states that, given a commont-dependent superposition rule
Φ : R× Rn(m+1) → Rn of a Lie family{Yd}d∈Λ, the mapΦ(t, x(1), . . . , x(m); ) : R

n −→ Rn,
which readsx(0) = Φ(t, x(1), . . . , x(m); k), can be inverted to give rise to a mapΨ : R ×
Rn(m+1) → Rn given by

k = Ψ(t, x(0), . . . , x(m)),

with k = (k1, . . . , kn) being the only point inRn such that

x(0) = Φ(t, x(1), . . . , x(m); k).

As the fundamental property of the mapΨ says thatΨ(t, x(0)(t), . . . , x(m)(t)) is constant for any
(m+1)-tuple of particular solutions of any system of the family (7.11), the foliation determined
by Ψ is invariant under the permutation of its(m + 1) arguments{x(a) | a = 0, . . . ,m} and
differentiating the preceding expression we get

∂Ψj

∂t
+

m∑

a=0

n∑

i=1

Y id (t, x(a)(t))
∂Ψj

∂xi(a)
= 0, j = 1, . . . , n, d ∈ Λ, (7.13)

with Ψ = (Ψ1, . . . ,Ψn).
The relation (7.13) shows that the functions of the set{Ψi | i = 1, . . . , n} are first-integrals

for the vector fields̃Yd, that is,ỸdΨi = 0, with i = 1, . . . , n. Therefore, they generically define
ann-codimensional foliationF onR×Rn(m+1) such that the vector fields̃Yd, are tangent to the
leavesFk of this foliation, withk ∈ Rn.

The foliationF has another important property. Given the level setFk of the mapΨ corre-
sponding tok = (k1, . . . , kn) ∈ Rn and a generic point(t, x(1), . . . , x(m)) of R×Rmn, there is
only one pointx(0) ∈ Rn such that(t, x(0), x(1), . . . , x(m)) ∈ Fk. Then, the projection onto the
lastm · n coordinates and the time

π : (t, x(0), . . . , x(m)) ∈ R× R
n(m+1) 7→ (t, x(1), . . . , x(m)) ∈ R× R

nm,

induces local diffeomorphisms on the leavesFk of F intoR× Rnm.
This property can also be seen as the fact that the foliationF corresponds to a zero curvature

connection∇ on the bundleπ : R × Rn(m+1) → R × Rnm. Indeed, the restriction of the
projectionπ to a leaf gives a one-to-one map. In this way, we get a linear map among vector
fields onR× Rnm and ‘horizontal’ vector fields tangent to a leaf.



114 J.F. Cariñena and J. de Lucas

Note that the knowledge of this connection (foliation) gives us thecommont-dependent su-
perposition rulewithout referring to the mapΨ. If we fix the pointx(0)(0) andm particular
solutions,x(1)(t), . . . , x(m)(t), for a system of the family, thenx(0)(t) is the unique curve inRn

such that

(t, x(0)(t), x(1)(t), . . . , x(m)(t)) ∈ R× R
nm

belongs to the same leaf as the point(0, x(0)(0), x(1)(0), . . . , x(m)(0)). Thus, it is only the folia-
tionF what really matters when thecommont-dependent superposition ruleis concerned.

On the other hand, if we have a zero curvature connection∇ on the bundle

π : R× R
n(m+1) → R× R

nm,

i.e. if we have an involutive horizontal distribution∇ onR × Rn(m+1) that can be integrated to
give a foliationF onR×Rn(m+1) and such that the vector fields̃Yd are tangent to the leaves of the
foliation, then the procedure described above determines acommont-dependent superposition
rule for the family of nonautonomous systems of first-order differential equations (7.11).

Indeed, letk ∈ Rn enumerate smoothly the leavesFk of F, i.e. there exists a smooth map
ι : Rn → R×Rn(m+1) such thatι(Rn) intersects everyFk in a unique point. Then, ifx(0) ∈ Rn

is the unique point such that

(t, x(0), x(1), . . . , x(m)) ∈ Fk,

this fact gives rise to at-dependent superposition rule

x(0) = Φ(t, x(1), . . . , x(m); k)

for the family of nonautonomous systems of first-order ordinary differential equations (7.11).
To see this, let us observe that the Implicit Function Theorem shows that there exists a function
Ψ : R× Rn(m+1) → R such that

Ψ(t, x(0), . . . , x(m)) = k,

which is equivalent to say that(t, x(0), . . . , x(m)) ∈ Fk. If we fix a certaink ∈ Rn and take
certain solutions,x(1)(t), . . . , x(m)(t), of a particular instance of (7.11), thenx(0)(t) defined by
means of the conditionΨ(t, x(0)(t), . . . , x(m)(t)) = k also satisfies such an instance. Indeed, let

x′(0)(t) be the solution with initial valuex′(0)(0) = x(0). Since the vector fields̃Yd are tangent to
F, the curve

t 7→ (t, x(0)(t), x(1)(t), . . . , x(m)(t))

lies entirely in a leaf ofF, so in Fk. But the point of one leaf is entirely determined by its
projectionπ, sox′(0)(t) = x(0)(t) andx(0)(t) is a solution.

PROPOSITION7.15. Giving a t-dependent superposition rule (7.12) for a family of systems of
differential equations (7.11) is equivalent to give a zero curvature connection on the bundleπ :

R× R(m+1)n → R× Rnm for which theỸd are ‘horizontal’ vector fields.

In general it is difficult to determine whether a family of differential equations admits a com-
mont-dependent superposition rule by means of the above Proposition. It is therefore interesting
to find a characterisation of Lie families by means of a more convenient criterion, e.g. through
an easily verifiable condition based on the properties of thet-dependent vector fields{Ya}a∈Λ.
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Finding such a criterion is the main result of the theory of Lie families. It is formulated as Gen-
eralised Lie Theorem and based on the following lemmas givenbelow. The first two ones are
straightforward, a complete detailed proof for the third can be found in [35].

LEMMA 7.16. Given twot-dependent vector fieldsX andY onRn, the commutator[X̃, Ỹ ] on
R× Rn(m+1) is the prolongation of at-dependent vector fieldZ onRn, [X̃, Ỹ ] = Z∧.

LEMMA 7.17. Given a family oft-dependent vector fields,X1, . . . , Xr, onRn, their autonomi-
sations satisfy the relations

[X̄j , X̄k](t, x) =
r∑

l=1

fjkl(t)X̄l(t, x), j, k = 1, . . . , r,

for somet-dependent functionsfjkl : R → R, if and only if theirt-prolongations toR×Rn(m+1),
X̃1, . . . , X̃r, obey analogous relations

[X̃j , X̃k](t, x) =

r∑

l=1

fjkl(t)X̃l(t, x), j, k = 1, . . . , r.

Moreover,
∑r

l=1 fjkl(t) = 0 for all j, k = 1, . . . , r.

LEMMA 7.18. Consider a family oft-dependent vector fields,Y1, . . . , Yr, with t-prolongations
Ỹ1, . . . , Ỹr to R × Rn(m+1) such that their projectionsπ∗(Ỹj) are linearly independent at a
generic point inR×Rnm. Then,

∑r
j=1 bj Ỹj , with bj ∈ C∞(R×Rnm), is of the formY ∧ (resp.

Ỹ ) for a t-dependent vector fieldY on Rn, if and only if the functionsbj only depend on the
variablet, that is,bj = bj(t), and

∑r
j=1 bj = 0 (resp.,

∑r
j=1 bj = 1).

MAIN THEOREM7.19. (Generalised Lie Theorem)The family of systems (7.11) admits acom-
mont-dependent superposition ruleif and only if the vector fields{Y d}d∈Λ can be written in the
form

Y d(t, x) =
r∑

α=1

bdα(t)Xα(t, x), d ∈ Λ,

wherebdα are functions of the single variablet such that
∑r
α=1 bdα = 1 and,X1, . . . , Xr, are

t-dependent vector fields satisfying

[Xα, Xβ](t, x) =

r∑

γ=1

fαβγ(t)Xγ(t, x), α, β = 1, . . . , r, (7.14)

for certain functionsfαβγ : R → R.

The denomination of the above theorem comes from the following proposition, which shows
that each Lie system can be embedded into a Lie family. In order to formulate this result, let
us denote bySg(W,V ;V0) the set of quasi-Lie systems of the schemeS(W,V ) such that there
exists ag satisfying thatg⋆X ∈ V0(R) with V0 a Lie algebra of vector fields included inV .
Again, complete proof of this proposition can be found in [35].

PROPOSITION7.20. The family of quasi-Lie systemsSg(W,V ;V0) is a Lie family admitting the
commont-dependent superposition rule of the form

Φ̄g(t, x(1), . . . , x(m), k) = g−1
t ◦ Φ(gt(x(1), . . . , gt)x(m), k),
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for anyt-independent superposition ruleΦ associated with the Lie algebra of vector fieldsV0 by
Lie Theorem.

8. Applications of quasi-Lie schemes and Lie families

The theory of quasi-Lie schemes, quasi-Lie systems [34] andthe theory of Lie families [35]
can be used to investigate a very large set of differential equations, namely, nonlinear oscillators
[34], dissipative Milne–Pinney equations [34, 35, 45], second-order Riccati equations [48], Abel
equations [35], Emden equations [34, 42], etc. As we showed in the previous section, these theo-
ries enable us to obtaint-dependent superposition rules, constants of the motion, exact solutions,
integrability conditions, etc. The main aim in this chapteris to show that the possibilities of ap-
plication of these methods are very wide and we can obtain a very large set of results from a
unified point of view.

More exactly, in previous sections it was proved that Milne–Pinney could be studied by means
of the theory of Lie systems (see also [43]). Nevertheless, there exist dissipative Milne–Pinney
equations that cannot straightforwardly be studied through this theory. In this section, we provide
a quasi-Lie scheme to treat these dissipative Milne–Pinneyequations. Then, we use this quasi-Lie
scheme to relate these equations to usual Milne–Pinney equations. By means of this relation, we
obtain at-dependent superposition rule for dissipative Milne–Pinney equations.

Apart from dissipative Milne–Pinney equations, we also investigate nonautonomous nonlin-
ear oscillators. We show that some of these differential equations can be transformed into au-
tonomous nonlinear oscillators. This result was already derived by Perelomov [180], but here we
recover it from a more general point of view. More specifically, we obtain that the nonautonomous
nonlinear oscillators analysed by Perelomov can be seen as differential equations obeying an in-
tegrability condition derived by means of a quasi-Lie scheme.

As a last application of the quasi-Lie scheme notion, we extensively analyse Emden equa-
tions. We provide a quasi-Lie scheme to obtaint-dependent constants of the motion by means of
particular solutions that obey an integrability condition. The method developed also enables us to
obtain Emden equations with a fixedt-dependent integral of motion. Kummer–Liouville trans-
formations are also obtained by means of our scheme and many other properties are recovered.

