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Chapter 0
Introduction and Review

If you drop your shoe and a coin side by side, they hit the ground at
the same time. Why doesn’t the shoe get there first, since gravity is
pulling harder on it? How does the lens of your eye work, and why
do your eye’s muscles need to squash its lens into different shapes in
order to focus on objects nearby or far away? These are the kinds
of questions that physics tries to answer about the behavior of light
and matter, the two things that the universe is made of.

0.1 The scientific method

Until very recently in history, no progress was made in answering
questions like these. Worse than that, the wrong answers written
by thinkers like the ancient Greek physicist Aristotle were accepted
without question for thousands of years. Why is it that scientific
knowledge has progressed more since the Renaissance than it had
in all the preceding millennia since the beginning of recorded his-
tory? Undoubtedly the industrial revolution is part of the answer.
Building its centerpiece, the steam engine, required improved tech-

The Mars Climate Orbiter is pre-
pared for its mission. The laws
of physics are the same every-
where, even on Mars, so the
probe could be designed based
on the laws of physics as discov-
ered on earth. There is unfor-
tunately another reason why this
spacecraft is relevant to the top-
ics of this chapter: it was de-
stroyed attempting to enter Mars’
atmosphere because engineers
at Lockheed Martin forgot to con-
vert data on engine thrusts from
pounds into the metric unit of
force (newtons) before giving the
information to NASA. Conver-
sions are important!
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experiment

a/Science is a cycle of the-
ory and experiment.

b/A satirical
alchemist’s laboratory. H. Cock,
after a drawing by Peter Brueghel
the Elder (16th century).
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niques for precise construction and measurement. (Early on, it was
considered a major advance when English machine shops learned to
build pistons and cylinders that fit together with a gap narrower
than the thickness of a penny.) But even before the industrial rev-
olution, the pace of discovery had picked up, mainly because of the
introduction of the modern scientific method. Although it evolved
over time, most scientists today would agree on something like the
following list of the basic principles of the scientific method:

(1) Science is a cycle of theory and experiment. Scientific the-
ories ! are created to explain the results of experiments that were
created under certain conditions. A successful theory will also make
new predictions about new experiments under new conditions. Even-
tually, though, it always seems to happen that a new experiment
comes along, showing that under certain conditions the theory is
not a good approximation or is not valid at all. The ball is then
back in the theorists’ court. If an experiment disagrees with the
current theory, the theory has to be changed, not the experiment.

(2) Theories should both predict and explain. The requirement of
predictive power means that a theory is only meaningful if it predicts
something that can be checked against experimental measurements
that the theorist did not already have at hand. That is, a theory
should be testable. Explanatory value means that many phenomena
should be accounted for with few basic principles. If you answer
every “why” question with “because that’s the way it is,” then your
theory has no explanatory value. Collecting lots of data without
being able to find any basic underlying principles is not science.

(3) Experiments should be reproducible. An experiment should
be treated with suspicion if it only works for one person, or only
in one part of the world. Anyone with the necessary skills and
equipment should be able to get the same results from the same
experiment. This implies that science transcends national and eth-
nic boundaries; you can be sure that nobody is doing actual science
who claims that their work is “Aryan, not Jewish,” “Marxist, not
bourgeois,” or “Christian, not atheistic.” An experiment cannot be
reproduced if it is secret, so science is necessarily a public enterprise.

As an example of the cycle of theory and experiment, a vital step
toward modern chemistry was the experimental observation that the
chemical elements could not be transformed into each other, e.g.,
lead could not be turned into gold. This led to the theory that
chemical reactions consisted of rearrangements of the elements in

The term “theory” in science does not just mean “what someone thinks,” or
even “what a lot of scientists think.” It means an interrelated set of statements
that have predictive value, and that have survived a broad set of empirical
tests. Thus, both Newton’s law of gravity and Darwinian evolution are scientific
theories. A “hypothesis,” in contrast to a theory, is any statement of interest
that can be empirically tested. That the moon is made of cheese is a hypothesis,
which was empirically tested, for example, by the Apollo astronauts.
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different combinations, without any change in the identities of the
elements themselves. The theory worked for hundreds of years, and
was confirmed experimentally over a wide range of pressures and
temperatures and with many combinations of elements. Only in
the twentieth century did we learn that one element could be trans-
formed into one another under the conditions of extremely high
pressure and temperature existing in a nuclear bomb or inside a star.
That observation didn’t completely invalidate the original theory of
the immutability of the elements, but it showed that it was only an
approximation, valid at ordinary temperatures and pressures.

self-check A

A psychic conducts seances in which the spirits of the dead speak to
the participants. He says he has special psychic powers not possessed
by other people, which allow him to “channel” the communications with
the spirits. What part of the scientific method is being violated here?
> Answer, p. 563

The scientific method as described here is an idealization, and
should not be understood as a set procedure for doing science. Sci-
entists have as many weaknesses and character flaws as any other
group, and it is very common for scientists to try to discredit other
people’s experiments when the results run contrary to their own fa-
vored point of view. Successful science also has more to do with
luck, intuition, and creativity than most people realize, and the
restrictions of the scientific method do not stifle individuality and
self-expression any more than the fugue and sonata forms stifled
Bach and Haydn. There is a recent tendency among social scien-
tists to go even further and to deny that the scientific method even
exists, claiming that science is no more than an arbitrary social sys-
tem that determines what ideas to accept based on an in-group’s
criteria. I think that’s going too far. If science is an arbitrary social
ritual, it would seem difficult to explain its effectiveness in building
such useful items as airplanes, CD players, and sewers. If alchemy
and astrology were no less scientific in their methods than chem-
istry and astronomy, what was it that kept them from producing
anything useful?

Discussion questions

Consider whether or not the scientific method is being applied in the fol-
lowing examples. If the scientific method is not being applied, are the
people whose actions are being described performing a useful human
activity, albeit an unscientific one?

A Acupuncture is a traditional medical technique of Asian origin in
which small needles are inserted in the patient’s body to relieve pain.
Many doctors trained in the west consider acupuncture unworthy of ex-
perimental study because if it had therapeutic effects, such effects could
not be explained by their theories of the nervous system. Who is being
more scientific, the western or eastern practitioners?

Section 0.1  The scientific method
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B Goethe, a German poet, is less well known for his theory of color.
He published a book on the subject, in which he argued that scientific
apparatus for measuring and quantifying color, such as prisms, lenses
and colored filters, could not give us full insight into the ultimate meaning
of color, for instance the cold feeling evoked by blue and green or the
heroic sentiments inspired by red. Was his work scientific?

C  Achild asks why things fall down, and an adult answers “because of
gravity.” The ancient Greek philosopher Aristotle explained that rocks fell
because it was their nature to seek out their natural place, in contact with
the earth. Are these explanations scientific?

D Buddhism is partly a psychological explanation of human suffering,
and psychology is of course a science. The Buddha could be said to
have engaged in a cycle of theory and experiment, since he worked by
trial and error, and even late in his life he asked his followers to challenge
his ideas. Buddhism could also be considered reproducible, since the
Buddha told his followers they could find enlightenment for themselves
if they followed a certain course of study and discipline. Is Buddhism a
scientific pursuit?

0.2 What is physics?

Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
positions of the things which compose it...nothing would be
uncertain, and the future as the past would be laid out before
its eyes.

Pierre Simon de Laplace

Physics is the use of the scientific method to find out the basic
principles governing light and matter, and to discover the implica-
tions of those laws. Part of what distinguishes the modern outlook
from the ancient mind-set is the assumption that there are rules by
which the universe functions, and that those laws can be at least par-
tially understood by humans. From the Age of Reason through the
nineteenth century, many scientists began to be convinced that the
laws of nature not only could be known but, as claimed by Laplace,
those laws could in principle be used to predict everything about
the universe’s future if complete information was available about
the present state of all light and matter. In subsequent sections,
I’ll describe two general types of limitations on prediction using the
laws of physics, which were only recognized in the twentieth century.

Matter can be defined as anything that is affected by gravity,
i.e., that has weight or would have weight if it was near the Earth
or another star or planet massive enough to produce measurable
gravity. Light can be defined as anything that can travel from one
place to another through empty space and can influence matter, but
has no weight. For example, sunlight can influence your body by
heating it or by damaging your DNA and giving you skin cancer.
The physicist’s definition of light includes a variety of phenomena
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that are not visible to the eye, including radio waves, microwaves,
x-rays, and gamma rays. These are the “colors” of light that do not
happen to fall within the narrow violet-to-red range of the rainbow
that we can see.

self-check B

At the turn of the 20th century, a strange new phenomenon was discov-
ered in vacuum tubes: mysterious rays of unknown origin and nature.
These rays are the same as the ones that shoot from the back of your
TV’s picture tube and hit the front to make the picture. Physicists in
1895 didn’t have the faintest idea what the rays were, so they simply
named them “cathode rays,” after the name for the electrical contact
from which they sprang. A fierce debate raged, complete with national-
istic overtones, over whether the rays were a form of light or of matter.
What would they have had to do in order to settle the issue? >
Answer, p. 563

Many physical phenomena are not themselves light or matter,
but are properties of light or matter or interactions between light
and matter. For instance, motion is a property of all light and some
matter, but it is not itself light or matter. The pressure that keeps
a bicycle tire blown up is an interaction between the air and the
tire. Pressure is not a form of matter in and of itself. It is as
much a property of the tire as of the air. Analogously, sisterhood
and employment are relationships among people but are not people
themselves.

Some things that appear weightless actually do have weight, and
so qualify as matter. Air has weight, and is thus a form of matter
even though a cubic inch of air weighs less than a grain of sand. A
helium balloon has weight, but is kept from falling by the force of the
surrounding more dense air, which pushes up on it. Astronauts in
orbit around the Earth have weight, and are falling along a curved
arc, but they are moving so fast that the curved arc of their fall
is broad enough to carry them all the way around the Earth in a
circle. They perceive themselves as being weightless because their
space capsule is falling along with them, and the floor therefore does
not push up on their feet.

Optional Topic: Modern Changes in the Definition of Light and
Matter

Einstein predicted as a consequence of his theory of relativity that light
would after all be affected by gravity, although the effect would be ex-
tremely weak under normal conditions. His prediction was borne out
by observations of the bending of light rays from stars as they passed
close to the sun on their way to the Earth. Einstein’s theory also implied
the existence of black holes, stars so massive and compact that their
intense gravity would not even allow light to escape. (These days there
is strong evidence that black holes exist.)

Einstein’s interpretation was that light doesn’t really have mass, but
that energy is affected by gravity just like mass is. The energy in a light

Section 0.2

¢/ This telescope picture shows
two images of the same distant
object, an exotic, very luminous
object called a quasar. This is
interpreted as evidence that a
massive, dark object, possibly
a black hole, happens to be
between us and it. Light rays that
would otherwise have missed the
earth on either side have been
bent by the dark object’s gravity
so that they reach us. The actual
direction to the quasar is presum-
ably in the center of the image,
but the light along that central line
doesn’t get to us because it is
absorbed by the dark object. The
quasar is known by its catalog
number, MG1131+0456, or more
informally as Einstein’s Ring.

What is physics? 19



beam is equivalent to a certain amount of mass, given by the famous
equation E = mc?, where c is the speed of light. Because the speed
of light is such a big number, a large amount of energy is equivalent to
only a very small amount of mass, so the gravitational force on a light
ray can be ignored for most practical purposes.

There is however a more satisfactory and fundamental distinction
between light and matter, which should be understandable to you if you
have had a chemistry course. In chemistry, one learns that electrons
obey the Pauli exclusion principle, which forbids more than one electron
from occupying the same orbital if they have the same spin. The Pauli
exclusion principle is obeyed by the subatomic particles of which matter
is composed, but disobeyed by the particles, called photons, of which a
beam of light is made.

Einstein’s theory of relativity is discussed more fully in book 6 of this
series.

The boundary between physics and the other sciences is not
always clear. For instance, chemists study atoms and molecules,
which are what matter is built from, and there are some scientists
who would be equally willing to call themselves physical chemists
or chemical physicists. It might seem that the distinction between
physics and biology would be clearer, since physics seems to deal
with inanimate objects. In fact, almost all physicists would agree
that the basic laws of physics that apply to molecules in a test tube
work equally well for the combination of molecules that constitutes
a bacterium. (Some might believe that something more happens in
the minds of humans, or even those of cats and dogs.) What differ-
entiates physics from biology is that many of the scientific theories
that describe living things, while ultimately resulting from the fun-
damental laws of physics, cannot be rigorously derived from physical
principles.

‘
neutrons

.and protons Isolated systems and reductionism
To avoid having to study everything at once, scientists isolate the

“ » things they are trying to study. For instance, a physicist who wants

- - to study the motion of a rotating gyroscope would probably prefer
that it be isolated from vibrations and air currents. Even in biology,
where field work is indispensable for understanding how living things
relate to their entire environment, it is interesting to note the vital
historical role played by Darwin’s study of the Galdapagos Islands,
which were conveniently isolated from the rest of the world. Any
part of the universe that is considered apart from the rest can be
called a “system.”

Physics has had some of its greatest successes by carrying this
process of isolation to extremes, subdividing the universe into smaller
and smaller parts. Matter can be divided into atoms, and the be-
havior of individual atoms can be studied. Atoms can be split apart

?
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into their constituent neutrons, protons and electrons. Protons and
neutrons appear to be made out of even smaller particles called
quarks, and there have even been some claims of experimental ev-
idence that quarks have smaller parts inside them. This method
of splitting things into smaller and smaller parts and studying how
those parts influence each other is called reductionism. The hope is
that the seemingly complex rules governing the larger units can be
better understood in terms of simpler rules governing the smaller
units. To appreciate what reductionism has done for science, it is
only necessary to examine a 19th-century chemistry textbook. At
that time, the existence of atoms was still doubted by some, elec-
trons were not even suspected to exist, and almost nothing was
understood of what basic rules governed the way atoms interacted
with each other in chemical reactions. Students had to memorize
long lists of chemicals and their reactions, and there was no way to
understand any of it systematically. Today, the student only needs
to remember a small set of rules about how atoms interact, for in-
stance that atoms of one element cannot be converted into another
via chemical reactions, or that atoms from the right side of the pe-
riodic table tend to form strong bonds with atoms from the left
side.

Discussion questions

A I've suggested replacing the ordinary dictionary definition of light
with a more technical, more precise one that involves weightlessness. It's
still possible, though, that the stuff a lightbulb makes, ordinarily called
“light,” does have some small amount of weight. Suggest an experiment
to attempt to measure whether it does.

B Heatis weightless (i.e., an object becomes no heavier when heated),
and can travel across an empty room from the fireplace to your skin,
where it influences you by heating you. Should heat therefore be con-
sidered a form of light by our definition? Why or why not?

C  Similarly, should sound be considered a form of light?

0.3 How to learn physics

For as knowledges are now delivered, there is a kind of con-
tract of error between the deliverer and the receiver; for he
that delivereth knowledge desireth to deliver it in such a form
as may be best believed, and not as may be best examined;
and he that receiveth knowledge desireth rather present sat-
isfaction than expectant inquiry.

Francis Bacon

Many students approach a science course with the idea that they
can succeed by memorizing the formulas, so that when a problem

Section 0.3 How to learn physics
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is assigned on the homework or an exam, they will be able to plug
numbers in to the formula and get a numerical result on their cal-
culator. Wrong! That’s not what learning science is about! There
is a big difference between memorizing formulas and understanding
concepts. To start with, different formulas may apply in different
situations. One equation might represent a definition, which is al-
ways true. Another might be a very specific equation for the speed
of an object sliding down an inclined plane, which would not be true
if the object was a rock drifting down to the bottom of the ocean.
If you don’t work to understand physics on a conceptual level, you
won’t know which formulas can be used when.

Most students taking college science courses for the first time
also have very little experience with interpreting the meaning of an
equation. Consider the equation w = A/h relating the width of a
rectangle to its height and area. A student who has not developed
skill at interpretation might view this as yet another equation to
memorize and plug in to when needed. A slightly more savvy stu-
dent might realize that it is simply the familiar formula A = wh
in a different form. When asked whether a rectangle would have
a greater or smaller width than another with the same area but
a smaller height, the unsophisticated student might be at a loss,
not having any numbers to plug in on a calculator. The more ex-
perienced student would know how to reason about an equation
involving division — if h is smaller, and A stays the same, then w
must be bigger. Often, students fail to recognize a sequence of equa-
tions as a derivation leading to a final result, so they think all the
intermediate steps are equally important formulas that they should
memorize.

When learning any subject at all, it is important to become as
actively involved as possible, rather than trying to read through
all the information quickly without thinking about it. It is a good
idea to read and think about the questions posed at the end of each
section of these notes as you encounter them, so that you know you
have understood what you were reading.

Many students’ difficulties in physics boil down mainly to diffi-
culties with math. Suppose you feel confident that you have enough
mathematical preparation to succeed in this course, but you are
having trouble with a few specific things. In some areas, the brief
review given in this chapter may be sufficient, but in other areas
it probably will not. Once you identify the areas of math in which
you are having problems, get help in those areas. Don’t limp along
through the whole course with a vague feeling of dread about some-
thing like scientific notation. The problem will not go away if you
ignore it. The same applies to essential mathematical skills that you
are learning in this course for the first time, such as vector addition.

Sometimes students tell me they keep trying to understand a
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certain topic in the book, and it just doesn’t make sense. The worst
thing you can possibly do in that situation is to keep on staring
at the same page. Every textbook explains certain things badly —
even mine! — so the best thing to do in this situation is to look
at a different book. Instead of college textbooks aimed at the same
mathematical level as the course you’re taking, you may in some
cases find that high school books or books at a lower math level
give clearer explanations.

Finally, when reviewing for an exam, don’t simply read back
over the text and your lecture notes. Instead, try to use an active
method of reviewing, for instance by discussing some of the discus-
sion questions with another student, or doing homework problems
you hadn’t done the first time.

0.4 Self-evaluation

The introductory part of a book like this is hard to write, because
every student arrives at this starting point with a different prepara-
tion. One student may have grown up outside the U.S. and so may
be completely comfortable with the metric system, but may have
had an algebra course in which the instructor passed too quickly
over scientific notation. Another student may have already taken
calculus, but may have never learned the metric system. The fol-
lowing self-evaluation is a checklist to help you figure out what you
need to study to be prepared for the rest of the course.

If you disagree with this state- | you should study this section:
ment. ..

I am familiar with the basic metric | section 0.5 Basic of the Metric Sys-
units of meters, kilograms, and sec- | tem

onds, and the most common metric
prefixes: milli- (m), kilo- (k), and
centi- (c).

I know about the newton, a unit of
force

section 0.6 The newton, the Metric
Unit of Force

I am familiar with these less com-
mon metric prefixes: mega- (M),
micro- (u), and nano- (n).

section 0.7 Less Common Metric
Prefixes

I am comfortable with scientific no-
tation.

section 0.8 Scientific Notation

I can confidently do metric conver-
sions.

section 0.9 Conversions

I understand the purpose and use of
significant figures.

section 0.10 Significant Figures

It wouldn’t hurt you to skim the sections you think you already
know about, and to do the self-checks in those sections.

Section 0.4 Self-evaluation
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0.5 Basics of the metric system

The metric system

Every country in the world besides the U.S. uses a system of
units known in English as the “metric system.?” This system is
entirely decimal, thanks to the same eminently logical people who
brought about the French Revolution. In deference to France, the
system’s official name is the Systéme International, or SI, meaning
International System. The system uses a single, consistent set of
Greek and Latin prefixes that modify the basic units. Each prefix
stands for a power of ten, and has an abbreviation that can be
combined with the symbol for the unit. For instance, the meter is
a unit of distance. The prefix kilo- stands for 103, so a kilometer, 1
km, is a thousand meters.

The basic units of the SI are the meter for distance, the second
for time, and the kilogram (not the gram) for mass.

The following are the most common metric prefixes. You should
memorize them.

prefix meaning example
kilo- k 103 60 kg = a person’s mass
centi- ¢ 1072 28 cm = height of a piece of paper
milli- m 1073 1 ms = time for one vibration of a guitar

string playing the note D

The prefix centi-, meaning 1072, is only used in the centimeter;
a hundredth of a gram would not be written as 1 c¢g but as 10 mg.
The centi- prefix can be easily remembered because a cent is 1072

dollars. The official SI abbreviation for seconds is “s” (not “sec”)

[IPeh)

and grams are “g” (not “gm”).

The second

When I stated briefly above that the second was a unit of time, it
may not have occurred to you that this was not much of a definition.
We can make a dictionary-style definition of a term like “time,” or
give a general description like Isaac Newton’s: “Absolute, true, and
mathematical time, of itself, and from its own nature, flows equably
without relation to anything external...” Newton’s characterization
sounds impressive, but physicists today would consider it useless as
a definition of time. Today, the physical sciences are based on oper-
ational definitions, which means definitions that spell out the actual
steps (operations) required to measure something numerically.

In an era when our toasters, pens, and coffee pots tell us the
time, it is far from obvious to most people what is the fundamental
operational definition of time. Until recently, the hour, minute, and
second were defined operationally in terms of the time required for

2Liberia and Myanmar have not legally adopted metric units, but use them
in everyday life.
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the earth to rotate about its axis. Unfortunately, the Earth’s ro-
tation is slowing down slightly, and by 1967 this was becoming an
issue in scientific experiments requiring precise time measurements.
The second was therefore redefined as the time required for a cer-
tain number of vibrations of the light waves emitted by a cesium
atoms in a lamp constructed like a familiar neon sign but with the
neon replaced by cesium. The new definition not only promises to
stay constant indefinitely, but for scientists is a more convenient
way of calibrating a clock than having to carry out astronomical
measurements.

self-check C
What is a possible operational definition of how strong a person is? >
Answer, p. 563

The meter

The French originally defined the meter as 10~7 times the dis-
tance from the equator to the north pole, as measured through Paris
(of course). Even if the definition was operational, the operation of
traveling to the north pole and laying a surveying chain behind you
was not one that most working scientists wanted to carry out. Fairly
soon, a standard was created in the form of a metal bar with two
scratches on it. This was replaced by an atomic standard in 1960,
and finally in 1983 by the current definition, which is that the speed
of light has a defined value in units of m/s.

The kilogram

The third base unit of the SI is the kilogram, a unit of mass.
Mass is intended to be a measure of the amount of a substance,
but that is not an operational definition. Bathroom scales work by
measuring our planet’s gravitational attraction for the object being
weighed, but using that type of scale to define mass operationally
would be undesirable because gravity varies in strength from place
to place on the earth. The kilogram was for a long time defined
by a physical artifact (figure f), but in 2019 it was redefined by
giving a defined value to Planck’s constant (p. 970), which plays a
fundamental role in the description of the atomic world.

Combinations of metric units

Just about anything you want to measure can be measured with
some combination of meters, kilograms, and seconds. Speed can be
measured in m/s, volume in m?3, and density in kg/m?>. Part of what
makes the SI great is this basic simplicity. No more funny units like
a cord of wood, a bolt of cloth, or a jigger of whiskey. No more
liquid and dry measure. Just a simple, consistent set of units. The
SI measures put together from meters, kilograms, and seconds make
up the mks system. For example, the mks unit of speed is m/s, not
km /hr.

e/ The original definition of

the meter.

L e T i v« "

f/A duplicate of the Paris
kilogram, maintained at the Dan-
ish National Metrology Institute.
As of 2019, the kilogram is no
longer defined in terms of a
physical standard.
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Checking units

A useful technique for finding mistakes in one’s algebra is to
analyze the units associated with the variables.

Checking units example 1
> Jae starts from the formula V = %Ah for the volume of a cone,
where A is the area of its base, and h is its height. He wants to
find an equation that will tell him how tall a conical tent has to be
in order to have a certain volume, given its radius. His algebra

goes like this:
(1] V= %Ah
2] A=mr?
3] V= %anh
2
4] h= ;iv

Is his algebra correct? If not, find the mistake.

> Line 4 is supposed to be an equation for the height, so the units
of the expression on the right-hand side had better equal meters.
The pi and the 3 are unitless, so we can ignore them. In terms of
units, line 4 becomes

_m 1

md m’

This is false, so there must be a mistake in the algebra. The units
of lines 1, 2, and 3 check out, so the mistake must be in the step
from line 3 to line 4. In fact the result should have been

3V
h=?.

Now the units check: m = m3/m?2.
Discussion question

A Isaac Newton wrote, “...the natural days are truly unequal, though
they are commonly considered as equal, and used for a measure of
time. .. It may be that there is no such thing as an equable motion, whereby
time may be accurately measured. All motions may be accelerated or re-
tarded...” Newton was right. Even the modern definition of the second
in terms of light emitted by cesium atoms is subject to variation. For in-
stance, magnetic fields could cause the cesium atoms to emit light with
a slightly different rate of vibration. What makes us think, though, that a
pendulum clock is more accurate than a sundial, or that a cesium atom
is @ more accurate timekeeper than a pendulum clock? That is, how can
one test experimentally how the accuracies of different time standards
compare?
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0.6 The Newton, the metric unit of force

A force is a push or a pull, or more generally anything that can
change an object’s speed or direction of motion. A force is required
to start a car moving, to slow down a baseball player sliding in to
home base, or to make an airplane turn. (Forces may fail to change
an object’s motion if they are canceled by other forces, e.g., the
force of gravity pulling you down right now is being canceled by the
force of the chair pushing up on you.) The metric unit of force is
the Newton, defined as the force which, if applied for one second,
will cause a 1-kilogram object starting from rest to reach a speed of
1 m/s. Later chapters will discuss the force concept in more detail.
In fact, this entire book is about the relationship between force and
motion.

In section 0.5, I gave a gravitational definition of mass, but by
defining a numerical scale of force, we can also turn around and de-
fine a scale of mass without reference to gravity. For instance, if a
force of two Newtons is required to accelerate a certain object from
rest to 1 m/s in 1 s, then that object must have a mass of 2 kg.
From this point of view, mass characterizes an object’s resistance
to a change in its motion, which we call inertia or inertial mass.
Although there is no fundamental reason why an object’s resistance
to a change in its motion must be related to how strongly gravity
affects it, careful and precise experiments have shown that the in-
ertial definition and the gravitational definition of mass are highly
consistent for a variety of objects. It therefore doesn’t really matter
for any practical purpose which definition one adopts.

Discussion question

A Spending a long time in weightlessness is unhealthy. One of the
most important negative effects experienced by astronauts is a loss of
muscle and bone mass. Since an ordinary scale won'’t work for an astro-
naut in orbit, what is a possible way of monitoring this change in mass?
(Measuring the astronaut’s waist or biceps with a measuring tape is not
good enough, because it doesn’t tell anything about bone mass, or about
the replacement of muscle with fat.)

0.7 Less common metric prefixes

The following are three metric prefixes which, while less common
than the ones discussed previously, are well worth memorizing.

prefix meaning example
mega- M 106 6.4 Mm = radius of the earth
micro- pu 1076 10 pm = size of a white blood cell
nano- n 107 0.154 nm = distance between carbon

nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu, u
— a common mistake is to confuse it with m (milli) or M (mega).

/{Nine little

10 -9 nano «— NUNS

10 -6 micro 4—[ mix

10-3  mili ;\&leky

103 kilo

106 mega <—[ng5.

g/This is a mnemonic to
help you remember the most im-
portant metric prefixes. The word
“little” is to remind you that the
list starts with the prefixes used
for small quantities and builds
upward. The exponent changes
by 3, except that of course that
we do not need a special prefix
for 10°, which equals one.
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There are other prefixes even less common, used for extremely
large and small quantities. For instance, 1 femtometer = 1071° m is
a convenient unit of distance in nuclear physics, and 1 gigabyte =
10? bytes is used for computers’ hard disks. The international com-
mittee that makes decisions about the SI has recently even added
some new prefixes that sound like jokes, e.g., 1 yoctogram = 10724 g
is about half the mass of a proton. In the immediate future, how-
ever, you're unlikely to see prefixes like “yocto-” and “zepto-” used
except perhaps in trivia contests at science-fiction conventions or
other geekfests.

self-check D

Suppose you could slow down time so that according to your perception,
a beam of light would move across a room at the speed of a slow walk.
If you perceived a nanosecond as if it was a second, how would you
perceive a microsecond? > Answer, p. 564

b

0.8 Scientific notation

Most of the interesting phenomena in our universe are not on the
human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist
Thomas Young discovered that light was a wave, it was back in the
bad old days before scientific notation, and he was obliged to write
that the time required for one vibration of the wave was 1/500 of
a millionth of a millionth of a second. Scientific notation is a less
awkward way to write very large and very small numbers such as
these. Here’s a quick review.

Scientific notation means writing a number in terms of a product
of something from 1 to 10 and something else that is a power of ten.
For instance,

32 = 3.2 x 10!
320 = 3.2 x 10?
3200 = 3.2 x 10°

Each number is ten times bigger than the previous one.

Since 10! is ten times smaller than 102 , it makes sense to use
the notation 10° to stand for one, the number that is in turn ten
times smaller than 10! . Continuing on, we can write 10~! to stand
for 0.1, the number ten times smaller than 10° . Negative exponents
are used for small numbers:

3.2 =3.2x 10°
0.32=3.2x10""
0.032 = 3.2 x 1072

Introduction and Review



A common source of confusion is the notation used on the dis-
plays of many calculators. Examples:

3.2 x 10  (written notation)
3.2E+6  (notation on some calculators)
3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.2% really
stands for the number 3.2 x 3.2 x 3.2 x 3.2 x 3.2 x 3.2 = 1074, a
totally different number from 3.2 x 106 = 3200000. The calculator
notation should never be used in writing. It’s just a way for the
manufacturer to save money by making a simpler display.

self-check E
A student learns that 10* bacteria, standing in line to register for classes
at Paramecium Community College, would form a queue of this size:

The student concludes that 10? bacteria would form a line of this length:

Why is the student incorrect? > Answer, p. 564

0.9 Conversions

Conversions are one of the three essential mathematical skills, sum-
marized on pp.545-546, that you need for success in this course.

I suggest you avoid memorizing lots of conversion factors be-
tween SI units and U.S. units, but two that do come in handy are:

1 inch = 2.54 cm

An object with a weight on Earth of 2.2 pounds-force has a
mass of 1 kg.

The first one is the present definition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. (U.S.
units of force and mass are confusing, so it’s a good thing they’re
not used in science. In U.S. units, the unit of force is the pound-
force, and the best unit to use for mass is the slug, which is about
14.6 kg.)

More important than memorizing conversion factors is under-
standing the right method for doing conversions. Even within the
SI, you may need to convert, say, from grams to kilograms. Differ-
ent people have different ways of thinking about conversions, but
the method I'll describe here is systematic and easy to understand.
The idea is that if 1 kg and 1000 g represent the same mass, then

Section 0.9 Conversions
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we can consider a fraction like
103 g
1 kg

to be a way of expressing the number one. This may bother you. For
instance, if you type 1000/1 into your calculator, you will get 1000,
not one. Again, different people have different ways of thinking
about it, but the justification is that it helps us to do conversions,
and it works! Now if we want to convert 0.7 kg to units of grams,
we can multiply kg by the number one:

3

10° g
0.7 k
& 1 kg

If you’re willing to treat symbols such as “kg” as if they were vari-
ables as used in algebra (which they’re really not), you can then
cancel the kg on top with the kg on the bottom, resulting in

1

0.7 kg % 03g:700g.
16

To convert grams to kilograms, you would simply flip the fraction
upside down.

One advantage of this method is that it can easily be applied to
a series of conversions. For instance, to convert one year to units of
seconds,

X365g2:y§x24heﬁﬁx60miﬁx 60s
1 year 1 day 1 hour = 1 pmin
=3.15 x 107 s.

Should that exponent be positive, or negative?

A common mistake is to write the conversion fraction incorrectly.
For instance the fraction

103 kg
lg

(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
factor would be
1073 kg
lg
You can usually detect such a mistake if you take the time to check
your answer and see if it is reasonable.

(correct).

If common sense doesn’t rule out either a positive or a negative
exponent, here’s another way to make sure you get it right. There
are big prefixes and small prefixes:

Introduction and Review



big prefixes: k M
small prefixes: m p n

(It’s not hard to keep straight which are which, since “mega” and

“micro” are evocative, and it’s easy to remember that a kilometer
is bigger than a meter and a millimeter is smaller.) In the example
above, we want the top of the fraction to be the same as the bottom.
Since k is a big prefix, we need to compensate by putting a small
number like 1072 in front of it, not a big number like 103.

> Solved problem: a simple conversion page 36, problem 6

> Solved problem: the geometric mean page 37, problem 8
Discussion question

A Each of the following conversions contains an error. In each case,
explain what the error is.

(a) 1000 kg x 15505 =19

b) 50 m x (&M = 0.5 cm

(b)
(c) “Nano” is 109, so there are 10~° nm in a meter.
(d)

d) “Micro” is 1078, so 1 kg is 10° pug.

0.10 Significant figures

The international governing body for football (“soccer” in the US)
says the ball should have a circumference of 68 to 70 cm. Taking the
middle of this range and dividing by 7 gives a diameter of approx-
imately 21.96338214668155633610595934540698196 cm. The digits
after the first few are completely meaningless. Since the circumfer-
ence could have varied by about a centimeter in either direction, the
diameter is fuzzy by something like a third of a centimeter. We say
that the additional, random digits are not significant figures. If you
write down a number with a lot of gratuitous insignificant figures,
it shows a lack of scientific literacy and imples to other people a
greater precision than you really have.

As a rule of thumb, the result of a calculation has as many
significant figures, or “sig figs,” as the least accurate piece of data
that went in. In the example with the soccer ball, it didn’t do us any
good to know 7 to dozens of digits, because the bottleneck in the
precision of the result was the figure for the circumference, which
was two sig figs. The result is 22 cm. The rule of thumb works best
for multiplication and division.

For calculations involving multiplication and division, a given
fractional or “percent” error in one of the inputs causes the same
fractional error in the output. The number of digits in a number

Section 0.10

Significant figures

31



32

Chapter 0

provides a rough measure of its possible fractional error. These are
called significant figures or “sig figs.” Examples:

3.14 3 sig figs

3.1 2 sig figs

0.03 1 sig fig, because the zeroes are just placeholders

3.0 x 10! | 2 sig figs

30 could be 1 or 2 sig figs, since we can’t tell if the
0 is a placeholder or a real sig fig

In such calculations, your result should not have more than the
number of sig figs in the least accurate piece of data you started
with.

Sig figs in the area of a triangle example 2
> A triangle has an area of 6.45 m? and a base with a width of
4.0138 m. Find its height.

> The area is related to the base and height by A = bh/2.
_2A

b
=3.21391200358762 m (calculator output)

=3.21m

h

The given data were 3 sig figs and 5 sig figs. We're limited by the
less accurate piece of data, so the final result is 3 sig figs. The
additional digits on the calculator don’t mean anything, and if we
communicated them to another person, we would create the false
impression of having determined h with more precision than we
really obtained.

self-check F
The following quote is taken from an editorial by Norimitsu Onishi in the
New York Times, August 18, 2002.

Consider Nigeria. Everyone agrees it is Africa’s most populous
nation. But what is its population? The United Nations says
114 million; the State Department, 120 million. The World Bank
says 126.9 million, while the Central Intelligence Agency puts it
at 126,635,626.

What should bother you about this? > Answer, p. 564

Dealing correctly with significant figures can save you time! Of-
ten, students copy down numbers from their calculators with eight
significant figures of precision, then type them back in for a later
calculation. That’s a waste of time, unless your original data had
that kind of incredible precision.

self-check G

How many significant figures are there in each of the following mea-
surements?
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(1) 9.937 m
(2)4.0s
(3) 0.0000000000000037 kg > Answer, p. 564

The rules about significant figures are only rules of thumb, and
are not a substitute for careful thinking. For instance, $20.00 +
$0.05 is $20.05. It need not and should not be rounded off to $20.
In general, the sig fig rules work best for multiplication and division,
and we sometimes also apply them when doing a complicated calcu-
lation that involves many types of operations. For simple addition
and subtraction, it makes more sense to maintain a fixed number of
digits after the decimal point.

When in doubt, don’t use the sig fig rules at all. Instead, in-
tentionally change one piece of your initial data by the maximum
amount by which you think it could have been off, and recalculate
the final result. The digits on the end that are completely reshuffled
are the ones that are meaningless, and should be omitted.

A nonlinear function example 3
> How many sig figs are there in sin88.7°7

> We're using a sine function, which isn’t addition, subtraction,
multiplication, or division. It would be reasonable to guess that
since the input angle had 3 sig figs, so would the output. But if
this was an important calculation and we really needed to know,
we would do the following:

sin88.7° = 0.999742609322698
sin 88.8° = 0.999780683474846

Surprisingly, the result appears to have as many as 5 sig figs, not
just 3:
sin88.7° = 0.99974,

where the final 4 is uncertain but may have some significance.
The unexpectedly high precision of the result is because the sine
function is nearing its maximum at 90 degrees, where the graph
flattens out and becomes insensitive to the input angle.

0.11 A note about diagrams

A quick note about diagrams. Often when you solve a problem,
the best way to get started and organize your thoughts is by draw-
ing a diagram. For an artist, it’s desirable to be able to draw a
recognizable, realistic, perspective picture of a tomato, like the one
at the top of figure h. But in science and engineering, we usually
don’t draw solid figures in perspective, because that would make it
difficult to label distances and angles. Usually we want views or
cross-sections that project the object into its planes of symmetry,
as in the line drawings in the figure.

horizontal
cross-section

h/A diagram of

Section 0.11 A note about diagrams

vertical
cross-section

a

tomato.
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Summary

Selected vocabulary

matter

defi-

operational
nition

Systeme Interna-
tional
mks system

significant figures

Anything that is affected by gravity.
Anything that can travel from one place to an-
other through empty space and can influence
matter, but is not affected by gravity.

A definition that states what operations
should be carried out to measure the thing be-
ing defined.

A fancy name for the metric system.

The use of metric units based on the meter,
kilogram, and second. Example: meters per
second is the mks unit of speed, not cm/s or
km /hr.

A numerical measure of how difficult it is to
change an object’s motion.

Digits that contribute to the accuracy of a
measurement.

Notation
m . ........ meter, the metric distance unit
kg ..o kilogram, the metric unit of mass
S e second, the metric unit of time
M-......... the metric prefix mega-, 10°
k- ... the metric prefix kilo-, 103
m-......... the metric prefix milli-, 1073
e the metric prefix micro-, 1076
n- ......... the metric prefix nano-, 10~
Summary

Physics is the use of the scientific method to study the behavior
of light and matter. The scientific method requires a cycle of the-
ory and experiment, theories with both predictive and explanatory
value, and reproducible experiments.

The metric system is a simple, consistent framework for measure-
ment built out of the meter, the kilogram, and the second plus a set
of prefixes denoting powers of ten. The most systematic method for
doing conversions is shown in the following example:

_3S

370 ms x ! =0.37s

ms

Mass is a measure of the amount of a substance. Mass can be
defined gravitationally, by comparing an object to a standard mass
on a double-pan balance, or in terms of inertia, by comparing the
effect of a force on an object to the effect of the same force on a
standard mass. The two definitions are found experimentally to
be proportional to each other to a high degree of precision, so we
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usually refer simply to “mass,” without bothering to specify which
type.

A force is that which can change the motion of an object. The
metric unit of force is the Newton, defined as the force required to
accelerate a standard 1-kg mass from rest to a speed of 1 m/s in 1
S.

Scientific notation means, for example, writing 3.2 x 10° rather
than 320000.

Writing numbers with the correct number of significant figures
correctly communicates how accurate they are. As a rule of thumb,
the final result of a calculation is no more accurate than, and should
have no more significant figures than, the least accurate piece of
data.

Summary
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Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 Correct use of a calculator: (a) Calculate % on a cal-
culator. [Self-check: The most common mistake results in 97555.40.]

v
(b) Which would be more like the price of a TV, and which would
be more like the price of a house, $3.5 x 10° or $3.5°?

2 Compute the following things. If they don’t make sense be-
cause of units, say so.

(a) 3cm + 5 cm

(b) 1.11 m + 22 cm

(¢) 120 miles + 2.0 hours

(d) 120 miles / 2.0 hours

3 Your backyard has brick walls on both ends. You measure a
distance of 23.4 m from the inside of one wall to the inside of the
other. Fach wall is 29.4 c¢m thick. How far is it from the outside
of one wall to the outside of the other? Pay attention to significant
figures.

4 The speed of light is 3.0 x 10® m/s. Convert this to furlongs
per fortnight. A furlong is 220 yards, and a fortnight is 14 days. An
inch is 2.54 cm. v

5 Express each of the following quantities in micrograms:
(a) 10 mg, (b) 10* g, (c) 10 kg, (d) 100 x 103 g, (e) 1000 ng. v

6 Convert 134 mg to units of kg, writing your answer in scientific
notation. > Solution, p. 547

7 In the last century, the average age of the onset of puberty for
girls has decreased by several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but it is more likely to be
because modern girls have more body fat on the average and pos-
sibly because of estrogen-mimicking chemicals in the environment
from the breakdown of pesticides. A hamburger from a hormone-
implanted steer has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas contains about 300
ng of estrogen. An adult woman produces about 0.5 mg of estrogen
per day (note the different unit!). (a) How many hamburgers would
a girl have to eat in one day to consume as much estrogen as an
adult woman’s daily production? (b) How many servings of peas?

v
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8 The usual definition of the mean (average) of two numbers a
and b is (a+0b)/2. This is called the arithmetic mean. The geometric
mean, however, is defined as (ab)!/? (i.e., the square root of ab). For
the sake of definiteness, let’s say both numbers have units of mass.
(a) Compute the arithmetic mean of two numbers that have units
of grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If a and b both have units of grams,
what should we call the units of ab? Does your answer make sense
when you take the square root? (d) Suppose someone proposes to
you a third kind of mean, called the superduper mean, defined as
(ab)'/3. Is this reasonable? > Solution, p. 547

9 In an article on the SARS epidemic, the May 7, 2003 New
York Times discusses conflicting estimates of the disease’s incuba-
tion period (the average time that elapses from infection to the first
symptoms). “The study estimated it to be 6.4 days. But other sta-
tistical calculations ... showed that the incubation period could be
as long as 14.22 days.” What’s wrong here?

10 The photo shows the corner of a bag of pretzels. What’s
wrong here?

11 The distance to the horizon is given by the expression v/2rh,
where r is the radius of the Earth, and h is the observer’s height
above the Earth’s surface. (This can be proved using the Pythagorean
theorem.) Show that the units of this expression make sense. Don’t
try to prove the result, just check its units. (See example 1 on p.
26 for an example of how to do this.)

12 (a) Based on the definitions of the sine, cosine, and tangent,
what units must they have? (b) A cute formula from trigonometry
lets you find any angle of a triangle if you know the lengths of
its sides. Using the notation shown in the figure, and letting s =
(a+ b+ ¢)/2 be half the perimeter, we have

tan A/2 = (ss_(i)igc).

Show that the units of this equation make sense. In other words,
check that the units of the right-hand side are the same as your
answer to part a of the question. > Solution, p. 547

13 A 2002 paper by Steegmann et al. uses data from modern
human groups like the Inuit to argue that Neanderthals in Ice Age
Furope had to eat up “to 4,480 kcal per day to support strenuous
winter foraging and cold resistance costs.” What’s wrong here?

NET WT. 3 12 0z. (99.2 8)

Problem 10.

Problem 12.

Problems
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Exercise 0: Models and idealization
Equipment:

coffee filters

ramps (one per group)

balls of various sizes

sticky tape

vacuum pump and “guinea and feather” apparatus (one)

The motion of falling objects has been recognized since ancient times as an important piece of
physics, but the motion is inconveniently fast, so in our everyday experience it can be hard to
tell exactly what objects are doing when they fall. In this exercise you will use several techniques
to get around this problem and study the motion. Your goal is to construct a scientific model of
falling. A model means an explanation that makes testable predictions. Often models contain
simplifications or idealizations that make them easier to work with, even though they are not
strictly realistic.

1. One method of making falling easier to observe is to use objects like feathers that we know
from everyday experience will not fall as fast. You will use coffee filters, in stacks of various
sizes, to test the following two hypotheses and see which one is true, or whether neither is true:

Hypothesis 1A: When an object is dropped, it rapidly speeds up to a certain natural falling
speed, and then continues to fall at that speed. The falling speed is proportional to the object’s
weight. (A proportionality is not just a statement that if one thing gets bigger, the other does
too. It says that if one becomes three times bigger, the other also gets three times bigger, etc.)

Hypothesis 1B: Different objects fall the same way, regardless of weight.
Test these hypotheses and discuss your results with your instructor.

2. A second way to slow down the action is to let a ball roll down a ramp. The steeper the
ramp, the closer to free fall. Based on your experience in part 1, write a hypothesis about what
will happen when you race a heavier ball against a lighter ball down the same ramp, starting
them both from rest.

Hypothesis:
Show your hypothesis to your instructor, and then test it.

You have probably found that falling was more complicated than you thought! Is there more
than one factor that affects the motion of a falling object? Can you imagine certain idealized
situations that are simpler? Try to agree verbally with your group on an informal model of
falling that can make predictions about the experiments described in parts 3 and 4.

3. You have three balls: a standard “comparison ball” of medium weight, a light ball, and a
heavy ball. Suppose you stand on a chair and (a) drop the light ball side by side with the
comparison ball, then (b) drop the heavy ball side by side with the comparison ball, then (c)
join the light and heavy balls together with sticky tape and drop them side by side with the
comparison ball.

Use your model to make a prediction:

Test your prediction.
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4. Your instructor will pump nearly all the air out of a chamber containing a feather and a
heavier object, then let them fall side by side in the chamber.

Use your model to make a prediction:

Exercise 0: Models and idealization
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Chapter 1
Scaling and Estimation

1.1 Introduction

Why can’t an insect be the size of a dog? Some skinny stretched-
out cells in your spinal cord are a meter tall — why does nature
display no single cells that are not just a meter tall, but a meter
wide, and a meter thick as well? Believe it or not, these are questions
that can be answered fairly easily without knowing much more about
physics than you already do. The only mathematical technique you
really need is the humble conversion, applied to area and volume.

Area and volume

Area can be defined by saying that we can copy the shape of
interest onto graph paper with 1 cm x 1 c¢m squares and count the
number of squares inside. Fractions of squares can be estimated by
eye. We then say the area equals the number of squares, in units of
square cm. Although this might seem less “pure” than computing
areas using formulae like A = 7r? for a circle or A = wh/2 for a
triangle, those formulae are not useful as definitions of area because
they cannot be applied to irregularly shaped areas.

Units of square cm are more commonly written as cm? in science.

Of course, the unit of measurement symbolized by “cm” is not an

Life would be very different if you
were the size of an insect.

a/Amoebas this size are
seldom encountered.
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algebra symbol standing for a number that can be literally multiplied
by itself. But it is advantageous to write the units of area that way
and treat the units as if they were algebra symbols. For instance,
if you have a rectangle with an area of 6m? and a width of 2 m,
then calculating its length as (6 m?)/(2 m) = 3 m gives a result
that makes sense both numerically and in terms of units. This
algebra-style treatment of the units also ensures that our methods
of converting units work out correctly. For instance, if we accept

the fraction
100 cm

1m

as a valid way of writing the number one, then one times one equals
one, so we should also say that one can be represented by

100 cm o 100 cm
1m 1m

)

which is the same as
10000 cm?

1 m2
That means the conversion factor from square meters to square cen-
timeters is a factor of 10%, i.e., a square meter has 10 square cen-
timeters in it.

All of the above can be easily applied to volume as well, using
one-cubic-centimeter blocks instead of squares on graph paper.

To many people, it seems hard to believe that a square meter
equals 10000 square centimeters, or that a cubic meter equals a
million cubic centimeters — they think it would make more sense if
there were 100 cm? in 1 m?, and 100 cm? in 1 m?, but that would be
incorrect. The examples shown in figure b aim to make the correct
answer more believable, using the traditional U.S. units of feet and
yards. (One foot is 12 inches, and one yard is three feet.)

ﬂ lyd=31t
[ ]

self-check A

Based on figure b, convince yourself that there are 9 ft?ina square yard,
and 27 ft% in a cubic yard, then demonstrate the same thing symbolically
(i.e., with the method using fractions that equal one). > Answer, p.
564

1yd3=271t 3
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> Solved problem: converting mm? to cm? page 59, problem 10

> Solved problem: scaling a liter page 60, problem 19

Discussion question

A How many square centimeters are there in a square inch? (1 inch =
2.54 cm) First find an approximate answer by making a drawing, then de-
rive the conversion factor more accurately using the symbolic method.

c / Galileo Galilei (1564-1642) was a Renaissance ltalian who brought the
scientific method to bear on physics, creating the modern version of the
science. Coming from a noble but very poor family, Galileo had to drop
out of medical school at the University of Pisa when he ran out of money.
Eventually becoming a lecturer in mathematics at the same school, he
began a career as a notorious troublemaker by writing a burlesque ridi-
culing the university’s regulations — he was forced to resign, but found a
new teaching position at Padua. He invented the pendulum clock, inves-
tigated the motion of falling bodies, and discovered the moons of Jupiter.
The thrust of his life’s work was to discredit Aristotle’s physics by con-
fronting it with contradictory experiments, a program that paved the way
for Newton’s discovery of the relationship between force and motion. In
chapter 3 we’ll come to the story of Galileo’s ultimate fate at the hands of
the Church.

1.2 Scaling of area and volume

Great fleas have lesser fleas
Upon their backs to bite ’em.
And lesser fleas have lesser sitill,
And so ad infinitum.

Jonathan Swift

Now how do these conversions of area and volume relate to the
questions I posed about sizes of living things? Well, imagine that
you are shrunk like Alice in Wonderland to the size of an insect.
One way of thinking about the change of scale is that what used
to look like a centimeter now looks like perhaps a meter to you,
because you’re so much smaller. If area and volume scaled according
to most people’s intuitive, incorrect expectations, with 1 m? being
the same as 100 cm?, then there would be no particular reason
why nature should behave any differently on your new, reduced
scale. But nature does behave differently now that you’re small.
For instance, you will find that you can walk on water, and jump
to many times your own height. The physicist Galileo Galilei had
the basic insight that the scaling of area and volume determines
how natural phenomena behave differently on different scales. He
first reasoned about mechanical structures, but later extended his
insights to living things, taking the then-radical point of view that at
the fundamental level, a living organism should follow the same laws

Section 1.2  Scaling of area and volume 43



M

d/The small boat holds up
just fine.

e/A larger boat built with
the same proportions as the
small one will collapse under its
own weight.

f/A boat this large needs to
have timbers that are thicker
compared to its size.
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of nature as a machine. We will follow his lead by first discussing
machines and then living things.

Galileo on the behavior of nature on large and small scales

One of the world’s most famous pieces of scientific writing is
Galileo’s Dialogues Concerning the Two New Sciences. Galileo was
an entertaining writer who wanted to explain things clearly to laypeo-
ple, and he livened up his work by casting it in the form of a dialogue
among three people. Salviati is really Galileo’s alter ego. Simplicio
is the stupid character, and one of the reasons Galileo got in trouble
with the Church was that there were rumors that Simplicio repre-
sented the Pope. Sagredo is the earnest and intelligent student, with
whom the reader is supposed to identify. (The following excerpts
are from the 1914 translation by Crew and de Salvio.)

SAGREDO: Yes, thatis what | mean; and | refer especially to
his last assertion which | have always regarded as false.. .;
namely, that in speaking of these and other similar machines
one cannot argue from the small to the large, because many
devices which succeed on a small scale do not work on a
large scale. Now, since mechanics has its foundations in ge-
ometry, where mere size [ is unimportant], | do not see that
the properties of circles, triangles, cylinders, cones and other
solid figures will change with their size. If, therefore, a large
machine be constructed in such a way that its parts bear to
one another the same ratio as in a smaller one, and if the
smaller is sufficiently strong for the purpose for which it is
designed, | do not see why the larger should not be able to
withstand any severe and destructive tests to which it may be
subjected.

Salviati contradicts Sagredo:

SALVIATI: ...Please observe, gentlemen, how facts which
at first seem improbable will, even on scant explanation, drop
the cloak which has hidden them and stand forth in naked and
simple beauty. Who does not know that a horse falling from a
height of three or four cubits will break his bones, while a dog
falling from the same height or a cat from a height of eight
or ten cubits will suffer no injury? Equally harmless would be
the fall of a grasshopper from a tower or the fall of an ant from
the distance of the moon.

The point Galileo is making here is that small things are sturdier
in proportion to their size. There are a lot of objections that could be
raised, however. After all, what does it really mean for something to
be “strong”, to be “strong in proportion to its size,” or to be strong
“out of proportion to its size?” Galileo hasn’t given operational
definitions of things like “strength,” i.e., definitions that spell out
how to measure them numerically.
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Also, a cat is shaped differently from a horse — an enlarged
photograph of a cat would not be mistaken for a horse, even if the
photo-doctoring experts at the National Inquirer made it look like a
person was riding on its back. A grasshopper is not even a mammal,
and it has an exoskeleton instead of an internal skeleton. The whole
argument would be a lot more convincing if we could do some iso-
lation of variables, a scientific term that means to change only one
thing at a time, isolating it from the other variables that might have
an effect. If size is the variable whose effect we’re interested in see-
ing, then we don’t really want to compare things that are different
in size but also different in other ways.

SALVIATI:  ...we asked the reason why [shipbuilders] em-
ployed stocks, scaffolding, and bracing of larger dimensions
for launching a big vessel than they do for a small one; and
[an old man] answered that they did this in order to avoid the
danger of the ship parting under its own heavy weight, a dan-
ger to which small boats are not subject?

After this entertaining but not scientifically rigorous beginning,
Galileo starts to do something worthwhile by modern standards.
He simplifies everything by considering the strength of a wooden
plank. The variables involved can then be narrowed down to the
type of wood, the width, the thickness, and the length. He also
gives an operational definition of what it means for the plank to
have a certain strength “in proportion to its size,” by introducing
the concept of a plank that is the longest one that would not snap
under its own weight if supported at one end. If you increased
its length by the slightest amount, without increasing its width or
thickness, it would break. He says that if one plank is the same
shape as another but a different size, appearing like a reduced or
enlarged photograph of the other, then the planks would be strong
“in proportion to their sizes” if both were just barely able to support
their own weight.

=

"

g/ Galileo discusses planks
made of wood, but the concept
may be easier to imagine with
clay. All three clay rods in the
figure were originally the same
shape. The medium-sized one
was twice the height, twice the
length, and twice the width of
the small one, and similarly the
large one was twice as big as
the medium one in all its linear
dimensions. The big one has
four times the linear dimensions
of the small one, 16 times the
cross-sectional area when cut
perpendicular to the page, and
64 times the volume. That means
that the big one has 64 times the
weight to support, but only 16
times the strength compared to
the smallest one.

h/1. This plank is as long as it
can be without collapsing under
its own weight. If it was a hun-
dredth of an inch longer, it would
collapse. 2. This plank is made
out of the same kind of wood. It is
twice as thick, twice as long, and
twice as wide. It will collapse un-
der its own weight.
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Also, Galileo is doing something that would be frowned on in
modern science: he is mixing experiments whose results he has ac-
tually observed (building boats of different sizes), with experiments
that he could not possibly have done (dropping an ant from the
height of the moon). He now relates how he has done actual ex-
periments with such planks, and found that, according to this op-
erational definition, they are not strong in proportion to their sizes.
The larger one breaks. He makes sure to tell the reader how impor-
tant the result is, via Sagredo’s astonished response:

SAGREDO: My brain already reels. My mind, like a cloud
momentarily illuminated by a lightning flash, is for an instant
filled with an unusual light, which now beckons to me and
which now suddenly mingles and obscures strange, crude
ideas. From what you have said it appears to me impossible
to build two similar structures of the same material, but of
different sizes and have them proportionately strong.

In other words, this specific experiment, using things like wooden
planks that have no intrinsic scientific interest, has very wide impli-
cations because it points out a general principle, that nature acts
differently on different scales.

To finish the discussion, Galileo gives an explanation. He says
that the strength of a plank (defined as, say, the weight of the heav-
iest boulder you could put on the end without breaking it) is pro-
portional to its cross-sectional area, that is, the surface area of the
fresh wood that would be exposed if you sawed through it in the
middle. Its weight, however, is proportional to its volume.

How do the volume and cross-sectional area of the longer plank
compare with those of the shorter plank? We have already seen,
while discussing conversions of the units of area and volume, that
these quantities don’t act the way most people naively expect. You
might think that the volume and area of the longer plank would both
be doubled compared to the shorter plank, so they would increase
in proportion to each other, and the longer plank would be equally
able to support its weight. You would be wrong, but Galileo knows
that this is a common misconception, so he has Salviati address the
point specifically:

SALVIATI: ... Take, for example, a cube two inches on a
side so that each face has an area of four square inches
and the total area, i.e., the sum of the six faces, amounts
to twenty-four square inches; now imagine this cube to be
sawed through three times [with cuts in three perpendicular
planes] so as to divide it into eight smaller cubes, each one
inch on the side, each face one inch square, and the total

!Galileo makes a slightly more complicated argument, taking into account
the effect of leverage (torque). The result I'm referring to comes out the same
regardless of this effect.
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surface of each cube six square inches instead of twenty-
four in the case of the larger cube. It is evident therefore,
that the surface of the little cube is only one-fourth that of
the larger, namely, the ratio of six to twenty-four; but the vol-
ume of the solid cube itself is only one-eighth; the volume,
and hence also the weight, diminishes therefore much more
rapidly than the surface. .. You see, therefore, Simplicio, that
| was not mistaken when .. .| said that the surface of a small
solid is comparatively greater than that of a large one.

The same reasoning applies to the planks. Even though they
are not cubes, the large one could be sawed into eight small ones,
each with half the length, half the thickness, and half the width.
The small plank, therefore, has more surface area in proportion to
its weight, and is therefore able to support its own weight while the
large one breaks.

Scaling of area and volume for irregularly shaped objects

You probably are not going to believe Galileo’s claim that this
has deep implications for all of nature unless you can be convinced
that the same is true for any shape. Every drawing you’ve seen so
far has been of squares, rectangles, and rectangular solids. Clearly
the reasoning about sawing things up into smaller pieces would not
prove anything about, say, an egg, which cannot be cut up into eight
smaller egg-shaped objects with half the length.

Is it always true that something half the size has one quarter
the surface area and one eighth the volume, even if it has an irreg-
ular shape? Take the example of a child’s violin. Violins are made
for small children in smaller size to accomodate their small bodies.
Figure i shows a full-size violin, along with two violins made with
half and 3/4 of the normal length.? Let’s study the surface area of
the front panels of the three violins.

Consider the square in the interior of the panel of the full-size
violin. In the 3/4-size violin, its height and width are both smaller
by a factor of 3/4, so the area of the corresponding, smaller square
becomes 3/4x3/4 = 9/16 of the original area, not 3/4 of the original
area. Similarly, the corresponding square on the smallest violin has
half the height and half the width of the original one, so its area is
1/4 the original area, not half.

The same reasoning works for parts of the panel near the edge,
such as the part that only partially fills in the other square. The
entire square scales down the same as a square in the interior, and
in each violin the same fraction (about 70%) of the square is full, so
the contribution of this part to the total area scales down just the
same.

2The customary terms “half-size” and “3/4-size” actually don’t describe the
sizes in any accurate way. They’re really just standard, arbitrary marketing
labels.

i/The area of a shape is
proportional to the square of its
linear dimensions, even if the
shape is irregular.
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j/ The muffin comes out of
the oven too hot to eat. Breaking
it up into four pieces increases
its surface area while keeping
the total volume the same. It

cools faster because of the
greater surface-to-volume ratio.
In general, smaller things have
greater surface-to-volume ratios,
but in this example there is no
easy way to compute the effect
exactly, because the small pieces
aren’t the same shape as the
original muffin.
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Since any small square region or any small region covering part
of a square scales down like a square object, the entire surface area
of an irregularly shaped object changes in the same manner as the
surface area of a square: scaling it down by 3/4 reduces the area by
a factor of 9/16, and so on.

In general, we can see that any time there are two objects with
the same shape, but different linear dimensions (i.e., one looks like a
reduced photo of the other), the ratio of their areas equals the ratio
of the squares of their linear dimensions:

Ay (Li\?

- (2
Note that it doesn’t matter where we choose to measure the linear
size, L, of an object. In the case of the violins, for instance, it could
have been measured vertically, horizontally, diagonally, or even from
the bottom of the left f-hole to the middle of the right f-hole. We
just have to measure it in a consistent way on each violin. Since all

the parts are assumed to shrink or expand in the same manner, the
ratio L /Ly is independent of the choice of measurement.

It is also important to realize that it is completely unnecessary
to have a formula for the area of a violin. It is only possible to
derive simple formulas for the areas of certain shapes like circles,
rectangles, triangles and so on, but that is no impediment to the
type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in terms
of ratios, especially when more than two objects are being compared.
A more compact way of rewriting the previous equation is

Ao L2,

The symbol “ox” means “is proportional to.” Scientists and engi-
neers often speak about such relationships verbally using the phrases

“scales like” or “goes like,” for instance “area goes like length squared.

All of the above reasoning works just as well in the case of vol-
ume. Volume goes like length cubed:

V o L3.

self-check B

When a car or truck travels over a road, there is wear and tear on the
road surface, which incurs a cost. Studies show that the cost C per kilo-
meter of travel is related to the weight per axle w by C o« w*. Translate
this into a statement about ratios. > Answer, p. 564

If different objects are made of the same material with the same
density, p = m/V, then their masses, m = pV, are proportional to
L3. (The symbol for density is p, the lower-case Greek letter “rho.”)
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An important point is that all of the above reasoning about
scaling only applies to objects that are the same shape. For instance,
a piece of paper is larger than a pencil, but has a much greater
surface-to-volume ratio.

Scaling of the area of a triangle example 1
> In figure k, the larger triangle has sides twice as long. How
many times greater is its area?

Correct solution #1: Area scales in proportion to the square of the
linear dimensions, so the larger triangle has four times more area
(22 = 4).

Correct solution #2: You could cut the larger triangle into four of
the smaller size, as shown in fig. (b), so its area is four times
greater. (This solution is correct, but it would not work for a shape
like a circle, which can’t be cut up into smaller circles.)

Correct solution #3: The area of a triangle is given by

A = bh/2, where b is the base and h is the height. The areas of
the triangles are

Ay =bihy/2
Ao = boho /2
= (2by)(2h)/2
= 2by hy
Ax/Ay = (2b1hy)/(b1hy/2)
_4

(Although this solution is correct, it is a lot more work than solution
#1, and it can only be used in this case because a triangle is a
simple geometric shape, and we happen to know a formula for its
area.)

Correct solution #4: The area of a triangle is A = bh/2. The
comparison of the areas will come out the same as long as the
ratios of the linear sizes of the triangles is as specified, so let’s
just say by = 1.00 m and b, = 2.00 m. The heights are then also
hy = 1.00 m and h, = 2.00 m, giving areas A; = 0.50 m? and
A2 =2.00 m2, SO A2/A1 =4.00.

(The solution is correct, but it wouldn't work with a shape for
whose area we don’'t have a formula. Also, the numerical cal-
culation might make the answer of 4.00 appear inexact, whereas
solution #1 makes it clear that it is exactly 4.)

Incorrect solution: The area of a triangle is A = bh/2, and if you
plug in b = 2.00 m and h = 2.00 m, you get A = 2.00 m?, so
the bigger triangle has 2.00 times more area. (This solution is
incorrect because no comparison has been made with the smaller
triangle.)

k/Example 1. The big trian-
gle has four times more area than
the little one.

/A tricky way of solving ex-
ample 1, explained in solution #2.

Section 1.2  Scaling of area and volume 49



©

m / Example 2. The big sphere
has 125 times more volume than

the little one.

n/Example 3.

The 48-point

“S” has 1.78 times more area
than the 36-point “S.”

50

Scaling of the volume of a sphere example 2
> In figure m, the larger sphere has a radius that is five times
greater. How many times greater is its volume?

Correct solution #1: Volume scales like the third power of the
linear size, so the larger sphere has a volume that is 125 times
greater (5% = 125).

Correct solution #2: The volume of a sphere is V = (4/3)nr3, so

4
V1 = 57‘[/’13
Vs = %TEI’S
- S(n)?
500 4
R
4
Vo/Vy = (520m13> / <3an> =125
Incorrect solution: The volume of a sphere is V = (4/3)nr3, so
V1 = %7‘[/'13
V2 = %7‘[[’23
= grt- 5r13
= 23—07tr13
20 4
Vo/Vy = <37U’13> / <37tr13> =5

(The solution is incorrect because (5r1)2 is not the same as 5r13.)

Scaling of a more complex shape example 3
> The first letter “S” in figure n is in a 36-point font, the second in
48-point. How many times more ink is required to make the larger
“S”? (Points are a unit of length used in typography.)

Correct solution: The amount of ink depends on the area to be
covered with ink, and area is proportional to the square of the
linear dimensions, so the amount of ink required for the second
“S” is greater by a factor of (48/36)? = 1.78.

Incorrect solution: The length of the curve of the second “S” is
longer by a factor of 48/36 = 1.33, so 1.33 times more ink is
required.

(The solution is wrong because it assumes incorrectly that the
width of the curve is the same in both cases. Actually both the
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width and the length of the curve are greater by a factor of 48/36,
so the area is greater by a factor of (48/36)? = 1.78.)

Reasoning about ratios and proportionalities is one of the three
essential mathematical skills, summarized on pp.545-546, that you
need for success in this course.

> Solved problem: a telescope gathers light page 59, problem 11

> Solved problem: distance from an earthquake page 59, problem 12

Discussion questions

A Atoy fire engine is 1/30 the size of the real one, but is constructed
from the same metal with the same proportions. How many times smaller

is its weight? How many times less red paint would be needed to paint
it?

B Galileo spends a lot of time in his dialog discussing what really
happens when things break. He discusses everything in terms of Aristo-
tle’s now-discredited explanation that things are hard to break, because
if something breaks, there has to be a gap between the two halves with
nothing in between, at least initially. Nature, according to Aristotle, “ab-
hors a vacuum,” i.e., nature doesn't “like” empty space to exist. Of course,
air will rush into the gap immediately, but at the very moment of breaking,
Aristotle imagined a vacuum in the gap. Is Aristotle’s explanation of why
it is hard to break things an experimentally testable statement? If so, how
could it be tested experimentally?

1.3 x Scaling applied to biology

Organisms of different sizes with the same shape

The left-hand panel in figure o shows the approximate valid-
ity of the proportionality m oc L3 for cockroaches (redrawn from
McMahon and Bonner). The scatter of the points around the curve
indicates that some cockroaches are proportioned slightly differently
from others, but in general the data seem well described by m oc L3.
That means that the largest cockroaches the experimenter could
raise (is there a 4-H prize?) had roughly the same shape as the
smallest ones.

Another relationship that should exist for animals of different
sizes shaped in the same way is that between surface area and
body mass. If all the animals have the same average density, then
body mass should be proportional to the cube of the animal’s lin-
ear size, m o L?, while surface area should vary proportionately to
L?. Therefore, the animals’ surface areas should be proportional to
m?2/3. As shown in the right-hand panel of figure o, this relationship
appears to hold quite well for the dwarf siren, a type of salamander.
Notice how the curve bends over, meaning that the surface area does
not increase as quickly as body mass, e.g., a salamander with eight
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Body mass, m, versus leg
1000 length, L, for the cockroach 1000 = °
Periplaneta americana
The data points rep-
resent individual
specimens, and the o 800 —
750 — curve is afit to the —_
data of the form o
m=kL 3 where k is £
? a constant. 5 600 Surface
0 a area versus
é 500 E; body mass for
2 ; i dwarf sirens, a
S 400 species of sala-
mander ( Pseudo-
branchus striatus ).
250 — The data points
200 — represent individual
specimens, and the curve is
a fit of the form A=km 213
0 T T T 0 T T
0 1 2 3 0 500 1000

length of leg segment (mm)

o / Geometrical scaling of animals.
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body mass (g)

times more body mass will have only four times more surface area.

This behavior of the ratio of surface area to mass (or, equiv-
alently, the ratio of surface area to volume) has important conse-
quences for mammals, which must maintain a constant body tem-
perature. It would make sense for the rate of heat loss through the
animal’s skin to be proportional to its surface area, so we should
expect small animals, having large ratios of surface area to volume,
to need to produce a great deal of heat in comparison to their size to
avoid dying from low body temperature. This expectation is borne
out by the data of the left-hand panel of figure p, showing the rate
of oxygen consumption of guinea pigs as a function of their body
mass. Neither an animal’s heat production nor its surface area is
convenient to measure, but in order to produce heat, the animal
must metabolize oxygen, so oxygen consumption is a good indicator
of the rate of heat production. Since surface area is proportional to
m?2/3, the proportionality of the rate of oxygen consumption to m2/3
is consistent with the idea that the animal needs to produce heat at a
rate in proportion to its surface area. Although the smaller animals

and Estimation



° Diameter versus length
8 of the third lumbar
5 | vertebrae of adult o
African Bovidae °
7 (antelopes and oxen).
The smallest animal o 9"
6 - 4 7 represented is the el
_ cat-sized Gunther's of
E dik-dik, and the
3 57 _ largest is the o
\E/ 5 3 7| 850-kg giant o
8 4 5 eland. The
£ 2 solid curveis
@ ke a fit of the ¢ Stormd=kL 32
E 3 ] 27 and the dashed
S L
: e oo g
© 2 consumption versus McMahon and
body mass for guinea 1 - Bonner, 1983))
| pigs at rest. The ’ '
1 curve is a fit of the ’
form (rate)=km 23 ,/
0 T T T T 0 T
0.0 0.2 0.4 0.6 0.8 1.0 0 4 6
body mass (kg) length (cm)

p / Scaling of animals’ bodies related to metabolic rate and skeletal strength.

metabolize less oxygen and produce less heat in absolute terms, the
amount of food and oxygen they must consume is greater in propor-
tion to their own mass. The Etruscan pigmy shrew, weighing in at
2 grams as an adult, is at about the lower size limit for mammals.
It must eat continually, consuming many times its body weight each
day to survive.

Changes in shape to accommodate changes in size

Large mammals, such as elephants, have a small ratio of surface
area to volume, and have problems getting rid of their heat fast
enough. An elephant cannot simply eat small enough amounts to
keep from producing excessive heat, because cells need to have a
certain minimum metabolic rate to run their internal machinery.
Hence the elephant’s large ears, which add to its surface area and
help it to cool itself. Previously, we have seen several examples
of data within a given species that were consistent with a fixed
shape, scaled up and down in the cases of individual specimens. The
elephant’s ears are an example of a change in shape necessitated by
a change in scale.

Section 1.3+ Scaling applied to biology



q/ Galileo’s

showing how
bones must be greater in diam-
eter compared to their lengths.
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original  drawing,
larger animals’

Large animals also must be able to support their own weight.
Returning to the example of the strengths of planks of different
sizes, we can see that if the strength of the plank depends on area
while its weight depends on volume, then the ratio of strength to
weight goes as follows:

strength /weight o« A/V o 1/L.

Thus, the ability of objects to support their own weights decreases
inversely in proportion to their linear dimensions. If an object is to
be just barely able to support its own weight, then a larger version
will have to be proportioned differently, with a different shape.

Since the data on the cockroaches seemed to be consistent with
roughly similar shapes within the species, it appears that the abil-
ity to support its own weight was not the tightest design constraint
that Nature was working under when she designed them. For large
animals, structural strength is important. Galileo was the first to
quantify this reasoning and to explain why, for instance, a large an-
imal must have bones that are thicker in proportion to their length.
Consider a roughly cylindrical bone such as a leg bone or a vertebra.
The length of the bone, L, is dictated by the overall linear size of the
animal, since the animal’s skeleton must reach the animal’s whole
length. We expect the animal’s mass to scale as L?, so the strength
of the bone must also scale as L3. Strength is proportional to cross-
sectional area, as with the wooden planks, so if the diameter of the
bone is d, then

d? < L3
or
doc L3/,

If the shape stayed the same regardless of size, then all linear di-
mensions, including d and L, would be proportional to one another.
If our reasoning holds, then the fact that d is proportional to L3/2,
not L, implies a change in proportions of the bone. As shown in the
right-hand panel of figure p, the vertebrae of African Bovidae follow
the rule d o< L3/2 fairly well. The vertebrae of the giant eland are

as chunky as a coffee mug, while those of a Gunther’s dik-dik are as
slender as the cap of a pen.

Discussion questions

A Single-celled animals must passively absorb nutrients and oxygen
from their surroundings, unlike humans who have lungs to pump air in and
out and a heart to distribute the oxygenated blood throughout their bodies.
Even the cells composing the bodies of multicellular animals must absorb
oxygen from a nearby capillary through their surfaces. Based on these
facts, explain why cells are always microscopic in size.

B The reasoning of the previous question would seem to be contra-
dicted by the fact that human nerve cells in the spinal cord can be as
much as a meter long, although their widths are still very small. Why is
this possible?
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1.4 Order-of-magnitude estimates

It is the mark of an instructed mind to rest satisfied with the
degree of precision that the nature of the subject permits and
not to seek an exactness where only an approximation of the
truth is possible.

Aristotle

It is a common misconception that science must be exact. For
instance, in the Star Trek TV series, it would often happen that
Captain Kirk would ask Mr. Spock, “Spock, we’re in a pretty bad
situation. What do you think are our chances of getting out of
here?” The scientific Mr. Spock would answer with something like,
“Captain, I estimate the odds as 237.345 to one.” In reality, he
could not have estimated the odds with six significant figures of
accuracy, but nevertheless one of the hallmarks of a person with a
good education in science is the ability to make estimates that are
likely to be at least somewhere in the right ballpark. In many such
situations, it is often only necessary to get an answer that is off by no
more than a factor of ten in either direction. Since things that differ
by a factor of ten are said to differ by one order of magnitude, such
an estimate is called an order-of-magnitude estimate. The tilde,
~, is used to indicate that things are only of the same order of
magnitude, but not exactly equal, as in

odds of survival ~ 100 to one.

The tilde can also be used in front of an individual number to em-
phasize that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems simple and
natural to experienced scientists, it’s a mode of reasoning that is
completely unfamiliar to most college students. Some of the typical
mental steps can be illustrated in the following example.

Cost of transporting tomatoes (incorrect solution) example 4
> Roughly what percentage of the price of a tomato comes from
the cost of transporting it in a truck?

> The following incorrect solution illustrates one of the main ways
you can go wrong in order-of-magnitude estimates.

Incorrect solution: Let’s say the trucker needs to make a $400
profit on the trip. Taking into account her benefits, the cost of gas,
and maintenance and payments on the truck, let’s say the total
cost is more like $2000. I'd guess about 5000 tomatoes would fit
in the back of the truck, so the extra cost per tomato is 40 cents.
That means the cost of transporting one tomato is comparable to
the cost of the tomato itself. Transportation really adds a lot to the
cost of produce, | guess.

The problem is that the human brain is not very good at esti-
mating area or volume, so it turns out the estimate of 5000 tomatoes
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r/Can you guess how many
jelly beans are in the jar? If you
try to guess directly, you will
almost certainly underestimate.
The right way to do it is to esti-
mate the linear dimensions, then
get the volume indirectly. See
problem 26, p. 62.

s/ Consider a spherical cow.

fitting in the truck is way off. That’s why people have a hard time
at those contests where you are supposed to estimate the number of
jellybeans in a big jar. Another example is that most people think
their families use about 10 gallons of water per day, but in reality
the average is about 300 gallons per day. When estimating area
or volume, you are much better off estimating linear dimensions,
and computing volume from the linear dimensions. Here’s a better
solution to the problem about the tomato truck:

Cost of transporting tomatoes (correct solution) example 5
As in the previous solution, say the cost of the trip is $2000. The
dimensions of the bin are probably 4 m x 2 m x 1 m, for a vol-
ume of 8 m3. Since the whole thing is just an order-of-magnitude
estimate, let’s round that off to the nearest power of ten, 10 mq.
The shape of a tomato is complicated, and | don’t know any for-
mula for the volume of a tomato shape, but since this is just an
estimate, let’s pretend that a tomato is a cube, 0.05 m x 0.05 m x
0.05 m, for a volume of 1.25 x 10~* m3. Since this is just a rough
estimate, let's round that to 10~*m3. We can find the total num-
ber of tomatoes by dividing the volume of the bin by the volume
of one tomato: 10 m3/10~% m3 = 10° tomatoes. The transporta-
tion cost per tomato is $2000/10° tomatoes=$0.02/tomato. That
means that transportation really doesn’t contribute very much to
the cost of a tomato.

Approximating the shape of a tomato as a cube is an example of
another general strategy for making order-of-magnitude estimates.
A similar situation would occur if you were trying to estimate how
many m? of leather could be produced from a herd of ten thousand
cattle. There is no point in trying to take into account the shape of
the cows’ bodies. A reasonable plan of attack might be to consider
a spherical cow. Probably a cow has roughly the same surface area
as a sphere with a radius of about 1 m, which would be 47(1 m)2.
Using the well-known facts that pi equals three, and four times three
equals about ten, we can guess that a cow has a surface area of about
10 m?, so the herd as a whole might yield 10° m? of leather.

Estimating mass indirectly example 6
Usually the best way to estimate mass is to estimate linear di-
mensions, then use those to infer volume, and then get the mass
based on the volume. For example, Amphicoelias, shown in the
figure, may have been the largest land animal ever to live. Fossils
tell us the linear dimensions of an animal, but we can only indi-
rectly guess its mass. Given the length scale in the figure, let’s
estimate the mass of an Amphicoelias.

Its torso looks like it can be approximated by a rectangular box
with dimensions 10 m x5 m x 3 m, giving about 2 x 10> m3. Living
things are mostly made of water, so we assume the animal to
have the density of water, 1 g/cm®, which converts to 10° kg/m?.
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This gives a mass of about 2 x 10° kg, or 200 metric tons.

The following list summarizes the strategies for getting a good
order-of-magnitude estimate.

1. Don’t even attempt more than one significant figure of preci-
sion.

2. Don’t guess area, volume, or mass directly. Guess linear di-
mensions and get area, volume, or mass from them.

3. When dealing with areas or volumes of objects with complex
shapes, idealize them as if they were some simpler shape, a
cube or a sphere, for example.

4. Check your final answer to see if it is reasonable. If you esti-
mate that a herd of ten thousand cattle would yield 0.01 m?
of leather, then you have probably made a mistake with con-
version factors somewhere.

Section 1.4 Order-of-magnitude estimates
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Chapter 1

Summary

Notation

X e is proportional to

~N on the order of, is on the order of
Summary

Nature behaves differently on large and small scales. Galileo
showed that this results fundamentally from the way area and vol-
ume scale. Area scales as the second power of length, A oc L2, while
volume scales as length to the third power, V oc L3.

An order of magnitude estimate is one in which we do not at-
tempt or expect an exact answer. The main reason why the unini-
tiated have trouble with order-of-magnitude estimates is that the
human brain does not intuitively make accurate estimates of area
and volume. Estimates of area and volume should be approached
by first estimating linear dimensions, which one’s brain has a feel
for.

Scaling and Estimation



Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 How many cubic inches are there in a cubic foot? The answer
is not 12. v
2 Assume a dog’s brain is twice as great in diameter as a cat’s,

but each animal’s brain cells are the same size and their brains are
the same shape. In addition to being a far better companion and
much nicer to come home to, how many times more brain cells does
a dog have than a cat? The answer is not 2.

3  The population density of Los Angeles is about 4000 people/km?.

That of San Francisco is about 6000 people/ km?. How many times
farther away is the average person’s nearest neighbor in LA than in
San Francisco? The answer is not 1.5. v

4 A hunting dog’s nose has about 10 square inches of active
surface. How is this possible, since the dog’s nose is only about 1 in
x 1in x 1in = 1 in®? After all, 10 is greater than 1, so how can it
fit?

5 Estimate the number of blades of grass on a football field.

6 In a computer memory chip, each bit of information (a 0 or
a 1) is stored in a single tiny circuit etched onto the surface of a
silicon chip. The circuits cover the surface of the chip like lots in a
housing development. A typical chip stores 64 Mb (megabytes) of
data, where a byte is 8 bits. Estimate (a) the area of each circuit,
and (b) its linear size.

7 Suppose someone built a gigantic apartment building, mea-
suring 10 km x 10 km at the base. Estimate how tall the building
would have to be to have space in it for the entire world’s population
to live.

8 A hamburger chain advertises that it has sold 10 billion Bongo
Burgers. Estimate the total mass of feed required to raise the cows
used to make the burgers.

9 Estimate the volume of a human body, in cm3.

10 How many cm? is 1 mm?? > Solution, p. 547

11 Compare the light-gathering powers of a 3-cm-diameter tele-
scope and a 30-cm telescope. > Solution, p. 547

12 One step on the Richter scale corresponds to a factor of 100
in terms of the energy absorbed by something on the surface of the
Earth, e.g., a house. For instance, a 9.3-magnitude quake would
release 100 times more energy than an 8.3. The energy spreads out

Problems
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from the epicenter as a wave, and for the sake of this problem we’ll
assume we're dealing with seismic waves that spread out in three
dimensions, so that we can visualize them as hemispheres spreading
out under the surface of the earth. If a certain 7.6-magnitude earth-
quake and a certain 5.6-magnitude earthquake produce the same
amount of vibration where I live, compare the distances from my
house to the two epicenters. > Solution, p. 548

13 In Europe, a piece of paper of the standard size, called A4,
is a little narrower and taller than its American counterpart. The
ratio of the height to the width is the square root of 2, and this has
some useful properties. For instance, if you cut an A4 sheet from left
to right, you get two smaller sheets that have the same proportions.
You can even buy sheets of this smaller size, and they’re called Ab5.
There is a whole series of sizes related in this way, all with the same
proportions. (a) Compare an A5 sheet to an A4 in terms of area and
linear size. (b) The series of paper sizes starts from an A0 sheet,
which has an area of one square meter. Suppose we had a series
of boxes defined in a similar way: the BO box has a volume of one
cubic meter, two B1 boxes fit exactly inside an B0 box, and so on.
What would be the dimensions of a B0 box? v

14 Estimate the mass of one of the hairs in Albert Einstein’s
moustache, in units of kg.

15 According to folklore, every time you take a breath, you are
inhaling some of the atoms exhaled in Caesar’s last words. Is this
true? If so, how many?

Albert Einstein, and his mous-

tache, problem 14, 16 The Earth’s surface is about 70% water. Mars’s diameter is
about half the Earth’s, but it has no surface water. Compare the
land areas of the two planets. v

17 The traditional Martini glass is shaped like a cone with
the point at the bottom. Suppose you make a Martini by pouring
vermouth into the glass to a depth of 3 cm, and then adding gin
to bring the depth to 6 cm. What are the proportions of gin and
vermouth? > Solution, p. 548

18 The central portion of a CD is taken up by the hole and some
surrounding clear plastic, and this area is unavailable for storing
data. The radius of the central circle is about 35% of the outer
radius of the data-storing area. What percentage of the CD’s area
is therefore lost? v

Problem 19. 19 The one-liter cube in the photo has been marked off into
smaller cubes, with linear dimensions one tenth those of the big
one. What is the volume of each of the small cubes?

> Solution, p. 548
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20 [This problem is now problem 0-12 on p. 37.]

21 Estimate the number of man-hours required for building the
Great Wall of China. > Solution, p. 548

22 (a) Using the microscope photo in the figure, estimate the
mass of a one cell of the F. coli bacterium, which is one of the
most common ones in the human intestine. Note the scale at the
lower right corner, which is 1 um. Each of the tubular objects in
the column is one cell. (b) The feces in the human intestine are
mostly bacteria (some dead, some alive), of which E. coli is a large
and typical component. Estimate the number of bacteria in your
intestines, and compare with the number of human cells in your
body, which is believed to be roughly on the order of 10'3. (c)
Interpreting your result from part b, what does this tell you about
the size of a typical human cell compared to the size of a typical
bacterial cell?

23 A taxon (plural taxa) is a group of living things. For ex-
ample, Homo sapiens and Homo neanderthalensis are both taxa —
specifically, they are two different species within the genus Homo.
Surveys by botanists show that the number of plant taxa native
to a given contiguous land area A is usually approximately propor-
tional to A'/3. (a) There are 70 different species of lupine native
to Southern California, which has an area of about 200,000 km?.
The San Gabriel Mountains cover about 1,600 km?. Suppose that
you wanted to learn to identify all the species of lupine in the San
Gabriels. Approximately how many species would you have to fa-
miliarize yourself with? > Answer, p. 569 V
(b) What is the interpretation of the fact that the exponent, 1/3, is
less than one?

=
7%
e

Problem 22.

Problems
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24 X-ray images aren’t only used with human subjects but also,
for example, on insects and flowers. In 2003, a team of researchers
at Argonne National Laboratory used x-ray imagery to find for the
first time that insects, although they do not have lungs, do not
necessarily breathe completely passively, as had been believed pre-
viously; many insects rapidly compress and expand their trachea,
head, and thorax in order to force air in and out of their bodies.
One difference between x-raying a human and an insect is that if a
medical x-ray machine was used on an insect, virtually 100% of the
x-rays would pass through its body, and there would be no contrast
in the image produced. Less penetrating x-rays of lower energies
have to be used. For comparison, a typical human body mass is
about 70 kg, whereas a typical ant is about 10 mg. Estimate the
ratio of the thicknesses of tissue that must be penetrated by x-rays
in one case compared to the other. v

25 Radio was first commercialized around 1920, and ever since
then, radio signals from our planet have been spreading out across
our galaxy. It is possible that alien civilizations could detect these
signals and learn that there is life on earth. In the 90 years that the
signals have been spreading at the speed of light, they have created
a sphere with a radius of 90 light-years. To show an idea of the
size of this sphere, I've indicated it in the figure as a tiny white
circle on an image of a spiral galaxy seen edge on. (We don’t have
similar photos of our own Milky Way galaxy, because we can’t see
Problem 25. it from the outside.) So far we haven’t received answering signals
from aliens within this sphere, but as time goes on, the sphere will
expand as suggested by the dashed outline, reaching more and more
stars that might harbor extraterrestrial life. Approximately what
year will it be when the sphere has expanded to fill a volume 100
times greater than the volume it fills today in 20107 v

26 Estimate the number of jellybeans in figure r on p. 56.
> Solution, p. 548

27 At the grocery store you will see oranges packed neatly in
stacks. Suppose we want to pack spheres as densely as possible,
so that the greatest possible fraction of the space is filled by the
spheres themselves, not by empty space. Let’s call this fraction f.
Mathematicians have proved that the best possible result is f =~
0.7405, which requires a systematic pattern of stacking. If you buy
ball bearings or golf balls, however, the seller is probably not going
to go to the trouble of stacking them neatly. Instead they will
probably pour the balls into a box and vibrate the box vigorously
for a while to make them settle. This results in a random packing.
The closest random packing has f = 0.64. Suppose that golf balls,
with a standard diameter of 4.27 cm, are sold in bulk with the
Problem 27. closest random packing. What is the diameter of the largest ball
that could be sold in boxes of the same size, packed systematically,
so that there would be the same number of balls per box? v
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28 Plutonium-239 is one of a small number of important long-
lived forms of high-level radioactive nuclear waste. The world’s
waste stockpiles have about 10% metric tons of plutonium. Drinking
water is considered safe by U.S. government standards if it contains
less than 2 x 107 g/cm? of plutonium. The amount of radioac-
tivity to which you were exposed by drinking such water on a daily
basis would be very small compared to the natural background radi-
ation that you are exposed to every year. Suppose that the world’s
inventory of plutonium-239 were ground up into an extremely fine
dust and then dispersed over the world’s oceans, thereby becoming
mixed uniformly into the world’s water supplies over time. FEsti-
mate the resulting concentration of plutonium, and compare with
the government standard.

Problems
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Exercise 1: Scaling applied to leaves

Equipment:
leaves of three sizes, having roughly similar proportions of length, width, and thickness
balance

Each group will have one leaf, and should measure its surface area and volume, and determine
its surface-to-volume ratio. For consistency, every group should use units of cm? and cm?®, and
should only find the area of one side of the leaf. The area can be found by tracing the area of
the leaf on graph paper and counting squares. The volume can be found by weighing the leaf
and assuming that its density is 1 g/cm?® (the density of water). What implications do your
results have for the plants’ abilities to survive in different environments?
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Chapter 2

Velocity and Relative
Motion

2.1 Types of motion

If you had to think consciously in order to move your body, you
would be severely disabled. Even walking, which we consider to
be no great feat, requires an intricate series of motions that your
cerebrum would be utterly incapable of coordinating. The task of
putting one foot in front of the other is controlled by the more prim-
itive parts of your brain, the ones that have not changed much since
the mammals and reptiles went their separate evolutionary ways.
The thinking part of your brain limits itself to general directives
such as “walk faster,” or “don’t step on her toes,” rather than mi-
cromanaging every contraction and relaxation of the hundred or so
muscles of your hips, legs, and feet.

Physics is all about the conscious understanding of motion, but
we're obviously not immediately prepared to understand the most
complicated types of motion. Instead, we’ll use the divide-and-
conquer technique. We'll first classify the various types of motion,
and then begin our campaign with an attack on the simplest cases.
To make it clear what we are and are not ready to consider, we need
to examine and define carefully what types of motion can exist.

Rigid-body motion distinguished from motion that changes
an object’s shape

Nobody, with the possible exception of Fred Astaire, can simply
glide forward without bending their joints. Walking is thus an ex-
ample in which there is both a general motion of the whole object
and a change in the shape of the object. Another example is the
motion of a jiggling water balloon as it flies through the air. We are
not presently attempting a mathematical description of the way in
which the shape of an object changes. Motion without a change in
shape is called rigid-body motion. (The word “body” is often used
in physics as a synonym for “object.”)

Center-of-mass motion as opposed to rotation

A ballerina leaps into the air and spins around once before land-
ing. We feel intuitively that her rigid-body motion while her feet
are off the ground consists of two kinds of motion going on simul-

a / Rotation.

