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The Mars Climate Orbiter is pre-
pared for its mission. The laws
of physics are the same every-
where, even on Mars, so the
probe could be designed based
on the laws of physics as discov-
ered on earth. There is unfor-
tunately another reason why this
spacecraft is relevant to the top-
ics of this chapter: it was de-
stroyed attempting to enter Mars’
atmosphere because engineers
at Lockheed Martin forgot to con-
vert data on engine thrusts from
pounds into the metric unit of
force (newtons) before giving the
information to NASA. Conver-
sions are important!

Chapter 0

Introduction and Review

If you drop your shoe and a coin side by side, they hit the ground at
the same time. Why doesn’t the shoe get there first, since gravity is
pulling harder on it? How does the lens of your eye work, and why
do your eye’s muscles need to squash its lens into different shapes in
order to focus on objects nearby or far away? These are the kinds
of questions that physics tries to answer about the behavior of light
and matter, the two things that the universe is made of.

0.1 The scientific method
Until very recently in history, no progress was made in answering
questions like these. Worse than that, the wrong answers written
by thinkers like the ancient Greek physicist Aristotle were accepted
without question for thousands of years. Why is it that scientific
knowledge has progressed more since the Renaissance than it had
in all the preceding millennia since the beginning of recorded his-
tory? Undoubtedly the industrial revolution is part of the answer.
Building its centerpiece, the steam engine, required improved tech-
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a / Science is a cycle of the-
ory and experiment.

b / A satirical drawing of an
alchemist’s laboratory. H. Cock,
after a drawing by Peter Brueghel
the Elder (16th century).

niques for precise construction and measurement. (Early on, it was
considered a major advance when English machine shops learned to
build pistons and cylinders that fit together with a gap narrower
than the thickness of a penny.) But even before the industrial rev-
olution, the pace of discovery had picked up, mainly because of the
introduction of the modern scientific method. Although it evolved
over time, most scientists today would agree on something like the
following list of the basic principles of the scientific method:

(1) Science is a cycle of theory and experiment. Scientific the-
ories 1 are created to explain the results of experiments that were
created under certain conditions. A successful theory will also make
new predictions about new experiments under new conditions. Even-
tually, though, it always seems to happen that a new experiment
comes along, showing that under certain conditions the theory is
not a good approximation or is not valid at all. The ball is then
back in the theorists’ court. If an experiment disagrees with the
current theory, the theory has to be changed, not the experiment.

(2) Theories should both predict and explain. The requirement of
predictive power means that a theory is only meaningful if it predicts
something that can be checked against experimental measurements
that the theorist did not already have at hand. That is, a theory
should be testable. Explanatory value means that many phenomena
should be accounted for with few basic principles. If you answer
every “why” question with “because that’s the way it is,” then your
theory has no explanatory value. Collecting lots of data without
being able to find any basic underlying principles is not science.

(3) Experiments should be reproducible. An experiment should
be treated with suspicion if it only works for one person, or only
in one part of the world. Anyone with the necessary skills and
equipment should be able to get the same results from the same
experiment. This implies that science transcends national and eth-
nic boundaries; you can be sure that nobody is doing actual science
who claims that their work is “Aryan, not Jewish,” “Marxist, not
bourgeois,” or “Christian, not atheistic.” An experiment cannot be
reproduced if it is secret, so science is necessarily a public enterprise.

As an example of the cycle of theory and experiment, a vital step
toward modern chemistry was the experimental observation that the
chemical elements could not be transformed into each other, e.g.,
lead could not be turned into gold. This led to the theory that
chemical reactions consisted of rearrangements of the elements in

1The term “theory” in science does not just mean “what someone thinks,” or
even “what a lot of scientists think.” It means an interrelated set of statements
that have predictive value, and that have survived a broad set of empirical
tests. Thus, both Newton’s law of gravity and Darwinian evolution are scientific
theories. A “hypothesis,” in contrast to a theory, is any statement of interest
that can be empirically tested. That the moon is made of cheese is a hypothesis,
which was empirically tested, for example, by the Apollo astronauts.
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different combinations, without any change in the identities of the
elements themselves. The theory worked for hundreds of years, and
was confirmed experimentally over a wide range of pressures and
temperatures and with many combinations of elements. Only in
the twentieth century did we learn that one element could be trans-
formed into one another under the conditions of extremely high
pressure and temperature existing in a nuclear bomb or inside a star.
That observation didn’t completely invalidate the original theory of
the immutability of the elements, but it showed that it was only an
approximation, valid at ordinary temperatures and pressures.

self-check A
A psychic conducts seances in which the spirits of the dead speak to
the participants. He says he has special psychic powers not possessed
by other people, which allow him to “channel” the communications with
the spirits. What part of the scientific method is being violated here?
. Answer, p. 563

The scientific method as described here is an idealization, and
should not be understood as a set procedure for doing science. Sci-
entists have as many weaknesses and character flaws as any other
group, and it is very common for scientists to try to discredit other
people’s experiments when the results run contrary to their own fa-
vored point of view. Successful science also has more to do with
luck, intuition, and creativity than most people realize, and the
restrictions of the scientific method do not stifle individuality and
self-expression any more than the fugue and sonata forms stifled
Bach and Haydn. There is a recent tendency among social scien-
tists to go even further and to deny that the scientific method even
exists, claiming that science is no more than an arbitrary social sys-
tem that determines what ideas to accept based on an in-group’s
criteria. I think that’s going too far. If science is an arbitrary social
ritual, it would seem difficult to explain its effectiveness in building
such useful items as airplanes, CD players, and sewers. If alchemy
and astrology were no less scientific in their methods than chem-
istry and astronomy, what was it that kept them from producing
anything useful?

Discussion questions
Consider whether or not the scientific method is being applied in the fol-
lowing examples. If the scientific method is not being applied, are the
people whose actions are being described performing a useful human
activity, albeit an unscientific one?

A Acupuncture is a traditional medical technique of Asian origin in
which small needles are inserted in the patient’s body to relieve pain.
Many doctors trained in the west consider acupuncture unworthy of ex-
perimental study because if it had therapeutic effects, such effects could
not be explained by their theories of the nervous system. Who is being
more scientific, the western or eastern practitioners?
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B Goethe, a German poet, is less well known for his theory of color.
He published a book on the subject, in which he argued that scientific
apparatus for measuring and quantifying color, such as prisms, lenses
and colored filters, could not give us full insight into the ultimate meaning
of color, for instance the cold feeling evoked by blue and green or the
heroic sentiments inspired by red. Was his work scientific?

C A child asks why things fall down, and an adult answers “because of
gravity.” The ancient Greek philosopher Aristotle explained that rocks fell
because it was their nature to seek out their natural place, in contact with
the earth. Are these explanations scientific?

D Buddhism is partly a psychological explanation of human suffering,
and psychology is of course a science. The Buddha could be said to
have engaged in a cycle of theory and experiment, since he worked by
trial and error, and even late in his life he asked his followers to challenge
his ideas. Buddhism could also be considered reproducible, since the
Buddha told his followers they could find enlightenment for themselves
if they followed a certain course of study and discipline. Is Buddhism a
scientific pursuit?

0.2 What is physics?
Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
positions of the things which compose it...nothing would be
uncertain, and the future as the past would be laid out before
its eyes.

Pierre Simon de Laplace

Physics is the use of the scientific method to find out the basic
principles governing light and matter, and to discover the implica-
tions of those laws. Part of what distinguishes the modern outlook
from the ancient mind-set is the assumption that there are rules by
which the universe functions, and that those laws can be at least par-
tially understood by humans. From the Age of Reason through the
nineteenth century, many scientists began to be convinced that the
laws of nature not only could be known but, as claimed by Laplace,
those laws could in principle be used to predict everything about
the universe’s future if complete information was available about
the present state of all light and matter. In subsequent sections,
I’ll describe two general types of limitations on prediction using the
laws of physics, which were only recognized in the twentieth century.

Matter can be defined as anything that is affected by gravity,
i.e., that has weight or would have weight if it was near the Earth
or another star or planet massive enough to produce measurable
gravity. Light can be defined as anything that can travel from one
place to another through empty space and can influence matter, but
has no weight. For example, sunlight can influence your body by
heating it or by damaging your DNA and giving you skin cancer.
The physicist’s definition of light includes a variety of phenomena
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c / This telescope picture shows
two images of the same distant
object, an exotic, very luminous
object called a quasar. This is
interpreted as evidence that a
massive, dark object, possibly
a black hole, happens to be
between us and it. Light rays that
would otherwise have missed the
earth on either side have been
bent by the dark object’s gravity
so that they reach us. The actual
direction to the quasar is presum-
ably in the center of the image,
but the light along that central line
doesn’t get to us because it is
absorbed by the dark object. The
quasar is known by its catalog
number, MG1131+0456, or more
informally as Einstein’s Ring.

that are not visible to the eye, including radio waves, microwaves,
x-rays, and gamma rays. These are the “colors” of light that do not
happen to fall within the narrow violet-to-red range of the rainbow
that we can see.

self-check B
At the turn of the 20th century, a strange new phenomenon was discov-
ered in vacuum tubes: mysterious rays of unknown origin and nature.
These rays are the same as the ones that shoot from the back of your
TV’s picture tube and hit the front to make the picture. Physicists in
1895 didn’t have the faintest idea what the rays were, so they simply
named them “cathode rays,” after the name for the electrical contact
from which they sprang. A fierce debate raged, complete with national-
istic overtones, over whether the rays were a form of light or of matter.
What would they have had to do in order to settle the issue? .

Answer, p. 563

Many physical phenomena are not themselves light or matter,
but are properties of light or matter or interactions between light
and matter. For instance, motion is a property of all light and some
matter, but it is not itself light or matter. The pressure that keeps
a bicycle tire blown up is an interaction between the air and the
tire. Pressure is not a form of matter in and of itself. It is as
much a property of the tire as of the air. Analogously, sisterhood
and employment are relationships among people but are not people
themselves.

Some things that appear weightless actually do have weight, and
so qualify as matter. Air has weight, and is thus a form of matter
even though a cubic inch of air weighs less than a grain of sand. A
helium balloon has weight, but is kept from falling by the force of the
surrounding more dense air, which pushes up on it. Astronauts in
orbit around the Earth have weight, and are falling along a curved
arc, but they are moving so fast that the curved arc of their fall
is broad enough to carry them all the way around the Earth in a
circle. They perceive themselves as being weightless because their
space capsule is falling along with them, and the floor therefore does
not push up on their feet.

Optional Topic: Modern Changes in the Definition of Light and
Matter
Einstein predicted as a consequence of his theory of relativity that light
would after all be affected by gravity, although the effect would be ex-
tremely weak under normal conditions. His prediction was borne out
by observations of the bending of light rays from stars as they passed
close to the sun on their way to the Earth. Einstein’s theory also implied
the existence of black holes, stars so massive and compact that their
intense gravity would not even allow light to escape. (These days there
is strong evidence that black holes exist.)

Einstein’s interpretation was that light doesn’t really have mass, but
that energy is affected by gravity just like mass is. The energy in a light
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d / Reductionism.

beam is equivalent to a certain amount of mass, given by the famous
equation E = mc2, where c is the speed of light. Because the speed
of light is such a big number, a large amount of energy is equivalent to
only a very small amount of mass, so the gravitational force on a light
ray can be ignored for most practical purposes.

There is however a more satisfactory and fundamental distinction
between light and matter, which should be understandable to you if you
have had a chemistry course. In chemistry, one learns that electrons
obey the Pauli exclusion principle, which forbids more than one electron
from occupying the same orbital if they have the same spin. The Pauli
exclusion principle is obeyed by the subatomic particles of which matter
is composed, but disobeyed by the particles, called photons, of which a
beam of light is made.

Einstein’s theory of relativity is discussed more fully in book 6 of this
series.

The boundary between physics and the other sciences is not
always clear. For instance, chemists study atoms and molecules,
which are what matter is built from, and there are some scientists
who would be equally willing to call themselves physical chemists
or chemical physicists. It might seem that the distinction between
physics and biology would be clearer, since physics seems to deal
with inanimate objects. In fact, almost all physicists would agree
that the basic laws of physics that apply to molecules in a test tube
work equally well for the combination of molecules that constitutes
a bacterium. (Some might believe that something more happens in
the minds of humans, or even those of cats and dogs.) What differ-
entiates physics from biology is that many of the scientific theories
that describe living things, while ultimately resulting from the fun-
damental laws of physics, cannot be rigorously derived from physical
principles.

Isolated systems and reductionism

To avoid having to study everything at once, scientists isolate the
things they are trying to study. For instance, a physicist who wants
to study the motion of a rotating gyroscope would probably prefer
that it be isolated from vibrations and air currents. Even in biology,
where field work is indispensable for understanding how living things
relate to their entire environment, it is interesting to note the vital
historical role played by Darwin’s study of the Galápagos Islands,
which were conveniently isolated from the rest of the world. Any
part of the universe that is considered apart from the rest can be
called a “system.”

Physics has had some of its greatest successes by carrying this
process of isolation to extremes, subdividing the universe into smaller
and smaller parts. Matter can be divided into atoms, and the be-
havior of individual atoms can be studied. Atoms can be split apart

20 Chapter 0 Introduction and Review



into their constituent neutrons, protons and electrons. Protons and
neutrons appear to be made out of even smaller particles called
quarks, and there have even been some claims of experimental ev-
idence that quarks have smaller parts inside them. This method
of splitting things into smaller and smaller parts and studying how
those parts influence each other is called reductionism. The hope is
that the seemingly complex rules governing the larger units can be
better understood in terms of simpler rules governing the smaller
units. To appreciate what reductionism has done for science, it is
only necessary to examine a 19th-century chemistry textbook. At
that time, the existence of atoms was still doubted by some, elec-
trons were not even suspected to exist, and almost nothing was
understood of what basic rules governed the way atoms interacted
with each other in chemical reactions. Students had to memorize
long lists of chemicals and their reactions, and there was no way to
understand any of it systematically. Today, the student only needs
to remember a small set of rules about how atoms interact, for in-
stance that atoms of one element cannot be converted into another
via chemical reactions, or that atoms from the right side of the pe-
riodic table tend to form strong bonds with atoms from the left
side.

Discussion questions

A I’ve suggested replacing the ordinary dictionary definition of light
with a more technical, more precise one that involves weightlessness. It’s
still possible, though, that the stuff a lightbulb makes, ordinarily called
“light,” does have some small amount of weight. Suggest an experiment
to attempt to measure whether it does.

B Heat is weightless (i.e., an object becomes no heavier when heated),
and can travel across an empty room from the fireplace to your skin,
where it influences you by heating you. Should heat therefore be con-
sidered a form of light by our definition? Why or why not?

C Similarly, should sound be considered a form of light?

0.3 How to learn physics
For as knowledges are now delivered, there is a kind of con-
tract of error between the deliverer and the receiver; for he
that delivereth knowledge desireth to deliver it in such a form
as may be best believed, and not as may be best examined;
and he that receiveth knowledge desireth rather present sat-
isfaction than expectant inquiry.

Francis Bacon

Many students approach a science course with the idea that they
can succeed by memorizing the formulas, so that when a problem
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is assigned on the homework or an exam, they will be able to plug
numbers in to the formula and get a numerical result on their cal-
culator. Wrong! That’s not what learning science is about! There
is a big difference between memorizing formulas and understanding
concepts. To start with, different formulas may apply in different
situations. One equation might represent a definition, which is al-
ways true. Another might be a very specific equation for the speed
of an object sliding down an inclined plane, which would not be true
if the object was a rock drifting down to the bottom of the ocean.
If you don’t work to understand physics on a conceptual level, you
won’t know which formulas can be used when.

Most students taking college science courses for the first time
also have very little experience with interpreting the meaning of an
equation. Consider the equation w = A/h relating the width of a
rectangle to its height and area. A student who has not developed
skill at interpretation might view this as yet another equation to
memorize and plug in to when needed. A slightly more savvy stu-
dent might realize that it is simply the familiar formula A = wh
in a different form. When asked whether a rectangle would have
a greater or smaller width than another with the same area but
a smaller height, the unsophisticated student might be at a loss,
not having any numbers to plug in on a calculator. The more ex-
perienced student would know how to reason about an equation
involving division — if h is smaller, and A stays the same, then w
must be bigger. Often, students fail to recognize a sequence of equa-
tions as a derivation leading to a final result, so they think all the
intermediate steps are equally important formulas that they should
memorize.

When learning any subject at all, it is important to become as
actively involved as possible, rather than trying to read through
all the information quickly without thinking about it. It is a good
idea to read and think about the questions posed at the end of each
section of these notes as you encounter them, so that you know you
have understood what you were reading.

Many students’ difficulties in physics boil down mainly to diffi-
culties with math. Suppose you feel confident that you have enough
mathematical preparation to succeed in this course, but you are
having trouble with a few specific things. In some areas, the brief
review given in this chapter may be sufficient, but in other areas
it probably will not. Once you identify the areas of math in which
you are having problems, get help in those areas. Don’t limp along
through the whole course with a vague feeling of dread about some-
thing like scientific notation. The problem will not go away if you
ignore it. The same applies to essential mathematical skills that you
are learning in this course for the first time, such as vector addition.

Sometimes students tell me they keep trying to understand a

22 Chapter 0 Introduction and Review



certain topic in the book, and it just doesn’t make sense. The worst
thing you can possibly do in that situation is to keep on staring
at the same page. Every textbook explains certain things badly —
even mine! — so the best thing to do in this situation is to look
at a different book. Instead of college textbooks aimed at the same
mathematical level as the course you’re taking, you may in some
cases find that high school books or books at a lower math level
give clearer explanations.

Finally, when reviewing for an exam, don’t simply read back
over the text and your lecture notes. Instead, try to use an active
method of reviewing, for instance by discussing some of the discus-
sion questions with another student, or doing homework problems
you hadn’t done the first time.

0.4 Self-evaluation
The introductory part of a book like this is hard to write, because
every student arrives at this starting point with a different prepara-
tion. One student may have grown up outside the U.S. and so may
be completely comfortable with the metric system, but may have
had an algebra course in which the instructor passed too quickly
over scientific notation. Another student may have already taken
calculus, but may have never learned the metric system. The fol-
lowing self-evaluation is a checklist to help you figure out what you
need to study to be prepared for the rest of the course.

If you disagree with this state-
ment. . .

you should study this section:

I am familiar with the basic metric
units of meters, kilograms, and sec-
onds, and the most common metric
prefixes: milli- (m), kilo- (k), and
centi- (c).

section 0.5 Basic of the Metric Sys-
tem

I know about the newton, a unit of
force

section 0.6 The newton, the Metric
Unit of Force

I am familiar with these less com-
mon metric prefixes: mega- (M),
micro- (µ), and nano- (n).

section 0.7 Less Common Metric
Prefixes

I am comfortable with scientific no-
tation.

section 0.8 Scientific Notation

I can confidently do metric conver-
sions.

section 0.9 Conversions

I understand the purpose and use of
significant figures.

section 0.10 Significant Figures

It wouldn’t hurt you to skim the sections you think you already
know about, and to do the self-checks in those sections.
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0.5 Basics of the metric system
The metric system

Every country in the world besides the U.S. uses a system of
units known in English as the “metric system.2” This system is
entirely decimal, thanks to the same eminently logical people who
brought about the French Revolution. In deference to France, the
system’s official name is the Système International, or SI, meaning
International System. The system uses a single, consistent set of
Greek and Latin prefixes that modify the basic units. Each prefix
stands for a power of ten, and has an abbreviation that can be
combined with the symbol for the unit. For instance, the meter is
a unit of distance. The prefix kilo- stands for 103, so a kilometer, 1
km, is a thousand meters.

The basic units of the SI are the meter for distance, the second
for time, and the kilogram (not the gram) for mass.

The following are the most common metric prefixes. You should
memorize them.

prefix meaning example
kilo- k 103 60 kg = a person’s mass
centi- c 10−2 28 cm = height of a piece of paper
milli- m 10−3 1 ms = time for one vibration of a guitar

string playing the note D

The prefix centi-, meaning 10−2, is only used in the centimeter;
a hundredth of a gram would not be written as 1 cg but as 10 mg.
The centi- prefix can be easily remembered because a cent is 10−2

dollars. The official SI abbreviation for seconds is “s” (not “sec”)
and grams are “g” (not “gm”).

The second

When I stated briefly above that the second was a unit of time, it
may not have occurred to you that this was not much of a definition.
We can make a dictionary-style definition of a term like “time,” or
give a general description like Isaac Newton’s: “Absolute, true, and
mathematical time, of itself, and from its own nature, flows equably
without relation to anything external. . . ” Newton’s characterization
sounds impressive, but physicists today would consider it useless as
a definition of time. Today, the physical sciences are based on oper-
ational definitions, which means definitions that spell out the actual
steps (operations) required to measure something numerically.

In an era when our toasters, pens, and coffee pots tell us the
time, it is far from obvious to most people what is the fundamental
operational definition of time. Until recently, the hour, minute, and
second were defined operationally in terms of the time required for

2Liberia and Myanmar have not legally adopted metric units, but use them
in everyday life.
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e / The original definition of
the meter.

f / A duplicate of the Paris
kilogram, maintained at the Dan-
ish National Metrology Institute.
As of 2019, the kilogram is no
longer defined in terms of a
physical standard.

the earth to rotate about its axis. Unfortunately, the Earth’s ro-
tation is slowing down slightly, and by 1967 this was becoming an
issue in scientific experiments requiring precise time measurements.
The second was therefore redefined as the time required for a cer-
tain number of vibrations of the light waves emitted by a cesium
atoms in a lamp constructed like a familiar neon sign but with the
neon replaced by cesium. The new definition not only promises to
stay constant indefinitely, but for scientists is a more convenient
way of calibrating a clock than having to carry out astronomical
measurements.

self-check C
What is a possible operational definition of how strong a person is? .

Answer, p. 563

The meter

The French originally defined the meter as 10−7 times the dis-
tance from the equator to the north pole, as measured through Paris
(of course). Even if the definition was operational, the operation of
traveling to the north pole and laying a surveying chain behind you
was not one that most working scientists wanted to carry out. Fairly
soon, a standard was created in the form of a metal bar with two
scratches on it. This was replaced by an atomic standard in 1960,
and finally in 1983 by the current definition, which is that the speed
of light has a defined value in units of m/s.

The kilogram

The third base unit of the SI is the kilogram, a unit of mass.
Mass is intended to be a measure of the amount of a substance,
but that is not an operational definition. Bathroom scales work by
measuring our planet’s gravitational attraction for the object being
weighed, but using that type of scale to define mass operationally
would be undesirable because gravity varies in strength from place
to place on the earth. The kilogram was for a long time defined
by a physical artifact (figure f), but in 2019 it was redefined by
giving a defined value to Planck’s constant (p. 970), which plays a
fundamental role in the description of the atomic world.

Combinations of metric units

Just about anything you want to measure can be measured with
some combination of meters, kilograms, and seconds. Speed can be
measured in m/s, volume in m3, and density in kg/m3. Part of what
makes the SI great is this basic simplicity. No more funny units like
a cord of wood, a bolt of cloth, or a jigger of whiskey. No more
liquid and dry measure. Just a simple, consistent set of units. The
SI measures put together from meters, kilograms, and seconds make
up the mks system. For example, the mks unit of speed is m/s, not
km/hr.
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Checking units

A useful technique for finding mistakes in one’s algebra is to
analyze the units associated with the variables.

Checking units example 1
. Jae starts from the formula V = 1

3Ah for the volume of a cone,
where A is the area of its base, and h is its height. He wants to
find an equation that will tell him how tall a conical tent has to be
in order to have a certain volume, given its radius. His algebra
goes like this:

V =
1
3

Ah[1]

A = πr2[2]

V =
1
3
πr2h[3]

h =
πr2

3V
[4]

Is his algebra correct? If not, find the mistake.

. Line 4 is supposed to be an equation for the height, so the units
of the expression on the right-hand side had better equal meters.
The pi and the 3 are unitless, so we can ignore them. In terms of
units, line 4 becomes

m =
m2

m3 =
1
m

.

This is false, so there must be a mistake in the algebra. The units
of lines 1, 2, and 3 check out, so the mistake must be in the step
from line 3 to line 4. In fact the result should have been

h =
3V
πr2 .

Now the units check: m = m3/m2.

Discussion question

A Isaac Newton wrote, “. . . the natural days are truly unequal, though
they are commonly considered as equal, and used for a measure of
time. . . It may be that there is no such thing as an equable motion, whereby
time may be accurately measured. All motions may be accelerated or re-
tarded. . . ” Newton was right. Even the modern definition of the second
in terms of light emitted by cesium atoms is subject to variation. For in-
stance, magnetic fields could cause the cesium atoms to emit light with
a slightly different rate of vibration. What makes us think, though, that a
pendulum clock is more accurate than a sundial, or that a cesium atom
is a more accurate timekeeper than a pendulum clock? That is, how can
one test experimentally how the accuracies of different time standards
compare?
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g / This is a mnemonic to
help you remember the most im-
portant metric prefixes. The word
“little” is to remind you that the
list starts with the prefixes used
for small quantities and builds
upward. The exponent changes
by 3, except that of course that
we do not need a special prefix
for 100, which equals one.

0.6 The Newton, the metric unit of force
A force is a push or a pull, or more generally anything that can
change an object’s speed or direction of motion. A force is required
to start a car moving, to slow down a baseball player sliding in to
home base, or to make an airplane turn. (Forces may fail to change
an object’s motion if they are canceled by other forces, e.g., the
force of gravity pulling you down right now is being canceled by the
force of the chair pushing up on you.) The metric unit of force is
the Newton, defined as the force which, if applied for one second,
will cause a 1-kilogram object starting from rest to reach a speed of
1 m/s. Later chapters will discuss the force concept in more detail.
In fact, this entire book is about the relationship between force and
motion.

In section 0.5, I gave a gravitational definition of mass, but by
defining a numerical scale of force, we can also turn around and de-
fine a scale of mass without reference to gravity. For instance, if a
force of two Newtons is required to accelerate a certain object from
rest to 1 m/s in 1 s, then that object must have a mass of 2 kg.
From this point of view, mass characterizes an object’s resistance
to a change in its motion, which we call inertia or inertial mass.
Although there is no fundamental reason why an object’s resistance
to a change in its motion must be related to how strongly gravity
affects it, careful and precise experiments have shown that the in-
ertial definition and the gravitational definition of mass are highly
consistent for a variety of objects. It therefore doesn’t really matter
for any practical purpose which definition one adopts.

Discussion question

A Spending a long time in weightlessness is unhealthy. One of the
most important negative effects experienced by astronauts is a loss of
muscle and bone mass. Since an ordinary scale won’t work for an astro-
naut in orbit, what is a possible way of monitoring this change in mass?
(Measuring the astronaut’s waist or biceps with a measuring tape is not
good enough, because it doesn’t tell anything about bone mass, or about
the replacement of muscle with fat.)

0.7 Less common metric prefixes

The following are three metric prefixes which, while less common
than the ones discussed previously, are well worth memorizing.

prefix meaning example
mega- M 106 6.4 Mm = radius of the earth
micro- µ 10−6 10 µm = size of a white blood cell
nano- n 10−9 0.154 nm = distance between carbon

nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu, µ
— a common mistake is to confuse it with m (milli) or M (mega).
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There are other prefixes even less common, used for extremely
large and small quantities. For instance, 1 femtometer = 10−15 m is
a convenient unit of distance in nuclear physics, and 1 gigabyte =
109 bytes is used for computers’ hard disks. The international com-
mittee that makes decisions about the SI has recently even added
some new prefixes that sound like jokes, e.g., 1 yoctogram = 10−24 g
is about half the mass of a proton. In the immediate future, how-
ever, you’re unlikely to see prefixes like “yocto-” and “zepto-” used
except perhaps in trivia contests at science-fiction conventions or
other geekfests.

self-check D
Suppose you could slow down time so that according to your perception,
a beam of light would move across a room at the speed of a slow walk.
If you perceived a nanosecond as if it was a second, how would you
perceive a microsecond? . Answer, p. 564

0.8 Scientific notation
Most of the interesting phenomena in our universe are not on the
human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist
Thomas Young discovered that light was a wave, it was back in the
bad old days before scientific notation, and he was obliged to write
that the time required for one vibration of the wave was 1/500 of
a millionth of a millionth of a second. Scientific notation is a less
awkward way to write very large and very small numbers such as
these. Here’s a quick review.

Scientific notation means writing a number in terms of a product
of something from 1 to 10 and something else that is a power of ten.
For instance,

32 = 3.2× 101

320 = 3.2× 102

3200 = 3.2× 103 . . .

Each number is ten times bigger than the previous one.

Since 101 is ten times smaller than 102 , it makes sense to use
the notation 100 to stand for one, the number that is in turn ten
times smaller than 101 . Continuing on, we can write 10−1 to stand
for 0.1, the number ten times smaller than 100 . Negative exponents
are used for small numbers:

3.2 = 3.2× 100

0.32 = 3.2× 10−1

0.032 = 3.2× 10−2 . . .
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A common source of confusion is the notation used on the dis-
plays of many calculators. Examples:

3.2× 106 (written notation)
3.2E+6 (notation on some calculators)
3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26 really
stands for the number 3.2 × 3.2 × 3.2 × 3.2 × 3.2 × 3.2 = 1074, a
totally different number from 3.2 × 106 = 3200000. The calculator
notation should never be used in writing. It’s just a way for the
manufacturer to save money by making a simpler display.

self-check E
A student learns that 104 bacteria, standing in line to register for classes
at Paramecium Community College, would form a queue of this size:

The student concludes that 102 bacteria would form a line of this length:

Why is the student incorrect? . Answer, p. 564

0.9 Conversions
Conversions are one of the three essential mathematical skills, sum-
marized on pp.545-546, that you need for success in this course.

I suggest you avoid memorizing lots of conversion factors be-
tween SI units and U.S. units, but two that do come in handy are:

1 inch = 2.54 cm

An object with a weight on Earth of 2.2 pounds-force has a
mass of 1 kg.

The first one is the present definition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. (U.S.
units of force and mass are confusing, so it’s a good thing they’re
not used in science. In U.S. units, the unit of force is the pound-
force, and the best unit to use for mass is the slug, which is about
14.6 kg.)

More important than memorizing conversion factors is under-
standing the right method for doing conversions. Even within the
SI, you may need to convert, say, from grams to kilograms. Differ-
ent people have different ways of thinking about conversions, but
the method I’ll describe here is systematic and easy to understand.
The idea is that if 1 kg and 1000 g represent the same mass, then
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we can consider a fraction like

103 g

1 kg

to be a way of expressing the number one. This may bother you. For
instance, if you type 1000/1 into your calculator, you will get 1000,
not one. Again, different people have different ways of thinking
about it, but the justification is that it helps us to do conversions,
and it works! Now if we want to convert 0.7 kg to units of grams,
we can multiply kg by the number one:

0.7 kg× 103 g

1 kg

If you’re willing to treat symbols such as “kg” as if they were vari-
ables as used in algebra (which they’re really not), you can then
cancel the kg on top with the kg on the bottom, resulting in

0.7��kg× 103 g

1��kg
= 700 g.

To convert grams to kilograms, you would simply flip the fraction
upside down.

One advantage of this method is that it can easily be applied to
a series of conversions. For instance, to convert one year to units of
seconds,

1���year× 365��
�days

1���year
× 24���hours

1��day
× 60���min

1���hour
× 60 s

1���min
=

= 3.15× 107 s.

Should that exponent be positive, or negative?

A common mistake is to write the conversion fraction incorrectly.
For instance the fraction

103 kg

1 g
(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
factor would be

10−3 kg

1 g
(correct).

You can usually detect such a mistake if you take the time to check
your answer and see if it is reasonable.

If common sense doesn’t rule out either a positive or a negative
exponent, here’s another way to make sure you get it right. There
are big prefixes and small prefixes:
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big prefixes: k M
small prefixes: m µ n

(It’s not hard to keep straight which are which, since “mega” and
“micro” are evocative, and it’s easy to remember that a kilometer
is bigger than a meter and a millimeter is smaller.) In the example
above, we want the top of the fraction to be the same as the bottom.
Since k is a big prefix, we need to compensate by putting a small
number like 10−3 in front of it, not a big number like 103.

. Solved problem: a simple conversion page 36, problem 6

. Solved problem: the geometric mean page 37, problem 8

Discussion question

A Each of the following conversions contains an error. In each case,
explain what the error is.

(a) 1000 kg× 1 kg
1000 g = 1 g

(b) 50 m× 1 cm
100 m = 0.5 cm

(c) “Nano” is 10−9, so there are 10−9 nm in a meter.

(d) “Micro” is 10−6, so 1 kg is 106 µg.

0.10 Significant figures
The international governing body for football (“soccer” in the US)
says the ball should have a circumference of 68 to 70 cm. Taking the
middle of this range and dividing by π gives a diameter of approx-
imately 21.96338214668155633610595934540698196 cm. The digits
after the first few are completely meaningless. Since the circumfer-
ence could have varied by about a centimeter in either direction, the
diameter is fuzzy by something like a third of a centimeter. We say
that the additional, random digits are not significant figures. If you
write down a number with a lot of gratuitous insignificant figures,
it shows a lack of scientific literacy and imples to other people a
greater precision than you really have.

As a rule of thumb, the result of a calculation has as many
significant figures, or “sig figs,” as the least accurate piece of data
that went in. In the example with the soccer ball, it didn’t do us any
good to know π to dozens of digits, because the bottleneck in the
precision of the result was the figure for the circumference, which
was two sig figs. The result is 22 cm. The rule of thumb works best
for multiplication and division.

For calculations involving multiplication and division, a given
fractional or “percent” error in one of the inputs causes the same
fractional error in the output. The number of digits in a number
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provides a rough measure of its possible fractional error. These are
called significant figures or “sig figs.” Examples:

3.14 3 sig figs

3.1 2 sig figs

0.03 1 sig fig, because the zeroes are just placeholders

3.0× 101 2 sig figs

30 could be 1 or 2 sig figs, since we can’t tell if the
0 is a placeholder or a real sig fig

In such calculations, your result should not have more than the
number of sig figs in the least accurate piece of data you started
with.

Sig figs in the area of a triangle example 2
. A triangle has an area of 6.45 m2 and a base with a width of
4.0138 m. Find its height.

. The area is related to the base and height by A = bh/2.

h =
2A
b

= 3.21391200358762 m (calculator output)
= 3.21 m

The given data were 3 sig figs and 5 sig figs. We’re limited by the
less accurate piece of data, so the final result is 3 sig figs. The
additional digits on the calculator don’t mean anything, and if we
communicated them to another person, we would create the false
impression of having determined h with more precision than we
really obtained.

self-check F
The following quote is taken from an editorial by Norimitsu Onishi in the
New York Times, August 18, 2002.

Consider Nigeria. Everyone agrees it is Africa’s most populous
nation. But what is its population? The United Nations says
114 million; the State Department, 120 million. The World Bank
says 126.9 million, while the Central Intelligence Agency puts it
at 126,635,626.

What should bother you about this? . Answer, p. 564

Dealing correctly with significant figures can save you time! Of-
ten, students copy down numbers from their calculators with eight
significant figures of precision, then type them back in for a later
calculation. That’s a waste of time, unless your original data had
that kind of incredible precision.

self-check G
How many significant figures are there in each of the following mea-
surements?
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h / A diagram of a tomato.

(1) 9.937 m

(2) 4.0 s

(3) 0.0000000000000037 kg . Answer, p. 564

The rules about significant figures are only rules of thumb, and
are not a substitute for careful thinking. For instance, $20.00 +
$0.05 is $20.05. It need not and should not be rounded off to $20.
In general, the sig fig rules work best for multiplication and division,
and we sometimes also apply them when doing a complicated calcu-
lation that involves many types of operations. For simple addition
and subtraction, it makes more sense to maintain a fixed number of
digits after the decimal point.

When in doubt, don’t use the sig fig rules at all. Instead, in-
tentionally change one piece of your initial data by the maximum
amount by which you think it could have been off, and recalculate
the final result. The digits on the end that are completely reshuffled
are the ones that are meaningless, and should be omitted.

A nonlinear function example 3
. How many sig figs are there in sin 88.7◦?

. We’re using a sine function, which isn’t addition, subtraction,
multiplication, or division. It would be reasonable to guess that
since the input angle had 3 sig figs, so would the output. But if
this was an important calculation and we really needed to know,
we would do the following:

sin 88.7◦ = 0.999742609322698
sin 88.8◦ = 0.999780683474846

Surprisingly, the result appears to have as many as 5 sig figs, not
just 3:

sin 88.7◦ = 0.99974,

where the final 4 is uncertain but may have some significance.
The unexpectedly high precision of the result is because the sine
function is nearing its maximum at 90 degrees, where the graph
flattens out and becomes insensitive to the input angle.

0.11 A note about diagrams

A quick note about diagrams. Often when you solve a problem,
the best way to get started and organize your thoughts is by draw-
ing a diagram. For an artist, it’s desirable to be able to draw a
recognizable, realistic, perspective picture of a tomato, like the one
at the top of figure h. But in science and engineering, we usually
don’t draw solid figures in perspective, because that would make it
difficult to label distances and angles. Usually we want views or
cross-sections that project the object into its planes of symmetry,
as in the line drawings in the figure.
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Summary
Selected vocabulary
matter . . . . . . Anything that is affected by gravity.
light . . . . . . . . Anything that can travel from one place to an-

other through empty space and can influence
matter, but is not affected by gravity.

operational defi-
nition . . . . . . .

A definition that states what operations
should be carried out to measure the thing be-
ing defined.

Système Interna-
tional . . . . . . .

A fancy name for the metric system.

mks system . . . The use of metric units based on the meter,
kilogram, and second. Example: meters per
second is the mks unit of speed, not cm/s or
km/hr.

mass . . . . . . . A numerical measure of how difficult it is to
change an object’s motion.

significant figures Digits that contribute to the accuracy of a
measurement.

Notation
m . . . . . . . . . meter, the metric distance unit
kg . . . . . . . . . kilogram, the metric unit of mass
s . . . . . . . . . . second, the metric unit of time
M- . . . . . . . . . the metric prefix mega-, 106

k- . . . . . . . . . the metric prefix kilo-, 103

m- . . . . . . . . . the metric prefix milli-, 10−3

µ- . . . . . . . . . the metric prefix micro-, 10−6

n- . . . . . . . . . the metric prefix nano-, 10−9

Summary

Physics is the use of the scientific method to study the behavior
of light and matter. The scientific method requires a cycle of the-
ory and experiment, theories with both predictive and explanatory
value, and reproducible experiments.

The metric system is a simple, consistent framework for measure-
ment built out of the meter, the kilogram, and the second plus a set
of prefixes denoting powers of ten. The most systematic method for
doing conversions is shown in the following example:

370 ms× 10−3 s

1 ms
= 0.37 s

Mass is a measure of the amount of a substance. Mass can be
defined gravitationally, by comparing an object to a standard mass
on a double-pan balance, or in terms of inertia, by comparing the
effect of a force on an object to the effect of the same force on a
standard mass. The two definitions are found experimentally to
be proportional to each other to a high degree of precision, so we
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usually refer simply to “mass,” without bothering to specify which
type.

A force is that which can change the motion of an object. The
metric unit of force is the Newton, defined as the force required to
accelerate a standard 1-kg mass from rest to a speed of 1 m/s in 1
s.

Scientific notation means, for example, writing 3.2× 105 rather
than 320000.

Writing numbers with the correct number of significant figures
correctly communicates how accurate they are. As a rule of thumb,
the final result of a calculation is no more accurate than, and should
have no more significant figures than, the least accurate piece of
data.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Correct use of a calculator: (a) Calculate 74658
53222+97554 on a cal-

culator. [Self-check: The most common mistake results in 97555.40.]√

(b) Which would be more like the price of a TV, and which would
be more like the price of a house, $3.5× 105 or $3.55?

2 Compute the following things. If they don’t make sense be-
cause of units, say so.
(a) 3 cm + 5 cm
(b) 1.11 m + 22 cm
(c) 120 miles + 2.0 hours
(d) 120 miles / 2.0 hours

3 Your backyard has brick walls on both ends. You measure a
distance of 23.4 m from the inside of one wall to the inside of the
other. Each wall is 29.4 cm thick. How far is it from the outside
of one wall to the outside of the other? Pay attention to significant
figures.

4 The speed of light is 3.0 × 108 m/s. Convert this to furlongs
per fortnight. A furlong is 220 yards, and a fortnight is 14 days. An
inch is 2.54 cm.

√

5 Express each of the following quantities in micrograms:
(a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100× 103 g, (e) 1000 ng.

√

6 Convert 134 mg to units of kg, writing your answer in scientific
notation. . Solution, p. 547

7 In the last century, the average age of the onset of puberty for
girls has decreased by several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but it is more likely to be
because modern girls have more body fat on the average and pos-
sibly because of estrogen-mimicking chemicals in the environment
from the breakdown of pesticides. A hamburger from a hormone-
implanted steer has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas contains about 300
ng of estrogen. An adult woman produces about 0.5 mg of estrogen
per day (note the different unit!). (a) How many hamburgers would
a girl have to eat in one day to consume as much estrogen as an
adult woman’s daily production? (b) How many servings of peas?√
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Problem 10.

Problem 12.

8 The usual definition of the mean (average) of two numbers a
and b is (a+b)/2. This is called the arithmetic mean. The geometric
mean, however, is defined as (ab)1/2 (i.e., the square root of ab). For
the sake of definiteness, let’s say both numbers have units of mass.
(a) Compute the arithmetic mean of two numbers that have units
of grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If a and b both have units of grams,
what should we call the units of ab? Does your answer make sense
when you take the square root? (d) Suppose someone proposes to
you a third kind of mean, called the superduper mean, defined as
(ab)1/3. Is this reasonable? . Solution, p. 547

9 In an article on the SARS epidemic, the May 7, 2003 New
York Times discusses conflicting estimates of the disease’s incuba-
tion period (the average time that elapses from infection to the first
symptoms). “The study estimated it to be 6.4 days. But other sta-
tistical calculations ... showed that the incubation period could be
as long as 14.22 days.” What’s wrong here?

10 The photo shows the corner of a bag of pretzels. What’s
wrong here?

11 The distance to the horizon is given by the expression
√

2rh,
where r is the radius of the Earth, and h is the observer’s height
above the Earth’s surface. (This can be proved using the Pythagorean
theorem.) Show that the units of this expression make sense. Don’t
try to prove the result, just check its units. (See example 1 on p.
26 for an example of how to do this.)

12 (a) Based on the definitions of the sine, cosine, and tangent,
what units must they have? (b) A cute formula from trigonometry
lets you find any angle of a triangle if you know the lengths of
its sides. Using the notation shown in the figure, and letting s =
(a+ b+ c)/2 be half the perimeter, we have

tanA/2 =

√
(s− b)(s− c)
s(s− a)

.

Show that the units of this equation make sense. In other words,
check that the units of the right-hand side are the same as your
answer to part a of the question. . Solution, p. 547

13 A 2002 paper by Steegmann et al. uses data from modern
human groups like the Inuit to argue that Neanderthals in Ice Age
Europe had to eat up “to 4,480 kcal per day to support strenuous
winter foraging and cold resistance costs.” What’s wrong here?
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Exercise 0: Models and idealization
Equipment:

coffee filters

ramps (one per group)

balls of various sizes

sticky tape

vacuum pump and “guinea and feather” apparatus (one)

The motion of falling objects has been recognized since ancient times as an important piece of
physics, but the motion is inconveniently fast, so in our everyday experience it can be hard to
tell exactly what objects are doing when they fall. In this exercise you will use several techniques
to get around this problem and study the motion. Your goal is to construct a scientific model of
falling. A model means an explanation that makes testable predictions. Often models contain
simplifications or idealizations that make them easier to work with, even though they are not
strictly realistic.

1. One method of making falling easier to observe is to use objects like feathers that we know
from everyday experience will not fall as fast. You will use coffee filters, in stacks of various
sizes, to test the following two hypotheses and see which one is true, or whether neither is true:

Hypothesis 1A: When an object is dropped, it rapidly speeds up to a certain natural falling
speed, and then continues to fall at that speed. The falling speed is proportional to the object’s
weight. (A proportionality is not just a statement that if one thing gets bigger, the other does
too. It says that if one becomes three times bigger, the other also gets three times bigger, etc.)

Hypothesis 1B: Different objects fall the same way, regardless of weight.

Test these hypotheses and discuss your results with your instructor.

2. A second way to slow down the action is to let a ball roll down a ramp. The steeper the
ramp, the closer to free fall. Based on your experience in part 1, write a hypothesis about what
will happen when you race a heavier ball against a lighter ball down the same ramp, starting
them both from rest.

Hypothesis:

Show your hypothesis to your instructor, and then test it.

You have probably found that falling was more complicated than you thought! Is there more
than one factor that affects the motion of a falling object? Can you imagine certain idealized
situations that are simpler? Try to agree verbally with your group on an informal model of
falling that can make predictions about the experiments described in parts 3 and 4.

3. You have three balls: a standard “comparison ball” of medium weight, a light ball, and a
heavy ball. Suppose you stand on a chair and (a) drop the light ball side by side with the
comparison ball, then (b) drop the heavy ball side by side with the comparison ball, then (c)
join the light and heavy balls together with sticky tape and drop them side by side with the
comparison ball.

Use your model to make a prediction:

Test your prediction.
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4. Your instructor will pump nearly all the air out of a chamber containing a feather and a
heavier object, then let them fall side by side in the chamber.

Use your model to make a prediction:
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a / Amoebas this size are
seldom encountered.

Life would be very different if you
were the size of an insect.

Chapter 1

Scaling and Estimation

1.1 Introduction

Why can’t an insect be the size of a dog? Some skinny stretched-
out cells in your spinal cord are a meter tall — why does nature
display no single cells that are not just a meter tall, but a meter
wide, and a meter thick as well? Believe it or not, these are questions
that can be answered fairly easily without knowing much more about
physics than you already do. The only mathematical technique you
really need is the humble conversion, applied to area and volume.

Area and volume

Area can be defined by saying that we can copy the shape of
interest onto graph paper with 1 cm × 1 cm squares and count the
number of squares inside. Fractions of squares can be estimated by
eye. We then say the area equals the number of squares, in units of
square cm. Although this might seem less “pure” than computing
areas using formulae like A = πr2 for a circle or A = wh/2 for a
triangle, those formulae are not useful as definitions of area because
they cannot be applied to irregularly shaped areas.

Units of square cm are more commonly written as cm2 in science.
Of course, the unit of measurement symbolized by “cm” is not an

41



algebra symbol standing for a number that can be literally multiplied
by itself. But it is advantageous to write the units of area that way
and treat the units as if they were algebra symbols. For instance,
if you have a rectangle with an area of 6m2 and a width of 2 m,
then calculating its length as (6 m2)/(2 m) = 3 m gives a result
that makes sense both numerically and in terms of units. This
algebra-style treatment of the units also ensures that our methods
of converting units work out correctly. For instance, if we accept
the fraction

100 cm

1 m

as a valid way of writing the number one, then one times one equals
one, so we should also say that one can be represented by

100 cm

1 m
× 100 cm

1 m
,

which is the same as
10000 cm2

1 m2
.

That means the conversion factor from square meters to square cen-
timeters is a factor of 104, i.e., a square meter has 104 square cen-
timeters in it.

All of the above can be easily applied to volume as well, using
one-cubic-centimeter blocks instead of squares on graph paper.

To many people, it seems hard to believe that a square meter
equals 10000 square centimeters, or that a cubic meter equals a
million cubic centimeters — they think it would make more sense if
there were 100 cm2 in 1 m2, and 100 cm3 in 1 m3, but that would be
incorrect. The examples shown in figure b aim to make the correct
answer more believable, using the traditional U.S. units of feet and
yards. (One foot is 12 inches, and one yard is three feet.)

b / Visualizing conversions of
area and volume using traditional
U.S. units.

self-check A
Based on figure b, convince yourself that there are 9 ft2 in a square yard,
and 27 ft3 in a cubic yard, then demonstrate the same thing symbolically
(i.e., with the method using fractions that equal one). . Answer, p.
564
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. Solved problem: converting mm2 to cm2 page 59, problem 10

. Solved problem: scaling a liter page 60, problem 19

Discussion question

A How many square centimeters are there in a square inch? (1 inch =
2.54 cm) First find an approximate answer by making a drawing, then de-
rive the conversion factor more accurately using the symbolic method.

c / Galileo Galilei (1564-1642) was a Renaissance Italian who brought the
scientific method to bear on physics, creating the modern version of the
science. Coming from a noble but very poor family, Galileo had to drop
out of medical school at the University of Pisa when he ran out of money.
Eventually becoming a lecturer in mathematics at the same school, he
began a career as a notorious troublemaker by writing a burlesque ridi-
culing the university’s regulations — he was forced to resign, but found a
new teaching position at Padua. He invented the pendulum clock, inves-
tigated the motion of falling bodies, and discovered the moons of Jupiter.
The thrust of his life’s work was to discredit Aristotle’s physics by con-
fronting it with contradictory experiments, a program that paved the way
for Newton’s discovery of the relationship between force and motion. In
chapter 3 we’ll come to the story of Galileo’s ultimate fate at the hands of
the Church.

1.2 Scaling of area and volume
Great fleas have lesser fleas
Upon their backs to bite ’em.
And lesser fleas have lesser still,
And so ad infinitum.

Jonathan Swift

Now how do these conversions of area and volume relate to the
questions I posed about sizes of living things? Well, imagine that
you are shrunk like Alice in Wonderland to the size of an insect.
One way of thinking about the change of scale is that what used
to look like a centimeter now looks like perhaps a meter to you,
because you’re so much smaller. If area and volume scaled according
to most people’s intuitive, incorrect expectations, with 1 m2 being
the same as 100 cm2, then there would be no particular reason
why nature should behave any differently on your new, reduced
scale. But nature does behave differently now that you’re small.
For instance, you will find that you can walk on water, and jump
to many times your own height. The physicist Galileo Galilei had
the basic insight that the scaling of area and volume determines
how natural phenomena behave differently on different scales. He
first reasoned about mechanical structures, but later extended his
insights to living things, taking the then-radical point of view that at
the fundamental level, a living organism should follow the same laws
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d / The small boat holds up
just fine.

e / A larger boat built with
the same proportions as the
small one will collapse under its
own weight.

f / A boat this large needs to
have timbers that are thicker
compared to its size.

of nature as a machine. We will follow his lead by first discussing
machines and then living things.

Galileo on the behavior of nature on large and small scales

One of the world’s most famous pieces of scientific writing is
Galileo’s Dialogues Concerning the Two New Sciences. Galileo was
an entertaining writer who wanted to explain things clearly to laypeo-
ple, and he livened up his work by casting it in the form of a dialogue
among three people. Salviati is really Galileo’s alter ego. Simplicio
is the stupid character, and one of the reasons Galileo got in trouble
with the Church was that there were rumors that Simplicio repre-
sented the Pope. Sagredo is the earnest and intelligent student, with
whom the reader is supposed to identify. (The following excerpts
are from the 1914 translation by Crew and de Salvio.)

SAGREDO: Yes, that is what I mean; and I refer especially to
his last assertion which I have always regarded as false. . . ;
namely, that in speaking of these and other similar machines
one cannot argue from the small to the large, because many
devices which succeed on a small scale do not work on a
large scale. Now, since mechanics has its foundations in ge-
ometry, where mere size [ is unimportant], I do not see that
the properties of circles, triangles, cylinders, cones and other
solid figures will change with their size. If, therefore, a large
machine be constructed in such a way that its parts bear to
one another the same ratio as in a smaller one, and if the
smaller is sufficiently strong for the purpose for which it is
designed, I do not see why the larger should not be able to
withstand any severe and destructive tests to which it may be
subjected.

Salviati contradicts Sagredo:

SALVIATI: . . . Please observe, gentlemen, how facts which
at first seem improbable will, even on scant explanation, drop
the cloak which has hidden them and stand forth in naked and
simple beauty. Who does not know that a horse falling from a
height of three or four cubits will break his bones, while a dog
falling from the same height or a cat from a height of eight
or ten cubits will suffer no injury? Equally harmless would be
the fall of a grasshopper from a tower or the fall of an ant from
the distance of the moon.

The point Galileo is making here is that small things are sturdier
in proportion to their size. There are a lot of objections that could be
raised, however. After all, what does it really mean for something to
be “strong”, to be “strong in proportion to its size,” or to be strong
“out of proportion to its size?” Galileo hasn’t given operational
definitions of things like “strength,” i.e., definitions that spell out
how to measure them numerically.
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g / Galileo discusses planks
made of wood, but the concept
may be easier to imagine with
clay. All three clay rods in the
figure were originally the same
shape. The medium-sized one
was twice the height, twice the
length, and twice the width of
the small one, and similarly the
large one was twice as big as
the medium one in all its linear
dimensions. The big one has
four times the linear dimensions
of the small one, 16 times the
cross-sectional area when cut
perpendicular to the page, and
64 times the volume. That means
that the big one has 64 times the
weight to support, but only 16
times the strength compared to
the smallest one.

Also, a cat is shaped differently from a horse — an enlarged
photograph of a cat would not be mistaken for a horse, even if the
photo-doctoring experts at the National Inquirer made it look like a
person was riding on its back. A grasshopper is not even a mammal,
and it has an exoskeleton instead of an internal skeleton. The whole
argument would be a lot more convincing if we could do some iso-
lation of variables, a scientific term that means to change only one
thing at a time, isolating it from the other variables that might have
an effect. If size is the variable whose effect we’re interested in see-
ing, then we don’t really want to compare things that are different
in size but also different in other ways.

SALVIATI: . . . we asked the reason why [shipbuilders] em-
ployed stocks, scaffolding, and bracing of larger dimensions
for launching a big vessel than they do for a small one; and
[an old man] answered that they did this in order to avoid the
danger of the ship parting under its own heavy weight, a dan-
ger to which small boats are not subject?

After this entertaining but not scientifically rigorous beginning,
Galileo starts to do something worthwhile by modern standards.
He simplifies everything by considering the strength of a wooden
plank. The variables involved can then be narrowed down to the
type of wood, the width, the thickness, and the length. He also
gives an operational definition of what it means for the plank to
have a certain strength “in proportion to its size,” by introducing
the concept of a plank that is the longest one that would not snap
under its own weight if supported at one end. If you increased
its length by the slightest amount, without increasing its width or
thickness, it would break. He says that if one plank is the same
shape as another but a different size, appearing like a reduced or
enlarged photograph of the other, then the planks would be strong
“in proportion to their sizes” if both were just barely able to support
their own weight.

h / 1. This plank is as long as it
can be without collapsing under
its own weight. If it was a hun-
dredth of an inch longer, it would
collapse. 2. This plank is made
out of the same kind of wood. It is
twice as thick, twice as long, and
twice as wide. It will collapse un-
der its own weight.
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Also, Galileo is doing something that would be frowned on in
modern science: he is mixing experiments whose results he has ac-
tually observed (building boats of different sizes), with experiments
that he could not possibly have done (dropping an ant from the
height of the moon). He now relates how he has done actual ex-
periments with such planks, and found that, according to this op-
erational definition, they are not strong in proportion to their sizes.
The larger one breaks. He makes sure to tell the reader how impor-
tant the result is, via Sagredo’s astonished response:

SAGREDO: My brain already reels. My mind, like a cloud
momentarily illuminated by a lightning flash, is for an instant
filled with an unusual light, which now beckons to me and
which now suddenly mingles and obscures strange, crude
ideas. From what you have said it appears to me impossible
to build two similar structures of the same material, but of
different sizes and have them proportionately strong.

In other words, this specific experiment, using things like wooden
planks that have no intrinsic scientific interest, has very wide impli-
cations because it points out a general principle, that nature acts
differently on different scales.

To finish the discussion, Galileo gives an explanation. He says
that the strength of a plank (defined as, say, the weight of the heav-
iest boulder you could put on the end without breaking it) is pro-
portional to its cross-sectional area, that is, the surface area of the
fresh wood that would be exposed if you sawed through it in the
middle. Its weight, however, is proportional to its volume.1

How do the volume and cross-sectional area of the longer plank
compare with those of the shorter plank? We have already seen,
while discussing conversions of the units of area and volume, that
these quantities don’t act the way most people naively expect. You
might think that the volume and area of the longer plank would both
be doubled compared to the shorter plank, so they would increase
in proportion to each other, and the longer plank would be equally
able to support its weight. You would be wrong, but Galileo knows
that this is a common misconception, so he has Salviati address the
point specifically:

SALVIATI: . . . Take, for example, a cube two inches on a
side so that each face has an area of four square inches
and the total area, i.e., the sum of the six faces, amounts
to twenty-four square inches; now imagine this cube to be
sawed through three times [with cuts in three perpendicular
planes] so as to divide it into eight smaller cubes, each one
inch on the side, each face one inch square, and the total

1Galileo makes a slightly more complicated argument, taking into account
the effect of leverage (torque). The result I’m referring to comes out the same
regardless of this effect.
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i / The area of a shape is
proportional to the square of its
linear dimensions, even if the
shape is irregular.

surface of each cube six square inches instead of twenty-
four in the case of the larger cube. It is evident therefore,
that the surface of the little cube is only one-fourth that of
the larger, namely, the ratio of six to twenty-four; but the vol-
ume of the solid cube itself is only one-eighth; the volume,
and hence also the weight, diminishes therefore much more
rapidly than the surface. . . You see, therefore, Simplicio, that
I was not mistaken when . . . I said that the surface of a small
solid is comparatively greater than that of a large one.

The same reasoning applies to the planks. Even though they
are not cubes, the large one could be sawed into eight small ones,
each with half the length, half the thickness, and half the width.
The small plank, therefore, has more surface area in proportion to
its weight, and is therefore able to support its own weight while the
large one breaks.

Scaling of area and volume for irregularly shaped objects

You probably are not going to believe Galileo’s claim that this
has deep implications for all of nature unless you can be convinced
that the same is true for any shape. Every drawing you’ve seen so
far has been of squares, rectangles, and rectangular solids. Clearly
the reasoning about sawing things up into smaller pieces would not
prove anything about, say, an egg, which cannot be cut up into eight
smaller egg-shaped objects with half the length.

Is it always true that something half the size has one quarter
the surface area and one eighth the volume, even if it has an irreg-
ular shape? Take the example of a child’s violin. Violins are made
for small children in smaller size to accomodate their small bodies.
Figure i shows a full-size violin, along with two violins made with
half and 3/4 of the normal length.2 Let’s study the surface area of
the front panels of the three violins.

Consider the square in the interior of the panel of the full-size
violin. In the 3/4-size violin, its height and width are both smaller
by a factor of 3/4, so the area of the corresponding, smaller square
becomes 3/4×3/4 = 9/16 of the original area, not 3/4 of the original
area. Similarly, the corresponding square on the smallest violin has
half the height and half the width of the original one, so its area is
1/4 the original area, not half.

The same reasoning works for parts of the panel near the edge,
such as the part that only partially fills in the other square. The
entire square scales down the same as a square in the interior, and
in each violin the same fraction (about 70%) of the square is full, so
the contribution of this part to the total area scales down just the
same.

2The customary terms “half-size” and “3/4-size” actually don’t describe the
sizes in any accurate way. They’re really just standard, arbitrary marketing
labels.
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j / The muffin comes out of
the oven too hot to eat. Breaking
it up into four pieces increases
its surface area while keeping
the total volume the same. It
cools faster because of the
greater surface-to-volume ratio.
In general, smaller things have
greater surface-to-volume ratios,
but in this example there is no
easy way to compute the effect
exactly, because the small pieces
aren’t the same shape as the
original muffin.

Since any small square region or any small region covering part
of a square scales down like a square object, the entire surface area
of an irregularly shaped object changes in the same manner as the
surface area of a square: scaling it down by 3/4 reduces the area by
a factor of 9/16, and so on.

In general, we can see that any time there are two objects with
the same shape, but different linear dimensions (i.e., one looks like a
reduced photo of the other), the ratio of their areas equals the ratio
of the squares of their linear dimensions:

A1

A2
=

(
L1

L2

)2

.

Note that it doesn’t matter where we choose to measure the linear
size, L, of an object. In the case of the violins, for instance, it could
have been measured vertically, horizontally, diagonally, or even from
the bottom of the left f-hole to the middle of the right f-hole. We
just have to measure it in a consistent way on each violin. Since all
the parts are assumed to shrink or expand in the same manner, the
ratio L1/L2 is independent of the choice of measurement.

It is also important to realize that it is completely unnecessary
to have a formula for the area of a violin. It is only possible to
derive simple formulas for the areas of certain shapes like circles,
rectangles, triangles and so on, but that is no impediment to the
type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in terms
of ratios, especially when more than two objects are being compared.
A more compact way of rewriting the previous equation is

A ∝ L2.

The symbol “∝” means “is proportional to.” Scientists and engi-
neers often speak about such relationships verbally using the phrases
“scales like” or “goes like,” for instance “area goes like length squared.”

All of the above reasoning works just as well in the case of vol-
ume. Volume goes like length cubed:

V ∝ L3.

self-check B
When a car or truck travels over a road, there is wear and tear on the
road surface, which incurs a cost. Studies show that the cost C per kilo-
meter of travel is related to the weight per axle w by C ∝ w4. Translate
this into a statement about ratios. . Answer, p. 564

If different objects are made of the same material with the same
density, ρ = m/V , then their masses, m = ρV , are proportional to
L3. (The symbol for density is ρ, the lower-case Greek letter “rho.”)
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k / Example 1. The big trian-
gle has four times more area than
the little one.

l / A tricky way of solving ex-
ample 1, explained in solution #2.

An important point is that all of the above reasoning about
scaling only applies to objects that are the same shape. For instance,
a piece of paper is larger than a pencil, but has a much greater
surface-to-volume ratio.

Scaling of the area of a triangle example 1
. In figure k, the larger triangle has sides twice as long. How
many times greater is its area?

Correct solution #1: Area scales in proportion to the square of the
linear dimensions, so the larger triangle has four times more area
(22 = 4).

Correct solution #2: You could cut the larger triangle into four of
the smaller size, as shown in fig. (b), so its area is four times
greater. (This solution is correct, but it would not work for a shape
like a circle, which can’t be cut up into smaller circles.)

Correct solution #3: The area of a triangle is given by

A = bh/2, where b is the base and h is the height. The areas of
the triangles are

A1 = b1h1/2
A2 = b2h2/2

= (2b1)(2h1)/2
= 2b1h1

A2/A1 = (2b1h1)/(b1h1/2)
= 4

(Although this solution is correct, it is a lot more work than solution
#1, and it can only be used in this case because a triangle is a
simple geometric shape, and we happen to know a formula for its
area.)

Correct solution #4: The area of a triangle is A = bh/2. The
comparison of the areas will come out the same as long as the
ratios of the linear sizes of the triangles is as specified, so let’s
just say b1 = 1.00 m and b2 = 2.00 m. The heights are then also
h1 = 1.00 m and h2 = 2.00 m, giving areas A1 = 0.50 m2 and
A2 = 2.00 m2, so A2/A1 = 4.00.

(The solution is correct, but it wouldn’t work with a shape for
whose area we don’t have a formula. Also, the numerical cal-
culation might make the answer of 4.00 appear inexact, whereas
solution #1 makes it clear that it is exactly 4.)

Incorrect solution: The area of a triangle is A = bh/2, and if you
plug in b = 2.00 m and h = 2.00 m, you get A = 2.00 m2, so
the bigger triangle has 2.00 times more area. (This solution is
incorrect because no comparison has been made with the smaller
triangle.)
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m / Example 2. The big sphere
has 125 times more volume than
the little one.

n / Example 3. The 48-point
“S” has 1.78 times more area
than the 36-point “S.”

Scaling of the volume of a sphere example 2
. In figure m, the larger sphere has a radius that is five times
greater. How many times greater is its volume?

Correct solution #1: Volume scales like the third power of the
linear size, so the larger sphere has a volume that is 125 times
greater (53 = 125).

Correct solution #2: The volume of a sphere is V = (4/3)πr3, so

V1 =
4
3
πr3

1

V2 =
4
3
πr3

2

=
4
3
π(5r1)3

=
500

3
πr3

1

V2/V1 =
(

500
3
πr3

1

)
/

(
4
3
πr3

1

)
= 125

Incorrect solution: The volume of a sphere is V = (4/3)πr3, so

V1 =
4
3
πr3

1

V2 =
4
3
πr3

2

=
4
3
π · 5r3

1

=
20
3
πr3

1

V2/V1 =
(

20
3
πr3

1

)
/

(
4
3
πr3

1

)
= 5

(The solution is incorrect because (5r1)3 is not the same as 5r3
1 .)

Scaling of a more complex shape example 3
. The first letter “S” in figure n is in a 36-point font, the second in
48-point. How many times more ink is required to make the larger
“S”? (Points are a unit of length used in typography.)

Correct solution: The amount of ink depends on the area to be
covered with ink, and area is proportional to the square of the
linear dimensions, so the amount of ink required for the second
“S” is greater by a factor of (48/36)2 = 1.78.

Incorrect solution: The length of the curve of the second “S” is
longer by a factor of 48/36 = 1.33, so 1.33 times more ink is
required.

(The solution is wrong because it assumes incorrectly that the
width of the curve is the same in both cases. Actually both the
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width and the length of the curve are greater by a factor of 48/36,
so the area is greater by a factor of (48/36)2 = 1.78.)

Reasoning about ratios and proportionalities is one of the three
essential mathematical skills, summarized on pp.545-546, that you
need for success in this course.

. Solved problem: a telescope gathers light page 59, problem 11

. Solved problem: distance from an earthquake page 59, problem 12

Discussion questions

A A toy fire engine is 1/30 the size of the real one, but is constructed
from the same metal with the same proportions. How many times smaller
is its weight? How many times less red paint would be needed to paint
it?

B Galileo spends a lot of time in his dialog discussing what really
happens when things break. He discusses everything in terms of Aristo-
tle’s now-discredited explanation that things are hard to break, because
if something breaks, there has to be a gap between the two halves with
nothing in between, at least initially. Nature, according to Aristotle, “ab-
hors a vacuum,” i.e., nature doesn’t “like” empty space to exist. Of course,
air will rush into the gap immediately, but at the very moment of breaking,
Aristotle imagined a vacuum in the gap. Is Aristotle’s explanation of why
it is hard to break things an experimentally testable statement? If so, how
could it be tested experimentally?

1.3 ? Scaling applied to biology
Organisms of different sizes with the same shape

The left-hand panel in figure o shows the approximate valid-
ity of the proportionality m ∝ L3 for cockroaches (redrawn from
McMahon and Bonner). The scatter of the points around the curve
indicates that some cockroaches are proportioned slightly differently
from others, but in general the data seem well described by m ∝ L3.
That means that the largest cockroaches the experimenter could
raise (is there a 4-H prize?) had roughly the same shape as the
smallest ones.

Another relationship that should exist for animals of different
sizes shaped in the same way is that between surface area and
body mass. If all the animals have the same average density, then
body mass should be proportional to the cube of the animal’s lin-
ear size, m ∝ L3, while surface area should vary proportionately to
L2. Therefore, the animals’ surface areas should be proportional to
m2/3. As shown in the right-hand panel of figure o, this relationship
appears to hold quite well for the dwarf siren, a type of salamander.
Notice how the curve bends over, meaning that the surface area does
not increase as quickly as body mass, e.g., a salamander with eight
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o / Geometrical scaling of animals.

times more body mass will have only four times more surface area.

This behavior of the ratio of surface area to mass (or, equiv-
alently, the ratio of surface area to volume) has important conse-
quences for mammals, which must maintain a constant body tem-
perature. It would make sense for the rate of heat loss through the
animal’s skin to be proportional to its surface area, so we should
expect small animals, having large ratios of surface area to volume,
to need to produce a great deal of heat in comparison to their size to
avoid dying from low body temperature. This expectation is borne
out by the data of the left-hand panel of figure p, showing the rate
of oxygen consumption of guinea pigs as a function of their body
mass. Neither an animal’s heat production nor its surface area is
convenient to measure, but in order to produce heat, the animal
must metabolize oxygen, so oxygen consumption is a good indicator
of the rate of heat production. Since surface area is proportional to
m2/3, the proportionality of the rate of oxygen consumption to m2/3

is consistent with the idea that the animal needs to produce heat at a
rate in proportion to its surface area. Although the smaller animals
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p / Scaling of animals’ bodies related to metabolic rate and skeletal strength.

metabolize less oxygen and produce less heat in absolute terms, the
amount of food and oxygen they must consume is greater in propor-
tion to their own mass. The Etruscan pigmy shrew, weighing in at
2 grams as an adult, is at about the lower size limit for mammals.
It must eat continually, consuming many times its body weight each
day to survive.

Changes in shape to accommodate changes in size

Large mammals, such as elephants, have a small ratio of surface
area to volume, and have problems getting rid of their heat fast
enough. An elephant cannot simply eat small enough amounts to
keep from producing excessive heat, because cells need to have a
certain minimum metabolic rate to run their internal machinery.
Hence the elephant’s large ears, which add to its surface area and
help it to cool itself. Previously, we have seen several examples
of data within a given species that were consistent with a fixed
shape, scaled up and down in the cases of individual specimens. The
elephant’s ears are an example of a change in shape necessitated by
a change in scale.
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q / Galileo’s original drawing,
showing how larger animals’
bones must be greater in diam-
eter compared to their lengths.

Large animals also must be able to support their own weight.
Returning to the example of the strengths of planks of different
sizes, we can see that if the strength of the plank depends on area
while its weight depends on volume, then the ratio of strength to
weight goes as follows:

strength/weight ∝ A/V ∝ 1/L.

Thus, the ability of objects to support their own weights decreases
inversely in proportion to their linear dimensions. If an object is to
be just barely able to support its own weight, then a larger version
will have to be proportioned differently, with a different shape.

Since the data on the cockroaches seemed to be consistent with
roughly similar shapes within the species, it appears that the abil-
ity to support its own weight was not the tightest design constraint
that Nature was working under when she designed them. For large
animals, structural strength is important. Galileo was the first to
quantify this reasoning and to explain why, for instance, a large an-
imal must have bones that are thicker in proportion to their length.
Consider a roughly cylindrical bone such as a leg bone or a vertebra.
The length of the bone, L, is dictated by the overall linear size of the
animal, since the animal’s skeleton must reach the animal’s whole
length. We expect the animal’s mass to scale as L3, so the strength
of the bone must also scale as L3. Strength is proportional to cross-
sectional area, as with the wooden planks, so if the diameter of the
bone is d, then

d2 ∝ L3

or

d ∝ L3/2.

If the shape stayed the same regardless of size, then all linear di-
mensions, including d and L, would be proportional to one another.
If our reasoning holds, then the fact that d is proportional to L3/2,
not L, implies a change in proportions of the bone. As shown in the
right-hand panel of figure p, the vertebrae of African Bovidae follow
the rule d ∝ L3/2 fairly well. The vertebrae of the giant eland are
as chunky as a coffee mug, while those of a Gunther’s dik-dik are as
slender as the cap of a pen.

Discussion questions

A Single-celled animals must passively absorb nutrients and oxygen
from their surroundings, unlike humans who have lungs to pump air in and
out and a heart to distribute the oxygenated blood throughout their bodies.
Even the cells composing the bodies of multicellular animals must absorb
oxygen from a nearby capillary through their surfaces. Based on these
facts, explain why cells are always microscopic in size.

B The reasoning of the previous question would seem to be contra-
dicted by the fact that human nerve cells in the spinal cord can be as
much as a meter long, although their widths are still very small. Why is
this possible?
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1.4 Order-of-magnitude estimates
It is the mark of an instructed mind to rest satisfied with the
degree of precision that the nature of the subject permits and
not to seek an exactness where only an approximation of the
truth is possible.

Aristotle

It is a common misconception that science must be exact. For
instance, in the Star Trek TV series, it would often happen that
Captain Kirk would ask Mr. Spock, “Spock, we’re in a pretty bad
situation. What do you think are our chances of getting out of
here?” The scientific Mr. Spock would answer with something like,
“Captain, I estimate the odds as 237.345 to one.” In reality, he
could not have estimated the odds with six significant figures of
accuracy, but nevertheless one of the hallmarks of a person with a
good education in science is the ability to make estimates that are
likely to be at least somewhere in the right ballpark. In many such
situations, it is often only necessary to get an answer that is off by no
more than a factor of ten in either direction. Since things that differ
by a factor of ten are said to differ by one order of magnitude, such
an estimate is called an order-of-magnitude estimate. The tilde,
∼, is used to indicate that things are only of the same order of
magnitude, but not exactly equal, as in

odds of survival ∼ 100 to one.

The tilde can also be used in front of an individual number to em-
phasize that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems simple and
natural to experienced scientists, it’s a mode of reasoning that is
completely unfamiliar to most college students. Some of the typical
mental steps can be illustrated in the following example.

Cost of transporting tomatoes (incorrect solution) example 4
. Roughly what percentage of the price of a tomato comes from
the cost of transporting it in a truck?

. The following incorrect solution illustrates one of the main ways
you can go wrong in order-of-magnitude estimates.

Incorrect solution: Let’s say the trucker needs to make a $400
profit on the trip. Taking into account her benefits, the cost of gas,
and maintenance and payments on the truck, let’s say the total
cost is more like $2000. I’d guess about 5000 tomatoes would fit
in the back of the truck, so the extra cost per tomato is 40 cents.
That means the cost of transporting one tomato is comparable to
the cost of the tomato itself. Transportation really adds a lot to the
cost of produce, I guess.

The problem is that the human brain is not very good at esti-
mating area or volume, so it turns out the estimate of 5000 tomatoes
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r / Can you guess how many
jelly beans are in the jar? If you
try to guess directly, you will
almost certainly underestimate.
The right way to do it is to esti-
mate the linear dimensions, then
get the volume indirectly. See
problem 26, p. 62.

s / Consider a spherical cow.

fitting in the truck is way off. That’s why people have a hard time
at those contests where you are supposed to estimate the number of
jellybeans in a big jar. Another example is that most people think
their families use about 10 gallons of water per day, but in reality
the average is about 300 gallons per day. When estimating area
or volume, you are much better off estimating linear dimensions,
and computing volume from the linear dimensions. Here’s a better
solution to the problem about the tomato truck:

Cost of transporting tomatoes (correct solution) example 5
As in the previous solution, say the cost of the trip is $2000. The
dimensions of the bin are probably 4 m × 2 m × 1 m, for a vol-
ume of 8 m3. Since the whole thing is just an order-of-magnitude
estimate, let’s round that off to the nearest power of ten, 10 m3.
The shape of a tomato is complicated, and I don’t know any for-
mula for the volume of a tomato shape, but since this is just an
estimate, let’s pretend that a tomato is a cube, 0.05 m × 0.05 m ×
0.05 m, for a volume of 1.25× 10−4 m3. Since this is just a rough
estimate, let’s round that to 10−4m3. We can find the total num-
ber of tomatoes by dividing the volume of the bin by the volume
of one tomato: 10 m3/10−4 m3 = 105 tomatoes. The transporta-
tion cost per tomato is $2000/105 tomatoes=$0.02/tomato. That
means that transportation really doesn’t contribute very much to
the cost of a tomato.

Approximating the shape of a tomato as a cube is an example of
another general strategy for making order-of-magnitude estimates.
A similar situation would occur if you were trying to estimate how
many m2 of leather could be produced from a herd of ten thousand
cattle. There is no point in trying to take into account the shape of
the cows’ bodies. A reasonable plan of attack might be to consider
a spherical cow. Probably a cow has roughly the same surface area
as a sphere with a radius of about 1 m, which would be 4π(1 m)2.
Using the well-known facts that pi equals three, and four times three
equals about ten, we can guess that a cow has a surface area of about
10 m2, so the herd as a whole might yield 105 m2 of leather.

Estimating mass indirectly example 6
Usually the best way to estimate mass is to estimate linear di-
mensions, then use those to infer volume, and then get the mass
based on the volume. For example, Amphicoelias, shown in the
figure, may have been the largest land animal ever to live. Fossils
tell us the linear dimensions of an animal, but we can only indi-
rectly guess its mass. Given the length scale in the figure, let’s
estimate the mass of an Amphicoelias.