Finally, in the last two sections of this chapter, we apply commont-dependent superposition
rules to study some first- and second-order differential equations. In this way, we will show how
they can be used to analyse equations which cannot be studiedby means of the usual theory of
Lie systems. Additionally, some new results for the study ofAbel and Milne–Pinney equations
are provided.

8.1. Dissipative Milne–Pinney equations.In this section, we study the so-called dissipative
Milne–Pinney equations. We show that the first-order ordinary differential equations associated
with these second-order ones in the usual way, i.e. by considering velocities as new variables,
are not Lie systems. However, the theory of quasi-Lie schemes can be used to deal with such
first-order systems. Here we provide a scheme which enables us to transform a certain kind
of dissipative Milne–Pinney equations, considered as first-order systems, into some first-order
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Milne–Pinney equations already studied by means of the theory of Lie systems [53]. As a result
we get at-dependent superposition rule for some of these dissipative Milne–Pinney equations.

Let us establish the problem under study. Consider the family of dissipative Milne–Pinney
equations of the form

ẍ = a(t)ẋ + b(t)x+ c(t)
1

x3
. (8.1)

We are mainly interested in the casec(t) 6= 0, so we assume thatc(t) has a constant sign for
the set of values oft that we analyse.

Usually, we associate such a second-order differential equation with a system of first-order
differential equations by introducing a new variablev and relating the differential equation (8.1)
to the system of first-order differential equations

{
ẋ = v,

v̇ = a(t)v + b(t)x+ c(t)
1

x3
.

(8.2)

Let us search for a quasi-Lie scheme to handle the above system. Remember that we need to
find linear spacesWDisM andVDisM of vector fields such that

1. WDisM ⊂ VDisM.
2. [WDisM,WDisM] ⊂WDisM.
3. [WDisM, VDisM] ⊂ VDisM.

Also, in order to treat system (8.2) through this scheme, we have to ensure that thet-dependent
vector field

Xt = v
∂

∂x
+

(
a(t)v + b(t)x+

c(t)

x3

)
∂

∂v
,

whose integral curves are solutions for the system (8.2), issuch thatXt ∈ VDisM for everyt in
an open interval ofR.

Consider the vector spaceVDisM spanned by the vector fields

X1 = v
∂

∂v
, X2 = x

∂

∂v
, X3 =

1

x3
∂

∂v
, X4 = v

∂

∂x
, X5 = x

∂

∂x
and the two-dimensional vector subspaceWDisM ⊂ VDisM generated by

Y1 = X1 = v
∂

∂v
, Y2 = X2 = x

∂

∂v
.

It can be seen thatWDisM is a Lie algebra,

[Y1, Y2] = −Y2 ,
and, additionally, as

[Y1, X3] = −X3, [Y1, X4] = X4, [Y1, X5] = 0 ,

[Y2, X3] = 0, [Y2, X4] = X5 −X1, [Y2, X5] = −X2,

the linear spaceVDisM is invariant under the action of the Lie algebraWDisM on VDisM, i.e.
[WDisM, VDisM] ⊂ VDisM. Thus, the vector spaces

VDisM = 〈X1, . . . , X5〉 and WDisM = 〈Y1, Y2〉
of vector fields form a quasi-Lie schemeS(WDisM, VDisM). Let us observe that

Xt = a(t)X1 + b(t)X2 + c(t)X3 +X4
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and thusX ∈ VDisM(R).
We stress that the vector spaceVDisM is not a Lie algebra, because the commutator[X3, X4]

does not belong toVDisM. Moreover,V ′′ = 〈X1, . . . , X4〉 is not a Lie algebra of vector fields due
to a similar reason, i.e.[X3, X4] /∈ V ′′. Additionally, there exists no finite-dimensional real Lie
algebraV ′ containingV ′′. Thus, system (8.2) is not a Lie system, but we can use the quasi-Lie
schemeS(WDisM, VDisM) to investigate it.

The key tool provided by the schemeS(WDisM, VDisM) is the infinite-dimensional group
G(WDisM) of generalised flows for thet-dependent vector fields with values inW , i.e.α1(t)Y1+
α2(t)Y2, which leads to the group oft-dependent changes of variables

G(WDisM) =

{
g(α(t), β(t)) =

{
x = x′

v = α(t)v′ + β(t)x′

∣∣∣∣α(t) > 0, β(0) = 0, α(0) = 1

}
.

According to the general theory of quasi-Lie schemes, theseprevioust-dependent changes of
variables enable us to transform system (8.2) into a new one taking values inVDisM,

X ′
t = a′(t)X1 + b′(t)X2 + c′(t)X3 + d′(t)X4 + e′(t)X5 . (8.3)

The new coefficients are



a′(t) = a(t)− β(t) − α̇(t)

α(t)
,

b′(t) =
b(t)

α(t)
+ a(t)

β(t)

α(t)
− β2(t)

α(t)
− β̇(t)

α(t)
,

c′(t) =
c(t)

α(t)
,

d′(t) = α(t),

e′(t) = β(t).

The integral curves for thet-dependent vector field (8.3) are solutions of the system




dx′

dt
= β(t)x′ + α(t)v′,

dv′

dt
=

(
b(t)

α(t)
+ a(t)

β(t)

α(t)
− β2(t)

α(t)
− β̇(t)

α(t)

)
x′+

+

(
a(t)− β(t)− α̇(t)

α(t)

)
v′ +

c(t)

α(t)

1

x′3
.

(8.4)

As it was said in Section 7.3, we use schemes to transform the corresponding systems of first-
order differential equations into Lie ones. So, in this case, we must find a Lie algebra of vector
fieldsV0 ⊂ VDisM and a generalised flowg ∈ G(WDisM) such thatg⋆X ∈ V0(R). This leads
to a system of ordinary differential equations for the functionsα(t), β(t) and some integrability
conditions on the initial functionsa(t), b(t) andc(t) for such at-dependent change of variables
to exist.

In order to find a proper Lie algebra of vector fieldsV0 ⊂ V , note that Milne–Pinney equa-
tions studied in [53] are Lie systems in the family of differential equations defined by systems
(8.2) and therefore it is natural to look for the conditions needed to transform a given system of
(8.2), described by thet-dependent vector fieldXt, into one of these first-order Milne–Pinney
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equations of the form 



ẋ = f(t)v,

v̇ = −ω(t)x+ f(t)
k

x3
,

(8.5)

wherek is a constant, i.e. a system describing the integral curves for a t-dependent vector field
with values in the Lie algebra of vector fields [53]

V0 = 〈X4 + k X3, X2,
1

2
(X5 −X1)〉.

As a result, we get thatβ = 0, α = f and, furthermore, the functionsα, a andc must satisfy

kα2 = c, α̇− aα = 0, (8.6)

which yield thatc andk have the same sign. The second condition is a differential equation forα
and the first one determinesc in terms ofα. Therefore, both conditions lead to a relation between
c anda providing the integrability condition

c(t) = k exp

(
2

∫
a(t) dt

)
(8.7)

and showing, in view of (8.4), (8.5) and (8.6), that

α(t) = exp

(∫
a(t) dt

)
and ω(t) = −b(t) exp

(
−
∫
a(t)dt

)
,

where we choose the constants of integration in order to getα(0) = 1 as required.
Summarising the preceding results, under the integrability condition (8.7), the first-order

Milne–Pinney equation {
ẋ = v,

v̇ = a(t)v + b(t)x+ c(t)
1

x3
,

can be transformed into the system




dx′

dt
= exp

(∫
a(t) dt

)
v′,

dv′

dt
= b(t)exp

(
−
∫
a(t) dt

)
x′ + exp

(∫
a(t) dt

) k

x′3
,

by means of thet-dependent change of variables

g

(
exp

(∫
a(t) dt

)
, 0

)
=

{
x′ = x,

v′ = exp
(∫
a(t) dt

)
v.

We stress the fact that the previous change of variables is a particular instance of the so-called
Liouville transformation [164].

The final Milne–Pinney equation can be rewritten through thet-reparametrisation

τ(t) =

∫
exp

(∫
a(t) dt

)
dt,

as 



dx′

dτ
= v′,

dv′

dτ
= exp

(
−2
∫
a(t)dt

)
b(t(τ))x′ +

k

x′3
.
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These systems were analysed in [50] and there it was shown through the theory of Lie systems
that they admit the constant of the motion

I = (x̄v′ − v̄x′)2 + k
( x̄
x′

)2
,

where(x̄, v̄) is a solution of the system




dx̄

dτ
= v̄,

dv̄

dτ
= exp

(
−2

∫
a(t) dt

)
b(t) x̄ ,

which can be written as a second-order differential equation

d2x̄

dτ2
= exp

(
−2

∫
a(t) dt

)
b(t) x̄ .

If we invert thet-reparametrisation, we obtain the following differentialequation

¨̄x− a(t) ˙̄x− b(t)x̄ = 0, (8.8)

which is the linear differential equation associated with the initial Milne–Pinney equation.
As it was shown in [53], we can obtain, by means of the theory ofLie systems, the following

superposition rule

x′ =

√
2

|x̄1v̄2 − v̄1x̄2|
(
I2x̄

2
1 + I1x̄

2
2 ±

√
4I1I2 − k(x̄1v̄2 − v̄1v̄2)2 x̄1x̄2

)1/2
,

and as thet-dependent transformation performed does not change the variable x, we get the
t-dependent superposition rule

x =

√
2α(t)

|x̄1 ˙̄x2 − ˙̄x1x̄2|

(
I2x̄

2
1 + I1x̄

2
2 ±

√
4I1I2 −

k

α2(t)
(x̄1 ˙̄x2 − ˙̄x1x̄2)2 x̄1x̄2

)1/2

,

in terms of a set of solutions of the second-order linear system (8.8).
Summing up, the application of our scheme to the family of dissipative Milne–Pinney equa-

tions

ẍ = a(t) ẋ+ b(t)x+ exp

(
2

∫
a(t) dt

)
k

x3

shows that this family admits at-dependent superposition principle:

x =

√
2α(t)

|y1ẏ2 − y2ẏ1|

(
I2y

2
1 + I1y

2
2 ±

√
4I1I2 −

k

α2(t)
(y1ẏ2 − y2ẏ1)2 y1y2

)1/2

,

in terms of two independent solutionsy1, y2 for the differential equation

ÿ − a(t) ẏ − b(t) y = 0.

So, we have fully detailed a particular application of the theory of quasi-Lie schemes to
dissipative Milne–Pinney equations. As a result, we provide at-dependent superposition rule for
a family of such systems. Another paper dealing with such an approach to dissipative Milne–
Pinney equations and explaining some of their properties can be found in [45].
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8.2. Non-linear oscillators. As a second application of our theory, we use quasi-Lie schemes to
deal with a certain kind of nonlinear oscillators. The main objective of this section is to explain
sevaral properties of a family oft-dependent nonlinear oscillators studied by Perelomov in [180].
We also furnish a, as far as we know, new constant of the motionfor these systems.