@ ¥
Yy

b / Simultaneous rotation and
motion through space.

¢ / One person might say that the
tipping chair was only rotating in
a circle about its point of contact
with the floor, but another could
describe it as having both rotation
and motion through space.
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e/No matter what point you
hang the pear from, the string
lines up with the pear’s center
of mass. The center of mass
can therefore be defined as the
intersection of all the lines made
by hanging the pear in this way.
Note that the X in the figure
should not be interpreted as
implying that the center of mass
is on the surface — it is actually
inside the pear.

f/ The circus performers hang
with the ropes passing through
their centers of mass.

taneously: a rotation and a motion of her body as a whole through
space, along an arc. It is not immediately obvious, however, what
is the most useful way to define the distinction between rotation
and motion through space. Imagine that you attempt to balance a
chair and it falls over. One person might say that the only motion
was a rotation about the chair’s point of contact with the floor, but
another might say that there was both rotation and motion down
and to the side.

—%— center of mass

d/The leaping dancer’s motion is complicated, but the motion of
her center of mass is simple.

It turns out that there is one particularly natural and useful way
to make a clear definition, but it requires a brief digression. Every
object has a balance point, referred to in physics as the center of
mass. For a two-dimensional object such as a cardboard cutout, the
center of mass is the point at which you could hang the object from
a string and make it balance. In the case of the ballerina (who is
likely to be three-dimensional unless her diet is particularly severe),
it might be a point either inside or outside her body, depending
on how she holds her arms. Even if it is not practical to attach a
string to the balance point itself, the center of mass can be defined
as shown in figure e.

Why is the center of mass concept relevant to the question of
classifying rotational motion as opposed to motion through space?
As illustrated in figures d and g, it turns out that the motion of an
object’s center of mass is nearly always far simpler than the motion
of any other part of the object. The ballerina’s body is a large object
with a complex shape. We might expect that her motion would be
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much more complicated than the motion of a small, simply-shaped
object, say a marble, thrown up at the same angle as the angle at
which she leapt. But it turns out that the motion of the ballerina’s
center of mass is exactly the same as the motion of the marble. That
is, the motion of the center of mass is the same as the motion the
ballerina would have if all her mass was concentrated at a point. By
restricting our attention to the motion of the center of mass, we can
therefore simplify things greatly.

Her center of

g/ The same leaping dancer, viewed from above.
mass traces a straight line, but a point away from her center of mass,
such as her elbow, traces the much more complicated path shown by the
dots.

We can now replace the ambiguous idea of “motion as a whole
through space” with the more useful and better defined concept
of “center-of-mass motion.” The motion of any rigid body can be
cleanly split into rotation and center-of-mass motion. By this defini-
tion, the tipping chair does have both rotational and center-of-mass
motion. Concentrating on the center of mass motion allows us to
make a simplified model of the motion, as if a complicated object
like a human body was just a marble or a point-like particle. Science
really never deals with reality; it deals with models of reality.

Note that the word “center” in “center of mass” is not meant
to imply that the center of mass must lie at the geometrical center
of an object. A car wheel that has not been balanced properly has
a center of mass that does not coincide with its geometrical center.
An object such as the human body does not even have an obvious
geometrical center.

It can be helpful to think of the center of mass as the average
location of all the mass in the object. With this interpretation,
we can see for example that raising your arms above your head
raises your center of mass, since the higher position of the arms’
mass raises the average. We won’t be concerned right now with
calculating centers of mass mathematically; the relevant equations
are in ch. 14.

Ballerinas and professional basketball players can create an illu-
sion of flying horizontally through the air because our brains intu-
itively expect them to have rigid-body motion, but the body does
not stay rigid while executing a grand jete or a slam dunk. The legs

Section 2.1

h/An  improperly  balanced
wheel has a center of mass that
is not at its geometric center.
When you get a new tire, the
mechanic clamps little weights to
the rim to balance the wheel.

i/This toy was intentionally
designed so that the mushroom-
shaped piece of metal on top
would throw off the center of
mass. When you wind it up, the
mushroom spins, but the center
of mass doesn’t want to move,
so the rest of the toy tends to
counter the mushroom’s motion,
causing the whole thing to jump
around.
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k / Example 1.

center of mass

------ fixed point on dancer's body

j/ A fixed point on the dancer’s body follows a trajectory that is flat-
ter than what we expect, creating an illusion of flight.

are low at the beginning and end of the jump, but come up higher at
the middle. Regardless of what the limbs do, the center of mass will
follow the same arc, but the low position of the legs at the beginning
and end means that the torso is higher compared to the center of
mass, while in the middle of the jump it is lower compared to the
center of mass. Our eye follows the motion of the torso and tries
to interpret it as the center-of-mass motion of a rigid body. But
since the torso follows a path that is flatter than we expect, this
attempted interpretation fails, and we experience an illusion that
the person is flying horizontally.

slECC

The center of mass as an average example 1
> Explain how we know that the center of mass of each object is
at the location shown in figure k.

> The center of mass is a sort of average, so the height of the
centers of mass in 1 and 2 has to be midway between the two
squares, because that height is the average of the heights of the
two squares. Example 3 is a combination of examples 1 and
2, so we can find its center of mass by averaging the horizontal
positions of their centers of mass. In example 4, each square
has been skewed a little, but just as much mass has been moved
up as down, so the average vertical position of the mass hasn'’t
changed. Example 5 is clearly not all that different from example
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4, the main difference being a slight clockwise rotation, so just as
in example 4, the center of mass must be hanging in empty space,
where there isn’t actually any mass. Horizontally, the center of
mass must be between the heels and toes, or else it wouldn’t be
possible to stand without tipping over.

Another interesting example from the sports world is the high
jump, in which the jumper’s curved body passes over the bar, but
the center of mass passes under the bar! Here the jumper lowers his
legs and upper body at the peak of the jump in order to bring his
waist higher compared to the center of mass.

Later in this course, we’ll find that there are more fundamental
reasons (based on Newton’s laws of motion) why the center of mass
behaves in such a simple way compared to the other parts of an
object. We're also postponing any discussion of numerical methods
for finding an object’s center of mass. Until later in the course, we
will only deal with the motion of objects’ centers of mass.

center

. . . . Gesz ! ®0f mass
Center-of-mass motion in one dimension - -
In addition to restricting our study of motion to center-of-mass |/ The high-jumper’s boc!y
motion, we will begin by considering only cases in which the center passes over the bar, but his

of mass moves along a straight line. This will include cases such center of mass passes under it.

as objects falling straight down, or a car that speeds up and slows
down but does not turn.

Note that even though we are not explicitly studying the more
complex aspects of motion, we can still analyze the center-of-mass
motion while ignoring other types of motion that might be occurring
simultaneously . For instance, if a cat is falling out of a tree and
is initially upside-down, it goes through a series of contortions that
bring its feet under it. This is definitely not an example of rigid-
body motion, but we can still analyze the motion of the cat’s center
of mass just as we would for a dropping rock.

self-check A

Consider a person running, a person pedaling on a bicycle, a person
coasting on a bicycle, and a person coasting on ice skates. In which
cases is the center-of-mass motion one-dimensional? Which cases are
examples of rigid-body motion? > Answer, p. 564

self-check B

The figure shows a gymnast holding onto the inside of a big wheel.
From inside the wheel, how could he make it roll one way or the other? m / Self-check B.
> Answer, p. 564

2.2 Describing distance and time

Center-of-mass motion in one dimension is particularly easy to deal
with because all the information about it can be encapsulated in two
variables: x, the position of the center of mass relative to the origin,
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and t, which measures a point in time. For instance, if someone
supplied you with a sufficiently detailed table of x and ¢ values, you
would know pretty much all there was to know about the motion of
the object’s center of mass.

A point in time as opposed to duration

In ordinary speech, we use the word “time” in two different
senses, which are to be distinguished in physics. It can be used,
as in “a short time” or “our time here on earth,” to mean a length
or duration of time, or it can be used to indicate a clock reading, as
in “I didn’t know what time it was,” or “now’s the time.” In sym-
bols, t is ordinarily used to mean a point in time, while At signifies
an interval or duration in time. The capital Greek letter delta, A,
means “the change in...,” i.e. a duration in time is the change or
difference between one clock reading and another. The notation At
does not signify the product of two numbers, A and ¢, but rather
one single number, At. If a matinee begins at a point in time t = 1
o’clock and ends at t = 3 o’clock, the duration of the movie was the
change in t,

At = 3 hours — 1 hour = 2 hours.

To avoid the use of negative numbers for At, we write the clock
reading “after” to the left of the minus sign, and the clock reading
“before” to the right of the minus sign. A more specific definition
of the delta notation is therefore that delta stands for “after minus
before.”

Even though our definition of the delta notation guarantees that
At is positive, there is no reason why t can’t be negative. If ¢
could not be negative, what would have happened one second before
t = 0?7 That doesn’t mean that time “goes backward” in the sense
that adults can shrink into infants and retreat into the womb. It
just means that we have to pick a reference point and call it ¢t = 0,
and then times before that are represented by negative values of t.
An example is that a year like 2007 A.D. can be thought of as a
positive t value, while one like 370 B.C. is negative. Similarly, when
you hear a countdown for a rocket launch, the phrase “t minus ten
seconds” is a way of saying ¢ = —10 s, where ¢t = 0 is the time of
blastoff, and t > 0 refers to times after launch.

Although a point in time can be thought of as a clock reading, it
is usually a good idea to avoid doing computations with expressions
such as “2:35” that are combinations of hours and minutes. Times
can instead be expressed entirely in terms of a single unit, such as
hours. Fractions of an hour can be represented by decimals rather
than minutes, and similarly if a problem is being worked in terms
of minutes, decimals can be used instead of seconds.

self-check C

Of the following phrases, which refer to points in time, which refer to
time intervals, and which refer to time in the abstract rather than as a
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measurable number?
(1) “The time has come.”
(2) “Time waits for no man.”

(3) “The whole time, he had spit on his chin.” > Answer, p. 564

Position as opposed to change in position

As with time, a distinction should be made between a point
in space, symbolized as a coordinate x, and a change in position,
symbolized as Ax.

As with t,x can be negative. If a train is moving down the
tracks, not only do you have the freedom to choose any point along
the tracks and call it = 0, but it’s also up to you to decide which
side of the z = 0 point is positive x and which side is negative x.

Since we’'ve defined the delta notation to mean “after minus
before,” it is possible that Ax will be negative, unlike At which is
guaranteed to be positive. Suppose we are describing the motion
of a train on tracks linking Tucson and Chicago. As shown in the
figure, it is entirely up to you to decide which way is positive.

1 Chicago 2 Chicago

Tucson Tucson

Note that in addition to  and Az, there is a third quantity we
could define, which would be like an odometer reading, or actual
distance traveled. If you drive 10 miles, make a U-turn, and drive
back 10 miles, then your Az is zero, but your car’s odometer reading
has increased by 20 miles. However important the odometer reading
is to car owners and used car dealers, it is not very important in
physics, and there is not even a standard name or notation for it.
The change in position, Az, is more useful because it is so much
easier to calculate: to compute Ax, we only need to know the be-
ginning and ending positions of the object, not all the information
about how it got from one position to the other.

self-check D

A ball falls vertically, hits the floor, bounces to a height of one meter,
falls, and hits the floor again. Is the Ax between the two impacts equal
to zero, one, or two meters? > Answer, p. 564

n/Two equally valid ways of de-
scribing the motion of a train from
Tucson to Chicago. In example 1,
the train has a positive Ax as it
goes from Enid to Joplin. In 2,
the same train going forward in
the same direction has a negative
AX.
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p/Motion that decreases x
is represented with negative
values of Ax and v.
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q/Motion with changing ve-
locity. How can we find the
velocity at the time indicated by
the dot?

Frames of reference

The example above shows that there are two arbitrary choices
you have to make in order to define a position variable, z. You have
to decide where to put z = 0, and also which direction will be posi-
tive. This is referred to as choosing a coordinate system or choosing
a frame of reference. (The two terms are nearly synonymous, but
the first focuses more on the actual x variable, while the second is
more of a general way of referring to one’s point of view.) As long as
you are consistent, any frame is equally valid. You just don’t want
to change coordinate systems in the middle of a calculation.

Have you ever been sitting in a train in a station when suddenly
you notice that the station is moving backward? Most people would
describe the situation by saying that you just failed to notice that
the train was moving — it only seemed like the station was moving.
But this shows that there is yet a third arbitrary choice that goes
into choosing a coordinate system: valid frames of reference can
differ from each other by moving relative to one another. It might
seem strange that anyone would bother with a coordinate system
that was moving relative to the earth, but for instance the frame of
reference moving along with a train might be far more convenient
for describing things happening inside the train.

2.3 Graphs of motion; velocity

Motion with constant velocity

In example o, an object is moving at constant speed in one di-
rection. We can tell this because every two seconds, its position
changes by five meters.

In algebra notation, we’d say that the graph of x vs. ¢ shows
the same change in position, Ax = 5.0 m, over each interval of
At = 2.0 s. The object’s velocity or speed is obtained by calculating
v =Az/At = (5.0 m)/(2.0 s) = 2.5 m/s. In graphical terms, the
velocity can be interpreted as the slope of the line. Since the graph
is a straight line, it wouldn’t have mattered if we’d taken a longer
time interval and calculated v = Az /At = (10.0 m)/(4.0 s). The
answer would still have been the same, 2.5 m/s.

Note that when we divide a number that has units of meters by
another number that has units of seconds, we get units of meters
per second, which can be written m/s. This is another case where
we treat units as if they were algebra symbols, even though they’re
not.

In example p, the object is moving in the opposite direction: as
time progresses, its « coordinate decreases. Recalling the definition
of the A notation as “after minus before,” we find that At is still
positive, but Az must be negative. The slope of the line is therefore
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negative, and we say that the object has a negative velocity, v =
Az /At = (=5.0 m)/(2.0 s) = —2.5 m/s. We've already seen that
the plus and minus signs of Az values have the interpretation of
telling us which direction the object moved. Since At is always
positive, dividing by At doesn’t change the plus or minus sign, and
the plus and minus signs of velocities are to be interpreted in the
same way. In graphical terms, a positive slope characterizes a line
that goes up as we go to the right, and a negative slope tells us that
the line went down as we went to the right.

> Solved problem: light-years page 89, problem 4

Motion with changing velocity

Now what about a graph like figure q? This might be a graph
of a car’s motion as the driver cruises down the freeway, then slows
down to look at a car crash by the side of the road, and then speeds
up again, disappointed that there is nothing dramatic going on such
as flames or babies trapped in their car seats. (Note that we are
still talking about one-dimensional motion. Just because the graph
is curvy doesn’t mean that the car’s path is curvy. The graph is not
like a map, and the horizontal direction of the graph represents the
passing of time, not distance.)

Example q is similar to example o in that the object moves a
total of 25.0 m in a period of 10.0 s, but it is no longer true that it
makes the same amount of progress every second. There is no way to
characterize the entire graph by a certain velocity or slope, because
the velocity is different at every moment. It would be incorrect to
say that because the car covered 25.0 m in 10.0 s, its velocity was
2.5 m/s. It moved faster than that at the beginning and end, but
slower in the middle. There may have been certain instants at which
the car was indeed going 2.5 m/s, but the speedometer swept past
that value without “sticking,” just as it swung through various other
values of speed. (I definitely want my next car to have a speedometer
calibrated in m/s and showing both negative and positive values.)

We assume that our speedometer tells us what is happening to
the speed of our car at every instant, but how can we define speed
mathematically in a case like this? We can’t just define it as the
slope of the curvy graph, because a curve doesn’t have a single
well-defined slope as does a line. A mathematical definition that
corresponded to the speedometer reading would have to be one that
assigned a velocity value to a single point on the curve, i.e., a single
instant in time, rather than to the entire graph. If we wish to define
the speed at one instant such as the one marked with a dot, the
best way to proceed is illustrated in r, where we have drawn the line
through that point called the tangent line, the line that “hugs the
curve.” We can then adopt the following definition of velocity:

30
25 Uttt
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15 =
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r/The velocity at any given
moment is defined as the slope
of the tangent line through the
relevant point on the graph.
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s/ The original graph, on the left, is
is by a factor of four.
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t/Example 2: finding the ve-
locity at the point indicated with
the dot.

definition of velocity
The velocity of an object at any given moment is the slope of the
tangent line through the relevant point on its x — ¢t graph.

One interpretation of this definition is that the velocity tells us
how many meters the object would have traveled in one second, if
it had continued moving at the same speed for at least one second.

the one from figure p. Each successive magnification to the right

A good way of thinking about the tangent-line definition is shown
in figure s. We zoom in on our point of interest more and more, as
if through a microscope capable of unlimited magnification. As we
zoom in, the curviness of the graph becomes less and less appar-
ent. (Similarly, we don’t notice in everyday life that the earth is
a sphere.) In the figure, we zoom in by 400%, and then again by
400%, and so on. After a series of these zooms, the graph appears
indistinguishable from a line, and we can measure its slope just as
we would for a line.

If all we saw was the ultra-magnified view, we would assume
that the object was moving at a constant speed, which is 2.5 m/s
in our example, and that it would continue to move at that speed.
Therefore the speed of 2.5 m/s can be interpreted as meaning that
if the object had continued at constant speed for a further time
interval of 1 s, it would have traveled 2.5 m.

The slope of the tangent line example 2
> What is the velocity at the point shown with a dot on the graph?

> First we draw the tangent line through that point. To find the
slope of the tangent line, we need to pick two points on it. Theo-
retically, the slope should come out the same regardless of which
two points we pick, but in practical terms we’ll be able to measure
more accurately if we pick two points fairly far apart, such as the
two white diamonds. To save work, we pick points that are directly
above labeled points on the t axis, so that At = 4.0 s is easy to
read off. One diamond lines up with x ~ 17.5 m, the other with
X ~ 26.5 m, so Ax = 9.0 m. The velocity is Ax/At =2.2 m/s.
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Looking at the tangent line in figure t, we can see that it touches
the curve at the point marked with a dot, but without cutting
through it at that point. No other line through that point has
this “no-cut” property; if we rotated the line either clockwise or
counterclockwise about the point, it would cut through. Except in
certain unusual cases, there is always exactly one such no-cut line
at any given point on a smooth curve, and that no-cut line is the
tangent line. It’s as though the region below the curve were a solid
block of wood, and the tangent line were the edge of a ruler. The
ruler can’t penetrate the block.

Conventions about graphing

The placement of ¢ on the horizontal axis and x on the upright
axis may seem like an arbitrary convention, or may even have dis-
turbed you, since your algebra teacher always told you that x goes
on the horizontal axis and y goes on the upright axis. There is a
reason for doing it this way, however. In example t, we have an
object that reverses its direction of motion twice. It can only be
in one place at any given time, but there can be more than one
time when it is at a given place. For instance, this object passed
through z = 17 m on three separate occasions, but there is no way
it could have been in more than one place at ¢ = 5.0 s. Resurrecting
some terminology you learned in your trigonometry course, we say
that x is a function of ¢, but ¢ is not a function of x. In situations
such as this, there is a useful convention that the graph should be
oriented so that any vertical line passes through the curve at only
one point. Putting the x axis across the page and ¢ upright would
have violated this convention. To people who are used to interpret-
ing graphs, a graph that violates this convention is as annoying as
fingernails scratching on a chalkboard. We say that this is a graph
of “x versus t.” If the axes were the other way around, it would
be a graph of “t versus x.” I remember the “versus” terminology
by visualizing the labels on the x and t axes and remembering that
when you read, you go from left to right and from top to bottom.

Discussion questions

A Park is running slowly in gym class, but then he notices Jenna
watching him, so he speeds up to try to impress her. Which of the graphs
could represent his motion?

Section 2.3  Graphs of motion; velocity



30

25

20

15 =

10 -

u/ Reversing the direction of
motion.

Discussion question G.

B The figure shows a sequence of positions for two racing tractors.
Compare the tractors’ velocities as the race progresses. When do they
have the same velocity? [Based on a question by Lillian McDermott.]

On ©On On On 0% ONONON

t=1s t=2s t=3s t=4s t=5s t=6s t=7s

C If an object had an x — t graph that was a straight line with Ax=0
and At # 0, what would you say about its velocity? Sketch an example of
such a graph. What about At=0 and Ax # 07?

D If an object has a wavy motion graph like the one in figure u on p. 78,
what are the times at which the object reverses its direction? Describe
the object’s velocity at these points.

E Discuss anything unusual about the following three graphs.

@ (% ) (@f

t t t

F | have been using the term “velocity” and avoiding the more common
English word “speed,” because introductory physics texts typically define
them to mean different things. They use the word “speed,” and the symbol
“s” to mean the absolute value of the velocity, s = |v|. Although I've
chosen not to emphasize this distinction in technical vocabulary, there
are clearly two different concepts here. Can you think of an example of
a graph of x-versus-f in which the object has constant speed, but not
constant velocity?

G For the graph shown in the figure, describe how the object’s velocity
changes.

H Two physicists duck out of a boring scientific conference. On the
street, they witness an accident in which a pedestrian is injured by a hit-
and-run driver. A criminal trial results, and they must testify. In her testi-
mony, Dr. Transverz Waive says, “The car was moving along pretty fast,
I'd say the velocity was +40 mi/hr. They saw the old lady too late, and even
though they slammed on the brakes they still hit her before they stopped.
Then they made a U turn and headed off at a velocity of about -20 mi/hr,
I'd say.” Dr. Longitud N.L. Vibrasheun says, “He was really going too fast,
maybe his velocity was -35 or -40 mi/hr. After he hit Mrs. Hapless, he
turned around and left at a velocity of, oh, I'd guess maybe +20 or +25
mi/hr.” |s their testimony contradictory? Explain.
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2.4 The principle of inertia

Physical effects relate only to a change in velocity

Consider two statements of a kind that was at one time made
with the utmost seriousness:

People like Galileo and Copernicus who say the earth is ro-
tating must be crazy. We know the earth can’t be moving.
Why, if the earth was really turning once every day, then our
whole city would have to be moving hundreds of leagues in
an hour. That’s impossible! Buildings would shake on their
foundations. Gale-force winds would knock us over. Trees
would fall down. The Mediterranean would come sweeping
across the east coasts of Spain and Italy. And furthermore,
what force would be making the world turn?

All this talk of passenger trains moving at forty miles an hour
is sheer hogwash! At that speed, the air in a passenger com-
partment would all be forced against the back wall. People in
the front of the car would suffocate, and people at the back
would die because in such concentrated air, they wouldn’t be
able to expel a breath.

Some of the effects predicted in the first quote are clearly just
based on a lack of experience with rapid motion that is smooth and
free of vibration. But there is a deeper principle involved. In each
case, the speaker is assuming that the mere fact of motion must
have dramatic physical effects. More subtly, they also believe that a
force is needed to keep an object in motion: the first person thinks
a force would be needed to maintain the earth’s rotation, and the
second apparently thinks of the rear wall as pushing on the air to
keep it moving.

Common modern knowledge and experience tell us that these
people’s predictions must have somehow been based on incorrect
reasoning, but it is not immediately obvious where the fundamental
flaw lies. It’s one of those things a four-year-old could infuriate
you by demanding a clear explanation of. One way of getting at
the fundamental principle involved is to consider how the modern
concept of the universe differs from the popular conception at the
time of the Italian Renaissance. To us, the word “earth” implies
a planet, one of the nine planets of our solar system, a small ball
of rock and dirt that is of no significance to anyone in the universe
except for members of our species, who happen to live on it. To
Galileo’s contemporaries, however, the earth was the biggest, most
solid, most important thing in all of creation, not to be compared
with the wandering lights in the sky known as planets. To us, the
earth is just another object, and when we talk loosely about “how
fast” an object such as a car “is going,” we really mean the car-
object’s velocity relative to the earth-object.

v/Why does Aristotle look
so sad? Has he realized that
his entire system of physics is
wrong?

w/ The earth spins. People
in Shanghai say they’re at rest
and people in Los Angeles are
moving. Angelenos say the same
about the Shanghainese.

x/The jets are at rest. The
Empire State Building is moving.
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y / This Air Force doctor volun-
teered to ride a rocket sled as a
medical experiment. The obvious
effects on his head and face are
not because of the sled’s speed
but because of its rapid changes
in speed: increasing in 2 and 3,
and decreasing in 5 and 6. In
4 his speed is greatest, but be-
cause his speed is not increasing
or decreasing very much at this
moment, there is little effect on
him.

Motion is relative

According to our modern world-view, it isn’t reasonable to ex-
pect that a special force should be required to make the air in the
train have a certain velocity relative to our planet. After all, the
“moving” air in the “moving” train might just happen to have zero
velocity relative to some other planet we don’t even know about.
Aristotle claimed that things “naturally” wanted to be at rest, ly-
ing on the surface of the earth. But experiment after experiment
has shown that there is really nothing so special about being at rest
relative to the earth. For instance, if a mattress falls out of the back
of a truck on the freeway, the reason it rapidly comes to rest with
respect to the planet is simply because of friction forces exerted by
the asphalt, which happens to be attached to the planet.

Galileo’s insights are summarized as follows:

The principle of inertia
No force is required to maintain motion with constant velocity in
a straight line, and absolute motion does not cause any observable
physical effects.

There are many examples of situations that seem to disprove the
principle of inertia, but these all result from forgetting that friction
is a force. For instance, it seems that a force is needed to keep a
sailboat in motion. If the wind stops, the sailboat stops too. But
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ship's direction
the wind’s force is not the only force on the boat; there is also — % of motion

a frictional force from the water. If the sailboat is cruising and Q
the wind suddenly disappears, the backward frictional force still

exists, and since it is no longer being counteracted by the wind’s
forward force, the boat stops. To disprove the principle of inertia,
we would have to find an example where a moving object slowed
down even though no forces whatsoever were acting on it. Over the
years since Galileo’s lifetime, physicists have done more and more
precise experiments to search for such a counterexample, but the
results have always been negative. Three such tests are described
on pp. 114, 247, and 277.

self-check E
What is incorrect about the following supposed counterexamples to the
principle of inertia?

Discussion question A.

(1) When astronauts blast off in a rocket, their huge velocity does cause
a physical effect on their bodies — they get pressed back into their
seats, the flesh on their faces gets distorted, and they have a hard time

lifting their arms. H- LH

(2) When you're driving in a convertible with the top down, the wind in
your face is an observable physical effect of your absolute motion. > Discussion question B.
Answer, p. 564

> Solved problem: a bug on a wheel page 89, problem 7
Discussion questions

A A passenger on a cruise ship finds, while the ship is docked, that
he can leap off of the upper deck and just barely make it into the pool
on the lower deck. If the ship leaves dock and is cruising rapidly, will this
adrenaline junkie still be able to make it?

B You are a passenger in the open basket hanging under a helium
balloon. The balloon is being carried along by the wind at a constant
velocity. If you are holding a flag in your hand, will the flag wave? If so,
which way? [Based on a question from PSSC Physics.]

C Aristotle stated that all objects naturally wanted to come to rest, with
the unspoken implication that “rest” would be interpreted relative to the
surface of the earth. Suppose we go back in time and transport Aristotle
to the moon. Aristotle knew, as we do, that the moon circles the earth; he
said it didn’t fall down because, like everything else in the heavens, it was
made out of some special substance whose “natural” behavior was to go
in circles around the earth. We land, put him in a space suit, and kick
him out the door. What would he expect his fate to be in this situation? If
intelligent creatures inhabited the moon, and one of them independently
came up with the equivalent of Aristotelian physics, what would they think
about objects coming to rest?

18

Discussion question D.

D The glass is sitting on a level table in a train’s dining car, but the
surface of the water is tilted. What can you infer about the motion of the
train?
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2.5 Addition of velocities

Addition of velocities to describe relative motion

Since absolute motion cannot be unambiguously measured, the
only way to describe motion unambiguously is to describe the motion
of one object relative to another. Symbolically, we can write vpg
for the velocity of object P relative to object Q).

Velocities measured with respect to different reference points can
be compared by addition. In the figure below, the ball’s velocity
relative to the couch equals the ball’s velocity relative to the truck
plus the truck’s velocity relative to the couch:

VBC = VBT t+UTC
=5cm/s+ 10 cm/s
=15 cm/s

The same equation can be used for any combination of three
objects, just by substituting the relevant subscripts for B, T, and
C. Just remember to write the equation so that the velocities being
added have the same subscript twice in a row. In this example, if
you read off the subscripts going from left to right, you get BC... =
...BTTC. The fact that the two “inside” subscripts on the right are
the same means that the equation has been set up correctly. Notice
how subscripts on the left look just like the subscripts on the right,
but with the two T’s eliminated.

Negative velocities in relative motion

My discussion of how to interpret positive and negative signs of
velocity may have left you wondering why we should bother. Why
not just make velocity positive by definition? The original reason
why negative numbers were invented was that bookkeepers decided
it would be convenient to use the negative number concept for pay-
ments to distinguish them from receipts. It was just plain easier than
writing receipts in black and payments in red ink. After adding up
your month’s positive receipts and negative payments, you either got
a positive number, indicating profit, or a negative number, showing
a loss. You could then show that total with a high-tech “+” or “—”
sign, instead of looking around for the appropriate bottle of ink.

Nowadays we use positive and negative numbers for all kinds
of things, but in every case the point is that it makes sense to
add and subtract those things according to the rules you learned
in grade school, such as “minus a minus makes a plus, why this is
true we need not discuss.” Adding velocities has the significance
of comparing relative motion, and with this interpretation negative
and positive velocities can be used within a consistent framework.
For example, the truck’s velocity relative to the couch equals the
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Purple Dino and the couch both
moved backward 10 cmin 1 s, so they
had a velocity of -10 cm/s. During the same
period of time, the ball got 5 cm closer to

me, so it was going +5 cm/s.

In one second, Green Dino and the
truck both moved forward 10 cm, so their
velocity was 10 cm/s. The ball moved
forward 15 cm, so it had v=15 cm/s.

VL 2
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z/ These two highly competent physicists disagree on absolute ve-
locities, but they would agree on relative velocities. Purple Dino
considers the couch to be at rest, while Green Dino thinks of the truck as
being at rest. They agree, however, that the truck’s velocity relative to the
couch is vy = 10 cm/s, the ball’s velocity relative to the truck is vgr = 5
cm/s, and the ball’'s velocity relative to the couch is vge = vgr + vr¢c = 15
cm/s.

truck’s velocity relative to the ball plus the ball’s velocity relative
to the couch:

vrCc = vrB + UBC
= —5cm/s+ 15 cm/s
=10 cm/s

If we didn’t have the technology of negative numbers, we would have
had to remember a complicated set of rules for adding velocities: (1)
if the two objects are both moving forward, you add, (2) if one is
moving forward and one is moving backward, you subtract, but (3)
if they’re both moving backward, you add. What a pain that would
have been.

> Solved problem: two dimensions page 90, problem 10

Airspeed example 3
On June 1, 2009, Air France flight 447 disappeared without warn-
ing over the Atlantic Ocean. All 232 people aboard were killed.
Investigators believe the disaster was triggered because the pilots
lost the ability to accurately determine their speed relative to the
air. This is done using sensors called Pitot tubes, mounted out-
side the plane on the wing. Automated radio signals showed that
these sensors gave conflicting readings before the crash, possi-
bly because they iced up. For fuel efficiency, modern passenger
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jets fly at a very high altitude, but in the thin air they can only fly
within a very narrow range of speeds. If the speed is too low, the
plane stalls, and if it’s too high, it breaks up. If the pilots can’t tell
what their airspeed is, they can’t keep it in the safe range.

Many people’s reaction to this story is to wonder why planes don'’t
just use GPS to measure their speed. One reason is that GPS
tells you your speed relative to the ground, not relative to the air.
Letting P be the plane, A the air, and G the ground, we have

VPG = VpA + VAG:

where vpg (the “true ground speed”) is what GPS would measure,
vpa (“airspeed”) is what’s critical for stable flight, and v,g is the
velocity of the wind relative to the ground 9000 meters below.
Knowing vpg isn't enough to determine vps unless vug is also
known.

aa/Example 3. 1. The aircraft before the disaster. 2. A Pitot tube. 3. The flight path of flight 447.
4. Wreckage being recovered.

Discussion questions
A Interpret the general rule vag = —vp4 in words.

B Wa-Chuen slips away from her father at the mall and walks up the
down escalator, so that she stays in one place. Write this in terms of
symbols.

2.6 Graphs of velocity versus time

Since changes in velocity play such a prominent role in physics, we
need a better way to look at changes in velocity than by laboriously
drawing tangent lines on z-versus-t graphs. A good method is to
draw a graph of velocity versus time. The examples on the left show
the x —t and v — t graphs that might be produced by a car starting
from a traffic light, speeding up, cruising for a while at constant
speed, and finally slowing down for a stop sign. If you have an air
freshener hanging from your rear-view mirror, then you will see an
effect on the air freshener during the beginning and ending periods
when the velocity is changing, but it will not be tilted during the
period of constant velocity represented by the flat plateau in the
middle of the v — t graph.
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Students often mix up the things being represented on these two
types of graphs. For instance, many students looking at the top
graph say that the car is speeding up the whole time, since “the
graph is becoming greater.” What is getting greater throughout the
graph is x, not v.

Similarly, many students would look at the bottom graph and
think it showed the car backing up, because “it’s going backwards
at the end.” But what is decreasing at the end is v, not x. Having
both the x — ¢t and v — t graphs in front of you like this is often
convenient, because one graph may be easier to interpret than the
other for a particular purpose. Stacking them like this means that
corresponding points on the two graphs’ time axes are lined up with
each other vertically. However, one thing that is a little counter-
intuitive about the arrangement is that in a situation like this one
involving a car, one is tempted to visualize the landscape stretching
along the horizontal axis of one of the graphs. The horizontal axes,
however, represent time, not position. The correct way to visualize
the landscape is by mentally rotating the horizon 90 degrees coun-
terclockwise and imagining it stretching along the upright axis of the
x-t graph, which is the only axis that represents different positions
in space.

2.7 | Applications of calculus

The integral symbol, [, in the heading for this section indicates that
it is meant to be read by students in calculus-based physics. Stu-
dents in an algebra-based physics course should skip these sections.
The calculus-related sections in this book are meant to be usable
by students who are taking calculus concurrently, so at this early
point in the physics course I do not assume you know any calculus
yet. This section is therefore not much more than a quick preview of
calculus, to help you relate what you’re learning in the two courses.

Newton was the first person to figure out the tangent-line defi-
nition of velocity for cases where the x — ¢ graph is nonlinear. Be-
fore Newton, nobody had conceptualized the description of motion
in terms of x — ¢ and v — t graphs. In addition to the graphical
techniques discussed in this chapter, Newton also invented a set of
symbolic techniques called calculus. If you have an equation for x
in terms of ¢, calculus allows you, for instance, to find an equation
for v in terms of ¢. In calculus terms, we say that the function v(t)
is the derivative of the function z(¢). In other words, the derivative
of a function is a new function that tells how rapidly the original
function was changing. We now use neither Newton’s name for his
technique (he called it “the method of fluxions”) nor his notation.
The more commonly used notation is due to Newton’s German con-
temporary Leibnitz, whom the English accused of plagiarizing the
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ab/Graphs of x and v ver-
sus t for a car accelerating away
from a traffic light, and then

stopping for another red light.
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calculus from Newton. In the Leibnitz notation, we write

_dw

T

to indicate that the function v(t) equals the slope of the tangent line
of the graph of z(t) at every time t. The Leibnitz notation is meant
to evoke the delta notation, but with a very small time interval.
Because the dx and dt are thought of as very small Az’s and At’s,
i.e., very small differences, the part of calculus that has to do with
derivatives is called differential calculus.

Differential calculus consists of three things:

e The concept and definition of the derivative, which is covered
in this book, but which will be discussed more formally in your
math course.

e The Leibnitz notation described above, which you’ll need to
get more comfortable with in your math course.

e A set of rules that allows you to find an equation for the deriva-
tive of a given function. For instance, if you happened to have
a situation where the position of an object was given by the
equation = 2t7, you would be able to use those rules to
find dz/ dt = 14t%. This bag of tricks is covered in your math
course.
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Summary

Selected vocabulary
center of mass . . the balance point of an object
velocity . . . . .. the rate of change of position; the slope of the
tangent line on an x — ¢ graph.

Notation
T a point in space
t.o. a point in time, a clock reading
Ao “change in;” the value of a variable afterwards
minus its value before
Ax ... ... .. a distance, or more precisely a change in z,
which may be less than the distance traveled;
its plus or minus sign indicates direction
At ..o a duration of time
Voo i oo velocity
VAB « « o v v v the velocity of object A relative to object B
Other terminology and notation
displacement .. a name for the symbol Az
speed . . ... .. the absolute value of the velocity, i.e., the ve-
locity stripped of any information about its
direction
Summary

An object’s center of mass is the point at which it can be bal-
anced. For the time being, we are studying the mathematical de-
scription only of the motion of an object’s center of mass in cases
restricted to one dimension. The motion of an object’s center of
mass is usually far simpler than the motion of any of its other parts.

It is important to distinguish location, z, from distance, Az,
and clock reading, ¢, from time interval At. When an object’s © — ¢
graph is linear, we define its velocity as the slope of the line, Az /At.
When the graph is curved, we generalize the definition so that the
velocity is the slope of the tangent line at a given point on the graph.

Galileo’s principle of inertia states that no force is required to
maintain motion with constant velocity in a straight line, and abso-
lute motion does not cause any observable physical effects. Things
typically tend to reduce their velocity relative to the surface of our
planet only because they are physically rubbing against the planet
(or something attached to the planet), not because there is anything
special about being at rest with respect to the earth’s surface. When
it seems, for instance, that a force is required to keep a book sliding
across a table, in fact the force is only serving to cancel the contrary
force of friction.

Absolute motion is not a well-defined concept, and if two ob-
servers are not at rest relative to one another they will disagree
about the absolute velocities of objects. They will, however, agree

Summary
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about relative velocities. If object A is in motion relative to object
B, and B is in motion relative to C, then A’s velocity relative to C
is given by vac = vap + vpc. Positive and negative signs are used
to indicate the direction of an object’s motion.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 The graph shows the motion of a car stuck in stop-and-go
freeway traffic. (a) If you only knew how far the car had gone
during this entire time period, what would you think its velocity
was? (b) What is the car’s maximum velocity? v

2 (a) Let 0 be the latitude of a point on the Earth’s surface.
Derive an algebra equation for the distance, L, traveled by that
point during one rotation of the Earth about its axis, i.e., over one
day, expressed in terms of # and R, the radius of the earth. Check:
Your equation should give L = 0 for the North Pole.

(b) At what speed is Fullerton, at latitude # = 34°, moving with
the rotation of the Earth about its axis? Give your answer in units
of mi/h. [See the table in the back of the book for the relevant
data.] v

3 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by the equation

y = (10000 m) — (50 m/s) |t + (5.0 s)e_t/5'0 s|.

Find her velocity at ¢ = 7.0 s. (This can be done on a calculator,
without knowing calculus.) Because of air resistance, her velocity
does not increase at a steady rate as it would for an object falling
in vacuum. vVoox

4 A light-year is a unit of distance used in astronomy, and defined
as the distance light travels in one year. The speed of light is 3.0 x 10%
m/s. Find how many meters there are in one light-year, expressing
your answer in scientific notation. > Solution, p. 548

5 You're standing in a freight train, and have no way to see out.
If you have to lean to stay on your feet, what, if anything, does that
tell you about the train’s velocity? Explain. > Solution, p. 548

6 A honeybee’s position as a function of time is given by x =
10t — t3, where t is in seconds and z in meters. What is its velocity
at t = 3.0 s? v f

7 The figure shows the motion of a point on the rim of a rolling

wheel. (The shape is called a cycloid.) Suppose bug A is riding on
the rim of the wheel on a bicycle that is rolling, while bug B is on
the spinning wheel of a bike that is sitting upside down on the floor.
Bug A is moving along a cycloid, while bug B is moving in a circle.
Both wheels are doing the same number of revolutions per minute.
Which bug has a harder time holding on, or do they find it equally
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552 pm. difficult? > Solution, p. 549

8 Peanut plants fold up their leaves at night. Estimate the top
‘ speed of the tip of one of the leaves shown in the figure, expressing
x "\ your result in scientific notation in SI units.
NLA 9 (a) Translate the following information into symbols, using

the notation with two subscripts introduced in section 2.5. Eowyn
is riding on her horse at a velocity of 11 m/s. She twists around in
her saddle and fires an arrow backward. Her bow fires arrows at 25
m/s. (b) Find the velocity of the arrow relative to the ground.

10 Our full discussion of two- and three-dimensional motion is
postponed until the second half of the book, but here is a chance to
use a little mathematical creativity in anticipation of that general-
ization. Suppose a ship is sailing east at a certain speed v, and a
passenger is walking across the deck at the same speed v, so that
his track across the deck is perpendicular to the ship’s center-line.
What is his speed relative to the water, and in what direction is he
moving relative to the water? > Solution, p. 549

11 Freddi Fish(™) has a position as a function of time given
by # = a/(b+t%). (a) Infer the units of the constants a and b. (b)

Find her maximum speed. (c¢) Check that your answer has the right
units. v f

12 Driving along in your car, you take your foot off the gas,
and your speedometer shows a reduction in speed. Describe a frame
of reference in which your car was speeding up during that same
period of time. (The frame of reference should be defined by an
observer who, although perhaps in motion relative to the earth, is
not changing her own speed or direction of motion.)

Problem 8.
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13 The figure shows the motion of a bluefin tuna, as measured
by a radio tag (Block et al., Nature, v. 434, p. 1121, 2005), over
the course of several years. Until this study, it had been believed
that the populations of the fish in the eastern and western Atlantic
were separate, but this particular fish was observed to cross the
entire Atlantic Ocean, from Virginia to Ireland. Points A, B, and C
show a period of one month, during which the fish made the most
rapid progress. Estimate its speed during that month, in units of
kilometers per hour. v

14 Sometimes doors are built with mechanisms that automati-
cally close them after they have been opened. The designer can set
both the strength of the spring and the amount of friction. If there
is too much friction in relation to the strength of the spring, the door
takes too long to close, but if there is too little, the door will oscil-
late. For an optimal design, we get motion of the form z = cte™,
where z is the position of some point on the door, and ¢ and b are
positive constants. (Similar systems are used for other mechanical
devices, such as stereo speakers and the recoil mechanisms of guns.)
In this example, the door moves in the positive direction up until a
certain time, then stops and settles back in the negative direction,
eventually approaching x = 0. This would be the type of motion
we would get if someone flung a door open and the door closer then
brought it back closed again. (a) Infer the units of the constants b
and c.

(b) Find the door’s maximum speed (i.e., the greatest absolute value

of its velocity) as it comes back to the closed position. v
(c) Show that your answer has units that make sense. i
15 At a picnic, someone hands you a can of beer. The ground is

uneven, and you don’t want to spill your drink. You reason that it
will be more stable if you drink some of it first in order to lower its
center of mass. How much should you drink in order to make the
center of mass as low as possible? [Based on a problem by Walter
van B. Roberts and Martin Gardner.]

Problem 13.
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Problem 17.

16 In running races at distances of 800 meters and longer, run-
ners do not have their own lanes, so in order to pass, they have to go
around their opponents. Suppose we adopt the simplified geomet-
rical model suggested by the figure, in which the two runners take
equal times to trace out the sides of an isoceles triangle, deviating
from parallelism by the angle 6. The runner going straight runs at
speed v, while the one who is passing must run at a greater speed.
Let the difference in speeds be Awv.

(a) Find Av in terms of v and 6. v
(b) Check the units of your equation using the method shown in
example 1 on p. 26.

(c) Check that your answer makes sense in the special case where
0 = 0, i.e., in the case where the runners are on an extremely long
straightaway.

(d) Suppose that § = 1.0 degrees, which is about the smallest value
that will allow a runner to pass in the distance available on the
straightaway of a track, and let v = 7.06 m/s, which is the women’s
world record pace at 800 meters. Plug numbers into your equation
from part a to determine Av, and comment on the result. v

17 In 1849, Fizeau carried out the first terrestrial measurement
of the speed of light; previous measurements by Roemer and Bradley
had involved astronomical observation. The figure shows a simplified
conceptual representation of Fizeau’s experiment. A ray of light
from a bright source was directed through the teeth at the edge of
a spinning cogwheel. After traveling a distance L, it was reflected
from a mirror and returned along the same path. The figure shows
the case in which the ray passes between two teeth, but when it
returns, the wheel has rotated by half the spacing of the teeth,
so that the ray is blocked. When this condition is achieved, the
observer looking through the teeth toward the far-off mirror sees
it go completely dark. Fizeau adjusted the speed of the wheel to
achieve this condition and recorded the rate of rotation to be f
rotations per second. Let the number of teeth on the wheel be n.
(a) Find the speed of light ¢ in terms of L, n, and f. v
(b) Check the units of your equation using the method shown in
example 1 on p. 26. (Here f’s units of rotations per second should
be taken as inverse seconds, s~!, since the number of rotations in a
second is a unitless count.)

(c¢) Imagine that you are Fizeau trying to design this experiment.
The speed of light is a huge number in ordinary units. Use your
equation from part a to determine whether increasing ¢ requires an
increase in L, or a decrease. Do the same for n and f. Based on
this, decide for each of these variables whether you want a value
that is as big as possible, or as small as possible.

(d) Fizeau used L = 8633 m, f = 12.6 s71, and n = 720. Plug in
to your equation from part a and extract the speed of light from his
data. v
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18 (a) Let R be the radius of the Earth and 7" the time (one
day) that it takes for one rotation. Find the speed at which a point
on the equator moves due to the rotation of the earth. v
(b) Check the units of your equation using the method shown in
example 1 on p. 26.

(c¢) Check that your answer to part a makes sense in the case where
the Earth stops rotating completely, so that T is infinitely long.
(d) Nairobi, Kenya, is very close to the equator. Plugging in num-
bers to your answer from part a, find Nairobi’s speed in meters per
second. See the table in the back of the book for the relevant data.
For comparison, the speed of sound is about 340 m/s. v

19 (a) Let 6 be the latitude of a point on the Earth’s surface.
Derive an algebra equation for the distance, L, traveled by that
point during one rotation of the Earth about its axis, i.e., over one
day, expressed in terms of § and R, the radius of the earth. You
may find it helpful to draw one or more diagrams in the style of

figure h on p. 33. v
(b) Generalize the result of problem 18a to points not necessarily
on the equator. v

(c¢) Check the units of your equation using the method shown in
example 1 on p. 26.

(d) Check that your equation in part b gives zero for the North
Pole, and also that it agrees with problem 18a in the special case of
a point on the equator.

(e) At what speed is Fullerton, California, at latitude 6 = 34°,
moving with the rotation of the Earth about its axis? v

20 (a) In a race, you run the first half of the distance at speed
u, and the second half at speed v. Find the over-all speed, i.e., the
total distance divided by the total time. Vv
(b) Check the units of your equation using the method shown in
example 1 on p. 26.

(c) Check that your answer makes sense in the case where u = v.
(d) Show that the dependence of your result on u and v makes sense.
That is, first check whether making u bigger makes the result bigger,
or smaller. Then compare this with what you expect physically.
[Problem by B. Shotwell.]
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Galileo’s contradiction of Aristotle had serious consequences. He was
interrogated by the Church authorities and convicted of teaching that the
earth went around the sun as a matter of fact and not, as he had promised
previously, as a mere mathematical hypothesis. He was placed under per-
manent house arrest, and forbidden to write about or teach his theories.
Immediately after being forced to recant his claim that the earth revolved
around the sun, the old man is said to have muttered defiantly “and yet
it does move.” The story is dramatic, but there are some omissions in
the commonly taught heroic version. There was a rumor that the Sim-
plicio character represented the Pope. Also, some of the ideas Galileo
advocated had controversial religious overtones. He believed in the exis-
tence of atoms, and atomism was thought by some people to contradict
the Church’s doctrine of transubstantiation, which said that in the Catholic
mass, the blessing of the bread and wine literally transformed them into
the flesh and blood of Christ. His support for a cosmology in which the
earth circled the sun was also disreputable because one of its support-
ers, Giordano Bruno, had also proposed a bizarre synthesis of Christianity
with the ancient Egyptian religion.

Chapter 3
Acceleration and Free Fall

3.1 The motion of falling objects

The motion of falling objects is the simplest and most common
example of motion with changing velocity. The early pioneers of



a/According to Galileo’s stu-
dent Viviani, Galileo dropped
a cannonball and a musketball
simultaneously from the leaning
tower of Pisa, and observed that
they hit the ground at nearly the
same time. This contradicted
Aristotle’s long-accepted idea
that heavier objects fell faster.

physics had a correct intuition that the way things drop was a mes-
sage directly from Nature herself about how the universe worked.
Other examples seem less likely to have deep significance. A walking
person who speeds up is making a conscious choice. If one stretch of
a river flows more rapidly than another, it may be only because the
channel is narrower there, which is just an accident of the local ge-
ography. But there is something impressively consistent, universal,
and inexorable about the way things fall.

Stand up now and simultaneously drop a coin and a bit of paper
side by side. The paper takes much longer to hit the ground. That’s
why Aristotle wrote that heavy objects fell more rapidly. Europeans
believed him for two thousand years.

Now repeat the experiment, but make it into a race between the
coin and your shoe. My own shoe is about 50 times heavier than
the nickel I had handy, but it looks to me like they hit the ground at
exactly the same moment. So much for Aristotle! Galileo, who had
a flair for the theatrical, did the experiment by dropping a bullet
and a heavy cannonball from a tall tower. Aristotle’s observations
had been incomplete, his interpretation a vast oversimplification.

It is inconceivable that Galileo was the first person to observe a
discrepancy with Aristotle’s predictions. Galileo was the one who
changed the course of history because he was able to assemble the
observations into a coherent pattern, and also because he carried
out systematic quantitative (numerical) measurements rather than
just describing things qualitatively.

Why is it that some objects, like the coin and the shoe, have sim-
ilar motion, but others, like a feather or a bit of paper, are different?
Galileo speculated that in addition to the force that always pulls ob-
jects down, there was an upward force exerted by the air. Anyone
can speculate, but Galileo went beyond speculation and came up
with two clever experiments to probe the issue. First, he experi-
mented with objects falling in water, which probed the same issues
but made the motion slow enough that he could take time measure-
ments with a primitive pendulum clock. With this technique, he
established the following facts:

e All heavy, streamlined objects (for example a steel rod dropped
point-down) reach the bottom of the tank in about the same
amount of time, only slightly longer than the time they would
take to fall the same distance in air.

e Objects that are lighter or less streamlined take a longer time
to reach the bottom.

This supported his hypothesis about two contrary forces. He
imagined an idealized situation in which the falling object did not

96 Chapter 3  Acceleration and Free Fall



have to push its way through any substance at all. Falling in air
would be more like this ideal case than falling in water, but even
a thin, sparse medium like air would be sufficient to cause obvious
effects on feathers and other light objects that were not streamlined.
Today, we have vacuum pumps that allow us to suck nearly all the
air out of a chamber, and if we drop a feather and a rock side by
side in a vacuum, the feather does not lag behind the rock at all.

How the speed of a falling object increases with time

Galileo’s second stroke of genius was to find a way to make quan-
titative measurements of how the speed of a falling object increased
as it went along. Again it was problematic to make sufficiently accu-
rate time measurements with primitive clocks, and again he found a
tricky way to slow things down while preserving the essential physi-
cal phenomena: he let a ball roll down a slope instead of dropping it
vertically. The steeper the incline, the more rapidly the ball would
gain speed. Without a modern video camera, Galileo had invented
a way to make a slow-motion version of falling.

b / Velocity increases more gradually on the gentle slope, but the
motion is otherwise the same as the motion of a falling object.

Although Galileo’s clocks were only good enough to do accurate
experiments at the smaller angles, he was confident after making
a systematic study at a variety of small angles that his basic con-
clusions were generally valid. Stated in modern language, what he
found was that the velocity-versus-time graph was a line. In the lan-
guage of algebra, we know that a line has an equation of the form
y = ax + b, but our variables are v and ¢, so it would be v = at + .
(The constant b can be interpreted simply as the initial velocity of
the object, i.e., its velocity at the time when we started our clock,
which we conventionally write as v,.)

self-check A

An object is rolling down an incline. After it has been rolling for a short
time, it is found to travel 13 cm during a certain one-second interval.
During the second after that, it goes 16 cm. How many cm will it travel
in the second after that? > Answer, p. 564

Section 3.1  The motion of falling objects

t

c/The v — t graph of a falling

object is a line.
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d/ Galileo’s experiments show
that all falling objects have the
same motion if air resistance is

negligible.
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e/ 1. Aristotle said that heavier
objects fell faster than lighter
ones. 2. If two rocks are tied
together, that makes an extra-
heavy rock, which should fall
faster. 3. But Aristotle’s theory
would also predict that the light
rock would hold back the heavy
rock, resulting in a slower fall.

A contradiction in Aristotle’s reasoning

Galileo’s inclined-plane experiment disproved the long-accepted
claim by Aristotle that a falling object had a definite “natural falling
speed” proportional to its weight. Galileo had found that the speed
just kept on increasing, and weight was irrelevant as long as air
friction was negligible. Not only did Galileo prove experimentally
that Aristotle had been wrong, but he also pointed out a logical
contradiction in Aristotle’s own reasoning. Simplicio, the stupid
character, mouths the accepted Aristotelian wisdom:

SIMPLICIO: There can be no doubt but that a particular body
... has a fixed velocity which is determined by nature. ..

SALVIATI:  If then we take two bodies whose natural speeds
are different, it is clear that, [according to Aristotle], on unit-
ing the two, the more rapid one will be partly held back by
the slower, and the slower will be somewhat hastened by the
swifter. Do you not agree with me in this opinion?

SIMPLICIO: You are unquestionably right.

SALVIATI: Butifthisis true, and if a large stone moves with a
speed of, say, eight [unspecified units] while a smaller moves
with a speed of four, then when they are united, the system
will move with a speed less than eight; but the two stones
when tied together make a stone larger than that which before
moved with a speed of eight. Hence the heavier body moves
with less speed than the lighter; an effect which is contrary to
your supposition. Thus you see how, from your assumption
that the heavier body moves more rapidly than the lighter one,
| infer that the heavier body moves more slowly.

What is gravity?

The physicist Richard Feynman liked to tell a story about how
when he was a little kid, he asked his father, “Why do things fall?”
As an adult, he praised his father for answering, “Nobody knows why
things fall. It’s a deep mystery, and the smartest people in the world
don’t know the basic reason for it.” Contrast that with the average
person’s off-the-cuff answer, “Oh, it’s because of gravity.” Feynman
liked his father’s answer, because his father realized that simply
giving a name to something didn’t mean that you understood it.
The radical thing about Galileo’s and Newton’s approach to science
was that they concentrated first on describing mathematically what
really did happen, rather than spending a lot of time on untestable
speculation such as Aristotle’s statement that “Things fall because
they are trying to reach their natural place in contact with the
earth.” That doesn’t mean that science can never answer the “why”
questions. Over the next month or two as you delve deeper into
physics, you will learn that there are more fundamental reasons why
all falling objects have v — t graphs with the same slope, regardless
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of their mass. Nevertheless, the methods of science always impose
limits on how deep our explanation can go.

Acceleration

Definition of acceleration for linear v — t graphs

Galileo’s experiment with dropping heavy and light objects from
a tower showed that all falling objects have the same motion, and his
inclined-plane experiments showed that the motion was described by
v = at+v,. The initial velocity v, depends on whether you drop the
object from rest or throw it down, but even if you throw it down,
you cannot change the slope, a, of the v — ¢ graph.

Since these experiments show that all falling objects have lin-
ear v — t graphs with the same slope, the slope of such a graph is
apparently an important and useful quantity. We use the word accel-
eration, and the symbol a, for the slope of such a graph. In symbols,
a = Av/At. The acceleration can be interpreted as the amount of
speed gained in every second, and it has units of velocity divided by
time, i.e., “meters per second per second,” or m/s/s. Continuing to
treat units as if they were algebra symbols, we simplify “m/s/s” to
read “m/s?.” Acceleration can be a useful quantity for describing
other types of motion besides falling, and the word and the symbol
“a” can be used in a more general context. We reserve the more
specialized symbol “g” for the acceleration of falling objects, which
on the surface of our planet equals 9.8 m/s?. Often when doing
approximate calculations or merely illustrative numerical examples

it is good enough to use g = 10 m/s?, which is off by only 2%.

Finding final speed, given time example 1
> A despondent physics student jumps off a bridge, and falls for
three seconds before hitting the water. How fast is he going when
he hits the water?

> Approximating g as 10 m/s?, he will gain 10 m/s of speed each
second. After one second, his velocity is 10 m/s, after two sec-
onds it is 20 m/s, and on impact, after falling for three seconds,
he is moving at 30 m/s.

Extracting acceleration from a graph example 2
> The x — t and v — t graphs show the motion of a car starting
from a stop sign. What is the car’s acceleration?

> Acceleration is defined as the slope of the v-t graph. The graph
rises by 3 m/s during a time interval of 3 s, so the acceleration is
(3m/s)/(3s)=1m/s?.

Incorrect solution #1: The final velocity is 3 m/s, and acceleration
is velocity divided by time, so the acceleration is (3 m/s)/(10 s) =
0.3 m/s?.

30

20
\

(m/s) 10

0

f/ Example 1.

x (m)

v (m/s)

t (s)

g / Example 2.
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X The solution is incorrect because you can’t find the slope of a
graph from one point. This person was just using the point at the
right end of the v-t graph to try to find the slope of the curve.

Incorrect solution #2: Velocity is distance divided by time so v =
(4.5 m)/(3 s) = 1.5 m/s. Acceleration is velocity divided by time,
so a=(1.5m/s)/(3 s) = 0.5 m/s?.

X The solution is incorrect because velocity is the slope of the
tangent line. In a case like this where the velocity is changing,
you can’t just pick two points on the x-t graph and use them to
find the velocity.

Converting g to different units example 3
> What is g in units of cm/s??

> The answer is going to be how many cm/s of speed a falling
object gains in one second. If it gains 9.8 m/s in one second, then
it gains 980 cm/s in one second, so g = 980 cm/s?. Alternatively,
we can use the method of fractions that equal one:

9.8m 100cm 980cm
X =
s2 1 s2

>What is g in units of miles/hour®?

>

9.8 m 1 mile 3600 s

s2 “1600m * (1 hour

This large number can be interpreted as the speed, in miles per

hour, that you would gain by falling for one hour. Note that we had

to square the conversion factor of 3600 s/hour in order to cancel
out the units of seconds squared in the denominator.

2
) = 7.9 x 10* mile/hour?

> What is g in units of miles/hour/s?

>

98m 1mile 3600s

s2 1600 m 1 hour

This is a figure that Americans will have an intuitive feel for. If

your car has a forward acceleration equal to the acceleration of a

falling object, then you will gain 22 miles per hour of speed every

second. However, using mixed time units of hours and seconds

like this is usually inconvenient for problem-solving. It would be
like using units of foot-inches for area instead of ft? or in?.

= 22 mile/hour/s

The acceleration of gravity is different in different locations.

Everyone knows that gravity is weaker on the moon, but actu-
ally it is not even the same everywhere on Earth, as shown by the
sampling of numerical data in the following table.
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location latitude elevation (m) g (m/s?)
north pole 90°N 0 9.8322
Reykjavik, Iceland 64°N 0 9.8225
Guayaquil, Ecuador 2°S 0 9.7806
Mt. Cotopaxi, Ecuador 1°S 5896 9.7624
Mt. Everest 28°N 8848 9.7643

The main variables that relate to the value of g on Earth are latitude
and elevation. Although you have not yet learned how g would
be calculated based on any deeper theory of gravity, it is not too
hard to guess why g depends on elevation. Gravity is an attraction
between things that have mass, and the attraction gets weaker with
increasing distance. As you ascend from the seaport of Guayaquil
to the nearby top of Mt. Cotopaxi, you are distancing yourself from
the mass of the planet. The dependence on latitude occurs because
we are measuring the acceleration of gravity relative to the earth’s
surface, but the earth’s rotation causes the earth’s surface to fall
out from under you. (We will discuss both gravity and rotation in
more detail later in the course.)

Much more spectacular differences in the strength of gravity can
be observed away from the Earth’s surface:

h/ This false-color map shows
variations in the strength of the
earth’s gravity. Purple areas have
the strongest gravity, yellow the
weakest. The overall trend toward
weaker gravity at the equator and
stronger gravity at the poles has
been artificially removed to al-
low the weaker local variations to
show up. The map covers only
the oceans because of the tech-
nique used to make it: satellites
look for bulges and depressions
in the surface of the ocean. A
very slight bulge will occur over an
undersea mountain, for instance,
because the mountain’s gravita-
tional attraction pulls water to-
ward it. The US government orig-
inally began collecting data like
these for military use, to correct
for the deviations in the paths of
missiles. The data have recently
been released for scientific and
commercial use (e.g., searching
for sites for off-shore oil wells).
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location g (m/s?)

asteroid Vesta (surface) 0.3

Earth’s moon (surface) 1.6

Mars (surface) 3.7

Earth (surface) 9.8

Jupiter (cloud-tops) 26

Sun (visible surface) 270

typical neutron star (surface) 102

black hole (center) infinite according to some theo-

ries, on the order of 10°% accord-
ing to others

A typical neutron star is not so different in size from a large asteroid,
but is orders of magnitude more massive, so the mass of a body
definitely correlates with the g it creates. On the other hand, a
neutron star has about the same mass as our Sun, so why is its ¢
billions of times greater? If you had the misfortune of being on the
surface of a neutron star, you’d be within a few thousand miles of all
its mass, whereas on the surface of the Sun, you’d still be millions
of miles from most of its mass.

Discussion questions

A What is wrong with the following definitions of g?
(1) “g is gravity.”

(2) “g is the speed of a falling object.”

(3) “g is how hard gravity pulls on things.”

B When advertisers specify how much acceleration a car is capable
of, they do not give an acceleration as defined in physics. Instead, they
usually specify how many seconds are required for the car to go from rest
to 60 miles/hour. Suppose we use the notation “a” for the acceleration as
defined in physics, and “ac,r o¢” for the quantity used in advertisements for
cars. In the US’s non-metric system of units, what would be the units of
a and acyrag? How would the use and interpretation of large and small,
positive and negative values be different for a as opposed 10 acar ag?

C Two people stand on the edge of a cliff. As they lean over the edge,
one person throws a rock down, while the other throws one straight up
with an exactly opposite initial velocity. Compare the speeds of the rocks
on impact at the bottom of the cliff.

3.3 Positive and negative acceleration

Gravity always pulls down, but that does not mean it always speeds
things up. If you throw a ball straight up, gravity will first slow
it down to v = 0 and then begin increasing its speed. When I
took physics in high school, T got the impression that positive signs
of acceleration indicated speeding up, while negative accelerations
represented slowing down, i.e., deceleration. Such a definition would
be inconvenient, however, because we would then have to say that
the same downward tug of gravity could produce either a positive
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or a negative acceleration. As we will see in the following example,
such a definition also would not be the same as the slope of the v —¢
graph.

Let’s study the example of the rising and falling ball. In the ex-
ample of the person falling from a bridge, I assumed positive velocity
values without calling attention to it, which meant I was assuming
a coordinate system whose x axis pointed down. In this example,
where the ball is reversing direction, it is not possible to avoid neg-
ative velocities by a tricky choice of axis, so let’s make the more
natural choice of an axis pointing up. The ball’s velocity will ini-
tially be a positive number, because it is heading up, in the same
direction as the = axis, but on the way back down, it will be a neg-
ative number. As shown in the figure, the v — ¢ graph does not do
anything special at the top of the ball’s flight, where v equals 0. Its
slope is always negative. In the left half of the graph, there is a
negative slope because the positive velocity is getting closer to zero.
On the right side, the negative slope is due to a negative velocity
that is getting farther from zero, so we say that the ball is speeding
up, but its velocity is decreasing]!

To summarize, what makes the most sense is to stick with the
original definition of acceleration as the slope of the v — t graph,
Av/At. By this definition, it just isn’t necessarily true that things
speeding up have positive acceleration while things slowing down
have negative acceleration. The word “deceleration” is not used
much by physicists, and the word “acceleration” is used unblush-
ingly to refer to slowing down as well as speeding up: “There was a
red light, and we accelerated to a stop.”

Numerical calculation of a negative acceleration example 4
> In figure i, what happens if you calculate the acceleration be-
tween t=1.0and 1.5 s?

> Reading from the graph, it looks like the velocity is about —1 m/s
att =1.0s, and around —6 m/s at t = 1.5 s. The acceleration,
figured between these two points, is

a2 Av_ (-6m/s)— (=1 m/s)
At (1.5s)—(1.05s)

=—-10m/s%.

Even though the ball is speeding up, it has a negative accelera-
tion.

Another way of convincing you that this way of handling the plus
and minus signs makes sense is to think of a device that measures
acceleration. After all, physics is supposed to use operational defini-
tions, ones that relate to the results you get with actual measuring
devices. Consider an air freshener hanging from the rear-view mirror
of your car. When you speed up, the air freshener swings backward.
Suppose we define this as a positive reading. When you slow down,
the air freshener swings forward, so we’ll call this a negative reading

a= a=

a=

-10mfs 2 —10m/s 2 —10m/s 2
° '
[ i
2 —
E
x l -—
5 —\
I
E
>
5 -

t(s)

i/ The ball's acceleration stays
the same — on the way up, at the
top, and on the way back down.

It's always negative.
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on our accelerometer. But what if you put the car in reverse and
start speeding up backwards? Even though you're speeding up, the
accelerometer responds in the same way as it did when you were
going forward and slowing down. There are four possible cases:

motion of car accelerometer slope of direction
swings v-t graph of  force
acting on
car
forward, speeding up backward + forward
forward, slowing down  forward — backward
backward, speeding up  forward — backward
backward, slowing down backward + forward

Note the consistency of the three right-hand columns — nature is
trying to tell us that this is the right system of classification, not
the left-hand column.

Because the positive and negative signs of acceleration depend
on the choice of a coordinate system, the acceleration of an object
under the influence of gravity can be either positive or negative.
Rather than having to write things like “g = 9.8 m/s? or —9.8 m/s?”
every time we want to discuss ¢g’s numerical value, we simply define
g as the absolute value of the acceleration of objects moving under
the influence of gravity. We consistently let g = 9.8 m/s?, but we
may have either ¢ = g or a = —g, depending on our choice of a
coordinate system.

Acceleration with a change in direction of motion example 5
> A person kicks a ball, which rolls up a sloping street, comes to
a halt, and rolls back down again. The ball has constant accel-
eration. The ball is initially moving at a velocity of 4.0 m/s, and
after 10.0 s it has returned to where it started. At the end, it has
sped back up to the same speed it had initially, but in the opposite
direction. What was its acceleration?

> By giving a positive number for the initial velocity, the statement
of the question implies a coordinate axis that points up the slope
of the hill. The “same” speed in the opposite direction should
therefore be represented by a negative number, -4.0 m/s. The
acceleration is

a=Av/At
=(vf— v5)/10.0 s
=[(—4.0 m/s) — (4.0 m/s)]/10.0s
=—-0.80 m/s?.
The acceleration was no different during the upward part of the
roll than on the downward part of the roll.

Incorrect solution: Acceleration is Av/At, and at the end it's not
moving any faster or slower than when it started, so Av=0 and
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a=0.

X The velocity does change, from a positive number to a negative
number.

1 2
ol o8

3 4
@) B@
— X — X

Discussion questions

A A child repeatedly jumps up and down on a trampoline. Discuss the
sign and magnitude of his acceleration, including both the time when he is
in the air and the time when his feet are in contact with the trampoline.

B  The figure shows a refugee from a Picasso painting blowing on a
rolling water bottle. In some cases the person’s blowing is speeding the
bottle up, but in others it is slowing it down. The arrow inside the bottle
shows which direction it is going, and a coordinate system is shown at the
bottom of each figure. In each case, figure out the plus or minus signs of
the velocity and acceleration. It may be helpful to draw a v — t graph in
each case.

C Sally is on an amusement park ride which begins with her chair being
hoisted straight up a tower at a constant speed of 60 miles/hour. Despite
stern warnings from her father that he’ll take her home the next time she
misbehaves, she decides that as a scientific experiment she really needs
to release her corndog over the side as she’s on the way up. She does
not throw it. She simply sticks it out of the car, lets it go, and watches it
against the background of the sky, with no trees or buildings as reference
points. What does the corndog’s motion look like as observed by Sally?
Does its speed ever appear to her to be zero? What acceleration does
she observe it to have: is it ever positive? negative? zero? What would
her enraged father answer if asked for a similar description of its motion
as it appears to him, standing on the ground?

D Can an object maintain a constant acceleration, but meanwhile
reverse the direction of its velocity?

E Can an object have a velocity that is positive and increasing at the
same time that its acceleration is decreasing?

Discussion question B.

Discussion question C.

Section 3.3  Positive and negative acceleration
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Varying acceleration

So far we have only been discussing examples of motion for which
the v — ¢ graph is linear. If we wish to generalize our definition to
v-t graphs that are more complex curves, the best way to proceed
is similar to how we defined velocity for curved x — t graphs:

definition of acceleration
The acceleration of an object at any instant is the slope of
the tangent line passing through its v-versus-t graph at the

600 4 relevant point.
A skydiver example 6
_. 400 > The graphs in figure k show the results of a fairly realistic com-
% puter simulation of the motion of a skydiver, including the effects
200 of air friction. The x axis has been chosen pointing down, so x
is increasing as she falls. Find (a) the skydiver’s acceleration at
t=8.0s,andalso (b)att=7.0s.
0
50 > The solution is shown in figure |. I've added tangent lines at the
20 two points in question.
7 10 (a) To find the slope of the tangent line, | pick two points on the
E | line (not necessarily on the actual curve): (3.0 s,28m/s) and
> 20 (5.0 8,42 m/s). The slope of the tangent line is (42 m/s—28 m/s) /(5.0 s—
- 2
10 | 3.08)=7.0m/s".
o (b) Two points on this tangent line are (7.0 s,47 m/s) and (9.0 s,52 m/s).
0 2 4 6 8 10 12 14 The slope of the tangent line is (52 m/s—47 m/s)/(9.0s—7.0s) =
t(s) 2.5m/s?.
k / Example 6. Physically, what’'s happening is that at t = 3.0 s, the skydiver is

not yet going very fast, so air friction is not yet very strong. She
therefore has an acceleration almost as great as g. Att=7.0 s,
she is moving almost twice as fast (about 100 miles per hour), and
air friction is extremely strong, resulting in a significant departure
from the idealized case of no air friction.

In example 6, the z —t graph was not even used in the solution of
the problem, since the definition of acceleration refers to the slope
of the v — t graph. It is possible, however, to interpret an = — ¢
graph to find out something about the acceleration. An object with
zero acceleration, i.e., constant velocity, has an x —t graph that is a
straight line. A straight line has no curvature. A change in velocity
requires a change in the slope of the x — ¢t graph, which means that
it is a curve rather than a line. Thus acceleration relates to the
curvature of the x — ¢ graph. Figure m shows some examples.
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(7.0's, 47 m/s)

(9.0 s, 52 m/s)

v (m/s)

20 A

10+
(3.0 s, 28 m/s)

(5.0s, 42 m/s)

I / The solution to example 6.

In example 6, the = — ¢t graph was more strongly curved at the
beginning, and became nearly straight at the end. If the x —¢ graph
is nearly straight, then its slope, the velocity, is nearly constant, and
the acceleration is therefore small. We can thus interpret the accel-

eration as representing the curvature of t

he x — t graph, as shown

in figure m. If the “cup” of the curve points up, the acceleration is
positive, and if it points down, the acceleration is negative.

X X x| positive X positive
g a

a<0
X large, o
negative a>0
a

t t t t

t t

m / Acceleration relates to the curvature of the x — t graph.
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Since the relationship between a and v is analogous to the rela-
tionship between v and x, we can also make graphs of acceleration
as a function of time, as shown in figure n.

600-
10-
= T 400
X 5 =
200-
0 0
50-
g @ 401
£ 3 £ 30
> 24 > 20~
1 104
0 0
% &
w 1 ©
E E 97
© ©
0 1T 1T 1 OIIIIIII
012 3 45 02468101214
t(s) t(s)
1 2

n/Examples of graphs of x, v, and a versus t. 1. An object in
free fall, with no friction. 2. A continuation of example 6, the skydiver.

position

slope of
tangent line

velocity | anuwe

~rete of change of postton > Solved problem: Drawing a v — t graph. page 119, problem 14
slope of
tangentﬁne l > Solved problem: Drawing v — t and a — t graphs. page 120, problem
20
acceleration Figure o summarizes the relationships among the three types of
=rate of change of velacity graphS.

o/How position, velocity, and Discussion questions

acceleration are related. A Describe in words how the changes in the a — t graph in figure n/2
relate to the behavior of the v — t graph.
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B Explain how each set of graphs contains inconsistencies, and fix

them. @ @ @
X X / X /_
L

-~
"/V/Vﬂ
/

C In each case, pick a coordinate system and draw x — f,v — f, and
a— t graphs. Picking a coordinate system means picking where you want
x = 0 to be, and also picking a direction for the positive x axis.

(1) An ocean liner is cruising in a straight line at constant speed.

(2) You drop a ball. Draw two different sets of graphs (a total of 6), with
one set’s positive x axis pointing in the opposite direction compared to the
other’s.

(3) You're driving down the street looking for a house you’ve never been
to before. You realize you've passed the address, so you slow down, put
the car in reverse, back up, and stop in front of the house.

The area under the velocity-time graph

A natural question to ask about falling objects is how fast they fall,
but Galileo showed that the question has no answer. The physical
law that he discovered connects a cause (the attraction of the planet
Earth’s mass) to an effect, but the effect is predicted in terms of an
acceleration rather than a velocity. In fact, no physical law predicts
a definite velocity as a result of a specific phenomenon, because
velocity cannot be measured in absolute terms, and only changes in
velocity relate directly to physical phenomena.

The unfortunate thing about this situation is that the definitions
of velocity and acceleration are stated in terms of the tangent-line
technique, which lets you go from x to v to a, but not the other
way around. Without a technique to go backwards from a to v to x,
we cannot say anything quantitative, for instance, about the x — ¢
graph of a falling object. Such a technique does exist, and I used it
to make the x — ¢ graphs in all the examples above.

Section 3.5 The area under the velocity-time graph
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p/The area under the v — t
graph gives Ax.
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First let’s concentrate on how to get x information out of a v—1¢
graph. In example p/1, an object moves at a speed of 20 m/s for
a period of 4.0 s. The distance covered is Az = vAt = (20 m/s) x
(4.0 s) = 80 m. Notice that the quantities being multiplied are the
width and the height of the shaded rectangle — or, strictly speaking,
the time represented by its width and the velocity represented by
its height. The distance of Ax = 80 m thus corresponds to the area
of the shaded part of the graph.

The next step in sophistication is an example like p/2, where the
object moves at a constant speed of 10 m/s for two seconds, then
for two seconds at a different constant speed of 20 m/s. The shaded
region can be split into a small rectangle on the left, with an area
representing Az = 20 m, and a taller one on the right, corresponding
to another 40 m of motion. The total distance is thus 60 m, which
corresponds to the total area under the graph.

An example like p/3 is now just a trivial generalization; there
is simply a large number of skinny rectangular areas to add up.
But notice that graph p/3 is quite a good approximation to the
smooth curve p/4. Even though we have no formula for the area of
a funny shape like p/4, we can approximate its area by dividing it up
into smaller areas like rectangles, whose area is easier to calculate.
If someone hands you a graph like p/4 and asks you to find the
area under it, the simplest approach is just to count up the little
rectangles on the underlying graph paper, making rough estimates
of fractional rectangles as you go along.

That’s what I've done in figure q. Each rectangle on the graph
paper is 1.0 s wide and 2 m/s tall, so it represents 2 m. Adding up
all the numbers gives Az = 41 m. If you needed better accuracy,
you could use graph paper with smaller rectangles.

It’s important to realize that this technique gives you Az, not
x. The v — t graph has no information about where the object was
when it started.

The following are important points to keep in mind when apply-
ing this technique:

e If the range of v values on your graph does not extend down
to zero, then you will get the wrong answer unless you com-
pensate by adding in the area that is not shown.

e As in the example, one rectangle on the graph paper does not
necessarily correspond to one meter of distance.

e Negative velocity values represent motion in the opposite di-
rection, so as suggested by figure r, area under the ¢ axis should
be subtracted, i.e., counted as “negative area.”
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g/ An example using estimation
0.5m of fractions of a rectangle.
20 1
1m 15m
» ¢
Im 15m
) t
i.S m 15 m'
2m 1.5 m'
2m 15m
10 '
R 2m [15m
w
£ {
> 05m 2m 15 m'
A 2m 1.5 m'
1m 2m 2m 15m
2m 2m 2m 15m
o |
0 2 4 6 8
t(s)
e Since the result is a Az value, it only tells you x4 fier — Toe fore,
which may be less than the actual distance traveled. For in- i +
stance, the object could come back to its original position at
the end, which would correspond to Azxz=0, even though it had \/ v
actually moved a nonzero distance.

r/ Area underneath the axis

Finally, note that one can find Av from an a — ¢t graph using is considered negative

an entirely analogous method. Each rectangle on the a — t graph
represents a certain amount of velocity change.

Discussion question

A Roughly what would a pendulum’s v — t graph look like? What would
happen when you applied the area-under-the-curve technique to find the
pendulum’s Ax for a time period covering many swings?

Algebraic results for constant acceleration

Although the area-under-the-curve technique can be applied to any
graph, no matter how complicated, it may be laborious to carry out,
and if fractions of rectangles must be estimated the result will only
be approximate. In the special case of motion with constant accel-
eration, it is possible to find a convenient shortcut which produces
exact results. When the acceleration is constant, the v — t graph
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s/ The shaded area tells us
how far an object moves while
accelerating at a constant rate.
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is a straight line, as shown in the figure. The area under the curve
can be divided into a triangle plus a rectangle, both of whose areas
can be calculated exactly: A = bh for a rectangle and A = bh/2
for a triangle. The height of the rectangle is the initial velocity, v,
and the height of the triangle is the change in velocity from begin-
ning to end, Av. The object’s Az is therefore given by the equation
Az = v, At + AvAt/2. This can be simplified a little by using the
definition of acceleration, a = Av/At, to eliminate Av, giving

1
Ax = v, At + gaAtQ. [motion with

constant acceleration]

Since this is a second-order polynomial in At, the graph of Ax versus
At is a parabola, and the same is true of a graph of z versus t —
the two graphs differ only by shifting along the two axes. Although
I have derived the equation using a figure that shows a positive v,
positive a, and so on, it still turns out to be true regardless of what
plus and minus signs are involved.

Another useful equation can be derived if one wants to relate
the change in velocity to the distance traveled. This is useful, for
instance, for finding the distance needed by a car to come to a stop.
For simplicity, we start by deriving the equation for the special case
of v, = 0, in which the final velocity vy is a synonym for Av. Since
velocity and distance are the variables of interest, not time, we take
the equation Az = 2aAt? and use At = Av/a to eliminate At. This
gives Az = (Av)?/2a, which can be rewritten as

v]% =2aAx . [motion with constant acceleration, v, = 0]

For the more general case where v, # 0, we skip the tedious algebra
leading to the more general equation,

v? = v? 4 2aAz . [motion with constant acceleration]
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To help get this all organized in your head, first let’s categorize
the variables as follows:

Variables that change during motion with constant acceleration:
T v, t

Variable that doesn’t change:
a

If you know one of the changing variables and want to find another,
there is always an equation that relates those two:

viZ=v 2 +2a Ax

Ax=v At+Za A?

The symmetry among the three variables is imperfect only be-
cause the equation relating z and ¢ includes the initial velocity.

There are two main difficulties encountered by students in ap-
plying these equations:

e The equations apply only to motion with constant accelera-
tion. You can’t apply them if the acceleration is changing.

e Students are often unsure of which equation to use, or may
cause themselves unnecessary work by taking the longer path
around the triangle in the chart above. Organize your thoughts
by listing the variables you are given, the ones you want to
find, and the ones you aren’t given and don’t care about.

Saving an old lady example 7
> You are trying to pull an old lady out of the way of an oncoming
truck. You are able to give her an acceleration of 20 m/s?. Start-
ing from rest, how much time is required in order to move her 2
m?

> First we organize our thoughts:
Variables given: Ax, a, v,
Variables desired: At

Irrelevant variables: vy

Consulting the triangular chart above, the equation we need is
clearly Ax = voAt+3aAt?, since it has the four variables of interest
and omits the irrelevant one. Eliminating the v, term and solving

for At gives At = \/2Ax/a=0.4s.

Section 3.6  Algebraic results for constant acceleration

113



114

> Solved problem: A stupid celebration page 119, problem 15
> Solved problem: Dropping a rock on Mars page 119, problem 16
> Solved problem: The Dodge Viper page 120, problem 18

> Solved problem: Half-way sped up page 120, problem 22
Discussion questions

A In chapter 1, | gave examples of correct and incorrect reasoning
about proportionality, using questions about the scaling of area and vol-
ume. Try to translate the incorrect modes of reasoning shown there into
mistakes about the following question: If the acceleration of gravity on
Mars is 1/3 that on Earth, how many times longer does it take for a rock
to drop the same distance on Mars?

B Check that the units make sense in the three equations derived in
this section.

3.7 * A test of the principle of inertia

Historically, the first quantitative and well documented experimen-
tal test of the principle of inertia (p. 80) was performed by Galileo
around 1590 and published decades later when he managed to find
a publisher in the Netherlands that was beyond the reach of the
Roman Inquisition.! It was ingenious but somewhat indirect, and
required a layer of interpretation and extrapolation on top of the
actual observations. As described on p. 97, he established that ob-
jects rolling on inclined planes moved according to mathematical
laws that we would today describe as in section 3.6. He knew that
his rolling balls were subject to friction, as well as random errors
due to the limited precision of the water clock that he used, but he
took the approximate agreement of his equations with experiment
to indicate that they gave the results that would be exact in the
absence of friction. He also showed, purely empirically, that when
a ball went up or down a ramp inclined at an angle 6, its accelera-
tion was proportional to sin#. Again, this required extrapolation to
idealized conditions of zero friction. He then reasoned that if a ball
was rolled on a horizontal ramp, with 6 = 0, its acceleration would
be zero. This is exactly what is required by the principle of inertia:
in the absence of friction, motion continues indefinitely.

!Galileo, Discourses and Mathematical Demonstrations Relating to Two New
Sciences, 1638. The experiments are described in the Third Day, and their sup-
port for the principle of inertia is discussed in the Scholium following Theorems
I-XIV. Another experiment involving a ship is described in Galileo’s 1624 reply
to a letter from Fr. Ingoli, but although Galileo vigorously asserts that he really
did carry it out, no detailed description or quantitative results are given.
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3.8 [ Applications of calculus

In section 2.7, I discussed how the slope-of-the-tangent-line idea
related to the calculus concept of a derivative, and the branch of
calculus known as differential calculus. The other main branch of
calculus, integral calculus, has to do with the area-under-the-curve
concept discussed in section 3.5. Again there is a concept, a nota-
tion, and a bag of tricks for doing things symbolically rather than
graphically. In calculus, the area under the v — ¢t graph between
t = t1 and ¢t = ty is notated like this:

to
area under curve = Ax = / v dt.

t1

The expression on the right is called an integral, and the s-shaped
symbol, the integral sign, is read as “integral of ...”

Integral calculus and differential calculus are closely related. For
instance, if you take the derivative of the function x(t), you get
the function v(t), and if you integrate the function v(t), you get
x(t) back again. In other words, integration and differentiation are
inverse operations. This is known as the fundamental theorem of
calculus.

On an unrelated topic, there is a special notation for taking the
derivative of a function twice. The acceleration, for instance, is the
second (i.e., double) derivative of the position, because differentiat-
ing x once gives v, and then differentiating v gives a. This is written

as
R

o de?’

The seemingly inconsistent placement of the twos on the top and

bottom confuses all beginning calculus students. The motivation

for this funny notation is that acceleration has units of m/s?, and

the notation correctly suggests that: the top looks like it has units of

meters, the bottom seconds?. The notation is not meant, however,

to suggest that ¢ is really squared.

a
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Summary

Selected vocabulary
gravity . .. ... A general term for the phenomenon of attrac-
tion between things having mass. The attrac-
tion between our planet and a human-sized ob-
ject causes the object to fall.
acceleration . .. The rate of change of velocity; the slope of the
tangent line on a v — ¢ graph.

Notation
Vo oo vee e initial velocity
Vf oo final velocity
G oo acceleration
[/ the acceleration of objects in free fall; the
strength of the local gravitational field
Summary

Galileo showed that when air resistance is negligible all falling
bodies have the same motion regardless of mass. Moreover, their
v —t graphs are straight lines. We therefore define a quantity called
acceleration as the slope, Av/At, of an object’s v—t graph. In cases
other than free fall, the v —t graph may be curved, in which case the
definition is generalized as the slope of a tangent line on the v — ¢
graph. The acceleration of objects in free fall varies slightly across
the surface of the earth, and greatly on other planets.

Positive and negative signs of acceleration are defined according
to whether the v—t graph slopes up or down. This definition has the
advantage that a force with a given sign, representing its direction,
always produces an acceleration with the same sign.

The area under the v — t graph gives Az, and analogously the
area under the a — t graph gives Awv.

For motion with constant acceleration, the following three equa-
tions hold:
1 2
Az = v, At + iaAt

v]% =02 + 2aAz
Av

“T At

They are not valid if the acceleration is changing.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 The graph represents the velocity of a bee along a straight
line. At ¢t = 0, the bee is at the hive. (a) When is the bee farthest
from the hive? (b) How far is the bee at its farthest point from the
hive? (c) At t =13 s, how far is the bee from the hive? v

8

7
6

. \
velocity 4 \

(m/s)
2 N

\\~
0 1 2 3 4 5 6 7 8 9 10 11 12 13
time (s)

2 A rock is dropped into a pond. Draw plots of its position
versus time, velocity versus time, and acceleration versus time. In-
clude its whole motion, starting from the moment it is dropped, and
continuing while it falls through the air, passes through the water,
and ends up at rest on the bottom of the pond. Do your work on a
photocopy or a printout of page 125.

3 In an 18th-century naval battle, a cannon ball is shot horizon-
tally, passes through the side of an enemy ship’s hull, flies across the
galley, and lodges in a bulkhead. Draw plots of its horizontal posi-
tion, velocity, and acceleration as functions of time, starting while it
is inside the cannon and has not yet been fired, and ending when it
comes to rest. There is not any significant amount of friction from
the air. Although the ball may rise and fall, you are only concerned
with its horizontal motion, as seen from above. Do your work on a
photocopy or a printout of page 125.

4 Draw graphs of position, velocity, and acceleration as functions
of time for a person bunjee jumping. (In bunjee jumping, a person
has a stretchy elastic cord tied to his/her ankles, and jumps off of a
high platform. At the bottom of the fall, the cord brings the person
up short. Presumably the person bounces up a little.) Do your work
on a photocopy or a printout of page 125.

Problem 3.

Problems
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Problem 5.

5 A ball rolls down the ramp shown in the figure, consisting of a
curved knee, a straight slope, and a curved bottom. For each part of
the ramp, tell whether the ball’s velocity is increasing, decreasing,
or constant, and also whether the ball’s acceleration is increasing,
decreasing, or constant. Explain your answers. Assume there is no
air friction or rolling resistance. Hint: Try problem 20 first. [Based
on a problem by Hewitt.]

6 A toy car is released on one side of a piece of track that is bent
into an upright U shape. The car goes back and forth. When the
car reaches the limit of its motion on one side, its velocity is zero.
Is its acceleration also zero? Explain using a v — ¢ graph. [Based on
a problem by Serway and Faughn.]

7 What is the acceleration of a car that moves at a steady
velocity of 100 km/h for 100 seconds? Explain your answer. [Based
on a problem by Hewitt.]

8 A physics homework question asks, “If you start from rest and
accelerate at 1.54 m/s? for 3.29 s, how far do you travel by the end
of that time?” A student answers as follows:

1.54 x 3.29 =5.07 m

His Aunt Wanda is good with numbers, but has never taken physics.
She doesn’t know the formula for the distance traveled under con-
stant acceleration over a given amount of time, but she tells her
nephew his answer cannot be right. How does she know?

9 You are looking into a deep well. It is dark, and you cannot
see the bottom. You want to find out how deep it is, so you drop
a rock in, and you hear a splash 3.0 seconds later. How deep is the
well? v

10 You take a trip in your spaceship to another star. Setting off,
you increase your speed at a constant acceleration. Once you get
half-way there, you start decelerating, at the same rate, so that by
the time you get there, you have slowed down to zero speed. You see
the tourist attractions, and then head home by the same method.
(a) Find a formula for the time, T, required for the round trip, in
terms of d, the distance from our sun to the star, and a, the magni-
tude of the acceleration. Note that the acceleration is not constant
over the whole trip, but the trip can be broken up into constant-
acceleration parts.

(b) The nearest star to the Earth (other than our own sun) is Prox-
ima Centauri, at a distance of d = 4 x 10! m. Suppose you use an
acceleration of a = 10 m/s?, just enough to compensate for the lack
of true gravity and make you feel comfortable. How long does the
round trip take, in years?

(c) Using the same numbers for d and a, find your maximum speed.
Compare this to the speed of light, which is 3.0 x 10® m/s. (Later
in this course, you will learn that there are some new things going
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on in physics when one gets close to the speed of light, and that it
is impossible to exceed the speed of light. For now, though, just use
the simpler ideas you've learned so far.) vVoox

11 You climb half-way up a tree, and drop a rock. Then you
climb to the top, and drop another rock. How many times greater
is the velocity of the second rock on impact? Explain. (The answer
is not two times greater.)

12 Alice drops a rock off a cliff. Bubba shoots a gun straight
down from the edge of the same cliff. Compare the accelerations of
the rock and the bullet while they are in the air on the way down.
[Based on a problem by Serway and Faughn.|

13 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by an equation of the form

y:b—c(t—i-ke_t/k),

where e is the base of natural logarithms, and b, ¢, and k are con-
stants. Because of air resistance, her velocity does not increase at a
steady rate as it would for an object falling in vacuum.