Its torso looks like it can be approximated by a rectangular box
with dimensions 10 m×5 m×3 m, giving about 2×102 m3. Living
things are mostly made of water, so we assume the animal to
have the density of water, 1 g/cm3, which converts to 103 kg/m3.
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This gives a mass of about 2× 105 kg, or 200 metric tons.

The following list summarizes the strategies for getting a good
order-of-magnitude estimate.

1. Don’t even attempt more than one significant figure of preci-
sion.

2. Don’t guess area, volume, or mass directly. Guess linear di-
mensions and get area, volume, or mass from them.

3. When dealing with areas or volumes of objects with complex
shapes, idealize them as if they were some simpler shape, a
cube or a sphere, for example.

4. Check your final answer to see if it is reasonable. If you esti-
mate that a herd of ten thousand cattle would yield 0.01 m2

of leather, then you have probably made a mistake with con-
version factors somewhere.
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Summary
Notation
∝ . . . . . . . . . is proportional to
∼ . . . . . . . . . on the order of, is on the order of

Summary

Nature behaves differently on large and small scales. Galileo
showed that this results fundamentally from the way area and vol-
ume scale. Area scales as the second power of length, A ∝ L2, while
volume scales as length to the third power, V ∝ L3.

An order of magnitude estimate is one in which we do not at-
tempt or expect an exact answer. The main reason why the unini-
tiated have trouble with order-of-magnitude estimates is that the
human brain does not intuitively make accurate estimates of area
and volume. Estimates of area and volume should be approached
by first estimating linear dimensions, which one’s brain has a feel
for.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 How many cubic inches are there in a cubic foot? The answer
is not 12.

√

2 Assume a dog’s brain is twice as great in diameter as a cat’s,
but each animal’s brain cells are the same size and their brains are
the same shape. In addition to being a far better companion and
much nicer to come home to, how many times more brain cells does
a dog have than a cat? The answer is not 2.

3 The population density of Los Angeles is about 4000 people/km2.
That of San Francisco is about 6000 people/km2. How many times
farther away is the average person’s nearest neighbor in LA than in
San Francisco? The answer is not 1.5.

√

4 A hunting dog’s nose has about 10 square inches of active
surface. How is this possible, since the dog’s nose is only about 1 in
× 1 in × 1 in = 1 in3? After all, 10 is greater than 1, so how can it
fit?

5 Estimate the number of blades of grass on a football field.

6 In a computer memory chip, each bit of information (a 0 or
a 1) is stored in a single tiny circuit etched onto the surface of a
silicon chip. The circuits cover the surface of the chip like lots in a
housing development. A typical chip stores 64 Mb (megabytes) of
data, where a byte is 8 bits. Estimate (a) the area of each circuit,
and (b) its linear size.

7 Suppose someone built a gigantic apartment building, mea-
suring 10 km × 10 km at the base. Estimate how tall the building
would have to be to have space in it for the entire world’s population
to live.

8 A hamburger chain advertises that it has sold 10 billion Bongo
Burgers. Estimate the total mass of feed required to raise the cows
used to make the burgers.

9 Estimate the volume of a human body, in cm3.

10 How many cm2 is 1 mm2? . Solution, p. 547

11 Compare the light-gathering powers of a 3-cm-diameter tele-
scope and a 30-cm telescope. . Solution, p. 547

12 One step on the Richter scale corresponds to a factor of 100
in terms of the energy absorbed by something on the surface of the
Earth, e.g., a house. For instance, a 9.3-magnitude quake would
release 100 times more energy than an 8.3. The energy spreads out
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Albert Einstein, and his mous-
tache, problem 14.

Problem 19.

from the epicenter as a wave, and for the sake of this problem we’ll
assume we’re dealing with seismic waves that spread out in three
dimensions, so that we can visualize them as hemispheres spreading
out under the surface of the earth. If a certain 7.6-magnitude earth-
quake and a certain 5.6-magnitude earthquake produce the same
amount of vibration where I live, compare the distances from my
house to the two epicenters. . Solution, p. 548

13 In Europe, a piece of paper of the standard size, called A4,
is a little narrower and taller than its American counterpart. The
ratio of the height to the width is the square root of 2, and this has
some useful properties. For instance, if you cut an A4 sheet from left
to right, you get two smaller sheets that have the same proportions.
You can even buy sheets of this smaller size, and they’re called A5.
There is a whole series of sizes related in this way, all with the same
proportions. (a) Compare an A5 sheet to an A4 in terms of area and
linear size. (b) The series of paper sizes starts from an A0 sheet,
which has an area of one square meter. Suppose we had a series
of boxes defined in a similar way: the B0 box has a volume of one
cubic meter, two B1 boxes fit exactly inside an B0 box, and so on.
What would be the dimensions of a B0 box?

√

14 Estimate the mass of one of the hairs in Albert Einstein’s
moustache, in units of kg.

15 According to folklore, every time you take a breath, you are
inhaling some of the atoms exhaled in Caesar’s last words. Is this
true? If so, how many?

16 The Earth’s surface is about 70% water. Mars’s diameter is
about half the Earth’s, but it has no surface water. Compare the
land areas of the two planets.

√

17 The traditional Martini glass is shaped like a cone with
the point at the bottom. Suppose you make a Martini by pouring
vermouth into the glass to a depth of 3 cm, and then adding gin
to bring the depth to 6 cm. What are the proportions of gin and
vermouth? . Solution, p. 548

18 The central portion of a CD is taken up by the hole and some
surrounding clear plastic, and this area is unavailable for storing
data. The radius of the central circle is about 35% of the outer
radius of the data-storing area. What percentage of the CD’s area
is therefore lost?

√

19 The one-liter cube in the photo has been marked off into
smaller cubes, with linear dimensions one tenth those of the big
one. What is the volume of each of the small cubes?

. Solution, p. 548
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Problem 22.

20 [This problem is now problem 0-12 on p. 37.]

21 Estimate the number of man-hours required for building the
Great Wall of China. . Solution, p. 548

22 (a) Using the microscope photo in the figure, estimate the
mass of a one cell of the E. coli bacterium, which is one of the
most common ones in the human intestine. Note the scale at the
lower right corner, which is 1 µm. Each of the tubular objects in
the column is one cell. (b) The feces in the human intestine are
mostly bacteria (some dead, some alive), of which E. coli is a large
and typical component. Estimate the number of bacteria in your
intestines, and compare with the number of human cells in your
body, which is believed to be roughly on the order of 1013. (c)
Interpreting your result from part b, what does this tell you about
the size of a typical human cell compared to the size of a typical
bacterial cell?

23 A taxon (plural taxa) is a group of living things. For ex-
ample, Homo sapiens and Homo neanderthalensis are both taxa —
specifically, they are two different species within the genus Homo.
Surveys by botanists show that the number of plant taxa native
to a given contiguous land area A is usually approximately propor-
tional to A1/3. (a) There are 70 different species of lupine native
to Southern California, which has an area of about 200, 000 km2.
The San Gabriel Mountains cover about 1, 600 km2. Suppose that
you wanted to learn to identify all the species of lupine in the San
Gabriels. Approximately how many species would you have to fa-
miliarize yourself with? . Answer, p. 569

√

(b) What is the interpretation of the fact that the exponent, 1/3, is
less than one?
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Problem 25.

Problem 27.

24 X-ray images aren’t only used with human subjects but also,
for example, on insects and flowers. In 2003, a team of researchers
at Argonne National Laboratory used x-ray imagery to find for the
first time that insects, although they do not have lungs, do not
necessarily breathe completely passively, as had been believed pre-
viously; many insects rapidly compress and expand their trachea,
head, and thorax in order to force air in and out of their bodies.
One difference between x-raying a human and an insect is that if a
medical x-ray machine was used on an insect, virtually 100% of the
x-rays would pass through its body, and there would be no contrast
in the image produced. Less penetrating x-rays of lower energies
have to be used. For comparison, a typical human body mass is
about 70 kg, whereas a typical ant is about 10 mg. Estimate the
ratio of the thicknesses of tissue that must be penetrated by x-rays
in one case compared to the other.

√

25 Radio was first commercialized around 1920, and ever since
then, radio signals from our planet have been spreading out across
our galaxy. It is possible that alien civilizations could detect these
signals and learn that there is life on earth. In the 90 years that the
signals have been spreading at the speed of light, they have created
a sphere with a radius of 90 light-years. To show an idea of the
size of this sphere, I’ve indicated it in the figure as a tiny white
circle on an image of a spiral galaxy seen edge on. (We don’t have
similar photos of our own Milky Way galaxy, because we can’t see
it from the outside.) So far we haven’t received answering signals
from aliens within this sphere, but as time goes on, the sphere will
expand as suggested by the dashed outline, reaching more and more
stars that might harbor extraterrestrial life. Approximately what
year will it be when the sphere has expanded to fill a volume 100
times greater than the volume it fills today in 2010?

√

26 Estimate the number of jellybeans in figure r on p. 56.
. Solution, p. 548

27 At the grocery store you will see oranges packed neatly in
stacks. Suppose we want to pack spheres as densely as possible,
so that the greatest possible fraction of the space is filled by the
spheres themselves, not by empty space. Let’s call this fraction f .
Mathematicians have proved that the best possible result is f ≈
0.7405, which requires a systematic pattern of stacking. If you buy
ball bearings or golf balls, however, the seller is probably not going
to go to the trouble of stacking them neatly. Instead they will
probably pour the balls into a box and vibrate the box vigorously
for a while to make them settle. This results in a random packing.
The closest random packing has f ≈ 0.64. Suppose that golf balls,
with a standard diameter of 4.27 cm, are sold in bulk with the
closest random packing. What is the diameter of the largest ball
that could be sold in boxes of the same size, packed systematically,
so that there would be the same number of balls per box?

√
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28 Plutonium-239 is one of a small number of important long-
lived forms of high-level radioactive nuclear waste. The world’s
waste stockpiles have about 103 metric tons of plutonium. Drinking
water is considered safe by U.S. government standards if it contains
less than 2 × 10−13 g/cm3 of plutonium. The amount of radioac-
tivity to which you were exposed by drinking such water on a daily
basis would be very small compared to the natural background radi-
ation that you are exposed to every year. Suppose that the world’s
inventory of plutonium-239 were ground up into an extremely fine
dust and then dispersed over the world’s oceans, thereby becoming
mixed uniformly into the world’s water supplies over time. Esti-
mate the resulting concentration of plutonium, and compare with
the government standard.
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Exercise 1: Scaling applied to leaves
Equipment:

leaves of three sizes, having roughly similar proportions of length, width, and thickness

balance

Each group will have one leaf, and should measure its surface area and volume, and determine
its surface-to-volume ratio. For consistency, every group should use units of cm2 and cm3, and
should only find the area of one side of the leaf. The area can be found by tracing the area of
the leaf on graph paper and counting squares. The volume can be found by weighing the leaf
and assuming that its density is 1 g/cm3 (the density of water). What implications do your
results have for the plants’ abilities to survive in different environments?
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Motion in One Dimension
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a / Rotation.

b / Simultaneous rotation and
motion through space.

c / One person might say that the
tipping chair was only rotating in
a circle about its point of contact
with the floor, but another could
describe it as having both rotation
and motion through space.

Chapter 2

Velocity and Relative
Motion

2.1 Types of motion
If you had to think consciously in order to move your body, you
would be severely disabled. Even walking, which we consider to
be no great feat, requires an intricate series of motions that your
cerebrum would be utterly incapable of coordinating. The task of
putting one foot in front of the other is controlled by the more prim-
itive parts of your brain, the ones that have not changed much since
the mammals and reptiles went their separate evolutionary ways.
The thinking part of your brain limits itself to general directives
such as “walk faster,” or “don’t step on her toes,” rather than mi-
cromanaging every contraction and relaxation of the hundred or so
muscles of your hips, legs, and feet.

Physics is all about the conscious understanding of motion, but
we’re obviously not immediately prepared to understand the most
complicated types of motion. Instead, we’ll use the divide-and-
conquer technique. We’ll first classify the various types of motion,
and then begin our campaign with an attack on the simplest cases.
To make it clear what we are and are not ready to consider, we need
to examine and define carefully what types of motion can exist.

Rigid-body motion distinguished from motion that changes
an object’s shape

Nobody, with the possible exception of Fred Astaire, can simply
glide forward without bending their joints. Walking is thus an ex-
ample in which there is both a general motion of the whole object
and a change in the shape of the object. Another example is the
motion of a jiggling water balloon as it flies through the air. We are
not presently attempting a mathematical description of the way in
which the shape of an object changes. Motion without a change in
shape is called rigid-body motion. (The word “body” is often used
in physics as a synonym for “object.”)

Center-of-mass motion as opposed to rotation

A ballerina leaps into the air and spins around once before land-
ing. We feel intuitively that her rigid-body motion while her feet
are off the ground consists of two kinds of motion going on simul-
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e / No matter what point you
hang the pear from, the string
lines up with the pear’s center
of mass. The center of mass
can therefore be defined as the
intersection of all the lines made
by hanging the pear in this way.
Note that the X in the figure
should not be interpreted as
implying that the center of mass
is on the surface — it is actually
inside the pear.

f / The circus performers hang
with the ropes passing through
their centers of mass.

taneously: a rotation and a motion of her body as a whole through
space, along an arc. It is not immediately obvious, however, what
is the most useful way to define the distinction between rotation
and motion through space. Imagine that you attempt to balance a
chair and it falls over. One person might say that the only motion
was a rotation about the chair’s point of contact with the floor, but
another might say that there was both rotation and motion down
and to the side.

d / The leaping dancer’s motion is complicated, but the motion of
her center of mass is simple.

It turns out that there is one particularly natural and useful way
to make a clear definition, but it requires a brief digression. Every
object has a balance point, referred to in physics as the center of
mass. For a two-dimensional object such as a cardboard cutout, the
center of mass is the point at which you could hang the object from
a string and make it balance. In the case of the ballerina (who is
likely to be three-dimensional unless her diet is particularly severe),
it might be a point either inside or outside her body, depending
on how she holds her arms. Even if it is not practical to attach a
string to the balance point itself, the center of mass can be defined
as shown in figure e.

Why is the center of mass concept relevant to the question of
classifying rotational motion as opposed to motion through space?
As illustrated in figures d and g, it turns out that the motion of an
object’s center of mass is nearly always far simpler than the motion
of any other part of the object. The ballerina’s body is a large object
with a complex shape. We might expect that her motion would be
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h / An improperly balanced
wheel has a center of mass that
is not at its geometric center.
When you get a new tire, the
mechanic clamps little weights to
the rim to balance the wheel.

i / This toy was intentionally
designed so that the mushroom-
shaped piece of metal on top
would throw off the center of
mass. When you wind it up, the
mushroom spins, but the center
of mass doesn’t want to move,
so the rest of the toy tends to
counter the mushroom’s motion,
causing the whole thing to jump
around.

much more complicated than the motion of a small, simply-shaped
object, say a marble, thrown up at the same angle as the angle at
which she leapt. But it turns out that the motion of the ballerina’s
center of mass is exactly the same as the motion of the marble. That
is, the motion of the center of mass is the same as the motion the
ballerina would have if all her mass was concentrated at a point. By
restricting our attention to the motion of the center of mass, we can
therefore simplify things greatly.

g / The same leaping dancer, viewed from above. Her center of
mass traces a straight line, but a point away from her center of mass,
such as her elbow, traces the much more complicated path shown by the
dots.

We can now replace the ambiguous idea of “motion as a whole
through space” with the more useful and better defined concept
of “center-of-mass motion.” The motion of any rigid body can be
cleanly split into rotation and center-of-mass motion. By this defini-
tion, the tipping chair does have both rotational and center-of-mass
motion. Concentrating on the center of mass motion allows us to
make a simplified model of the motion, as if a complicated object
like a human body was just a marble or a point-like particle. Science
really never deals with reality; it deals with models of reality.

Note that the word “center” in “center of mass” is not meant
to imply that the center of mass must lie at the geometrical center
of an object. A car wheel that has not been balanced properly has
a center of mass that does not coincide with its geometrical center.
An object such as the human body does not even have an obvious
geometrical center.

It can be helpful to think of the center of mass as the average
location of all the mass in the object. With this interpretation,
we can see for example that raising your arms above your head
raises your center of mass, since the higher position of the arms’
mass raises the average. We won’t be concerned right now with
calculating centers of mass mathematically; the relevant equations
are in ch. 14.

Ballerinas and professional basketball players can create an illu-
sion of flying horizontally through the air because our brains intu-
itively expect them to have rigid-body motion, but the body does
not stay rigid while executing a grand jete or a slam dunk. The legs
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j / A fixed point on the dancer’s body follows a trajectory that is flat-
ter than what we expect, creating an illusion of flight.

are low at the beginning and end of the jump, but come up higher at
the middle. Regardless of what the limbs do, the center of mass will
follow the same arc, but the low position of the legs at the beginning
and end means that the torso is higher compared to the center of
mass, while in the middle of the jump it is lower compared to the
center of mass. Our eye follows the motion of the torso and tries
to interpret it as the center-of-mass motion of a rigid body. But
since the torso follows a path that is flatter than we expect, this
attempted interpretation fails, and we experience an illusion that
the person is flying horizontally.

k / Example 1.

The center of mass as an average example 1
. Explain how we know that the center of mass of each object is
at the location shown in figure k.

. The center of mass is a sort of average, so the height of the
centers of mass in 1 and 2 has to be midway between the two
squares, because that height is the average of the heights of the
two squares. Example 3 is a combination of examples 1 and
2, so we can find its center of mass by averaging the horizontal
positions of their centers of mass. In example 4, each square
has been skewed a little, but just as much mass has been moved
up as down, so the average vertical position of the mass hasn’t
changed. Example 5 is clearly not all that different from example
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l / The high-jumper’s body
passes over the bar, but his
center of mass passes under it.

m / Self-check B.

4, the main difference being a slight clockwise rotation, so just as
in example 4, the center of mass must be hanging in empty space,
where there isn’t actually any mass. Horizontally, the center of
mass must be between the heels and toes, or else it wouldn’t be
possible to stand without tipping over.

Another interesting example from the sports world is the high
jump, in which the jumper’s curved body passes over the bar, but
the center of mass passes under the bar! Here the jumper lowers his
legs and upper body at the peak of the jump in order to bring his
waist higher compared to the center of mass.

Later in this course, we’ll find that there are more fundamental
reasons (based on Newton’s laws of motion) why the center of mass
behaves in such a simple way compared to the other parts of an
object. We’re also postponing any discussion of numerical methods
for finding an object’s center of mass. Until later in the course, we
will only deal with the motion of objects’ centers of mass.

Center-of-mass motion in one dimension

In addition to restricting our study of motion to center-of-mass
motion, we will begin by considering only cases in which the center
of mass moves along a straight line. This will include cases such
as objects falling straight down, or a car that speeds up and slows
down but does not turn.

Note that even though we are not explicitly studying the more
complex aspects of motion, we can still analyze the center-of-mass
motion while ignoring other types of motion that might be occurring
simultaneously . For instance, if a cat is falling out of a tree and
is initially upside-down, it goes through a series of contortions that
bring its feet under it. This is definitely not an example of rigid-
body motion, but we can still analyze the motion of the cat’s center
of mass just as we would for a dropping rock.

self-check A
Consider a person running, a person pedaling on a bicycle, a person
coasting on a bicycle, and a person coasting on ice skates. In which
cases is the center-of-mass motion one-dimensional? Which cases are
examples of rigid-body motion? . Answer, p. 564

self-check B
The figure shows a gymnast holding onto the inside of a big wheel.
From inside the wheel, how could he make it roll one way or the other?
. Answer, p. 564

2.2 Describing distance and time
Center-of-mass motion in one dimension is particularly easy to deal
with because all the information about it can be encapsulated in two
variables: x, the position of the center of mass relative to the origin,
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and t, which measures a point in time. For instance, if someone
supplied you with a sufficiently detailed table of x and t values, you
would know pretty much all there was to know about the motion of
the object’s center of mass.

A point in time as opposed to duration

In ordinary speech, we use the word “time” in two different
senses, which are to be distinguished in physics. It can be used,
as in “a short time” or “our time here on earth,” to mean a length
or duration of time, or it can be used to indicate a clock reading, as
in “I didn’t know what time it was,” or “now’s the time.” In sym-
bols, t is ordinarily used to mean a point in time, while ∆t signifies
an interval or duration in time. The capital Greek letter delta, ∆,
means “the change in...,” i.e. a duration in time is the change or
difference between one clock reading and another. The notation ∆t
does not signify the product of two numbers, ∆ and t, but rather
one single number, ∆t. If a matinee begins at a point in time t = 1
o’clock and ends at t = 3 o’clock, the duration of the movie was the
change in t,

∆t = 3 hours− 1 hour = 2 hours.

To avoid the use of negative numbers for ∆t, we write the clock
reading “after” to the left of the minus sign, and the clock reading
“before” to the right of the minus sign. A more specific definition
of the delta notation is therefore that delta stands for “after minus
before.”

Even though our definition of the delta notation guarantees that
∆t is positive, there is no reason why t can’t be negative. If t
could not be negative, what would have happened one second before
t = 0? That doesn’t mean that time “goes backward” in the sense
that adults can shrink into infants and retreat into the womb. It
just means that we have to pick a reference point and call it t = 0,
and then times before that are represented by negative values of t.
An example is that a year like 2007 A.D. can be thought of as a
positive t value, while one like 370 B.C. is negative. Similarly, when
you hear a countdown for a rocket launch, the phrase “t minus ten
seconds” is a way of saying t = −10 s, where t = 0 is the time of
blastoff, and t > 0 refers to times after launch.

Although a point in time can be thought of as a clock reading, it
is usually a good idea to avoid doing computations with expressions
such as “2:35” that are combinations of hours and minutes. Times
can instead be expressed entirely in terms of a single unit, such as
hours. Fractions of an hour can be represented by decimals rather
than minutes, and similarly if a problem is being worked in terms
of minutes, decimals can be used instead of seconds.

self-check C
Of the following phrases, which refer to points in time, which refer to
time intervals, and which refer to time in the abstract rather than as a
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measurable number?

(1) “The time has come.”

(2) “Time waits for no man.”

(3) “The whole time, he had spit on his chin.” . Answer, p. 564

Position as opposed to change in position

As with time, a distinction should be made between a point
in space, symbolized as a coordinate x, and a change in position,
symbolized as ∆x.

As with t,x can be negative. If a train is moving down the
tracks, not only do you have the freedom to choose any point along
the tracks and call it x = 0, but it’s also up to you to decide which
side of the x = 0 point is positive x and which side is negative x.

Since we’ve defined the delta notation to mean “after minus
before,” it is possible that ∆x will be negative, unlike ∆t which is
guaranteed to be positive. Suppose we are describing the motion
of a train on tracks linking Tucson and Chicago. As shown in the
figure, it is entirely up to you to decide which way is positive.

n / Two equally valid ways of de-
scribing the motion of a train from
Tucson to Chicago. In example 1,
the train has a positive ∆x as it
goes from Enid to Joplin. In 2,
the same train going forward in
the same direction has a negative
∆x .

Note that in addition to x and ∆x, there is a third quantity we
could define, which would be like an odometer reading, or actual
distance traveled. If you drive 10 miles, make a U-turn, and drive
back 10 miles, then your ∆x is zero, but your car’s odometer reading
has increased by 20 miles. However important the odometer reading
is to car owners and used car dealers, it is not very important in
physics, and there is not even a standard name or notation for it.
The change in position, ∆x, is more useful because it is so much
easier to calculate: to compute ∆x, we only need to know the be-
ginning and ending positions of the object, not all the information
about how it got from one position to the other.

self-check D
A ball falls vertically, hits the floor, bounces to a height of one meter,
falls, and hits the floor again. Is the ∆x between the two impacts equal
to zero, one, or two meters? . Answer, p. 564
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o / Motion with constant ve-
locity.

p / Motion that decreases x
is represented with negative
values of ∆x and v .

q / Motion with changing ve-
locity. How can we find the
velocity at the time indicated by
the dot?

Frames of reference

The example above shows that there are two arbitrary choices
you have to make in order to define a position variable, x. You have
to decide where to put x = 0, and also which direction will be posi-
tive. This is referred to as choosing a coordinate system or choosing
a frame of reference. (The two terms are nearly synonymous, but
the first focuses more on the actual x variable, while the second is
more of a general way of referring to one’s point of view.) As long as
you are consistent, any frame is equally valid. You just don’t want
to change coordinate systems in the middle of a calculation.

Have you ever been sitting in a train in a station when suddenly
you notice that the station is moving backward? Most people would
describe the situation by saying that you just failed to notice that
the train was moving — it only seemed like the station was moving.
But this shows that there is yet a third arbitrary choice that goes
into choosing a coordinate system: valid frames of reference can
differ from each other by moving relative to one another. It might
seem strange that anyone would bother with a coordinate system
that was moving relative to the earth, but for instance the frame of
reference moving along with a train might be far more convenient
for describing things happening inside the train.

2.3 Graphs of motion; velocity

Motion with constant velocity

In example o, an object is moving at constant speed in one di-
rection. We can tell this because every two seconds, its position
changes by five meters.

In algebra notation, we’d say that the graph of x vs. t shows
the same change in position, ∆x = 5.0 m, over each interval of
∆t = 2.0 s. The object’s velocity or speed is obtained by calculating
v = ∆x/∆t = (5.0 m)/(2.0 s) = 2.5 m/s. In graphical terms, the
velocity can be interpreted as the slope of the line. Since the graph
is a straight line, it wouldn’t have mattered if we’d taken a longer
time interval and calculated v = ∆x/∆t = (10.0 m)/(4.0 s). The
answer would still have been the same, 2.5 m/s.

Note that when we divide a number that has units of meters by
another number that has units of seconds, we get units of meters
per second, which can be written m/s. This is another case where
we treat units as if they were algebra symbols, even though they’re
not.

In example p, the object is moving in the opposite direction: as
time progresses, its x coordinate decreases. Recalling the definition
of the ∆ notation as “after minus before,” we find that ∆t is still
positive, but ∆x must be negative. The slope of the line is therefore
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r / The velocity at any given
moment is defined as the slope
of the tangent line through the
relevant point on the graph.

negative, and we say that the object has a negative velocity, v =
∆x/∆t = (−5.0 m)/(2.0 s) = −2.5 m/s. We’ve already seen that
the plus and minus signs of ∆x values have the interpretation of
telling us which direction the object moved. Since ∆t is always
positive, dividing by ∆t doesn’t change the plus or minus sign, and
the plus and minus signs of velocities are to be interpreted in the
same way. In graphical terms, a positive slope characterizes a line
that goes up as we go to the right, and a negative slope tells us that
the line went down as we went to the right.

. Solved problem: light-years page 89, problem 4

Motion with changing velocity

Now what about a graph like figure q? This might be a graph
of a car’s motion as the driver cruises down the freeway, then slows
down to look at a car crash by the side of the road, and then speeds
up again, disappointed that there is nothing dramatic going on such
as flames or babies trapped in their car seats. (Note that we are
still talking about one-dimensional motion. Just because the graph
is curvy doesn’t mean that the car’s path is curvy. The graph is not
like a map, and the horizontal direction of the graph represents the
passing of time, not distance.)

Example q is similar to example o in that the object moves a
total of 25.0 m in a period of 10.0 s, but it is no longer true that it
makes the same amount of progress every second. There is no way to
characterize the entire graph by a certain velocity or slope, because
the velocity is different at every moment. It would be incorrect to
say that because the car covered 25.0 m in 10.0 s, its velocity was
2.5 m/s. It moved faster than that at the beginning and end, but
slower in the middle. There may have been certain instants at which
the car was indeed going 2.5 m/s, but the speedometer swept past
that value without “sticking,” just as it swung through various other
values of speed. (I definitely want my next car to have a speedometer
calibrated in m/s and showing both negative and positive values.)

We assume that our speedometer tells us what is happening to
the speed of our car at every instant, but how can we define speed
mathematically in a case like this? We can’t just define it as the
slope of the curvy graph, because a curve doesn’t have a single
well-defined slope as does a line. A mathematical definition that
corresponded to the speedometer reading would have to be one that
assigned a velocity value to a single point on the curve, i.e., a single
instant in time, rather than to the entire graph. If we wish to define
the speed at one instant such as the one marked with a dot, the
best way to proceed is illustrated in r, where we have drawn the line
through that point called the tangent line, the line that “hugs the
curve.” We can then adopt the following definition of velocity:
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t / Example 2: finding the ve-
locity at the point indicated with
the dot.

definition of velocity
The velocity of an object at any given moment is the slope of the
tangent line through the relevant point on its x− t graph.

One interpretation of this definition is that the velocity tells us
how many meters the object would have traveled in one second, if
it had continued moving at the same speed for at least one second.

s / The original graph, on the left, is the one from figure p. Each successive magnification to the right
is by a factor of four.

A good way of thinking about the tangent-line definition is shown
in figure s. We zoom in on our point of interest more and more, as
if through a microscope capable of unlimited magnification. As we
zoom in, the curviness of the graph becomes less and less appar-
ent. (Similarly, we don’t notice in everyday life that the earth is
a sphere.) In the figure, we zoom in by 400%, and then again by
400%, and so on. After a series of these zooms, the graph appears
indistinguishable from a line, and we can measure its slope just as
we would for a line.

If all we saw was the ultra-magnified view, we would assume
that the object was moving at a constant speed, which is 2.5 m/s
in our example, and that it would continue to move at that speed.
Therefore the speed of 2.5 m/s can be interpreted as meaning that
if the object had continued at constant speed for a further time
interval of 1 s, it would have traveled 2.5 m.

The slope of the tangent line example 2
. What is the velocity at the point shown with a dot on the graph?

. First we draw the tangent line through that point. To find the
slope of the tangent line, we need to pick two points on it. Theo-
retically, the slope should come out the same regardless of which
two points we pick, but in practical terms we’ll be able to measure
more accurately if we pick two points fairly far apart, such as the
two white diamonds. To save work, we pick points that are directly
above labeled points on the t axis, so that ∆t = 4.0 s is easy to
read off. One diamond lines up with x ≈ 17.5 m, the other with
x ≈ 26.5 m, so ∆x = 9.0 m. The velocity is ∆x/∆t = 2.2 m/s.
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Looking at the tangent line in figure t, we can see that it touches
the curve at the point marked with a dot, but without cutting
through it at that point. No other line through that point has
this “no-cut” property; if we rotated the line either clockwise or
counterclockwise about the point, it would cut through. Except in
certain unusual cases, there is always exactly one such no-cut line
at any given point on a smooth curve, and that no-cut line is the
tangent line. It’s as though the region below the curve were a solid
block of wood, and the tangent line were the edge of a ruler. The
ruler can’t penetrate the block.

Conventions about graphing

The placement of t on the horizontal axis and x on the upright
axis may seem like an arbitrary convention, or may even have dis-
turbed you, since your algebra teacher always told you that x goes
on the horizontal axis and y goes on the upright axis. There is a
reason for doing it this way, however. In example t, we have an
object that reverses its direction of motion twice. It can only be
in one place at any given time, but there can be more than one
time when it is at a given place. For instance, this object passed
through x = 17 m on three separate occasions, but there is no way
it could have been in more than one place at t = 5.0 s. Resurrecting
some terminology you learned in your trigonometry course, we say
that x is a function of t, but t is not a function of x. In situations
such as this, there is a useful convention that the graph should be
oriented so that any vertical line passes through the curve at only
one point. Putting the x axis across the page and t upright would
have violated this convention. To people who are used to interpret-
ing graphs, a graph that violates this convention is as annoying as
fingernails scratching on a chalkboard. We say that this is a graph
of “x versus t.” If the axes were the other way around, it would
be a graph of “t versus x.” I remember the “versus” terminology
by visualizing the labels on the x and t axes and remembering that
when you read, you go from left to right and from top to bottom.

Discussion questions

A Park is running slowly in gym class, but then he notices Jenna
watching him, so he speeds up to try to impress her. Which of the graphs
could represent his motion?
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u / Reversing the direction of
motion.

Discussion question G.

B The figure shows a sequence of positions for two racing tractors.
Compare the tractors’ velocities as the race progresses. When do they
have the same velocity? [Based on a question by Lillian McDermott.]

C If an object had an x − t graph that was a straight line with ∆x=0
and ∆t 6= 0, what would you say about its velocity? Sketch an example of
such a graph. What about ∆t=0 and ∆x 6= 0?

D If an object has a wavy motion graph like the one in figure u on p. 78,
what are the times at which the object reverses its direction? Describe
the object’s velocity at these points.

E Discuss anything unusual about the following three graphs.

F I have been using the term “velocity” and avoiding the more common
English word “speed,” because introductory physics texts typically define
them to mean different things. They use the word “speed,” and the symbol
“s” to mean the absolute value of the velocity, s = |v |. Although I’ve
chosen not to emphasize this distinction in technical vocabulary, there
are clearly two different concepts here. Can you think of an example of
a graph of x-versus-t in which the object has constant speed, but not
constant velocity?

G For the graph shown in the figure, describe how the object’s velocity
changes.

H Two physicists duck out of a boring scientific conference. On the
street, they witness an accident in which a pedestrian is injured by a hit-
and-run driver. A criminal trial results, and they must testify. In her testi-
mony, Dr. Transverz Waive says, “The car was moving along pretty fast,
I’d say the velocity was +40 mi/hr. They saw the old lady too late, and even
though they slammed on the brakes they still hit her before they stopped.
Then they made a U turn and headed off at a velocity of about -20 mi/hr,
I’d say.” Dr. Longitud N.L. Vibrasheun says, “He was really going too fast,
maybe his velocity was -35 or -40 mi/hr. After he hit Mrs. Hapless, he
turned around and left at a velocity of, oh, I’d guess maybe +20 or +25
mi/hr.” Is their testimony contradictory? Explain.
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v / Why does Aristotle look
so sad? Has he realized that
his entire system of physics is
wrong?

w / The earth spins. People
in Shanghai say they’re at rest
and people in Los Angeles are
moving. Angelenos say the same
about the Shanghainese.

x / The jets are at rest. The
Empire State Building is moving.

2.4 The principle of inertia
Physical effects relate only to a change in velocity

Consider two statements of a kind that was at one time made
with the utmost seriousness:

People like Galileo and Copernicus who say the earth is ro-
tating must be crazy. We know the earth can’t be moving.
Why, if the earth was really turning once every day, then our
whole city would have to be moving hundreds of leagues in
an hour. That’s impossible! Buildings would shake on their
foundations. Gale-force winds would knock us over. Trees
would fall down. The Mediterranean would come sweeping
across the east coasts of Spain and Italy. And furthermore,
what force would be making the world turn?

All this talk of passenger trains moving at forty miles an hour
is sheer hogwash! At that speed, the air in a passenger com-
partment would all be forced against the back wall. People in
the front of the car would suffocate, and people at the back
would die because in such concentrated air, they wouldn’t be
able to expel a breath.

Some of the effects predicted in the first quote are clearly just
based on a lack of experience with rapid motion that is smooth and
free of vibration. But there is a deeper principle involved. In each
case, the speaker is assuming that the mere fact of motion must
have dramatic physical effects. More subtly, they also believe that a
force is needed to keep an object in motion: the first person thinks
a force would be needed to maintain the earth’s rotation, and the
second apparently thinks of the rear wall as pushing on the air to
keep it moving.

Common modern knowledge and experience tell us that these
people’s predictions must have somehow been based on incorrect
reasoning, but it is not immediately obvious where the fundamental
flaw lies. It’s one of those things a four-year-old could infuriate
you by demanding a clear explanation of. One way of getting at
the fundamental principle involved is to consider how the modern
concept of the universe differs from the popular conception at the
time of the Italian Renaissance. To us, the word “earth” implies
a planet, one of the nine planets of our solar system, a small ball
of rock and dirt that is of no significance to anyone in the universe
except for members of our species, who happen to live on it. To
Galileo’s contemporaries, however, the earth was the biggest, most
solid, most important thing in all of creation, not to be compared
with the wandering lights in the sky known as planets. To us, the
earth is just another object, and when we talk loosely about “how
fast” an object such as a car “is going,” we really mean the car-
object’s velocity relative to the earth-object.

Section 2.4 The principle of inertia 79



y / This Air Force doctor volun-
teered to ride a rocket sled as a
medical experiment. The obvious
effects on his head and face are
not because of the sled’s speed
but because of its rapid changes
in speed: increasing in 2 and 3,
and decreasing in 5 and 6. In
4 his speed is greatest, but be-
cause his speed is not increasing
or decreasing very much at this
moment, there is little effect on
him.

Motion is relative

According to our modern world-view, it isn’t reasonable to ex-
pect that a special force should be required to make the air in the
train have a certain velocity relative to our planet. After all, the
“moving” air in the “moving” train might just happen to have zero
velocity relative to some other planet we don’t even know about.
Aristotle claimed that things “naturally” wanted to be at rest, ly-
ing on the surface of the earth. But experiment after experiment
has shown that there is really nothing so special about being at rest
relative to the earth. For instance, if a mattress falls out of the back
of a truck on the freeway, the reason it rapidly comes to rest with
respect to the planet is simply because of friction forces exerted by
the asphalt, which happens to be attached to the planet.

Galileo’s insights are summarized as follows:

The principle of inertia
No force is required to maintain motion with constant velocity in

a straight line, and absolute motion does not cause any observable
physical effects.

There are many examples of situations that seem to disprove the
principle of inertia, but these all result from forgetting that friction
is a force. For instance, it seems that a force is needed to keep a
sailboat in motion. If the wind stops, the sailboat stops too. But
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Discussion question A.

Discussion question B.

Discussion question D.

the wind’s force is not the only force on the boat; there is also
a frictional force from the water. If the sailboat is cruising and
the wind suddenly disappears, the backward frictional force still
exists, and since it is no longer being counteracted by the wind’s
forward force, the boat stops. To disprove the principle of inertia,
we would have to find an example where a moving object slowed
down even though no forces whatsoever were acting on it. Over the
years since Galileo’s lifetime, physicists have done more and more
precise experiments to search for such a counterexample, but the
results have always been negative. Three such tests are described
on pp. 114, 247, and 277.

self-check E
What is incorrect about the following supposed counterexamples to the
principle of inertia?

(1) When astronauts blast off in a rocket, their huge velocity does cause
a physical effect on their bodies — they get pressed back into their
seats, the flesh on their faces gets distorted, and they have a hard time
lifting their arms.

(2) When you’re driving in a convertible with the top down, the wind in
your face is an observable physical effect of your absolute motion. .

Answer, p. 564

. Solved problem: a bug on a wheel page 89, problem 7

Discussion questions

A A passenger on a cruise ship finds, while the ship is docked, that
he can leap off of the upper deck and just barely make it into the pool
on the lower deck. If the ship leaves dock and is cruising rapidly, will this
adrenaline junkie still be able to make it?

B You are a passenger in the open basket hanging under a helium
balloon. The balloon is being carried along by the wind at a constant
velocity. If you are holding a flag in your hand, will the flag wave? If so,
which way? [Based on a question from PSSC Physics.]

C Aristotle stated that all objects naturally wanted to come to rest, with
the unspoken implication that “rest” would be interpreted relative to the
surface of the earth. Suppose we go back in time and transport Aristotle
to the moon. Aristotle knew, as we do, that the moon circles the earth; he
said it didn’t fall down because, like everything else in the heavens, it was
made out of some special substance whose “natural” behavior was to go
in circles around the earth. We land, put him in a space suit, and kick
him out the door. What would he expect his fate to be in this situation? If
intelligent creatures inhabited the moon, and one of them independently
came up with the equivalent of Aristotelian physics, what would they think
about objects coming to rest?

D The glass is sitting on a level table in a train’s dining car, but the
surface of the water is tilted. What can you infer about the motion of the
train?
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2.5 Addition of velocities
Addition of velocities to describe relative motion

Since absolute motion cannot be unambiguously measured, the
only way to describe motion unambiguously is to describe the motion
of one object relative to another. Symbolically, we can write vPQ
for the velocity of object P relative to object Q.

Velocities measured with respect to different reference points can
be compared by addition. In the figure below, the ball’s velocity
relative to the couch equals the ball’s velocity relative to the truck
plus the truck’s velocity relative to the couch:

vBC = vBT + vTC

= 5 cm/s + 10 cm/s

= 15 cm/s

The same equation can be used for any combination of three
objects, just by substituting the relevant subscripts for B, T, and
C. Just remember to write the equation so that the velocities being
added have the same subscript twice in a row. In this example, if
you read off the subscripts going from left to right, you get BC . . . =
. . .BTTC. The fact that the two “inside” subscripts on the right are
the same means that the equation has been set up correctly. Notice
how subscripts on the left look just like the subscripts on the right,
but with the two T’s eliminated.

Negative velocities in relative motion

My discussion of how to interpret positive and negative signs of
velocity may have left you wondering why we should bother. Why
not just make velocity positive by definition? The original reason
why negative numbers were invented was that bookkeepers decided
it would be convenient to use the negative number concept for pay-
ments to distinguish them from receipts. It was just plain easier than
writing receipts in black and payments in red ink. After adding up
your month’s positive receipts and negative payments, you either got
a positive number, indicating profit, or a negative number, showing
a loss. You could then show that total with a high-tech “+” or “−”
sign, instead of looking around for the appropriate bottle of ink.

Nowadays we use positive and negative numbers for all kinds
of things, but in every case the point is that it makes sense to
add and subtract those things according to the rules you learned
in grade school, such as “minus a minus makes a plus, why this is
true we need not discuss.” Adding velocities has the significance
of comparing relative motion, and with this interpretation negative
and positive velocities can be used within a consistent framework.
For example, the truck’s velocity relative to the couch equals the
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z / These two highly competent physicists disagree on absolute ve-
locities, but they would agree on relative velocities. Purple Dino
considers the couch to be at rest, while Green Dino thinks of the truck as
being at rest. They agree, however, that the truck’s velocity relative to the
couch is vTC = 10 cm/s, the ball’s velocity relative to the truck is vBT = 5
cm/s, and the ball’s velocity relative to the couch is vBC = vBT + vTC = 15
cm/s.

truck’s velocity relative to the ball plus the ball’s velocity relative
to the couch:

vTC = vTB + vBC

= −5 cm/s + 15 cm/s

= 10 cm/s

If we didn’t have the technology of negative numbers, we would have
had to remember a complicated set of rules for adding velocities: (1)
if the two objects are both moving forward, you add, (2) if one is
moving forward and one is moving backward, you subtract, but (3)
if they’re both moving backward, you add. What a pain that would
have been.

. Solved problem: two dimensions page 90, problem 10

Airspeed example 3
On June 1, 2009, Air France flight 447 disappeared without warn-
ing over the Atlantic Ocean. All 232 people aboard were killed.
Investigators believe the disaster was triggered because the pilots
lost the ability to accurately determine their speed relative to the
air. This is done using sensors called Pitot tubes, mounted out-
side the plane on the wing. Automated radio signals showed that
these sensors gave conflicting readings before the crash, possi-
bly because they iced up. For fuel efficiency, modern passenger

Section 2.5 Addition of velocities 83



jets fly at a very high altitude, but in the thin air they can only fly
within a very narrow range of speeds. If the speed is too low, the
plane stalls, and if it’s too high, it breaks up. If the pilots can’t tell
what their airspeed is, they can’t keep it in the safe range.

Many people’s reaction to this story is to wonder why planes don’t
just use GPS to measure their speed. One reason is that GPS
tells you your speed relative to the ground, not relative to the air.
Letting P be the plane, A the air, and G the ground, we have

vPG = vPA + vAG,

where vPG (the “true ground speed”) is what GPS would measure,
vPA (“airspeed”) is what’s critical for stable flight, and vAG is the
velocity of the wind relative to the ground 9000 meters below.
Knowing vPG isn’t enough to determine vPA unless vAG is also
known.

aa / Example 3. 1. The aircraft before the disaster. 2. A Pitot tube. 3. The flight path of flight 447.
4. Wreckage being recovered.

Discussion questions

A Interpret the general rule vAB = −vBA in words.

B Wa-Chuen slips away from her father at the mall and walks up the
down escalator, so that she stays in one place. Write this in terms of
symbols.

2.6 Graphs of velocity versus time
Since changes in velocity play such a prominent role in physics, we
need a better way to look at changes in velocity than by laboriously
drawing tangent lines on x-versus-t graphs. A good method is to
draw a graph of velocity versus time. The examples on the left show
the x− t and v− t graphs that might be produced by a car starting
from a traffic light, speeding up, cruising for a while at constant
speed, and finally slowing down for a stop sign. If you have an air
freshener hanging from your rear-view mirror, then you will see an
effect on the air freshener during the beginning and ending periods
when the velocity is changing, but it will not be tilted during the
period of constant velocity represented by the flat plateau in the
middle of the v − t graph.
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ab / Graphs of x and v ver-
sus t for a car accelerating away
from a traffic light, and then
stopping for another red light.

Students often mix up the things being represented on these two
types of graphs. For instance, many students looking at the top
graph say that the car is speeding up the whole time, since “the
graph is becoming greater.” What is getting greater throughout the
graph is x, not v.

Similarly, many students would look at the bottom graph and
think it showed the car backing up, because “it’s going backwards
at the end.” But what is decreasing at the end is v, not x. Having
both the x − t and v − t graphs in front of you like this is often
convenient, because one graph may be easier to interpret than the
other for a particular purpose. Stacking them like this means that
corresponding points on the two graphs’ time axes are lined up with
each other vertically. However, one thing that is a little counter-
intuitive about the arrangement is that in a situation like this one
involving a car, one is tempted to visualize the landscape stretching
along the horizontal axis of one of the graphs. The horizontal axes,
however, represent time, not position. The correct way to visualize
the landscape is by mentally rotating the horizon 90 degrees coun-
terclockwise and imagining it stretching along the upright axis of the
x-t graph, which is the only axis that represents different positions
in space.

2.7
∫

Applications of calculus
The integral symbol,

∫
, in the heading for this section indicates that

it is meant to be read by students in calculus-based physics. Stu-
dents in an algebra-based physics course should skip these sections.
The calculus-related sections in this book are meant to be usable
by students who are taking calculus concurrently, so at this early
point in the physics course I do not assume you know any calculus
yet. This section is therefore not much more than a quick preview of
calculus, to help you relate what you’re learning in the two courses.

Newton was the first person to figure out the tangent-line defi-
nition of velocity for cases where the x − t graph is nonlinear. Be-
fore Newton, nobody had conceptualized the description of motion
in terms of x − t and v − t graphs. In addition to the graphical
techniques discussed in this chapter, Newton also invented a set of
symbolic techniques called calculus. If you have an equation for x
in terms of t, calculus allows you, for instance, to find an equation
for v in terms of t. In calculus terms, we say that the function v(t)
is the derivative of the function x(t). In other words, the derivative
of a function is a new function that tells how rapidly the original
function was changing. We now use neither Newton’s name for his
technique (he called it “the method of fluxions”) nor his notation.
The more commonly used notation is due to Newton’s German con-
temporary Leibnitz, whom the English accused of plagiarizing the
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calculus from Newton. In the Leibnitz notation, we write

v =
dx

dt

to indicate that the function v(t) equals the slope of the tangent line
of the graph of x(t) at every time t. The Leibnitz notation is meant
to evoke the delta notation, but with a very small time interval.
Because the dx and dt are thought of as very small ∆x’s and ∆t’s,
i.e., very small differences, the part of calculus that has to do with
derivatives is called differential calculus.

Differential calculus consists of three things:

• The concept and definition of the derivative, which is covered
in this book, but which will be discussed more formally in your
math course.

• The Leibnitz notation described above, which you’ll need to
get more comfortable with in your math course.

• A set of rules that allows you to find an equation for the deriva-
tive of a given function. For instance, if you happened to have
a situation where the position of an object was given by the
equation x = 2t7, you would be able to use those rules to
find dx/ dt = 14t6. This bag of tricks is covered in your math
course.
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Summary
Selected vocabulary
center of mass . . the balance point of an object
velocity . . . . . . the rate of change of position; the slope of the

tangent line on an x− t graph.

Notation
x . . . . . . . . . . a point in space
t . . . . . . . . . . a point in time, a clock reading
∆ . . . . . . . . . “change in;” the value of a variable afterwards

minus its value before
∆x . . . . . . . . a distance, or more precisely a change in x,

which may be less than the distance traveled;
its plus or minus sign indicates direction

∆t . . . . . . . . . a duration of time
v . . . . . . . . . . velocity
vAB . . . . . . . . the velocity of object A relative to object B

Other terminology and notation
displacement . . a name for the symbol ∆x
speed . . . . . . . the absolute value of the velocity, i.e., the ve-

locity stripped of any information about its
direction

Summary

An object’s center of mass is the point at which it can be bal-
anced. For the time being, we are studying the mathematical de-
scription only of the motion of an object’s center of mass in cases
restricted to one dimension. The motion of an object’s center of
mass is usually far simpler than the motion of any of its other parts.

It is important to distinguish location, x, from distance, ∆x,
and clock reading, t, from time interval ∆t. When an object’s x− t
graph is linear, we define its velocity as the slope of the line, ∆x/∆t.
When the graph is curved, we generalize the definition so that the
velocity is the slope of the tangent line at a given point on the graph.

Galileo’s principle of inertia states that no force is required to
maintain motion with constant velocity in a straight line, and abso-
lute motion does not cause any observable physical effects. Things
typically tend to reduce their velocity relative to the surface of our
planet only because they are physically rubbing against the planet
(or something attached to the planet), not because there is anything
special about being at rest with respect to the earth’s surface. When
it seems, for instance, that a force is required to keep a book sliding
across a table, in fact the force is only serving to cancel the contrary
force of friction.

Absolute motion is not a well-defined concept, and if two ob-
servers are not at rest relative to one another they will disagree
about the absolute velocities of objects. They will, however, agree
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about relative velocities. If object A is in motion relative to object
B, and B is in motion relative to C, then A’s velocity relative to C
is given by vAC = vAB + vBC . Positive and negative signs are used
to indicate the direction of an object’s motion.
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Problem 1.

Problem 7.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The graph shows the motion of a car stuck in stop-and-go
freeway traffic. (a) If you only knew how far the car had gone
during this entire time period, what would you think its velocity
was? (b) What is the car’s maximum velocity?

√

2 (a) Let θ be the latitude of a point on the Earth’s surface.
Derive an algebra equation for the distance, L, traveled by that
point during one rotation of the Earth about its axis, i.e., over one
day, expressed in terms of θ and R, the radius of the earth. Check:
Your equation should give L = 0 for the North Pole.
(b) At what speed is Fullerton, at latitude θ = 34◦, moving with
the rotation of the Earth about its axis? Give your answer in units
of mi/h. [See the table in the back of the book for the relevant
data.]

√

3 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by the equation

y = (10000 m)− (50 m/s)
[
t+ (5.0 s)e−t/5.0 s

]
.

Find her velocity at t = 7.0 s. (This can be done on a calculator,
without knowing calculus.) Because of air resistance, her velocity
does not increase at a steady rate as it would for an object falling
in vacuum.

√
?

4 A light-year is a unit of distance used in astronomy, and defined
as the distance light travels in one year. The speed of light is 3.0×108

m/s. Find how many meters there are in one light-year, expressing
your answer in scientific notation. . Solution, p. 548

5 You’re standing in a freight train, and have no way to see out.
If you have to lean to stay on your feet, what, if anything, does that
tell you about the train’s velocity? Explain. . Solution, p. 548

6 A honeybee’s position as a function of time is given by x =
10t− t3, where t is in seconds and x in meters. What is its velocity
at t = 3.0 s?

√ ∫
7 The figure shows the motion of a point on the rim of a rolling
wheel. (The shape is called a cycloid.) Suppose bug A is riding on
the rim of the wheel on a bicycle that is rolling, while bug B is on
the spinning wheel of a bike that is sitting upside down on the floor.
Bug A is moving along a cycloid, while bug B is moving in a circle.
Both wheels are doing the same number of revolutions per minute.
Which bug has a harder time holding on, or do they find it equally
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Problem 8.

difficult? . Solution, p. 549

8 Peanut plants fold up their leaves at night. Estimate the top
speed of the tip of one of the leaves shown in the figure, expressing
your result in scientific notation in SI units.

√

9 (a) Translate the following information into symbols, using
the notation with two subscripts introduced in section 2.5. Eowyn
is riding on her horse at a velocity of 11 m/s. She twists around in
her saddle and fires an arrow backward. Her bow fires arrows at 25
m/s. (b) Find the velocity of the arrow relative to the ground.

10 Our full discussion of two- and three-dimensional motion is
postponed until the second half of the book, but here is a chance to
use a little mathematical creativity in anticipation of that general-
ization. Suppose a ship is sailing east at a certain speed v, and a
passenger is walking across the deck at the same speed v, so that
his track across the deck is perpendicular to the ship’s center-line.
What is his speed relative to the water, and in what direction is he
moving relative to the water? . Solution, p. 549

11 Freddi Fish(TM) has a position as a function of time given
by x = a/(b+ t2). (a) Infer the units of the constants a and b. (b)
Find her maximum speed. (c) Check that your answer has the right
units.

√ ∫
12 Driving along in your car, you take your foot off the gas,
and your speedometer shows a reduction in speed. Describe a frame
of reference in which your car was speeding up during that same
period of time. (The frame of reference should be defined by an
observer who, although perhaps in motion relative to the earth, is
not changing her own speed or direction of motion.)
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Problem 13.

13 The figure shows the motion of a bluefin tuna, as measured
by a radio tag (Block et al., Nature, v. 434, p. 1121, 2005), over
the course of several years. Until this study, it had been believed
that the populations of the fish in the eastern and western Atlantic
were separate, but this particular fish was observed to cross the
entire Atlantic Ocean, from Virginia to Ireland. Points A, B, and C
show a period of one month, during which the fish made the most
rapid progress. Estimate its speed during that month, in units of
kilometers per hour.

√

14 Sometimes doors are built with mechanisms that automati-
cally close them after they have been opened. The designer can set
both the strength of the spring and the amount of friction. If there
is too much friction in relation to the strength of the spring, the door
takes too long to close, but if there is too little, the door will oscil-
late. For an optimal design, we get motion of the form x = cte−bt,
where x is the position of some point on the door, and c and b are
positive constants. (Similar systems are used for other mechanical
devices, such as stereo speakers and the recoil mechanisms of guns.)
In this example, the door moves in the positive direction up until a
certain time, then stops and settles back in the negative direction,
eventually approaching x = 0. This would be the type of motion
we would get if someone flung a door open and the door closer then
brought it back closed again. (a) Infer the units of the constants b
and c.
(b) Find the door’s maximum speed (i.e., the greatest absolute value
of its velocity) as it comes back to the closed position.

√

(c) Show that your answer has units that make sense.
∫

15 At a picnic, someone hands you a can of beer. The ground is
uneven, and you don’t want to spill your drink. You reason that it
will be more stable if you drink some of it first in order to lower its
center of mass. How much should you drink in order to make the
center of mass as low as possible? [Based on a problem by Walter
van B. Roberts and Martin Gardner.]
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Problem 16.

Problem 17.

16 In running races at distances of 800 meters and longer, run-
ners do not have their own lanes, so in order to pass, they have to go
around their opponents. Suppose we adopt the simplified geomet-
rical model suggested by the figure, in which the two runners take
equal times to trace out the sides of an isoceles triangle, deviating
from parallelism by the angle θ. The runner going straight runs at
speed v, while the one who is passing must run at a greater speed.
Let the difference in speeds be ∆v.
(a) Find ∆v in terms of v and θ.

√

(b) Check the units of your equation using the method shown in
example 1 on p. 26.
(c) Check that your answer makes sense in the special case where
θ = 0, i.e., in the case where the runners are on an extremely long
straightaway.
(d) Suppose that θ = 1.0 degrees, which is about the smallest value
that will allow a runner to pass in the distance available on the
straightaway of a track, and let v = 7.06 m/s, which is the women’s
world record pace at 800 meters. Plug numbers into your equation
from part a to determine ∆v, and comment on the result.

√

17 In 1849, Fizeau carried out the first terrestrial measurement
of the speed of light; previous measurements by Roemer and Bradley
had involved astronomical observation. The figure shows a simplified
conceptual representation of Fizeau’s experiment. A ray of light
from a bright source was directed through the teeth at the edge of
a spinning cogwheel. After traveling a distance L, it was reflected
from a mirror and returned along the same path. The figure shows
the case in which the ray passes between two teeth, but when it
returns, the wheel has rotated by half the spacing of the teeth,
so that the ray is blocked. When this condition is achieved, the
observer looking through the teeth toward the far-off mirror sees
it go completely dark. Fizeau adjusted the speed of the wheel to
achieve this condition and recorded the rate of rotation to be f
rotations per second. Let the number of teeth on the wheel be n.
(a) Find the speed of light c in terms of L, n, and f .

√

(b) Check the units of your equation using the method shown in
example 1 on p. 26. (Here f ’s units of rotations per second should
be taken as inverse seconds, s−1, since the number of rotations in a
second is a unitless count.)
(c) Imagine that you are Fizeau trying to design this experiment.
The speed of light is a huge number in ordinary units. Use your
equation from part a to determine whether increasing c requires an
increase in L, or a decrease. Do the same for n and f . Based on
this, decide for each of these variables whether you want a value
that is as big as possible, or as small as possible.
(d) Fizeau used L = 8633 m, f = 12.6 s−1, and n = 720. Plug in
to your equation from part a and extract the speed of light from his
data.

√
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18 (a) Let R be the radius of the Earth and T the time (one
day) that it takes for one rotation. Find the speed at which a point
on the equator moves due to the rotation of the earth.

√

(b) Check the units of your equation using the method shown in
example 1 on p. 26.
(c) Check that your answer to part a makes sense in the case where
the Earth stops rotating completely, so that T is infinitely long.
(d) Nairobi, Kenya, is very close to the equator. Plugging in num-
bers to your answer from part a, find Nairobi’s speed in meters per
second. See the table in the back of the book for the relevant data.
For comparison, the speed of sound is about 340 m/s.

√

19 (a) Let θ be the latitude of a point on the Earth’s surface.
Derive an algebra equation for the distance, L, traveled by that
point during one rotation of the Earth about its axis, i.e., over one
day, expressed in terms of θ and R, the radius of the earth. You
may find it helpful to draw one or more diagrams in the style of
figure h on p. 33.

√

(b) Generalize the result of problem 18a to points not necessarily
on the equator.

√

(c) Check the units of your equation using the method shown in
example 1 on p. 26.
(d) Check that your equation in part b gives zero for the North
Pole, and also that it agrees with problem 18a in the special case of
a point on the equator.
(e) At what speed is Fullerton, California, at latitude θ = 34◦,
moving with the rotation of the Earth about its axis?

√

20 (a) In a race, you run the first half of the distance at speed
u, and the second half at speed v. Find the over-all speed, i.e., the
total distance divided by the total time.

√

(b) Check the units of your equation using the method shown in
example 1 on p. 26.
(c) Check that your answer makes sense in the case where u = v.
(d) Show that the dependence of your result on u and v makes sense.
That is, first check whether making u bigger makes the result bigger,
or smaller. Then compare this with what you expect physically.
[Problem by B. Shotwell.]
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Galileo’s contradiction of Aristotle had serious consequences. He was
interrogated by the Church authorities and convicted of teaching that the
earth went around the sun as a matter of fact and not, as he had promised
previously, as a mere mathematical hypothesis. He was placed under per-
manent house arrest, and forbidden to write about or teach his theories.
Immediately after being forced to recant his claim that the earth revolved
around the sun, the old man is said to have muttered defiantly “and yet
it does move.” The story is dramatic, but there are some omissions in
the commonly taught heroic version. There was a rumor that the Sim-
plicio character represented the Pope. Also, some of the ideas Galileo
advocated had controversial religious overtones. He believed in the exis-
tence of atoms, and atomism was thought by some people to contradict
the Church’s doctrine of transubstantiation, which said that in the Catholic
mass, the blessing of the bread and wine literally transformed them into
the flesh and blood of Christ. His support for a cosmology in which the
earth circled the sun was also disreputable because one of its support-
ers, Giordano Bruno, had also proposed a bizarre synthesis of Christianity
with the ancient Egyptian religion.

Chapter 3

Acceleration and Free Fall

3.1 The motion of falling objects
The motion of falling objects is the simplest and most common
example of motion with changing velocity. The early pioneers of
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a / According to Galileo’s stu-
dent Viviani, Galileo dropped
a cannonball and a musketball
simultaneously from the leaning
tower of Pisa, and observed that
they hit the ground at nearly the
same time. This contradicted
Aristotle’s long-accepted idea
that heavier objects fell faster.

physics had a correct intuition that the way things drop was a mes-
sage directly from Nature herself about how the universe worked.
Other examples seem less likely to have deep significance. A walking
person who speeds up is making a conscious choice. If one stretch of
a river flows more rapidly than another, it may be only because the
channel is narrower there, which is just an accident of the local ge-
ography. But there is something impressively consistent, universal,
and inexorable about the way things fall.

Stand up now and simultaneously drop a coin and a bit of paper
side by side. The paper takes much longer to hit the ground. That’s
why Aristotle wrote that heavy objects fell more rapidly. Europeans
believed him for two thousand years.

Now repeat the experiment, but make it into a race between the
coin and your shoe. My own shoe is about 50 times heavier than
the nickel I had handy, but it looks to me like they hit the ground at
exactly the same moment. So much for Aristotle! Galileo, who had
a flair for the theatrical, did the experiment by dropping a bullet
and a heavy cannonball from a tall tower. Aristotle’s observations
had been incomplete, his interpretation a vast oversimplification.

It is inconceivable that Galileo was the first person to observe a
discrepancy with Aristotle’s predictions. Galileo was the one who
changed the course of history because he was able to assemble the
observations into a coherent pattern, and also because he carried
out systematic quantitative (numerical) measurements rather than
just describing things qualitatively.

Why is it that some objects, like the coin and the shoe, have sim-
ilar motion, but others, like a feather or a bit of paper, are different?
Galileo speculated that in addition to the force that always pulls ob-
jects down, there was an upward force exerted by the air. Anyone
can speculate, but Galileo went beyond speculation and came up
with two clever experiments to probe the issue. First, he experi-
mented with objects falling in water, which probed the same issues
but made the motion slow enough that he could take time measure-
ments with a primitive pendulum clock. With this technique, he
established the following facts:

• All heavy, streamlined objects (for example a steel rod dropped
point-down) reach the bottom of the tank in about the same
amount of time, only slightly longer than the time they would
take to fall the same distance in air.

• Objects that are lighter or less streamlined take a longer time
to reach the bottom.

This supported his hypothesis about two contrary forces. He
imagined an idealized situation in which the falling object did not
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c / The v − t graph of a falling
object is a line.

have to push its way through any substance at all. Falling in air
would be more like this ideal case than falling in water, but even
a thin, sparse medium like air would be sufficient to cause obvious
effects on feathers and other light objects that were not streamlined.
Today, we have vacuum pumps that allow us to suck nearly all the
air out of a chamber, and if we drop a feather and a rock side by
side in a vacuum, the feather does not lag behind the rock at all.

How the speed of a falling object increases with time

Galileo’s second stroke of genius was to find a way to make quan-
titative measurements of how the speed of a falling object increased
as it went along. Again it was problematic to make sufficiently accu-
rate time measurements with primitive clocks, and again he found a
tricky way to slow things down while preserving the essential physi-
cal phenomena: he let a ball roll down a slope instead of dropping it
vertically. The steeper the incline, the more rapidly the ball would
gain speed. Without a modern video camera, Galileo had invented
a way to make a slow-motion version of falling.

b / Velocity increases more gradually on the gentle slope, but the
motion is otherwise the same as the motion of a falling object.

Although Galileo’s clocks were only good enough to do accurate
experiments at the smaller angles, he was confident after making
a systematic study at a variety of small angles that his basic con-
clusions were generally valid. Stated in modern language, what he
found was that the velocity-versus-time graph was a line. In the lan-
guage of algebra, we know that a line has an equation of the form
y = ax+ b, but our variables are v and t, so it would be v = at+ b.
(The constant b can be interpreted simply as the initial velocity of
the object, i.e., its velocity at the time when we started our clock,
which we conventionally write as vo.)

self-check A
An object is rolling down an incline. After it has been rolling for a short
time, it is found to travel 13 cm during a certain one-second interval.
During the second after that, it goes 16 cm. How many cm will it travel
in the second after that? . Answer, p. 564
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d / Galileo’s experiments show
that all falling objects have the
same motion if air resistance is
negligible.

e / 1. Aristotle said that heavier
objects fell faster than lighter
ones. 2. If two rocks are tied
together, that makes an extra-
heavy rock, which should fall
faster. 3. But Aristotle’s theory
would also predict that the light
rock would hold back the heavy
rock, resulting in a slower fall.

A contradiction in Aristotle’s reasoning

Galileo’s inclined-plane experiment disproved the long-accepted
claim by Aristotle that a falling object had a definite “natural falling
speed” proportional to its weight. Galileo had found that the speed
just kept on increasing, and weight was irrelevant as long as air
friction was negligible. Not only did Galileo prove experimentally
that Aristotle had been wrong, but he also pointed out a logical
contradiction in Aristotle’s own reasoning. Simplicio, the stupid
character, mouths the accepted Aristotelian wisdom:

SIMPLICIO: There can be no doubt but that a particular body
. . . has a fixed velocity which is determined by nature. . .

SALVIATI: If then we take two bodies whose natural speeds
are different, it is clear that, [according to Aristotle], on unit-
ing the two, the more rapid one will be partly held back by
the slower, and the slower will be somewhat hastened by the
swifter. Do you not agree with me in this opinion?

SIMPLICIO: You are unquestionably right.

SALVIATI: But if this is true, and if a large stone moves with a
speed of, say, eight [unspecified units] while a smaller moves
with a speed of four, then when they are united, the system
will move with a speed less than eight; but the two stones
when tied together make a stone larger than that which before
moved with a speed of eight. Hence the heavier body moves
with less speed than the lighter; an effect which is contrary to
your supposition. Thus you see how, from your assumption
that the heavier body moves more rapidly than the lighter one,
I infer that the heavier body moves more slowly.

What is gravity?

The physicist Richard Feynman liked to tell a story about how
when he was a little kid, he asked his father, “Why do things fall?”
As an adult, he praised his father for answering, “Nobody knows why
things fall. It’s a deep mystery, and the smartest people in the world
don’t know the basic reason for it.” Contrast that with the average
person’s off-the-cuff answer, “Oh, it’s because of gravity.” Feynman
liked his father’s answer, because his father realized that simply
giving a name to something didn’t mean that you understood it.
The radical thing about Galileo’s and Newton’s approach to science
was that they concentrated first on describing mathematically what
really did happen, rather than spending a lot of time on untestable
speculation such as Aristotle’s statement that “Things fall because
they are trying to reach their natural place in contact with the
earth.” That doesn’t mean that science can never answer the “why”
questions. Over the next month or two as you delve deeper into
physics, you will learn that there are more fundamental reasons why
all falling objects have v − t graphs with the same slope, regardless
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f / Example 1.

g / Example 2.

of their mass. Nevertheless, the methods of science always impose
limits on how deep our explanation can go.

3.2 Acceleration
Definition of acceleration for linear v − t graphs

Galileo’s experiment with dropping heavy and light objects from
a tower showed that all falling objects have the same motion, and his
inclined-plane experiments showed that the motion was described by
v = at+vo. The initial velocity vo depends on whether you drop the
object from rest or throw it down, but even if you throw it down,
you cannot change the slope, a, of the v − t graph.

Since these experiments show that all falling objects have lin-
ear v − t graphs with the same slope, the slope of such a graph is
apparently an important and useful quantity. We use the word accel-
eration, and the symbol a, for the slope of such a graph. In symbols,
a = ∆v/∆t. The acceleration can be interpreted as the amount of
speed gained in every second, and it has units of velocity divided by
time, i.e., “meters per second per second,” or m/s/s. Continuing to
treat units as if they were algebra symbols, we simplify “m/s/s” to
read “m/s2.” Acceleration can be a useful quantity for describing
other types of motion besides falling, and the word and the symbol
“a” can be used in a more general context. We reserve the more
specialized symbol “g” for the acceleration of falling objects, which
on the surface of our planet equals 9.8 m/s2. Often when doing
approximate calculations or merely illustrative numerical examples
it is good enough to use g = 10 m/s2, which is off by only 2%.

Finding final speed, given time example 1
. A despondent physics student jumps off a bridge, and falls for
three seconds before hitting the water. How fast is he going when
he hits the water?

. Approximating g as 10 m/s2, he will gain 10 m/s of speed each
second. After one second, his velocity is 10 m/s, after two sec-
onds it is 20 m/s, and on impact, after falling for three seconds,
he is moving at 30 m/s.

Extracting acceleration from a graph example 2
. The x − t and v − t graphs show the motion of a car starting
from a stop sign. What is the car’s acceleration?

. Acceleration is defined as the slope of the v-t graph. The graph
rises by 3 m/s during a time interval of 3 s, so the acceleration is
(3 m/s)/(3 s) = 1 m/s2.

Incorrect solution #1: The final velocity is 3 m/s, and acceleration
is velocity divided by time, so the acceleration is (3 m/s)/(10 s) =
0.3 m/s2.
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The solution is incorrect because you can’t find the slope of a
graph from one point. This person was just using the point at the
right end of the v-t graph to try to find the slope of the curve.

Incorrect solution #2: Velocity is distance divided by time so v =
(4.5 m)/(3 s) = 1.5 m/s. Acceleration is velocity divided by time,
so a = (1.5 m/s)/(3 s) = 0.5 m/s2.

The solution is incorrect because velocity is the slope of the
tangent line. In a case like this where the velocity is changing,
you can’t just pick two points on the x-t graph and use them to
find the velocity.

Converting g to different units example 3
. What is g in units of cm/s2?

. The answer is going to be how many cm/s of speed a falling
object gains in one second. If it gains 9.8 m/s in one second, then
it gains 980 cm/s in one second, so g = 980 cm/s2. Alternatively,
we can use the method of fractions that equal one:

9.8��m
s2 × 100 cm

1��m
=

980 cm
s2

. What is g in units of miles/hour2?

.

9.8 m
s2 × 1 mile

1600 m
×
(

3600 s
1 hour

)2

= 7.9× 104 mile/hour2

This large number can be interpreted as the speed, in miles per
hour, that you would gain by falling for one hour. Note that we had
to square the conversion factor of 3600 s/hour in order to cancel
out the units of seconds squared in the denominator.

. What is g in units of miles/hour/s?

.

9.8 m
s2 × 1 mile

1600 m
× 3600 s

1 hour
= 22 mile/hour/s

This is a figure that Americans will have an intuitive feel for. If
your car has a forward acceleration equal to the acceleration of a
falling object, then you will gain 22 miles per hour of speed every
second. However, using mixed time units of hours and seconds
like this is usually inconvenient for problem-solving. It would be
like using units of foot-inches for area instead of ft2 or in2.

The acceleration of gravity is different in different locations.

Everyone knows that gravity is weaker on the moon, but actu-
ally it is not even the same everywhere on Earth, as shown by the
sampling of numerical data in the following table.
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location latitude elevation (m) g (m/s2)
north pole 90◦N 0 9.8322
Reykjavik, Iceland 64◦N 0 9.8225
Guayaquil, Ecuador 2◦S 0 9.7806
Mt. Cotopaxi, Ecuador 1◦S 5896 9.7624
Mt. Everest 28◦N 8848 9.7643

The main variables that relate to the value of g on Earth are latitude
and elevation. Although you have not yet learned how g would
be calculated based on any deeper theory of gravity, it is not too
hard to guess why g depends on elevation. Gravity is an attraction
between things that have mass, and the attraction gets weaker with
increasing distance. As you ascend from the seaport of Guayaquil
to the nearby top of Mt. Cotopaxi, you are distancing yourself from
the mass of the planet. The dependence on latitude occurs because
we are measuring the acceleration of gravity relative to the earth’s
surface, but the earth’s rotation causes the earth’s surface to fall
out from under you. (We will discuss both gravity and rotation in
more detail later in the course.)

h / This false-color map shows
variations in the strength of the
earth’s gravity. Purple areas have
the strongest gravity, yellow the
weakest. The overall trend toward
weaker gravity at the equator and
stronger gravity at the poles has
been artificially removed to al-
low the weaker local variations to
show up. The map covers only
the oceans because of the tech-
nique used to make it: satellites
look for bulges and depressions
in the surface of the ocean. A
very slight bulge will occur over an
undersea mountain, for instance,
because the mountain’s gravita-
tional attraction pulls water to-
ward it. The US government orig-
inally began collecting data like
these for military use, to correct
for the deviations in the paths of
missiles. The data have recently
been released for scientific and
commercial use (e.g., searching
for sites for off-shore oil wells).

Much more spectacular differences in the strength of gravity can
be observed away from the Earth’s surface:
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location g (m/s2)
asteroid Vesta (surface) 0.3
Earth’s moon (surface) 1.6
Mars (surface) 3.7
Earth (surface) 9.8
Jupiter (cloud-tops) 26
Sun (visible surface) 270
typical neutron star (surface) 1012

black hole (center) infinite according to some theo-
ries, on the order of 1052 accord-
ing to others

A typical neutron star is not so different in size from a large asteroid,
but is orders of magnitude more massive, so the mass of a body
definitely correlates with the g it creates. On the other hand, a
neutron star has about the same mass as our Sun, so why is its g
billions of times greater? If you had the misfortune of being on the
surface of a neutron star, you’d be within a few thousand miles of all
its mass, whereas on the surface of the Sun, you’d still be millions
of miles from most of its mass.

Discussion questions

A What is wrong with the following definitions of g?

(1) “g is gravity.”

(2) “g is the speed of a falling object.”

(3) “g is how hard gravity pulls on things.”

B When advertisers specify how much acceleration a car is capable
of, they do not give an acceleration as defined in physics. Instead, they
usually specify how many seconds are required for the car to go from rest
to 60 miles/hour. Suppose we use the notation “a” for the acceleration as
defined in physics, and “acar ad” for the quantity used in advertisements for
cars. In the US’s non-metric system of units, what would be the units of
a and acar ad? How would the use and interpretation of large and small,
positive and negative values be different for a as opposed to acar ad?

C Two people stand on the edge of a cliff. As they lean over the edge,
one person throws a rock down, while the other throws one straight up
with an exactly opposite initial velocity. Compare the speeds of the rocks
on impact at the bottom of the cliff.

3.3 Positive and negative acceleration
Gravity always pulls down, but that does not mean it always speeds
things up. If you throw a ball straight up, gravity will first slow
it down to v = 0 and then begin increasing its speed. When I
took physics in high school, I got the impression that positive signs
of acceleration indicated speeding up, while negative accelerations
represented slowing down, i.e., deceleration. Such a definition would
be inconvenient, however, because we would then have to say that
the same downward tug of gravity could produce either a positive
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i / The ball’s acceleration stays
the same — on the way up, at the
top, and on the way back down.
It’s always negative.

or a negative acceleration. As we will see in the following example,
such a definition also would not be the same as the slope of the v− t
graph.

Let’s study the example of the rising and falling ball. In the ex-
ample of the person falling from a bridge, I assumed positive velocity
values without calling attention to it, which meant I was assuming
a coordinate system whose x axis pointed down. In this example,
where the ball is reversing direction, it is not possible to avoid neg-
ative velocities by a tricky choice of axis, so let’s make the more
natural choice of an axis pointing up. The ball’s velocity will ini-
tially be a positive number, because it is heading up, in the same
direction as the x axis, but on the way back down, it will be a neg-
ative number. As shown in the figure, the v − t graph does not do
anything special at the top of the ball’s flight, where v equals 0. Its
slope is always negative. In the left half of the graph, there is a
negative slope because the positive velocity is getting closer to zero.
On the right side, the negative slope is due to a negative velocity
that is getting farther from zero, so we say that the ball is speeding
up, but its velocity is decreasing!