Consider the subset of the family of nonlinear oscillators investigated in [180]:

ẍ = b(t)x+ c(t)xn, n 6= 0, 1 .

The casesn = 0, 1, are omitted because they can be handled with the usual theory of Lie systems.
As in the section above, we link the above second-order ordinary differential equation to the first-
order system {

ẋ = v,

v̇ = b(t)x+ c(t)xn.
(8.9)

Let us provide a quasi-Lie scheme to deal with systems (8.9).Consider the vector spaceVNO
spanned by the linear combinations of the vector fields

X1 = x
∂

∂v
, X2 = xn

∂

∂v
, X3 = v

∂

∂x
, X4 = v

∂

∂v
, X5 = x

∂

∂x

onTR and take the vector subspaceWNO ⊂ VNO generated by

Y1 = X4 = v
∂

∂v
, Y2 = X1 = x

∂

∂v
, Y3 = X5 = x

∂

∂x
.

Therefore,WNO is a solvable Lie algebra of vector fields,

[Y1, Y2] = −Y2 , [Y1, Y3] = 0 , [Y2, Y3] = −Y2 ,
and taking into account that

[Y1, X2] = −X2, [Y1, X3] = X3, [Y2, X2] = 0,

[Y2, X3] = X5 −X4, [Y3, X2] = nX2, [Y3, X3] = −X3,

we see thatVNO is invariant under the action ofWNO, i.e. [WNO, VNO] ⊂ VNO. In this way we
get the quasi-Lie schemeS(WNO, VNO).

Now, we have to go over whether the solutions of system (8.9) are integral curves for at-
dependent vector fieldX ∈ VNO)(R). In order to check this, we realise that the system (8.9)
describes the integral curves for thet-dependent vector field

Xt = v
∂

∂x
+ (b(t)x + c(t)xn)

∂

∂v
,

which can be written as
Xt = b(t)X1 + c(t)X2 +X3 . (8.10)

Note also that[X2, X3] /∈ VNO andV ′′ = 〈X1, X2, X3〉 is not only a Lie algebra of vector
fields, but also there is no finite-dimensional Lie algebraV ′ includingV ′′. Thus,X cannot be
considered as a Lie system and we conclude that the first-order nonlinear oscillator

{
ẋ = v,

v̇ = b(t)x+ c(t)xn.

describing integral curves of thet-dependent vector field (which is not a Lie system)

Xt = b(t)X1 + c(t)X2 +X3



122 J.F. Cariñena and J. de Lucas

can be described by means of the quasi-Lie schemeS(WNO, VNO).

Now, the group of generalised flowsG(WNO) associated withS(WNO, VNO) is made of the
t-dependent transformations

g(α(t), β(t), γ(t)) =

{
x = γ(t)x′

v = β(t)v′ + α(t)x′
β(t), γ(t) > 0, β(0) = γ(0) = 1, α(0) = 0.

Let us restrict ourselves to the caseα(t) = γ̇(t) andβ(t) = 1/γ(t) and apply these transfor-
mations to the system (8.9). The theory of quasi-Lie systemstells us that

g(α(t), β(t), γ(t))⋆X ∈ VNO(R).

Indeed, theset-dependent transformations lead to the systems




dx′

dt
=

1

γ2(t)
v′,

dv′

dt
= (γ2(t)b(t) − γ̈(t)γ(t))x′ + c(t)γn+1(t)x′n,

(8.11)

which are related to the second-order differential equations

γ2(t)ẍ′ = −2γ(t)γ̇(t)ẋ′ + (γ2(t)b(t)− γ̈(t)γ(t))x′ + c(t)γn+1(t)x′n .

But the theory of quasi-Lie schemes is based on the search of ageneralised flowg ∈ G(WNO)

such thatg⋆X becomes a Lie system, i.e. there exists a Lie algebra of vector fieldsV0 ⊂ VNO
such thatg⋆X ∈ V0(R). For instance, we can try to transform a particular instanceof the systems
(8.11) into a first-order differential equation associatedwith a nonlinear oscillator with a zerot-
dependent angular frequency, for example, into the first-order system





dx′

dt
= f(t)v′,

dv′

dt
= f(t)c0x

′n ,

(8.12)

related to the nonlinear oscillator
d2x′

dτ2
= c0x

′n,

with dτ/dt = f(t).

The conditions ensuring such a transformation are

γ(t)b(t)− γ̈(t) = 0 , c(t) = c0γ
−(n+3)(t), (8.13)

with f(t) = γ−2
1 (t), whereγ1 is a non-vanishing particular solution forγ(t)b(t) − γ̈(t) = 0.

We must emphasise that just particular solutions withγ1(0) = 1 and γ̇1(0) = 0 are related
to generalised flows inG(WNO). Nevertheless, any other particular solution can also be used
to transform a nonlinear oscillator into a Lie system as we stated. The Lie system (8.12) is the
system associated with thet-dependent vector field

Xt =
1

γ21(t)

(
v′

∂

∂x′
+ c0x

′n ∂

∂v′

)
.
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As a consequence of the standard methods developed for the theory of Lie systems [52], we
join two copies of the above system in order to get the first-integrals

Ii =
1

2
v′2i − c0

n+ 1
x′n+1
i , i = 1, 2,

and

I3 =
x′1√
I1

Hyp

(
1

n+ 1
,
1

2
, 1 +

1

n+ 1
,− c0x

′n+1
1

I1(n+ 1)

)

− x′2√
I2

Hyp

(
1

n+ 1
,
1

2
, 1 +

1

n+ 1
,− c0x

′n+1
2

I2(n+ 1)

)
,

whereHyp(a, b, c, d) denotes the corresponding hypergeometric functions. In terms of the initial
variables these first-integrals forg⋆X read

Ii =
1

2
(γ1(t)ẋi − γ̇1(t)xi)

2 − c0

γn+1
1 (t)(n+ 1)

xn+1
i , i = 1, 2, (8.14)

and

I3 =
1

γ1(t)

(
x1√
I1
Hyp

(
1

n+ 1
,
1

2
, 1 +

1

n+ 1
,− c0x

n+1
1

γn+1
1 (t)I1(n+ 1)

)

− x2√
I2

Hyp

(
1

n+ 1
,
1

2
, 1 +

1

n+ 1
,− c0x

n+1
2

γn+1
1 (t)I2(n+ 1)

))
. (8.15)

As a particular application of conditions (8.13), we can consider the following example of
[180], where thet-dependent Hamiltonian

H(t) =
1

2
p2 +

ω2(t)

2
x2 + c2γ

−(s+2)
1 (t)xs ,

with γ1 being such thaẗγ1(t) + ω2(t)γ1(t) = 0, is studied. The Hamilton equations for the latter
Hamiltonian are {

ẋ = p,

ṗ = −sc2γ−(s+2)
1 (t)xs−1 − ω2(t)x,

(8.16)

which are associated with the second-order differential equation for the variablex given by

ẍ = −sc2γ−(s+2)
1 (t)xs−1 − ω2(t)x. (8.17)

Note that here the variablep plays the same role asv in our theoretical development and the latter
differential equation is a particular case of our Emden equations with

b(t) = −ω2(t) , c(t) = −sc2γ−(s+2)
1 (t) , n = s− 1. (8.18)

Let us prove that the above coefficients satisfy the conditions (8.13):

1. By assumption,ω2(t)γ1(t) + γ̈1(t) = 0. Asω2(t) = −b(t), thenγ1(t)b(t)− γ̈1(t) = 0.
2. If we fix c0 = −sc2, in view of conditions (8.18), we obtainc(t) = c0γ

−(n+3)
1 (t).

Therefore, we get that thet-dependent frequency nonlinear oscillator (8.17) can be transformed
into a new one with zero frequency, i.e.

d2x′

dτ2
= −sc2x′s−1,
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with

τ =

∫
dt

γ21(t)
,

reproducing the result given by Perelomov [180]. The choiceof the t-dependent frequencies
is such that it is possible to transform the initialt-dependent nonlinear oscillator into the final
autonomous nonlinear oscillator. Then, we recover here such frequencies as a result of an inte-
grability condition. Moreover, in view of the expressions (8.14), (8.15) and (8.18), we get a, as
far as we know, newt-dependent constants of the motion for these nonlinear oscillators.

8.3. Dissipative Mathews–Lakshmanan oscillators.In this section we provide a simple appli-
cation of the theory of quasi-Lie schemes to investigate thet-dependent dissipative Mathews-
Lakshmanan oscillator

(1 + λx2)ẍ− F (t)(1 + λx2)ẋ− (λx)ẋ2 + ω(t)x = 0, λ > 0. (8.19)

More specifically, we supply some integrability conditionsto relate the above dissipative oscilla-
tor to the Mathews–Lakshmanan one [65, 67, 142, 161]

(1 + λx2)ẍ− (λx)ẋ2 + kx = 0, λ > 0, (8.20)

and by means of such a relation we get a, as far as we know, newt-dependent constant of the
motion.

Consider the system of first-order differential equation related to equation (8.19) in the usual
way, i.e. 




ẋ = v,

v̇ = F (t)v +
λxv2

1 + λx2
− ω(t)

x

1 + λx2
,

(8.21)

and determining the integral curves for thet-dependent vector field

Xt =

(
F (t)v +

λxv2

1 + λx2
− ω(t)

x

1 + λx2

)
∂

∂v
+ v

∂

∂x
.

Let us provide a scheme to handle the system (8.21). Considerthe vector spaceV spanned by the
vector fields

X1 = v
∂

∂x
+

λxv2

1 + λx2
∂

∂v
, X2 =

x

1 + λx2
∂

∂v
, X3 = v

∂

∂v
, (8.22)

and the linear spaceW = 〈X3〉. The commutation relations

[X3, X1] = X1, [X3, X2] = −X2,

imply that the linear spacesW,V make up a quasi-Lie schemeS(W,V ). As the t-dependent
vector fieldXt reads in terms of the basis (8.22)

Xt = F (t)X3 − ω(t)X2 +X1,

we get thatXt ∈ V (R).
The integration ofX3 shows that

G(W ) =

{
g(α(t)) =

{
x = x

′

,

v = α(t)v′.

∣∣∣∣α(t) > 0, α(0) = 1

}
,
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and thet-dependent changes of variables related to the controls ofG(W ) transform the system
(8.21) into 




ẋ′ = α(t)v′,

v̇′ =

(
F (t)− α̇(t)

α(t)

)
v′ − ω(t)

α(t)

x′

1 + λx′2
+ α(t)

λx′v′2

1 + λx′2
.