(a) What units would b, ¢, and k have to have for the equation to
make sense?

(b) Find the person’s velocity, v, as a function of time. [You will
need to use the chain rule, and the fact that dle”)/dz = e”.] v
(c) Use your answer from part (b) to get an interpretation of the
constant c. [Hint: e™® approaches zero for large values of x.]

(d) Find the person’s acceleration, a, as a function of time. v
(e) Use your answer from part (d) to show that if she waits long
enough to open her chute, her acceleration will become very small.

J

14 The top part of the figure shows the position-versus-time
graph for an object moving in one dimension. On the bottom part
of the figure, sketch the corresponding v-versus-t graph.

> Solution, p. 549

15 On New Year’s Eve, a stupid person fires a pistol straight up.
The bullet leaves the gun at a speed of 100 m/s. How long does it
take before the bullet hits the ground? > Solution, p. 549

16 If the acceleration of gravity on Mars is 1/3 that on Earth,
how many times longer does it take for a rock to drop the same
distance on Mars? Ignore air resistance. > Solution, p. 549

17 A honeybee’s position as a function of time is given by
x = 10t — 3, where ¢ is in seconds and z in meters. What is its
acceleration at ¢t = 3.0 s? > Solution, p. 549 [

Problems
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Problem 19.

10

Problem 20.

10

(m/s 2)

Problem 23.
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10

18 In July 1999, Popular Mechanics carried out tests to find
which car sold by a major auto maker could cover a quarter mile
(402 meters) in the shortest time, starting from rest. Because the
distance is so short, this type of test is designed mainly to favor the
car with the greatest acceleration, not the greatest maximum speed
(which is irrelevant to the average person). The winner was the
Dodge Viper, with a time of 12.08 s. The car’s top (and presumably
final) speed was 118.51 miles per hour (52.98 m/s). (a) If a car,
starting from rest and moving with constant acceleration, covers
a quarter mile in this time interval, what is its acceleration? (b)
What would be the final speed of a car that covered a quarter mile
with the constant acceleration you found in part a? (c) Based on
the discrepancy between your answer in part b and the actual final
speed of the Viper, what do you conclude about how its acceleration
changed over time? > Solution, p. 549

19 The graph represents the motion of a ball that rolls up a hill
and then back down. When does the ball return to the location it
had at t = 07 > Solution, p. 550

20 (a) The ball is released at the top of the ramp shown in the
figure. Friction is negligible. Use physical reasoning to draw v — ¢
and a — t graphs. Assume that the ball doesn’t bounce at the point
where the ramp changes slope. (b) Do the same for the case where
the ball is rolled up the slope from the right side, but doesn’t quite
have enough speed to make it over the top. > Solution, p. 550

21 You throw a rubber ball up, and it falls and bounces sev-
eral times. Draw graphs of position, velocity, and acceleration as
functions of time. > Solution, p. 550

22 Starting from rest, a ball rolls down a ramp, traveling a
distance L and picking up a final speed v. How much of the distance
did the ball have to cover before achieving a speed of v/27 [Based
on a problem by Arnold Arons.] > Solution, p. 551

23 The graph shows the acceleration of a chipmunk in a TV
cartoon. It consists of two circular arcs and two line segments.
At t = 0.00 s, the chipmunk’s velocity is —3.10 m/s. What is its
velocity at t = 10.00 s? v

24 Find the error in the following calculation. A student wants
to find the distance traveled by a car that accelerates from rest for
5.0 s with an acceleration of 2.0 m/s?. First he solves a = Av/At for
Av = 10 m/s. Then he multiplies to find (10 m/s)(5.0 s) = 50 m.
Do not just recalculate the result by a different method; if that was
all you did, you’d have no way of knowing which calculation was
correct, yours or his.
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25  Acceleration could be defined either as Av/At or as the slope
of the tangent line on the v — ¢ graph. Is either one superior as a
definition, or are they equivalent? If you say one is better, give an
example of a situation where it makes a difference which one you
use.

26 If an object starts accelerating from rest, we have v? =

2aAx for its speed after it has traveled a distance Az. Explain in
words why it makes sense that the equation has velocity squared, but
distance only to the first power. Don’t recapitulate the derivation
in the book, or give a justification based on units. The point is
to explain what this feature of the equation tells us about the way
speed increases as more distance is covered.

27 The figure shows a practical, simple experiment for determin-
ing g to high precision. Two steel balls are suspended from electro-
magnets, and are released simultaneously when the electric current
is shut off. They fall through unequal heights Az and Axz,. A
computer records the sounds through a microphone as first one ball
and then the other strikes the floor. From this recording, we can
accurately determine the quantity 7" defined as T' = Aty — Atq, i.e.,
the time lag between the first and second impacts. Note that since
the balls do not make any sound when they are released, we have
no way of measuring the individual times Aty and At;.

(a) Find an equation for g in terms of the measured quantities 7',
Az and Axs. v
(b) Check the units of your equation.

(c) Check that your equation gives the correct result in the case
where Ax; is very close to zero. However, is this case realistic?

(d) What happens when Az; = Azy? Discuss this both mathemat-
ically and physically.

28 The speed required for a low-earth orbit is 7.9 x 103 m/s.
When a rocket is launched into orbit, it goes up a little at first to get
above almost all of the atmosphere, but then tips over horizontally
to build up to orbital speed. Suppose the horizontal acceleration is
limited to 3¢ to keep from damaging the cargo (or hurting the crew,
for a crewed flight). (a) What is the minimum distance the rocket
must travel downrange before it reaches orbital speed? How much
does it matter whether you take into account the initial eastward
velocity due to the rotation of the earth? (b) Rather than a rocket
ship, it might be advantageous to use a railgun design, in which the
craft would be accelerated to orbital speeds along a railroad track.
This has the advantage that it isn’t necessary to lift a large mass of
fuel, since the energy source is external. Based on your answer to
part a, comment on the feasibility of this design for crewed launches
from the earth’s surface.

D:

Problem 27.
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Problem 29. This spectacular series of photos from a 2011 paper by Bur-
rows and Sutton (“Biomechanics of jumping in the flea,” J. Exp. Biology
214:836) shows the flea jumping at about a 45-degree angle, but for the
sake of this estimate just consider the case of a flea jumping vertically.

29 Some fleas can jump as high as 30 cm. The flea only has a

short time to build up speed — the time during which its center of

mass is accelerating upward but its feet are still in contact with the

ground. Make an order-of-magnitude estimate of the acceleration

the flea needs to have while straightening its legs, and state your
1)

answer in units of g, i.e., how many “g’s it pulls.” (For comparison,
fighter pilots black out or die if they exceed about 5 or 10 g¢’s.)

30 Consider the following passage from Alice in Wonderland, in
which Alice has been falling for a long time down a rabbit hole:

Down, down, down. Would the fall never come to an end? I
wonder how many miles I’ve fallen by this time?” she said aloud.
“I must be getting somewhere near the center of the earth. Let me
see: that would be four thousand miles down, I think” (for, you see,
Alice had learned several things of this sort in her lessons in the
schoolroom, and though this was not a very good opportunity for
showing off her knowledge, as there was no one to listen to her, still
it was good practice to say it over)...

Alice doesn’t know much physics, but let’s try to calculate the
amount of time it would take to fall four thousand miles, starting
from rest with an acceleration of 10 m/s?. This is really only a lower
limit; if there really was a hole that deep, the fall would actually
take a longer time than the one you calculate, both because there
is air friction and because gravity gets weaker as you get deeper (at
the center of the earth, g is zero, because the earth is pulling you
equally in every direction at once). v

31 The photo shows Apollo 16 astronaut John Young jumping
on the moon and saluting at the top of his jump. The video footage
of the jump shows him staying aloft for 1.45 seconds. Gravity on
the moon is 1/6 as strong as on the earth. Compute the height of
the jump. v

Problem 31.
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32 Most people don’t know that Spinosaurus aegyptiacus, not
Tyrannosaurus rex, was the biggest theropod dinosaur. We can’t
put a dinosaur on a track and time it in the 100 meter dash, so
we can only infer from physical models how fast it could have run.
When an animal walks at a normal pace, typically its legs swing
more or less like pendulums of the same length £. As a further
simplification of this model, let’s imagine that the leg simply moves
at a fixed acceleration as it falls to the ground. That is, we model
the time for a quarter of a stride cycle as being the same as the time
required for free fall from a height ¢. S. aegyptiacus had legs about
four times longer than those of a human. (a) Compare the time
required for a human’s stride cycle to that for S. aegyptiacus. Vv
(b) Compare their running speeds. v

33 Engineering professor Qingming Li used sensors and video
cameras to study punches delivered in the lab by British former
welterweight boxing champion Ricky “the Hitman” Hatton. For
comparison, Li also let a TV sports reporter put on the gloves and
throw punches. The time it took for Hatton’s best punch to arrive,
i.e., the time his opponent would have had to react, was about 0.47
of that for the reporter. Let’s assume that the fist starts from rest
and moves with constant acceleration all the way up until impact, at
some fixed distance (arm’s length). Compare Hatton’s acceleration
to the reporter’s. v

34  Aircraft carriers originated in World War I, and the first land-
ing on a carrier was performed by E.H. Dunning in a Sopwith Pup
biplane, landing on HMS Furious. (Dunning was killed the second
time he attempted the feat.) In such a landing, the pilot slows down
to just above the plane’s stall speed, which is the minimum speed at
which the plane can fly without stalling. The plane then lands and
is caught by cables and decelerated as it travels the length of the
flight deck. Comparing a modern US F-14 fighter jet landing on an
Enterprise-class carrier to Dunning’s original exploit, the stall speed
is greater by a factor of 4.8, and to accomodate this, the length of
the flight deck is greater by a factor of 1.9. Which deceleration is
greater, and by what factor? v

35 In college-level women’s softball in the U.S., typically a
pitcher is expected to be at least 1.75 m tall, but Virginia Tech
pitcher Jasmin Harrell is 1.62 m. Although a pitcher actually throws
by stepping forward and swinging her arm in a circle, let’s make a
simplified physical model to estimate how much of a disadvantage
Harrell has had to overcome due to her height. We’ll pretend that
the pitcher gives the ball a constant acceleration in a straight line,
and that the length of this line is proportional to the pitcher’s height.
Compare the acceleration Harrell would have to supply with the ac-
celeration that would suffice for a pitcher of the nominal minimum
height, if both were to throw a pitch at the same speed. v

X

Problem 32.
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Problem 37.

36 When the police engage in a high-speed chase on city streets,
it can be extremely dangerous both to the police and to other mo-
torists and pedestrians. Suppose that the police car must travel at
a speed that is limited by the need to be able to stop before hitting
a baby carriage, and that the distance at which the driver first sees
the baby carriage is fixed. Tests show that in a panic stop from high
speed, a police car based on a Chevy Impala has a deceleration 9%
greater than that of a Dodge Intrepid. Compare the maximum safe
speeds for the two cars. v

37 For each of the two graphs, find the change in position Ax
from beginning to end, using the technique described in section 3.5.

v

38 You shove a box with initial velocity 2.0 m/s, and it stops
after sliding 1.3 m. What is the magnitude of the deceleration,
assuming it is constant? V' [problem by B. Shotwell]

39 You're an astronaut, and you've arrived on planet X, which
is airless. You drop a hammer from a height of 1.00 m and find that
it takes 350 ms to fall to the ground. What is the acceleration due
to gravity on planet X? V' [problem by B. Shotwell]

40 A naughty child drops a golf ball from the roof of your
apartment building, and you see it drop past your window. It takes
the ball time T to traverse the window’s height H. Find the initial
speed of the ball when it first came into view.

V' [problem by B. Shotwell]
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Isaac Newton

Chapter 4
Force and Motion

If | have seen farther than others, it is because | have stood
on the shoulders of giants.

Newton, referring to Galileo

Even as great and skeptical a genius as Galileo was unable to
make much progress on the causes of motion. It was not until a gen-
eration later that Isaac Newton (1642-1727) was able to attack the
problem successfully. In many ways, Newton’s personality was the
opposite of Galileo’s. Where Galileo agressively publicized his ideas,
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a/ Aristotle said motion had
to be caused by a force. To
explain why an arrow kept flying
after the bowstring was no longer
pushing on it, he said the air
rushed around behind the arrow
and pushed it forward. We know
this is wrong, because an arrow
shot in a vacuum chamber does
not instantly drop to the floor
as it leaves the bow. Galileo
and Newton realized that a force
would only be needed to change
the arrow’s motion, not to make
its motion continue.

Newton had to be coaxed by his friends into publishing a book on
his physical discoveries. Where Galileo’s writing had been popular
and dramatic, Newton originated the stilted, impersonal style that
most people think is standard for scientific writing. (Scientific jour-
nals today encourage a less ponderous style, and papers are often
written in the first person.) Galileo’s talent for arousing animos-
ity among the rich and powerful was matched by Newton’s skill at
making himself a popular visitor at court. Galileo narrowly escaped
being burned at the stake, while Newton had the good fortune of be-
ing on the winning side of the revolution that replaced King James
II with William and Mary of Orange, leading to a lucrative post
running the English royal mint.

Newton discovered the relationship between force and motion,
and revolutionized our view of the universe by showing that the
same physical laws applied to all matter, whether living or nonliv-
ing, on or off of our planet’s surface. His book on force and motion,
the Mathematical Principles of Natural Philosophy, was un-
contradicted by experiment for 200 years, but his other main work,
Optics, was on the wrong track, asserting that light was composed
of particles rather than waves. Newton was also an avid alchemist,
a fact that modern scientists would like to forget.

4.1 Force

We need only explain changes in motion, not motion itself.

So far you’ve studied the measurement of motion in some detail,
but not the reasons why a certain object would move in a certain
way. This chapter deals with the “why” questions. Aristotle’s ideas
about the causes of motion were completely wrong, just like all his
other ideas about physical science, but it will be instructive to start
with them, because they amount to a road map of modern students’
incorrect preconceptions.

Aristotle thought he needed to explain both why motion occurs
and why motion might change. Newton inherited from Galileo the
important counter-Aristotelian idea that motion needs no explana-
tion, that it is only changes in motion that require a physical cause.
Aristotle’s needlessly complex system gave three reasons for motion:

Natural motion, such as falling, came from the tendency of
objects to go to their “natural” place, on the ground, and
come to rest.

Voluntary motion was the type of motion exhibited by ani-
mals, which moved because they chose to.

Forced motion occurred when an object was acted on by some
other object that made it move.

128 Chapter 4  Force and Motion



Motion changes due to an interaction between two objects.

In the Aristotelian theory, natural motion and voluntary mo-
tion are one-sided phenomena: the object causes its own motion.
Forced motion is supposed to be a two-sided phenomenon, because
one object imposes its “commands” on another. Where Aristotle
conceived of some of the phenomena of motion as one-sided and
others as two-sided, Newton realized that a change in motion was
always a two-sided relationship of a force acting between two phys-
ical objects.

The one-sided “natural motion” description of falling makes a
crucial omission. The acceleration of a falling object is not caused
by its own “natural” tendencies but by an attractive force between
it and the planet Earth. Moon rocks brought back to our planet do
not “want” to fly back up to the moon because the moon is their
“natural” place. They fall to the floor when you drop them, just
like our homegrown rocks. As we’ll discuss in more detail later in
this course, gravitational forces are simply an attraction that occurs
between any two physical objects. Minute gravitational forces can
even be measured between human-scale objects in the laboratory.

The idea of natural motion also explains incorrectly why things
come to rest. A basketball rolling across a beach slows to a stop
because it is interacting with the sand via a frictional force, not
because of its own desire to be at rest. If it was on a frictionless
surface, it would never slow down. Many of Aristotle’s mistakes
stemmed from his failure to recognize friction as a force.

The concept of voluntary motion is equally flawed. You may
have been a little uneasy about it from the start, because it assumes
a clear distinction between living and nonliving things. Today, how-
ever, we are used to having the human body likened to a complex
machine. In the modern world-view, the border between the living
and the inanimate is a fuzzy no-man’s land inhabited by viruses,
prions, and silicon chips. Furthermore, Aristotle’s statement that
you can take a step forward “because you choose to” inappropriately
mixes two levels of explanation. At the physical level of explana-
tion, the reason your body steps forward is because of a frictional
force acting between your foot and the floor. If the floor was covered
with a puddle of oil, no amount of “choosing to” would enable you
to take a graceful stride forward.

Forces can all be measured on the same numerical scale.

In the Aristotelian-scholastic tradition, the description of mo-
tion as natural, voluntary, or forced was only the broadest level of
classification, like splitting animals into birds, reptiles, mammals,
and amphibians. There might be thousands of types of motion,
each of which would follow its own rules. Newton’s realization that
all changes in motion were caused by two-sided interactions made

Section 4.1

b/“Our eyes receive blue
light reflected from this painting
because Monet wanted to repre-
sent water with the color blue.”
This is a valid statement at one
level of explanation, but physics
works at the physical level of
explanation, in which blue light
gets to your eyes because it is
reflected by blue pigments in the
paint.
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it seem that the phenomena might have more in common than had
been apparent. In the Newtonian description, there is only one cause
for a change in motion, which we call force. Forces may be of differ-
ent types, but they all produce changes in motion according to the
same rules. Any acceleration that can be produced by a magnetic
force can equally well be produced by an appropriately controlled
stream of water. We can speak of two forces as being equal if they
produce the same change in motion when applied in the same situ-
ation, which means that they pushed or pulled equally hard in the
same direction.

The idea of a numerical scale of force and the newton unit were
introduced in chapter 0. To recapitulate briefly, a force is when a
pair of objects push or pull on each other, and one newton is the
force required to accelerate a 1-kg object from rest to a speed of 1
m/s in 1 second.

More than one force on an object

As if we hadn’t kicked poor Aristotle around sufficiently, his
theory has another important flaw, which is important to discuss
because it corresponds to an extremely common student misconcep-
tion. Aristotle conceived of forced motion as a relationship in which
one object was the boss and the other “followed orders.” It there-
fore would only make sense for an object to experience one force at
a time, because an object couldn’t follow orders from two sources at
once. In the Newtonian theory, forces are numbers, not orders, and
if more than one force acts on an object at once, the result is found
by adding up all the forces. It is unfortunate that the use of the
English word “force” has become standard, because to many people
it suggests that you are “forcing” an object to do something. The
force of the earth’s gravity cannot “force” a boat to sink, because
there are other forces acting on the boat. Adding them up gives a
total of zero, so the boat accelerates neither up nor down.

Objects can exert forces on each other at a distance.

Aristotle declared that forces could only act between objects that
were touching, probably because he wished to avoid the type of oc-
cult speculation that attributed physical phenomena to the influence
of a distant and invisible pantheon of gods. He was wrong, however,
as you can observe when a magnet leaps onto your refrigerator or
when the planet earth exerts gravitational forces on objects that are
in the air. Some types of forces, such as friction, only operate be-
tween objects in contact, and are called contact forces. Magnetism,
on the other hand, is an example of a noncontact force. Although
the magnetic force gets stronger when the magnet is closer to your
refrigerator, touching is not required.
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Weight

In physics, an object’s weight, Fy, is defined as the earth’s
gravitational force on it. The SI unit of weight is therefore the
Newton. People commonly refer to the kilogram as a unit of weight,
but the kilogram is a unit of mass, not weight. Note that an object’s
weight is not a fixed property of that object. Objects weigh more
in some places than in others, depending on the local strength of
gravity. It is their mass that always stays the same. A baseball
pitcher who can throw a 90-mile-per-hour fastball on earth would
not be able to throw any faster on the moon, because the ball’s
inertia would still be the same.

Positive and negative signs of force

We'll start by considering only cases of one-dimensional center-
of-mass motion in which all the forces are parallel to the direction of
motion, i.e., either directly forward or backward. In one dimension,
plus and minus signs can be used to indicate directions of forces, as
shown in figure c. We can then refer generically to addition of forces,
rather than having to speak sometimes of addition and sometimes of
subtraction. We add the forces shown in the figure and get 11 N. In
general, we should choose a one-dimensional coordinate system with
its = axis parallel the direction of motion. Forces that point along
the positive z axis are positive, and forces in the opposite direction
are negative. Forces that are not directly along the x axis cannot be
immediately incorporated into this scheme, but that’s OK, because
we're avoiding those cases for now.

Discussion questions

A In chapter 0, | defined 1 N as the force that would accelerate a
1-kg mass from restto 1 m/s in 1 s. Anticipating the following section, you
might guess that 2 N could be defined as the force that would accelerate
the same mass to twice the speed, or twice the mass to the same speed.
Is there an easier way to define 2 N based on the definition of 1 N?

4.2 Newton'’s first law

We are now prepared to make a more powerful restatement of the
principle of inertia.!

Newton’s first law
If the total force acting on an object is zero, its center of mass
continues in the same state of motion.

In other words, an object initially at rest is predicted to remain
at rest if the total force acting on it is zero, and an object in motion

'Page 81 lists places in this book where we describe experimental tests of the
principle of inertia and Newton’s first law.

+8 N
-3N

+4 N

+2N

c/Forces are applied to a
saxophone. In this example,
positive signs have been used
consistently for forces to the
right, and negative signs for
forces to the left. (The forces
are being applied to different
places on the saxophone, but the
numerical value of a force carries
no information about that.)
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remains in motion with the same velocity in the same direction. The
converse of Newton’s first law is also true: if we observe an object
moving with constant velocity along a straight line, then the total
force on it must be zero.

In a future physics course or in another textbook, you may en-
counter the term “net force,” which is simply a synonym for total
force.

What happens if the total force on an object is not zero? It
accelerates. Numerical prediction of the resulting acceleration is the
topic of Newton’s second law, which we’ll discuss in the following
section.

This is the first of Newton’s three laws of motion. It is not
important to memorize which of Newton’s three laws are numbers
one, two, and three. If a future physics teacher asks you something
like, “Which of Newton’s laws are you thinking of?,” a perfectly
acceptable answer is “The one about constant velocity when there’s
zero total force.” The concepts are more important than any spe-
cific formulation of them. Newton wrote in Latin, and I am not
aware of any modern textbook that uses a verbatim translation of
his statement of the laws of motion. Clear writing was not in vogue
in Newton’s day, and he formulated his three laws in terms of a con-
cept now called momentum, only later relating it to the concept of
force. Nearly all modern texts, including this one, start with force
and do momentum later.

An elevator example 1
> An elevator has a weight of 5000 N. Compare the forces that the
cable must exert to raise it at constant velocity, lower it at constant
velocity, and just keep it hanging.

> In all three cases the cable must pull up with a force of exactly
5000 N. Most people think you'd need at least a little more than
5000 N to make it go up, and a little less than 5000 N to let it down,
but that’s incorrect. Extra force from the cable is only necessary
for speeding the car up when it starts going up or slowing it down
when it finishes going down. Decreased force is needed to speed
the car up when it gets going down and to slow it down when it
finishes going up. But when the elevator is cruising at constant
velocity, Newton’s first law says that you just need to cancel the
force of the earth’s gravity.

To many students, the statement in the example that the cable’s
upward force “cancels” the earth’s downward gravitational force im-
plies that there has been a contest, and the cable’s force has won,
vanquishing the earth’s gravitational force and making it disappear.
That is incorrect. Both forces continue to exist, but because they
add up numerically to zero, the elevator has no center-of-mass ac-
celeration. We know that both forces continue to exist because they
both have side-effects other than their effects on the car’s center-of-
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mass motion. The force acting between the cable and the car con-
tinues to produce tension in the cable and keep the cable taut. The
earth’s gravitational force continues to keep the passengers (whom
we are considering as part of the elevator-object) stuck to the floor
and to produce internal stresses in the walls of the car, which must
hold up the floor.

Terminal velocity for falling objects example 2

> An object like a feather that is not dense or streamlined does not
fall with constant acceleration, because air resistance is honneg-
ligible. In fact, its acceleration tapers off to nearly zero within a
fraction of a second, and the feather finishes dropping at constant
speed (known as its terminal velocity). Why does this happen?

> Newton’s first law tells us that the total force on the feather must
have been reduced to nearly zero after a short time. There are
two forces acting on the feather: a downward gravitational force
from the planet earth, and an upward frictional force from the air.
As the feather speeds up, the air friction becomes stronger and
stronger, and eventually it cancels out the earth’s gravitational
force, so the feather just continues with constant velocity without
speeding up any more.

The situation for a skydiver is exactly analogous. It’s just that the
skydiver experiences perhaps a million times more gravitational
force than the feather, and it is not until she is falling very fast
that the force of air friction becomes as strong as the gravita-
tional force. It takes her several seconds to reach terminal veloc-
ity, which is on the order of a hundred miles per hour.

More general combinations of forces

It is too constraining to restrict our attention to cases where
all the forces lie along the line of the center of mass’s motion. For
one thing, we can’t analyze any case of horizontal motion, since
any object on earth will be subject to a vertical gravitational force!
For instance, when you are driving your car down a straight road,
there are both horizontal forces and vertical forces. However, the
vertical forces have no effect on the center of mass motion, because
the road’s upward force simply counteracts the earth’s downward
gravitational force and keeps the car from sinking into the ground.

Later in the book we’ll deal with the most general case of many
forces acting on an object at any angles, using the mathematical
technique of vector addition, but the following slight generalization
of Newton’s first law allows us to analyze a great many cases of
interest:

Suppose that an object has two sets of forces acting on it, one
set along the line of the object’s initial motion and another set per-
pendicular to the first set. If both sets of forces cancel, then the
object’s center of mass continues in the same state of motion.

Section 4.2 Newton'’s first law
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A passenger riding the subway example 3
> Describe the forces acting on a person standing in a subway
train that is cruising at constant velocity.

> No force is necessary to keep the person moving relative to
the ground. He will not be swept to the back of the train if the
floor is slippery. There are two vertical forces on him, the earth’s
downward gravitational force and the floor’s upward force, which
cancel. There are no horizontal forces on him at all, so of course
the total horizontal force is zero.

Forces on a sailboat example 4
> If a sailboat is cruising at constant velocity with the wind coming
from directly behind it, what must be true about the forces acting
on it?

> The forces acting on the boat must be canceling each other
out. The boat is not sinking or leaping into the air, so evidently
the vertical forces are canceling out. The vertical forces are the
downward gravitational force exerted by the planet earth and an
upward force from the water.

The air is making a forward force on the sail, and if the boat is
not accelerating horizontally then the water’s backward frictional
force must be canceling it out.

Contrary to Aristotle, more force is not needed in order to maintain
a higher speed. Zero total force is always needed to maintain
constant velocity. Consider the following made-up numbers:

boat moving at boat moving at
a low, constant a high, constant

velocity velocity
forward force of 10,000 N 20,000 N
the wind on the
sail ...
backward force of —10,000 N —20,000 N
the water on the
hull ...
total force on the ON ON
boat ...

The faster boat still has zero total force on it. The forward force
on it is greater, and the backward force smaller (more negative),
but that’s irrelevant because Newton’s first law has to do with the
total force, not the individual forces.

This example is quite analogous to the one about terminal velocity
of falling objects, since there is a frictional force that increases
with speed. After casting off from the dock and raising the sail,
the boat will accelerate briefly, and then reach its terminal velocity,
at which the water’s frictional force has become as great as the
wind’s force on the sail.
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A car crash example 5
> If you drive your car into a brick wall, what is the mysterious
force that slams your face into the steering wheel?

> Your surgeon has taken physics, so she is not going to believe
your claim that a mysterious force is to blame. She knows that
your face was just following Newton'’s first law. Immediately after
your car hit the wall, the only forces acting on your head were
the same canceling-out forces that had existed previously: the
earth’s downward gravitational force and the upward force from
your neck. There were no forward or backward forces on your
head, but the car did experience a backward force from the wall,
so the car slowed down and your face caught up.

Discussion questions

A Newton said that objects continue moving if no forces are acting
on them, but his predecessor Aristotle said that a force was necessary to
keep an object moving. Why does Aristotle’s theory seem more plausible,
even though we now believe it to be wrong? What insight was Aristotle
missing about the reason why things seem to slow down naturally? Give
an example.

B Inthe figure what would have to be true about the saxophone’s initial
motion if the forces shown were to result in continued one-dimensional
motion of its center of mass?

C  This figure requires an ever further generalization of the preceding
discussion. After studying the forces, what does your physical intuition tell
you will happen? Can you state in words how to generalize the conditions
for one-dimensional motion to include situations like this one?

Newton’s second law

What about cases where the total force on an object is not zero,
so that Newton’s first law doesn’t apply? The object will have an
acceleration. The way we’ve defined positive and negative signs
of force and acceleration guarantees that positive forces produce
positive accelerations, and likewise for negative values. How much
acceleration will it have? It will clearly depend on both the object’s
mass and on the amount of force.

Experiments with any particular object show that its acceler-
ation is directly proportional to the total force applied to it. This
may seem wrong, since we know of many cases where small amounts
of force fail to move an object at all, and larger forces get it going.
This apparent failure of proportionality actually results from for-
getting that there is a frictional force in addition to the force we
apply to move the object. The object’s acceleration is exactly pro-
portional to the total force on it, not to any individual force on it.
In the absence of friction, even a very tiny force can slowly change
the velocity of a very massive object.

Discussion question B.

4N

Discussion question C.

Section 4.3 Newton’s second law
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Experiments (e.g., the one described in example 11 on p. 139)
also show that the acceleration is inversely proportional to the ob-
ject’s mass, and combining these two proportionalities gives the fol-
lowing way of predicting the acceleration of any object:

Newton’s second law

a = Ftotal/ma
where

m is an object’s mass, a measure of its resistance
to changes in its motion
Fiotar 1s the sum of the forces acting on it, and

a is the acceleration of the object’s center of mass.

We are presently restricted to the case where the forces of interest
are parallel to the direction of motion.

We have already encountered the SI unit of force, which is the
newton (N). It is designed so that the units in Newton’s second law
all work out if we use SI units: m/s? for acceleration and kg (not
grams!) for mass.

Rocket science example 6
> The Falcon 9 launch vehicle, built and operated by the private
company SpaceX, has mass m = 5.1 x 10° kg. At launch, it
has two forces acting on it: an upward thrust F; = 5.9 x 106 N
and a downward gravitational force of Fy = 5.0 x 108 N. Find its
acceleration.

> Let’s choose our coordinate system such that positive is up.
Then the downward force of gravity is considered negative. Using
Newton’s second law,

F
a= total
m
_ Ft— Fg
T m
B (5.9 x 108 N) — (5.0 x 108 N)
h 5.1 x 105 kg
=1.6m/s?,

where as noted above, units of N/kg (newtons per kilogram) are
the same as m/s?.
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An accelerating bus example 7
> A VW bus with a mass of 2000 kg accelerates from 0 to 25 m/s
(freeway speed) in 34 s. Assuming the acceleration is constant,
what is the total force on the bus?

> We solve Newton’s second law for F;:5 = ma, and substitute
Av /At for a, giving

Ftotal = mAV/At
= (2000 kg)(25 m/s — 0 m/s)/(34 s)
= 1.5kN.

A generalization

As with the first law, the second law can be easily generalized
to include a much larger class of interesting situations:

Suppose an object is being acted on by two sets of forces, one
set lying parallel to the object’s initial direction of motion and
another set acting along a perpendicular line. If the forces
perpendicular to the initial direction of motion cancel out,

then the object accelerates along its original line of motion E i
. . 3 slowing down >
according to a = Fj/m, where F| is the sum of the forces F,
parallel to the line. sl 1110 S A AR oy
F

A coin sliding across a table example 8 f/A coin slides across a ta-
Suppose a coin is sliding to the right across a table, f, and let’'s ble. Even for motion in one
choose a positive x axis that points to the right. The coin’s velocity dimension, some of the forces
is positive, and we expect based on experience that it will slow may not lie along the line of the

down, i.e., its acceleration should be negative. motion.

Although the coin’s motion is purely horizontal, it feels both ver-
tical and horizontal forces. The Earth exerts a downward gravi-
tational force F, on it, and the table makes an upward force F3
that prevents the coin from sinking into the wood. In fact, without
these vertical forces the horizontal frictional force wouldn’t exist:
surfaces don'’t exert friction against one another unless they are
being pressed together.

Although F, and F3 contribute to the physics, they do so only
indirectly. The only thing that directly relates to the acceleration
along the horizontal direction is the horizontal force: a = Fy/m.
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g/A simple double-pan bal-
ance works by comparing the
weight forces exerted by the
earth on the contents of the two
pans. Since the two pans are
at almost the same location on
the earth’s surface, the value
of g is essentially the same for
each one, and equality of weight
therefore also implies equality of
mass.

h / Example 9.

The relationship between mass and weight

Mass is different from weight, but they’re related. An apple’s
mass tells us how hard it is to change its motion. Its weight measures
the strength of the gravitational attraction between the apple and
the planet earth. The apple’s weight is less on the moon, but its
mass is the same. Astronauts assembling the International Space
Station in zero gravity couldn’t just pitch massive modules back
and forth with their bare hands; the modules were weightless, but
not massless.

We have already seen the experimental evidence that when weight
(the force of the earth’s gravity) is the only force acting on an ob-
ject, its acceleration equals the constant g, and g depends on where
you are on the surface of the earth, but not on the mass of the ob-
ject. Applying Newton’s second law then allows us to calculate the
magnitude of the gravitational force on any object in terms of its
mass:

|Fw | = myg.
(The equation only gives the magnitude, i.e. the absolute value, of

Fy, because we're defining g as a positive number, so it equals the
absolute value of a falling object’s acceleration.)

> Solved problem: Decelerating a car page 148, problem 7

'Weight and mass example 9
> Figure h shows masses of one and two kilograms hung from a
spring scale, which measures force in units of newtons. Explain
the readings.

> Let’s start with the single kilogram. It's not accelerating, so
evidently the total force on it is zero: the spring scale’s upward
force on it is canceling out the earth’s downward gravitational
force. The spring scale tells us how much force it is being obliged
to supply, but since the two forces are equal in strength, the
spring scale’s reading can also be interpreted as measuring the
strength of the gravitational force, i.e., the weight of the one-
kilogram mass. The weight of a one-kilogram mass should be

Fw =mg
= (1.0kg)(9.8 m/s?) =9.8 N,

and that’s indeed the reading on the spring scale.
Similarly for the two-kilogram mass, we have

Fw = mg
= (2.0 kg)(9.8 m/s?) = 19.6 N.
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Calculating terminal velocity example 10
> Experiments show that the force of air friction on a falling object
such as a skydiver or a feather can be approximated fairly well
with the equation |F,;,| = cpAv?, where c is a constant, p is the
density of the air, A is the cross-sectional area of the object as
seen from below, and v is the object’s velocity. Predict the object’s
terminal velocity, i.e., the final velocity it reaches after a long time.

> As the object accelerates, its greater v causes the upward force
of the air to increase until finally the gravitational force and the
force of air friction cancel out, after which the object continues
at constant velocity. We choose a coordinate system in which
positive is up, so that the gravitational force is negative and the
force of air friction is positive. We want to find the velocity at which

Fa,'r + FW = 0, i.e.,
cpAv? — mg = 0.

v /Mg
terminal = Ccp A
self-check A

It is important to get into the habit of interpreting equations. This may be
difficult at first, but eventually you will get used to this kind of reasoning.

(1) Interpret the equation Vierminai = v/ Mg/ cpA in the case of p=0.

(2) How would the terminal velocity of a 4-cm steel ball compare to that
of a 1-cm ball?

Solving for v gives

(3) In addition to teasing out the mathematical meaning of an equation,
we also have to be able to place it in its physical context. How generally
important is this equation? > Answer, p. 564

A test of the second law example 11
Because the force mg of gravity on an object of mass m is pro-
portional to m, the acceleration predicted by Newton’s second
law is a = F/m = mg/m = g, in which the mass cancels out.
It is therefore an ironclad prediction of Newton’s laws of motion
that free fall is universal: in the absence of other forces such as
air resistance, heavier objects do not fall with a greater accelera-
tion than lighter ones. The experiment by Galileo at the Leaning
Tower of Pisa (p. 96) is therefore consistent with Newton’s second
law. Since Galileo’s time, experimental methods have had several
centuries in which to improve, and the second law has been sub-
jected to similar tests with exponentially improving precision. For
such an experiment in 1993,2 physicists at the University of Pisa

2Carusotto et al., “Limits on the violation of g-universality with a Galileo-
type experiment,” Phys Lett A183 (1993) 355. Freely available online at re-
searchgate.net.

o

%
falling

vacuum

i/A simplified diagram of the
experiment described in example

11.
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t(s)
1.84
2.86
3.80
4.67
5.93
6.38
7.23
8.10
8.96
9.83

(1) built a metal disk out of copper and tungsten semicircles joined
together at their flat edges. They evacuated the air from a verti-
cal shaft and dropped the disk down it 142 times, using lasers
to measure any tiny rotation that would result if the accelerations
of the copper and tungsten were very slightly different. The re-
sults were statistically consistent with zero rotation, and put an
upper limit of 1 x 102 on the fractional difference in accelera-
tion |Geopper — Gtungsten|/9- A more recent experiment using test
masses in orbit® has refined this bound to 10~4.

Discussion questions

A Show that the Newton can be reexpressed in terms of the three
basic mks units as the combination kg-m/s2.

B  What is wrong with the following statements?

(1) “g is the force of gravity.”

(2) “Mass is a measure of how much space something takes up.”
C  Criticize the following incorrect statement:

“If an object is at rest and the total force on it is zero, it stays at rest.
There can also be cases where an object is moving and keeps on moving
without having any total force on it, but that can only happen when there’s
no friction, like in outer space.”

D Table j gives laser timing data for Ben Johnson’s 100 m dash at the
1987 World Championship in Rome. (His world record was later revoked
because he tested positive for steroids.) How does the total force on him
change over the duration of the race?

3Touboul et al., “The MICROSCOPE mission: first results of a space test of
the Equivalence Principle,” arxiv.org/abs/1712.01176
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4.4 What force is not

Violin teachers have to endure their beginning students’ screeching.
A frown appears on the woodwind teacher’s face as she watches her
student take a breath with an expansion of his ribcage but none
in his belly. What makes physics teachers cringe is their students’
verbal statements about forces. Below I have listed six dicta about
what force is not.

1. Force is not a property of one object.

A great many of students’ incorrect descriptions of forces could
be cured by keeping in mind that a force is an interaction of two
objects, not a property of one object.

Incorrect statement: “That magnet has a lot of force.”

X If the magnet is one millimeter away from a steel ball bearing, they
may exert a very strong attraction on each other, but if they were a
meter apart, the force would be virtually undetectable. The magnet’s
strength can be rated using certain electrical units (ampere — meters?),
but not in units of force.

2. Force is not a measure of an object’s motion.

If force is not a property of a single object, then it cannot be
used as a measure of the object’s motion.

Incorrect statement: “The freight train rumbled down the tracks with
awesome force.”

X Force is not a measure of motion. If the freight train collides with a
stalled cement truck, then some awesome forces will occur, but if it hits
a fly the force will be small.

3. Force is not energy.

There are two main approaches to understanding the motion of
objects, one based on force and one on a different concept, called en-
ergy. The SI unit of energy is the Joule, but you are probably more
familiar with the calorie, used for measuring food’s energy, and the
kilowatt-hour, the unit the electric company uses for billing you.
Physics students’ previous familiarity with calories and kilowatt-
hours is matched by their universal unfamiliarity with measuring
forces in units of Newtons, but the precise operational definitions of
the energy concepts are more complex than those of the force con-
cepts, and textbooks, including this one, almost universally place the
force description of physics before the energy description. During
the long period after the introduction of force and before the careful
definition of energy, students are therefore vulnerable to situations
in which, without realizing it, they are imputing the properties of
energy to phenomena of force.

Incorrect statement: “How can my chair be making an upward force on
my rear end? It has no power!”

X Power is a concept related to energy, e.g., a 100-watt lightbulb uses

Section 4.4 What force is not
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up 100 joules per second of energy. When you sit in a chair, no energy
is used up, so forces can exist between you and the chair without any
need for a source of power.

4. Force is not stored or used up.

Because energy can be stored and used up, people think force
also can be stored or used up.

Incorrect statement: “If you don't fill up your tank with gas, you’ll run
out of force.”

X Energy is what you’ll run out of, not force.

5. Forces need not be exerted by living things or machines.

Transforming energy from one form into another usually requires
some kind of living or mechanical mechanism. The concept is not
applicable to forces, which are an interaction between objects, not
a thing to be transferred or transformed.

Incorrect statement: “How can a wooden bench be making an upward
force on my rear end? It doesn’t have any springs or anything inside it.”

X No springs or other internal mechanisms are required. If the bench
didn’t make any force on you, you would obey Newton’s second law and
fall through it. Evidently it does make a force on you!

6. A force is the direct cause of a change in motion.

I can click a remote control to make my garage door change from
being at rest to being in motion. My finger’s force on the button,
however, was not the force that acted on the door. When we speak
of a force on an object in physics, we are talking about a force that
acts directly. Similarly, when you pull a reluctant dog along by its
leash, the leash and the dog are making forces on each other, not
your hand and the dog. The dog is not even touching your hand.

self-check B
Which of the following things can be correctly described in terms of
force?

(1) A nuclear submarine is charging ahead at full steam.

(2) A nuclear submarine’s propellers spin in the water.

(3) A nuclear submarine needs to refuel its reactor periodically. >
Answer, p. 565

Discussion questions

A Criticize the following incorrect statement: “If you shove a book
across a table, friction takes away more and more of its force, until finally
it stops.”

B You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “The ball gets
some force from you when you hit it, and when it hits the wall, it loses part
of that force, so it doesn’t bounce back as fast. The muscles in your arm
are the only things that a force can come from.”
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4.5 Inertial and noninertial frames of reference

One day, you're driving down the street in your pickup truck, on
your way to deliver a bowling ball. The ball is in the back of the
truck, enjoying its little jaunt and taking in the fresh air and sun-
shine. Then you have to slow down because a stop sign is coming
up. As you brake, you glance in your rearview mirror, and see your
trusty companion accelerating toward you. Did some mysterious
force push it forward? No, it only seems that way because you and
the car are slowing down. The ball is faithfully obeying Newton’s
first law, and as it continues at constant velocity it gets ahead rela-
tive to the slowing truck. No forces are acting on it (other than the
same canceling-out vertical forces that were always acting on it).*
The ball only appeared to violate Newton’s first law because there
was something wrong with your frame of reference, which was based
on the truck.

How, then, are we to tell in which frames of reference Newton’s
laws are valid? It’s no good to say that we should avoid moving
frames of reference, because there is no such thing as absolute rest
or absolute motion. All frames can be considered as being either at
rest or in motion. According to an observer in India, the strip mall
that constituted the frame of reference in panel (b) of the figure
was moving along with the earth’s rotation at hundreds of miles per
hour.

The reason why Newton’s laws fail in the truck’s frame of refer-

4Let’s assume for simplicity that there is no friction.

Section 4.5

k /1. In a frame of reference that
moves with the truck, the bowl-
ing ball appears to violate New-
ton’s first law by accelerating de-
spite having no horizontal forces
on it. 2. In an inertial frame of ref-
erence, which the surface of the
earth approximately is, the bowl-
ing ball obeys Newton’s first law.
It moves equal distances in equal
time intervals, i.e., maintains con-
stant velocity. In this frame of
reference, it is the truck that ap-
pears to have a change in veloc-
ity, which makes sense, since the
road is making a horizontal force
on it.
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ence is not because the truck is moving but because it is accelerating.
(Recall that physicists use the word to refer either to speeding up or
slowing down.) Newton’s laws were working just fine in the moving
truck’s frame of reference as long as the truck was moving at con-
stant velocity. It was only when its speed changed that there was
a problem. How, then, are we to tell which frames are accelerating
and which are not? What if you claim that your truck is not ac-
celerating, and the sidewalk, the asphalt, and the Burger King are
accelerating” The way to settle such a dispute is to examine the
motion of some object, such as the bowling ball, which we know
has zero total force on it. Any frame of reference in which the ball
appears to obey Newton’s first law is then a valid frame of reference,
and to an observer in that frame, Mr. Newton assures us that all
the other objects in the universe will obey his laws of motion, not
just the ball.

Valid frames of reference, in which Newton’s laws are obeyed,
are called inertial frames of reference. Frames of reference that are
not inertial are called noninertial frames. In those frames, objects
violate the principle of inertia and Newton’s first law. While the
truck was moving at constant velocity, both it and the sidewalk
were valid inertial frames. The truck became an invalid frame of
reference when it began changing its velocity.

You usually assume the ground under your feet is a perfectly
inertial frame of reference, and we made that assumption above. It
isn’t perfectly inertial, however. Its motion through space is quite
complicated, being composed of a part due to the earth’s daily rota-
tion around its own axis, the monthly wobble of the planet caused
by the moon’s gravity, and the rotation of the earth around the sun.
Since the accelerations involved are numerically small, the earth is
approximately a valid inertial frame.

Noninertial frames are avoided whenever possible, and we will
seldom, if ever, have occasion to use them in this course. Sometimes,
however, a noninertial frame can be convenient. Naval gunners, for
instance, get all their data from radars, human eyeballs, and other
detection systems that are moving along with the earth’s surface.
Since their guns have ranges of many miles, the small discrepan-
cies between their shells’ actual accelerations and the accelerations
predicted by Newton’s second law can have effects that accumulate
and become significant. In order to kill the people they want to kill,
they have to add small corrections onto the equation a = Fiyq1/m.
Doing their calculations in an inertial frame would allow them to
use the usual form of Newton’s second law, but they would have
to convert all their data into a different frame of reference, which
would require cumbersome calculations.
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Discussion question

A If an object has a linear x — t graph in a certain inertial frame,
what is the effect on the graph if we change to a coordinate system with
a different origin? What is the effect if we keep the same origin but re-
verse the positive direction of the x axis? How about an inertial frame
moving alongside the object? What if we describe the object’s motion in
a noninertial frame?
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Summary

Selected vocabulary
weight . . . .. .. the force of gravity on an object, equal to mg
inertial frame .. a frame of reference that is not accelerating,
one in which Newton’s first law is true
noninertial frame an accelerating frame of reference, in which
Newton’s first law is violated

Notation

Fw ... ... .. weight
Other terminology and notation

net force . . ... another way of saying “total force”
Summary

Newton’s first law of motion states that if all the forces acting
on an object cancel each other out, then the object continues in the
same state of motion. This is essentially a more refined version of
Galileo’s principle of inertia, which did not refer to a numerical scale
of force.

Newton’s second law of motion allows the prediction of an ob-
ject’s acceleration given its mass and the total force on it, ac, =
Fiotar/m. This is only the one-dimensional version of the law; the
full-three dimensional treatment will come in chapter 8, Vectors.
Without the vector techniques, we can still say that the situation
remains unchanged by including an additional set of vectors that
cancel among themselves, even if they are not in the direction of
motion.

Newton’s laws of motion are only true in frames of reference that
are not accelerating, known as inertial frames.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 An object is observed to be moving at constant speed in a
certain direction. Can you conclude that no forces are acting on it?
Explain. [Based on a problem by Serway and Faughn.]

2 At low speeds, every car’s acceleration is limited by traction,
not by the engine’s power. Suppose that at low speeds, a certain
car is normally capable of an acceleration of 3 m/s?. If it is towing
a trailer with half as much mass as the car itself, what acceleration
can it achieve? [Based on a problem from PSSC Physics.]

3 (a) Let T' be the maximum tension that an elevator’s cable
can withstand without breaking, i.e., the maximum force it can
exert. If the motor is programmed to give the car an acceleration
a (a > 0 is upward), what is the maximum mass that the car can
have, including passengers, if the cable is not to break? v
(b) Interpret the equation you derived in the special cases of a = 0
and of a downward acceleration of magnitude g. (“Interpret” means
to analyze the behavior of the equation, and connect that to reality,
as in the self-check on page 139.)

4 A helicopter of mass m is taking off vertically. The only forces
acting on it are the earth’s gravitational force and the force, F;,,
of the air pushing up on the propeller blades.

(a) If the helicopter lifts off at ¢ = 0, what is its vertical speed at
time t7

(b) Check that the units of your answer to part a make sense.

(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you've figured out this mathematical
relationship, show that it makes sense physically.

(d) Plug numbers into your equation from part a, using m = 2300
kg, i = 27000 N, and t = 4.0 s. v

5 In the 1964 Olympics in Tokyo, the best men’s high jump was
2.18 m. Four years later in Mexico City, the gold medal in the same
event was for a jump of 2.24 m. Because of Mexico City’s altitude
(2400 m), the acceleration of gravity there is lower than that in
Tokyo by about 0.01 m/s?. Suppose a high-jumper has a mass of
72 kg.

(a) Compare his mass and weight in the two locations.

(b) Assume that he is able to jump with the same initial vertical

Problems
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velocity in both locations, and that all other conditions are the same
except for gravity. How much higher should he be able to jump in

Mexico City? v
(Actually, the reason for the big change between '64 and ’68 was the
introduction of the “Fosbury flop.”) *

6 A blimp is initially at rest, hovering, when at ¢ = 0 the pilot
turns on the engine driving the propeller. The engine cannot in-
stantly get the propeller going, but the propeller speeds up steadily.
The steadily increasing force between the air and the propeller is
given by the equation F' = kt, where k is a constant. If the mass
of the blimp is m, find its position as a function of time. (Assume
that during the period of time you’re dealing with, the blimp is not
yet moving fast enough to cause a significant backward force due to
air resistance.) Vo f

7 A car is accelerating forward along a straight road. If the force
of the road on the car’s wheels, pushing it forward, is a constant 3.0
kN, and the car’s mass is 1000 kg, then how long will the car take
to go from 20 m/s to 50 m/s? > Solution, p. 551

8 Some garden shears are like a pair of scissors: one sharp blade
slices past another. In the “anvil” type, however, a sharp blade
presses against a flat one rather than going past it. A gardening
book says that for people who are not very physically strong, the
anvil type can make it easier to cut tough branches, because it
concentrates the force on one side. Evaluate this claim based on
Newton’s laws. [Hint: Consider the forces acting on the branch,
and the motion of the branch.]

9 A uranium atom deep in the earth spits out an alpha particle.
An alpha particle is a fragment of an atom. This alpha particle has
initial speed v, and travels a distance d before stopping in the earth.
(a) Find the force, F', from the dirt that stopped the particle, in
terms of v,d, and its mass, m. Don’t plug in any numbers yet.
Assume that the force was constant. v
(b) Show that your answer has the right units.

(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you’ve figured out this mathematical
relationship, show that it makes sense physically.

(d) Evaluate your result for m = 6.7 x 10727 kg, v = 2.0 x 10* km/s,
and d = 0.71 mm. v
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10 You are given a large sealed box, and are not allowed to open
it. Which of the following experiments measure its mass, and which
measure its weight? [Hint: Which experiments would give different
results on the moon?]
(a) Put it on a frozen lake, throw a rock at it, and see how fast it
scoots away after being hit.
(b) Drop it from a third-floor balcony, and measure how loud the
sound is when it hits the ground.
(c) As shown in the figure, connect it with a spring to the wall, and
watch it vibrate.

> Solution, p. 551

11 While escaping from the palace of the evil Martian em-
peror, Sally Spacehound jumps from a tower of height A down to
the ground. Ordinarily the fall would be fatal, but she fires her
blaster rifle straight down, producing an upward force of magnitude
Fp. This force is insufficient to levitate her, but it does cancel out
some of the force of gravity. During the time t that she is falling,
Sally is unfortunately exposed to fire from the emperor’s minions,
and can’t dodge their shots. Let m be her mass, and g the strength
of gravity on Mars.

(a) Find the time ¢ in terms of the other variables.

(b) Check the units of your answer to part a.

(c) For sufficiently large values of Fg, your answer to part a becomes
nonsense — explain what’s going on. v

12 When I cook rice, some of the dry grains always stick to the
measuring cup. To get them out, I turn the measuring cup upside-
down and hit the “roof” with my hand so that the grains come off of
the “ceiling.” (a) Explain why static friction is irrelevant here. (b)
Explain why gravity is negligible. (¢) Explain why hitting the cup
works, and why its success depends on hitting the cup hard enough.

13 At the turn of the 20th century, Samuel Langley engaged in
a bitter rivalry with the Wright brothers to develop human flight.
Langley’s design used a catapult for launching. For safety, the cata-
pult was built on the roof of a houseboat, so that any crash would be
into the water. This design required reaching cruising speed within
a fixed, short distance, so large accelerations were required, and
the forces frequently damaged the craft, causing dangerous and em-
barrassing accidents. Langley achieved several uncrewed, unguided
flights, but never succeeded with a human pilot. If the force of the
catapult is fixed by the structural strength of the plane, and the dis-
tance for acceleration by the size of the houseboat, by what factor
is the launch velocity reduced when the plane’s 340 kg is augmented
by the 60 kg mass of a small man? v

Problem 10, part c.

Problem 13. The rear wings
of the plane collapse under the
stress of the catapult launch.
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Problem 15.
M3
M,
My
Problem 17.

14 The tires used in Formula 1 race cars can generate traction
(i.e., force from the road) that is as much as 1.9 times greater than
with the tires typically used in a passenger car. Suppose that we're
trying to see how fast a car can cover a fixed distance starting from
rest, and traction is the limiting factor. By what factor is this time
reduced when switching from ordinary tires to Formula 1 tires?

v

15 In the figure, the rock climber has finished the climb, and his
partner is lowering him back down to the ground at approximately
constant speed. The following is a student’s analysis of the forces
acting on the climber. The arrows give the directions of the forces.

force of the earth’s gravity, |
force from the partner’s hands, 1
force from the rope, 1

The student says that since the climber is moving down, the sum
of the two upward forces must be slightly less than the downward
force of gravity.

Correct all mistakes in the above analysis. > Solution, p. 551

16 A bullet of mass m is fired from a pistol, accelerating from

rest to a speed v in the barrel’s length L.

(a) What is the force on the bullet? (Assume this force is constant.)
v

(b) Check that the units of your answer to part a make sense.

(c) Check that the dependence of your answer on each of the three

variables makes sense. [problem by B. Shotwell]

17 Blocks of mass My, Mo, and M3 are stacked on a table as
shown in the figure. Let the upward direction be positive.
(a) What is the force on block 2 from block 37 v
(b) What is the force on block 2 from block 17

V' [problem by B. Shotwell]
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Exercise 4: Force and motion
Equipment:
1-meter pieces of butcher paper
wood blocks with hooks
string
masses to put on top of the blocks to increase friction
spring scales (preferably calibrated in Newtons)

Suppose a person pushes a crate, sliding it across the floor at a certain speed, and then repeats
the same thing but at a higher speed. This is essentially the situation you will act out in this
exercise. What do you think is different about her force on the crate in the two situations?
Discuss this with your group and write down your hypothesis:

1. First you will measure the amount of friction between the wood block and the butcher paper
when the wood and paper surfaces are slipping over each other. The idea is to attach a spring
scale to the block and then slide the butcher paper under the block while using the scale to
keep the block from moving with it. Depending on the amount of force your spring scale was
designed to measure, you may need to put an extra mass on top of the block in order to increase
the amount of friction. It is a good idea to use long piece of string to attach the block to the
spring scale, since otherwise one tends to pull at an angle instead of directly horizontally.

First measure the amount of friction force when sliding the butcher paper as slowly as possi-

Now measure the amount of friction force at a significantly higher speed, say 1 meter per second.
(If you try to go too fast, the motion is jerky, and it is impossible to get an accurate reading.)

Discuss your results. Why are we justified in assuming that the string’s force on the block (i.e.,
the scale reading) is the same amount as the paper’s frictional force on the block?

2. Now try the same thing but with the block moving and the paper standing still. Try two
different speeds.

Do your results agree with your original hypothesis? If not, discuss what’s going on. How does
the block “know” how fast to go?

Exercise 4: Force and motion
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N What forces act on the girl?

Chapter 5
Analysis of Forces

5.1 Newton’s third law

Newton created the modern concept of force starting from his insight
that all the effects that govern motion are interactions between two
objects: unlike the Aristotelian theory, Newtonian physics has no
phenomena in which an object changes its own motion.
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scale

magnet

magnet

scale

a/Two magnets exert forces
on each other.

?W

b/Two people’s hands exert
forces on each other.

c/Rockets work by pushing
exhaust gases out the back.
Newton’s third law says that if the
rocket exerts a backward force
on the gases, the gases must
make an equal forward force on
the rocket. Rocket engines can
function above the atmosphere,
unlike propellers and jets, which
work by pushing against the
surrounding air.

Is one object always the “order-giver” and the other the “order-
follower”? As an example, consider a batter hitting a baseball. The
bat definitely exerts a large force on the ball, because the ball ac-
celerates drastically. But if you have ever hit a baseball, you also
know that the ball makes a force on the bat — often with painful
results if your technique is as bad as mine!

How does the ball’s force on the bat compare with the bat’s
force on the ball? The bat’s acceleration is not as spectacular as
the ball’s, but maybe we shouldn’t expect it to be, since the bat’s
mass is much greater. In fact, careful measurements of both objects’
masses and accelerations would show that mpeape is very nearly
equal to —mpgrapet, Wwhich suggests that the ball’s force on the bat
is of the same magnitude as the bat’s force on the ball, but in the
opposite direction.

Figures a and b show two somewhat more practical laboratory
experiments for investigating this issue accurately and without too
much interference from extraneous forces.

In experiment a, a large magnet and a small magnet are weighed
separately, and then one magnet is hung from the pan of the top
balance so that it is directly above the other magnet. There is an
attraction between the two magnets, causing the reading on the top
scale to increase and the reading on the bottom scale to decrease.
The large magnet is more “powerful” in the sense that it can pick
up a heavier paperclip from the same distance, so many people have
a strong expectation that one scale’s reading will change by a far
different amount than the other. Instead, we find that the two
changes are equal in magnitude but opposite in direction: the force
of the bottom magnet pulling down on the top one has the same
strength as the force of the top one pulling up on the bottom one.

In experiment b, two people pull on two spring scales. Regardless
of who tries to pull harder, the two forces as measured on the spring
scales are equal. Interposing the two spring scales is necessary in
order to measure the forces, but the outcome is not some artificial
result of the scales’ interactions with each other. If one person slaps
another hard on the hand, the slapper’s hand hurts just as much
as the slappee’s, and it doesn’t matter if the recipient of the slap
tries to be inactive. (Punching someone in the mouth causes just
as much force on the fist as on the lips. It’s just that the lips are
more delicate. The forces are equal, but not the levels of pain and
injury.)

Newton, after observing a series of results such as these, decided
that there must be a fundamental law of nature at work:
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Newton’s third law
Forces occur in equal and opposite pairs: whenever object A exerts
a force on object B, object B must also be exerting a force on object
A. The two forces are equal in magnitude and opposite in direction.

Two modern, high-precision tests of the third law are described
on p. 806.

In one-dimensional situations, we can use plus and minus signs
to indicate the directions of forces, and Newton’s third law can be
written succinctly as Fa on 8 = —FB on A-

self-check A
Figure d analyzes swimming using Newton’s third law. Do a similar
analysis for a sprinter leaving the starting line. > Answer, p. 565

There is no cause and effect relationship between the two forces
in Newton’s third law. There is no “original” force, and neither one
is a response to the other. The pair of forces is a relationship, like
marriage, not a back-and-forth process like a tennis match. Newton
came up with the third law as a generalization about all the types of
forces with which he was familiar, such as frictional and gravitational
forces. When later physicists discovered a new type of force, such
as the force that holds atomic nuclei together, they had to check
whether it obeyed Newton’s third law. So far, no violation of the
third law has ever been discovered, whereas the first and second
laws were shown to have limitations by Einstein and the pioneers of
atomic physics.

The English vocabulary for describing forces is unfortunately
rooted in Aristotelianism, and often implies incorrectly that forces
are one-way relationships. It is unfortunate that a half-truth such as
“the table exerts an upward force on the book” is so easily expressed,
while a more complete and correct description ends up sounding
awkward or strange: “the table and the book interact via a force,”
or “the table and book participate in a force.”

To students, it often sounds as though Newton’s third law im-
plies nothing could ever change its motion, since the two equal and
opposite forces would always cancel. The two forces, however, are
always on two different objects, so it doesn’t make sense to add
them in the first place — we only add forces that are acting on the
same object. If two objects are interacting via a force and no other
forces are involved, then both objects will accelerate — in opposite
directions!

Section 5.1

d/A swimmer doing the breast
stroke pushes backward against
the water. By Newton’s third law,
the water pushes forward on him.

e /Newton’s third law does
not mean that forces always can-
cel out so that nothing can ever
move. If these two ice skaters,
initially at rest, push against each
other, they will both move.
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f/ 1t doesn’t make sense for the
man to talk about using the
woman’s money to cancel out his
bar tab, because there is no good
reason to combine his debts and
her assets. Similarly, it doesn'’t
make sense to refer to the equal
and opposite forces of Newton’s
third law as canceling. It only
makes sense to add up forces
that are acting on the same ob-
ject, whereas two forces related
to each other by Newton’s third
law are always acting on two dif-
ferent objects.

Excuse me, ma'am, but it
appears that the money in your
purse would exactly cancel

A mnemonic for using Newton’s third law correctly

Mnemonics are tricks for memorizing things. For instance, the

musical notes that lie between the lines on the treble clef spell the
word FACE, which is easy to remember. Many people use the
mnemonic “SOHCAHTOA” to remember the definitions of the sine,
cosine, and tangent in trigonometry. I have my own modest offering,
POFOSTITO, which I hope will make it into the mnemonics hall of
fame. It’s a way to avoid some of the most common problems with
applying Newton’s third law correctly:

P air of
O pposite
F orces
Ofthe

S ame

T ype
Involving
Two

O bjects

A book lying on a table example 1
> A book is lying on a table. What force is the Newton’s-third-law
partner of the earth’s gravitational force on the book?

Answer: Newton’s third law works like “B on A, A on B,” so the
partner must be the book’s gravitational force pulling upward on
the planet earth. Yes, there is such a force! No, it does not cause
the earth to do anything noticeable.

Incorrect answer: The table’s upward force on the book is the
Newton’s-third-law partner of the earth’s gravitational force on the
book.

X This answer violates two out of three of the commandments of
POFOSTITO. The forces are not of the same type, because the
table’s upward force on the book is not gravitational. Also, three
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objects are involved instead of two: the book, the table, and the
planet earth.

Pushing a box up a hill example 2
> A person is pushing a box up a hill. What force is related by
Newton’s third law to the person’s force on the box?

> The box’s force on the person.

Incorrect answer: The person’s force on the box is opposed by
friction, and also by gravity.

X This answer fails all three parts of the POFOSTITO test, the
most obvious of which is that three forces are referred to instead
of a pair.

If we could violate Newton’s third law. . . example 3
If we could violate Newton’s third law, we could do strange and
wonderful things. Newton’s third laws says that the unequal mag-
nets in figure a on p. 154 should exert equal forces on each
other, and this is what we actually find when we do the experi-
ment shown in that figure. But suppose instead that it worked as
most people intuitively expect. What if the third law was violated,
so that the big magnet made more force on the small one than the
small one made on the big one? To make the analysis simple, we
add some extra nonmagnetic material to the small magnet in fig-
ure g/1, so that it has the same mass and size as the big one. We
also attach springs. When we release the magnets, g/2, the weak
one is accelerated strongly, while the strong one barely moves. If
we put them inside a box, g/3, the recoiling strong magnet bangs
hard against the side of the box, and the box mysteriously accel-
erates itself. The process can be repeated indefinitely for free, so
we have a magic box that propels itself without needing fuel. We
can make it into a perpetual-motion car, g/4. If Newton’s third law
was violated, we’'d never have to pay for gas!

I o

g/ Example 3. This doesn’t actually happen!

Section 5.1

Optional topic: Newton’s
third law and action at a dis-
tance
Newton’s third law is completely
symmetric in the sense that nei-
ther force constitutes a delayed
response to the other. Newton’s
third law does not even mention
time, and the forces are supposed
to agree at any given instant.
This creates an interesting situ-
ation when it comes to noncon-
tact forces. Suppose two people
are holding magnets, and when
one person waves or wiggles her
magnet, the other person feels an
effect on his. In this way they
can send signals to each other
from opposite sides of a wall, and
if Newton’s third law is correct, it
would seem that the signals are
transmitted instantly, with no time
lag. The signals are indeed trans-
mitted quite quickly, but experi-
ments with electrically controlled
magnets show that the signals do
not leap the gap instantly: they
travel at the same speed as light,
which is an extremely high speed
but not an infinite one.

Is this a contradiction to New-
ton’s third law? Not really. Ac-
cording to current theories, there
are no true noncontact forces.
Action at a distance does not ex-
ist. Although it appears that the
wiggling of one magnet affects
the other with no need for any-
thing to be in contact with any-
thing, what really happens is that
wiggling a magnet creates a rip-
ple in the magnetic field pattern
that exists even in empty space.
The magnet shoves the ripples
out with a kick and receives a kick
in return, in strict obedience to
Newton’s third law. The ripples
spread out in all directions, and
the ones that hit the other magnet
then interact with it, again obeying
Newton’s third law.
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> Solved problem: More about example 2 page 183, problem 20

> Solved problem: Why did it accelerate? page 183, problem 18
Discussion questions

A When you fire a gun, the exploding gases push outward in all
directions, causing the bullet to accelerate down the barrel. What third-
law pairs are involved? [Hint: Remember that the gases themselves are
an object.]

B Tam Anh grabs Sarah by the hand and tries to pull her. She tries
to remain standing without moving. A student analyzes the situation as
follows. “If Tam Anh’s force on Sarah is greater than her force on him,
he can get her to move. Otherwise, she’ll be able to stay where she is.”
What'’s wrong with this analysis?

C You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “According to
Newton’s third law, there has to be a force opposite to your force on the
ball. The opposite force is the ball’s mass, which resists acceleration, and
also air resistance.”

5.2 Classification and behavior of forces

One of the most basic and important tasks of physics is to classify
the forces of nature. I have already referred informally to “types” of
forces such as friction, magnetism, gravitational forces, and so on.
Classification systems are creations of the human mind, so there is
always some degree of arbitrariness in them. For one thing, the level
of detail that is appropriate for a classification system depends on
what you’re trying to find out. Some linguists, the “lumpers,” like to
emphasize the similarities among languages, and a few extremists
have even tried to find signs of similarities between words in lan-
guages as different as English and Chinese, lumping the world’s lan-
guages into only a few large groups. Other linguists, the “splitters,”
might be more interested in studying the differences in pronuncia-
tion between English speakers in New York and Connecticut. The
splitters call the lumpers sloppy, but the lumpers say that science
isn’t worthwhile unless it can find broad, simple patterns within the
seemingly complex universe.

Scientific classification systems are also usually compromises be-
tween practicality and naturalness. An example is the question of
how to classify flowering plants. Most people think that biological
classification is about discovering new species, naming them, and
classifying them in the class-order-family-genus-species system ac-
cording to guidelines set long ago. In reality, the whole system is in
a constant state of flux and controversy. One very practical way of
classifying flowering plants is according to whether their petals are
separate or joined into a tube or cone — the criterion is so clear that
it can be applied to a plant seen from across the street. But here
practicality conflicts with naturalness. For instance, the begonia has
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separate petals and the pumpkin has joined petals, but they are so
similar in so many other ways that they are usually placed within
the same order. Some taxonomists have come up with classification
criteria that they claim correspond more naturally to the apparent
relationships among plants, without having to make special excep-
tions, but these may be far less practical, requiring for instance the
examination of pollen grains under an electron microscope.

In physics, there are two main systems of classification for forces.
At this point in the course, you are going to learn one that is very
practical and easy to use, and that splits the forces up into a rel-
atively large number of types: seven very common ones that we’ll
discuss explicitly in this chapter, plus perhaps ten less important
ones such as surface tension, which we will not bother with right
now.

Physicists, however, are obsessed with finding simple patterns,
S0 recognizing as many as fifteen or twenty types of forces strikes
them as distasteful and overly complex. Since about the year 1900,
physics has been on an aggressive program to discover ways in which
these many seemingly different types of forces arise from a smaller
number of fundamental ones. For instance, when you press your
hands together, the force that keeps them from passing through each
other may seem to have nothing to do with electricity, but at the
atomic level, it actually does arise from electrical repulsion between
atoms. By about 1950, all the forces of nature had been explained
as arising from four fundamental types of forces at the atomic and
nuclear level, and the lumping-together process didn’t stop there.
By the 1960’s the length of the list had been reduced to three, and
some theorists even believe that they may be able to reduce it to
two or one. Although the unification of the forces of nature is one of
the most beautiful and important achievements of physics, it makes
much more sense to start this course with the more practical and
easy system of classification. The unified system of four forces will
be one of the highlights of the end of your introductory physics
sequence.

The practical classification scheme which concerns us now can
be laid out in the form of the tree shown in figure i. The most
specific types of forces are shown at the tips of the branches, and
it is these types of forces that are referred to in the POFOSTITO
mnemonic. For example, electrical and magnetic forces belong to
the same general group, but Newton’s third law would never relate
an electrical force to a magnetic force.

The broadest distinction is that between contact and noncontact
forces, which has been discussed in ch. 4. Among the contact forces,
we distinguish between those that involve solids only and those that
have to do with fluids, a term used in physics to include both gases
and liquids.

h/A
system.

scientific

Section 5.2 Classification and behavior of forces

classification
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It should not be necessary to memorize this diagram by rote.
It is better to reinforce your memory of this system by calling to
mind your commonsense knowledge of certain ordinary phenomena.
For instance, we know that the gravitational attraction between us
and the planet earth will act even if our feet momentarily leave the
ground, and that although magnets have mass and are affected by
gravity, most objects that have mass are nonmagnetic.

'Hitting a wall example 4
> A bullet, flying horizontally, hits a steel wall. What type of force
is there between the bullet and the wall?

> Starting at the bottom of the tree, we determine that the force
is a contact force, because it only occurs once the bullet touches
the wall. Both objects are solid. The wall forms a vertical plane.
If the nose of the bullet was some shape like a sphere, you might
imagine that it would only touch the wall at one point. Realisti-
cally, however, we know that a lead bullet will flatten out a lot on
impact, so there is a surface of contact between the two, and its
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orientation is vertical. The effect of the force on the bullet is to
stop the horizontal motion of the bullet, and this horizontal ac-
celeration must be produced by a horizontal force. The force is
therefore perpendicular to the surface of contact, and it’s also re-
pulsive (tending to keep the bullet from entering the wall), so it
must be a normal force.

Diagram i is meant to be as simple as possible while including
most of the forces we deal with in everyday life. If you were an
insect, you would be much more interested in the force of surface
tension, which allowed you to walk on water. I have not included
the nuclear forces, which are responsible for holding the nuclei of
atoms, because they are not evident in everyday life.

You should not be afraid to invent your own names for types of
forces that do not fit into the diagram. For instance, the force that
holds a piece of tape to the wall has been left off of the tree, and if
you were analyzing a situation involving scotch tape, you would be
absolutely right to refer to it by some commonsense name such as
“sticky force.”

On the other hand, if you are having trouble classifying a certain
force, you should also consider whether it is a force at all. For
instance, if someone asks you to classify the force that the earth has
because of its rotation, you would have great difficulty creating a
place for it on the diagram. That’s because it’s a type of motion,
not a type of force!

Normal forces

A normal force, Fly, is a force that keeps one solid object from
passing through another. “Normal” is simply a fancy word for “per-
pendicular,” meaning that the force is perpendicular to the surface
of contact. Intuitively, it seems the normal force magically adjusts
itself to provide whatever force is needed to keep the objects from
occupying the same space. If your muscles press your hands together
gently, there is a gentle normal force. Press harder, and the normal
force gets stronger. How does the normal force know how strong to
be? The answer is that the harder you jam your hands together,
the more compressed your flesh becomes. Your flesh is acting like
a spring: more force is required to compress it more. The same is
true when you push on a wall. The wall flexes imperceptibly in pro-
portion to your force on it. If you exerted enough force, would it be
possible for two objects to pass through each other? No, typically
the result is simply to strain the objects so much that one of them
breaks.

Gravitational forces

As we’ll discuss in more detail later in the course, a gravitational
force exists between any two things that have mass. In everyday life,
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j/A model that correctly ex-
plains many properties of friction.
The microscopic bumps and
holes in two surfaces dig into
each other.

—
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k / Static friction: the tray doesn’t
slip on the waiter’s fingers.

| / Kinetic friction: the car skids.

the gravitational force between two cars or two people is negligible,
so the only noticeable gravitational forces are the ones between the
earth and various human-scale objects. We refer to these planet-
earth-induced gravitational forces as weight forces, and as we have
already seen, their magnitude is given by |Fyy| = mg.

> Solved problem: Weight and mass page 184, problem 26

Static and kinetic friction

If you have pushed a refrigerator across a kitchen floor, you have
felt a certain series of sensations. At first, you gradually increased
your force on the refrigerator, but it didn’t move. Finally, you sup-
plied enough force to unstick the fridge, and there was a sudden
jerk as the fridge started moving. Once the fridge was unstuck, you
could reduce your force significantly and still keep it moving.

While you were gradually increasing your force, the floor’s fric-
tional force on the fridge increased in response. The two forces on
the fridge canceled, and the fridge didn’t accelerate. How did the
floor know how to respond with just the right amount of force? Fig-
ure j shows one possible model of friction that explains this behavior.
(A scientific model is a description that we expect to be incomplete,
approximate, or unrealistic in some ways, but that nevertheless suc-
ceeds in explaining a variety of phenomena.) Figure j/1 shows a
microscopic view of the tiny bumps and holes in the surfaces of the
floor and the refrigerator. The weight of the fridge presses the two
surfaces together, and some of the bumps in one surface will settle
as deeply as possible into some of the holes in the other surface. In
j/2, your leftward force on the fridge has caused it to ride up a little
higher on the bump in the floor labeled with a small arrow. Still
more force is needed to get the fridge over the bump and allow it to
start moving. Of course, this is occurring simultaneously at millions
of places on the two surfaces.

Once you had gotten the fridge moving at constant speed, you
found that you needed to exert less force on it. Since zero total force
is needed to make an object move with constant velocity, the floor’s
rightward frictional force on the fridge has apparently decreased
somewhat, making it easier for you to cancel it out. Our model also
gives a plausible explanation for this fact: as the surfaces slide past
each other, they don’t have time to settle down and mesh with one
another, so there is less friction.

Even though this model is intuitively appealing and fairly suc-
cessful, it should not be taken too seriously, and in some situations
it is misleading. For instance, fancy racing bikes these days are
made with smooth tires that have no tread — contrary to what
we’d expect from our model, this does not cause any decrease in
friction. Machinists know that two very smooth and clean metal
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surfaces may stick to each other firmly and be very difficult to slide
apart. This cannot be explained in our model, but makes more
sense in terms of a model in which friction is described as arising
from chemical bonds between the atoms of the two surfaces at their
points of contact: very flat surfaces allow more atoms to come in
contact.

Since friction changes its behavior dramatically once the sur-
faces come unstuck, we define two separate types of frictional forces.
Static friction is friction that occurs between surfaces that are not
slipping over each other. Slipping surfaces experience kinetic fric-
tion. The forces of static and kinetic friction, notated Fs and F}., are
always parallel to the surface of contact between the two objects.

self-check B
1. When a baseball player slides in to a base, is the friction static, or
kinetic?

2. A mattress stays on the roof of a slowly accelerating car. Is the
friction static, or kinetic?

3. Does static friction create heat? Kinetic friction? > Answer, p. 565

The maximum possible force of static friction depends on what
kinds of surfaces they are, and also on how hard they are being
pressed together. The approximate mathematical relationships can
be expressed as follows:

Fs,ma:p = usF,

where i is a unitless number, called the coefficient of static friction,
which depends on what kinds of surfaces they are. The maximum
force that static friction can supply, usF, represents the boundary
between static and kinetic friction. It depends on the normal force,
which is numerically equal to whatever force is pressing the two
surfaces together. In terms of our model, if the two surfaces are
being pressed together more firmly, a greater sideways force will be
required in order to make the irregularities in the surfaces ride up
and over each other.

Note that just because we use an adjective such as “applied” to
refer to a force, that doesn’t mean that there is some special type
of force called the “applied force.” The applied force could be any
type of force, or it could be the sum of more than one force trying
to make an object move.

self-check C
The arrows in figure m show the forces of the tree trunk on the partridge.
Describe the forces the bird makes on the tree. > Answer, p. 565

The force of kinetic friction on each of the two objects is in the
direction that resists the slippage of the surfaces. Its magnitude is

C

7

m /Many landfowl, even those
that are competent fliers, prefer
to escape from a predator by
running upward rather than by
flying. This partridge is running
up a vertical tree trunk. Humans
can’t walk up walls because there
is no normal force and therefore
no frictional force; when Fy = 0,
the maximum force of static
friction Fsmax = usFn is also
zero. The partridge, however,
has wings that it can flap in order
to create a force between it and
the air. Typically when a bird
flaps its wings, the resulting force
from the air is in the direction
that would tend to lift the bird
up. In this situation, however,
the partridge changes its style
of flapping so that the direction
is reversed. The normal force
between the feet and the tree
allows a nonzero static frictional
force. The mechanism is similar
to that of a spoiler fin on a racing
car. Some evolutionary biologists
believe that when vertebrate
flight first evolved, in dinosaurs,
there was first a stage in which
the wings were used only as an
aid in running up steep inclines,
and only later a transition to
flight. (Redrawn from a figure by
K.P. Dial.)
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n/We choose a coordinate sys-
tem in which the applied force,
i.e., the force trying to move the
objects, is positive. The friction
force is then negative, since it is
in the opposite direction. As you
increase the applied force, the
force of static friction increases to
match it and cancel it out, until the
maximum force of static friction is
surpassed. The surfaces then be-
gin slipping past each other, and
the friction force becomes smaller
in absolute value.

usually well approximated as
Fyp = i Fn

where uj is the coefficient of kinetic friction. Kinetic friction is
usually more or less independent of velocity.

. applied
" force

static friction kinetic friction

friction
force

self-check D
Can a frictionless surface exert a normal force? Can a frictional force
exist without a normal force? > Answer, p. 565

If you try to accelerate or decelerate your car too quickly, the
forces between your wheels and the road become too great, and they
begin slipping. This is not good, because kinetic friction is weaker
than static friction, resulting in less control. Also, if this occurs
while you are turning, the car’s handling changes abruptly because
the kinetic friction force is in a different direction than the static
friction force had been: contrary to the car’s direction of motion,
rather than contrary to the forces applied to the tire.

Most people respond with disbelief when told of the experimen-
tal evidence that both static and kinetic friction are approximately
independent of the amount of surface area in contact. Even after
doing a hands-on exercise with spring scales to show that it is true,
many students are unwilling to believe their own observations, and
insist that bigger tires “give more traction.” In fact, the main rea-
son why you would not want to put small tires on a big heavy car
is that the tires would burst!

Although many people expect that friction would be propor-
tional to surface area, such a proportionality would make predictions
contrary to many everyday observations. A dog’s feet, for example,
have very little surface area in contact with the ground compared
to a human’s feet, and yet we know that a dog can often win a
tug-of-war with a person.

164 Chapter 5 Analysis of Forces



The reason a smaller surface area does not lead to less friction
is that the force between the two surfaces is more concentrated,
causing their bumps and holes to dig into each other more deeply.

self-check E
Find the direction of each of the forces in figure o. > Answer, p. 565
1 2 3 o/ 1. The cliff’'s normal force on
the climber’s feet. 2. The track’s
9 @ static frictional force on the wheel
)\ (\U of the accelerating dragster. 3.
‘/ The ball’s normal force on the
bat.
'Locomotives example 5

Looking at a picture of a locomotive, p, we notice two obvious
things that are different from an automobile. Where a car typi-
cally has two drive wheels, a locomotive normally has many —
ten in this example. (Some also have smaller, unpowered wheels
in front of and behind the drive wheels, but this example doesn't.)
Also, cars these days are generally built to be as light as possi-
ble for their size, whereas locomotives are very massive, and no
effort seems to be made to keep their weight low. (The steam
locomotive in the photo is from about 1900, but this is true even
for modern diesel and electric trains.)

p / Example 5.

The reason locomotives are built to be so heavy is for traction.
The upward normal force of the rails on the wheels, Fp, cancels
the downward force of gravity, Fy, so ignoring plus and minus
signs, these two forces are equal in absolute value, Fy = Fyy.
Given this amount of normal force, the maximum force of static
friction is Fs = usFy = usFw. This static frictional force, of the
rails pushing forward on the wheels, is the only force that can
accelerate the train, pull it uphill, or cancel out the force of air
resistance while cruising at constant speed. The coefficient of
static friction for steel on steel is about 1/4, so no locomotive can
pull with a force greater than about 1/4 of its own weight. If the
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g/ Fluid friction depends on
the fluid’s pattern of flow, so it is
more complicated than friction
between solids, and there are
no simple, universally applicable
formulas to calculate it. From
top to bottom: supersonic wind
tunnel, vortex created by a crop
duster, series of vortices created
by a single object, turbulence.

engine is capable of supplying more than that amount of force, the
result will be simply to break static friction and spin the wheels.

The reason this is all so different from the situation with a car is
that a car isn’t pulling something else. If you put extra weight in
a car, you improve the traction, but you also increase the inertia
of the car, and make it just as hard to accelerate. In a train, the
inertia is almost all in the cars being pulled, not in the locomotive.

The other fact we have to explain is the large number of driv-
ing wheels. First, we have to realize that increasing the num-
ber of driving wheels neither increases nor decreases the total
amount of static friction, because static friction is independent of
the amount of surface area in contact. (The reason four-wheel-
drive is good in a car is that if one or more of the wheels is slip-
ping on ice or in mud, the other wheels may still have traction.
This isn’t typically an issue for a train, since all the wheels experi-
ence the same conditions.) The advantage of having more driving
wheels on a train is that it allows us to increase the weight of the
locomotive without crushing the rails, or damaging bridges.

Fluid friction

Try to drive a nail into a waterfall and you will be confronted
with the main difference between solid friction and fluid friction.
Fluid friction is purely kinetic; there is no static fluid friction. The
nail in the waterfall may tend to get dragged along by the water
flowing past it, but it does not stick in the water. The same is true
for gases such as air: recall that we are using the word “fluid” to
include both gases and liquids.

Unlike kinetic friction between solids, fluid friction increases
rapidly with velocity. It also depends on the shape of the object,
which is why a fighter jet is more streamlined than a Model T. For
objects of the same shape but different sizes, fluid friction typically
scales up with the cross-sectional area of the object, which is one
of the main reasons that an SUV gets worse mileage on the freeway
than a compact car.
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Discussion questions

A A student states that when he tries to push his refrigerator, the
reason it won’t move is because Newton’s third law says there’s an equal
and opposite frictional force pushing back. After all, the static friction force
is equal and opposite to the applied force. How would you convince him
he is wrong?

B Kinetic friction is usually more or less independent of velocity. How-
ever, inexperienced drivers tend to produce a jerk at the last moment of
deceleration when they stop at a stop light. What does this tell you about
the kinetic friction between the brake shoes and the brake drums?

C Some of the following are correct descriptions of types of forces that
could be added on as new branches of the classification tree. Others are
not really types of forces, and still others are not force phenomena at all.
In each case, decide what's going on, and if appropriate, figure out how
you would incorporate them into the tree.

sticky force
opposite force

makes tape stick to things

the force that Newton’s third law says relates to ev-
ery force you make

the force that water carries with it as it flows out of a
hose

lets insects walk on water

a force that is horizontal

the force that a motor makes on the thing it is turning
a force that is being canceled out by some other
force

flowing force

surface tension
horizontal force
motor force

canceled force

5.3 Analysis of forces

Newton’s first and second laws deal with the total of all the forces
exerted on a specific object, so it is very important to be able to
figure out what forces there are. Once you have focused your atten-
tion on one object and listed the forces on it, it is also helpful to
describe all the corresponding forces that must exist according to
Newton’s third law. We refer to this as “analyzing the forces” in
which the object participates.

& Z 7

r/What do the golf ball and
the shark have in common? Both
use the same trick to reduce fluid
friction. The dimples on the golf
ball modify the pattern of flow of
the air around it, counterintuitively
reducing friction. Recent studies
have shown that sharks can
accomplish the same thing by
raising, or “bristling,” the scales
on their skin at high speeds.

s/The wheelbases of the
Hummer H3 and the Toyota Prius
are surprisingly similar, differing
by only 10%. The main difference
in shape is that the Hummer is
much taller and wider. It presents
a much greater cross-sectional
area to the wind, and this is the
main reason that it uses about 2.5
times more gas on the freeway.
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A barge

example 6

A barge is being pulled to the right along a canal by teams of horses on the shores. Analyze all the forces in

which the barge participates.

force acting on barge

force related to it by Newton'’s third law

ropes’ normal forces on barge, —

barge’s normal force on ropes, +

water’s fluid friction force on barge, «

barge’s fluid friction force on water, —

planet earth’s gravitational force on barge, |

barge’s gravitational force on earth, 1

water’s “floating” force on barge, 1

barge’s “floating” force on water, |

Here I've used the word “floating” force as an example of a sensible invented term for a type of force not
classified on the tree on p. 160. A more formal technical term would be “hydrostatic force.”

Note how the pairs of forces are all structured as “A’s force on B, B’s force on A”: ropes on barge and barge
on ropes; water on barge and barge on water. Because all the forces in the left column are forces acting on
the barge, all the forces in the right column are forces being exerted by the barge, which is why each entry in

the column begins with “barge.”

Often you may be unsure whether you have forgotten one of the

forces. Here are three strategies for checking your list:

t/ Example 7.

1. See what physical result would come from the forces you’ve

found so far. Suppose, for instance, that you’d forgotten the
“floating” force on the barge in the example above. Looking
at the forces you’d found, you would have found that there
was a downward gravitational force on the barge which was
not canceled by any upward force. The barge isn’t supposed
to sink, so you know you need to find a fourth, upward force.

. Another technique for finding missing forces is simply to go

through the list of all the common types of forces and see if
any of them apply.

. Make a drawing of the object, and draw a dashed boundary

line around it that separates it from its environment. Look for
points on the boundary where other objects come in contact
with your object. This strategy guarantees that you’ll find
every contact force that acts on the object, although it won’t
help you to find non-contact forces.

example 7

> Fifi is an industrial espionage dog who loves doing her job and
looks great doing it. She leaps through a window and lands at
initial horizontal speed v, on a conveyor belt which is itself moving
at the greater speed v,. Unfortunately the coefficient of kinetic
friction p, between her foot-pads and the belt is fairly low, so she
skids for a time At, during which the effect on her coiffure is un
désastre. Find At.
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> We analyze the forces:

force acting on Fifi force related to it by Newton’s
third law

planet earth’s gravitational | Fifi's gravitational force on

force Fiy = mg on Fifi, J | earth, T

belt’s kinetic frictional force Fy | Fifi’s kinetic frictional force on

on Fifi, — | belt, —

belt’s normal force Fp on Fifi, T | Fifi's normal force on belt, |

Checking the analysis of the forces as described on p. 168:

(1) The physical result makes sense. The left-hand column con-
sists of forces | —1. We're describing the time when she’s moving
horizontally on the belt, so it makes sense that we have two ver-
tical forces that could cancel. The rightward force is what will
accelerate her until her speed matches that of the belt.

(2) We've included every relevant type of force from the tree on
p. 160.

(3) We've included forces from the belt, which is the only object
in contact with Fifi.

The purpose of the analysis is to let us set up equations con-
taining enough information to solve the problem. Using the gen-
eralization of Newton’s second law given on p. 137, we use the
horizontal force to determine the horizontal acceleration, and sep-
arately require the vertical forces to cancel out.

Let positive x be to the right. Newton’s second law gives

(—) a=Fg/m

Although it’s the horizontal motion we care about, the only way to
find Fy is via the relation Fy = p,Fy, and the only way to find Fy
is from the 1| forces. The two vertical forces must cancel, which
means they have to be of equal strength:

() Fv—mg=0.
Using the constant-acceleration equation a = Av/At, we have

_ Av

T a

_ Vb - Vo
wkmg/m

Vp — Vo
kg

At

The units check out:
m/s

m/s2’
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u/ Example 8.

Chapter 5

where 1 is omitted as a factor because it’s unitless.

We should also check that the dependence on the variables makes
sense. If Fifi puts on her rubber ninja booties, increasing g, then
dividing by a larger number gives a smaller result for At; this
makes sense physically, because the greater friction will cause
her to come up to the belt’s speed more quickly. The dependence
on g is similar; more gravity would press her harder against the
belt, improving her traction. Increasing v, increases At, which
makes sense because it will take her longer to get up to a bigger
speed. Since v, is subtracted, the dependence of At on it is the
other way around, and that makes sense too, because if she can
land with a greater speed, she has less speeding up left to do.

Forces don't have to be in pairs or at right angles example 8
In figure u, the three horses are arranged symmetrically at 120
degree intervals, and are all pulling on the central knot. Let’s say
the knot is at rest and at least momentarily in equilibrium. The
analysis of forces on the knot is as follows.

Analysis of Forces



force acting on knot force related to it by Newton’s
third law
top rope’s normal force on | knot's normal force on top
knot, 1 | rope, K
left rope’s normal force on | knot's normal force on left
knot, K | rope, A
right rope’s normal force on | knot's normal force on right
knot, ~ | rope, N

In our previous examples, the forces have all run along two per-
pendicular lines, and they often canceled in pairs. This example
shows that neither of these always happens. Later in the book
we’ll see how to handle forces that are at arbitrary angles, using
mathematical objects called vectors. But even without knowing
about vectors, we already know what directions to draw the ar-
rows in the table, since a rope can only pull parallel to itself at its
ends. And furthermore, we can say something about the forces:
by symmetry, we expect them all to be equal in strength. (If the
knot was not in equilibrium, then this symmetry would be broken.)