To summarize, what makes the most sense is to stick with the
original definition of acceleration as the slope of the v − t graph,
∆v/∆t. By this definition, it just isn’t necessarily true that things
speeding up have positive acceleration while things slowing down
have negative acceleration. The word “deceleration” is not used
much by physicists, and the word “acceleration” is used unblush-
ingly to refer to slowing down as well as speeding up: “There was a
red light, and we accelerated to a stop.”

Numerical calculation of a negative acceleration example 4
. In figure i, what happens if you calculate the acceleration be-
tween t = 1.0 and 1.5 s?

. Reading from the graph, it looks like the velocity is about−1 m/s
at t = 1.0 s, and around −6 m/s at t = 1.5 s. The acceleration,
figured between these two points, is

a =
∆v
∆t

=
(−6 m/s)− (−1 m/s)

(1.5 s)− (1.0 s)
= −10 m/s2.

Even though the ball is speeding up, it has a negative accelera-
tion.

Another way of convincing you that this way of handling the plus
and minus signs makes sense is to think of a device that measures
acceleration. After all, physics is supposed to use operational defini-
tions, ones that relate to the results you get with actual measuring
devices. Consider an air freshener hanging from the rear-view mirror
of your car. When you speed up, the air freshener swings backward.
Suppose we define this as a positive reading. When you slow down,
the air freshener swings forward, so we’ll call this a negative reading
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on our accelerometer. But what if you put the car in reverse and
start speeding up backwards? Even though you’re speeding up, the
accelerometer responds in the same way as it did when you were
going forward and slowing down. There are four possible cases:

motion of car accelerometer
swings

slope of
v-t graph

direction
of force
acting on
car

forward, speeding up backward + forward
forward, slowing down forward − backward
backward, speeding up forward − backward
backward, slowing down backward + forward

Note the consistency of the three right-hand columns — nature is
trying to tell us that this is the right system of classification, not
the left-hand column.

Because the positive and negative signs of acceleration depend
on the choice of a coordinate system, the acceleration of an object
under the influence of gravity can be either positive or negative.
Rather than having to write things like “g = 9.8 m/s2 or −9.8 m/s2”
every time we want to discuss g’s numerical value, we simply define
g as the absolute value of the acceleration of objects moving under
the influence of gravity. We consistently let g = 9.8 m/s2, but we
may have either a = g or a = −g, depending on our choice of a
coordinate system.

Acceleration with a change in direction of motion example 5
. A person kicks a ball, which rolls up a sloping street, comes to
a halt, and rolls back down again. The ball has constant accel-
eration. The ball is initially moving at a velocity of 4.0 m/s, and
after 10.0 s it has returned to where it started. At the end, it has
sped back up to the same speed it had initially, but in the opposite
direction. What was its acceleration?

. By giving a positive number for the initial velocity, the statement
of the question implies a coordinate axis that points up the slope
of the hill. The “same” speed in the opposite direction should
therefore be represented by a negative number, -4.0 m/s. The
acceleration is

a = ∆v/∆t
= (vf − vo)/10.0 s
= [(−4.0 m/s)− (4.0 m/s)]/10.0s

= −0.80 m/s2.

The acceleration was no different during the upward part of the
roll than on the downward part of the roll.

Incorrect solution: Acceleration is ∆v/∆t, and at the end it’s not
moving any faster or slower than when it started, so ∆v=0 and
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Discussion question C.

a = 0.

The velocity does change, from a positive number to a negative
number.

Discussion question B.

Discussion questions

A A child repeatedly jumps up and down on a trampoline. Discuss the
sign and magnitude of his acceleration, including both the time when he is
in the air and the time when his feet are in contact with the trampoline.

B The figure shows a refugee from a Picasso painting blowing on a
rolling water bottle. In some cases the person’s blowing is speeding the
bottle up, but in others it is slowing it down. The arrow inside the bottle
shows which direction it is going, and a coordinate system is shown at the
bottom of each figure. In each case, figure out the plus or minus signs of
the velocity and acceleration. It may be helpful to draw a v − t graph in
each case.

C Sally is on an amusement park ride which begins with her chair being
hoisted straight up a tower at a constant speed of 60 miles/hour. Despite
stern warnings from her father that he’ll take her home the next time she
misbehaves, she decides that as a scientific experiment she really needs
to release her corndog over the side as she’s on the way up. She does
not throw it. She simply sticks it out of the car, lets it go, and watches it
against the background of the sky, with no trees or buildings as reference
points. What does the corndog’s motion look like as observed by Sally?
Does its speed ever appear to her to be zero? What acceleration does
she observe it to have: is it ever positive? negative? zero? What would
her enraged father answer if asked for a similar description of its motion
as it appears to him, standing on the ground?

D Can an object maintain a constant acceleration, but meanwhile
reverse the direction of its velocity?

E Can an object have a velocity that is positive and increasing at the
same time that its acceleration is decreasing?
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k / Example 6.

3.4 Varying acceleration
So far we have only been discussing examples of motion for which
the v − t graph is linear. If we wish to generalize our definition to
v-t graphs that are more complex curves, the best way to proceed
is similar to how we defined velocity for curved x− t graphs:

definition of acceleration
The acceleration of an object at any instant is the slope of
the tangent line passing through its v-versus-t graph at the
relevant point.

A skydiver example 6
. The graphs in figure k show the results of a fairly realistic com-
puter simulation of the motion of a skydiver, including the effects
of air friction. The x axis has been chosen pointing down, so x
is increasing as she falls. Find (a) the skydiver’s acceleration at
t = 3.0 s, and also (b) at t = 7.0 s.

. The solution is shown in figure l. I’ve added tangent lines at the
two points in question.

(a) To find the slope of the tangent line, I pick two points on the
line (not necessarily on the actual curve): (3.0 s, 28m/s) and
(5.0 s, 42 m/s). The slope of the tangent line is (42 m/s−28 m/s)/(5.0 s−
3.0 s) = 7.0 m/s2.

(b) Two points on this tangent line are (7.0 s, 47 m/s) and (9.0 s, 52 m/s).
The slope of the tangent line is (52 m/s−47 m/s)/(9.0 s−7.0 s) =
2.5 m/s2.

Physically, what’s happening is that at t = 3.0 s, the skydiver is
not yet going very fast, so air friction is not yet very strong. She
therefore has an acceleration almost as great as g. At t = 7.0 s,
she is moving almost twice as fast (about 100 miles per hour), and
air friction is extremely strong, resulting in a significant departure
from the idealized case of no air friction.

In example 6, the x−t graph was not even used in the solution of
the problem, since the definition of acceleration refers to the slope
of the v − t graph. It is possible, however, to interpret an x − t
graph to find out something about the acceleration. An object with
zero acceleration, i.e., constant velocity, has an x− t graph that is a
straight line. A straight line has no curvature. A change in velocity
requires a change in the slope of the x− t graph, which means that
it is a curve rather than a line. Thus acceleration relates to the
curvature of the x− t graph. Figure m shows some examples.
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l / The solution to example 6.

In example 6, the x − t graph was more strongly curved at the
beginning, and became nearly straight at the end. If the x− t graph
is nearly straight, then its slope, the velocity, is nearly constant, and
the acceleration is therefore small. We can thus interpret the accel-
eration as representing the curvature of the x − t graph, as shown
in figure m. If the “cup” of the curve points up, the acceleration is
positive, and if it points down, the acceleration is negative.

m / Acceleration relates to the curvature of the x − t graph.
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o / How position, velocity, and
acceleration are related.

Since the relationship between a and v is analogous to the rela-
tionship between v and x, we can also make graphs of acceleration
as a function of time, as shown in figure n.

n / Examples of graphs of x , v , and a versus t . 1. An object in
free fall, with no friction. 2. A continuation of example 6, the skydiver.

. Solved problem: Drawing a v − t graph. page 119, problem 14

. Solved problem: Drawing v − t and a− t graphs. page 120, problem
20

Figure o summarizes the relationships among the three types of
graphs.

Discussion questions

A Describe in words how the changes in the a − t graph in figure n/2
relate to the behavior of the v − t graph.
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B Explain how each set of graphs contains inconsistencies, and fix
them.

C In each case, pick a coordinate system and draw x − t , v − t , and
a− t graphs. Picking a coordinate system means picking where you want
x = 0 to be, and also picking a direction for the positive x axis.

(1) An ocean liner is cruising in a straight line at constant speed.

(2) You drop a ball. Draw two different sets of graphs (a total of 6), with
one set’s positive x axis pointing in the opposite direction compared to the
other’s.

(3) You’re driving down the street looking for a house you’ve never been
to before. You realize you’ve passed the address, so you slow down, put
the car in reverse, back up, and stop in front of the house.

3.5 The area under the velocity-time graph
A natural question to ask about falling objects is how fast they fall,
but Galileo showed that the question has no answer. The physical
law that he discovered connects a cause (the attraction of the planet
Earth’s mass) to an effect, but the effect is predicted in terms of an
acceleration rather than a velocity. In fact, no physical law predicts
a definite velocity as a result of a specific phenomenon, because
velocity cannot be measured in absolute terms, and only changes in
velocity relate directly to physical phenomena.

The unfortunate thing about this situation is that the definitions
of velocity and acceleration are stated in terms of the tangent-line
technique, which lets you go from x to v to a, but not the other
way around. Without a technique to go backwards from a to v to x,
we cannot say anything quantitative, for instance, about the x − t
graph of a falling object. Such a technique does exist, and I used it
to make the x− t graphs in all the examples above.
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p / The area under the v − t
graph gives ∆x .

First let’s concentrate on how to get x information out of a v− t
graph. In example p/1, an object moves at a speed of 20 m/s for
a period of 4.0 s. The distance covered is ∆x = v∆t = (20 m/s) ×
(4.0 s) = 80 m. Notice that the quantities being multiplied are the
width and the height of the shaded rectangle — or, strictly speaking,
the time represented by its width and the velocity represented by
its height. The distance of ∆x = 80 m thus corresponds to the area
of the shaded part of the graph.

The next step in sophistication is an example like p/2, where the
object moves at a constant speed of 10 m/s for two seconds, then
for two seconds at a different constant speed of 20 m/s. The shaded
region can be split into a small rectangle on the left, with an area
representing ∆x = 20 m, and a taller one on the right, corresponding
to another 40 m of motion. The total distance is thus 60 m, which
corresponds to the total area under the graph.

An example like p/3 is now just a trivial generalization; there
is simply a large number of skinny rectangular areas to add up.
But notice that graph p/3 is quite a good approximation to the
smooth curve p/4. Even though we have no formula for the area of
a funny shape like p/4, we can approximate its area by dividing it up
into smaller areas like rectangles, whose area is easier to calculate.
If someone hands you a graph like p/4 and asks you to find the
area under it, the simplest approach is just to count up the little
rectangles on the underlying graph paper, making rough estimates
of fractional rectangles as you go along.

That’s what I’ve done in figure q. Each rectangle on the graph
paper is 1.0 s wide and 2 m/s tall, so it represents 2 m. Adding up
all the numbers gives ∆x = 41 m. If you needed better accuracy,
you could use graph paper with smaller rectangles.

It’s important to realize that this technique gives you ∆x, not
x. The v − t graph has no information about where the object was
when it started.

The following are important points to keep in mind when apply-
ing this technique:

• If the range of v values on your graph does not extend down
to zero, then you will get the wrong answer unless you com-
pensate by adding in the area that is not shown.

• As in the example, one rectangle on the graph paper does not
necessarily correspond to one meter of distance.

• Negative velocity values represent motion in the opposite di-
rection, so as suggested by figure r, area under the t axis should
be subtracted, i.e., counted as “negative area.”
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r / Area underneath the axis
is considered negative.

q / An example using estimation
of fractions of a rectangle.

• Since the result is a ∆x value, it only tells you xafter−xbefore,
which may be less than the actual distance traveled. For in-
stance, the object could come back to its original position at
the end, which would correspond to ∆x=0, even though it had
actually moved a nonzero distance.

Finally, note that one can find ∆v from an a − t graph using
an entirely analogous method. Each rectangle on the a − t graph
represents a certain amount of velocity change.

Discussion question

A Roughly what would a pendulum’s v− t graph look like? What would
happen when you applied the area-under-the-curve technique to find the
pendulum’s ∆x for a time period covering many swings?

3.6 Algebraic results for constant acceleration
Although the area-under-the-curve technique can be applied to any
graph, no matter how complicated, it may be laborious to carry out,
and if fractions of rectangles must be estimated the result will only
be approximate. In the special case of motion with constant accel-
eration, it is possible to find a convenient shortcut which produces
exact results. When the acceleration is constant, the v − t graph
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s / The shaded area tells us
how far an object moves while
accelerating at a constant rate.

is a straight line, as shown in the figure. The area under the curve
can be divided into a triangle plus a rectangle, both of whose areas
can be calculated exactly: A = bh for a rectangle and A = bh/2
for a triangle. The height of the rectangle is the initial velocity, vo,
and the height of the triangle is the change in velocity from begin-
ning to end, ∆v. The object’s ∆x is therefore given by the equation
∆x = vo∆t + ∆v∆t/2. This can be simplified a little by using the
definition of acceleration, a = ∆v/∆t, to eliminate ∆v, giving

∆x = vo∆t+
1

2
a∆t2. [motion with

constant acceleration]

Since this is a second-order polynomial in ∆t, the graph of ∆x versus
∆t is a parabola, and the same is true of a graph of x versus t —
the two graphs differ only by shifting along the two axes. Although
I have derived the equation using a figure that shows a positive vo,
positive a, and so on, it still turns out to be true regardless of what
plus and minus signs are involved.

Another useful equation can be derived if one wants to relate
the change in velocity to the distance traveled. This is useful, for
instance, for finding the distance needed by a car to come to a stop.
For simplicity, we start by deriving the equation for the special case
of vo = 0, in which the final velocity vf is a synonym for ∆v. Since
velocity and distance are the variables of interest, not time, we take
the equation ∆x = 1

2a∆t2 and use ∆t = ∆v/a to eliminate ∆t. This
gives ∆x = (∆v)2/2a, which can be rewritten as

v2
f = 2a∆x . [motion with constant acceleration, vo = 0]

For the more general case where vo 6= 0, we skip the tedious algebra
leading to the more general equation,

v2
f = v2

o + 2a∆x . [motion with constant acceleration]
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To help get this all organized in your head, first let’s categorize
the variables as follows:

Variables that change during motion with constant acceleration:

x ,v, t

Variable that doesn’t change:

a

If you know one of the changing variables and want to find another,
there is always an equation that relates those two:

The symmetry among the three variables is imperfect only be-
cause the equation relating x and t includes the initial velocity.

There are two main difficulties encountered by students in ap-
plying these equations:

• The equations apply only to motion with constant accelera-
tion. You can’t apply them if the acceleration is changing.

• Students are often unsure of which equation to use, or may
cause themselves unnecessary work by taking the longer path
around the triangle in the chart above. Organize your thoughts
by listing the variables you are given, the ones you want to
find, and the ones you aren’t given and don’t care about.

Saving an old lady example 7
. You are trying to pull an old lady out of the way of an oncoming
truck. You are able to give her an acceleration of 20 m/s2. Start-
ing from rest, how much time is required in order to move her 2
m?

. First we organize our thoughts:

Variables given: ∆x , a, vo

Variables desired: ∆t

Irrelevant variables: vf

Consulting the triangular chart above, the equation we need is
clearly ∆x = vo∆t+ 1

2a∆t2, since it has the four variables of interest
and omits the irrelevant one. Eliminating the vo term and solving
for ∆t gives ∆t =

√
2∆x/a = 0.4 s.
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. Solved problem: A stupid celebration page 119, problem 15

. Solved problem: Dropping a rock on Mars page 119, problem 16

. Solved problem: The Dodge Viper page 120, problem 18

. Solved problem: Half-way sped up page 120, problem 22

Discussion questions

A In chapter 1, I gave examples of correct and incorrect reasoning
about proportionality, using questions about the scaling of area and vol-
ume. Try to translate the incorrect modes of reasoning shown there into
mistakes about the following question: If the acceleration of gravity on
Mars is 1/3 that on Earth, how many times longer does it take for a rock
to drop the same distance on Mars?

B Check that the units make sense in the three equations derived in
this section.

3.7 ? A test of the principle of inertia
Historically, the first quantitative and well documented experimen-
tal test of the principle of inertia (p. 80) was performed by Galileo
around 1590 and published decades later when he managed to find
a publisher in the Netherlands that was beyond the reach of the
Roman Inquisition.1 It was ingenious but somewhat indirect, and
required a layer of interpretation and extrapolation on top of the
actual observations. As described on p. 97, he established that ob-
jects rolling on inclined planes moved according to mathematical
laws that we would today describe as in section 3.6. He knew that
his rolling balls were subject to friction, as well as random errors
due to the limited precision of the water clock that he used, but he
took the approximate agreement of his equations with experiment
to indicate that they gave the results that would be exact in the
absence of friction. He also showed, purely empirically, that when
a ball went up or down a ramp inclined at an angle θ, its accelera-
tion was proportional to sin θ. Again, this required extrapolation to
idealized conditions of zero friction. He then reasoned that if a ball
was rolled on a horizontal ramp, with θ = 0, its acceleration would
be zero. This is exactly what is required by the principle of inertia:
in the absence of friction, motion continues indefinitely.

1Galileo, Discourses and Mathematical Demonstrations Relating to Two New
Sciences, 1638. The experiments are described in the Third Day, and their sup-
port for the principle of inertia is discussed in the Scholium following Theorems
I-XIV. Another experiment involving a ship is described in Galileo’s 1624 reply
to a letter from Fr. Ingoli, but although Galileo vigorously asserts that he really
did carry it out, no detailed description or quantitative results are given.
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3.8
∫

Applications of calculus
In section 2.7, I discussed how the slope-of-the-tangent-line idea
related to the calculus concept of a derivative, and the branch of
calculus known as differential calculus. The other main branch of
calculus, integral calculus, has to do with the area-under-the-curve
concept discussed in section 3.5. Again there is a concept, a nota-
tion, and a bag of tricks for doing things symbolically rather than
graphically. In calculus, the area under the v − t graph between
t = t1 and t = t2 is notated like this:

area under curve = ∆x =

∫ t2

t1

v dt.

The expression on the right is called an integral, and the s-shaped
symbol, the integral sign, is read as “integral of . . . ”

Integral calculus and differential calculus are closely related. For
instance, if you take the derivative of the function x(t), you get
the function v(t), and if you integrate the function v(t), you get
x(t) back again. In other words, integration and differentiation are
inverse operations. This is known as the fundamental theorem of
calculus.

On an unrelated topic, there is a special notation for taking the
derivative of a function twice. The acceleration, for instance, is the
second (i.e., double) derivative of the position, because differentiat-
ing x once gives v, and then differentiating v gives a. This is written
as

a =
d2 x

dt2
.

The seemingly inconsistent placement of the twos on the top and
bottom confuses all beginning calculus students. The motivation
for this funny notation is that acceleration has units of m/s2, and
the notation correctly suggests that: the top looks like it has units of
meters, the bottom seconds2. The notation is not meant, however,
to suggest that t is really squared.
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Summary
Selected vocabulary
gravity . . . . . . A general term for the phenomenon of attrac-

tion between things having mass. The attrac-
tion between our planet and a human-sized ob-
ject causes the object to fall.

acceleration . . . The rate of change of velocity; the slope of the
tangent line on a v − t graph.

Notation
vo . . . . . . . . . initial velocity
vf . . . . . . . . . final velocity
a . . . . . . . . . . acceleration
g . . . . . . . . . . the acceleration of objects in free fall; the

strength of the local gravitational field

Summary

Galileo showed that when air resistance is negligible all falling
bodies have the same motion regardless of mass. Moreover, their
v− t graphs are straight lines. We therefore define a quantity called
acceleration as the slope, ∆v/∆t, of an object’s v−t graph. In cases
other than free fall, the v−t graph may be curved, in which case the
definition is generalized as the slope of a tangent line on the v − t
graph. The acceleration of objects in free fall varies slightly across
the surface of the earth, and greatly on other planets.

Positive and negative signs of acceleration are defined according
to whether the v−t graph slopes up or down. This definition has the
advantage that a force with a given sign, representing its direction,
always produces an acceleration with the same sign.

The area under the v − t graph gives ∆x, and analogously the
area under the a− t graph gives ∆v.

For motion with constant acceleration, the following three equa-
tions hold:

∆x = vo∆t+
1

2
a∆t2

v2
f = v2

o + 2a∆x

a =
∆v

∆t

They are not valid if the acceleration is changing.

116 Chapter 3 Acceleration and Free Fall



Problem 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The graph represents the velocity of a bee along a straight
line. At t = 0, the bee is at the hive. (a) When is the bee farthest
from the hive? (b) How far is the bee at its farthest point from the
hive? (c) At t = 13 s, how far is the bee from the hive?

√

2 A rock is dropped into a pond. Draw plots of its position
versus time, velocity versus time, and acceleration versus time. In-
clude its whole motion, starting from the moment it is dropped, and
continuing while it falls through the air, passes through the water,
and ends up at rest on the bottom of the pond. Do your work on a
photocopy or a printout of page 125.

3 In an 18th-century naval battle, a cannon ball is shot horizon-
tally, passes through the side of an enemy ship’s hull, flies across the
galley, and lodges in a bulkhead. Draw plots of its horizontal posi-
tion, velocity, and acceleration as functions of time, starting while it
is inside the cannon and has not yet been fired, and ending when it
comes to rest. There is not any significant amount of friction from
the air. Although the ball may rise and fall, you are only concerned
with its horizontal motion, as seen from above. Do your work on a
photocopy or a printout of page 125.

4 Draw graphs of position, velocity, and acceleration as functions
of time for a person bunjee jumping. (In bunjee jumping, a person
has a stretchy elastic cord tied to his/her ankles, and jumps off of a
high platform. At the bottom of the fall, the cord brings the person
up short. Presumably the person bounces up a little.) Do your work
on a photocopy or a printout of page 125.
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Problem 5.

5 A ball rolls down the ramp shown in the figure, consisting of a
curved knee, a straight slope, and a curved bottom. For each part of
the ramp, tell whether the ball’s velocity is increasing, decreasing,
or constant, and also whether the ball’s acceleration is increasing,
decreasing, or constant. Explain your answers. Assume there is no
air friction or rolling resistance. Hint: Try problem 20 first. [Based
on a problem by Hewitt.]

6 A toy car is released on one side of a piece of track that is bent
into an upright U shape. The car goes back and forth. When the
car reaches the limit of its motion on one side, its velocity is zero.
Is its acceleration also zero? Explain using a v− t graph. [Based on
a problem by Serway and Faughn.]

7 What is the acceleration of a car that moves at a steady
velocity of 100 km/h for 100 seconds? Explain your answer. [Based
on a problem by Hewitt.]

8 A physics homework question asks, “If you start from rest and
accelerate at 1.54 m/s2 for 3.29 s, how far do you travel by the end
of that time?” A student answers as follows:

1.54× 3.29 = 5.07 m

His Aunt Wanda is good with numbers, but has never taken physics.
She doesn’t know the formula for the distance traveled under con-
stant acceleration over a given amount of time, but she tells her
nephew his answer cannot be right. How does she know?

9 You are looking into a deep well. It is dark, and you cannot
see the bottom. You want to find out how deep it is, so you drop
a rock in, and you hear a splash 3.0 seconds later. How deep is the
well?

√

10 You take a trip in your spaceship to another star. Setting off,
you increase your speed at a constant acceleration. Once you get
half-way there, you start decelerating, at the same rate, so that by
the time you get there, you have slowed down to zero speed. You see
the tourist attractions, and then head home by the same method.
(a) Find a formula for the time, T , required for the round trip, in
terms of d, the distance from our sun to the star, and a, the magni-
tude of the acceleration. Note that the acceleration is not constant
over the whole trip, but the trip can be broken up into constant-
acceleration parts.
(b) The nearest star to the Earth (other than our own sun) is Prox-
ima Centauri, at a distance of d = 4× 1016 m. Suppose you use an
acceleration of a = 10 m/s2, just enough to compensate for the lack
of true gravity and make you feel comfortable. How long does the
round trip take, in years?
(c) Using the same numbers for d and a, find your maximum speed.
Compare this to the speed of light, which is 3.0× 108 m/s. (Later
in this course, you will learn that there are some new things going
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Problem 14.

on in physics when one gets close to the speed of light, and that it
is impossible to exceed the speed of light. For now, though, just use
the simpler ideas you’ve learned so far.)

√
?

11 You climb half-way up a tree, and drop a rock. Then you
climb to the top, and drop another rock. How many times greater
is the velocity of the second rock on impact? Explain. (The answer
is not two times greater.)

12 Alice drops a rock off a cliff. Bubba shoots a gun straight
down from the edge of the same cliff. Compare the accelerations of
the rock and the bullet while they are in the air on the way down.
[Based on a problem by Serway and Faughn.]

13 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by an equation of the form

y = b− c
(
t+ ke−t/k

)
,

where e is the base of natural logarithms, and b, c, and k are con-
stants. Because of air resistance, her velocity does not increase at a
steady rate as it would for an object falling in vacuum.
(a) What units would b, c, and k have to have for the equation to
make sense?
(b) Find the person’s velocity, v, as a function of time. [You will
need to use the chain rule, and the fact that d(ex)/ dx = ex.]

√

(c) Use your answer from part (b) to get an interpretation of the
constant c. [Hint: e−x approaches zero for large values of x.]
(d) Find the person’s acceleration, a, as a function of time.

√

(e) Use your answer from part (d) to show that if she waits long
enough to open her chute, her acceleration will become very small.∫
14 The top part of the figure shows the position-versus-time
graph for an object moving in one dimension. On the bottom part
of the figure, sketch the corresponding v-versus-t graph.

. Solution, p. 549

15 On New Year’s Eve, a stupid person fires a pistol straight up.
The bullet leaves the gun at a speed of 100 m/s. How long does it
take before the bullet hits the ground? . Solution, p. 549

16 If the acceleration of gravity on Mars is 1/3 that on Earth,
how many times longer does it take for a rock to drop the same
distance on Mars? Ignore air resistance. . Solution, p. 549

17 A honeybee’s position as a function of time is given by
x = 10t − t3, where t is in seconds and x in meters. What is its
acceleration at t = 3.0 s? . Solution, p. 549

∫
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Problem 19.

Problem 20.

Problem 23.

18 In July 1999, Popular Mechanics carried out tests to find
which car sold by a major auto maker could cover a quarter mile
(402 meters) in the shortest time, starting from rest. Because the
distance is so short, this type of test is designed mainly to favor the
car with the greatest acceleration, not the greatest maximum speed
(which is irrelevant to the average person). The winner was the
Dodge Viper, with a time of 12.08 s. The car’s top (and presumably
final) speed was 118.51 miles per hour (52.98 m/s). (a) If a car,
starting from rest and moving with constant acceleration, covers
a quarter mile in this time interval, what is its acceleration? (b)
What would be the final speed of a car that covered a quarter mile
with the constant acceleration you found in part a? (c) Based on
the discrepancy between your answer in part b and the actual final
speed of the Viper, what do you conclude about how its acceleration
changed over time? . Solution, p. 549

19 The graph represents the motion of a ball that rolls up a hill
and then back down. When does the ball return to the location it
had at t = 0? . Solution, p. 550

20 (a) The ball is released at the top of the ramp shown in the
figure. Friction is negligible. Use physical reasoning to draw v − t
and a− t graphs. Assume that the ball doesn’t bounce at the point
where the ramp changes slope. (b) Do the same for the case where
the ball is rolled up the slope from the right side, but doesn’t quite
have enough speed to make it over the top. . Solution, p. 550

21 You throw a rubber ball up, and it falls and bounces sev-
eral times. Draw graphs of position, velocity, and acceleration as
functions of time. . Solution, p. 550

22 Starting from rest, a ball rolls down a ramp, traveling a
distance L and picking up a final speed v. How much of the distance
did the ball have to cover before achieving a speed of v/2? [Based
on a problem by Arnold Arons.] . Solution, p. 551

23 The graph shows the acceleration of a chipmunk in a TV
cartoon. It consists of two circular arcs and two line segments.
At t = 0.00 s, the chipmunk’s velocity is −3.10 m/s. What is its
velocity at t = 10.00 s?

√

24 Find the error in the following calculation. A student wants
to find the distance traveled by a car that accelerates from rest for
5.0 s with an acceleration of 2.0 m/s2. First he solves a = ∆v/∆t for
∆v = 10 m/s. Then he multiplies to find (10 m/s)(5.0 s) = 50 m.
Do not just recalculate the result by a different method; if that was
all you did, you’d have no way of knowing which calculation was
correct, yours or his.
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Problem 27.

25 Acceleration could be defined either as ∆v/∆t or as the slope
of the tangent line on the v − t graph. Is either one superior as a
definition, or are they equivalent? If you say one is better, give an
example of a situation where it makes a difference which one you
use.

26 If an object starts accelerating from rest, we have v2 =
2a∆x for its speed after it has traveled a distance ∆x. Explain in
words why it makes sense that the equation has velocity squared, but
distance only to the first power. Don’t recapitulate the derivation
in the book, or give a justification based on units. The point is
to explain what this feature of the equation tells us about the way
speed increases as more distance is covered.

27 The figure shows a practical, simple experiment for determin-
ing g to high precision. Two steel balls are suspended from electro-
magnets, and are released simultaneously when the electric current
is shut off. They fall through unequal heights ∆x1 and ∆x2. A
computer records the sounds through a microphone as first one ball
and then the other strikes the floor. From this recording, we can
accurately determine the quantity T defined as T = ∆t2 −∆t1, i.e.,
the time lag between the first and second impacts. Note that since
the balls do not make any sound when they are released, we have
no way of measuring the individual times ∆t2 and ∆t1.
(a) Find an equation for g in terms of the measured quantities T ,
∆x1 and ∆x2.

√

(b) Check the units of your equation.
(c) Check that your equation gives the correct result in the case
where ∆x1 is very close to zero. However, is this case realistic?
(d) What happens when ∆x1 = ∆x2? Discuss this both mathemat-
ically and physically.

28 The speed required for a low-earth orbit is 7.9 × 103 m/s.
When a rocket is launched into orbit, it goes up a little at first to get
above almost all of the atmosphere, but then tips over horizontally
to build up to orbital speed. Suppose the horizontal acceleration is
limited to 3g to keep from damaging the cargo (or hurting the crew,
for a crewed flight). (a) What is the minimum distance the rocket
must travel downrange before it reaches orbital speed? How much
does it matter whether you take into account the initial eastward
velocity due to the rotation of the earth? (b) Rather than a rocket
ship, it might be advantageous to use a railgun design, in which the
craft would be accelerated to orbital speeds along a railroad track.
This has the advantage that it isn’t necessary to lift a large mass of
fuel, since the energy source is external. Based on your answer to
part a, comment on the feasibility of this design for crewed launches
from the earth’s surface.
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Problem 31.

Problem 29. This spectacular series of photos from a 2011 paper by Bur-
rows and Sutton (“Biomechanics of jumping in the flea,” J. Exp. Biology
214:836) shows the flea jumping at about a 45-degree angle, but for the
sake of this estimate just consider the case of a flea jumping vertically.

29 Some fleas can jump as high as 30 cm. The flea only has a
short time to build up speed — the time during which its center of
mass is accelerating upward but its feet are still in contact with the
ground. Make an order-of-magnitude estimate of the acceleration
the flea needs to have while straightening its legs, and state your
answer in units of g, i.e., how many “g’s it pulls.” (For comparison,
fighter pilots black out or die if they exceed about 5 or 10 g’s.)

30 Consider the following passage from Alice in Wonderland, in
which Alice has been falling for a long time down a rabbit hole:

Down, down, down. Would the fall never come to an end? “I
wonder how many miles I’ve fallen by this time?” she said aloud.
“I must be getting somewhere near the center of the earth. Let me
see: that would be four thousand miles down, I think” (for, you see,
Alice had learned several things of this sort in her lessons in the
schoolroom, and though this was not a very good opportunity for
showing off her knowledge, as there was no one to listen to her, still
it was good practice to say it over)...

Alice doesn’t know much physics, but let’s try to calculate the
amount of time it would take to fall four thousand miles, starting
from rest with an acceleration of 10 m/s2. This is really only a lower
limit; if there really was a hole that deep, the fall would actually
take a longer time than the one you calculate, both because there
is air friction and because gravity gets weaker as you get deeper (at
the center of the earth, g is zero, because the earth is pulling you
equally in every direction at once).

√

31 The photo shows Apollo 16 astronaut John Young jumping
on the moon and saluting at the top of his jump. The video footage
of the jump shows him staying aloft for 1.45 seconds. Gravity on
the moon is 1/6 as strong as on the earth. Compute the height of
the jump.

√
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Problem 32.

32 Most people don’t know that Spinosaurus aegyptiacus, not
Tyrannosaurus rex, was the biggest theropod dinosaur. We can’t
put a dinosaur on a track and time it in the 100 meter dash, so
we can only infer from physical models how fast it could have run.
When an animal walks at a normal pace, typically its legs swing
more or less like pendulums of the same length `. As a further
simplification of this model, let’s imagine that the leg simply moves
at a fixed acceleration as it falls to the ground. That is, we model
the time for a quarter of a stride cycle as being the same as the time
required for free fall from a height `. S. aegyptiacus had legs about
four times longer than those of a human. (a) Compare the time
required for a human’s stride cycle to that for S. aegyptiacus.

√

(b) Compare their running speeds.
√

33 Engineering professor Qingming Li used sensors and video
cameras to study punches delivered in the lab by British former
welterweight boxing champion Ricky “the Hitman” Hatton. For
comparison, Li also let a TV sports reporter put on the gloves and
throw punches. The time it took for Hatton’s best punch to arrive,
i.e., the time his opponent would have had to react, was about 0.47
of that for the reporter. Let’s assume that the fist starts from rest
and moves with constant acceleration all the way up until impact, at
some fixed distance (arm’s length). Compare Hatton’s acceleration
to the reporter’s.

√

34 Aircraft carriers originated in World War I, and the first land-
ing on a carrier was performed by E.H. Dunning in a Sopwith Pup
biplane, landing on HMS Furious. (Dunning was killed the second
time he attempted the feat.) In such a landing, the pilot slows down
to just above the plane’s stall speed, which is the minimum speed at
which the plane can fly without stalling. The plane then lands and
is caught by cables and decelerated as it travels the length of the
flight deck. Comparing a modern US F-14 fighter jet landing on an
Enterprise-class carrier to Dunning’s original exploit, the stall speed
is greater by a factor of 4.8, and to accomodate this, the length of
the flight deck is greater by a factor of 1.9. Which deceleration is
greater, and by what factor?

√

35 In college-level women’s softball in the U.S., typically a
pitcher is expected to be at least 1.75 m tall, but Virginia Tech
pitcher Jasmin Harrell is 1.62 m. Although a pitcher actually throws
by stepping forward and swinging her arm in a circle, let’s make a
simplified physical model to estimate how much of a disadvantage
Harrell has had to overcome due to her height. We’ll pretend that
the pitcher gives the ball a constant acceleration in a straight line,
and that the length of this line is proportional to the pitcher’s height.
Compare the acceleration Harrell would have to supply with the ac-
celeration that would suffice for a pitcher of the nominal minimum
height, if both were to throw a pitch at the same speed.

√
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Problem 37.

36 When the police engage in a high-speed chase on city streets,
it can be extremely dangerous both to the police and to other mo-
torists and pedestrians. Suppose that the police car must travel at
a speed that is limited by the need to be able to stop before hitting
a baby carriage, and that the distance at which the driver first sees
the baby carriage is fixed. Tests show that in a panic stop from high
speed, a police car based on a Chevy Impala has a deceleration 9%
greater than that of a Dodge Intrepid. Compare the maximum safe
speeds for the two cars.

√

37 For each of the two graphs, find the change in position ∆x
from beginning to end, using the technique described in section 3.5.√

38 You shove a box with initial velocity 2.0 m/s, and it stops
after sliding 1.3 m. What is the magnitude of the deceleration,
assuming it is constant?

√
[problem by B. Shotwell]

39 You’re an astronaut, and you’ve arrived on planet X, which
is airless. You drop a hammer from a height of 1.00 m and find that
it takes 350 ms to fall to the ground. What is the acceleration due
to gravity on planet X?

√
[problem by B. Shotwell]

40 A naughty child drops a golf ball from the roof of your
apartment building, and you see it drop past your window. It takes
the ball time T to traverse the window’s height H. Find the initial
speed of the ball when it first came into view.√

[problem by B. Shotwell]
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Isaac Newton

Chapter 4

Force and Motion

If I have seen farther than others, it is because I have stood
on the shoulders of giants.

Newton, referring to Galileo

Even as great and skeptical a genius as Galileo was unable to
make much progress on the causes of motion. It was not until a gen-
eration later that Isaac Newton (1642-1727) was able to attack the
problem successfully. In many ways, Newton’s personality was the
opposite of Galileo’s. Where Galileo agressively publicized his ideas,
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a / Aristotle said motion had
to be caused by a force. To
explain why an arrow kept flying
after the bowstring was no longer
pushing on it, he said the air
rushed around behind the arrow
and pushed it forward. We know
this is wrong, because an arrow
shot in a vacuum chamber does
not instantly drop to the floor
as it leaves the bow. Galileo
and Newton realized that a force
would only be needed to change
the arrow’s motion, not to make
its motion continue.

Newton had to be coaxed by his friends into publishing a book on
his physical discoveries. Where Galileo’s writing had been popular
and dramatic, Newton originated the stilted, impersonal style that
most people think is standard for scientific writing. (Scientific jour-
nals today encourage a less ponderous style, and papers are often
written in the first person.) Galileo’s talent for arousing animos-
ity among the rich and powerful was matched by Newton’s skill at
making himself a popular visitor at court. Galileo narrowly escaped
being burned at the stake, while Newton had the good fortune of be-
ing on the winning side of the revolution that replaced King James
II with William and Mary of Orange, leading to a lucrative post
running the English royal mint.

Newton discovered the relationship between force and motion,
and revolutionized our view of the universe by showing that the
same physical laws applied to all matter, whether living or nonliv-
ing, on or off of our planet’s surface. His book on force and motion,
the Mathematical Principles of Natural Philosophy, was un-
contradicted by experiment for 200 years, but his other main work,
Optics, was on the wrong track, asserting that light was composed
of particles rather than waves. Newton was also an avid alchemist,
a fact that modern scientists would like to forget.

4.1 Force

We need only explain changes in motion, not motion itself.

So far you’ve studied the measurement of motion in some detail,
but not the reasons why a certain object would move in a certain
way. This chapter deals with the “why” questions. Aristotle’s ideas
about the causes of motion were completely wrong, just like all his
other ideas about physical science, but it will be instructive to start
with them, because they amount to a road map of modern students’
incorrect preconceptions.

Aristotle thought he needed to explain both why motion occurs
and why motion might change. Newton inherited from Galileo the
important counter-Aristotelian idea that motion needs no explana-
tion, that it is only changes in motion that require a physical cause.
Aristotle’s needlessly complex system gave three reasons for motion:

Natural motion, such as falling, came from the tendency of
objects to go to their “natural” place, on the ground, and
come to rest.

Voluntary motion was the type of motion exhibited by ani-
mals, which moved because they chose to.

Forced motion occurred when an object was acted on by some
other object that made it move.
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b / “Our eyes receive blue
light reflected from this painting
because Monet wanted to repre-
sent water with the color blue.”
This is a valid statement at one
level of explanation, but physics
works at the physical level of
explanation, in which blue light
gets to your eyes because it is
reflected by blue pigments in the
paint.

Motion changes due to an interaction between two objects.

In the Aristotelian theory, natural motion and voluntary mo-
tion are one-sided phenomena: the object causes its own motion.
Forced motion is supposed to be a two-sided phenomenon, because
one object imposes its “commands” on another. Where Aristotle
conceived of some of the phenomena of motion as one-sided and
others as two-sided, Newton realized that a change in motion was
always a two-sided relationship of a force acting between two phys-
ical objects.

The one-sided “natural motion” description of falling makes a
crucial omission. The acceleration of a falling object is not caused
by its own “natural” tendencies but by an attractive force between
it and the planet Earth. Moon rocks brought back to our planet do
not “want” to fly back up to the moon because the moon is their
“natural” place. They fall to the floor when you drop them, just
like our homegrown rocks. As we’ll discuss in more detail later in
this course, gravitational forces are simply an attraction that occurs
between any two physical objects. Minute gravitational forces can
even be measured between human-scale objects in the laboratory.

The idea of natural motion also explains incorrectly why things
come to rest. A basketball rolling across a beach slows to a stop
because it is interacting with the sand via a frictional force, not
because of its own desire to be at rest. If it was on a frictionless
surface, it would never slow down. Many of Aristotle’s mistakes
stemmed from his failure to recognize friction as a force.

The concept of voluntary motion is equally flawed. You may
have been a little uneasy about it from the start, because it assumes
a clear distinction between living and nonliving things. Today, how-
ever, we are used to having the human body likened to a complex
machine. In the modern world-view, the border between the living
and the inanimate is a fuzzy no-man’s land inhabited by viruses,
prions, and silicon chips. Furthermore, Aristotle’s statement that
you can take a step forward “because you choose to” inappropriately
mixes two levels of explanation. At the physical level of explana-
tion, the reason your body steps forward is because of a frictional
force acting between your foot and the floor. If the floor was covered
with a puddle of oil, no amount of “choosing to” would enable you
to take a graceful stride forward.

Forces can all be measured on the same numerical scale.

In the Aristotelian-scholastic tradition, the description of mo-
tion as natural, voluntary, or forced was only the broadest level of
classification, like splitting animals into birds, reptiles, mammals,
and amphibians. There might be thousands of types of motion,
each of which would follow its own rules. Newton’s realization that
all changes in motion were caused by two-sided interactions made
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it seem that the phenomena might have more in common than had
been apparent. In the Newtonian description, there is only one cause
for a change in motion, which we call force. Forces may be of differ-
ent types, but they all produce changes in motion according to the
same rules. Any acceleration that can be produced by a magnetic
force can equally well be produced by an appropriately controlled
stream of water. We can speak of two forces as being equal if they
produce the same change in motion when applied in the same situ-
ation, which means that they pushed or pulled equally hard in the
same direction.

The idea of a numerical scale of force and the newton unit were
introduced in chapter 0. To recapitulate briefly, a force is when a
pair of objects push or pull on each other, and one newton is the
force required to accelerate a 1-kg object from rest to a speed of 1
m/s in 1 second.

More than one force on an object

As if we hadn’t kicked poor Aristotle around sufficiently, his
theory has another important flaw, which is important to discuss
because it corresponds to an extremely common student misconcep-
tion. Aristotle conceived of forced motion as a relationship in which
one object was the boss and the other “followed orders.” It there-
fore would only make sense for an object to experience one force at
a time, because an object couldn’t follow orders from two sources at
once. In the Newtonian theory, forces are numbers, not orders, and
if more than one force acts on an object at once, the result is found
by adding up all the forces. It is unfortunate that the use of the
English word “force” has become standard, because to many people
it suggests that you are “forcing” an object to do something. The
force of the earth’s gravity cannot “force” a boat to sink, because
there are other forces acting on the boat. Adding them up gives a
total of zero, so the boat accelerates neither up nor down.

Objects can exert forces on each other at a distance.

Aristotle declared that forces could only act between objects that
were touching, probably because he wished to avoid the type of oc-
cult speculation that attributed physical phenomena to the influence
of a distant and invisible pantheon of gods. He was wrong, however,
as you can observe when a magnet leaps onto your refrigerator or
when the planet earth exerts gravitational forces on objects that are
in the air. Some types of forces, such as friction, only operate be-
tween objects in contact, and are called contact forces. Magnetism,
on the other hand, is an example of a noncontact force. Although
the magnetic force gets stronger when the magnet is closer to your
refrigerator, touching is not required.
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c / Forces are applied to a
saxophone. In this example,
positive signs have been used
consistently for forces to the
right, and negative signs for
forces to the left. (The forces
are being applied to different
places on the saxophone, but the
numerical value of a force carries
no information about that.)

Weight

In physics, an object’s weight, FW , is defined as the earth’s
gravitational force on it. The SI unit of weight is therefore the
Newton. People commonly refer to the kilogram as a unit of weight,
but the kilogram is a unit of mass, not weight. Note that an object’s
weight is not a fixed property of that object. Objects weigh more
in some places than in others, depending on the local strength of
gravity. It is their mass that always stays the same. A baseball
pitcher who can throw a 90-mile-per-hour fastball on earth would
not be able to throw any faster on the moon, because the ball’s
inertia would still be the same.

Positive and negative signs of force

We’ll start by considering only cases of one-dimensional center-
of-mass motion in which all the forces are parallel to the direction of
motion, i.e., either directly forward or backward. In one dimension,
plus and minus signs can be used to indicate directions of forces, as
shown in figure c. We can then refer generically to addition of forces,
rather than having to speak sometimes of addition and sometimes of
subtraction. We add the forces shown in the figure and get 11 N. In
general, we should choose a one-dimensional coordinate system with
its x axis parallel the direction of motion. Forces that point along
the positive x axis are positive, and forces in the opposite direction
are negative. Forces that are not directly along the x axis cannot be
immediately incorporated into this scheme, but that’s OK, because
we’re avoiding those cases for now.

Discussion questions

A In chapter 0, I defined 1 N as the force that would accelerate a
1-kg mass from rest to 1 m/s in 1 s. Anticipating the following section, you
might guess that 2 N could be defined as the force that would accelerate
the same mass to twice the speed, or twice the mass to the same speed.
Is there an easier way to define 2 N based on the definition of 1 N?

4.2 Newton’s first law
We are now prepared to make a more powerful restatement of the
principle of inertia.1

Newton’s first law
If the total force acting on an object is zero, its center of mass

continues in the same state of motion.

In other words, an object initially at rest is predicted to remain
at rest if the total force acting on it is zero, and an object in motion

1Page 81 lists places in this book where we describe experimental tests of the
principle of inertia and Newton’s first law.
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remains in motion with the same velocity in the same direction. The
converse of Newton’s first law is also true: if we observe an object
moving with constant velocity along a straight line, then the total
force on it must be zero.

In a future physics course or in another textbook, you may en-
counter the term “net force,” which is simply a synonym for total
force.

What happens if the total force on an object is not zero? It
accelerates. Numerical prediction of the resulting acceleration is the
topic of Newton’s second law, which we’ll discuss in the following
section.

This is the first of Newton’s three laws of motion. It is not
important to memorize which of Newton’s three laws are numbers
one, two, and three. If a future physics teacher asks you something
like, “Which of Newton’s laws are you thinking of?,” a perfectly
acceptable answer is “The one about constant velocity when there’s
zero total force.” The concepts are more important than any spe-
cific formulation of them. Newton wrote in Latin, and I am not
aware of any modern textbook that uses a verbatim translation of
his statement of the laws of motion. Clear writing was not in vogue
in Newton’s day, and he formulated his three laws in terms of a con-
cept now called momentum, only later relating it to the concept of
force. Nearly all modern texts, including this one, start with force
and do momentum later.

An elevator example 1
. An elevator has a weight of 5000 N. Compare the forces that the
cable must exert to raise it at constant velocity, lower it at constant
velocity, and just keep it hanging.

. In all three cases the cable must pull up with a force of exactly
5000 N. Most people think you’d need at least a little more than
5000 N to make it go up, and a little less than 5000 N to let it down,
but that’s incorrect. Extra force from the cable is only necessary
for speeding the car up when it starts going up or slowing it down
when it finishes going down. Decreased force is needed to speed
the car up when it gets going down and to slow it down when it
finishes going up. But when the elevator is cruising at constant
velocity, Newton’s first law says that you just need to cancel the
force of the earth’s gravity.

To many students, the statement in the example that the cable’s
upward force “cancels” the earth’s downward gravitational force im-
plies that there has been a contest, and the cable’s force has won,
vanquishing the earth’s gravitational force and making it disappear.
That is incorrect. Both forces continue to exist, but because they
add up numerically to zero, the elevator has no center-of-mass ac-
celeration. We know that both forces continue to exist because they
both have side-effects other than their effects on the car’s center-of-
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mass motion. The force acting between the cable and the car con-
tinues to produce tension in the cable and keep the cable taut. The
earth’s gravitational force continues to keep the passengers (whom
we are considering as part of the elevator-object) stuck to the floor
and to produce internal stresses in the walls of the car, which must
hold up the floor.

Terminal velocity for falling objects example 2
. An object like a feather that is not dense or streamlined does not
fall with constant acceleration, because air resistance is nonneg-
ligible. In fact, its acceleration tapers off to nearly zero within a
fraction of a second, and the feather finishes dropping at constant
speed (known as its terminal velocity). Why does this happen?

. Newton’s first law tells us that the total force on the feather must
have been reduced to nearly zero after a short time. There are
two forces acting on the feather: a downward gravitational force
from the planet earth, and an upward frictional force from the air.
As the feather speeds up, the air friction becomes stronger and
stronger, and eventually it cancels out the earth’s gravitational
force, so the feather just continues with constant velocity without
speeding up any more.

The situation for a skydiver is exactly analogous. It’s just that the
skydiver experiences perhaps a million times more gravitational
force than the feather, and it is not until she is falling very fast
that the force of air friction becomes as strong as the gravita-
tional force. It takes her several seconds to reach terminal veloc-
ity, which is on the order of a hundred miles per hour.

More general combinations of forces

It is too constraining to restrict our attention to cases where
all the forces lie along the line of the center of mass’s motion. For
one thing, we can’t analyze any case of horizontal motion, since
any object on earth will be subject to a vertical gravitational force!
For instance, when you are driving your car down a straight road,
there are both horizontal forces and vertical forces. However, the
vertical forces have no effect on the center of mass motion, because
the road’s upward force simply counteracts the earth’s downward
gravitational force and keeps the car from sinking into the ground.

Later in the book we’ll deal with the most general case of many
forces acting on an object at any angles, using the mathematical
technique of vector addition, but the following slight generalization
of Newton’s first law allows us to analyze a great many cases of
interest:

Suppose that an object has two sets of forces acting on it, one
set along the line of the object’s initial motion and another set per-
pendicular to the first set. If both sets of forces cancel, then the
object’s center of mass continues in the same state of motion.
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d / Example 4.

A passenger riding the subway example 3
. Describe the forces acting on a person standing in a subway
train that is cruising at constant velocity.

. No force is necessary to keep the person moving relative to
the ground. He will not be swept to the back of the train if the
floor is slippery. There are two vertical forces on him, the earth’s
downward gravitational force and the floor’s upward force, which
cancel. There are no horizontal forces on him at all, so of course
the total horizontal force is zero.

Forces on a sailboat example 4
. If a sailboat is cruising at constant velocity with the wind coming
from directly behind it, what must be true about the forces acting
on it?

. The forces acting on the boat must be canceling each other
out. The boat is not sinking or leaping into the air, so evidently
the vertical forces are canceling out. The vertical forces are the
downward gravitational force exerted by the planet earth and an
upward force from the water.

The air is making a forward force on the sail, and if the boat is
not accelerating horizontally then the water’s backward frictional
force must be canceling it out.

Contrary to Aristotle, more force is not needed in order to maintain
a higher speed. Zero total force is always needed to maintain
constant velocity. Consider the following made-up numbers:

boat moving at
a low, constant
velocity

boat moving at
a high, constant
velocity

forward force of
the wind on the
sail . . .

10,000 N 20,000 N

backward force of
the water on the
hull . . .

−10, 000 N −20, 000 N

total force on the
boat . . .

0 N 0 N

The faster boat still has zero total force on it. The forward force
on it is greater, and the backward force smaller (more negative),
but that’s irrelevant because Newton’s first law has to do with the
total force, not the individual forces.

This example is quite analogous to the one about terminal velocity
of falling objects, since there is a frictional force that increases
with speed. After casting off from the dock and raising the sail,
the boat will accelerate briefly, and then reach its terminal velocity,
at which the water’s frictional force has become as great as the
wind’s force on the sail.
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Discussion question B.

Discussion question C.

A car crash example 5
. If you drive your car into a brick wall, what is the mysterious
force that slams your face into the steering wheel?

. Your surgeon has taken physics, so she is not going to believe
your claim that a mysterious force is to blame. She knows that
your face was just following Newton’s first law. Immediately after
your car hit the wall, the only forces acting on your head were
the same canceling-out forces that had existed previously: the
earth’s downward gravitational force and the upward force from
your neck. There were no forward or backward forces on your
head, but the car did experience a backward force from the wall,
so the car slowed down and your face caught up.

Discussion questions

A Newton said that objects continue moving if no forces are acting
on them, but his predecessor Aristotle said that a force was necessary to
keep an object moving. Why does Aristotle’s theory seem more plausible,
even though we now believe it to be wrong? What insight was Aristotle
missing about the reason why things seem to slow down naturally? Give
an example.

B In the figure what would have to be true about the saxophone’s initial
motion if the forces shown were to result in continued one-dimensional
motion of its center of mass?

C This figure requires an ever further generalization of the preceding
discussion. After studying the forces, what does your physical intuition tell
you will happen? Can you state in words how to generalize the conditions
for one-dimensional motion to include situations like this one?

4.3 Newton’s second law
What about cases where the total force on an object is not zero,
so that Newton’s first law doesn’t apply? The object will have an
acceleration. The way we’ve defined positive and negative signs
of force and acceleration guarantees that positive forces produce
positive accelerations, and likewise for negative values. How much
acceleration will it have? It will clearly depend on both the object’s
mass and on the amount of force.

Experiments with any particular object show that its acceler-
ation is directly proportional to the total force applied to it. This
may seem wrong, since we know of many cases where small amounts
of force fail to move an object at all, and larger forces get it going.
This apparent failure of proportionality actually results from for-
getting that there is a frictional force in addition to the force we
apply to move the object. The object’s acceleration is exactly pro-
portional to the total force on it, not to any individual force on it.
In the absence of friction, even a very tiny force can slowly change
the velocity of a very massive object.
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e / Example 6

Experiments (e.g., the one described in example 11 on p. 139)
also show that the acceleration is inversely proportional to the ob-
ject’s mass, and combining these two proportionalities gives the fol-
lowing way of predicting the acceleration of any object:

Newton’s second law

a = Ftotal/m,

where

m is an object’s mass, a measure of its resistance

to changes in its motion

Ftotal is the sum of the forces acting on it, and

a is the acceleration of the object’s center of mass.

We are presently restricted to the case where the forces of interest
are parallel to the direction of motion.

We have already encountered the SI unit of force, which is the
newton (N). It is designed so that the units in Newton’s second law
all work out if we use SI units: m/s2 for acceleration and kg (not
grams!) for mass.

Rocket science example 6
. The Falcon 9 launch vehicle, built and operated by the private
company SpaceX, has mass m = 5.1 × 105 kg. At launch, it
has two forces acting on it: an upward thrust Ft = 5.9 × 106 N
and a downward gravitational force of Fg = 5.0 × 106 N. Find its
acceleration.

. Let’s choose our coordinate system such that positive is up.
Then the downward force of gravity is considered negative. Using
Newton’s second law,

a =
Ftotal

m

=
Ft − Fg

m

=
(5.9× 106 N)− (5.0× 106 N)

5.1× 105 kg
= 1.6 m/s2,

where as noted above, units of N/kg (newtons per kilogram) are
the same as m/s2.
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f / A coin slides across a ta-
ble. Even for motion in one
dimension, some of the forces
may not lie along the line of the
motion.

An accelerating bus example 7
. A VW bus with a mass of 2000 kg accelerates from 0 to 25 m/s
(freeway speed) in 34 s. Assuming the acceleration is constant,
what is the total force on the bus?

. We solve Newton’s second law for Ftotal = ma, and substitute
∆v/∆t for a, giving

Ftotal = m∆v/∆t
= (2000 kg)(25 m/s− 0 m/s)/(34 s)
= 1.5 kN.

A generalization

As with the first law, the second law can be easily generalized
to include a much larger class of interesting situations:

Suppose an object is being acted on by two sets of forces, one
set lying parallel to the object’s initial direction of motion and
another set acting along a perpendicular line. If the forces
perpendicular to the initial direction of motion cancel out,
then the object accelerates along its original line of motion
according to a = F‖/m, where F‖ is the sum of the forces
parallel to the line.

A coin sliding across a table example 8
Suppose a coin is sliding to the right across a table, f, and let’s
choose a positive x axis that points to the right. The coin’s velocity
is positive, and we expect based on experience that it will slow
down, i.e., its acceleration should be negative.

Although the coin’s motion is purely horizontal, it feels both ver-
tical and horizontal forces. The Earth exerts a downward gravi-
tational force F2 on it, and the table makes an upward force F3
that prevents the coin from sinking into the wood. In fact, without
these vertical forces the horizontal frictional force wouldn’t exist:
surfaces don’t exert friction against one another unless they are
being pressed together.

Although F2 and F3 contribute to the physics, they do so only
indirectly. The only thing that directly relates to the acceleration
along the horizontal direction is the horizontal force: a = F1/m.
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g / A simple double-pan bal-
ance works by comparing the
weight forces exerted by the
earth on the contents of the two
pans. Since the two pans are
at almost the same location on
the earth’s surface, the value
of g is essentially the same for
each one, and equality of weight
therefore also implies equality of
mass.

h / Example 9.

The relationship between mass and weight

Mass is different from weight, but they’re related. An apple’s
mass tells us how hard it is to change its motion. Its weight measures
the strength of the gravitational attraction between the apple and
the planet earth. The apple’s weight is less on the moon, but its
mass is the same. Astronauts assembling the International Space
Station in zero gravity couldn’t just pitch massive modules back
and forth with their bare hands; the modules were weightless, but
not massless.

We have already seen the experimental evidence that when weight
(the force of the earth’s gravity) is the only force acting on an ob-
ject, its acceleration equals the constant g, and g depends on where
you are on the surface of the earth, but not on the mass of the ob-
ject. Applying Newton’s second law then allows us to calculate the
magnitude of the gravitational force on any object in terms of its
mass:

|FW | = mg.

(The equation only gives the magnitude, i.e. the absolute value, of
FW , because we’re defining g as a positive number, so it equals the
absolute value of a falling object’s acceleration.)

. Solved problem: Decelerating a car page 148, problem 7

Weight and mass example 9
. Figure h shows masses of one and two kilograms hung from a
spring scale, which measures force in units of newtons. Explain
the readings.

. Let’s start with the single kilogram. It’s not accelerating, so
evidently the total force on it is zero: the spring scale’s upward
force on it is canceling out the earth’s downward gravitational
force. The spring scale tells us how much force it is being obliged
to supply, but since the two forces are equal in strength, the
spring scale’s reading can also be interpreted as measuring the
strength of the gravitational force, i.e., the weight of the one-
kilogram mass. The weight of a one-kilogram mass should be

FW = mg

= (1.0 kg)(9.8 m/s2) = 9.8 N,

and that’s indeed the reading on the spring scale.

Similarly for the two-kilogram mass, we have

FW = mg

= (2.0 kg)(9.8 m/s2) = 19.6 N.
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i / A simplified diagram of the
experiment described in example
11.

Calculating terminal velocity example 10
. Experiments show that the force of air friction on a falling object
such as a skydiver or a feather can be approximated fairly well
with the equation |Fair | = cρAv2, where c is a constant, ρ is the
density of the air, A is the cross-sectional area of the object as
seen from below, and v is the object’s velocity. Predict the object’s
terminal velocity, i.e., the final velocity it reaches after a long time.

. As the object accelerates, its greater v causes the upward force
of the air to increase until finally the gravitational force and the
force of air friction cancel out, after which the object continues
at constant velocity. We choose a coordinate system in which
positive is up, so that the gravitational force is negative and the
force of air friction is positive. We want to find the velocity at which

Fair + FW = 0, i .e.,

cρAv2 −mg = 0.

Solving for v gives

vterminal =
√

mg
cρA

self-check A
It is important to get into the habit of interpreting equations. This may be
difficult at first, but eventually you will get used to this kind of reasoning.

(1) Interpret the equation vterminal =
√

mg/cρA in the case of ρ=0.

(2) How would the terminal velocity of a 4-cm steel ball compare to that
of a 1-cm ball?

(3) In addition to teasing out the mathematical meaning of an equation,
we also have to be able to place it in its physical context. How generally
important is this equation? . Answer, p. 564

A test of the second law example 11
Because the force mg of gravity on an object of mass m is pro-

portional to m, the acceleration predicted by Newton’s second
law is a = F/m = mg/m = g, in which the mass cancels out.
It is therefore an ironclad prediction of Newton’s laws of motion
that free fall is universal: in the absence of other forces such as
air resistance, heavier objects do not fall with a greater accelera-
tion than lighter ones. The experiment by Galileo at the Leaning
Tower of Pisa (p. 96) is therefore consistent with Newton’s second
law. Since Galileo’s time, experimental methods have had several
centuries in which to improve, and the second law has been sub-
jected to similar tests with exponentially improving precision. For
such an experiment in 1993,2 physicists at the University of Pisa
2Carusotto et al., “Limits on the violation of g-universality with a Galileo-

type experiment,” Phys Lett A183 (1993) 355. Freely available online at re-
searchgate.net.
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x (m) t (s)
10 1.84
20 2.86
30 3.80
40 4.67
50 5.53
60 6.38
70 7.23
80 8.10
90 8.96
100 9.83

j / Discussion question D.

(!) built a metal disk out of copper and tungsten semicircles joined
together at their flat edges. They evacuated the air from a verti-
cal shaft and dropped the disk down it 142 times, using lasers
to measure any tiny rotation that would result if the accelerations
of the copper and tungsten were very slightly different. The re-
sults were statistically consistent with zero rotation, and put an
upper limit of 1 × 10−9 on the fractional difference in accelera-
tion |gcopper − gtungsten|/g. A more recent experiment using test
masses in orbit3 has refined this bound to 10−14.

Discussion questions

A Show that the Newton can be reexpressed in terms of the three
basic mks units as the combination kg·m/s2.

B What is wrong with the following statements?

(1) “g is the force of gravity.”

(2) “Mass is a measure of how much space something takes up.”

C Criticize the following incorrect statement:

“If an object is at rest and the total force on it is zero, it stays at rest.
There can also be cases where an object is moving and keeps on moving
without having any total force on it, but that can only happen when there’s
no friction, like in outer space.”

D Table j gives laser timing data for Ben Johnson’s 100 m dash at the
1987 World Championship in Rome. (His world record was later revoked
because he tested positive for steroids.) How does the total force on him
change over the duration of the race?

3Touboul et al., “The MICROSCOPE mission: first results of a space test of
the Equivalence Principle,” arxiv.org/abs/1712.01176
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4.4 What force is not
Violin teachers have to endure their beginning students’ screeching.
A frown appears on the woodwind teacher’s face as she watches her
student take a breath with an expansion of his ribcage but none
in his belly. What makes physics teachers cringe is their students’
verbal statements about forces. Below I have listed six dicta about
what force is not.

1. Force is not a property of one object.

A great many of students’ incorrect descriptions of forces could
be cured by keeping in mind that a force is an interaction of two
objects, not a property of one object.

Incorrect statement: “That magnet has a lot of force.”

If the magnet is one millimeter away from a steel ball bearing, they
may exert a very strong attraction on each other, but if they were a
meter apart, the force would be virtually undetectable. The magnet’s
strength can be rated using certain electrical units (ampere−meters2),
but not in units of force.

2. Force is not a measure of an object’s motion.

If force is not a property of a single object, then it cannot be
used as a measure of the object’s motion.

Incorrect statement: “The freight train rumbled down the tracks with
awesome force.”

Force is not a measure of motion. If the freight train collides with a
stalled cement truck, then some awesome forces will occur, but if it hits
a fly the force will be small.

3. Force is not energy.

There are two main approaches to understanding the motion of
objects, one based on force and one on a different concept, called en-
ergy. The SI unit of energy is the Joule, but you are probably more
familiar with the calorie, used for measuring food’s energy, and the
kilowatt-hour, the unit the electric company uses for billing you.
Physics students’ previous familiarity with calories and kilowatt-
hours is matched by their universal unfamiliarity with measuring
forces in units of Newtons, but the precise operational definitions of
the energy concepts are more complex than those of the force con-
cepts, and textbooks, including this one, almost universally place the
force description of physics before the energy description. During
the long period after the introduction of force and before the careful
definition of energy, students are therefore vulnerable to situations
in which, without realizing it, they are imputing the properties of
energy to phenomena of force.

Incorrect statement: “How can my chair be making an upward force on
my rear end? It has no power!”

Power is a concept related to energy, e.g., a 100-watt lightbulb uses
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up 100 joules per second of energy. When you sit in a chair, no energy
is used up, so forces can exist between you and the chair without any
need for a source of power.

4. Force is not stored or used up.

Because energy can be stored and used up, people think force
also can be stored or used up.

Incorrect statement: “If you don’t fill up your tank with gas, you’ll run
out of force.”

Energy is what you’ll run out of, not force.

5. Forces need not be exerted by living things or machines.

Transforming energy from one form into another usually requires
some kind of living or mechanical mechanism. The concept is not
applicable to forces, which are an interaction between objects, not
a thing to be transferred or transformed.

Incorrect statement: “How can a wooden bench be making an upward
force on my rear end? It doesn’t have any springs or anything inside it.”

No springs or other internal mechanisms are required. If the bench
didn’t make any force on you, you would obey Newton’s second law and
fall through it. Evidently it does make a force on you!

6. A force is the direct cause of a change in motion.

I can click a remote control to make my garage door change from
being at rest to being in motion. My finger’s force on the button,
however, was not the force that acted on the door. When we speak
of a force on an object in physics, we are talking about a force that
acts directly. Similarly, when you pull a reluctant dog along by its
leash, the leash and the dog are making forces on each other, not
your hand and the dog. The dog is not even touching your hand.

self-check B
Which of the following things can be correctly described in terms of
force?

(1) A nuclear submarine is charging ahead at full steam.

(2) A nuclear submarine’s propellers spin in the water.

(3) A nuclear submarine needs to refuel its reactor periodically. .

Answer, p. 565

Discussion questions

A Criticize the following incorrect statement: “If you shove a book
across a table, friction takes away more and more of its force, until finally
it stops.”

B You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “The ball gets
some force from you when you hit it, and when it hits the wall, it loses part
of that force, so it doesn’t bounce back as fast. The muscles in your arm
are the only things that a force can come from.”
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4.5 Inertial and noninertial frames of reference
One day, you’re driving down the street in your pickup truck, on
your way to deliver a bowling ball. The ball is in the back of the
truck, enjoying its little jaunt and taking in the fresh air and sun-
shine. Then you have to slow down because a stop sign is coming
up. As you brake, you glance in your rearview mirror, and see your
trusty companion accelerating toward you. Did some mysterious
force push it forward? No, it only seems that way because you and
the car are slowing down. The ball is faithfully obeying Newton’s
first law, and as it continues at constant velocity it gets ahead rela-
tive to the slowing truck. No forces are acting on it (other than the
same canceling-out vertical forces that were always acting on it).4

The ball only appeared to violate Newton’s first law because there
was something wrong with your frame of reference, which was based
on the truck.

k / 1. In a frame of reference that
moves with the truck, the bowl-
ing ball appears to violate New-
ton’s first law by accelerating de-
spite having no horizontal forces
on it. 2. In an inertial frame of ref-
erence, which the surface of the
earth approximately is, the bowl-
ing ball obeys Newton’s first law.
It moves equal distances in equal
time intervals, i.e., maintains con-
stant velocity. In this frame of
reference, it is the truck that ap-
pears to have a change in veloc-
ity, which makes sense, since the
road is making a horizontal force
on it.

How, then, are we to tell in which frames of reference Newton’s
laws are valid? It’s no good to say that we should avoid moving
frames of reference, because there is no such thing as absolute rest
or absolute motion. All frames can be considered as being either at
rest or in motion. According to an observer in India, the strip mall
that constituted the frame of reference in panel (b) of the figure
was moving along with the earth’s rotation at hundreds of miles per
hour.

The reason why Newton’s laws fail in the truck’s frame of refer-

4Let’s assume for simplicity that there is no friction.
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ence is not because the truck is moving but because it is accelerating.
(Recall that physicists use the word to refer either to speeding up or
slowing down.) Newton’s laws were working just fine in the moving
truck’s frame of reference as long as the truck was moving at con-
stant velocity. It was only when its speed changed that there was
a problem. How, then, are we to tell which frames are accelerating
and which are not? What if you claim that your truck is not ac-
celerating, and the sidewalk, the asphalt, and the Burger King are
accelerating? The way to settle such a dispute is to examine the
motion of some object, such as the bowling ball, which we know
has zero total force on it. Any frame of reference in which the ball
appears to obey Newton’s first law is then a valid frame of reference,
and to an observer in that frame, Mr. Newton assures us that all
the other objects in the universe will obey his laws of motion, not
just the ball.

Valid frames of reference, in which Newton’s laws are obeyed,
are called inertial frames of reference. Frames of reference that are
not inertial are called noninertial frames. In those frames, objects
violate the principle of inertia and Newton’s first law. While the
truck was moving at constant velocity, both it and the sidewalk
were valid inertial frames. The truck became an invalid frame of
reference when it began changing its velocity.

You usually assume the ground under your feet is a perfectly
inertial frame of reference, and we made that assumption above. It
isn’t perfectly inertial, however. Its motion through space is quite
complicated, being composed of a part due to the earth’s daily rota-
tion around its own axis, the monthly wobble of the planet caused
by the moon’s gravity, and the rotation of the earth around the sun.
Since the accelerations involved are numerically small, the earth is
approximately a valid inertial frame.

Noninertial frames are avoided whenever possible, and we will
seldom, if ever, have occasion to use them in this course. Sometimes,
however, a noninertial frame can be convenient. Naval gunners, for
instance, get all their data from radars, human eyeballs, and other
detection systems that are moving along with the earth’s surface.
Since their guns have ranges of many miles, the small discrepan-
cies between their shells’ actual accelerations and the accelerations
predicted by Newton’s second law can have effects that accumulate
and become significant. In order to kill the people they want to kill,
they have to add small corrections onto the equation a = Ftotal/m.
Doing their calculations in an inertial frame would allow them to
use the usual form of Newton’s second law, but they would have
to convert all their data into a different frame of reference, which
would require cumbersome calculations.
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Discussion question

A If an object has a linear x − t graph in a certain inertial frame,
what is the effect on the graph if we change to a coordinate system with
a different origin? What is the effect if we keep the same origin but re-
verse the positive direction of the x axis? How about an inertial frame
moving alongside the object? What if we describe the object’s motion in
a noninertial frame?
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Summary
Selected vocabulary
weight . . . . . . . the force of gravity on an object, equal to mg
inertial frame . . a frame of reference that is not accelerating,

one in which Newton’s first law is true
noninertial frame an accelerating frame of reference, in which

Newton’s first law is violated

Notation
FW . . . . . . . . weight

Other terminology and notation
net force . . . . . another way of saying “total force”

Summary

Newton’s first law of motion states that if all the forces acting
on an object cancel each other out, then the object continues in the
same state of motion. This is essentially a more refined version of
Galileo’s principle of inertia, which did not refer to a numerical scale
of force.

Newton’s second law of motion allows the prediction of an ob-
ject’s acceleration given its mass and the total force on it, acm =
Ftotal/m. This is only the one-dimensional version of the law; the
full-three dimensional treatment will come in chapter 8, Vectors.
Without the vector techniques, we can still say that the situation
remains unchanged by including an additional set of vectors that
cancel among themselves, even if they are not in the direction of
motion.

Newton’s laws of motion are only true in frames of reference that
are not accelerating, known as inertial frames.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 An object is observed to be moving at constant speed in a
certain direction. Can you conclude that no forces are acting on it?
Explain. [Based on a problem by Serway and Faughn.]

2 At low speeds, every car’s acceleration is limited by traction,
not by the engine’s power. Suppose that at low speeds, a certain
car is normally capable of an acceleration of 3 m/s2. If it is towing
a trailer with half as much mass as the car itself, what acceleration
can it achieve? [Based on a problem from PSSC Physics.]

3 (a) Let T be the maximum tension that an elevator’s cable
can withstand without breaking, i.e., the maximum force it can
exert. If the motor is programmed to give the car an acceleration
a (a > 0 is upward), what is the maximum mass that the car can
have, including passengers, if the cable is not to break?

√

(b) Interpret the equation you derived in the special cases of a = 0
and of a downward acceleration of magnitude g. (“Interpret” means
to analyze the behavior of the equation, and connect that to reality,
as in the self-check on page 139.)

4 A helicopter of mass m is taking off vertically. The only forces
acting on it are the earth’s gravitational force and the force, Fair,
of the air pushing up on the propeller blades.
(a) If the helicopter lifts off at t = 0, what is its vertical speed at
time t?
(b) Check that the units of your answer to part a make sense.
(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you’ve figured out this mathematical
relationship, show that it makes sense physically.
(d) Plug numbers into your equation from part a, using m = 2300
kg, Fair = 27000 N, and t = 4.0 s.

√

5 In the 1964 Olympics in Tokyo, the best men’s high jump was
2.18 m. Four years later in Mexico City, the gold medal in the same
event was for a jump of 2.24 m. Because of Mexico City’s altitude
(2400 m), the acceleration of gravity there is lower than that in
Tokyo by about 0.01 m/s2. Suppose a high-jumper has a mass of
72 kg.
(a) Compare his mass and weight in the two locations.
(b) Assume that he is able to jump with the same initial vertical
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Problem 6.

velocity in both locations, and that all other conditions are the same
except for gravity. How much higher should he be able to jump in
Mexico City?

√

(Actually, the reason for the big change between ’64 and ’68 was the
introduction of the “Fosbury flop.”) ?

6 A blimp is initially at rest, hovering, when at t = 0 the pilot
turns on the engine driving the propeller. The engine cannot in-
stantly get the propeller going, but the propeller speeds up steadily.
The steadily increasing force between the air and the propeller is
given by the equation F = kt, where k is a constant. If the mass
of the blimp is m, find its position as a function of time. (Assume
that during the period of time you’re dealing with, the blimp is not
yet moving fast enough to cause a significant backward force due to
air resistance.)

√ ∫
7 A car is accelerating forward along a straight road. If the force
of the road on the car’s wheels, pushing it forward, is a constant 3.0
kN, and the car’s mass is 1000 kg, then how long will the car take
to go from 20 m/s to 50 m/s? . Solution, p. 551

8 Some garden shears are like a pair of scissors: one sharp blade
slices past another. In the “anvil” type, however, a sharp blade
presses against a flat one rather than going past it. A gardening
book says that for people who are not very physically strong, the
anvil type can make it easier to cut tough branches, because it
concentrates the force on one side. Evaluate this claim based on
Newton’s laws. [Hint: Consider the forces acting on the branch,
and the motion of the branch.]

9 A uranium atom deep in the earth spits out an alpha particle.
An alpha particle is a fragment of an atom. This alpha particle has
initial speed v, and travels a distance d before stopping in the earth.
(a) Find the force, F , from the dirt that stopped the particle, in
terms of v, d, and its mass, m. Don’t plug in any numbers yet.
Assume that the force was constant.

√

(b) Show that your answer has the right units.
(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you’ve figured out this mathematical
relationship, show that it makes sense physically.
(d) Evaluate your result for m = 6.7×10−27 kg, v = 2.0×104 km/s,
and d = 0.71 mm.

√
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Problem 10, part c.

Problem 13. The rear wings
of the plane collapse under the
stress of the catapult launch.

10 You are given a large sealed box, and are not allowed to open
it. Which of the following experiments measure its mass, and which
measure its weight? [Hint: Which experiments would give different
results on the moon?]
(a) Put it on a frozen lake, throw a rock at it, and see how fast it
scoots away after being hit.
(b) Drop it from a third-floor balcony, and measure how loud the
sound is when it hits the ground.
(c) As shown in the figure, connect it with a spring to the wall, and
watch it vibrate.