Suppose that we fiẋα− F (t)α = 0. Hence, the latter becomes




ẋ′ = α(t)v′,

v̇′ = −ω(t)
α(t)

x′

1 + λx′2
+ α(t)

λx′v′2

1 + λx′2
.

Let us try to search conditions for ensuring the above systemto determine the integral curves for
a t-dependent vector field of the formX(t, x) = f(t)X̄(x) with X̄ ∈ V , e.g.





ẋ′ = f(t)v′,

v̇′ = f(t)

(
x′

1 + λx′2
+

λx′v′2

1 + λx′2

)
.

In such a case,α(t) = f(t), ω(t) = −α2(t) and thereforeω(t) = − exp
(
2
∫
F (t)dt

)
. The

t-reparametrisationdτ = f(t)dt transforms the previous system into the autonomous one




dx′

dτ
= v′,

dv′

dτ
=

x′

1 + λx′2
+

λx′v′2

1 + λx′2
.

determining the integral curves for the vector fieldX = X1 + X2 and related to a Mathews–
Lakshmanan oscillator (8.20) withk = 1. The method of characteristics shows, after brief calcu-
lation, that this system has a first-integral

I(x′, v′) =
1 + λx′2

1 + λv′2
,

that reads in terms of the initial variables and the variablet as at-dependent constant of the
motion

I(t, x, v) =
α2(t) + λα2(t)x2

α2(t) + λv2
,

for the t-dependent dissipative Mathews–Lakshmanan oscillator (8.19) getting a, as far as we
know, newt-dependent constant of the motion.

8.4. The Emden equation.In this and following sections we analyse, from the perspective of
the theory of quasi-Lie schemes, the so-called Emden equations of the form

ẍ = a(t)ẋ+ b(t)xn, n 6= 1. (8.23)

These equations can be associated with the system of first-order differential equations
{
ẋ = v,

v̇ = a(t)v + b(t)xn.
(8.24)

This system was already studied in [34, 42] by means of quasi-Lie schemes. We hereafter
summarise some of the results of these papers, which concernthe determination oft-dependent
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constants of the motion by means of particular solutions, reducible particular cases of Emden
equations, etc.

Consider the real vector space,VEmd, spanned by the vector fields

X1 = x
∂

∂v
, X2 = xn

∂

∂v
, X3 = v

∂

∂x
, X4 = v

∂

∂v
, X5 = x

∂

∂x
.

Thet-dependent vector field determining the dynamics of system (8.24) can be written as a linear
combination

Xt = a(t)X4 +X3 + b(t)X2.

Moreover, the linear spaceWEmd ⊂ VEmd spanned by the complete vector fields,

Y1 = X4 = v
∂

∂v
, Y2 = X1 = x

∂

∂v
, Y3 = X5 = x

∂

∂x
,

is a three-dimensional real Lie algebra of vector fields withrespect to the ordinary Lie Bracket
because these vector fields satisfy the relations

[Y1, Y2]LB = −Y2, [Y1, Y3]LB = 0, [Y2, Y3]LB = −Y2.
Also [WEmd, VEmd]LB ⊂ VEmd because

[Y1, X2]LB = −X2, [Y1, X3]LB = X3, [Y2, X2]LB = 0,

[Y2, X3]LB = X5 −X4, [Y3, X2]LB = nX2, [Y3, X3]LB = −X3.

So we get a quasi-Lie schemeS(WEmd, VEmd) which can be used to treat the Emden equations
(8.24). This suggests that if we perform thet-dependent change of variables associated with this
quasi-Lie scheme, namely,

{
x = γ(t)x′,

v = β(t)v′ + α(t)x′,
γ(t)β(t) > 0 , ∀t, (8.25)

the original system transforms into




dx′

dt
=

(
α(t)

γ(t)
−

γ̇(t)

γ(t)

)
x
′ +

β(t)

γ(t)
v
′

,

dv′

dt
=

(
a(t)−

α(t)

γ(t)
−

β̇(t)

β(t)

)
v
′ +

α(t)

β(t)

(
a(t)−

α(t)

γ(t)
−

α̇(t)

α(t)
+

γ̇(t)

γ(t)

)
x
′

+
b(t)γn(t)

β(t)
x
′n
.

(8.26)

The key point of our method is to choose appropriate functions,α, β andγ, in such a way
that the system of differential equations (8.26) becomes a Lie system. A possible way to do so,
consists in choosingα, β andγ so that the above system becomes determined by at-dependent
vector fieldXt = f(t)X̄, whereX̄ is a true vector field andf(t) is a non-vanishing function
(on the interval oft under study). As it is shown in next section, this cannot always be done and
some conditions must be imposed on the initialt-dependent functions,α, β andγ, ensuring the
existence of such a transformation. These restrictions lead to integrability conditions.

Suppose that, for the time being, this is the case. Therefore, the system (8.26) is




dx′

dt
= f(t) (c11x

′ + c12v
′) ,

dv′

dt
= f(t)(c22x

′n + cxx
′ + c21v

′)

(8.27)
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and it is determined by thet-dependent vector field

Xt = f(t)X̄,

with

X̄ = (c11x
′ + c12v

′)
∂

∂x′
+ (c22x

′n + cxx
′ + c21v

′)
∂

∂v′
.

Under thet-reparametrisation,

τ =

∫ t

f(t′)dt′,

system (8.27) is autonomous. The new autonomous system of differential equations is determined
by the vector fieldX̄ on TR and therefore there exists a first integral. This can be obtained by
means of the method of characteristics, which provides the characteristic curves where the first-
integrals for such a vector field̄X are constant. These characteristic curves are determined by

dx′

c11x′ + c12v′
=

dv′

c21v′ + cxx′ + c22x′n
,

which can be written as

(c21v
′ + cxx

′ + c22x
′n)dx′ − (c11x

′ + c12v
′)dv′ = 0. (8.28)

This expression can be straightforwardly integrated if

∂

∂v′
(c21v

′ + cxx
′ + c22x

′n) = − ∂

∂x′
(c11x

′ + c12v
′) =⇒ c21 = −c11. (8.29)

Under this condition we obtain the integral of the motion for(8.28), namely

I = −c12
v′2

2
+ cx

x′2

2
+ c21v

′x′ + c22
x′n+1

n+ 1
. (8.30)

Finally, if we write the latter expression in terms of the initial variablesx, v and t, we get a
constant of the motion for the initial differential equation.

If we do not wish to impose condition (8.29), we can alternatively integrate equation (8.28)
by means of an integrating factor, i.e. we look for a function, µ(x′, v′), such that

∂

∂v′
(µ(c21v

′ + cxx
′ + c22x

′n)) =
∂

∂x′
(−µ(c11x′ + c12v

′)).

Thus the integrating factor satisfies the partial differential equation

∂µ

∂v′
(c21v

′ + cxx
′ + c22x

′n) +
∂µ

∂x′
(c11x

′ + c12v
′) = −µ(c11 + c21).

If c11 + c21 = 0, the integral factor can be chosen to beµ = 1 and we get the latter first-
integral (8.30). On the other hand, ifc11 + c21 6= 0, we can still look for a solution for the partial
differential equation forµ and obtain a new first-integral.

8.5.t-dependent constants of the motion and particular solutions for Emden equations. The
main purpose of this section is to show that the knowledge of aparticular solution of the Emden
equation allows us to transform it into a Lie system and to derive a t-dependent constant of the
motion.
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If we restrict ourselves to the caseα(t) = 0 in the system of differential equation (8.26), it
reduces to 




dx′

dt
= − γ̇(t)

γ(t)
x′ +

β(t)

γ(t)
v′,

dv′

dt
=

(
a(t)− β̇(t)

β(t)

)
v′ +

b(t)γn(t)

β(t)
x′n.

(8.31)

In order to transform the original Emden–Fowler differential equation into a Lie system by
means of our quasi-Lie scheme, we try to write the transformed differential equation in the form





dx′

dt
= f(t) (c11x

′ + c12v
′) ,

dv′

dt
= f(t) (c22x

′n + c21v
′) ,

(8.32)

where thecij are constants. This system of differential equations can bereduced to an au-
tonomous one as, under thet-dependent change of variables,

τ =

∫ t

f(t′)dt′,

the latter differential equation becomes




dx′

dτ
= c11x

′ + c12v
′,

dv′

dτ
= c22x

′n + c21v
′.

(8.33)

In order for system (8.31) to be similar to system (8.32), we look for functionsα, β and γ
satisfying the conditions,





f(t) c11 = − γ̇(t)
γ(t)

, f(t) c12 =
β(t)

γ(t)
,

f(t) c22 = b(t)
γn(t)

β(t)
, f(t) c21 = a(t)− β̇(t)

β(t)
.

(8.34)

The conditions in the first line lead to

β(t) = −c12
c11

γ̇(t), (8.35)

and using this equation in the last relation we obtain

f(t) =
a(t)

c21
− 1

c21

γ̈(t)

γ̇(t)
. (8.36)

On the other hand from the three first relations in (8.34) we get

f(t) = −b(t)c11
c22c12

γn(t)

γ̇(t)
. (8.37)

The equality of the right-hand sides of (8.36) and (8.37) leads to the following equation for
the functionγ:

γ̈ = a(t)γ̇ +
c11c21
c22c12

b(t)γn.
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Suppose that we make the choice, withc21 = −c11 as indicated in (8.29),

c22 = −1, c11 = 1, c21 = −1, c12 = 1 (8.38)

and thus(c11c22)/(c21c12) = 1. Therefore we find thatγ must be a solution of the initial equation
(8.23). In other words, if we suppose that a particular solution xp(t) of the Emden equation is
known, we can chooseγ(t) = xp(t). Then, according to the expression (8.35) and our previous
choice (8.38), the corresponding functionβ turns out to be

β(t) = −ẋp(t).
Finally, in view of conditions (8.34), we get that

−γ̇(t)
c11γ(t)

= b(t)
γn(t)

c22β(t)

and taking into account our choice (8.38) andγ(t) = xp(t), we obtain the condition satisfied by
the particular solution:

xn+1
p (t) = ẋ2p(t). (8.39)

The system of differential equations (8.32) for such a choice (8.38) of the constants{cij | i, j =
1, 2} is the equation for the integrals curves for thet-dependent vector field

Xt = f(t)

(
(x′ + v′)

∂

∂x′
−
(
v′ + x′

n) ∂

∂v′

)
.