This analysis also demonstrates that it’s all right to leave out de-
tails if they aren’t of interest and we don’t intend to include them
in our model. We called the forces normal forces, but we can'’t ac-
tually tell whether they are normal forces or frictional forces. They
are probably some combination of those, but we don’t include
such details in this model, since aren’t interested in describing the
internal physics of the knot. This is an example of a more general
fact about science, which is that science doesn’t describe reality.
It describes simplified models of reality, because reality is always
too complex to model exactly.
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Discussion questions

A In the example of the barge going down the canal, | referred to
a “floating” or “hydrostatic” force that keeps the boat from sinking. If you
were adding a new branch on the force-classification tree to represent this
force, where would it go?

B The earth’s gravitational force on you, i.e., your weight, is always
equal to mg, where m is your mass. So why can you get a shovel to go
deeper into the ground by jumping onto it? Just because you'’re jumping,
that doesn’t mean your mass or weight is any greater, does it?

5.4 Transmission of forces by low-mass
objects

You're walking your dog. The dog wants to go faster than you do,
and the leash is taut. Does Newton’s third law guarantee that your
force on your end of the leash is equal and opposite to the dog’s
force on its end? If they’re not exactly equal, is there any reason
why they should be approximately equal?

If there was no leash between you, and you were in direct contact
with the dog, then Newton’s third law would apply, but Newton’s
third law cannot relate your force on the leash to the dog’s force
on the leash, because that would involve three separate objects.
Newton’s third law only says that your force on the leash is equal
and opposite to the leash’s force on you,

FyL = _FLya

and that the dog’s force on the leash is equal and opposite to its
force on the dog
Far, = —Fpa-

Still, we have a strong intuitive expectation that whatever force we
make on our end of the leash is transmitted to the dog, and vice-
versa. We can analyze the situation by concentrating on the forces
that act on the leash, Fjy;, and F,7. According to Newton’s second
law, these relate to the leash’s mass and acceleration:

Fir, + Fyr, = mpar.

The leash is far less massive then any of the other objects involved,
and if my, is very small, then apparently the total force on the leash
is also very small, Fyr, + Fyr, ~ 0, and therefore

FdL ~ — yL-

Thus even though Newton’s third law does not apply directly to
these two forces, we can approximate the low-mass leash as if it was
not intervening between you and the dog. It’s at least approximately
as if you and the dog were acting directly on each other, in which
case Newton’s third law would have applied.
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In general, low-mass objects can be treated approximately as if
they simply transmitted forces from one object to another. This can
be true for strings, ropes, and cords, and also for rigid objects such
as rods and sticks.

v/ If we imagine dividing a taut rope up into small segments, then
any segment has forces pulling outward on it at each end. If the rope

is of negligible mass, then all the forces equal +T or —T, where T, the
tension, is a single number.

If you look at a piece of string under a magnifying glass as you
pull on the ends more and more strongly, you will see the fibers
straightening and becoming taut. Different parts of the string are
apparently exerting forces on each other. For instance, if we think of
the two halves of the string as two objects, then each half is exerting
a force on the other half. If we imagine the string as consisting of
many small parts, then each segment is transmitting a force to the
next segment, and if the string has very little mass, then all the
forces are equal in magnitude. We refer to the magnitude of the
forces as the tension in the string, 7.

The term “tension” refers only to internal forces within the
string. If the string makes forces on objects at its ends, then those
forces are typically normal or frictional forces (example 9).

w/The Golden Gate Bridge's
roadway is held up by the tension
in the vertical cables.
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Types of force made by ropes example 9
> Analyze the forces in figures x/1 and x/2.

> In all cases, a rope can only make “pulling” forces, i.e., forces
that are parallel to its own length and that are toward itself, not
away from itself. You can’t push with a rope!

In x/1, the rope passes through a type of hook, called a carabiner,
used in rock climbing and mountaineering. Since the rope can
only pull along its own length, the direction of its force on the
carabiner must be down and to the right. This is perpendicular to
the surface of contact, so the force is a normal force.

force acting on carabiner force related to it by Newton’s
third law
rope’s normal force on cara- | carabiner's normal force on
biner vV | rope i\
2 (There are presumably other forces acting on the carabiner from

other hardware above it.)

x / Example 9. The forces , .
between the rope and other In figure x/2, the rope can only exert a net force at its end that

objects are normal and frictional is parallel to itself and in the pulling direction, so its force on the

forces. hand is down and to the left. This is parallel to the surface of
contact, so it must be a frictional force. If the rope isn’t slipping
through the hand, we have static friction. Friction can’t exist with-
out normal forces. These forces are perpendicular to the surface
of contact. For simplicity, we show only two pairs of these normal
forces, as if the hand were a pair of pliers.

force acting on person force related to it by Newton’s
third law
rope’s static frictional force on | person’s static frictional force
person K | on rope A
rope’s normal force on | person’s normal force on
person N | rope \V
rope’s normal force on | person’s normal force on
person \ | rope N

(There are presumably other forces acting on the person as well,
such as gravity.)

If a rope goes over a pulley or around some other object, then
the tension throughout the rope is approximately equal so long as
the pulley has negligible mass and there is not too much friction. A
rod or stick can be treated in much the same way as a string, but
it is possible to have either compression or tension.

Discussion question

A When you step on the gas pedal, is your foot’s force being transmitted
in the sense of the word used in this section?
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Objects under strain

A string lengthens slightly when you stretch it. Similarly, we have
already discussed how an apparently rigid object such as a wall is
actually flexing when it participates in a normal force. In other
cases, the effect is more obvious. A spring or a rubber band visibly
elongates when stretched.

Common to all these examples is a change in shape of some kind:
lengthening, bending, compressing, etc. The change in shape can
be measured by picking some part of the object and measuring its
position, . For concreteness, let’s imagine a spring with one end
attached to a wall. When no force is exerted, the unfixed end of the
spring is at some position z,. If a force acts at the unfixed end, its
position will change to some new value of x. The more force, the
greater the departure of x from x,.

y / Defining the quantities F, x,
>| and X, in Hooke’s law.

>|

relaxed
spring

force F
being
applied

Back in Newton’s time, experiments like this were considered
cutting-edge research, and his contemporary Hooke is remembered
today for doing them and for coming up with a simple mathematical
generalization called Hooke’s law:

F =~ k(x —x,). [force required to stretch a spring; valid

for small forces only]

Here k is a constant, called the spring constant, that depends on
how stiff the object is. If too much force is applied, the spring
exhibits more complicated behavior, so the equation is only a good
approximation if the force is sufficiently small. Usually when the
force is so large that Hooke’s law is a bad approximation, the force
ends up permanently bending or breaking the spring.

Although Hooke’s law may seem like a piece of trivia about
springs, it is actually far more important than that, because all
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z / Example 10.

solid objects exert Hooke’s-law behavior over some range of suffi-
ciently small forces. For example, if you push down on the hood of
a car, it dips by an amount that is directly proportional to the force.
(But the car’s behavior would not be as mathematically simple if
you dropped a boulder on the hood!)

> Solved problem: Combining springs page 182, problem 14

> Solved problem: Young’s modulus page 182, problem 16
Discussion question

A Acaris connected to its axles through big, stiff springs called shock
absorbers, or “shocks.” Although we’ve discussed Hooke’s law above only
in the case of stretching a spring, a car’s shocks are continually going
through both stretching and compression. In this situation, how would
you interpret the positive and negative signs in Hooke’s law?

5.6 Simple Machines: the pulley

Even the most complex machines, such as cars or pianos, are built
out of certain basic units called simple machines. The following are
some of the main functions of simple machines:

transmitting a force: The chain on a bicycle transmits a force
from the crank set to the rear wheel.

changing the direction of a force: If you push down on a see-
saw, the other end goes up.

changing the speed and precision of motion: When you make
the “come here” motion, your biceps only moves a couple of
centimeters where it attaches to your forearm, but your arm
moves much farther and more rapidly.

changing the amount of force: A lever or pulley can be used
to increase or decrease the amount of force.

You are now prepared to understand one-dimensional simple ma-
chines, of which the pulley is the main example.

A pulley example 10
> Farmer Bill says this pulley arrangement doubles the force of
his tractor. Is he just a dumb hayseed, or does he know what he’s
doing?
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> To use Newton’s first law, we need to pick an object and con-
sider the sum of the forces on it. Since our goal is to relate the
tension in the part of the cable attached to the stump to the ten-
sion in the part attached to the tractor, we should pick an object
to which both those cables are attached, i.e., the pulley itself. The
tension in a string or cable remains approximately constant as it
passes around an idealized pulley. ! There are therefore two left-
ward forces acting on the pulley, each equal to the force exerted
by the tractor. Since the acceleration of the pulley is essentially
zero, the forces on it must be canceling out, so the rightward force
of the pulley-stump cable on the pulley must be double the force
exerted by the tractor. Yes, Farmer Bill knows what he’s talking
about.

' This was asserted in section 5.4 without proof. Essentially it holds because
of symmetry. E.g., if the U-shaped piece of rope in figure z had unequal tension
in its two legs, then this would have to be caused by some asymmetry between
clockwise and counterclockwise rotation. But such an asymmetry can only be
caused by friction or inertia, which we assume don’t exist.

Section 5.6  Simple Machines: the pulley
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Summary

Selected vocabulary

repulsive . . . ..

attractive

oblique . ... ..
normal force . . .

static friction . .

kinetic friction

fluid friction . . .

spring constant .

Notation

Summary

describes a force that tends to push the two
participating objects apart

describes a force that tends to pull the two
participating objects together

describes a force that acts at some other angle,
one that is not a direct repulsion or attraction
the force that keeps two objects from occupy-
ing the same space

a friction force between surfaces that are not
slipping past each other

a friction force between surfaces that are slip-
ping past each other

a gas or a liquid

a friction force in which at least one of the
object is is a fluid

the constant of proportionality between force
and elongation of a spring or other object un-
der strain

a normal force

a static frictional force

a kinetic frictional force

the coefficient of static friction; the constant of
proportionality between the maximum static
frictional force and the normal force; depends
on what types of surfaces are involved

the coefficient of kinetic friction; the constant
of proportionality between the kinetic fric-
tional force and the normal force; depends on
what types of surfaces are involved

the spring constant; the constant of propor-
tionality between the force exerted on an ob-
ject and the amount by which the object is
lengthened or compressed

Newton’s third law states that forces occur in equal and opposite
pairs. If object A exerts a force on object B, then object B must
simultaneously be exerting an equal and opposite force on object A.
Each instance of Newton’s third law involves exactly two objects,
and exactly two forces, which are of the same type.

There are two systems for classifying forces. We are presently
using the more practical but less fundamental one. In this system,
forces are classified by whether they are repulsive, attractive, or
oblique; whether they are contact or noncontact forces; and whether
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the two objects involved are solids or fluids.

Static friction adjusts itself to match the force that is trying to
make the surfaces slide past each other, until the maximum value is
reached,

Fs,max = psEn.

Once this force is exceeded, the surfaces slip past one another, and
kinetic friction applies,
Fr = piF'n.

Both types of frictional force are nearly independent of surface area,
and kinetic friction is usually approximately independent of the
speed at which the surfaces are slipping. The direction of the force
is in the direction that would tend to stop or prevent slipping.

A good first step in applying Newton’s laws of motion to any
physical situation is to pick an object of interest, and then to list
all the forces acting on that object. We classify each force by its
type, and find its Newton’s-third-law partner, which is exerted by
the object on some other object.

When two objects are connected by a third low-mass object,
their forces are transmitted to each other nearly unchanged.

Objects under strain always obey Hooke’s law to a good approx-
imation, as long as the force is small. Hooke’s law states that the
stretching or compression of the object is proportional to the force
exerted on it,

F~k(x—x,).

Summary
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Problem 1.

Problem 6.

Problem 7.
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Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 A little old lady and a pro football player collide head-on.
Compare their forces on each other, and compare their accelerations.
Explain.

2 The earth is attracted to an object with a force equal and
opposite to the force of the earth on the object. If this is true,
why is it that when you drop an object, the earth does not have an
acceleration equal and opposite to that of the object?

3 When you stand still, there are two forces acting on you,
the force of gravity (your weight) and the normal force of the floor
pushing up on your feet. Are these forces equal and opposite? Does
Newton’s third law relate them to each other? Explain.

In problems 4-8, analyze the forces using a table in the format shown
in section 5.3. Analyze the forces in which the italicized object par-
ticipates.

4 Some people put a spare car key in a little magnetic box that
they stick under the chassis of their car. Let’s say that the box is
stuck directly underneath a horizontal surface, and the car is parked.
(See instructions above.)

5 Analyze two examples of objects at rest relative to the earth
that are being kept from falling by forces other than the normal
force. Do not use objects in outer space, and do not duplicate
problem 4 or 8. (See instructions above.)

6 A person is rowing a boat, with her feet braced. She is doing
the part of the stroke that propels the boat, with the ends of the
oars in the water (not the part where the oars are out of the water).
(See instructions above.)

7 A farmer is in a stall with a cow when the cow decides to press
him against the wall, pinning him with his feet off the ground. An-
alyze the forces in which the farmer participates. (See instructions
above.)
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8 A propeller plane is cruising east at constant speed and alti-
tude. (See instructions above.)

9 Today’s tallest buildings are really not that much taller than
the tallest buildings of the 1940’s. One big problem with making an
even taller skyscraper is that every elevator needs its own shaft run-
ning the whole height of the building. So many elevators are needed
to serve the building’s thousands of occupants that the elevator
shafts start taking up too much of the space within the building.
An alternative is to have elevators that can move both horizontally
and vertically: with such a design, many elevator cars can share a
few shafts, and they don’t get in each other’s way too much because
they can detour around each other. In this design, it becomes im-
possible to hang the cars from cables, so they would instead have to
ride on rails which they grab onto with wheels. Friction would keep
them from slipping. The figure shows such a frictional elevator in
its vertical travel mode. (The wheels on the bottom are for when it
needs to switch to horizontal motion.)

(a) If the coefficient of static friction between rubber and steel is
ts, and the maximum mass of the car plus its passengers is M,
how much force must there be pressing each wheel against the rail
in order to keep the car from slipping? (Assume the car is not
accelerating.) v
(b) Show that your result has physically reasonable behavior with
respect to ps. In other words, if there was less friction, would the
wheels need to be pressed more firmly or less firmly? Does your
equation behave that way?

10 Unequal masses M and m are suspended from a pulley as
shown in the figure.

(a) Analyze the forces in which mass m participates, using a table
in the format shown in section 5.3. [The forces in which the other
mass participates will of course be similar, but not numerically the
same. |

(b) Find the magnitude of the accelerations of the two masses.
[Hints: (1) Pick a coordinate system, and use positive and nega-
tive signs consistently to indicate the directions of the forces and
accelerations. (2) The two accelerations of the two masses have to
be equal in magnitude but of opposite signs, since one side eats up
rope at the same rate at which the other side pays it out. (3) You
need to apply Newton’s second law twice, once to each mass, and
then solve the two equations for the unknowns: the acceleration, a,
and the tension in the rope, 7] v
(¢) Many people expect that in the special case of M = m, the two
masses will naturally settle down to an equilibrium position side by
side. Based on your answer from part b, is this correct?

(d) Find the tension in the rope, T v
(e) Interpret your equation from part d in the special case where one
of the masses is zero. Here “interpret” means to figure out what hap-
pens mathematically, figure out what should happen physically, and

Problem 8.

rubber wheel —
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car
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steel rail

Problem 9.

(o)

Problem 10.
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connect the two.

11 A tugboat of mass m pulls a ship of mass M, accelerating it.
The speeds are low enough that you can ignore fluid friction acting
on their hulls, although there will of course need to be fluid friction
acting on the tug’s propellers.

(a) Analyze the forces in which the tugboat participates, using a
table in the format shown in section 5.3. Don’t worry about vertical
forces.

(b) Do the same for the ship.

(c) If the force acting on the tug’s propeller is F', what is the tension,
T, in the cable connecting the two ships? [Hint: Write down two
equations, one for Newton’s second law applied to each object. Solve
these for the two unknowns 7" and a.] v
(d) Interpret your answer in the special cases of M = 0 and M = oc.

12 Someone tells you she knows of a certain type of Central
American earthworm whose skin, when rubbed on polished dia-
mond, has pg > ps. Why is this not just empirically unlikely but
logically suspect?

13 In the system shown in the figure, the pulleys on the left and
right are fixed, but the pulley in the center can move to the left or
right. The two masses are identical. Show that the mass on the left
will have an upward acceleration equal to g/5. Assume all the ropes
and pulleys are massless and frictionless.

14 The figure shows two different ways of combining a pair of
identical springs, each with spring constant k. We refer to the top
setup as parallel, and the bottom one as a series arrangement.

(a) For the parallel arrangement, analyze the forces acting on the
connector piece on the left, and then use this analysis to determine
the equivalent spring constant of the whole setup. Explain whether
the combined spring constant should be interpreted as being stiffer
or less stiff.

(b) For the series arrangement, analyze the forces acting on each
spring and figure out the same things. > Solution, p. 552

15 Generalize the results of problem 14 to the case where the
two spring constants are unequal.

16 (a) Using the solution of problem 14, which is given in the
back of the book, predict how the spring constant of a fiber will
depend on its length and cross-sectional area.

(b) The constant of proportionality is called the Young’s modulus,
E, and typical values of the Young’s modulus are about 10'0 to
10, What units would the Young’s modulus have in the SI (meter-
kilogram-second) system? > Solution, p. 552
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17 This problem depends on the results of problems 14 and
16, whose solutions are in the back of the book. When atoms form
chemical bonds, it makes sense to talk about the spring constant of
the bond as a measure of how “stiff” it is. Of course, there aren’t
really little springs — this is just a mechanical model. The purpose
of this problem is to estimate the spring constant, k, for a single
bond in a typical piece of solid matter. Suppose we have a fiber,
like a hair or a piece of fishing line, and imagine for simplicity that
it is made of atoms of a single element stacked in a cubical manner,
as shown in the figure, with a center-to-center spacing b. A typical
value for b would be about 10710 m.

(a) Find an equation for k in terms of b, and in terms of the Young’s
modulus, F, defined in problem 16 and its solution.

(b) Estimate k using the numerical data given in problem 16.

(c) Suppose you could grab one of the atoms in a diatomic molecule
like Hy or Oo, and let the other atom hang vertically below it. Does
the bond stretch by any appreciable fraction due to gravity?

18 In each case, identify the force that causes the acceleration,
and give its Newton’s-third-law partner. Describe the effect of the
partner force. (a) A swimmer speeds up. (b) A golfer hits the ball
off of the tee. (c¢) An archer fires an arrow. (d) A locomotive slows
down. > Solution, p. 552

19 Ginny has a plan. She is going to ride her sled while her dog
Foo pulls her, and she holds on to his leash. However, Ginny hasn’t
taken physics, so there may be a problem: she may slide right off
the sled when Foo starts pulling.

(a) Analyze all the forces in which Ginny participates, making a
table as in section 5.3.

(b) Analyze all the forces in which the sled participates.

(c) The sled has mass m, and Ginny has mass M. The coefficient
of static friction between the sled and the snow is pj, and po is
the corresponding quantity for static friction between the sled and
her snow pants. Ginny must have a certain minimum mass so that
she will not slip off the sled. Find this in terms of the other three
variables. v
(d) Interpreting your equation from part ¢, under what conditions
will there be no physically realistic solution for M? Discuss what
this means physically.

20 Example 2 on page 157 involves a person pushing a box up a
hill. The incorrect answer describes three forces. For each of these
three forces, give the force that it is related to by Newton’s third
law, and state the type of force. > Solution, p. 553

21 Example 10 on page 176 describes a force-doubling setup
involving a pulley. Make up a more complicated arrangement, using
two pulleys, that would multiply the force by four. The basic idea
is to take the output of one force doubler and feed it into the input

Problem 17.
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of a second one.

22 Pick up a heavy object such as a backpack or a chair, and
stand on a bathroom scale. Shake the object up and down. What
do you observe? Interpret your observations in terms of Newton’s
third law.

23 A cop investigating the scene of an accident measures the
length L of a car’s skid marks in order to find out its speed v at
the beginning of the skid. Express v in terms of L and any other
relevant variables. v

24  The following reasoning leads to an apparent paradox; explain
what’s wrong with the logic. A baseball player hits a ball. The ball
and the bat spend a fraction of a second in contact. During that
time they’re moving together, so their accelerations must be equal.
Newton’s third law says that their forces on each other are also
equal. But a = F/m, so how can this be, since their masses are
unequal? (Note that the paradox isn’t resolved by considering the
force of the batter’s hands on the bat. Not only is this force very
small compared to the ball-bat force, but the batter could have just
thrown the bat at the ball.)

25 This problem has been deleted.

26 (a) Compare the mass of a one-liter water bottle on earth,
on the moon, and in interstellar space. > Solution, p. 553
(b) Do the same for its weight.

27 An ice skater builds up some speed, and then coasts across
the ice passively in a straight line. (a) Analyze the forces, using a
table in the format shown in section 5.3.
(b) If his initial speed is v, and the coefficient of kinetic friction is py,
find the maximum theoretical distance he can glide before coming
to a stop. Ignore air resistance. v
(c) Show that your answer to part b has the right units.
(d) Show that your answer to part b depends on the variables in a
way that makes sense physically.
(e) Evaluate your answer numerically for u; = 0.0046, and a world-
record speed of 14.58 m/s. (The coefficient of friction was measured
by De Koning et al., using special skates worn by real speed skaters.)
v
(f) Comment on whether your answer in part e seems realistic. If it
doesn’t, suggest possible reasons why.
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28 Mountain climbers with masses m and M are roped together
while crossing a horizontal glacier when a vertical crevasse opens up
under the climber with mass M. The climber with mass m drops
down on the snow and tries to stop by digging into the snow with
the pick of an ice ax. Alas, this story does not have a happy ending,
because this doesn’t provide enough friction to stop. Both m and M
continue accelerating, with M dropping down into the crevasse and
m being dragged across the snow, slowed only by the kinetic friction
with coefficient pj acting between the ax and the snow. There is no
significant friction between the rope and the lip of the crevasse.

(a) Find the acceleration a. v
(b) Check the units of your result.

(c) Check the dependence of your equation on the variables. That
means that for each variable, you should determine what its effect
on a should be physically, and then what your answer from part a
says its effect would be mathematically.

29 The figure shows a column in the shape of a woman, holding

up the roof of part of the Parthenon. Analyze the forces in which

she participates, using a table in the format shown in section 5.3.
> Solution, p. 553

30 Problem 15, p. 150, which has a solution in the back of the
book, was an analysis of the forces acting on a rock climber being
lowered back down on the rope. Expand that analysis into a table
in the format shown in section 5.3, which includes the types of the
forces and their Newton’s-third-law partners.

31 The figure shows a man trying to push his car out of the mud.
(a) Suppose that he isn’t able to move the car. Analyze the forces
in which the car participates, using a table in the format shown in
section 5.3. (b) In the situation described above, consider the forces
that act on the car, and compare their strengths. (c) The man takes
a nap, eats some chocolate, and now feels stronger. Now he is able
to move the car, and the car is currently moving at constant speed.
Discuss the strengths of the forces at this time, in relation to one
another. (d) The man gets tired again. He is still pushing, but the
car, although still moving, begins to decelerate. Again, discuss the
strengths of the forces in relation to one another.
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32 The figure shows a mountaineer doing a vertical rappel. Her
anchor is a big boulder. The American Mountain Guides Association
suggests as a rule of thumb that in this situation, the boulder should
be at least as big as a refrigerator, and should be sitting on a surface
that is horizontal rather than sloping. The goal of this problem is
to estimate what coefficient of static friction g between the boulder
and the ledge is required if this setup is to hold the person’s body
weight. For comparison, reference books meant for civil engineers
building walls out of granite blocks state that granite on granite
typically has a pugs = 0.6. We expect the result of our calculation
to be much less than this, both because a large margin of safety
is desired and because the coefficient could be much lower if, for
example, the surface was sandy rather than clean. We will assume
that there is no friction where the rope goes over the lip of the cliff,
although in reality this friction significantly reduces the load on the
boulder.

(a) Let m be the mass of the climber, V' the volume of the boulder,
p its density, and g the strength of the gravitational field. Find the
minimum value of ps. v
(b) Show that the units of your answer make sense.

(c) Check that its dependence on the variables makes sense.

(d) Evaluate your result numerically. The volume of my refrigerator
is about 0.7 m?, the density of granite is about 2.7 g/cm3, and
standards bodies use a body mass of 80 kg for testing climbing
equipment. v

33 A toy manufacturer is playtesting teflon booties that slip
on over your shoes. In the parking lot, giggling engineers find that
when they start with an initial speed of 1.2 m/s, they glide for 2.0 m
before coming to a stop. What is the coefficient of friction between
the asphalt and the booties? V' [problem by B. Shotwell]

34 Blocks M and M, are stacked as shown, with Ms on top.
M> is connected by a string to the wall, and M; is pulled to the
right with a force F' big enough to get M; to move. The coefficient
of kinetic friction has the same value uj among all surfaces (i.e., the
block-block and ground-block interfaces).
(a) Analyze the forces in which each block participates, as in section
5.3.
(b) Determine the tension in the string. v
(c) Find the acceleration of the block of mass Mj.

V' [problem by B. Shotwell]

35 A person can pull with a maximum force F. What is the
maximum mass that the person can lift with the pulley setup shown
in the figure? V' [problem by B. Shotwell]
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36 Blocks of mass my and my rest, as shown in the figure, on a —> M1 |m, |l€«—
frictionless plane, and are squeezed by forces of magnitude £} and
Fy. Problem 36.
(a) Find the force f that acts between the two blocks. v

(b) Check that your answer makes sense in the symmetric case where
F1 = F2 and mi = my.

(c) Find the conditions under which your answer to part a gives
f =0, and check that it makes sense.
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Chapter 6

Newton’s Laws in Three
Dimensions

6.1 Forces have no perpendicular effects

Suppose you could shoot a rifle and arrange for a second bullet to
be dropped from the same height at the exact moment when the
first left the barrel. Which would hit the ground first? Nearly
everyone expects that the dropped bullet will reach the dirt first,
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and Aristotle would have agreed. Aristotle would have described it
like this. The shot bullet receives some forced motion from the gun.
It travels forward for a split second, slowing down rapidly because
there is no longer any force to make it continue in motion. Once
it is done with its forced motion, it changes to natural motion, i.e.
falling straight down. While the shot bullet is slowing down, the
dropped bullet gets on with the business of falling, so according to
Aristotle it will hit the ground first.

Aristotle
——————————————— - - - - - - - - - D -
q\
]
1
1
;
-_
Newton
______________ -—
nh""----
o

<— (horizontal scale reduced) ——

a/A bullet is shot from a gun, and another bullet is simultaneously dropped from the same height. 1.

Aristotelian physics says that the horizontal motion of the shot bullet delays the onset of falling, so the dropped
bullet hits the ground first. 2. Newtonian physics says the two bullets have the same vertical motion, regardless
of their different horizontal motions.

192

Luckily, nature isn’t as complicated as Aristotle thought! To
convince yourself that Aristotle’s ideas were wrong and needlessly
complex, stand up now and try this experiment. Take your keys
out of your pocket, and begin walking briskly forward. Without
speeding up or slowing down, release your keys and let them fall
while you continue walking at the same pace.

You have found that your keys hit the ground right next to your
feet. Their horizontal motion never slowed down at all, and the
whole time they were dropping, they were right next to you. The
horizontal motion and the vertical motion happen at the same time,
and they are independent of each other. Your experiment proves
that the horizontal motion is unaffected by the vertical motion, but
it’s also true that the vertical motion is not changed in any way by
the horizontal motion. The keys take exactly the same amount of
time to get to the ground as they would have if you simply dropped
them, and the same is true of the bullets: both bullets hit the ground
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simultaneously.

These have been our first examples of motion in more than one
dimension, and they illustrate the most important new idea that
is required to understand the three-dimensional generalization of
Newtonian physics:

Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the part of the
object’s motion that is perpendicular to the force.

In the examples above, the vertical force of gravity had no effect
on the horizontal motions of the objects. These were examples of
projectile motion, which interested people like Galileo because of
its military applications. The principle is more general than that,
however. For instance, if a rolling ball is initially heading straight
for a wall, but a steady wind begins blowing from the side, the ball
does not take any longer to get to the wall. In the case of projectile
motion, the force involved is gravity, so we can say more specifically
that the vertical acceleration is 9.8 m/s?, regardless of the horizontal
motion.

self-check A

In the example of the ball being blown sideways, why doesn’t the ball
take longer to get there, since it has to travel a greater distance? >
Answer, p. 566

Relationship to relative motion

These concepts are directly related to the idea that motion is rel-
ative. Galileo’s opponents argued that the earth could not possibly
be rotating as he claimed, because then if you jumped straight up in
the air you wouldn’t be able to come down in the same place. Their
argument was based on their incorrect Aristotelian assumption that
once the force of gravity began to act on you and bring you back
down, your horizontal motion would stop. In the correct Newtonian
theory, the earth’s downward gravitational force is acting before,
during, and after your jump, but has no effect on your motion in
the perpendicular (horizontal) direction.

If Aristotle had been correct, then we would have a handy way
to determine absolute motion and absolute rest: jump straight up
in the air, and if you land back where you started, the surface from
which you jumped must have been in a state of rest. In reality, this
test gives the same result as long as the surface under you is an
inertial frame. If you try this in a jet plane, you land back on the
same spot on the deck from which you started, regardless of whether
the plane is flying at 500 miles per hour or parked on the runway.
The method would in fact only be good for detecting whether the

Section 6.1  Forces have no perpendicular effects
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¢/ The shadow on the wall
shows the ball's y motion, the
shadow on the floor its x motion.

plane was accelerating.

Discussion questions

A The following is an incorrect explanation of a fact about target
shooting:

“Shooting a high-powered rifle with a high muzzle velocity is different from
shooting a less powerful gun. With a less powerful gun, you have to aim
quite a bit above your target, but with a more powerful one you don’t have
to aim so high because the bullet doesn’t drop as fast.”

Explain why it's incorrect. What is the correct explanation?

s

B You have thrown a rock, and it is flying through the air in an arc. If
the earth’s gravitational force on it is always straight down, why doesn't it
just go straight down once it leaves your hand?

Cc Consider the example of the bullet that is dropped at the same
moment another bullet is fired from a gun. What would the motion of the
two bullets look like to a jet pilot flying alongside in the same direction as
the shot bullet and at the same horizontal speed?

6.2 Coordinates and components

‘Cause we're all
Bold as love,
Just ask the axis.

Jimi Hendrix

How do we convert these ideas into mathematics? Figure b shows
a good way of connecting the intuitive ideas to the numbers. In one
dimension, we impose a number line with an x coordinate on a
certain stretch of space. In two dimensions, we imagine a grid of
squares which we label with x and y values, as shown in figure b.

But of course motion doesn’t really occur in a series of discrete
hops like in chess or checkers. Figure ¢ shows a way of conceptual-
izing the smooth variation of the z and y coordinates. The ball’s
shadow on the wall moves along a line, and we describe its position
with a single coordinate, y, its height above the floor. The wall
shadow has a constant acceleration of -9.8 m/s?. A shadow on the
floor, made by a second light source, also moves along a line, and we
describe its motion with an = coordinate, measured from the wall.
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b/ This object experiences a force that pulls it down toward the
bottom of the page. In each equal time interval, it moves three units to
the right. At the same time, its vertical motion is making a simple pattern
of +1, 0, —1, —2, —3, —4, ... units. Its motion can be described by an x
coordinate that has zero acceleration and a y coordinate with constant
acceleration. The arrows labeled x and y serve to explain that we are
defining increasing x to the right and increasing y as upward.

The velocity of the floor shadow is referred to as the x component
of the velocity, written v,. Similarly we can notate the acceleration
of the floor shadow as a,. Since v, is constant, a, is zero.

Similarly, the velocity of the wall shadow is called v,, its accel-
eration a,. This example has a, = —9.8 m/s?.

Because the earth’s gravitational force on the ball is acting along
the y axis, we say that the force has a negative y component, F,,
but F, = F, = 0.

The general idea is that we imagine two observers, each of whom
perceives the entire universe as if it was flattened down to a single
line. The y-observer, for instance, perceives y, vy, and a,, and will
infer that there is a force, F),, acting downward on the ball. That
is, a y component means the aspect of a physical phenomenon, such
as velocity, acceleration, or force, that is observable to someone who
can only see motion along the y axis.

All of this can easily be generalized to three dimensions. In the
example above, there could be a z-observer who only sees motion
toward or away from the back wall of the room.

Section 6.2  Coordinates and components
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V= A car going over a cliff example 1
. > The police find a car at a distance w = 20 m from the base of a
S cliff of height h = 100 m. How fast was the car going when it went

| X over the edge? Solve the problem symbolically first, then plug in
) the numbers.

\ > Let’s choose y pointing up and x pointing away from the cliff.
' The car’s vertical motion was independent of its horizontal mo-

' tion, so we know it had a constant vertical acceleration of a =
' —g = —9.8 m/s?. The time it spent in the air is therefore related

1 to the vertical distance it fell by the constant-acceleration equa-
tion

y
«— Ay = anAtz,

d/ Example 1. or

1 2
~h=5(-g)At.

Solving for At gives
2h

g

Since the vertical force had no effect on the car’s horizontal mo-

tion, it had ax = 0, i.e., constant horizontal velocity. We can apply
the constant-velocity equation

At =

y _Ax
X_Ata
ie.,
”o w
XTAL

We now substitute for At to find

vx=W/\/zgh,

9

2h

Plugging in numbers, we find that the car’s speed when it went
over the edge was 4 m/s, or about 10 mi/hr.

which simplifies to

VX=W

Projectiles move along parabolas.

What type of mathematical curve does a projectile follow through
space? To find out, we must relate x to y, eliminating ¢. The rea-
soning is very similar to that used in the example above. Arbitrarily
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choosing z =y =t = 0 to be at the top of the arc, we conveniently
have x = Az, y = Ay, and t = At, so
Lo
Y= §ayt
T = vt

(ay <0)

We solve the second equation for t = x/v, and eliminate ¢ in the

first equation:
2
1 T
=—a, | — | .
Y 2 <Ua?>

Since everything in this equation is a constant except for x and y,
we conclude that y is proportional to the square of x. As you may
or may not recall from a math class, y oc 2 describes a parabola.

> Solved problem: A cannon page 200, problem 5

Discussion question

A Atthe beginning of this section | represented the motion of a projec-
tile on graph paper, breaking its motion into equal time intervals. Suppose
instead that there is no force on the object at all. It obeys Newton’s first law
and continues without changing its state of motion. What would the corre-
sponding graph-paper diagram look like? If the time interval represented
by each arrow was 1 second, how would you relate the graph-paper dia-
gram to the velocity components v, and v, ?

B Make up several different coordinate systems oriented in different
ways, and describe the ay and a, of a falling object in each one.

6.3 Newton’s laws in three dimensions

It is now fairly straightforward to extend Newton’s laws to three
dimensions:

Newton’s first law
If all three components of the total force on an object are zero,
then it will continue in the same state of motion.

Newton’s second law
The components of an object’s acceleration are predicted by
the equations
Ay = F;r,total/my
ay = Fy total/m, and
Ay = z,total/m-
Newton’s third law

If two objects A and B interact via forces, then the compo-
nents of their forces on each other are equal and opposite:

FA on Byx — *FB on A,z
FA on B,y = _FB on Ay and
FA on B,z — _FB on A,z-

év

e / A parabola can be defined as
the shape made by cutting a cone
parallel to its side. A parabola is
also the graph of an equation of
the form y o x2.

f/Each water droplet follows

a parabola. The faster drops’
parabolas are bigger.

Fa e -

1 - direction
— > - of motion

g / Example 2.
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Forces in perpendicular directions on the same objectexample 2
> An object is initially at rest. Two constant forces begin acting on
it, and continue acting on it for a while. As suggested by the two
arrows, the forces are perpendicular, and the rightward force is
stronger. What happens?

> Aristotle believed, and many students still do, that only one force
can “give orders” to an object at one time. They therefore think
that the object will begin speeding up and moving in the direction
of the stronger force. In fact the object will move along a diagonal.
In the example shown in the figure, the object will respond to the
large rightward force with a large acceleration component to the
right, and the small upward force will give it a small acceleration
component upward. The stronger force does not overwhelm the
weaker force, or have any effect on the upward motion at all. The
force components simply add together:

0
Fx,tota/ = F1,x +%

0
Fy total = %+ Foy

Discussion question

A

The figure shows two trajectories, made by splicing together lines

and circular arcs, which are unphysical for an object that is only being
acted on by gravity. Prove that they are impossible based on Newton’s
laws.

® @
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Summary

Selected vocabulary
component . . . . the part of a velocity, acceleration, or force
that would be perceptible to an observer who
could only see the universe projected along a
certain one-dimensional axis
parabola . . . .. the mathematical curve whose graph has y
proportional to z2

Notation
Ty Yy 2 ooe e an object’s positions along the x, y, and z axes
Vg, Vy, Uz v v o - the z, y, and z components of an object’s ve-

locity; the rates of change of the object’s x, ,
and z coordinates

Az, Qy, Gz . . . . . the z, y, and z components of an object’s ac-
celeration; the rates of change of v,, vy, and
Uz

Summary

A force does not produce any effect on the motion of an object
in a perpendicular direction. The most important application of
this principle is that the horizontal motion of a projectile has zero
acceleration, while the vertical motion has an acceleration equal to g.
That is, an object’s horizontal and vertical motions are independent.
The arc of a projectile is a parabola.

Motion in three dimensions is measured using three coordinates,
x, y, and z. Each of these coordinates has its own corresponding
velocity and acceleration. We say that the velocity and acceleration
both have z, y, and z components

Newton’s second law is readily extended to three dimensions by
rewriting it as three equations predicting the three components of
the acceleration,

Oy = Fa;total/ma
Ay = Fy,total/ma

A, = Fz,total/ma

and likewise for the first and third laws.

Summary
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Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 (a) A ball is thrown straight up with velocity v. Find an
equation for the height to which it rises. v
(b) Generalize your equation for a ball thrown at an angle 6 above
horizontal, in which case its initial velocity components are v, =
vcosf and vy = vsind. v

2 At the 2010 Salinas Lettuce Festival Parade, the Lettuce Queen
drops her bouquet while riding on a float moving toward the right.
Sketch the shape of its trajectory in her frame of reference, and
compare with the shape seen by one of her admirers standing on
the sidewalk.

3 Two daredevils, Wendy and Bill, go over Niagara Falls. Wendy
sits in an inner tube, and lets the 30 km /hr velocity of the river throw
her out horizontally over the falls. Bill paddles a kayak, adding an
extra 10 km/hr to his velocity. They go over the edge of the falls
at the same moment, side by side. Ignore air friction. Explain your
reasoning.

(a) Who hits the bottom first?

(b) What is the horizontal component of Wendy’s velocity on im-
pact?

(c) What is the horizontal component of Bill’s velocity on impact?
(d) Who is going faster on impact?

4 A baseball pitcher throws a pitch clocked at v, = 73.3 miles/hour.
He throws horizontally. By what amount, d, does the ball drop by
the time it reaches home plate, L = 60.0 feet away?

(a) First find a symbolic answer in terms of L, v,, and g. v
(b) Plug in and find a numerical answer. Express your answer
in units of ft. (Note: 1 foot=12 inches, 1 mile=5280 feet, and 1
inch=2.54 cm) v

Problem 4. v, =73.3 mifhr

i ¥o1-

L=60.0 ft

5 A cannon standing on a flat field fires a cannonball with a
muzzle velocity v, at an angle 6 above horizontal. The cannonball
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thus initially has velocity components v, = v cosf and v, = vsin6.
(a) Show that the cannon’s range (horizontal distance to where the
cannonball falls) is given by the equation R = (2v?/g)sinf cos .
(b) Interpret your equation in the cases of § = 0 and 6 = 90°.

> Solution, p. 553

6 Assuming the result of problem 5 for the range of a projectile,
R = (20v%/g) sin @ cos 6, show that the maximum range is for § = 45°.

J

7 Two cars go over the same speed bump in a parking lot,
Maria’s Maserati at 25 miles per hour and Park’s Porsche at 37.
How many times greater is the vertical acceleration of the Porsche?
Hint: Remember that acceleration depends both on how much the
velocity changes and on how much time it takes to change. Vv

8 You’re running off a cliff into a pond. The cliff is h = 5.0 m

above the water, but the cliff is not strictly vertical; it slopes down

to the pond at an angle of § = 20° with respect to the vertical. You

want to find the minimum speed you need to jump off the cliff in

order to land in the water.

(a) Find a symbolic answer in terms of h, 6, and g. v

(b) Check that the units of your answer to part a make sense.

(c) Check that the dependence on the variables g, h, and 6 makes

sense, and check the special cases § = 0 and 6 = 90°.

(d) Plug in numbers to find the numerical result. v
[problem by B. Shotwell]

9 Two footballs, one white and one green, are on the ground and
kicked by two different footballers. The white ball, which is kicked
straight upward with initial speed vg, rises to height H. The green
ball is hit with twice the initial speed but reaches the same height.
(a) What is the y-component of the green ball’s initial velocity vec-
tor? Give your answer in terms of vy alone. v
(b) Which ball is in the air for a longer amount of time?

(c) What is the range of the green ball? Your answer should only
depend on H. V' [problem by B. Shotwell]

10 This problem is now problem 26 on p. 238.

11 The figure shows a vertical cross-section of a cylinder. A gun
at the top shoots a bullet horizontally. What is the minimum speed
at which the bullet must be shot in order to completely clear the
cylinder? *

Problem 8.

Problem 11.

Problems
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a / Vectors are used in aerial nav-
igation.

Chapter 7
Vectors

7.1 Vector notation

The idea of components freed us from the confines of one-dimensional
physics, but the component notation can be unwieldy, since every
one-dimensional equation has to be written as a set of three separate
equations in the three-dimensional case. Newton was stuck with the
component notation until the day he died, but eventually someone
sufficiently lazy and clever figured out a way of abbreviating three
equations as one.

FAonB,m = _FBonA,m
(a) ?A on B — _?B on A stands for  Fa on By — —FB on Ay
FAonB,z = _FBonA,z

Ftotal,z = Fl,;c + F2,x 4+ ...
(b) ?total = ?1 =+ ?2 +... stands for Figpaly = F1y + Foy + ...
Ftotal,z = Fl,z + FQ,Z + ...

a; = Avg /At
(c) = % stands for a, = Av, /At
a, = Av, /At

Example (a) shows both ways of writing Newton’s third law. Which
would you rather write?
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The idea is that each of the algebra symbols with an arrow writ-
ten on top, called a vector, is actually an abbreviation for three
different numbers, the x, y, and z components. The three compo-
nents are referred to as the components of the vector, e.g., F}, is the
x component of the vector F'. The notation with an arrow on top
is good for handwritten equations, but is unattractive in a printed
book, so books use boldface, F, to represent vectors. After this
point, I'll use boldface for vectors throughout this book.

Quantities can be classified as vectors or scalars. In a phrase like
a _____ to the northeast,” it makes sense to fill in the blank with
“force” or “velocity,” which are vectors, but not with “mass” or
“time,” which are scalars. Any nonzero vector has both a direction
and an amount. The amount is called its magnitude. The notation
for the magnitude of a vector A is |A], like the absolute value sign
used with scalars.

[13

Often, as in example (b), we wish to use the vector notation to
represent adding up all the x components to get a total x component,
etc. The plus sign is used between two vectors to indicate this type
of component-by-component addition. Of course, vectors are really
triplets of numbers, not numbers, so this is not the same as the use
of the plus sign with individual numbers. But since we don’t want to
have to invent new words and symbols for this operation on vectors,
we use the same old plus sign, and the same old addition-related
words like “add,” “sum,” and “total.” Combining vectors this way
is called vector addition.

Similarly, the minus sign in example (a) was used to indicate
negating each of the vector’s three components individually. The
equals sign is used to mean that all three components of the vector
on the left side of an equation are the same as the corresponding
components on the right.

Example (c¢) shows how we abuse the division symbol in a similar
manner. When we write the vector Av divided by the scalar At,
we mean the new vector formed by dividing each one of the velocity
components by At.

It’s not hard to imagine a variety of operations that would com-
bine vectors with vectors or vectors with scalars, but only four of
them are required in order to express Newton’s laws:
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operation definition

vector + vector Add component by component to
make a new set of three numbers.

vector — vector Subtract component by component
to make a new set of three numbers.

vector - scalar Multiply each component of the vec-
tor by the scalar.
vector /scalar Divide each component of the vector

by the scalar.

As an example of an operation that is not useful for physics, there
just aren’t any useful physics applications for dividing a vector by
another vector component by component. In optional section 7.5,
we discuss in more detail the fundamental reasons why some vector
operations are useful and others useless.

We can do algebra with vectors, or with a mixture of vectors
and scalars in the same equation. Basically all the normal rules of
algebra apply, but if you’re not sure if a certain step is valid, you
should simply translate it into three component-based equations and
see if it works.

Order of addition example 1
> If we are adding two force vectors, F + G, is it valid to assume
as in ordinary algebra that F + G is the same as G + F?

> To tell if this algebra rule also applies to vectors, we simply
translate the vector notation into ordinary algebra notation. In
terms of ordinary numbers, the components of the vector F + G
would be Fy + Gx, Fy, + Gy, and F; + G, which are certainly the
same three numbers as Gy + Fx, Gy + F,, and G; + F;. Yes, F+ G
is the same as G + F.

It is useful to define a symbol r for the vector whose components
are x, ¥, and z, and a symbol Ar made out of Az, Ay, and Az.

Although this may all seem a little formidable, keep in mind that
it amounts to nothing more than a way of abbreviating equations!
Also, to keep things from getting too confusing the remainder of this
chapter focuses mainly on the Ar vector, which is relatively easy to
visualize.

self-check A

Translate the equations v, = Ax/At, v, = Ay/At, and v, = Az/At for
motion with constant velocity into a single equation in vector notation.
> Answer, p. 566

Section 7.1

Vector notation
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y component
(negative)

el

—
X component

(positive)

~—

X

b/The x and y components

of a vector ¢
the shadows
and y axes.

an be thought of as
it casts onto the x

Q

c / Self-check B.

d/A playing card returns to

its original st
180 degrees.
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ate when rotated by

Drawing vectors as arrows

A vector in two dimensions can be easily visualized by drawing
an arrow whose length represents its magnitude and whose direction
represents its direction. The z component of a vector can then be
visualized as the length of the shadow it would cast in a beam of
light projected onto the = axis, and similarly for the y component.
Shadows with arrowheads pointing back against the direction of the
positive axis correspond to negative components.

In this type of diagram, the negative of a vector is the vector
with the same magnitude but in the opposite direction. Multiplying
a vector by a scalar is represented by lengthening the arrow by that
factor, and similarly for division.

self-check B

Given vector Q represented by an arrow in figure c, draw arrows repre-
senting the vectors 1.5Q and —Q. > Answer, p.
566

This leads to a way of defining vectors and scalars that reflects
how physicists think in general about these things:

definition of vectors and scalars
A general type of measurement (force, velocity, ...) is a vector if it
can be drawn as an arrow so that rotating the paper produces the
same result as rotating the actual quantity. A type of quantity that
never changes at all under rotation is a scalar.

For example, a force reverses itself under a 180-degree rotation,
but a mass doesn’t. We could have defined a vector as something
that had both a magnitude and a direction, but that would have left
out zero vectors, which don’t have a direction. A zero vector is a
legitimate vector, because it behaves the same way under rotations
as a zero-length arrow, which is simply a dot.

A remark for those who enjoy brain-teasers: not everything is
a vector or a scalar. An American football is distorted compared
to a sphere, and we can measure the orientation and amount of
that distortion quantitatively. The distortion is not a vector, since
a 180-degree rotation brings it back to its original state. Something
similar happens with playing cards, figure d. For some subatomic
particles, such as electrons, 360 degrees isn’t even enough; a 720-
degree rotation is needed to put them back the way they were!

Discussion questions

A You drive to your friend’s house. How does the magnitude of your Ar
vector compare with the distance you’ve added to the car’s odometer?
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Calculations with magnitude and direction

If you ask someone where Las Vegas is compared to Los Angeles,
they are unlikely to say that the Az is 290 km and the Ay is 230
km, in a coordinate system where the positive x axis is east and the
y axis points north. They will probably say instead that it’s 370
km to the northeast. If they were being precise, they might give the
direction as 38° counterclockwise from east. In two dimensions, we
can always specify a vector’s direction like this, using a single angle.
A magnitude plus an angle suffice to specify everything about the
vector. The following two examples show how we use trigonometry
and the Pythagorean theorem to go back and forth between the x—y
and magnitude-angle descriptions of vectors.

Finding magnitude and angle from components example 2
> Given that the Ar vector from LA to Las Vegas has Ax = 290 km
and Ay = 230 km, how would we find the magnitude and direction
of Ar?

> We find the magnitude of Ar from the Pythagorean theorem:
|Ar| = \/ AX2 + Ay?
=370 km

We know all three sides of the triangle, so the angle 6 can be
found using any of the inverse trig functions. For example, we
know the opposite and adjacent sides, so

0 = tan—1 &Y
= 38°.
Finding components from magnitude and angle example 3

> Given that the straight-line distance from Los Angeles to Las
Vegas is 370 km, and that the angle 6 in the figure is 38°, how
can the x and y components of the Ar vector be found?

> The sine and cosine of 6 relate the given information to the
information we wish to find:

cos 0 = ﬂ
~ |Ar]

. Ay
sind = ——
| Ar|

Solving for the unknowns gives

Ax = |Ar| cos 0
=290 km and
Ay = |Ar|sin®
=230 km.

Las V egas
-
\
|Ar \\
A\ANG
0
B Ax

Los
Angeles

e / Examples 2 and 3.
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The following example shows the correct handling of the plus

and minus signs, which is usually the main cause of mistakes.

Los
Angeles

Ax

: San Di
(negative) an Diego

f/ Example 4.
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Negative components example 4
> San Diego is 120 km east and 150 km south of Los Angeles. An
airplane pilot is setting course from San Diego to Los Angeles. At
what angle should she set her course, measured counterclock-
wise from east, as shown in the figure?

> If we make the traditional choice of coordinate axes, with x
pointing to the right and y pointing up on the map, then her Ax is
negative, because her final x value is less than her initial x value.
Her Ay is positive, so we have

Ax = —120 km
Ay = 150 km.

If we work by analogy with example 2, we get

_1 Ay

- 128Y

0 =tan Ax
=tan~'(-1.25)
= -51°,

According to the usual way of defining angles in trigonometry,
a negative result means an angle that lies clockwise from the x
axis, which would have her heading for the Baja California. What
went wrong? The answer is that when you ask your calculator to
take the arctangent of a number, there are always two valid pos-
sibilities differing by 180°. That is, there are two possible angles
whose tangents equal -1.25:

tan129° = —1.25
tan —51° = —-1.25

You calculator doesn’'t know which is the correct one, so it just
picks one. In this case, the one it picked was the wrong one, and
it was up to you to add 180°to it to find the right answer.



'A shortcut example 5
> A split second after nine o’clock, the hour hand on a clock dial
has moved clockwise past the nine-o’clock position by some im-
perceptibly small angle ¢. Let positive x be to the right and posi-
tive y up. If the hand, with length ¢, is represented by a Ar vector g/ Example 5.
going from the dial’s center to the tip of the hand, find this vector’s

AX.

> The following shortcut is the easiest way to work out examples
like these, in which a vector’s direction is known relative to one
of the axes. We can tell that Ar will have a large, negative x
component and a small, positive y. Since Ax < 0, there are
really only two logical possibilities: either Ax = —¢cos ¢, or Ax =
—¢sind. Because ¢ is small, cos ¢ is large and sin ¢ is small.
We conclude that Ax = —£cos ¢.

A typical application of this technique to force vectors is given in
example 6 on p. 226.

Discussion question

A In example 4, we dealt with components that were negative. Does it
make sense to classify vectors as positive and negative?
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Las Vegas

Los

Angeles
San Diego
h / Example 6.
A+B
A

A
al sl
B
i / Vectors can be added graph-
ically by placing them tip to tail,
and then drawing a vector from

the tail of the first vector to the tip
of the second vector.
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Techniques for adding vectors

Vector addition is one of the three essential mathematical skills,
summarized on pp.545-546, that you need for success in this course.

Addition of vectors given their components

The easiest type of vector addition is when you are in possession
of the components, and want to find the components of their sum.

Adding components example 6
> Given the Ax and Ay values from the previous examples, find
the Ax and Ay from San Diego to Las Vegas.

>

AXtotal = AX1 + AXz
= —120 km + 290 km
=170 km

AYiotal = Ay1 + Ayo
=150 km + 230 km

=380

Note how the signs of the x components take care of the west-
ward and eastward motions, which partially cancel.

Addition of vectors given their magnitudes and directions

In this case, you must first translate the magnitudes and di-
rections into components, and the add the components. In our San
Diego-Los Angeles-Las Vegas example, we can simply string together
the preceding examples; this is done on p. 546.

Graphical addition of vectors

Often the easiest way to add vectors is by making a scale drawing
on a piece of paper. This is known as graphical addition, as opposed
to the analytic techniques discussed previously. (It has nothing to
do with = — y graphs or graph paper. “Graphical” here simply
means drawing. It comes from the Greek verb “grapho,” to write,
like related English words including “graphic.”)
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LA to Vegas, graphically example 7
> Given the magnitudes and angles of the Ar vectors from San
Diego to Los Angeles and from Los Angeles to Las Vegas, find
the magnitude and angle of the Ar vector from San Diego to Las
Vegas.

> Using a protractor and a ruler, we make a careful scale draw-
ing, as shown in figure j. The protractor can be conveniently
aligned with the blue rules on the notebook paper. A scale of
1 mm — 2 km was chosen for this solution because it was as big
as possible (for accuracy) without being so big that the drawing
wouldn’t fit on the page. With a ruler, we measure the distance
from San Diego to Las Vegas to be 206 mm, which corresponds
to 412 km. With a protractor, we measure the angle 6 to be 65°.

a Las\,eg%\ j/ Example 7.
S/
O S
pd /
pd /
Ny /
Ny /
yd /
pd /
yd /5
o /¥
Los K\ /
Angeles\ /
\ /
N\ /
AN /
@,\\ //
O N A,
N\ oo
\_ San Diego X-22..1... )

Even when we don’t intend to do an actual graphical calculation
with a ruler and protractor, it can be convenient to diagram the
addition of vectors in this way. With Ar vectors, it intuitively makes
sense to lay the vectors tip-to-tail and draw the sum vector from the
tail of the first vector to the tip of the second vector. We can do
the same when adding other vectors such as force vectors.

self-check C

How would you subtract vectors graphically? > Answer, p. 566

Section 7.3 Techniques for adding vectors
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Discussion questions

A If youre doing graphical addition of vectors, does it matter which
vector you start with and which vector you start from the other vector's
tip?

B If you add a vector with magnitude 1 to a vector of magnitude 2,
what magnitudes are possible for the vector sum?

Cc Which of these examples of vector addition are correct, and which
are incorrect?

A+B B A+B \e
27 8

* Unit vector notation

When we want to specify a vector by its components, it can be cum-
bersome to have to write the algebra symbol for each component:

Az =290 km, Ay = 230 km
A more compact notation is to write
Ar = (290 km)x + (230 km)y,

where the vectors X, ¥, and z, called the unit vectors, are defined
as the vectors that have magnitude equal to 1 and directions lying
along the z, y, and z axes. In speech, they are referred to as “x-hat”
and so on.

A slightly different, and harder to remember, version of this
notation is unfortunately more prevalent. In this version, the unit
vectors are called i, j, and k:

Ar = (290 km)i + (230 km)j.

Chapter 7 Vectors



* Rotational invariance

Let’s take a closer look at why certain vector operations are use-
ful and others are not. Consider the operation of multiplying two
vectors component by component to produce a third vector:

Rz = PxQx
Ry = P,Qy

As a simple example, we choose vectors P and Q to have length
1, and make them perpendicular to each other, as shown in figure
k/1. If we compute the result of our new vector operation using the
coordinate system in k/2, we find:

Ry, =0
R,=0
R, =0.

The x component is zero because P, = 0, the y component is zero
because (), = 0, and the z component is of course zero because
both vectors are in the x — y plane. However, if we carry out the
same operations in coordinate system k/3, rotated 45 degrees with
respect to the previous one, we find

R, =1/2
R, =—1/2
R. =0.

The operation’s result depends on what coordinate system we use,
and since the two versions of R have different lengths (one being zero
and the other nonzero), they don’t just represent the same answer
expressed in two different coordinate systems. Such an operation
will never be useful in physics, because experiments show physics
works the same regardless of which way we orient the laboratory
building! The useful vector operations, such as addition and scalar
multiplication, are rotationally invariant, i.e., come out the same
regardless of the orientation of the coordinate system.

Calibrating an electronic compass example 8
Some smart phones and GPS units contain electronic compasses
that can sense the direction of the earth’s magnetic field vector,
notated B. Because all vectors work according to the same rules,
you don’t need to know anything special about magnetism in or-
der to understand this example. Unlike a traditional compass that
uses a magnetized needle on a bearing, an electronic compass
has no moving parts. It contains two sensors oriented perpendic-
ular to one another, and each sensor is only sensitive to the com-
ponent of the earth’s field that lies along its own axis. Because a

A
p
Q
1
y
X
2
y X
3

k 7/ Component-by-component
multiplication of the vectors in 1
would produce different vectors
in coordinate systems 2 and 3.
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choice of coordinates is arbitrary, we can take one of these sen-
sors as defining the x axis and the other the y. Given the two
components By and By, the device’s computer chip can compute
the angle of magnetic north relative to its sensors, tan~"(B,/By).

All compasses are vulnerable to errors because of nearby mag-
netic materials, and in particular it may happen that some part
of the compass’s own housing becomes magnetized. In an elec-
tronic compass, rotational invariance provides a convenient way
of calibrating away such effects by having the user rotate the de-
vice in a horizontal circle.

Suppose that when the compass is oriented in a certain way, it
measures By = 1.00 and B, = 0.00 (in certain units). We then
expect that when it is rotated 90 degrees clockwise, the sensors
will detect By = 0.00 and B, = 1.00.

But imagine instead that we get By = 0.20 and B, = 0.80. This
would violate rotational invariance, since rotating the coordinate
system is supposed to give a different description of the same
vector. The magnitude appears to have changed from 1.00 to
v/0.202 + 0.802 = 0.82, and a vector can’'t change its magnitude
just because you rotate it. The compass’s computer chip figures
out that some effect, possibly a slight magnetization of its hous-
ing, must be adding an erroneous 0.2 units to all the By readings,
because subtracting this amount from all the B, values gives vec-
tors that have the same magnitude, satisfying rotational invari-
ance.



Summary
Selected vocabulary

vector . . .. ... a quantity that has both an amount (magni-
tude) and a direction in space

magnitude . . . . the “amount” associated with a vector

scalar . ... ... a quantity that has no direction in space, only
an amount

Notation

A ... a vector with components A;, A,, and A,

X ......... handwritten notation for a vector

A ..o the magnitude of vector A

R the vector whose components are z, y, and z

Ar. ... ... .. the vector whose components are Az, Ay, and
Az

XV, Z ... .. (optional topic) unit vectors; the vectors with
magnitude 1 lying along the x, y, and z axes

Ly k... .. a harder to remember notation for the unit
vectors

Other terminology and notation
displacement vec- a name for the symbol Ar

tor. . .... ...
speed . ... ... the magnitude of the velocity vector, i.e., the
velocity stripped of any information about its
direction
Summary

A vector is a quantity that has both a magnitude (amount) and
a direction in space, as opposed to a scalar, which has no direction.
The vector notation amounts simply to an abbreviation for writing
the vector’s three components.

In two dimensions, a vector can be represented either by its two
components or by its magnitude and direction. The two ways of
describing a vector can be related by trigonometry.

The two main operations on vectors are addition of a vector to
a vector, and multiplication of a vector by a scalar.

Vector addition means adding the components of two vectors
to form the components of a new vector. In graphical terms, this
corresponds to drawing the vectors as two arrows laid tip-to-tail and
drawing the sum vector from the tail of the first vector to the tip
of the second one. Vector subtraction is performed by negating the
vector to be subtracted and then adding.

Multiplying a vector by a scalar means multiplying each of its
components by the scalar to create a new vector. Division by a
scalar is defined similarly.

Summary
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Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 The figure shows vectors A and B. Graphically calculate
the following, as in figure i on p. 210, self-check C on p. 211, and

A self-check B on p. 206.
A+B,A-B, B-—A, -2B, A-2B
— .
No numbers are involved.
B
Problem 1.

2 Phnom Penh is 470 km east and 250 km south of Bangkok.
Hanoi is 60 km east and 1030 km north of Phnom Penbh.

(a) Choose a coordinate system, and translate these data into Ax
and Ay values with the proper plus and minus signs.

(b) Find the components of the Ar vector pointing from Bangkok
to Hanoi. v

3 If you walk 35 km at an angle 25° counterclockwise from east,
and then 22 km at 230° counterclockwise from east, find the distance
and direction from your starting point to your destination. v

4 A machinist is drilling holes in a piece of aluminum according
to the plan shown in the figure. She starts with the top hole, then
moves to the one on the left, and then to the one on the right. Since
this is a high-precision job, she finishes by moving in the direction
and at the angle that should take her back to the top hole, and
checks that she ends up in the same place. What are the distance
Problem 4. and direction from the right-hand hole to the top one? v

216 Chapter 7 Vectors



5 Suppose someone proposes a new operation in which a vector
A and a scalar B are added together to make a new vector C like
this:

Co=A,+ B
C,=A,+B
C.=A.+B

Prove that this operation won’t be useful in physics, because it’s
not rotationally invariant.

Problems
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Tue Morse 1IN MoTion.

MUYBRIDGE

Chapter 8
Vectors and Motion

In 1872, capitalist and former California governor Leland Stanford
asked photographer Eadweard Muybridge if he would work for him
on a project to settle a $25,000 bet (a princely sum at that time).
Stanford’s friends were convinced that a trotting horse always had
at least one foot on the ground, but Stanford claimed that there was
a moment during each cycle of the motion when all four feet were
in the air. The human eye was simply not fast enough to settle the
question. In 1878, Muybridge finally succeeded in producing what
amounted to a motion picture of the horse, showing conclusively
that all four feet did leave the ground at one point. (Muybridge was
a colorful figure in San Francisco history, and his acquittal for the
murder of his wife’s lover was considered the trial of the century in
California.)

The losers of the bet had probably been influenced by Aris-
totelian reasoning, for instance the expectation that a leaping horse
would lose horizontal velocity while in the air with no force to push
it forward, so that it would be more efficient for the horse to run
without leaping. But even for students who have converted whole-

e 8 g 3 0 I W g T 3.0 M3l 1)
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heartedly to Newtonianism, the relationship between force and ac-
celeration leads to some conceptual difficulties, the main one being
a problem with the true but seemingly absurd statement that an
object can have an acceleration vector whose direction is not the
same as the direction of motion. The horse, for instance, has nearly
constant horizontal velocity, so its a, is zero. But as anyone can tell
you who has ridden a galloping horse, the horse accelerates up and
down. The horse’s acceleration vector therefore changes back and
forth between the up and down directions, but is never in the same
direction as the horse’s motion. In this chapter, we will examine
more carefully the properties of the velocity, acceleration, and force
vectors. No new principles are introduced, but an attempt is made
to tie things together and show examples of the power of the vector
formulation of Newton’s laws.

a/The racing  greyhound's The velocity vector

velocity vector is in the direction

of its motion, i.e., tangent to its For motion with constant velocity, the velocity vector is
curved path. v = Ar/At. [only for constant velocity]

The Ar vector points in the direction of the motion, and dividing

it by the scalar At only changes its length, not its direction, so the

velocity vector points in the same direction as the motion. When the
I velocity is not constant, i.e., when the x — ¢, y — ¢, and z — ¢ graphs

are not all linear, we use the slope-of-the-tangent-line approach to

define the components v, vy, and v,, from which we assemble the

velocity vector. Even when the velocity vector is not constant, it
Vi —> still points along the direction of motion.

Vector addition is the correct way to generalize the one-dimensional
concept of adding velocities in relative motion, as shown in the fol-

Ve lowing example:

W
Velocity vectors in relative motion example 1

6 > You wish to cross a river and arrive at a dock that is directly

i across from you, but the river's current will tend to carry you

downstream. To compensate, you must steer the boat at an an-
gle. Find the angle 0, given the magnitude, |vyy,|, of the water’s
velocity relative to the land, and the maximum speed, |vgy/|, of
which the boat is capable relative to the water.

> The boat’s velocity relative to the land equals the vector sum of
its velocity with respect to the water and the water’s velocity with

y
respect to the land,
Ve =Vpw +VwiL-
x If the boat is to travel straight across the river, i.e., along the y

axis, then we need to have vp, x = 0. This x component equals
b / Example 1. the sum of the x components of the other two vectors,

VeLx =VBw,x + VWL, x,
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or

0= —|VBW’ sind + |VW1_|.

Solving for 6, we find sin® = |V |/|VBw|, SO

0 = gin—1 Vwil
IVaw|
> Solved problem: Annie Oakley page 234, problem 8
Discussion questions
A Is it possible for an airplane to maintain a constant velocity vector

but not a constant |v|? How about the opposite — a constant |v| but not a
constant velocity vector? Explain.

B New York and Rome are at about the same latitude, so the earth’s
rotation carries them both around nearly the same circle. Do the two cities
have the same velocity vector (relative to the center of the earth)? If not,
is there any way for two cities to have the same velocity vector?

The acceleration vector

When the acceleration is constant, we can define the acceleration
vector as

a= Av/At, [only for constant acceleration]
which can be written in terms of initial and final velocities as
a=(vy—v;)/At. [only for constant acceleration]

Otherwise, we can use the type of graphical definition described in
section 8.1 for the velocity vector.

Now there are two ways in which we could have a nonzero accel-
eration. Either the magnitude or the direction of the velocity vector
could change. This can be visualized with arrow diagrams as shown
in figures ¢ and d. Both the magnitude and direction can change
simultaneously, as when a car accelerates while turning. Only when
the magnitude of the velocity changes while its direction stays con-
stant do we have a Awv vector and an acceleration vector along the
same line as the motion.

self-check A

(1) In figure c, is the object speeding up, or slowing down? (2) What
would the diagram look like if v; was the same as v;? (3) Describe how
the Av vector is different depending on whether an object is speeding
up or slowing down. > Answer, p. 566

c/A change

in the magni-

tude of the velocity vector implies

an acceleration.

d/A change
of the velocity

in the direction
vector also pro-

duces a nonzero Av vector, and
thus a nonzero acceleration

vector, Av/At.

Section 8.2 The acceleration vector
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The acceleration vector points in the direction that an accelerom-
eter would point, as in figure e.

e/ The car has just swerved to
the right. The air freshener hang-
ing from the rear-view mirror acts
as an accelerometer, showing
that the acceleration vector is to
the right.

self-check B
In projectile motion, what direction does the acceleration vector have?
> Answer, p. 566

velocity acceleration force
“\‘ ~ « «
: \ . <
! . -
<« «
i /‘QA < <
\ « «
l y <
<«
i = -,

f/ Example 2.

' Rappelling example 2
In figure f, the rappeller's velocity has long periods of gradual
change interspersed with short periods of rapid change. These
correspond to periods of small acceleration and force, and peri-
ods of large acceleration and force.
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Av points down = ——"" ——— 1 Avpointsup

g/ Example 3.

The galloping horse example 3
Figure g on page 223 shows outlines traced from the first, third,
fifth, seventh, and ninth frames in Muybridge’s series of pho-
tographs of the galloping horse. The estimated location of the
horse’s center of mass is shown with a circle, which bobs above
and below the horizontal dashed line.

If we don’t care about calculating velocities and accelerations in
any particular system of units, then we can pretend that the time
between frames is one unit. The horse’s velocity vector as it
moves from one point to the next can then be found simply by
drawing an arrow to connect one position of the center of mass to
the next. This produces a series of velocity vectors which alter-
nate between pointing above and below horizontal.

The Av vector is the vector which we would have to add onto one
velocity vector in order to get the next velocity vector in the series.
The Av vector alternates between pointing down (around the time
when the horse is in the air, B) and up (around the time when the
horse has two feet on the ground, D).
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h / Example 4.

224

Discussion questions

A When a car accelerates, why does a bob hanging from the rearview
mirror swing toward the back of the car? Is it because a force throws it
backward? If so, what force? Similarly, describe what happens in the
other cases described above.

B Superman is guiding a crippled spaceship into port. The ship’s
engines are not working. If Superman suddenly changes the direction of
his force on the ship, does the ship’s velocity vector change suddenly? lIts
acceleration vector? lts direction of motion?

The force vector and simple machines

Force is relatively easy to intuit as a vector. The force vector points
in the direction in which it is trying to accelerate the object it is
acting on.

Since force vectors are so much easier to visualize than accel-
eration vectors, it is often helpful to first find the direction of the
(total) force vector acting on an object, and then use that to find
the direction of the acceleration vector. Newton’s second law tells
us that the two must be in the same direction.

A component of a force vector example 4
Figure h, redrawn from a classic 1920 textbook, shows a boy
pulling another child on a sled. His force has both a horizontal
component and a vertical one, but only the horizontal one accel-
erates the sled. (The vertical component just partially cancels the
force of gravity, causing a decrease in the normal force between
the runners and the snow.) There are two triangles in the figure.
One triangle’s hypotenuse is the rope, and the other’s is the mag-
nitude of the force. These triangles are similar, so their internal
angles are all the same, but they are not the same triangle. One
is a distance triangle, with sides measured in meters, the other
a force triangle, with sides in newtons. In both cases, the hori-
zontal leg is 93% as long as the hypotenuse. It does not make
sense, however, to compare the sizes of the triangles — the force
triangle is not smaller in any meaningful sense.
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Pushing a block up a ramp example 5
> Figure i shows a block being pushed up a frictionless ramp at
constant speed by an externally applied force F4. How much
force is required, in terms of the block’s mass, m, and the angle
of the ramp, 67

> We analyze the forces on the block and introduce notation for
the other forces besides F4:

force acting on block
ramp’s normal force on block,

3rd-law partner
block’s normal force on ramp,

Fu, 7 VA
external object’s force on | block’s force on external ob-
block (type irrelevant), F4 < | ject (type irrelevant), >
planet earth’s gravitational | block’s gravitational force on
force on block, Fy, J | earth, T

Because the block is being pushed up at constant speed, it has
zero acceleration, and the total force on it must be zero. From
figure j, we find

|FA’ = |Fw‘Sin9
= mgsin 6.

Since the sine is always less than one, the applied force is always
less than mg, i.e., pushing the block up the ramp is easier than
lifting it straight up. This is presumably the principle on which the
pyramids were constructed: the ancient Egyptians would have
had a hard time applying the forces of enough slaves to equal the
full weight of the huge blocks of stone.

Essentially the same analysis applies to several other simple ma-
chines, such as the wedge and the screw.

Fa

=

i/ The applied force F4 pushes
the block up the frictionless ramp.

j/If the block is to move at
constant velocity, Newton’s first
law says that the three force
vectors acting on it must add
up to zero. To perform vector
addition, we put the vectors tip
to tail, and in this case we are
adding three vectors, so each
one’s tail goes against the tip of
the previous one. Since they are
supposed to add up to zero, the
third vector’s tip must come back
to touch the tail of the first vector.
They form a triangle, and since
the applied force is perpendicular
to the normal force, it is a right
triangle.
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k / Example 6 and problem 18 on
p. 237.

|/ Example 7.

'A layback example 6
The figure shows a rock climber using a technique called a lay-
back. He can make the normal forces Fpyq1 and Fppo large, which
has the side-effect of increasing the frictional forces Fgq and Fgo,
so that he doesn’t slip down due to the gravitational (weight) force
Fy. The purpose of the problem is not to analyze all of this in de-
tail, but simply to practice finding the components of the forces
based on their magnitudes. To keep the notation simple, let’s
write Fyy for |Fyq|, etc. The crack overhangs by a small, positive
angle 6 =~ 9°.

In this example, we determine the x component of Fy4. The other
nine components are left as an exercise to the reader (problem
18, p. 237).

The easiest method is the one demonstrated in example 5 on
p. 209. Casting vector Fyq’'s shadow on the ground, we can tell
that it would point to the left, so its x component is negative. The
only two possibilities for its x component are therefore —Fpy4 cos 0
or —Fp4 sin 8. We expect this force to have a large x component
and a much smaller y. Since 6 is small, cos® ~ 1, while sin6 is
small. Therefore the x component must be —Fp4 cos 6.

' Pushing a broom example 7
> Figure | shows a man pushing a broom at an angle 0 relative to
the horizontal. The mass m of the broom is concentrated at the
brush. If the magnitude of the broom’s acceleration is a, find the
force Fy that the man must make on the handle.

> First we analyze all the forces on the brush.
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force acting on brush 3rd-law partner

handle’s normal force brush’s normal force

on brush, Fp, ~ | on handle, &
earth’s gravitational force brush’s gravitational force

on brush, mg, 1 | on earth, T
floor’s normal force brush’s normal force

on brush, Fy, 1 | on floor, +
floor’s kinetic friction force brush’s kinetic friction force
on brush, Fy, « | onfloor, —

Newton’s second law is:

Fy+ mg + Fn + Fi

a= m

where the addition is vector addition. If we actually want to carry
out the vector addition of the forces, we have to do either graph-
ical addition (as in example 5) or analytic addition. Let’s do an-
alytic addition, which means finding all the components of the
forces, adding the x’s, and adding the y’s.

Most of the forces have components that are trivial to express in
terms of their magnitudes, the exception being Fy, whose com-
ponents we can determine using the technique demonstrated in
example 5 on p. 209 and example 6 on p. 226. Using the coordi-
nate system shown in the figure, the results are:

Frx = Fycos® Fpy = —Fysin0

mgy =0 mgy, = —mg
Fnx =0 Fny = Fn
Fix = —F Fiy =0

Note that we don’t yet know the magnitudes Fp, Fyn, and F.
That’s all right. First we need to set up Newton’s laws, and then
we can worry about solving the equations.

Newton’s second law in the x direction gives:

1]

2 Frcos0 — Fi
B m

The acceleration in the vertical direction is zero, so Newton’s sec-
ond law in the y direction tells us that

2] 0=—Fysin® —mg + Fy.

Finally, we have the relationship between kinetic friction and the
normal force,

3] Fk = uxFn.

Equations [1]-[3] are three equations, which we can use to de-
termine the three unknowns, Fy, Fy, and F,. Straightforward

algebra gives
a+ g
Fy = .
H=m (cose — pksme>
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Discussion question A.

\

Discussion question B.

> Solved problem: A cargo plane page 234, problem 9
> Solved problem: The angle of repose page 235, problem 11

> Solved problem: A wagon page 234, problem 10
Discussion questions

A The figure shows a block being pressed diagonally upward against a
wall, causing it to slide up the wall. Analyze the forces involved, including
their directions.

B The figure shows a roller coaster car rolling down and then up under
the influence of gravity. Sketch the car’s velocity vectors and acceleration
vectors. Pick an interesting point in the motion and sketch a set of force
vectors acting on the car whose vector sum could have resulted in the
right acceleration vector.

| Calculus with vectors

Using the unit vector notation introduced in section 7.4, the defini-
tions of the velocity and acceleration components given in chapter
6 can be translated into calculus notation as

v—ax—kay—kaz
and
dvy . dv, . du,,
azgx—i—ﬁy—i— 1 Z.

To make the notation less cumbersome, we generalize the concept
of the derivative to include derivatives of vectors, so that we can
abbreviate the above equations as

dr
Vo a
and
dv
a= TS

In words, to take the derivative of a vector, you take the derivatives
of its components and make a new vector out of those. This defini-
tion means that the derivative of a vector function has the familiar
properties

d(cf) df

% - % [c is a constant]

and
df+g) df dg

. dt ' dt
The integral of a vector is likewise defined as integrating component

by component.
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The second derivative of a vector example 8
> Two objects have positions as functions of time given by the
equations

r= 32‘2)’(‘ + tV
and
o = 3t*% + ty.
Find both objects’ accelerations using calculus. Could either an-
swer have been found without calculus?
> Taking the first derivative of each component, we find
Vi = 61X + V
Vo =128% + Y,
and taking the derivatives again gives acceleration,
a; = 6X
ay = 361°X.
The first object’s acceleration could have been found without cal-
culus, simply by comparing the x and y coordinates with the
constant-acceleration equation Ax = VoAt + %aAtz. The second
equation, however, isn’'t just a second-order polynomial in ¢, so

the acceleration isn’t constant, and we really did need calculus to
find the corresponding acceleration.

The integral of a vector example 9
> Starting from rest, a flying saucer of mass m is observed to
vary its propulsion with mathematical precision according to the
equation

F = bt*?% + ct'®y.
(The aliens inform us that the numbers 42 and 137 have a special

religious significance for them.) Find the saucer’s velocity as a
function of time.

> From the given force, we can easily find the acceleration
a=—
m
b, ¢ .
= D g4 S197y,
m m

The velocity vector v is the integral with respect to time of the
acceleration,

v=/adt
=/<bt42i+ct137y> dt,
m m
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and integrating component by component gives

- </bt42dt>)€+ </Ct137dt>y
m m

b 434
= 23m’ X*138m

where we have omitted the constants of integration, since the
saucer was starting from rest.

t138"’

A fire-extinguisher stunt on ice example 10
> Prof. Puerile smuggles a fire extinguisher into a skating rink.
Climbing out onto the ice without any skates on, he sits down and
pushes off from the wall with his feet, acquiring an initial velocity
Voy. At t = 0, he then discharges the fire extinguisher at a 45-
degree angle so that it applies a force to him that is backward
and to the left, i.e., along the negative y axis and the positive x
axis. The fire extinguisher’s force is strong at first, but then dies
down according to the equation |F| = b — ct, where b and ¢ are
constants. Find the professor’s velocity as a function of time.

> Measured counterclockwise from the x axis, the angle of the
force vector becomes 315°. Breaking the force down into x and
y components, we have

Fx = |F|cos315°
= (b—ct)

Fy = |F|sin315°
= (—b+ct).

In unit vector notation, this is
F =(b—ct)X+ (—b+ct)y.

Newton’s second law gives

a=F/m
B b—cz‘)2+ —b+cty
~ V2m vem

To find the velocity vector as a function of time, we need to inte-
grate the acceleration vector with respect to time,

v=/adt
_/(bcti+b+ct A>dt
- vV2m vV2m y

=\/%m/[(b—ct)i + (“b+ct)y]dt
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A vector function can be integrated component by component, so
this can be broken down into two integrals,

2y

_ X _ y _
v_\@m/(b ct)dt+\@m/( b+ ct)dt

bt — Jct? . [ —bt+Lct? )
=| ——=—+constant#1 | X+ | ———==— +constant #2 | y
vV2m vV2m

Here the physical significance of the two constants of integration
is that they give the initial velocity. Constant #1 is therefore zero,
and constant #2 must equal v,. The final result is

vo [Pt- Tot? 2. [Pt Set? N\
=| —F——— +|—————+ .

Section 8.4 [ Calculus with vectors 231



Summary

The velocity vector points in the direction of the object’s motion.
Relative motion can be described by vector addition of velocities.

The acceleration vector need not point in the same direction as
the object’s motion. We use the word “acceleration” to describe any
change in an object’s velocity vector, which can be either a change
in its magnitude or a change in its direction.

An important application of the vector addition of forces is the
use of Newton’s first law to analyze mechanical systems.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

north \
\
' direction of motion
Y of glacier relative
A -
______ v to continent, 1.1x10 T mis
- > A
L o \
- AN
direction of motion Q‘\\
of fossil relative to *
glacier, 2.3x10™ " m/s X
Problem 1.
1 As shown in the diagram, a dinosaur fossil is slowly moving

down the slope of a glacier under the influence of wind, rain and
gravity. At the same time, the glacier is moving relative to the
continent underneath. The dashed lines represent the directions but
not the magnitudes of the velocities. Pick a scale, and use graphical
addition of vectors to find the magnitude and the direction of the
fossil’s velocity relative to the continent. You will need a ruler and
protractor. v

2 Is it possible for a helicopter to have an acceleration due east
and a velocity due west? If so, what would be going on? If not, why
not?

3 A bird is initially flying horizontally east at 21.1 m/s, but one
second later it has changed direction so that it is flying horizontally
and 7° north of east, at the same speed. What are the magnitude
and direction of its acceleration vector during that one second time
interval? (Assume its acceleration was roughly constant.) v

Problem 4.

4 A person of mass M stands in the middle of a tightrope,
which is fixed at the ends to two buildings separated by a horizontal
distance L. The rope sags in the middle, stretching and lengthening
the rope slightly.
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Problem 5.

F thrust F lift

Problem 9.

¢

Problem 10.

(a) If the tightrope walker wants the rope to sag vertically by no
more than a height A, find the minimum tension, 7', that the rope
must be able to withstand without breaking, in terms of h, g, M,
and L. v
(b) Based on your equation, explain why it is not possible to get
h = 0, and give a physical interpretation.

5 Your hand presses a block of mass m against a wall with a
force Fy acting at an angle 6, as shown in the figure. Find the
minimum and maximum possible values of |F | that can keep the
block stationary, in terms of m, g, 6, and u,, the coefficient of static
friction between the block and the wall. Check both your answers
in the case of § = 90°, and interpret the case where the maximum
force is infinite. vVoo%

6 A skier of mass m is coasting down a slope inclined at an angle
# compared to horizontal. Assume for simplicity that the treatment
of kinetic friction given in chapter 5 is appropriate here, although a
soft and wet surface actually behaves a little differently. The coeffi-
cient of kinetic friction acting between the skis and the snow is pg,
and in addition the skier experiences an air friction force of magni-
tude bv?, where b is a constant.

(a) Find the maximum speed that the skier will attain, in terms of
the variables m, g, 0, u, and b. v
(b) For angles below a certain minimum angle 6,,;,, the equation
gives a result that is not mathematically meaningful. Find an equa-
tion for 0,,:,, and give a physical explanation of what is happening
for 0 < O,in. v

7 A gun is aimed horizontally to the west. The gun is fired, and
the bullet leaves the muzzle at ¢ = 0. The bullet’s position vector
as a function of time is r = bX + cty + dt?z, where b, ¢, and d are
positive constants.

(a) What units would b, ¢, and d need to have for the equation to
make sense?

(b) Find the bullet’s velocity and acceleration as functions of time.
(c¢) Give physical interpretations of b, ¢, d, X, y, and z. /

8 Annie Oakley, riding north on horseback at 30 mi/hr, shoots
her rifle, aiming horizontally and to the northeast. The muzzle speed
of the rifle is 140 mi/hr. When the bullet hits a defenseless fuzzy
animal, what is its speed of impact? Neglect air resistance, and
ignore the vertical motion of the bullet. > Solution, p. 554

9 A cargo plane has taken off from a tiny airstrip in the Andes,
and is climbing at constant speed, at an angle of § = 17° with
respect to horizontal. Its engines supply a thrust of Fipust = 200
kN, and the lift from its wings is Fjij;y = 654 kN. Assume that air
resistance (drag) is negligible, so the only forces acting are thrust,
lift, and weight. What is its mass, in kg? > Solution, p. 554
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10 A wagon is being pulled at constant speed up a slope 8 by a
rope that makes an angle ¢ with the vertical.

(a) Assuming negligible friction, show that the tension in the rope
is given by the equation

_ sind
T sin(0+¢)

where Fyy is the weight force acting on the wagon.
(b) Interpret this equation in the special cases of ¢ = 0 and ¢ =
180° — 6. > Solution, p. 555

11 The angle of repose is the maximum slope on which an object
will not slide. On airless, geologically inert bodies like the moon or
an asteroid, the only thing that determines whether dust or rubble
will stay on a slope is whether the slope is less steep than the angle
of repose. (See figure n, p. 272.)

(a) Find an equation for the angle of repose, deciding for yourself
what are the relevant variables.

(b) On an asteroid, where g can be thousands of times lower than
on Earth, would rubble be able to lie at a steeper angle of repose?

> Solution, p. 555

12 The figure shows an experiment in which a cart is released
from rest at A, and accelerates down the slope through a distance
x until it passes through a sensor’s light beam. The point of the
experiment is to determine the cart’s acceleration. At B, a card-
board vane mounted on the cart enters the light beam, blocking the
light beam, and starts an electronic timer running. At C, the vane
emerges from the beam, and the timer stops.

(a) Find the final velocity of the cart in terms of the width w of
the vane and the time t; for which the sensor’s light beam was

blocked. v
(b) Find the magnitude of the cart’s acceleration in terms of the
measurable quantities x, t,, and w. v

(c) Analyze the forces in which the cart participates, using a table in
the format introduced in section 5.3. Assume friction is negligible.

(d) Find a theoretical value for the acceleration of the cart, which
could be compared with the experimentally observed value extracted
in part b. Express the theoretical value in terms of the angle 6 of
the slope, and the strength g of the gravitational field. v

13 The figure shows a boy hanging in three positions: (1) with
his arms straight up, (2) with his arms at 45 degrees, and (3) with
his arms at 60 degrees with respect to the vertical. Compare the
tension in his arms in the three cases.

Problem 12.

sensor

Problem 13 (Millikan and Gale,

1920).

Problems

235



14 Driving down a hill inclined at an angle # with respect to
horizontal, you slam on the brakes to keep from hitting a deer. Your
antilock brakes kick in, and you don’t skid.

(a) Analyze the forces. (Ignore rolling resistance and air friction.)
(b) Find the car’s maximum possible deceleration, a (expressed as
a positive number), in terms of g, 6, and the relevant coefficient of

friction. v
(c) Explain physically why the car’s mass has no effect on your
answer.

(d) Discuss the mathematical behavior and physical interpretation
of your result for negative values of 6.
(e) Do the same for very large positive values of 6.

15 The figure shows the path followed by Hurricane Irene in
2005 as it moved north. The dots show the location of the center
of the storm at six-hour intervals, with lighter dots at the time
when the storm reached its greatest intensity. Find the time when
the storm’s center had a velocity vector to the northeast and an
acceleration vector to the southeast. Explain.

16 For safety, mountain climbers often wear a climbing harness
and tie in to other climbers on a rope team or to anchors such as
pitons or snow anchors. When using anchors, the climber usually
wants to tie in to more than one, both for extra strength and for
redundancy in case one fails. The figure shows such an arrangement,
with the climber hanging from a pair of anchors forming a symmetric
“Y” at an angle 6. The metal piece at the center is called a carabiner.
The usual advice is to make 6 < 90°; for large values of 8, the stress
placed on the anchors can be many times greater than the actual
load L, so that two anchors are actually less safe than one.

(a) Find the force S at each anchor in terms of L and 6. v
(b) Verify that your answer makes sense in the case of § = 0.

(c) Interpret your answer in the case of § = 180°.

(d) What is the smallest value of # for which S equals or exceeds
L, so that for larger angles a failure of at least one anchor is more
likely than it would have been with a single anchor? v

17 (a) The person with mass m hangs from the rope, hauling the
to climber box of mass M up a slope inclined at an angle 6. There is friction
between the box and the slope, described by the usual coefficients
Problem 16. of friction. The pulley, however, is frictionless. Find the magnitude
of the box’s acceleration. v
(b) Show that the units of your answer make sense.
(c¢) Check the physical behavior of your answer in the special cases
of M =0 and § = —90°.

6

Problem 17.
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18 Complete example 6 on p. 226 by expressing the remaining
nine x and y components of the forces in terms of the five magnitudes
and the small, positive angle 6 =~ 9° by which the crack overhangs.

v

19 Problem 16 discussed a possible correct way of setting up
a redundant anchor for mountaineering. The figure for this prob-
lem shows an incorrect way of doing it, by arranging the rope in
a triangle (which we’ll take to be isoceles). One of the bad things
about the triangular arrangement is that it requires more force from
the anchors, making them more likely to fail. (a) Using the same
notation as in problem 16, find S in terms of L and 6.

(b) Verify that your answer makes sense in the case of § = 0, and
compare with the correct setup.

20 A telephone wire of mass m is strung between two poles,
making an angle 6 with the horizontal at each end. (a) Find the
tension at the center. v

(b) Which is greater, the tension at the center or at the ends?

21 The figure shows an arcade game called skee ball that is
similar to bowling. The player rolls the ball down a horizontal alley.
The ball then rides up a curved lip and is launched at an initial
speed u, at an angle a above horizontal. Suppose we want the ball
to go into a hole that is at horizontal distance ¢ and height h, as
shown in the figure.

(a) Find the initial speed u that is required, in terms of the other
variables and g. v
(b) Check that your answer to part a has units that make sense.
(c) Check that your answer to part a depends on g in a way that
makes sense. This means that you should first determine on physical
grounds whether increasing g should increase u, or decrease it. Then
see whether your answer to part a has this mathematical behavior.
(d) Do the same for the dependence on h.

(e) Interpret your equation in the case where a = 90°.

(f) Interpret your equation in the case where tana = h/¢.

(g) Find v numerically if h = 70 cm, £ = 60 cm, and o = 65°. v

Problem 19.

Problem 20.

Problem 21.
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Problem 23.

Problem 24.

Problem 25.

238

22 A plane flies toward a city directly north and a distance D
away. The wind speed is u, and the plane’s speed with respect to
the wind is v.

(a) If the wind is blowing from the west (towards the east), what
direction should the plane head (what angle west of north)? v
(b) How long does it take the plane to get to the city? v
(c) Check that your answer to part b has units that make sense.
(d) Comment on the behavior of your answer in the case where
U = . [problem by B. Shotwell]

23 A force F' is applied to a box of mass M at an angle 6 below
the horizontal (see figure). The coefficient of static friction between
the box and the floor is us, and the coefficient of kinetic friction
between the two surfaces is py.

(a) What is the magnitude of the normal force on the box from the
floor? v
(b) What is the minimum value of F' to get the box to start moving
from rest? v
(c) What is the value of F' so that the box will move with constant
velocity (assuming it is already moving)? v
(d) If 6 is greater than some critical angle 6, it is impossible to
have the scenario described in part ¢. What is 0.t ?