. Solution, p. 551

11 While escaping from the palace of the evil Martian em-
peror, Sally Spacehound jumps from a tower of height h down to
the ground. Ordinarily the fall would be fatal, but she fires her
blaster rifle straight down, producing an upward force of magnitude
FB. This force is insufficient to levitate her, but it does cancel out
some of the force of gravity. During the time t that she is falling,
Sally is unfortunately exposed to fire from the emperor’s minions,
and can’t dodge their shots. Let m be her mass, and g the strength
of gravity on Mars.
(a) Find the time t in terms of the other variables.
(b) Check the units of your answer to part a.
(c) For sufficiently large values of FB, your answer to part a becomes
nonsense — explain what’s going on.

√

12 When I cook rice, some of the dry grains always stick to the
measuring cup. To get them out, I turn the measuring cup upside-
down and hit the “roof” with my hand so that the grains come off of
the “ceiling.” (a) Explain why static friction is irrelevant here. (b)
Explain why gravity is negligible. (c) Explain why hitting the cup
works, and why its success depends on hitting the cup hard enough.

13 At the turn of the 20th century, Samuel Langley engaged in
a bitter rivalry with the Wright brothers to develop human flight.
Langley’s design used a catapult for launching. For safety, the cata-
pult was built on the roof of a houseboat, so that any crash would be
into the water. This design required reaching cruising speed within
a fixed, short distance, so large accelerations were required, and
the forces frequently damaged the craft, causing dangerous and em-
barrassing accidents. Langley achieved several uncrewed, unguided
flights, but never succeeded with a human pilot. If the force of the
catapult is fixed by the structural strength of the plane, and the dis-
tance for acceleration by the size of the houseboat, by what factor
is the launch velocity reduced when the plane’s 340 kg is augmented
by the 60 kg mass of a small man?

√
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Problem 15.

Problem 17.

14 The tires used in Formula 1 race cars can generate traction
(i.e., force from the road) that is as much as 1.9 times greater than
with the tires typically used in a passenger car. Suppose that we’re
trying to see how fast a car can cover a fixed distance starting from
rest, and traction is the limiting factor. By what factor is this time
reduced when switching from ordinary tires to Formula 1 tires?√

15 In the figure, the rock climber has finished the climb, and his
partner is lowering him back down to the ground at approximately
constant speed. The following is a student’s analysis of the forces
acting on the climber. The arrows give the directions of the forces.

force of the earth’s gravity, ↓
force from the partner’s hands, ↑
force from the rope, ↑

The student says that since the climber is moving down, the sum
of the two upward forces must be slightly less than the downward
force of gravity.

Correct all mistakes in the above analysis. . Solution, p. 551

16 A bullet of mass m is fired from a pistol, accelerating from
rest to a speed v in the barrel’s length L.
(a) What is the force on the bullet? (Assume this force is constant.)√

(b) Check that the units of your answer to part a make sense.
(c) Check that the dependence of your answer on each of the three
variables makes sense. [problem by B. Shotwell]

17 Blocks of mass M1, M2, and M3 are stacked on a table as
shown in the figure. Let the upward direction be positive.
(a) What is the force on block 2 from block 3?

√

(b) What is the force on block 2 from block 1?√
[problem by B. Shotwell]
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Exercise 4: Force and motion
Equipment:

1-meter pieces of butcher paper

wood blocks with hooks

string

masses to put on top of the blocks to increase friction

spring scales (preferably calibrated in Newtons)

Suppose a person pushes a crate, sliding it across the floor at a certain speed, and then repeats
the same thing but at a higher speed. This is essentially the situation you will act out in this
exercise. What do you think is different about her force on the crate in the two situations?
Discuss this with your group and write down your hypothesis:

1. First you will measure the amount of friction between the wood block and the butcher paper
when the wood and paper surfaces are slipping over each other. The idea is to attach a spring
scale to the block and then slide the butcher paper under the block while using the scale to
keep the block from moving with it. Depending on the amount of force your spring scale was
designed to measure, you may need to put an extra mass on top of the block in order to increase
the amount of friction. It is a good idea to use long piece of string to attach the block to the
spring scale, since otherwise one tends to pull at an angle instead of directly horizontally.

First measure the amount of friction force when sliding the butcher paper as slowly as possi-
ble:

Now measure the amount of friction force at a significantly higher speed, say 1 meter per second.
(If you try to go too fast, the motion is jerky, and it is impossible to get an accurate reading.)

Discuss your results. Why are we justified in assuming that the string’s force on the block (i.e.,
the scale reading) is the same amount as the paper’s frictional force on the block?

2. Now try the same thing but with the block moving and the paper standing still. Try two
different speeds.

Do your results agree with your original hypothesis? If not, discuss what’s going on. How does
the block “know” how fast to go?
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What forces act on the girl?

Chapter 5

Analysis of Forces

5.1 Newton’s third law
Newton created the modern concept of force starting from his insight
that all the effects that govern motion are interactions between two
objects: unlike the Aristotelian theory, Newtonian physics has no
phenomena in which an object changes its own motion.
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a / Two magnets exert forces
on each other.

b / Two people’s hands exert
forces on each other.

c / Rockets work by pushing
exhaust gases out the back.
Newton’s third law says that if the
rocket exerts a backward force
on the gases, the gases must
make an equal forward force on
the rocket. Rocket engines can
function above the atmosphere,
unlike propellers and jets, which
work by pushing against the
surrounding air.

Is one object always the “order-giver” and the other the “order-
follower”? As an example, consider a batter hitting a baseball. The
bat definitely exerts a large force on the ball, because the ball ac-
celerates drastically. But if you have ever hit a baseball, you also
know that the ball makes a force on the bat — often with painful
results if your technique is as bad as mine!

How does the ball’s force on the bat compare with the bat’s
force on the ball? The bat’s acceleration is not as spectacular as
the ball’s, but maybe we shouldn’t expect it to be, since the bat’s
mass is much greater. In fact, careful measurements of both objects’
masses and accelerations would show that mballaball is very nearly
equal to −mbatabat, which suggests that the ball’s force on the bat
is of the same magnitude as the bat’s force on the ball, but in the
opposite direction.

Figures a and b show two somewhat more practical laboratory
experiments for investigating this issue accurately and without too
much interference from extraneous forces.

In experiment a, a large magnet and a small magnet are weighed
separately, and then one magnet is hung from the pan of the top
balance so that it is directly above the other magnet. There is an
attraction between the two magnets, causing the reading on the top
scale to increase and the reading on the bottom scale to decrease.
The large magnet is more “powerful” in the sense that it can pick
up a heavier paperclip from the same distance, so many people have
a strong expectation that one scale’s reading will change by a far
different amount than the other. Instead, we find that the two
changes are equal in magnitude but opposite in direction: the force
of the bottom magnet pulling down on the top one has the same
strength as the force of the top one pulling up on the bottom one.

In experiment b, two people pull on two spring scales. Regardless
of who tries to pull harder, the two forces as measured on the spring
scales are equal. Interposing the two spring scales is necessary in
order to measure the forces, but the outcome is not some artificial
result of the scales’ interactions with each other. If one person slaps
another hard on the hand, the slapper’s hand hurts just as much
as the slappee’s, and it doesn’t matter if the recipient of the slap
tries to be inactive. (Punching someone in the mouth causes just
as much force on the fist as on the lips. It’s just that the lips are
more delicate. The forces are equal, but not the levels of pain and
injury.)

Newton, after observing a series of results such as these, decided
that there must be a fundamental law of nature at work:
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d / A swimmer doing the breast
stroke pushes backward against
the water. By Newton’s third law,
the water pushes forward on him.

e / Newton’s third law does
not mean that forces always can-
cel out so that nothing can ever
move. If these two ice skaters,
initially at rest, push against each
other, they will both move.

Newton’s third law
Forces occur in equal and opposite pairs: whenever object A exerts
a force on object B, object B must also be exerting a force on object
A. The two forces are equal in magnitude and opposite in direction.

Two modern, high-precision tests of the third law are described
on p. 806.

In one-dimensional situations, we can use plus and minus signs
to indicate the directions of forces, and Newton’s third law can be
written succinctly as FA on B = −FB on A.

self-check A
Figure d analyzes swimming using Newton’s third law. Do a similar
analysis for a sprinter leaving the starting line. . Answer, p. 565

There is no cause and effect relationship between the two forces
in Newton’s third law. There is no “original” force, and neither one
is a response to the other. The pair of forces is a relationship, like
marriage, not a back-and-forth process like a tennis match. Newton
came up with the third law as a generalization about all the types of
forces with which he was familiar, such as frictional and gravitational
forces. When later physicists discovered a new type of force, such
as the force that holds atomic nuclei together, they had to check
whether it obeyed Newton’s third law. So far, no violation of the
third law has ever been discovered, whereas the first and second
laws were shown to have limitations by Einstein and the pioneers of
atomic physics.

The English vocabulary for describing forces is unfortunately
rooted in Aristotelianism, and often implies incorrectly that forces
are one-way relationships. It is unfortunate that a half-truth such as
“the table exerts an upward force on the book” is so easily expressed,
while a more complete and correct description ends up sounding
awkward or strange: “the table and the book interact via a force,”
or “the table and book participate in a force.”

To students, it often sounds as though Newton’s third law im-
plies nothing could ever change its motion, since the two equal and
opposite forces would always cancel. The two forces, however, are
always on two different objects, so it doesn’t make sense to add
them in the first place — we only add forces that are acting on the
same object. If two objects are interacting via a force and no other
forces are involved, then both objects will accelerate — in opposite
directions!

Section 5.1 Newton’s third law 155



f / It doesn’t make sense for the
man to talk about using the
woman’s money to cancel out his
bar tab, because there is no good
reason to combine his debts and
her assets. Similarly, it doesn’t
make sense to refer to the equal
and opposite forces of Newton’s
third law as canceling. It only
makes sense to add up forces
that are acting on the same ob-
ject, whereas two forces related
to each other by Newton’s third
law are always acting on two dif-
ferent objects.

A mnemonic for using Newton’s third law correctly

Mnemonics are tricks for memorizing things. For instance, the
musical notes that lie between the lines on the treble clef spell the
word FACE, which is easy to remember. Many people use the
mnemonic “SOHCAHTOA” to remember the definitions of the sine,
cosine, and tangent in trigonometry. I have my own modest offering,
POFOSTITO, which I hope will make it into the mnemonics hall of
fame. It’s a way to avoid some of the most common problems with
applying Newton’s third law correctly:

A book lying on a table example 1
. A book is lying on a table. What force is the Newton’s-third-law
partner of the earth’s gravitational force on the book?

Answer: Newton’s third law works like “B on A, A on B,” so the
partner must be the book’s gravitational force pulling upward on
the planet earth. Yes, there is such a force! No, it does not cause
the earth to do anything noticeable.

Incorrect answer: The table’s upward force on the book is the
Newton’s-third-law partner of the earth’s gravitational force on the
book.

This answer violates two out of three of the commandments of
POFOSTITO. The forces are not of the same type, because the
table’s upward force on the book is not gravitational. Also, three
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Optional topic: Newton’s
third law and action at a dis-
tance
Newton’s third law is completely
symmetric in the sense that nei-
ther force constitutes a delayed
response to the other. Newton’s
third law does not even mention
time, and the forces are supposed
to agree at any given instant.
This creates an interesting situ-
ation when it comes to noncon-
tact forces. Suppose two people
are holding magnets, and when
one person waves or wiggles her
magnet, the other person feels an
effect on his. In this way they
can send signals to each other
from opposite sides of a wall, and
if Newton’s third law is correct, it
would seem that the signals are
transmitted instantly, with no time
lag. The signals are indeed trans-
mitted quite quickly, but experi-
ments with electrically controlled
magnets show that the signals do
not leap the gap instantly: they
travel at the same speed as light,
which is an extremely high speed
but not an infinite one.

Is this a contradiction to New-
ton’s third law? Not really. Ac-
cording to current theories, there
are no true noncontact forces.
Action at a distance does not ex-
ist. Although it appears that the
wiggling of one magnet affects
the other with no need for any-
thing to be in contact with any-
thing, what really happens is that
wiggling a magnet creates a rip-
ple in the magnetic field pattern
that exists even in empty space.
The magnet shoves the ripples
out with a kick and receives a kick
in return, in strict obedience to
Newton’s third law. The ripples
spread out in all directions, and
the ones that hit the other magnet
then interact with it, again obeying
Newton’s third law.

objects are involved instead of two: the book, the table, and the
planet earth.

Pushing a box up a hill example 2
. A person is pushing a box up a hill. What force is related by
Newton’s third law to the person’s force on the box?

. The box’s force on the person.

Incorrect answer: The person’s force on the box is opposed by
friction, and also by gravity.

This answer fails all three parts of the POFOSTITO test, the
most obvious of which is that three forces are referred to instead
of a pair.

If we could violate Newton’s third law. . . example 3
If we could violate Newton’s third law, we could do strange and
wonderful things. Newton’s third laws says that the unequal mag-
nets in figure a on p. 154 should exert equal forces on each
other, and this is what we actually find when we do the experi-
ment shown in that figure. But suppose instead that it worked as
most people intuitively expect. What if the third law was violated,
so that the big magnet made more force on the small one than the
small one made on the big one? To make the analysis simple, we
add some extra nonmagnetic material to the small magnet in fig-
ure g/1, so that it has the same mass and size as the big one. We
also attach springs. When we release the magnets, g/2, the weak
one is accelerated strongly, while the strong one barely moves. If
we put them inside a box, g/3, the recoiling strong magnet bangs
hard against the side of the box, and the box mysteriously accel-
erates itself. The process can be repeated indefinitely for free, so
we have a magic box that propels itself without needing fuel. We
can make it into a perpetual-motion car, g/4. If Newton’s third law
was violated, we’d never have to pay for gas!

g / Example 3. This doesn’t actually happen!
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. Solved problem: More about example 2 page 183, problem 20

. Solved problem: Why did it accelerate? page 183, problem 18

Discussion questions

A When you fire a gun, the exploding gases push outward in all
directions, causing the bullet to accelerate down the barrel. What third-
law pairs are involved? [Hint: Remember that the gases themselves are
an object.]

B Tam Anh grabs Sarah by the hand and tries to pull her. She tries
to remain standing without moving. A student analyzes the situation as
follows. “If Tam Anh’s force on Sarah is greater than her force on him,
he can get her to move. Otherwise, she’ll be able to stay where she is.”
What’s wrong with this analysis?

C You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “According to
Newton’s third law, there has to be a force opposite to your force on the
ball. The opposite force is the ball’s mass, which resists acceleration, and
also air resistance.”

5.2 Classification and behavior of forces
One of the most basic and important tasks of physics is to classify
the forces of nature. I have already referred informally to “types” of
forces such as friction, magnetism, gravitational forces, and so on.
Classification systems are creations of the human mind, so there is
always some degree of arbitrariness in them. For one thing, the level
of detail that is appropriate for a classification system depends on
what you’re trying to find out. Some linguists, the “lumpers,” like to
emphasize the similarities among languages, and a few extremists
have even tried to find signs of similarities between words in lan-
guages as different as English and Chinese, lumping the world’s lan-
guages into only a few large groups. Other linguists, the “splitters,”
might be more interested in studying the differences in pronuncia-
tion between English speakers in New York and Connecticut. The
splitters call the lumpers sloppy, but the lumpers say that science
isn’t worthwhile unless it can find broad, simple patterns within the
seemingly complex universe.

Scientific classification systems are also usually compromises be-
tween practicality and naturalness. An example is the question of
how to classify flowering plants. Most people think that biological
classification is about discovering new species, naming them, and
classifying them in the class-order-family-genus-species system ac-
cording to guidelines set long ago. In reality, the whole system is in
a constant state of flux and controversy. One very practical way of
classifying flowering plants is according to whether their petals are
separate or joined into a tube or cone — the criterion is so clear that
it can be applied to a plant seen from across the street. But here
practicality conflicts with naturalness. For instance, the begonia has
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h / A scientific classification
system.

separate petals and the pumpkin has joined petals, but they are so
similar in so many other ways that they are usually placed within
the same order. Some taxonomists have come up with classification
criteria that they claim correspond more naturally to the apparent
relationships among plants, without having to make special excep-
tions, but these may be far less practical, requiring for instance the
examination of pollen grains under an electron microscope.

In physics, there are two main systems of classification for forces.
At this point in the course, you are going to learn one that is very
practical and easy to use, and that splits the forces up into a rel-
atively large number of types: seven very common ones that we’ll
discuss explicitly in this chapter, plus perhaps ten less important
ones such as surface tension, which we will not bother with right
now.

Physicists, however, are obsessed with finding simple patterns,
so recognizing as many as fifteen or twenty types of forces strikes
them as distasteful and overly complex. Since about the year 1900,
physics has been on an aggressive program to discover ways in which
these many seemingly different types of forces arise from a smaller
number of fundamental ones. For instance, when you press your
hands together, the force that keeps them from passing through each
other may seem to have nothing to do with electricity, but at the
atomic level, it actually does arise from electrical repulsion between
atoms. By about 1950, all the forces of nature had been explained
as arising from four fundamental types of forces at the atomic and
nuclear level, and the lumping-together process didn’t stop there.
By the 1960’s the length of the list had been reduced to three, and
some theorists even believe that they may be able to reduce it to
two or one. Although the unification of the forces of nature is one of
the most beautiful and important achievements of physics, it makes
much more sense to start this course with the more practical and
easy system of classification. The unified system of four forces will
be one of the highlights of the end of your introductory physics
sequence.

The practical classification scheme which concerns us now can
be laid out in the form of the tree shown in figure i. The most
specific types of forces are shown at the tips of the branches, and
it is these types of forces that are referred to in the POFOSTITO
mnemonic. For example, electrical and magnetic forces belong to
the same general group, but Newton’s third law would never relate
an electrical force to a magnetic force.

The broadest distinction is that between contact and noncontact
forces, which has been discussed in ch. 4. Among the contact forces,
we distinguish between those that involve solids only and those that
have to do with fluids, a term used in physics to include both gases
and liquids.
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i / A practical classification scheme for forces.

It should not be necessary to memorize this diagram by rote.
It is better to reinforce your memory of this system by calling to
mind your commonsense knowledge of certain ordinary phenomena.
For instance, we know that the gravitational attraction between us
and the planet earth will act even if our feet momentarily leave the
ground, and that although magnets have mass and are affected by
gravity, most objects that have mass are nonmagnetic.

Hitting a wall example 4
. A bullet, flying horizontally, hits a steel wall. What type of force
is there between the bullet and the wall?

. Starting at the bottom of the tree, we determine that the force
is a contact force, because it only occurs once the bullet touches
the wall. Both objects are solid. The wall forms a vertical plane.
If the nose of the bullet was some shape like a sphere, you might
imagine that it would only touch the wall at one point. Realisti-
cally, however, we know that a lead bullet will flatten out a lot on
impact, so there is a surface of contact between the two, and its
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orientation is vertical. The effect of the force on the bullet is to
stop the horizontal motion of the bullet, and this horizontal ac-
celeration must be produced by a horizontal force. The force is
therefore perpendicular to the surface of contact, and it’s also re-
pulsive (tending to keep the bullet from entering the wall), so it
must be a normal force.

Diagram i is meant to be as simple as possible while including
most of the forces we deal with in everyday life. If you were an
insect, you would be much more interested in the force of surface
tension, which allowed you to walk on water. I have not included
the nuclear forces, which are responsible for holding the nuclei of
atoms, because they are not evident in everyday life.

You should not be afraid to invent your own names for types of
forces that do not fit into the diagram. For instance, the force that
holds a piece of tape to the wall has been left off of the tree, and if
you were analyzing a situation involving scotch tape, you would be
absolutely right to refer to it by some commonsense name such as
“sticky force.”

On the other hand, if you are having trouble classifying a certain
force, you should also consider whether it is a force at all. For
instance, if someone asks you to classify the force that the earth has
because of its rotation, you would have great difficulty creating a
place for it on the diagram. That’s because it’s a type of motion,
not a type of force!

Normal forces

A normal force, FN , is a force that keeps one solid object from
passing through another. “Normal” is simply a fancy word for “per-
pendicular,” meaning that the force is perpendicular to the surface
of contact. Intuitively, it seems the normal force magically adjusts
itself to provide whatever force is needed to keep the objects from
occupying the same space. If your muscles press your hands together
gently, there is a gentle normal force. Press harder, and the normal
force gets stronger. How does the normal force know how strong to
be? The answer is that the harder you jam your hands together,
the more compressed your flesh becomes. Your flesh is acting like
a spring: more force is required to compress it more. The same is
true when you push on a wall. The wall flexes imperceptibly in pro-
portion to your force on it. If you exerted enough force, would it be
possible for two objects to pass through each other? No, typically
the result is simply to strain the objects so much that one of them
breaks.

Gravitational forces

As we’ll discuss in more detail later in the course, a gravitational
force exists between any two things that have mass. In everyday life,

Section 5.2 Classification and behavior of forces 161



j / A model that correctly ex-
plains many properties of friction.
The microscopic bumps and
holes in two surfaces dig into
each other.

k / Static friction: the tray doesn’t
slip on the waiter’s fingers.

l / Kinetic friction: the car skids.

the gravitational force between two cars or two people is negligible,
so the only noticeable gravitational forces are the ones between the
earth and various human-scale objects. We refer to these planet-
earth-induced gravitational forces as weight forces, and as we have
already seen, their magnitude is given by |FW | = mg.

. Solved problem: Weight and mass page 184, problem 26

Static and kinetic friction

If you have pushed a refrigerator across a kitchen floor, you have
felt a certain series of sensations. At first, you gradually increased
your force on the refrigerator, but it didn’t move. Finally, you sup-
plied enough force to unstick the fridge, and there was a sudden
jerk as the fridge started moving. Once the fridge was unstuck, you
could reduce your force significantly and still keep it moving.

While you were gradually increasing your force, the floor’s fric-
tional force on the fridge increased in response. The two forces on
the fridge canceled, and the fridge didn’t accelerate. How did the
floor know how to respond with just the right amount of force? Fig-
ure j shows one possible model of friction that explains this behavior.
(A scientific model is a description that we expect to be incomplete,
approximate, or unrealistic in some ways, but that nevertheless suc-
ceeds in explaining a variety of phenomena.) Figure j/1 shows a
microscopic view of the tiny bumps and holes in the surfaces of the
floor and the refrigerator. The weight of the fridge presses the two
surfaces together, and some of the bumps in one surface will settle
as deeply as possible into some of the holes in the other surface. In
j/2, your leftward force on the fridge has caused it to ride up a little
higher on the bump in the floor labeled with a small arrow. Still
more force is needed to get the fridge over the bump and allow it to
start moving. Of course, this is occurring simultaneously at millions
of places on the two surfaces.

Once you had gotten the fridge moving at constant speed, you
found that you needed to exert less force on it. Since zero total force
is needed to make an object move with constant velocity, the floor’s
rightward frictional force on the fridge has apparently decreased
somewhat, making it easier for you to cancel it out. Our model also
gives a plausible explanation for this fact: as the surfaces slide past
each other, they don’t have time to settle down and mesh with one
another, so there is less friction.

Even though this model is intuitively appealing and fairly suc-
cessful, it should not be taken too seriously, and in some situations
it is misleading. For instance, fancy racing bikes these days are
made with smooth tires that have no tread — contrary to what
we’d expect from our model, this does not cause any decrease in
friction. Machinists know that two very smooth and clean metal
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m / Many landfowl, even those
that are competent fliers, prefer
to escape from a predator by
running upward rather than by
flying. This partridge is running
up a vertical tree trunk. Humans
can’t walk up walls because there
is no normal force and therefore
no frictional force; when FN = 0,
the maximum force of static
friction Fs,max = µsFN is also
zero. The partridge, however,
has wings that it can flap in order
to create a force between it and
the air. Typically when a bird
flaps its wings, the resulting force
from the air is in the direction
that would tend to lift the bird
up. In this situation, however,
the partridge changes its style
of flapping so that the direction
is reversed. The normal force
between the feet and the tree
allows a nonzero static frictional
force. The mechanism is similar
to that of a spoiler fin on a racing
car. Some evolutionary biologists
believe that when vertebrate
flight first evolved, in dinosaurs,
there was first a stage in which
the wings were used only as an
aid in running up steep inclines,
and only later a transition to
flight. (Redrawn from a figure by
K.P. Dial.)

surfaces may stick to each other firmly and be very difficult to slide
apart. This cannot be explained in our model, but makes more
sense in terms of a model in which friction is described as arising
from chemical bonds between the atoms of the two surfaces at their
points of contact: very flat surfaces allow more atoms to come in
contact.

Since friction changes its behavior dramatically once the sur-
faces come unstuck, we define two separate types of frictional forces.
Static friction is friction that occurs between surfaces that are not
slipping over each other. Slipping surfaces experience kinetic fric-
tion. The forces of static and kinetic friction, notated Fs and Fk, are
always parallel to the surface of contact between the two objects.

self-check B
1. When a baseball player slides in to a base, is the friction static, or
kinetic?

2. A mattress stays on the roof of a slowly accelerating car. Is the
friction static, or kinetic?

3. Does static friction create heat? Kinetic friction? . Answer, p. 565

The maximum possible force of static friction depends on what
kinds of surfaces they are, and also on how hard they are being
pressed together. The approximate mathematical relationships can
be expressed as follows:

Fs,max = µsFN ,

where µs is a unitless number, called the coefficient of static friction,
which depends on what kinds of surfaces they are. The maximum
force that static friction can supply, µsFN , represents the boundary
between static and kinetic friction. It depends on the normal force,
which is numerically equal to whatever force is pressing the two
surfaces together. In terms of our model, if the two surfaces are
being pressed together more firmly, a greater sideways force will be
required in order to make the irregularities in the surfaces ride up
and over each other.

Note that just because we use an adjective such as “applied” to
refer to a force, that doesn’t mean that there is some special type
of force called the “applied force.” The applied force could be any
type of force, or it could be the sum of more than one force trying
to make an object move.

self-check C
The arrows in figure m show the forces of the tree trunk on the partridge.
Describe the forces the bird makes on the tree. . Answer, p. 565

The force of kinetic friction on each of the two objects is in the
direction that resists the slippage of the surfaces. Its magnitude is
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usually well approximated as

Fk = µkFN

where µk is the coefficient of kinetic friction. Kinetic friction is
usually more or less independent of velocity.

n / We choose a coordinate sys-
tem in which the applied force,
i.e., the force trying to move the
objects, is positive. The friction
force is then negative, since it is
in the opposite direction. As you
increase the applied force, the
force of static friction increases to
match it and cancel it out, until the
maximum force of static friction is
surpassed. The surfaces then be-
gin slipping past each other, and
the friction force becomes smaller
in absolute value.

self-check D
Can a frictionless surface exert a normal force? Can a frictional force
exist without a normal force? . Answer, p. 565

If you try to accelerate or decelerate your car too quickly, the
forces between your wheels and the road become too great, and they
begin slipping. This is not good, because kinetic friction is weaker
than static friction, resulting in less control. Also, if this occurs
while you are turning, the car’s handling changes abruptly because
the kinetic friction force is in a different direction than the static
friction force had been: contrary to the car’s direction of motion,
rather than contrary to the forces applied to the tire.

Most people respond with disbelief when told of the experimen-
tal evidence that both static and kinetic friction are approximately
independent of the amount of surface area in contact. Even after
doing a hands-on exercise with spring scales to show that it is true,
many students are unwilling to believe their own observations, and
insist that bigger tires “give more traction.” In fact, the main rea-
son why you would not want to put small tires on a big heavy car
is that the tires would burst!

Although many people expect that friction would be propor-
tional to surface area, such a proportionality would make predictions
contrary to many everyday observations. A dog’s feet, for example,
have very little surface area in contact with the ground compared
to a human’s feet, and yet we know that a dog can often win a
tug-of-war with a person.
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The reason a smaller surface area does not lead to less friction
is that the force between the two surfaces is more concentrated,
causing their bumps and holes to dig into each other more deeply.

self-check E
Find the direction of each of the forces in figure o. . Answer, p. 565

o / 1. The cliff’s normal force on
the climber’s feet. 2. The track’s
static frictional force on the wheel
of the accelerating dragster. 3.
The ball’s normal force on the
bat.

Locomotives example 5
Looking at a picture of a locomotive, p, we notice two obvious
things that are different from an automobile. Where a car typi-
cally has two drive wheels, a locomotive normally has many —
ten in this example. (Some also have smaller, unpowered wheels
in front of and behind the drive wheels, but this example doesn’t.)
Also, cars these days are generally built to be as light as possi-
ble for their size, whereas locomotives are very massive, and no
effort seems to be made to keep their weight low. (The steam
locomotive in the photo is from about 1900, but this is true even
for modern diesel and electric trains.)

p / Example 5.

The reason locomotives are built to be so heavy is for traction.
The upward normal force of the rails on the wheels, FN , cancels
the downward force of gravity, FW , so ignoring plus and minus
signs, these two forces are equal in absolute value, FN = FW .
Given this amount of normal force, the maximum force of static
friction is Fs = µsFN = µsFW . This static frictional force, of the
rails pushing forward on the wheels, is the only force that can
accelerate the train, pull it uphill, or cancel out the force of air
resistance while cruising at constant speed. The coefficient of
static friction for steel on steel is about 1/4, so no locomotive can
pull with a force greater than about 1/4 of its own weight. If the
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q / Fluid friction depends on
the fluid’s pattern of flow, so it is
more complicated than friction
between solids, and there are
no simple, universally applicable
formulas to calculate it. From
top to bottom: supersonic wind
tunnel, vortex created by a crop
duster, series of vortices created
by a single object, turbulence.

engine is capable of supplying more than that amount of force, the
result will be simply to break static friction and spin the wheels.

The reason this is all so different from the situation with a car is
that a car isn’t pulling something else. If you put extra weight in
a car, you improve the traction, but you also increase the inertia
of the car, and make it just as hard to accelerate. In a train, the
inertia is almost all in the cars being pulled, not in the locomotive.

The other fact we have to explain is the large number of driv-
ing wheels. First, we have to realize that increasing the num-
ber of driving wheels neither increases nor decreases the total
amount of static friction, because static friction is independent of
the amount of surface area in contact. (The reason four-wheel-
drive is good in a car is that if one or more of the wheels is slip-
ping on ice or in mud, the other wheels may still have traction.
This isn’t typically an issue for a train, since all the wheels experi-
ence the same conditions.) The advantage of having more driving
wheels on a train is that it allows us to increase the weight of the
locomotive without crushing the rails, or damaging bridges.

Fluid friction

Try to drive a nail into a waterfall and you will be confronted
with the main difference between solid friction and fluid friction.
Fluid friction is purely kinetic; there is no static fluid friction. The
nail in the waterfall may tend to get dragged along by the water
flowing past it, but it does not stick in the water. The same is true
for gases such as air: recall that we are using the word “fluid” to
include both gases and liquids.

Unlike kinetic friction between solids, fluid friction increases
rapidly with velocity. It also depends on the shape of the object,
which is why a fighter jet is more streamlined than a Model T. For
objects of the same shape but different sizes, fluid friction typically
scales up with the cross-sectional area of the object, which is one
of the main reasons that an SUV gets worse mileage on the freeway
than a compact car.
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r / What do the golf ball and
the shark have in common? Both
use the same trick to reduce fluid
friction. The dimples on the golf
ball modify the pattern of flow of
the air around it, counterintuitively
reducing friction. Recent studies
have shown that sharks can
accomplish the same thing by
raising, or “bristling,” the scales
on their skin at high speeds.

s / The wheelbases of the
Hummer H3 and the Toyota Prius
are surprisingly similar, differing
by only 10%. The main difference
in shape is that the Hummer is
much taller and wider. It presents
a much greater cross-sectional
area to the wind, and this is the
main reason that it uses about 2.5
times more gas on the freeway.

Discussion questions

A A student states that when he tries to push his refrigerator, the
reason it won’t move is because Newton’s third law says there’s an equal
and opposite frictional force pushing back. After all, the static friction force
is equal and opposite to the applied force. How would you convince him
he is wrong?

B Kinetic friction is usually more or less independent of velocity. How-
ever, inexperienced drivers tend to produce a jerk at the last moment of
deceleration when they stop at a stop light. What does this tell you about
the kinetic friction between the brake shoes and the brake drums?

C Some of the following are correct descriptions of types of forces that
could be added on as new branches of the classification tree. Others are
not really types of forces, and still others are not force phenomena at all.
In each case, decide what’s going on, and if appropriate, figure out how
you would incorporate them into the tree.

sticky force makes tape stick to things
opposite force the force that Newton’s third law says relates to ev-

ery force you make
flowing force the force that water carries with it as it flows out of a

hose
surface tension lets insects walk on water
horizontal force a force that is horizontal
motor force the force that a motor makes on the thing it is turning
canceled force a force that is being canceled out by some other

force

5.3 Analysis of forces
Newton’s first and second laws deal with the total of all the forces
exerted on a specific object, so it is very important to be able to
figure out what forces there are. Once you have focused your atten-
tion on one object and listed the forces on it, it is also helpful to
describe all the corresponding forces that must exist according to
Newton’s third law. We refer to this as “analyzing the forces” in
which the object participates.

Section 5.3 Analysis of forces 167



t / Example 7.

A barge example 6
A barge is being pulled to the right along a canal by teams of horses on the shores. Analyze all the forces in
which the barge participates.

force acting on barge force related to it by Newton’s third law
ropes’ normal forces on barge,→ barge’s normal force on ropes,←
water’s fluid friction force on barge,← barge’s fluid friction force on water,→
planet earth’s gravitational force on barge, ↓ barge’s gravitational force on earth, ↑
water’s “floating” force on barge, ↑ barge’s “floating” force on water, ↓

Here I’ve used the word “floating” force as an example of a sensible invented term for a type of force not
classified on the tree on p. 160. A more formal technical term would be “hydrostatic force.”
Note how the pairs of forces are all structured as “A’s force on B, B’s force on A”: ropes on barge and barge
on ropes; water on barge and barge on water. Because all the forces in the left column are forces acting on
the barge, all the forces in the right column are forces being exerted by the barge, which is why each entry in
the column begins with “barge.”

Often you may be unsure whether you have forgotten one of the
forces. Here are three strategies for checking your list:

1. See what physical result would come from the forces you’ve
found so far. Suppose, for instance, that you’d forgotten the
“floating” force on the barge in the example above. Looking
at the forces you’d found, you would have found that there
was a downward gravitational force on the barge which was
not canceled by any upward force. The barge isn’t supposed
to sink, so you know you need to find a fourth, upward force.

2. Another technique for finding missing forces is simply to go
through the list of all the common types of forces and see if
any of them apply.

3. Make a drawing of the object, and draw a dashed boundary
line around it that separates it from its environment. Look for
points on the boundary where other objects come in contact
with your object. This strategy guarantees that you’ll find
every contact force that acts on the object, although it won’t
help you to find non-contact forces.

Fifi example 7
. Fifi is an industrial espionage dog who loves doing her job and
looks great doing it. She leaps through a window and lands at
initial horizontal speed vo on a conveyor belt which is itself moving
at the greater speed vb. Unfortunately the coefficient of kinetic
friction µk between her foot-pads and the belt is fairly low, so she
skids for a time ∆t , during which the effect on her coiffure is un
désastre. Find ∆t .
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. We analyze the forces:

force acting on Fifi force related to it by Newton’s
third law

planet earth’s gravitational
force FW = mg on Fifi, ↓

Fifi’s gravitational force on
earth, ↑

belt’s kinetic frictional force Fk
on Fifi, →

Fifi’s kinetic frictional force on
belt, ←

belt’s normal force FN on Fifi, ↑ Fifi’s normal force on belt, ↓

Checking the analysis of the forces as described on p. 168:

(1) The physical result makes sense. The left-hand column con-
sists of forces ↓→↑. We’re describing the time when she’s moving
horizontally on the belt, so it makes sense that we have two ver-
tical forces that could cancel. The rightward force is what will
accelerate her until her speed matches that of the belt.

(2) We’ve included every relevant type of force from the tree on
p. 160.

(3) We’ve included forces from the belt, which is the only object
in contact with Fifi.

The purpose of the analysis is to let us set up equations con-
taining enough information to solve the problem. Using the gen-
eralization of Newton’s second law given on p. 137, we use the
horizontal force to determine the horizontal acceleration, and sep-
arately require the vertical forces to cancel out.

Let positive x be to the right. Newton’s second law gives

(→) a = Fk/m

Although it’s the horizontal motion we care about, the only way to
find Fk is via the relation Fk = µkFN , and the only way to find FN
is from the ↑↓ forces. The two vertical forces must cancel, which
means they have to be of equal strength:

(↑↓) FN −mg = 0.

Using the constant-acceleration equation a = ∆v/∆t , we have

∆t =
∆v
a

=
vb − vo

µkmg/m

=
vb − vo

µkg
.

The units check out:

s =
m/s
m/s2 ,
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where µk is omitted as a factor because it’s unitless.

We should also check that the dependence on the variables makes
sense. If Fifi puts on her rubber ninja booties, increasing µk , then
dividing by a larger number gives a smaller result for ∆t ; this
makes sense physically, because the greater friction will cause
her to come up to the belt’s speed more quickly. The dependence
on g is similar; more gravity would press her harder against the
belt, improving her traction. Increasing vb increases ∆t , which
makes sense because it will take her longer to get up to a bigger
speed. Since vo is subtracted, the dependence of ∆t on it is the
other way around, and that makes sense too, because if she can
land with a greater speed, she has less speeding up left to do.

u / Example 8.

Forces don’t have to be in pairs or at right angles example 8
In figure u, the three horses are arranged symmetrically at 120
degree intervals, and are all pulling on the central knot. Let’s say
the knot is at rest and at least momentarily in equilibrium. The
analysis of forces on the knot is as follows.
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force acting on knot force related to it by Newton’s
third law

top rope’s normal force on
knot, ↑

knot’s normal force on top
rope, ↓

left rope’s normal force on
knot,

knot’s normal force on left
rope,

right rope’s normal force on
knot,

knot’s normal force on right
rope,

In our previous examples, the forces have all run along two per-
pendicular lines, and they often canceled in pairs. This example
shows that neither of these always happens. Later in the book
we’ll see how to handle forces that are at arbitrary angles, using
mathematical objects called vectors. But even without knowing
about vectors, we already know what directions to draw the ar-
rows in the table, since a rope can only pull parallel to itself at its
ends. And furthermore, we can say something about the forces:
by symmetry, we expect them all to be equal in strength. (If the
knot was not in equilibrium, then this symmetry would be broken.)

This analysis also demonstrates that it’s all right to leave out de-
tails if they aren’t of interest and we don’t intend to include them
in our model. We called the forces normal forces, but we can’t ac-
tually tell whether they are normal forces or frictional forces. They
are probably some combination of those, but we don’t include
such details in this model, since aren’t interested in describing the
internal physics of the knot. This is an example of a more general
fact about science, which is that science doesn’t describe reality.
It describes simplified models of reality, because reality is always
too complex to model exactly.
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Discussion questions

A In the example of the barge going down the canal, I referred to
a “floating” or “hydrostatic” force that keeps the boat from sinking. If you
were adding a new branch on the force-classification tree to represent this
force, where would it go?

B The earth’s gravitational force on you, i.e., your weight, is always
equal to mg, where m is your mass. So why can you get a shovel to go
deeper into the ground by jumping onto it? Just because you’re jumping,
that doesn’t mean your mass or weight is any greater, does it?

5.4 Transmission of forces by low-mass
objects

You’re walking your dog. The dog wants to go faster than you do,
and the leash is taut. Does Newton’s third law guarantee that your
force on your end of the leash is equal and opposite to the dog’s
force on its end? If they’re not exactly equal, is there any reason
why they should be approximately equal?

If there was no leash between you, and you were in direct contact
with the dog, then Newton’s third law would apply, but Newton’s
third law cannot relate your force on the leash to the dog’s force
on the leash, because that would involve three separate objects.
Newton’s third law only says that your force on the leash is equal
and opposite to the leash’s force on you,

FyL = −FLy,

and that the dog’s force on the leash is equal and opposite to its
force on the dog

FdL = −FLd.
Still, we have a strong intuitive expectation that whatever force we
make on our end of the leash is transmitted to the dog, and vice-
versa. We can analyze the situation by concentrating on the forces
that act on the leash, FdL and FyL. According to Newton’s second
law, these relate to the leash’s mass and acceleration:

FdL + FyL = mLaL.

The leash is far less massive then any of the other objects involved,
and if mL is very small, then apparently the total force on the leash
is also very small, FdL + FyL ≈ 0, and therefore

FdL ≈ −FyL.

Thus even though Newton’s third law does not apply directly to
these two forces, we can approximate the low-mass leash as if it was
not intervening between you and the dog. It’s at least approximately
as if you and the dog were acting directly on each other, in which
case Newton’s third law would have applied.
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w / The Golden Gate Bridge’s
roadway is held up by the tension
in the vertical cables.

In general, low-mass objects can be treated approximately as if
they simply transmitted forces from one object to another. This can
be true for strings, ropes, and cords, and also for rigid objects such
as rods and sticks.

v / If we imagine dividing a taut rope up into small segments, then
any segment has forces pulling outward on it at each end. If the rope
is of negligible mass, then all the forces equal +T or −T , where T , the
tension, is a single number.

If you look at a piece of string under a magnifying glass as you
pull on the ends more and more strongly, you will see the fibers
straightening and becoming taut. Different parts of the string are
apparently exerting forces on each other. For instance, if we think of
the two halves of the string as two objects, then each half is exerting
a force on the other half. If we imagine the string as consisting of
many small parts, then each segment is transmitting a force to the
next segment, and if the string has very little mass, then all the
forces are equal in magnitude. We refer to the magnitude of the
forces as the tension in the string, T .

The term “tension” refers only to internal forces within the
string. If the string makes forces on objects at its ends, then those
forces are typically normal or frictional forces (example 9).
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x / Example 9. The forces
between the rope and other
objects are normal and frictional
forces.

Types of force made by ropes example 9
. Analyze the forces in figures x/1 and x/2.

. In all cases, a rope can only make “pulling” forces, i.e., forces
that are parallel to its own length and that are toward itself, not
away from itself. You can’t push with a rope!

In x/1, the rope passes through a type of hook, called a carabiner,
used in rock climbing and mountaineering. Since the rope can
only pull along its own length, the direction of its force on the
carabiner must be down and to the right. This is perpendicular to
the surface of contact, so the force is a normal force.

force acting on carabiner force related to it by Newton’s
third law

rope’s normal force on cara-
biner

carabiner’s normal force on
rope

(There are presumably other forces acting on the carabiner from
other hardware above it.)

In figure x/2, the rope can only exert a net force at its end that
is parallel to itself and in the pulling direction, so its force on the
hand is down and to the left. This is parallel to the surface of
contact, so it must be a frictional force. If the rope isn’t slipping
through the hand, we have static friction. Friction can’t exist with-
out normal forces. These forces are perpendicular to the surface
of contact. For simplicity, we show only two pairs of these normal
forces, as if the hand were a pair of pliers.

force acting on person force related to it by Newton’s
third law

rope’s static frictional force on
person

person’s static frictional force
on rope

rope’s normal force on
person

person’s normal force on
rope

rope’s normal force on
person

person’s normal force on
rope

(There are presumably other forces acting on the person as well,
such as gravity.)

If a rope goes over a pulley or around some other object, then
the tension throughout the rope is approximately equal so long as
the pulley has negligible mass and there is not too much friction. A
rod or stick can be treated in much the same way as a string, but
it is possible to have either compression or tension.

Discussion question

A When you step on the gas pedal, is your foot’s force being transmitted
in the sense of the word used in this section?
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5.5 Objects under strain
A string lengthens slightly when you stretch it. Similarly, we have
already discussed how an apparently rigid object such as a wall is
actually flexing when it participates in a normal force. In other
cases, the effect is more obvious. A spring or a rubber band visibly
elongates when stretched.

Common to all these examples is a change in shape of some kind:
lengthening, bending, compressing, etc. The change in shape can
be measured by picking some part of the object and measuring its
position, x. For concreteness, let’s imagine a spring with one end
attached to a wall. When no force is exerted, the unfixed end of the
spring is at some position xo. If a force acts at the unfixed end, its
position will change to some new value of x. The more force, the
greater the departure of x from xo.

y / Defining the quantities F , x ,
and xo in Hooke’s law.

Back in Newton’s time, experiments like this were considered
cutting-edge research, and his contemporary Hooke is remembered
today for doing them and for coming up with a simple mathematical
generalization called Hooke’s law:

F ≈ k(x− xo). [force required to stretch a spring; valid

for small forces only]

Here k is a constant, called the spring constant, that depends on
how stiff the object is. If too much force is applied, the spring
exhibits more complicated behavior, so the equation is only a good
approximation if the force is sufficiently small. Usually when the
force is so large that Hooke’s law is a bad approximation, the force
ends up permanently bending or breaking the spring.

Although Hooke’s law may seem like a piece of trivia about
springs, it is actually far more important than that, because all
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solid objects exert Hooke’s-law behavior over some range of suffi-
ciently small forces. For example, if you push down on the hood of
a car, it dips by an amount that is directly proportional to the force.
(But the car’s behavior would not be as mathematically simple if
you dropped a boulder on the hood!)

. Solved problem: Combining springs page 182, problem 14

. Solved problem: Young’s modulus page 182, problem 16

Discussion question

A A car is connected to its axles through big, stiff springs called shock
absorbers, or “shocks.” Although we’ve discussed Hooke’s law above only
in the case of stretching a spring, a car’s shocks are continually going
through both stretching and compression. In this situation, how would
you interpret the positive and negative signs in Hooke’s law?

5.6 Simple Machines: the pulley
Even the most complex machines, such as cars or pianos, are built
out of certain basic units called simple machines. The following are
some of the main functions of simple machines:

transmitting a force: The chain on a bicycle transmits a force
from the crank set to the rear wheel.

changing the direction of a force: If you push down on a see-
saw, the other end goes up.

changing the speed and precision of motion: When you make
the “come here” motion, your biceps only moves a couple of
centimeters where it attaches to your forearm, but your arm
moves much farther and more rapidly.

changing the amount of force: A lever or pulley can be used
to increase or decrease the amount of force.

You are now prepared to understand one-dimensional simple ma-
chines, of which the pulley is the main example.

z / Example 10.

A pulley example 10
. Farmer Bill says this pulley arrangement doubles the force of
his tractor. Is he just a dumb hayseed, or does he know what he’s
doing?
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. To use Newton’s first law, we need to pick an object and con-
sider the sum of the forces on it. Since our goal is to relate the
tension in the part of the cable attached to the stump to the ten-
sion in the part attached to the tractor, we should pick an object
to which both those cables are attached, i.e., the pulley itself. The
tension in a string or cable remains approximately constant as it
passes around an idealized pulley. 1 There are therefore two left-
ward forces acting on the pulley, each equal to the force exerted
by the tractor. Since the acceleration of the pulley is essentially
zero, the forces on it must be canceling out, so the rightward force
of the pulley-stump cable on the pulley must be double the force
exerted by the tractor. Yes, Farmer Bill knows what he’s talking
about.

1This was asserted in section 5.4 without proof. Essentially it holds because
of symmetry. E.g., if the U-shaped piece of rope in figure z had unequal tension
in its two legs, then this would have to be caused by some asymmetry between
clockwise and counterclockwise rotation. But such an asymmetry can only be
caused by friction or inertia, which we assume don’t exist.
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Summary
Selected vocabulary
repulsive . . . . . describes a force that tends to push the two

participating objects apart
attractive . . . . describes a force that tends to pull the two

participating objects together
oblique . . . . . . describes a force that acts at some other angle,

one that is not a direct repulsion or attraction
normal force . . . the force that keeps two objects from occupy-

ing the same space
static friction . . a friction force between surfaces that are not

slipping past each other
kinetic friction . a friction force between surfaces that are slip-

ping past each other
fluid . . . . . . . . a gas or a liquid
fluid friction . . . a friction force in which at least one of the

object is is a fluid
spring constant . the constant of proportionality between force

and elongation of a spring or other object un-
der strain

Notation
FN . . . . . . . . . a normal force
Fs . . . . . . . . . a static frictional force
Fk . . . . . . . . . a kinetic frictional force
µs . . . . . . . . . the coefficient of static friction; the constant of

proportionality between the maximum static
frictional force and the normal force; depends
on what types of surfaces are involved

µk . . . . . . . . . the coefficient of kinetic friction; the constant
of proportionality between the kinetic fric-
tional force and the normal force; depends on
what types of surfaces are involved

k . . . . . . . . . . the spring constant; the constant of propor-
tionality between the force exerted on an ob-
ject and the amount by which the object is
lengthened or compressed

Summary

Newton’s third law states that forces occur in equal and opposite
pairs. If object A exerts a force on object B, then object B must
simultaneously be exerting an equal and opposite force on object A.
Each instance of Newton’s third law involves exactly two objects,
and exactly two forces, which are of the same type.

There are two systems for classifying forces. We are presently
using the more practical but less fundamental one. In this system,
forces are classified by whether they are repulsive, attractive, or
oblique; whether they are contact or noncontact forces; and whether
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the two objects involved are solids or fluids.

Static friction adjusts itself to match the force that is trying to
make the surfaces slide past each other, until the maximum value is
reached,

Fs,max = µsFN .

Once this force is exceeded, the surfaces slip past one another, and
kinetic friction applies,

Fk = µkFN .

Both types of frictional force are nearly independent of surface area,
and kinetic friction is usually approximately independent of the
speed at which the surfaces are slipping. The direction of the force
is in the direction that would tend to stop or prevent slipping.

A good first step in applying Newton’s laws of motion to any
physical situation is to pick an object of interest, and then to list
all the forces acting on that object. We classify each force by its
type, and find its Newton’s-third-law partner, which is exerted by
the object on some other object.

When two objects are connected by a third low-mass object,
their forces are transmitted to each other nearly unchanged.

Objects under strain always obey Hooke’s law to a good approx-
imation, as long as the force is small. Hooke’s law states that the
stretching or compression of the object is proportional to the force
exerted on it,

F ≈ k(x− xo).
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Problem 1.

Problem 6.

Problem 7.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A little old lady and a pro football player collide head-on.
Compare their forces on each other, and compare their accelerations.
Explain.

2 The earth is attracted to an object with a force equal and
opposite to the force of the earth on the object. If this is true,
why is it that when you drop an object, the earth does not have an
acceleration equal and opposite to that of the object?

3 When you stand still, there are two forces acting on you,
the force of gravity (your weight) and the normal force of the floor
pushing up on your feet. Are these forces equal and opposite? Does
Newton’s third law relate them to each other? Explain.

In problems 4-8, analyze the forces using a table in the format shown
in section 5.3. Analyze the forces in which the italicized object par-
ticipates.

4 Some people put a spare car key in a little magnetic box that
they stick under the chassis of their car. Let’s say that the box is
stuck directly underneath a horizontal surface, and the car is parked.
(See instructions above.)

5 Analyze two examples of objects at rest relative to the earth
that are being kept from falling by forces other than the normal
force. Do not use objects in outer space, and do not duplicate
problem 4 or 8. (See instructions above.)

6 A person is rowing a boat, with her feet braced. She is doing
the part of the stroke that propels the boat, with the ends of the
oars in the water (not the part where the oars are out of the water).
(See instructions above.)

7 A farmer is in a stall with a cow when the cow decides to press
him against the wall, pinning him with his feet off the ground. An-
alyze the forces in which the farmer participates. (See instructions
above.)
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Problem 8.

Problem 9.

Problem 10.

8 A propeller plane is cruising east at constant speed and alti-
tude. (See instructions above.)

9 Today’s tallest buildings are really not that much taller than
the tallest buildings of the 1940’s. One big problem with making an
even taller skyscraper is that every elevator needs its own shaft run-
ning the whole height of the building. So many elevators are needed
to serve the building’s thousands of occupants that the elevator
shafts start taking up too much of the space within the building.
An alternative is to have elevators that can move both horizontally
and vertically: with such a design, many elevator cars can share a
few shafts, and they don’t get in each other’s way too much because
they can detour around each other. In this design, it becomes im-
possible to hang the cars from cables, so they would instead have to
ride on rails which they grab onto with wheels. Friction would keep
them from slipping. The figure shows such a frictional elevator in
its vertical travel mode. (The wheels on the bottom are for when it
needs to switch to horizontal motion.)
(a) If the coefficient of static friction between rubber and steel is
µs, and the maximum mass of the car plus its passengers is M ,
how much force must there be pressing each wheel against the rail
in order to keep the car from slipping? (Assume the car is not
accelerating.)

√

(b) Show that your result has physically reasonable behavior with
respect to µs. In other words, if there was less friction, would the
wheels need to be pressed more firmly or less firmly? Does your
equation behave that way?

10 Unequal masses M and m are suspended from a pulley as
shown in the figure.
(a) Analyze the forces in which mass m participates, using a table
in the format shown in section 5.3. [The forces in which the other
mass participates will of course be similar, but not numerically the
same.]
(b) Find the magnitude of the accelerations of the two masses.
[Hints: (1) Pick a coordinate system, and use positive and nega-
tive signs consistently to indicate the directions of the forces and
accelerations. (2) The two accelerations of the two masses have to
be equal in magnitude but of opposite signs, since one side eats up
rope at the same rate at which the other side pays it out. (3) You
need to apply Newton’s second law twice, once to each mass, and
then solve the two equations for the unknowns: the acceleration, a,
and the tension in the rope, T .]

√

(c) Many people expect that in the special case of M = m, the two
masses will naturally settle down to an equilibrium position side by
side. Based on your answer from part b, is this correct?
(d) Find the tension in the rope, T .

√

(e) Interpret your equation from part d in the special case where one
of the masses is zero. Here “interpret” means to figure out what hap-
pens mathematically, figure out what should happen physically, and
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Problem 13.

Problem 14.

connect the two.

11 A tugboat of mass m pulls a ship of mass M , accelerating it.
The speeds are low enough that you can ignore fluid friction acting
on their hulls, although there will of course need to be fluid friction
acting on the tug’s propellers.
(a) Analyze the forces in which the tugboat participates, using a
table in the format shown in section 5.3. Don’t worry about vertical
forces.
(b) Do the same for the ship.
(c) If the force acting on the tug’s propeller is F , what is the tension,
T , in the cable connecting the two ships? [Hint: Write down two
equations, one for Newton’s second law applied to each object. Solve
these for the two unknowns T and a.]

√

(d) Interpret your answer in the special cases of M = 0 and M =∞.

12 Someone tells you she knows of a certain type of Central
American earthworm whose skin, when rubbed on polished dia-
mond, has µk > µs. Why is this not just empirically unlikely but
logically suspect?

13 In the system shown in the figure, the pulleys on the left and
right are fixed, but the pulley in the center can move to the left or
right. The two masses are identical. Show that the mass on the left
will have an upward acceleration equal to g/5. Assume all the ropes
and pulleys are massless and frictionless.

14 The figure shows two different ways of combining a pair of
identical springs, each with spring constant k. We refer to the top
setup as parallel, and the bottom one as a series arrangement.
(a) For the parallel arrangement, analyze the forces acting on the
connector piece on the left, and then use this analysis to determine
the equivalent spring constant of the whole setup. Explain whether
the combined spring constant should be interpreted as being stiffer
or less stiff.
(b) For the series arrangement, analyze the forces acting on each
spring and figure out the same things. . Solution, p. 552

15 Generalize the results of problem 14 to the case where the
two spring constants are unequal.

16 (a) Using the solution of problem 14, which is given in the
back of the book, predict how the spring constant of a fiber will
depend on its length and cross-sectional area.
(b) The constant of proportionality is called the Young’s modulus,
E, and typical values of the Young’s modulus are about 1010 to
1011. What units would the Young’s modulus have in the SI (meter-
kilogram-second) system? . Solution, p. 552
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Problem 17.

Problem 19.

17 This problem depends on the results of problems 14 and
16, whose solutions are in the back of the book. When atoms form
chemical bonds, it makes sense to talk about the spring constant of
the bond as a measure of how “stiff” it is. Of course, there aren’t
really little springs — this is just a mechanical model. The purpose
of this problem is to estimate the spring constant, k, for a single
bond in a typical piece of solid matter. Suppose we have a fiber,
like a hair or a piece of fishing line, and imagine for simplicity that
it is made of atoms of a single element stacked in a cubical manner,
as shown in the figure, with a center-to-center spacing b. A typical
value for b would be about 10−10 m.
(a) Find an equation for k in terms of b, and in terms of the Young’s
modulus, E, defined in problem 16 and its solution.
(b) Estimate k using the numerical data given in problem 16.
(c) Suppose you could grab one of the atoms in a diatomic molecule
like H2 or O2, and let the other atom hang vertically below it. Does
the bond stretch by any appreciable fraction due to gravity?

18 In each case, identify the force that causes the acceleration,
and give its Newton’s-third-law partner. Describe the effect of the
partner force. (a) A swimmer speeds up. (b) A golfer hits the ball
off of the tee. (c) An archer fires an arrow. (d) A locomotive slows
down. . Solution, p. 552

19 Ginny has a plan. She is going to ride her sled while her dog
Foo pulls her, and she holds on to his leash. However, Ginny hasn’t
taken physics, so there may be a problem: she may slide right off
the sled when Foo starts pulling.
(a) Analyze all the forces in which Ginny participates, making a
table as in section 5.3.
(b) Analyze all the forces in which the sled participates.
(c) The sled has mass m, and Ginny has mass M . The coefficient
of static friction between the sled and the snow is µ1, and µ2 is
the corresponding quantity for static friction between the sled and
her snow pants. Ginny must have a certain minimum mass so that
she will not slip off the sled. Find this in terms of the other three
variables.

√

(d) Interpreting your equation from part c, under what conditions
will there be no physically realistic solution for M? Discuss what
this means physically.

20 Example 2 on page 157 involves a person pushing a box up a
hill. The incorrect answer describes three forces. For each of these
three forces, give the force that it is related to by Newton’s third
law, and state the type of force. . Solution, p. 553

21 Example 10 on page 176 describes a force-doubling setup
involving a pulley. Make up a more complicated arrangement, using
two pulleys, that would multiply the force by four. The basic idea
is to take the output of one force doubler and feed it into the input
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of a second one.

22 Pick up a heavy object such as a backpack or a chair, and
stand on a bathroom scale. Shake the object up and down. What
do you observe? Interpret your observations in terms of Newton’s
third law.

23 A cop investigating the scene of an accident measures the
length L of a car’s skid marks in order to find out its speed v at
the beginning of the skid. Express v in terms of L and any other
relevant variables.

√

24 The following reasoning leads to an apparent paradox; explain
what’s wrong with the logic. A baseball player hits a ball. The ball
and the bat spend a fraction of a second in contact. During that
time they’re moving together, so their accelerations must be equal.
Newton’s third law says that their forces on each other are also
equal. But a = F/m, so how can this be, since their masses are
unequal? (Note that the paradox isn’t resolved by considering the
force of the batter’s hands on the bat. Not only is this force very
small compared to the ball-bat force, but the batter could have just
thrown the bat at the ball.)

25 This problem has been deleted.

26 (a) Compare the mass of a one-liter water bottle on earth,
on the moon, and in interstellar space. . Solution, p. 553
(b) Do the same for its weight.

27 An ice skater builds up some speed, and then coasts across
the ice passively in a straight line. (a) Analyze the forces, using a
table in the format shown in section 5.3.
(b) If his initial speed is v, and the coefficient of kinetic friction is µk,
find the maximum theoretical distance he can glide before coming
to a stop. Ignore air resistance.

√

(c) Show that your answer to part b has the right units.
(d) Show that your answer to part b depends on the variables in a
way that makes sense physically.
(e) Evaluate your answer numerically for µk = 0.0046, and a world-
record speed of 14.58 m/s. (The coefficient of friction was measured
by De Koning et al., using special skates worn by real speed skaters.)√

(f) Comment on whether your answer in part e seems realistic. If it
doesn’t, suggest possible reasons why.
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Problem 28.

Problem 29.

Problem 31.

28 Mountain climbers with masses m and M are roped together
while crossing a horizontal glacier when a vertical crevasse opens up
under the climber with mass M . The climber with mass m drops
down on the snow and tries to stop by digging into the snow with
the pick of an ice ax. Alas, this story does not have a happy ending,
because this doesn’t provide enough friction to stop. Both m and M
continue accelerating, with M dropping down into the crevasse and
m being dragged across the snow, slowed only by the kinetic friction
with coefficient µk acting between the ax and the snow. There is no
significant friction between the rope and the lip of the crevasse.
(a) Find the acceleration a.

√

(b) Check the units of your result.
(c) Check the dependence of your equation on the variables. That
means that for each variable, you should determine what its effect
on a should be physically, and then what your answer from part a
says its effect would be mathematically.

29 The figure shows a column in the shape of a woman, holding
up the roof of part of the Parthenon. Analyze the forces in which
she participates, using a table in the format shown in section 5.3.

. Solution, p. 553

30 Problem 15, p. 150, which has a solution in the back of the
book, was an analysis of the forces acting on a rock climber being
lowered back down on the rope. Expand that analysis into a table
in the format shown in section 5.3, which includes the types of the
forces and their Newton’s-third-law partners.

31 The figure shows a man trying to push his car out of the mud.
(a) Suppose that he isn’t able to move the car. Analyze the forces
in which the car participates, using a table in the format shown in
section 5.3. (b) In the situation described above, consider the forces
that act on the car, and compare their strengths. (c) The man takes
a nap, eats some chocolate, and now feels stronger. Now he is able
to move the car, and the car is currently moving at constant speed.
Discuss the strengths of the forces at this time, in relation to one
another. (d) The man gets tired again. He is still pushing, but the
car, although still moving, begins to decelerate. Again, discuss the
strengths of the forces in relation to one another.
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Problem 32.

Problem 34.

Problem 35.

32 The figure shows a mountaineer doing a vertical rappel. Her
anchor is a big boulder. The American Mountain Guides Association
suggests as a rule of thumb that in this situation, the boulder should
be at least as big as a refrigerator, and should be sitting on a surface
that is horizontal rather than sloping. The goal of this problem is
to estimate what coefficient of static friction µs between the boulder
and the ledge is required if this setup is to hold the person’s body
weight. For comparison, reference books meant for civil engineers
building walls out of granite blocks state that granite on granite
typically has a µs ≈ 0.6. We expect the result of our calculation
to be much less than this, both because a large margin of safety
is desired and because the coefficient could be much lower if, for
example, the surface was sandy rather than clean. We will assume
that there is no friction where the rope goes over the lip of the cliff,
although in reality this friction significantly reduces the load on the
boulder.
(a) Let m be the mass of the climber, V the volume of the boulder,
ρ its density, and g the strength of the gravitational field. Find the
minimum value of µs.

√

(b) Show that the units of your answer make sense.
(c) Check that its dependence on the variables makes sense.
(d) Evaluate your result numerically. The volume of my refrigerator
is about 0.7 m3, the density of granite is about 2.7 g/cm3, and
standards bodies use a body mass of 80 kg for testing climbing
equipment.

√

33 A toy manufacturer is playtesting teflon booties that slip
on over your shoes. In the parking lot, giggling engineers find that
when they start with an initial speed of 1.2 m/s, they glide for 2.0 m
before coming to a stop. What is the coefficient of friction between
the asphalt and the booties?

√
[problem by B. Shotwell]

34 Blocks M1 and M2 are stacked as shown, with M2 on top.
M2 is connected by a string to the wall, and M1 is pulled to the
right with a force F big enough to get M1 to move. The coefficient
of kinetic friction has the same value µk among all surfaces (i.e., the
block-block and ground-block interfaces).
(a) Analyze the forces in which each block participates, as in section
5.3.
(b) Determine the tension in the string.

√

(c) Find the acceleration of the block of mass M1.√
[problem by B. Shotwell]

35 A person can pull with a maximum force F . What is the
maximum mass that the person can lift with the pulley setup shown
in the figure?

√
[problem by B. Shotwell]
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Problem 36.

36 Blocks of mass m1 and m2 rest, as shown in the figure, on a
frictionless plane, and are squeezed by forces of magnitude F1 and
F2.
(a) Find the force f that acts between the two blocks.

√

(b) Check that your answer makes sense in the symmetric case where
F1 = F2 and m1 = m2.
(c) Find the conditions under which your answer to part a gives
f = 0, and check that it makes sense.
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Motion in Three
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Chapter 6

Newton’s Laws in Three
Dimensions

6.1 Forces have no perpendicular effects
Suppose you could shoot a rifle and arrange for a second bullet to
be dropped from the same height at the exact moment when the
first left the barrel. Which would hit the ground first? Nearly
everyone expects that the dropped bullet will reach the dirt first,
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and Aristotle would have agreed. Aristotle would have described it
like this. The shot bullet receives some forced motion from the gun.
It travels forward for a split second, slowing down rapidly because
there is no longer any force to make it continue in motion. Once
it is done with its forced motion, it changes to natural motion, i.e.
falling straight down. While the shot bullet is slowing down, the
dropped bullet gets on with the business of falling, so according to
Aristotle it will hit the ground first.

a / A bullet is shot from a gun, and another bullet is simultaneously dropped from the same height. 1.
Aristotelian physics says that the horizontal motion of the shot bullet delays the onset of falling, so the dropped
bullet hits the ground first. 2. Newtonian physics says the two bullets have the same vertical motion, regardless
of their different horizontal motions.

Luckily, nature isn’t as complicated as Aristotle thought! To
convince yourself that Aristotle’s ideas were wrong and needlessly
complex, stand up now and try this experiment. Take your keys
out of your pocket, and begin walking briskly forward. Without
speeding up or slowing down, release your keys and let them fall
while you continue walking at the same pace.

You have found that your keys hit the ground right next to your
feet. Their horizontal motion never slowed down at all, and the
whole time they were dropping, they were right next to you. The
horizontal motion and the vertical motion happen at the same time,
and they are independent of each other. Your experiment proves
that the horizontal motion is unaffected by the vertical motion, but
it’s also true that the vertical motion is not changed in any way by
the horizontal motion. The keys take exactly the same amount of
time to get to the ground as they would have if you simply dropped
them, and the same is true of the bullets: both bullets hit the ground
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simultaneously.

These have been our first examples of motion in more than one
dimension, and they illustrate the most important new idea that
is required to understand the three-dimensional generalization of
Newtonian physics:

Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the part of the
object’s motion that is perpendicular to the force.

In the examples above, the vertical force of gravity had no effect
on the horizontal motions of the objects. These were examples of
projectile motion, which interested people like Galileo because of
its military applications. The principle is more general than that,
however. For instance, if a rolling ball is initially heading straight
for a wall, but a steady wind begins blowing from the side, the ball
does not take any longer to get to the wall. In the case of projectile
motion, the force involved is gravity, so we can say more specifically
that the vertical acceleration is 9.8 m/s2, regardless of the horizontal
motion.

self-check A
In the example of the ball being blown sideways, why doesn’t the ball
take longer to get there, since it has to travel a greater distance? .

Answer, p. 566

Relationship to relative motion

These concepts are directly related to the idea that motion is rel-
ative. Galileo’s opponents argued that the earth could not possibly
be rotating as he claimed, because then if you jumped straight up in
the air you wouldn’t be able to come down in the same place. Their
argument was based on their incorrect Aristotelian assumption that
once the force of gravity began to act on you and bring you back
down, your horizontal motion would stop. In the correct Newtonian
theory, the earth’s downward gravitational force is acting before,
during, and after your jump, but has no effect on your motion in
the perpendicular (horizontal) direction.

If Aristotle had been correct, then we would have a handy way
to determine absolute motion and absolute rest: jump straight up
in the air, and if you land back where you started, the surface from
which you jumped must have been in a state of rest. In reality, this
test gives the same result as long as the surface under you is an
inertial frame. If you try this in a jet plane, you land back on the
same spot on the deck from which you started, regardless of whether
the plane is flying at 500 miles per hour or parked on the runway.
The method would in fact only be good for detecting whether the
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c / The shadow on the wall
shows the ball’s y motion, the
shadow on the floor its x motion.

plane was accelerating.

Discussion questions

A The following is an incorrect explanation of a fact about target
shooting:

“Shooting a high-powered rifle with a high muzzle velocity is different from
shooting a less powerful gun. With a less powerful gun, you have to aim
quite a bit above your target, but with a more powerful one you don’t have
to aim so high because the bullet doesn’t drop as fast.”

Explain why it’s incorrect. What is the correct explanation?

B You have thrown a rock, and it is flying through the air in an arc. If
the earth’s gravitational force on it is always straight down, why doesn’t it
just go straight down once it leaves your hand?

C Consider the example of the bullet that is dropped at the same
moment another bullet is fired from a gun. What would the motion of the
two bullets look like to a jet pilot flying alongside in the same direction as
the shot bullet and at the same horizontal speed?

6.2 Coordinates and components
’Cause we’re all
Bold as love,
Just ask the axis.

Jimi Hendrix

How do we convert these ideas into mathematics? Figure b shows
a good way of connecting the intuitive ideas to the numbers. In one
dimension, we impose a number line with an x coordinate on a
certain stretch of space. In two dimensions, we imagine a grid of
squares which we label with x and y values, as shown in figure b.

But of course motion doesn’t really occur in a series of discrete
hops like in chess or checkers. Figure c shows a way of conceptual-
izing the smooth variation of the x and y coordinates. The ball’s
shadow on the wall moves along a line, and we describe its position
with a single coordinate, y, its height above the floor. The wall
shadow has a constant acceleration of -9.8 m/s2. A shadow on the
floor, made by a second light source, also moves along a line, and we
describe its motion with an x coordinate, measured from the wall.
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b / This object experiences a force that pulls it down toward the
bottom of the page. In each equal time interval, it moves three units to
the right. At the same time, its vertical motion is making a simple pattern
of +1, 0, −1, −2, −3, −4, . . . units. Its motion can be described by an x
coordinate that has zero acceleration and a y coordinate with constant
acceleration. The arrows labeled x and y serve to explain that we are
defining increasing x to the right and increasing y as upward.

The velocity of the floor shadow is referred to as the x component
of the velocity, written vx. Similarly we can notate the acceleration
of the floor shadow as ax. Since vx is constant, ax is zero.

Similarly, the velocity of the wall shadow is called vy, its accel-
eration ay. This example has ay = −9.8 m/s2.

Because the earth’s gravitational force on the ball is acting along
the y axis, we say that the force has a negative y component, Fy,
but Fx = Fz = 0.

The general idea is that we imagine two observers, each of whom
perceives the entire universe as if it was flattened down to a single
line. The y-observer, for instance, perceives y, vy, and ay, and will
infer that there is a force, Fy, acting downward on the ball. That
is, a y component means the aspect of a physical phenomenon, such
as velocity, acceleration, or force, that is observable to someone who
can only see motion along the y axis.

All of this can easily be generalized to three dimensions. In the
example above, there could be a z-observer who only sees motion
toward or away from the back wall of the room.
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d / Example 1.

A car going over a cliff example 1
. The police find a car at a distance w = 20 m from the base of a
cliff of height h = 100 m. How fast was the car going when it went
over the edge? Solve the problem symbolically first, then plug in
the numbers.

. Let’s choose y pointing up and x pointing away from the cliff.
The car’s vertical motion was independent of its horizontal mo-
tion, so we know it had a constant vertical acceleration of a =
−g = −9.8 m/s2. The time it spent in the air is therefore related
to the vertical distance it fell by the constant-acceleration equa-
tion

∆y =
1
2

ay∆t2,

or

−h =
1
2

(−g)∆t2.

Solving for ∆t gives

∆t =

√
2h
g

.

Since the vertical force had no effect on the car’s horizontal mo-
tion, it had ax = 0, i.e., constant horizontal velocity. We can apply
the constant-velocity equation

vx =
∆x
∆t

,

i.e.,

vx =
w
∆t

.

We now substitute for ∆t to find

vx = w/

√
2h
g

,

which simplifies to

vx = w
√

g
2h

.

Plugging in numbers, we find that the car’s speed when it went
over the edge was 4 m/s, or about 10 mi/hr.

Projectiles move along parabolas.

What type of mathematical curve does a projectile follow through
space? To find out, we must relate x to y, eliminating t. The rea-
soning is very similar to that used in the example above. Arbitrarily

196 Chapter 6 Newton’s Laws in Three Dimensions



e / A parabola can be defined as
the shape made by cutting a cone
parallel to its side. A parabola is
also the graph of an equation of
the form y ∝ x2.

f / Each water droplet follows
a parabola. The faster drops’
parabolas are bigger.

g / Example 2.

choosing x = y = t = 0 to be at the top of the arc, we conveniently
have x = ∆x, y = ∆y, and t = ∆t, so

y =
1

2
ayt

2 (ay < 0)

x = vxt

We solve the second equation for t = x/vx and eliminate t in the
first equation:

y =
1

2
ay

(
x

vx

)2

.

Since everything in this equation is a constant except for x and y,
we conclude that y is proportional to the square of x. As you may
or may not recall from a math class, y ∝ x2 describes a parabola.

. Solved problem: A cannon page 200, problem 5

Discussion question

A At the beginning of this section I represented the motion of a projec-
tile on graph paper, breaking its motion into equal time intervals. Suppose
instead that there is no force on the object at all. It obeys Newton’s first law
and continues without changing its state of motion. What would the corre-
sponding graph-paper diagram look like? If the time interval represented
by each arrow was 1 second, how would you relate the graph-paper dia-
gram to the velocity components vx and vy ?

B Make up several different coordinate systems oriented in different
ways, and describe the ax and ay of a falling object in each one.

6.3 Newton’s laws in three dimensions
It is now fairly straightforward to extend Newton’s laws to three
dimensions:

Newton’s first law
If all three components of the total force on an object are zero,
then it will continue in the same state of motion.

Newton’s second law
The components of an object’s acceleration are predicted by
the equations

ax = Fx,total/m,

ay = Fy,total/m, and

az = Fz,total/m.

Newton’s third law
If two objects A and B interact via forces, then the compo-
nents of their forces on each other are equal and opposite:

FA on B,x = −FB on A,x,

FA on B,y = −FB on A,y, and

FA on B,z = −FB on A,z.
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Forces in perpendicular directions on the same objectexample 2
. An object is initially at rest. Two constant forces begin acting on
it, and continue acting on it for a while. As suggested by the two
arrows, the forces are perpendicular, and the rightward force is
stronger. What happens?

. Aristotle believed, and many students still do, that only one force
can “give orders” to an object at one time. They therefore think
that the object will begin speeding up and moving in the direction
of the stronger force. In fact the object will move along a diagonal.
In the example shown in the figure, the object will respond to the
large rightward force with a large acceleration component to the
right, and the small upward force will give it a small acceleration
component upward. The stronger force does not overwhelm the
weaker force, or have any effect on the upward motion at all. The
force components simply add together:

Fx ,total = F1,x +��
�*0

F2,x

Fy ,total =
�
��>

0
F1,y + F2,y

Discussion question

A The figure shows two trajectories, made by splicing together lines
and circular arcs, which are unphysical for an object that is only being
acted on by gravity. Prove that they are impossible based on Newton’s
laws.
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Summary
Selected vocabulary
component . . . . the part of a velocity, acceleration, or force

that would be perceptible to an observer who
could only see the universe projected along a
certain one-dimensional axis

parabola . . . . . the mathematical curve whose graph has y
proportional to x2

Notation
x, y, z . . . . . . an object’s positions along the x, y, and z axes
vx, vy, vz . . . . . the x, y, and z components of an object’s ve-

locity; the rates of change of the object’s x, y,
and z coordinates

ax, ay, az . . . . . the x, y, and z components of an object’s ac-
celeration; the rates of change of vx, vy, and
vz

Summary

A force does not produce any effect on the motion of an object
in a perpendicular direction. The most important application of
this principle is that the horizontal motion of a projectile has zero
acceleration, while the vertical motion has an acceleration equal to g.
That is, an object’s horizontal and vertical motions are independent.
The arc of a projectile is a parabola.