The method of the characteristics can be used to find the following first-integral for this vector
field and, in view of (8.30), we get





I(x′, v′) =
1

n+ 1
x′n+1 +

1

2
v′2 + x′v′, n /∈ {−1, 1},

I(x′, v′) = log x′ +
1

2
v′2 + x′v′, n = −1,

and, if we express this integral of motion in terms of the initial variables andt, we obtain a, as far
as we know, newt-dependent constant of the motion for the initial Emden equation





I(t, x, v) =
xn+1

(n+ 1)xn+1
p (t)

+
v2

2ẋ2p(t)
− xv

xp(t)ẋp(t)
, n /∈ {−1, 1},

I(t, x, v) = log

(
x

xp(t)

)
+

v2

2ẋ2p(t)
− xv

xp(t)ẋp(t)
, n = −1.

(8.40)

So, the knowledge of a particular solution for the Emden equation enables us first to obtain a
constant of the motion and then to reduce the initial Emden equation into a Lie system. Thus, all
Emden equations are quasi-Lie systems with respect to the above mentioned scheme.

8.6. Applications of particular solutions to study Emden equations. This section is devoted
to illustrating the usefulness of the previous theory aboutEmden equations. More specifically,
we detail several Emden equations for which one is able to finda particular solution satisfying an
integrability condition and use is made of such a solution inorder to derivet-dependent constants
of the motion. In this way we recover several results appearing in the literature about Emden–
Fowler equations from a unified point of view [42].
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We start with a particular case of the Lane-Emden equation

ẍ = −2

t
ẋ− x5. (8.41)

The more general Lane-Emden equation is generally written as

ẍ = −2

t
ẋ+ f(x)

and the example here considered corresponds tof(x) = −xn, n 6= 1, which is one of the most
interesting cases, together with that off(x) = −e−βx. Equation (8.41) appears in the study of
the thermal behaviour of a spherical cloud of gas [135] and also in astrophysical applications. A
particular solution for (8.41) satisfying (8.39) isxp(t) = (2t)−1/2. If we substitute this expres-
sion forxp(t) and the corresponding one forẋp(t) into thet-dependent constant of the motion
(8.40), we get that

I ′(t, x, v) =
4t3x6

3
+ 4t3v2 + 4t2xv

is a t-dependent constant of the motion proportional to (8.40) and also proportional to thet-
dependent constants of the motion found in [11, 34, 158].

We study from this new perspective other Emden equations investigated in [145]. Consider
the particular instance

ẍ = − 5

t+K
ẋ− x2.

A particular solution for this Emden equation satisfying (8.39) is

xp(t) =
4

(t+K)2
.

In this case at-dependent constant of the motion is

I ′(t, x, v) =
1

3
x3(t+K)6 +

1

2
v2(t+K)6 + 2 x v(t+K)5,

which is proportional to the one found by Leach in [145].
Now another Emden equation found in [145],

ẍ = − 3

2(t+K)
ẋ− x9,

admits the particular solution

xp(t) =
1√

2(t+K)1/4
,

which satisfies (8.39). The correspondingt-dependent constant of the motion is given by

I ′(t, x, v) = (K + t)3/2(10(K + t)v2 + 5vx+ 2(K + t)x10)

which is proportional to that given in [145].
Let us turn now to consider the Emden equation

ẍ = − 5

3(t+K)
ẋ− x7,

which admits a particular solution of the form

xp(t) =
1

31/3(t+K)1/3
,
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which obeys (8.39) and leads to thet-dependent constant of the motion

I ′(t, x, v) = (K + t)5/3(12(K + t)v2 + 8vx+ 3x8(K + t)).

Finally we apply our development to obtain at-dependent constant of the motion for the
Emden equation

ẍ = − 1

K1 +K3t
ẋ− xn (8.42)

with

K3 =
n− 1

n+ 3
.

We can find a particular solution of the form

xp(t) =
K2

(K1 +K3t)ν
, ν 6= 0.

In order forxp(t) to be a particular solution we must have the following relation

(ν + 1)νK2K
2
3

(K1 +K3t)ν+2
=

νK2K3

(K1 +K3t)ν+2
− Kn

2

(K1 +K3t)nν

and thus
ν + 2 = nν and ν(ν + 1)K2

3K2 = νK2K3 −Kn
2 .

From these equations we get

ν =
2

n− 1
, Kn−1

2 =
22

(n+ 3)2
.

Under these conditions it can be easily verified thatẋ2p(t) = xn+1
p (t). Thus, at-dependent con-

stant of the motion is

I ′(t, x, v) = (K1 +K3t)
2(n+1)/(n−1)

(
xn+1

n+ 1
+
v2

2

)
+

+ (K1 +K3t)
(n+3)/(n−1) 2vx

n+ 3
, (8.43)

which can also be found in [145].
Another advantage of our method is that it allows us to obtainEmden equations admitting a

previously fixedt-dependent constant of the motion.
Suppose that we want to construct an Emden equation admitting a previously chosen partic-

ular solution,xp(t), satisfyingẋ2p(t) = xn+1
p (t) for certainn ∈ Z − {1,−1}. We can integrate

this equation to get all possible particular solutions which can be used by means of our method,
i.e.

xp(t) =

(
K +

1− n

2
t

)− 2

n−1

.

We consider functionsa(t) andb(t) such that

ẍp = a(t)ẋp + b(t)xnp .

For the sake of simplicity, we can assume thatb(t) = −1. Then we get

a(t) =
ẍp + xnp
ẋp

.
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If we substitute the chosen particular solution in the aboveexpression, we obtain

a(t) =
3 + n

2(K + 1−n
2 t)

.

which leads to an Emden equation equivalent to (8.42) and thet-dependent constant of the motion
for this equation is again (8.43). In this way we recover the cases studied in this section.

8.7. The Kummer-Liouville transformation for a general Emden-Fowler equation. As far
as we know, the most general form of the Emden–Fowler equation considered nowadays is

ẍ+ p(t)ẋ+ q(t)x = r(t)xn. (8.44)

This generalisation arises naturally as a consequence of our scheme. Indeed, the above second-
order differential equation is associated with the system of first-order differential equations

{
ẋ = v,

v̇ = −p(t)v − q(t)x + r(t)xn,
(8.45)

which determines the integral curves for thet-dependent vector field

Xt = −p(t)X4 − q(t)X1 + r(t)X2 +X3.

This t-dependent vector field is a generalisation of the one studied in previous sections. Under
the set of transformations (8.25), the initial system (8.45) becomes the new system






dx′

dt
=

(
α(t)

γ(t)
−

γ̇(t)

γ(t)

)
x
′ +

β(t)

γ(t)
v
′

,

dv′

dt
=

(
−p(t)−

α(t)

γ(t)
−

β̇(t)

β(t)

)
v
′ +

α(t)

β(t)

(
−p(t)−

α(t)

γ(t)
−

α̇(t)

α(t)
+

+
γ̇(t)

γ(t)
− q(t)

γ(t)

α(t)

)
x
′ +

r(t)γn(t)

β(t)
x
′n
.

If we chooseα = γ̇, the system reduces to





dx′

dt
=

β(t)

γ(t)
v
′

,

dv′

dt
=

(
−p(t)−

γ̇(t)

γ(t)
−

β̇(t)

β(t)

)
v
′ +

γ̇(t)

β(t)

(
−p(t)−

γ̈(t)

γ̇(t)
− q(t)

γ(t)

γ̇(t)

)
x
′

+
r(t)γn(t)

β(t)
x
′n
.

When the functionγ(t) is chosen in such a way thatγ̈ = −q(t)γ − p(t)γ̇, i.e.γ is a solution of
the associated linear equation, we obtain





dx′

dt
=

β(t)

γ(t)
v
′

,

dv′

dt
=

(
−p(t)−

γ̇(t)

γ(t)
−

β̇(t)

β(t)

)
v
′ +

r(t)γn(t)

β(t)
x
′n
.

(8.46)

Finally, if the functionβ(t) is such that

−p(t)− γ̇(t)

γ(t)
− β̇(t)

β(t)
= 0,



Lie systems: theory, generalisations, and applications 133

we obtain 




dx′

dt
=

β(t)

γ(t)
v
′

,

dv′

dt
=

r(t)γn(t)

β(t)
x
′n
,

(8.47)

which is related to the second-order differential equation

δ2x′

dτ2
= r(t)

γn+1(t)

β2(t)
x′n,

with

τ(t) =

∫ t β(t′)

γ(t′)
dt′.

The new form of the differential equation is called the canonical form of the generalised Emden–
Fowler equation.

This fact is obtained by means of an appropriate Kummer–Liouville transformation in the
previous literature, but we obtain it here as a straightforward application of the properties of
transformation of quasi-Lie schemes thereby underscoringthe theoretical explanation of such a
Kummer–Liouville transformation.

8.8. Constants of the motion for sets of Emden-Fowler equations. In this section we show
that under certain assumptions on thet-dependent coefficientsa(t) andb(t) the original Emden
equation can be reduced to a Lie system and then we can obtain afirst-integral which provides
us with at-dependent constant of the motion for the original system.

In fact consider the system of first-order differential equations






dx′

dt
=

(
α(t)

γ(t)
−

γ̇(t)

γ(t)

)
x
′ +

β(t)

γ(t)
v
′

,

dv′

dt
=

(
a(t)−

α(t)

γ(t)
−

β̇(t)

β(t)

)
v
′ +

α(t)

β(t)

(
a(t)−

α(t)

γ(t)
−

α̇(t)

α(t)
+

γ̇(t)

γ(t)

)
x
′

+
b(t)γn(t)

β(t)
x
′n
.

This system describes all the systems of differential equations that can be obtained by means of
the set oft-dependent transformations we got through the schemeS(WEmd, VEmd). We recall
that thet-dependent change of variable which we use to relate the Emden equation (8.24) with
the latter system of differential equation is

{
x = γ(t)x′,

v = β(t)v′ + α(t)x′.

As in previous papers on this topic, we try to relate the latter system of differential equations to
a Lie system determined by at-dependent vector field of the formX ′(t, x) = f(t)X̄(x) and we
supposef(t) to be non-vanishing in the interval we study. So the system ofdifferential equations
determining the integrals curves for thist-dependent vector field is a Lie system and we can use
the theory of Lie systems to analyse its properties.
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As a first example we can consider that we just use the set of transformations withγ(t) = 1

andα(t) = 0. In this case system (8.25) is




dx′

dt
= β(t)v′

dv′

dt
=

(
a(t)− β̇(t)

β(t)

)
v′ +

b(t)

β(t)
x′n.

We fix β(t) to be such that

a(t)− β̇(t)

β(t)
= 0,

i.e.β(t) is (proportional to)

β(t) = exp

(∫ t

a(t′)dt′
)
.

Therefore we get 



dx′

dt
= exp

(∫ t

a(t′)dt′
)
v′,

dv′

dt
= b(t) exp

(
−
∫ t

a(t′)dt′
)
x′n.