V' [problem by B. Shotwell]

24 (a) A mass M is at rest on a fixed, frictionless ramp inclined
at angle 6 with respect to the horizontal. The mass is connected
to the force probe, as shown. What is the reading on the force

probe? v
(b) Check that your answer to part a makes sense in the special
cases § = 0 and 6 = 90°. [problem by B. Shotwell]

25 The figure shows a rock climber wedged into a dihedral or
“open book” consisting of two vertical walls of rock at an angle 6 rel-
ative to one another. This position can be maintained without any
ledges or holds, simply by pressing the feet against the walls. The
left hand is being used just for a little bit of balance. (a) Find the
minimum coefficient of friction between the rubber climbing shoes
and the rock. (b) Interpret the behavior of your expression at ex-
treme values of 6. (c) Steven Won has done tabletop experiments
using climbing shoes on the rough back side of a granite slab from
a kitchen countertop, and has estimated us = 1.17. Find the corre-
sponding maximum value of 6. > Solution, p. 556

26 You throw a rock horizontally from the edge of the roof of
a building of height h with speed vy. What is the (positive) angle
between the final velocity vector and the horizontal when the rock
hits the ground? V' [problem by B. Shotwell]
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27 The figure shows a block acted on by two external forces, E KY_ 0
each of magnitude F'. One of the forces is horizontal, but the other —
is applied at a downward angle 6. Gravity is negligible compared to
these forces. The block rests on a surface with friction described by
a coefficient of friction ps. (a) Find the minimum value of ug that Problem 27.
is required if the block is to remain at rest. v

(b) Show that this expression has the correct limit as 6 approaches

Zero.

J
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Exercise 8: Vectors and motion

Each diagram on page 77 shows the motion of an object in an & — y plane. Each dot is one
location of the object at one moment in time. The time interval from one dot to the next is
always the same, so you can think of the vector that connects one dot to the next as a v vector,
and subtract to find Av vectors.

1. Suppose the object in diagram 1 is moving from the top left to the bottom right. Deduce
whatever you can about the force acting on it. Does the force always have the same magnitude?
The same direction?

Invent a physical situation that this diagram could represent.

What if you reinterpret the diagram by reversing the object’s direction of motion? Redo the
construction of one of the Av vectors and see what happens.

2. What can you deduce about the force that is acting in diagram 27
Invent a physical situation that diagram 2 could represent.
3. What can you deduce about the force that is acting in diagram 37

Invent a physical situation.
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Chapter 9
Circular Motion

9.1 Conceptual framework

I now live fifteen minutes from Disneyland, so my friends and family
in my native Northern California think it’s a little strange that I've
never visited the Magic Kingdom again since a childhood trip to the
south. The truth is that for me as a preschooler, Disneyland was
not the Happiest Place on Earth. My mother took me on a ride in
which little cars shaped like rocket ships circled rapidly around a
central pillar. T knew I was going to die. There was a force trying to
throw me outward, and the safety features of the ride would surely
have been inadequate if I hadn’t screamed the whole time to make
sure Mom would hold on to me. Afterward, she seemed surprisingly
indifferent to the extreme danger we had experienced.

Circular motion does not produce an outward force

My younger self’s understanding of circular motion was partly
right and partly wrong. I was wrong in believing that there was a
force pulling me outward, away from the center of the circle. The
easiest way to understand this is to bring back the parable of the
bowling ball in the pickup truck from chapter 4. As the truck makes
a left turn, the driver looks in the rearview mirror and thinks that
some mysterious force is pulling the ball outward, but the truck
is accelerating, so the driver’s frame of reference is not an inertial
frame. Newton’s laws are violated in a noninertial frame, so the ball
appears to accelerate without any actual force acting on it. Because
we are used to inertial frames, in which accelerations are caused by
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a/1. In the turning truck’s frame
of reference, the ball appears
to violate Newton’s laws, dis-
playing a sideways acceleration
that is not the result of a force-
interaction with any other object.
2. In an inertial frame of refer-
ence, such as the frame fixed to
the earth’s surface, the ball obeys
Newton’s first law. No forces are
acting on it, and it continues mov-
ing in a straight line. It is the truck
that is participating in an interac-
tion with the asphalt, the truck that
accelerates as it should according
to Newton’s second law.

halteres

b/This crane fly’s
help it to maintain its orientation
in flight.

forces, the ball’s acceleration creates a vivid illusion that there must
be an outward force.

In an inertial frame everything makes more sense. The ball has
no force on it, and goes straight as required by Newton’s first law.
The truck has a force on it from the asphalt, and responds to it
by accelerating (changing the direction of its velocity vector) as
Newton’s second law says it should.

' The halteres example 1
Another interesting example is an insect organ called the hal-
teres, a pair of small knobbed limbs behind the wings, which vi-
brate up and down and help the insect to maintain its orientation
in flight. The halteres evolved from a second pair of wings pos-
sessed by earlier insects. Suppose, for example, that the halteres
are on their upward stroke, and at that moment an air current
causes the fly to pitch its nose down. The halteres follow New-
ton’s first law, continuing to rise vertically, but in the fly’s rotating
frame of reference, it seems as though they have been subjected
to a backward force. The fly has special sensory organs that per-
ceive this twist, and help it to correct itself by raising its nose.

Circular motion does not persist without a force

I was correct, however, on a different point about the Disneyland
ride. To make me curve around with the car, I really did need some
force such as a force from my mother, friction from the seat, or a
normal force from the side of the car. (In fact, all three forces were
probably adding together.) One of the reasons why Galileo failed to
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refine the principle of inertia into a quantitative statement like New-
ton’s first law is that he was not sure whether motion without a force
would naturally be circular or linear. In fact, the most impressive
examples he knew of the persistence of motion were mostly circular:
the spinning of a top or the rotation of the earth, for example. New-
ton realized that in examples such as these, there really were forces
at work. Atoms on the surface of the top are prevented from flying
off straight by the ordinary force that keeps atoms stuck together in
solid matter. The earth is nearly all liquid, but gravitational forces
pull all its parts inward.

Uniform and nonuniform circular motion

Circular motion always involves a change in the direction of the
velocity vector, but it is also possible for the magnitude of the ve-
locity to change at the same time. Circular motion is referred to as
uniform if |v| is constant, and nonuniform if it is changing.

Your speedometer tells you the magnitude of your car’s velocity
vector, so when you go around a curve while keeping your speedome-
ter needle steady, you are executing uniform circular motion. If your
speedometer reading is changing as you turn, your circular motion
is nonuniform. Uniform circular motion is simpler to analyze math-
ematically, so we will attack it first and then pass to the nonuniform
case.

self-check A
Which of these are examples of uniform circular motion and which are
nonuniform?

(1) the clothes in a clothes dryer (assuming they remain against the
inside of the drum, even at the top)

(2) a rock on the end of a string being whirled in a vertical circle >
Answer, p. 566

c /1. An overhead view of a per-
son swinging a rock on a rope. A
force from the string is required
to make the rock’s velocity vector
keep changing direction. 2. If the
string breaks, the rock will follow
Newton’s first law and go straight
instead of continuing around the
circle.

d/Sparks fly away along
tangents to a grinding wheel.
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e/To make the brick go in a
circle, | had to exert an inward
force on the rope.

g/When a car is going straight
at constant speed, the forward
and backward forces on it are
canceling out, producing a total
force of zero. When it moves
in a circle at constant speed,
there are three forces on it, but
the forward and backward forces
cancel out, so the vector sum is
an inward force.

Only an inward force is required for uniform circular motion.

Figure ¢ showed the string pulling in straight along a radius of
the circle, but many people believe that when they are doing this
they must be “leading” the rock a little to keep it moving along.
That is, they believe that the force required to produce uniform
circular motion is not directly inward but at a slight angle to the
radius of the circle. This intuition is incorrect, which you can easily
verify for yourself now if you have some string handy. It is only
while you are getting the object going that your force needs to be at
an angle to the radius. During this initial period of speeding up, the
motion is not uniform. Once you settle down into uniform circular
motion, you only apply an inward force.

If you have not done the experiment for yourself, here is a theo-
retical argument to convince you of this fact. We have discussed in
chapter 6 the principle that forces have no perpendicular effects. To
keep the rock from speeding up or slowing down, we only need to
make sure that our force is perpendicular to its direction of motion.
We are then guaranteed that its forward motion will remain unaf-
fected: our force can have no perpendicular effect, and there is no
other force acting on the rock which could slow it down. The rock
requires no forward force to maintain its forward motion, any more
than a projectile needs a horizontal force to “help it over the top”
of its arc.

I~ ~ &

A S

f/ A series of three hammer taps makes the rolling ball trace a tri-
angle, seven hammers a heptagon. If the number of hammers was large
enough, the ball would essentially be experiencing a steady inward force,
and it would go in a circle. In no case is any forward force necessary.
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Why, then, does a car driving in circles in a parking lot stop
executing uniform circular motion if you take your foot off the gas?
The source of confusion here is that Newton’s laws predict an ob-
ject’s motion based on the total force acting on it. A car driving in
circles has three forces on it

(1) an inward force from the asphalt, controlled with the steering
wheel;

(2) a forward force from the asphalt, controlled with the gas
pedal; and

(3) backward forces from air resistance and rolling resistance.

You need to make sure there is a forward force on the car so that
the backward forces will be exactly canceled out, creating a vector
sum that points directly inward.

A motorcycle making a turn example 2
The motorcyclist in figure h is moving along an arc of a circle. It
looks like he’s chosen to ride the slanted surface of the dirt at a
place where it makes just the angle he wants, allowing him to get
the force he needs on the tires as a normal force, without needing
any frictional force. The dirt’s normal force on the tires points up
and to our left. The vertical component of that force is canceled
by gravity, while its horizontal component causes him to curve.

In uniform circular motion, the acceleration vector is inward.

Since experiments show that the force vector points directly
inward, Newton’s second law implies that the acceleration vector
points inward as well. This fact can also be proven on purely kine-
matical grounds, and we will do so in the next section.

Clock-comparison tests of Newton’s first law example 3
Immediately after his original statement of the first law in the Prin-
cipia Mathematica, Newton offers the supporting example of a
spinning top, which only slows down because of friction. He de-
scribes the different parts of the top as being held together by
“cohesion,” i.e., internal forces. Because these forces act toward
the center, they don’t speed up or slow down the motion. The ap-
plicability of the first law, which only describes linear motion, may
be more clear if we simply take figure f as a model of rotation.
Between hammer taps, the ball experiences no force, so by the
first law it doesn’t speed up or slow down.

Suppose that we want to subject the first law to a stringent exper-
imental test.! The law predicts that if we use a clock to measure
the rate of rotation of an object spinning frictionlessly, it won’t “nat-
urally” slow down as Aristotle would have expected. But what is
a clock but something with hands that rotate at a fixed rate? In

'Page 81 lists places in this book where we describe experimental tests of
Newton’s first law.

Section 9.1 Conceptual framework

h / Example 2.
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other words, we are comparing one clock with another. This is
called a clock-comparison experiment. Suppose that the laws of
physics weren’t purely Newtonian, and there really was a very
slight Aristotelian tendency for motion to slow down in the ab-
sence of friction. If we compare two clocks, they should both slow
down, but if they aren’t the same type of clock, then it seems un-
likely that they would slow down at exactly the same rate, and
over time they should drift further and further apart.

High-precision clock-comparison experiments have been done
using a variety of clocks. In atomic clocks, the thing spinning
is an atom. Astronomers can observe the rotation of collapsed
stars called pulars, which, unlike the earth, can rotate with almost
no disturbance due to geological activity or friction induced by the
tides. In these experiments, the pulsars are observed to match
the rates of the atomic clocks with a drift of less than about 10~
seconds over a period of 10 years.? Atomic clocks using atoms
of different elements drift relative to one another by no more than
about 1076 per year.?

It is not presently possible to do experiments with a similar level of
precision using human-scale rotating objects. However, a set of
gyroscopes aboard the Gravity Probe B satellite were allowed to
spin weightlessly in a vacuum, without any physical contact that
would have caused kinetic friction. Their rotation was extremely
accurately monitored for the purposes of another experiment (a
test of Einstein’s theory of general relativity, which was the pur-
pose of the mission), and they were found to be spinning down so
gradually that they would have taken about 10,000 years to slow
down by a factor of two. This rate was consistent with estimates
of the amount of friction to be expected from the small amount of
residual gas present in the vacuum chambers.

A subtle point in the interpretation of these experiments is that if
there was a slight tendency for motion to slow down, we would
have to decide what it was supposed to slow down relative to.
A straight-line motion that is slowing down in some frame of ref-
erence can always be described as speeding up in some other
appropriately chosen frame (problem 12, p. 90). If the laws of
physics did have this slight Aristotelianism mixed in, we could wait
for the anomalous acceleration or deceleration to stop. The ob-
ject we were observing would then define a special or “preferred”
frame of reference. Standard theories of physics do not have
such a preferred frame, and clock-comparison experiments can
be viewed as tests of the existence of such a frame. Another test
for the existence of a preferred frame is described on p. 277.

*Matsakis et al., Astronomy and Astrophysics 326 (1997) 924. Freely avail-

able online at adsabs.harvard.edu.

3Guéna et al., arxiv.org/abs/1205.4235
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Discussion questions

A Inthe game of crack the whip, a line of people stand holding hands,
and then they start sweeping out a circle. One person is at the center,
and rotates without changing location. At the opposite end is the person
who is running the fastest, in a wide circle. In this game, someone always
ends up losing their grip and flying off. Suppose the person on the end
loses her grip. What path does she follow as she goes flying off? Draw an
overhead view. (Assume she is going so fast that she is really just trying
to put one foot in front of the other fast enough to keep from falling; she
is not able to get any significant horizontal force between her feet and the
ground.)

B  Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What force or forces are acting
on her, and in what directions are they? (We are not interested in the
vertical forces, which are the earth’s gravitational force pulling down, and
the ground’s normal force pushing up.) Make a table in the format shown
in section 5.3.

C  Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What is wrong with the following
analysis of the situation? “The person whose hand she’s holding exerts
an inward force on her, and because of Newton’s third law, there’s an
equal and opposite force acting outward. That outward force is the one
she feels throwing her outward, and the outward force is what might make
her go flying off, if it’s strong enough.”

D If the only force felt by the person on the outside is an inward force,
why doesn’t she go straight in?

E In the amusement park ride shown in the figure, the cylinder spins
faster and faster until the customer can pick her feet up off the floor with-
out falling. In the old Coney Island version of the ride, the floor actually
dropped out like a trap door, showing the ocean below. (There is also a
version in which the whole thing tilts up diagonally, but we're discussing
the version that stays flat.) If there is no outward force acting on her, why
does she stick to the wall? Analyze all the forces on her.

F What is an example of circular motion where the inward force is a
normal force? What is an example of circular motion where the inward
force is friction? What is an example of circular motion where the inward
force is the sum of more than one force?

G  Does the acceleration vector always change continuously in circular
motion? The velocity vector?

Discussion questions A-D

Discussion question E.
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sina _ sinb ~ sinc

i / The law of sines.

2 3

j/Deriving |a] =
uniform circular motion.

Av=v+ (v)

lv]2/r for

9.2 Uniform circular motion

In this section I derive a simple and very useful equation for
the magnitude of the acceleration of an object undergoing constant
acceleration. The law of sines is involved, so I've recapped it in
figure i.

The derivation is brief, but the method requires some explana-
tion and justification. The idea is to calculate a Av vector describing
the change in the velocity vector as the object passes through an
angle #. We then calculate the acceleration, a = Av/At. The as-
tute reader will recall, however, that this equation is only valid for
motion with constant acceleration. Although the magnitude of the
acceleration is constant for uniform circular motion, the acceleration
vector changes its direction, so it is not a constant vector, and the
equation a = Av/At does not apply. The justification for using it
is that we will then examine its behavior when we make the time
interval very short, which means making the angle 8 very small. For
smaller and smaller time intervals, the Av/At expression becomes
a better and better approximation, so that the final result of the
derivation is exact.

In figure j/1, the object sweeps out an angle 6. Its direction of
motion also twists around by an angle 0, from the vertical dashed
line to the tilted one. Figure j/2 shows the initial and final velocity
vectors, which have equal magnitude, but directions differing by 6.
In j/3, I've reassembled the vectors in the proper positions for vector
subtraction. They form an isosceles triangle with interior angles 6,
n, and 7. (Eta, n, is my favorite Greek letter.) The law of sines
gives

lavl _ vl

sinf  sinp’
This tells us the magnitude of Av, which is one of the two ingredients
we need for calculating the magnitude of a = Av/At. The other
ingredient is At. The time required for the object to move through

the angle 6 is
At — length of arc
v
Now if we measure our angles in radians we can use the definition of
radian measure, which is (angle) = (length of arc)/(radius), giving
At = 0r/|v|. Combining this with the first expression involving

|Av| gives

|a| = [Av|/At
B ﬂ sin 0 1
or 0 sinn’

When 6 becomes very small, the small-angle approximation sin 6 = 6
applies, and also 1 becomes close to 90°, so sinn ~ 1, and we have
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an equation for |al:

2

la| = ida [uniform circular motion]

Force required to turn on a bike example 4
> A bicyclist is making a turn along an arc of a circle with radius
20 m, at a speed of 5 m/s. If the combined mass of the cyclist
plus the bike is 60 kg, how great a static friction force must the
road be able to exert on the tires?

> Taking the magnitudes of both sides of Newton’s second law
gives

IF| = |mal

= m|al.
Substituting |a| = |v|?/r gives
[F| = mlv[?/r
~ 80 N

(rounded off to one sig fig).

Don’t hug the center line on a curve! example 5
> You'’re driving on a mountain road with a steep drop on your
right. When making a left turn, is it safer to hug the center line or
to stay closer to the outside of the road?

> You want whichever choice involves the least acceleration, be-
cause that will require the least force and entail the least risk of
exceeding the maximum force of static friction. Assuming the
curve is an arc of a circle and your speed is constant, your car
is performing uniform circular motion, with |a| = |v|?/r. The de-
pendence on the square of the speed shows that driving slowly
is the main safety measure you can take, but for any given speed
you also want to have the largest possible value of r. Even though
your instinct is to keep away from that scary precipice, you are ac-
tually less likely to skid if you keep toward the outside, because
then you are describing a larger circle.

Acceleration related to radius and period of rotation example 6
> How can the equation for the acceleration in uniform circular
motion be rewritten in terms of the radius of the circle and the
period, T, of the motion, i.e., the time required to go around once?

> The period can be related to the speed as follows: ‘ 3
v = circumference
- S )
=2nr/T. /A
| b |
y = b

Substituting into the equation |a| = |v|2/r gives
B Amr
laf = T2 ° k / Example 7.
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A clothes dryer example 7
> My clothes dryer has a drum with an inside radius of 35 cm, and
it spins at 48 revolutions per minute. What is the acceleration of
the clothes inside?

> We can solve this by finding the period and plugging in to the
result of the previous example. If it makes 48 revolutions in one
minute, then the period is 1/48 of a minute, or 1.25 s. To get an
acceleration in mks units, we must convert the radius to 0.35 m.
Plugging in, the result is 8.8 m/s2.

More about clothes dryers! example 8
> In a discussion question in the previous section, we made the
assumption that the clothes remain against the inside of the drum
as they go over the top. In light of the previous example, is this a
correct assumption?

> No. We know that there must be some minimum speed at which
the motor can run that will result in the clothes just barely stay-
ing against the inside of the drum as they go over the top. If the
clothes dryer ran at just this minimum speed, then there would be
no normal force on the clothes at the top: they would be on the
verge of losing contact. The only force acting on them at the top
would be the force of gravity, which would give them an acceler-
ation of g = 9.8 m/s?. The actual dryer must be running slower
than this minimum speed, because it produces an acceleration of
only 8.8 m/s?. My theory is that this is done intentionally, to make
the clothes mix and tumble.

> Solved problem: The tilt-a-whirl page 256, problem 6

> Solved problem: An off-ramp page 256, problem 7
Discussion questions

A A certain amount of force is needed to provide the acceleration
of circular motion. What if we are exerting a force perpendicular to the
direction of motion in an attempt to make an object trace a circle of radius
r, but the force isn't as big as m|v|?/r?

B  Suppose a rotating space station, as in figure | on page 2583, is built.
It gives its occupants the illusion of ordinary gravity. What happens when
a person in the station lets go of a ball? What happens when she throws
a ball straight “up” in the air (i.e., towards the center)?
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| 7 Discussion question B. An artist’s conception of a rotating space colony
in the form of a giant wheel. A person living in this noninertial frame of
reference has an illusion of a force pulling her outward, toward the deck,
for the same reason that a person in the pickup truck has the illusion
of a force pulling the bowling ball. By adjusting the speed of rotation, the
designers can make an acceleration |v|2/r equal to the usual acceleration
of gravity on earth. On earth, your acceleration standing on the ground
is zero, and a falling rock heads for your feet with an acceleration of 9.8
m/s2. A person standing on the deck of the space colony has an upward
acceleration of 9.8 m/s?, and when she lets go of a rock, her feet head up
at the nonaccelerating rock. To her, it seems the same as true gravity.

9.3 Nonuniform circular motion

What about nonuniform circular motion? Although so far we
have been discussing components of vectors along fixed z and y
axes, it now becomes convenient to discuss components of the accel-
eration vector along the radial line (in-out) and the tangential line
(along the direction of motion). For nonuniform circular motion,
the radial component of the acceleration obeys the same equation
as for uniform circular motion,

Ay = UQ/T7

where v = |v|, but the acceleration vector also has a tangential
component,

a¢ = slope of the graph of v versus t.

The latter quantity has a simple interpretation. If you are going
around a curve in your car, and the speedometer needle is mov-
ing, the tangential component of the acceleration vector is simply
what you would have thought the acceleration was if you saw the
speedometer and didn’t know you were going around a curve.

Slow down before a turn, not during it. example 9
> When you’re making a turn in your car and you're afraid you
may skid, isn’'t it a good idea to slow down?

> If the turn is an arc of a circle, and you’ve already completed
part of the turn at constant speed without skidding, then the road
and tires are apparently capable of enough static friction to sup-
ply an acceleration of |v|?/r. There is no reason why you would
skid out now if you haven't already. If you get nervous and brake,
however, then you need to have a tangential acceleration compo-
nent in addition to the radial one you were already able to pro-
duce successfully. This would require an acceleration vector with
a greater magnitude, which in turn would require a larger force.
Static friction might not be able to supply that much force, and
you might skid out. The safer thing to do is to approach the turn
at a comfortably low speed.

> Solved problem: A bike race page 255, problem 5

m /1. Moving in a circle while
speeding up. 2. Uniform circular

motion. 3. Slowing down.

Section 9.3  Nonuniform circular motion
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Summary

Selected vocabulary
uniform circular circular motion in which the magnitude of the

motion . .. ... velocity vector remains constant

nonuniform circu- circular motion in which the magnitude of the

lar motion . . .. velocity vector changes

radial . . ... .. parallel to the radius of a circle; the in-out
direction

tangential . ... tangent to the circle, perpendicular to the ra-

dial direction

Notation
Qpr v oo radial acceleration; the component of the ac-
celeration vector along the in-out direction
Qf oo tangential acceleration; the component of the
acceleration vector tangent to the circle
Summary

If an object is to have circular motion, a force must be exerted on
it toward the center of the circle. There is no outward force on the
object; the illusion of an outward force comes from our experiences
in which our point of view was rotating, so that we were viewing
things in a noninertial frame.

An object undergoing uniform circular motion has an inward
acceleration vector of magnitude

la| =v?/r,

where v = |v|. In nonuniform circular motion, the radial and tan-
gential components of the acceleration vector are

ar =v?/r

a; = slope of the graph of v versus ¢.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 When you're done using an electric mixer, you can get most
of the batter off of the beaters by lifting them out of the batter with
the motor running at a high enough speed. Let’s imagine, to make
things easier to visualize, that we instead have a piece of tape stuck
to one of the beaters.

(a) Explain why static friction has no effect on whether or not the
tape flies off.

(b) Analyze the forces in which the tape participates, using a table
in the format shown in section 5.3.

(c) Suppose you find that the tape doesn’t fly off when the motor is
on a low speed, but at a greater speed, the tape won’t stay on. Why
would the greater speed change things? [Hint: If you don’t invoke
any law of physics, you haven’t explained it.]

2 Show that the expression |v|?/r has the units of acceleration.

3 A plane is flown in a loop-the-loop of radius 1.00 km. The
plane starts out flying upside-down, straight and level, then begins
curving up along the circular loop, and is right-side up when it
reaches the top. (The plane may slow down somewhat on the way
up.) How fast must the plane be going at the top if the pilot is to
experience no force from the seat or the seatbelt while at the top of
the loop? v

4 In this problem, you’ll derive the equation |a| = |v|?/r us-
ing calculus. Instead of comparing velocities at two points in the
particle’s motion and then taking a limit where the points are close
together, you'll just take derivatives. The particle’s position vector
is r = (rcos@)x + (rsinf)y, where x and y are the unit vectors
along the x and y axes. By the definition of radians, the distance
traveled since t = 0 is r6, so if the particle is traveling at constant
speed v = |v|, we have v = rf/t.

(a) Eliminate 6 to get the particle’s position vector as a function of
time.

(b) Find the particle’s acceleration vector.

(c) Show that the magnitude of the acceleration vector equals v?/r.

J

5 Three cyclists in a race are rounding a semicircular curve.
At the moment depicted, cyclist A is using her brakes to apply a
force of 375 N to her bike. Cyclist B is coasting. Cyclist C is
pedaling, resulting in a force of 375 N on her bike. Each cyclist,
with her bike, has a mass of 75 kg. At the instant shown, the

Problem 1.

20m

direction
of travel

Problem 5.

Problems
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Problem 6.

Problem 7.

Problem 9.

256

instantaneous speed of all three cyclists is 10 m/s. On the diagram,
draw each cyclist’s acceleration vector with its tail on top of her
present position, indicating the directions and lengths reasonably
accurately. Indicate approximately the consistent scale you are using
for all three acceleration vectors. Extreme precision is not necessary
as long as the directions are approximately right, and lengths of
vectors that should be equal appear roughly equal, etc. Assume all
three cyclists are traveling along the road all the time, not wandering
across their lane or wiping out and going off the road.
> Solution, p. 556

6 The amusement park ride shown in the figure consists of a
cylindrical room that rotates about its vertical axis. When the ro-
tation is fast enough, a person against the wall can pick his or her
feet up off the floor and remain “stuck” to the wall without falling.
(a) Suppose the rotation results in the person having a speed v. The
radius of the cylinder is r, the person’s mass is m, the downward
acceleration of gravity is g, and the coefficient of static friction be-
tween the person and the wall is ys. Find an equation for the speed,
v, required, in terms of the other variables. (You will find that one
of the variables cancels out.)

(b) Now suppose two people are riding the ride. Huy is wearing
denim, and Gina is wearing polyester, so Huy’s coefficient of static
friction is three times greater. The ride starts from rest, and as it
begins rotating faster and faster, Gina must wait longer before being
able to lift her feet without sliding to the floor. Based on your equa-
tion from part a, how many times greater must the speed be before
Gina can lift her feet without sliding down? © Solution, p. 556 %

7 An engineer is designing a curved off-ramp for a freeway.
Since the off-ramp is curved, she wants to bank it to make it less
likely that motorists going too fast will wipe out. If the radius of
the curve is r, how great should the banking angle, 8, be so that
for a car going at a speed v, no static friction force whatsoever is
required to allow the car to make the curve? State your answer in
terms of v, r, and g, and show that the mass of the car is irrelevant.
> Solution, p. 557

8 Lionel brand toy trains come with sections of track in standard
lengths and shapes. For circular arcs, the most commonly used
sections have diameters of 662 and 1067 mm at the inside of the outer
rail. The maximum speed at which a train can take the broader
curve without flying off the tracks is 0.95 m/s. At what speed must
the train be operated to avoid derailing on the tighter curve? v

9 The figure shows a ball on the end of a string of length L
attached to a vertical rod which is spun about its vertical axis by a
motor. The period (time for one rotation) is P.

(a) Analyze the forces in which the ball participates.

(b) Find how the angle 6 depends on P,g, and L. [Hints: (1)
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Write down Newton’s second law for the vertical and horizontal
components of force and acceleration. This gives two equations,
which can be solved for the two unknowns, § and the tension in
the string. (2) If you introduce variables like v and r, relate them
to the variables your solution is supposed to contain, and eliminate
them.] v
(c) What happens mathematically to your solution if the motor is
run very slowly (very large values of P)? Physically, what do you
think would actually happen in this case?

10 Psychology professor R.O. Dent requests funding for an ex-
periment on compulsive thrill-seeking behavior in guinea pigs, in
which the subject is to be attached to the end of a spring and whirled
around in a horizontal circle. The spring has relaxed length b, and
obeys Hooke’s law with spring constant k. It is stiff enough to keep
from bending significantly under the guinea pig’s weight.

(a) Calculate the length of the spring when it is undergoing steady
circular motion in which one rotation takes a time 7'. Express your
result in terms of k, b, T', and the guinea pig’s mass m. v
(b) The ethics committee somehow fails to veto the experiment, but
the safety committee expresses concern. Why? Does your equa-
tion do anything unusual, or even spectacular, for any particular
value of T'?7 What do you think is the physical significance of this
mathematical behavior?

11 The figure shows an old-fashioned device called a flyball
governor, used for keeping an engine running at the correct speed.
The whole thing rotates about the vertical shaft, and the mass M
is free to slide up and down. This mass would have a connection
(not shown) to a valve that controlled the engine. If, for instance,
the engine ran too fast, the mass would rise, causing the engine to
slow back down.

(a) Show that in the special case of a = 0, the angle # is given by

o g(m + M)P?
/= cos <4W2mL ’

where P is the period of rotation (time required for one complete
rotation).

(b) There is no closed-form solution for ¢ in the general case where
a is not zero. However, explain how the undesirable low-speed be-
havior of the a = 0 device would be improved by making a nonzero.

*
12 The figure shows two blocks of masses m; and my sliding in
circles on a frictionless table. Find the tension in the strings if the

period of rotation (time required for one rotation) is P. v

Problem 10.

<™
Problem 11.

U
Problem 12.
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Problem 15.

13 The acceleration of an object in uniform circular motion can
be given either by |a| = |v|?/r or, equivalently, by |a| = 4r%r/T?,
where T is the time required for one cycle (example 6 on page 251).
Person A says based on the first equation that the acceleration in
circular motion is greater when the circle is smaller. Person B, ar-
guing from the second equation, says that the acceleration is smaller
when the circle is smaller. Rewrite the two statements so that they
are less misleading, eliminating the supposed paradox. [Based on a
problem by Arnold Arons.]

14 The bright star Sirius has a mass of 4.02 x 103" kg and lies
at a distance of 8.1 x 10'6 m from our solar system. Suppose you're
standing on a merry-go-round carousel rotating with a period of 10
seconds, and Sirius is on the horizon. You adopt a rotating, non-
inertial frame of reference, in which the carousel is at rest, and the
universe is spinning around it. If you drop a corndog, you see it
accelerate horizontally away from the axis, and you interpret this
as the result of some horizontal force. This force does not actually
exist; it only seems to exist because you’re insisting on using a non-
inertial frame. Similarly, calculate the force that seems to act on
Sirius in this frame of reference. Comment on the physical plausi-
bility of this force, and on what object could be exerting it. Vv

15 In a well known stunt from circuses and carnivals, a motor-
cyclist rides around inside a big bowl, gradually speeding up and
rising higher. Eventually the cyclist can get up to where the walls
of the bowl are vertical. Let’s estimate the conditions under which
a running human could do the same thing.

(a) If the runner can run at speed v, and her shoes have a coefficient
of static friction ps, what is the maximum radius of the circle? Vv
(b) Show that the units of your answer make sense.

(¢) Check that its dependence on the variables makes sense.

(d) Evaluate your result numerically for v = 10 m/s (the speed of
an olympic sprinter) and ps = 5. (This is roughly the highest coeffi-
cient of static friction ever achieved for surfaces that are not sticky.
The surface has an array of microscopic fibers like a hair brush, and
is inspired by the hairs on the feet of a gecko. These assumptions
are not necessarily realistic, since the person would have to run at
an angle, which would be physically awkward.) v

16 A car is approaching the top of a hill of radius of curvature
R.
(a) If the normal force that the driver feels at the top of the hill is
1/3 of their weight, how fast is the car going? v
(b) Check that the units of your answer to part a make sense.
(c) Check that the dependence of your answer on the variables makes
sense.

[problem by B. Shotwell]
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17 Tommy the playground bully is whirling a brick tied to the
end of a rope. The rope makes an angle 6 with respect to the
horizontal, and the brick undergoes circular motion with radius R.
(a) What is the speed of the brick? v
(b) Check that the units of your answer to part a make sense.

(c) Check that the dependence of your answer on the variables makes
sense, and comment on the limit § — 0.

[problem by B. Shotwell]

18  The 1961-66 US Gemini program launched pairs of astronauts
into earth orbit in tiny capsules, on missions lasting up to 14 days.
The figure shows the two seats, in a cross-sectional view from the
front, as if looking into a car through the windshield. During the
Gemini 8 mission, a malfunctioning thruster in the Orbit Attitude
and Maneuvering System (OAMS) caused the capsule to roll, i.e., to
rotate in the plane of the page. The rate of rotation got faster and
faster, reaching 296 degrees per second before pilot Neil Armstrong
shut down the OAMS system by hand and succeeded in canceling the
rotation using a separate set of re-entry thrusters. At the peak rate
of rotation, the astronauts were approaching the physiological limits
under which their hearts would no longer be able to circulate blood,
potentially causing them to black out or go blind. Superimposing
the approximate location of a human heart on the original NASA
diagram, it looks like Armstrong’s heart was about 45 cm away from
the axis of rotation. Find the acceleration experienced by his heart,
in units of g. v

Problem 17.

Problem 18.

Problems
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Gravity is the only really important force on the cosmic scale. This false-
color representation of Saturn’s rings was made from an image sent back
by the Voyager 2 space probe. The rings are composed of innumerable
tiny ice particles orbiting in circles under the influence of saturn’s gravity.

Chapter 10
Gravity

Cruise your radio dial today and try to find any popular song that
would have been imaginable without Louis Armstrong. By introduc-
ing solo improvisation into jazz, Armstrong took apart the jigsaw
puzzle of popular music and fit the pieces back together in a dif-
ferent way. In the same way, Newton reassembled our view of the
universe. Consider the titles of some recent physics books written
for the general reader: The God Particle, Dreams of a Final Theory.
Without Newton, such attempts at universal understanding would
not merely have seemed a little pretentious, they simply would not
have occurred to anyone.

This chapter is about Newton’s theory of gravity, which he used
to explain the motion of the planets as they orbited the sun. Whereas
this book has concentrated on Newton’s laws of motion, leaving
gravity as a dessert, Newton tosses off the laws of motion in the
first 20 pages of the Principia Mathematica and then spends the
next 130 discussing the motion of the planets. Clearly he saw this
as the crucial scientific focus of his work. Why? Because in it he

a/Johannes Kepler found a
mathematical description of the
motion of the planets, which led
to Newton’s theory of gravity.
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b/ Tycho Brahe made his name
as an astronomer by showing that
the bright new star, today called
a supernova, that appeared in
the skies in 1572 was far beyond
the Earth’s atmosphere. This,
along with Galileo’s discovery of
sunspots, showed that contrary
to Aristotle, the heavens were
not perfect and unchanging.
Brahe’s fame as an astronomer
brought him patronage from King
Frederick I, allowing him to carry
out his historic high-precision
measurements of the planets’
motions. A contradictory charac-
ter, Brahe enjoyed lecturing other
nobles about the evils of dueling,
but had lost his own nose in a
youthful duel and had it replaced
with a prosthesis made of an
alloy of gold and silver. Willing to
endure scandal in order to marry
a peasant, he nevertheless used
the feudal powers given to him by
the king to impose harsh forced
labor on the inhabitants of his
parishes. The result of their work,
an ltalian-style palace with an
observatory on top, surely ranks
as one of the most luxurious
science labs ever built. Kepler
described Brahe as dying of a
ruptured bladder after falling from
a wagon on the way home from
a party, but other contemporary
accounts and modern medical
analysis suggest mercury poison-
ing, possibly as a result of court
intrigue.

showed that the same laws of motion applied to the heavens as to
the earth, and that the gravitational force that made an apple fall
was the same as the force that kept the earth’s motion from carrying
it away from the sun. What was radical about Newton was not his
laws of motion but his concept of a universal science of physics.

10.1 Kepler’s laws

Newton wouldn’t have been able to figure out why the planets
move the way they do if it hadn’t been for the astronomer Tycho
Brahe (1546-1601) and his protege Johannes Kepler (1571-1630),
who together came up with the first simple and accurate description
of how the planets actually do move. The difficulty of their task is
suggested by figure ¢, which shows how the relatively simple orbital
motions of the earth and Mars combine so that as seen from earth
Mars appears to be staggering in loops like a drunken sailor.

earth's orbit

Mars' orbit

c/As the Earth and Mars revolve around the sun at different rates,
the combined effect of their motions makes Mars appear to trace a
strange, looped path across the background of the distant stars.

Brahe, the last of the great naked-eye astronomers, collected ex-
tensive data on the motions of the planets over a period of many
years, taking the giant step from the previous observations’ accuracy
of about 10 minutes of arc (10/60 of a degree) to an unprecedented
1 minute. The quality of his work is all the more remarkable consid-
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ering that his observatory consisted of four giant brass protractors
mounted upright in his castle in Denmark. Four different observers
would simultaneously measure the position of a planet in order to
check for mistakes and reduce random errors.

With Brahe’s death, it fell to his former assistant Kepler to try
to make some sense out of the volumes of data. Kepler, in con-
tradiction to his late boss, had formed a prejudice, a correct one
as it turned out, in favor of the theory that the earth and planets
revolved around the sun, rather than the earth staying fixed and
everything rotating about it. Although motion is relative, it is not
just a matter of opinion what circles what. The earth’s rotation
and revolution about the sun make it a noninertial reference frame,
which causes detectable violations of Newton’s laws when one at-
tempts to describe sufficiently precise experiments in the earth-fixed
frame. Although such direct experiments were not carried out until
the 19th century, what convinced everyone of the sun-centered sys-
tem in the 17th century was that Kepler was able to come up with
a surprisingly simple set of mathematical and geometrical rules for
describing the planets’ motion using the sun-centered assumption.
After 900 pages of calculations and many false starts and dead-end
ideas, Kepler finally synthesized the data into the following three
laws:

Kepler’s elliptical orbit law
The planets orbit the sun in elliptical orbits with the sun at
one focus.

Kepler’s equal-area law
The line connecting a planet to the sun sweeps out equal areas
in equal amounts of time.

Kepler’s law of periods

The time required for a planet to orbit the sun, called its
period, is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Although the planets’ orbits are ellipses rather than circles, most
are very close to being circular. The earth’s orbit, for instance, is
only flattened by 1.7% relative to a circle. In the special case of a
planet in a circular orbit, the two foci (plural of “focus”) coincide
at the center of the circle, and Kepler’s elliptical orbit law thus says
that the circle is centered on the sun. The equal-area law implies
that a planet in a circular orbit moves around the sun with constant
speed. For a circular orbit, the law of periods then amounts to a
statement that the time for one orbit is proportional to 3/2, where
r is the radius. If all the planets were moving in their orbits at the
same speed, then the time for one orbit would simply depend on
the circumference of the circle, so it would only be proportional to
r to the first power. The more drastic dependence on 73/2 means

Section 10.1

Kepler's laws
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AN 7/

d/An ellipse is a circle that
has been distorted by shrinking
and stretching along perpendicu-
lar axes.

e/An ellipse can be con-
structed by tying a string to two
pins and drawing like this with the
pencil stretching the string taut.
Each pin constitutes one focus of
the ellipse.

\d
S...-----'

f/If the time interval taken
by the planet to move from P to Q
is equal to the time interval from
R to S, then according to Kepler's
equal-area law, the two shaded
areas are equal. The planet
is moving faster during interval
RS than it did during PQ, which
Newton later determined was due
to the sun’s gravitational force
accelerating it. The equal-area
law predicts exactly how much it
will speed up.

that the outer planets must be moving more slowly than the inner
planets.

Newton’s law of gravity
The sun’s force on the planets obeys an inverse square law.

Kepler’s laws were a beautifully simple explanation of what the
planets did, but they didn’t address why they moved as they did.
Did the sun exert a force that pulled a planet toward the center of
its orbit, or, as suggested by Descartes, were the planets circulating
in a whirlpool of some unknown liquid? Kepler, working in the
Aristotelian tradition, hypothesized not just an inward force exerted
by the sun on the planet, but also a second force in the direction
of motion to keep the planet from slowing down. Some speculated
that the sun attracted the planets magnetically.

Once Newton had formulated his laws of motion and taught
them to some of his friends, they began trying to connect them
to Kepler’s laws. It was clear now that an inward force would be
needed to bend the planets’ paths. This force was presumably an
attraction between the sun and each planet. (Although the sun does
accelerate in response to the attractions of the planets, its mass is so
great that the effect had never been detected by the prenewtonian
astronomers.) Since the outer planets were moving slowly along
more gently curving paths than the inner planets, their accelerations
were apparently less. This could be explained if the sun’s force was
determined by distance, becoming weaker for the farther planets.
Physicists were also familiar with the noncontact forces of electricity
and magnetism, and knew that they fell off rapidly with distance,
so this made sense.

In the approximation of a circular orbit, the magnitude of the
sun’s force on the planet would have to be

1] F = ma = mv*/r.

Now although this equation has the magnitude, v, of the velocity
vector in it, what Newton expected was that there would be a more
fundamental underlying equation for the force of the sun on a planet,
and that that equation would involve the distance, r, from the sun
to the object, but not the object’s speed, v — motion doesn’t make
objects lighter or heavier.

self-check A

If eq. [1] really was generally applicable, what would happen to an
object released at rest in some empty region of the solar system? >
Answer, p. 566

Equation [1] was thus a useful piece of information which could
be related to the data on the planets simply because the planets
happened to be going in nearly circular orbits, but Newton wanted
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to combine it with other equations and eliminate v algebraically in
order to find a deeper truth.

To eliminate v, Newton used the equation

) circumference  27r
== —.
T T
Of course this equation would also only be valid for planets in nearly
circular orbits. Plugging this into eq. [1] to eliminate v gives

A3mr
3] F=T

This unfortunately has the side-effect of bringing in the period, T,
which we expect on similar physical grounds will not occur in the
final answer. That’s where the circular-orbit case, T o 7%/2, of
Kepler’s law of periods comes in. Using it to eliminate T gives a
result that depends only on the mass of the planet and its distance
from the sun:

F < m/r? [force of the sun on a planet of mass
m at a distance r from the sun; same

proportionality constant for all the planets]

(Since Kepler’s law of periods is only a proportionality, the final
result is a proportionality rather than an equation, so there is no
point in hanging on to the factor of 472.)

As an example, the “twin planets” Uranus and Neptune have
nearly the same mass, but Neptune is about twice as far from the
sun as Uranus, so the sun’s gravitational force on Neptune is about
four times smaller.

self-check B
Fill in the steps leading from equation [3] to F o m/r?. > Answer, p.
566

The forces between heavenly bodies are the same type of
force as terrestrial gravity.

OK, but what kind of force was it? It probably wasn’t magnetic,
since magnetic forces have nothing to do with mass. Then came
Newton’s great insight. Lying under an apple tree and looking up
at the moon in the sky, he saw an apple fall. Might not the earth
also attract the moon with the same kind of gravitational force?
The moon orbits the earth in the same way that the planets orbit
the sun, so maybe the earth’s force on the falling apple, the earth’s
force on the moon, and the sun’s force on a planet were all the same
type of force.

There was an easy way to test this hypothesis numerically. If it
was true, then we would expect the gravitational forces exerted by

60

g/The moon’s acceleration
is 602 = 3600 times smaller than
the apple’s.
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the earth to follow the same F' oc m/r? rule as the forces exerted by
the sun, but with a different constant of proportionality appropriate
to the earth’s gravitational strength. The issue arises now of how to
define the distance, r, between the earth and the apple. An apple
in England is closer to some parts of the earth than to others, but
suppose we take r to be the distance from the center of the earth to
the apple, i.e., the radius of the earth. (The issue of how to measure
r did not arise in the analysis of the planets’ motions because the
sun and planets are so small compared to the distances separating
them.) Calling the proportionality constant k, we have

2
Fearth on apple — k mapple/rearth

_ 2
Fearth on moon — k mmoon/dearth_moon-

Newton’s second law says a = F'/m, so

_ 2
Gapple = k / Tearth

_ 2
Gmoon = k / dearth-moon'

The Greek astronomer Hipparchus had already found 2000 years
before that the distance from the earth to the moon was about 60
times the radius of the earth, so if Newton’s hypothesis was right,
the acceleration of the moon would have to be 60% = 3600 times less
than the acceleration of the falling apple.

Applying a = v?/r to the acceleration of the moon yielded an
acceleration that was indeed 3600 times smaller than 9.8 m/s?, and
Newton was convinced he had unlocked the secret of the mysterious
force that kept the moon and planets in their orbits.

Newton’s law of gravity

The proportionality F' oc m/r? for the gravitational force on an
object of mass m only has a consistent proportionality constant for
various objects if they are being acted on by the gravity of the same
object. Clearly the sun’s gravitational strength is far greater than
the earth’s, since the planets all orbit the sun and do not exhibit
any very large accelerations caused by the earth (or by one another).
What property of the sun gives it its great gravitational strength?
Its great volume? Its great mass? Its great temperature? Newton
reasoned that if the force was proportional to the mass of the object
being acted on, then it would also make sense if the determining
factor in the gravitational strength of the object exerting the force
was its own mass. Assuming there were no other factors affecting
the gravitational force, then the only other thing needed to make
quantitative predictions of gravitational forces would be a propor-
tionality constant. Newton called that proportionality constant G,
so here is the complete form of the law of gravity he hypothesized.
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Newton’s law of gravity

Gmim o :
F = 12 2 [gravitational force between objects of mass
r

mq and mgy, separated by a distance r; r is not

the radius of anything |

Newton conceived of gravity as an attraction between any two
masses in the universe. The constant G tells us how many newtons
the attractive force is for two 1-kg masses separated by a distance
of 1 m. The experimental determination of G in ordinary units
(as opposed to the special, nonmetric, units used in astronomy)
is described in section 10.5. This difficult measurement was not
accomplished until long after Newton’s death.

The units of G example 1
> What are the units of G?

> Solving for G in Newton’s law of gravity gives

Fr?
- mymso ’

so the units of G must be N-m2/kg?. Fully adorned with units, the
value of Gis 6.67 x 10~ 1" N-m?/kg?.

Newton'’s third law example 2
> Is Newton’s law of gravity consistent with Newton’s third law?

> The third law requires two things. First, my’s force on my should
be the same as my’s force on my. This works out, because the
product mymo gives the same result if we interchange the labels 1
and 2. Second, the forces should be in opposite directions. This
condition is also satisfied, because Newton’s law of gravity refers
to an attraction: each mass pulls the other toward itself.

Pluto and Charon example 3
> Pluto’s moon Charon is unusually large considering Pluto’s size,
giving them the character of a double planet. Their masses are
1.25x 1022 and 1.9x10?' kg, and their average distance from one
another is 1.96 x 10* km. What is the gravitational force between
them?

> If we want to use the value of G expressed in S| (meter-kilogram-
second) units, we first have to convert the distance to 1.96 x

1 kg 1kg

o 6.67x10 11 N ‘

|«

i

Im

h/Students often have a
hard time understanding the
physical meaning of G. It's just
a proportionality constant that
tells you how strong gravitational
forces are. If you could change it,
all the gravitational forces all over
the universe would get stronger
or weaker. Numerically, the
gravitational attraction between
two 1-kg masses separated by a
distance of 1 mis 6.67 x 10~ N,
and this is what G is in Sl units.

i / Example 3. Computer-
enhanced images of Pluto and
Charon, taken by the Hubble
Space Telescope.
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\/hyperboa
/ ellipse
<> circle

j/ The conic sections are the
curves made by cutting the
surface of an infinite cone with a
plane.

’2

k/An imaginary cannon able
to shoot cannonballs at very high
speeds is placed on top of an
imaginary, very tall mountain
that reaches up above the at-
mosphere. Depending on the
speed at which the ball is fired,
it may end up in a tightly curved
elliptical orbit, 1, a circular orbit,
2, a bigger elliptical orbit, 3, or a
nearly straight hyperbolic orbit, 4.

10’ m. The force is

(6.67 x 1071 N-m?/kg?) (1.25 x 1022 kg) (1.9 x 10%' kg)
(1.96 x 107 m)?

=41 x10"®N

The proportionality to 1/r? in Newton’s law of gravity was not
entirely unexpected. Proportionalities to 1/7? are found in many
other phenomena in which some effect spreads out from a point.
For instance, the intensity of the light from a candle is proportional
to 1/r2, because at a distance r from the candle, the light has to
be spread out over the surface of an imaginary sphere of area 4772,
The same is true for the intensity of sound from a firecracker, or the
intensity of gamma radiation emitted by the Chernobyl reactor. It’s
important, however, to realize that this is only an analogy. Force
does not travel through space as sound or light does, and force is
not a substance that can be spread thicker or thinner like butter on
toast.

Although several of Newton’s contemporaries had speculated
that the force of gravity might be proportional to 1/r2, none of
them, even the ones who had learned Newton’s laws of motion, had
had any luck proving that the resulting orbits would be ellipses, as
Kepler had found empirically. Newton did succeed in proving that
elliptical orbits would result from a 1/r? force, but we postpone
the proof until the chapter 15 because it can be accomplished much
more easily using the concepts of energy and angular momentum.

Newton also predicted that orbits in the shape of hyperbolas
should be possible, and he was right. Some comets, for instance,
orbit the sun in very elongated ellipses, but others pass through
the solar system on hyperbolic paths, never to return. Just as the
trajectory of a faster baseball pitch is flatter than that of a more
slowly thrown ball, so the curvature of a planet’s orbit depends on
its speed. A spacecraft can be launched at relatively low speed,
resulting in a circular orbit about the earth, or it can be launched
at a higher speed, giving a more gently curved ellipse that reaches
farther from the earth, or it can be launched at a very high speed
which puts it in an even less curved hyperbolic orbit. As you go
very far out on a hyperbola, it approaches a straight line, i.e., its
curvature eventually becomes nearly zero.

Newton also was able to prove that Kepler’s second law (sweep-
ing out equal areas in equal time intervals) was a logical consequence
of his law of gravity. Newton’s version of the proof is moderately
complicated, but the proof becomes trivial once you understand the
concept of angular momentum, which will be covered later in the
course. The proof will therefore be deferred until section 15.7.
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self-check C
Which of Kepler's laws would it make sense to apply to hyperbolic or-

bits? > Answer, p.
566

> Solved problem: Visiting Ceres page 282, problem 10
> Solved problem: Geosynchronous orbit page 284, problem 16
> Solved problem: Why a equals g page 283, problem 11
> Solved problem: Ida and Dacty! page 283, problem 12
> Solved problem: Another solar system page 283, problem 15
> Solved problem: Weight loss page 285, problem 19
> Solved problem: The receding moon page 284, problem 17

Discussion questions

A How could Newton find the speed of the moon to plug in to a =
v2/r?

B  Two projectiles of different mass shot out of guns on the surface of
the earth at the same speed and angle will follow the same trajectories,
assuming that air friction is negligible. (You can verify this by throwing two
objects together from your hand and seeing if they separate or stay side
by side.) What corresponding fact would be true for satellites of the earth
having different masses?

C  What is wrong with the following statement? “A comet in an elliptical
orbit speeds up as it approaches the sun, because the sun’s force on it is
increasing.”

D Why would it not make sense to expect the earth’s gravitational force
on a bowling ball to be inversely proportional to the square of the distance
between their surfaces rather than their centers?

E Does the earth accelerate as a result of the moon’s gravitational
force on it? Suppose two planets were bound to each other gravitationally
the way the earth and moon are, but the two planets had equal masses.
What would their motion be like?

F Spacecraft normally operate by firing their engines only for a few
minutes at a time, and an interplanetary probe will spend months or years
on its way to its destination without thrust. Suppose a spacecraft is in a
circular orbit around Mars, and it then briefly fires its engines in reverse,
causing a sudden decrease in speed. What will this do to its orbit? What
about a forward thrust?
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10.3 Apparent weightlessness

If you ask somebody at the bus stop why astronauts are weightless,
you’ll probably get one of the following two incorrect answers:

(1) They’re weightless because they’re so far from the earth.
(2) They’re weightless because they’re moving so fast.

The first answer is wrong, because the vast majority of astro-
nauts never get more than a thousand miles from the earth’s surface.
The reduction in gravity caused by their altitude is significant, but
not 100%. The second answer is wrong because Newton’s law of
gravity only depends on distance, not speed.

The correct answer is that astronauts in orbit around the earth
are not really weightless at all. Their weightlessness is only appar-
ent. If there was no gravitational force on the spaceship, it would
obey Newton’s first law and move off on a straight line, rather than
orbiting the earth. Likewise, the astronauts inside the spaceship are
in orbit just like the spaceship itself, with the earth’s gravitational
force continually twisting their velocity vectors around. The reason
they appear to be weightless is that they are in the same orbit as
the spaceship, so although the earth’s gravity curves their trajectory
down toward the deck, the deck drops out from under them at the
same rate.

Apparent weightlessness can also be experienced on earth. Any
time you jump up in the air, you experience the same kind of ap-
parent weightlessness that the astronauts do. While in the air, you
can lift your arms more easily than normal, because gravity does not
make them fall any faster than the rest of your body, which is falling
out from under them. The Russian air force now takes rich foreign
tourists up in a big cargo plane and gives them the feeling of weight-
lessness for a short period of time while the plane is nose-down and
dropping like a rock.

10.4 Vector addition of gravitational forces
Pick a flower on earth and you move the farthest star.
Paul Dirac

When you stand on the ground, which part of the earth is pulling
down on you with its gravitational force? Most people are tempted
to say that the effect only comes from the part directly under you,
since gravity always pulls straight down. Here are three observations
that might help to change your mind:

e If you jump up in the air, gravity does not stop affecting you
just because you are not touching the earth: gravity is a non-
contact force. That means you are not immune from the grav-
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ity of distant parts of our planet just because you are not
touching them.

e Gravitational effects are not blocked by intervening matter.
For instance, in an eclipse of the moon, the earth is lined up
directly between the sun and the moon, but only the sun’s light
is blocked from reaching the moon, not its gravitational force
— if the sun’s gravitational force on the moon was blocked in
this situation, astronomers would be able to tell because the
moon’s acceleration would change suddenly. A more subtle
but more easily observable example is that the tides are caused
by the moon’s gravity, and tidal effects can occur on the side
of the earth facing away from the moon. Thus, far-off parts
of the earth are not prevented from attracting you with their
gravity just because there is other stuff between you and them.

e Prospectors sometimes search for underground deposits of dense
minerals by measuring the direction of the local gravitational
forces, i.e., the direction things fall or the direction a plumb
bob hangs. For instance, the gravitational forces in the region
to the west of such a deposit would point along a line slightly
to the east of the earth’s center. Just because the total grav-
itational force on you points down, that doesn’t mean that
only the parts of the earth directly below you are attracting
you. It’s just that the sideways components of all the force
vectors acting on you come very close to canceling out.

A cubic centimeter of lava in the earth’s mantle, a grain of silica
inside Mt. Kilimanjaro, and a flea on a cat in Paris are all attracting
you with their gravity. What you feel is the vector sum of all the
gravitational forces exerted by all the atoms of our planet, and for
that matter by all the atoms in the universe.

When Newton tested his theory of gravity by comparing the
orbital acceleration of the moon to the acceleration of a falling apple
on earth, he assumed he could compute the earth’s force on the
apple using the distance from the apple to the earth’s center. Was
he wrong? After all, it isn’t just the earth’s center attracting the
apple, it’s the whole earth. A kilogram of dirt a few feet under his
backyard in England would have a much greater force on the apple
than a kilogram of molten rock deep under Australia, thousands of
miles away. There’s really no obvious reason why the force should
come out right if you just pretend that the earth’s whole mass is
concentrated at its center. Also, we know that the earth has some
parts that are more dense, and some parts that are less dense. The
solid crust, on which we live, is considerably less dense than the
molten rock on which it floats. By all rights, the computation of the
vector sum of all the forces exerted by all the earth’s parts should
be a horrendous mess.

|/ Gravity only appears to
pull straight down because the
near perfect symmetry of the
earth makes the sideways com-
ponents of the total force on an
object cancel almost exactly. If
the symmetry is broken, e.g., by
a dense mineral deposit, the total
force is a little off to the side.
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m / Cut-away view of a spherical
shell of mass. A, who is outside

the shell, feels gravitational
forces from every part of the
shell — stronger forces from the
closer parts, and weaker ones
from the parts farther away. The
shell theorem states that the
vector sum of all the forces is the
same as if all the mass had been
concentrated at the center of the
shell. B, at the center, is clearly
weightless, because the shell's
gravitational forces cancel out.
Surprisingly, C also feels exactly
zero gravitational force.

n/ The asteroid Toutatis, imaged
by the space probe Chang’e-2 in
2012, is shaped like a bowling
pin.

Actually, Newton had sound reasons for treating the earth’s mass
as if it was concentrated at its center. First, although Newton no
doubt suspected the earth’s density was nonuniform, he knew that
the direction of its total gravitational force was very nearly toward
the earth’s center. That was strong evidence that the distribution
of mass was very symmetric, so that we can think of the earth as
being made of layers, like an onion, with each layer having constant
density throughout. (Today there is further evidence for symmetry
based on measurements of how the vibrations from earthquakes and
nuclear explosions travel through the earth.) He then considered the
gravitational forces exerted by a single such thin shell, and proved
the following theorem, known as the shell theorem:

If an object lies outside a thin, spherical shell of mass, then
the vector sum of all the gravitational forces exerted by all the
parts of the shell is the same as if the shell’s mass had been
concentrated at its center. If the object lies inside the shell,
then all the gravitational forces cancel out exactly.

For terrestrial gravity, each shell acts as though its mass was at the
center, so the result is the same as if the whole mass was there.

The second part of the shell theorem, about the gravitational
forces canceling inside the shell, is a little surprising. Obviously
the forces would all cancel out if you were at the exact center of
a shell, but it’s not at all obvious that they should still cancel out
perfectly if you are inside the shell but off-center. The whole idea
might seem academic, since we don’t know of any hollow planets in
our solar system that astronauts could hope to visit, but actually
it’s a useful result for understanding gravity within the earth, which
is an important issue in geology. It doesn’t matter that the earth
is not actually hollow. In a mine shaft at a depth of, say, 2 km, we
can use the shell theorem to tell us that the outermost 2 km of the
earth has no net gravitational effect, and the gravitational force is
the same as what would be produced if the remaining, deeper, parts
of the earth were all concentrated at its center.

The shell theorem doesn’t apply to things that aren’t spherical.
At the point marked with a dot in figure n, we might imagine that
gravity was in the direction shown by the dashed arrow, pointing
toward the asteroid’s center of mass, so that the surface would be
a vertical cliff almost a kilometer tall. In reality, calculations based
on the assumption of uniform density show that the direction of
the gravitational field is approximately as shown by the solid arrow,
making the slope only about 60°.! This happens because gravity at
this location is more strongly affected by the nearby “neck” than by
the more distant “belly.” This slope is still believed to be too steep
to keep dirt and rocks from sliding off (see problem 11, p. 235).

"Hudson et al., Icarus 161 (2003) 346
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self-check D

Suppose you're at the bottom of a deep mineshaft, which means you're
still quite far from the center of the earth. The shell theorem says that
the shell of mass you've gone inside exerts zero total force on you.
Discuss which parts of the shell are attracting you in which directions,
and how strong these forces are. Explain why it’s at least plausible that
they cancel. > Answer, p. 567

Discussion questions

A If you hold an apple, does the apple exert a gravitational force on
the earth? Is it much weaker than the earth’s gravitational force on the
apple? Why doesn’t the earth seem to accelerate upward when you drop
the apple?

B When astronauts travel from the earth to the moon, how does the
gravitational force on them change as they progress?

C How would the gravity in the first-floor lobby of a massive skyscraper
compare with the gravity in an open field outside of the city?

D Inafew billion years, the sun will start undergoing changes that will
eventually result in its puffing up into a red giant star. (Near the beginning
of this process, the earth’s oceans will boil off, and by the end, the sun will
probably swallow the earth completely.) As the sun’s surface starts to get
closer and closer to the earth, how will the earth’s orbit be affected?

10.5 Weighing the earth

Let’s look more closely at the application of Newton’s law of gravity
to objects on the earth’s surface. Since the earth’s gravitational
force is the same as if its mass was all concentrated at its center,
the force on a falling object of mass m is given by

F =G Mearen m | 72, 041-
The object’s acceleration equals F'/m, so the object’s mass cancels

out and we get the same acceleration for all falling objects, as we
knew we should:

2
9 = G Mearth / Teartn-

Newton knew neither the mass of the earth nor a numerical value
for the constant GG. But if someone could measure GG, then it would
be possible for the first time in history to determine the mass of the
earth! The only way to measure GG is to measure the gravitational
force between two objects of known mass, but that’s an exceedingly
difficult task, because the force between any two objects of ordinary
size is extremely small. The English physicist Henry Cavendish was

Section 10.5  Weighing the earth

273



—
p/A simplified version of
Cavendish’s apparatus.

o/ Cavendish’s apparatus.

The two large balls are fixed in place,
but the rod from which the two small balls hang is free to twist under the
influence of the gravitational forces.

the first to succeed, using the apparatus shown in figures o and p.
The two larger balls were lead spheres 8 inches in diameter, and each
one attracted the small ball near it. The two small balls hung from
the ends of a horizontal rod, which itself hung by a thin thread. The
frame from which the larger balls hung could be rotated by hand
about a vertical axis, so that for instance the large ball on the right
would pull its neighboring small ball toward us and while the small
ball on the left would be pulled away from us. The thread from
which the small balls hung would thus be twisted through a small
angle, and by calibrating the twist of the thread with known forces,
the actual gravitational force could be determined. Cavendish set
up the whole apparatus in a room of his house, nailing all the doors
shut to keep air currents from disturbing the delicate apparatus.
The results had to be observed through telescopes stuck through
holes drilled in the walls. Cavendish’s experiment provided the first
numerical values for G and for the mass of the earth. The presently
accepted value of G is 6.67 x 10711 N-mg/kgz.

Knowing G not only allowed the determination of the earth’s
mass but also those of the sun and the other planets. For instance,
by observing the acceleration of one of Jupiter’s moons, we can infer
the mass of Jupiter. The following table gives the distances of the
planets from the sun and the masses of the sun and planets. (Other
data are given in the back of the book.)
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average distance from | mass, in units of the
the sun, in units of the | earth’s mass
earth’s average distance
from the sun
sun — 330,000
Mercury | 0.38 0.056
Venus 0.72 0.82
earth 1 1
Mars 1.5 0.11
Jupiter | 5.2 320
Saturn 9.5 95
Uranus 19 14
Neptune | 30 17
Pluto 39 0.002
Discussion questions
A It would have been difficult for Cavendish to start designing an

experiment without at least some idea of the order of magnitude of G.
How could he estimate it in advance to within a factor of 10?

B Fill in the details of how one would determine Jupiter's mass by
observing the acceleration of one of its moons. Why is it only necessary
to know the acceleration of the moon, not the actual force acting on it?
Why don’t we need to know the mass of the moon? What about a planet
that has no moons, such as Venus — how could its mass be found?

10.6 = Dark energy

Until recently, physicists thought they understood gravity fairly
well. Einstein had modified Newton’s theory, but certain charac-
teristrics of gravitational forces were firmly established. For one
thing, they were always attractive. If gravity always attracts, then
it is logical to ask why the universe doesn’t collapse. Newton had
answered this question by saying that if the universe was infinite in
all directions, then it would have no geometric center toward which
it would collapse; the forces on any particular star or planet ex-
erted by distant parts of the universe would tend to cancel out by
symmetry. More careful calculations, however, show that Newton’s
universe would have a tendency to collapse on smaller scales: any
part of the universe that happened to be slightly more dense than
average would contract further, and this contraction would result
in stronger gravitational forces, which would cause even more rapid
contraction, and so on.

When Einstein overhauled gravity, the same problem reared its
ugly head. Like Newton, Einstein was predisposed to believe in a
universe that was static, so he added a special repulsive term to his
equations, intended to prevent a collapse. This term was not associ-
ated with any interaction of mass with mass, but represented merely
an overall tendency for space itself to expand unless restrained by
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q/ The WMAP probe’s map of the
cosmic microwave background is
like a “baby picture” of the uni-
verse.

the matter that inhabited it. It turns out that Einstein’s solution,
like Newton’s, is unstable. Furthermore, it was soon discovered
observationally that the universe was expanding, and this was in-
terpreted by creating the Big Bang model, in which the universe’s
current expansion is the aftermath of a fantastically hot explosion.?
An expanding universe, unlike a static one, was capable of being ex-
plained with Einstein’s equations, without any repulsion term. The
universe’s expansion would simply slow down over time due to the
attractive gravitational forces. After these developments, Einstein
said woefully that adding the repulsive term, known as the cosmo-
logical constant, had been the greatest blunder of his life.

This was the state of things until 1999, when evidence began to
turn up that the universe’s expansion has been speeding up rather
than slowing down! The first evidence came from using a telescope
as a sort of time machine: light from a distant galaxy may have
taken billions of years to reach us, so we are seeing it as it was far
in the past. Looking back in time, astronomers saw the universe
expanding at speeds that were lower, rather than higher. At first
they were mortified, since this was exactly the opposite of what
had been expected. The statistical quality of the data was also not
good enough to constitute ironclad proof, and there were worries
about systematic errors. The case for an accelerating expansion has
however been supported by high-precision mapping of the dim, sky-
wide afterglow of the Big Bang, known as the cosmic microwave
background. This is discussed in more detail in section 27.4.

So now Einstein’s “greatest blunder” has been resurrected. Since
we don’t actually know whether or not this self-repulsion of space
has a constant strength, the term “cosmological constant” has lost
currency. Nowadays physicists usually refer to the phenomenon as
“dark energy.” Picking an impressive-sounding name for it should
not obscure the fact that we know absolutely nothing about the
nature of the effect or why it exists.

Dark energy is discussed in more detail on p. 832.

2Section 19.5 presents some evidence for the Big Bang theory.
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10.7 x A gravitational test of Newton’s first law

This section describes a high-precision test of Newton’s first law.
The left panel of figure r shows a mirror on the moon. By reflecting
laser pulses from the mirror, the distance from the earth to the moon
has been measured to the phenomenal precision of a few centimeters,
or about one part in 10'°. This distance changes for a variety of
known reasons. The biggest effect is that the moon’s orbit is not
a circle but an ellipse, with its long axis about 11% longer than
its short one. A variety of other effects can also be accounted for,
including such exotic phenomena as the slightly nonspherical shape
of the earth, and the gravitational forces of bodies as small and
distant as Pluto. Suppose for simplicity that all these effects had
never existed, so that the moon was initially placed in a perfectly
circular orbit around the earth, and the earth in a perfectly circular
orbit around the sun.

r/ Left: The Apollo 11 mission left behind a mirror, which in this photo shows the reflection of the black
sky. Right: A highly exaggerated example of an observation that would disprove Newton’s first law. The radius
of the moon’s orbit gets bigger and smaller over the course of a year.

If we then observed something like what is shown in the right
panel of figure r, Newton’s first law would be disproved. If space
itself is symmetrical in all directions, then there is no reason for
the moon’s orbit to poof up near the top of the diagram and con-
tract near the bottom. The only possible explanation would be that
there was some preferred frame of reference of the type envisioned
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by Aristotle, and that our solar system was moving relative to it.
Another test for a preferred frame was described in example 3 on
p. 247.

One could then imagine that the gravitational force of the earth
on the moon could be affected by the moon’s motion relative to
this frame. The lunar laser ranging data’ contain no measurable
effect of the type shown in figure r, so that if the moon’s orbit is
distorted in this way (or in a variety of other ways), the distortion
must be less than a few centimeters. This constitutes a very strict
upper limit on violation of Newton’s first law by gravitational forces.
If the first law is violated, and the violation causes a fractional
change in gravity that is proportional to the velocity relative to the
hypothetical preferred frame, then the change is no more than about
one part in 107, even if the velocity is comparable to the speed of
light.

3Battat, Chandler, and Stubbs, http://arxiv.org/abs/0710.0702
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Summary
Selected vocabulary

ellipse . . . .. .. a flattened circle; one of the conic sections

conic section . . . a curve formed by the intersection of a plane
and an infinite cone

hyperbola . ... another conic section; it does not close back
on itself

period. . .. ... the time required for a planet to complete one

orbit; more generally, the time for one repeti-
tion of some repeating motion

focus . ...... one of two special points inside an ellipse: the
ellipse consists of all points such that the sum
of the distances to the two foci equals a certain
number; a hyperbola also has a focus

Notation
G ......... the constant of proportionality in Newton’s
law of gravity; the gravitational force of at-
traction between two 1-kg spheres at a center-
to-center distance of 1 m
Summary

Kepler deduced three empirical laws from data on the motion of
the planets:

Kepler’s elliptical orbit law: The planets orbit the sun in ellip-
tical orbits with the sun at one focus.

Kepler’s equal-area law: The line connecting a planet to the sun
sweeps out equal areas in equal amounts of time.

Kepler’s law of periods: The time required for a planet to orbit
the sun is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Newton was able to find a more fundamental explanation for these
laws. Newton’s law of gravity states that the magnitude of the
attractive force between any two objects in the universe is given by

= Gmlmg/TQ.

Weightlessness of objects in orbit around the earth is only appar-
ent. An astronaut inside a spaceship is simply falling along with
the spaceship. Since the spaceship is falling out from under the as-
tronaut, it appears as though there was no gravity accelerating the
astronaut down toward the deck.

Gravitational forces, like all other forces, add like vectors. A
gravitational force such as we ordinarily feel is the vector sum of all

Summary
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the forces exerted by all the parts of the earth. As a consequence of
this, Newton proved the shell theorem for gravitational forces:

If an object lies outside a thin, uniform shell of mass, then the
vector sum of all the gravitational forces exerted by all the parts of
the shell is the same as if all the shell’s mass was concentrated at its
center. If the object lies inside the shell, then all the gravitational
forces cancel out exactly.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 Roy has a mass of 60 kg. Laurie has a mass of 65 kg. They
are 1.5 m apart.

(a) What is the magnitude of the gravitational force of the earth on
Roy?

(b) What is the magnitude of Roy’s gravitational force on the earth?
(c) What is the magnitude of the gravitational force between Roy
and Laurie?

(d) What is the magnitude of the gravitational force between Laurie
and the sun? v

2 During a solar eclipse, the moon, earth and sun all lie on
the same line, with the moon between the earth and sun. Define
your coordinates so that the earth and moon lie at greater x values
than the sun. For each force, give the correct sign as well as the
magnitude. (a) What force is exerted on the moon by the sun? (b)
On the moon by the earth? (c) On the earth by the sun? (d) What
total force is exerted on the sun? (e) On the moon? (f) On the
earth? v

3 Suppose that on a certain day there is a crescent moon, and
you can tell by the shape of the crescent that the earth, sun and
moon form a triangle with a 135° interior angle at the moon’s corner.
What is the magnitude of the total gravitational force of the earth
and the sun on the moon? (If you haven’t done problem 2 already,
you might want to try it first, since it’s easier, and some of its results

can be recycled in this problem.) v
earth
/
sun moon
4 How high above the Earth’s surface must a rocket be in order
to have 1/100 the weight it would have at the surface? Express your
answer in units of the radius of the Earth. v

5 The star Lalande 21185 was found in 1996 to have two planets
in roughly circular orbits, with periods of 6 and 30 years. What is
the ratio of the two planets’ orbital radii? v

6 In a Star Trek episode, the Enterprise is in a circular orbit
around a planet when something happens to the engines. Spock
then tells Kirk that the ship will spiral into the planet’s surface
unless they can fix the engines. Is this scientifically correct? Why?

Problem 3.

Problems
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Problem 8.
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your orbit "~

Mars' orbit

7 (a) Suppose a rotating spherical body such as a planet has
a radius r and a uniform density p, and the time required for one
rotation is T'. At the surface of the planet, the apparent acceleration
of a falling object is reduced by the acceleration of the ground out
from under it. Derive an equation for the apparent acceleration of
gravity, g, at the equator in terms of r, p, T, and G. v
(b) Applying your equation from a, by what fraction is your appar-
ent weight reduced at the equator compared to the poles, due to the
Earth’s rotation? v
(c) Using your equation from a, derive an equation giving the value
of T for which the apparent acceleration of gravity becomes zero,
i.e., objects can spontaneously drift off the surface of the planet.
Show that 7" only depends on p, and not on 7. v
(d) Applying your equation from c, how long would a day have to
be in order to reduce the apparent weight of objects at the equator
of the Earth to zero? [Answer: 1.4 hours]

(e) Astronomers have discovered objects they called pulsars, which
emit bursts of radiation at regular intervals of less than a second.
If a pulsar is to be interpreted as a rotating sphere beaming out a
natural “searchlight” that sweeps past the earth with each rotation,
use your equation from c to show that its density would have to be
much greater than that of ordinary matter.

(f) Astrophysicists predicted decades ago that certain stars that used
up their sources of energy could collapse, forming a ball of neutrons
with the fantastic density of ~ 10'7 kg/m3. If this is what pulsars
really are, use your equation from c to explain why no pulsar has
ever been observed that flashes with a period of less than 1 ms or
SO.

8 You are considering going on a space voyage to Mars, in which
your route would be half an ellipse, tangent to the Earth’s orbit at
one end and tangent to Mars’ orbit at the other. Your spacecraft’s
engines will only be used at the beginning and end, not during the
voyage. How long would the outward leg of your trip last? (Assume
the orbits of Earth and Mars are circular.) v

9 (a) If the earth was of uniform density, would your weight be
increased or decreased at the bottom of a mine shaft? Explain.

(b) In real life, objects weigh slightly more at the bottom of a mine
shaft. What does that allow us to infer about the Earth? *

10 Ceres, the largest asteroid in our solar system, is a spherical
body with a mass 6000 times less than the earth’s, and a radius
which is 13 times smaller. If an astronaut who weighs 400 N on
earth is visiting the surface of Ceres, what is her weight?

> Solution, p. 557
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11 Prove, based on Newton’s laws of motion and Newton’s law
of gravity, that all falling objects have the same acceleration if they
are dropped at the same location on the earth and if other forces
such as friction are unimportant. Do not just say, “g = 9.8 m/s? —
it’s constant.” You are supposed to be proving that g should be the
same number for all objects. > Solution, p. 557

12 The figure shows an image from the Galileo space probe
taken during its August 1993 flyby of the asteroid Ida. Astronomers
were surprised when Galileo detected a smaller object orbiting Ida.
This smaller object, the only known satellite of an asteroid in our
solar system, was christened Dactyl, after the mythical creatures
who lived on Mount Ida, and who protected the infant Zeus. For
scale, Ida is about the size and shape of Orange County, and Dactyl
the size of a college campus. Galileo was unfortunately unable to
measure the time, T, required for Dactyl to orbit Ida. If it had,
astronomers would have been able to make the first accurate deter-
mination of the mass and density of an asteroid. Find an equation
for the density, p, of Ida in terms of Ida’s known volume, V', the
known radius, r, of Dactyl’s orbit, and the lamentably unknown
variable T'. (This is the same technique that was used successfully
for determining the masses and densities of the planets that have
moons.) > Solution, p. 557

13 If a bullet is shot straight up at a high enough velocity, it will
never return to the earth. This is known as the escape velocity. We
will discuss escape velocity using the concept of energy later in the
course, but it can also be gotten at using straightforward calculus.
In this problem, you will analyze the motion of an object of mass m
whose initial velocity is ezactly equal to escape velocity. We assume
that it is starting from the surface of a spherically symmetric planet
of mass M and radius b. The trick is to guess at the general form
of the solution, and then determine the solution in more detail. As-
sume (as is true) that the solution is of the form r = kt?, where r is
the object’s distance from the center of the planet at time ¢, and k
and p are constants.

(a) Find the acceleration, and use Newton’s second law and New-
ton’s law of gravity to determine k£ and p. You should find that the
result is independent of m. v
(b) What happens to the velocity as ¢ approaches infinity?

(c) Determine escape velocity from the Earth’s surface. v [

14 Astronomers have recently observed stars orbiting at very
high speeds around an unknown object near the center of our galaxy.
For stars orbiting at distances of about 10'* m from the object,
the orbital velocities are about 10° m/s. Assuming the orbits are
circular, estimate the mass of the object, in units of the mass of
the sun, 2 x 1030 kg. If the object was a tightly packed cluster of
normal stars, it should be a very bright source of light. Since no
visible light is detected coming from it, it is instead believed to be
a supermassive black hole. v

Problem 12.
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15 Astronomers have detected a solar system consisting of three
planets orbiting the star Upsilon Andromedae. The planets have
been named b, ¢, and d. Planet b’s average distance from the star
is 0.059 A.U., and planet ¢’s average distance is 0.83 A.U., where an
astronomical unit or A.U. is defined as the distance from the Earth
to the sun. For technical reasons, it is possible to determine the
ratios of the planets’ masses, but their masses cannot presently be
determined in absolute units. Planet c¢’s mass is 3.0 times that of
planet b. Compare the star’s average gravitational force on planet
¢ with its average force on planet b. [Based on a problem by Arnold
Arons.] > Solution, p. 558

16 Some communications satellites are in orbits called geosyn-
chronous: the satellite takes one day to orbit the earth from west
to east, so that as the earth spins, the satellite remains above the
same point on the equator. What is such a satellite’s altitude above
the surface of the earth? > Solution, p. 558

17 As discussed in more detail in example 3 on p. 398, tidal
interactions with the earth are causing the moon’s orbit to grow
gradually larger. Laser beams bounced off of a mirror left on the
moon by astronauts have allowed a measurement of the moon’s rate
of recession, which is about 4 cm per year. This means that the
gravitational force acting between earth and moon is decreasing.
By what fraction does the force decrease with each 27-day orbit?
[Based on a problem by Arnold Arons.]
> Hint, p. 547 > Solution, p. 558

18 Suppose that we inhabited a universe in which, instead of
Newton’s law of gravity, we had F' = k\/mimz/ r2, where k is some
constant with different units than G. (The force is still attrac-
tive.) However, we assume that a = F'//m and the rest of Newtonian
physics remains true, and we use a = F//m to define our mass scale,
so that, e.g., a mass of 2 kg is one which exhibits half the accelera-
tion when the same force is applied to it as to a 1 kg mass.

(a) Is this new law of gravity consistent with Newton’s third law?
(b) Suppose you lived in such a universe, and you dropped two un-
equal masses side by side. What would happen?

(c¢) Numerically, suppose a 1.0-kg object falls with an acceleration
of 10 m/s?. What would be the acceleration of a rain drop with a
mass of 0.1 g7 Would you want to go out in the rain?

(d) If a falling object broke into two unequal pieces while it fell,
what would happen?

(e) Invent a law of gravity that results in behavior that is the op-
posite of what you found in part b. [Based on a problem by Arnold
Arons.]
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19 (a) A certain vile alien gangster lives on the surface of an
asteroid, where his weight is 0.20 N. He decides he needs to lose
weight without reducing his consumption of princesses, so he’s going
to move to a different asteroid where his weight will be 0.10 N. The
real estate agent’s database has asteroids listed by mass, however,
not by surface gravity. Assuming that all asteroids are spherical
and have the same density, how should the mass of his new asteroid
compare with that of his old one?

(b) Jupiter’s mass is 318 times the Earth’s, and its gravity is about
twice Earth’s. Is this consistent with the results of part a? If not,
how do you explain the discrepancy? > Solution, p. 558

20 Where would an object have to be located so that it would
experience zero total gravitational force from the earth and moon?

v

21 The planet Uranus has a mass of 8.68 x 10%° kg and a radius
of 2.56 x 10 km. The figure shows the relative sizes of Uranus and
Earth.

(a) Compute the ratio gy /gg, where gy is the strength of the grav-
itational field at the surface of Uranus and gg is the corresponding
quantity at the surface of the Earth. v
(b) What is surprising about this result? How do you explain it?

22 The International Space Station orbits at an average altitude
of about 370 km above sea level. Compute the value of g at that
altitude. v

Problem 21.

Problems
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Problem 23: New Horizons at
its closest approach to Jupiter.
(Jupiter’'s four largest moons are
shown for illustrative purposes.)
The masses are:

sun: 1.9891 x 10% kg

Jupiter: 1.8986 x 1027 kg

New Horizons: 465.0 kg

8.00043x108 km to the sun

23 On Feb. 28, 2007, the New Horizons space probe, on its way
to a 2015 flyby of Pluto, passed by the planet Jupiter for a gravity-
assisted maneuver that increased its speed and changed its course.
The dashed line in the figure shows the spacecraft’s trajectory, which
is curved because of three forces: the force of the exhaust gases from
the probe’s own engines, the sun’s gravitational force, and Jupiter’s
gravitational force. Find the magnitude of the total gravitational
force acting on the probe. You will find that the sun’s force is much
smaller than Jupiter’s, so that the magnitude of the total force is
determined almost entirely by Jupiter’s force. However, this is a
high-precision problem, and you will find that the total force is
slightly different from Jupiter’s force. v

24 On an airless body such as the moon, there is no atmospheric
friction, so it should be possible for a satellite to orbit at a very low
altitude, just high enough to keep from hitting the mountains. (a)
Suppose that such a body is a smooth sphere of uniform density
p and radius r. Find the velocity required for a ground-skimming
orbit. v
(b) A typical asteroid has a density of about 2 g/cm?, i.e., twice that
of water. (This is a lot lower than the density of the earth’s crust,
probably indicating that the low gravity is not enough to compact
the material very tightly, leaving lots of empty space inside.) Sup-
pose that it is possible for an astronaut in a spacesuit to jump at
2 m/s. Find the radius of the largest asteroid on which it would be
possible to jump into a ground-skimming orbit. Vv
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25 The figure shows a region of outer space in which two stars
have exploded, leaving behind two overlapping spherical shells of
gas, which we assume to remain at rest. The figure is a cross-
section in a plane containing the shells’ centers. A space probe is
released with a very small initial speed at the point indicated by
the arrow, initially moving in the direction indicated by the dashed
line. Without any further information, predict as much as possible
about the path followed by the probe and its changes in speed along
that path. *

Problem 25.

26 Approximate the earth’s density as being constant. (a) Find
the gravitational field at a point P inside the earth and half-way
between the center and the surface. Express your result as a ratio
gp/gs relative to the field we experience at the surface. (b) As a
check on your answer, make sure that the same reasoning leads to
a reasonable result when the fraction 1/2 is replaced by the value 0
(P being the earth’s center) or the value 1 (P being a point on the
surface).
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27 The earth is divided into solid inner core, a liquid outer core,
and a plastic mantle. Physical properties such as density change
discontinuously at the boundaries between one layer and the next.
Although the density is not completely constant within each region,
we will approximate it as being so for the purposes of this problem.
(We neglect the crust as well.) Let R be the radius of the earth
as a whole and M its mass. The following table gives a model of
some properties of the three layers, as determined by methods such
as the observation of earthquake waves that have propagated from
one side of the planet to the other.

region outer radius/R  mass/M
mantle 1 0.69
outer core 0.55 0.29
inner core 0.19 0.017

The boundary between the mantle and the outer core is referred to
as the Gutenberg discontinuity. Let g be the strength of the earth’s
gravitational field at its surface and gg its value at the Gutenberg
discontinuity. Find gg/gs. v

28  The figure shows the International Space Station (ISS). One of
the purposes of the ISS is supposed to be to carry out experiments in
microgravity. However, the following factor limits this application.
The ISS orbits the earth once every 92.6 minutes. It is desirable to
keep the same side of the station always oriented toward the earth,
which means that the station has to rotate with the same period.
In the photo, the direction of orbital motion is left or right on the
page, so the rotation is about the axis shown as up and down on the
page. The greatest distance of any pressurized compartment from
the axis of rotation is 36.5 meters. Find the acceleration due to the
rotation at this point, and the apparent weight of a 60 kg astronaut
at that location. v

Problem 28.
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Exercise 10: The shell theorem

This exercise is an approximate numerical test of the shell theorem. There are seven masses
A-G, each being one kilogram. Masses A-F, each one meter from the center, form a shape like
two Egyptian pyramids joined at their bases; this is a rough approximation to a six-kilogram
spherical shell of mass. Mass G is five meters from the center of the main group. The class will
divide into six groups and split up the work required in order to calculate the vector sum of the
six gravitational forces exerted on mass G. Depending on the size of the class, more than one
group may be assigned to deal with the contribution of the same mass to the total force, and
the redundant groups can check each other’s results.

A
®
| @
c kk' ””” &D ””””””””””””””””””””””” ©
E G
(*
B

1. Discuss as a class what can be done to simplify the task of calculating the vector sum, and
how to organize things so that each group can work in parallel with the others.

2. Each group should write its results on the board in units of piconewtons, retaining five
significant figures of precision. Everyone will need to use the same value for the gravitational
constant, G = 6.6743 x 107" N-m?/kg?.

3. The class will determine the vector sum and compare with the result that would be obtained
with the shell theorem.

Exercise 10: The shell theorem
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In July of 1994, Comet Shoemaker-Levy struck the planet Jupiter, de-
positing 7 x 10?2 joules of energy, and incidentally giving rise to a series
of Hollywood movies in which our own planet is threatened by an impact
by a comet or asteroid. There is evidence that such an impact caused
the extinction of the dinosaurs. Left: Jupiter's gravitational force on the
near side of the comet was greater than on the far side, and this differ-
ence in force tore up the comet into a string of fragments. Two separate
telescope images have been combined to create the illusion of a point of
view just behind the comet. (The colored fringes at the edges of Jupiter
are artifacts of the imaging system.) Top: A series of images of the plume
of superheated gas kicked up by the impact of one of the fragments. The
plume is about the size of North America. Bottom: An image after all the
impacts were over, showing the damage done.

Chapter 11
Conservation of Energy

The search for a perpetual motion
machine

Don’t underestimate greed and laziness as forces for progress. Mod-
ern chemistry was born from the collision of lust for gold with dis-
taste for the hard work of finding it and digging it up. Failed efforts
by generations of alchemists to turn lead into gold led finally to the
conclusion that it could not be done: certain substances, the chem-
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a/The magnet draws the
ball to the top of the ramp, where
it falls through the hole and rolls
back to the bottom.

b/As the wheel spins clock-
wise, the flexible arms sweep
around and bend and unbend. By
dropping off its ball on the ramp,
the arm is supposed to make
itself lighter and easier to lift over
the top. Picking its own ball back
up again on the right, it helps to
pull the right side down.
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ical elements, are fundamental, and chemical reactions can neither
increase nor decrease the amount of an element such as gold.

Now flash forward to the early industrial age. Greed and laziness
have created the factory, the train, and the ocean liner, but in each
of these is a boiler room where someone gets sweaty shoveling the
coal to fuel the steam engine. Generations of inventors have tried to
create a machine, called a perpetual motion machine, that would run
forever without fuel. Such a machine is not forbidden by Newton’s
laws of motion, which are built around the concepts of force and
inertia. Force is free, and can be multiplied indefinitely with pulleys,
gears, or levers. The principle of inertia seems even to encourage
the belief that a cleverly constructed machine might not ever run
down.

Figures a and b show two of the innumerable perpetual motion
machines that have been proposed. The reason these two examples
don’t work is not much different from the reason all the others have
failed. Consider machine a. Even if we assume that a properly
shaped ramp would keep the ball rolling smoothly through each
cycle, friction would always be at work. The designer imagined that
the machine would repeat the same motion over and over again, so
that every time it reached a given point its speed would be exactly
the same as the last time. But because of friction, the speed would
actually be reduced a little with each cycle, until finally the ball
would no longer be able to make it over the top.

Friction has a way of creeping into all moving systems. The
rotating earth might seem like a perfect perpetual motion machine,
since it is isolated in the vacuum of outer space with nothing to exert
frictional forces on it. But in fact our planet’s rotation has slowed
drastically since it first formed, and the earth continues to slow
its rotation, making today just a little longer than yesterday. The
very subtle source of friction is the tides. The moon’s gravity raises
bulges in the earth’s oceans, and as the earth rotates the bulges
progress around the planet. Where the bulges encounter land, there
is friction, which slows the earth’s rotation very gradually.

11.2 Energy

The analysis based on friction is somewhat superficial, however. One
could understand friction perfectly well and yet imagine the follow-
ing situation. Astronauts bring back a piece of magnetic ore from
the moon which does not behave like ordinary magnets. A normal
bar magnet, c/1, attracts a piece of iron essentially directly toward
it, and has no left- or right-handedness. The moon rock, however,
exerts forces that form a whirlpool pattern around it, 2. NASA
goes to a machine shop and has the moon rock put in a lathe and
machined down to a smooth cylinder, 3. If we now release a ball
bearing on the surface of the cylinder, the magnetic force whips it
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around and around at ever higher speeds. Of course there is some
friction, but there is a net gain in speed with each revolution.

Physicists would lay long odds against the discovery of such a
moon rock, not just because it breaks the rules that magnets nor-
mally obey but because, like the alchemists, they have discovered
a very deep and fundamental principle of nature which forbids cer-
tain things from happening. The first alchemist who deserved to
be called a chemist was the one who realized one day, “In all these
attempts to create gold where there was none before, all I've been
doing is shuffling the same atoms back and forth among different
test tubes. The only way to increase the amount of gold in my lab-
oratory is to bring some in through the door.” It was like having
some of your money in a checking account and some in a savings ac-
count. Transferring money from one account into the other doesn’t
change the total amount.