Motion in three dimensions is measured using three coordinates,
x, y, and z. Each of these coordinates has its own corresponding
velocity and acceleration. We say that the velocity and acceleration
both have x, y, and z components

Newton’s second law is readily extended to three dimensions by
rewriting it as three equations predicting the three components of
the acceleration,

ax = Fx,total/m,

ay = Fy,total/m,

az = Fz,total/m,

and likewise for the first and third laws.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) A ball is thrown straight up with velocity v. Find an
equation for the height to which it rises.

√

(b) Generalize your equation for a ball thrown at an angle θ above
horizontal, in which case its initial velocity components are vx =
v cos θ and vy = v sin θ.

√

2 At the 2010 Salinas Lettuce Festival Parade, the Lettuce Queen
drops her bouquet while riding on a float moving toward the right.
Sketch the shape of its trajectory in her frame of reference, and
compare with the shape seen by one of her admirers standing on
the sidewalk.

3 Two daredevils, Wendy and Bill, go over Niagara Falls. Wendy
sits in an inner tube, and lets the 30 km/hr velocity of the river throw
her out horizontally over the falls. Bill paddles a kayak, adding an
extra 10 km/hr to his velocity. They go over the edge of the falls
at the same moment, side by side. Ignore air friction. Explain your
reasoning.
(a) Who hits the bottom first?
(b) What is the horizontal component of Wendy’s velocity on im-
pact?
(c) What is the horizontal component of Bill’s velocity on impact?
(d) Who is going faster on impact?

4 A baseball pitcher throws a pitch clocked at vx = 73.3 miles/hour.
He throws horizontally. By what amount, d, does the ball drop by
the time it reaches home plate, L = 60.0 feet away?
(a) First find a symbolic answer in terms of L, vx, and g.

√

(b) Plug in and find a numerical answer. Express your answer
in units of ft. (Note: 1 foot=12 inches, 1 mile=5280 feet, and 1
inch=2.54 cm)

√

Problem 4.

5 A cannon standing on a flat field fires a cannonball with a
muzzle velocity v, at an angle θ above horizontal. The cannonball
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Problem 8.

Problem 11.

thus initially has velocity components vx = v cos θ and vy = v sin θ.
(a) Show that the cannon’s range (horizontal distance to where the
cannonball falls) is given by the equation R = (2v2/g) sin θ cos θ .
(b) Interpret your equation in the cases of θ = 0 and θ = 90◦.

. Solution, p. 553

6 Assuming the result of problem 5 for the range of a projectile,
R = (2v2/g) sin θ cos θ, show that the maximum range is for θ = 45◦.∫
7 Two cars go over the same speed bump in a parking lot,
Maria’s Maserati at 25 miles per hour and Park’s Porsche at 37.
How many times greater is the vertical acceleration of the Porsche?
Hint: Remember that acceleration depends both on how much the
velocity changes and on how much time it takes to change.

√

8 You’re running off a cliff into a pond. The cliff is h = 5.0 m
above the water, but the cliff is not strictly vertical; it slopes down
to the pond at an angle of θ = 20◦ with respect to the vertical. You
want to find the minimum speed you need to jump off the cliff in
order to land in the water.
(a) Find a symbolic answer in terms of h, θ, and g.

√

(b) Check that the units of your answer to part a make sense.
(c) Check that the dependence on the variables g, h, and θ makes
sense, and check the special cases θ = 0 and θ = 90◦.
(d) Plug in numbers to find the numerical result.

√

[problem by B. Shotwell]

9 Two footballs, one white and one green, are on the ground and
kicked by two different footballers. The white ball, which is kicked
straight upward with initial speed v0, rises to height H. The green
ball is hit with twice the initial speed but reaches the same height.
(a) What is the y-component of the green ball’s initial velocity vec-
tor? Give your answer in terms of v0 alone.

√

(b) Which ball is in the air for a longer amount of time?
(c) What is the range of the green ball? Your answer should only
depend on H.

√
[problem by B. Shotwell]

10 This problem is now problem 26 on p. 238.

11 The figure shows a vertical cross-section of a cylinder. A gun
at the top shoots a bullet horizontally. What is the minimum speed
at which the bullet must be shot in order to completely clear the
cylinder? ?
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a / Vectors are used in aerial nav-
igation.

Chapter 7

Vectors

7.1 Vector notation
The idea of components freed us from the confines of one-dimensional
physics, but the component notation can be unwieldy, since every
one-dimensional equation has to be written as a set of three separate
equations in the three-dimensional case. Newton was stuck with the
component notation until the day he died, but eventually someone
sufficiently lazy and clever figured out a way of abbreviating three
equations as one.

(a)
−→
F A on B = −

−→
F B on A stands for

FA on B,x = −FB on A,x

FA on B,y = −FB on A,y

FA on B,z = −FB on A,z

(b)
−→
F total =

−→
F 1 +

−→
F 2 + . . . stands for

Ftotal,x = F1,x + F2,x + . . .
Ftotal,y = F1,y + F2,y + . . .
Ftotal,z = F1,z + F2,z + . . .

(c) −→a = ∆−→v
∆t stands for

ax = ∆vx/∆t
ay = ∆vy/∆t
az = ∆vz/∆t

Example (a) shows both ways of writing Newton’s third law. Which
would you rather write?
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The idea is that each of the algebra symbols with an arrow writ-
ten on top, called a vector, is actually an abbreviation for three
different numbers, the x, y, and z components. The three compo-
nents are referred to as the components of the vector, e.g., Fx is the

x component of the vector
−→
F . The notation with an arrow on top

is good for handwritten equations, but is unattractive in a printed
book, so books use boldface, F, to represent vectors. After this
point, I’ll use boldface for vectors throughout this book.

Quantities can be classified as vectors or scalars. In a phrase like
“a to the northeast,” it makes sense to fill in the blank with
“force” or “velocity,” which are vectors, but not with “mass” or
“time,” which are scalars. Any nonzero vector has both a direction
and an amount. The amount is called its magnitude. The notation
for the magnitude of a vector A is |A|, like the absolute value sign
used with scalars.

Often, as in example (b), we wish to use the vector notation to
represent adding up all the x components to get a total x component,
etc. The plus sign is used between two vectors to indicate this type
of component-by-component addition. Of course, vectors are really
triplets of numbers, not numbers, so this is not the same as the use
of the plus sign with individual numbers. But since we don’t want to
have to invent new words and symbols for this operation on vectors,
we use the same old plus sign, and the same old addition-related
words like “add,” “sum,” and “total.” Combining vectors this way
is called vector addition.

Similarly, the minus sign in example (a) was used to indicate
negating each of the vector’s three components individually. The
equals sign is used to mean that all three components of the vector
on the left side of an equation are the same as the corresponding
components on the right.

Example (c) shows how we abuse the division symbol in a similar
manner. When we write the vector ∆v divided by the scalar ∆t,
we mean the new vector formed by dividing each one of the velocity
components by ∆t.

It’s not hard to imagine a variety of operations that would com-
bine vectors with vectors or vectors with scalars, but only four of
them are required in order to express Newton’s laws:
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operation definition
vector + vector Add component by component to

make a new set of three numbers.
vector− vector Subtract component by component

to make a new set of three numbers.
vector · scalar Multiply each component of the vec-

tor by the scalar.
vector/scalar Divide each component of the vector

by the scalar.

As an example of an operation that is not useful for physics, there
just aren’t any useful physics applications for dividing a vector by
another vector component by component. In optional section 7.5,
we discuss in more detail the fundamental reasons why some vector
operations are useful and others useless.

We can do algebra with vectors, or with a mixture of vectors
and scalars in the same equation. Basically all the normal rules of
algebra apply, but if you’re not sure if a certain step is valid, you
should simply translate it into three component-based equations and
see if it works.

Order of addition example 1
. If we are adding two force vectors, F + G, is it valid to assume
as in ordinary algebra that F + G is the same as G + F?

. To tell if this algebra rule also applies to vectors, we simply
translate the vector notation into ordinary algebra notation. In
terms of ordinary numbers, the components of the vector F + G
would be Fx + Gx , Fy + Gy , and Fz + Gz , which are certainly the
same three numbers as Gx + Fx , Gy + Fy , and Gz + Fz . Yes, F + G
is the same as G + F.

It is useful to define a symbol r for the vector whose components
are x, y, and z, and a symbol ∆r made out of ∆x, ∆y, and ∆z.

Although this may all seem a little formidable, keep in mind that
it amounts to nothing more than a way of abbreviating equations!
Also, to keep things from getting too confusing the remainder of this
chapter focuses mainly on the ∆r vector, which is relatively easy to
visualize.

self-check A
Translate the equations vx = ∆x/∆t , vy = ∆y/∆t , and vz = ∆z/∆t for
motion with constant velocity into a single equation in vector notation.
. Answer, p. 566
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b / The x and y components
of a vector can be thought of as
the shadows it casts onto the x
and y axes.

c / Self-check B.

d / A playing card returns to
its original state when rotated by
180 degrees.

Drawing vectors as arrows

A vector in two dimensions can be easily visualized by drawing
an arrow whose length represents its magnitude and whose direction
represents its direction. The x component of a vector can then be
visualized as the length of the shadow it would cast in a beam of
light projected onto the x axis, and similarly for the y component.
Shadows with arrowheads pointing back against the direction of the
positive axis correspond to negative components.

In this type of diagram, the negative of a vector is the vector
with the same magnitude but in the opposite direction. Multiplying
a vector by a scalar is represented by lengthening the arrow by that
factor, and similarly for division.

self-check B
Given vector Q represented by an arrow in figure c, draw arrows repre-
senting the vectors 1.5Q and −Q. . Answer, p.
566

This leads to a way of defining vectors and scalars that reflects
how physicists think in general about these things:

definition of vectors and scalars
A general type of measurement (force, velocity, . . . ) is a vector if it

can be drawn as an arrow so that rotating the paper produces the
same result as rotating the actual quantity. A type of quantity that
never changes at all under rotation is a scalar.

For example, a force reverses itself under a 180-degree rotation,
but a mass doesn’t. We could have defined a vector as something
that had both a magnitude and a direction, but that would have left
out zero vectors, which don’t have a direction. A zero vector is a
legitimate vector, because it behaves the same way under rotations
as a zero-length arrow, which is simply a dot.

A remark for those who enjoy brain-teasers: not everything is
a vector or a scalar. An American football is distorted compared
to a sphere, and we can measure the orientation and amount of
that distortion quantitatively. The distortion is not a vector, since
a 180-degree rotation brings it back to its original state. Something
similar happens with playing cards, figure d. For some subatomic
particles, such as electrons, 360 degrees isn’t even enough; a 720-
degree rotation is needed to put them back the way they were!

Discussion questions

A You drive to your friend’s house. How does the magnitude of your ∆r
vector compare with the distance you’ve added to the car’s odometer?
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e / Examples 2 and 3.

7.2 Calculations with magnitude and direction
If you ask someone where Las Vegas is compared to Los Angeles,
they are unlikely to say that the ∆x is 290 km and the ∆y is 230
km, in a coordinate system where the positive x axis is east and the
y axis points north. They will probably say instead that it’s 370
km to the northeast. If they were being precise, they might give the
direction as 38◦ counterclockwise from east. In two dimensions, we
can always specify a vector’s direction like this, using a single angle.
A magnitude plus an angle suffice to specify everything about the
vector. The following two examples show how we use trigonometry
and the Pythagorean theorem to go back and forth between the x−y
and magnitude-angle descriptions of vectors.

Finding magnitude and angle from components example 2
. Given that the ∆r vector from LA to Las Vegas has ∆x = 290 km
and ∆y = 230 km, how would we find the magnitude and direction
of ∆r?

. We find the magnitude of ∆r from the Pythagorean theorem:

|∆r| =
√
∆x2 + ∆y2

= 370 km

We know all three sides of the triangle, so the angle θ can be
found using any of the inverse trig functions. For example, we
know the opposite and adjacent sides, so

θ = tan−1 ∆y
∆x

= 38◦.

Finding components from magnitude and angle example 3
. Given that the straight-line distance from Los Angeles to Las
Vegas is 370 km, and that the angle θ in the figure is 38◦, how
can the x and y components of the ∆r vector be found?

. The sine and cosine of θ relate the given information to the
information we wish to find:

cos θ =
∆x
|∆r|

sin θ =
∆y
|∆r|

Solving for the unknowns gives

∆x = |∆r| cos θ
= 290 km and

∆y = |∆r| sin θ
= 230 km.
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f / Example 4.

The following example shows the correct handling of the plus
and minus signs, which is usually the main cause of mistakes.

Negative components example 4
. San Diego is 120 km east and 150 km south of Los Angeles. An
airplane pilot is setting course from San Diego to Los Angeles. At
what angle should she set her course, measured counterclock-
wise from east, as shown in the figure?

. If we make the traditional choice of coordinate axes, with x
pointing to the right and y pointing up on the map, then her ∆x is
negative, because her final x value is less than her initial x value.
Her ∆y is positive, so we have

∆x = −120 km
∆y = 150 km.

If we work by analogy with example 2, we get

θ = tan−1 ∆y
∆x

= tan−1(−1.25)
= −51◦.

According to the usual way of defining angles in trigonometry,
a negative result means an angle that lies clockwise from the x
axis, which would have her heading for the Baja California. What
went wrong? The answer is that when you ask your calculator to
take the arctangent of a number, there are always two valid pos-
sibilities differing by 180◦. That is, there are two possible angles
whose tangents equal -1.25:

tan 129◦ = −1.25
tan−51◦ = −1.25

You calculator doesn’t know which is the correct one, so it just
picks one. In this case, the one it picked was the wrong one, and
it was up to you to add 180◦to it to find the right answer.
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g / Example 5.

A shortcut example 5
. A split second after nine o’clock, the hour hand on a clock dial
has moved clockwise past the nine-o’clock position by some im-
perceptibly small angle φ. Let positive x be to the right and posi-
tive y up. If the hand, with length `, is represented by a ∆r vector
going from the dial’s center to the tip of the hand, find this vector’s
∆x .

. The following shortcut is the easiest way to work out examples
like these, in which a vector’s direction is known relative to one
of the axes. We can tell that ∆r will have a large, negative x
component and a small, positive y . Since ∆x < 0, there are
really only two logical possibilities: either ∆x = −` cosφ, or ∆x =
−` sinφ. Because φ is small, cosφ is large and sinφ is small.
We conclude that ∆x = −` cosφ.

A typical application of this technique to force vectors is given in
example 6 on p. 226.

Discussion question

A In example 4, we dealt with components that were negative. Does it
make sense to classify vectors as positive and negative?
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h / Example 6.

i / Vectors can be added graph-
ically by placing them tip to tail,
and then drawing a vector from
the tail of the first vector to the tip
of the second vector.

7.3 Techniques for adding vectors
Vector addition is one of the three essential mathematical skills,
summarized on pp.545-546, that you need for success in this course.

Addition of vectors given their components

The easiest type of vector addition is when you are in possession
of the components, and want to find the components of their sum.

Adding components example 6
. Given the ∆x and ∆y values from the previous examples, find
the ∆x and ∆y from San Diego to Las Vegas.

.

∆xtotal = ∆x1 + ∆x2

= −120 km + 290 km
= 170 km

∆ytotal = ∆y1 + ∆y2

= 150 km + 230 km
= 380

Note how the signs of the x components take care of the west-
ward and eastward motions, which partially cancel.

Addition of vectors given their magnitudes and directions

In this case, you must first translate the magnitudes and di-
rections into components, and the add the components. In our San
Diego-Los Angeles-Las Vegas example, we can simply string together
the preceding examples; this is done on p. 546.

Graphical addition of vectors

Often the easiest way to add vectors is by making a scale drawing
on a piece of paper. This is known as graphical addition, as opposed
to the analytic techniques discussed previously. (It has nothing to
do with x − y graphs or graph paper. “Graphical” here simply
means drawing. It comes from the Greek verb “grapho,” to write,
like related English words including “graphic.”)
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LA to Vegas, graphically example 7
. Given the magnitudes and angles of the ∆r vectors from San
Diego to Los Angeles and from Los Angeles to Las Vegas, find
the magnitude and angle of the ∆r vector from San Diego to Las
Vegas.

. Using a protractor and a ruler, we make a careful scale draw-
ing, as shown in figure j. The protractor can be conveniently
aligned with the blue rules on the notebook paper. A scale of
1 mm→ 2 km was chosen for this solution because it was as big
as possible (for accuracy) without being so big that the drawing
wouldn’t fit on the page. With a ruler, we measure the distance
from San Diego to Las Vegas to be 206 mm, which corresponds
to 412 km. With a protractor, we measure the angle θ to be 65◦.

j / Example 7.

Even when we don’t intend to do an actual graphical calculation
with a ruler and protractor, it can be convenient to diagram the
addition of vectors in this way. With ∆r vectors, it intuitively makes
sense to lay the vectors tip-to-tail and draw the sum vector from the
tail of the first vector to the tip of the second vector. We can do
the same when adding other vectors such as force vectors.

self-check C
How would you subtract vectors graphically? . Answer, p. 566
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Discussion questions

A If you’re doing graphical addition of vectors, does it matter which
vector you start with and which vector you start from the other vector’s
tip?

B If you add a vector with magnitude 1 to a vector of magnitude 2,
what magnitudes are possible for the vector sum?

C Which of these examples of vector addition are correct, and which
are incorrect?

7.4 ? Unit vector notation
When we want to specify a vector by its components, it can be cum-
bersome to have to write the algebra symbol for each component:

∆x = 290 km, ∆y = 230 km

A more compact notation is to write

∆r = (290 km)x̂ + (230 km)ŷ,

where the vectors x̂, ŷ, and ẑ, called the unit vectors, are defined
as the vectors that have magnitude equal to 1 and directions lying
along the x, y, and z axes. In speech, they are referred to as “x-hat”
and so on.

A slightly different, and harder to remember, version of this
notation is unfortunately more prevalent. In this version, the unit
vectors are called î, ĵ, and k̂:

∆r = (290 km)̂i + (230 km)̂j.
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k / Component-by-component
multiplication of the vectors in 1
would produce different vectors
in coordinate systems 2 and 3.

7.5 ? Rotational invariance
Let’s take a closer look at why certain vector operations are use-
ful and others are not. Consider the operation of multiplying two
vectors component by component to produce a third vector:

Rx = PxQx

Ry = PyQy

Rz = PzQz

As a simple example, we choose vectors P and Q to have length
1, and make them perpendicular to each other, as shown in figure
k/1. If we compute the result of our new vector operation using the
coordinate system in k/2, we find:

Rx = 0

Ry = 0

Rz = 0.

The x component is zero because Px = 0, the y component is zero
because Qy = 0, and the z component is of course zero because
both vectors are in the x − y plane. However, if we carry out the
same operations in coordinate system k/3, rotated 45 degrees with
respect to the previous one, we find

Rx = 1/2

Ry = −1/2

Rz = 0.

The operation’s result depends on what coordinate system we use,
and since the two versions of R have different lengths (one being zero
and the other nonzero), they don’t just represent the same answer
expressed in two different coordinate systems. Such an operation
will never be useful in physics, because experiments show physics
works the same regardless of which way we orient the laboratory
building! The useful vector operations, such as addition and scalar
multiplication, are rotationally invariant, i.e., come out the same
regardless of the orientation of the coordinate system.

Calibrating an electronic compass example 8
Some smart phones and GPS units contain electronic compasses
that can sense the direction of the earth’s magnetic field vector,
notated B. Because all vectors work according to the same rules,
you don’t need to know anything special about magnetism in or-
der to understand this example. Unlike a traditional compass that
uses a magnetized needle on a bearing, an electronic compass
has no moving parts. It contains two sensors oriented perpendic-
ular to one another, and each sensor is only sensitive to the com-
ponent of the earth’s field that lies along its own axis. Because a
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choice of coordinates is arbitrary, we can take one of these sen-
sors as defining the x axis and the other the y . Given the two
components Bx and By , the device’s computer chip can compute
the angle of magnetic north relative to its sensors, tan−1(By/Bx ).

All compasses are vulnerable to errors because of nearby mag-
netic materials, and in particular it may happen that some part
of the compass’s own housing becomes magnetized. In an elec-
tronic compass, rotational invariance provides a convenient way
of calibrating away such effects by having the user rotate the de-
vice in a horizontal circle.

Suppose that when the compass is oriented in a certain way, it
measures Bx = 1.00 and By = 0.00 (in certain units). We then
expect that when it is rotated 90 degrees clockwise, the sensors
will detect Bx = 0.00 and By = 1.00.

But imagine instead that we get Bx = 0.20 and By = 0.80. This
would violate rotational invariance, since rotating the coordinate
system is supposed to give a different description of the same
vector. The magnitude appears to have changed from 1.00 to√

0.202 + 0.802 = 0.82, and a vector can’t change its magnitude
just because you rotate it. The compass’s computer chip figures
out that some effect, possibly a slight magnetization of its hous-
ing, must be adding an erroneous 0.2 units to all the Bx readings,
because subtracting this amount from all the Bx values gives vec-
tors that have the same magnitude, satisfying rotational invari-
ance.
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Summary
Selected vocabulary
vector . . . . . . . a quantity that has both an amount (magni-

tude) and a direction in space
magnitude . . . . the “amount” associated with a vector
scalar . . . . . . . a quantity that has no direction in space, only

an amount

Notation
A . . . . . . . . . a vector with components Ax, Ay, and Az−→
A . . . . . . . . . handwritten notation for a vector
|A| . . . . . . . . the magnitude of vector A
r . . . . . . . . . . the vector whose components are x, y, and z
∆r . . . . . . . . . the vector whose components are ∆x, ∆y, and

∆z
x̂, ŷ, ẑ . . . . . . (optional topic) unit vectors; the vectors with

magnitude 1 lying along the x, y, and z axes

î, ĵ, k̂ . . . . . . . a harder to remember notation for the unit
vectors

Other terminology and notation
displacement vec-
tor . . . . . . . . .

a name for the symbol ∆r

speed . . . . . . . the magnitude of the velocity vector, i.e., the
velocity stripped of any information about its
direction

Summary

A vector is a quantity that has both a magnitude (amount) and
a direction in space, as opposed to a scalar, which has no direction.
The vector notation amounts simply to an abbreviation for writing
the vector’s three components.

In two dimensions, a vector can be represented either by its two
components or by its magnitude and direction. The two ways of
describing a vector can be related by trigonometry.

The two main operations on vectors are addition of a vector to
a vector, and multiplication of a vector by a scalar.

Vector addition means adding the components of two vectors
to form the components of a new vector. In graphical terms, this
corresponds to drawing the vectors as two arrows laid tip-to-tail and
drawing the sum vector from the tail of the first vector to the tip
of the second one. Vector subtraction is performed by negating the
vector to be subtracted and then adding.

Multiplying a vector by a scalar means multiplying each of its
components by the scalar to create a new vector. Division by a
scalar is defined similarly.
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Problem 1.

Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure shows vectors A and B. Graphically calculate
the following, as in figure i on p. 210, self-check C on p. 211, and
self-check B on p. 206.

A + B, A−B, B−A, −2B, A− 2B

No numbers are involved.

2 Phnom Penh is 470 km east and 250 km south of Bangkok.
Hanoi is 60 km east and 1030 km north of Phnom Penh.
(a) Choose a coordinate system, and translate these data into ∆x
and ∆y values with the proper plus and minus signs.
(b) Find the components of the ∆r vector pointing from Bangkok
to Hanoi.

√

3 If you walk 35 km at an angle 25◦ counterclockwise from east,
and then 22 km at 230◦ counterclockwise from east, find the distance
and direction from your starting point to your destination.

√

4 A machinist is drilling holes in a piece of aluminum according
to the plan shown in the figure. She starts with the top hole, then
moves to the one on the left, and then to the one on the right. Since
this is a high-precision job, she finishes by moving in the direction
and at the angle that should take her back to the top hole, and
checks that she ends up in the same place. What are the distance
and direction from the right-hand hole to the top one?

√
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5 Suppose someone proposes a new operation in which a vector
A and a scalar B are added together to make a new vector C like
this:

Cx = Ax +B

Cy = Ay +B

Cz = Az +B

Prove that this operation won’t be useful in physics, because it’s
not rotationally invariant.
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Chapter 8

Vectors and Motion

In 1872, capitalist and former California governor Leland Stanford
asked photographer Eadweard Muybridge if he would work for him
on a project to settle a $25,000 bet (a princely sum at that time).
Stanford’s friends were convinced that a trotting horse always had
at least one foot on the ground, but Stanford claimed that there was
a moment during each cycle of the motion when all four feet were
in the air. The human eye was simply not fast enough to settle the
question. In 1878, Muybridge finally succeeded in producing what
amounted to a motion picture of the horse, showing conclusively
that all four feet did leave the ground at one point. (Muybridge was
a colorful figure in San Francisco history, and his acquittal for the
murder of his wife’s lover was considered the trial of the century in
California.)

The losers of the bet had probably been influenced by Aris-
totelian reasoning, for instance the expectation that a leaping horse
would lose horizontal velocity while in the air with no force to push
it forward, so that it would be more efficient for the horse to run
without leaping. But even for students who have converted whole-
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a / The racing greyhound’s
velocity vector is in the direction
of its motion, i.e., tangent to its
curved path.

b / Example 1.

heartedly to Newtonianism, the relationship between force and ac-
celeration leads to some conceptual difficulties, the main one being
a problem with the true but seemingly absurd statement that an
object can have an acceleration vector whose direction is not the
same as the direction of motion. The horse, for instance, has nearly
constant horizontal velocity, so its ax is zero. But as anyone can tell
you who has ridden a galloping horse, the horse accelerates up and
down. The horse’s acceleration vector therefore changes back and
forth between the up and down directions, but is never in the same
direction as the horse’s motion. In this chapter, we will examine
more carefully the properties of the velocity, acceleration, and force
vectors. No new principles are introduced, but an attempt is made
to tie things together and show examples of the power of the vector
formulation of Newton’s laws.

8.1 The velocity vector
For motion with constant velocity, the velocity vector is

v = ∆r/∆t. [only for constant velocity]

The ∆r vector points in the direction of the motion, and dividing
it by the scalar ∆t only changes its length, not its direction, so the
velocity vector points in the same direction as the motion. When the
velocity is not constant, i.e., when the x− t, y− t, and z− t graphs
are not all linear, we use the slope-of-the-tangent-line approach to
define the components vx, vy, and vz, from which we assemble the
velocity vector. Even when the velocity vector is not constant, it
still points along the direction of motion.

Vector addition is the correct way to generalize the one-dimensional
concept of adding velocities in relative motion, as shown in the fol-
lowing example:

Velocity vectors in relative motion example 1
. You wish to cross a river and arrive at a dock that is directly
across from you, but the river’s current will tend to carry you
downstream. To compensate, you must steer the boat at an an-
gle. Find the angle θ, given the magnitude, |vWL|, of the water’s
velocity relative to the land, and the maximum speed, |vBW |, of
which the boat is capable relative to the water.

. The boat’s velocity relative to the land equals the vector sum of
its velocity with respect to the water and the water’s velocity with
respect to the land,

vBL = vBW + vWL.

If the boat is to travel straight across the river, i.e., along the y
axis, then we need to have vBL,x = 0. This x component equals
the sum of the x components of the other two vectors,

vBL,x = vBW ,x + vWL,x ,
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c / A change in the magni-
tude of the velocity vector implies
an acceleration.

d / A change in the direction
of the velocity vector also pro-
duces a nonzero ∆v vector, and
thus a nonzero acceleration
vector, ∆v/∆t .

or

0 = −|vBW | sin θ + |vWL|.

Solving for θ, we find sin θ = |vWL|/|vBW |, so

θ = sin−1 |vWL|
|vBW |

.

. Solved problem: Annie Oakley page 234, problem 8

Discussion questions

A Is it possible for an airplane to maintain a constant velocity vector
but not a constant |v|? How about the opposite – a constant |v| but not a
constant velocity vector? Explain.

B New York and Rome are at about the same latitude, so the earth’s
rotation carries them both around nearly the same circle. Do the two cities
have the same velocity vector (relative to the center of the earth)? If not,
is there any way for two cities to have the same velocity vector?

8.2 The acceleration vector
When the acceleration is constant, we can define the acceleration
vector as

a = ∆v/∆t, [only for constant acceleration]

which can be written in terms of initial and final velocities as

a = (vf − vi)/∆t. [only for constant acceleration]

Otherwise, we can use the type of graphical definition described in
section 8.1 for the velocity vector.

Now there are two ways in which we could have a nonzero accel-
eration. Either the magnitude or the direction of the velocity vector
could change. This can be visualized with arrow diagrams as shown
in figures c and d. Both the magnitude and direction can change
simultaneously, as when a car accelerates while turning. Only when
the magnitude of the velocity changes while its direction stays con-
stant do we have a ∆v vector and an acceleration vector along the
same line as the motion.

self-check A
(1) In figure c, is the object speeding up, or slowing down? (2) What
would the diagram look like if vi was the same as vf ? (3) Describe how
the ∆v vector is different depending on whether an object is speeding
up or slowing down. . Answer, p. 566
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The acceleration vector points in the direction that an accelerom-
eter would point, as in figure e.

e / The car has just swerved to
the right. The air freshener hang-
ing from the rear-view mirror acts
as an accelerometer, showing
that the acceleration vector is to
the right.

self-check B
In projectile motion, what direction does the acceleration vector have?
. Answer, p. 566

f / Example 2.

Rappelling example 2
In figure f, the rappeller’s velocity has long periods of gradual
change interspersed with short periods of rapid change. These
correspond to periods of small acceleration and force, and peri-
ods of large acceleration and force.

222 Chapter 8 Vectors and Motion



g / Example 3.

The galloping horse example 3
Figure g on page 223 shows outlines traced from the first, third,
fifth, seventh, and ninth frames in Muybridge’s series of pho-
tographs of the galloping horse. The estimated location of the
horse’s center of mass is shown with a circle, which bobs above
and below the horizontal dashed line.

If we don’t care about calculating velocities and accelerations in
any particular system of units, then we can pretend that the time
between frames is one unit. The horse’s velocity vector as it
moves from one point to the next can then be found simply by
drawing an arrow to connect one position of the center of mass to
the next. This produces a series of velocity vectors which alter-
nate between pointing above and below horizontal.

The ∆v vector is the vector which we would have to add onto one
velocity vector in order to get the next velocity vector in the series.
The ∆v vector alternates between pointing down (around the time
when the horse is in the air, B) and up (around the time when the
horse has two feet on the ground, D).
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h / Example 4.

Discussion questions

A When a car accelerates, why does a bob hanging from the rearview
mirror swing toward the back of the car? Is it because a force throws it
backward? If so, what force? Similarly, describe what happens in the
other cases described above.

B Superman is guiding a crippled spaceship into port. The ship’s
engines are not working. If Superman suddenly changes the direction of
his force on the ship, does the ship’s velocity vector change suddenly? Its
acceleration vector? Its direction of motion?

8.3 The force vector and simple machines
Force is relatively easy to intuit as a vector. The force vector points
in the direction in which it is trying to accelerate the object it is
acting on.

Since force vectors are so much easier to visualize than accel-
eration vectors, it is often helpful to first find the direction of the
(total) force vector acting on an object, and then use that to find
the direction of the acceleration vector. Newton’s second law tells
us that the two must be in the same direction.

A component of a force vector example 4
Figure h, redrawn from a classic 1920 textbook, shows a boy
pulling another child on a sled. His force has both a horizontal
component and a vertical one, but only the horizontal one accel-
erates the sled. (The vertical component just partially cancels the
force of gravity, causing a decrease in the normal force between
the runners and the snow.) There are two triangles in the figure.
One triangle’s hypotenuse is the rope, and the other’s is the mag-
nitude of the force. These triangles are similar, so their internal
angles are all the same, but they are not the same triangle. One
is a distance triangle, with sides measured in meters, the other
a force triangle, with sides in newtons. In both cases, the hori-
zontal leg is 93% as long as the hypotenuse. It does not make
sense, however, to compare the sizes of the triangles — the force
triangle is not smaller in any meaningful sense.
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i / The applied force FA pushes
the block up the frictionless ramp.

j / If the block is to move at
constant velocity, Newton’s first
law says that the three force
vectors acting on it must add
up to zero. To perform vector
addition, we put the vectors tip
to tail, and in this case we are
adding three vectors, so each
one’s tail goes against the tip of
the previous one. Since they are
supposed to add up to zero, the
third vector’s tip must come back
to touch the tail of the first vector.
They form a triangle, and since
the applied force is perpendicular
to the normal force, it is a right
triangle.

Pushing a block up a ramp example 5
. Figure i shows a block being pushed up a frictionless ramp at
constant speed by an externally applied force FA. How much
force is required, in terms of the block’s mass, m, and the angle
of the ramp, θ?

. We analyze the forces on the block and introduce notation for
the other forces besides FA:

force acting on block 3rd-law partner
ramp’s normal force on block, block’s normal force on ramp,
FN ,
external object’s force on
block (type irrelevant), FA

block’s force on external ob-
ject (type irrelevant),

planet earth’s gravitational
force on block, FW ↓

block’s gravitational force on
earth, ↑

Because the block is being pushed up at constant speed, it has
zero acceleration, and the total force on it must be zero. From
figure j, we find

|FA| = |FW | sin θ
= mg sin θ.

Since the sine is always less than one, the applied force is always
less than mg, i.e., pushing the block up the ramp is easier than
lifting it straight up. This is presumably the principle on which the
pyramids were constructed: the ancient Egyptians would have
had a hard time applying the forces of enough slaves to equal the
full weight of the huge blocks of stone.

Essentially the same analysis applies to several other simple ma-
chines, such as the wedge and the screw.
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l / Example 7.

k / Example 6 and problem 18 on
p. 237.

A layback example 6
The figure shows a rock climber using a technique called a lay-
back. He can make the normal forces FN1 and FN2 large, which
has the side-effect of increasing the frictional forces FF1 and FF2,
so that he doesn’t slip down due to the gravitational (weight) force
FW . The purpose of the problem is not to analyze all of this in de-
tail, but simply to practice finding the components of the forces
based on their magnitudes. To keep the notation simple, let’s
write FN1 for |FN1|, etc. The crack overhangs by a small, positive
angle θ ≈ 9◦.

In this example, we determine the x component of FN1. The other
nine components are left as an exercise to the reader (problem
18, p. 237).

The easiest method is the one demonstrated in example 5 on
p. 209. Casting vector FN1’s shadow on the ground, we can tell
that it would point to the left, so its x component is negative. The
only two possibilities for its x component are therefore −FN1 cos θ
or −FN1 sin θ. We expect this force to have a large x component
and a much smaller y . Since θ is small, cos θ ≈ 1, while sin θ is
small. Therefore the x component must be −FN1 cos θ.

Pushing a broom example 7
. Figure l shows a man pushing a broom at an angle θ relative to
the horizontal. The mass m of the broom is concentrated at the
brush. If the magnitude of the broom’s acceleration is a, find the
force FH that the man must make on the handle.

. First we analyze all the forces on the brush.
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force acting on brush 3rd-law partner
handle’s normal force brush’s normal force
on brush, FH , on handle,
earth’s gravitational force brush’s gravitational force
on brush, mg, ↓ on earth, ↑
floor’s normal force brush’s normal force
on brush, FN , ↑ on floor, ↓
floor’s kinetic friction force brush’s kinetic friction force
on brush, Fk , ← on floor, →

Newton’s second law is:

a =
FH + mg + FN + Fk

m
,

where the addition is vector addition. If we actually want to carry
out the vector addition of the forces, we have to do either graph-
ical addition (as in example 5) or analytic addition. Let’s do an-
alytic addition, which means finding all the components of the
forces, adding the x ’s, and adding the y ’s.

Most of the forces have components that are trivial to express in
terms of their magnitudes, the exception being FH , whose com-
ponents we can determine using the technique demonstrated in
example 5 on p. 209 and example 6 on p. 226. Using the coordi-
nate system shown in the figure, the results are:

FHx = FH cos θ FHy = −FH sin θ
mgx = 0 mgy = −mg
FNx = 0 FNy = FN
Fkx = −Fk Fky = 0

Note that we don’t yet know the magnitudes FH , FN , and Fk .
That’s all right. First we need to set up Newton’s laws, and then
we can worry about solving the equations.

Newton’s second law in the x direction gives:

[1] a =
FH cos θ− Fk

m

The acceleration in the vertical direction is zero, so Newton’s sec-
ond law in the y direction tells us that

[2] 0 = −FH sin θ−mg + FN .

Finally, we have the relationship between kinetic friction and the
normal force,

[3] Fk = µkFN .

Equations [1]-[3] are three equations, which we can use to de-
termine the three unknowns, FH , FN , and Fk . Straightforward
algebra gives

FH = m
(

a + µkg
cos θ− µk sin θ

)
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Discussion question A.

Discussion question B.

. Solved problem: A cargo plane page 234, problem 9

. Solved problem: The angle of repose page 235, problem 11

. Solved problem: A wagon page 234, problem 10

Discussion questions

A The figure shows a block being pressed diagonally upward against a
wall, causing it to slide up the wall. Analyze the forces involved, including
their directions.

B The figure shows a roller coaster car rolling down and then up under
the influence of gravity. Sketch the car’s velocity vectors and acceleration
vectors. Pick an interesting point in the motion and sketch a set of force
vectors acting on the car whose vector sum could have resulted in the
right acceleration vector.

8.4
∫

Calculus with vectors
Using the unit vector notation introduced in section 7.4, the defini-
tions of the velocity and acceleration components given in chapter
6 can be translated into calculus notation as

v =
dx

dt
x̂ +

dy

dt
ŷ +

dz

dt
ẑ

and

a =
dvx
dt

x̂ +
dvy
dt

ŷ +
dvz
dt

ẑ.

To make the notation less cumbersome, we generalize the concept
of the derivative to include derivatives of vectors, so that we can
abbreviate the above equations as

v =
dr

dt

and

a =
dv

dt
.

In words, to take the derivative of a vector, you take the derivatives
of its components and make a new vector out of those. This defini-
tion means that the derivative of a vector function has the familiar
properties

d(cf)

dt
= c

df

dt
[c is a constant]

and

d(f + g)

dt
=

df

dt
+

dg

dt
.

The integral of a vector is likewise defined as integrating component
by component.
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The second derivative of a vector example 8
. Two objects have positions as functions of time given by the
equations

r1 = 3t2x̂ + t ŷ

and

r2 = 3t4x̂ + t ŷ.

Find both objects’ accelerations using calculus. Could either an-
swer have been found without calculus?

. Taking the first derivative of each component, we find

v1 = 6t x̂ + ŷ

v2 = 12t3x̂ + ŷ,

and taking the derivatives again gives acceleration,

a1 = 6x̂

a2 = 36t2x̂.

The first object’s acceleration could have been found without cal-
culus, simply by comparing the x and y coordinates with the
constant-acceleration equation ∆x = vo∆t + 1

2a∆t2. The second
equation, however, isn’t just a second-order polynomial in t , so
the acceleration isn’t constant, and we really did need calculus to
find the corresponding acceleration.

The integral of a vector example 9
. Starting from rest, a flying saucer of mass m is observed to
vary its propulsion with mathematical precision according to the
equation

F = bt42x̂ + ct137ŷ.

(The aliens inform us that the numbers 42 and 137 have a special
religious significance for them.) Find the saucer’s velocity as a
function of time.

. From the given force, we can easily find the acceleration

a =
F
m

=
b
m

t42x̂ +
c
m

t137ŷ.

The velocity vector v is the integral with respect to time of the
acceleration,

v =
∫

a dt

=
∫ (

b
m

t42x̂ +
c
m

t137ŷ
)

dt ,
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and integrating component by component gives

=
(∫

b
m

t42 dt
)

x̂ +
(∫

c
m

t137 dt
)

ŷ

=
b

43m
t43x̂ +

c
138m

t138ŷ,

where we have omitted the constants of integration, since the
saucer was starting from rest.

A fire-extinguisher stunt on ice example 10
. Prof. Puerile smuggles a fire extinguisher into a skating rink.
Climbing out onto the ice without any skates on, he sits down and
pushes off from the wall with his feet, acquiring an initial velocity
voŷ. At t = 0, he then discharges the fire extinguisher at a 45-
degree angle so that it applies a force to him that is backward
and to the left, i.e., along the negative y axis and the positive x
axis. The fire extinguisher’s force is strong at first, but then dies
down according to the equation |F| = b − ct , where b and c are
constants. Find the professor’s velocity as a function of time.

. Measured counterclockwise from the x axis, the angle of the
force vector becomes 315◦. Breaking the force down into x and
y components, we have

Fx = |F| cos 315◦

= (b − ct)
Fy = |F| sin 315◦

= (−b + ct).

In unit vector notation, this is

F = (b − ct)x̂ + (−b + ct)ŷ.

Newton’s second law gives

a = F/m

=
b − ct√

2m
x̂ +
−b + ct√

2m
ŷ.

To find the velocity vector as a function of time, we need to inte-
grate the acceleration vector with respect to time,

v =
∫

a dt

=
∫ (

b − ct√
2m

x̂ +
−b + ct√

2m
ŷ
)

dt

=
1√
2m

∫ [
(b − ct) x̂ + (−b + ct) ŷ

]
dt
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A vector function can be integrated component by component, so
this can be broken down into two integrals,

v =
x̂√
2m

∫
(b − ct) dt +

ŷ√
2m

∫
(−b + ct) dt

=

(
bt − 1

2ct2
√

2m
+ constant #1

)
x̂ +

(
−bt + 1

2ct2
√

2m
+ constant #2

)
ŷ

Here the physical significance of the two constants of integration
is that they give the initial velocity. Constant #1 is therefore zero,
and constant #2 must equal vo. The final result is

v =

(
bt − 1

2ct2
√

2m

)
x̂ +

(
−bt + 1

2ct2
√

2m
+ vo

)
ŷ.
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Summary
The velocity vector points in the direction of the object’s motion.
Relative motion can be described by vector addition of velocities.

The acceleration vector need not point in the same direction as
the object’s motion. We use the word “acceleration” to describe any
change in an object’s velocity vector, which can be either a change
in its magnitude or a change in its direction.

An important application of the vector addition of forces is the
use of Newton’s first law to analyze mechanical systems.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

Problem 1.

1 As shown in the diagram, a dinosaur fossil is slowly moving
down the slope of a glacier under the influence of wind, rain and
gravity. At the same time, the glacier is moving relative to the
continent underneath. The dashed lines represent the directions but
not the magnitudes of the velocities. Pick a scale, and use graphical
addition of vectors to find the magnitude and the direction of the
fossil’s velocity relative to the continent. You will need a ruler and
protractor.

√

2 Is it possible for a helicopter to have an acceleration due east
and a velocity due west? If so, what would be going on? If not, why
not?

3 A bird is initially flying horizontally east at 21.1 m/s, but one
second later it has changed direction so that it is flying horizontally
and 7◦ north of east, at the same speed. What are the magnitude
and direction of its acceleration vector during that one second time
interval? (Assume its acceleration was roughly constant.)

√

Problem 4.

4 A person of mass M stands in the middle of a tightrope,
which is fixed at the ends to two buildings separated by a horizontal
distance L. The rope sags in the middle, stretching and lengthening
the rope slightly.
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Problem 5.

Problem 9.

Problem 10.

(a) If the tightrope walker wants the rope to sag vertically by no
more than a height h, find the minimum tension, T , that the rope
must be able to withstand without breaking, in terms of h, g, M ,
and L.

√

(b) Based on your equation, explain why it is not possible to get
h = 0, and give a physical interpretation.

5 Your hand presses a block of mass m against a wall with a
force FH acting at an angle θ, as shown in the figure. Find the
minimum and maximum possible values of |FH | that can keep the
block stationary, in terms of m, g, θ, and µs, the coefficient of static
friction between the block and the wall. Check both your answers
in the case of θ = 90◦, and interpret the case where the maximum
force is infinite.

√
?

6 A skier of mass m is coasting down a slope inclined at an angle
θ compared to horizontal. Assume for simplicity that the treatment
of kinetic friction given in chapter 5 is appropriate here, although a
soft and wet surface actually behaves a little differently. The coeffi-
cient of kinetic friction acting between the skis and the snow is µk,
and in addition the skier experiences an air friction force of magni-
tude bv2, where b is a constant.
(a) Find the maximum speed that the skier will attain, in terms of
the variables m, g, θ, µk, and b.

√

(b) For angles below a certain minimum angle θmin, the equation
gives a result that is not mathematically meaningful. Find an equa-
tion for θmin, and give a physical explanation of what is happening
for θ < θmin.

√

7 A gun is aimed horizontally to the west. The gun is fired, and
the bullet leaves the muzzle at t = 0. The bullet’s position vector
as a function of time is r = bx̂ + ctŷ + dt2ẑ, where b, c, and d are
positive constants.
(a) What units would b, c, and d need to have for the equation to
make sense?
(b) Find the bullet’s velocity and acceleration as functions of time.
(c) Give physical interpretations of b, c, d, x̂, ŷ, and ẑ.

∫
8 Annie Oakley, riding north on horseback at 30 mi/hr, shoots
her rifle, aiming horizontally and to the northeast. The muzzle speed
of the rifle is 140 mi/hr. When the bullet hits a defenseless fuzzy
animal, what is its speed of impact? Neglect air resistance, and
ignore the vertical motion of the bullet. . Solution, p. 554

9 A cargo plane has taken off from a tiny airstrip in the Andes,
and is climbing at constant speed, at an angle of θ = 17◦ with
respect to horizontal. Its engines supply a thrust of Fthrust = 200
kN, and the lift from its wings is Flift = 654 kN. Assume that air
resistance (drag) is negligible, so the only forces acting are thrust,
lift, and weight. What is its mass, in kg? . Solution, p. 554
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Problem 12.

Problem 13 (Millikan and Gale,
1920).

10 A wagon is being pulled at constant speed up a slope θ by a
rope that makes an angle φ with the vertical.
(a) Assuming negligible friction, show that the tension in the rope
is given by the equation

FT =
sin θ

sin(θ + φ)
FW ,

where FW is the weight force acting on the wagon.
(b) Interpret this equation in the special cases of φ = 0 and φ =
180◦ − θ. . Solution, p. 555

11 The angle of repose is the maximum slope on which an object
will not slide. On airless, geologically inert bodies like the moon or
an asteroid, the only thing that determines whether dust or rubble
will stay on a slope is whether the slope is less steep than the angle
of repose. (See figure n, p. 272.)
(a) Find an equation for the angle of repose, deciding for yourself
what are the relevant variables.
(b) On an asteroid, where g can be thousands of times lower than
on Earth, would rubble be able to lie at a steeper angle of repose?

. Solution, p. 555

12 The figure shows an experiment in which a cart is released
from rest at A, and accelerates down the slope through a distance
x until it passes through a sensor’s light beam. The point of the
experiment is to determine the cart’s acceleration. At B, a card-
board vane mounted on the cart enters the light beam, blocking the
light beam, and starts an electronic timer running. At C, the vane
emerges from the beam, and the timer stops.
(a) Find the final velocity of the cart in terms of the width w of
the vane and the time tb for which the sensor’s light beam was
blocked.

√

(b) Find the magnitude of the cart’s acceleration in terms of the
measurable quantities x, tb, and w.

√

(c) Analyze the forces in which the cart participates, using a table in
the format introduced in section 5.3. Assume friction is negligible.
(d) Find a theoretical value for the acceleration of the cart, which
could be compared with the experimentally observed value extracted
in part b. Express the theoretical value in terms of the angle θ of
the slope, and the strength g of the gravitational field.

√

13 The figure shows a boy hanging in three positions: (1) with
his arms straight up, (2) with his arms at 45 degrees, and (3) with
his arms at 60 degrees with respect to the vertical. Compare the
tension in his arms in the three cases.
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Problem 15.

Problem 16.

Problem 17.

14 Driving down a hill inclined at an angle θ with respect to
horizontal, you slam on the brakes to keep from hitting a deer. Your
antilock brakes kick in, and you don’t skid.
(a) Analyze the forces. (Ignore rolling resistance and air friction.)
(b) Find the car’s maximum possible deceleration, a (expressed as
a positive number), in terms of g, θ, and the relevant coefficient of
friction.

√

(c) Explain physically why the car’s mass has no effect on your
answer.
(d) Discuss the mathematical behavior and physical interpretation
of your result for negative values of θ.
(e) Do the same for very large positive values of θ.

15 The figure shows the path followed by Hurricane Irene in
2005 as it moved north. The dots show the location of the center
of the storm at six-hour intervals, with lighter dots at the time
when the storm reached its greatest intensity. Find the time when
the storm’s center had a velocity vector to the northeast and an
acceleration vector to the southeast. Explain.

16 For safety, mountain climbers often wear a climbing harness
and tie in to other climbers on a rope team or to anchors such as
pitons or snow anchors. When using anchors, the climber usually
wants to tie in to more than one, both for extra strength and for
redundancy in case one fails. The figure shows such an arrangement,
with the climber hanging from a pair of anchors forming a symmetric
“Y” at an angle θ. The metal piece at the center is called a carabiner.
The usual advice is to make θ < 90◦; for large values of θ, the stress
placed on the anchors can be many times greater than the actual
load L, so that two anchors are actually less safe than one.
(a) Find the force S at each anchor in terms of L and θ.

√

(b) Verify that your answer makes sense in the case of θ = 0.
(c) Interpret your answer in the case of θ = 180◦.
(d) What is the smallest value of θ for which S equals or exceeds
L, so that for larger angles a failure of at least one anchor is more
likely than it would have been with a single anchor?

√

17 (a) The person with mass m hangs from the rope, hauling the
box of mass M up a slope inclined at an angle θ. There is friction
between the box and the slope, described by the usual coefficients
of friction. The pulley, however, is frictionless. Find the magnitude
of the box’s acceleration.

√

(b) Show that the units of your answer make sense.
(c) Check the physical behavior of your answer in the special cases
of M = 0 and θ = −90◦.
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Problem 19.

Problem 20.

18 Complete example 6 on p. 226 by expressing the remaining
nine x and y components of the forces in terms of the five magnitudes
and the small, positive angle θ ≈ 9◦ by which the crack overhangs.√

19 Problem 16 discussed a possible correct way of setting up
a redundant anchor for mountaineering. The figure for this prob-
lem shows an incorrect way of doing it, by arranging the rope in
a triangle (which we’ll take to be isoceles). One of the bad things
about the triangular arrangement is that it requires more force from
the anchors, making them more likely to fail. (a) Using the same
notation as in problem 16, find S in terms of L and θ.

√

(b) Verify that your answer makes sense in the case of θ = 0, and
compare with the correct setup.

20 A telephone wire of mass m is strung between two poles,
making an angle θ with the horizontal at each end. (a) Find the
tension at the center.

√

(b) Which is greater, the tension at the center or at the ends?

21 The figure shows an arcade game called skee ball that is
similar to bowling. The player rolls the ball down a horizontal alley.
The ball then rides up a curved lip and is launched at an initial
speed u, at an angle α above horizontal. Suppose we want the ball
to go into a hole that is at horizontal distance ` and height h, as
shown in the figure.
(a) Find the initial speed u that is required, in terms of the other
variables and g.

√

(b) Check that your answer to part a has units that make sense.
(c) Check that your answer to part a depends on g in a way that
makes sense. This means that you should first determine on physical
grounds whether increasing g should increase u, or decrease it. Then
see whether your answer to part a has this mathematical behavior.
(d) Do the same for the dependence on h.
(e) Interpret your equation in the case where α = 90◦.
(f) Interpret your equation in the case where tanα = h/`.
(g) Find u numerically if h = 70 cm, ` = 60 cm, and α = 65◦.

√

Problem 21.
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Problem 23.

Problem 24.

Problem 25.

22 A plane flies toward a city directly north and a distance D
away. The wind speed is u, and the plane’s speed with respect to
the wind is v.
(a) If the wind is blowing from the west (towards the east), what
direction should the plane head (what angle west of north)?

√

(b) How long does it take the plane to get to the city?
√

(c) Check that your answer to part b has units that make sense.
(d) Comment on the behavior of your answer in the case where
u = v. [problem by B. Shotwell]

23 A force F is applied to a box of mass M at an angle θ below
the horizontal (see figure). The coefficient of static friction between
the box and the floor is µs, and the coefficient of kinetic friction
between the two surfaces is µk.
(a) What is the magnitude of the normal force on the box from the
floor?

√

(b) What is the minimum value of F to get the box to start moving
from rest?

√

(c) What is the value of F so that the box will move with constant
velocity (assuming it is already moving)?

√

(d) If θ is greater than some critical angle θcrit, it is impossible to
have the scenario described in part c. What is θcrit?√

[problem by B. Shotwell]

24 (a) A mass M is at rest on a fixed, frictionless ramp inclined
at angle θ with respect to the horizontal. The mass is connected
to the force probe, as shown. What is the reading on the force
probe?

√

(b) Check that your answer to part a makes sense in the special
cases θ = 0 and θ = 90◦. [problem by B. Shotwell]

25 The figure shows a rock climber wedged into a dihedral or
“open book” consisting of two vertical walls of rock at an angle θ rel-
ative to one another. This position can be maintained without any
ledges or holds, simply by pressing the feet against the walls. The
left hand is being used just for a little bit of balance. (a) Find the
minimum coefficient of friction between the rubber climbing shoes
and the rock. (b) Interpret the behavior of your expression at ex-
treme values of θ. (c) Steven Won has done tabletop experiments
using climbing shoes on the rough back side of a granite slab from
a kitchen countertop, and has estimated µs = 1.17. Find the corre-
sponding maximum value of θ. . Solution, p. 556

26 You throw a rock horizontally from the edge of the roof of
a building of height h with speed v0. What is the (positive) angle
between the final velocity vector and the horizontal when the rock
hits the ground?

√
[problem by B. Shotwell]
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Problem 27.

27 The figure shows a block acted on by two external forces,
each of magnitude F . One of the forces is horizontal, but the other
is applied at a downward angle θ. Gravity is negligible compared to
these forces. The block rests on a surface with friction described by
a coefficient of friction µs. (a) Find the minimum value of µs that
is required if the block is to remain at rest.

√

(b) Show that this expression has the correct limit as θ approaches
zero. ∫
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Exercise 8: Vectors and motion
Each diagram on page ?? shows the motion of an object in an x − y plane. Each dot is one
location of the object at one moment in time. The time interval from one dot to the next is
always the same, so you can think of the vector that connects one dot to the next as a v vector,
and subtract to find ∆v vectors.

1. Suppose the object in diagram 1 is moving from the top left to the bottom right. Deduce
whatever you can about the force acting on it. Does the force always have the same magnitude?
The same direction?

Invent a physical situation that this diagram could represent.

What if you reinterpret the diagram by reversing the object’s direction of motion? Redo the
construction of one of the ∆v vectors and see what happens.

2. What can you deduce about the force that is acting in diagram 2?

Invent a physical situation that diagram 2 could represent.

3. What can you deduce about the force that is acting in diagram 3?

Invent a physical situation.
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Chapter 9

Circular Motion

9.1 Conceptual framework
I now live fifteen minutes from Disneyland, so my friends and family
in my native Northern California think it’s a little strange that I’ve
never visited the Magic Kingdom again since a childhood trip to the
south. The truth is that for me as a preschooler, Disneyland was
not the Happiest Place on Earth. My mother took me on a ride in
which little cars shaped like rocket ships circled rapidly around a
central pillar. I knew I was going to die. There was a force trying to
throw me outward, and the safety features of the ride would surely
have been inadequate if I hadn’t screamed the whole time to make
sure Mom would hold on to me. Afterward, she seemed surprisingly
indifferent to the extreme danger we had experienced.

Circular motion does not produce an outward force

My younger self’s understanding of circular motion was partly
right and partly wrong. I was wrong in believing that there was a
force pulling me outward, away from the center of the circle. The
easiest way to understand this is to bring back the parable of the
bowling ball in the pickup truck from chapter 4. As the truck makes
a left turn, the driver looks in the rearview mirror and thinks that
some mysterious force is pulling the ball outward, but the truck
is accelerating, so the driver’s frame of reference is not an inertial
frame. Newton’s laws are violated in a noninertial frame, so the ball
appears to accelerate without any actual force acting on it. Because
we are used to inertial frames, in which accelerations are caused by
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b / This crane fly’s halteres
help it to maintain its orientation
in flight.

forces, the ball’s acceleration creates a vivid illusion that there must
be an outward force.

a / 1. In the turning truck’s frame
of reference, the ball appears
to violate Newton’s laws, dis-
playing a sideways acceleration
that is not the result of a force-
interaction with any other object.
2. In an inertial frame of refer-
ence, such as the frame fixed to
the earth’s surface, the ball obeys
Newton’s first law. No forces are
acting on it, and it continues mov-
ing in a straight line. It is the truck
that is participating in an interac-
tion with the asphalt, the truck that
accelerates as it should according
to Newton’s second law. In an inertial frame everything makes more sense. The ball has

no force on it, and goes straight as required by Newton’s first law.
The truck has a force on it from the asphalt, and responds to it
by accelerating (changing the direction of its velocity vector) as
Newton’s second law says it should.

The halteres example 1
Another interesting example is an insect organ called the hal-
teres, a pair of small knobbed limbs behind the wings, which vi-
brate up and down and help the insect to maintain its orientation
in flight. The halteres evolved from a second pair of wings pos-
sessed by earlier insects. Suppose, for example, that the halteres
are on their upward stroke, and at that moment an air current
causes the fly to pitch its nose down. The halteres follow New-
ton’s first law, continuing to rise vertically, but in the fly’s rotating
frame of reference, it seems as though they have been subjected
to a backward force. The fly has special sensory organs that per-
ceive this twist, and help it to correct itself by raising its nose.

Circular motion does not persist without a force

I was correct, however, on a different point about the Disneyland
ride. To make me curve around with the car, I really did need some
force such as a force from my mother, friction from the seat, or a
normal force from the side of the car. (In fact, all three forces were
probably adding together.) One of the reasons why Galileo failed to
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d / Sparks fly away along
tangents to a grinding wheel.

c / 1. An overhead view of a per-
son swinging a rock on a rope. A
force from the string is required
to make the rock’s velocity vector
keep changing direction. 2. If the
string breaks, the rock will follow
Newton’s first law and go straight
instead of continuing around the
circle.

refine the principle of inertia into a quantitative statement like New-
ton’s first law is that he was not sure whether motion without a force
would naturally be circular or linear. In fact, the most impressive
examples he knew of the persistence of motion were mostly circular:
the spinning of a top or the rotation of the earth, for example. New-
ton realized that in examples such as these, there really were forces
at work. Atoms on the surface of the top are prevented from flying
off straight by the ordinary force that keeps atoms stuck together in
solid matter. The earth is nearly all liquid, but gravitational forces
pull all its parts inward.

Uniform and nonuniform circular motion

Circular motion always involves a change in the direction of the
velocity vector, but it is also possible for the magnitude of the ve-
locity to change at the same time. Circular motion is referred to as
uniform if |v| is constant, and nonuniform if it is changing.

Your speedometer tells you the magnitude of your car’s velocity
vector, so when you go around a curve while keeping your speedome-
ter needle steady, you are executing uniform circular motion. If your
speedometer reading is changing as you turn, your circular motion
is nonuniform. Uniform circular motion is simpler to analyze math-
ematically, so we will attack it first and then pass to the nonuniform
case.

self-check A
Which of these are examples of uniform circular motion and which are
nonuniform?

(1) the clothes in a clothes dryer (assuming they remain against the
inside of the drum, even at the top)

(2) a rock on the end of a string being whirled in a vertical circle .

Answer, p. 566
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e / To make the brick go in a
circle, I had to exert an inward
force on the rope.

g / When a car is going straight
at constant speed, the forward
and backward forces on it are
canceling out, producing a total
force of zero. When it moves
in a circle at constant speed,
there are three forces on it, but
the forward and backward forces
cancel out, so the vector sum is
an inward force.

Only an inward force is required for uniform circular motion.

Figure c showed the string pulling in straight along a radius of
the circle, but many people believe that when they are doing this
they must be “leading” the rock a little to keep it moving along.
That is, they believe that the force required to produce uniform
circular motion is not directly inward but at a slight angle to the
radius of the circle. This intuition is incorrect, which you can easily
verify for yourself now if you have some string handy. It is only
while you are getting the object going that your force needs to be at
an angle to the radius. During this initial period of speeding up, the
motion is not uniform. Once you settle down into uniform circular
motion, you only apply an inward force.

If you have not done the experiment for yourself, here is a theo-
retical argument to convince you of this fact. We have discussed in
chapter 6 the principle that forces have no perpendicular effects. To
keep the rock from speeding up or slowing down, we only need to
make sure that our force is perpendicular to its direction of motion.
We are then guaranteed that its forward motion will remain unaf-
fected: our force can have no perpendicular effect, and there is no
other force acting on the rock which could slow it down. The rock
requires no forward force to maintain its forward motion, any more
than a projectile needs a horizontal force to “help it over the top”
of its arc.

f / A series of three hammer taps makes the rolling ball trace a tri-
angle, seven hammers a heptagon. If the number of hammers was large
enough, the ball would essentially be experiencing a steady inward force,
and it would go in a circle. In no case is any forward force necessary.
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h / Example 2.

Why, then, does a car driving in circles in a parking lot stop
executing uniform circular motion if you take your foot off the gas?
The source of confusion here is that Newton’s laws predict an ob-
ject’s motion based on the total force acting on it. A car driving in
circles has three forces on it

(1) an inward force from the asphalt, controlled with the steering
wheel;

(2) a forward force from the asphalt, controlled with the gas
pedal; and

(3) backward forces from air resistance and rolling resistance.

You need to make sure there is a forward force on the car so that
the backward forces will be exactly canceled out, creating a vector
sum that points directly inward.

A motorcycle making a turn example 2
The motorcyclist in figure h is moving along an arc of a circle. It
looks like he’s chosen to ride the slanted surface of the dirt at a
place where it makes just the angle he wants, allowing him to get
the force he needs on the tires as a normal force, without needing
any frictional force. The dirt’s normal force on the tires points up
and to our left. The vertical component of that force is canceled
by gravity, while its horizontal component causes him to curve.

In uniform circular motion, the acceleration vector is inward.

Since experiments show that the force vector points directly
inward, Newton’s second law implies that the acceleration vector
points inward as well. This fact can also be proven on purely kine-
matical grounds, and we will do so in the next section.

Clock-comparison tests of Newton’s first law example 3
Immediately after his original statement of the first law in the Prin-
cipia Mathematica, Newton offers the supporting example of a
spinning top, which only slows down because of friction. He de-
scribes the different parts of the top as being held together by
“cohesion,” i.e., internal forces. Because these forces act toward
the center, they don’t speed up or slow down the motion. The ap-
plicability of the first law, which only describes linear motion, may
be more clear if we simply take figure f as a model of rotation.
Between hammer taps, the ball experiences no force, so by the
first law it doesn’t speed up or slow down.

Suppose that we want to subject the first law to a stringent exper-
imental test.1 The law predicts that if we use a clock to measure
the rate of rotation of an object spinning frictionlessly, it won’t “nat-
urally” slow down as Aristotle would have expected. But what is
a clock but something with hands that rotate at a fixed rate? In
1Page 81 lists places in this book where we describe experimental tests of

Newton’s first law.
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other words, we are comparing one clock with another. This is
called a clock-comparison experiment. Suppose that the laws of
physics weren’t purely Newtonian, and there really was a very
slight Aristotelian tendency for motion to slow down in the ab-
sence of friction. If we compare two clocks, they should both slow
down, but if they aren’t the same type of clock, then it seems un-
likely that they would slow down at exactly the same rate, and
over time they should drift further and further apart.

High-precision clock-comparison experiments have been done
using a variety of clocks. In atomic clocks, the thing spinning
is an atom. Astronomers can observe the rotation of collapsed
stars called pulars, which, unlike the earth, can rotate with almost
no disturbance due to geological activity or friction induced by the
tides. In these experiments, the pulsars are observed to match
the rates of the atomic clocks with a drift of less than about 10−6

seconds over a period of 10 years.2 Atomic clocks using atoms
of different elements drift relative to one another by no more than
about 10−16 per year.3

It is not presently possible to do experiments with a similar level of
precision using human-scale rotating objects. However, a set of
gyroscopes aboard the Gravity Probe B satellite were allowed to
spin weightlessly in a vacuum, without any physical contact that
would have caused kinetic friction. Their rotation was extremely
accurately monitored for the purposes of another experiment (a
test of Einstein’s theory of general relativity, which was the pur-
pose of the mission), and they were found to be spinning down so
gradually that they would have taken about 10,000 years to slow
down by a factor of two. This rate was consistent with estimates
of the amount of friction to be expected from the small amount of
residual gas present in the vacuum chambers.

A subtle point in the interpretation of these experiments is that if
there was a slight tendency for motion to slow down, we would
have to decide what it was supposed to slow down relative to.
A straight-line motion that is slowing down in some frame of ref-
erence can always be described as speeding up in some other
appropriately chosen frame (problem 12, p. 90). If the laws of
physics did have this slight Aristotelianism mixed in, we could wait
for the anomalous acceleration or deceleration to stop. The ob-
ject we were observing would then define a special or “preferred”
frame of reference. Standard theories of physics do not have
such a preferred frame, and clock-comparison experiments can
be viewed as tests of the existence of such a frame. Another test
for the existence of a preferred frame is described on p. 277.

2Matsakis et al., Astronomy and Astrophysics 326 (1997) 924. Freely avail-
able online at adsabs.harvard.edu.

3Guéna et al., arxiv.org/abs/1205.4235
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Discussion questions A-D

Discussion question E.

Discussion questions

A In the game of crack the whip, a line of people stand holding hands,
and then they start sweeping out a circle. One person is at the center,
and rotates without changing location. At the opposite end is the person
who is running the fastest, in a wide circle. In this game, someone always
ends up losing their grip and flying off. Suppose the person on the end
loses her grip. What path does she follow as she goes flying off? Draw an
overhead view. (Assume she is going so fast that she is really just trying
to put one foot in front of the other fast enough to keep from falling; she
is not able to get any significant horizontal force between her feet and the
ground.)

B Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What force or forces are acting
on her, and in what directions are they? (We are not interested in the
vertical forces, which are the earth’s gravitational force pulling down, and
the ground’s normal force pushing up.) Make a table in the format shown
in section 5.3.

C Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What is wrong with the following
analysis of the situation? “The person whose hand she’s holding exerts
an inward force on her, and because of Newton’s third law, there’s an
equal and opposite force acting outward. That outward force is the one
she feels throwing her outward, and the outward force is what might make
her go flying off, if it’s strong enough.”

D If the only force felt by the person on the outside is an inward force,
why doesn’t she go straight in?

E In the amusement park ride shown in the figure, the cylinder spins
faster and faster until the customer can pick her feet up off the floor with-
out falling. In the old Coney Island version of the ride, the floor actually
dropped out like a trap door, showing the ocean below. (There is also a
version in which the whole thing tilts up diagonally, but we’re discussing
the version that stays flat.) If there is no outward force acting on her, why
does she stick to the wall? Analyze all the forces on her.

F What is an example of circular motion where the inward force is a
normal force? What is an example of circular motion where the inward
force is friction? What is an example of circular motion where the inward
force is the sum of more than one force?

G Does the acceleration vector always change continuously in circular
motion? The velocity vector?
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i / The law of sines.

j / Deriving |a| = |v|2/r for
uniform circular motion.

9.2 Uniform circular motion

In this section I derive a simple and very useful equation for
the magnitude of the acceleration of an object undergoing constant
acceleration. The law of sines is involved, so I’ve recapped it in
figure i.

The derivation is brief, but the method requires some explana-
tion and justification. The idea is to calculate a ∆v vector describing
the change in the velocity vector as the object passes through an
angle θ. We then calculate the acceleration, a = ∆v/∆t. The as-
tute reader will recall, however, that this equation is only valid for
motion with constant acceleration. Although the magnitude of the
acceleration is constant for uniform circular motion, the acceleration
vector changes its direction, so it is not a constant vector, and the
equation a = ∆v/∆t does not apply. The justification for using it
is that we will then examine its behavior when we make the time
interval very short, which means making the angle θ very small. For
smaller and smaller time intervals, the ∆v/∆t expression becomes
a better and better approximation, so that the final result of the
derivation is exact.

In figure j/1, the object sweeps out an angle θ. Its direction of
motion also twists around by an angle θ, from the vertical dashed
line to the tilted one. Figure j/2 shows the initial and final velocity
vectors, which have equal magnitude, but directions differing by θ.
In j/3, I’ve reassembled the vectors in the proper positions for vector
subtraction. They form an isosceles triangle with interior angles θ,
η, and η. (Eta, η, is my favorite Greek letter.) The law of sines
gives

|∆v|
sin θ

=
|v|

sin η
.

This tells us the magnitude of ∆v, which is one of the two ingredients
we need for calculating the magnitude of a = ∆v/∆t. The other
ingredient is ∆t. The time required for the object to move through
the angle θ is

∆t =
length of arc

|v|
.

Now if we measure our angles in radians we can use the definition of
radian measure, which is (angle) = (length of arc)/(radius), giving
∆t = θr/|v|. Combining this with the first expression involving
|∆v| gives

|a| = |∆v|/∆t

=
|v|2

r
· sin θ

θ
· 1

sin η
.

When θ becomes very small, the small-angle approximation sin θ ≈ θ
applies, and also η becomes close to 90◦, so sin η ≈ 1, and we have
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k / Example 7.

an equation for |a|:

|a| = |v|
2

r
. [uniform circular motion]

Force required to turn on a bike example 4
. A bicyclist is making a turn along an arc of a circle with radius
20 m, at a speed of 5 m/s. If the combined mass of the cyclist
plus the bike is 60 kg, how great a static friction force must the
road be able to exert on the tires?

. Taking the magnitudes of both sides of Newton’s second law
gives

|F| = |ma|
= m|a|.

Substituting |a| = |v|2/r gives

|F| = m|v|2/r
≈ 80 N

(rounded off to one sig fig).

Don’t hug the center line on a curve! example 5
. You’re driving on a mountain road with a steep drop on your
right. When making a left turn, is it safer to hug the center line or
to stay closer to the outside of the road?

. You want whichever choice involves the least acceleration, be-
cause that will require the least force and entail the least risk of
exceeding the maximum force of static friction. Assuming the
curve is an arc of a circle and your speed is constant, your car
is performing uniform circular motion, with |a| = |v|2/r . The de-
pendence on the square of the speed shows that driving slowly
is the main safety measure you can take, but for any given speed
you also want to have the largest possible value of r . Even though
your instinct is to keep away from that scary precipice, you are ac-
tually less likely to skid if you keep toward the outside, because
then you are describing a larger circle.

Acceleration related to radius and period of rotation example 6
. How can the equation for the acceleration in uniform circular
motion be rewritten in terms of the radius of the circle and the
period, T , of the motion, i.e., the time required to go around once?

. The period can be related to the speed as follows:

|v| = circumference
T

= 2πr/T .

Substituting into the equation |a| = |v|2/r gives

|a| = 4π2r
T 2 .
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A clothes dryer example 7
. My clothes dryer has a drum with an inside radius of 35 cm, and
it spins at 48 revolutions per minute. What is the acceleration of
the clothes inside?

. We can solve this by finding the period and plugging in to the
result of the previous example. If it makes 48 revolutions in one
minute, then the period is 1/48 of a minute, or 1.25 s. To get an
acceleration in mks units, we must convert the radius to 0.35 m.
Plugging in, the result is 8.8 m/s2.

More about clothes dryers! example 8
. In a discussion question in the previous section, we made the
assumption that the clothes remain against the inside of the drum
as they go over the top. In light of the previous example, is this a
correct assumption?

. No. We know that there must be some minimum speed at which
the motor can run that will result in the clothes just barely stay-
ing against the inside of the drum as they go over the top. If the
clothes dryer ran at just this minimum speed, then there would be
no normal force on the clothes at the top: they would be on the
verge of losing contact. The only force acting on them at the top
would be the force of gravity, which would give them an acceler-
ation of g = 9.8 m/s2. The actual dryer must be running slower
than this minimum speed, because it produces an acceleration of
only 8.8 m/s2. My theory is that this is done intentionally, to make
the clothes mix and tumble.

. Solved problem: The tilt-a-whirl page 256, problem 6

. Solved problem: An off-ramp page 256, problem 7

Discussion questions

A A certain amount of force is needed to provide the acceleration
of circular motion. What if we are exerting a force perpendicular to the
direction of motion in an attempt to make an object trace a circle of radius
r , but the force isn’t as big as m|v|2/r?

B Suppose a rotating space station, as in figure l on page 253, is built.
It gives its occupants the illusion of ordinary gravity. What happens when
a person in the station lets go of a ball? What happens when she throws
a ball straight “up” in the air (i.e., towards the center)?
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m / 1. Moving in a circle while
speeding up. 2. Uniform circular
motion. 3. Slowing down.

l / Discussion question B. An artist’s conception of a rotating space colony
in the form of a giant wheel. A person living in this noninertial frame of
reference has an illusion of a force pulling her outward, toward the deck,
for the same reason that a person in the pickup truck has the illusion
of a force pulling the bowling ball. By adjusting the speed of rotation, the
designers can make an acceleration |v|2/r equal to the usual acceleration
of gravity on earth. On earth, your acceleration standing on the ground
is zero, and a falling rock heads for your feet with an acceleration of 9.8
m/s2. A person standing on the deck of the space colony has an upward
acceleration of 9.8 m/s2, and when she lets go of a rock, her feet head up
at the nonaccelerating rock. To her, it seems the same as true gravity.

9.3 Nonuniform circular motion

What about nonuniform circular motion? Although so far we
have been discussing components of vectors along fixed x and y
axes, it now becomes convenient to discuss components of the accel-
eration vector along the radial line (in-out) and the tangential line
(along the direction of motion). For nonuniform circular motion,
the radial component of the acceleration obeys the same equation
as for uniform circular motion,

ar = v2/r,

where v = |v|, but the acceleration vector also has a tangential
component,

at = slope of the graph of v versus t.

The latter quantity has a simple interpretation. If you are going
around a curve in your car, and the speedometer needle is mov-
ing, the tangential component of the acceleration vector is simply
what you would have thought the acceleration was if you saw the
speedometer and didn’t know you were going around a curve.

Slow down before a turn, not during it. example 9
. When you’re making a turn in your car and you’re afraid you
may skid, isn’t it a good idea to slow down?

. If the turn is an arc of a circle, and you’ve already completed
part of the turn at constant speed without skidding, then the road
and tires are apparently capable of enough static friction to sup-
ply an acceleration of |v|2/r . There is no reason why you would
skid out now if you haven’t already. If you get nervous and brake,
however, then you need to have a tangential acceleration compo-
nent in addition to the radial one you were already able to pro-
duce successfully. This would require an acceleration vector with
a greater magnitude, which in turn would require a larger force.
Static friction might not be able to supply that much force, and
you might skid out. The safer thing to do is to approach the turn
at a comfortably low speed.

. Solved problem: A bike race page 255, problem 5
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Summary
Selected vocabulary
uniform circular
motion . . . . . .

circular motion in which the magnitude of the
velocity vector remains constant

nonuniform circu-
lar motion . . . .

circular motion in which the magnitude of the
velocity vector changes

radial . . . . . . . parallel to the radius of a circle; the in-out
direction

tangential . . . . tangent to the circle, perpendicular to the ra-
dial direction

Notation
ar . . . . . . . . . radial acceleration; the component of the ac-

celeration vector along the in-out direction
at . . . . . . . . . tangential acceleration; the component of the

acceleration vector tangent to the circle

Summary

If an object is to have circular motion, a force must be exerted on
it toward the center of the circle. There is no outward force on the
object; the illusion of an outward force comes from our experiences
in which our point of view was rotating, so that we were viewing
things in a noninertial frame.

An object undergoing uniform circular motion has an inward
acceleration vector of magnitude

|a| = v2/r,

where v = |v|. In nonuniform circular motion, the radial and tan-
gential components of the acceleration vector are

ar = v2/r

at = slope of the graph of v versus t.
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Problem 1.

Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 When you’re done using an electric mixer, you can get most
of the batter off of the beaters by lifting them out of the batter with
the motor running at a high enough speed. Let’s imagine, to make
things easier to visualize, that we instead have a piece of tape stuck
to one of the beaters.
(a) Explain why static friction has no effect on whether or not the
tape flies off.
(b) Analyze the forces in which the tape participates, using a table
in the format shown in section 5.3.
(c) Suppose you find that the tape doesn’t fly off when the motor is
on a low speed, but at a greater speed, the tape won’t stay on. Why
would the greater speed change things? [Hint: If you don’t invoke
any law of physics, you haven’t explained it.]

2 Show that the expression |v|2/r has the units of acceleration.

3 A plane is flown in a loop-the-loop of radius 1.00 km. The
plane starts out flying upside-down, straight and level, then begins
curving up along the circular loop, and is right-side up when it
reaches the top. (The plane may slow down somewhat on the way
up.) How fast must the plane be going at the top if the pilot is to
experience no force from the seat or the seatbelt while at the top of
the loop?

√

4 In this problem, you’ll derive the equation |a| = |v|2/r us-
ing calculus. Instead of comparing velocities at two points in the
particle’s motion and then taking a limit where the points are close
together, you’ll just take derivatives. The particle’s position vector
is r = (r cos θ)x̂ + (r sin θ)ŷ, where x̂ and ŷ are the unit vectors
along the x and y axes. By the definition of radians, the distance
traveled since t = 0 is rθ, so if the particle is traveling at constant
speed v = |v|, we have v = rθ/t.
(a) Eliminate θ to get the particle’s position vector as a function of
time.
(b) Find the particle’s acceleration vector.
(c) Show that the magnitude of the acceleration vector equals v2/r.∫
5 Three cyclists in a race are rounding a semicircular curve.
At the moment depicted, cyclist A is using her brakes to apply a
force of 375 N to her bike. Cyclist B is coasting. Cyclist C is
pedaling, resulting in a force of 375 N on her bike. Each cyclist,
with her bike, has a mass of 75 kg. At the instant shown, the
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Problem 6.

Problem 7.

Problem 9.

instantaneous speed of all three cyclists is 10 m/s. On the diagram,
draw each cyclist’s acceleration vector with its tail on top of her
present position, indicating the directions and lengths reasonably
accurately. Indicate approximately the consistent scale you are using
for all three acceleration vectors. Extreme precision is not necessary
as long as the directions are approximately right, and lengths of
vectors that should be equal appear roughly equal, etc. Assume all
three cyclists are traveling along the road all the time, not wandering
across their lane or wiping out and going off the road.

. Solution, p. 556

6 The amusement park ride shown in the figure consists of a
cylindrical room that rotates about its vertical axis. When the ro-
tation is fast enough, a person against the wall can pick his or her
feet up off the floor and remain “stuck” to the wall without falling.
(a) Suppose the rotation results in the person having a speed v. The
radius of the cylinder is r, the person’s mass is m, the downward
acceleration of gravity is g, and the coefficient of static friction be-
tween the person and the wall is µs. Find an equation for the speed,
v, required, in terms of the other variables. (You will find that one
of the variables cancels out.)
(b) Now suppose two people are riding the ride. Huy is wearing
denim, and Gina is wearing polyester, so Huy’s coefficient of static
friction is three times greater. The ride starts from rest, and as it
begins rotating faster and faster, Gina must wait longer before being
able to lift her feet without sliding to the floor. Based on your equa-
tion from part a, how many times greater must the speed be before
Gina can lift her feet without sliding down? . Solution, p. 556 ?

7 An engineer is designing a curved off-ramp for a freeway.
Since the off-ramp is curved, she wants to bank it to make it less
likely that motorists going too fast will wipe out. If the radius of
the curve is r, how great should the banking angle, θ, be so that
for a car going at a speed v, no static friction force whatsoever is
required to allow the car to make the curve? State your answer in
terms of v, r, and g, and show that the mass of the car is irrelevant.

. Solution, p. 557

8 Lionel brand toy trains come with sections of track in standard
lengths and shapes. For circular arcs, the most commonly used
sections have diameters of 662 and 1067 mm at the inside of the outer
rail. The maximum speed at which a train can take the broader
curve without flying off the tracks is 0.95 m/s. At what speed must
the train be operated to avoid derailing on the tighter curve?

√

9 The figure shows a ball on the end of a string of length L
attached to a vertical rod which is spun about its vertical axis by a
motor. The period (time for one rotation) is P .
(a) Analyze the forces in which the ball participates.
(b) Find how the angle θ depends on P , g, and L. [Hints: (1)
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Problem 10.

Problem 11.

Problem 12.

Write down Newton’s second law for the vertical and horizontal
components of force and acceleration. This gives two equations,
which can be solved for the two unknowns, θ and the tension in
the string. (2) If you introduce variables like v and r, relate them
to the variables your solution is supposed to contain, and eliminate
them.]

√

(c) What happens mathematically to your solution if the motor is
run very slowly (very large values of P )? Physically, what do you
think would actually happen in this case?

10 Psychology professor R.O. Dent requests funding for an ex-
periment on compulsive thrill-seeking behavior in guinea pigs, in
which the subject is to be attached to the end of a spring and whirled
around in a horizontal circle. The spring has relaxed length b, and
obeys Hooke’s law with spring constant k. It is stiff enough to keep
from bending significantly under the guinea pig’s weight.
(a) Calculate the length of the spring when it is undergoing steady
circular motion in which one rotation takes a time T . Express your
result in terms of k, b, T , and the guinea pig’s mass m.

√

(b) The ethics committee somehow fails to veto the experiment, but
the safety committee expresses concern. Why? Does your equa-
tion do anything unusual, or even spectacular, for any particular
value of T? What do you think is the physical significance of this
mathematical behavior?

11 The figure shows an old-fashioned device called a flyball
governor, used for keeping an engine running at the correct speed.
The whole thing rotates about the vertical shaft, and the mass M
is free to slide up and down. This mass would have a connection
(not shown) to a valve that controlled the engine. If, for instance,
the engine ran too fast, the mass would rise, causing the engine to
slow back down.
(a) Show that in the special case of a = 0, the angle θ is given by

θ = cos−1

(
g(m+M)P 2

4π2mL

)
,

where P is the period of rotation (time required for one complete
rotation).
(b) There is no closed-form solution for θ in the general case where
a is not zero. However, explain how the undesirable low-speed be-
havior of the a = 0 device would be improved by making a nonzero.

?

12 The figure shows two blocks of masses m1 and m2 sliding in
circles on a frictionless table. Find the tension in the strings if the
period of rotation (time required for one rotation) is P .

√
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Problem 15.

13 The acceleration of an object in uniform circular motion can
be given either by |a| = |v|2/r or, equivalently, by |a| = 4π2r/T 2,
where T is the time required for one cycle (example 6 on page 251).
Person A says based on the first equation that the acceleration in
circular motion is greater when the circle is smaller. Person B, ar-
guing from the second equation, says that the acceleration is smaller
when the circle is smaller. Rewrite the two statements so that they
are less misleading, eliminating the supposed paradox. [Based on a
problem by Arnold Arons.]

14 The bright star Sirius has a mass of 4.02 × 1030 kg and lies
at a distance of 8.1× 1016 m from our solar system. Suppose you’re
standing on a merry-go-round carousel rotating with a period of 10
seconds, and Sirius is on the horizon. You adopt a rotating, non-
inertial frame of reference, in which the carousel is at rest, and the
universe is spinning around it. If you drop a corndog, you see it
accelerate horizontally away from the axis, and you interpret this
as the result of some horizontal force. This force does not actually
exist; it only seems to exist because you’re insisting on using a non-
inertial frame. Similarly, calculate the force that seems to act on
Sirius in this frame of reference. Comment on the physical plausi-
bility of this force, and on what object could be exerting it.

√

15 In a well known stunt from circuses and carnivals, a motor-
cyclist rides around inside a big bowl, gradually speeding up and
rising higher. Eventually the cyclist can get up to where the walls
of the bowl are vertical. Let’s estimate the conditions under which
a running human could do the same thing.
(a) If the runner can run at speed v, and her shoes have a coefficient
of static friction µs, what is the maximum radius of the circle?

√

(b) Show that the units of your answer make sense.
(c) Check that its dependence on the variables makes sense.
(d) Evaluate your result numerically for v = 10 m/s (the speed of
an olympic sprinter) and µs = 5. (This is roughly the highest coeffi-
cient of static friction ever achieved for surfaces that are not sticky.
The surface has an array of microscopic fibers like a hair brush, and
is inspired by the hairs on the feet of a gecko. These assumptions
are not necessarily realistic, since the person would have to run at
an angle, which would be physically awkward.)

√

16 A car is approaching the top of a hill of radius of curvature
R.
(a) If the normal force that the driver feels at the top of the hill is
1/3 of their weight, how fast is the car going?

√

(b) Check that the units of your answer to part a make sense.
(c) Check that the dependence of your answer on the variables makes
sense.

[problem by B. Shotwell]
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Problem 17.

Problem 18.

17 Tommy the playground bully is whirling a brick tied to the
end of a rope. The rope makes an angle θ with respect to the
horizontal, and the brick undergoes circular motion with radius R.
(a) What is the speed of the brick?

√

(b) Check that the units of your answer to part a make sense.
(c) Check that the dependence of your answer on the variables makes
sense, and comment on the limit θ → 0.

[problem by B. Shotwell]

18 The 1961-66 US Gemini program launched pairs of astronauts
into earth orbit in tiny capsules, on missions lasting up to 14 days.
The figure shows the two seats, in a cross-sectional view from the
front, as if looking into a car through the windshield. During the
Gemini 8 mission, a malfunctioning thruster in the Orbit Attitude
and Maneuvering System (OAMS) caused the capsule to roll, i.e., to
rotate in the plane of the page. The rate of rotation got faster and
faster, reaching 296 degrees per second before pilot Neil Armstrong
shut down the OAMS system by hand and succeeded in canceling the
rotation using a separate set of re-entry thrusters. At the peak rate
of rotation, the astronauts were approaching the physiological limits
under which their hearts would no longer be able to circulate blood,
potentially causing them to black out or go blind. Superimposing
the approximate location of a human heart on the original NASA
diagram, it looks like Armstrong’s heart was about 45 cm away from
the axis of rotation. Find the acceleration experienced by his heart,
in units of g.

√
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a / Johannes Kepler found a
mathematical description of the
motion of the planets, which led
to Newton’s theory of gravity.

Gravity is the only really important force on the cosmic scale. This false-
color representation of Saturn’s rings was made from an image sent back
by the Voyager 2 space probe. The rings are composed of innumerable
tiny ice particles orbiting in circles under the influence of saturn’s gravity.

Chapter 10

Gravity

Cruise your radio dial today and try to find any popular song that
would have been imaginable without Louis Armstrong. By introduc-
ing solo improvisation into jazz, Armstrong took apart the jigsaw
puzzle of popular music and fit the pieces back together in a dif-
ferent way. In the same way, Newton reassembled our view of the
universe. Consider the titles of some recent physics books written
for the general reader: The God Particle, Dreams of a Final Theory.
Without Newton, such attempts at universal understanding would
not merely have seemed a little pretentious, they simply would not
have occurred to anyone.

This chapter is about Newton’s theory of gravity, which he used
to explain the motion of the planets as they orbited the sun. Whereas
this book has concentrated on Newton’s laws of motion, leaving
gravity as a dessert, Newton tosses off the laws of motion in the
first 20 pages of the Principia Mathematica and then spends the
next 130 discussing the motion of the planets. Clearly he saw this
as the crucial scientific focus of his work. Why? Because in it he
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b / Tycho Brahe made his name
as an astronomer by showing that
the bright new star, today called
a supernova, that appeared in
the skies in 1572 was far beyond
the Earth’s atmosphere. This,
along with Galileo’s discovery of
sunspots, showed that contrary
to Aristotle, the heavens were
not perfect and unchanging.
Brahe’s fame as an astronomer
brought him patronage from King
Frederick II, allowing him to carry
out his historic high-precision
measurements of the planets’
motions. A contradictory charac-
ter, Brahe enjoyed lecturing other
nobles about the evils of dueling,
but had lost his own nose in a
youthful duel and had it replaced
with a prosthesis made of an
alloy of gold and silver. Willing to
endure scandal in order to marry
a peasant, he nevertheless used
the feudal powers given to him by
the king to impose harsh forced
labor on the inhabitants of his
parishes. The result of their work,
an Italian-style palace with an
observatory on top, surely ranks
as one of the most luxurious
science labs ever built. Kepler
described Brahe as dying of a
ruptured bladder after falling from
a wagon on the way home from
a party, but other contemporary
accounts and modern medical
analysis suggest mercury poison-
ing, possibly as a result of court
intrigue.

showed that the same laws of motion applied to the heavens as to
the earth, and that the gravitational force that made an apple fall
was the same as the force that kept the earth’s motion from carrying
it away from the sun. What was radical about Newton was not his
laws of motion but his concept of a universal science of physics.

10.1 Kepler’s laws

Newton wouldn’t have been able to figure out why the planets
move the way they do if it hadn’t been for the astronomer Tycho
Brahe (1546-1601) and his protege Johannes Kepler (1571-1630),
who together came up with the first simple and accurate description
of how the planets actually do move. The difficulty of their task is
suggested by figure c, which shows how the relatively simple orbital
motions of the earth and Mars combine so that as seen from earth
Mars appears to be staggering in loops like a drunken sailor.

c / As the Earth and Mars revolve around the sun at different rates,
the combined effect of their motions makes Mars appear to trace a
strange, looped path across the background of the distant stars.

Brahe, the last of the great naked-eye astronomers, collected ex-
tensive data on the motions of the planets over a period of many
years, taking the giant step from the previous observations’ accuracy
of about 10 minutes of arc (10/60 of a degree) to an unprecedented
1 minute. The quality of his work is all the more remarkable consid-
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ering that his observatory consisted of four giant brass protractors
mounted upright in his castle in Denmark. Four different observers
would simultaneously measure the position of a planet in order to
check for mistakes and reduce random errors.

With Brahe’s death, it fell to his former assistant Kepler to try
to make some sense out of the volumes of data. Kepler, in con-
tradiction to his late boss, had formed a prejudice, a correct one
as it turned out, in favor of the theory that the earth and planets
revolved around the sun, rather than the earth staying fixed and
everything rotating about it. Although motion is relative, it is not
just a matter of opinion what circles what. The earth’s rotation
and revolution about the sun make it a noninertial reference frame,
which causes detectable violations of Newton’s laws when one at-
tempts to describe sufficiently precise experiments in the earth-fixed
frame. Although such direct experiments were not carried out until
the 19th century, what convinced everyone of the sun-centered sys-
tem in the 17th century was that Kepler was able to come up with
a surprisingly simple set of mathematical and geometrical rules for
describing the planets’ motion using the sun-centered assumption.
After 900 pages of calculations and many false starts and dead-end
ideas, Kepler finally synthesized the data into the following three
laws:

Kepler’s elliptical orbit law
The planets orbit the sun in elliptical orbits with the sun at
one focus.

Kepler’s equal-area law
The line connecting a planet to the sun sweeps out equal areas
in equal amounts of time.

Kepler’s law of periods
The time required for a planet to orbit the sun, called its
period, is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Although the planets’ orbits are ellipses rather than circles, most
are very close to being circular. The earth’s orbit, for instance, is
only flattened by 1.7% relative to a circle. In the special case of a
planet in a circular orbit, the two foci (plural of “focus”) coincide
at the center of the circle, and Kepler’s elliptical orbit law thus says
that the circle is centered on the sun. The equal-area law implies
that a planet in a circular orbit moves around the sun with constant
speed. For a circular orbit, the law of periods then amounts to a
statement that the time for one orbit is proportional to r3/2, where
r is the radius. If all the planets were moving in their orbits at the
same speed, then the time for one orbit would simply depend on
the circumference of the circle, so it would only be proportional to
r to the first power. The more drastic dependence on r3/2 means
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d / An ellipse is a circle that
has been distorted by shrinking
and stretching along perpendicu-
lar axes.

e / An ellipse can be con-
structed by tying a string to two
pins and drawing like this with the
pencil stretching the string taut.
Each pin constitutes one focus of
the ellipse.

f / If the time interval taken
by the planet to move from P to Q
is equal to the time interval from
R to S, then according to Kepler’s
equal-area law, the two shaded
areas are equal. The planet
is moving faster during interval
RS than it did during PQ, which
Newton later determined was due
to the sun’s gravitational force
accelerating it. The equal-area
law predicts exactly how much it
will speed up.

that the outer planets must be moving more slowly than the inner
planets.

10.2 Newton’s law of gravity
The sun’s force on the planets obeys an inverse square law.

Kepler’s laws were a beautifully simple explanation of what the
planets did, but they didn’t address why they moved as they did.
Did the sun exert a force that pulled a planet toward the center of
its orbit, or, as suggested by Descartes, were the planets circulating
in a whirlpool of some unknown liquid? Kepler, working in the
Aristotelian tradition, hypothesized not just an inward force exerted
by the sun on the planet, but also a second force in the direction
of motion to keep the planet from slowing down. Some speculated
that the sun attracted the planets magnetically.

Once Newton had formulated his laws of motion and taught
them to some of his friends, they began trying to connect them
to Kepler’s laws. It was clear now that an inward force would be
needed to bend the planets’ paths. This force was presumably an
attraction between the sun and each planet. (Although the sun does
accelerate in response to the attractions of the planets, its mass is so
great that the effect had never been detected by the prenewtonian
astronomers.) Since the outer planets were moving slowly along
more gently curving paths than the inner planets, their accelerations
were apparently less. This could be explained if the sun’s force was
determined by distance, becoming weaker for the farther planets.
Physicists were also familiar with the noncontact forces of electricity
and magnetism, and knew that they fell off rapidly with distance,
so this made sense.

In the approximation of a circular orbit, the magnitude of the
sun’s force on the planet would have to be

[1] F = ma = mv2/r.

Now although this equation has the magnitude, v, of the velocity
vector in it, what Newton expected was that there would be a more
fundamental underlying equation for the force of the sun on a planet,
and that that equation would involve the distance, r, from the sun
to the object, but not the object’s speed, v — motion doesn’t make
objects lighter or heavier.

self-check A
If eq. [1] really was generally applicable, what would happen to an
object released at rest in some empty region of the solar system? .

Answer, p. 566

Equation [1] was thus a useful piece of information which could
be related to the data on the planets simply because the planets
happened to be going in nearly circular orbits, but Newton wanted
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g / The moon’s acceleration
is 602 = 3600 times smaller than
the apple’s.

to combine it with other equations and eliminate v algebraically in
order to find a deeper truth.

To eliminate v, Newton used the equation

[2] v =
circumference

T
=

2πr

T
.

Of course this equation would also only be valid for planets in nearly
circular orbits. Plugging this into eq. [1] to eliminate v gives

[3] F =
4π2mr

T 2
.

This unfortunately has the side-effect of bringing in the period, T ,
which we expect on similar physical grounds will not occur in the
final answer. That’s where the circular-orbit case, T ∝ r3/2, of
Kepler’s law of periods comes in. Using it to eliminate T gives a
result that depends only on the mass of the planet and its distance
from the sun:

F ∝ m/r2. [force of the sun on a planet of mass

m at a distance r from the sun; same

proportionality constant for all the planets]

(Since Kepler’s law of periods is only a proportionality, the final
result is a proportionality rather than an equation, so there is no
point in hanging on to the factor of 4π2.)

As an example, the “twin planets” Uranus and Neptune have
nearly the same mass, but Neptune is about twice as far from the
sun as Uranus, so the sun’s gravitational force on Neptune is about
four times smaller.

self-check B
Fill in the steps leading from equation [3] to F ∝ m/r2. . Answer, p.
566

The forces between heavenly bodies are the same type of
force as terrestrial gravity.

OK, but what kind of force was it? It probably wasn’t magnetic,
since magnetic forces have nothing to do with mass. Then came
Newton’s great insight. Lying under an apple tree and looking up
at the moon in the sky, he saw an apple fall. Might not the earth
also attract the moon with the same kind of gravitational force?
The moon orbits the earth in the same way that the planets orbit
the sun, so maybe the earth’s force on the falling apple, the earth’s
force on the moon, and the sun’s force on a planet were all the same
type of force.

There was an easy way to test this hypothesis numerically. If it
was true, then we would expect the gravitational forces exerted by
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the earth to follow the same F ∝ m/r2 rule as the forces exerted by
the sun, but with a different constant of proportionality appropriate
to the earth’s gravitational strength. The issue arises now of how to
define the distance, r, between the earth and the apple. An apple
in England is closer to some parts of the earth than to others, but
suppose we take r to be the distance from the center of the earth to
the apple, i.e., the radius of the earth. (The issue of how to measure
r did not arise in the analysis of the planets’ motions because the
sun and planets are so small compared to the distances separating
them.) Calling the proportionality constant k, we have

Fearth on apple = k mapple/r
2
earth

Fearth on moon = k mmoon/d
2
earth-moon.

Newton’s second law says a = F/m, so

aapple = k / r2
earth

amoon = k / d2
earth-moon.

The Greek astronomer Hipparchus had already found 2000 years
before that the distance from the earth to the moon was about 60
times the radius of the earth, so if Newton’s hypothesis was right,
the acceleration of the moon would have to be 602 = 3600 times less
than the acceleration of the falling apple.

Applying a = v2/r to the acceleration of the moon yielded an
acceleration that was indeed 3600 times smaller than 9.8 m/s2, and
Newton was convinced he had unlocked the secret of the mysterious
force that kept the moon and planets in their orbits.

Newton’s law of gravity

The proportionality F ∝ m/r2 for the gravitational force on an
object of mass m only has a consistent proportionality constant for
various objects if they are being acted on by the gravity of the same
object. Clearly the sun’s gravitational strength is far greater than
the earth’s, since the planets all orbit the sun and do not exhibit
any very large accelerations caused by the earth (or by one another).
What property of the sun gives it its great gravitational strength?
Its great volume? Its great mass? Its great temperature? Newton
reasoned that if the force was proportional to the mass of the object
being acted on, then it would also make sense if the determining
factor in the gravitational strength of the object exerting the force
was its own mass. Assuming there were no other factors affecting
the gravitational force, then the only other thing needed to make
quantitative predictions of gravitational forces would be a propor-
tionality constant. Newton called that proportionality constant G,
so here is the complete form of the law of gravity he hypothesized.
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h / Students often have a
hard time understanding the
physical meaning of G. It’s just
a proportionality constant that
tells you how strong gravitational
forces are. If you could change it,
all the gravitational forces all over
the universe would get stronger
or weaker. Numerically, the
gravitational attraction between
two 1-kg masses separated by a
distance of 1 m is 6.67×10−11 N,
and this is what G is in SI units.

i / Example 3. Computer-
enhanced images of Pluto and
Charon, taken by the Hubble
Space Telescope.

Newton’s law of gravity

F =
Gm1m2

r2
[gravitational force between objects of mass

m1 and m2, separated by a distance r; r is not

the radius of anything ]

Newton conceived of gravity as an attraction between any two
masses in the universe. The constant G tells us how many newtons
the attractive force is for two 1-kg masses separated by a distance
of 1 m. The experimental determination of G in ordinary units
(as opposed to the special, nonmetric, units used in astronomy)
is described in section 10.5. This difficult measurement was not
accomplished until long after Newton’s death.

The units of G example 1
. What are the units of G?

. Solving for G in Newton’s law of gravity gives

G =
Fr2

m1m2
,

so the units of G must be N·m2/kg2. Fully adorned with units, the
value of G is 6.67× 10−11 N·m2/kg2.

Newton’s third law example 2
. Is Newton’s law of gravity consistent with Newton’s third law?

. The third law requires two things. First, m1’s force on m2 should
be the same as m2’s force on m1. This works out, because the
product m1m2 gives the same result if we interchange the labels 1
and 2. Second, the forces should be in opposite directions. This
condition is also satisfied, because Newton’s law of gravity refers
to an attraction: each mass pulls the other toward itself.

Pluto and Charon example 3
. Pluto’s moon Charon is unusually large considering Pluto’s size,
giving them the character of a double planet. Their masses are
1.25×1022 and 1.9x1021 kg, and their average distance from one
another is 1.96× 104 km. What is the gravitational force between
them?

. If we want to use the value of G expressed in SI (meter-kilogram-
second) units, we first have to convert the distance to 1.96 ×
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j / The conic sections are the
curves made by cutting the
surface of an infinite cone with a
plane.

k / An imaginary cannon able
to shoot cannonballs at very high
speeds is placed on top of an
imaginary, very tall mountain
that reaches up above the at-
mosphere. Depending on the
speed at which the ball is fired,
it may end up in a tightly curved
elliptical orbit, 1, a circular orbit,
2, a bigger elliptical orbit, 3, or a
nearly straight hyperbolic orbit, 4.

107 m. The force is(
6.67× 10−11 N·m2/kg2

) (
1.25× 1022 kg

) (
1.9× 1021 kg

)
(
1.96× 107 m

)2

= 4.1× 1018 N

The proportionality to 1/r2 in Newton’s law of gravity was not
entirely unexpected. Proportionalities to 1/r2 are found in many
other phenomena in which some effect spreads out from a point.
For instance, the intensity of the light from a candle is proportional
to 1/r2, because at a distance r from the candle, the light has to
be spread out over the surface of an imaginary sphere of area 4πr2.
The same is true for the intensity of sound from a firecracker, or the
intensity of gamma radiation emitted by the Chernobyl reactor. It’s
important, however, to realize that this is only an analogy. Force
does not travel through space as sound or light does, and force is
not a substance that can be spread thicker or thinner like butter on
toast.

Although several of Newton’s contemporaries had speculated
that the force of gravity might be proportional to 1/r2, none of
them, even the ones who had learned Newton’s laws of motion, had
had any luck proving that the resulting orbits would be ellipses, as
Kepler had found empirically. Newton did succeed in proving that
elliptical orbits would result from a 1/r2 force, but we postpone
the proof until the chapter 15 because it can be accomplished much
more easily using the concepts of energy and angular momentum.

Newton also predicted that orbits in the shape of hyperbolas
should be possible, and he was right. Some comets, for instance,
orbit the sun in very elongated ellipses, but others pass through
the solar system on hyperbolic paths, never to return. Just as the
trajectory of a faster baseball pitch is flatter than that of a more
slowly thrown ball, so the curvature of a planet’s orbit depends on
its speed. A spacecraft can be launched at relatively low speed,
resulting in a circular orbit about the earth, or it can be launched
at a higher speed, giving a more gently curved ellipse that reaches
farther from the earth, or it can be launched at a very high speed
which puts it in an even less curved hyperbolic orbit. As you go
very far out on a hyperbola, it approaches a straight line, i.e., its
curvature eventually becomes nearly zero.

Newton also was able to prove that Kepler’s second law (sweep-
ing out equal areas in equal time intervals) was a logical consequence
of his law of gravity. Newton’s version of the proof is moderately
complicated, but the proof becomes trivial once you understand the
concept of angular momentum, which will be covered later in the
course. The proof will therefore be deferred until section 15.7.
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self-check C
Which of Kepler’s laws would it make sense to apply to hyperbolic or-
bits? . Answer, p.
566

. Solved problem: Visiting Ceres page 282, problem 10

. Solved problem: Geosynchronous orbit page 284, problem 16

. Solved problem: Why a equals g page 283, problem 11

. Solved problem: Ida and Dactyl page 283, problem 12

. Solved problem: Another solar system page 283, problem 15

. Solved problem: Weight loss page 285, problem 19

. Solved problem: The receding moon page 284, problem 17

Discussion questions

A How could Newton find the speed of the moon to plug in to a =
v2/r?

B Two projectiles of different mass shot out of guns on the surface of
the earth at the same speed and angle will follow the same trajectories,
assuming that air friction is negligible. (You can verify this by throwing two
objects together from your hand and seeing if they separate or stay side
by side.) What corresponding fact would be true for satellites of the earth
having different masses?

C What is wrong with the following statement? “A comet in an elliptical
orbit speeds up as it approaches the sun, because the sun’s force on it is
increasing.”

D Why would it not make sense to expect the earth’s gravitational force
on a bowling ball to be inversely proportional to the square of the distance
between their surfaces rather than their centers?

E Does the earth accelerate as a result of the moon’s gravitational
force on it? Suppose two planets were bound to each other gravitationally
the way the earth and moon are, but the two planets had equal masses.
What would their motion be like?

F Spacecraft normally operate by firing their engines only for a few
minutes at a time, and an interplanetary probe will spend months or years
on its way to its destination without thrust. Suppose a spacecraft is in a
circular orbit around Mars, and it then briefly fires its engines in reverse,
causing a sudden decrease in speed. What will this do to its orbit? What
about a forward thrust?
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10.3 Apparent weightlessness
If you ask somebody at the bus stop why astronauts are weightless,
you’ll probably get one of the following two incorrect answers:

(1) They’re weightless because they’re so far from the earth.

(2) They’re weightless because they’re moving so fast.

The first answer is wrong, because the vast majority of astro-
nauts never get more than a thousand miles from the earth’s surface.
The reduction in gravity caused by their altitude is significant, but
not 100%. The second answer is wrong because Newton’s law of
gravity only depends on distance, not speed.

The correct answer is that astronauts in orbit around the earth
are not really weightless at all. Their weightlessness is only appar-
ent. If there was no gravitational force on the spaceship, it would
obey Newton’s first law and move off on a straight line, rather than
orbiting the earth. Likewise, the astronauts inside the spaceship are
in orbit just like the spaceship itself, with the earth’s gravitational
force continually twisting their velocity vectors around. The reason
they appear to be weightless is that they are in the same orbit as
the spaceship, so although the earth’s gravity curves their trajectory
down toward the deck, the deck drops out from under them at the
same rate.

Apparent weightlessness can also be experienced on earth. Any
time you jump up in the air, you experience the same kind of ap-
parent weightlessness that the astronauts do. While in the air, you
can lift your arms more easily than normal, because gravity does not
make them fall any faster than the rest of your body, which is falling
out from under them. The Russian air force now takes rich foreign
tourists up in a big cargo plane and gives them the feeling of weight-
lessness for a short period of time while the plane is nose-down and
dropping like a rock.

10.4 Vector addition of gravitational forces
Pick a flower on earth and you move the farthest star.

Paul Dirac

When you stand on the ground, which part of the earth is pulling
down on you with its gravitational force? Most people are tempted
to say that the effect only comes from the part directly under you,
since gravity always pulls straight down. Here are three observations
that might help to change your mind:

• If you jump up in the air, gravity does not stop affecting you
just because you are not touching the earth: gravity is a non-
contact force. That means you are not immune from the grav-
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l / Gravity only appears to
pull straight down because the
near perfect symmetry of the
earth makes the sideways com-
ponents of the total force on an
object cancel almost exactly. If
the symmetry is broken, e.g., by
a dense mineral deposit, the total
force is a little off to the side.

ity of distant parts of our planet just because you are not
touching them.

• Gravitational effects are not blocked by intervening matter.
For instance, in an eclipse of the moon, the earth is lined up
directly between the sun and the moon, but only the sun’s light
is blocked from reaching the moon, not its gravitational force
— if the sun’s gravitational force on the moon was blocked in
this situation, astronomers would be able to tell because the
moon’s acceleration would change suddenly. A more subtle
but more easily observable example is that the tides are caused
by the moon’s gravity, and tidal effects can occur on the side
of the earth facing away from the moon. Thus, far-off parts
of the earth are not prevented from attracting you with their
gravity just because there is other stuff between you and them.

• Prospectors sometimes search for underground deposits of dense
minerals by measuring the direction of the local gravitational
forces, i.e., the direction things fall or the direction a plumb
bob hangs. For instance, the gravitational forces in the region
to the west of such a deposit would point along a line slightly
to the east of the earth’s center. Just because the total grav-
itational force on you points down, that doesn’t mean that
only the parts of the earth directly below you are attracting
you. It’s just that the sideways components of all the force
vectors acting on you come very close to canceling out.

A cubic centimeter of lava in the earth’s mantle, a grain of silica
inside Mt. Kilimanjaro, and a flea on a cat in Paris are all attracting
you with their gravity. What you feel is the vector sum of all the
gravitational forces exerted by all the atoms of our planet, and for
that matter by all the atoms in the universe.

When Newton tested his theory of gravity by comparing the
orbital acceleration of the moon to the acceleration of a falling apple
on earth, he assumed he could compute the earth’s force on the
apple using the distance from the apple to the earth’s center. Was
he wrong? After all, it isn’t just the earth’s center attracting the
apple, it’s the whole earth. A kilogram of dirt a few feet under his
backyard in England would have a much greater force on the apple
than a kilogram of molten rock deep under Australia, thousands of
miles away. There’s really no obvious reason why the force should
come out right if you just pretend that the earth’s whole mass is
concentrated at its center. Also, we know that the earth has some
parts that are more dense, and some parts that are less dense. The
solid crust, on which we live, is considerably less dense than the
molten rock on which it floats. By all rights, the computation of the
vector sum of all the forces exerted by all the earth’s parts should
be a horrendous mess.
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m / Cut-away view of a spherical
shell of mass. A, who is outside
the shell, feels gravitational
forces from every part of the
shell — stronger forces from the
closer parts, and weaker ones
from the parts farther away. The
shell theorem states that the
vector sum of all the forces is the
same as if all the mass had been
concentrated at the center of the
shell. B, at the center, is clearly
weightless, because the shell’s
gravitational forces cancel out.
Surprisingly, C also feels exactly
zero gravitational force.

n / The asteroid Toutatis, imaged
by the space probe Chang’e-2 in
2012, is shaped like a bowling
pin.

Actually, Newton had sound reasons for treating the earth’s mass
as if it was concentrated at its center. First, although Newton no
doubt suspected the earth’s density was nonuniform, he knew that
the direction of its total gravitational force was very nearly toward
the earth’s center. That was strong evidence that the distribution
of mass was very symmetric, so that we can think of the earth as
being made of layers, like an onion, with each layer having constant
density throughout. (Today there is further evidence for symmetry
based on measurements of how the vibrations from earthquakes and
nuclear explosions travel through the earth.) He then considered the
gravitational forces exerted by a single such thin shell, and proved
the following theorem, known as the shell theorem:

If an object lies outside a thin, spherical shell of mass, then
the vector sum of all the gravitational forces exerted by all the
parts of the shell is the same as if the shell’s mass had been
concentrated at its center. If the object lies inside the shell,
then all the gravitational forces cancel out exactly.

For terrestrial gravity, each shell acts as though its mass was at the
center, so the result is the same as if the whole mass was there.

The second part of the shell theorem, about the gravitational
forces canceling inside the shell, is a little surprising. Obviously
the forces would all cancel out if you were at the exact center of
a shell, but it’s not at all obvious that they should still cancel out
perfectly if you are inside the shell but off-center. The whole idea
might seem academic, since we don’t know of any hollow planets in
our solar system that astronauts could hope to visit, but actually
it’s a useful result for understanding gravity within the earth, which
is an important issue in geology. It doesn’t matter that the earth
is not actually hollow. In a mine shaft at a depth of, say, 2 km, we
can use the shell theorem to tell us that the outermost 2 km of the
earth has no net gravitational effect, and the gravitational force is
the same as what would be produced if the remaining, deeper, parts
of the earth were all concentrated at its center.

The shell theorem doesn’t apply to things that aren’t spherical.
At the point marked with a dot in figure n, we might imagine that
gravity was in the direction shown by the dashed arrow, pointing
toward the asteroid’s center of mass, so that the surface would be
a vertical cliff almost a kilometer tall. In reality, calculations based
on the assumption of uniform density show that the direction of
the gravitational field is approximately as shown by the solid arrow,
making the slope only about 60◦.1 This happens because gravity at
this location is more strongly affected by the nearby “neck” than by
the more distant “belly.” This slope is still believed to be too steep
to keep dirt and rocks from sliding off (see problem 11, p. 235).

1Hudson et al., Icarus 161 (2003) 346
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self-check D
Suppose you’re at the bottom of a deep mineshaft, which means you’re
still quite far from the center of the earth. The shell theorem says that
the shell of mass you’ve gone inside exerts zero total force on you.
Discuss which parts of the shell are attracting you in which directions,
and how strong these forces are. Explain why it’s at least plausible that
they cancel. . Answer, p. 567

Discussion questions

A If you hold an apple, does the apple exert a gravitational force on
the earth? Is it much weaker than the earth’s gravitational force on the
apple? Why doesn’t the earth seem to accelerate upward when you drop
the apple?

B When astronauts travel from the earth to the moon, how does the
gravitational force on them change as they progress?

C How would the gravity in the first-floor lobby of a massive skyscraper
compare with the gravity in an open field outside of the city?

D In a few billion years, the sun will start undergoing changes that will
eventually result in its puffing up into a red giant star. (Near the beginning
of this process, the earth’s oceans will boil off, and by the end, the sun will
probably swallow the earth completely.) As the sun’s surface starts to get
closer and closer to the earth, how will the earth’s orbit be affected?

10.5 Weighing the earth
Let’s look more closely at the application of Newton’s law of gravity
to objects on the earth’s surface. Since the earth’s gravitational
force is the same as if its mass was all concentrated at its center,
the force on a falling object of mass m is given by

F = GMearth m / r2
earth.

The object’s acceleration equals F/m, so the object’s mass cancels
out and we get the same acceleration for all falling objects, as we
knew we should:

g = GMearth / r
2
earth.

Newton knew neither the mass of the earth nor a numerical value
for the constant G. But if someone could measure G, then it would
be possible for the first time in history to determine the mass of the
earth! The only way to measure G is to measure the gravitational
force between two objects of known mass, but that’s an exceedingly
difficult task, because the force between any two objects of ordinary
size is extremely small. The English physicist Henry Cavendish was
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p / A simplified version of
Cavendish’s apparatus.

o / Cavendish’s apparatus. The two large balls are fixed in place,
but the rod from which the two small balls hang is free to twist under the
influence of the gravitational forces.

the first to succeed, using the apparatus shown in figures o and p.
The two larger balls were lead spheres 8 inches in diameter, and each
one attracted the small ball near it. The two small balls hung from
the ends of a horizontal rod, which itself hung by a thin thread. The
frame from which the larger balls hung could be rotated by hand
about a vertical axis, so that for instance the large ball on the right
would pull its neighboring small ball toward us and while the small
ball on the left would be pulled away from us. The thread from
which the small balls hung would thus be twisted through a small
angle, and by calibrating the twist of the thread with known forces,
the actual gravitational force could be determined. Cavendish set
up the whole apparatus in a room of his house, nailing all the doors
shut to keep air currents from disturbing the delicate apparatus.
The results had to be observed through telescopes stuck through
holes drilled in the walls. Cavendish’s experiment provided the first
numerical values for G and for the mass of the earth. The presently
accepted value of G is 6.67× 10−11 N·m2/kg2.

Knowing G not only allowed the determination of the earth’s
mass but also those of the sun and the other planets. For instance,
by observing the acceleration of one of Jupiter’s moons, we can infer
the mass of Jupiter. The following table gives the distances of the
planets from the sun and the masses of the sun and planets. (Other
data are given in the back of the book.)
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average distance from
the sun, in units of the
earth’s average distance
from the sun

mass, in units of the
earth’s mass

sun — 330,000

Mercury 0.38 0.056

Venus 0.72 0.82

earth 1 1

Mars 1.5 0.11

Jupiter 5.2 320

Saturn 9.5 95

Uranus 19 14

Neptune 30 17

Pluto 39 0.002

Discussion questions

A It would have been difficult for Cavendish to start designing an
experiment without at least some idea of the order of magnitude of G.
How could he estimate it in advance to within a factor of 10?

B Fill in the details of how one would determine Jupiter’s mass by
observing the acceleration of one of its moons. Why is it only necessary
to know the acceleration of the moon, not the actual force acting on it?
Why don’t we need to know the mass of the moon? What about a planet
that has no moons, such as Venus — how could its mass be found?

10.6 ? Dark energy
Until recently, physicists thought they understood gravity fairly
well. Einstein had modified Newton’s theory, but certain charac-
teristrics of gravitational forces were firmly established. For one
thing, they were always attractive. If gravity always attracts, then
it is logical to ask why the universe doesn’t collapse. Newton had
answered this question by saying that if the universe was infinite in
all directions, then it would have no geometric center toward which
it would collapse; the forces on any particular star or planet ex-
erted by distant parts of the universe would tend to cancel out by
symmetry. More careful calculations, however, show that Newton’s
universe would have a tendency to collapse on smaller scales: any
part of the universe that happened to be slightly more dense than
average would contract further, and this contraction would result
in stronger gravitational forces, which would cause even more rapid
contraction, and so on.

When Einstein overhauled gravity, the same problem reared its
ugly head. Like Newton, Einstein was predisposed to believe in a
universe that was static, so he added a special repulsive term to his
equations, intended to prevent a collapse. This term was not associ-
ated with any interaction of mass with mass, but represented merely
an overall tendency for space itself to expand unless restrained by
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the matter that inhabited it. It turns out that Einstein’s solution,
like Newton’s, is unstable. Furthermore, it was soon discovered
observationally that the universe was expanding, and this was in-
terpreted by creating the Big Bang model, in which the universe’s
current expansion is the aftermath of a fantastically hot explosion.2

An expanding universe, unlike a static one, was capable of being ex-
plained with Einstein’s equations, without any repulsion term. The
universe’s expansion would simply slow down over time due to the
attractive gravitational forces. After these developments, Einstein
said woefully that adding the repulsive term, known as the cosmo-
logical constant, had been the greatest blunder of his life.

q / The WMAP probe’s map of the
cosmic microwave background is
like a “baby picture” of the uni-
verse.

This was the state of things until 1999, when evidence began to
turn up that the universe’s expansion has been speeding up rather
than slowing down! The first evidence came from using a telescope
as a sort of time machine: light from a distant galaxy may have
taken billions of years to reach us, so we are seeing it as it was far
in the past. Looking back in time, astronomers saw the universe
expanding at speeds that were lower, rather than higher. At first
they were mortified, since this was exactly the opposite of what
had been expected. The statistical quality of the data was also not
good enough to constitute ironclad proof, and there were worries
about systematic errors. The case for an accelerating expansion has
however been supported by high-precision mapping of the dim, sky-
wide afterglow of the Big Bang, known as the cosmic microwave
background. This is discussed in more detail in section 27.4.

So now Einstein’s “greatest blunder” has been resurrected. Since
we don’t actually know whether or not this self-repulsion of space
has a constant strength, the term “cosmological constant” has lost
currency. Nowadays physicists usually refer to the phenomenon as
“dark energy.” Picking an impressive-sounding name for it should
not obscure the fact that we know absolutely nothing about the
nature of the effect or why it exists.

Dark energy is discussed in more detail on p. 832.

2Section 19.5 presents some evidence for the Big Bang theory.
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10.7 ? A gravitational test of Newton’s first law
This section describes a high-precision test of Newton’s first law.
The left panel of figure r shows a mirror on the moon. By reflecting
laser pulses from the mirror, the distance from the earth to the moon
has been measured to the phenomenal precision of a few centimeters,
or about one part in 1010. This distance changes for a variety of
known reasons. The biggest effect is that the moon’s orbit is not
a circle but an ellipse, with its long axis about 11% longer than
its short one. A variety of other effects can also be accounted for,
including such exotic phenomena as the slightly nonspherical shape
of the earth, and the gravitational forces of bodies as small and
distant as Pluto. Suppose for simplicity that all these effects had
never existed, so that the moon was initially placed in a perfectly
circular orbit around the earth, and the earth in a perfectly circular
orbit around the sun.

r / Left: The Apollo 11 mission left behind a mirror, which in this photo shows the reflection of the black
sky. Right: A highly exaggerated example of an observation that would disprove Newton’s first law. The radius
of the moon’s orbit gets bigger and smaller over the course of a year.

If we then observed something like what is shown in the right
panel of figure r, Newton’s first law would be disproved. If space
itself is symmetrical in all directions, then there is no reason for
the moon’s orbit to poof up near the top of the diagram and con-
tract near the bottom. The only possible explanation would be that
there was some preferred frame of reference of the type envisioned
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by Aristotle, and that our solar system was moving relative to it.
Another test for a preferred frame was described in example 3 on
p. 247.

One could then imagine that the gravitational force of the earth
on the moon could be affected by the moon’s motion relative to
this frame. The lunar laser ranging data3 contain no measurable
effect of the type shown in figure r, so that if the moon’s orbit is
distorted in this way (or in a variety of other ways), the distortion
must be less than a few centimeters. This constitutes a very strict
upper limit on violation of Newton’s first law by gravitational forces.
If the first law is violated, and the violation causes a fractional
change in gravity that is proportional to the velocity relative to the
hypothetical preferred frame, then the change is no more than about
one part in 107, even if the velocity is comparable to the speed of
light.

3Battat, Chandler, and Stubbs, http://arxiv.org/abs/0710.0702
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Summary
Selected vocabulary
ellipse . . . . . . . a flattened circle; one of the conic sections
conic section . . . a curve formed by the intersection of a plane

and an infinite cone
hyperbola . . . . another conic section; it does not close back

on itself
period . . . . . . . the time required for a planet to complete one

orbit; more generally, the time for one repeti-
tion of some repeating motion

focus . . . . . . . one of two special points inside an ellipse: the
ellipse consists of all points such that the sum
of the distances to the two foci equals a certain
number; a hyperbola also has a focus

Notation
G . . . . . . . . . the constant of proportionality in Newton’s

law of gravity; the gravitational force of at-
traction between two 1-kg spheres at a center-
to-center distance of 1 m

Summary

Kepler deduced three empirical laws from data on the motion of
the planets:

Kepler’s elliptical orbit law: The planets orbit the sun in ellip-
tical orbits with the sun at one focus.

Kepler’s equal-area law: The line connecting a planet to the sun
sweeps out equal areas in equal amounts of time.

Kepler’s law of periods: The time required for a planet to orbit
the sun is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Newton was able to find a more fundamental explanation for these
laws. Newton’s law of gravity states that the magnitude of the
attractive force between any two objects in the universe is given by

F = Gm1m2/r
2.

Weightlessness of objects in orbit around the earth is only appar-
ent. An astronaut inside a spaceship is simply falling along with
the spaceship. Since the spaceship is falling out from under the as-
tronaut, it appears as though there was no gravity accelerating the
astronaut down toward the deck.

Gravitational forces, like all other forces, add like vectors. A
gravitational force such as we ordinarily feel is the vector sum of all
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the forces exerted by all the parts of the earth. As a consequence of
this, Newton proved the shell theorem for gravitational forces:

If an object lies outside a thin, uniform shell of mass, then the
vector sum of all the gravitational forces exerted by all the parts of
the shell is the same as if all the shell’s mass was concentrated at its
center. If the object lies inside the shell, then all the gravitational
forces cancel out exactly.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Roy has a mass of 60 kg. Laurie has a mass of 65 kg. They
are 1.5 m apart.
(a) What is the magnitude of the gravitational force of the earth on
Roy?
(b) What is the magnitude of Roy’s gravitational force on the earth?
(c) What is the magnitude of the gravitational force between Roy
and Laurie?
(d) What is the magnitude of the gravitational force between Laurie
and the sun?

√

2 During a solar eclipse, the moon, earth and sun all lie on
the same line, with the moon between the earth and sun. Define
your coordinates so that the earth and moon lie at greater x values
than the sun. For each force, give the correct sign as well as the
magnitude. (a) What force is exerted on the moon by the sun? (b)
On the moon by the earth? (c) On the earth by the sun? (d) What
total force is exerted on the sun? (e) On the moon? (f) On the
earth?

√

3 Suppose that on a certain day there is a crescent moon, and
you can tell by the shape of the crescent that the earth, sun and
moon form a triangle with a 135◦ interior angle at the moon’s corner.
What is the magnitude of the total gravitational force of the earth
and the sun on the moon? (If you haven’t done problem 2 already,
you might want to try it first, since it’s easier, and some of its results
can be recycled in this problem.)

√

Problem 3.

4 How high above the Earth’s surface must a rocket be in order
to have 1/100 the weight it would have at the surface? Express your
answer in units of the radius of the Earth.

√

5 The star Lalande 21185 was found in 1996 to have two planets
in roughly circular orbits, with periods of 6 and 30 years. What is
the ratio of the two planets’ orbital radii?

√

6 In a Star Trek episode, the Enterprise is in a circular orbit
around a planet when something happens to the engines. Spock
then tells Kirk that the ship will spiral into the planet’s surface
unless they can fix the engines. Is this scientifically correct? Why?
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Problem 8.

7 (a) Suppose a rotating spherical body such as a planet has
a radius r and a uniform density ρ, and the time required for one
rotation is T . At the surface of the planet, the apparent acceleration
of a falling object is reduced by the acceleration of the ground out
from under it. Derive an equation for the apparent acceleration of
gravity, g, at the equator in terms of r, ρ, T , and G.

√

(b) Applying your equation from a, by what fraction is your appar-
ent weight reduced at the equator compared to the poles, due to the
Earth’s rotation?

√

(c) Using your equation from a, derive an equation giving the value
of T for which the apparent acceleration of gravity becomes zero,
i.e., objects can spontaneously drift off the surface of the planet.
Show that T only depends on ρ, and not on r.

√

(d) Applying your equation from c, how long would a day have to
be in order to reduce the apparent weight of objects at the equator
of the Earth to zero? [Answer: 1.4 hours]
(e) Astronomers have discovered objects they called pulsars, which
emit bursts of radiation at regular intervals of less than a second.
If a pulsar is to be interpreted as a rotating sphere beaming out a
natural “searchlight” that sweeps past the earth with each rotation,
use your equation from c to show that its density would have to be
much greater than that of ordinary matter.
(f) Astrophysicists predicted decades ago that certain stars that used
up their sources of energy could collapse, forming a ball of neutrons
with the fantastic density of ∼ 1017 kg/m3. If this is what pulsars
really are, use your equation from c to explain why no pulsar has
ever been observed that flashes with a period of less than 1 ms or
so.

8 You are considering going on a space voyage to Mars, in which
your route would be half an ellipse, tangent to the Earth’s orbit at
one end and tangent to Mars’ orbit at the other. Your spacecraft’s
engines will only be used at the beginning and end, not during the
voyage. How long would the outward leg of your trip last? (Assume
the orbits of Earth and Mars are circular.)

√

9 (a) If the earth was of uniform density, would your weight be
increased or decreased at the bottom of a mine shaft? Explain.
(b) In real life, objects weigh slightly more at the bottom of a mine
shaft. What does that allow us to infer about the Earth? ?

10 Ceres, the largest asteroid in our solar system, is a spherical
body with a mass 6000 times less than the earth’s, and a radius
which is 13 times smaller. If an astronaut who weighs 400 N on
earth is visiting the surface of Ceres, what is her weight?

. Solution, p. 557
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Problem 12.

11 Prove, based on Newton’s laws of motion and Newton’s law
of gravity, that all falling objects have the same acceleration if they
are dropped at the same location on the earth and if other forces
such as friction are unimportant. Do not just say, “g = 9.8 m/s2 –
it’s constant.” You are supposed to be proving that g should be the
same number for all objects. . Solution, p. 557

12 The figure shows an image from the Galileo space probe
taken during its August 1993 flyby of the asteroid Ida. Astronomers
were surprised when Galileo detected a smaller object orbiting Ida.
This smaller object, the only known satellite of an asteroid in our
solar system, was christened Dactyl, after the mythical creatures
who lived on Mount Ida, and who protected the infant Zeus. For
scale, Ida is about the size and shape of Orange County, and Dactyl
the size of a college campus. Galileo was unfortunately unable to
measure the time, T , required for Dactyl to orbit Ida. If it had,
astronomers would have been able to make the first accurate deter-
mination of the mass and density of an asteroid. Find an equation
for the density, ρ, of Ida in terms of Ida’s known volume, V , the
known radius, r, of Dactyl’s orbit, and the lamentably unknown
variable T . (This is the same technique that was used successfully
for determining the masses and densities of the planets that have
moons.) . Solution, p. 557

13 If a bullet is shot straight up at a high enough velocity, it will
never return to the earth. This is known as the escape velocity. We
will discuss escape velocity using the concept of energy later in the
course, but it can also be gotten at using straightforward calculus.
In this problem, you will analyze the motion of an object of mass m
whose initial velocity is exactly equal to escape velocity. We assume
that it is starting from the surface of a spherically symmetric planet
of mass M and radius b. The trick is to guess at the general form
of the solution, and then determine the solution in more detail. As-
sume (as is true) that the solution is of the form r = ktp, where r is
the object’s distance from the center of the planet at time t, and k
and p are constants.
(a) Find the acceleration, and use Newton’s second law and New-
ton’s law of gravity to determine k and p. You should find that the
result is independent of m.

√

(b) What happens to the velocity as t approaches infinity?
(c) Determine escape velocity from the Earth’s surface.

√ ∫
14 Astronomers have recently observed stars orbiting at very
high speeds around an unknown object near the center of our galaxy.
For stars orbiting at distances of about 1014 m from the object,
the orbital velocities are about 106 m/s. Assuming the orbits are
circular, estimate the mass of the object, in units of the mass of
the sun, 2 × 1030 kg. If the object was a tightly packed cluster of
normal stars, it should be a very bright source of light. Since no
visible light is detected coming from it, it is instead believed to be
a supermassive black hole.

√
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15 Astronomers have detected a solar system consisting of three
planets orbiting the star Upsilon Andromedae. The planets have
been named b, c, and d. Planet b’s average distance from the star
is 0.059 A.U., and planet c’s average distance is 0.83 A.U., where an
astronomical unit or A.U. is defined as the distance from the Earth
to the sun. For technical reasons, it is possible to determine the
ratios of the planets’ masses, but their masses cannot presently be
determined in absolute units. Planet c’s mass is 3.0 times that of
planet b. Compare the star’s average gravitational force on planet
c with its average force on planet b. [Based on a problem by Arnold
Arons.] . Solution, p. 558

16 Some communications satellites are in orbits called geosyn-
chronous: the satellite takes one day to orbit the earth from west
to east, so that as the earth spins, the satellite remains above the
same point on the equator. What is such a satellite’s altitude above
the surface of the earth? . Solution, p. 558

17 As discussed in more detail in example 3 on p. 398, tidal
interactions with the earth are causing the moon’s orbit to grow
gradually larger. Laser beams bounced off of a mirror left on the
moon by astronauts have allowed a measurement of the moon’s rate
of recession, which is about 4 cm per year. This means that the
gravitational force acting between earth and moon is decreasing.
By what fraction does the force decrease with each 27-day orbit?
[Based on a problem by Arnold Arons.]

. Hint, p. 547 . Solution, p. 558

18 Suppose that we inhabited a universe in which, instead of
Newton’s law of gravity, we had F = k

√
m1m2/r

2, where k is some
constant with different units than G. (The force is still attrac-
tive.) However, we assume that a = F/m and the rest of Newtonian
physics remains true, and we use a = F/m to define our mass scale,
so that, e.g., a mass of 2 kg is one which exhibits half the accelera-
tion when the same force is applied to it as to a 1 kg mass.
(a) Is this new law of gravity consistent with Newton’s third law?
(b) Suppose you lived in such a universe, and you dropped two un-
equal masses side by side. What would happen?
(c) Numerically, suppose a 1.0-kg object falls with an acceleration
of 10 m/s2. What would be the acceleration of a rain drop with a
mass of 0.1 g? Would you want to go out in the rain?
(d) If a falling object broke into two unequal pieces while it fell,
what would happen?
(e) Invent a law of gravity that results in behavior that is the op-
posite of what you found in part b. [Based on a problem by Arnold
Arons.]
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Problem 21.

19 (a) A certain vile alien gangster lives on the surface of an
asteroid, where his weight is 0.20 N. He decides he needs to lose
weight without reducing his consumption of princesses, so he’s going
to move to a different asteroid where his weight will be 0.10 N. The
real estate agent’s database has asteroids listed by mass, however,
not by surface gravity. Assuming that all asteroids are spherical
and have the same density, how should the mass of his new asteroid
compare with that of his old one?
(b) Jupiter’s mass is 318 times the Earth’s, and its gravity is about
twice Earth’s. Is this consistent with the results of part a? If not,
how do you explain the discrepancy? . Solution, p. 558

20 Where would an object have to be located so that it would
experience zero total gravitational force from the earth and moon?√

21 The planet Uranus has a mass of 8.68× 1025 kg and a radius
of 2.56× 104 km. The figure shows the relative sizes of Uranus and
Earth.
(a) Compute the ratio gU/gE , where gU is the strength of the grav-
itational field at the surface of Uranus and gE is the corresponding
quantity at the surface of the Earth.

√

(b) What is surprising about this result? How do you explain it?

22 The International Space Station orbits at an average altitude
of about 370 km above sea level. Compute the value of g at that
altitude.

√
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Problem 23: New Horizons at
its closest approach to Jupiter.
(Jupiter’s four largest moons are
shown for illustrative purposes.)
The masses are:
sun: 1.9891× 1030 kg
Jupiter: 1.8986× 1027 kg
New Horizons: 465.0 kg

23 On Feb. 28, 2007, the New Horizons space probe, on its way
to a 2015 flyby of Pluto, passed by the planet Jupiter for a gravity-
assisted maneuver that increased its speed and changed its course.
The dashed line in the figure shows the spacecraft’s trajectory, which
is curved because of three forces: the force of the exhaust gases from
the probe’s own engines, the sun’s gravitational force, and Jupiter’s
gravitational force. Find the magnitude of the total gravitational
force acting on the probe. You will find that the sun’s force is much
smaller than Jupiter’s, so that the magnitude of the total force is
determined almost entirely by Jupiter’s force. However, this is a
high-precision problem, and you will find that the total force is
slightly different from Jupiter’s force.

√

24 On an airless body such as the moon, there is no atmospheric
friction, so it should be possible for a satellite to orbit at a very low
altitude, just high enough to keep from hitting the mountains. (a)
Suppose that such a body is a smooth sphere of uniform density
ρ and radius r. Find the velocity required for a ground-skimming
orbit.

√

(b) A typical asteroid has a density of about 2 g/cm3, i.e., twice that
of water. (This is a lot lower than the density of the earth’s crust,
probably indicating that the low gravity is not enough to compact
the material very tightly, leaving lots of empty space inside.) Sup-
pose that it is possible for an astronaut in a spacesuit to jump at
2 m/s. Find the radius of the largest asteroid on which it would be
possible to jump into a ground-skimming orbit.

√

286 Chapter 10 Gravity



25 The figure shows a region of outer space in which two stars
have exploded, leaving behind two overlapping spherical shells of
gas, which we assume to remain at rest. The figure is a cross-
section in a plane containing the shells’ centers. A space probe is
released with a very small initial speed at the point indicated by
the arrow, initially moving in the direction indicated by the dashed
line. Without any further information, predict as much as possible
about the path followed by the probe and its changes in speed along
that path. ?

Problem 25.

26 Approximate the earth’s density as being constant. (a) Find
the gravitational field at a point P inside the earth and half-way
between the center and the surface. Express your result as a ratio
gP /gS relative to the field we experience at the surface. (b) As a
check on your answer, make sure that the same reasoning leads to
a reasonable result when the fraction 1/2 is replaced by the value 0
(P being the earth’s center) or the value 1 (P being a point on the
surface).

Problems 287



Problem 28.

27 The earth is divided into solid inner core, a liquid outer core,
and a plastic mantle. Physical properties such as density change
discontinuously at the boundaries between one layer and the next.
Although the density is not completely constant within each region,
we will approximate it as being so for the purposes of this problem.
(We neglect the crust as well.) Let R be the radius of the earth
as a whole and M its mass. The following table gives a model of
some properties of the three layers, as determined by methods such
as the observation of earthquake waves that have propagated from
one side of the planet to the other.

region outer radius/R mass/M
mantle 1 0.69
outer core 0.55 0.29
inner core 0.19 0.017

The boundary between the mantle and the outer core is referred to
as the Gutenberg discontinuity. Let gs be the strength of the earth’s
gravitational field at its surface and gG its value at the Gutenberg
discontinuity. Find gG/gs.

√

28 The figure shows the International Space Station (ISS). One of
the purposes of the ISS is supposed to be to carry out experiments in
microgravity. However, the following factor limits this application.
The ISS orbits the earth once every 92.6 minutes. It is desirable to
keep the same side of the station always oriented toward the earth,
which means that the station has to rotate with the same period.
In the photo, the direction of orbital motion is left or right on the
page, so the rotation is about the axis shown as up and down on the
page. The greatest distance of any pressurized compartment from
the axis of rotation is 36.5 meters. Find the acceleration due to the
rotation at this point, and the apparent weight of a 60 kg astronaut
at that location.

√
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Exercise 10: The shell theorem
This exercise is an approximate numerical test of the shell theorem. There are seven masses
A-G, each being one kilogram. Masses A-F, each one meter from the center, form a shape like
two Egyptian pyramids joined at their bases; this is a rough approximation to a six-kilogram
spherical shell of mass. Mass G is five meters from the center of the main group. The class will
divide into six groups and split up the work required in order to calculate the vector sum of the
six gravitational forces exerted on mass G. Depending on the size of the class, more than one
group may be assigned to deal with the contribution of the same mass to the total force, and
the redundant groups can check each other’s results.

1. Discuss as a class what can be done to simplify the task of calculating the vector sum, and
how to organize things so that each group can work in parallel with the others.

2. Each group should write its results on the board in units of piconewtons, retaining five
significant figures of precision. Everyone will need to use the same value for the gravitational
constant, G = 6.6743× 10−11 N·m2/kg2.

3. The class will determine the vector sum and compare with the result that would be obtained
with the shell theorem.
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In July of 1994, Comet Shoemaker-Levy struck the planet Jupiter, de-
positing 7 × 1022 joules of energy, and incidentally giving rise to a series
of Hollywood movies in which our own planet is threatened by an impact
by a comet or asteroid. There is evidence that such an impact caused
the extinction of the dinosaurs. Left: Jupiter’s gravitational force on the
near side of the comet was greater than on the far side, and this differ-
ence in force tore up the comet into a string of fragments. Two separate
telescope images have been combined to create the illusion of a point of
view just behind the comet. (The colored fringes at the edges of Jupiter
are artifacts of the imaging system.) Top: A series of images of the plume
of superheated gas kicked up by the impact of one of the fragments. The
plume is about the size of North America. Bottom: An image after all the
impacts were over, showing the damage done.

Chapter 11

Conservation of Energy

11.1 The search for a perpetual motion
machine

Don’t underestimate greed and laziness as forces for progress. Mod-
ern chemistry was born from the collision of lust for gold with dis-
taste for the hard work of finding it and digging it up. Failed efforts
by generations of alchemists to turn lead into gold led finally to the
conclusion that it could not be done: certain substances, the chem-
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a / The magnet draws the
ball to the top of the ramp, where
it falls through the hole and rolls
back to the bottom.

b / As the wheel spins clock-
wise, the flexible arms sweep
around and bend and unbend. By
dropping off its ball on the ramp,
the arm is supposed to make
itself lighter and easier to lift over
the top. Picking its own ball back
up again on the right, it helps to
pull the right side down.

ical elements, are fundamental, and chemical reactions can neither
increase nor decrease the amount of an element such as gold.

Now flash forward to the early industrial age. Greed and laziness
have created the factory, the train, and the ocean liner, but in each
of these is a boiler room where someone gets sweaty shoveling the
coal to fuel the steam engine. Generations of inventors have tried to
create a machine, called a perpetual motion machine, that would run
forever without fuel. Such a machine is not forbidden by Newton’s
laws of motion, which are built around the concepts of force and
inertia. Force is free, and can be multiplied indefinitely with pulleys,
gears, or levers. The principle of inertia seems even to encourage
the belief that a cleverly constructed machine might not ever run
down.

Figures a and b show two of the innumerable perpetual motion
machines that have been proposed. The reason these two examples
don’t work is not much different from the reason all the others have
failed. Consider machine a. Even if we assume that a properly
shaped ramp would keep the ball rolling smoothly through each
cycle, friction would always be at work. The designer imagined that
the machine would repeat the same motion over and over again, so
that every time it reached a given point its speed would be exactly
the same as the last time. But because of friction, the speed would
actually be reduced a little with each cycle, until finally the ball
would no longer be able to make it over the top.

Friction has a way of creeping into all moving systems. The
rotating earth might seem like a perfect perpetual motion machine,
since it is isolated in the vacuum of outer space with nothing to exert
frictional forces on it. But in fact our planet’s rotation has slowed
drastically since it first formed, and the earth continues to slow
its rotation, making today just a little longer than yesterday. The
very subtle source of friction is the tides. The moon’s gravity raises
bulges in the earth’s oceans, and as the earth rotates the bulges
progress around the planet. Where the bulges encounter land, there
is friction, which slows the earth’s rotation very gradually.

11.2 Energy
The analysis based on friction is somewhat superficial, however. One
could understand friction perfectly well and yet imagine the follow-
ing situation. Astronauts bring back a piece of magnetic ore from
the moon which does not behave like ordinary magnets. A normal
bar magnet, c/1, attracts a piece of iron essentially directly toward
it, and has no left- or right-handedness. The moon rock, however,
exerts forces that form a whirlpool pattern around it, 2. NASA
goes to a machine shop and has the moon rock put in a lathe and
machined down to a smooth cylinder, 3. If we now release a ball
bearing on the surface of the cylinder, the magnetic force whips it
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c / A mysterious moon rock
makes a perpetual motion
machine.

d / Example 1.

around and around at ever higher speeds. Of course there is some
friction, but there is a net gain in speed with each revolution.

Physicists would lay long odds against the discovery of such a
moon rock, not just because it breaks the rules that magnets nor-
mally obey but because, like the alchemists, they have discovered
a very deep and fundamental principle of nature which forbids cer-
tain things from happening. The first alchemist who deserved to
be called a chemist was the one who realized one day, “In all these
attempts to create gold where there was none before, all I’ve been
doing is shuffling the same atoms back and forth among different
test tubes. The only way to increase the amount of gold in my lab-
oratory is to bring some in through the door.” It was like having
some of your money in a checking account and some in a savings ac-
count. Transferring money from one account into the other doesn’t
change the total amount.

We say that the number of grams of gold is a conserved quan-
tity. In this context, the word “conserve” does not have its usual
meaning of trying not to waste something. In physics, a conserved
quantity is something that you wouldn’t be able to get rid of even
if you wanted to. Conservation laws in physics always refer to a
closed system, meaning a region of space with boundaries through
which the quantity in question is not passing. In our example, the
alchemist’s laboratory is a closed system because no gold is coming
in or out through the doors.

Conservation of mass example 1
In figure d, the stream of water is fatter near the mouth of the
faucet, and skinnier lower down. This is because the water speeds
up as it falls. If the cross-sectional area of the stream was equal
all along its length, then the rate of flow through a lower cross-
section would be greater than the rate of flow through a cross-
section higher up. Since the flow is steady, the amount of wa-
ter between the two cross-sections stays constant. The cross-
sectional area of the stream must therefore shrink in inverse pro-
portion to the increasing speed of the falling water. This is an
example of conservation of mass.

In general, the amount of any particular substance is not con-
served. Chemical reactions can change one substance into another,
and nuclear reactions can even change one element into another.
The total mass of all substances is however conserved:

the law of conservation of mass
The total mass of a closed system always remains constant. Mass
cannot be created or destroyed, but only transferred from one system
to another.

A similar lightbulb eventually lit up in the heads of the people
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who had been frustrated trying to build a perpetual motion machine.
In perpetual motion machine a, consider the motion of one of the
balls. It performs a cycle of rising and falling. On the way down it
gains speed, and coming up it slows back down. Having a greater
speed is like having more money in your checking account, and being
high up is like having more in your savings account. The device is
simply shuffling funds back and forth between the two. Having more
balls doesn’t change anything fundamentally. Not only that, but
friction is always draining off money into a third “bank account:”
heat. The reason we rub our hands together when we’re cold is that
kinetic friction heats things up. The continual buildup in the “heat
account” leaves less and less for the “motion account” and “height
account,” causing the machine eventually to run down.

These insights can be distilled into the following basic principle
of physics:

the law of conservation of energy
It is possible to give a numerical rating, called energy, to the state
of a physical system. The total energy is found by adding up contri-
butions from characteristics of the system such as motion of objects
in it, heating of the objects, and the relative positions of objects
that interact via forces. The total energy of a closed system always
remains constant. Energy cannot be created or destroyed, but only
transferred from one system to another.

The moon rock story violates conservation of energy because the
rock-cylinder and the ball together constitute a closed system. Once
the ball has made one revolution around the cylinder, its position
relative to the cylinder is exactly the same as before, so the numer-
ical energy rating associated with its position is the same as before.
Since the total amount of energy must remain constant, it is im-
possible for the ball to have a greater speed after one revolution. If
it had picked up speed, it would have more energy associated with
motion, the same amount of energy associated with position, and a
little more energy associated with heating through friction. There
cannot be a net increase in energy.

Converting one form of energy to another example 2
Dropping a rock: The rock loses energy because of its changing
position with respect to the earth. Nearly all that energy is trans-
formed into energy of motion, except for a small amount lost to
heat created by air friction.

Sliding in to home base: The runner’s energy of motion is nearly
all converted into heat via friction with the ground.

Accelerating a car: The gasoline has energy stored in it, which
is released as heat by burning it inside the engine. Perhaps 10%
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e / Example 3.

of this heat energy is converted into the car’s energy of motion.
The rest remains in the form of heat, which is carried away by the
exhaust.

Cruising in a car: As you cruise at constant speed in your car, all
the energy of the burning gas is being converted into heat. The
tires and engine get hot, and heat is also dissipated into the air
through the radiator and the exhaust.

Stepping on the brakes: All the energy of the car’s motion is con-
verted into heat in the brake shoes.

Stevin’s machine example 3
The Dutch mathematician and engineer Simon Stevin proposed

the imaginary machine shown in figure e, which he had inscribed
on his tombstone. This is an interesting example, because it
shows a link between the force concept used earlier in this course,
and the energy concept being developed now.

The point of the imaginary machine is to show the mechanical
advantage of an inclined plane. In this example, the triangle has
the proportions 3-4-5, but the argument works for any right trian-
gle. We imagine that the chain of balls slides without friction, so
that no energy is ever converted into heat. If we were to slide
the chain clockwise by one step, then each ball would take the
place of the one in front of it, and the over all configuration would
be exactly the same. Since energy is something that only de-
pends on the state of the system, the energy would have to be
the same. Similarly for a counterclockwise rotation, no energy of
position would be released by gravity. This means that if we place
the chain on the triangle, and release it at rest, it can’t start mov-
ing, because there would be no way for it to convert energy of
position into energy of motion. Thus the chain must be perfectly
balanced. Now by symmetry, the arc of the chain hanging under-
neath the triangle has equal tension at both ends, so removing
this arc wouldn’t affect the balance of the rest of the chain. This
means that a weight of three units hanging vertically balances a
weight of five units hanging diagonally along the hypotenuse.

The mechanical advantage of the inclined plane is therefore 5/3,
which is exactly the same as the result, 1/ sin θ, that we got
on p. 225 by analyzing force vectors. What this shows is that
Newton’s laws and conservation laws are not logically separate,
but rather are very closely related descriptions of nature. In the
cases where Newton’s laws are true, they give the same answers
as the conservation laws. This is an example of a more gen-
eral idea, called the correspondence principle, about how science
progresses over time. When a newer, more general theory is pro-
posed to replace an older theory, the new theory must agree with
the old one in the realm of applicability of the old theory, since the
old theory only became accepted as a valid theory by being ver-
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Discussion question A. The
water behind the Hoover Dam
has energy because of its posi-
tion relative to the planet earth,
which is attracting it with a gravi-
tational force. Letting water down
to the bottom of the dam converts
that energy into energy of motion.
When the water reaches the
bottom of the dam, it hits turbine
blades that drive generators, and
its energy of motion is converted
into electrical energy.

ified experimentally in a variety of experiments. In other words,
the new theory must be backward-compatible with the old one.
Even though conservation laws can prove things that Newton’s
laws can’t (that perpetual motion is impossible, for example), they
aren’t going to disprove Newton’s laws when applied to mechani-
cal systems where we already knew Newton’s laws were valid.

Discussion question

A Hydroelectric power (water flowing over a dam to spin turbines)
appears to be completely free. Does this violate conservation of energy?
If not, then what is the ultimate source of the electrical energy produced
by a hydroelectric plant?

B How does the proof in example 3 fail if the assumption of a frictionless
surface doesn’t hold?

11.3 A numerical scale of energy
Energy comes in a variety of forms, and physicists didn’t discover all
of them right away. They had to start somewhere, so they picked
one form of energy to use as a standard for creating a numerical
energy scale. (In fact the history is complicated, and several different
energy units were defined before it was realized that there was a
single general energy concept that deserved a single consistent unit
of measurement.) One practical approach is to define an energy
unit based on heating water. The SI unit of energy is the joule,
J, (rhymes with “cool”), named after the British physicist James
Joule. One Joule is the amount of energy required in order to heat
0.24 g of water by 1◦C. The number 0.24 is not worth memorizing.
A convenient way of restating this definition is that when heating
water, heat = cm∆T , where ∆T is the change in temperature in
◦C, m is the mass, and we have defined the joule by defining the
constant c, called the specific heat capacity of water, to have the
value 4.2× 103 J/kg·◦C.

Note that heat, which is a form of energy, is completely differ-
ent from temperature, which is not. Twice as much heat energy
is required to prepare two cups of coffee as to make one, but two
cups of coffee mixed together don’t have double the temperature.
In other words, the temperature of an object tells us how hot it is,
but the heat energy contained in an object also takes into account
the object’s mass and what it is made of.1

Later we will encounter other quantities that are conserved in
physics, such as momentum and angular momentum, and the method
for defining them will be similar to the one we have used for energy:

1In standard, formal terminology, there is another, finer distinction. The
word “heat” is used only to indicate an amount of energy that is transferred,
whereas “thermal energy” indicates an amount of energy contained in an object.
I’m informal on this point, and refer to both as heat, but you should be aware
of the distinction.
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pick some standard form of it, and then measure other forms by
comparison with this standard. The flexible and adaptable nature
of this procedure is part of what has made conservation laws such a
durable basis for the evolution of physics.

Heating a swimming pool example 4
. If electricity costs 3.9 cents per MJ (1 MJ = 1 megajoule = 106

J), how much does it cost to heat a 26000-gallon swimming pool
from 10◦C to 18◦C?

. Converting gallons to cm3 gives

26000 gallons× 3780 cm3

1 gallon
= 9.8× 107 cm3.

Water has a density of 1 gram per cubic centimeter, so the mass
of the water is 9.8 × 104 kg. The energy needed to heat the
swimming pool is

mc∆T = 3.3× 103 MJ.

The cost of the electricity is (3.3× 103 MJ)($0.039/MJ)=$130.

Irish coffee example 5
. You make a cup of Irish coffee out of 300 g of coffee at 100◦C
and 30 g of pure ethyl alcohol at 20◦C. The specific heat capacity
of ethanol is 2.4× 103 J/kg·◦C (i.e., alcohol is easier to heat than
water). What temperature is the final mixture?

. Adding up all the energy after mixing has to give the same result
as the total before mixing. We let the subscript i stand for the
initial situation, before mixing, and f for the final situation, and use
subscripts c for the coffee and a for the alcohol. In this notation,
we have

total initial energy = total final energy
Eci + Eai = Ecf + Eaf .

We assume coffee has the same heat-carrying properties as wa-
ter. Our information about the heat-carrying properties of the two
substances is stated in terms of the change in energy required for
a certain change in temperature, so we rearrange the equation to
express everything in terms of energy differences:

Eaf − Eai = Eci − Ecf .

Using the heat capacities cc for coffee (water) and ca for alcohol,
we have

Eci − Ecf = (Tci − Tcf )mccc and
Eaf − Eai = (Taf − Tai )maca.
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Setting these two quantities to be equal, we have

(Taf − Tai )maca = (Tci − Tcf )mccc .

In the final mixture the two substances must be at the same tem-
perature, so we can use a single symbol Tf = Tcf = Taf for the
two quantities previously represented by two different symbols,

(Tf − Tai )maca = (Tci − Tf )mccc .