In order to get the last system of differential equations to describe the integral curves for at-
dependent vector field,X ′(t, x) = f(t)X̄(x), for a given functiona(t) a necessary and sufficient
condition is

b(t) exp

(
−2

∫ t

a(t′)dt′
)

= K,

with K being a real constant. Under this assumption the last systembecomes



dx′

dt
= exp

(∫ t

a(t′)dt′
)
v′,

dv′

dt
= exp

(∫ t

a(t′)dt′
)
Kx′n.

We introduce thet-reparametrisation

τ(t) =

∫ t

exp

(∫ t′

a(t′′)dt′′

)
dt′

and the latter system becomes 



dx′

dτ
= v′,

dv′

dτ
= Kx′n,

which admits a first-integral

I =
1

2
v′2 −K

x′n+1

n+ 1
.

In terms of the initial variables, the correspondingt-dependent constant of the motion is

I = exp

(
−2

∫ t

a(t′)dt′
)(

1

2
ẏ2 − b(t)

xn+1

n+ 1

)
,
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which is similar to that found in [16].
Suppose that we restrict the transformations (8.25) to the caseα(t) = 0. In this case the

system of first-order differential equations (8.26) becomes




dx′

dt
= − γ̇(t)

γ(t)
x′ +

β(t)

γ(t)
v′,

dv′

dt
=

(
a(t)− β̇(t)

β(t)

)
v′ +

b(t)γn(t)

β(t)
x′n.

In order for this system of differential equations to determine the integral curves for at-dependent
vector field of the formX ′(t, x) = f(t)X̄(x) we need that





c11f(t) = − γ̇(t)
γ(t)

, c12f(t) =
β(t)

γ(t)
,

c21f(t) = a(t)− β̇(t)

β(t)
, c22f(t) =

b(t)γn(t)

β(t)
.

(8.48)

From these relations, or more exactly from those of the first row, we getf(t) as

f(t) = − 1

c11

γ̇(t)

γ(t)
=

1

c12

β(t)

γ(t)

and therefore
γ̇(t) = −c11

c12
β(t).

We choosec11 = −1 andc12 = 1 so that

β(t) = γ̇(t). (8.49)

In view of this and using the third and second relations from (8.48) we get

c21
c12

β(t)

γ(t)
= a(t)− β̇(t)

β(t)

and thus, as a consequence of (8.49), the last differential equation becomes

c21
c12

γ̇(t)

γ(t)
= a(t)− γ̈(t)

γ̇(t)

and, asc12 = 1 and fixingc21 = 1, we obtain

d

dt
log(γ̇γ) = a(t),

which can be rewritten as
1

2

d

dt
γ2(t) = exp

(∫ t

a(t′)dt′
)
.

Hence we have

γ(t) =

√√√√2

∫ t

exp

(∫ t′

a(t′′)dt′′

)
dt′

and in view of (8.49)

β(t) =
1√

2
∫ t

exp
(∫ t′

a(t′′)dt′′
)
dt′

exp

(∫ t

a(t′)dt′
)
.
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So far we have only used three of the four relations we found. The fourth and second relations
lead to the integrability condition: there exist a constantc22 = K such that

K
β(t)

γ(t)
=
b(t)γn(t)

β(t)
.

Therefore, using the above expressions forγ(t) andβ(t), we get

b(t) exp

(
−2

∫ t

a(t)dt′
)(

2

∫ t

exp

(∫ t′

a(t′′)dt′′

))(n+3)/2

= K. (8.50)

So under this assumption we have connected the initial Emdenequation with the Lie system,




dx′

dt
= f(t)(−x′ + v′),

dv′

dt
= f(t)(v′ +Kx′n),

and then the method of characteristics shows that it admits the first-integral

I ′ = −1

2
v′2 +

K

n+ 1
x′n+1 + v′x′.

In terms of the initial variables the corresponding constant of the motion is

I =

(
1

2
ẋ2 − b(t)

n+ 1
xn+1

)
exp

(
−2

∫ t

a(t′)dt′
)∫ t

exp

(∫ t′

a(t′′)dt′′

)
dt′

− 1

2
xẋ exp

(
−
∫ t

a(t′)dt′
)

(8.51)

and in this way we recover the result found in [16]. If we now consider the particular casen = −3

we get that the integrability condition (8.50) implies thatthere is a constantK such that

b(t) exp

(
−2

∫ t

a(t)dt′
)

= K,

and the correspondingt-dependent constant of the motion is then given by

I =

(
1

2
ẋ2 +

b(t)

2
x−2

)
exp

(
−2

∫ t

a(t′)dt′
)∫ t

exp

(∫ t′

a(t′′)dt′′

)
dt′

− 1

2
xẋ exp

(
−
∫ t

a(t′)dt′
)
,

which is equivalent to that one found in [16].

8.9. A t-dependent superposition rule for Abel equations.Let us now turn to illustrate the
results of our theory of Lie families by deriving a commont-dependent superposition rule for a
Lie family of Abel equations, whose elements do not admit a standard superposition rule except
for a few particular instances. In this way, we single out that our theory provides new tools
for investigating solutions of nonautonomous systems of differential equations than cannot be
investigated by means of the theory of Lie systems.
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With this aim, we analyse the so-called Abel equations of thefirst-type [24, 74], i.e. the
differential equations of the form

dx

dt
= a0(t) + a1(t)x+ a2(t)x

2 + a3(t)x
3, (8.52)

with a3(t) 6= 0. Abel equations appear in the analysis of several cosmological models [73, 111,
148] and other different fields in Physics [70, 84, 91, 92, 177, 240]. Additionally, the study of
integrability conditions for Abel equations is a research topic of current interest in Mathematics
and multiple studies have been carried out in order to analyse the properties of the solutions of
these equations [5, 69, 74, 75, 215].

Note that, apart from its inherent mathematical interest, the knowledge of particular solutions
of Abel equations allows us to study the properties of those physical systems that such equations
describe. Thus, the expressions enabling us to easily obtain new solutions of Abel equations by
means of several particular ones, like commont-dependent superposition rules, are interesting to
study the solutions of these equations and, therefore, their related physical systems.

Unfortunately, all the expressions describing the generalsolution of Abel equations presently
known can only be applied to study autonomous instances and,moreover, they depend on families
of particular conditions satisfying certain extra conditions, see [75, 215]. Taking this into account,
commont-dependent superposition rules represent an improvement with respect to these previous
expressions, as they enable us to treat nonautonomous Abel equations and they do not require the
usage of particular solutions obeying additional conditions.

Recall that, according to Theorem 7.19, the existence of a commont-dependent superposition
rule for a family of t-dependent vector fields{Yd}d∈Λ requires the existence of a system of
generators, i.e. a certain set oft-dependent vector fields,X1, . . . , Xr, satisfying relations (7.14).
Conversely, given such a set, the family oft-dependent vector fieldsY whose autonomisations
can be written in the form

Ȳc(t, x) =

r∑

j=1

bcj(t)X̄j(t, x),

r∑

j=1

bcj(t) = 1,

admits a commont-dependent superposition rule and becomes a Lie family.
Consequently, a Lie family of Abel equations can be determined, for instance, by finding two

t-dependent vector fields of the form

X1(t, x) = (b0(t) + b1(t)x+ b2(t)x
2 + b3(t)x

3)
∂

∂x
,

X2(t, x) = (b′0(t) + b′1(t)x+ b′2(t)x
2 + b′3(t)x

3)
∂

∂x
, b′3(t) 6= 0,

(8.53)

such that

[X̄1, X̄2] = 2(X̄2 − X̄1). (8.54)

Let us analyse the existence of such twot-dependent vector fieldsX1 andX2 with commu-
tation relations (8.54). In coordinates, the Lie bracket[X̄1, X̄2] reads

[(b′3b2 − b′2b3)x
4 + (2(b′3b1 − b3b

′
1)− ḃ3 + ḃ′3)x

3 + (−3(b′0b3 − b0b
′
3) + (b′2b1 − b2b

′
1)

− ḃ2 + ḃ′2)x
2 + (−2b′0b2 + 2b0b

′
2 − ḃ1 + ḃ′1)x − b′0b1 + b0b

′
1 − ḃ0 + ḃ′0]

∂

∂x
.
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Hence, in order to satisfy condition (8.54),b′3b2 − b′2b3 = 0, e.g. we may fixb2 = b3 = 0.
Additionally, for the sake of simplicity, we assumeb′3 = 1. In this case, the previous expression
takes the form

[2b1x
3 + (3b0 + b′2b1 + ḃ′2)x

2 + (2b0b
′
2 − ḃ1 + ḃ′1)x− b′0b1 + b0b

′
1 − ḃ0 + ḃ′0]

∂

∂x
,

and, taking into account the values chosen forb2, b3 andb′3, assumption (8.54) yieldsb1 = 1 and




b′2 = 3b0 + ḃ′2,

2(b′1 − 1) = 2b0b
′
2 + ḃ′1,

2(b′0 − b0) = −b′0 + b0b
′
1 − ḃ0 + ḃ′0.

As this system has more variables than equations, we can try to fix some values of the variables
in order to simplify it and obtain a particular solution. In this way, takingb0(t) = t, the above
system reads 




ḃ′2 = b′2 − 3t,

ḃ′1 = 2(b′1 − 1)− 2tb′2,

ḃ′0 = 2(b′0 − t) + b′0 − tb′1 + 1.

This system is integrable by quadratures and one can check that it admits the particular solution

b′2(t) = 3(1 + t), b′1(t) = 3(1 + t)2 + 1, b′0(t) = (1 + t)3 + t.

Summing up, we have proved that thet-dependent vector fields




X1(t, x) = (t+ x)
∂

∂x
,

X2(t, x) = ((1 + t)3 + t+ (3(1 + t)2 + 1)x+ 3(1 + t)x2 + x3)
∂

∂x
,

(8.55)

satisfy (8.54) and, therefore, the family oft-dependent vector fields

Yb(t)(t, x) = (1− b(t))X1(x) + b(t)X2(x)

is a Lie family. The corresponding family of Abel equations is

dx

dt
= (t+ x) + b(t)(1 + t+ x)3. (8.56)

According to the results proved in Section 1.5, in order to determine a commont-dependent
superposition rule for the above Lie family, we have to determine a first-integral for the vector
fields of the distributionD spanned by thet-prolongationsX̃1 andX̃2 on R × Rn(m+1) for a
certainm so that thet-prolongations ofX1 andX2 to R × Rnm are linearly independent at
a generic point. Taking into account expressions (8.55), the prolongations of the vector fields
X1 andX2 to R × R2 are linearly independent at a generic point and, in view of (8.54), the
t-prolongationsX̃1 andX̃2 to R × R3 span an involutive generalised distributionD with two-
dimensional leaves in a dense subset ofR × R3. Finally, a first-integral for the vector fields in
the distributionD will provide us a commont-dependent superposition rule for the Lie family
(8.56).