We say that the number of grams of gold is a conserved quan-
tity. In this context, the word “conserve” does not have its usual
meaning of trying not to waste something. In physics, a conserved
quantity is something that you wouldn’t be able to get rid of even
if you wanted to. Conservation laws in physics always refer to a
closed system, meaning a region of space with boundaries through
which the quantity in question is not passing. In our example, the
alchemist’s laboratory is a closed system because no gold is coming
in or out through the doors.

Conservation of mass example 1
In figure d, the stream of water is fatter near the mouth of the
faucet, and skinnier lower down. This is because the water speeds
up as it falls. If the cross-sectional area of the stream was equal
all along its length, then the rate of flow through a lower cross-
section would be greater than the rate of flow through a cross-
section higher up. Since the flow is steady, the amount of wa-
ter between the two cross-sections stays constant. The cross-
sectional area of the stream must therefore shrink in inverse pro-
portion to the increasing speed of the falling water. This is an
example of conservation of mass.

In general, the amount of any particular substance is not con-
served. Chemical reactions can change one substance into another,
and nuclear reactions can even change one element into another.
The total mass of all substances is however conserved:

the law of conservation of mass
The total mass of a closed system always remains constant. Mass
cannot be created or destroyed, but only transferred from one system
to another.

A similar lightbulb eventually lit up in the heads of the people
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c/A mysterious moon
makes a perpetual
machine.

d/ Example 1.

Section 11.2  Energy

rock
motion
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who had been frustrated trying to build a perpetual motion machine.
In perpetual motion machine a, consider the motion of one of the
balls. It performs a cycle of rising and falling. On the way down it
gains speed, and coming up it slows back down. Having a greater
speed is like having more money in your checking account, and being
high up is like having more in your savings account. The device is
simply shuffling funds back and forth between the two. Having more
balls doesn’t change anything fundamentally. Not only that, but
friction is always draining off money into a third “bank account:”
heat. The reason we rub our hands together when we'’re cold is that
kinetic friction heats things up. The continual buildup in the “heat
account” leaves less and less for the “motion account” and “height
account,” causing the machine eventually to run down.

These insights can be distilled into the following basic principle
of physics:

the law of conservation of energy

It is possible to give a numerical rating, called energy, to the state
of a physical system. The total energy is found by adding up contri-
butions from characteristics of the system such as motion of objects
in it, heating of the objects, and the relative positions of objects
that interact via forces. The total energy of a closed system always
remains constant. Energy cannot be created or destroyed, but only
transferred from one system to another.

The moon rock story violates conservation of energy because the
rock-cylinder and the ball together constitute a closed system. Once
the ball has made one revolution around the cylinder, its position
relative to the cylinder is exactly the same as before, so the numer-
ical energy rating associated with its position is the same as before.
Since the total amount of energy must remain constant, it is im-
possible for the ball to have a greater speed after one revolution. If
it had picked up speed, it would have more energy associated with
motion, the same amount of energy associated with position, and a
little more energy associated with heating through friction. There
cannot be a net increase in energy.

Converting one form of energy to another example 2
Dropping a rock: The rock loses energy because of its changing
position with respect to the earth. Nearly all that energy is trans-
formed into energy of motion, except for a small amount lost to
heat created by air friction.

Sliding in to home base: The runner’s energy of motion is nearly
all converted into heat via friction with the ground.

Accelerating a car: The gasoline has energy stored in it, which
is released as heat by burning it inside the engine. Perhaps 10%

Conservation of Energy



of this heat energy is converted into the car’s energy of motion.
The rest remains in the form of heat, which is carried away by the
exhaust.

Cruising in a car: As you cruise at constant speed in your car, all
the energy of the burning gas is being converted into heat. The
tires and engine get hot, and heat is also dissipated into the air
through the radiator and the exhaust.

Stepping on the brakes: All the energy of the car’s motion is con-
verted into heat in the brake shoes.

Stevin’s machine example 3
The Dutch mathematician and engineer Simon Stevin proposed
the imaginary machine shown in figure e, which he had inscribed
on his tombstone. This is an interesting example, because it
shows a link between the force concept used earlier in this course,
and the energy concept being developed now.

The point of the imaginary machine is to show the mechanical
advantage of an inclined plane. In this example, the triangle has
the proportions 3-4-5, but the argument works for any right trian-
gle. We imagine that the chain of balls slides without friction, so
that no energy is ever converted into heat. If we were to slide
the chain clockwise by one step, then each ball would take the
place of the one in front of it, and the over all configuration would
be exactly the same. Since energy is something that only de-
pends on the state of the system, the energy would have to be
the same. Similarly for a counterclockwise rotation, no energy of
position would be released by gravity. This means that if we place
the chain on the triangle, and release it at rest, it can’t start mov-
ing, because there would be no way for it to convert energy of
position into energy of motion. Thus the chain must be perfectly
balanced. Now by symmetry, the arc of the chain hanging under-
neath the triangle has equal tension at both ends, so removing
this arc wouldn’t affect the balance of the rest of the chain. This
means that a weight of three units hanging vertically balances a
weight of five units hanging diagonally along the hypotenuse.

The mechanical advantage of the inclined plane is therefore 5/3,
which is exactly the same as the result, 1/sin0, that we got
on p. 225 by analyzing force vectors. What this shows is that
Newton’s laws and conservation laws are not logically separate,
but rather are very closely related descriptions of nature. In the
cases where Newton’s laws are true, they give the same answers
as the conservation laws. This is an example of a more gen-
eral idea, called the correspondence principle, about how science
progresses over time. When a newer, more general theory is pro-
posed to replace an older theory, the new theory must agree with
the old one in the realm of applicability of the old theory, since the
old theory only became accepted as a valid theory by being ver-
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Discussion question A. The
water behind the Hoover Dam
has energy because of its posi-
tion relative to the planet earth,
which is attracting it with a gravi-
tational force. Letting water down
to the bottom of the dam converts
that energy into energy of motion.
When the water reaches the
bottom of the dam, it hits turbine
blades that drive generators, and
its energy of motion is converted
into electrical energy.
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ified experimentally in a variety of experiments. In other words,
the new theory must be backward-compatible with the old one.
Even though conservation laws can prove things that Newton’s
laws can’t (that perpetual motion is impossible, for example), they
aren’t going to disprove Newton’s laws when applied to mechani-
cal systems where we already knew Newton’s laws were valid.

Discussion question

A Hydroelectric power (water flowing over a dam to spin turbines)
appears to be completely free. Does this violate conservation of energy?
If not, then what is the ultimate source of the electrical energy produced
by a hydroelectric plant?

B How does the proof in example 3 fail if the assumption of a frictionless
surface doesn’t hold?

11.3 A numerical scale of energy

Energy comes in a variety of forms, and physicists didn’t discover all
of them right away. They had to start somewhere, so they picked
one form of energy to use as a standard for creating a numerical
energy scale. (In fact the history is complicated, and several different
energy units were defined before it was realized that there was a
single general energy concept that deserved a single consistent unit
of measurement.) One practical approach is to define an energy
unit based on heating water. The SI unit of energy is the joule,
J, (rhymes with “cool”), named after the British physicist James
Joule. One Joule is the amount of energy required in order to heat
0.24 g of water by 1°C. The number 0.24 is not worth memorizing.
A convenient way of restating this definition is that when heating
water, heat = ¢cmAT, where AT is the change in temperature in
°C, m is the mass, and we have defined the joule by defining the
constant ¢, called the specific heat capacity of water, to have the
value 4.2 x 103 J /kg-°C.

Note that heat, which is a form of energy, is completely differ-
ent from temperature, which is not. Twice as much heat energy
is required to prepare two cups of coffee as to make one, but two
cups of coffee mixed together don’t have double the temperature.
In other words, the temperature of an object tells us how hot it is,
but the heat energy contained in an object also takes into account
the object’s mass and what it is made of.!

Later we will encounter other quantities that are conserved in
physics, such as momentum and angular momentum, and the method
for defining them will be similar to the one we have used for energy:

n standard, formal terminology, there is another, finer distinction. The
word “heat” is used only to indicate an amount of energy that is transferred,
whereas “thermal energy” indicates an amount of energy contained in an object.
I’'m informal on this point, and refer to both as heat, but you should be aware
of the distinction.
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pick some standard form of it, and then measure other forms by
comparison with this standard. The flexible and adaptable nature
of this procedure is part of what has made conservation laws such a
durable basis for the evolution of physics.

Heating a swimming pool example 4
> If electricity costs 3.9 cents per MJ (1 MJ = 1 megajoule = 10°
J), how much does it cost to heat a 26000-gallon swimming pool
from 10°C to 18°C?

> Converting gallons to cm? gives

3780 cm?3

= 9.8 x 10" cm®.
1 gallon

26000 gallons x

Water has a density of 1 gram per cubic centimeter, so the mass
of the water is 9.8 x 10* kg. The energy needed to heat the
swimming pool is

meAT =3.3 x 108 MJ.

The cost of the electricity is (3.3 x 10° MJ)($0.039/MJ)=$130.

Irish coffee example 5
> You make a cup of Irish coffee out of 300 g of coffee at 100°C
and 30 g of pure ethyl alcohol at 20°C. The specific heat capacity
of ethanol is 2.4 x 103 J/kg-°C (i.e., alcohol is easier to heat than
water). What temperature is the final mixture?

> Adding up all the energy after mixing has to give the same result
as the total before mixing. We let the subscript / stand for the
initial situation, before mixing, and f for the final situation, and use
subscripts ¢ for the coffee and a for the alcohol. In this notation,
we have

total initial energy = total final energy
Eci+ Eaj = Ecr + Exf.

We assume coffee has the same heat-carrying properties as wa-
ter. Our information about the heat-carrying properties of the two
substances is stated in terms of the change in energy required for
a certain change in temperature, so we rearrange the equation to
express everything in terms of energy differences:

Ear — Egi = E¢i — Egy.

Using the heat capacities c. for coffee (water) and ¢, for alcohol,
we have

Eci — Ecr = (Tgi — Ter)mecCe and
Ear — Egi = (Tar — Tai)MaCa.
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Setting these two quantities to be equal, we have
(Tar — Tai)MaCa = (Tej — Ter)McCe.

In the final mixture the two substances must be at the same tem-
perature, so we can use a single symbol Ty = Ty = T4 for the
two quantities previously represented by two different symbols,

(T — Tai)MaCa = (T¢i — Tr)mcCe.
Solving for T gives

_ ToimeCe + T3iMaCa
McCc + M3Cy
= 96°C.

Ty

Once a numerical scale of energy has been established for some
form of energy such as heat, it can easily be extended to other types
of energy. For instance, the energy stored in one gallon of gasoline
can be determined by putting some gasoline and some water in an
insulated chamber, igniting the gas, and measuring the rise in the
water’s temperature. (The fact that the apparatus is known as a
“bomb calorimeter” will give you some idea of how dangerous these
experiments are if you don’t take the right safety precautions.) Here
are some examples of other types of energy that can be measured
using the same units of joules:

type of energy

example

chemical energy
released by burning

About 50 MJ are released by burning
a kg of gasoline.

energy required to
break an object

When a person suffers a spiral frac-
ture of the thighbone (a common
type in skiing accidents), about 2 J
of energy go into breaking the bone.

energy required to
melt a solid substance

7 MJ are required to melt 1 kg of tin.

chemical energy
released by digesting
food

A bowl of Cheeries with milk provides
us with about 800 kJ of usable en-

ergy.

raising a mass against
the force of gravity

Lifting 1.0 kg through a height of 1.0
m requires 9.8 J.

nuclear energy
released in fission

1 kg of uranium oxide fuel consumed
by a reactor releases 2 x 102 J of
stored nuclear energy.

It is interesting to note the disproportion between the megajoule

energies we consume as food and the joule-sized energies we expend
in physical activities. If we could perceive the flow of energy around
us the way we perceive the flow of water, eating a bowl of cereal
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would be like swallowing a bathtub’s worth of energy, the continual
loss of body heat to one’s environment would be like an energy-hose
left on all day, and lifting a bag of cement would be like flicking
it with a few tiny energy-drops. The human body is tremendously
inefficient. The calories we “burn” in heavy exercise are almost all
dissipated directly as body heat.

You take the high road and I'll take the low road. example 6

> Figure f shows two ramps which two balls will roll down. Com-
pare their final speeds, when they reach point B. Assume friction
is negligible.

> Each ball loses some energy because of its decreasing height
above the earth, and conservation of energy says that it must gain
an equal amount of energy of motion (minus a little heat created
by friction). The balls lose the same amount of height, so their
final speeds must be equal.

It’s impressive to note the complete impossibility of solving this
problem using only Newton’s laws. Even if the shape of the track
had been given mathematically, it would have been a formidable
task to compute the balls’ final speed based on vector addition of
the normal force and gravitational force at each point along the way.

How new forms of energy are discovered

Textbooks often give the impression that a sophisticated physics
concept was created by one person who had an inspiration one day,
but in reality it is more in the nature of science to rough out an idea
and then gradually refine it over many years. The idea of energy
was tinkered with from the early 1800’s on, and new types of energy
kept getting added to the list.

To establish the existence of a new form of energy, a physicist
has to

(1) show that it could be converted to and from other forms of
energy; and

(2) show that it related to some definite measurable property of
the object, for example its temperature, motion, position relative to
another object, or being in a solid or liquid state.

For example, energy is released when a piece of iron is soaked in
water, so apparently there is some form of energy already stored in
the iron. The release of this energy can also be related to a definite
measurable property of the chunk of metal: it turns reddish-orange.
There has been a chemical change in its physical state, which we
call rusting.

Although the list of types of energy kept getting longer and
longer, it was clear that many of the types were just variations on
a theme. There is an obvious similarity between the energy needed

Section 11.3 A numerical scale of energy

A ball#1

ball #2

track #2

f/ Example 6.

track #1

301



302

Chapter 11

to melt ice and to melt butter, or between the rusting of iron and
many other chemical reactions. The topic of the next chapter is
how this process of simplification reduced all the types of energy
to a very small number (four, according to the way I've chosen to
count them).

It might seem that if the principle of conservation of energy ever
appeared to be violated, we could fix it up simply by inventing some
new type of energy to compensate for the discrepancy. This would
be like balancing your checkbook by adding in an imaginary deposit
or withdrawal to make your figures agree with the bank’s statements.
Step (2) above guards against this kind of chicanery. In the 1920s
there were experiments that suggested energy was not conserved in
radioactive processes. Precise measurements of the energy released
in the radioactive decay of a given type of atom showed inconsistent
results. One atom might decay and release, say, 1.1 x 10710 J of
energy, which had presumably been stored in some mysterious form
in the nucleus. But in a later measurement, an atom of exactly the
same type might release 1.2 x 10710 J. Atoms of the same type are
supposed to be identical, so both atoms were thought to have started
out with the same energy. If the amount released was random, then
apparently the total amount of energy was not the same after the
decay as before, i.e., energy was not conserved.

Only later was it found that a previously unknown particle,
which is very hard to detect, was being spewed out in the decay.
The particle, now called a neutrino, was carrying off some energy,
and if this previously unsuspected form of energy was added in,
energy was found to be conserved after all. The discovery of the
energy discrepancies is seen with hindsight as being step (1) in the
establishment of a new form of energy, and the discovery of the neu-
trino was step (2). But during the decade or so between step (1)
and step (2) (the accumulation of evidence was gradual), physicists
had the admirable honesty to admit that the cherished principle of
conservation of energy might have to be discarded.

self-check A

How would you carry out the two steps given above in order to estab-
lish that some form of energy was stored in a stretched or compressed
spring? > Answer, p. 567

Mass Into Energy

Einstein showed that mass itself could be converted to and from energy,
according to his celebrated equation E = mc?, in which c is the speed
of light. We thus speak of mass as simply another form of energy, and
it is valid to measure it in units of joules. The mass of a 15-gram pencil
corresponds to about 1.3 x 10" J. The issue is largely academic in the
case of the pencil, because very violent processes such as nuclear re-
actions are required in order to convert any significant fraction of an ob-
ject’s mass into energy. Cosmic rays, however, are continually striking
you and your surroundings and converting part of their energy of motion
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into the mass of newly created particles. A single high-energy cosmic
ray can create a “shower” of millions of previously nonexistent particles
when it strikes the atmosphere. Einstein’s theories are discussed later
in this book.

Even today, when the energy concept is relatively mature and sta-
ble, a new form of energy has been proposed based on observations
of distant galaxies whose light began its voyage to us billions of years
ago. Astronomers have found that the universe’s continuing expansion,
resulting from the Big Bang, has not been decelerating as rapidly in the
last few billion years as would have been expected from gravitational
forces. They suggest that a new form of energy may be at work.

Discussion question

A I'm not making this up. XS Energy Drink has ads that read like this:
All the “Energy” ... Without the Sugar! Only 8 Calories! Comment on
this.

11.4 Kinetic energy

The technical term for the energy associated with motion is kinetic
energy, from the Greek word for motion. (The root is the same as
the root of the word “cinema” for a motion picture, and in French
the term for kinetic energy is “énergie cinétique.”) To find how
much kinetic energy is possessed by a given moving object, we must
convert all its kinetic energy into heat energy, which we have chosen
as the standard reference type of energy. We could do this, for
example, by firing projectiles into a tank of water and measuring the
increase in temperature of the water as a function of the projectile’s
mass and velocity. Consider the following data from a series of three
such experiments:

m (kg) | v (w/s) | energy (J)
1.00 1.00 0.50
1.00 2.00 2.00
2.00 1.00 1.00

Comparing the first experiment with the second, we see that dou-
bling the object’s velocity doesn’t just double its energy, it quadru-
ples it. If we compare the first and third lines, however, we find
that doubling the mass only doubles the energy. This suggests that
kinetic energy is proportional to mass and to the square of veloc-
ity, KE o« mv?, and further experiments of this type would indeed
establish such a general rule. The proportionality factor equals 0.5
because of the design of the metric system, so the kinetic energy of
a moving object is given by

1
KE = ~mv?.
2
The metric system is based on the meter, kilogram, and second,

with other units being derived from those. Comparing the units on
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the left and right sides of the equation shows that the joule can be
reexpressed in terms of the basic units as kg-m?/s2.

Energy released by a comet impact example 7
> Comet Shoemaker-Levy, which struck the planet Jupiter in 1994,
had a mass of roughly 4 x 10'3 kg, and was moving at a speed
of 60 km/s. Compare the kinetic energy released in the impact to
the total energy in the world’s nuclear arsenals, which is 2 x 101°
J. Assume for the sake of simplicity that Jupiter was at rest.

> Since we assume Jupiter was at rest, we can imagine that the
comet stopped completely on impact, and 100% of its kinetic en-
ergy was converted to heat and sound. We first convert the speed
to mks units, v = 6 x 10* m/s, and then plug in to the equation
to find that the comet’s kinetic energy was roughly 7 x 10%? J, or
about 3000 times the energy in the world’s nuclear arsenals.

Energy and relative motion

Galileo’s Aristotelian enemies (and it is no exaggeration to call
them enemies!) would probably have objected to conservation of
energy. Galilean got in trouble by claiming that an object in motion
would continue in motion indefinitely in the absence of a force. This
is not so different from the idea that an object’s kinetic energy
stays the same unless there is a mechanism like frictional heating
for converting that energy into some other form.

More subtly, however, it’s not immediately obvious that what
we've learned so far about energy is strictly mathematically con-
sistent with Galileo’s principle that motion is relative. Suppose we
verify that a certain process, say the collision of two pool balls, con-
serves energy as measured in a certain frame of reference: the sum
of the balls’ kinetic energies before the collision is equal to their sum
after the collision. But what if we were to measure everything in a
frame of reference that was in a different state of motion? It’s not
immediately obvious that the total energy before the collision will
still equal the total energy after the collision. It does still work out.
Homework problem 13, p. 312, gives a simple numerical example,
and the general proof is taken up in problem 15 on p. 390 (with the
solution given in the back of the book).

Why kinetic energy obeys the equation it does

I've presented the magic expression for kinetic energy, (1/2)mv?,
as a purely empirical fact. Does it have any deeper reason that
might be knowable to us mere mortals? Yes and no. It contains
three factors, and we need to consider each separately.

The reason for the factor of 1/2 is understandable, but only
as an arbitrary historical choice. The metric system was designed
so that some of the equations relating to energy would come out
looking simple, at the expense of some others, which had to have
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inconvenient conversion factors in front. If we were using the old
British Engineering System of units in this course, then we’d have
the British Thermal Unit (BTU) as our unit of energy. In that
system, the equation you’d learn for kinetic energy would have an
inconvenient proportionality constant, KE = (1.29 X 10*3) mu?,
with K F measured in units of BTUs, v measured in feet per second,
and so on. At the expense of this inconvenient equation for kinetic
energy, the designers of the British Engineering System got a simple
rule for calculating the energy required to heat water: one BTU
per degree Fahrenheit per pound. The inventor of kinetic energy,
Thomas Young, actually defined it as K E = mv?, which meant that
all his other equations had to be different from ours by a factor of
two. All these systems of units work just fine as long as they are
not combined with one another in an inconsistent way.

The proportionality to m is inevitable because the energy con-
cept is based on the idea that we add up energy contributions from
all the objects within a system. Therefore it is logically necessary
that a 2 kg object moving at 1 m/s have the same kinetic energy as
two 1 kg objects moving side-by-side at the same speed.

What about the proportionality to v?>? Consider:

1. It’s surprisingly hard to tamper with this factor without break-
ing things: see discussion questions A and B on p. 306.

2. The proportionality to v? is not even correct, except as a low-
velocity approximation. Experiments show deviations from
the v? rule at high speeds (figure g), an effect that is related
to Einstein’s theory of relativity.

3. As described on p. 304, we want conservation of energy to
keep working when we switch frames of reference. The fact
that this does work for K F o v? is intimately connected with
the assumption that when we change frames, velocities add as
described in section 2.5. This assumption turns out to be an
approximation, which only works well at low velocities.

4. Conservation laws are of more general validity than Newton’s
laws, which apply to material objects moving at low speeds.
Under the conditions where Newton’s laws are accurate, they
follow logically from the conservation laws. Therefore we need
kinetic energy to have low-velocity behavior that ends up cor-
rectly reproducing Newton’s laws.

So under a certain set of low-velocity approzimations, KE o v?

is what works. We verify in problem 15, p. 390, that it satisfies
criterion 3, and we show in section 13.6, p. 348, that it is the only
such relation that satisfies criterion 4.
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Discussion questions

A Suppose that, like Young or Einstein, you were trying out different
equations for kinetic energy to see if they agreed with the experimental
data. Based on the meaning of positive and negative signs of velocity,
why would you suspect that a proportionality to mv would be less likely
than mv2?

B Asindiscussion question A, try to think of an argument showing that
m(v2 + v*) is not a possible formula for kinetic energy.

C The figure shows a pendulum that is released at A and caught by a
peg as it passes through the vertical, B. To what height will the bob rise
on the right?

Power

A car may have plenty of energy in its gas tank, but still may not
be able to increase its kinetic energy rapidly. A Porsche doesn’t
necessarily have more energy in its gas tank than a Hyundai, it is
just able to transfer it more quickly. The rate of transferring energy
from one form to another is called power. The definition can be

written as an equation,
AE

At

where the use of the delta notation in the symbol AFE has the usual
interpretation: the final amount of energy in a certain form minus
the initial amount that was present in that form. Power has units
of J/s, which are abbreviated as watts, W (rhymes with “lots”).

P:

If the rate of energy transfer is not constant, the power at any
instant can be defined as the slope of the tangent line on a graph of
E versus t. Likewise AFE can be extracted from the area under the
P-versus-t curve.

Converting kilowatt-hours to joules example 8
> The electric company bills you for energy in units of kilowatt-
hours (kilowatts multiplied by hours) rather than in Sl units of
joules. How many joules is a kilowatt-hour?

> 1 kilowatt-hour = (1 kW)(1 hour) = (1000 J/s)(3600 s) = 3.6 MJ.

Human wattage example 9
> A typical person consumes 2000 kcal of food in a day, and con-
verts nearly all of that directly to heat. Compare the person’s heat
output to the rate of energy consumption of a 100-watt lightbulb.

> Looking up the conversion factor from calories to joules, we find

AE = 2000 keal x 1000cal 418 o 1084
1 kcal 1 cal
for our daily energy consumption. Converting the time interval

likewise into mks,

24 hours 60min 60s 4
At =1 day x 1 day X 1hour><1mm_9><10 S.
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Dividing, we find that our power dissipated as heat is 90 J/s = 90
W, about the same as a lightbulb.

It is easy to confuse the concepts of force, energy, and power,
especially since they are synonyms in ordinary speech. The table on
the following page may help to clear this up:

out? Does it
cost money?

pay a monthly bill for
the meganewtons of force
required to hold up my
house.

gasoline, electrical energy,
batteries, etc.,
they contain energy.

because

force energy power
conceptual A force is an interaction | Heating an object, mak- | Power is the rate at
definition between two objects that | ing it move faster, or in- | which energy is trans-
causes a push or a pull. | creasing its distance from | formed from one form
A force can be defined as | another object that is at- | to another or transferred
anything that is capable | tracting it are all exam- | from one object to an-
of changing an object’s | ples of things that would | other.
state of motion. require fuel or physical ef-
fort. All these things can
be quantified using a sin-
gle scale of measurement,
and we describe them all
as forms of energy.
operational ) If we define a unit of en- | Measure the change in the
definition A spring scale can be used ergy as the amount re- | amount of some form of
gy
to measure force. . .
quired to heat a certain | energy possessed by an
amount of water by a | object, and divide by the
1°C, then we can mea- | amount of time required
sure any other quantity | for the change to occur.
of energy by transferring
it into heat in water and
measuring the tempera-
ture increase.
scalar or | vector — has a direction | scalar — has no direction | scalar — has no direction
vector? in space which is the di- | in space in space
rection in which it pulls or
pushes
unit newtons (N) joules (J) watts (W) = joules/s
Can it run | No. I don’t have to | Yes. We pay money for | More power means you

are paying money at a
higher rate. A 100-W
lightbulb costs a certain
number of cents per hour.

Can it be a
property of
an object?

No. A force is a rela-
tionship  between two
interacting objects.
A home-run  baseball
doesn’t “have” force.

Yes. What a home-run
baseball has is kinetic en-
ergy, not force.

Not really. A 100-W
lightbulb doesn’t “have”
100 W. 100 J/s is the rate
at which it converts elec-
trical energy into light.
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Summary

Selected vocabulary
energy . ..... A numerical scale used to measure the heat,
motion, or other properties that would require
fuel or physical effort to put into an object; a
scalar quantity with units of joules (J).

power . .. .. .. The rate of transferring energy; a scalar quan-
tity with units of watts (W).

kinetic energy . . The energy an object possesses because of its
motion.

heat . . . ... .. A form of energy that relates to temperature.

Heat is different from temperature because an
object with twice as much mass requires twice
as much heat to increase its temperature by
the same amount. Heat is measured in joules,
temperature in degrees. (In standard termi-
nology, there is another, finer distinction be-
tween heat and thermal energy, which is dis-
cussed below. In this book, I informally refer
to both as heat.)

temperature . . .  What a thermometer measures. Objects left in
contact with each other tend to reach the same
temperature. Cf. heat. As discussed in more
detail in chapter 2, temperature is essentially
a measure of the average kinetic energy per

molecule.
Notation
E ... energy
B joules, the SI unit of energy
KE ........ kinetic energy
P .. power
W .o watts, the SI unit of power; equivalent to J/s
Other terminology and notation
Qor AQ .. ... the amount of heat transferred into or out of
an object
KorT ...... alternative symbols for kinetic energy, used in
the scientific literature and in most advanced
textbooks
thermal energy .  Careful writers make a distinction between

heat and thermal energy, but the distinction
is often ignored in casual speech, even among
physicists. Properly, thermal energy is used
to mean the total amount of energy possessed
by an object, while heat indicates the amount
of thermal energy transferred in or out. The
term heat is used in this book to include both
meanings.
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Summary

Heating an object, making it move faster, or increasing its dis-
tance from another object that is attracting it are all examples of
things that would require fuel or physical effort. All these things can
be quantified using a single scale of measurement, and we describe
them all as forms of energy. The SI unit of energy is the Joule.
The reason why energy is a useful and important quantity is that
it is always conserved. That is, it cannot be created or destroyed
but only transferred between objects or changed from one form to
another. Conservation of energy is the most important and broadly
applicable of all the laws of physics, more fundamental and general
even than Newton’s laws of motion.

Heating an object requires a certain amount of energy per degree
of temperature and per unit mass, which depends on the substance
of which the object consists. Heat and temperature are completely
different things. Heat is a form of energy, and its SI unit is the joule
(J). Temperature is not a measure of energy. Heating twice as much
of something requires twice as much heat, but double the amount
of a substance does not have double the temperature.

The energy that an object possesses because of its motion is
called kinetic energy. Kinetic energy is related to the mass of the
object and the magnitude of its velocity vector by the equation

1
KE = EmUQ.

Power is the rate at which energy is transformed from one form
to another or transferred from one object to another,

AR
At

The SI unit of power is the watt (W).

P [only for constant power]

Summary
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Chapter 11

Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 This problem is now problem 14 in chapter 12, on page 329.

2 Can kinetic energy ever be less than zero? Explain. [Based
on a problem by Serway and Faughn.]

3 Estimate the kinetic energy of an Olympic sprinter.

4 You are driving your car, and you hit a brick wall head on,
at full speed. The car has a mass of 1500 kg. The kinetic energy
released is a measure of how much destruction will be done to the car
and to your body. Calculate the energy released if you are traveling
at (a) 40 mi/hr, and again (b) if you're going 80 mi/hr. What is
counterintuitive about this, and what implication does this have for
driving at high speeds? v

5 A closed system can be a bad thing — for an astronaut
sealed inside a space suit, getting rid of body heat can be difficult.
Suppose a 60-kg astronaut is performing vigorous physical activity,
expending 200 W of power. If none of the heat can escape from her
space suit, how long will it take before her body temperature rises
by 6°C (11°F), an amount sufficient to kill her? Assume that the
amount of heat required to raise her body temperature by 1°C is
the same as it would be for an equal mass of water. Express your
answer in units of minutes. %

6 All stars, including our sun, show variations in their light out-
put to some degree. Some stars vary their brightness by a factor of
two or even more, but our sun has remained relatively steady dur-
ing the hundred years or so that accurate data have been collected.
Nevertheless, it is possible that climate variations such as ice ages
are related to long-term irregularities in the sun’s light output. If
the sun was to increase its light output even slightly, it could melt
enough Antarctic ice to flood all the world’s coastal cities. The total
sunlight that falls on Antarctica amounts to about 1 x 10'6 watts.
In the absence of natural or human-caused climate change, this heat
input to the poles is balanced by the loss of heat via winds, ocean
currents, and emission of infrared light, so that there is no net melt-
ing or freezing of ice at the poles from year to year. Suppose that
the sun changes its light output by some small percentage, but there
is no change in the rate of heat loss by the polar caps. Estimate the
percentage by which the sun’s light output would have to increase
in order to melt enough ice to raise the level of the oceans by 10 me-
ters over a period of 10 years. (This would be enough to flood New
York, London, and many other cities.) Melting 1 kg of ice requires
3x10% J.

Conservation of Energy



7 A bullet flies through the air, passes through a paperback book,
and then continues to fly through the air beyond the book. When
is there a force? When is there energy? > Solution, p. 558

8 Experiments show that the power consumed by a boat’s engine
is approximately proportional to the third power of its speed. (We
assume that it is moving at constant speed.) (a) When a boat
is crusing at constant speed, what type of energy transformation
do you think is being performed? (b) If you upgrade to a motor
with double the power, by what factor is your boat’s crusing speed
increased? [Based on a problem by Arnold Arons.]
> Solution, p. 559

9 Object A has a kinetic energy of 13.4 J. Object B has a mass
that is greater by a factor of 3.77, but is moving more slowly by
a factor of 2.34. What is object B’s kinetic energy? [Based on a
problem by Arnold Arons.| > Solution, p. 559

10 The moon doesn’t really just orbit the Earth. By Newton’s
third law, the moon’s gravitational force on the earth is the same as
the earth’s force on the moon, and the earth must respond to the
moon’s force by accelerating. If we consider the earth and moon in
isolation and ignore outside forces, then Newton’s first law says their
common center of mass doesn’t accelerate, i.e., the earth wobbles
around the center of mass of the earth-moon system once per month,
and the moon also orbits around this point. The moon’s mass is 81
times smaller than the earth’s. Compare the kinetic energies of the
earth and moon. (We know that the center of mass is a kind of
balance point, so it must be closer to the earth than to the moon.
In fact, the distance from the earth to the center of mass is 1/81
of the distance from the moon to the center of mass, which makes
sense intuitively, and can be proved rigorously using the equation
on page 374.)

11 My 1.25 kW microwave oven takes 126 seconds to bring 250
g of water from room temperature to a boil. What percentage of
the power is being wasted? Where might the rest of the energy be
going? > Solution, p. 559

Problems

311



312

Problem 12.

Chapter 11

12 The multiflash photograph shows a collision between two
pool balls. The ball that was initially at rest shows up as a dark
image in its initial position, because its image was exposed several
times before it was struck and began moving. By making measure-
ments on the figure, determine numerically whether or not energy
appears to have been conserved in the collision. What systematic
effects would limit the accuracy of your test? [From an example in
PSSC Physics.|

13 This problem is a numerical example of the imaginary exper-
iment discussed on p. 304 regarding the relationship between energy
and relative motion. Let’s say that the pool balls both have masses
of 1.00 kg. Suppose that in the frame of reference of the pool table,
the cue ball moves at a speed of 1.00 m/s toward the eight ball,
which is initially at rest. The collision is head-on, and as you can
verify for yourself the next time you’re playing pool, the result of
such a collision is that the incoming ball stops dead and the ball that
was struck takes off with the same speed originally possessed by the
incoming ball. (This is actually a bit of an idealization. To keep
things simple, we're ignoring the spin of the balls, and we assume
that no energy is liberated by the collision as heat or sound.) (a)
Calculate the total initial kinetic energy and the total final kinetic
energy, and verify that they are equal. (b) Now carry out the whole
calculation again in the frame of reference that is moving in the same
direction that the cue ball was initially moving, but at a speed of
0.50 m/s. In this frame of reference, both balls have nonzero initial
and final velocities, which are different from what they were in the
table’s frame. [See also problem 15 on p. 390.]

Conservation of Energy



14  One theory about the destruction of the space shuttle Columbia

in 2003 is that one of its wings had been damaged on liftoff by a
chunk of foam insulation that fell off of one of its external fuel tanks.
The New York Times reported on June 5, 2003, that NASA engi-
neers had recreated the impact to see if it would damage a mock-up
of the shuttle’s wing. “Before last week’s test, many engineers at
NASA said they thought lightweight foam could not harm the seem-
ingly tough composite panels, and privately predicted that the foam
would bounce off harmlessly, like a Nerf ball.” In fact, the 0.80 kg
piece of foam, moving at 240 m/s, did serious damage. A mem-
ber of the board investigating the disaster said this demonstrated
that “people’s intuitive sense of physics is sometimes way off.” (a)
Compute the kinetic energy of the foam, and (b) compare with the
energy of an 80 kg boulder moving at 2.4 m/s (the speed it would
have if you dropped it from about knee-level). v
(¢) The boulder is a hundred times more massive, but its speed
is a hundred times smaller, so what’s counterintuitive about your
results?

15 The figure above is from a classic 1920 physics textbook
by Millikan and Gale. It represents a method for raising the water
from the pond up to the water tower, at a higher level, without
using a pump. Water is allowed into the drive pipe, and once it is
flowing fast enough, it forces the valve at the bottom closed. Explain
how this works in terms of conservation of mass and energy. (Cf.
example 1 on page 295.)

Problems
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16 The following table gives the amount of energy required in

order to heat, melt, or boil a gram of water.
heat 1 g of ice by 1°C 2.056J

melt 1 g of ice 333 J
heat 1 g of water by 1°C  4.19 J
boil 1 g of water 2500 J

heat 1 g of steam by 1°C  2.01 J
(a) How much energy is required in order to convert 1.00 g of ice at

-20 °C into steam at 137 °C? v
(b) What is the minimum amount of hot water that could melt 1.00
g of ice? v

17 Estimate the kinetic energy of a buzzing fly’s wing. (You

may wish to review section 1.4 on order-of-magnitude estimates.)

18 A blade of grass moves upward as it grows. Estimate its
kinetic energy. (You may wish to review section 1.4 on order-of-
magnitude estimates.)

Conservation of Energy
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Do these forms of energy have anything in common?

Chapter 12
Simplifying the Energy Zoo

Variety is the spice of life, not of science. The figure shows a few
examples from the bewildering array of forms of energy that sur-
rounds us. The physicist’s psyche rebels against the prospect of a
long laundry list of types of energy, each of which would require
its own equations, concepts, notation, and terminology. The point
at which we’ve arrived in the study of energy is analogous to the
period in the 1960’s when a half a dozen new subatomic particles
were being discovered every year in particle accelerators. It was an
embarrassment. Physicists began to speak of the “particle zoo,”
and it seemed that the subatomic world was distressingly complex.
The particle zoo was simplified by the realization that most of the
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a/A vivid demonstration that
heat is a form of motion. A small
amount of boiling water is poured
into the empty can, which rapidly
fills up with hot steam. The can
is then sealed tightly, and soon
crumples. This can be explained
as follows. The high tempera-
ture of the steam is interpreted as
a high average speed of random
motions of its molecules. Before
the lid was put on the can, the
rapidly moving steam molecules
pushed their way out of the can,
forcing the slower air molecules
out of the way. As the steam in-
side the can thinned out, a sta-
ble situation was soon achieved,
in which the force from the less
dense steam molecules moving
at high speed balanced against
the force from the more dense but
slower air molecules outside. The
cap was put on, and after a while
the steam inside the can reached
the same temperature as the air
outside. The force from the cool,
thin steam no longer matched the
force from the cool, dense air out-
side, and the imbalance of forces
crushed the can.

new particles being whipped up were simply clusters of a previously
unsuspected set of more fundamental particles (which were whimsi-
cally dubbed quarks, a made-up word from a line of poetry by James
Joyce, “Three quarks for Master Mark.”) The energy zoo can also
be simplified, and it is the purpose of this chapter to demonstrate
the hidden similarities between forms of energy as seemingly differ-
ent as heat and motion.

12.1 Heat is kinetic energy

What is heat really? Is it an invisible fluid that your bare feet soak
up from a hot sidewalk? Can one ever remove all the heat from an
object? Is there a maximum to the temperature scale?

The theory of heat as a fluid seemed to explain why colder ob-
jects absorbed heat from hotter ones, but once it became clear that
heat was a form of energy, it began to seem unlikely that a material
substance could transform itself into and out of all those other forms
of energy like motion or light. For instance, a compost pile gets hot,
and we describe this as a case where, through the action of bacteria,
chemical energy stored in the plant cuttings is transformed into heat
energy. The heating occurs even if there is no nearby warmer object
that could have been leaking “heat fluid” into the pile.

An alternative interpretation of heat was suggested by the theory
that matter is made of atoms. Since gases are thousands of times less
dense than solids or liquids, the atoms (or clusters of atoms called
molecules) in a gas must be far apart. In that case, what is keeping
all the air molecules from settling into a thin film on the floor of the
room in which you are reading this book? The simplest explanation
is that they are moving very rapidly, continually ricocheting off of
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the floor, walls, and ceiling. Though bizarre, the cloud-of-bullets
image of a gas did give a natural explanation for the surprising
ability of something as tenuous as a gas to exert huge forces. Your
car’s tires can hold it up because you have pumped extra molecules
into them. The inside of the tire gets hit by molecules more often
than the outside, forcing it to stretch and stiffen.

The outward forces of the air in your car’s tires increase even
further when you drive on the freeway for a while, heating up the
rubber and the air inside. This type of observation leads naturally
to the conclusion that hotter matter differs from colder in that its
atoms’ random motion is more rapid. In a liquid, the motion could
be visualized as people in a milling crowd shoving past each other
more quickly. In a solid, where the atoms are packed together, the
motion is a random vibration of each atom as it knocks against its
neighbors.

We thus achieve a great simplification in the theory of heat. Heat
is simply a form of kinetic energy, the total kinetic energy of random
motion of all the atoms in an object. With this new understanding,
it becomes possible to answer at one stroke the questions posed at
the beginning of the section. Yes, it is at least theoretically possible
to remove all the heat from an object. The coldest possible temper-
ature, known as absolute zero, is that at which all the atoms have
zero velocity, so that their kinetic energies, (1/2)mwv?, are all zero.
No, there is no maximum amount of heat that a certain quantity of
matter can have, and no maximum to the temperature scale, since
arbitrarily large values of v can create arbitrarily large amounts of
kinetic energy per atom.

The kinetic theory of heat also provides a simple explanation of
the true nature of temperature. Temperature is a measure of the
amount of energy per molecule, whereas heat is the total amount of
energy possessed by all the molecules in an object.

There is an entire branch of physics, called thermodynamics,
that deals with heat and temperature and forms the basis for tech-
nologies such as refrigeration. Thermodynamics is discussed in more
detail in optional chapter 16, and I have provided here only a brief
overview of the thermodynamic concepts that relate directly to en-
ergy, glossing over at least one point that would be dealt with more
carefully in a thermodynamics course: it is really only true for a
gas that all the heat is in the form of kinetic energy. In solids and
liquids, the atoms are close enough to each other to exert intense
electrical forces on each other, and there is therefore another type
of energy involved, the energy associated with the atoms’ distances
from each other. Strictly speaking, heat energy is defined not as
energy associated with random motion of molecules but as any form
of energy that can be conducted between objects in contact, without
any force.

Section 12.1
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b/Random motion of atoms
in a gas, a liquid, and a solid.
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c/The skater has converted
all his kinetic energy into potential
energy on the way up the side of
the pool.

12.2 Potential energy: energy of distance or
closeness

We have already seen many examples of energy related to the dis-
tance between interacting objects. When two objects participate in
an attractive noncontact force, energy is required to bring them far-
ther apart. In both of the perpetual motion machines that started
off the previous chapter, one of the types of energy involved was the
energy associated with the distance between the balls and the earth,
which attract each other gravitationally. In the perpetual motion
machine with the magnet on the pedestal, there was also energy
associated with the distance between the magnet and the iron ball,
which were attracting each other.

The opposite happens with repulsive forces: two socks with the
same type of static electric charge will repel each other, and cannot
be pushed closer together without supplying energy.

In general, the term potential energy, with algebra symbol PF, is
used for the energy associated with the distance between two objects
that attract or repel each other via a force that depends on the
distance between them. Forces that are not determined by distance
do not have potential energy associated with them. For instance,
the normal force acts only between objects that have zero distance
between them, and depends on other factors besides the fact that
the distance is zero. There is no potential energy associated with
the normal force.

The following are some commonplace examples of potential en-
ergy:

gravitational potential energy: The skateboarder in the photo
has risen from the bottom of the pool, converting kinetic en-
ergy into gravitational potential energy. After being at rest
for an instant, he will go back down, converting PE back into
KE.

magnetic potential energy: When a magnetic compass needle is
allowed to rotate, the poles of the compass change their dis-
tances from the earth’s north and south magnetic poles, con-
verting magnetic potential energy into kinetic energy. (Even-
tually the kinetic energy is all changed into heat by friction,
and the needle settles down in the position that minimizes its
potential energy.)

electrical potential energy: Socks coming out of the dryer cling
together because of attractive electrical forces. Energy is re-
quired in order to separate them.

potential energy of bending or stretching: The force between
the two ends of a spring depends on the distance between
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them, i.e., on the length of the spring. If a car is pressed
down on its shock absorbers and then released, the potential
energy stored in the spring is transformed into kinetic and
gravitational potential energy as the car bounces back up.

I have deliberately avoided introducing the term potential en-
ergy up until this point, because it tends to produce unfortunate
connotations in the minds of students who have not yet been inoc-
ulated with a careful description of the construction of a numerical
energy scale. Specifically, there is a tendency to generalize the term
inappropriately to apply to any situation where there is the “poten-
tial” for something to happen: “I took a break from digging, but
I had potential energy because I knew I'd be ready to work hard
again in a few minutes.”

An equation for gravitational potential energy

All the vital points about potential energy can be made by focus-
ing on the example of gravitational potential energy. For simplicity,
we treat only vertical motion, and motion close to the surface of the
earth, where the gravitational force is nearly constant. (The gener-
alization to the three dimensions and varying forces is more easily
accomplished using the concept of work, which is the subject of the
next chapter.)

To find an equation for gravitational PE, we examine the case
of free fall, in which energy is transformed between kinetic energy
and gravitational PE. Whatever energy is lost in one form is gained
in an equal amount in the other form, so using the notation AKFE
to stand for KE; — KE; and a similar notation for PE, we have

1] AKE = —APEyq.

It will be convenient to refer to the object as falling, so that PE
is being changed into KE, but the math applies equally well to an
object slowing down on its way up. We know an equation for kinetic
energy,

1
2] KE = imvz,

so if we can relate v to height, y, we will be able to relate APFE to vy,
which would tell us what we want to know about potential energy.
The y component of the velocity can be connected to the height via
the constant acceleration equation

3] v]% =v? + 2aAy,
and Newton’s second law provides the acceleration,

[4] a=F/m,

PE=3000J KE=0

[
A

PE=2000 J KE=1000J

[~
K_/ >

o

I\J PE=1000 J KE=2000J
% .

’\J PE=0 KE=3000J
CK/ A

d/As the skater free-falls,
his PE is converted into KE. (The
numbers would be equally valid
as a description of his motion on
the way up.)
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in terms of the gravitational force.

The algebra is simple because both equation [2] and equation [3]
have velocity to the second power. Equation [2] can be solved for
v? to give v2 = 2K E/m, and substituting this into equation [3], we
find

KE KE;
ol oy 2aAy.
m

Making use of equations [1] and [4] gives the simple result

APEg.q = —FAy. [change in gravitational PE
resulting from a change in height Ay;

F is the gravitational force on the object,

i.e., its weight; valid only near the surface

of the earth, where F' is constant]

Dropping a rock example 1
> If you drop a 1-kg rock from a height of 1 m, how many joules
of KE does it have on impact with the ground? (Assume that any
energy transformed into heat by air friction is negligible.)

> If we choose the y axis to point up, then F, is negative, and
equals —(1 kg)(g) = —9.8 N. A decrease in y is represented by a
negative value of Ay, Ay = —1 m, so the change in potential en-
ergy is —(—9.8 N)(—1 m) ~ —10 J. (The proof that newtons mul-
tiplied by meters give units of joules is left as a homework prob-
lem.) Conservation of energy says that the loss of this amount of
PE must be accompanied by a corresponding increase in KE of
10 J.

It may be dismaying to note how many minus signs had to be
handled correctly even in this relatively simple example: a total
of four. Rather than depending on yourself to avoid any mistakes
with signs, it is better to check whether the final result make sense
physically. If it doesn’t, just reverse the sign.

Although the equation for gravitational potential energy was de-
rived by imagining a situation where it was transformed into kinetic
energy, the equation can be used in any context, because all the
types of energy are freely convertible into each other.

Chapter 12 Simplifying the Energy Zoo



Gravitational PE converted directly into heat example 2
> A 50-kg firefighter slides down a 5-m pole at constant velocity.
How much heat is produced?

> Since she slides down at constant velocity, there is no change
in KE. Heat and gravitational PE are the only forms of energy that
change. Ignoring plus and minus signs, the gravitational force on
her body equals mg, and the amount of energy transformed is

(mg)(5 m) = 2500 J.

On physical grounds, we know that there must have been an in-
crease (positive change) in the heat energy in her hands and in
the flagpole.

Here are some questions and answers about the interpretation of
the equation APE.q, = —F Ay for gravitational potential energy.

Question: In a nutshell, why is there a minus sign in the equation?
Answer: It is because we increase the PE by moving the object in
the opposite direction compared to the gravitational force.

Question: Why do we only get an equation for the change in po-
tential energy? Don’t I really want an equation for the potential
energy itself?

Answer: No, you really don’t. This relates to a basic fact about
potential energy, which is that it is not a well defined quantity in
the absolute sense. Only changes in potential energy are unambigu-
ously defined. If you and I both observe a rock falling, and agree
that it deposits 10 J of energy in the dirt when it hits, then we will
be forced to agree that the 10 J of KE must have come from a loss
of 10 joules of PE. But I might claim that it started with 37 J of PE
and ended with 27, while you might swear just as truthfully that it
had 109 J initially and 99 at the end. It is possible to pick some
specific height as a reference level and say that the PE is zero there,
but it’s easier and safer just to work with changes in PE and avoid
absolute PE altogether.

Question: You referred to potential energy as the energy that two
objects have because of their distance from each other. If a rock
falls, the object is the rock. Where’s the other object?

Answer: Newton’s third law guarantees that there will always be
two objects. The other object is the planet earth.

Question: If the other object is the earth, are we talking about the
distance from the rock to the center of the earth or the distance
from the rock to the surface of the earth?

Answer: It doesn’t matter. All that matters is the change in dis-
tance, Ay, not y. Measuring from the earth’s center or its surface
are just two equally valid choices of a reference point for defining
absolute PE.

Question: Which object contains the PE, the rock or the earth?

Section 12.2  Potential energy: energy of distance or closeness
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e/All these energy transfor-
mations turn out at the atomic
level to be changes in potential
energy resulting from changes in
the distances between atoms.

Answer: We may refer casually to the PE of the rock, but techni-
cally the PE is a relationship between the earth and the rock, and
we should refer to the earth and the rock together as possessing the
PE.

Question: How would this be any different for a force other than
gravity?

Answer: It wouldn’t. The result was derived under the assumption
of constant force, but the result would be valid for any other situa-
tion where two objects interacted through a constant force. Gravity
is unusual, however, in that the gravitational force on an object is
so nearly constant under ordinary conditions. The magnetic force
between a magnet and a refrigerator, on the other hand, changes
drastically with distance. The math is a little more complex for a
varying force, but the concepts are the same.

Question: Suppose a pencil is balanced on its tip and then falls
over. The pencil is simultaneously changing its height and rotating,
so the height change is different for different parts of the object.
The bottom of the pencil doesn’t lose any height at all. What do
you do in this situation?

Answer: The general philosophy of energy is that an object’s en-
ergy is found by adding up the energy of every little part of it.
You could thus add up the changes in potential energy of all the
little parts of the pencil to find the total change in potential en-
ergy. Luckily there’s an easier way! The derivation of the equation
for gravitational potential energy used Newton’s second law, which
deals with the acceleration of the object’s center of mass (i.e., its
balance point). If you just define Ay as the height change of the
center of mass, everything works out. A huge Ferris wheel can be
rotated without putting in or taking out any PE, because its center
of mass is staying at the same height.

self-check A

A ball thrown straight up will have the same speed on impact with the
ground as a ball thrown straight down at the same speed. How can this
be explained using potential energy? > Answer, p. 567

Discussion question

A You throw a steel ball up in the air. How can you prove based on
conservation of energy that it has the same speed when it falls back into
your hand? What if you throw a feather up — is energy not conserved in
this case?
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All energy is potential or kinetic

In the same way that we found that a change in temperature is really
only a change in kinetic energy at the atomic level, we now find
that every other form of energy turns out to be a form of potential
energy. Boiling, for instance, means knocking some of the atoms (or
molecules) out of the liquid and into the space above, where they
constitute a gas. There is a net attractive force between essentially
any two atoms that are next to each other, which is why matter
always prefers to be packed tightly in the solid or liquid state unless
we supply enough potential energy to pull it apart into a gas. This
explains why water stops getting hotter when it reaches the boiling
point: the power being pumped into the water by your stove begins
going into potential energy rather than kinetic energy.

As shown in figure e, every stored form of energy that we en-
counter in everyday life turns out to be a form of potential energy
at the atomic level. The forces between atoms are electrical and
magnetic in nature, so these are actually electrical and magnetic
potential energies.

Although light is a topic of the second half of this course, it is
useful to have a preview of how it fits in here. Light is a wave com-
posed of oscillating electric and magnetic fields, so we can include
it under the category of electrical and magnetic potential energy.

Even if we wish to include nuclear reactions in the picture, there
still turn out to be only four fundamental types of energy:

kinetic energy (including heat)
gravitational PE
electrical and magnetic PE (including light)
nuclear PE

Discussion question

A Referring back to the pictures at the beginning of the chapter, how
do all these forms of energy fit into the shortened list of categories given
above?

nuclear
reactions

f/ This figure looks similar to
the previous ones, but the scale
is a million times smaller. The
little balls are the neutrons and
protons that make up the tiny nu-
cleus at the center of the uranium
atom. When the nucleus splits
(fissions), the potential energy
change is partly electrical and
partly a change in the potential
energy derived from the force
that holds atomic nuclei together
(known as the strong nuclear
force).

g/A pellet of plutonium-238
glows with its own heat. Iis
nuclear potential energy is being
converted into heat, a form of
kinetic energy. Pellets of this type
are used as power supplies on
some space probes.
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h/A portrait of a man’s face
made with infrared light, a color
of light that lies beyond the red
end of the visible rainbow. His
warm skin emits quite a bit of
infrared light energy, while his
hair, at a lower temperature,
emits less.

12.4 Applications

Heat transfer
Conduction

When you hold a hot potato in your hand, energy is transferred
from the hot object to the cooler one. Our microscopic picture of
this process (figure b, p. 317) tells us that the heat transfer can
only occur at the surface of contact, where one layer of atoms in the
potato skin make contact with one such layer in the hand. This type
of heat transfer is called conduction, and its rate is proportional to
both the surface area and the temperature difference.

Convection

In a gas or a liquid, a faster method of heat transfer can occur,
because hotter or colder parts of the fluid can flow, physically trans-
porting their heat energy from one place to another. This mecha-
nism of heat transfer, convection, is at work in Los Angeles when
hot Santa Ana winds blow in from the Mojave Desert. On a cold
day, the reason you feel warmer when there is no wind is that your
skin warms a thin layer of air near it by conduction. If a gust of
wind comes along, convection robs you of this layer. A thermos bot-
tle has inner and outer walls separated by a layer of vacuum, which
prevents heat transport by conduction or convection, except for a
tiny amount of conduction through the thin connection between the
walls, near the neck, which has a small cross-sectional area.

Radiation

The glow of the sun or a candle flame is an example of heat trans-
fer by radiation. In this context, “radiation” just means anything
that radiates outward from a source, including, in these examples,
ordinary visible light. The power is proportional to the surface area
of the radiating object. It also depends very dramatically on the
radiator’s absolute temperature, P o T%.

We can easily understand the reason for radiation based on the
picture of heat as random kinetic energy at the atomic scale. Atoms
are made out of subatomic particles, such as electrons and nuclei,
that carry electric charge. When a charged particle vibrates, it
creates wave disturbances in the electric and magnetic fields, and
the waves have a frequency (number of vibrations per second) that
matches the frequency of the particle’s motion. If this frequency is
in the right range, they constitute visible light(see section 24.5.3,
p. 713). In figure g, the nuclear and electrical potential energy in
the plutonium pellet cause the pellet to heat up, and an equilibrium
is reached, in which the heat is radiated away just as quickly as it is
produced. When an object is closer to room temperature, it glows
in the invisible infrared part of the spectrum (figure h).
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Earth’s energy equilibrium

Our planet receives a nearly constant amount of energy from
the sun (about 1.8 x 107 W). If it hadn’t had any mechanism for
getting rid of that energy, the result would have been some kind of
catastrophic explosion soon after its formation. Even a 10% imbal-
ance between energy input and output, if maintained steadily from
the time of the Roman Empire until the present, would have been
enough to raise the oceans to a boil. So evidently the earth does
dump this energy somehow. How does it do it? Our planet is sur-
rounded by the vacuum of outer space, like the ultimate thermos
bottle. Therefore it can’t expel heat by conduction or convection,
but it does radiate in the infrared, and this is the only available
mechanism for cooling.

Global warming

It was realized starting around 1930 that this created a danger-
ous vulnerability in our biosphere. Our atmosphere is only about
0.04% carbon dioxide, but carbon dioxide is an extraordinarily effi-
cient absorber of infrared light. It is, however, transparent to visible
light. Therefore any increase in the concentration of carbon dioxide
would decrease the efficiency of cooling by radiation, while allowing
in just as much heat input from visible light. When we burn fossil
fuels such as gasoline or coal, we release into the atmosphere carbon
that had previously been locked away underground. This results
in a shift to a new energy balance. The average temperature T of
the land and oceans increases until the 7% dependence of radiation
compensates for the additional absorption of infrared light.

By about 1980, a clear scientific consensus had emerged that
this effect was real, that it was caused by human activity, and that
it had resulted in an abrupt increase in the earth’s average tem-
perature. We know, for example, from radioisotope studies that
the effect has not been caused by the release of carbon dioxide in
volcanic eruptions. The temperature increase has been verified by
multiple independent methods, including studies of tree rings and
coral reefs. Detailed computer models have correctly predicted a
number of effects that were later verified empirically, including a
rise in sea levels, and day-night and pole-equator variations. There
is no longer any controversy among climate scientists about the ex-
istence or cause of the effect.

One solution to the problem is to replace fossil fuels with renew-
able sources of energy such as solar power and wind. However, these
cannot be brought online fast enough to prevent severe warming in
the next few decades, so nuclear power is also a critical piece of the
puzzle (see section 26.4.9, p. 788).

i/The
Carbon dioxide in the atmo-
sphere allows visible light in,
but partially blocks the reemitted
infrared light.

“greenhouse  effect”
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Summary

Selected vocabulary
potential energy the energy having to do with the distance be-
tween two objects that interact via a noncon-
tact force

Notation
PE......... potential energy

Other terminology and notation
UorV ...... symbols used for potential energy in the scien-
tific literature and in most advanced textbooks

Summary

Historically, the energy concept was only invented to include a
few phenomena, but it was later generalized more and more to apply
to new situations, for example nuclear reactions. This generalizing
process resulted in an undesirably long list of types of energy, each
of which apparently behaved according to its own rules.

The first step in simplifying the picture came with the realization
that heat was a form of random motion on the atomic level, i.e., heat
was nothing more than the kinetic energy of atoms.

A second and even greater simplification was achieved with the
realization that all the other apparently mysterious forms of energy
actually had to do with changing the distances between atoms (or
similar processes in nuclei). This type of energy, which relates to
the distance between objects that interact via a force, is therefore
of great importance. We call it potential energy.

Most of the important ideas about potential energy can be un-
derstood by studying the example of gravitational potential energy.
The change in an object’s gravitational potential energy is given by

APEg . = —FgravnAy, [if Fyrqv is constant, i.e., the

the motion is all near the Earth’s surface]

The most important thing to understand about potential energy
is that there is no unambiguous way to define it in an absolute sense.
The only thing that everyone can agree on is how much the potential
energy has changed from one moment in time to some later moment
in time.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 Can gravitational potential energy ever be negative? Note
that the question refers to PE, not APFE, so that you must think
about how the choice of a reference level comes into play. [Based on
a problem by Serway and Faughn.|

2 A ball rolls up a ramp, turns around, and comes back down.
When does it have the greatest gravitational potential energy? The
greatest kinetic energy? [Based on a problem by Serway and Faughn.]

3 (a) You release a magnet on a tabletop near a big piece of iron,
and the magnet leaps across the table to the iron. Does the magnetic
potential energy increase, or decrease? Explain. (b) Suppose instead
that you have two repelling magnets. You give them an initial push
towards each other, so they decelerate while approaching each other.
Does the magnetic potential energy increase, or decrease? Explain.

4 Let Ej be the energy required to boil one kg of water. (a) Find
an equation for the minimum height from which a bucket of water
must be dropped if the energy released on impact is to vaporize it.
Assume that all the heat goes into the water, not into the dirt it
strikes, and ignore the relatively small amount of energy required to
heat the water from room temperature to 100°C. [Numerical check,
not for credit: Plugging in Ej, = 2.3 MJ/kg should give a result of
230 km.] v
(b) Show that the units of your answer in part a come out right
based on the units given for Ej.

5 A grasshopper with a mass of 110 mg falls from rest from a

height of 310 cm. On the way down, it dissipates 1.1 mJ of heat due

to air resistance. At what speed, in m/s, does it hit the ground?
> Solution, p. 559

6 A person on a bicycle is to coast down a ramp of height ~A and
then pass through a circular loop of radius . What is the small-
est value of h for which the cyclist will complete the loop without
falling? (Ignore the kinetic energy of the spinning wheels.) v

Problems
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Problem 7.
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7 A skateboarder starts at rest nearly at the top of a giant
cylinder, and begins rolling down its side. (If he started exactly at
rest and exactly at the top, he would never get going!) Show that his
board loses contact with the pipe after he has dropped by a height
equal to one third the radius of the pipe. > Solution, p. 559 «*

8 (a) A circular hoop of mass m and radius r spins like a wheel
while its center remains at rest. Its period (time required for one
revolution) is 7. Show that its kinetic energy equals 2w2mr?/T2.

(b) If such a hoop rolls with its center moving at velocity v, its
kinetic energy equals (1/2)mwv?, plus the amount of kinetic energy
found in the first part of this problem. Show that a hoop rolls down
an inclined plane with half the acceleration that a frictionless sliding
block would have. *

9 Students are often tempted to think of potential energy and
kinetic energy as if they were always related to each other, like
yin and yang. To show this is incorrect, give examples of physical
situations in which (a) PE is converted to another form of PE, and
(b) KE is converted to another form of KE. > Solution, p. 560

10 Lord Kelvin, a physicist, told the story of how he encountered
James Joule when Joule was on his honeymoon. As he traveled,
Joule would stop with his wife at various waterfalls, and measure
the difference in temperature between the top of the waterfall and
the still water at the bottom. (a) It would surprise most people
to learn that the temperature increased. Why should there be any
such effect, and why would Joule care? How would this relate to the
energy concept, of which he was the principal inventor? (b) How
much of a gain in temperature should there be between the top
and bottom of a 50-meter waterfall? (c) What assumptions did you
have to make in order to calculate your answer to part b? In reality,
would the temperature change be more than or less than what you
calculated? [Based on a problem by Arnold Arons.] v

11 Make an order-of-magnitude estimate of the power repre-
sented by the loss of gravitational energy of the water going over
Niagara Falls. If the hydroelectric plant at the bottom of the falls
could convert 100% of this to electrical power, roughly how many
households could be powered? > Solution, p. 560

12 When you buy a helium-filled balloon, the seller has to inflate
it from a large metal cylinder of the compressed gas. The helium
inside the cylinder has energy, as can be demonstrated for example
by releasing a little of it into the air: you hear a hissing sound,
and that sound energy must have come from somewhere. The total
amount of energy in the cylinder is very large, and if the valve is
inadvertently damaged or broken off, the cylinder can behave like a
bomb or a rocket.

Suppose the company that puts the gas in the cylinders prepares
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cylinder A with half the normal amount of pure helium, and cylinder
B with the normal amount. Cylinder B has twice as much energy,
and yet the temperatures of both cylinders are the same. Explain, at
the atomic level, what form of energy is involved, and why cylinder
B has twice as much.

13 At a given temperature, the average kinetic energy per
molecule is a fixed value, so for instance in air, the more massive
oxygen molecules are moving more slowly on the average than the
nitrogen molecules. The ratio of the masses of oxygen and nitro-
gen molecules is 16.00 to 14.01. Now suppose a vessel containing
some air is surrounded by a vacuum, and the vessel has a tiny hole
in it, which allows the air to slowly leak out. The molecules are
bouncing around randomly, so a given molecule will have to “try”
many times before it gets lucky enough to head out through the
hole. Find the rate at which oxygen leaks divided by the rate at
which nitrogen leaks. (Define this rate according to the fraction of
the gas that leaks out in a given time, not the mass or number of
molecules leaked per unit time.) v

14 Explain in terms of conservation of energy why sweating
cools your body, even though the sweat is at the same temperature
as your body. Describe the forms of energy involved in this energy
transformation. Why don’t you get the same cooling effect if you
wipe the sweat off with a towel? Hint: The sweat is evaporating.

15 Anya and Ivan lean over a balcony side by side. Anya throws
a penny downward with an initial speed of 5 m/s. Ivan throws
a penny upward with the same speed. Both pennies end up on
the ground below. Compare their kinetic energies and velocities on
impact.

16 Problem 16 has been deleted. *
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Problem 17.

Problem 18.
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17 The figure shows two unequal masses, M and m, connected
by a string running over a pulley. This system was analyzed previ-
ously in problem 10 on p. 181, using Newton’s laws.

(a) Analyze the system using conservation of energy instead. Find
the speed the weights gain after being released from rest and trav-

eling a distance h. v
(b) Use your result from part a to find the acceleration, reproducing
the result of the earlier problem. v

18 The rock climber in the figure has mass m and is on a slope 6
above the horizontal. At a distance x down the slope below him is a
ledge. He is tied in to a climbing rope and being belayed from above,
so that if he slips he won’t simply plunge to his death. Climbing
ropes are intentionally made out of stretchy material so that in a
fall, the climber gets a gentle catch rather than a violent force that
would hurt (see example 2, p. 334). However, the rope should not
be more stretchy than necessary because of situations like this one:
if the rope were to stretch by more than x, the climber would hit
the ledge.

(a) Find the spring constant that the rope should have in order to
limit the amount of rope stretch to x. v
(b) Show that your answer to part a has the right units.

(¢) Analyze the mathematical dependence of the result on each of
the variables, and verify that it makes sense physically.
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Chapter 13

Work: The Transfer of
Mechanical Energy

13.1 Work: the transfer of mechanical energy

The concept of work

The mass contained in a closed system is a conserved quantity,
but if the system is not closed, we also have ways of measuring the
amount of mass that goes in or out. The water company does this
with a meter that records your water use.

Likewise, we often have a system that is not closed, and would
like to know how much energy comes in or out. Energy, however,
is not a physical substance like water, so energy transfer cannot
be measured with the same kind of meter. How can we tell, for
instance, how much useful energy a tractor can “put out” on one
tank of gas?

The law of conservation of energy guarantees that all the chem-
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car's gravitational
potential energy

a/Work is a transfer of en-
ergy.

b/ The tractor raises the weight
over the pulley, increasing its
gravitational potential energy.

c/The tractor accelerates
the ftrailer, increasing its kinetic
energy.

d/The tractor pulls a plow.
Energy is expended in frictional
heating of the plow and the dirt,
and in breaking dirt clods and
lifting dirt up to the sides of the
furrow.

ical energy in the gasoline will reappear in some form, but not nec-
essarily in a form that is useful for doing farm work. Tractors, like
cars, are extremely inefficient, and typically 90% of the energy they
consume is converted directly into heat, which is carried away by
the exhaust and the air flowing over the radiator. We wish to dis-
tinguish the energy that comes out directly as heat from the energy
that serves to accelerate a trailer or to plow a field, so we define
a technical meaning of the ordinary word “work” to express the
distinction:

definition of work
Work is the amount of energy transferred into or out of a
system, not counting energy transferred by heat conduction.

self-check A
Based on this definition, is work a vector, or a scalar? What are its
units? > Answer, p. 567

The conduction of heat is to be distinguished from heating by
friction. When a hot potato heats up your hands by conduction, the
energy transfer occurs without any force, but when friction heats
your car’s brake shoes, there is a force involved. The transfer of en-
ergy with and without a force are measured by completely different
methods, so we wish to include heat transfer by frictional heating
under the definition of work, but not heat transfer by conduction.
The definition of work could thus be restated as the amount of en-
ergy transferred by forces.

Calculating work as force multiplied by distance

The examples in figures b-d show that there are many different
ways in which energy can be transferred. Even so, all these examples
have two things in common:

1. A force is involved.

2. The tractor travels some distance as it does the work.

In b, the increase in the height of the weight, Ay, is the same as
the distance the tractor travels, which we’ll call d. For simplicity,
we discuss the case where the tractor raises the weight at constant
speed, so that there is no change in the kinetic energy of the weight,
and we assume that there is negligible friction in the pulley, so that
the force the tractor applies to the rope is the same as the rope’s
upward force on the weight. By Newton’s first law, these forces are
also of the same magnitude as the earth’s gravitational force on the
weight. The increase in the weight’s potential energy is given by
F Ay, so the work done by the tractor on the weight equals F'd, the
product of the force and the distance moved:

W = Fd.
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In example ¢, the tractor’s force on the trailer accelerates it, increas-
ing its kinetic energy. If frictional forces on the trailer are negligible,
then the increase in the trailer’s kinetic energy can be found using
the same algebra that was used on page 319 to find the potential
energy due to gravity. Just as in example b, we have

W = Fd.

Does this equation always give the right answer? Well, sort of.
In example d, there are two quantities of work you might want to
calculate: the work done by the tractor on the plow and the work
done by the plow on the dirt. These two quantities can’t both equal
Fd. Most of the energy transmitted through the cable goes into
frictional heating of the plow and the dirt. The work done by the
plow on the dirt is less than the work done by the tractor on the
plow, by an amount equal to the heat absorbed by the plow. It turns
out that the equation W = Fd gives the work done by the tractor,
not the work done by the plow. How are you supposed to know when
the equation will work and when it won’t? The somewhat complex
answer is postponed until section 13.6. Until then, we will restrict
ourselves to examples in which W = Fd gives the right answer;
essentially the reason the ambiguities come up is that when one
surface is slipping past another, d may be hard to define, because
the two surfaces move different distances.

We have also been using examples in which the force is in the
same direction as the motion, and the force is constant. (If the force
was not constant, we would have to represent it with a function, not
a symbol that stands for a number.) To summarize, we have:

rule for calculating work (simplest version)
The work done by a force can be calculated as

W = Fd,

if the force is constant and in the same direction as the motion.
Some ambiguities are encountered in cases such as kinetic friction.

e/ The baseball pitcher put ki-
netic energy into the ball, so he
did work on it. To do the greatest
possible amount of work, he ap-
plied the greatest possible force
over the greatest possible dis-
tance.
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f/ Example 1.

X

g/ Example 2. Surprisingly,
the climber is in more danger at
1 than at 2. The distance d is
the amount by which the rope
will stretch while work is done to
transfer the kinetic energy of a
fall out of her body.

Mechanical work done in an earthquake example 1
> In 1998, geologists discovered evidence for a big prehistoric
earthquake in Pasadena, between 10,000 and 15,000 years ago.
They found that the two sides of the fault moved 6.7 m relative
to one another, and estimated that the force between them was
1.3 x 10"” N. How much energy was released?

> Multiplying the force by the distance gives 9 x 10'7 J. For com-
parison, the Northridge earthquake of 1994, which killed 57 peo-
ple and did 40 billion dollars of damage, released 22 times less
energy.

The fall factor example 2
Counterintuitively, the rock climber may be in more danger in fig-
ure g/1 than later when she gets up to position g/2.

Along her route, the climber has placed removable rock anchors
(not shown) and carabiners attached to the anchors. She clips
the rope into each carabiner so that it can travel but can’t pop out.
In both 1 and 2, she has ascended a certain distance above her
last anchor, so that if she falls, she will drop through a height h
that is about twice this distance, and this fall height is about the
same in both cases. In fact, h is somewhat larger than twice her
height above the last anchor, because the rope is intentionally
designed to stretch under the big force of a falling climber who
suddenly brings it taut.

To see why we want a stretchy rope, consider the equation F =
W /d in the case where d is zero; F would theoretically become
infinite. In a fall, the climber loses a fixed amount of gravita-
tional energy mgh. This is transformed into an equal amount
of kinetic energy as she falls, and eventually this kinetic energy
has to be transferred out of her body when the rope comes up
taut. If the rope was not stretchy, then the distance traveled at
the point where the rope attaches to her harness would be zero,
and the force exerted would theoretically be infinite. Before the
rope reached the theoretically infinite tension F it would break (or
her back would break, or her anchors would be pulled out of the
rock). We want the rope to be stretchy enough to make d fairly
big, so that dividing W by d gives a small force.!

In g/1 and g/2, the fall his about the same. What is different is the
length L of rope that has been paid out. A longer rope can stretch
more, so the distance d traveled after the “catch” is proportional
to L. Combining F = W/d, W « h, and d « L, we have F « h/L.
For these reasons, rock climbers define a fall factor f = h/L. The
larger fall factor in g/1 is more dangerous.

LActually F isn’t constant, because the tension in the rope increases steadily

as it stretches, but this is irrelevant to the present analysis.
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Machines can increase force, but not work.

Figure h shows a pulley arrangement for doubling the force sup-
plied by the tractor (book 1, section 5.6). The tension in the left-
hand rope is equal throughout, assuming negligible friction, so there
are two forces pulling the pulley to the left, each equal to the origi-
nal force exerted by the tractor on the rope. This doubled force is
transmitted through the right-hand rope to the stump.

It might seem as though this arrangement would also double the
work done by the tractor, but look again. As the tractor moves
forward 2 meters, 1 meter of rope comes around the pulley, and the
pulley moves 1 m to the left. Although the pulley exerts double the
force on the stump, the pulley and stump only move half as far, so
the work done on the stump is no greater that it would have been
without the pulley.

The same is true for any mechanical arrangement that increases
or decreases force, such as the gears on a ten-speed bike. You can’t
get out more work than you put in, because that would violate
conservation of energy. If you shift gears so that your force on the
pedals is amplified, the result is that you just have to spin the pedals
more times.

No work is done without motion.

It strikes most students as nonsensical when they are told that
if they stand still and hold a heavy bag of cement, they are doing
no work on the bag. Even if it makes sense mathematically that
W = Fd gives zero when d is zero, it seems to violate common
sense. You would certainly become tired! The solution is simple.
Physicists have taken over the common word “work” and given it a
new technical meaning, which is the transfer of energy. The energy
of the bag of cement is not changing, and that is what the physicist
means by saying no work is done on the bag.

There is a transformation of energy, but it is taking place entirely
within your own muscles, which are converting chemical energy into
heat. Physiologically, a human muscle is not like a tree limb, which
can support a weight indefinitely without the expenditure of energy.
Each muscle cell’s contraction is generated by zillions of little molec-
ular machines, which take turns supporting the tension. When a

h/The pulley doubles the force

the tractor
stump.

can exert on the
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i/ Whenever energy is trans-
ferred out of the spring, the same
amount has to be transferred into
the ball, and vice versa. As the
spring compresses, the ball is
doing positive work on the spring
(giving up its KE and transferring
energy into the spring as PE),
and as it decompresses the ball
is doing negative work (extracting
energy).

particular molecule goes on or off duty, it moves, and since it moves
while exerting a force, it is doing work. There is work, but it is work
done by one molecule in a muscle cell on another.

Positive and negative work

When object A transfers energy to object B, we say that A
does positive work on B. B is said to do negative work on A. In
other words, a machine like a tractor is defined as doing positive
work. This use of the plus and minus signs relates in a logical and
consistent way to their use in indicating the directions of force and
motion in one dimension. In figure i, suppose we choose a coordinate
system with the z axis pointing to the right. Then the force the
spring exerts on the ball is always a positive number. The ball’s
motion, however, changes directions. The symbol d is really just a
shorter way of writing the familiar quantity Az, whose positive and
negative signs indicate direction.

While the ball is moving to the left, we use d < 0 to represent
its direction of motion, and the work done by the spring, F'd, comes
out negative. This indicates that the spring is taking kinetic energy
out of the ball, and accepting it in the form of its own potential
energy.

As the ball is reaccelerated to the right, it has d > 0, Fd is
positive, and the spring does positive work on the ball. Potential
energy is transferred out of the spring and deposited in the ball as
kinetic energy.

In summary:

rule for calculating work (including cases of negative
work)
The work done by a force can be calculated as

W = Fd,

if the force is constant and along the same line as the motion.
The quantity d is to be interpreted as a synonym for Az, i.e.,
positive and negative signs are used to indicate the direction
of motion. Some ambiguities are encountered in cases such as
kinetic friction.

self-check B
In figure i, what about the work done by the ball on the spring?
> Answer, p. 567

There are many examples where the transfer of energy out of an
object cancels out the transfer of energy in. When the tractor pulls
the plow with a rope, the rope does negative work on the tractor
and positive work on the plow. The total work done by the rope is
zero, which makes sense, since it is not changing its energy.

It may seem that when your arms do negative work by lowering
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a bag of cement, the cement is not really transferring energy into
your body. If your body was storing potential energy like a com-
pressed spring, you would be able to raise and lower a weight all
day, recycling the same energy. The bag of cement does transfer
energy into your body, but your body accepts it as heat, not as po-
tential energy. The tension in the muscles that control the speed of
the motion also results in the conversion of chemical energy to heat,
for the same physiological reasons discussed previously in the case
where you just hold the bag still.

One of the advantages of electric cars over gasoline-powered cars
is that it is just as easy to put energy back in a battery as it is to
take energy out. When you step on the brakes in a gas car, the brake
shoes do negative work on the rest of the car. The kinetic energy of
the car is transmitted through the brakes and accepted by the brake
shoes in the form of heat. The energy cannot be recovered. Electric
cars, however, are designed to use regenerative braking. The brakes
don’t use friction at all. They are electrical, and when you step on
the brake, the negative work done by the brakes means they accept
the energy and put it in the battery for later use. This is one of the
reasons why an electric car is far better for the environment than a
gas car, even if the ultimate source of the electrical energy happens
to be the burning of oil in the electric company’s plant. The electric
car recycles the same energy over and over, and only dissipates heat
due to air friction and rolling resistance, not braking. (The electric
company’s power plant can also be fitted with expensive pollution-
reduction equipment that would be prohibitively expensive or bulky
for a passenger car.)

Section 13.1

L
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j/ Left: ~ No mechanical work
occurs in the man’s body while
he holds himself motionless.
There is a transformation of
chemical energy into heat, but
this happens at the microscopic
level inside the tensed muscles.
Right:  When the woman lifts
herself, her arms do positive
work on her body, transforming
chemical energy into gravitational
potential energy and heat. On the
way back down, the arms’ work
is negative; gravitational potential
energy is transformed into heat.
(In exercise physiology, the man
is said to be doing isometric
exercise, while the woman’s is
concentric and then eccentric.)

drum
2 motion of
shoe
drum

shoe's force
on drum

k/Because the force is in
the opposite direction compared
to the motion, the brake shoe
does negative work on the drum,
i.e., accepts energy from it in the
form of heat.

Work: the transfer of mechanical energy 337



Discussion question C.

W>0

T

W=0 €—— —> wW=0

l

W<0

m/A force can do positive,
negative, or zero work, depend-
ing on its direction relative to the
direction of the motion.

Discussion questions

A Besides the presence of a force, what other things differentiate the
processes of frictional heating and heat conduction?

B Criticize the following incorrect statement: “A force doesn’t do any
work unless it’s causing the object to move.”

C To stop your car, you must first have time to react, and then it takes
some time for the car to slow down. Both of these times contribute to the
distance you will travel before you can stop. The figure shows how the
average stopping distance increases with speed. Because the stopping
distance increases more and more rapidly as you go faster, the rule of
one car length per 10 m.p.h. of speed is not conservative enough at high
speeds. In terms of work and kinetic energy, what is the reason for the
more rapid increase at high speeds?

20 mph [T
somph [ -

v

SR "

\
N

somph [ 3.

distance 6ne car actual
covered length stopping
before per 10 distance
reacting mph

13.2 Work in three dimensions

A force perpendicular to the motion does no work.

Suppose work is being done to change an object’s kinetic energy.
A force in the same direction as its motion will speed it up, and a
force in the opposite direction will slow it down. As we have already
seen, this is described as doing positive work or doing negative work
on the object. All the examples discussed up until now have been
of motion in one dimension, but in three dimensions the force can
be at any angle # with respect to the direction of motion.

What if the force is perpendicular to the direction of motion? We
have already seen that a force perpendicular to the motion results
in circular motion at constant speed. The kinetic energy does not
change, and we conclude that no work is done when the force is
perpendicular to the motion.

So far we have been reasoning about the case of a single force
acting on an object, and changing only its kinetic energy. The result
is more generally true, however. For instance, imagine a hockey puck
sliding across the ice. The ice makes an upward normal force, but
does not transfer energy to or from the puck.
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Forces at other angles

Suppose the force is at some other angle with respect to the
motion, say 8 = 45°. Such a force could be broken down into two
components, one along the direction of the motion and the other
perpendicular to it. The force vector equals the vector sum of its
two components, and the principle of vector addition of forces thus
tells us that the work done by the total force cannot be any different
than the sum of the works that would be done by the two forces by
themselves. Since the component perpendicular to the motion does
no work, the work done by the force must be

W = F|d], [work done by a constant force]

where the vector d is simply a less cumbersome version of the nota-
tion Ar. This result can be rewritten via trigonometry as

W = |F||d| cos 6. [work done by a constant force]

Even though this equation has vectors in it, it depends only on
their magnitudes, and the magnitude of a vector is a scalar. Work
is therefore still a scalar quantity, which only makes sense if it is
defined as the transfer of energy. Ten gallons of gasoline have the
ability to do a certain amount of mechanical work, and when you
pull in to a full-service gas station you don’t have to say “Fill ’er up
with 10 gallons of south-going gas.”

Students often wonder why this equation involves a cosine rather
than a sine, or ask if it would ever be a sine. In vector addition, the
treatment of sines and cosines seemed more equal and democratic,
so why is the cosine so special now? The answer is that if we are
going to describe, say, a velocity vector, we must give both the
component parallel to the z axis and the component perpendicular
to the z axis (i.e., the y component). In calculating work, however,
the force component perpendicular to the motion is irrelevant — it
changes the direction of motion without increasing or decreasing the
energy of the object on which it acts. In this context, it is only the
parallel force component that matters, so only the cosine occurs.

self-check C

(a) Work is the transfer of energy. According to this definition, is the
horse in the picture doing work on the pack? (b) If you calculate work
by the method described in this section, is the horse in figure o doing
work on the pack? > Answer, p. 567

Pushing a broom example 3
> If you exert a force of 21 N on a push broom, at an angle 35
degrees below horizontal, and walk for 5.0 m, how much work do
you do? What is the physical significance of this quantity of work?

> Using the second equation above, the work done equals

(21 N)(5.0 m)(cos 35°) = 86 J.

motion <

n/Work is only done by the
component of the force parallel to
the motion.

o/ Self-check. (Breaking Trail, by
Walter E. Bohl.)
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The form of energy being transferred is heat in the floor and the
broom’s bristles. This comes from the chemical energy stored in
your body. (The majority of the calories you burn are dissipated
directly as heat inside your body rather than doing any work on
the broom. The 86 J is only the amount of energy transferred
through the broom’s handle.)

A violin example 4
As a violinist draws the bow across a string, the bow hairs exert
both a normal force and a kinetic frictional force on the string. The
normal force is perpendicular to the direction of motion, and does
no work. However, the frictional force is in the same direction as
the motion of the bow, so it does work: energy is transferred to
the string, causing it to vibrate.

One way of playing a violin more loudly is to use longer strokes.
Since W = Fd, the greater distance results in more work.

A second way of getting a louder sound is to press the bow more
firmly against the strings. This increases the normal force, and
although the normal force itself does no work, an increase in the
normal force has the side effect of increasing the frictional force,
thereby increasing W = Fd.

The violinist moves the bow back and forth, and sound is pro-
duced on both the “up-bow” (the stroke toward the player’s left)
and the “down-bow” (to the right). One may, for example, play a
series of notes in alternation between up-bows and down-bows.
However, if the notes are of unequal length, the up and down mo-
tions tend to be unequal, and if the player is not careful, she can
run out of bow in the middle of a note! To keep this from hap-
pening, one can move the bow more quickly on the shorter notes,
but the resulting increase in d will make the shorter notes louder
than they should be. A skilled player compensates by reducing
the force.

Varying force

Up until now we have done no actual calculations of work in cases
where the force was not constant. The question of how to treat
such cases is mathematically analogous to the issue of how to gener-
alize the equation (distance) = (velocity)(time) to cases where the
velocity was not constant. There, we found that the correct gen-
eralization was to find the area under the graph of velocity versus
time. The equivalent thing can be done with work:

general rule for calculating work

The work done by a force F' equals the area under the curve
on a graph of F| versus r. (Some ambiguities are encountered
in cases such as kinetic friction.)
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The examples in this section are ones in which the force is vary-
ing, but is always along the same line as the motion, so F' is the
same as Fj.

self-check D

In which of the following examples would it be OK to calculate work
using Fd, and in which ones would you have to use the area under the
F — x graph?

(a) A fishing boat cruises with a net dragging behind it.

(b) A magnet leaps onto a refrigerator from a distance.

(c) Earth’s gravity does work on an outward-bound space probe. >
Answer, p. 567

An important and straightforward example is the calculation of
the work done by a spring that obeys Hooke’s law,

Fr~—Fk(x—um).

The minus sign is because this is the force being exerted by the
spring, not the force that would have to act on the spring to keep
it at this position. That is, if the position of the cart in figure p
is to the right of equilibrium, the spring pulls back to the left, and
vice-versa.

We calculate the work done when the spring is initially at equi-
librium and then decelerates the car as the car moves to the right.
The work done by the spring on the cart equals the minus area of
the shaded triangle, because the triangle hangs below the x axis.
The area of a triangle is half its base multiplied by its height, so

1
W = —576‘(56—%)2-

This is the amount of kinetic energy lost by the cart as the spring
decelerates it.

It was straightforward to calculate the work done by the spring in
this case because the graph of F' versus x was a straight line, giving
a triangular area. But if the curve had not been so geometrically
simple, it might not have been possible to find a simple equation for
the work done, or an equation might have been derivable only using
calculus. Optional section 13.4 gives an important example of such
an application of calculus.

Energy production in the sun example 5
The sun produces energy through nuclear reactions in which nu-
clei collide and stick together. The figure depicts one such reac-
tion, in which a single proton (hydrogen nucleus) collides with
a carbon nucleus, consisting of six protons and six neutrons.
Neutrons and protons attract other neutrons and protons via the

W compressed

equilibrium
position

stretched

p/The spring does work on
the cart.  (Unlike the ball in
section 13.1, the cart is attached
to the spring.)

\ "ox,
| 4 A X
] k(x )

area = work performed

g/The area of the shaded
triangle gives the work done by
the spring as the cart moves
from the equilibrium position to
position x.
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strong nuclear force, so as the proton approaches the carbon nu-
cleus it is accelerated. In the language of energy, we say that
it loses nuclear potential energy and gains kinetic energy. To-
gether, the seven protons and six neutrons make a nitrogen nu-
cleus. Within the newly put-together nucleus, the neutrons and
protons are continually colliding, and the new proton’s extra ki-
netic energy is rapidly shared out among all the neutrons and
protons. Soon afterward, the nucleus calms down by releasing
some energy in the form of a gamma ray, which helps to heat the
sun.

The graph shows the force between the carbon nucleus and the
proton as the proton is on its way in, with the distance in units of
femtometers (1 fm=10~"15 m). Amusingly, the force turns out to be
a few newtons: on the same order of magnitude as the forces we
encounter ordinarily on the human scale. Keep in mind, however,
that a force this big exerted on a single subatomic particle such as
a proton will produce a truly fantastic acceleration (on the order
of 107 m/s2?l).
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Why does the force have a peak around x = 3 fm, and become
smaller once the proton has actually merged with the nucleus?
At x = 3 fm, the proton is at the edge of the crowd of protons and
neutrons. It feels many attractive forces from the left, and none
from the right. The forces add up to a large value. However if
it later finds itself at the center of the nucleus, x = 0, there are
forces pulling it from all directions, and these force vectors cancel
out.

We can now calculate the energy released in this reaction by us-
ing the area under the graph to determine the amount of mechan-
ical work done by the carbon nucleus on the proton. (For simplic-
ity, we assume that the proton came in “aimed” at the center of
the nucleus, and we ignore the fact that it has to shove some neu-
trons and protons out of the way in order to get there.) The area
under the curve is about 17 squares, and the work represented
by each square is

(1 N)10~"® m)=10""°,
so the total energy released is about
(10~1° J/square)(17 squares) = 1.7 x 10714 J.

This may not seem like much, but remember that this is only a
reaction between the nuclei of two out of the zillions of atoms in
the sun. For comparison, a typical chemical reaction between
two atoms might transform on the order of 10~1° J of electrical
potential energy into heat — 100,000 times less energy!

As a final note, you may wonder why reactions such as these only
occur in the sun. The reason is that there is a repulsive electrical
force between nuclei. When two nuclei are close together, the
electrical forces are typically about a million times weaker than the
nuclear forces, but the nuclear forces fall off much more quickly
with distance than the electrical forces, so the electrical force is
the dominant one at longer ranges. The sun is a very hot gas, so
the random motion of its atoms is extremely rapid, and a collision
between two atoms is sometimes violent enough to overcome this
initial electrical repulsion.

| Applications of calculus

The student who has studied integral calculus will recognize that
the graphical rule given in the previous section can be reexpressed

as an integral,
2
w :/ Fdx.
z

We can then immediately find by the fundamental theorem of cal-
culus that force is the derivative of work with respect to position,
dw
F=—.
dx

Section 13.4 [ Applications of calculus
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For example, a crane raising a one-ton block on the moon would
be transferring potential energy into the block at only one sixth the
rate that would be required on Earth, and this corresponds to one
sixth the force.

Although the work done by the spring could be calculated with-
out calculus using the area of a triangle, there are many cases where
the methods of calculus are needed in order to find an answer in
closed form. The most important example is the work done by
gravity when the change in height is not small enough to assume a
constant force. Newton’s law of gravity is

_ GMm

F —,

r

which can be integrated to give

" GM
W = / 2m dr
T1 r

=-GMm (1 — 1) .
T2 1
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13.5 Work and potential energy

The techniques for calculating work can also be applied to the cal-
culation of potential energy. If a certain force depends only on
the distance between the two participating objects, then the energy
released by changing the distance between them is defined as the po-
tential energy, and the amount of potential energy lost equals minus
the work done by the force,

APE = -W.

The minus sign occurs because positive work indicates that the po-
tential energy is being expended and converted to some other form.

It is sometimes convenient to pick some arbitrary position as a
reference position, and derive an equation for once and for all that
gives the potential energy relative to this position

PE, = —Wiet—z- [potential energy at a point x]

To find the energy transferred into or out of potential energy, one
then subtracts two different values of this equation.