Solving for Tf gives

Tf =
Tcimccc + Taimaca

mccc + maca

= 96◦C.

Once a numerical scale of energy has been established for some
form of energy such as heat, it can easily be extended to other types
of energy. For instance, the energy stored in one gallon of gasoline
can be determined by putting some gasoline and some water in an
insulated chamber, igniting the gas, and measuring the rise in the
water’s temperature. (The fact that the apparatus is known as a
“bomb calorimeter” will give you some idea of how dangerous these
experiments are if you don’t take the right safety precautions.) Here
are some examples of other types of energy that can be measured
using the same units of joules:

type of energy example

chemical energy
released by burning

About 50 MJ are released by burning
a kg of gasoline.

energy required to
break an object

When a person suffers a spiral frac-
ture of the thighbone (a common
type in skiing accidents), about 2 J
of energy go into breaking the bone.

energy required to
melt a solid substance

7 MJ are required to melt 1 kg of tin.

chemical energy
released by digesting
food

A bowl of Cheeries with milk provides
us with about 800 kJ of usable en-
ergy.

raising a mass against
the force of gravity

Lifting 1.0 kg through a height of 1.0
m requires 9.8 J.

nuclear energy
released in fission

1 kg of uranium oxide fuel consumed
by a reactor releases 2 × 1012 J of
stored nuclear energy.

It is interesting to note the disproportion between the megajoule
energies we consume as food and the joule-sized energies we expend
in physical activities. If we could perceive the flow of energy around
us the way we perceive the flow of water, eating a bowl of cereal
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f / Example 6.

would be like swallowing a bathtub’s worth of energy, the continual
loss of body heat to one’s environment would be like an energy-hose
left on all day, and lifting a bag of cement would be like flicking
it with a few tiny energy-drops. The human body is tremendously
inefficient. The calories we “burn” in heavy exercise are almost all
dissipated directly as body heat.

You take the high road and I’ll take the low road. example 6
. Figure f shows two ramps which two balls will roll down. Com-
pare their final speeds, when they reach point B. Assume friction
is negligible.

. Each ball loses some energy because of its decreasing height
above the earth, and conservation of energy says that it must gain
an equal amount of energy of motion (minus a little heat created
by friction). The balls lose the same amount of height, so their
final speeds must be equal.

It’s impressive to note the complete impossibility of solving this
problem using only Newton’s laws. Even if the shape of the track
had been given mathematically, it would have been a formidable
task to compute the balls’ final speed based on vector addition of
the normal force and gravitational force at each point along the way.

How new forms of energy are discovered

Textbooks often give the impression that a sophisticated physics
concept was created by one person who had an inspiration one day,
but in reality it is more in the nature of science to rough out an idea
and then gradually refine it over many years. The idea of energy
was tinkered with from the early 1800’s on, and new types of energy
kept getting added to the list.

To establish the existence of a new form of energy, a physicist
has to

(1) show that it could be converted to and from other forms of
energy; and

(2) show that it related to some definite measurable property of
the object, for example its temperature, motion, position relative to
another object, or being in a solid or liquid state.

For example, energy is released when a piece of iron is soaked in
water, so apparently there is some form of energy already stored in
the iron. The release of this energy can also be related to a definite
measurable property of the chunk of metal: it turns reddish-orange.
There has been a chemical change in its physical state, which we
call rusting.

Although the list of types of energy kept getting longer and
longer, it was clear that many of the types were just variations on
a theme. There is an obvious similarity between the energy needed
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to melt ice and to melt butter, or between the rusting of iron and
many other chemical reactions. The topic of the next chapter is
how this process of simplification reduced all the types of energy
to a very small number (four, according to the way I’ve chosen to
count them).

It might seem that if the principle of conservation of energy ever
appeared to be violated, we could fix it up simply by inventing some
new type of energy to compensate for the discrepancy. This would
be like balancing your checkbook by adding in an imaginary deposit
or withdrawal to make your figures agree with the bank’s statements.
Step (2) above guards against this kind of chicanery. In the 1920s
there were experiments that suggested energy was not conserved in
radioactive processes. Precise measurements of the energy released
in the radioactive decay of a given type of atom showed inconsistent
results. One atom might decay and release, say, 1.1 × 10−10 J of
energy, which had presumably been stored in some mysterious form
in the nucleus. But in a later measurement, an atom of exactly the
same type might release 1.2× 10−10 J. Atoms of the same type are
supposed to be identical, so both atoms were thought to have started
out with the same energy. If the amount released was random, then
apparently the total amount of energy was not the same after the
decay as before, i.e., energy was not conserved.

Only later was it found that a previously unknown particle,
which is very hard to detect, was being spewed out in the decay.
The particle, now called a neutrino, was carrying off some energy,
and if this previously unsuspected form of energy was added in,
energy was found to be conserved after all. The discovery of the
energy discrepancies is seen with hindsight as being step (1) in the
establishment of a new form of energy, and the discovery of the neu-
trino was step (2). But during the decade or so between step (1)
and step (2) (the accumulation of evidence was gradual), physicists
had the admirable honesty to admit that the cherished principle of
conservation of energy might have to be discarded.

self-check A
How would you carry out the two steps given above in order to estab-
lish that some form of energy was stored in a stretched or compressed
spring? . Answer, p. 567

Mass Into Energy
Einstein showed that mass itself could be converted to and from energy,
according to his celebrated equation E = mc2, in which c is the speed
of light. We thus speak of mass as simply another form of energy, and
it is valid to measure it in units of joules. The mass of a 15-gram pencil
corresponds to about 1.3× 1015 J. The issue is largely academic in the
case of the pencil, because very violent processes such as nuclear re-
actions are required in order to convert any significant fraction of an ob-
ject’s mass into energy. Cosmic rays, however, are continually striking
you and your surroundings and converting part of their energy of motion
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into the mass of newly created particles. A single high-energy cosmic
ray can create a “shower” of millions of previously nonexistent particles
when it strikes the atmosphere. Einstein’s theories are discussed later
in this book.

Even today, when the energy concept is relatively mature and sta-
ble, a new form of energy has been proposed based on observations
of distant galaxies whose light began its voyage to us billions of years
ago. Astronomers have found that the universe’s continuing expansion,
resulting from the Big Bang, has not been decelerating as rapidly in the
last few billion years as would have been expected from gravitational
forces. They suggest that a new form of energy may be at work.

Discussion question

A I’m not making this up. XS Energy Drink has ads that read like this:
All the “Energy” ... Without the Sugar! Only 8 Calories! Comment on
this.

11.4 Kinetic energy
The technical term for the energy associated with motion is kinetic
energy, from the Greek word for motion. (The root is the same as
the root of the word “cinema” for a motion picture, and in French
the term for kinetic energy is “énergie cinétique.”) To find how
much kinetic energy is possessed by a given moving object, we must
convert all its kinetic energy into heat energy, which we have chosen
as the standard reference type of energy. We could do this, for
example, by firing projectiles into a tank of water and measuring the
increase in temperature of the water as a function of the projectile’s
mass and velocity. Consider the following data from a series of three
such experiments:

m (kg) v (m/s) energy (J)

1.00 1.00 0.50

1.00 2.00 2.00

2.00 1.00 1.00

Comparing the first experiment with the second, we see that dou-
bling the object’s velocity doesn’t just double its energy, it quadru-
ples it. If we compare the first and third lines, however, we find
that doubling the mass only doubles the energy. This suggests that
kinetic energy is proportional to mass and to the square of veloc-
ity, KE ∝ mv2, and further experiments of this type would indeed
establish such a general rule. The proportionality factor equals 0.5
because of the design of the metric system, so the kinetic energy of
a moving object is given by

KE =
1

2
mv2.

The metric system is based on the meter, kilogram, and second,
with other units being derived from those. Comparing the units on
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the left and right sides of the equation shows that the joule can be
reexpressed in terms of the basic units as kg·m2/s2.

Energy released by a comet impact example 7
.Comet Shoemaker-Levy, which struck the planet Jupiter in 1994,
had a mass of roughly 4 × 1013 kg, and was moving at a speed
of 60 km/s. Compare the kinetic energy released in the impact to
the total energy in the world’s nuclear arsenals, which is 2× 1019

J. Assume for the sake of simplicity that Jupiter was at rest.

. Since we assume Jupiter was at rest, we can imagine that the
comet stopped completely on impact, and 100% of its kinetic en-
ergy was converted to heat and sound. We first convert the speed
to mks units, v = 6 × 104 m/s, and then plug in to the equation
to find that the comet’s kinetic energy was roughly 7 × 1022 J, or
about 3000 times the energy in the world’s nuclear arsenals.

Energy and relative motion

Galileo’s Aristotelian enemies (and it is no exaggeration to call
them enemies!) would probably have objected to conservation of
energy. Galilean got in trouble by claiming that an object in motion
would continue in motion indefinitely in the absence of a force. This
is not so different from the idea that an object’s kinetic energy
stays the same unless there is a mechanism like frictional heating
for converting that energy into some other form.

More subtly, however, it’s not immediately obvious that what
we’ve learned so far about energy is strictly mathematically con-
sistent with Galileo’s principle that motion is relative. Suppose we
verify that a certain process, say the collision of two pool balls, con-
serves energy as measured in a certain frame of reference: the sum
of the balls’ kinetic energies before the collision is equal to their sum
after the collision. But what if we were to measure everything in a
frame of reference that was in a different state of motion? It’s not
immediately obvious that the total energy before the collision will
still equal the total energy after the collision. It does still work out.
Homework problem 13, p. 312, gives a simple numerical example,
and the general proof is taken up in problem 15 on p. 390 (with the
solution given in the back of the book).

Why kinetic energy obeys the equation it does

I’ve presented the magic expression for kinetic energy, (1/2)mv2,
as a purely empirical fact. Does it have any deeper reason that
might be knowable to us mere mortals? Yes and no. It contains
three factors, and we need to consider each separately.

The reason for the factor of 1/2 is understandable, but only
as an arbitrary historical choice. The metric system was designed
so that some of the equations relating to energy would come out
looking simple, at the expense of some others, which had to have
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g / Kinetic energies of electrons
measured in three experiments.
At high velocities, the equation
K E = (1/2)mv2 becomes a poor
approximation.

inconvenient conversion factors in front. If we were using the old
British Engineering System of units in this course, then we’d have
the British Thermal Unit (BTU) as our unit of energy. In that
system, the equation you’d learn for kinetic energy would have an
inconvenient proportionality constant, KE =

(
1.29× 10−3

)
mv2,

with KE measured in units of BTUs, v measured in feet per second,
and so on. At the expense of this inconvenient equation for kinetic
energy, the designers of the British Engineering System got a simple
rule for calculating the energy required to heat water: one BTU
per degree Fahrenheit per pound. The inventor of kinetic energy,
Thomas Young, actually defined it as KE = mv2, which meant that
all his other equations had to be different from ours by a factor of
two. All these systems of units work just fine as long as they are
not combined with one another in an inconsistent way.

The proportionality to m is inevitable because the energy con-
cept is based on the idea that we add up energy contributions from
all the objects within a system. Therefore it is logically necessary
that a 2 kg object moving at 1 m/s have the same kinetic energy as
two 1 kg objects moving side-by-side at the same speed.

What about the proportionality to v2? Consider:

1. It’s surprisingly hard to tamper with this factor without break-
ing things: see discussion questions A and B on p. 306.

2. The proportionality to v2 is not even correct, except as a low-
velocity approximation. Experiments show deviations from
the v2 rule at high speeds (figure g), an effect that is related
to Einstein’s theory of relativity.

3. As described on p. 304, we want conservation of energy to
keep working when we switch frames of reference. The fact
that this does work for KE ∝ v2 is intimately connected with
the assumption that when we change frames, velocities add as
described in section 2.5. This assumption turns out to be an
approximation, which only works well at low velocities.

4. Conservation laws are of more general validity than Newton’s
laws, which apply to material objects moving at low speeds.
Under the conditions where Newton’s laws are accurate, they
follow logically from the conservation laws. Therefore we need
kinetic energy to have low-velocity behavior that ends up cor-
rectly reproducing Newton’s laws.

So under a certain set of low-velocity approximations, KE ∝ v2

is what works. We verify in problem 15, p. 390, that it satisfies
criterion 3, and we show in section 13.6, p. 348, that it is the only
such relation that satisfies criterion 4.
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Discussion question C

Discussion questions

A Suppose that, like Young or Einstein, you were trying out different
equations for kinetic energy to see if they agreed with the experimental
data. Based on the meaning of positive and negative signs of velocity,
why would you suspect that a proportionality to mv would be less likely
than mv2?

B As in discussion question A, try to think of an argument showing that
m(v2 + v4) is not a possible formula for kinetic energy.

C The figure shows a pendulum that is released at A and caught by a
peg as it passes through the vertical, B. To what height will the bob rise
on the right?

11.5 Power
A car may have plenty of energy in its gas tank, but still may not
be able to increase its kinetic energy rapidly. A Porsche doesn’t
necessarily have more energy in its gas tank than a Hyundai, it is
just able to transfer it more quickly. The rate of transferring energy
from one form to another is called power. The definition can be
written as an equation,

P =
∆E

∆t
,

where the use of the delta notation in the symbol ∆E has the usual
interpretation: the final amount of energy in a certain form minus
the initial amount that was present in that form. Power has units
of J/s, which are abbreviated as watts, W (rhymes with “lots”).

If the rate of energy transfer is not constant, the power at any
instant can be defined as the slope of the tangent line on a graph of
E versus t. Likewise ∆E can be extracted from the area under the
P -versus-t curve.

Converting kilowatt-hours to joules example 8
. The electric company bills you for energy in units of kilowatt-
hours (kilowatts multiplied by hours) rather than in SI units of
joules. How many joules is a kilowatt-hour?

. 1 kilowatt-hour = (1 kW)(1 hour) = (1000 J/s)(3600 s) = 3.6 MJ.

Human wattage example 9
. A typical person consumes 2000 kcal of food in a day, and con-
verts nearly all of that directly to heat. Compare the person’s heat
output to the rate of energy consumption of a 100-watt lightbulb.

. Looking up the conversion factor from calories to joules, we find

∆E = 2000 kcal× 1000 cal
1 kcal

× 4.18 J
1 cal

= 8× 106 J

for our daily energy consumption. Converting the time interval
likewise into mks,

∆t = 1 day× 24 hours
1 day

× 60 min
1 hour

× 60 s
1 min

= 9× 104 s.
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Dividing, we find that our power dissipated as heat is 90 J/s = 90
W, about the same as a lightbulb.

It is easy to confuse the concepts of force, energy, and power,
especially since they are synonyms in ordinary speech. The table on
the following page may help to clear this up:

force energy power

conceptual
definition

A force is an interaction
between two objects that
causes a push or a pull.
A force can be defined as
anything that is capable
of changing an object’s
state of motion.

Heating an object, mak-
ing it move faster, or in-
creasing its distance from
another object that is at-
tracting it are all exam-
ples of things that would
require fuel or physical ef-
fort. All these things can
be quantified using a sin-
gle scale of measurement,
and we describe them all
as forms of energy.

Power is the rate at
which energy is trans-
formed from one form
to another or transferred
from one object to an-
other.

operational
definition

A spring scale can be used
to measure force.

If we define a unit of en-
ergy as the amount re-
quired to heat a certain
amount of water by a
1◦C, then we can mea-
sure any other quantity
of energy by transferring
it into heat in water and
measuring the tempera-
ture increase.

Measure the change in the
amount of some form of
energy possessed by an
object, and divide by the
amount of time required
for the change to occur.

scalar or
vector?

vector — has a direction
in space which is the di-
rection in which it pulls or
pushes

scalar — has no direction
in space

scalar — has no direction
in space

unit newtons (N) joules (J) watts (W) = joules/s

Can it run
out? Does it
cost money?

No. I don’t have to
pay a monthly bill for
the meganewtons of force
required to hold up my
house.

Yes. We pay money for
gasoline, electrical energy,
batteries, etc., because
they contain energy.

More power means you
are paying money at a
higher rate. A 100-W
lightbulb costs a certain
number of cents per hour.

Can it be a
property of
an object?

No. A force is a rela-
tionship between two
interacting objects.
A home-run baseball
doesn’t “have” force.

Yes. What a home-run
baseball has is kinetic en-
ergy, not force.

Not really. A 100-W
lightbulb doesn’t “have”
100 W. 100 J/s is the rate
at which it converts elec-
trical energy into light.
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Summary
Selected vocabulary
energy . . . . . . A numerical scale used to measure the heat,

motion, or other properties that would require
fuel or physical effort to put into an object; a
scalar quantity with units of joules (J).

power . . . . . . . The rate of transferring energy; a scalar quan-
tity with units of watts (W).

kinetic energy . . The energy an object possesses because of its
motion.

heat . . . . . . . . A form of energy that relates to temperature.
Heat is different from temperature because an
object with twice as much mass requires twice
as much heat to increase its temperature by
the same amount. Heat is measured in joules,
temperature in degrees. (In standard termi-
nology, there is another, finer distinction be-
tween heat and thermal energy, which is dis-
cussed below. In this book, I informally refer
to both as heat.)

temperature . . . What a thermometer measures. Objects left in
contact with each other tend to reach the same
temperature. Cf. heat. As discussed in more
detail in chapter 2, temperature is essentially
a measure of the average kinetic energy per
molecule.

Notation
E . . . . . . . . . energy
J . . . . . . . . . . joules, the SI unit of energy
KE . . . . . . . . kinetic energy
P . . . . . . . . . power
W . . . . . . . . . watts, the SI unit of power; equivalent to J/s

Other terminology and notation
Q or ∆Q . . . . . the amount of heat transferred into or out of

an object
K or T . . . . . . alternative symbols for kinetic energy, used in

the scientific literature and in most advanced
textbooks

thermal energy . Careful writers make a distinction between
heat and thermal energy, but the distinction
is often ignored in casual speech, even among
physicists. Properly, thermal energy is used
to mean the total amount of energy possessed
by an object, while heat indicates the amount
of thermal energy transferred in or out. The
term heat is used in this book to include both
meanings.
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Summary

Heating an object, making it move faster, or increasing its dis-
tance from another object that is attracting it are all examples of
things that would require fuel or physical effort. All these things can
be quantified using a single scale of measurement, and we describe
them all as forms of energy. The SI unit of energy is the Joule.
The reason why energy is a useful and important quantity is that
it is always conserved. That is, it cannot be created or destroyed
but only transferred between objects or changed from one form to
another. Conservation of energy is the most important and broadly
applicable of all the laws of physics, more fundamental and general
even than Newton’s laws of motion.

Heating an object requires a certain amount of energy per degree
of temperature and per unit mass, which depends on the substance
of which the object consists. Heat and temperature are completely
different things. Heat is a form of energy, and its SI unit is the joule
(J). Temperature is not a measure of energy. Heating twice as much
of something requires twice as much heat, but double the amount
of a substance does not have double the temperature.

The energy that an object possesses because of its motion is
called kinetic energy. Kinetic energy is related to the mass of the
object and the magnitude of its velocity vector by the equation

KE =
1

2
mv2.

Power is the rate at which energy is transformed from one form
to another or transferred from one object to another,

P =
∆E

∆t
. [only for constant power]

The SI unit of power is the watt (W).
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 This problem is now problem 14 in chapter 12, on page 329.

2 Can kinetic energy ever be less than zero? Explain. [Based
on a problem by Serway and Faughn.]

3 Estimate the kinetic energy of an Olympic sprinter.

4 You are driving your car, and you hit a brick wall head on,
at full speed. The car has a mass of 1500 kg. The kinetic energy
released is a measure of how much destruction will be done to the car
and to your body. Calculate the energy released if you are traveling
at (a) 40 mi/hr, and again (b) if you’re going 80 mi/hr. What is
counterintuitive about this, and what implication does this have for
driving at high speeds?

√

5 A closed system can be a bad thing — for an astronaut
sealed inside a space suit, getting rid of body heat can be difficult.
Suppose a 60-kg astronaut is performing vigorous physical activity,
expending 200 W of power. If none of the heat can escape from her
space suit, how long will it take before her body temperature rises
by 6◦C (11◦F), an amount sufficient to kill her? Assume that the
amount of heat required to raise her body temperature by 1◦C is
the same as it would be for an equal mass of water. Express your
answer in units of minutes.

√

6 All stars, including our sun, show variations in their light out-
put to some degree. Some stars vary their brightness by a factor of
two or even more, but our sun has remained relatively steady dur-
ing the hundred years or so that accurate data have been collected.
Nevertheless, it is possible that climate variations such as ice ages
are related to long-term irregularities in the sun’s light output. If
the sun was to increase its light output even slightly, it could melt
enough Antarctic ice to flood all the world’s coastal cities. The total
sunlight that falls on Antarctica amounts to about 1 × 1016 watts.
In the absence of natural or human-caused climate change, this heat
input to the poles is balanced by the loss of heat via winds, ocean
currents, and emission of infrared light, so that there is no net melt-
ing or freezing of ice at the poles from year to year. Suppose that
the sun changes its light output by some small percentage, but there
is no change in the rate of heat loss by the polar caps. Estimate the
percentage by which the sun’s light output would have to increase
in order to melt enough ice to raise the level of the oceans by 10 me-
ters over a period of 10 years. (This would be enough to flood New
York, London, and many other cities.) Melting 1 kg of ice requires
3× 103 J.
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7 A bullet flies through the air, passes through a paperback book,
and then continues to fly through the air beyond the book. When
is there a force? When is there energy? . Solution, p. 558

8 Experiments show that the power consumed by a boat’s engine
is approximately proportional to the third power of its speed. (We
assume that it is moving at constant speed.) (a) When a boat
is crusing at constant speed, what type of energy transformation
do you think is being performed? (b) If you upgrade to a motor
with double the power, by what factor is your boat’s crusing speed
increased? [Based on a problem by Arnold Arons.]

. Solution, p. 559

9 Object A has a kinetic energy of 13.4 J. Object B has a mass
that is greater by a factor of 3.77, but is moving more slowly by
a factor of 2.34. What is object B’s kinetic energy? [Based on a
problem by Arnold Arons.] . Solution, p. 559

10 The moon doesn’t really just orbit the Earth. By Newton’s
third law, the moon’s gravitational force on the earth is the same as
the earth’s force on the moon, and the earth must respond to the
moon’s force by accelerating. If we consider the earth and moon in
isolation and ignore outside forces, then Newton’s first law says their
common center of mass doesn’t accelerate, i.e., the earth wobbles
around the center of mass of the earth-moon system once per month,
and the moon also orbits around this point. The moon’s mass is 81
times smaller than the earth’s. Compare the kinetic energies of the
earth and moon. (We know that the center of mass is a kind of
balance point, so it must be closer to the earth than to the moon.
In fact, the distance from the earth to the center of mass is 1/81
of the distance from the moon to the center of mass, which makes
sense intuitively, and can be proved rigorously using the equation
on page 374.)

11 My 1.25 kW microwave oven takes 126 seconds to bring 250
g of water from room temperature to a boil. What percentage of
the power is being wasted? Where might the rest of the energy be
going? . Solution, p. 559
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12 The multiflash photograph shows a collision between two
pool balls. The ball that was initially at rest shows up as a dark
image in its initial position, because its image was exposed several
times before it was struck and began moving. By making measure-
ments on the figure, determine numerically whether or not energy
appears to have been conserved in the collision. What systematic
effects would limit the accuracy of your test? [From an example in
PSSC Physics.]

Problem 12.

13 This problem is a numerical example of the imaginary exper-
iment discussed on p. 304 regarding the relationship between energy
and relative motion. Let’s say that the pool balls both have masses
of 1.00 kg. Suppose that in the frame of reference of the pool table,
the cue ball moves at a speed of 1.00 m/s toward the eight ball,
which is initially at rest. The collision is head-on, and as you can
verify for yourself the next time you’re playing pool, the result of
such a collision is that the incoming ball stops dead and the ball that
was struck takes off with the same speed originally possessed by the
incoming ball. (This is actually a bit of an idealization. To keep
things simple, we’re ignoring the spin of the balls, and we assume
that no energy is liberated by the collision as heat or sound.) (a)
Calculate the total initial kinetic energy and the total final kinetic
energy, and verify that they are equal. (b) Now carry out the whole
calculation again in the frame of reference that is moving in the same
direction that the cue ball was initially moving, but at a speed of
0.50 m/s. In this frame of reference, both balls have nonzero initial
and final velocities, which are different from what they were in the
table’s frame. [See also problem 15 on p. 390.]
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14 One theory about the destruction of the space shuttle Columbia
in 2003 is that one of its wings had been damaged on liftoff by a
chunk of foam insulation that fell off of one of its external fuel tanks.
The New York Times reported on June 5, 2003, that NASA engi-
neers had recreated the impact to see if it would damage a mock-up
of the shuttle’s wing. “Before last week’s test, many engineers at
NASA said they thought lightweight foam could not harm the seem-
ingly tough composite panels, and privately predicted that the foam
would bounce off harmlessly, like a Nerf ball.” In fact, the 0.80 kg
piece of foam, moving at 240 m/s, did serious damage. A mem-
ber of the board investigating the disaster said this demonstrated
that “people’s intuitive sense of physics is sometimes way off.” (a)
Compute the kinetic energy of the foam, and (b) compare with the
energy of an 80 kg boulder moving at 2.4 m/s (the speed it would
have if you dropped it from about knee-level).

√

(c) The boulder is a hundred times more massive, but its speed
is a hundred times smaller, so what’s counterintuitive about your
results?

15 The figure above is from a classic 1920 physics textbook
by Millikan and Gale. It represents a method for raising the water
from the pond up to the water tower, at a higher level, without
using a pump. Water is allowed into the drive pipe, and once it is
flowing fast enough, it forces the valve at the bottom closed. Explain
how this works in terms of conservation of mass and energy. (Cf.
example 1 on page 295.)
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16 The following table gives the amount of energy required in
order to heat, melt, or boil a gram of water.
heat 1 g of ice by 1◦C 2.05 J
melt 1 g of ice 333 J
heat 1 g of water by 1◦C 4.19 J
boil 1 g of water 2500 J
heat 1 g of steam by 1◦C 2.01 J

(a) How much energy is required in order to convert 1.00 g of ice at
-20 ◦C into steam at 137 ◦C?

√

(b) What is the minimum amount of hot water that could melt 1.00
g of ice?

√

17 Estimate the kinetic energy of a buzzing fly’s wing. (You
may wish to review section 1.4 on order-of-magnitude estimates.)

18 A blade of grass moves upward as it grows. Estimate its
kinetic energy. (You may wish to review section 1.4 on order-of-
magnitude estimates.)
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Do these forms of energy have anything in common?

Chapter 12

Simplifying the Energy Zoo

Variety is the spice of life, not of science. The figure shows a few
examples from the bewildering array of forms of energy that sur-
rounds us. The physicist’s psyche rebels against the prospect of a
long laundry list of types of energy, each of which would require
its own equations, concepts, notation, and terminology. The point
at which we’ve arrived in the study of energy is analogous to the
period in the 1960’s when a half a dozen new subatomic particles
were being discovered every year in particle accelerators. It was an
embarrassment. Physicists began to speak of the “particle zoo,”
and it seemed that the subatomic world was distressingly complex.
The particle zoo was simplified by the realization that most of the
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new particles being whipped up were simply clusters of a previously
unsuspected set of more fundamental particles (which were whimsi-
cally dubbed quarks, a made-up word from a line of poetry by James
Joyce, “Three quarks for Master Mark.”) The energy zoo can also
be simplified, and it is the purpose of this chapter to demonstrate
the hidden similarities between forms of energy as seemingly differ-
ent as heat and motion.

a / A vivid demonstration that
heat is a form of motion. A small
amount of boiling water is poured
into the empty can, which rapidly
fills up with hot steam. The can
is then sealed tightly, and soon
crumples. This can be explained
as follows. The high tempera-
ture of the steam is interpreted as
a high average speed of random
motions of its molecules. Before
the lid was put on the can, the
rapidly moving steam molecules
pushed their way out of the can,
forcing the slower air molecules
out of the way. As the steam in-
side the can thinned out, a sta-
ble situation was soon achieved,
in which the force from the less
dense steam molecules moving
at high speed balanced against
the force from the more dense but
slower air molecules outside. The
cap was put on, and after a while
the steam inside the can reached
the same temperature as the air
outside. The force from the cool,
thin steam no longer matched the
force from the cool, dense air out-
side, and the imbalance of forces
crushed the can.

12.1 Heat is kinetic energy
What is heat really? Is it an invisible fluid that your bare feet soak
up from a hot sidewalk? Can one ever remove all the heat from an
object? Is there a maximum to the temperature scale?

The theory of heat as a fluid seemed to explain why colder ob-
jects absorbed heat from hotter ones, but once it became clear that
heat was a form of energy, it began to seem unlikely that a material
substance could transform itself into and out of all those other forms
of energy like motion or light. For instance, a compost pile gets hot,
and we describe this as a case where, through the action of bacteria,
chemical energy stored in the plant cuttings is transformed into heat
energy. The heating occurs even if there is no nearby warmer object
that could have been leaking “heat fluid” into the pile.

An alternative interpretation of heat was suggested by the theory
that matter is made of atoms. Since gases are thousands of times less
dense than solids or liquids, the atoms (or clusters of atoms called
molecules) in a gas must be far apart. In that case, what is keeping
all the air molecules from settling into a thin film on the floor of the
room in which you are reading this book? The simplest explanation
is that they are moving very rapidly, continually ricocheting off of
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b / Random motion of atoms
in a gas, a liquid, and a solid.

the floor, walls, and ceiling. Though bizarre, the cloud-of-bullets
image of a gas did give a natural explanation for the surprising
ability of something as tenuous as a gas to exert huge forces. Your
car’s tires can hold it up because you have pumped extra molecules
into them. The inside of the tire gets hit by molecules more often
than the outside, forcing it to stretch and stiffen.

The outward forces of the air in your car’s tires increase even
further when you drive on the freeway for a while, heating up the
rubber and the air inside. This type of observation leads naturally
to the conclusion that hotter matter differs from colder in that its
atoms’ random motion is more rapid. In a liquid, the motion could
be visualized as people in a milling crowd shoving past each other
more quickly. In a solid, where the atoms are packed together, the
motion is a random vibration of each atom as it knocks against its
neighbors.

We thus achieve a great simplification in the theory of heat. Heat
is simply a form of kinetic energy, the total kinetic energy of random
motion of all the atoms in an object. With this new understanding,
it becomes possible to answer at one stroke the questions posed at
the beginning of the section. Yes, it is at least theoretically possible
to remove all the heat from an object. The coldest possible temper-
ature, known as absolute zero, is that at which all the atoms have
zero velocity, so that their kinetic energies, (1/2)mv2, are all zero.
No, there is no maximum amount of heat that a certain quantity of
matter can have, and no maximum to the temperature scale, since
arbitrarily large values of v can create arbitrarily large amounts of
kinetic energy per atom.

The kinetic theory of heat also provides a simple explanation of
the true nature of temperature. Temperature is a measure of the
amount of energy per molecule, whereas heat is the total amount of
energy possessed by all the molecules in an object.

There is an entire branch of physics, called thermodynamics,
that deals with heat and temperature and forms the basis for tech-
nologies such as refrigeration. Thermodynamics is discussed in more
detail in optional chapter 16, and I have provided here only a brief
overview of the thermodynamic concepts that relate directly to en-
ergy, glossing over at least one point that would be dealt with more
carefully in a thermodynamics course: it is really only true for a
gas that all the heat is in the form of kinetic energy. In solids and
liquids, the atoms are close enough to each other to exert intense
electrical forces on each other, and there is therefore another type
of energy involved, the energy associated with the atoms’ distances
from each other. Strictly speaking, heat energy is defined not as
energy associated with random motion of molecules but as any form
of energy that can be conducted between objects in contact, without
any force.
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c / The skater has converted
all his kinetic energy into potential
energy on the way up the side of
the pool.

12.2 Potential energy: energy of distance or
closeness

We have already seen many examples of energy related to the dis-
tance between interacting objects. When two objects participate in
an attractive noncontact force, energy is required to bring them far-
ther apart. In both of the perpetual motion machines that started
off the previous chapter, one of the types of energy involved was the
energy associated with the distance between the balls and the earth,
which attract each other gravitationally. In the perpetual motion
machine with the magnet on the pedestal, there was also energy
associated with the distance between the magnet and the iron ball,
which were attracting each other.

The opposite happens with repulsive forces: two socks with the
same type of static electric charge will repel each other, and cannot
be pushed closer together without supplying energy.

In general, the term potential energy, with algebra symbol PE, is
used for the energy associated with the distance between two objects
that attract or repel each other via a force that depends on the
distance between them. Forces that are not determined by distance
do not have potential energy associated with them. For instance,
the normal force acts only between objects that have zero distance
between them, and depends on other factors besides the fact that
the distance is zero. There is no potential energy associated with
the normal force.

The following are some commonplace examples of potential en-
ergy:

gravitational potential energy: The skateboarder in the photo
has risen from the bottom of the pool, converting kinetic en-
ergy into gravitational potential energy. After being at rest
for an instant, he will go back down, converting PE back into
KE.

magnetic potential energy: When a magnetic compass needle is
allowed to rotate, the poles of the compass change their dis-
tances from the earth’s north and south magnetic poles, con-
verting magnetic potential energy into kinetic energy. (Even-
tually the kinetic energy is all changed into heat by friction,
and the needle settles down in the position that minimizes its
potential energy.)

electrical potential energy: Socks coming out of the dryer cling
together because of attractive electrical forces. Energy is re-
quired in order to separate them.

potential energy of bending or stretching: The force between
the two ends of a spring depends on the distance between
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d / As the skater free-falls,
his PE is converted into KE. (The
numbers would be equally valid
as a description of his motion on
the way up.)

them, i.e., on the length of the spring. If a car is pressed
down on its shock absorbers and then released, the potential
energy stored in the spring is transformed into kinetic and
gravitational potential energy as the car bounces back up.

I have deliberately avoided introducing the term potential en-
ergy up until this point, because it tends to produce unfortunate
connotations in the minds of students who have not yet been inoc-
ulated with a careful description of the construction of a numerical
energy scale. Specifically, there is a tendency to generalize the term
inappropriately to apply to any situation where there is the “poten-
tial” for something to happen: “I took a break from digging, but
I had potential energy because I knew I’d be ready to work hard
again in a few minutes.”

An equation for gravitational potential energy

All the vital points about potential energy can be made by focus-
ing on the example of gravitational potential energy. For simplicity,
we treat only vertical motion, and motion close to the surface of the
earth, where the gravitational force is nearly constant. (The gener-
alization to the three dimensions and varying forces is more easily
accomplished using the concept of work, which is the subject of the
next chapter.)

To find an equation for gravitational PE, we examine the case
of free fall, in which energy is transformed between kinetic energy
and gravitational PE. Whatever energy is lost in one form is gained
in an equal amount in the other form, so using the notation ∆KE
to stand for KEf −KEi and a similar notation for PE, we have

[1] ∆KE = −∆PEgrav.

It will be convenient to refer to the object as falling, so that PE
is being changed into KE, but the math applies equally well to an
object slowing down on its way up. We know an equation for kinetic
energy,

[2] KE =
1

2
mv2,

so if we can relate v to height, y, we will be able to relate ∆PE to y,
which would tell us what we want to know about potential energy.
The y component of the velocity can be connected to the height via
the constant acceleration equation

[3] v2
f = v2

i + 2a∆y,

and Newton’s second law provides the acceleration,

[4] a = F/m,
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in terms of the gravitational force.

The algebra is simple because both equation [2] and equation [3]
have velocity to the second power. Equation [2] can be solved for
v2 to give v2 = 2KE/m, and substituting this into equation [3], we
find

2
KEf
m

= 2
KEi
m

+ 2a∆y.

Making use of equations [1] and [4] gives the simple result

∆PEgrav = −F∆y. [change in gravitational PE

resulting from a change in height ∆y;

F is the gravitational force on the object,

i.e., its weight; valid only near the surface

of the earth, where F is constant]

Dropping a rock example 1
. If you drop a 1-kg rock from a height of 1 m, how many joules
of KE does it have on impact with the ground? (Assume that any
energy transformed into heat by air friction is negligible.)

. If we choose the y axis to point up, then Fy is negative, and
equals −(1 kg)(g) = −9.8 N. A decrease in y is represented by a
negative value of ∆y , ∆y = −1 m, so the change in potential en-
ergy is −(−9.8 N)(−1 m) ≈ −10 J. (The proof that newtons mul-
tiplied by meters give units of joules is left as a homework prob-
lem.) Conservation of energy says that the loss of this amount of
PE must be accompanied by a corresponding increase in KE of
10 J.

It may be dismaying to note how many minus signs had to be
handled correctly even in this relatively simple example: a total
of four. Rather than depending on yourself to avoid any mistakes
with signs, it is better to check whether the final result make sense
physically. If it doesn’t, just reverse the sign.

Although the equation for gravitational potential energy was de-
rived by imagining a situation where it was transformed into kinetic
energy, the equation can be used in any context, because all the
types of energy are freely convertible into each other.
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Gravitational PE converted directly into heat example 2
. A 50-kg firefighter slides down a 5-m pole at constant velocity.
How much heat is produced?

. Since she slides down at constant velocity, there is no change
in KE. Heat and gravitational PE are the only forms of energy that
change. Ignoring plus and minus signs, the gravitational force on
her body equals mg, and the amount of energy transformed is

(mg)(5 m) = 2500 J.

On physical grounds, we know that there must have been an in-
crease (positive change) in the heat energy in her hands and in
the flagpole.

Here are some questions and answers about the interpretation of
the equation ∆PEgrav = −F∆y for gravitational potential energy.

Question: In a nutshell, why is there a minus sign in the equation?
Answer: It is because we increase the PE by moving the object in
the opposite direction compared to the gravitational force.

Question: Why do we only get an equation for the change in po-
tential energy? Don’t I really want an equation for the potential
energy itself?
Answer: No, you really don’t. This relates to a basic fact about
potential energy, which is that it is not a well defined quantity in
the absolute sense. Only changes in potential energy are unambigu-
ously defined. If you and I both observe a rock falling, and agree
that it deposits 10 J of energy in the dirt when it hits, then we will
be forced to agree that the 10 J of KE must have come from a loss
of 10 joules of PE. But I might claim that it started with 37 J of PE
and ended with 27, while you might swear just as truthfully that it
had 109 J initially and 99 at the end. It is possible to pick some
specific height as a reference level and say that the PE is zero there,
but it’s easier and safer just to work with changes in PE and avoid
absolute PE altogether.

Question: You referred to potential energy as the energy that two
objects have because of their distance from each other. If a rock
falls, the object is the rock. Where’s the other object?
Answer: Newton’s third law guarantees that there will always be
two objects. The other object is the planet earth.

Question: If the other object is the earth, are we talking about the
distance from the rock to the center of the earth or the distance
from the rock to the surface of the earth?
Answer: It doesn’t matter. All that matters is the change in dis-
tance, ∆y, not y. Measuring from the earth’s center or its surface
are just two equally valid choices of a reference point for defining
absolute PE.

Question: Which object contains the PE, the rock or the earth?
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e / All these energy transfor-
mations turn out at the atomic
level to be changes in potential
energy resulting from changes in
the distances between atoms.

Answer: We may refer casually to the PE of the rock, but techni-
cally the PE is a relationship between the earth and the rock, and
we should refer to the earth and the rock together as possessing the
PE.

Question: How would this be any different for a force other than
gravity?
Answer: It wouldn’t. The result was derived under the assumption
of constant force, but the result would be valid for any other situa-
tion where two objects interacted through a constant force. Gravity
is unusual, however, in that the gravitational force on an object is
so nearly constant under ordinary conditions. The magnetic force
between a magnet and a refrigerator, on the other hand, changes
drastically with distance. The math is a little more complex for a
varying force, but the concepts are the same.

Question: Suppose a pencil is balanced on its tip and then falls
over. The pencil is simultaneously changing its height and rotating,
so the height change is different for different parts of the object.
The bottom of the pencil doesn’t lose any height at all. What do
you do in this situation?
Answer: The general philosophy of energy is that an object’s en-
ergy is found by adding up the energy of every little part of it.
You could thus add up the changes in potential energy of all the
little parts of the pencil to find the total change in potential en-
ergy. Luckily there’s an easier way! The derivation of the equation
for gravitational potential energy used Newton’s second law, which
deals with the acceleration of the object’s center of mass (i.e., its
balance point). If you just define ∆y as the height change of the
center of mass, everything works out. A huge Ferris wheel can be
rotated without putting in or taking out any PE, because its center
of mass is staying at the same height.

self-check A
A ball thrown straight up will have the same speed on impact with the
ground as a ball thrown straight down at the same speed. How can this
be explained using potential energy? . Answer, p. 567

Discussion question

A You throw a steel ball up in the air. How can you prove based on
conservation of energy that it has the same speed when it falls back into
your hand? What if you throw a feather up — is energy not conserved in
this case?
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f / This figure looks similar to
the previous ones, but the scale
is a million times smaller. The
little balls are the neutrons and
protons that make up the tiny nu-
cleus at the center of the uranium
atom. When the nucleus splits
(fissions), the potential energy
change is partly electrical and
partly a change in the potential
energy derived from the force
that holds atomic nuclei together
(known as the strong nuclear
force).

g / A pellet of plutonium-238
glows with its own heat. Its
nuclear potential energy is being
converted into heat, a form of
kinetic energy. Pellets of this type
are used as power supplies on
some space probes.

12.3 All energy is potential or kinetic
In the same way that we found that a change in temperature is really
only a change in kinetic energy at the atomic level, we now find
that every other form of energy turns out to be a form of potential
energy. Boiling, for instance, means knocking some of the atoms (or
molecules) out of the liquid and into the space above, where they
constitute a gas. There is a net attractive force between essentially
any two atoms that are next to each other, which is why matter
always prefers to be packed tightly in the solid or liquid state unless
we supply enough potential energy to pull it apart into a gas. This
explains why water stops getting hotter when it reaches the boiling
point: the power being pumped into the water by your stove begins
going into potential energy rather than kinetic energy.

As shown in figure e, every stored form of energy that we en-
counter in everyday life turns out to be a form of potential energy
at the atomic level. The forces between atoms are electrical and
magnetic in nature, so these are actually electrical and magnetic
potential energies.

Although light is a topic of the second half of this course, it is
useful to have a preview of how it fits in here. Light is a wave com-
posed of oscillating electric and magnetic fields, so we can include
it under the category of electrical and magnetic potential energy.

Even if we wish to include nuclear reactions in the picture, there
still turn out to be only four fundamental types of energy:

kinetic energy (including heat)

gravitational PE

electrical and magnetic PE (including light)

nuclear PE

Discussion question

A Referring back to the pictures at the beginning of the chapter, how
do all these forms of energy fit into the shortened list of categories given
above?
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h / A portrait of a man’s face
made with infrared light, a color
of light that lies beyond the red
end of the visible rainbow. His
warm skin emits quite a bit of
infrared light energy, while his
hair, at a lower temperature,
emits less.

12.4 Applications
Heat transfer

Conduction

When you hold a hot potato in your hand, energy is transferred
from the hot object to the cooler one. Our microscopic picture of
this process (figure b, p. 317) tells us that the heat transfer can
only occur at the surface of contact, where one layer of atoms in the
potato skin make contact with one such layer in the hand. This type
of heat transfer is called conduction, and its rate is proportional to
both the surface area and the temperature difference.

Convection

In a gas or a liquid, a faster method of heat transfer can occur,
because hotter or colder parts of the fluid can flow, physically trans-
porting their heat energy from one place to another. This mecha-
nism of heat transfer, convection, is at work in Los Angeles when
hot Santa Ana winds blow in from the Mojave Desert. On a cold
day, the reason you feel warmer when there is no wind is that your
skin warms a thin layer of air near it by conduction. If a gust of
wind comes along, convection robs you of this layer. A thermos bot-
tle has inner and outer walls separated by a layer of vacuum, which
prevents heat transport by conduction or convection, except for a
tiny amount of conduction through the thin connection between the
walls, near the neck, which has a small cross-sectional area.

Radiation

The glow of the sun or a candle flame is an example of heat trans-
fer by radiation. In this context, “radiation” just means anything
that radiates outward from a source, including, in these examples,
ordinary visible light. The power is proportional to the surface area
of the radiating object. It also depends very dramatically on the
radiator’s absolute temperature, P ∝ T 4.

We can easily understand the reason for radiation based on the
picture of heat as random kinetic energy at the atomic scale. Atoms
are made out of subatomic particles, such as electrons and nuclei,
that carry electric charge. When a charged particle vibrates, it
creates wave disturbances in the electric and magnetic fields, and
the waves have a frequency (number of vibrations per second) that
matches the frequency of the particle’s motion. If this frequency is
in the right range, they constitute visible light(see section 24.5.3,
p. 713). In figure g, the nuclear and electrical potential energy in
the plutonium pellet cause the pellet to heat up, and an equilibrium
is reached, in which the heat is radiated away just as quickly as it is
produced. When an object is closer to room temperature, it glows
in the invisible infrared part of the spectrum (figure h).
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i / The “greenhouse effect.”
Carbon dioxide in the atmo-
sphere allows visible light in,
but partially blocks the reemitted
infrared light.

j / Global average tempera-
tures over the last 2000 years.
The black line is from thermome-
ter measurements. The colored
lines are from various indirect
indicators such as tree rings, ice
cores, buried pollen, and corals.

Earth’s energy equilibrium

Our planet receives a nearly constant amount of energy from
the sun (about 1.8 × 1017 W). If it hadn’t had any mechanism for
getting rid of that energy, the result would have been some kind of
catastrophic explosion soon after its formation. Even a 10% imbal-
ance between energy input and output, if maintained steadily from
the time of the Roman Empire until the present, would have been
enough to raise the oceans to a boil. So evidently the earth does
dump this energy somehow. How does it do it? Our planet is sur-
rounded by the vacuum of outer space, like the ultimate thermos
bottle. Therefore it can’t expel heat by conduction or convection,
but it does radiate in the infrared, and this is the only available
mechanism for cooling.

Global warming

It was realized starting around 1930 that this created a danger-
ous vulnerability in our biosphere. Our atmosphere is only about
0.04% carbon dioxide, but carbon dioxide is an extraordinarily effi-
cient absorber of infrared light. It is, however, transparent to visible
light. Therefore any increase in the concentration of carbon dioxide
would decrease the efficiency of cooling by radiation, while allowing
in just as much heat input from visible light. When we burn fossil
fuels such as gasoline or coal, we release into the atmosphere carbon
that had previously been locked away underground. This results
in a shift to a new energy balance. The average temperature T of
the land and oceans increases until the T 4 dependence of radiation
compensates for the additional absorption of infrared light.

By about 1980, a clear scientific consensus had emerged that
this effect was real, that it was caused by human activity, and that
it had resulted in an abrupt increase in the earth’s average tem-
perature. We know, for example, from radioisotope studies that
the effect has not been caused by the release of carbon dioxide in
volcanic eruptions. The temperature increase has been verified by
multiple independent methods, including studies of tree rings and
coral reefs. Detailed computer models have correctly predicted a
number of effects that were later verified empirically, including a
rise in sea levels, and day-night and pole-equator variations. There
is no longer any controversy among climate scientists about the ex-
istence or cause of the effect.

One solution to the problem is to replace fossil fuels with renew-
able sources of energy such as solar power and wind. However, these
cannot be brought online fast enough to prevent severe warming in
the next few decades, so nuclear power is also a critical piece of the
puzzle (see section 26.4.9, p. 788).
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Summary
Selected vocabulary
potential energy the energy having to do with the distance be-

tween two objects that interact via a noncon-
tact force

Notation
PE . . . . . . . . . potential energy

Other terminology and notation
U or V . . . . . . symbols used for potential energy in the scien-

tific literature and in most advanced textbooks

Summary

Historically, the energy concept was only invented to include a
few phenomena, but it was later generalized more and more to apply
to new situations, for example nuclear reactions. This generalizing
process resulted in an undesirably long list of types of energy, each
of which apparently behaved according to its own rules.

The first step in simplifying the picture came with the realization
that heat was a form of random motion on the atomic level, i.e., heat
was nothing more than the kinetic energy of atoms.

A second and even greater simplification was achieved with the
realization that all the other apparently mysterious forms of energy
actually had to do with changing the distances between atoms (or
similar processes in nuclei). This type of energy, which relates to
the distance between objects that interact via a force, is therefore
of great importance. We call it potential energy.

Most of the important ideas about potential energy can be un-
derstood by studying the example of gravitational potential energy.
The change in an object’s gravitational potential energy is given by

∆PEgrav = −Fgrav∆y, [if Fgrav is constant, i.e., the

the motion is all near the Earth’s surface]

The most important thing to understand about potential energy
is that there is no unambiguous way to define it in an absolute sense.
The only thing that everyone can agree on is how much the potential
energy has changed from one moment in time to some later moment
in time.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Can gravitational potential energy ever be negative? Note
that the question refers to PE, not ∆PE, so that you must think
about how the choice of a reference level comes into play. [Based on
a problem by Serway and Faughn.]

2 A ball rolls up a ramp, turns around, and comes back down.
When does it have the greatest gravitational potential energy? The
greatest kinetic energy? [Based on a problem by Serway and Faughn.]

3 (a) You release a magnet on a tabletop near a big piece of iron,
and the magnet leaps across the table to the iron. Does the magnetic
potential energy increase, or decrease? Explain. (b) Suppose instead
that you have two repelling magnets. You give them an initial push
towards each other, so they decelerate while approaching each other.
Does the magnetic potential energy increase, or decrease? Explain.

4 Let Eb be the energy required to boil one kg of water. (a) Find
an equation for the minimum height from which a bucket of water
must be dropped if the energy released on impact is to vaporize it.
Assume that all the heat goes into the water, not into the dirt it
strikes, and ignore the relatively small amount of energy required to
heat the water from room temperature to 100◦C. [Numerical check,
not for credit: Plugging in Eb = 2.3 MJ/kg should give a result of
230 km.]

√

(b) Show that the units of your answer in part a come out right
based on the units given for Eb.

5 A grasshopper with a mass of 110 mg falls from rest from a
height of 310 cm. On the way down, it dissipates 1.1 mJ of heat due
to air resistance. At what speed, in m/s, does it hit the ground?

. Solution, p. 559

6 A person on a bicycle is to coast down a ramp of height h and
then pass through a circular loop of radius r. What is the small-
est value of h for which the cyclist will complete the loop without
falling? (Ignore the kinetic energy of the spinning wheels.)

√
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Problem 7.

7 A skateboarder starts at rest nearly at the top of a giant
cylinder, and begins rolling down its side. (If he started exactly at
rest and exactly at the top, he would never get going!) Show that his
board loses contact with the pipe after he has dropped by a height
equal to one third the radius of the pipe. . Solution, p. 559 ?

8 (a) A circular hoop of mass m and radius r spins like a wheel
while its center remains at rest. Its period (time required for one
revolution) is T . Show that its kinetic energy equals 2π2mr2/T 2.
(b) If such a hoop rolls with its center moving at velocity v, its
kinetic energy equals (1/2)mv2, plus the amount of kinetic energy
found in the first part of this problem. Show that a hoop rolls down
an inclined plane with half the acceleration that a frictionless sliding
block would have. ?

9 Students are often tempted to think of potential energy and
kinetic energy as if they were always related to each other, like
yin and yang. To show this is incorrect, give examples of physical
situations in which (a) PE is converted to another form of PE, and
(b) KE is converted to another form of KE. . Solution, p. 560

10 Lord Kelvin, a physicist, told the story of how he encountered
James Joule when Joule was on his honeymoon. As he traveled,
Joule would stop with his wife at various waterfalls, and measure
the difference in temperature between the top of the waterfall and
the still water at the bottom. (a) It would surprise most people
to learn that the temperature increased. Why should there be any
such effect, and why would Joule care? How would this relate to the
energy concept, of which he was the principal inventor? (b) How
much of a gain in temperature should there be between the top
and bottom of a 50-meter waterfall? (c) What assumptions did you
have to make in order to calculate your answer to part b? In reality,
would the temperature change be more than or less than what you
calculated? [Based on a problem by Arnold Arons.]

√

11 Make an order-of-magnitude estimate of the power repre-
sented by the loss of gravitational energy of the water going over
Niagara Falls. If the hydroelectric plant at the bottom of the falls
could convert 100% of this to electrical power, roughly how many
households could be powered? . Solution, p. 560

12 When you buy a helium-filled balloon, the seller has to inflate
it from a large metal cylinder of the compressed gas. The helium
inside the cylinder has energy, as can be demonstrated for example
by releasing a little of it into the air: you hear a hissing sound,
and that sound energy must have come from somewhere. The total
amount of energy in the cylinder is very large, and if the valve is
inadvertently damaged or broken off, the cylinder can behave like a
bomb or a rocket.

Suppose the company that puts the gas in the cylinders prepares
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cylinder A with half the normal amount of pure helium, and cylinder
B with the normal amount. Cylinder B has twice as much energy,
and yet the temperatures of both cylinders are the same. Explain, at
the atomic level, what form of energy is involved, and why cylinder
B has twice as much.

13 At a given temperature, the average kinetic energy per
molecule is a fixed value, so for instance in air, the more massive
oxygen molecules are moving more slowly on the average than the
nitrogen molecules. The ratio of the masses of oxygen and nitro-
gen molecules is 16.00 to 14.01. Now suppose a vessel containing
some air is surrounded by a vacuum, and the vessel has a tiny hole
in it, which allows the air to slowly leak out. The molecules are
bouncing around randomly, so a given molecule will have to “try”
many times before it gets lucky enough to head out through the
hole. Find the rate at which oxygen leaks divided by the rate at
which nitrogen leaks. (Define this rate according to the fraction of
the gas that leaks out in a given time, not the mass or number of
molecules leaked per unit time.)

√

14 Explain in terms of conservation of energy why sweating
cools your body, even though the sweat is at the same temperature
as your body. Describe the forms of energy involved in this energy
transformation. Why don’t you get the same cooling effect if you
wipe the sweat off with a towel? Hint: The sweat is evaporating.

15 Anya and Ivan lean over a balcony side by side. Anya throws
a penny downward with an initial speed of 5 m/s. Ivan throws
a penny upward with the same speed. Both pennies end up on
the ground below. Compare their kinetic energies and velocities on
impact.

16 Problem 16 has been deleted. ?

Problems 329



Problem 17.

Problem 18.

17 The figure shows two unequal masses, M and m, connected
by a string running over a pulley. This system was analyzed previ-
ously in problem 10 on p. 181, using Newton’s laws.
(a) Analyze the system using conservation of energy instead. Find
the speed the weights gain after being released from rest and trav-
eling a distance h.

√

(b) Use your result from part a to find the acceleration, reproducing
the result of the earlier problem.

√

18 The rock climber in the figure has mass m and is on a slope θ
above the horizontal. At a distance x down the slope below him is a
ledge. He is tied in to a climbing rope and being belayed from above,
so that if he slips he won’t simply plunge to his death. Climbing
ropes are intentionally made out of stretchy material so that in a
fall, the climber gets a gentle catch rather than a violent force that
would hurt (see example 2, p. 334). However, the rope should not
be more stretchy than necessary because of situations like this one:
if the rope were to stretch by more than x, the climber would hit
the ledge.
(a) Find the spring constant that the rope should have in order to
limit the amount of rope stretch to x.

√

(b) Show that your answer to part a has the right units.
(c) Analyze the mathematical dependence of the result on each of
the variables, and verify that it makes sense physically.
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Chapter 13

Work: The Transfer of
Mechanical Energy

13.1 Work: the transfer of mechanical energy
The concept of work

The mass contained in a closed system is a conserved quantity,
but if the system is not closed, we also have ways of measuring the
amount of mass that goes in or out. The water company does this
with a meter that records your water use.

Likewise, we often have a system that is not closed, and would
like to know how much energy comes in or out. Energy, however,
is not a physical substance like water, so energy transfer cannot
be measured with the same kind of meter. How can we tell, for
instance, how much useful energy a tractor can “put out” on one
tank of gas?

The law of conservation of energy guarantees that all the chem-
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a / Work is a transfer of en-
ergy.

b / The tractor raises the weight
over the pulley, increasing its
gravitational potential energy.

c / The tractor accelerates
the trailer, increasing its kinetic
energy.

d / The tractor pulls a plow.
Energy is expended in frictional
heating of the plow and the dirt,
and in breaking dirt clods and
lifting dirt up to the sides of the
furrow.

ical energy in the gasoline will reappear in some form, but not nec-
essarily in a form that is useful for doing farm work. Tractors, like
cars, are extremely inefficient, and typically 90% of the energy they
consume is converted directly into heat, which is carried away by
the exhaust and the air flowing over the radiator. We wish to dis-
tinguish the energy that comes out directly as heat from the energy
that serves to accelerate a trailer or to plow a field, so we define
a technical meaning of the ordinary word “work” to express the
distinction:

definition of work
Work is the amount of energy transferred into or out of a
system, not counting energy transferred by heat conduction.

self-check A
Based on this definition, is work a vector, or a scalar? What are its
units? . Answer, p. 567

The conduction of heat is to be distinguished from heating by
friction. When a hot potato heats up your hands by conduction, the
energy transfer occurs without any force, but when friction heats
your car’s brake shoes, there is a force involved. The transfer of en-
ergy with and without a force are measured by completely different
methods, so we wish to include heat transfer by frictional heating
under the definition of work, but not heat transfer by conduction.
The definition of work could thus be restated as the amount of en-
ergy transferred by forces.

Calculating work as force multiplied by distance

The examples in figures b-d show that there are many different
ways in which energy can be transferred. Even so, all these examples
have two things in common:

1. A force is involved.

2. The tractor travels some distance as it does the work.

In b, the increase in the height of the weight, ∆y, is the same as
the distance the tractor travels, which we’ll call d. For simplicity,
we discuss the case where the tractor raises the weight at constant
speed, so that there is no change in the kinetic energy of the weight,
and we assume that there is negligible friction in the pulley, so that
the force the tractor applies to the rope is the same as the rope’s
upward force on the weight. By Newton’s first law, these forces are
also of the same magnitude as the earth’s gravitational force on the
weight. The increase in the weight’s potential energy is given by
F∆y, so the work done by the tractor on the weight equals Fd, the
product of the force and the distance moved:

W = Fd.
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In example c, the tractor’s force on the trailer accelerates it, increas-
ing its kinetic energy. If frictional forces on the trailer are negligible,
then the increase in the trailer’s kinetic energy can be found using
the same algebra that was used on page 319 to find the potential
energy due to gravity. Just as in example b, we have

W = Fd.

Does this equation always give the right answer? Well, sort of.
In example d, there are two quantities of work you might want to
calculate: the work done by the tractor on the plow and the work
done by the plow on the dirt. These two quantities can’t both equal
Fd. Most of the energy transmitted through the cable goes into
frictional heating of the plow and the dirt. The work done by the
plow on the dirt is less than the work done by the tractor on the
plow, by an amount equal to the heat absorbed by the plow. It turns
out that the equation W = Fd gives the work done by the tractor,
not the work done by the plow. How are you supposed to know when
the equation will work and when it won’t? The somewhat complex
answer is postponed until section 13.6. Until then, we will restrict
ourselves to examples in which W = Fd gives the right answer;
essentially the reason the ambiguities come up is that when one
surface is slipping past another, d may be hard to define, because
the two surfaces move different distances.

e / The baseball pitcher put ki-
netic energy into the ball, so he
did work on it. To do the greatest
possible amount of work, he ap-
plied the greatest possible force
over the greatest possible dis-
tance.

We have also been using examples in which the force is in the
same direction as the motion, and the force is constant. (If the force
was not constant, we would have to represent it with a function, not
a symbol that stands for a number.) To summarize, we have:

rule for calculating work (simplest version)
The work done by a force can be calculated as

W = Fd,

if the force is constant and in the same direction as the motion.
Some ambiguities are encountered in cases such as kinetic friction.
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f / Example 1.

g / Example 2. Surprisingly,
the climber is in more danger at
1 than at 2. The distance d is
the amount by which the rope
will stretch while work is done to
transfer the kinetic energy of a
fall out of her body.

Mechanical work done in an earthquake example 1
. In 1998, geologists discovered evidence for a big prehistoric
earthquake in Pasadena, between 10,000 and 15,000 years ago.
They found that the two sides of the fault moved 6.7 m relative
to one another, and estimated that the force between them was
1.3× 1017 N. How much energy was released?

. Multiplying the force by the distance gives 9× 1017 J. For com-
parison, the Northridge earthquake of 1994, which killed 57 peo-
ple and did 40 billion dollars of damage, released 22 times less
energy.

The fall factor example 2
Counterintuitively, the rock climber may be in more danger in fig-
ure g/1 than later when she gets up to position g/2.

Along her route, the climber has placed removable rock anchors
(not shown) and carabiners attached to the anchors. She clips
the rope into each carabiner so that it can travel but can’t pop out.
In both 1 and 2, she has ascended a certain distance above her
last anchor, so that if she falls, she will drop through a height h
that is about twice this distance, and this fall height is about the
same in both cases. In fact, h is somewhat larger than twice her
height above the last anchor, because the rope is intentionally
designed to stretch under the big force of a falling climber who
suddenly brings it taut.

To see why we want a stretchy rope, consider the equation F =
W/d in the case where d is zero; F would theoretically become
infinite. In a fall, the climber loses a fixed amount of gravita-
tional energy mgh. This is transformed into an equal amount
of kinetic energy as she falls, and eventually this kinetic energy
has to be transferred out of her body when the rope comes up
taut. If the rope was not stretchy, then the distance traveled at
the point where the rope attaches to her harness would be zero,
and the force exerted would theoretically be infinite. Before the
rope reached the theoretically infinite tension F it would break (or
her back would break, or her anchors would be pulled out of the
rock). We want the rope to be stretchy enough to make d fairly
big, so that dividing W by d gives a small force.1

In g/1 and g/2, the fall h is about the same. What is different is the
length L of rope that has been paid out. A longer rope can stretch
more, so the distance d traveled after the “catch” is proportional
to L. Combining F = W/d , W ∝ h, and d ∝ L, we have F ∝ h/L.
For these reasons, rock climbers define a fall factor f = h/L. The
larger fall factor in g/1 is more dangerous.

1Actually F isn’t constant, because the tension in the rope increases steadily
as it stretches, but this is irrelevant to the present analysis.
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Machines can increase force, but not work.

Figure h shows a pulley arrangement for doubling the force sup-
plied by the tractor (book 1, section 5.6). The tension in the left-
hand rope is equal throughout, assuming negligible friction, so there
are two forces pulling the pulley to the left, each equal to the origi-
nal force exerted by the tractor on the rope. This doubled force is
transmitted through the right-hand rope to the stump.

h / The pulley doubles the force
the tractor can exert on the
stump.

It might seem as though this arrangement would also double the
work done by the tractor, but look again. As the tractor moves
forward 2 meters, 1 meter of rope comes around the pulley, and the
pulley moves 1 m to the left. Although the pulley exerts double the
force on the stump, the pulley and stump only move half as far, so
the work done on the stump is no greater that it would have been
without the pulley.

The same is true for any mechanical arrangement that increases
or decreases force, such as the gears on a ten-speed bike. You can’t
get out more work than you put in, because that would violate
conservation of energy. If you shift gears so that your force on the
pedals is amplified, the result is that you just have to spin the pedals
more times.

No work is done without motion.

It strikes most students as nonsensical when they are told that
if they stand still and hold a heavy bag of cement, they are doing
no work on the bag. Even if it makes sense mathematically that
W = Fd gives zero when d is zero, it seems to violate common
sense. You would certainly become tired! The solution is simple.
Physicists have taken over the common word “work” and given it a
new technical meaning, which is the transfer of energy. The energy
of the bag of cement is not changing, and that is what the physicist
means by saying no work is done on the bag.

There is a transformation of energy, but it is taking place entirely
within your own muscles, which are converting chemical energy into
heat. Physiologically, a human muscle is not like a tree limb, which
can support a weight indefinitely without the expenditure of energy.
Each muscle cell’s contraction is generated by zillions of little molec-
ular machines, which take turns supporting the tension. When a
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i / Whenever energy is trans-
ferred out of the spring, the same
amount has to be transferred into
the ball, and vice versa. As the
spring compresses, the ball is
doing positive work on the spring
(giving up its KE and transferring
energy into the spring as PE),
and as it decompresses the ball
is doing negative work (extracting
energy).

particular molecule goes on or off duty, it moves, and since it moves
while exerting a force, it is doing work. There is work, but it is work
done by one molecule in a muscle cell on another.

Positive and negative work

When object A transfers energy to object B, we say that A
does positive work on B. B is said to do negative work on A. In
other words, a machine like a tractor is defined as doing positive
work. This use of the plus and minus signs relates in a logical and
consistent way to their use in indicating the directions of force and
motion in one dimension. In figure i, suppose we choose a coordinate
system with the x axis pointing to the right. Then the force the
spring exerts on the ball is always a positive number. The ball’s
motion, however, changes directions. The symbol d is really just a
shorter way of writing the familiar quantity ∆x, whose positive and
negative signs indicate direction.

While the ball is moving to the left, we use d < 0 to represent
its direction of motion, and the work done by the spring, Fd, comes
out negative. This indicates that the spring is taking kinetic energy
out of the ball, and accepting it in the form of its own potential
energy.

As the ball is reaccelerated to the right, it has d > 0, Fd is
positive, and the spring does positive work on the ball. Potential
energy is transferred out of the spring and deposited in the ball as
kinetic energy.

In summary:

rule for calculating work (including cases of negative
work)
The work done by a force can be calculated as

W = Fd,

if the force is constant and along the same line as the motion.
The quantity d is to be interpreted as a synonym for ∆x, i.e.,
positive and negative signs are used to indicate the direction
of motion. Some ambiguities are encountered in cases such as
kinetic friction.

self-check B
In figure i, what about the work done by the ball on the spring?
. Answer, p. 567

There are many examples where the transfer of energy out of an
object cancels out the transfer of energy in. When the tractor pulls
the plow with a rope, the rope does negative work on the tractor
and positive work on the plow. The total work done by the rope is
zero, which makes sense, since it is not changing its energy.

It may seem that when your arms do negative work by lowering
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j / Left: No mechanical work
occurs in the man’s body while
he holds himself motionless.
There is a transformation of
chemical energy into heat, but
this happens at the microscopic
level inside the tensed muscles.
Right: When the woman lifts
herself, her arms do positive
work on her body, transforming
chemical energy into gravitational
potential energy and heat. On the
way back down, the arms’ work
is negative; gravitational potential
energy is transformed into heat.
(In exercise physiology, the man
is said to be doing isometric
exercise, while the woman’s is
concentric and then eccentric.)

k / Because the force is in
the opposite direction compared
to the motion, the brake shoe
does negative work on the drum,
i.e., accepts energy from it in the
form of heat.

a bag of cement, the cement is not really transferring energy into
your body. If your body was storing potential energy like a com-
pressed spring, you would be able to raise and lower a weight all
day, recycling the same energy. The bag of cement does transfer
energy into your body, but your body accepts it as heat, not as po-
tential energy. The tension in the muscles that control the speed of
the motion also results in the conversion of chemical energy to heat,
for the same physiological reasons discussed previously in the case
where you just hold the bag still.

One of the advantages of electric cars over gasoline-powered cars
is that it is just as easy to put energy back in a battery as it is to
take energy out. When you step on the brakes in a gas car, the brake
shoes do negative work on the rest of the car. The kinetic energy of
the car is transmitted through the brakes and accepted by the brake
shoes in the form of heat. The energy cannot be recovered. Electric
cars, however, are designed to use regenerative braking. The brakes
don’t use friction at all. They are electrical, and when you step on
the brake, the negative work done by the brakes means they accept
the energy and put it in the battery for later use. This is one of the
reasons why an electric car is far better for the environment than a
gas car, even if the ultimate source of the electrical energy happens
to be the burning of oil in the electric company’s plant. The electric
car recycles the same energy over and over, and only dissipates heat
due to air friction and rolling resistance, not braking. (The electric
company’s power plant can also be fitted with expensive pollution-
reduction equipment that would be prohibitively expensive or bulky
for a passenger car.)
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m / A force can do positive,
negative, or zero work, depend-
ing on its direction relative to the
direction of the motion.

Discussion questions

A Besides the presence of a force, what other things differentiate the
processes of frictional heating and heat conduction?

B Criticize the following incorrect statement: “A force doesn’t do any
work unless it’s causing the object to move.”

C To stop your car, you must first have time to react, and then it takes
some time for the car to slow down. Both of these times contribute to the
distance you will travel before you can stop. The figure shows how the
average stopping distance increases with speed. Because the stopping
distance increases more and more rapidly as you go faster, the rule of
one car length per 10 m.p.h. of speed is not conservative enough at high
speeds. In terms of work and kinetic energy, what is the reason for the
more rapid increase at high speeds?

Discussion question C.

13.2 Work in three dimensions

A force perpendicular to the motion does no work.

Suppose work is being done to change an object’s kinetic energy.
A force in the same direction as its motion will speed it up, and a
force in the opposite direction will slow it down. As we have already
seen, this is described as doing positive work or doing negative work
on the object. All the examples discussed up until now have been
of motion in one dimension, but in three dimensions the force can
be at any angle θ with respect to the direction of motion.

What if the force is perpendicular to the direction of motion? We
have already seen that a force perpendicular to the motion results
in circular motion at constant speed. The kinetic energy does not
change, and we conclude that no work is done when the force is
perpendicular to the motion.

So far we have been reasoning about the case of a single force
acting on an object, and changing only its kinetic energy. The result
is more generally true, however. For instance, imagine a hockey puck
sliding across the ice. The ice makes an upward normal force, but
does not transfer energy to or from the puck.
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n / Work is only done by the
component of the force parallel to
the motion.

o / Self-check. (Breaking Trail, by
Walter E. Bohl.)

Forces at other angles

Suppose the force is at some other angle with respect to the
motion, say θ = 45◦. Such a force could be broken down into two
components, one along the direction of the motion and the other
perpendicular to it. The force vector equals the vector sum of its
two components, and the principle of vector addition of forces thus
tells us that the work done by the total force cannot be any different
than the sum of the works that would be done by the two forces by
themselves. Since the component perpendicular to the motion does
no work, the work done by the force must be

W = F‖|d|, [work done by a constant force]

where the vector d is simply a less cumbersome version of the nota-
tion ∆r. This result can be rewritten via trigonometry as

W = |F||d| cos θ. [work done by a constant force]

Even though this equation has vectors in it, it depends only on
their magnitudes, and the magnitude of a vector is a scalar. Work
is therefore still a scalar quantity, which only makes sense if it is
defined as the transfer of energy. Ten gallons of gasoline have the
ability to do a certain amount of mechanical work, and when you
pull in to a full-service gas station you don’t have to say “Fill ’er up
with 10 gallons of south-going gas.”

Students often wonder why this equation involves a cosine rather
than a sine, or ask if it would ever be a sine. In vector addition, the
treatment of sines and cosines seemed more equal and democratic,
so why is the cosine so special now? The answer is that if we are
going to describe, say, a velocity vector, we must give both the
component parallel to the x axis and the component perpendicular
to the x axis (i.e., the y component). In calculating work, however,
the force component perpendicular to the motion is irrelevant — it
changes the direction of motion without increasing or decreasing the
energy of the object on which it acts. In this context, it is only the
parallel force component that matters, so only the cosine occurs.

self-check C
(a) Work is the transfer of energy. According to this definition, is the
horse in the picture doing work on the pack? (b) If you calculate work
by the method described in this section, is the horse in figure o doing
work on the pack? . Answer, p. 567

Pushing a broom example 3
. If you exert a force of 21 N on a push broom, at an angle 35
degrees below horizontal, and walk for 5.0 m, how much work do
you do? What is the physical significance of this quantity of work?

. Using the second equation above, the work done equals

(21 N)(5.0 m)(cos 35◦) = 86 J.
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The form of energy being transferred is heat in the floor and the
broom’s bristles. This comes from the chemical energy stored in
your body. (The majority of the calories you burn are dissipated
directly as heat inside your body rather than doing any work on
the broom. The 86 J is only the amount of energy transferred
through the broom’s handle.)

A violin example 4
As a violinist draws the bow across a string, the bow hairs exert
both a normal force and a kinetic frictional force on the string. The
normal force is perpendicular to the direction of motion, and does
no work. However, the frictional force is in the same direction as
the motion of the bow, so it does work: energy is transferred to
the string, causing it to vibrate.

One way of playing a violin more loudly is to use longer strokes.
Since W = Fd , the greater distance results in more work.

A second way of getting a louder sound is to press the bow more
firmly against the strings. This increases the normal force, and
although the normal force itself does no work, an increase in the
normal force has the side effect of increasing the frictional force,
thereby increasing W = Fd .

The violinist moves the bow back and forth, and sound is pro-
duced on both the “up-bow” (the stroke toward the player’s left)
and the “down-bow” (to the right). One may, for example, play a
series of notes in alternation between up-bows and down-bows.
However, if the notes are of unequal length, the up and down mo-
tions tend to be unequal, and if the player is not careful, she can
run out of bow in the middle of a note! To keep this from hap-
pening, one can move the bow more quickly on the shorter notes,
but the resulting increase in d will make the shorter notes louder
than they should be. A skilled player compensates by reducing
the force.

13.3 Varying force
Up until now we have done no actual calculations of work in cases
where the force was not constant. The question of how to treat
such cases is mathematically analogous to the issue of how to gener-
alize the equation (distance) = (velocity)(time) to cases where the
velocity was not constant. There, we found that the correct gen-
eralization was to find the area under the graph of velocity versus
time. The equivalent thing can be done with work:

general rule for calculating work
The work done by a force F equals the area under the curve
on a graph of F‖ versus x. (Some ambiguities are encountered
in cases such as kinetic friction.)
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p / The spring does work on
the cart. (Unlike the ball in
section 13.1, the cart is attached
to the spring.)

q / The area of the shaded
triangle gives the work done by
the spring as the cart moves
from the equilibrium position to
position x .

The examples in this section are ones in which the force is vary-
ing, but is always along the same line as the motion, so F is the
same as F‖.

self-check D
In which of the following examples would it be OK to calculate work
using Fd , and in which ones would you have to use the area under the
F − x graph?

(a) A fishing boat cruises with a net dragging behind it.

(b) A magnet leaps onto a refrigerator from a distance.

(c) Earth’s gravity does work on an outward-bound space probe. .

Answer, p. 567

An important and straightforward example is the calculation of
the work done by a spring that obeys Hooke’s law,

F ≈ −k (x− xo) .

The minus sign is because this is the force being exerted by the
spring, not the force that would have to act on the spring to keep
it at this position. That is, if the position of the cart in figure p
is to the right of equilibrium, the spring pulls back to the left, and
vice-versa.

We calculate the work done when the spring is initially at equi-
librium and then decelerates the car as the car moves to the right.
The work done by the spring on the cart equals the minus area of
the shaded triangle, because the triangle hangs below the x axis.
The area of a triangle is half its base multiplied by its height, so

W = −1

2
k (x− xo)2 .

This is the amount of kinetic energy lost by the cart as the spring
decelerates it.

It was straightforward to calculate the work done by the spring in
this case because the graph of F versus x was a straight line, giving
a triangular area. But if the curve had not been so geometrically
simple, it might not have been possible to find a simple equation for
the work done, or an equation might have been derivable only using
calculus. Optional section 13.4 gives an important example of such
an application of calculus.

Energy production in the sun example 5
The sun produces energy through nuclear reactions in which nu-
clei collide and stick together. The figure depicts one such reac-
tion, in which a single proton (hydrogen nucleus) collides with
a carbon nucleus, consisting of six protons and six neutrons.
Neutrons and protons attract other neutrons and protons via the
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r / Example 5.

strong nuclear force, so as the proton approaches the carbon nu-
cleus it is accelerated. In the language of energy, we say that
it loses nuclear potential energy and gains kinetic energy. To-
gether, the seven protons and six neutrons make a nitrogen nu-
cleus. Within the newly put-together nucleus, the neutrons and
protons are continually colliding, and the new proton’s extra ki-
netic energy is rapidly shared out among all the neutrons and
protons. Soon afterward, the nucleus calms down by releasing
some energy in the form of a gamma ray, which helps to heat the
sun.