Since, in view of (8.54), the vector fields̃X1 and X̃2 span the distributionD, a function
G : R × R2 → R is a first-integral of the vector fields of the distributionD if and only ifG is a
first-integral ofX̃1 andX̃1 − X̃2, i.e.X̃1G = (X̃2 − X̃1)G = 0.
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The conditionX̃1G = 0 reads

∂G

∂t
+ (t+ x0)

∂G

∂x0
+ (t+ x1)

∂G

∂x1
= 0,

and, using the method of characteristics [129], we note thatthe curves on whichG is constant,
the so-calledcharacteristics, are solutions of the system

dt =
dx0
t+ x0

=
dx1
t+ x1

⇒ dxi
dt

= t+ xi, i = 0, 1,

which readxi(t) = ξie
t − t − 1, with i = 0, 1 andξ0, ξ1 ∈ R. Furthermore, these solutions are

determined by the implicit equationsξ0 = e−t(x0 + t+1) andξ1 = e−t(x1 + t+1). Therefore,
there exists a functionG2 : R2 → R such thatG(t, x0, x1) = G2(ξ0, ξ1). In other words, each
first-integralG of X̃1 depends only onξ0 andξ1.

Taking into account the previous fact, we look for simultaneous first-integrals of the vector
field X̃2 − X̃1 andX̃1, that is, for solutions of the equation(X̃2 − X̃1)G = 0 with G depending
on ξ0 andξ1. Using the expression of̃X2 − X̃1 in the system of coordinates{t, ξ0, ξ1}, we get
that

(X̃2 − X̃1)G = ξ30
∂G2

∂ξ0
+ ξ31

∂G2

∂ξ1
= 0,

and, applying again the method of characteristics, we obtain that there exists a functionG3 : R →
R such thatG(t, x0, x1) = G2(ξ0, ξ1) = G3(∆), where∆ = e2t((x0+t+1)−2−(x1+t+1)−2).
Finally, using this first-integral, we get that the commont-dependent superposition rule for the
Lie family (8.56) reads

k = e2t((x0 + t+ 1)−2 − (x1 + t+ 1)−2),

with k being a real constant. Therefore, given any particular solutionx1(t) of a particular instance
of the family of first-order Abel equations (8.58), the general solution,x(t), of this instance is

x(t) =
(
(x1(t) + t+ 1)−2 + ke−2t

)−1/2 − t− 1.

Note that our previous procedure can be straightforwardly generalised to derive commont-
dependent superposition rules for generalised Abel equations [166], i.e. the differential equations
of the form

dx

dt
= a0(t) + a1(t)x + a2(t)x

2 + . . .+ an(t)x
n, n ≥ 3.

Actually, their study can be approached by analysing the existence of two vector fields of the
form

Y1(t, x) = (b0(t) + b1(t)x+ . . .+ bn(t)x
n)

∂

∂x
,

Y2(t, x) = (b′0(t) + b′1(t)x+ . . .+ b′n(t)x
n)

∂

∂x
, b′n(t) 6= 0,

obeying the relation[Ȳ1, Ȳ2] = 2(Ȳ2−Ȳ1) and following a procedure similar to the one developed
above.

8.10. Lie families and second-order differential equations. Commont-dependent superposi-
tion rules describe solutions of nonautonomous systems of first-order differential equations. Nev-
ertheless, we shall now illustrate how this new kind of superposition rules can also be applied to
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analyse families of second-order differential equations.More specifically, we shall derive a com-
mont-dependent superposition rule in order to express the general solution of any instance of a
family of Milne–Pinney equations [30, 75, 195, 196] in termsof each generic pair of particular
solutions, two constants, and the variablet, i.e. the time. In this way, we provide a generaliza-
tion to the setting of dissipative Milne–Pinney equations of the expression previously derived to
analyse the solutions of Milne–Pinney equations in [44].

Consider the family of dissipative Milne–Pinney equations[89, 195, 196, 217] of the form

ẍ = −Ḟ ẋ+ ω2x+ e−2Fx−3, (8.57)

with a fixedt-dependent functionF = F (t), and parametrised by an arbitraryt-dependent func-
tion ω = ω(t). The physical motivation for the study of dissipative Milne–Pinney equations
comes from its appearance in dissipative quantum mechanics[3, 113, 171, 213], where, for in-
stance, their solutions are used to obtain Gaussian solutions of non-conservativet-dependent
quantum oscillators [171]. Moreover, the mathematical properties of the solutions of dissipative
Milne–Pinney equations have been studied by several authors from different points of view as
well as for different purposes [34, 44, 45, 83, 110, 195, 196,230]. As relevant instances, con-
sider the works [45, 195] which outline the state-of-the-art of the investigation of dissipative and
non-dissipative Milne–Pinney equations. One of the main achievements on this topic (see [195,
Corollary 5]) is concerned with an expression describing the general solution of a particular class
of these equations in terms of a pair of generic particular solutions of a second-order linear dif-
ferential equations and two constants. Recently, the theory of quasi-Lie schemes and the theory
of Lie systems has enabled us to recover this latter result and other new ones from a geometric
point of view [34, 52].

Note that introducing a new variablev ≡ ẋ, we transform the family (8.57) of second-order
differential equations into a family of first-order ones

{
ẋ = v,

v̇ = −Ḟ v + ω2x+ e−2Fx−3,
(8.58)

whose dynamics is described by the family oft-dependent vector fields onTR parametrised by
ω of the form

Yω =
(
−Ḟ v + e−2Fx−3 + ω2x

) ∂

∂v
+ v

∂

∂x
, ω ∈ Λ = C∞(t).

Let us show that the above family is a Lie family whose common superposition rule can be used
to analyse the solutions of the family (8.57).

In view of Theorem 7.19, if the family of systems related to the above family oft-dependent
vector fields is a Lie family, that is, it admits a commont-dependent superposition rule in terms of
m particular solutions, then the family of vector fields onR×Rn(m+1) given byLie({Yω}ω∈Λ)

spans an involutive generalised distribution with leaves of rankr ≤ n ·m+ 1.

Note that the distribution spanned by allỸω is generated by the vector fields̃Y1 andỸ2, with

Y1 =
(
−Ḟ v + e−2Fx−3 + x

) ∂

∂v
+ v

∂

∂x
, Y2 =

(
−Ḟ v + e−2Fx−3

) ∂

∂v
+ v

∂

∂x
,

sinceỸω = (1 − ω2)Ỹ2 + ω2Ỹ1. The prolongation[Ỹ1, Ỹ2] is not spanned bỹY1 andỸ2 and, so
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we have to include the prolongationY ∧
3 = [Ỹ1, Ỹ2] to the picture, where

Y3 = x
∂

∂x
− (v + xḞ )

∂

∂v
.

In the casem = 0, the distribution spanned by the vector fields,Ỹ1, Ỹ2, Y
∧
3 , does not admit a

non-trivial first-integral. In the casem > 0, the vector fields,̃Y1, Ỹ2, Y ∧
3 , do not span the linear

spaceLie({Ỹω}ω∈Λ) and we need to add a new prolongationY ∧
4 = [Ỹ1, [Ỹ1, Ỹ2]] to the previous

set, with

Y4 = (2v + xḞ )
∂

∂x
+ (2e−2Fx−3 − 2x− Ḟ (v + xḞ )− xF̈ )

∂

∂v
.

The vector fields,̃Y1, Ỹ2, Y ∧
3 , Y

∧
4 , satisfy the commutation relations

[
Ỹ1, Ỹ2

]
= Y ∧

3 ,
[
Ỹ1, Y

∧
3

]
= Y ∧

4 ,
[
Ỹ1, Y

∧
4

]
= (4 + Ḟ 2 + 2F̈ )Y ∧

3 − (Ḟ F̈ +
...
F )(Ỹ1 − Ỹ2),

[
Ỹ2, Y

∧
3

]
= 2(Ỹ1 − Ỹ2) + Y ∧

4 ,
[
Ỹ2, Y

∧
4

]
= (2 + Ḟ 2 + 2F̈ )Y ∧

3 − (Ḟ F̈ +
...
F )(Ỹ1 − Ỹ2),

[Y ∧
3 , Y

∧
4 ] = −2Y ∧

4 − 2(Ỹ1 − Ỹ2)(4 + Ḟ 2 + 2F̈ ).

Consequently, the vector fields̃Y1, Ỹ2, Y ∧
3 , Y

∧
4 span the linear spaceLie({Ỹω}ω∈Λ). Adding Ỹ1

to each prolongation of the previous set, that is, by considering the vector fields̃X1 = Ỹ1, X̃2 =

Ỹ2, X̃3 = Ỹ1 + Y ∧
3 , andX̃4 = Ỹ1 + Y ∧

4 , we get the family oft-prolongations,̃X1, X̃2, X̃3, X̃4,
which spans the vector fields of the familyLie({Ỹω}ω∈Λ). The commutation relations among
them read[

X̃1, X̃2

]
= X̃3 − X̃1,

[
X̃1, X̃3

]
= X̃4 − X̃1,

[
X̃1, X̃4

]
= −(Ḟ F̈ +

...
F + 4 + Ḟ 2 + 2F̈ )X̃1 + (Ḟ F̈ +

...
F )X̃2 + (4 + Ḟ 2 + 2F̈ )X̃3,

[
X̃2, X̃3

]
= 2X̃1 − 2X̃2 − X̃3 + X̃4,

[
X̃2, X̃4

]
= −(1 + Ḟ 2 + 2F̈ + Ḟ F̈ +

...
F )X̃1 + (Ḟ F̈ +

...
F )X̃2 + (1 + Ḟ 2 + 2F̈ )X̃3,

[
X̃3, X̃4

]
= −3X̃4 + (4 + Ḟ 2 + 2F̈ )X̃3 + (8 +

...
F + Ḟ F̈ + 2Ḟ 2 + 4F̈ )X̃2+

+(−9− 3Ḟ 2 − 6F̈ − Ḟ F̈ −
...
F )X̃1.

As a consequence of Lemma 7.17, we get that the vector fieldsX̄1, X̄2 X̄3 andX̄4 satisfy the
same commutation relations as the vector fieldsX̃1, X̃2, X̃3, X̃4. Hence, in view of Theorem
7.19, the family (8.58) is a Lie family and the knowledge of non-trivial first-integrals of the vector
fields of the distributionD spanned bỹX1, X̃2, X̃3, X̃4 provides us with a commont-dependent
superposition rule.

Let us now turn to determine the aforementioned commont-dependent superposition rule.
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As the vector fields̃X1, X̃1 − X̃2 and their successive Lie brackets span the whole distribution
D, a functionG : R × TR3 → R is a first-integral for the vector fields of such a distribution if
and only if it is a first-integral for the vector fields̃X1 andX̃2 − X̃1. Therefore, we can reduce
the problem of finding first-integrals for the vector fields ofthe distributionD to finding common
first-integralsG for the vector fieldsX̃1 andX̃1 − X̃2.