These equations might almost make it look as though work and
energy were the same thing, but they are not. First, potential energy
measures the energy that a system has stored in it, while work
measures how much energy is transferred in or out. Second, the
techniques for calculating work can be used to find the amount of
energy transferred in many situations where there is no potential
energy involved, as when we calculate the amount of kinetic energy
transformed into heat by a car’s brake shoes.

A toy gun example 6
> A toy gun uses a spring with a spring constant of 10 N/m to
shoot a ping-pong ball of mass 5 g. The spring is compressed to
10 cm shorter than its equilibrium length when the gun is loaded.
At what speed is the ball released?

> The equilibrium point is the natural choice for a reference point.
Using the equation found previously for the work, we have

PE, = %k (X — Xo)2.
The spring loses contact with the ball at the equilibrium point, so
the final potential energy is

PE; = 0.
The initial potential energy is

PE; = %(10 N/m)(0.10 m)2.

= 0.05 J.

Section 13.5  Work and potential energy
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s /Example 7, gravitational
potential energy as a function of
distance.

The loss in potential energy of 0.05 J means an increase in kinetic
energy of the same amount. The velocity of the ball is found by
solving the equation KE = (1/2)mv? for v,

2KE
V=1/—
m
(2)(0.05 J)

0.005 kg
=4 m/s.

Gravitational potential energy example 7
> We have already found the equation APE = —FAy for the
gravitational potential energy when the change in height is not
enough to cause a significant change in the gravitational force F.
What if the change in height is enough so that this assumption
is no longer valid? Use the equation W = GMm(1/r. — 1/r)
derived in section 13.4 to find the potential energy, using r =
as a reference point.

> The potential energy equals minus the work that would have to
be done to bring the object from r; = oo to r = r, which is

PE=—GTm.

This is simpler than the equation for the work, which is an exam-
ple of why it is advantageous to record an equation for potential
energy relative to some reference point, rather than an equation
for work.

Although the equations derived in the previous two examples
may seem arcane and not particularly useful except for toy design-
ers and rocket scientists, their usefulness is actually greater than
it appears. The equation for the potential energy of a spring can
be adapted to any other case in which an object is compressed,
stretched, twisted, or bent. While you are not likely to use the
equation for gravitational potential energy for anything practical, it
is directly analogous to an equation that is extremely useful in chem-
istry, which is the equation for the potential energy of an electron
at a distance r from the nucleus of its atom. As discussed in more
detail later in the course, the electrical force between the electron
and the nucleus is proportional to 1/r2, just like the gravitational
force between two masses. Since the equation for the force is of the
same form, so is the equation for the potential energy.
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Discussion questions

A What does the graph of PE = (1/2)k (x — xc,)2 look like as a function
of x? Discuss the physical significance of its features.

B  What does the graph of PE = —GMm/r look like as a function of r?
Discuss the physical significance of its features. How would the equation
and graph change if some other reference point was chosen rather than
r=o00?

C Starting at a distance r from a planet of mass M, how fast must an
object be moving in order to have a hyperbolic orbit, i.e., one that never
comes back to the planet? This velocity is called the escape velocity. In-
terpreting the result, does it matter in what direction the velocity is? Does
it matter what mass the object has? Does the object escape because it is
moving too fast for gravity to act on it?

D Does a spring have an “escape velocity?”

E Calculus-based question: If the form of energy being transferred
is potential energy, then the equations F = dW/dx and W = [ Fdx
become F = —dPE/dx and PE = — [ Fdx. How would you then apply
the following calculus concepts: zero derivative at minima and maxima,
and the second derivative test for concavity up or down.

* When does work equal force times
distance?

In the example of the tractor pulling the plow discussed on page
333, the work did not equal F'd. The purpose of this section is to

explain more fully how the quantity F'd can and cannot be used.

To simplify things, I write F'd throughout this section, but more
generally everything said here would be true for the area under the

Section 13.6

t/ The twin Voyager space probes
were perhaps the greatest scien-
tific successes of the space pro-
gram. Over a period of decades,
they flew by all the planets of the
outer solar system, probably ac-
complishing more of scientific in-
terest than the entire space shut-
tle program at a tiny fraction of
the cost. Both Voyager probes
completed their final planetary fly-
bys with speeds greater than the
escape velocity at that distance
from the sun, and so headed on
out of the solar system on hyper-
bolic orbits, never to return. Ra-
dio contact has been lost, and
they are now likely to travel inter-
stellar space for billions of years
without colliding with anything or
being detected by any intelligent
species.
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The work-KE theorem
Proof

For simplicity, we have assumed
Fiotal to be constant, and therefore
acm = Fiota/ Mis also constant, and
the constant-acceleration equation

2 2
ch’f = va,i + ZacmAXcm

applies. Multiplying by m/2 on both
sides and applying Newton’s sec-
ond law gives
KEZ

cm,i

KE?

cm,f = + FiotalAXem,

which is the result that was to be
proved.

Further interpretation

The logical structure of this book
is that although Newton’s laws are
discussed before conservation laws,
the conservation laws are taken
to be fundamental, since they are
true even in cases where Newton’s
laws fail. Many treatments of this
subject present the work-KE the-
orem as a proof that kinetic en-
ergy behaves as (1/2)mv2. This
is a matter of taste, but one can
just as well rearrange the equa-
tions in the proof above to solve
for the unknown a., and prove New-
ton’s second law as a consequence
of conservation of energy. Ultimately
we have a great deal of freedom
in choosing which equations to take
as definitions, which to take as em-
pirically verified laws of nature, and
which to take as theorems.

Regardless of how we slice things,
we require both mathematical con-
sistency and consistency with ex-
periment. As described on p. 305,
the work-KE theorem is an impor-
tant part of this interlocking sys-
tem of relationships.
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graph of F| versus d.

The following two theorems allow most of the ambiguity to be
cleared up.

the work-kinetic-energy theorem

The change in kinetic energy associated with the motion of an
object’s center of mass is related to the total force acting on
it and to the distance traveled by its center of mass according
to the equation AK E.,, = Fiotaldem.

A proof is given in the sidebar, along with some interpretation
of how this result relates to the logical structure of our presentation.
Note that despite the traditional name, it does not necessarily tell
the amount of work done, since the forces acting on the object could
be changing other types of energy besides the KE associated with
its center of mass motion.

The second theorem does relate directly to work:

When a contact force acts between two objects and the two
surfaces do not slip past each other, the work done equals Fd,
where d is the distance traveled by the point of contact.

This one has no generally accepted name, so we refer to it simply
as the second theorem.

A great number of physical situations can be analyzed with these
two theorems, and often it is advantageous to apply both of them
to the same situation.

An ice skater pushing off from a wall example 8
The work-kinetic energy theorem tells us how to calculate the
skater’s kinetic energy if we know the amount of force and the
distance her center of mass travels while she is pushing off.

The second theorem tells us that the wall does no work on the
skater. This makes sense, since the wall does not have any
source of energy.

Absorbing an impact without recoiling? example 9
> Is it possible to absorb an impact without recoiling? For in-
stance, would a brick wall “give” at all if hit by a ping-pong ball?

> There will always be a recoil. In the example proposed, the wall
will surely have some energy transferred to it in the form of heat
and vibration. The second theorem tells us that we can only have
nonzero work if the distance traveled by the point of contact is
nonzero.
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Dragging a refrigerator at constant velocity example 10
Newton’s first law tells us that the total force on the refrigerator
must be zero: your force is canceling the floor’s kinetic frictional
force. The work-kinetic energy theorem is therefore true but use-
less. It tells us that there is zero total force on the refrigerator,
and that the refrigerator’s kinetic energy doesn’t change.

The second theorem tells us that the work you do equals your
hand’s force on the refrigerator multiplied by the distance traveled.
Since we know the floor has no source of energy, the only way for
the floor and refrigerator to gain energy is from the work you do.
We can thus calculate the total heat dissipated by friction in the
refrigerator and the floor.

Note that there is no way to find how much of the heat is dissi-
pated in the floor and how much in the refrigerator.

Accelerating a cart example 11
If you push on a cart and accelerate it, there are two forces acting
on the cart: your hand’s force, and the static frictional force of the
ground pushing on the wheels in the opposite direction.

Applying the second theorem to your force tells us how to calcu-
late the work you do.

Applying the second theorem to the floor’s force tells us that the
floor does no work on the cart. There is no motion at the point
of contact, because the atoms in the floor are not moving. (The
atoms in the surface of the wheel are also momentarily at rest
when they touch the floor.) This makes sense, since the floor
does not have any source of energy.

The work-kinetic energy theorem refers to the total force, and be-
cause the floor’'s backward force cancels part of your force, the
total force is less than your force. This tells us that only part of
your work goes into the kinetic energy associated with the forward
motion of the cart’s center of mass. The rest goes into rotation of
the wheels.

* The dot product

Up until now, we have not found any physically useful way to define
the multiplication of two vectors. It would be possible, for instance,
to multiply two vectors component by component to form a third
vector, but there are no physical situations where such a multipli-
cation would be useful.

The equation W = |F||d|cosf is an example of a sort of mul-
tiplication of vectors that is useful. The result is a scalar, not a
vector, and this is therefore often referred to as the scalar product
of the vectors F and d. There is a standard shorthand notation for

Section 13.7
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this operation,

A -B =|A||B|cos¥b, [definition of the notation A - B;

6 is the angle between vectors A and B]

and because of this notation, a more common term for this operation
is the dot product. In dot product notation, the equation for work
is simply

W=F-d.

The dot product has the following geometric interpretation:

A - B = |A|(component of B parallel to A)
= |B|(component of A parallel to B)

The dot product has some of the properties possessed by ordinary
multiplication of numbers,

A-B=B-A
A-B+C)=A-B+A-C
(cA)-B=c(A-B),

but it lacks one other: the ability to undo multiplication by dividing.

If you know the components of two vectors, you can easily cal-
culate their dot product as follows:

A-B=A,B,+ A,B, + A.B..

(This can be proved by first analyzing the special case where each
vector has only an x component, and the similar cases for y and z.
We can then use the rule A- (B+ C) = A-B+ A - C to make a
generalization by writing each vector as the sum of its z, y, and z
components. See homework problem 17.)

Magnitude expressed with a dot product example 12
If we take the dot product of any vector b with itself, we find

b-b = (byX + byy + b,2) - (byX + byy + b,2)
= b + bF + b,

so its magnitude can be expressed as
|b| = Vb -b.

We will often write b? to mean b - b, when the context makes
it clear what is intended. For example, we could express Kinetic
energy as (1/2)m|v|?, (1/2)mv-v, or (1/2)mv2. In the third version,
nothing but context tells us that v really stands for the magnitude
of some vector v.
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Towing a barge example 13
> A mule pulls a barge with a force F=(1100 N)X + (400 N)y, and
the total distance it travels is (1000 m)X. How much work does it
do?

> The dot product is 1.1 x 108 N-m = 1.1 x 108 J.

Zero work done by a constant force around a closed path exam-
ple 14
The figure shows a chain of Ar vectors dq, ...d, that form a
closed path, so that
n
> d;=0.
=1

Suppose that work is done along this path by a constant force.
For example, the earth’s gravitational force on an object would be
nearly constant as long as the region of space in the figure was
small compared to the size of the earth. The total work done is

then i
W=> F-d.
i=1

But because the dot product has the property A-(B+C)=A-B +
A - C, we can take the constant factor F outside the sum, giving

n
W=F-) d,
i=1

and this equals zero because the sum of the d vectors is zero. In
the case of the earth’s gravitational field, this makes sense, be-
cause the earth is unaffected by the motion of the object, so the
whole system ends up with the same potential energy that it orig-
inally had. Any other result would violate conservation of energy,
e.g., by allowing us to harvest some kinetic energy every time
the mass made the round trip. This would be a kind of perpetual
motion machine.

Section 13.7
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Summary

Selected vocabulary
work. . . ... .. the amount of energy transferred into or out
of a system, excluding energy transferred by
heat conduction

Notation

Summary

Work is a measure of the transfer of mechanical energy, i.e., the
transfer of energy by a force rather than by heat conduction. When
the force is constant, work can usually be calculated as

W = Fj|d|, [only if the force is constant]

where d is simply a less cumbersome notation for Ar, the vector
from the initial position to the final position. Thus,

e A force in the same direction as the motion does positive work,
i.e., transfers energy into the object on which it acts.

e A force in the opposite direction compared to the motion does
negative work, i.e., transfers energy out of the object on which
it acts.

e When there is no motion, no mechanical work is done. The
human body burns calories when it exerts a force without
moving, but this is an internal energy transfer of energy within
the body, and thus does not fall within the scientific definition
of work.

e A force perpendicular to the motion does no work.

When the force is not constant, the above equation should be gen-
eralized as the area under the graph of Fj versus d.

Machines such as pulleys, levers, and gears may increase or de-
crease a force, but they can never increase or decrease the amount
of work done. That would violate conservation of energy unless the
machine had some source of stored energy or some way to accept
and store up energy.

There are some situations in which the equation W = Fj [d] is
ambiguous or not true, and these issues are discussed rigorously in
section 13.6. However, problems can usually be avoided by analyzing
the types of energy being transferred before plunging into the math.
In any case there is no substitute for a physical understanding of
the processes involved.

The techniques developed for calculating work can also be ap-
plied to the calculation of potential energy. We fix some position
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as a reference position, and calculate the potential energy for some
other position, z, as
PEJ: = _Wrefaa:‘

The following two equations for potential energy have broader
significance than might be suspected based on the limited situations
in which they were derived:

1
PE = _k(x — )%

[potential energy of a spring having spring constant
k, when stretched or compressed from the equilibrium
position x,; analogous equations apply for the twisting,
bending, compression, or stretching of any object.]

GMm

r

PE = —

[gravitational potential energy of objects of masses M
and m, separated by a distance r; an analogous equation
applies to the electrical potential energy of an electron
in an atom.]

Summary
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A bull paws the ground,
in problem 2.

as

Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 Two speedboats are identical, but one has more people aboard
than the other. Although the total masses of the two boats are
unequal, suppose that they happen to have the same kinetic energy.
In a boat, as in a car, it’s important to be able to stop in time to
avoid hitting things. (a) If the frictional force from the water is the
same in both cases, how will the boats’ stopping distances compare?
Explain. (b) Compare the times required for the boats to stop.

2 In each of the following situations, is the work being done
positive, negative, or zero? (a) a bull paws the ground; (b) a fishing
boat pulls a net through the water behind it; (c) the water resists
the motion of the net through it; (d) you stand behind a pickup
truck and lower a bale of hay from the truck’s bed to the ground.
Explain. [Based on a problem by Serway and Faughn.]

3  Inthe earth’s atmosphere, the molecules are constantly moving
around. Because temperature is a measure of kinetic energy per
molecule, the average kinetic energy of each type of molecule is the
same, e.g., the average KE of the Oy molecules is the same as the
average KE of the No molecules. (a) If the mass of an Oy molecule
is eight times greater than that of a He atom, what is the ratio of
their average speeds? Which way is the ratio, i.e., which is typically
moving faster? (b) Use your result from part a to explain why any
helium occurring naturally in the atmosphere has long since escaped
into outer space, never to return. (Helium is obtained commercially
by extracting it from rocks.) You may want to do problem 21 first,
for insight. v

4 Weiping lifts a rock with a weight of 1.0 N through a height of
1.0 m, and then lowers it back down to the starting point. Bubba
pushes a table 1.0 m across the floor at constant speed, requiring
a force of 1.0 N, and then pushes it back to where it started. (a)
Compare the total work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using the definition of work:
work is the transfer of energy. In your answer, you’ll need to discuss
what specific type of energy is involved in each case.

5 In one of his more flamboyant moments, Galileo wrote “Who
does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height
or a cat from a height of eight or ten cubits will suffer no injury?
Equally harmless would be the fall of a grasshopper from a tower or
the fall of an ant from the distance of the moon.” Find the speed
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of an ant that falls to earth from the distance of the moon at the
moment when it is about to enter the atmosphere. Assume it is
released from a point that is not actually near the moon, so the
moon’s gravity is negligible. You will need the result of example 7
on p. 346. v

6 [Problem 6 has been deleted.]

7 (a) The crew of an 18th century warship is raising the anchor.
The anchor has a mass of 5000 kg. The water is 30 m deep. The
chain to which the anchor is attached has a mass per unit length of
150 kg/m. Before they start raising the anchor, what is the total
weight of the anchor plus the portion of the chain hanging out of
the ship? (Assume that the buoyancy of the anchor is negligible.)
(b) After they have raised the anchor by 1 m, what is the weight
they are raising?

(c) Define y = 0 when the anchor is resting on the bottom, and
y = +30 m when it has been raised up to the ship. Draw a graph
of the force the crew has to exert to raise the anchor and chain, as
a function of y. (Assume that they are raising it slowly, so water
resistance is negligible.) It will not be a constant! Now find the
area under the graph, and determine the work done by the crew in
raising the anchor, in joules.

(d) Convert your answer from (c) into units of kcal. v

8 In the power stroke of a car’s gasoline engine, the fuel-air mix-
ture is ignited by the spark plug, explodes, and pushes the piston
out. The exploding mixture’s force on the piston head is greatest
at the beginning of the explosion, and decreases as the mixture ex-
pands. It can be approximated by F' = a/x, where z is the distance
from the cylinder to the piston head, and a is a constant with units
of N-m. (Actually a/z** would be more accurate, but the problem
works out more nicely with a/x!) The piston begins its stroke at
x = x1, and ends at * = z9. The 1965 Rambler had six cylinders,
each with ¢ =220 N-m, z1 = 1.2 cm, and x9 = 10.2 cm.

(a) Draw a neat, accurate graph of F' vs x, on graph paper.

(b) From the area under the curve, derive the amount of work done
in one stroke by one cylinder. v
(c) Assume the engine is running at 4800 r.p.m., so that during
one minute, each of the six cylinders performs 2400 power strokes.
(Power strokes only happen every other revolution.) Find the en-
gine’s power, in units of horsepower (1 hp=746 W). v
(d) The compression ratio of an engine is defined as z3/x1. Explain
in words why the car’s power would be exactly the same if z; and
xro were, say, halved or tripled, maintaining the same compression
ratio of 8.5. Explain why this would not quite be true with the more
realistic force equation F = a/z'4.

Problem 8: A cylinder from
the 1965 Rambler’s engine. The
piston is shown in its pushed out
position. The two bulges at the
top are for the valves that let fresh
air-gas mixture in. Based on a
figure from Motor Service’s Au-
tomotive Encyclopedia, Toboldt
and Purvis.
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9 The magnitude of the force between two magnets separated
by a distance r can be approximated as kr—> for large values of r.
The constant k£ depends on the strengths of the magnets and the
relative orientations of their north and south poles. Two magnets
are released on a slippery surface at an initial distance r;, and begin
sliding towards each other. What will be the total kinetic energy
of the two magnets when they reach a final distance 7;? (Ignore
friction.) v f

10 A car starts from rest at ¢t = 0, and starts speeding up with
constant acceleration. (a) Find the car’s kinetic energy in terms of
its mass, m, acceleration, a, and the time, ¢. (b) Your answer in
the previous part also equals the amount of work, W, done from
t = 0 until time t. Take the derivative of the previous expression
to find the power expended by the car at time t. (c) Suppose two
cars with the same mass both start from rest at the same time, but
one has twice as much acceleration as the other. At any moment,
how many times more power is being dissipated by the more quickly
accelerating car? (The answer is not 2.) Vo f

11 A space probe of mass m is dropped into a previously
unexplored spherical cloud of gas and dust, and accelerates toward
the center of the cloud under the influence of the cloud’s gravity.
Measurements of its velocity allow its potential energy, PFE, to be
determined as a function of the distance r from the cloud’s center.
The mass in the cloud is distributed in a spherically symmetric
way, so its density, p(r), depends only on 7 and not on the angular
coordinates. Show that by finding PFE, one can infer p(r) as follows:

by LA (dPE
PO = mamear " “ar )

[ *
12 A rail gun is a device like a train on a track, with the train
propelled by a powerful electrical pulse. Very high speeds have been
demonstrated in test models, and rail guns have been proposed as
an alternative to rockets for sending into outer space any object
that would be strong enough to survive the extreme accelerations.
Suppose that the rail gun capsule is launched straight up, and that
the force of air friction acting on it is given by F' = be™ %", where x
is the altitude, b and c¢ are constants, and e is the base of natural
logarithms. The exponential decay occurs because the atmosphere
gets thinner with increasing altitude. (In reality, the force would
probably drop off even faster than an exponential, because the cap-
sule would be slowing down somewhat.) Find the amount of kinetic
energy lost by the capsule due to air friction between when it is
launched and when it is completely beyond the atmosphere. (Grav-
ity is negligible, since the air friction force is much greater than the
gravitational force.) Vo f
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13 A certain binary star system consists of two stars with masses
m1 and mgy, separated by a distance b. A comet, originally nearly
at rest in deep space, drops into the system and at a certain point
in time arrives at the midpoint between the two stars. For that
moment in time, find its velocity, v, symbolically in terms of b, my,
myg, and fundamental constants. v

14 An airplane flies in the positive direction along the x axis,
through crosswinds that exert a force F = (a + bz)x + (¢ + dz)y.
Find the work done by the wind on the plane, and by the plane on
the wind, in traveling from the origin to position z. v f

15 In 1935, Yukawa proposed an early theory of the force that
held the neutrons and protons together in the nucleus. His equa-
tion for the potential energy of two such particles, at a center-to-
center distance 7, was PE(r) = gr—'e~"/® where g parametrizes the
strength of the interaction, e is the base of natural logarithms, and
a is about 1071 m. Find the force between two nucleons that would
be consistent with this equation for the potential energy. Vv [

16 Prove that the dot product defined in section 13.7 is rota-
tionally invariant in the sense of section 7.5.

17 Fill in the details of the proof of A-B = A, B, + A,By+A.B,
on page 350.

18 Does it make sense to say that work is conserved?
> Solution, p. 560

19 (a) Suppose work is done in one-dimensional motion. What
happens to the work if you reverse the direction of the positive
coordinate axis? Base your answer directly on the definition of work
as a transfer of mechanical energy. (b) Now answer the question
based on the W = F'd rule.

20 A microwave oven works by twisting molecules one way and
then the other, counterclockwise and then clockwise about their own
centers, millions of times a second. If you put an ice cube or a stick
of butter in a microwave, you'll observe that the solid doesn’t heat
very quickly, although eventually melting begins in one small spot.
Once this spot forms, it grows rapidly, while the rest of the solid
remains solid; it appears that a microwave oven heats a liquid much
more rapidly than a solid. Explain why this should happen, based
on the atomic-level description of heat, solids, and liquids. (See,
e.g., figure b on page 317.)

Don’t repeat the following common mistakes:

In a solid, the atoms are packed more tightly and have less space
between them. Not true. Ice floats because it’s less dense than
water.

In o liquid, the atoms are moving much faster. No, the difference in
average speed between ice at —1°C and water at 1°C is only 0.4%.

Problems
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21 Starting at a distance r from a planet of mass M, how fast
must an object be moving in order to have a hyperbolic orbit, i.e.,
one that never comes back to the planet? This velocity is called
the escape velocity. Interpreting the result, does it matter in what
direction the velocity is? Does it matter what mass the object has?
Does the object escape because it is moving too fast for gravity to
act on it? v

22 The figure, redrawn from Gray’s Anatomy, shows the ten-
sion of which a muscle is capable. The variable x is defined as the
contraction of the muscle from its maximum length L, so that at
x = 0 the muscle has length L, and at x = L the muscle would the-
oretically have zero length. In reality, the muscle can only contract
to x = cL, where c is less than 1. When the muscle is extended to
its maximum length, at x = 0, it is capable of the greatest tension,
T,. As the muscle contracts, however, it becomes weaker. Gray sug-
gests approximating this function as a linear decrease, which would
theoretically extrapolate to zero at x = L. (a) Find the maximum
work the muscle can do in one contraction, in terms of ¢, L, and
Ts. v
(b) Show that your answer to part a has the right units.

(¢) Show that your answer to part a has the right behavior when
¢ =0 and when ¢ = 1.

(d) Gray also states that the absolute maximum tension T;, has
been found to be approximately proportional to the muscle’s cross-
sectional area A (which is presumably measured at x = 0), with
proportionality constant k. Approximating the muscle as a cylin-
der, show that your answer from part a can be reexpressed in terms
of the volume, V, eliminating L and A. v
(e) Evaluate your result numerically for a biceps muscle with a vol-
ume of 200 cm?, with ¢ = 0.8 and k& = 100 N/cm? as estimated by
Gray. v

23 A car accelerates from rest. At low speeds, its acceleration
is limited by static friction, so that if we press too hard on the
gas, we will “burn rubber” (or, for many newer cars, a computer-
ized traction-control system will override the gas pedal). At higher
speeds, the limit on acceleration comes from the power of the engine,
which puts a limit on how fast kinetic energy can be developed.

(a) Show that if a force F' is applied to an object moving at speed
v, the power required is given by P = vF.

(b) Find the speed v at which we cross over from the first regime de-
scribed above to the second. At speeds higher than this, the engine
does not have enough power to burn rubber. Express your result
in terms of the car’s power P, its mass m, the coefficient of static
friction ps, and g. v
(¢) Show that your answer to part b has units that make sense.

(d) Show that the dependence of your answer on each of the four
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variables makes sense physically.

(e) The 2010 Maserati Gran Turismo Convertible has a maximum
power of 3.23 x 10° W (433 horsepower) and a mass (including a 50-
kg driver) of 2.03 x 103 kg. (This power is the maximum the engine
can supply at its optimum frequency of 7600 r.p.m. Presumably the
automatic transmission is designed so a gear is available in which
the engine will be running at very nearly this frequency when the
car is moving at v.) Rubber on asphalt has ps ~ 0.9. Find v for
this car. Answer: 18 m/s, or about 40 miles per hour.

(f) Our analysis has neglected air friction, which can probably be
approximated as a force proportional to v2. The existence of this
force is the reason that the car has a maximum speed, which is 176
miles per hour. To get a feeling for how good an approximation
it is to ignore air friction, find what fraction of the engine’s maxi-
mum power is being used to overcome air resistance when the car is
moving at the speed v found in part e. Answer: 1%

24 Most modern bow hunters in the U.S. use a fancy mechanical
bow called a compound bow, which looks nothing like what most
people imagine when they think of a bow and arrow. It has a system
of pulleys designed to produce the force curve shown in the figure,
where F' is the force required to pull the string back, and z is the
distance between the string and the center of the bow’s body. It is
not a linear Hooke’s-law graph, as it would be for an old-fashioned
bow. The big advantage of the design is that relatively little force
is required to hold the bow stretched to point B on the graph. This
is the force required from the hunter in order to hold the bow ready
while waiting for a shot. Since it may be necessary to wait a long
time, this force can’t be too big. An old-fashioned bow, designed
to require the same amount of force when fully drawn, would shoot
arrows at much lower speeds, since its graph would be a straight line
from A to B. For the graph shown in the figure (taken from realistic
data), find the speed at which a 26 g arrow is released, assuming that
70% of the mechanical work done by the hand is actually transmitted
to the arrow. (The other 30% is lost to frictional heating inside the
bow and kinetic energy of the recoiling and vibrating bow.) Vv
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25 A mass moving in one dimension is attached to a horizon-
tal spring. It slides on the surface below it, with equal coefficients
of static and kinetic friction, pp = ps. The equilibrium position is
xz = 0. If the mass is pulled to some initial position and released
from rest, it will complete some number of oscillations before fric-
tion brings it to a stop. When released from =z = a (a > 0), it
completes exactly 1/4 of an oscillation, i.e., it stops precisely at
x = 0. Similarly, define b > 0 as the greatest « from which it could
be released and comlete 1/2 of an oscillation, stopping on the far
side and not coming back toward equilibrium. Find b/a. Hint: To
keep the algebra simple, set every fixed parameter of the system
equal to 1. v

26 “Big wall” climbing is a specialized type of rock climbing that
involves going up tall cliffs such as the ones in Yosemite, usually with
the climbers spending at least one night sleeping on a natural ledge
or an artificial “portaledge.” In this style of climbing, each pitch of
the climb involves strenuously hauling up several heavy bags of gear
— a fact that has caused these climbs to be referred to as “vertical
ditch digging.” (a) If an 80 kg haul bag has to be pulled up the full
length of a 60 m rope, how much work is done? (b) Since it can be
difficult to lift 80 kg, a 2:1 pulley is often used. The hauler then
lifts the equivalent of 40 kg, but has to pull in 120 m of rope. How
much work is done in this case? v

27 A soccer ball of mass m is moving at speed v when you kick
it in the same direction it is moving. You kick it with constant force
F, and you want to triple the ball’s speed. Over what distance must
your foot be in contact with the ball? v [problem by B. Shotwell]
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Pool balls exchange momentum.

Chapter 14

Conservation of
Momentum

In many subfields of physics these days, it is possible to read an
entire issue of a journal without ever encountering an equation in-
volving force or a reference to Newton’s laws of motion. In the last
hundred and fifty years, an entirely different framework has been
developed for physics, based on conservation laws.

The new approach is not just preferred because it is in fashion.
It applies inside an atom or near a black hole, where Newton’s laws
do not. Even in everyday situations the new approach can be supe-
rior. We have already seen how perpetual motion machines could be
designed that were too complex to be easily debunked by Newton’s
laws. The beauty of conservation laws is that they tell us something
must remain the same, regardless of the complexity of the process.

So far we have discussed only two conservation laws, the laws of
conservation of mass and energy. Is there any reason to believe that
further conservation laws are needed in order to replace Newton’s
laws as a complete description of nature? Yes. Conservation of mass
and energy do not relate in any way to the three dimensions of space,
because both are scalars. Conservation of energy, for instance, does
not prevent the planet earth from abruptly making a 90-degree turn
and heading straight into the sun, because kinetic energy does not
depend on direction. In this chapter, we develop a new conserved
quantity, called momentum, which is a vector.
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14.1 Momentum

A conserved quantity of motion

Your first encounter with conservation of momentum may have
come as a small child unjustly confined to a shopping cart. You spot
something interesting to play with, like the display case of imported
wine down at the end of the aisle, and decide to push the cart over
there. But being imprisoned by Dad in the cart was not the only
injustice that day. There was a far greater conspiracy to thwart
your young id, one that originated in the laws of nature. Pushing
forward did nudge the cart forward, but it pushed you backward.
If the wheels of the cart were well lubricated, it wouldn’t matter
how you jerked, yanked, or kicked off from the back of the cart.
You could not cause any overall forward motion of the entire system
consisting of the cart with you inside.

In the Newtonian framework, we describe this as arising from
Newton’s third law. The cart made a force on you that was equal
and opposite to your force on it. In the framework of conservation
laws, we cannot attribute your frustration to conservation of energy.
It would have been perfectly possible for you to transform some of
the internal chemical energy stored in your body to kinetic energy
of the cart and your body.

The following characteristics of the situation suggest that there
may be a new conservation law involved:

A closed system is involved. All conservation laws deal with
closed systems. You and the cart are a closed system, since the
well-oiled wheels prevent the floor from making any forward force
on you.

Something remains unchanged. The overall velocity of the
system started out being zero, and you cannot change it. This
vague reference to “overall velocity” can be made more precise:
it is the velocity of the system’s center of mass that cannot be
changed.

Something can be transferred back and forth without
changing the total amount. If we define forward as positive
and backward as negative, then one part of the system can gain
positive motion if another part acquires negative motion. If we
don’t want to worry about positive and negative signs, we can
imagine that the whole cart was initially gliding forward on its
well-oiled wheels. By kicking off from the back of the cart, you
could increase your own velocity, but this inevitably causes the
cart to slow down.
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It thus appears that there is some numerical measure of an object’s
quantity of motion that is conserved when you add up all the objects
within a system.

Momentum

Although velocity has been referred to, it is not the total velocity
of a closed system that remains constant. If it was, then firing a
gun would cause the gun to recoil at the same velocity as the bullet!
The gun does recoil, but at a much lower velocity than the bullet.
Newton’s third law tells us

Fgun on bullet = _Fbullet on gun

and assuming a constant force for simplicity, Newton’s second law
allows us to change this to

Avbullet o Avgun

Mpullet T = —Mgun T

Thus if the gun has 100 times more mass than the bullet, it will
recoil at a velocity that is 100 times smaller and in the opposite
direction, represented by the opposite sign. The quantity muv is
therefore apparently a useful measure of motion, and we give it a
name, momentum, and a symbol, p. (As far as I know, the letter
“p” was just chosen at random, since “m” was already being used for
mass.) The situations discussed so far have been one-dimensional,

but in three-dimensional situations it is treated as a vector.

definition of momentum for material objects
The momentum of a material object, i.e., a piece of matter, is defined
as
p=myv,

the product of the object’s mass and its velocity vector.

The units of momentum are kg-m/s, and there is unfortunately no
abbreviation for this clumsy combination of units.

The reasoning leading up to the definition of momentum was all
based on the search for a conservation law, and the only reason why
we bother to define such a quantity is that experiments show it is
conserved:

the law of conservation of momentum
In any closed system, the vector sum of all the momenta remains
constant,
P1i +P2i + ... =Pif + P2y + ...,

where i labels the initial and f the final momenta. (A closed system
is one on which no external forces act.)

Section 14.1

Momentum
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This chapter first addresses the one-dimensional case, in which the
direction of the momentum can be taken into account by using plus
and minus signs. We then pass to three dimensions, necessitating
the use of vector addition.

A subtle point about conservation laws is that they all refer to
“closed systems,” but “closed” means different things in different
cases. When discussing conservation of mass, “closed” means a sys-
tem that doesn’t have matter moving in or out of it. With energy,
we mean that there is no work or heat transfer occurring across
the boundary of the system. For momentum conservation, “closed”
means there are no external forces reaching into the system.

A cannon example 1
> A cannon of mass 1000 kg fires a 10-kg shell at a velocity of
200 m/s. At what speed does the cannon recoil?

> The law of conservation of momentum tells us that

Pcannon,i + Pshell,i = Pcannon,f + Pshell,f-

Choosing a coordinate system in which the cannon points in the
positive direction, the given information is

Pcannon,i = 0
Pshelri = 0
Psheir,f = 2000 kg-m/s.

We must have pcapnons = —2000 kg-m/s, so the recoil velocity of
the cannon is —2 m/s.

lon drive for propelling spacecraft example 2
> The experimental solar-powered ion drive of the Deep Space 1
space probe expels its xenon gas exhaust at a speed of 30,000
m/s, ten times faster than the exhaust velocity for a typical chem-
ical-fuel rocket engine. Roughly how many times greater is the
maximum speed this spacecraft can reach, compared with a chem-
ical-fueled probe with the same mass of fuel (“reaction mass”)
available for pushing out the back as exhaust?

> Momentum equals mass multiplied by velocity. Both spacecraft
are assumed to have the same amount of reaction mass, and the
ion drive’s exhaust has a velocity ten times greater, so the mo-
mentum of its exhaust is ten times greater. Before the engine
starts firing, neither the probe nor the exhaust has any momen-
tum, so the total momentum of the system is zero. By conserva-
tion of momentum, the total momentum must also be zero after
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a/The ion drive engine of the NASA Deep Space 1 probe, shown
under construction (left) and being tested in a vacuum chamber (right)
prior to its October 1998 launch. Intended mainly as a test vehicle for new
technologies, the craft nevertheless carried out a successful scientific
program that included a flyby of a comet.

all the exhaust has been expelled. If we define the positive di-
rection as the direction the spacecraft is going, then the negative
momentum of the exhaust is canceled by the positive momen-
tum of the spacecraft. The ion drive allows a final speed that is
ten times greater. (This simplified analysis ignores the fact that
the reaction mass expelled later in the burn is not moving back-
ward as fast, because of the forward speed of the already-moving
spacecraft.)

Generalization of the momentum concept

As with all the conservation laws, the law of conservation of mo-
mentum has evolved over time. In the 1800’s it was found that a
beam of light striking an object would give it some momentum, even
though light has no mass, and would therefore have no momentum
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b/Steam and other gases
boiling off of the nucleus of Hal-
ley’s comet. This close-up photo
was taken by the European Giotto
space probe, which passed within
596 km of the nucleus on March
13, 1986.

c/Halley’s comet, in a much
less magnified view from a
ground-based telescope.

according to the above definition. Rather than discarding the princi-
ple of conservation of momentum, the physicists of the time decided
to see if the definition of momentum could be extended to include
momentum carried by light. The process is analogous to the process
outlined on page 301 for identifying new forms of energy. The first
step was the discovery that light could impart momentum to matter,
and the second step was to show that the momentum possessed by
light could be related in a definite way to observable properties of
the light. They found that conservation of momentum could be suc-
cessfully generalized by attributing to a beam of light a momentum
vector in the direction of the light’s motion and having a magnitude
proportional to the amount of energy the light possessed. The mo-
mentum of light is negligible under ordinary circumstances, e.g., a
flashlight left on for an hour would only absorb about 10~ kg-m/s
of momentum as it recoiled.

' The tail of a comet example 3
Momentum is not always equal to mv. Like many comets, Hal-
ley’s comet has a very elongated elliptical orbit. About once per
century, its orbit brings it close to the sun. The comet’s head, or
nucleus, is composed of dirty ice, so the energy deposited by the
intense sunlight boils off steam and dust, b. The sunlight does
not just carry energy, however — it also carries momentum. The
momentum of the sunlight impacting on the smaller dust particles
pushes them away from the sun, forming a tail, c. By analogy
with matter, for which momentum equals mv, you would expect
that massless light would have zero momentum, but the equation
p = mv is not the correct one for light, and light does have mo-
mentum. (The gases typically form a second, distinct tail whose
motion is controlled by the sun’s magnetic field.)

The reason for bringing this up is not so that you can plug
numbers into a formulas in these exotic situations. The point is
that the conservation laws have proven so sturdy exactly because
they can easily be amended to fit new circumstances. Newton’s
laws are no longer at the center of the stage of physics because they
did not have the same adaptability. More generally, the moral of
this story is the provisional nature of scientific truth.

It should also be noted that conservation of momentum is not
a consequence of Newton’s laws, as is often asserted in textbooks.
Newton’s laws do not apply to light, and therefore could not pos-
sibly be used to prove anything about a concept as general as the
conservation of momentum in its modern form.

Momentum compared to kinetic energy

Momentum and kinetic energy are both measures of the quan-
tity of motion, and a sideshow in the Newton-Leibnitz controversy
over who invented calculus was an argument over whether muv (i.e.,
momentum) or mv? (i.e., kinetic energy without the 1/2 in front)
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was the “true” measure of motion. The modern student can cer-
tainly be excused for wondering why we need both quantities, when
their complementary nature was not evident to the greatest minds
of the 1700’s. The following table highlights their differences.

kinetic energy ...

momentum ...

is a scalar.

is a vector.

is not changed by a force perpendic-
ular to the motion, which changes
only the direction of the velocity
vector.

is changed by any force, since a
change in either the magnitude or
the direction of the velocity vector
will result in a change in the mo-
mentum vector.

is always positive, and cannot cancel
out.

cancels with momentum in the op-
posite direction.

can be traded for other forms of en-
ergy that do not involve motion. KE
is not a conserved quantity by itself.

is always conserved in a closed sys-
tem.

is quadrupled if the velocity is dou-
bled.

is doubled if the velocity is doubled.

A spinning top

example 4

A spinning top has zero total momentum, because for every mov-
ing point, there is another point on the opposite side that cancels
its momentum. It does, however, have kinetic energy.

Why a tuning fork has two prongs example 5

A tuning fork is made with two prongs so that they can vibrate in
opposite directions, canceling their momenta. In a hypothetical
version with only one prong, the momentum would have to oscil-
late, and this momentum would have to come from somewhere,
such as the hand holding the fork. The result would be that vi-
brations would be transmitted to the hand and rapidly die out.
In a two-prong fork, the two momenta cancel, but the energies
don't.

Momentum and kinetic energy in firing a rifle example 6
The rifle and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some mo-
mentum in the forward direction, but this is canceled by the rifle’s
backward momentum, so the total momentum is still zero. The
kinetic energies of the gun and bullet are both positive scalars,
however, and do not cancel. The total kinetic energy is allowed to
increase, because kinetic energy is being traded for other forms
of energy. Initially there is chemical energy in the gunpowder.
This chemical energy is converted into heat, sound, and kinetic
energy. The gun’s “backward” kinetic energy does not refrigerate
the shooter’s shoulder!

d/Examples 4 and 5. The
momenta cancel, but the ener-
gies don't.
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The wobbly earth example 7
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, and the earth’s gravitational force does not do any work
on the moon. The reversed velocity vector does, however, imply
a reversed momentum vector, so conservation of momentum in
the closed earth-moon system tells us that the earth must also
change its momentum. In fact, the earth wobbles in a little “or-
bit” about a point below its surface on the line connecting it and
the moon. The two bodies’ momentum vectors always point in
opposite directions and cancel each other out.

The earth and moon get a divorce example 8
Why can’t the moon suddenly decide to fly off one way and the
earth the other way? It is not forbidden by conservation of mo-
mentum, because the moon’s newly acquired momentum in one
direction could be canceled out by the change in the momentum
of the earth, supposing the earth headed the opposite direction
at the appropriate, slower speed. The catastrophe is forbidden by
conservation of energy, because both their energies would have
to increase greatly.

Momentum and kinetic energy of a glacier example 9
A cubic-kilometer glacier would have a mass of about 10'2 kg. If
it moves at a speed of 10~° m/s, then its momentum is 107 kg-
m/s. This is the kind of heroic-scale result we expect, perhaps
the equivalent of the space shuttle taking off, or all the cars in LA
driving in the same direction at freeway speed. Its kinetic energy,
however, is only 50 J, the equivalent of the calories contained
in a poppy seed or the energy in a drop of gasoline too small
to be seen without a microscope. The surprisingly small kinetic
energy is because kinetic energy is proportional to the square of
the velocity, and the square of a small number is an even smaller
number.

Discussion questions

A If all the air molecules in the room settled down in a thin film on
the floor, would that violate conservation of momentum? Conservation of
energy?

B  Arefrigerator has coils in the back that get hot, and heat is molecular
motion. These moving molecules have both energy and momentum. Why
doesn’t the refrigerator need to be tied to the wall to keep it from recoiling
from the momentum it loses out the back?
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Collisions in one dimension

Physicists employ the term “collision” in a broader sense than
ordinary usage, applying it to any situation where objects interact
for a certain period of time. A bat hitting a baseball, a radioactively
emitted particle damaging DNA, and a gun and a bullet going their
separate ways are all examples of collisions in this sense. Physical
contact is not even required. A comet swinging past the sun on a
hyperbolic orbit is considered to undergo a collision, even though it
never touches the sun. All that matters is that the comet and the
sun exerted gravitational forces on each other.

The reason for broadening the term “collision” in this way is
that all of these situations can be attacked mathematically using
the same conservation laws in similar ways. In the first example,
conservation of momentum is all that is required.

Getting rear-ended example 10
>Ms. Chang is rear-ended at a stop light by Mr. Nelson, and sues
to make him pay her medical bills. He testifies that he was only
going 35 miles per hour when he hit Ms. Chang. She thinks he
was going much faster than that. The cars skidded together after
the impact, and measurements of the length of the skid marks
and the coefficient of friction show that their joint velocity immedi-
ately after the impact was 19 miles per hour. Mr. Nelson’s Nissan
weighs 3100 pounds, and Ms. Chang ’s Cadillac weighs 5200
pounds. Is Mr. Nelson telling the truth?

> Since the cars skidded together, we can write down the equation
for conservation of momentum using only two velocities, v for Mr.
Nelson’s velocity before the crash, and v’ for their joint velocity
afterward:

myVv = va’ + mcv’.

Solving for the unknown, v, we find

V= <1 +mc> V.
My

Although we are given the weights in pounds, a unit of force, the
ratio of the masses is the same as the ratio of the weights, and
we find v = 51 miles per hour. He is lying.

The above example was simple because both cars had the same
velocity afterward. In many one-dimensional collisions, however, the
two objects do not stick. If we wish to predict the result of such a
collision, conservation of momentum does not suffice, because both
velocities after the collision are unknown, so we have one equation
in two unknowns.

Conservation of energy can provide a second equation, but its
application is not as straightforward, because kinetic energy is only
the particular form of energy that has to do with motion. In many

e/ This Hubble Space Tele-
scope photo shows a small
galaxy (yellow blob in the lower
right) that has collided with a
larger galaxy (spiral near the
center), producing a wave of star
formation (blue track) due to the
shock waves passing through
the galaxies’ clouds of gas. This
is considered a collision in the
physics sense, even though it is
statistically certain that no star in
either galaxy ever struck a star in
the other. (This is because the
stars are very small compared to
the distances between them.)
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Gory details of the proof in
example 11

The equation A+ B = C + D says
that the change in one ball’s ve-
locity is equal and opposite to the
change in the other’s. We invent a
symbol x = C — A for the change
in ball 1’s velocity. The second
equation can then be rewritten as
A2+ B? = (A+x)2+(B—x)2. Squar-
ing out the quantities in parenthe-
ses and then simplifying, we get
0 = Ax — Bx + x2. The equation
has the trivial solution x = 0, i.e.,
neither ball's velocity is changed,
but this is physically impossible be-
cause the balls can’t travel through
each other like ghosts. Assuming
x # 0, we can divide by x and
solve for x = B — A. This means
that ball 1 has gained an amount
of velocity exactly right to match
ball 2’s initial velocity, and vice-
versa. The balls must have swap-
ped velocities.

collisions, part of the kinetic energy that was present before the
collision is used to create heat or sound, or to break the objects
or permanently bend them. Cars, in fact, are carefully designed to
crumple in a collision. Crumpling the car uses up energy, and that’s
good because the goal is to get rid of all that kinetic energy in a
relatively safe and controlled way. At the opposite extreme, a su-
perball is “super” because it emerges from a collision with almost all
its original kinetic energy, having only stored it briefly as potential
energy while it was being squashed by the impact.

Collisions of the superball type, in which almost no kinetic en-
ergy is converted to other forms of energy, can thus be analyzed
more thoroughly, because they have KE; = KE;, as opposed to
the less useful inequality KEy < KE; for a case like a tennis ball
bouncing on grass.

Pool balls colliding head-on example 11
> Two pool balls collide head-on, so that the collision is restricted
to one dimension. Pool balls are constructed so as to lose as little
kinetic energy as possible in a collision, so under the assumption
that no kinetic energy is converted to any other form of energy,
what can we predict about the results of such a collision?

> Pool balls have identical masses, so we use the same symbol
m for both. Conservation of momentum and no loss of kinetic
energy give us the two equations

mvy; + MvVoj = MV4¢ + MVoy

1 1 1 1

Emv12,- + Emvg,. = émvff + Emvzzf

The masses and the factors of 1/2 can be divided out, and we
eliminate the cumbersome subscripts by replacing the symbols
Vii,... With the symbols A, B, C, and D:

A+B=C+D
A%+ B® = C° + D°.

A little experimentation with numbers shows that given values of A
and B, it is impossible to find C and D that satisfy these equations
unless C and D equal A and B, or C and D are the same as A
and B but swapped around. A formal proof of this fact is given
in the sidebar. In the special case where ball 2 is initially at rest,
this tells us that ball 1 is stopped dead by the collision, and ball
2 heads off at the velocity originally possessed by ball 1. This
behavior will be familiar to players of pool.

Often, as in the example above, the details of the algebra are
the least interesting part of the problem, and considerable physical
insight can be gained simply by counting the number of unknowns
and comparing to the number of equations. Suppose a beginner at
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pool notices a case where her cue ball hits an initially stationary
ball and stops dead. “Wow, what a good trick,” she thinks. “I
bet I could never do that again in a million years.” But she tries
again, and finds that she can’t help doing it even if she doesn’t
want to. Luckily she has just learned about collisions in her physics
course. Once she has written down the equations for conservation
of energy and no loss of kinetic energy, she really doesn’t have to
complete the algebra. She knows that she has two equations in
two unknowns, so there must be a well-defined solution. Once she
has seen the result of one such collision, she knows that the same
thing must happen every time. The same thing would happen with
colliding marbles or croquet balls. It doesn’t matter if the masses or
velocities are different, because that just multiplies both equations
by some constant factor.

The discovery of the neutron

This was the type of reasoning employed by James Chadwick in
his 1932 discovery of the neutron. At the time, the atom was imag-
ined to be made out of two types of fundamental particles, protons
and electrons. The protons were far more massive, and clustered
together in the atom’s core, or nucleus. Attractive electrical forces
caused the electrons to orbit the nucleus in circles, in much the
same way that gravitational forces kept the planets from cruising
out of the solar system. Experiments showed that the helium nu-
cleus, for instance, exerted exactly twice as much electrical force on
an electron as a nucleus of hydrogen, the smallest atom, and this was
explained by saying that helium had two protons to hydrogen’s one.
The trouble was that according to this model, helium would have
two electrons and two protons, giving it precisely twice the mass of
a hydrogen atom with one of each. In fact, helium has about four
times the mass of hydrogen.

Chadwick suspected that the helium nucleus possessed two addi-
tional particles of a new type, which did not participate in electrical
forces at all, i.e., were electrically neutral. If these particles had very
nearly the same mass as protons, then the four-to-one mass ratio of
helium and hydrogen could be explained. In 1930, a new type of
radiation was discovered that seemed to fit this description. It was
electrically neutral, and seemed to be coming from the nuclei of light
elements that had been exposed to other types of radiation. At this
time, however, reports of new types of particles were a dime a dozen,
and most of them turned out to be either clusters made of previ-
ously known particles or else previously known particles with higher
energies. Many physicists believed that the “new” particle that had
attracted Chadwick’s interest was really a previously known particle
called a gamma ray, which was electrically neutral. Since gamma
rays have no mass, Chadwick decided to try to determine the new
particle’s mass and see if it was nonzero and approximately equal
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to the mass of a proton.

Unfortunately a subatomic particle is not something you can
just put on a scale and weigh. Chadwick came up with an ingenious
solution. The masses of the nuclei of the various chemical elements
were already known, and techniques had already been developed for
measuring the speed of a rapidly moving nucleus. He therefore set
out to bombard samples of selected elements with the mysterious
new particles. When a direct, head-on collision occurred between
a mystery particle and the nucleus of one of the target atoms, the
nucleus would be knocked out of the atom, and he would measure
its velocity.

to vacuum
pump

-

| —
Jﬁ‘—\—L/ —
polonium beryllium

f/ Chadwick’s subatomic pool table. A disk of the naturally occur-
ring metal polonium provides a source of radiation capable of kicking
neutrons out of the beryllium nuclei. The type of radiation emitted by
the polonium is easily absorbed by a few mm of air, so the air has to be
pumped out of the left-hand chamber. The neutrons, Chadwick’s mystery
particles, penetrate matter far more readily, and fly out through the wall
and into the chamber on the right, which is filled with nitrogen or hydrogen
gas. When a neutron collides with a nitrogen or hydrogen nucleus, it
kicks it out of its atom at high speed, and this recoiling nucleus then rips
apart thousands of other atoms of the gas. The result is an electrical
pulse that can be detected in the wire on the right. Physicists had already
calibrated this type of apparatus so that they could translate the strength
of the electrical pulse into the velocity of the recoiling nucleus. The
whole apparatus shown in the figure would fit in the palm of your hand, in
dramatic contrast to today’s giant particle accelerators.

Suppose, for instance, that we bombard a sample of hydrogen
atoms with the mystery particles. Since the participants in the
collision are fundamental particles, there is no way for kinetic energy
to be converted into heat or any other form of energy, and Chadwick
thus had two equations in three unknowns:

equation #1: conservation of momentum

equation #2: no loss of kinetic energy
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unknown #1: mass of the mystery particle
unknown #2: initial velocity of the mystery particle
unknown #3: final velocity of the mystery particle

The number of unknowns is greater than the number of equa-
tions, so there is no unique solution. But by creating collisions with
nuclei of another element, nitrogen, he gained two more equations
at the expense of only one more unknown:

equation #3: conservation of momentum in the new collision
equation #4: no loss of kinetic energy in the new collision

unknown #4: final velocity of the mystery particle in the new
collision

He was thus able to solve for all the unknowns, including the
mass of the mystery particle, which was indeed within 1% of the
mass of a proton. He named the new particle the neutron, since it
is electrically neutral.

Discussion question

A Good pool players learn to make the cue ball spin, which can cause
it not to stop dead in a head-on collision with a stationary ball. If this does
not violate the laws of physics, what hidden assumption was there in the
example above?

14.3 x Relationship of momentum to the
center of mass

We have already discussed the idea of the center of mass on
p. 67, but using the concept of momentum we can now find a math-
ematical method for defining the center of mass, explain why the
motion of an object’s center of mass usually exhibits simpler mo-
tion than any other point, and gain a very simple and powerful way
of understanding collisions.

The first step is to realize that the center of mass concept can
be applied to systems containing more than one object. Even some-
thing like a wrench, which we think of as one object, is really made
of many atoms. The center of mass is particularly easy to visualize
in the case shown on the left, where two identical hockey pucks col-

g/In this multiple-flash photo-
graph, we see the wrench from
above as it flies through the air,
rotating as it goes. Its center
of mass, marked with the black
cross, travels along a straight line,
unlike the other points on the
wrench, which execute loops.
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h/Two hockey pucks collide.
Their mutual center of mass
traces the straight path shown by
the dashed line.

lide. It is clear on grounds of symmetry that their center of mass
must be at the midpoint between them. After all, we previously de-
fined the center of mass as the balance point, and if the two hockey
pucks were joined with a very lightweight rod whose own mass was
negligible, they would obviously balance at the midpoint. It doesn’t
matter that the hockey pucks are two separate objects. It is still
true that the motion of their center of mass is exceptionally simple,
just like that of the wrench’s center of mass.

The z coordinate of the hockey pucks’ center of mass is thus
given by zen = (x1 + x2)/2, i.e., the arithmetic average of their
x coordinates. Why is its motion so simple? It has to do with
conservation of momentum. Since the hockey pucks are not being
acted on by any net external force, they constitute a closed system,
and their total momentum is conserved. Their total momentum is

muy + muy = m(vy + v2)
_ Aaj‘l Al‘Q
=m (At + m)
m
= KtA (1 + x2)
20T em
At

= MtotalVem

In other words, the total momentum of the system is the same as
if all its mass was concentrated at the center of mass point. Since
the total momentum is conserved, the x component of the center of
mass’s velocity vector cannot change. The same is also true for the
other components, so the center of mass must move along a straight
line at constant speed.

The above relationship between the total momentum and the
motion of the center of mass applies to any system, even if it is not
closed.

total momentum related to center of mass motion
The total momentum of any system is related to its total mass
and the velocity of its center of mass by the equation

Ptotal = Miotal Vem-

What about a system containing objects with unequal masses,
or containing more than two objects? The reasoning above can be
generalized to a weighted average

. _ml$1—|—m2$2—|—...
cm = )
mi+meo+ ...

with similar equations for the y and z coordinates.
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Momentum in different frames of reference

Absolute motion is supposed to be undetectable, i.e., the laws
of physics are supposed to be equally valid in all inertial frames
of reference. If we first calculate some momenta in one frame of
reference and find that momentum is conserved, and then rework
the whole problem in some other frame of reference that is moving
with respect to the first, the numerical values of the momenta will
all be different. Even so, momentum will still be conserved. All that
matters is that we work a single problem in one consistent frame of
reference.

One way of proving this is to apply the equation pioprar =
MyiotaiVem- 1f the velocity of frame B relative to frame A is vpa,
then the only effect of changing frames of reference is to change
Ve from its original value to v, + vpa. This adds a constant
onto the momentum vector, which has no effect on conservation of
momentum.

The center of mass frame of reference

A particularly useful frame of reference in many cases is the
frame that moves along with the center of mass, called the center
of mass (c.m.) frame. In this frame, the total momentum is zero.
The following examples show how the center of mass frame can be
a powerful tool for simplifying our understanding of collisions.

A collision of pool balls viewed in the c.m. frame example 12
If you move your head so that your eye is always above the point
halfway in between the two pool balls, you are viewing things in
the center of mass frame. In this frame, the balls come toward the
center of mass at equal speeds. By symmetry, they must there-
fore recoil at equal speeds along the lines on which they entered.
Since the balls have essentially swapped paths in the center of
mass frame, the same must also be true in any other frame. This
is the same result that required laborious algebra to prove previ-
ously without the concept of the center of mass frame.

The slingshot effect example 13
It is a counterintuitive fact that a spacecraft can pick up speed
by swinging around a planet, if it arrives in the opposite direction
compared to the planet’s motion. Although there is no physical
contact, we treat the encounter as a one-dimensional collision,
and analyze it in the center of mass frame. Figure j shows such
a “collision,” with a space probe whipping around Jupiter. In the
sun’s frame of reference, Jupiter is moving.

What about the center of mass frame? Since Jupiter is so much
more massive than the spacecraft, the center of mass is essen-
tially fixed at Jupiter’s center, and Jupiter has zero velocity in the
center of mass frame, as shown in figure k. The c.m. frame is
moving to the left compared to the sun-fixed frame used in j, so

Section 14.3

i/Moving your head so that
you are always looking down
from right above the center of
mass, you observe the collision
of the two hockey pucks in the
center of mass frame.

j/The slingshot effect viewed

in the sun’s frame of reference.

Jupiter is moving to the left, and
the collision is head-on.

k/The
the frame of the center of mass of
the Jupiter-spacecraft system.

slingshot  viewed
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the spacecraft’s initial velocity is greater in this frame.

Things are simpler in the center of mass frame, because it is more
symmetric. In the complicated sun-fixed frame, the incoming leg
of the encounter is rapid, because the two bodies are rushing to-
ward each other, while their separation on the outbound leg is
more gradual, because Jupiter is trying to catch up. In the c.m.
frame, Jupiter is sitting still, and there is perfect symmetry be-
tween the incoming and outgoing legs, so by symmetry we have
vir = —Vvy;. Going back to the sun-fixed frame, the spacecraft's
final velocity is increased by the frames’ motion relative to each
other. In the sun-fixed frame, the spacecraft’s velocity has in-
creased greatly.

The result can also be understood in terms of work and energy.
In Jupiter’s frame, Jupiter is not doing any work on the spacecraft
as it rounds the back of the planet, because the motion is per-
pendicular to the force. But in the sun’s frame, the spacecraft’s
velocity vector at the same moment has a large component to the
left, so Jupiter is doing work on it.

Discussion questions

A Make up a numerical example of two unequal masses moving in one
dimension at constant velocity, and verify the equation protar = MiotaVem
over a time interval of one second.

B A more massive tennis racquet or baseball bat makes the ball fly
off faster. Explain why this is true, using the center of mass frame. For
simplicity, assume that the racquet or bat is simply sitting still before the
collision, and that the hitter’s hands do not make any force large enough
to have a significant effect over the short duration of the impact.

Momentum transfer

The rate of change of momentum

As with conservation of energy, we need a way to measure and
calculate the transfer of momentum into or out of a system when the
system is not closed. In the case of energy, the answer was rather
complicated, and entirely different techniques had to be used for
measuring the transfer of mechanical energy (work) and the transfer
of heat by conduction. For momentum, the situation is far simpler.

In the simplest case, the system consists of a single object acted
on by a constant external force. Since it is only the object’s velocity
that can change, not its mass, the momentum transferred is

Ap = mAv,
which with the help of a = F/m and the constant-acceleration equa-
tion a = Av /At becomes
Ap = maAt
= FAt¢.
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Thus the rate of transfer of momentum, i.e., the number of kg-m/s
absorbed per second, is simply the external force,
A
F=-F
At
[relationship between the force on an object and the
rate of change of its momentum; valid only if the force
is constant]

This is just a restatement of Newton’s second law, and in fact New-
ton originally stated it this way. As shown in figure 1, the rela-
tionship between force and momentum is directly analogous to that
between power and energy.

The situation is not materially altered for a system composed
of many objects. There may be forces between the objects, but the
internal forces cannot change the system’s momentum. (If they did,
then removing the external forces would result in a closed system
that could change its own momentum, like the mythical man who
could pull himself up by his own bootstraps. That would violate
conservation of momentum.) The equation above becomes

APiotal
Ftotal = A; " .

[relationship between the total external force on a sys-
tem and the rate of change of its total momentum; valid
only if the force is constant]

Walking into a lamppost example 14
> Starting from rest, you begin walking, bringing your momentum
up to 100 kg-m/s. You walk straight into a lamppost. Why is the
momentum change of —100 kg-m/s caused by the lamppost so
much more painful than the change of +100 kg-m/s when you
started walking?

> The situation is one-dimensional, so we can dispense with the
vector notation. It probably takes you about 1 s to speed up ini-
tially, so the ground’s force on you is F = Ap/At ~ 100 N. Your
impact with the lamppost, however, is over in the blink of an eye,
say 1/10 s or less. Dividing by this much smaller At gives a much
larger force, perhaps thousands of newtons. (The negative sign
simply indicates that the force is in the opposite direction.)

This is also the principle of airbags in cars. The time required for
the airbag to decelerate your head is fairly long, the time required
for your face to travel 20 or 30 cm. Without an airbag, your face
would hit the dashboard, and the time interval would be the much
shorter time taken by your skull to move a couple of centimeters
while your face compressed. Note that either way, the same amount
of mechanical work has to be done on your head: enough to eliminate
all its kinetic energy.
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|/ Power and force are the
rates at which energy and
momentum are transferred.

m/The airbag increases At
so as to reduce F = Ap/At.
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n/ Example 16.

t

o/The F — t graph for a
tennis racquet hitting a ball might
look like this. The amount of
momentum transferred equals
the area under the curve.

lon drive for spacecraft example 15
> The ion drive of the Deep Space 1 spacecraft, pictured on page
365 and discussed in example 2, produces a thrust of 90 mN
(millinewtons). It carries about 80 kg of reaction mass, which it
ejects at a speed of 30,000 m/s. For how long can the engine
continue supplying this amount of thrust before running out of
reaction mass to shove out the back?

> Solving the equation F = Ap/At for the unknown At, and treat-
ing force and momentum as scalars since the problem is one-
dimensional, we find

Ap
~F
_ Mexhaust Vexhaust
B F

(80 kg)(30,000 m/s)

0.090 N

=27x10"s

= 300 days

At

A toppling box example 16
If you place a box on a frictionless surface, it will fall over with a
very complicated motion that is hard to predict in detail. We know,
however, that its center of mass moves in the same direction as
its momentum vector points. There are two forces, a normal force
and a gravitational force, both of which are vertical. (The grav-
itational force is actually many gravitational forces acting on all
the atoms in the box.) The total force must be vertical, so the
momentum vector must be purely vertical too, and the center of
mass travels vertically. This is true even if the box bounces and
tumbles. [Based on an example by Kleppner and Kolenkow.]

The area under the force-time graph

Few real collisions involve a constant force. For example, when
a tennis ball hits a racquet, the strings stretch and the ball flattens
dramatically. They are both acting like springs that obey Hooke’s
law, which says that the force is proportional to the amount of
stretching or flattening. The force is therefore small at first, ramps
up to a maximum when the ball is about to reverse directions, and
ramps back down again as the ball is on its way back out. The
equation F' = Ap/At, derived under the assumption of constant
acceleration, does not apply here, and the force does not even have
a single well-defined numerical value that could be plugged in to the
equation.

As with similar-looking equations such as v = Ap/At, the equa-
tion F' = Ap/At is correctly generalized by saying that the force is
the slope of the p — ¢ graph.
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Conversely, if we wish to find Ap from a graph such as the one
in figure o, one approach would be to divide the force by the mass of
the ball, rescaling the F' axis to create a graph of acceleration versus
time. The area under the acceleration-versus-time graph gives the
change in velocity, which can then be multiplied by the mass to
find the change in momentum. An unnecessary complication was
introduced, however, because we began by dividing by the mass
and ended by multiplying by it. It would have made just as much
sense to find the area under the original F' — ¢ graph, which would
have given us the momentum change directly.

Discussion question

A Many collisions, like the collision of a bat with a baseball, appear to
be instantaneous. Most people also would not imagine the bat and ball as
bending or being compressed during the collision. Consider the following
possibilities:

1. The collision is instantaneous.

2. The collision takes a finite amount of time, during which the ball and
bat retain their shapes and remain in contact.

3. The collision takes a finite amount of time, during which the ball and
bat are bending or being compressed.

How can two of these be ruled out based on energy or momentum con-
siderations?

Momentum in three dimensions

In this section we discuss how the concepts applied previously to
one-dimensional situations can be used as well in three dimensions.
Often vector addition is all that is needed to solve a problem:

An explosion example 17
> Astronomers observe the planet Mars as the Martians fight a
nuclear war. The Martian bombs are so powerful that they rip the
planet into three separate pieces of liquified rock, all having the
same mass. If one fragment flies off with velocity components

Vix =0
viy = 1.0 x 10* km/hr,

and the second with

p / Example 17.

Vo, = 1.0 x 10% km/hr
V2y = o,

(all'in the center of mass frame) what is the magnitude of the third
one’s velocity?
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> In the center of mass frame, the planet initially had zero momen-
tum. After the explosion, the vector sum of the momenta must still
be zero. Vector addition can be done by adding components, so

MVyx + MVoy + M3y = 0, and
mviy + Mvoy + Mvay, = 0,

where we have used the same symbol m for all the terms, be-
cause the fragments all have the same mass. The masses can
be eliminated by dividing each equation by m, and we find

Vax = —1.0 x 10% km/hr

vay = —1.0 x 10* km/hr
which gives a magnitude of

Vs = \/ V3, + V5,

= 1.4 x 10* km/hr

The center of mass

In three dimensions, we have the vector equations

APiotal
Ftotal = ﬁ

and

Ptotal = Miotal Vem-

The following is an example of their use.

The bola example 18
The bola, similar to the North American lasso, is used by South
American gauchos to catch small animals by tangling up their
legs in the three leather thongs. The motion of the whirling bola
through the air is extremely complicated, and would be a chal-
lenge to analyze mathematically. The motion of its center of
mass, however, is much simpler. The only forces on it are gravi-
tational, so
Fiotar = MiotaiQ-

Using the equation Fiota = APtotar/At, we find

APiotal/ At = Myota/Q,

and since the mass is constant, the equation piotas = MiotaVem
allows us to change this to

MiotalAVem/ At = Miota/0.
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The mass cancels, and Av¢y, /At is simply the acceleration of the
center of mass, so

acm = g

In other words, the motion of the system is the same as if all its
mass was concentrated at and moving with the center of mass.
The bola has a constant downward acceleration equal to g, and
flies along the same parabola as any other projectile thrown with
the same initial center of mass velocity. Throwing a bola with the
correct rotation is presumably a difficult skill, but making it hit its
target is no harder than it is with a ball or a single rock.

[Based on an example by Kleppner and Kolenkow.]

Counting equations and unknowns

Counting equations and unknowns is just as useful as in one
dimension, but every object’s momentum vector has three compo-
nents, so an unknown momentum vector counts as three unknowns.
Conservation of momentum is a single vector equation, but it says
that all three components of the total momentum vector stay con-
stant, so we count it as three equations. Of course if the motion
happens to be confined to two dimensions, then we need only count
vectors as having two components.

A two-car crash with sticking example 19
Suppose two cars collide, stick together, and skid off together. If
we know the cars’ initial momentum vectors, we can count equa-
tions and unknowns as follows:

unknown #1: x component of cars’ final, total momentum
unknown #2: y component of cars’ final, total momentum
equation #1: conservation of the total py
equation #2: conservation of the total py,

Since the number of equations equals the number of unknowns,
there must be one unique solution for their total momentum vector
after the crash. In other words, the speed and direction at which
their common center of mass moves off together is unaffected by
factors such as whether the cars collide center-to-center or catch
each other a little off-center.

Shooting pool example 20
Two pool balls collide, and as before we assume there is no de-
crease in the total kinetic energy, i.e., no energy converted from
KE into other forms. As in the previous example, we assume we
are given the initial velocities and want to find the final velocities.
The equations and unknowns are:

unknown #1: x component of ball #1’s final momentum

unknown #2: y component of ball #1’s final momentum
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unknown #3: x component of ball #2’s final momentum
unknown #4: y component of ball #2’s final momentum
equation #1: conservation of the total px

equation #2: conservation of the total py,

equation #3: no decrease in total KE

Note that we do not count the balls’ final kinetic energies as un-
knowns, because knowing the momentum vector, one can always
find the velocity and thus the kinetic energy. The number of equa-
tions is less than the number of unknowns, so no unique result is
guaranteed. This is what makes pool an interesting game. By
aiming the cue ball to one side of the target ball you can have
some control over the balls’ speeds and directions of motion after
the collision.

It is not possible, however, to choose any combination of final
speeds and directions. For instance, a certain shot may give the
correct direction of motion for the target ball, making it go into a
pocket, but may also have the undesired side-effect of making the
cue ball go in a pocket.

Calculations with the momentum vector

The following example illustrates how a force is required in order

to change the direction of the momentum vector, just as one would
be required to change its magnitude.

A turbine example 21
> In a hydroelectric plant, water flowing over a dam drives a tur-
bine, which runs a generator to make electric power. The figure
shows a simplified physical model of the water hitting the turbine,
in which it is assumed that the stream of water comes in at a
45°angle with respect to the turbine blade, and bounces off at a
90°angle at nearly the same speed. The water flows at a rate R,
in units of kg/s, and the speed of the water is v. What are the
magnitude and direction of the water’s force on the turbine?

> In a time interval At, the mass of water that strikes the blade is
RAt, and the magnitude of its initial momentum is mv = vRAL.
The water’s final momentum vector is of the same magnitude, but
in the perpendicular direction. By Newton’s third law, the water’s
force on the blade is equal and opposite to the blade’s force on
the water. Since the force is constant, we can use the equation

F APwater
blade on water = At

Choosing the x axis to be to the right and the y axis to be up, this
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can be broken down into components as

E APwater,x
blade on water,x = 7At

—VvRAt -0
At
=—VvR

and

F APwater,y
blade on water,y = TT

0 — (—VRAU)
a At
= vA.

The water’s force on the blade thus has components

Fwater on blade,x = VA
Fwater on blade,y = —VA.

In situations like this, it is always a good idea to check that the
result makes sense physically. The x component of the water’s
force on the blade is positive, which is correct since we know the
blade will be pushed to the right. The y component is negative,
which also makes sense because the water must push the blade
down. The magnitude of the water’s force on the blade is

| Fwater on blade| = V2vR

and its direction is at a 45-degree angle down and to the right.

Discussion questions

A The figures show a jet of water striking two different objects. How
does the total downward force compare in the two cases? How could this
fact be used to create a better waterwheel? (Such a waterwheel is known
as a Pelton wheel.)

Discussion question A.

B Inproblem 12, p. 312, we analyzed a multiflash photograph collision
between two steel balls to check for conservation of energy. The photo is
reproduced below. Check conservation of momentum as well.

Section 14.5 Momentum in three dimensions

383



Discussion question B.

14.6 [ Applications of calculus

By now you will have learned to recognize the circumlocutions I use
in the sections without calculus in order to introduce calculus-like
concepts without using the notation, terminology, or techniques of
calculus. It will therefore come as no surprise to you that the rate
of change of momentum can be represented with a derivative,

dptotal

Ftotal = dt

And of course the business about the area under the F' — ¢ curve is
really an integral, Apiotar = [ Fiotar dt, which can be made into an
integral of a vector in the more general three-dimensional case:

Aptotal = /Ftetal dt.

In the case of a material object that is neither losing nor picking up
mass, these are just trivially rearranged versions of familiar equa-
tions, e.g., F' = mdv/dt rewritten as F' = dimv)/ dt. The following
is a less trivial example, where F' = ma alone would not have been
very easy to work with.

Rain falling into a moving cart example 22
> If 1 kg/s of rain falls vertically into a 10-kg cart that is rolling
without friction at an initial speed of 1.0 m/s, what is the effect on
the speed of the cart when the rain first starts falling?

> The rain and the cart make horizontal forces on each other, but
there is no external horizontal force on the rain-plus-cart system,
so the horizontal motion obeys

dmv)
F=—4

=0
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We use the product rule to find

_ dm dv

O—WV-FmE.

We are trying to find how v changes, so we solve for dv/dt,

dv_ _vdm
dt =~ mdt
1m/s
=_<10k/g>(1 kg/s)
= —0.1m/s2

(This is only at the moment when the rain starts to fall.)

Finally we note that there are cases where F' = ma is not just
less convenient than F' = dp/dt but in fact F' = ma is wrong and
F = dp/dt is right. A good example is the formation of a comet’s
tail by sunlight. We cannot use F' = ma to describe this process,
since we are dealing with a collision of light with matter, whereas
Newton’s laws only apply to matter. The equation F' = dp/dt, on
the other hand, allows us to find the force experienced by an atom of
gas in the comet’s tail if we know the rate at which the momentum
vectors of light rays are being turned around by reflection from the
atom.

Section 14.6 [ Applications of calculus
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Summary
Selected vocabulary

momentum . .. a measure of motion, equal to mv for material
objects

collision . .. .. an interaction between moving objects that
lasts for a certain time

center of mass . . the balance point or average position of the

mass in a system

Notation
P e the momentum vector
cm . ........ center of mass, as in Z¢m, Gem, etc.

Other terminology and notation
impulse, I, J .. the amount of momentum transferred, Ap
elastic collision . one in which no KE is converted into other
forms of energy
inelastic collision  one in which some KE is converted to other
forms of energy

Summary

If two objects interact via a force, Newton’s third law guaran-
tees that any change in one’s velocity vector will be accompanied
by a change in the other’s which is in the opposite direction. Intu-
itively, this means that if the two objects are not acted on by any
external force, they cannot cooperate to change their overall state of
motion. This can be made quantitative by saying that the quantity
m1vi + move must remain constant as long as the only forces are
the internal ones between the two objects. This is a conservation
law, called the conservation of momentum, and like the conserva-
tion of energy, it has evolved over time to include more and more
phenomena unknown at the time the concept was invented. The
momentum of a material object is

p =my,

but this is more like a standard for comparison of momenta rather
than a definition. For instance, light has momentum, but has no
mass, and the above equation is not the right equation for light. The
law of conservation of momentum says that the total momentum of
any closed system, i.e., the vector sum of the momentum vectors of
all the things in the system, is a constant.

An important application of the momentum concept is to colli-
sions, i.e., interactions between moving objects that last for a certain
amount of time while the objects are in contact or near each other.
Conservation of momentum tells us that certain outcomes of a col-
lision are impossible, and in some cases may even be sufficient to
predict the motion after the collision. In other cases, conservation
of momentum does not provide enough equations to find all the un-
knowns. In some collisions, such as the collision of a superball with
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the floor, very little kinetic energy is converted into other forms of
energy, and this provides one more equation, which may suffice to
predict the outcome.

The total momentum of a system can be related to its total mass
and the velocity of its center of mass by the equation

Ptotal = MtotalVem-

The center of mass, introduced on an intuitive basis in book 1 as
the “balance point” of an object, can be generalized to any system
containing any number of objects, and is defined mathematically
as the weighted average of the positions of all the parts of all the

objects
’ mi1x1 + moxg + ...

Tem =
mi+mo+...

with similar equations for the y and z coordinates.

The frame of reference moving with the center of mass of a closed
system is always a valid inertial frame, and many problems can be
greatly simplified by working them in the inertial frame. For exam-
ple, any collision between two objects appears in the c.m. frame as
a head-on one-dimensional collision.

When a system is not closed, the rate at which momentum is
transferred in or out is simply the total force being exerted externally
on the system. If the force is constant,

APiotal
Ftotal - AZ = .

When the force is not constant, the force equals the slope of the
tangent line on a graph of p versus ¢, and the change in momentum
equals the area under the F' — t graph.

Summary
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Problem 5

Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 Derive a formula expressing the kinetic energy of an object in
terms of its momentum and mass. v

2 Two people in a rowboat wish to move around without causing
the boat to move. What should be true about their total momen-
tum? Explain.

3 A learjet traveling due east at 300 mi/hr collides with a
jumbo jet which was heading southwest at 150 mi/hr. The jumbo
jet’s mass is five times greater than that of the learjet. When they
collide, the learjet sticks into the fuselage of the jumbo jet, and they
fall to earth together. Their engines stop functioning immediately
after the collision. On a map, what will be the direction from the
location of the collision to the place where the wreckage hits the
ground? (Give an angle.) v

4 A bullet leaves the barrel of a gun with a kinetic energy of 90
J. The gun barrel is 50 cm long. The gun has a mass of 4 kg, the
bullet 10 g.

(a) Find the bullet’s final velocity. v
(b) Find the bullet’s final momentum. v
(c) Find the momentum of the recoiling gun.

(d) Find the kinetic energy of the recoiling gun, and explain why
the recoiling gun does not kill the shooter. v

F (MN)

t(s)

5 The graph shows the force, in meganewtons, exerted by a
rocket engine on the rocket as a function of time. If the rocket’s
mass is 4000 kg, at what speed is the rocket moving when the engine
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stops firing? Assume it goes straight up, and neglect the force of
gravity, which is much less than a meganewton. v

6 Cosmic rays are particles from outer space, mostly protons and
atomic nuclei, that are continually bombarding the earth. Most of
them, although they are moving extremely fast, have no discernible
effect even if they hit your body, because their masses are so small.
Their energies vary, however, and a very small minority of them
have extremely large energies. In some cases the energy is as much
as several Joules, which is comparable to the KE of a well thrown
rock! If you are in a plane at a high altitude and are so incredibly
unlucky as to be hit by one of these rare ultra-high-energy cosmic
rays, what would you notice, the momentum imparted to your body,
the energy dissipated in your body as heat, or both? Base your con-
clusions on numerical estimates, not just random speculation. (At
these high speeds, one should really take into account the devia-
tions from Newtonian physics described by Einstein’s special theory
of relativity. Don’t worry about that, though.)

7 Show that for a body made up of many equal masses, the
equation for the center of mass becomes a simple average of all the
positions of the masses.

8 The figure shows a view from above of a collision about to
happen between two air hockey pucks sliding without friction. They
have the same speed, v;, before the collision, but the big puck is 2.3
times more massive than the small one. Their sides have sticky stuff
on them, so when they collide, they will stick together. At what
angle will they emerge from the collision? In addition to giving a
numerical answer, please indicate by drawing on the figure how your
angle is defined. > Solution, p. 560

9 A flexible rope of mass m and length L slides without friction
over the edge of a table. Let x be the length of the rope that is
hanging over the edge at a given moment in time.

(a) Show that x satisfies the equation of motion &2/ dt?> = gz /L.
[Hint: Use F' = dp/ dt, which allows you to handle the two parts of
the rope separately even though mass is moving out of one part and
into the other.]

(b) Give a physical explanation for the fact that a larger value of
x on the right-hand side of the equation leads to a greater value of
the acceleration on the left side.

(c) When we take the second derivative of the function x(t) we are
supposed to get essentially the same function back again, except
for a constant out in front. The function e® has the property that
it is unchanged by differentiation, so it is reasonable to look for
solutions to this problem that are of the form x = be’, where b and
c are constants. Show that this does indeed provide a solution for
two specific values of ¢ (and for any value of b).

(d) Show that the sum of any two solutions to the equation of motion

Problem 8
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is also a solution.
(e) Find the solution for the case where the rope starts at rest at
t = 0 with some nonzero value of x. [ =

10 A very massive object with velocity v collides head-on with
an object at rest whose mass is very small. No kinetic energy is
converted into other forms. Prove that the low-mass object recoils
with velocity 2v. [Hint: Use the center-of-mass frame of reference.]

11 When the contents of a refrigerator cool down, the changed
molecular speeds imply changes in both momentum and energy.
Why, then, does a fridge transfer power through its radiator coils,
but not force? > Solution, p. 560

12 A 10-kg bowling ball moving at 2.0 m/s hits a 1.0-kg bowling
pin, which is initially at rest. The other pins are all gone already,
and the collision is head-on, so that the motion is one-dimensional.
Assume that negligible amounts of heat and sound are produced.
Find the velocity of the pin immediately after the collision.

13 A rocket ejects exhaust with an exhaust velocity u. The rate
at which the exhaust mass is used (mass per unit time) is b. We
assume that the rocket accelerates in a straight line starting from
rest, and that no external forces act on it. Let the rocket’s initial
mass (fuel plus the body and payload) be m;, and my be its final
mass, after all the fuel is used up. (a) Find the rocket’s final velocity,
v, in terms of u, m;, and my. Neglect the effects of special relativity.
(b) A typical exhaust velocity for chemical rocket engines is 4000
m/s. Estimate the initial mass of a rocket that could accelerate a
one-ton payload to 10% of the speed of light, and show that this
design won’t work. (For the sake of the estimate, ignore the mass of
the fuel tanks. The speed is fairly small compared to ¢, so it’s not
an unreasonable approximation to ignore relativity.) Vo[ o

14 A firework shoots up into the air, and just before it explodes
it has a certain momentum and kinetic energy. What can you say
about the momenta and kinetic energies of the pieces immediately
after the explosion? [Based on a problem from PSSC Physics.]

> Solution, p. 560

15 Suppose a system consisting of pointlike particles has a total
kinetic energy K., measured in the center-of-mass frame of refer-
ence. Since they are pointlike, they cannot have any energy due to
internal motion.

(a) Prove that in a different frame of reference, moving with veloc-
ity u relative to the center-of-mass frame, the total kinetic energy
equals K, + M|u|?/2, where M is the total mass. [Hint: You can
save yourself a lot of writing if you express the total kinetic energy
using the dot product.] > Solution, p. 561
(b) Use this to prove that if energy is conserved in one frame of
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reference, then it is conserved in every frame of reference. The total
energy equals the total kinetic energy plus the sum of the potential
energies due to the particles’ interactions with each other, which
we assume depends only on the distance between particles. [For a
simpler numerical example, see problem 13 on p. 312.] *

16 The big difference between the equations for momentum and

kinetic energy is that one is proportional to v and one to v2. Both,

however, are proportional to m. Suppose someone tells you that

there’s a third quantity, funkosity, defined as f = m?v, and that

funkosity is conserved. How do you know your leg is being pulled?
> Solution, p. 561

17 A mass m moving at velocity v collides with a stationary
target having the same mass m. Find the maximum amount of
energy that can be released as heat and sound. v

18 Two blobs of putty collide head-on and stick. The collision is
completely symmetric: the blobs are of equal mass, and they collide
at equal speeds. What becomes of the energy the blobs had before
the collision? The momentum?

19 The force acting on an object is F' = At?. The object is at
rest at time ¢ = 0. What is its momentum at ¢t =17
V' [problem by B. Shotwell] f

20 A bullet of mass m strikes a block of mass M which is hanging
by a string of length L from the ceiling. It is observed that, after
the sticky collision, the maximum angle that the string makes with
the vertical is #. This setup is called a ballistic pendulum, and it
can be used to measure the speed of the bullet.

(a) What vertical height does the block reach? v
(b) What was the speed of the block just after the collision? v
(c) What was the speed of the bullet just before it struck the block?

V' [problem by B. Shotwell]

21 A car of mass M and a truck of mass 2M collide head-on
with equal speeds v, and the collision is perfectly inelastic, i.e., the
maximum possible amount of kinetic energy is transformed into heat
and sound, consistent with conservation of momentum.
(a) What is the magnitude of the change in momentum of the car?
v
(b) What is the magnitude of the change in momentum of the truck?
v
(c) What is the final speed of the two vehicles? v
(d) What fraction of the initial kinetic energy was lost as a result of
the collision? V' [problem by B. Shotwell]
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A tornado touches down in Spring Hill, Kansas, May 20, 1957.

Chapter 15

Conservation of Angular
Momentum

“Sure, and maybe the sun won’t come up tomorrow.” Of course,
the sun only appears to go up and down because the earth spins,
so the cliche should really refer to the unlikelihood of the earth’s
stopping its rotation abruptly during the night. Why can’t it stop?
It wouldn’t violate conservation of momentum, because the earth’s
rotation doesn’t add anything to its momentum. While California
spins in one direction, some equally massive part of India goes the
opposite way, canceling its momentum. A halt to Earth’s rotation
would entail a drop in kinetic energy, but that energy could simply
be converted into some other form, such as heat.

Other examples along these lines are not hard to find. A hydro-
gen atom spins at the same rate for billions of years. A high-diver
who is rotating when he comes off the board does not need to make
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any physical effort to continue rotating, and indeed would be unable
to stop rotating before he hit the water.

These observations have the hallmarks of a conservation law:

A closed system is involved. Nothing is making an effort to
twist the earth, the hydrogen atom, or the high-diver. They are
isolated from rotation-changing influences, i.e., they are closed
systems.

Something remains unchanged. There appears to be a numer-
ical quantity for measuring rotational motion such that the total
amount of that quantity remains constant in a closed system.

Something can be transferred back and forth without
changing the total amount. In figure a, the jumper wants to
get his feet out in front of him so he can keep from doing a “face
plant” when he lands. Bringing his feet forward would involve a
certain quantity of counterclockwise rotation, but he didn’t start
out with any rotation when he left the ground. Suppose we con-
sider counterclockwise as positive and clockwise as negative. The
only way his legs can acquire some positive rotation is if some other
part of his body picks up an equal amount of negative rotation.
This is why he swings his arms up behind him, clockwise.

a / An early photograph of an old-fashioned long-jump.

What numerical measure of rotational motion is conserved? Car
engines and old-fashioned LP records have speeds of rotation mea-
sured in rotations per minute (r.p.m.), but the number of rota-
tions per minute (or per second) is not a conserved quantity. A
twirling figure skater, for instance, can pull her arms in to increase
her r.p.m.’s. The first section of this chapter deals with the nu-
merical definition of the quantity of rotation that results in a valid
conservation law.
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15.1 Conservation of angular momentum

When most people think of rotation, they think of a solid object
like a wheel rotating in a circle around a fixed point. Examples of
this type of rotation, called rigid rotation or rigid-body rotation, in-
clude a spinning top, a seated child’s swinging leg, and a helicopter’s
spinning propeller. Rotation, however, is a much more general phe-
nomenon, and includes noncircular examples such as a comet in
an elliptical orbit around the sun, or a cyclone, in which the core
completes a circle more quickly than the outer parts.

If there is a numerical measure of rotational motion that is a
conserved quantity, then it must include nonrigid cases like these,
since nonrigid rotation can be traded back and forth with rigid ro-
tation. For instance, there is a trick for finding out if an egg is
raw or hardboiled. If you spin a hardboiled egg and then stop it
briefly with your finger, it stops dead. But if you do the same with
a raw egg, it springs back into rotation because the soft interior was
still swirling around within the momentarily motionless shell. The
pattern of flow of the liquid part is presumably very complex and
nonuniform due to the asymmetric shape of the egg and the differ-
ent consistencies of the yolk and the white, but there is apparently
some way to describe the liquid’s total amount of rotation with a
single number, of which some percentage is given back to the shell
when you release it.

The best strategy is to devise a way of defining the amount of
rotation of a single small part of a system. The amount of rotation
of a system such as a cyclone will then be defined as the total of all
the contributions from its many small parts.

The quest for a conserved quantity of rotation even requires us
to broaden the rotation concept to include cases where the motion
doesn’t repeat or even curve around. If you throw a piece of putty
at a door, the door will recoil and start rotating. The putty was
traveling straight, not in a circle, but if there is to be a general
conservation law that can cover this situation, it appears that we
must describe the putty as having had some “rotation,” which it
then gave up to the door. The best way of thinking about it is to
attribute rotation to any moving object or part of an object that
changes its angle in relation to the axis of rotation. In the putty-
and-door example, the hinge of the door is the natural point to think
of as an axis, and the putty changes its angle as seen by someone
standing at the hinge. For this reason, the conserved quantity we are
investigating is called angular momentum. The symbol for angular
momentum can’t be a or m, since those are used for acceleration
and mass, so the symbol L is arbitrarily chosen instead.

Imagine a 1-kg blob of putty, thrown at the door at a speed of
1 m/s, which hits the door at a distance of 1 m from the hinge.
We define this blob to have 1 unit of angular momentum. When
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b/An overhead view of a
piece of putty being thrown at
a door. Even though the putty
is neither spinning nor traveling
along a curve, we must define it
as having some kind of “rotation”
because it is able to make the
door rotate.

¢/ As seen by someone standing
at the axis, the putty changes
its angular position. We there-
fore define it as having angular
momentum.
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d/A putty blob thrown di-
rectly at the axis has no angular
motion, and therefore no angular
momentum. It will not cause the
door to rotate.

A,

e/Only the component of
the velocity vector perpendicular
to the dashed line should be
counted into the definition of
angular momentum.

it hits the door, the door will recoil and start rotating. We can
use the speed at which the door recoils as a measure of the angular
momentum the blob brought in.!

Experiments show, not surprisingly, that a 2-kg blob thrown in
the same way makes the door rotate twice as fast, so the angular
momentum of the putty blob must be proportional to mass,

L xm.

Similarly, experiments show that doubling the velocity of the
blob will have a doubling effect on the result, so its angular momen-
tum must be proportional to its velocity as well,

L o< mo.

You have undoubtedly had the experience of approaching a closed
door with one of those bar-shaped handles on it and pushing on the
wrong side, the side close to the hinges. You feel like an idiot, be-
cause you have so little leverage that you can hardly budge the door.
The same would be true with the putty blob. Experiments would
show that the amount of rotation the blob can give to the door is
proportional to the distance, r, from the axis of rotation, so angular
momentum must also be proportional to r,

L o< muor.

We are almost done, but there is one missing ingredient. We
know on grounds of symmetry that a putty ball thrown directly
inward toward the hinge will have no angular momentum to give
to the door. After all, there would not even be any way to de-
cide whether the ball’s rotation was clockwise or counterclockwise
in this situation. It is therefore only the component of the blob’s
velocity vector perpendicular to the door that should be counted in
its angular momentum,

L=muv,r.

More generally, v should be thought of as the component of the
object’s velocity vector that is perpendicular to the line joining the
object to the axis of rotation.

We find that this equation agrees with the definition of the origi-
nal putty blob as having one unit of angular momentum, and we can
now see that the units of angular momentum are (kg-m/s)-m, i.e.,
kg-m?/s. This gives us a way of calculating the angular momentum
of any material object or any system consisting of material objects:

"'We assume that the door is much more massive than the blob. Under this
assumption, the speed at which the door recoils is much less than the original
speed of the blob, so the blob has lost essentially all its angular momentum, and
given it to the door.
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angular momentum of a material object
The angular momentum of a moving particle is

L=mv,r,

where m is its mass, v, is the component of its velocity vector
perpendicular to the line joining it to the axis of rotation, and r is
its distance from the axis. Positive and negative signs are used to
describe opposite directions of rotation.

The angular momentum of a finite-sized object or a system
of many objects is found by dividing it up into many small parts,
applying the equation to each part, and adding to find the total
amount of angular momentum.

Note that 7 is not necessarily the radius of a circle. (As implied
by the qualifiers, matter isn’t the only thing that can have angular
momentum. Light can also have angular momentum, and the above
equation would not apply to light.)

Conservation of angular momentum has been verified over and
over again by experiment, and is now believed to be one of the three
most fundamental principles of physics, along with conservation of
energy and momentum.

A figure skater pulls her arms in example 1
When a figure skater is twirling, there is very little friction between
her and the ice, so she is essentially a closed system, and her
angular momentum is conserved. If she pulls her arms in, she is
decreasing r for all the atoms in her arms. It would violate con-
servation of angular momentum if she then continued rotating at
the same speed, i.e., taking the same amount of time for each
revolution, because her arms’ contributions to her angular mo-
mentum would have decreased, and no other part of her would
have increased its angular momentum. This is impossible be-
cause it would violate conservation of angular momentum. If her
total angular momentum is to remain constant, the decrease in r
for her arms must be compensated for by an overall increase in
her rate of rotation. That is, by pulling her arms in, she substan-
tially reduces the time for each rotation.

f/ A figure skater pulls in her
arms so that she can execute a

spin more rapidly.
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h/Example 3. A view of the
earth-moon system from above
the north pole. All distances
have been highly distorted for
legibility. The earth’s rotation is
counterclockwise from this point
of view (arrow). The moon’s grav-
ity creates a bulge on the side
near it, because its gravitational
pull is stronger there, and an
“anti-bulge” on the far side, since
its gravity there is weaker. For
simplicity, let’s focus on the tidal
bulge closer to the moon. Its
frictional force is trying to slow
down the earth’s rotation, so its
force on the earth’s solid crust is
toward the bottom of the figure.
By Newton’s third law, the crust
must thus make a force on the
bulge which is toward the top of
the figure. This causes the bulge
to be pulled forward at a slight
angle, and the bulge’s gravity
therefore pulls the moon forward,
accelerating its orbital motion
about the earth and flinging it
outward.

g/ Example 2.

'Changing the axis example 2
An object’s angular momentum can be different depending on the
axis about which it rotates. Figure g shows two double-exposure
photographs a viola player tipping the bow in order to cross from
one string to another. Much more angular momentum is required
when playing near the bow’s handle, called the frog, as in the
panel on the right; not only are most of the atoms in the bow
at greater distances, r, from the axis of rotation, but the ones in
the tip also have more momentum, p. It is difficult for the player
to quickly transfer a large angular momentum into the bow, and
then transfer it back out just as quickly. (In the language of section
15.4, large torques are required.) This is one of the reasons that
string players tend to stay near the middle of the bow as much as
possible.

'Earth’s slowing rotation and the receding moon example 3
As noted in chapter 1, the earth’s rotation is actually slowing down
very gradually, with the kinetic energy being dissipated as heat by
friction between the land and the tidal bulges raised in the seas
by the earth’s gravity. Does this mean that angular momentum is
not really perfectly conserved? No, it just means that the earth
is not quite a closed system by itself. If we consider the earth
and moon as a system, then the angular momentum lost by the
earth must be gained by the moon somehow. In fact very precise
measurements of the distance between the earth and the moon
have been carried out by bouncing laser beams off of a mirror
left there by astronauts, and these measurements show that the
moon is receding from the earth at a rate of 4 centimeters per
year! The moon’s greater value of r means that it has a greater
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angular momentum, and the increase turns out to be exactly the
amount lost by the earth. In the days of the dinosaurs, the days
were significantly shorter, and the moon was closer and appeared
bigger in the sky.

But what force is causing the moon to speed up, drawing it out
into a larger orbit? It is the gravitational forces of the earth’s tidal
bulges. The effect is described qualitatively in the caption of the
figure. The result would obviously be extremely difficult to calcu-
late directly, and this is one of those situations where a conserva-
tion law allows us to make precise quantitative statements about
the outcome of a process when the calculation of the process
itself would be prohibitively complex.

Restriction to rotation in a plane

Is angular momentum a vector, or is it a scalar? On p. 206, we
defined the distinction between a vector and a scalar in terms of the
quantity’s behavior when rotated. If rotation doesn’t change it, it’s
a scalar. If rotation affects it in the same way that it would affect
an arrow, then it’s a vector. Using these definitions, figure i shows
that angular momentum cannot be a scalar.

It turns out that there is a way of defining angular momentum as
a vector, but in this book the examples will be confined to a single
plane of rotation, i.e., effectively two-dimensional situations. In this
special case, we can choose to visualize the plane of rotation from
one side or the other, and to define clockwise and counterclockwise
rotation as having opposite signs of angular momentum.

Figure j shows a can rolling down a board. Although the can is
three-dimensional, we can view it from the side and project out the
third dimension, reducing the motion to rotation in a plane. This
means that the axis is a point, even though the word “axis” often
connotes a line in students’ minds, as in an = or y axis.

i / Angular momentum is not a
scalar. If we turn the picture
around, the angular momentum
does change: the counterclock-
wise motion of the wheels be-
comes clockwise from our new
point of view.
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j / We reduce the motion to rota-
tion in a plane, and the axis is
then a point.

Aow)
. |

k/The planet's angular mo-
mentum is related to the rate at
which it sweeps out area.

Discussion question

A Conservation of plain old momentum, p, can be thought of as the
greatly expanded and modified descendant of Galileo’s original principle
of inertia, that no force is required to keep an object in motion. The princi-
ple of inertia is counterintuitive, and there are many situations in which it
appears superficially that a force is needed to maintain motion, as main-
tained by Aristotle. Think of a situation in which conservation of angular
momentum, L, also seems to be violated, making it seem incorrectly that
something external must act on a closed system to keep its angular mo-
mentum from “running down.”

15.2 Angular momentum in planetary motion

We now discuss the application of conservation of angular momen-
tum to planetary motion, both because of its intrinsic importance
and because it is a good way to develop a visual intuition for angular
momentum.

Kepler’s law of equal areas states that the area swept out by
a planet in a certain length of time is always the same. Angular
momentum had not been invented in Kepler’s time, and he did not
even know the most basic physical facts about the forces at work. He
thought of this law as an entirely empirical and unexpectedly simple
way of summarizing his data, a rule that succeeded in describing
and predicting how the planets sped up and slowed down in their
elliptical paths. It is now fairly simple, however, to show that the
equal area law amounts to a statement that the planet’s angular
momentum stays constant.

There is no simple geometrical rule for the area of a pie wedge
cut out of an ellipse, but if we consider a very short time interval,
as shown in figure k, the shaded shape swept out by the planet is
very nearly a triangle. We do know how to compute the area of a
triangle. It is one half the product of the base and the height:

1
area = —bh.

We wish to relate this to angular momentum, which contains
the variables » and v; . If we consider the sun to be the axis of
rotation, then the variable r is identical to the base of the triangle,
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r = b. Referring to the magnified portion of the figure, v, can be
related to h, because the two right triangles are similar:

h V]

distance traveled v|

The area can thus be rewritten as

1 v, (distance traveled)
area = — :

[v]

The distance traveled equals |v|At, so this simplifies to
1
area = irlet.

We have found the following relationship between angular momen-
tum and the rate at which area is swept out:

area

At

L=2m

The factor of 2 in front is simply a matter of convention, since any
conserved quantity would be an equally valid conserved quantity if
you multiplied it by a constant. The factor of m was not relevant
to Kepler, who did not know the planets’ masses, and who was only
describing the motion of one planet at a time.

We thus find that Kepler’s equal-area law is equivalent to a state-
ment that the planet’s angular momentum remains constant. But
wait, why should it remain constant? — the planet is not a closed
system, since it is being acted on by the sun’s gravitational force.
There are two valid answers. The first is that it is actually the to-
tal angular momentum of the sun plus the planet that is conserved.
The sun, however, is millions of times more massive than the typical
planet, so it accelerates very little in response to the planet’s gravi-
tational force. It is thus a good approximation to say that the sun
doesn’t move at all, so that no angular momentum is transferred
between it and the planet.

The second answer is that to change the planet’s angular mo-
mentum requires not just a force but a force applied in a certain
way. In section 15.4 we discuss the transfer of angular momentum
by a force, but the basic idea here is that a force directly in toward
the axis does not change the angular momentum.

Discussion questions

A Suppose an object is simply traveling in a straight line at constant
speed. If we pick some point not on the line and call it the axis of rotation,
is area swept out by the object at a constant rate? Would it matter if we
chose a different axis?

B  The figure is a strobe photo of a pendulum bob, taken from under-
neath the pendulum looking straight up. The black string can’t be seen

Discussion question A.

Section 15.2  Angular momentum in planetary motion
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in the photograph. The bob was given a slight sideways push when it
was released, so it did not swing in a plane. The bright spot marks the
center, i.e., the position the bob would have if it hung straight down at us.
Does the bob’s angular momentum appear to remain constant if we con-
sider the center to be the axis of rotation? What if we choose a different
axis?

Discussion question B.

15.3 Two theorems about angular momentum

With plain old momentum, p, we had the freedom to work in any
inertial frame of reference we liked. The same object could have
different values of momentum in two different frames, if the frames
were not at rest with respect to each other. Conservation of mo-
mentum, however, would be true in either frame. As long as we
employed a single frame consistently throughout a calculation, ev-
erything would work.

The same is true for angular momentum, and in addition there
is an ambiguity that arises from the definition of an axis of rotation.
For a wheel, the natural choice of an axis of rotation is obviously
the axle, but what about an egg rotating on its side? The egg
has an asymmetric shape, and thus no clearly defined geometric
center. A similar issue arises for a cyclone, which does not even
have a sharply defined shape, or for a complicated machine with
many gears. The following theorem, the first of two presented in
this section without proof, explains how to deal with this issue.
Although I have put descriptive titles above both theorems, they
have no generally accepted names.

the choice of axis theorem

It is entirely arbitrary what point one defines as the axis for
purposes of calculating angular momentum. If a closed sys-
tem’s angular momentum is conserved when calculated with
one choice of axis, then it will also be conserved for any other
choice. Likewise, any inertial frame of reference may be used.
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'Colliding asteroids described with different axes example 4
Observers on planets A and B both see the two asteroids collid-
ing. The asteroids are of equal mass and their impact speeds are
the same. Astronomers on each planet decide to define their own
planet as the axis of rotation. Planet A is twice as far from the col-
lision as planet B. The asteroids collide and stick. For simplicity,
assume planets A and B are both at rest.

With planet A as the axis, the two asteroids have the same amount
of angular momentum, but one has positive angular momentum
and the other has negative. Before the collision, the total angular
momentum is therefore zero. After the collision, the two asteroids
will have stopped moving, and again the total angular momen-
tum is zero. The total angular momentum both before and after
the collision is zero, so angular momentum is conserved if you
choose planet A as the axis.

The only difference with planet B as axis is that r is smaller by a
factor of two, so all the angular momenta are halved. Even though
the angular momenta are different than the ones calculated by
planet A, angular momentum is still conserved.

The earth spins on its own axis once a day, but simultaneously
travels in its circular one-year orbit around the sun, so any given
part of it traces out a complicated loopy path. It would seem difficult
to calculate the earth’s angular momentum, but it turns out that
there is an intuitively appealing shortcut: we can simply add up the
angular momentum due to its spin plus that arising from its center
of mass’s circular motion around the sun. This is a special case of
the following general theorem:

the spin theorem

An object’s angular momentum with respect to some outside
axis A can be found by adding up two parts:

(1) The first part is the object’s angular momentum found
by using its own center of mass as the axis, i.e., the angular
momentum the object has because it is spinning.

(2) The other part equals the angular momentum that the
object would have with respect to the axis A if it had all its
mass concentrated at and moving with its center of mass.

'A system with its center of mass at rest example 5
In the special case of an object whose center of mass is at rest,
the spin theorem implies that the object’s angular momentum is
the same regardless of what axis we choose. (This is an even
stronger statement than the choice of axis theorem, which only
guarantees that angular momentum is conserved for any given
choice of axis, without specifying that it is the same for all such
choices.)

| / Example 4.

m/Everyone has a
tendency to think of the diver as
rotating about his own center of
mass. However, he is flying in
an arc, and he also has angular
momentum because of this
motion.

strong

n/This rigid object has an-
gular momentum both because
it is spinning about its center of
mass and because it is moving
through space.
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Angular momentum of a rigid object example 6
> A motorcycle wheel has almost all its mass concentrated at
the outside. If the wheel has mass m and radius r, and the time
required for one revolution is T, what is the spin part of its angular
momentum?

> This is an example of the commonly encountered special case
of rigid motion, as opposed to the rotation of a system like a hur-
ricane in which the different parts take different amounts of time
to go around. We don’t really have to go through a laborious
process of adding up contributions from all the many parts of a
wheel, because they are all at about the same distance from the
axis, and are all moving around the axis at about the same speed.
The velocity is all perpendicular to the spokes,

vV =V
= (circumference)/ T
=2nr/T,

and the angular momentum of the wheel about its center is

L=mv,r
=m(2rr/T)r
=2nmr?/T.

Note that although the factors of 27 in this expression is peculiar
to a wheel with its mass concentrated on the rim, the proportional-
ity to m/T would have been the same for any other rigidly rotating
object. Although an object with a noncircular shape does not have
a radius, it is also true in general that angular momentum is pro-
portional to the square of the object’s size for fixed values of m and
T. For instance doubling an object’s size doubles both the v; and
r factors in the contribution of each of its parts to the total angular
momentum, resulting in an overall factor of four increase.

The figure shows some examples of angular momenta of various
shapes rotating about their centers of mass. The equations for their
angular momenta were derived using calculus, as described in my
calculus-based book Simple Nature. Do not memorize these equa-
tions!

The hammer throw example 7
> In the men’s Olympic hammer throw, a steel ball of radius 6.1 cm
is swung on the end of a wire of length 1.22 m. What fraction of
the ball’s angular momentum comes from its rotation, as opposed
to its motion through space?

> It’'s always important to solve problems symbolically first, and
plug in numbers only at the end, so let the radius of the ball be b,
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L=2 mR 2/T = %mb 27

I
wheel or hoop of radius R, with thin rod of length b
its mass concentrated on the rim rotating end over end
= A%—” mR 2/T
L=tmR 2/T
sphere of radius R with cylinder of radius R
uniform density throughout rotating about its axis

and the length of the wire /. If the time the ball takes to go once
around the circle is T, then this is also the time it takes to revolve
once around its own axis. Its speed is v = 2n// T, so its angular
momentum due to its motion through space is mv/ = 2rme?/T.
Its angular momentum due to its rotation around its own cen-
ter is (4t/5)mb?/T. The ratio of these two angular momenta is
(2/5)(b/£)? = 1.0x1073. The angular momentum due to the ball’s
spin is extremely small.

Toppling a rod example 8
> A rod of length b and mass m stands upright. We want to strike
the rod at the bottom, causing it to fall and land flat. Find the
momentum, p, that should be delivered, in terms of m, b, and
g. Can this really be done without having the rod scrape on the
floor?

> This is a nice example of a question that can very nearly be
answered based only on units. Since the three variables, m, b,
and g, all have different units, they can’t be added or subtracted.
The only way to combine them mathematically is by multiplication
or division. Multiplying one of them by itself is exponentiation, so
in general we expect that the answer must be of the form

p=Ambig,

where A, J, k, and / are unitless constants. The result has to have
units of kg-m/s. To get kilograms to the first power, we need

j=1,

L= Emb 2T
3
cube with sides of length b
_ 2
L= > mR </T
+ X mb 2T
6

cylinder of radius R and
length b rotating end over end

0/ Example 8.
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meters to the first power requires
kK+1=1,

and seconds to the power —1 implies
I=1/2.

Wefindj=1,k=1/2,and | = 1/2, so the solution must be of the

form
p = Am\/bg.
Note that no physics was required!

Consideration of units, however, won’t help us to find the unit-
less constant A. Let t be the time the rod takes to fall, so that
(1/2)gt?> = b/2. If the rod is going to land exactly on its side,
then the number of revolutions it completes while in the air must
be 1/4, or 3/4, or 5/4, ..., but all the possibilities greater than 1/4
would cause the head of the rod to collide with the floor prema-
turely. The rod must therefore rotate at a rate that would cause
it to complete a full rotation in a time T = 4t, and it has angular
momentum L = (7t/6)mb?/T.

The momentum lost by the object striking the rod is p, and by
conservation of momentum, this is the amount of momentum, in
the horizontal direction, that the rod acquires. In other words,
the rod will fly forward a little. However, this has no effect on
the solution to the problem. More importantly, the object striking
the rod loses angular momentum bp/2, which is also transferred
to the rod. Equating this to the expression above for L, we find
p=(n/12)m\/bg.

Finally, we need to know whether this can really be done without
having the foot of the rod scrape on the floor. The figure shows
that the answer is no for this rod of finite width, but it appears
that the answer would be yes for a sufficiently thin rod. This is
analyzed further in homework problem 28 on page 428.

Discussion question

A Inthe example of the colliding asteroids, suppose planet A was mov-
ing toward the top of the page, at the same speed as the bottom asteroid.
How would planet A’s astronomers describe the angular momenta of the
asteroids? Would angular momentum still be conserved?

Torque: the rate of transfer of angular
momentum

Force can be interpreted as the rate of transfer of momentum. The
equivalent in the case of angular momentum is called torque (rhymes

with “fork”). Where force tells us how hard we are pushing or
pulling on something, torque indicates how hard we are twisting on
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it. Torque is represented by the Greek letter tau, 7, and the rate
of change of an object’s angular momentum equals the total torque
acting on it,

AL
Ttotal = E

(If the angular momentum does not change at a constant rate, the
total torque equals the slope of the tangent line on a graph of L
versus t.)

As with force and momentum, it often happens that angular
momentum recedes into the background and we focus our interest on
the torques. The torque-focused point of view is exemplified by the
fact that many scientifically untrained but mechanically apt people
know all about torque, but none of them have heard of angular
momentum. Car enthusiasts eagerly compare engines’ torques, and
there is a tool called a torque wrench which allows one to apply a
desired amount of torque to a screw and avoid overtightening it.

Torque distinguished from force

Of course a force is necessary in order to create a torque — you
can’t twist a screw without pushing on the wrench — but force and
torque are two different things. One distinction between them is
direction. We use positive and negative signs to represent forces in
the two possible directions along a line. The direction of a torque,
however, is clockwise or counterclockwise, not a linear direction.

The other difference between torque and force is a matter of
leverage. A given force applied at a door’s knob will change the
door’s angular momentum twice as rapidly as the same force applied
halfway between the knob and the hinge. The same amount of force
produces different amounts of torque in these two cases.

It is possible to have a zero total torque with a nonzero total
force. An airplane with four jet engines, q, would be designed so
that their forces are balanced on the left and right. Their forces are
all in the same direction, but the clockwise torques of two of the
engines are canceled by the counterclockwise torques of the other
two, giving zero total torque.

Conversely we can have zero total force and nonzero total torque.
A merry-go-round’s engine needs to supply a nonzero torque on it
to bring it up to speed, but there is zero total force on it. If there
was not zero total force on it, its center of mass would accelerate!

-~

< energy

s power =rate of
"_ transferring energy
system

momentum

+ force =rate of
. .
/ transferring momentum

s

< angular

Ao momentum

~" torque = rate of trans-
ferring angular momentum

p/Energy, momentum, and
angular momentum can be trans-
ferred. The rates of transfer are
called power, force, and torque.

/77N

g/ The plane’s four engines
produce zero total torque but not
zero total force.
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r/The boy makes a torque
on the tetherball.

s/ The geometric relationships
referred to in the relationship
between force and torque.

Relationship between force and torque

How do we calculate the amount of torque produced by a given
force? Since it depends on leverage, we should expect it to depend
on the distance between the axis and the point of application of
the force. We’ll derive an equation relating torque to force for a
particular very simple situation, and state without proof that the
equation actually applies to all situations.

To try to pin down this relationship more precisely, let’s imagine
hitting a tetherball, figure r. The boy applies a force F' to the ball
for a short time At, accelerating the ball from rest to a velocity wv.
Since force is the rate of transfer of momentum, we have

mAv

F= .
At

Since the initial velocity is zero, Av is the same as the final velocity
v. Multiplying both sides by r gives

muvur

Fr = T
"I AL

But mur is simply the amount of angular momentum he’s given the
ball, so mvr/At also equals the amount of torque he applied. The
result of this example is

T=Fr.

Figure r was drawn so that the force F' was in the direction
tangent to the circle, i.e., perpendicular to the radius r. If the boy
had applied a force parallel to the radius line, either directly inward
or outward, then the ball would not have picked up any clockwise
or counterclockwise angular momentum.

If a force acts at an angle other than 0 or 90°with respect to the
line joining the object and the axis, it would be only the component
of the force perpendicular to the line that would produce a torque,

T=Fr

Although this result was proved under a simplified set of circum-
stances, it is more generally valid:

relationship between force and torque
The rate at which a force transfers angular momentum to an
object, i.e., the torque produced by the force, is given by

7| = rlFL],

where 7 is the distance from the axis to the point of applica-
tion of the force, and F'; is the component of the force that
is perpendicular to the line joining the axis to the point of
application.
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The equation is stated with absolute value signs because the
positive and negative signs of force and torque indicate different
things, so there is no useful relationship between them. The sign
of the torque must be found by physical inspection of the case at
hand.

From the equation, we see that the units of torque can be writ-
ten as newtons multiplied by meters. Metric torque wrenches are
calibrated in N-m, but American ones use foot-pounds, which is also
a unit of distance multiplied by a unit of force. We know from our
study of mechanical work that newtons multiplied by meters equal
joules, but torque is a completely different quantity from work, and
nobody writes torques with units of joules, even though it would be
technically correct.

self-check A
Compare the magnitudes and signs of the four torques shown in the
figure. > Answer, p. 567

@ N
1) 3] (3)

How torque depends on the direction of the force example 9
> How can the torque applied to the wrench in the figure be ex-
pressed in terms of r, |F|, and the angle 6 between these two
vectors?

> The force vector and its £, component form the hypotenuse
and one leg of a right triangle,

and the interior angle opposite to F| equals 0. The absolute value
of F, can thus be expressed as

F, =|F|sin®,

leading to

|t| = r|F|sin 6. t/ The quantity r, .
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Sometimes torque can be more neatly visualized in terms of the
quantity r, shown in figure t, which gives us a third way of express-
ing the relationship between torque and force:

7| = r.i[F].

Of course you would not want to go and memorize all three
equations for torque. Starting from any one of them you could easily
derive the other two using trigonometry. Familiarizing yourself with
them can however clue you in to easier avenues of attack on certain
problems.

The torque due to gravity

Up until now we’ve been thinking in terms of a force that acts
at a single point on an object, such as the force of your hand on the
wrench. This is of course an approximation, and for an extremely
realistic calculation of your hand’s torque on the wrench you might
need to add up the torques exerted by each square millimeter where
your skin touches the wrench. This is seldom necessary. But in
the case of a gravitational force, there is never any single point at
which the force is applied. Our planet is exerting a separate tug on
every brick in the Leaning Tower of Pisa, and the total gravitational
torque on the tower is the sum of the torques contributed by all the
little forces. Luckily there is a trick that allows us to avoid such
a massive calculation. It turns out that for purposes of computing
the total gravitational torque on an object, you can get the right
answer by just pretending that the whole gravitational force acts at
the object’s center of mass.

Gravitational torque on an outstretched arm example 10
> Your arm has a mass of 3.0 kg, and its center of mass is 30
cm from your shoulder. What is the gravitational torque on your
arm when it is stretched out horizontally to one side, taking the
shoulder to be the axis?

> The total gravitational force acting on your arm is
|F| = (3.0 kg)(9.8 m/s?) = 29 N.

For the purpose of calculating the gravitational torque, we can
treat the force as if it acted at the arm’s center of mass. The force
is straight down, which is perpendicular to the line connecting the
shoulder to the center of mass, so

FL=|F|=29N.

Continuing to pretend that the force acts at the center of the arm,
r equals 30 cm = 0.30 m, so the torque is

t=rF; =9N-m.
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Cow tipping example 11
In 2005, Dr. Margo Lillie and her graduate student Tracy Boech-
ler published a study claiming to debunk cow tipping. Their claim
was based on an analysis of the torques that would be required
to tip a cow, which showed that one person wouldn’t be able to
make enough torque to do it. A lively discussion ensued on the
popular web site slashdot.org (“news for nerds, stuff that mat-
ters”) concerning the validity of the study. Personally, | had al-
ways assumed that cow-tipping was a group sport anyway, but as
a physicist, | also had some quibbles with their calculation. Here’s
my own analysis.

There are three forces on the cow: the force of gravity Fy,, the
ground’s normal force Fy, and the tippers’ force F .

As soon as the cow’s left hooves (on the right from our point of
view) break contact with the ground, the ground’s force is being
applied only to hooves on the other side. We don’t know the
ground’s force, and we don’t want to find it. Therefore we take
the axis to be at its point of application, so that its torque is zero.

For the purpose of computing torques, we can pretend that gravity
acts at the cow’s center of mass, which I've placed a little lower
than the center of its torso, since its legs and head also have
some mass, and the legs are more massive than the head and
stick out farther, so they lower the c.m. more than the head raises
it. The angle 0, between the vertical gravitational force and the
line ryy is about 14°. (An estimate by Matt Semke at the University
of Nebraska-Lincoln gives 20°, which is in the same ballpark.)

To generate the maximum possible torque with the least possible v/ Example 11.
force, the tippers want to push at a point as far as possible from

the axis, which will be the shoulder on the other side, and they

want to push at a 90 degree angle with respect to the radius line

ra.

When the tippers are just barely applying enough force to raise
the cow’s hooves on one side, the total torque has to be just
slightly more than zero. (In reality, they want to push a lot harder
than this — hard enough to impart a lot of angular momentum to
the cow fair in a short time, before it gets mad and hurts them.
We’'re just trying to calculate the bare minimum force they can
possibly use, which is the question that science can answer.) Set-
ting the total torque equal to zero,

TN +Tw +T4 =0,
and letting counterclockwise torques be positive, we have

0 — mgrysinOy + Farasin90° =0
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Discussion question B.

Fa= r—ng sinOy
ra
~ 11—5(680 kg)(9.8 m/s?) sin 14°

= 1100 N.

The 680 kg figure for the typical mass of a cow is due to Lillie
and Boechler, who are veterinarians, so | assume it’s fairly accu-
rate. My estimate of 1100 N comes out significantly lower than
their 1400 N figure, mainly because their incorrect placement of
the center of mass gives By = 24°. | don’t think 1100 N is an
impossible amount of force to require of one big, strong person
(i's equivalent to lifting about 110 kg, or 240 pounds), but given
that the tippers need to impart a large angular momentum fairly
quickly, it's probably true that several people would be required.

The main practical issue with cow tipping is that cows generally
sleep lying down. Falling on its side can also seriously injure a
COW.

Discussion questions

A This series of discussion questions deals with past students’ incorrect
reasoning about the following problem.

Suppose a comet is at the point in its orbit shown in the figure. The
only force on the comet is the sun’s gravitational force.

comet

Throughout the question, define all torques and angular momenta
using the sun as the axis.

(1) Is the sun producing a nonzero torque on the comet? Explain.
(2) Is the comet’s angular momentum increasing, decreasing, or
staying the same? Explain.

Explain what is wrong with the following answers. In some cases, the an-
swer is correct, but the reasoning leading up to it is wrong. (a) Incorrect
answer to part (1): “Yes, because the sun is exerting a force on the comet,
and the comet is a certain distance from the sun.”

(b) Incorrect answer to part (1): “No, because the torques cancel out.”

(c) Incorrect answer to part (2): “Increasing, because the comet is speed-

ing up.”

B  Which claw hammer would make it easier to get the nail out of the
wood if the same force was applied in the same direction?

C  You whirl a rock over your head on the end of a string, and gradually
pull in the string, eventually cutting the radius in half. What happens to
the rock’s angular momentum? What changes occur in its speed, the time
required for one revolution, and its acceleration? Why might the string
break?

D A helicopter has, in addition to the huge fan blades on top, a smaller
propeller mounted on the tail that rotates in a vertical plane. Why?
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E The photo shows an amusement park ride whose two cars rotate in
opposite directions. Why is this a good design?

Discussion question E.
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w / The windmills are not closed
systems, but angular momentum
is being transferred out of them
at the same rate it is transferred
in, resulting in constant angular
momentum. To get an idea of
the huge scale of the modern
windmill farm, note the sizes of
the trucks and trailers.

15.5 Statics
Equilibrium

There are many cases where a system is not closed but maintains
constant angular momentum. When a merry-go-round is running at
constant angular momentum, the engine’s torque is being canceled
by the torque due to friction.

When an object has constant momentum and constant angular
momentum, we say that it is in equilibrium. This is a scientific
redefinition of the common English word, since in ordinary speech
nobody would describe a car spinning out on an icy road as being
in equilibrium.

Very commonly, however, we are interested in cases where an ob-
ject is not only in equilibrium but also at rest, and this corresponds
more closely to the usual meaning of the word. Trees and bridges
have been designed by evolution and engineers to stay at rest, and
to do so they must have not just zero total force acting on them but
zero total torque. It is not enough that they don’t fall down, they
also must not tip over. Statics is the branch of physics concerned
with problems such as these.

Solving statics problems is now simply a matter of applying and
combining some things you already know:

e You know the behaviors of the various types of forces, for
example that a frictional force is always parallel to the surface
of contact.

¢ You know about vector addition of forces. It is the vector sum
of the forces that must equal zero to produce equilibrium.

e You know about torque. The total torque acting on an object
must be zero if it is to be in equilibrium.

e You know that the choice of axis is arbitrary, so you can make
a choice of axis that makes the problem easy to solve.

In general, this type of problem could involve four equations in four
unknowns: three equations that say the force components add up
to zero, and one equation that says the total torque is zero. Most
cases you’ll encounter will not be this complicated. In the following
example, only the equation for zero total torque is required in order
to get an answer.
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Art! example 12
> The abstract sculpture shown in figure x contains a cube of
mass m and sides of length b. The cube rests on top of a cylinder,
which is off-center by a distance a. Find the tension in the cable.

> There are four forces on the cube: a gravitational force mg, the
force Fr from the cable, the upward normal force from the cylin-
der, Fy, and the horizontal static frictional force from the cylinder,
Fs.

The total force on the cube in the vertical direction is zero:
Fn —mg =0.

As our axis for defining torques, let's choose the center of the
cube. The cable’s torque is counterclockwise, the torque due to
Fy clockwise. Letting counterclockwise torques be positive, and
using the convenient equation Tt = r; F, we find the equation for
the total torque:
bFT — aFN =0.

We could also write down the equation saying that the total hori-
zontal force is zero, but that would bring in the cylinder’s frictional
force on the cube, which we don’t know and don’t need to find. We
already have two equations in the two unknowns Fr and Fy, so
there’s no need to make it into three equations in three unknowns.
Solving the first equation for Fy = mg, we then substitute into the
second equation to eliminate Fy, and solve for Fr = (a/b)mg.

As a check, our result makes sense when a = 0; the cube is
balanced on the cylinder, so the cable goes slack.

A flagpole example 13
> A 10-kg flagpole is being held up by a lightweight horizontal
cable, and is propped against the foot of a wall as shown in the
figure. If the cable is only capable of supporting a tension of 70
N, how great can the angle « be without breaking the cable?

> All three objects in the figure are supposed to be in equilibrium:
the pole, the cable, and the wall. Whichever of the three objects
we pick to investigate, all the forces and torques on it have to
cancel out. It is not particularly helpful to analyze the forces and
torques on the wall, since it has forces on it from the ground that
are not given and that we don’t want to find. We could study the
forces and torques on the cable, but that doesn’t let us use the
given information about the pole. The object we need to analyze
is the pole.

The pole has three forces on it, each of which may also result in
a torque: (1) the gravitational force, (2) the cable’s force, and (3)
the wall’s force.

We are free to define an axis of rotation at any point we wish, and
it is helpful to define it to lie at the bottom end of the pole, since

A

\/
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x / Example 12.
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y / Example 13.
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by that definition the wall’s force on the pole is applied at r = 0
and thus makes no torque on the pole. This is good, because we
don’t know what the wall’s force on the pole is, and we are not
trying to find it.

With this choice of axis, there are two nonzero torques on the
pole, a counterclockwise torque from the cable and a clockwise
torque from gravity. Choosing to represent counterclockwise torques
as positive numbers, and using the equation |t| = r|F|sin6, we
have

Icable| Feabie| SN Ocapie — rgrav|Fgrav| sin Ogray = 0.

A little geometry gives Ogpje = 90° — « and Ogray = &, SO

rcab/e‘Fcab[e’ Sln(goo - (X) - rgrav‘Fgrav| Sln X = 0

The gravitational force can be considered as acting at the pole’s
center of mass, i.e., at its geometrical center, SO rogpre IS twice
rgrav, @and we can simplify the equation to read

Z‘Fcable| Sin(goo - (X) - |Fgrav’ sino = 0.

These are all quantities we were given, except for «, which is the
angle we want to find. To solve for « we need to use the trig
identity sin(90° — x) = cos x,

Z‘Fcable|COSfX— |Fgrav|3in(x= 0,

which allows us to find

tano =2 |Fcable‘

B ‘Fgrav‘

o= tan—1 <2 ‘Fcab/e’>
’Fgrav‘

70N
=tan~’ (2 X 92[\1)

= 55°.
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Stable and unstable equilibria

A pencil balanced upright on its tip could theoretically be in
equilibrium, but even if it was initially perfectly balanced, it would
topple in response to the first air current or vibration from a pass-
ing truck. The pencil can be put in equilibrium, but not in stable
equilibrium. The things around us that we really do see staying still
are all in stable equilibrium.

Why is one equilibrium stable and another unstable? Try push-
ing your own nose to the left or the right. If you push it a millimeter
to the left, your head responds with a gentle force to the right, which
keeps your nose from flying off of your face. If you push your nose a
centimeter to the left, your face’s force on your nose becomes much
stronger. The defining characteristic of a stable equilibrium is that
the farther the object is moved away from equilibrium, the stronger
the force is that tries to bring it back.

The opposite is true for an unstable equilibrium. In the top
figure, the ball resting on the round hill theoretically has zero total
force on it when it is exactly at the top. But in reality the total
force will not be exactly zero, and the ball will begin to move off to
one side. Once it has moved, the net force on the ball is greater than
it was, and it accelerates more rapidly. In an unstable equilibrium,
the farther the object gets from equilibrium, the stronger the force
that pushes it farther from equilibrium.

This idea can be rephrased in terms of energy. The difference
between the stable and unstable equilibria shown in figure z is that
in the stable equilibrium, the potential energy is at a minimum, and
moving to either side of equilibrium will increase it, whereas the
unstable equilibrium represents a maximum.

Note that we are using the term “stable” in a weaker sense than
in ordinary speech. A domino standing upright is stable in the sense
we are using, since it will not spontaneously fall over in response to
a sneeze from across the room or the vibration from a passing truck.
We would only call it unstable in the technical sense if it could be
toppled by any force, no matter how small. In everyday usage, of
course, it would be considered unstable, since the force required to
topple it is so small.

An application of calculus example 14
> Nancy Neutron is living in a uranium nucleus that is undergoing
fission. Nancy’s potential energy as a function of position can be
approximated by PE = x* — x2, where all the units and numeri-
cal constants have been suppressed for simplicity. Use calculus
to locate the equilibrium points, and determine whether they are
stable or unstable.

> The equilibrium points occur where the PE is at a minimum or
maximum, and minima and maxima occur where the derivative

unstable

. stable '

z/Stable and unstable equi-

libria.

aa/The dancer’s

equilibrium

is unstable. If she didn’t con-
stantly make tiny adjustments,

she would tip over.

ab / Example 14.
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load's
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ac / The biceps muscle flexes the

arm.

muscle's
force

ad/ The
arm.
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axis
(elbow
joint)

triceps extends

the

(which equals minus the force on Nancy) is zero. This deriva-
tive is dPE/ dx = 4x3 — 2x, and setting it equal to zero, we have
x = 0,41/v/2. Minima occur where the second derivative is pos-
itive, and maxima where it is negative. The second derivative
is 12x2 — 2, which is negative at x = 0 (unstable) and positive at
x = 4+1/+/2 (stable). Interpretation: the graph of the PE is shaped
like a rounded letter ‘W, with the two troughs representing the two
halves of the splitting nucleus. Nancy is going to have to decide
which half she wants to go with.

15.6 Simple Machines: the lever

Although we have discussed some simple machines such as the pul-
ley, without the concept of torque we were not yet ready to ad-
dress the lever, which is the machine nature used in designing living
things, almost to the exclusion of all others. (We can speculate what
life on our planet might have been like if living things had evolved
wheels, gears, pulleys, and screws.) The figures show two examples
of levers within your arm. Different muscles are used to flex and
extend the arm, because muscles work only by contraction.

Analyzing example ac physically, there are two forces that do
work. When we lift a load with our biceps muscle, the muscle does
positive work, because it brings the bone in the forearm in the direc-
tion it is moving. The load’s force on the arm does negative work,
because the arm moves in the direction opposite to the load’s force.
This makes sense, because we expect our arm to do positive work on
the load, so the load must do an equal amount of negative work on
the arm. (If the biceps was lowering a load, the signs of the works
would be reversed. Any muscle is capable of doing either positive
or negative work.)

There is also a third force on the forearm: the force of the upper
arm’s bone exerted on the forearm at the elbow joint (not shown
with an arrow in the figure). This force does no work, because the
elbow joint is not moving.

Because the elbow joint is motionless, it is natural to define our
torques using the joint as the axis. The situation now becomes
quite simple, because the upper arm bone’s force exerted at the
elbow neither does work nor creates a torque. We can ignore it
completely. In any lever there is such a point, called the fulcrum.

If we restrict ourselves to the case in which the forearm rotates
with constant angular momentum, then we know that the total
torque on the forearm is zero,

Tmuscle T Tload = 0.

If we choose to represent counterclockwise torques as positive, then
the muscle’s torque is positive, and the load’s is negative. In terms
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of their absolute values,

’Tmuscle‘ = ‘Tload ’ .

Assuming for simplicity that both forces act at angles of 90°with
respect to the lines connecting the axis to the points at which they
act, the absolute values of the torques are

Tmuscle Fmuscle = Tload Farm,

where rmuscle, the distance from the elbow joint to the biceps’ point
of insertion on the forearm, is only a few cm, while 75,4 might be 30
cm or so. The force exerted by the muscle must therefore be about
ten times the force exerted by the load. We thus see that this lever
is a force reducer. In general, a lever may be used either to increase
or to reduce a force.

Why did our arms evolve so as to reduce force? In general,
your body is built for compactness and maximum speed of motion
rather than maximum force. This is the main anatomical difference
between us and the Neanderthals (their brains covered the same
range of sizes as those of modern humans), and it seems to have
worked for us.

As with all machines, the lever is incapable of changing the
amount of mechanical work we can do. A lever that increases force
will always reduce motion, and vice versa, leaving the amount of
work unchanged.

It is worth noting how simple and yet how powerful this analysis
was. It was simple because we were well prepared with the concepts
of torque and mechanical work. In anatomy textbooks, whose read-
ers are assumed not to know physics, there is usually a long and
complicated discussion of the different types of levers. For example,
the biceps lever, ac, would be classified as a class III lever, since it
has the fulcrum and load on the ends and the muscle’s force acting
in the middle. The triceps, ad, is called a class I lever, because the
load and muscle’s force are on the ends and the fulcrum is in the
middle. How tiresome! With a firm grasp of the concept of torque,
we realize that all such examples can be analyzed in much the same
way. Physics is at its best when it lets us understand many appar-
ently complicated phenomena in terms of a few simple yet powerful
concepts.
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ae/ The r — ¢ representation of
acurve.

af / Proof that the two angles
labeled ¢ are in fact equal: The
definition of an ellipse is that the
sum of the distances from the two
foci stays constant. If we move a
small distance ¢ along the ellipse,
then one distance shrinks by an
amount £cos @1, while the other
grows by fcos . These are
equal, so @1 = @a.

15.7 * Proof of Kepler’s elliptical orbit law

Kepler determined purely empirically that the planets’ orbits were
ellipses, without understanding the underlying reason in terms of
physical law. Newton’s proof of this fact based on his laws of motion
and law of gravity was considered his crowning achievement both
by him and by his contemporaries, because it showed that the same
physical laws could be used to analyze both the heavens and the
earth. Newton’s proof was very lengthy, but by applying the more
recent concepts of conservation of energy and angular momentum
we can carry out the proof quite simply and succinctly, and without
calculus.

The basic idea of the proof is that we want to describe the shape
of the planet’s orbit with an equation, and then show that this equa-
tion is exactly the one that represents an ellipse. Newton’s original
proof had to be very complicated because it was based directly on
his laws of motion, which include time as a variable. To make any
statement about the shape of the orbit, he had to eliminate time
from his equations, leaving only space variables. But conservation
laws tell us that certain things don’t change over time, so they have
already had time eliminated from them.

There are many ways of representing a curve by an equation, of
which the most familiar is y = ax 4+ b for a line in two dimensions.
It would be perfectly possible to describe a planet’s orbit using an
x — y equation like this, but remember that we are applying con-
servation of angular momentum, and the space variables that occur
in the equation for angular momentum are the distance from the
axis, 7, and the angle between the velocity vector and the r vector,
which we will call . The planet will have p=90°when it is moving
perpendicular to the r vector, i.e., at the moments when it is at its
smallest or greatest distances from the sun. When ¢ is less than
90°the planet is approaching the sun, and when it is greater than
90°it is receding from it. Describing a curve with an r — ¢ equation
is like telling a driver in a parking lot a certain rule for what direc-
tion to steer based on the distance from a certain streetlight in the
middle of the lot.

The proof is broken into the three parts for easier digestion.
The first part is a simple and intuitively reasonable geometrical fact
about ellipses, whose proof we relegate to the caption of figure af;
you will not be missing much if you merely absorb the result without
reading the proof.

(1) If we use one of the two foci of an ellipse as an axis for
defining the variables r and ¢, then the angle between the tangent
line and the line drawn to the other focus is the same as ¢, i.e., the
two angles labeled ¢ in figure af are in fact equal.

The other two parts form the meat of our proof. We state the
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results first and then prove them.

(2) A planet, moving under the influence of the sun’s gravity
with less than the energy required to escape, obeys an equation of

the form
1

=pr2 +qr’
where p and ¢ are positive constants that depend on the planet’s
energy and angular momentum.

sinp =

(3) A curve is an ellipse if and only if its r — ¢ equation is of the
form

1

where p and ¢ are positive constants that depend on the size and
shape of the ellipse.

sinp =

Proof of part (2)

The component of the planet’s velocity vector that is perpen-
dicular to the r vector is v; = wsin ¢, so conservation of angular
momentum tells us that L = mrovsinp is a constant. Since the
planet’s mass is a constant, this is the same as the condition

70 sin ¢ = constant.

Conservation of energy gives

1 5 GMm
§mv — —— = constant.
r

We solve the first equation for v and plug into the second equation
to eliminate v. Straightforward algebra then leads to the equation
claimed above, with the constant p being positive because of our
assumption that the planet’s energy is insufficient to escape from
the sun, i.e., its total energy is negative.

Proof of part (3)

We define the quantities «, d, and s as shown in the figure. The
law of cosines gives

d?> = r® + s> — 2rscosa.

Using a = 180° —2¢ and the trigonometric identities cos(180° —xz) =
—cosx and cos 2z = 1 — 2sin® x, we can rewrite this as

d* =r* 4 5% — 2rs (2sin2<p— 1).

ag / Proof of part (3).

Straightforward algebra transforms this into
) (r+s)2—d?
sin p =14/ ————.

4rs

Since r + s is constant, the top of the fraction is constant, and the
denominator can be rewritten as 4rs = 4r(constant — r), which is
equivalent to the desired form.
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Summary

Selected vocabulary

angular momen- a measure of rotational motion; a conserved

tum ... ... quantity for a closed system

axis . ... .. .. An arbitrarily chosen point used in the defini-
tion of angular momentum. Any object whose
direction changes relative to the axis is consid-
ered to have angular momentum. No matter
what axis is chosen, the angular momentum of
a closed system is conserved.

torque ... ... the rate of change of angular momentum; a
numerical measure of a force’s ability to twist
on an object

equilibrium . .. a state in which an object’s momentum and
angular momentum are constant

stable equilibrium one in which a force always acts to bring the
object back to a certain point

unstable equilib- one in which any deviation of the object from

rium. ....... its equilibrium position results in a force push-
ing it even farther away

Notation
L.......... angular momentum
.o torque
T ... ... the time required for a rigidly rotating body

to complete one rotation

Other terminology and notation

period. . ... .. a name for the variable T defined above
moment of iner- the proportionality constant in the equation
tia, I . ... ... L=2xI/T

Summary

Angular momentum is a measure of rotational motion which is
conserved for a closed system. This book only discusses angular
momentum for rotation of material objects in two dimensions. Not
all rotation is rigid like that of a wheel or a spinning top. An example
of nonrigid rotation is a cyclone, in which the inner parts take less
time to complete a revolution than the outer parts. In order to define
a measure of rotational motion general enough to include nonrigid
rotation, we define the angular momentum of a system by dividing
it up into small parts, and adding up all the angular momenta of
the small parts, which we think of as tiny particles. We arbitrarily
choose some point in space, the axis, and we say that anything
that changes its direction relative to that point possesses angular
momentum. The angular momentum of a single particle is

L=muv,r,

where v is the component of its velocity perpendicular to the line
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joining it to the axis, and r is its distance from the axis. Positive and
negative signs of angular momentum are used to indicate clockwise
and counterclockwise rotation.

The choice of axis theorem states that any axis may be used for
defining angular momentum. If a system’s angular momentum is
constant for one choice of axis, then it is also constant for any other
choice of axis.

The spin theorem states that an object’s angular momentum
with respect to some outside axis A can be found by adding up two
parts:

(1) The first part is the object’s angular momentum found by
using its own center of mass as the axis, i.e., the angular momentum
the object has because it is spinning.

(2) The other part equals the angular momentum that the ob-
ject would have with respect to the axis A if it had all its mass
concentrated at and moving with its center of mass.

Torque is the rate of change of angular momentum. The torque
a force can produce is a measure of its ability to twist on an object.
The relationship between force and torque is

|T| = T|FJ_|7

where r is the distance from the axis to the point where the force is
applied, and F'| is the component of the force perpendicular to the
line connecting the axis to the point of application. Statics problems
can be solved by setting the total force and total torque on an object
equal to zero and solving for the unknowns.

Summary
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Problems
Key

v A computerized answer check is available online.
[ A problem that requires calculus.
* A difficult problem.

1 You are trying to loosen a stuck bolt on your RV using a big
wrench that is 50 cm long. If you hang from the wrench, and your
mass is 55 kg, what is the maximum torque you can exert on the
bolt? v

2 A physical therapist wants her patient to rehabilitate his in-
jured elbow by laying his arm flat on a table, and then lifting a 2.1
kg mass by bending his elbow. In this situation, the weight is 33
cm from his elbow. He calls her back, complaining that it hurts him
to grasp the weight. He asks if he can strap a bigger weight onto
his arm, only 17 c¢cm from his elbow. How much mass should she
tell him to use so that he will be exerting the same torque? (He is
raising his forearm itself, as well as the weight.) v

3 An object thrown straight up in the air is momentarily at rest
when it reaches the top of its motion. Does that mean that it is in
equilibrium at that point? Explain.

4 An object is observed to have constant angular momentum.
Can you conclude that no torques are acting on it? Explain. [Based
on a problem by Serway and Faughn.]

5 A person of weight W stands on the ball of one foot. Find
the tension in the calf muscle and the force exerted by the shinbones
on the bones of the foot, in terms of W,a, and b. For simplicity,
assume that all the forces are at 90-degree angles to the foot, i.e.,
neglect the angle between the foot and the floor. v

6 Two objects have the same momentum vector. Assume that
they are not spinning; they only have angular momentum due to
their motion through space. Can you conclude that their angular
momenta are the same? Explain. [Based on a problem by Serway
and Faughn.|
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7 The sun turns on its axis once every 26.0 days. Its mass is
2.0 x 10%° kg and its radius is 7.0 x 10® m. Assume it is a rigid
sphere of uniform density.

(a) What is the sun’s angular momentum? v
In a few billion years, astrophysicists predict that the sun will use
up all its sources of nuclear energy, and will collapse into a ball of
exotic, dense matter known as a white dwarf. Assume that its radius
becomes 5.8 x 105 m (similar to the size of the Earth.) Assume it
does not lose any mass between now and then. (Don’t be fooled
by the photo, which makes it look like nearly all of the star was
thrown off by the explosion. The visually prominent gas cloud is
actually thinner than the best laboratory vacuum ever produced on
earth. Certainly a little bit of mass is actually lost, but it is not at
all unreasonable to make an approximation of zero loss of mass as
we are doing.)

(b) What will its angular momentum be?

(c) How long will it take to turn once on its axis? v

8 A uniform ladder of mass m and length L leans against a
smooth wall, making an angle 6 with respect to the ground. The dirt
exerts a normal force and a frictional force on the ladder, producing
a force vector with magnitude F} at an angle ¢ with respect to the
ground. Since the wall is smooth, it exerts only a normal force on
the ladder; let its magnitude be Fb.

(a) Explain why ¢ must be greater than 6. No math is needed.

(b) Choose any numerical values you like for m and L, and show
that the ladder can be in equilibrium (zero torque and zero total
force vector) for § = 45.00° and ¢ = 63.43°.

9 Continuing problem 8, find an equation for ¢ in terms of 0,
and show that m and L do not enter into the equation. Do not
assume any numerical values for any of the variables. You will need
the trig identity sin(a — b) = sina cosb —sinbcosa. (As a numerical
check on your result, you may wish to check that the angles given
in part b of the previous problem satisfy your equation.) vVoox

10 (a) Find the minimum horizontal force which, applied at
the axle, will pull a wheel over a step. Invent algebra symbols for
whatever quantities you find to be relevant, and give your answer
in symbolic form. [Hints: There are four forces on the wheel at
first, but only three when it lifts off. Normal forces are always
perpendicular to the surface of contact. Note that the corner of the
step cannot be perfectly sharp, so the surface of contact for this
force really coincides with the surface of the wheel.]

(b) Under what circumstances does your result become infinite?
Give a physical interpretation.

Problem 7.

Problems 8 and 9.

Problem 10.
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11 A yo-yo of total mass m consists of two solid cylinders
of radius R, connected by a small spindle of negligible mass and
radius r. The top of the string is held motionless while the string
unrolls from the spindle. Show that the acceleration of the yo-yo
is g/(1 + R?/2r?). [Hint: The acceleration and the tension in the
string are unknown. Use 7 = AL/At and F = ma to determine
these two unknowns.] *

12 A ball is connected by a string to a vertical post. The ball is
set in horizontal motion so that it starts winding the string around
the post. Assume that the motion is confined to a horizontal plane,
i.e., ignore gravity. Michelle and Astrid are trying to predict the
final velocity of the ball when it reaches the post. Michelle says
that according to conservation of angular momentum, the ball has
to speed up as it approaches the post. Astrid says that according to
conservation of energy, the ball has to keep a constant speed. Who
is right? [Hint: How is this different from the case where you whirl
a rock in a circle on a string and gradually reel in the string?]

13 In the 1950’s, serious articles began appearing in magazines
like Life predicting that world domination would be achieved by the
nation that could put nuclear bombs in orbiting space stations, from
which they could be dropped at will. In fact it can be quite difficult
to get an orbiting object to come down. Let the object have energy
E = KE + PE and angular momentum L. Assume that the energy
is negative, i.e., the object is moving at less than escape velocity.
Show that it can never reach a radius less than

~ GMm 2F 2
rmin = 5 \ TPV Gaps |-

[Note that both factors are negative, giving a positive result.]
14 [Problem 14 has been deleted.]
15 [Problem 15 has been deleted.] *

16 Two bars of length L are connected with a hinge and placed
on a frictionless cylinder of radius . (a) Show that the angle # shown
in the figure is related to the unitless ratio /L by the equation

Problem 16. 7 cos’f
L 2tan®’
- (b) Discuss the physical behavior of this equation for very large and
P very small values of r/L. *
b 1l values of /L

17 You wish to determine the mass of a ship in a bottle without
taking it out. Show that this can be done with the setup shown in
the figure, with a scale supporting the bottle at one end, provided
Problem 17. that it is possible to take readings with the ship slid to several

different locations. Note that you can’t determine the position of

426 Chapter 15  Conservation of Angular Momentum



the ship’s center of mass just by looking at it, and likewise for the
bottle. In particular, you can’t just say, “position the ship right on
top of the fulcrum” or “position it right on top of the balance.”

18 Two atoms will interact through electrical forces between
their protons and electrons. One fairly good approximation to the
potential energy is the Lennard-Jones formula,

peoy=k[(2)"-2(2)]

where r is the center-to-center distance between the atoms and £ is
a positive constant. Show that (a) there is an equilibrium point at
r=a,

(b) the equilibrium is stable, and

(c) the energy required to bring the atoms from their equilibrium
separation to infinity is k. > Hint, p. 547 [

19 Suppose that we lived in a universe in which Newton’s law
of gravity gave forces proportional to »~7 rather than »—2. Which,
if any, of Kepler’s laws would still be true? Which would be com-
pletely false? Which would be different, but in a way that could be
calculated with straightforward algebra?

20 The figure shows scale drawing of a pair of pliers being
used to crack a nut, with an appropriately reduced centimeter grid.
Warning: do not attempt this at home; it is bad manners. If the
force required to crack the nut is 300 N, estimate the force required
of the person’s hand. > Solution, p. 561

21  Show that a sphere of radius R that is rolling without slipping
has angular momentum and momentum in the ratio L/p = (2/5)R.

22 Suppose a bowling ball is initially thrown so that it has no
angular momentum at all, i.e., it is initially just sliding down the
lane. Eventually kinetic friction will get it spinning fast enough so
that it is rolling without slipping. Show that the final velocity of the
ball equals 5/7 of its initial velocity. [Hint: You’ll need the result of
problem 21.]

23 The rod in the figure is supported by the finger and the
string.

(a) Find the tension, T, in the string, and the force, F', from the
finger, in terms of m,b, L, and g. Vv
(b) Comment on the cases b =L and b = L/2.

(c) Are any values of b unphysical?

24 Two horizontal tree branches on the same tree have equal
diameters, but one branch is twice as long as the other. Give a
quantitative comparison of the torques where the branches join the
trunk. [Thanks to Bong Kang.]

I-:_I\‘

Problem 20.

| <
<

Problem 23.

Problems
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Problem 27.
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c————>
Problem 31.

25 (a) Alice says Cathy’s body has zero momentum, but Bob
says Cathy’s momentum is nonzero. Nobody is lying or making a
mistake. How is this possible? Give a concrete example.

(b) Alice and Bob agree that Dong’s body has nonzero momentum,
but disagree about Dong’s angular momentum, which Alice says is
zero, and Bob says is nonzero. Explain.

26 Penguins are playful animals. Tux the Penguin invents a new
game using a natural circular depression in the ice. He waddles at
top speed toward the crater, aiming off to the side, and then hops
into the air and lands on his belly just inside its lip. He then belly-
surfs, moving in a circle around the rim. The ice is frictionless, so
his speed is constant. Is Tux’s angular momentum zero, or nonzero?
What about the total torque acting on him? Take the center of the
crater to be the axis. Explain your answers.

27 Make a rough estimate of the mechanical advantage of the
lever shown in the figure. In other words, for a given amount of
force applied on the handle, how many times greater is the resulting
force on the cork?

28 In example 8 on page 405, prove that if the rod is sufficiently
thin, it can be toppled without scraping on the floor.
> Solution, p. 561 *

29 A massless rod of length ¢ has weights, each of mass m, at-
tached to its ends. The rod is initially put in a horizontal position,
and laid on an off-center fulcrum located at a distance b from the
rod’s center. The rod will topple. (a) Calculate the total gravita-
tional torque on the rod directly, by adding the two torques. (b)
Verify that this gives the same result as would have been obtained
by taking the entire gravitational force as acting at the center of
mass.

30 A skilled motorcyclist can ride up a ramp, fly through the
air, and land on another ramp. Why would it be useful for the rider
to speed up or slow down the back wheel while in the air?

31 (a) The bar of mass m is attached at the wall with a hinge,
and is supported on the right by a massless cable. Find the tension,
T, in the cable in terms of the angle 6. v
(b) Interpreting your answer to part a, what would be the best angle
to use if we wanted to minimize the strain on the cable?

(c¢) Again interpreting your answer to part a, for what angles does
the result misbehave mathematically? Interpet this physically.
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32 A disk starts from rest and rotates about a fixed axis, subject
to a constant torque. The work done by the torque during the first
revolution is W. What is the work done by the torque during the
second revolution? V' [problem by B. Shotwell]
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Exercise 15: Torque
Equipment:

e rulers with holes in them

e spring scales (two per group)

. .

While one person holds the pencil which forms the axle for the ruler, the other members of the
group pull on the scale and take readings. In each case, calculate the total torque on the ruler,

and find out whether it equals zero to roughly within the accuracy of the experiment. Finish
the calculations for each part before moving on to the next one.
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Chapter 16
Thermodynamics

This chapter is optional, and should probably be omitted from a two-

semester survey course. It can be covered at any time after chapter
13.

In a developing country like China, a refrigerator is the mark of
a family that has arrived in the middle class, and a car is the ulti-
mate symbol of wealth. Both of these are heat engines: devices for
converting between heat and other forms of energy. Unfortunately
for the Chinese, neither is a very efficient device. Burning fossil fuels
has made China’s big cities the most polluted on the planet, and
the country’s total energy supply isn’t sufficient to support Amer-
ican levels of energy consumption by more than a small fraction
of China’s population. Could we somehow manipulate energy in a
more efficient way?

Conservation of energy is a statement that the total amount of
energy is constant at all times, which encourages us to believe that
any energy transformation can be undone — indeed, the laws of
physics you’ve learned so far don’t even distinguish the past from
the future. If you get in a car and drive around the block, the
net effect is to consume some of the energy you paid for at the
gas station, using it to heat the neighborhood. There would not
seem to be any fundamental physical principle to prevent you from
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recapturing all that heat and using it again the next time you want
to go for a drive. More modestly, why don’t engineers design a car
engine so that it recaptures the heat energy that would otherwise
be wasted via the radiator and the exhaust?

Hard experience, however, has shown that designers of more and
more efficient engines run into a brick wall at a certain point. The
generators that the electric company uses to produce energy at an
oil-fueled plant are indeed much more efficient than a car engine, but
even if one is willing to accept a device that is very large, expensive,
and complex, it turns out to be impossible to make a perfectly effi-
cient heat engine — not just impossible with present-day technology,
but impossible due to a set of fundamental physical principles known
as the science of thermodynamics. And thermodynamics isn’t just a
pesky set of constraints on heat engines. Without thermodynamics,
there is no way to explain the direction of time’s arrow — why we
can remember the past but not the future, and why it’s easier to
break Humpty Dumpty than to put him back together again.

16.1 Pressure and temperature

When we heat an object, we speed up the mind-bogglingly complex
random motion of its molecules. One method for taming complexity
is the conservation laws, since they tell us that certain things must
remain constant regardless of what process is going on. Indeed,
the law of conservation of energy is also known as the first law of
thermodynamics.

But as alluded to in the introduction to this chapter, conserva-
tion of energy by itself is not powerful enough to explain certain
empirical facts about heat. A second way to sidestep the complex-
ity of heat is to ignore heat’s atomic nature and concentrate on
quantities like temperature and pressure that tell us about a sys-
tem’s properties as a whole. This approach is called macroscopic in
contrast to the microscopic method of attack. Pressure and temper-
ature were fairly well understood in the age of Newton and Galileo,
hundreds of years before there was any firm evidence that atoms
and molecules even existed.

Unlike the conserved quantities such as mass, energy, momen-
tum, and angular momentum, neither pressure nor temperature is
additive. Two cups of coffee have twice the heat energy of a single
cup, but they do not have twice the temperature. Likewise, the
painful pressure on your eardrums at the bottom of a pool is not
affected if you insert or remove a partition between the two halves
of the pool.

Pressure

We restrict ourselves to a discussion of pressure in fluids at rest
and in equilibrium. In physics, the term “fluid” is used to mean
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either a gas or a liquid. The important feature of a fluid can be
demonstrated by comparing with a cube of jello on a plate. The
jello is a solid. If you shake the plate from side to side, the jello will
respond by shearing, i.e., by slanting its sides, but it will tend to
spring back into its original shape. A solid can sustain shear forces,
but a fluid cannot. A fluid does not resist a change in shape unless
it involves a change in volume.

If you're at the bottom of a pool, you can’t relieve the pain in
your ears by turning your head. The water’s force on your eardrum
is always the same, and is always perpendicular to the surface where
the eardrum contacts the water. If your ear is on the east side of
your head, the water’s force is to the west. If you keep your head
in the same spot while turning around so your ear is on the north,
the force will still be the same in magnitude, and it will change
its direction so that it is still perpendicular to the eardrum: south.
This shows that pressure has no direction in space, i.e., it is a scalar.
The direction of the force is determined by the orientation of the
surface on which the pressure acts, not by the pressure itself. A
fluid flowing over a surface can also exert frictional forces, which
are parallel to the surface, but the present discussion is restricted
to fluids at rest.

Experiments also show that a fluid’s force on a surface is pro-
portional to the surface area. The vast force of the water behind
a dam, for example, in proportion to the dam’s great surface area.
(The bottom of the dam experiences a higher proportion of its force.)

Based on these experimental results, it appears that the useful
way to define pressure is as follows. The pressure of a fluid at a
given point is defined as F'| /A, where A is the area of a small surface
inserted in the fluid at that point, and F'| is the component of the
fluid’s force on the surface which is perpendicular to the surface.

This is essentially how a pressure gauge works. The reason that
the surface must be small is so that there will not be any significant
difference in pressure between one part of it and another part. The
SI units of pressure are evidently N/m?, and this combination can
be abbreviated as the pascal, 1 Pa=1 N/m?2. The pascal turns out
to be an inconveniently small unit, so car tires, for example, have
recommended pressures imprinted on them in units of kilopascals.

Pressure in U.S. units example 1
In U.S. units, the unit of force is the pound, and the unit of distance
is the inch. The unit of pressure is therefore pounds per square
inch, or p.s.i. (Note that the pound is not a unit of mass.)

Section 16.1

a/A simple pressure gauge
consists of a cylinder open at one
end, with a piston and a spring
inside. The depth to which the
spring is depressed is a measure
of the pressure. To determine the
absolute pressure, the air needs
to be pumped out of the interior of
the gauge, so that there is no air
pressure acting outward on the
piston. In many practical gauges,
the back of the piston is open to
the atmosphere, so the pressure
the gauge registers equals the
pressure of the fluid minus the
pressure of the atmosphere.
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Atmospheric pressure in U.S. and metric units example 2
> A figure that many people in the U.S. remember is that atmo-
spheric pressure is about 15 pounds per square inch. What is
this in metric units?

>

15lb 68N
1in2 ~ (0.0254 m)2
=1.0 x 10° N/m?

=100 kPa

Only pressure differences are normally significant.

If you spend enough time on an airplane, the pain in your ears
subsides. This is because your body has gradually been able to ad-
mit more air into the cavity behind the eardrum. Once the pressure
inside is equalized with the pressure outside, the inward and out-
ward forces on your eardrums cancel out, and there is no physical
sensation to tell you that anything unusual is going on. For this
reason, it is normally only pressure differences that have any phys-
ical significance. Thus deep-sea fish are perfectly healthy in their
habitat because their bodies have enough internal pressure to cancel
the pressure from the water in which they live; if they are caught in
a net and brought to the surface rapidly, they explode because their
internal pressure is so much greater than the low pressure outside.

Getting killed by a pool pump example 3
> My house has a pool, which | maintain myself. A pool always
needs to have its water circulated through a filter for several hours
a day in order to keep it clean. The filter is a large barrel with a
strong clamp that holds the top and bottom halves together. My
filter has a prominent warning label that warns me not to try to
open the clamps while the pump is on, and it shows a cartoon
of a person being struck by the top half of the pump. The cross-
sectional area of the filter barrel is 0.25 m2. Like most pressure
gauges, the one on my pool pump actually reads the difference in
pressure between the pressure inside the pump and atmospheric
pressure. The gauge reads 90 kPa. What is the force that is
trying to pop open the filter?

> If the gauge told us the absolute pressure of the water inside,
we’d have to find the force of the water pushing outward and the
force of the air pushing inward, and subtract in order to find the
total force. Since air surrounds us all the time, we would have to
do such a subtraction every time we wanted to calculate anything
useful based on the gauge’s reading. The manufacturers of the
gauge decided to save us from all this work by making it read the
difference in pressure between inside and outside, so all we have

Chapter 16 Thermodynamics



to do is multiply the gauge reading by the cross-sectional area of
the filter:

F=PA

= (90 x 10° N/m?)(0.25 m?)
= 22000 N

That’s a lot of force!

The word “suction” and other related words contain a hidden
misunderstanding related to this point about pressure differences.
When you suck water up through a straw, there is nothing in your
mouth that is attracting the water upward. The force that lifts the
water is from the pressure of the water in the cup. By creating a
partial vacuum in your mouth, you decreased the air’s downward
force on the water so that it no longer exactly canceled the upward
force.

Variation of pressure with depth

The pressure within a fluid in equilibrium can only depend on
depth, due to gravity. If the pressure could vary from side to side,
then a piece of the fluid in between, b, would be subject to unequal
forces from the parts of the fluid on its two sides. But fluids do not
exhibit shear forces, so there would be no other force that could keep
this piece of fluid from accelerating. This contradicts the assumption
that the fluid was in equilibrium.

self-check A

How does this proof fail for solids? > Answer, p. 568

To find the variation with depth, we consider the vertical forces
acting on a tiny, imaginary cube of the fluid having height Ay and
areas dA on the top and bottom. Using positive numbers for upward
forces, we have

PbottomAA - PtopAA — Fg = 0.

The weight of the fluid is F, = mg = pVg = p AAAy g, where p is
the density of the fluid, so the difference in pressure is

AP = —pgAy. [variation in pressure with depth for

a fluid of density p in equilibrium;

positive y is up.]

The factor of p explains why we notice the difference in pressure
when diving 3 m down in a pool, but not when going down 3 m
of stairs. Note also that the equation only tells us the difference in
pressure, not the absolute pressure. The pressure at the surface of
a swimming pool equals the atmospheric pressure, not zero, even
though the depth is zero at the surface. The blood in your body
does not even have an upper surface.

Section 16.1

b/ This doesn’t happen. If
pressure could vary horizontally
in equilibrium, the cube of water
would accelerate horizontally.
This is a contradiction, since
we assumed the fluid was in
equilibrium.

c/This does happen. The
sum of the forces from the
surrounding parts of the fluid is
upward, canceling the downward
force of gravity.

kil

d/The pressure is the same
at all the points marked with dots.
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e/We have to wait for the
thermometer to equilibrate its
temperature with the temperature
of Irene’s armpit.

Pressure of lava underneath a volcano example 4
> A volcano has just finished erupting, and a pool of molten lava
is lying at rest in the crater. The lava has come up through an
opening inside the volcano that connects to the earth’s molten
mantle. The density of the lava is 4.1 g/cm?3. What is the pressure
in the lava underneath the base of the volcano, 3000 m below the
surface of the pool?

>
AP = pgAy
= (4.1 g/cm®)(9.8 m/s?)(3000 m)
= (4.1 x 108 g/m®)(9.8 m/s%)(3000 m)
= (4.1 x 10% kg/m3)(9.8 m/s?)(3000 m)
=1.2 x 108 N/m?
=1.2x 10% Pa

This is the difference between the pressure we want to find and
atmospheric pressure at the surface. The latter, however, is tiny
compared to the AP we just calculated, so what we’ve found is
essentially the pressure, P.

Atmospheric pressure example 5
This example uses calculus.

Gases, unlike liquids, are quite compressible, and at a given tem-
perature, the density of a gas is approximately proportional to
the pressure. The proportionality constant is discussed in section
16.2, but for now let’s just call it k, p = kP. Using this fact, we can
find the variation of atmospheric pressure with altitude, assuming
constant temperature:

dP =—pgdy
dP = —-kPgdy
dP

-5 = kgdy

In P = —kgy + constant [integrating both sides]
P = (constant)e™9¥ [exponentiating both sides]
Pressure falls off exponentially with height. There is no sharp

cutoff to the atmosphere, but the exponential gets extremely small
by the time you're ten or a hundred miles up.

Temperature
Thermal equilibrium

We use the term temperature casually, but what is it exactly?
Roughly speaking, temperature is a measure of how concentrated
the heat energy is in an object. A large, massive object with very
little heat energy in it has a low temperature.

436 Chapter 16 Thermodynamics



But physics deals with operational definitions, i.e., definitions of
how to measure the thing in question. How do we measure temper-
ature? One common feature of all temperature-measuring devices
is that they must be left for a while in contact with the thing whose
temperature is being measured. When you take your temperature
with a fever thermometer, you wait for the mercury inside to come
up to the same temperature as your body. The thermometer ac-
tually tells you the temperature of its own working fluid (in this
case the mercury). In general, the idea of temperature depends on
the concept of thermal equilibrium. When you mix cold eggs from
the refrigerator with flour that has been at room temperature, they
rapidly reach a compromise temperature. What determines this
compromise temperature is conservation of energy, and the amount
of energy required to heat or cool each substance by one degree.
But without even having constructed a temperature scale, we can
see that the important point is the phenomenon of thermal equi-
librium itself: two objects left in contact will approach the same
temperature. We also assume that if object A is at the same tem-
perature as object B, and B is at the same temperature as C, then
A is at the same temperature as C. This statement is sometimes
known as the zeroth law of thermodynamics, so called because after
the first, second, and third laws had been developed, it was realized
that there was another law that was even more fundamental.

Thermal expansion

The familiar mercury thermometer operates on the principle that
the mercury, its working fluid, expands when heated and contracts
when cooled. In general, all substances expand and contract with
changes in temperature. The zeroth law of thermodynamics guar-
antees that we can construct a comparative scale of temperatures
that is independent of what type of thermometer we use. If a ther-
mometer gives a certain reading when it’s in thermal equilibrium
with object A, and also gives the same reading for object B, then
A and B must be the same temperature, regardless of the details of
how the thermometers works.

What about constructing a temperature scale in which every
degree represents an equal step in temperature? The Celsius scale
has 0 as the freezing point of water and 100 as its boiling point. The
hidden assumption behind all this is that since two points define a
line, any two thermometers that agree at two points must agree at
all other points. In reality if we calibrate a mercury thermometer
and an alcohol thermometer in this way, we will find that a graph
of one thermometer’s reading versus the other is not a perfectly
straight y = x line. The subtle inconsistency becomes a drastic one
when we try to extend the temperature scale through the points
where mercury and alcohol boil or freeze. Gases, however, are much
more consistent among themselves in their thermal expansion than

Section 16.1

f/ Thermal equilibrium  can
be prevented. Otters have a coat
of fur that traps air bubbles for in-
sulation. If a swimming otter was
in thermal equilibrium with cold
water, it would be dead. Heat is
still conducted from the otter’s
body to the water, but much
more slowly than it would be in a
warm-blooded animal that didn’t
have this special adaptation.

g/ A hot air balloon is inflated.
Because of thermal expansion,
the hot air is less dense than
the surrounding cold air, and
therefore floats as the cold air
drops underneath it and pushes it
up out of the way.
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open to
standard

pressure
noble gas

h/A simplified version of an
ideal gas thermometer. The
whole instrument is allowed to
come into thermal equilibrium
with the substance whose tem-
perature is to be measured, and
the mouth of the cylinder is left
open to standard pressure. The
volume of the noble gas gives an
indication of temperature.

volume (m 3)
=
N

.c’
()
.

N

-273 -200 -100
temperature (C)

i/ The volume of 1 kg of neon
gas as a function of temperature
(at standard pressure). Although
neon would actually condense
into a liquid at some point, extrap-
olating the graph to zero volume
gives the same temperature as
for any other gas: absolute zero.

solids or liquids, and the noble gases like helium and neon are more
consistent with each other than gases in general. Continuing to
search for consistency, we find that noble gases are more consistent
with each other when their pressure is very low.

As an idealization, we imagine a gas in which the atoms interact
only with the sides of the container, not with each other. Such a
gas is perfectly nonreactive (as the noble gases very nearly are), and
never condenses to a liquid (as the noble gases do only at extremely
low temperatures). Its atoms take up a negligible fraction of the
available volume. Any gas can be made to behave very much like
this if the pressure is extremely low, so that the atoms hardly ever
encounter each other. Such a gas is called an ideal gas, and we define
the Celsius scale in terms of the volume of the gas in a thermometer
whose working substance is an ideal gas maintained at a fixed (very
low) pressure, and which is calibrated at 0 and 100 degrees according
to the melting and boiling points of water. The Celsius scale is not
just a comparative scale but an additive one as well: every step in
temperature is equal, and it makes sense to say that the difference
in temperature between 18 and 28°C is the same as the difference
between 48 and 58.

Absolute zero and the kelvin scale

We find that if we extrapolate a graph of volume versus temper-
ature, the volume becomes zero at nearly the same temperature for
all gases: —273°C. Real gases will all condense into liquids at some
temperature above this, but an ideal gas would achieve zero vol-
ume at this temperature, known as absolute zero. The most useful
temperature scale in scientific work is one whose zero is defined by
absolute zero, rather than by some arbitrary standard like the melt-
ing point of water. The ideal temperature scale for scientific work,
called the Kelvin scale, is the same as the Celsius scale, but shifted
by 273 degrees to make its zero coincide with absolute zero. Scien-
tists use the Celsius scale only for comparisons or when a change
in temperature is all that is required for a calculation. Only on the
Kelvin scale does it make sense to discuss ratios of temperatures,
e.g., to say that one temperature is twice as hot as another.

Which temperature scale to use example 6
> You open an astronomy book and encounter the equation

(light emitted) = (constant) x T4
for the light emitted by a star as a function of its surface tempera-
ture. What temperature scale is implied?

> The equation tells us that doubling the temperature results in
the emission of 16 times as much light. Such a ratio only makes
sense if the Kelvin scale is used.
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16.2 Microscopic description of an ideal gas

Evidence for the kinetic theory

Why does matter have the thermal properties it does? The basic
answer must come from the fact that matter is made of atoms. How,
then, do the atoms give rise to the bulk properties we observe?
Gases, whose thermal properties are so simple, offer the best chance
for us to construct a simple connection between the microscopic and
macroscopic worlds.

A crucial observation is that although solids and liquids are
nearly incompressible, gases can be compressed, as when we in-
crease the amount of air in a car’s tire while hardly increasing its
volume at all. This makes us suspect that the atoms in a solid are
packed shoulder to shoulder, while a gas is mostly vacuum, with
large spaces between molecules. Most liquids and solids have den-
sities about 1000 times greater than most gases, so evidently each
molecule in a gas is separated from its nearest neighbors by a space
something like 10 times the size of the molecules themselves.

If gas molecules have nothing but empty space between them,
why don’t the molecules in the room around you just fall to the
floor? The only possible answer is that they are in rapid motion,
continually rebounding from the walls, floor and ceiling. In chapter
12, we have already seen some of the evidence for the kinetic theory
of heat, which states that heat is the kinetic energy of randomly
moving molecules. This theory was proposed by Daniel Bernoulli
in 1738, and met with considerable opposition, because there was
no precedent for this kind of perpetual motion. No rubber ball,
however elastic, rebounds from a wall with exactly as much energy
as it originally had, nor do we ever observe a collision between balls
in which none of the kinetic energy at all is converted to heat and
sound. The analogy is a false one, however. A rubber ball consists
of atoms, and when it is heated in a collision, the heat is a form
of motion of those atoms. An individual molecule, however, cannot
possess heat. Likewise sound is a form of bulk motion of molecules,
so colliding molecules in a gas cannot convert their kinetic energy to
sound. Molecules can indeed induce vibrations such as sound waves
when they strike the walls of a container, but the vibrations of the
walls are just as likely to impart energy to a gas molecule as to
take energy from it. Indeed, this kind of exchange of energy is the
mechanism by which the temperatures of the gas and its container
become equilibrated.

Pressure, volume, and temperature

A gas exerts pressure on the walls of its container, and in the
kinetic theory we interpret this apparently constant pressure as the
averaged-out result of vast numbers of collisions occurring every
second between the gas molecules and the walls. The empirical
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facts about gases can be summarized by the relation
PV « nT, [ideal gas]

which really only holds exactly for an ideal gas. Here n is the number
of molecules in the sample of gas.

Volume related to temperature example 7
The proportionality of volume to temperature at fixed pressure
was the basis for our definition of temperature.

Pressure related to temperature example 8
Pressure is proportional to temperature when volume is held con-
stant. An example is the increase in pressure in a car’s tires when
the car has been driven on the freeway for a while and the tires
and air have become hot.

We now connect these empirical facts to the kinetic theory of
a classical ideal gas. For simplicity, we assume that the gas is
monoatomic (i.e., each molecule has only one atom), and that it
is confined to a cubical box of volume V', with L being the length
of each edge and A the area of any wall. An atom whose velocity
has an & component v, will collide regularly with the left-hand wall,
traveling a distance 2L parallel to the x axis between collisions with
that wall. The time between collisions is At = 2L /v,, and in each
collision the x component of the atom’s momentum is reversed from
—mu, to mu,. The total force on the wall is

A A
F= Ap 2’311 + Ap :22 +... [monoatomic ideal gas],
where the indices 1, 2, ... refer to the individual atoms. Substituting

Apy i = 2mu,; and At; = 2L /v, ;, we have

2 2
muyy MU

F:
L L

+... [monoatomic ideal gas].

The quantity mvg ; is twice the contribution to the kinetic energy

from the part of the atom’s center of mass motion that is parallel to
the x axis. Since we're assuming a monoatomic gas, center of mass
motion is the only type of motion that gives rise to kinetic energy.
(A more complex molecule could rotate and vibrate as well.) If the
quantity inside the sum included the y and z components, it would
be twice the total kinetic energy of all the molecules. By symmetry,
it must therefore equal 2/3 of the total kinetic energy, so

_ 2I(-Etotal

F
3L

[monoatomic ideal gas].

Dividing by A and using AL =V, we have

_ 2I(Eltotal

P
3V

[monoatomic ideal gas].
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This can be connected to the empirical relation PV « nT if we
multiply by V on both sides and rewrite K Eiytq; as nK FEg,,, where
KFE,, is the average kinetic energy per molecule:

PV = ;TLK Euw [monoatomic ideal gas].

For the first time we have an interpretation for the temperature
based on a microscopic description of matter: in a monoatomic ideal
gas, the temperature is a measure of the average kinetic energy per
molecule. The proportionality between the two is K E,, = (3/2)kT,
where the constant of proportionality k, known as Boltzmann’s con-
stant, has a numerical value of 1.38 x 10723 J/K. In terms of Boltz-
mann’s constant, the relationship among the bulk quantities for an
ideal gas becomes

PV =nkT, [ideal gas]

which is known as the ideal gas law. Although I won’t prove it here,
this equation applies to all ideal gases, even though the derivation
assumed a monoatomic ideal gas in a cubical box. (You may have
seen it written elsewhere as PV = NRT, where N = n/N4 is the
number of moles of atoms, R = kN4, and Ny = 6.0 x 10?3, called
Avogadro’s number, is essentially the number of hydrogen atoms in
1 g of hydrogen.)

Pressure in a car tire example 9
> After driving on the freeway for a while, the air in your car’s
tires heats up from 10°C to 35°C. How much does the pressure
increase?

> The tires may expand a little, but we assume this effect is small,
so the volume is nearly constant. From the ideal gas law, the
ratio of the pressures is the same as the ratio of the absolute
temperatures,

P2/Py = T3/ T
= (308 K)/(283 K)
=1.09,

or a 9% increase.

Earth’s senescence example 10
Microbes were the only life on Earth up until the relatively re-
cent advent of multicellular life, and are arguably still the domi-
nant form of life on our planet. Furthermore, the sun has been
gradually heating up ever since it first formed, and this continuing
process will soon (“soon” in the sense of geological time) elimi-
nate multicellular life again. Heat-induced decreases in the atmo-
sphere’s CO, content will kill off all complex plants within about
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j / A space suit (example 11).

500 million years, and although some animals may be able to live
by eating algae, it will only be another few hundred million years
at most until the planet is completely heat-sterilized.

Why is the sun getting brighter? The only thing that keeps a star
like our sun from collapsing due to its own gravity is the pressure
of its gases. The sun’s energy comes from nuclear reactions at
its core, and the net result of these reactions is to fuse hydrogen
atoms into helium atoms. It takes four hydrogens to make one
helium, so the number of atoms in the sun is continuously de-
creasing. Since PV = nkT, this causes a decrease in pressure,
which makes the core contract. As the core contracts, collisions
between hydrogen atoms become more frequent, and the rate of
fusion reactions increases.

‘A piston, a refrigerator, and a space suit example 11
Both sides of the equation PV = nkT have units of energy. Sup-
pose the pressure in a cylinder of gas pushes a piston out, as in
the power stroke of an automobile engine. Let the cross-sectional
area of the piston and cylinder be A, and let the piston travel a
small distance Ax. Then the gas’s force on the piston F = PA
does an amount of mechanical work W = FAx = PAAx = PAV,
where AV is the change in volume. This energy has to come
from somewhere; it comes from cooling the gas. In a car, what
this means is that we're harvesting the energy released by burn-
ing the gasoline.

In a refrigerator, we use the same process to cool the gas, which
then cools the food.

In a space suit, the quantity PAV represents the work the astro-
naut has to do because bending her limbs changes the volume
of the suit. The suit inflates under pressure like a balloon, and
doesn’t want to bend. This makes it very tiring to work for any
significant period of time.
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16.3 Entropy

Efficiency and grades of energy

Some forms of energy are more convenient than others in certain
situations. You can’t run a spring-powered mechanical clock on a
battery, and you can’t run a battery-powered clock with mechanical
energy. However, there is no fundamental physical principle that
prevents you from converting 100% of the electrical energy in a
battery into mechanical energy or vice-versa. More efficient motors
and generators are being designed every year. In general, the laws
of physics permit perfectly efficient conversion within a broad class
of forms of energy.

Heat is different. Friction tends to convert other forms of energy
into heat even in the best lubricated machines. When we slide a
book on a table, friction brings it to a stop and converts all its kinetic
energy into heat, but we never observe the opposite process, in which
a book spontaneously converts heat energy into mechanical energy
and starts moving! Roughly speaking, heat is different because it is
disorganized. Scrambling an egg is easy. Unscrambling it is harder.

We summarize these observations by saying that heat is a lower
grade of energy than other forms such as mechanical energy.

Of course it is possible to convert heat into other forms of energy
such as mechanical energy, and that is what a car engine does with
the heat created by exploding the air-gasoline mixture. But a car
engine is a tremendously inefficient device, and a great deal of the
heat is simply wasted through the radiator and the exhaust. Engi-
neers have never succeeded in creating a perfectly efficient device for
converting heat energy into mechanical energy, and we now know
that this is because of a deeper physical principle that is far more
basic than the design of an engine.

Heat engines

Heat may be more useful in some forms than in other, i.e., there
are different grades of heat energy. In figure k, the difference in
temperature can be used to extract mechanical work with a fan
blade. This principle is used in power plants, where steam is heated
by burning oil or by nuclear reactions, and then allowed to expand
through a turbine which has cooler steam on the other side. On
a smaller scale, there is a Christmas toy that consists of a small
propeller spun by the hot air rising from a set of candles, very much
like the setup shown in the figure.

In figure 1, however, no mechanical work can be extracted be-
cause there is no difference in temperature. Although the air in 1
has the same total amount of energy as the air in k, the heat in 1
is a lower grade of energy, since none of it is accessible for doing

cold

hot

k/The temperature differ-
ence between the hot and cold
parts of the air can be used to
extract mechanical energy, for
example with a fan blade that
spins because of the rising hot air
currents.

warm

warm

I/1f the temperature of the
air is first allowed to become
uniform, then no mechanical
energy can be extracted. The
same amount of heat energy
is present, but it is no longer
accessible for doing mechanical
work.
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m/The beginning of the first
expansion stroke, in which the
working gas is kept in thermal
equilibrium with the hot reservoir.

L
= 1

n/The beginning of the sec-
ond expansion stroke, in which
the working gas is thermally
insulated. The working gas cools
because it is doing work on the
piston and thus losing energy.

1]

o/ The beginning of the first
compression stroke. The working
gas begins the stroke at the same
temperature as the cold reservoir,
and remains in thermal contact
with it the whole time. The engine
does negative work.

L
=]

p/The beginning of the sec-
ond compression stroke, in which
mechanical work is absorbed,
heating the working gas back up
to Ty.

mechanical work.

In general, we define a heat engine as any device that takes heat
from a reservoir of hot matter, extracts some of the heat energy to do
mechanical work, and expels a lesser amount of heat into a reservoir
of cold matter. The efficiency of a heat engine equals the amount of
useful work extracted, W, divided by the amount of energy we had
to pay for in order to heat the hot reservoir. This latter amount
of heat is the same as the amount of heat the engine extracts from
the high-temperature reservoir, Qg. (The letter @ is the standard
notation for a transfer of heat.) By conservation of energy, we have
Qg = W + Qr, where @, is the amount of heat expelled into the
low-temperature reservoir, so the efficiency of a heat engine, W/Qp,
can be rewritten as

QL

efficiency = 1 — 0n [efficiency of any heat engine]

H

It turns out that there is a particular type of heat engine, the

Carnot engine, which, although not 100% efficient, is more efficient

than any other. The grade of heat energy in a system can thus be

unambiguously defined in terms of the amount of heat energy in it
that cannot be extracted, even by a Carnot engine.

How can we build the most efficient possible engine? Let’s start
with an unnecessarily inefficient engine like a car engine and see
how it could be improved. The radiator and exhaust expel hot
gases, which is a waste of heat energy. These gases are cooler than
the exploded air-gas mixture inside the cylinder, but hotter than
the air that surrounds the car. We could thus improve the engine’s
efficiency by adding an auxiliary heat engine to it, which would
operate with the first engine’s exhaust as its hot reservoir and the
air as its cold reservoir. In general, any heat engine that expels
heat at an intermediate temperature can be made more efficient by
changing it so that it expels heat only at the temperature of the
cold reservoir.

Similarly, any heat engine that absorbs some energy at an in-
termediate temperature can be made more efficient by adding an
auxiliary heat engine to it which will operate between the hot reser-
voir and this intermediate temperature.

Based on these arguments, we define a Carnot engine as a heat
engine that absorbs heat only from the hot reservoir and expels it
only into the cold reservoir. Figures m-p show a realization of a
Carnot engine using a piston in a cylinder filled with a monoatomic
ideal gas. This gas, known as the working fluid, is separate from,
but exchanges energy with, the hot and cold reservoirs. It turns out
that this particular Carnot engine has an efficiency given by

Ty,

efficiency =1 — —

, [efficiency of a Carnot engine]
Ty
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where T7, is the temperature of the cold reservoir and Ty is the
temperature of the hot reservoir. (A proof of this fact is given in
my book Simple Nature, which you can download for free.)

Even if you do not wish to dig into the details of the proof,
the basic reason for the temperature dependence is not so hard to
understand. Useful mechanical work is done on strokes m and n,
in which the gas expands. The motion of the piston is in the same
direction as the gas’s force on the piston, so positive work is done
on the piston. In strokes o and p, however, the gas does negative
work on the piston. We would like to avoid this negative work,
but we must design the engine to perform a complete cycle. Luckily
the pressures during the compression strokes are lower than the ones
during the expansion strokes, so the engine doesn’t undo all its work
with every cycle. The ratios of the pressures are in proportion to
the ratios of the temperatures, so if T, is 20% of Ty, the engine is
80% efficient.

We have already proved that any engine that is not a Carnot
engine is less than optimally efficient, and it is also true that all
Carnot engines operating between a given pair of temperatures Ty
and T7, have the same efficiency. Thus a Carnot engine is the most
efficient possible heat engine.

Entropy

We would like to have some numerical way of measuring the
grade of energy in a system. We want this quantity, called entropy,
to have the following two properties:

(1) Entropy is additive. When we combine two systems and
consider them as one, the entropy of the combined system equals
the sum of the entropies of the two original systems. (Quantities
like mass and energy also have this property.)

(2) The entropy of a system is not changed by operating a Carnot
engine within it.

It turns out to be simpler and more useful to define changes
in entropy than absolute entropies. Suppose as an example that a
system contains some hot matter and some cold matter. It has a
relatively high grade of energy because a heat engine could be used
to extract mechanical work from it. But if we allow the hot and
cold parts to equilibrate at some lukewarm temperature, the grade
of energy has gotten worse. Thus putting heat into a hotter area
is more useful than putting it into a cold area. Motivated by these
considerations, we define a change in entropy as follows:

AS = @

T [change in entropy when adding

heat () to matter at temperature 7T

AS is negative if heat is taken out]

H

g/ Entropy can be understood
using the metaphor of a water
wheel. Letting the water levels
equalize is like letting the entropy
maximize. Taking water from the
high side and putting it into the
low side in