Let us analyse the implications ofG being a first-integral of the vector field

X̃1 − X̃2 =

2∑

i=0

xi
∂

∂vi
.

The characteristics of the above vector field are the solutions of the system

dv0
x0

=
dv1
x1

=
dv2
x2

, dx0 = 0, dx1 = 0, dx2 = 0, dt = 0,

that is, the solutions are curves inR × TR3 of the forms 7→ (t, x0, x1, x2, v0(s), v1(s), v2(s)),
with ξ02 = x0v2(s)− x2v0(s) andξ12 = x1v2(s)− x2v1(s) for two real constantsξ02 andξ12.
Thus, there exists a functionG2 : R6 → R such thatG(p) = G2(t, x0, x1, x2, ξ02, ξ12), with
p ∈ R × TR3, ξ02 = x0v2 − x2v0, andξ12 = x1v2 − v1x2. In other words,G is a function of
t, x0, x1, x2, ξ02, ξ12.

The functionG also satisfies the conditioñX1G = 0 which, in terms of the coordinate system
{t, x0, x1, x2, ξ02ξ12, v2}, reads

X̃1G =
∂G

∂t
+

(x0v2 − ξ02)

x2

∂G

∂x0
+

(x1v2 − ξ12)

x2

∂G

∂x1
+ v2

∂G

∂x2
−

−
[
Ḟ ξ12 + e−2F

(
x2
x31

− x1
x32

)]
∂G

∂ξ12
−
[
Ḟ ξ02 + e−2F

(
x2
x30

− x0
x32

)]
∂G

∂ξ02
= 0.

That is, defining the vector fields

Ξ1 =
∂

∂t
− ξ12
x2

∂

∂x1
− ξ02
x2

∂

∂x0
+

[
−Ḟ ξ12 − e−2F

(
x2
x31

− x1
x32

)]
∂

∂ξ12

+

[
−Ḟ ξ02 − e−2F

(
x2
x30

− x0
x32

)]
∂

∂ξ02
,

Ξ2 =
x0
x2

∂

∂x0
+
x1
x2

∂

∂x1
+

∂

∂x2
,

the conditionX̃1G = 0 implies thatΞ1G2 + v2Ξ2G2 = 0 and, asG2 does not depend onv2, the
functionG must simultaneously be a first-integral forΞ1 andΞ2, i.e.Ξ1G = 0 andΞ2G = 0.

Applying the method of characteristics to the vector fieldΞ2, we get thatF can just depend
on the variablest, ξ02, ξ12,∆02 = x0/x2 and∆12 = x1/x2. In other words, there exists a
functionG3 : R5 → R such thatG(t, x0, x1, x2, v0, v1, v2) = G2(t, x0, x1, x2, ξ02, ξ12) =

G3(t, ξ02, ξ12,∆02,∆12).

We are left to check the implications of the equationΞ1G = 0. With the aid of the coordinate
system{t, ξ02, ξ12,∆02,∆12, v2, x2}, the previous equation can be cast into the formΞ1G =
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1
x2

2

Υ1G3 +Υ2G3 = 0, where

Υ1 =

1∑

i=0

(
−ξi2

∂

∂∆i2
− e−2F

(
∆−3
i2 −∆i2

) ∂

∂ξi2

)
,

Υ2 = −Ḟ ξ12
∂

∂ξ12
− Ḟ ξ02

∂

∂ξ02
+
∂

∂t
.

AsG3 only depends on the variables,t,∆02,∆12, ξ12, ξ02, we have thatΥ1G = 0 andΥ2G = 0.
Repeatingmutatis mutandisthe previous procedures in order to determine the implications of
being a first-integral ofΥ1 andΥ2, we finally get that the first-integrals of the distributionD are
functions ofI1, I2 andI, with

Ii = e2F (x0vi − xiv0)
2 +

[(
x0
xi

)2

+

(
xi
x0

)2
]
, i = 1, 2,

and

I = e2F (x1v2 − x2v1)
2 +

[(
x1
x2

)2

+

(
x2
x1

)2
]
.

Defining v̄2 = eF v2, v̄1 = eF v1 andv̄0 = eF v0, the above first-integrals read

Ii = (x0v̄i − xiv̄0)
2 +

[(
x0
xi

)2

+

(
xi
x0

)2
]
, i = 1, 2,

and

I = (x1v̄2 − x2v̄1)
2 +

[(
x1
x2

)2

+

(
x2
x1

)2
]
.

Note that these first-integrals have the same form as the onesconsidered in [52] fork = 1.
Therefore, we can apply the procedure done there to obtain that

x0 =

√
k1x21 + k2x22 + 2

√
λ12[−(x41 + x42) + I x21x

2
2 ] , (8.59)

with λ12 being a function of the form

λ12(k1, k2, I) =
k1k2I + (−1 + k21 + k22)

I2 − 4
,

and where the constantsk1 andk2 satisfy special conditions in order to ensure thatx0 is real [44].
Expression (8.59) permits us to determine the general solution,x(t), of any instance of family

(8.57) in the form

x(t) =

√
k1x21(t) + k2x22(t) + 2

√
λ12[−(x41(t) + x42(t)) + I x21(t)x

2
2(t) ] , (8.60)

with

I = e2F (t)(x1(t)ẋ2(t)− x2(t)ẋ1(t))
2 +

[(
x1(t)

x2(t)

)2

+

(
x2(t)

x1(t)

)2
]
,

in terms of two of its particular solutions,x1(t), x2(t), its derivatives, the constantsk1 andk2,
and the variablet (included in the constant of the motionI).

Note that the role of the constantI in expression (8.60) differs from the roles played byk1
andk2. Indeed, the value ofI is fixed by the particular solutionsx1(t), x2(t) and its derivatives,
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while, for every pair of generic solutionsx1(t) andx2(t), the values ofk1 andk2 range within
certain intervals ensuring thatx(t) is real.

It is clear that the method illustrated here can also be applied to analyse solutions of any
other family of second-order differential equations related to a Lie family by introducing the new
variablev = ẋ. Additionally, it is worth noting that in the caseF (t) = 0 the family of dissipative
Milne–Pinney equations (8.57) reduces to a family of Milne–Pinney equations broadly appearing
in the literature (see [147] and references therein), and the expression (8.60) takes the form of the
expression obtained in [44] for these equations.

9. Conclusions and outlook

Apart from providing a quite self-contained introduction to the theory of Lie systems, this essay
describes most of the results concerning this theory and itsgeneralisations developed by the
authors and other collaborators along very recent years. Inthis way, our work presents a state-
of-art of the subject and establishes the foundations for our present research activity. Let us here
discuss some of the topics which we aim to analyse in a close future and their relations to the
contents of this essay.

The theory of superposition rules for second- and higher-order differential equations has just
been initiated [48, 49, 52, 77, 202, 225] and many questions about this topic must still be clarified.
As an example, we can point out that there exist several approaches to study systems of second-
order differential equations by means of the theory of Lie systems nowadays. For instance, one
can use the SODE Lie system notion [52], which allows us to study a particular type of systems
of second-order differential equations. In addition, if a second-order differential equation admits
a regular Lagrangian, the corresponding Hamiltonian formulation can lead to a system of first-
order differential equations which can also be a Lie system [54]. Analysing the relations between
the results obtained through both approaches is still an open problem.

As a consequence of the above considerations, it became interesting to study a class of Lie
systems describing the Hamilton equations of a certain typeof t-dependent Hamiltonians. These
systems are defined in a symplectic manifold and this structure provides us with new tools for
investigating such Lie systems. In addition, these tools can be employed to study the integrability
and super-integrability of these particular Lie systems. Our aim is to analyse such relations in
depth in the future.

After analysing the Lie systems defined in symplectic manifolds, a natural question arises:
What are the properties of those Lie systems describing the solutions of a system in a Poisson
manifold(N, {·, ·}) of the form

dx

dt
= {x, ht}, x ∈ N,

where, for everyt ∈ R, the functionht : N → R belongs to a finite-dimensional Lie algebra of
functions (with respect to the Poisson bracket). This challenging question has led to the analysis
of the properties of such Lie systems by means of the Poisson structure of the manifold, what
represents an interesting topic of research.

In [12, 13] Winternitzet al.proposed, for the first time, a new type of superposition rules, the
referred to assuper-superposition rules, that describe the general solution of a particular family
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of systems of first-order differential equations in supermanifolds. These articles gave rise to many
interesting unanswered questions. Although it seems that the geometric theory developed in [38]
could easily be generalised to describe the properties ofsuper-superposition rules, multiple non-
trivial technical problems arise. We hope to solve such problems in the future and to develop a
geometric theory of Lie systems in graded manifolds.

In [38, Remark 5], it was proposed to accomplish the study of Bäcklund transformations
through a slight modification of the methods carried out to analyse superposition rules geometri-
cally, i.e., by means of a certain type of flat connection. This topic deserves a further analysis in
order to determine more exactly its relevance and applications.

Since their first appearance in [34], quasi-Lie schemes havebeen employed to investigate
multiple systems of differential equations: nonlinear oscillators [34], Mathews-Lakshmanan os-
cillators [34], Emden equations [42], Abel equations [56],dissipative Milne–Pinney equations
[45], etc. There are still many other applications to be performed, e.g. we expect to apply this
theory to study Abel equations in depth. In addition, it would be interesting to continue the anal-
ysis of the theory of quasi-Lie schemes and, for instance, todevelop new generalisations of this
theory. Indeed, we are already investigating a generalisation for the analysis of certain quantum
systems, e.g. the quantum Calogero-Moser system. In addition, it would be interesting to study
the generalisations of this theory to analyse stochastic Lie-Scheffers systems [144] or Control Lie
systems [79].

As we pointed out at the beginning of this essay, being a Lie system is rather more an excep-
tion than a rule. In addition, just a few, but relevant, Lie systems are known to have applications
in Physics, Mathematics and other branches of science. Consequently, one of our main purposes
remains to find new instances of Lie systems with remarkable applications. It seems to us that
there still exist multiple applications of Lie systems and,in the future, we aim to determine some
of them.

To finish, we hope to have succeeded in showing that the theoryof Lie systems, after more
than a century of existence, is still an active and interesting field of research.
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[53] J.F. Cariñena, J. de Lucas and M. F. Rañada,Nonlinear superpositions and Ermakov systems, in:
Differential Geometric Methods in Mechanics and Field Theory, F. Cantrijn, M. Crampin and B.
Langerock (eds.), Academia Press, Genth, 2007, 15–33.
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[55] J.F. Cariñena, J. de Lucas and M.F. Rañada,Lie systems and integrability conditions fort-dependent
frequency harmonic oscillators, Int. J. Geom. Methods Mod. Phys. 7 (2010), 289–310.
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