The graph shows the force between the carbon nucleus and the
proton as the proton is on its way in, with the distance in units of
femtometers (1 fm=10−15 m). Amusingly, the force turns out to be
a few newtons: on the same order of magnitude as the forces we
encounter ordinarily on the human scale. Keep in mind, however,
that a force this big exerted on a single subatomic particle such as
a proton will produce a truly fantastic acceleration (on the order
of 1027 m/s2!).

342 Chapter 13 Work: The Transfer of Mechanical Energy



Why does the force have a peak around x = 3 fm, and become
smaller once the proton has actually merged with the nucleus?
At x = 3 fm, the proton is at the edge of the crowd of protons and
neutrons. It feels many attractive forces from the left, and none
from the right. The forces add up to a large value. However if
it later finds itself at the center of the nucleus, x = 0, there are
forces pulling it from all directions, and these force vectors cancel
out.

We can now calculate the energy released in this reaction by us-
ing the area under the graph to determine the amount of mechan-
ical work done by the carbon nucleus on the proton. (For simplic-
ity, we assume that the proton came in “aimed” at the center of
the nucleus, and we ignore the fact that it has to shove some neu-
trons and protons out of the way in order to get there.) The area
under the curve is about 17 squares, and the work represented
by each square is

(1 N)(10−15 m) = 10−15 J,

so the total energy released is about

(10−15 J/square)(17 squares) = 1.7× 10−14 J.

This may not seem like much, but remember that this is only a
reaction between the nuclei of two out of the zillions of atoms in
the sun. For comparison, a typical chemical reaction between
two atoms might transform on the order of 10−19 J of electrical
potential energy into heat — 100,000 times less energy!

As a final note, you may wonder why reactions such as these only
occur in the sun. The reason is that there is a repulsive electrical
force between nuclei. When two nuclei are close together, the
electrical forces are typically about a million times weaker than the
nuclear forces, but the nuclear forces fall off much more quickly
with distance than the electrical forces, so the electrical force is
the dominant one at longer ranges. The sun is a very hot gas, so
the random motion of its atoms is extremely rapid, and a collision
between two atoms is sometimes violent enough to overcome this
initial electrical repulsion.

13.4
∫

Applications of calculus
The student who has studied integral calculus will recognize that
the graphical rule given in the previous section can be reexpressed
as an integral,

W =

∫ x2

x1

F dx.

We can then immediately find by the fundamental theorem of cal-
culus that force is the derivative of work with respect to position,

F =
dW

dx
.
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For example, a crane raising a one-ton block on the moon would
be transferring potential energy into the block at only one sixth the
rate that would be required on Earth, and this corresponds to one
sixth the force.

Although the work done by the spring could be calculated with-
out calculus using the area of a triangle, there are many cases where
the methods of calculus are needed in order to find an answer in
closed form. The most important example is the work done by
gravity when the change in height is not small enough to assume a
constant force. Newton’s law of gravity is

F =
GMm

r2
,

which can be integrated to give

W =

∫ r2

r1

GMm

r2
dr

= −GMm

(
1

r2
− 1

r1

)
.
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13.5 Work and potential energy
The techniques for calculating work can also be applied to the cal-
culation of potential energy. If a certain force depends only on
the distance between the two participating objects, then the energy
released by changing the distance between them is defined as the po-
tential energy, and the amount of potential energy lost equals minus
the work done by the force,

∆PE = −W .

The minus sign occurs because positive work indicates that the po-
tential energy is being expended and converted to some other form.

It is sometimes convenient to pick some arbitrary position as a
reference position, and derive an equation for once and for all that
gives the potential energy relative to this position

PEx = −Wref→x. [potential energy at a point x]

To find the energy transferred into or out of potential energy, one
then subtracts two different values of this equation.

These equations might almost make it look as though work and
energy were the same thing, but they are not. First, potential energy
measures the energy that a system has stored in it, while work
measures how much energy is transferred in or out. Second, the
techniques for calculating work can be used to find the amount of
energy transferred in many situations where there is no potential
energy involved, as when we calculate the amount of kinetic energy
transformed into heat by a car’s brake shoes.

A toy gun example 6
. A toy gun uses a spring with a spring constant of 10 N/m to
shoot a ping-pong ball of mass 5 g. The spring is compressed to
10 cm shorter than its equilibrium length when the gun is loaded.
At what speed is the ball released?

. The equilibrium point is the natural choice for a reference point.
Using the equation found previously for the work, we have

PEx =
1
2

k (x − xo)2 .

The spring loses contact with the ball at the equilibrium point, so
the final potential energy is

PEf = 0.

The initial potential energy is

PEi =
1
2

(10 N/m)(0.10 m)2.

= 0.05 J.
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s / Example 7, gravitational
potential energy as a function of
distance.

The loss in potential energy of 0.05 J means an increase in kinetic
energy of the same amount. The velocity of the ball is found by
solving the equation K E = (1/2)mv2 for v ,

v =

√
2K E

m

=

√
(2)(0.05 J)
0.005 kg

= 4 m/s.

Gravitational potential energy example 7
. We have already found the equation ∆PE = −F∆y for the

gravitational potential energy when the change in height is not
enough to cause a significant change in the gravitational force F .
What if the change in height is enough so that this assumption
is no longer valid? Use the equation W = GMm(1/r2 − 1/r1)
derived in section 13.4 to find the potential energy, using r = ∞
as a reference point.

. The potential energy equals minus the work that would have to
be done to bring the object from r1 =∞ to r = r2, which is

PE = −GMm
r

.

This is simpler than the equation for the work, which is an exam-
ple of why it is advantageous to record an equation for potential
energy relative to some reference point, rather than an equation
for work.

Although the equations derived in the previous two examples
may seem arcane and not particularly useful except for toy design-
ers and rocket scientists, their usefulness is actually greater than
it appears. The equation for the potential energy of a spring can
be adapted to any other case in which an object is compressed,
stretched, twisted, or bent. While you are not likely to use the
equation for gravitational potential energy for anything practical, it
is directly analogous to an equation that is extremely useful in chem-
istry, which is the equation for the potential energy of an electron
at a distance r from the nucleus of its atom. As discussed in more
detail later in the course, the electrical force between the electron
and the nucleus is proportional to 1/r2, just like the gravitational
force between two masses. Since the equation for the force is of the
same form, so is the equation for the potential energy.
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t / The twin Voyager space probes
were perhaps the greatest scien-
tific successes of the space pro-
gram. Over a period of decades,
they flew by all the planets of the
outer solar system, probably ac-
complishing more of scientific in-
terest than the entire space shut-
tle program at a tiny fraction of
the cost. Both Voyager probes
completed their final planetary fly-
bys with speeds greater than the
escape velocity at that distance
from the sun, and so headed on
out of the solar system on hyper-
bolic orbits, never to return. Ra-
dio contact has been lost, and
they are now likely to travel inter-
stellar space for billions of years
without colliding with anything or
being detected by any intelligent
species.

Discussion questions

A What does the graph of PE = (1/2)k (x − xo)2 look like as a function
of x? Discuss the physical significance of its features.

B What does the graph of PE = −GMm/r look like as a function of r?
Discuss the physical significance of its features. How would the equation
and graph change if some other reference point was chosen rather than
r =∞?

C Starting at a distance r from a planet of mass M, how fast must an
object be moving in order to have a hyperbolic orbit, i.e., one that never
comes back to the planet? This velocity is called the escape velocity. In-
terpreting the result, does it matter in what direction the velocity is? Does
it matter what mass the object has? Does the object escape because it is
moving too fast for gravity to act on it?

D Does a spring have an “escape velocity?”

E Calculus-based question: If the form of energy being transferred
is potential energy, then the equations F = dW/dx and W =

∫
F dx

become F = −dPE/dx and PE = −
∫

F dx . How would you then apply
the following calculus concepts: zero derivative at minima and maxima,
and the second derivative test for concavity up or down.

13.6 ? When does work equal force times
distance?

In the example of the tractor pulling the plow discussed on page
333, the work did not equal Fd. The purpose of this section is to
explain more fully how the quantity Fd can and cannot be used.
To simplify things, I write Fd throughout this section, but more
generally everything said here would be true for the area under the
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The work-KE theorem

Proof

For simplicity, we have assumed
Ftotal to be constant, and therefore
acm = Ftotal/m is also constant, and
the constant-acceleration equation

v2
cm,f = v2

cm,i + 2acm∆xcm

applies. Multiplying by m/2 on both
sides and applying Newton’s sec-
ond law gives

K E2
cm,f = K E2

cm,i + Ftotal∆xcm,

which is the result that was to be
proved.

Further interpretation

The logical structure of this book
is that although Newton’s laws are
discussed before conservation laws,
the conservation laws are taken
to be fundamental, since they are
true even in cases where Newton’s
laws fail. Many treatments of this
subject present the work-KE the-
orem as a proof that kinetic en-
ergy behaves as (1/2)mv2. This
is a matter of taste, but one can
just as well rearrange the equa-
tions in the proof above to solve
for the unknown acm and prove New-
ton’s second law as a consequence
of conservation of energy. Ultimately
we have a great deal of freedom
in choosing which equations to take
as definitions, which to take as em-
pirically verified laws of nature, and
which to take as theorems.

Regardless of how we slice things,
we require both mathematical con-
sistency and consistency with ex-
periment. As described on p. 305,
the work-KE theorem is an impor-
tant part of this interlocking sys-
tem of relationships.

graph of F‖ versus d.

The following two theorems allow most of the ambiguity to be
cleared up.

the work-kinetic-energy theorem
The change in kinetic energy associated with the motion of an
object’s center of mass is related to the total force acting on
it and to the distance traveled by its center of mass according
to the equation ∆KEcm = Ftotaldcm.

A proof is given in the sidebar, along with some interpretation
of how this result relates to the logical structure of our presentation.
Note that despite the traditional name, it does not necessarily tell
the amount of work done, since the forces acting on the object could
be changing other types of energy besides the KE associated with
its center of mass motion.

The second theorem does relate directly to work:

When a contact force acts between two objects and the two
surfaces do not slip past each other, the work done equals Fd,
where d is the distance traveled by the point of contact.

This one has no generally accepted name, so we refer to it simply
as the second theorem.

A great number of physical situations can be analyzed with these
two theorems, and often it is advantageous to apply both of them
to the same situation.

An ice skater pushing off from a wall example 8
The work-kinetic energy theorem tells us how to calculate the
skater’s kinetic energy if we know the amount of force and the
distance her center of mass travels while she is pushing off.

The second theorem tells us that the wall does no work on the
skater. This makes sense, since the wall does not have any
source of energy.

Absorbing an impact without recoiling? example 9
. Is it possible to absorb an impact without recoiling? For in-
stance, would a brick wall “give” at all if hit by a ping-pong ball?

. There will always be a recoil. In the example proposed, the wall
will surely have some energy transferred to it in the form of heat
and vibration. The second theorem tells us that we can only have
nonzero work if the distance traveled by the point of contact is
nonzero.
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Dragging a refrigerator at constant velocity example 10
Newton’s first law tells us that the total force on the refrigerator
must be zero: your force is canceling the floor’s kinetic frictional
force. The work-kinetic energy theorem is therefore true but use-
less. It tells us that there is zero total force on the refrigerator,
and that the refrigerator’s kinetic energy doesn’t change.

The second theorem tells us that the work you do equals your
hand’s force on the refrigerator multiplied by the distance traveled.
Since we know the floor has no source of energy, the only way for
the floor and refrigerator to gain energy is from the work you do.
We can thus calculate the total heat dissipated by friction in the
refrigerator and the floor.

Note that there is no way to find how much of the heat is dissi-
pated in the floor and how much in the refrigerator.

Accelerating a cart example 11
If you push on a cart and accelerate it, there are two forces acting
on the cart: your hand’s force, and the static frictional force of the
ground pushing on the wheels in the opposite direction.

Applying the second theorem to your force tells us how to calcu-
late the work you do.

Applying the second theorem to the floor’s force tells us that the
floor does no work on the cart. There is no motion at the point
of contact, because the atoms in the floor are not moving. (The
atoms in the surface of the wheel are also momentarily at rest
when they touch the floor.) This makes sense, since the floor
does not have any source of energy.

The work-kinetic energy theorem refers to the total force, and be-
cause the floor’s backward force cancels part of your force, the
total force is less than your force. This tells us that only part of
your work goes into the kinetic energy associated with the forward
motion of the cart’s center of mass. The rest goes into rotation of
the wheels.

13.7 ? The dot product
Up until now, we have not found any physically useful way to define
the multiplication of two vectors. It would be possible, for instance,
to multiply two vectors component by component to form a third
vector, but there are no physical situations where such a multipli-
cation would be useful.

The equation W = |F||d| cos θ is an example of a sort of mul-
tiplication of vectors that is useful. The result is a scalar, not a
vector, and this is therefore often referred to as the scalar product
of the vectors F and d. There is a standard shorthand notation for
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this operation,

A ·B = |A||B| cos θ, [definition of the notation A ·B;

θ is the angle between vectors A and B]

and because of this notation, a more common term for this operation
is the dot product. In dot product notation, the equation for work
is simply

W = F · d.

The dot product has the following geometric interpretation:

A ·B = |A|(component of B parallel to A)

= |B|(component of A parallel to B)

The dot product has some of the properties possessed by ordinary
multiplication of numbers,

A ·B = B ·A
A · (B + C) = A ·B + A ·C

(cA) ·B = c (A ·B) ,

but it lacks one other: the ability to undo multiplication by dividing.

If you know the components of two vectors, you can easily cal-
culate their dot product as follows:

A ·B = AxBx +AyBy +AzBz.

(This can be proved by first analyzing the special case where each
vector has only an x component, and the similar cases for y and z.
We can then use the rule A · (B + C) = A · B + A · C to make a
generalization by writing each vector as the sum of its x, y, and z
components. See homework problem 17.)

Magnitude expressed with a dot product example 12
If we take the dot product of any vector b with itself, we find

b · b =
(
bx x̂ + by ŷ + bz ẑ

)
·
(
bx x̂ + by ŷ + bz ẑ

)
= b2

x + b2
y + b2

z ,

so its magnitude can be expressed as

|b| =
√

b · b.

We will often write b2 to mean b · b, when the context makes
it clear what is intended. For example, we could express kinetic
energy as (1/2)m|v|2, (1/2)mv·v, or (1/2)mv2. In the third version,
nothing but context tells us that v really stands for the magnitude
of some vector v.
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Towing a barge example 13
. A mule pulls a barge with a force F=(1100 N)x̂ + (400 N)ŷ, and
the total distance it travels is (1000 m)x̂. How much work does it
do?

. The dot product is 1.1× 106 N·m = 1.1× 106 J.

Zero work done by a constant force around a closed path exam-
ple 14
The figure shows a chain of ∆r vectors d1, . . . dn that form a
closed path, so that

n∑
i=1

di = 0.

Suppose that work is done along this path by a constant force.
For example, the earth’s gravitational force on an object would be
nearly constant as long as the region of space in the figure was
small compared to the size of the earth. The total work done is
then

W =
n∑

i=1

F · di .

But because the dot product has the property A · (B + C) = A ·B +
A · C, we can take the constant factor F outside the sum, giving

W = F ·
n∑

i=1

di ,

and this equals zero because the sum of the d vectors is zero. In
the case of the earth’s gravitational field, this makes sense, be-
cause the earth is unaffected by the motion of the object, so the
whole system ends up with the same potential energy that it orig-
inally had. Any other result would violate conservation of energy,
e.g., by allowing us to harvest some kinetic energy every time
the mass made the round trip. This would be a kind of perpetual
motion machine.
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Summary
Selected vocabulary
work . . . . . . . . the amount of energy transferred into or out

of a system, excluding energy transferred by
heat conduction

Notation
W . . . . . . . . . work

Summary

Work is a measure of the transfer of mechanical energy, i.e., the
transfer of energy by a force rather than by heat conduction. When
the force is constant, work can usually be calculated as

W = F‖|d|, [only if the force is constant]

where d is simply a less cumbersome notation for ∆r, the vector
from the initial position to the final position. Thus,

• A force in the same direction as the motion does positive work,
i.e., transfers energy into the object on which it acts.

• A force in the opposite direction compared to the motion does
negative work, i.e., transfers energy out of the object on which
it acts.

• When there is no motion, no mechanical work is done. The
human body burns calories when it exerts a force without
moving, but this is an internal energy transfer of energy within
the body, and thus does not fall within the scientific definition
of work.

• A force perpendicular to the motion does no work.

When the force is not constant, the above equation should be gen-
eralized as the area under the graph of F‖ versus d.

Machines such as pulleys, levers, and gears may increase or de-
crease a force, but they can never increase or decrease the amount
of work done. That would violate conservation of energy unless the
machine had some source of stored energy or some way to accept
and store up energy.

There are some situations in which the equation W = F‖ |d| is
ambiguous or not true, and these issues are discussed rigorously in
section 13.6. However, problems can usually be avoided by analyzing
the types of energy being transferred before plunging into the math.
In any case there is no substitute for a physical understanding of
the processes involved.

The techniques developed for calculating work can also be ap-
plied to the calculation of potential energy. We fix some position
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as a reference position, and calculate the potential energy for some
other position, x, as

PEx = −Wref→x.

The following two equations for potential energy have broader
significance than might be suspected based on the limited situations
in which they were derived:

PE =
1

2
k (x− xo)2 .

[potential energy of a spring having spring constant
k, when stretched or compressed from the equilibrium
position xo; analogous equations apply for the twisting,
bending, compression, or stretching of any object.]

PE = −GMm

r

[gravitational potential energy of objects of masses M
and m, separated by a distance r; an analogous equation
applies to the electrical potential energy of an electron
in an atom.]
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A bull paws the ground, as
in problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Two speedboats are identical, but one has more people aboard
than the other. Although the total masses of the two boats are
unequal, suppose that they happen to have the same kinetic energy.
In a boat, as in a car, it’s important to be able to stop in time to
avoid hitting things. (a) If the frictional force from the water is the
same in both cases, how will the boats’ stopping distances compare?
Explain. (b) Compare the times required for the boats to stop.

2 In each of the following situations, is the work being done
positive, negative, or zero? (a) a bull paws the ground; (b) a fishing
boat pulls a net through the water behind it; (c) the water resists
the motion of the net through it; (d) you stand behind a pickup
truck and lower a bale of hay from the truck’s bed to the ground.
Explain. [Based on a problem by Serway and Faughn.]

3 In the earth’s atmosphere, the molecules are constantly moving
around. Because temperature is a measure of kinetic energy per
molecule, the average kinetic energy of each type of molecule is the
same, e.g., the average KE of the O2 molecules is the same as the
average KE of the N2 molecules. (a) If the mass of an O2 molecule
is eight times greater than that of a He atom, what is the ratio of
their average speeds? Which way is the ratio, i.e., which is typically
moving faster? (b) Use your result from part a to explain why any
helium occurring naturally in the atmosphere has long since escaped
into outer space, never to return. (Helium is obtained commercially
by extracting it from rocks.) You may want to do problem 21 first,
for insight.

√

4 Weiping lifts a rock with a weight of 1.0 N through a height of
1.0 m, and then lowers it back down to the starting point. Bubba
pushes a table 1.0 m across the floor at constant speed, requiring
a force of 1.0 N, and then pushes it back to where it started. (a)
Compare the total work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using the definition of work:
work is the transfer of energy. In your answer, you’ll need to discuss
what specific type of energy is involved in each case.

5 In one of his more flamboyant moments, Galileo wrote “Who
does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height
or a cat from a height of eight or ten cubits will suffer no injury?
Equally harmless would be the fall of a grasshopper from a tower or
the fall of an ant from the distance of the moon.” Find the speed
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Problem 8: A cylinder from
the 1965 Rambler’s engine. The
piston is shown in its pushed out
position. The two bulges at the
top are for the valves that let fresh
air-gas mixture in. Based on a
figure from Motor Service’s Au-
tomotive Encyclopedia, Toboldt
and Purvis.

of an ant that falls to earth from the distance of the moon at the
moment when it is about to enter the atmosphere. Assume it is
released from a point that is not actually near the moon, so the
moon’s gravity is negligible. You will need the result of example 7
on p. 346.

√

6 [Problem 6 has been deleted.]

7 (a) The crew of an 18th century warship is raising the anchor.
The anchor has a mass of 5000 kg. The water is 30 m deep. The
chain to which the anchor is attached has a mass per unit length of
150 kg/m. Before they start raising the anchor, what is the total
weight of the anchor plus the portion of the chain hanging out of
the ship? (Assume that the buoyancy of the anchor is negligible.)
(b) After they have raised the anchor by 1 m, what is the weight
they are raising?
(c) Define y = 0 when the anchor is resting on the bottom, and
y = +30 m when it has been raised up to the ship. Draw a graph
of the force the crew has to exert to raise the anchor and chain, as
a function of y. (Assume that they are raising it slowly, so water
resistance is negligible.) It will not be a constant! Now find the
area under the graph, and determine the work done by the crew in
raising the anchor, in joules.
(d) Convert your answer from (c) into units of kcal.

√

8 In the power stroke of a car’s gasoline engine, the fuel-air mix-
ture is ignited by the spark plug, explodes, and pushes the piston
out. The exploding mixture’s force on the piston head is greatest
at the beginning of the explosion, and decreases as the mixture ex-
pands. It can be approximated by F = a/x, where x is the distance
from the cylinder to the piston head, and a is a constant with units
of N·m. (Actually a/x1.4 would be more accurate, but the problem
works out more nicely with a/x!) The piston begins its stroke at
x = x1, and ends at x = x2. The 1965 Rambler had six cylinders,
each with a = 220 N·m, x1 = 1.2 cm, and x2 = 10.2 cm.
(a) Draw a neat, accurate graph of F vs x, on graph paper.
(b) From the area under the curve, derive the amount of work done
in one stroke by one cylinder.

√

(c) Assume the engine is running at 4800 r.p.m., so that during
one minute, each of the six cylinders performs 2400 power strokes.
(Power strokes only happen every other revolution.) Find the en-
gine’s power, in units of horsepower (1 hp=746 W).

√

(d) The compression ratio of an engine is defined as x2/x1. Explain
in words why the car’s power would be exactly the same if x1 and
x2 were, say, halved or tripled, maintaining the same compression
ratio of 8.5. Explain why this would not quite be true with the more
realistic force equation F = a/x1.4.
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9 The magnitude of the force between two magnets separated
by a distance r can be approximated as kr−3 for large values of r.
The constant k depends on the strengths of the magnets and the
relative orientations of their north and south poles. Two magnets
are released on a slippery surface at an initial distance ri, and begin
sliding towards each other. What will be the total kinetic energy
of the two magnets when they reach a final distance rf? (Ignore
friction.)

√ ∫
10 A car starts from rest at t = 0, and starts speeding up with
constant acceleration. (a) Find the car’s kinetic energy in terms of
its mass, m, acceleration, a, and the time, t. (b) Your answer in
the previous part also equals the amount of work, W , done from
t = 0 until time t. Take the derivative of the previous expression
to find the power expended by the car at time t. (c) Suppose two
cars with the same mass both start from rest at the same time, but
one has twice as much acceleration as the other. At any moment,
how many times more power is being dissipated by the more quickly
accelerating car? (The answer is not 2.)

√ ∫
11 A space probe of mass m is dropped into a previously
unexplored spherical cloud of gas and dust, and accelerates toward
the center of the cloud under the influence of the cloud’s gravity.
Measurements of its velocity allow its potential energy, PE, to be
determined as a function of the distance r from the cloud’s center.
The mass in the cloud is distributed in a spherically symmetric
way, so its density, ρ(r), depends only on r and not on the angular
coordinates. Show that by finding PE, one can infer ρ(r) as follows:

ρ(r) =
1

4πGmr2

d

dr

(
r2 dPE

dr

)
.

∫
?

12 A rail gun is a device like a train on a track, with the train
propelled by a powerful electrical pulse. Very high speeds have been
demonstrated in test models, and rail guns have been proposed as
an alternative to rockets for sending into outer space any object
that would be strong enough to survive the extreme accelerations.
Suppose that the rail gun capsule is launched straight up, and that
the force of air friction acting on it is given by F = be−cx, where x
is the altitude, b and c are constants, and e is the base of natural
logarithms. The exponential decay occurs because the atmosphere
gets thinner with increasing altitude. (In reality, the force would
probably drop off even faster than an exponential, because the cap-
sule would be slowing down somewhat.) Find the amount of kinetic
energy lost by the capsule due to air friction between when it is
launched and when it is completely beyond the atmosphere. (Grav-
ity is negligible, since the air friction force is much greater than the
gravitational force.)

√ ∫
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13 A certain binary star system consists of two stars with masses
m1 and m2, separated by a distance b. A comet, originally nearly
at rest in deep space, drops into the system and at a certain point
in time arrives at the midpoint between the two stars. For that
moment in time, find its velocity, v, symbolically in terms of b, m1,
m2, and fundamental constants.

√

14 An airplane flies in the positive direction along the x axis,
through crosswinds that exert a force F = (a + bx)x̂ + (c + dx)ŷ.
Find the work done by the wind on the plane, and by the plane on
the wind, in traveling from the origin to position x.

√ ∫
15 In 1935, Yukawa proposed an early theory of the force that
held the neutrons and protons together in the nucleus. His equa-
tion for the potential energy of two such particles, at a center-to-
center distance r, was PE(r) = gr−1e−r/a, where g parametrizes the
strength of the interaction, e is the base of natural logarithms, and
a is about 10−15 m. Find the force between two nucleons that would
be consistent with this equation for the potential energy.

√ ∫
16 Prove that the dot product defined in section 13.7 is rota-
tionally invariant in the sense of section 7.5.

17 Fill in the details of the proof of A·B = AxBx+AyBy+AzBz
on page 350.

18 Does it make sense to say that work is conserved?
. Solution, p. 560

19 (a) Suppose work is done in one-dimensional motion. What
happens to the work if you reverse the direction of the positive
coordinate axis? Base your answer directly on the definition of work
as a transfer of mechanical energy. (b) Now answer the question
based on the W = Fd rule.

20 A microwave oven works by twisting molecules one way and
then the other, counterclockwise and then clockwise about their own
centers, millions of times a second. If you put an ice cube or a stick
of butter in a microwave, you’ll observe that the solid doesn’t heat
very quickly, although eventually melting begins in one small spot.
Once this spot forms, it grows rapidly, while the rest of the solid
remains solid; it appears that a microwave oven heats a liquid much
more rapidly than a solid. Explain why this should happen, based
on the atomic-level description of heat, solids, and liquids. (See,
e.g., figure b on page 317.)

Don’t repeat the following common mistakes:

In a solid, the atoms are packed more tightly and have less space
between them. Not true. Ice floats because it’s less dense than
water.

In a liquid, the atoms are moving much faster. No, the difference in
average speed between ice at −1◦C and water at 1◦C is only 0.4%.

Problems 357



Problem 22.

21 Starting at a distance r from a planet of mass M , how fast
must an object be moving in order to have a hyperbolic orbit, i.e.,
one that never comes back to the planet? This velocity is called
the escape velocity. Interpreting the result, does it matter in what
direction the velocity is? Does it matter what mass the object has?
Does the object escape because it is moving too fast for gravity to
act on it?

√

22 The figure, redrawn from Gray’s Anatomy, shows the ten-
sion of which a muscle is capable. The variable x is defined as the
contraction of the muscle from its maximum length L, so that at
x = 0 the muscle has length L, and at x = L the muscle would the-
oretically have zero length. In reality, the muscle can only contract
to x = cL, where c is less than 1. When the muscle is extended to
its maximum length, at x = 0, it is capable of the greatest tension,
To. As the muscle contracts, however, it becomes weaker. Gray sug-
gests approximating this function as a linear decrease, which would
theoretically extrapolate to zero at x = L. (a) Find the maximum
work the muscle can do in one contraction, in terms of c, L, and
To.

√

(b) Show that your answer to part a has the right units.
(c) Show that your answer to part a has the right behavior when
c = 0 and when c = 1.
(d) Gray also states that the absolute maximum tension To has
been found to be approximately proportional to the muscle’s cross-
sectional area A (which is presumably measured at x = 0), with
proportionality constant k. Approximating the muscle as a cylin-
der, show that your answer from part a can be reexpressed in terms
of the volume, V , eliminating L and A.

√

(e) Evaluate your result numerically for a biceps muscle with a vol-
ume of 200 cm3, with c = 0.8 and k = 100 N/cm2 as estimated by
Gray.

√

23 A car accelerates from rest. At low speeds, its acceleration
is limited by static friction, so that if we press too hard on the
gas, we will “burn rubber” (or, for many newer cars, a computer-
ized traction-control system will override the gas pedal). At higher
speeds, the limit on acceleration comes from the power of the engine,
which puts a limit on how fast kinetic energy can be developed.
(a) Show that if a force F is applied to an object moving at speed
v, the power required is given by P = vF .
(b) Find the speed v at which we cross over from the first regime de-
scribed above to the second. At speeds higher than this, the engine
does not have enough power to burn rubber. Express your result
in terms of the car’s power P , its mass m, the coefficient of static
friction µs, and g.

√

(c) Show that your answer to part b has units that make sense.
(d) Show that the dependence of your answer on each of the four
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Problem 24.

variables makes sense physically.
(e) The 2010 Maserati Gran Turismo Convertible has a maximum
power of 3.23×105 W (433 horsepower) and a mass (including a 50-
kg driver) of 2.03× 103 kg. (This power is the maximum the engine
can supply at its optimum frequency of 7600 r.p.m. Presumably the
automatic transmission is designed so a gear is available in which
the engine will be running at very nearly this frequency when the
car is moving at v.) Rubber on asphalt has µs ≈ 0.9. Find v for
this car. Answer: 18 m/s, or about 40 miles per hour.
(f) Our analysis has neglected air friction, which can probably be
approximated as a force proportional to v2. The existence of this
force is the reason that the car has a maximum speed, which is 176
miles per hour. To get a feeling for how good an approximation
it is to ignore air friction, find what fraction of the engine’s maxi-
mum power is being used to overcome air resistance when the car is
moving at the speed v found in part e. Answer: 1%

24 Most modern bow hunters in the U.S. use a fancy mechanical
bow called a compound bow, which looks nothing like what most
people imagine when they think of a bow and arrow. It has a system
of pulleys designed to produce the force curve shown in the figure,
where F is the force required to pull the string back, and x is the
distance between the string and the center of the bow’s body. It is
not a linear Hooke’s-law graph, as it would be for an old-fashioned
bow. The big advantage of the design is that relatively little force
is required to hold the bow stretched to point B on the graph. This
is the force required from the hunter in order to hold the bow ready
while waiting for a shot. Since it may be necessary to wait a long
time, this force can’t be too big. An old-fashioned bow, designed
to require the same amount of force when fully drawn, would shoot
arrows at much lower speeds, since its graph would be a straight line
from A to B. For the graph shown in the figure (taken from realistic
data), find the speed at which a 26 g arrow is released, assuming that
70% of the mechanical work done by the hand is actually transmitted
to the arrow. (The other 30% is lost to frictional heating inside the
bow and kinetic energy of the recoiling and vibrating bow.)

√
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25 A mass moving in one dimension is attached to a horizon-
tal spring. It slides on the surface below it, with equal coefficients
of static and kinetic friction, µk = µs. The equilibrium position is
x = 0. If the mass is pulled to some initial position and released
from rest, it will complete some number of oscillations before fric-
tion brings it to a stop. When released from x = a (a > 0), it
completes exactly 1/4 of an oscillation, i.e., it stops precisely at
x = 0. Similarly, define b > 0 as the greatest x from which it could
be released and comlete 1/2 of an oscillation, stopping on the far
side and not coming back toward equilibrium. Find b/a. Hint: To
keep the algebra simple, set every fixed parameter of the system
equal to 1.

√

26 “Big wall” climbing is a specialized type of rock climbing that
involves going up tall cliffs such as the ones in Yosemite, usually with
the climbers spending at least one night sleeping on a natural ledge
or an artificial “portaledge.” In this style of climbing, each pitch of
the climb involves strenuously hauling up several heavy bags of gear
— a fact that has caused these climbs to be referred to as “vertical
ditch digging.” (a) If an 80 kg haul bag has to be pulled up the full
length of a 60 m rope, how much work is done? (b) Since it can be
difficult to lift 80 kg, a 2:1 pulley is often used. The hauler then
lifts the equivalent of 40 kg, but has to pull in 120 m of rope. How
much work is done in this case?

√

27 A soccer ball of mass m is moving at speed v when you kick
it in the same direction it is moving. You kick it with constant force
F , and you want to triple the ball’s speed. Over what distance must
your foot be in contact with the ball?

√
[problem by B. Shotwell]

360 Chapter 13 Work: The Transfer of Mechanical Energy



Pool balls exchange momentum.

Chapter 14

Conservation of
Momentum

In many subfields of physics these days, it is possible to read an
entire issue of a journal without ever encountering an equation in-
volving force or a reference to Newton’s laws of motion. In the last
hundred and fifty years, an entirely different framework has been
developed for physics, based on conservation laws.

The new approach is not just preferred because it is in fashion.
It applies inside an atom or near a black hole, where Newton’s laws
do not. Even in everyday situations the new approach can be supe-
rior. We have already seen how perpetual motion machines could be
designed that were too complex to be easily debunked by Newton’s
laws. The beauty of conservation laws is that they tell us something
must remain the same, regardless of the complexity of the process.

So far we have discussed only two conservation laws, the laws of
conservation of mass and energy. Is there any reason to believe that
further conservation laws are needed in order to replace Newton’s
laws as a complete description of nature? Yes. Conservation of mass
and energy do not relate in any way to the three dimensions of space,
because both are scalars. Conservation of energy, for instance, does
not prevent the planet earth from abruptly making a 90-degree turn
and heading straight into the sun, because kinetic energy does not
depend on direction. In this chapter, we develop a new conserved
quantity, called momentum, which is a vector.
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14.1 Momentum
A conserved quantity of motion

Your first encounter with conservation of momentum may have
come as a small child unjustly confined to a shopping cart. You spot
something interesting to play with, like the display case of imported
wine down at the end of the aisle, and decide to push the cart over
there. But being imprisoned by Dad in the cart was not the only
injustice that day. There was a far greater conspiracy to thwart
your young id, one that originated in the laws of nature. Pushing
forward did nudge the cart forward, but it pushed you backward.
If the wheels of the cart were well lubricated, it wouldn’t matter
how you jerked, yanked, or kicked off from the back of the cart.
You could not cause any overall forward motion of the entire system
consisting of the cart with you inside.

In the Newtonian framework, we describe this as arising from
Newton’s third law. The cart made a force on you that was equal
and opposite to your force on it. In the framework of conservation
laws, we cannot attribute your frustration to conservation of energy.
It would have been perfectly possible for you to transform some of
the internal chemical energy stored in your body to kinetic energy
of the cart and your body.

The following characteristics of the situation suggest that there
may be a new conservation law involved:

A closed system is involved. All conservation laws deal with
closed systems. You and the cart are a closed system, since the
well-oiled wheels prevent the floor from making any forward force
on you.

Something remains unchanged. The overall velocity of the
system started out being zero, and you cannot change it. This
vague reference to “overall velocity” can be made more precise:
it is the velocity of the system’s center of mass that cannot be
changed.

Something can be transferred back and forth without
changing the total amount. If we define forward as positive
and backward as negative, then one part of the system can gain
positive motion if another part acquires negative motion. If we
don’t want to worry about positive and negative signs, we can
imagine that the whole cart was initially gliding forward on its
well-oiled wheels. By kicking off from the back of the cart, you
could increase your own velocity, but this inevitably causes the
cart to slow down.

362 Chapter 14 Conservation of Momentum



It thus appears that there is some numerical measure of an object’s
quantity of motion that is conserved when you add up all the objects
within a system.

Momentum

Although velocity has been referred to, it is not the total velocity
of a closed system that remains constant. If it was, then firing a
gun would cause the gun to recoil at the same velocity as the bullet!
The gun does recoil, but at a much lower velocity than the bullet.
Newton’s third law tells us

Fgun on bullet = −Fbullet on gun,

and assuming a constant force for simplicity, Newton’s second law
allows us to change this to

mbullet
∆vbullet

∆t
= −mgun

∆vgun
∆t

.

Thus if the gun has 100 times more mass than the bullet, it will
recoil at a velocity that is 100 times smaller and in the opposite
direction, represented by the opposite sign. The quantity mv is
therefore apparently a useful measure of motion, and we give it a
name, momentum, and a symbol, p. (As far as I know, the letter
“p” was just chosen at random, since “m” was already being used for
mass.) The situations discussed so far have been one-dimensional,
but in three-dimensional situations it is treated as a vector.

definition of momentum for material objects
The momentum of a material object, i.e., a piece of matter, is defined
as

p = mv,

the product of the object’s mass and its velocity vector.

The units of momentum are kg·m/s, and there is unfortunately no
abbreviation for this clumsy combination of units.

The reasoning leading up to the definition of momentum was all
based on the search for a conservation law, and the only reason why
we bother to define such a quantity is that experiments show it is
conserved:

the law of conservation of momentum
In any closed system, the vector sum of all the momenta remains
constant,

p1i + p2i + . . . = p1f + p2f + . . . ,

where i labels the initial and f the final momenta. (A closed system
is one on which no external forces act.)
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This chapter first addresses the one-dimensional case, in which the
direction of the momentum can be taken into account by using plus
and minus signs. We then pass to three dimensions, necessitating
the use of vector addition.

A subtle point about conservation laws is that they all refer to
“closed systems,” but “closed” means different things in different
cases. When discussing conservation of mass, “closed” means a sys-
tem that doesn’t have matter moving in or out of it. With energy,
we mean that there is no work or heat transfer occurring across
the boundary of the system. For momentum conservation, “closed”
means there are no external forces reaching into the system.

A cannon example 1
. A cannon of mass 1000 kg fires a 10-kg shell at a velocity of
200 m/s. At what speed does the cannon recoil?

. The law of conservation of momentum tells us that

pcannon,i + pshell ,i = pcannon,f + pshell ,f .

Choosing a coordinate system in which the cannon points in the
positive direction, the given information is

pcannon,i = 0
pshell ,i = 0
pshell ,f = 2000 kg·m/s.

We must have pcannon,f = −2000 kg·m/s, so the recoil velocity of
the cannon is −2 m/s.

Ion drive for propelling spacecraft example 2
. The experimental solar-powered ion drive of the Deep Space 1
space probe expels its xenon gas exhaust at a speed of 30,000
m/s, ten times faster than the exhaust velocity for a typical chem-
ical-fuel rocket engine. Roughly how many times greater is the
maximum speed this spacecraft can reach, compared with a chem-
ical-fueled probe with the same mass of fuel (“reaction mass”)
available for pushing out the back as exhaust?

. Momentum equals mass multiplied by velocity. Both spacecraft
are assumed to have the same amount of reaction mass, and the
ion drive’s exhaust has a velocity ten times greater, so the mo-
mentum of its exhaust is ten times greater. Before the engine
starts firing, neither the probe nor the exhaust has any momen-
tum, so the total momentum of the system is zero. By conserva-
tion of momentum, the total momentum must also be zero after
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a / The ion drive engine of the NASA Deep Space 1 probe, shown
under construction (left) and being tested in a vacuum chamber (right)
prior to its October 1998 launch. Intended mainly as a test vehicle for new
technologies, the craft nevertheless carried out a successful scientific
program that included a flyby of a comet.

all the exhaust has been expelled. If we define the positive di-
rection as the direction the spacecraft is going, then the negative
momentum of the exhaust is canceled by the positive momen-
tum of the spacecraft. The ion drive allows a final speed that is
ten times greater. (This simplified analysis ignores the fact that
the reaction mass expelled later in the burn is not moving back-
ward as fast, because of the forward speed of the already-moving
spacecraft.)

Generalization of the momentum concept

As with all the conservation laws, the law of conservation of mo-
mentum has evolved over time. In the 1800’s it was found that a
beam of light striking an object would give it some momentum, even
though light has no mass, and would therefore have no momentum
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b / Steam and other gases
boiling off of the nucleus of Hal-
ley’s comet. This close-up photo
was taken by the European Giotto
space probe, which passed within
596 km of the nucleus on March
13, 1986.

c / Halley’s comet, in a much
less magnified view from a
ground-based telescope.

according to the above definition. Rather than discarding the princi-
ple of conservation of momentum, the physicists of the time decided
to see if the definition of momentum could be extended to include
momentum carried by light. The process is analogous to the process
outlined on page 301 for identifying new forms of energy. The first
step was the discovery that light could impart momentum to matter,
and the second step was to show that the momentum possessed by
light could be related in a definite way to observable properties of
the light. They found that conservation of momentum could be suc-
cessfully generalized by attributing to a beam of light a momentum
vector in the direction of the light’s motion and having a magnitude
proportional to the amount of energy the light possessed. The mo-
mentum of light is negligible under ordinary circumstances, e.g., a
flashlight left on for an hour would only absorb about 10−5 kg·m/s
of momentum as it recoiled.

The tail of a comet example 3
Momentum is not always equal to mv . Like many comets, Hal-
ley’s comet has a very elongated elliptical orbit. About once per
century, its orbit brings it close to the sun. The comet’s head, or
nucleus, is composed of dirty ice, so the energy deposited by the
intense sunlight boils off steam and dust, b. The sunlight does
not just carry energy, however — it also carries momentum. The
momentum of the sunlight impacting on the smaller dust particles
pushes them away from the sun, forming a tail, c. By analogy
with matter, for which momentum equals mv , you would expect
that massless light would have zero momentum, but the equation
p = mv is not the correct one for light, and light does have mo-
mentum. (The gases typically form a second, distinct tail whose
motion is controlled by the sun’s magnetic field.)

The reason for bringing this up is not so that you can plug
numbers into a formulas in these exotic situations. The point is
that the conservation laws have proven so sturdy exactly because
they can easily be amended to fit new circumstances. Newton’s
laws are no longer at the center of the stage of physics because they
did not have the same adaptability. More generally, the moral of
this story is the provisional nature of scientific truth.

It should also be noted that conservation of momentum is not
a consequence of Newton’s laws, as is often asserted in textbooks.
Newton’s laws do not apply to light, and therefore could not pos-
sibly be used to prove anything about a concept as general as the
conservation of momentum in its modern form.

Momentum compared to kinetic energy

Momentum and kinetic energy are both measures of the quan-
tity of motion, and a sideshow in the Newton-Leibnitz controversy
over who invented calculus was an argument over whether mv (i.e.,
momentum) or mv2 (i.e., kinetic energy without the 1/2 in front)
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d / Examples 4 and 5. The
momenta cancel, but the ener-
gies don’t.

was the “true” measure of motion. The modern student can cer-
tainly be excused for wondering why we need both quantities, when
their complementary nature was not evident to the greatest minds
of the 1700’s. The following table highlights their differences.

kinetic energy . . . momentum . . .

is a scalar. is a vector.

is not changed by a force perpendic-
ular to the motion, which changes
only the direction of the velocity
vector.

is changed by any force, since a
change in either the magnitude or
the direction of the velocity vector
will result in a change in the mo-
mentum vector.

is always positive, and cannot cancel
out.

cancels with momentum in the op-
posite direction.

can be traded for other forms of en-
ergy that do not involve motion. KE
is not a conserved quantity by itself.

is always conserved in a closed sys-
tem.

is quadrupled if the velocity is dou-
bled.

is doubled if the velocity is doubled.

A spinning top example 4
A spinning top has zero total momentum, because for every mov-
ing point, there is another point on the opposite side that cancels
its momentum. It does, however, have kinetic energy.

Why a tuning fork has two prongs example 5
A tuning fork is made with two prongs so that they can vibrate in
opposite directions, canceling their momenta. In a hypothetical
version with only one prong, the momentum would have to oscil-
late, and this momentum would have to come from somewhere,
such as the hand holding the fork. The result would be that vi-
brations would be transmitted to the hand and rapidly die out.
In a two-prong fork, the two momenta cancel, but the energies
don’t.

Momentum and kinetic energy in firing a rifle example 6
The rifle and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some mo-
mentum in the forward direction, but this is canceled by the rifle’s
backward momentum, so the total momentum is still zero. The
kinetic energies of the gun and bullet are both positive scalars,
however, and do not cancel. The total kinetic energy is allowed to
increase, because kinetic energy is being traded for other forms
of energy. Initially there is chemical energy in the gunpowder.
This chemical energy is converted into heat, sound, and kinetic
energy. The gun’s “backward” kinetic energy does not refrigerate
the shooter’s shoulder!
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The wobbly earth example 7
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, and the earth’s gravitational force does not do any work
on the moon. The reversed velocity vector does, however, imply
a reversed momentum vector, so conservation of momentum in
the closed earth-moon system tells us that the earth must also
change its momentum. In fact, the earth wobbles in a little “or-
bit” about a point below its surface on the line connecting it and
the moon. The two bodies’ momentum vectors always point in
opposite directions and cancel each other out.

The earth and moon get a divorce example 8
Why can’t the moon suddenly decide to fly off one way and the
earth the other way? It is not forbidden by conservation of mo-
mentum, because the moon’s newly acquired momentum in one
direction could be canceled out by the change in the momentum
of the earth, supposing the earth headed the opposite direction
at the appropriate, slower speed. The catastrophe is forbidden by
conservation of energy, because both their energies would have
to increase greatly.

Momentum and kinetic energy of a glacier example 9
A cubic-kilometer glacier would have a mass of about 1012 kg. If
it moves at a speed of 10−5 m/s, then its momentum is 107 kg ·
m/s. This is the kind of heroic-scale result we expect, perhaps
the equivalent of the space shuttle taking off, or all the cars in LA
driving in the same direction at freeway speed. Its kinetic energy,
however, is only 50 J, the equivalent of the calories contained
in a poppy seed or the energy in a drop of gasoline too small
to be seen without a microscope. The surprisingly small kinetic
energy is because kinetic energy is proportional to the square of
the velocity, and the square of a small number is an even smaller
number.

Discussion questions

A If all the air molecules in the room settled down in a thin film on
the floor, would that violate conservation of momentum? Conservation of
energy?

B A refrigerator has coils in the back that get hot, and heat is molecular
motion. These moving molecules have both energy and momentum. Why
doesn’t the refrigerator need to be tied to the wall to keep it from recoiling
from the momentum it loses out the back?
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e / This Hubble Space Tele-
scope photo shows a small
galaxy (yellow blob in the lower
right) that has collided with a
larger galaxy (spiral near the
center), producing a wave of star
formation (blue track) due to the
shock waves passing through
the galaxies’ clouds of gas. This
is considered a collision in the
physics sense, even though it is
statistically certain that no star in
either galaxy ever struck a star in
the other. (This is because the
stars are very small compared to
the distances between them.)

14.2 Collisions in one dimension

Physicists employ the term “collision” in a broader sense than
ordinary usage, applying it to any situation where objects interact
for a certain period of time. A bat hitting a baseball, a radioactively
emitted particle damaging DNA, and a gun and a bullet going their
separate ways are all examples of collisions in this sense. Physical
contact is not even required. A comet swinging past the sun on a
hyperbolic orbit is considered to undergo a collision, even though it
never touches the sun. All that matters is that the comet and the
sun exerted gravitational forces on each other.

The reason for broadening the term “collision” in this way is
that all of these situations can be attacked mathematically using
the same conservation laws in similar ways. In the first example,
conservation of momentum is all that is required.

Getting rear-ended example 10
.Ms. Chang is rear-ended at a stop light by Mr. Nelson, and sues
to make him pay her medical bills. He testifies that he was only
going 35 miles per hour when he hit Ms. Chang. She thinks he
was going much faster than that. The cars skidded together after
the impact, and measurements of the length of the skid marks
and the coefficient of friction show that their joint velocity immedi-
ately after the impact was 19 miles per hour. Mr. Nelson’s Nissan
weighs 3100 pounds, and Ms. Chang ’s Cadillac weighs 5200
pounds. Is Mr. Nelson telling the truth?

. Since the cars skidded together, we can write down the equation
for conservation of momentum using only two velocities, v for Mr.
Nelson’s velocity before the crash, and v ′ for their joint velocity
afterward:

mNv = mNv ′ + mCv ′.

Solving for the unknown, v , we find

v =
(

1 +
mC

mN

)
v ′.

Although we are given the weights in pounds, a unit of force, the
ratio of the masses is the same as the ratio of the weights, and
we find v = 51 miles per hour. He is lying.

The above example was simple because both cars had the same
velocity afterward. In many one-dimensional collisions, however, the
two objects do not stick. If we wish to predict the result of such a
collision, conservation of momentum does not suffice, because both
velocities after the collision are unknown, so we have one equation
in two unknowns.

Conservation of energy can provide a second equation, but its
application is not as straightforward, because kinetic energy is only
the particular form of energy that has to do with motion. In many
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Gory details of the proof in
example 11

The equation A + B = C + D says
that the change in one ball’s ve-
locity is equal and opposite to the
change in the other’s. We invent a
symbol x = C − A for the change
in ball 1’s velocity. The second
equation can then be rewritten as
A2+B2 = (A+x)2+(B−x)2. Squar-
ing out the quantities in parenthe-
ses and then simplifying, we get
0 = Ax − Bx + x2. The equation
has the trivial solution x = 0, i.e.,
neither ball’s velocity is changed,
but this is physically impossible be-
cause the balls can’t travel through
each other like ghosts. Assuming
x 6= 0, we can divide by x and
solve for x = B − A. This means
that ball 1 has gained an amount
of velocity exactly right to match
ball 2’s initial velocity, and vice-
versa. The balls must have swap-
ped velocities.

collisions, part of the kinetic energy that was present before the
collision is used to create heat or sound, or to break the objects
or permanently bend them. Cars, in fact, are carefully designed to
crumple in a collision. Crumpling the car uses up energy, and that’s
good because the goal is to get rid of all that kinetic energy in a
relatively safe and controlled way. At the opposite extreme, a su-
perball is “super” because it emerges from a collision with almost all
its original kinetic energy, having only stored it briefly as potential
energy while it was being squashed by the impact.

Collisions of the superball type, in which almost no kinetic en-
ergy is converted to other forms of energy, can thus be analyzed
more thoroughly, because they have KEf = KEi, as opposed to
the less useful inequality KEf < KEi for a case like a tennis ball
bouncing on grass.

Pool balls colliding head-on example 11
. Two pool balls collide head-on, so that the collision is restricted
to one dimension. Pool balls are constructed so as to lose as little
kinetic energy as possible in a collision, so under the assumption
that no kinetic energy is converted to any other form of energy,
what can we predict about the results of such a collision?

. Pool balls have identical masses, so we use the same symbol
m for both. Conservation of momentum and no loss of kinetic
energy give us the two equations

mv1i + mv2i = mv1f + mv2f

1
2

mv2
1i +

1
2

mv2
2i =

1
2

mv2
1f +

1
2

mv2
2f

The masses and the factors of 1/2 can be divided out, and we
eliminate the cumbersome subscripts by replacing the symbols
v1i ,... with the symbols A, B, C, and D:

A + B = C + D

A2 + B2 = C2 + D2.

A little experimentation with numbers shows that given values of A
and B, it is impossible to find C and D that satisfy these equations
unless C and D equal A and B, or C and D are the same as A
and B but swapped around. A formal proof of this fact is given
in the sidebar. In the special case where ball 2 is initially at rest,
this tells us that ball 1 is stopped dead by the collision, and ball
2 heads off at the velocity originally possessed by ball 1. This
behavior will be familiar to players of pool.

Often, as in the example above, the details of the algebra are
the least interesting part of the problem, and considerable physical
insight can be gained simply by counting the number of unknowns
and comparing to the number of equations. Suppose a beginner at
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pool notices a case where her cue ball hits an initially stationary
ball and stops dead. “Wow, what a good trick,” she thinks. “I
bet I could never do that again in a million years.” But she tries
again, and finds that she can’t help doing it even if she doesn’t
want to. Luckily she has just learned about collisions in her physics
course. Once she has written down the equations for conservation
of energy and no loss of kinetic energy, she really doesn’t have to
complete the algebra. She knows that she has two equations in
two unknowns, so there must be a well-defined solution. Once she
has seen the result of one such collision, she knows that the same
thing must happen every time. The same thing would happen with
colliding marbles or croquet balls. It doesn’t matter if the masses or
velocities are different, because that just multiplies both equations
by some constant factor.

The discovery of the neutron

This was the type of reasoning employed by James Chadwick in
his 1932 discovery of the neutron. At the time, the atom was imag-
ined to be made out of two types of fundamental particles, protons
and electrons. The protons were far more massive, and clustered
together in the atom’s core, or nucleus. Attractive electrical forces
caused the electrons to orbit the nucleus in circles, in much the
same way that gravitational forces kept the planets from cruising
out of the solar system. Experiments showed that the helium nu-
cleus, for instance, exerted exactly twice as much electrical force on
an electron as a nucleus of hydrogen, the smallest atom, and this was
explained by saying that helium had two protons to hydrogen’s one.
The trouble was that according to this model, helium would have
two electrons and two protons, giving it precisely twice the mass of
a hydrogen atom with one of each. In fact, helium has about four
times the mass of hydrogen.

Chadwick suspected that the helium nucleus possessed two addi-
tional particles of a new type, which did not participate in electrical
forces at all, i.e., were electrically neutral. If these particles had very
nearly the same mass as protons, then the four-to-one mass ratio of
helium and hydrogen could be explained. In 1930, a new type of
radiation was discovered that seemed to fit this description. It was
electrically neutral, and seemed to be coming from the nuclei of light
elements that had been exposed to other types of radiation. At this
time, however, reports of new types of particles were a dime a dozen,
and most of them turned out to be either clusters made of previ-
ously known particles or else previously known particles with higher
energies. Many physicists believed that the “new” particle that had
attracted Chadwick’s interest was really a previously known particle
called a gamma ray, which was electrically neutral. Since gamma
rays have no mass, Chadwick decided to try to determine the new
particle’s mass and see if it was nonzero and approximately equal
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to the mass of a proton.

Unfortunately a subatomic particle is not something you can
just put on a scale and weigh. Chadwick came up with an ingenious
solution. The masses of the nuclei of the various chemical elements
were already known, and techniques had already been developed for
measuring the speed of a rapidly moving nucleus. He therefore set
out to bombard samples of selected elements with the mysterious
new particles. When a direct, head-on collision occurred between
a mystery particle and the nucleus of one of the target atoms, the
nucleus would be knocked out of the atom, and he would measure
its velocity.

f / Chadwick’s subatomic pool table. A disk of the naturally occur-
ring metal polonium provides a source of radiation capable of kicking
neutrons out of the beryllium nuclei. The type of radiation emitted by
the polonium is easily absorbed by a few mm of air, so the air has to be
pumped out of the left-hand chamber. The neutrons, Chadwick’s mystery
particles, penetrate matter far more readily, and fly out through the wall
and into the chamber on the right, which is filled with nitrogen or hydrogen
gas. When a neutron collides with a nitrogen or hydrogen nucleus, it
kicks it out of its atom at high speed, and this recoiling nucleus then rips
apart thousands of other atoms of the gas. The result is an electrical
pulse that can be detected in the wire on the right. Physicists had already
calibrated this type of apparatus so that they could translate the strength
of the electrical pulse into the velocity of the recoiling nucleus. The
whole apparatus shown in the figure would fit in the palm of your hand, in
dramatic contrast to today’s giant particle accelerators.

Suppose, for instance, that we bombard a sample of hydrogen
atoms with the mystery particles. Since the participants in the
collision are fundamental particles, there is no way for kinetic energy
to be converted into heat or any other form of energy, and Chadwick
thus had two equations in three unknowns:

equation #1: conservation of momentum

equation #2: no loss of kinetic energy
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unknown #1: mass of the mystery particle

unknown #2: initial velocity of the mystery particle

unknown #3: final velocity of the mystery particle

The number of unknowns is greater than the number of equa-
tions, so there is no unique solution. But by creating collisions with
nuclei of another element, nitrogen, he gained two more equations
at the expense of only one more unknown:

equation #3: conservation of momentum in the new collision

equation #4: no loss of kinetic energy in the new collision

unknown #4: final velocity of the mystery particle in the new
collision

He was thus able to solve for all the unknowns, including the
mass of the mystery particle, which was indeed within 1% of the
mass of a proton. He named the new particle the neutron, since it
is electrically neutral.

Discussion question

A Good pool players learn to make the cue ball spin, which can cause
it not to stop dead in a head-on collision with a stationary ball. If this does
not violate the laws of physics, what hidden assumption was there in the
example above?

14.3 ? Relationship of momentum to the
center of mass

g / In this multiple-flash photo-
graph, we see the wrench from
above as it flies through the air,
rotating as it goes. Its center
of mass, marked with the black
cross, travels along a straight line,
unlike the other points on the
wrench, which execute loops.

We have already discussed the idea of the center of mass on
p. 67, but using the concept of momentum we can now find a math-
ematical method for defining the center of mass, explain why the
motion of an object’s center of mass usually exhibits simpler mo-
tion than any other point, and gain a very simple and powerful way
of understanding collisions.

The first step is to realize that the center of mass concept can
be applied to systems containing more than one object. Even some-
thing like a wrench, which we think of as one object, is really made
of many atoms. The center of mass is particularly easy to visualize
in the case shown on the left, where two identical hockey pucks col-
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h / Two hockey pucks collide.
Their mutual center of mass
traces the straight path shown by
the dashed line.

lide. It is clear on grounds of symmetry that their center of mass
must be at the midpoint between them. After all, we previously de-
fined the center of mass as the balance point, and if the two hockey
pucks were joined with a very lightweight rod whose own mass was
negligible, they would obviously balance at the midpoint. It doesn’t
matter that the hockey pucks are two separate objects. It is still
true that the motion of their center of mass is exceptionally simple,
just like that of the wrench’s center of mass.

The x coordinate of the hockey pucks’ center of mass is thus
given by xcm = (x1 + x2)/2, i.e., the arithmetic average of their
x coordinates. Why is its motion so simple? It has to do with
conservation of momentum. Since the hockey pucks are not being
acted on by any net external force, they constitute a closed system,
and their total momentum is conserved. Their total momentum is

mv1 +mv2 = m(v1 + v2)

= m

(
∆x1

∆t
+

∆x2

∆t

)
=

m

∆t
∆ (x1 + x2)

= m
2∆xcm

∆t
= mtotalvcm

In other words, the total momentum of the system is the same as
if all its mass was concentrated at the center of mass point. Since
the total momentum is conserved, the x component of the center of
mass’s velocity vector cannot change. The same is also true for the
other components, so the center of mass must move along a straight
line at constant speed.

The above relationship between the total momentum and the
motion of the center of mass applies to any system, even if it is not
closed.

total momentum related to center of mass motion
The total momentum of any system is related to its total mass
and the velocity of its center of mass by the equation

ptotal = mtotalvcm.

What about a system containing objects with unequal masses,
or containing more than two objects? The reasoning above can be
generalized to a weighted average

xcm =
m1x1 +m2x2 + . . .

m1 +m2 + . . .
,

with similar equations for the y and z coordinates.
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i / Moving your head so that
you are always looking down
from right above the center of
mass, you observe the collision
of the two hockey pucks in the
center of mass frame.

j / The slingshot effect viewed
in the sun’s frame of reference.
Jupiter is moving to the left, and
the collision is head-on.

k / The slingshot viewed in
the frame of the center of mass of
the Jupiter-spacecraft system.

Momentum in different frames of reference

Absolute motion is supposed to be undetectable, i.e., the laws
of physics are supposed to be equally valid in all inertial frames
of reference. If we first calculate some momenta in one frame of
reference and find that momentum is conserved, and then rework
the whole problem in some other frame of reference that is moving
with respect to the first, the numerical values of the momenta will
all be different. Even so, momentum will still be conserved. All that
matters is that we work a single problem in one consistent frame of
reference.

One way of proving this is to apply the equation ptotal =
mtotalvcm. If the velocity of frame B relative to frame A is vBA,
then the only effect of changing frames of reference is to change
vcm from its original value to vcm + vBA. This adds a constant
onto the momentum vector, which has no effect on conservation of
momentum.

The center of mass frame of reference

A particularly useful frame of reference in many cases is the
frame that moves along with the center of mass, called the center
of mass (c.m.) frame. In this frame, the total momentum is zero.
The following examples show how the center of mass frame can be
a powerful tool for simplifying our understanding of collisions.

A collision of pool balls viewed in the c.m. frame example 12
If you move your head so that your eye is always above the point
halfway in between the two pool balls, you are viewing things in
the center of mass frame. In this frame, the balls come toward the
center of mass at equal speeds. By symmetry, they must there-
fore recoil at equal speeds along the lines on which they entered.
Since the balls have essentially swapped paths in the center of
mass frame, the same must also be true in any other frame. This
is the same result that required laborious algebra to prove previ-
ously without the concept of the center of mass frame.

The slingshot effect example 13
It is a counterintuitive fact that a spacecraft can pick up speed
by swinging around a planet, if it arrives in the opposite direction
compared to the planet’s motion. Although there is no physical
contact, we treat the encounter as a one-dimensional collision,
and analyze it in the center of mass frame. Figure j shows such
a “collision,” with a space probe whipping around Jupiter. In the
sun’s frame of reference, Jupiter is moving.

What about the center of mass frame? Since Jupiter is so much
more massive than the spacecraft, the center of mass is essen-
tially fixed at Jupiter’s center, and Jupiter has zero velocity in the
center of mass frame, as shown in figure k. The c.m. frame is
moving to the left compared to the sun-fixed frame used in j, so
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the spacecraft’s initial velocity is greater in this frame.

Things are simpler in the center of mass frame, because it is more
symmetric. In the complicated sun-fixed frame, the incoming leg
of the encounter is rapid, because the two bodies are rushing to-
ward each other, while their separation on the outbound leg is
more gradual, because Jupiter is trying to catch up. In the c.m.
frame, Jupiter is sitting still, and there is perfect symmetry be-
tween the incoming and outgoing legs, so by symmetry we have
v1f = −v1i . Going back to the sun-fixed frame, the spacecraft’s
final velocity is increased by the frames’ motion relative to each
other. In the sun-fixed frame, the spacecraft’s velocity has in-
creased greatly.

The result can also be understood in terms of work and energy.
In Jupiter’s frame, Jupiter is not doing any work on the spacecraft
as it rounds the back of the planet, because the motion is per-
pendicular to the force. But in the sun’s frame, the spacecraft’s
velocity vector at the same moment has a large component to the
left, so Jupiter is doing work on it.

Discussion questions

A Make up a numerical example of two unequal masses moving in one
dimension at constant velocity, and verify the equation ptotal = mtotalvcm
over a time interval of one second.

B A more massive tennis racquet or baseball bat makes the ball fly
off faster. Explain why this is true, using the center of mass frame. For
simplicity, assume that the racquet or bat is simply sitting still before the
collision, and that the hitter’s hands do not make any force large enough
to have a significant effect over the short duration of the impact.

14.4 Momentum transfer
The rate of change of momentum

As with conservation of energy, we need a way to measure and
calculate the transfer of momentum into or out of a system when the
system is not closed. In the case of energy, the answer was rather
complicated, and entirely different techniques had to be used for
measuring the transfer of mechanical energy (work) and the transfer
of heat by conduction. For momentum, the situation is far simpler.

In the simplest case, the system consists of a single object acted
on by a constant external force. Since it is only the object’s velocity
that can change, not its mass, the momentum transferred is

∆p = m∆v,

which with the help of a = F/m and the constant-acceleration equa-
tion a = ∆v/∆t becomes

∆p = ma∆t

= F∆t.
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l / Power and force are the
rates at which energy and
momentum are transferred.

m / The airbag increases ∆t
so as to reduce F = ∆p/∆t .

Thus the rate of transfer of momentum, i.e., the number of kg·m/s
absorbed per second, is simply the external force,

F =
∆p

∆t
.

[relationship between the force on an object and the
rate of change of its momentum; valid only if the force
is constant]

This is just a restatement of Newton’s second law, and in fact New-
ton originally stated it this way. As shown in figure l, the rela-
tionship between force and momentum is directly analogous to that
between power and energy.

The situation is not materially altered for a system composed
of many objects. There may be forces between the objects, but the
internal forces cannot change the system’s momentum. (If they did,
then removing the external forces would result in a closed system
that could change its own momentum, like the mythical man who
could pull himself up by his own bootstraps. That would violate
conservation of momentum.) The equation above becomes

Ftotal =
∆ptotal

∆t
.

[relationship between the total external force on a sys-
tem and the rate of change of its total momentum; valid
only if the force is constant]

Walking into a lamppost example 14
. Starting from rest, you begin walking, bringing your momentum
up to 100 kg·m/s. You walk straight into a lamppost. Why is the
momentum change of −100 kg ·m/s caused by the lamppost so
much more painful than the change of +100 kg ·m/s when you
started walking?

. The situation is one-dimensional, so we can dispense with the
vector notation. It probably takes you about 1 s to speed up ini-
tially, so the ground’s force on you is F = ∆p/∆t ≈ 100 N. Your
impact with the lamppost, however, is over in the blink of an eye,
say 1/10 s or less. Dividing by this much smaller ∆t gives a much
larger force, perhaps thousands of newtons. (The negative sign
simply indicates that the force is in the opposite direction.)

This is also the principle of airbags in cars. The time required for
the airbag to decelerate your head is fairly long, the time required
for your face to travel 20 or 30 cm. Without an airbag, your face
would hit the dashboard, and the time interval would be the much
shorter time taken by your skull to move a couple of centimeters
while your face compressed. Note that either way, the same amount
of mechanical work has to be done on your head: enough to eliminate
all its kinetic energy.
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n / Example 16.

o / The F − t graph for a
tennis racquet hitting a ball might
look like this. The amount of
momentum transferred equals
the area under the curve.

Ion drive for spacecraft example 15
. The ion drive of the Deep Space 1 spacecraft, pictured on page
365 and discussed in example 2, produces a thrust of 90 mN
(millinewtons). It carries about 80 kg of reaction mass, which it
ejects at a speed of 30,000 m/s. For how long can the engine
continue supplying this amount of thrust before running out of
reaction mass to shove out the back?

. Solving the equation F = ∆p/∆t for the unknown ∆t , and treat-
ing force and momentum as scalars since the problem is one-
dimensional, we find

∆t =
∆p
F

=
mexhaust∆vexhaust

F

=
(80 kg)(30, 000 m/s)

0.090 N
= 2.7× 107 s
= 300 days

A toppling box example 16
If you place a box on a frictionless surface, it will fall over with a
very complicated motion that is hard to predict in detail. We know,
however, that its center of mass moves in the same direction as
its momentum vector points. There are two forces, a normal force
and a gravitational force, both of which are vertical. (The grav-
itational force is actually many gravitational forces acting on all
the atoms in the box.) The total force must be vertical, so the
momentum vector must be purely vertical too, and the center of
mass travels vertically. This is true even if the box bounces and
tumbles. [Based on an example by Kleppner and Kolenkow.]

The area under the force-time graph

Few real collisions involve a constant force. For example, when
a tennis ball hits a racquet, the strings stretch and the ball flattens
dramatically. They are both acting like springs that obey Hooke’s
law, which says that the force is proportional to the amount of
stretching or flattening. The force is therefore small at first, ramps
up to a maximum when the ball is about to reverse directions, and
ramps back down again as the ball is on its way back out. The
equation F = ∆p/∆t, derived under the assumption of constant
acceleration, does not apply here, and the force does not even have
a single well-defined numerical value that could be plugged in to the
equation.

As with similar-looking equations such as v = ∆p/∆t, the equa-
tion F = ∆p/∆t is correctly generalized by saying that the force is
the slope of the p− t graph.
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p / Example 17.

Conversely, if we wish to find ∆p from a graph such as the one
in figure o, one approach would be to divide the force by the mass of
the ball, rescaling the F axis to create a graph of acceleration versus
time. The area under the acceleration-versus-time graph gives the
change in velocity, which can then be multiplied by the mass to
find the change in momentum. An unnecessary complication was
introduced, however, because we began by dividing by the mass
and ended by multiplying by it. It would have made just as much
sense to find the area under the original F − t graph, which would
have given us the momentum change directly.

Discussion question

A Many collisions, like the collision of a bat with a baseball, appear to
be instantaneous. Most people also would not imagine the bat and ball as
bending or being compressed during the collision. Consider the following
possibilities:

1. The collision is instantaneous.

2. The collision takes a finite amount of time, during which the ball and
bat retain their shapes and remain in contact.

3. The collision takes a finite amount of time, during which the ball and
bat are bending or being compressed.

How can two of these be ruled out based on energy or momentum con-
siderations?

14.5 Momentum in three dimensions
In this section we discuss how the concepts applied previously to
one-dimensional situations can be used as well in three dimensions.
Often vector addition is all that is needed to solve a problem:

An explosion example 17
. Astronomers observe the planet Mars as the Martians fight a
nuclear war. The Martian bombs are so powerful that they rip the
planet into three separate pieces of liquified rock, all having the
same mass. If one fragment flies off with velocity components

v1x = 0

v1y = 1.0× 104 km/hr,

and the second with

v2x = 1.0× 104 km/hr
v2y = 0,

(all in the center of mass frame) what is the magnitude of the third
one’s velocity?
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. In the center of mass frame, the planet initially had zero momen-
tum. After the explosion, the vector sum of the momenta must still
be zero. Vector addition can be done by adding components, so

mv1x + mv2x + mv3x = 0, and
mv1y + mv2y + mv3y = 0,

where we have used the same symbol m for all the terms, be-
cause the fragments all have the same mass. The masses can
be eliminated by dividing each equation by m, and we find

v3x = −1.0× 104 km/hr

v3y = −1.0× 104 km/hr

which gives a magnitude of

|v3| =
√

v2
3x + v2

3y

= 1.4× 104 km/hr

The center of mass

In three dimensions, we have the vector equations

Ftotal =
∆ptotal

∆t

and

ptotal = mtotalvcm.

The following is an example of their use.

The bola example 18
The bola, similar to the North American lasso, is used by South
American gauchos to catch small animals by tangling up their
legs in the three leather thongs. The motion of the whirling bola
through the air is extremely complicated, and would be a chal-
lenge to analyze mathematically. The motion of its center of
mass, however, is much simpler. The only forces on it are gravi-
tational, so

Ftotal = mtotalg.

Using the equation Ftotal = ∆ptotal/∆t , we find

∆ptotal/∆t = mtotalg,

and since the mass is constant, the equation ptotal = mtotalvcm
allows us to change this to

mtotal∆vcm/∆t = mtotalg.
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q / Example 18.

The mass cancels, and ∆vcm/∆t is simply the acceleration of the
center of mass, so

acm = g.

In other words, the motion of the system is the same as if all its
mass was concentrated at and moving with the center of mass.
The bola has a constant downward acceleration equal to g, and
flies along the same parabola as any other projectile thrown with
the same initial center of mass velocity. Throwing a bola with the
correct rotation is presumably a difficult skill, but making it hit its
target is no harder than it is with a ball or a single rock.

[Based on an example by Kleppner and Kolenkow.]

Counting equations and unknowns

Counting equations and unknowns is just as useful as in one
dimension, but every object’s momentum vector has three compo-
nents, so an unknown momentum vector counts as three unknowns.
Conservation of momentum is a single vector equation, but it says
that all three components of the total momentum vector stay con-
stant, so we count it as three equations. Of course if the motion
happens to be confined to two dimensions, then we need only count
vectors as having two components.

A two-car crash with sticking example 19
Suppose two cars collide, stick together, and skid off together. If
we know the cars’ initial momentum vectors, we can count equa-
tions and unknowns as follows:

unknown #1: x component of cars’ final, total momentum

unknown #2: y component of cars’ final, total momentum

equation #1: conservation of the total px

equation #2: conservation of the total py

Since the number of equations equals the number of unknowns,
there must be one unique solution for their total momentum vector
after the crash. In other words, the speed and direction at which
their common center of mass moves off together is unaffected by
factors such as whether the cars collide center-to-center or catch
each other a little off-center.

Shooting pool example 20
Two pool balls collide, and as before we assume there is no de-
crease in the total kinetic energy, i.e., no energy converted from
KE into other forms. As in the previous example, we assume we
are given the initial velocities and want to find the final velocities.
The equations and unknowns are:

unknown #1: x component of ball #1’s final momentum

unknown #2: y component of ball #1’s final momentum
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r / Example 21.

unknown #3: x component of ball #2’s final momentum

unknown #4: y component of ball #2’s final momentum

equation #1: conservation of the total px

equation #2: conservation of the total py

equation #3: no decrease in total KE

Note that we do not count the balls’ final kinetic energies as un-
knowns, because knowing the momentum vector, one can always
find the velocity and thus the kinetic energy. The number of equa-
tions is less than the number of unknowns, so no unique result is
guaranteed. This is what makes pool an interesting game. By
aiming the cue ball to one side of the target ball you can have
some control over the balls’ speeds and directions of motion after
the collision.

It is not possible, however, to choose any combination of final
speeds and directions. For instance, a certain shot may give the
correct direction of motion for the target ball, making it go into a
pocket, but may also have the undesired side-effect of making the
cue ball go in a pocket.

Calculations with the momentum vector

The following example illustrates how a force is required in order
to change the direction of the momentum vector, just as one would
be required to change its magnitude.

A turbine example 21
. In a hydroelectric plant, water flowing over a dam drives a tur-
bine, which runs a generator to make electric power. The figure
shows a simplified physical model of the water hitting the turbine,
in which it is assumed that the stream of water comes in at a
45◦angle with respect to the turbine blade, and bounces off at a
90◦angle at nearly the same speed. The water flows at a rate R,
in units of kg/s, and the speed of the water is v . What are the
magnitude and direction of the water’s force on the turbine?

. In a time interval ∆t, the mass of water that strikes the blade is
R∆t, and the magnitude of its initial momentum is mv = vR∆t .
The water’s final momentum vector is of the same magnitude, but
in the perpendicular direction. By Newton’s third law, the water’s
force on the blade is equal and opposite to the blade’s force on
the water. Since the force is constant, we can use the equation

Fblade on water =
∆pwater

∆t
.

Choosing the x axis to be to the right and the y axis to be up, this
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can be broken down into components as

Fblade on water,x =
∆pwater,x

∆t

=
−vR∆t − 0

∆t
= −vR

and

Fblade on water,y =
∆pwater,y

∆t

=
0− (−vR∆t)

∆t
= vR.

The water’s force on the blade thus has components

Fwater on blade,x = vR
Fwater on blade,y = −vR.

In situations like this, it is always a good idea to check that the
result makes sense physically. The x component of the water’s
force on the blade is positive, which is correct since we know the
blade will be pushed to the right. The y component is negative,
which also makes sense because the water must push the blade
down. The magnitude of the water’s force on the blade is

|Fwater on blade| =
√

2vR

and its direction is at a 45-degree angle down and to the right.

Discussion questions

A The figures show a jet of water striking two different objects. How
does the total downward force compare in the two cases? How could this
fact be used to create a better waterwheel? (Such a waterwheel is known
as a Pelton wheel.)

Discussion question A.

B In problem 12, p. 312, we analyzed a multiflash photograph collision
between two steel balls to check for conservation of energy. The photo is
reproduced below. Check conservation of momentum as well.
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Discussion question B.

14.6
∫

Applications of calculus
By now you will have learned to recognize the circumlocutions I use
in the sections without calculus in order to introduce calculus-like
concepts without using the notation, terminology, or techniques of
calculus. It will therefore come as no surprise to you that the rate
of change of momentum can be represented with a derivative,

Ftotal =
dptotal

dt
.

And of course the business about the area under the F − t curve is
really an integral, ∆ptotal =

∫
Ftotal dt, which can be made into an

integral of a vector in the more general three-dimensional case:

∆ptotal =

∫
Ftotal dt.

In the case of a material object that is neither losing nor picking up
mass, these are just trivially rearranged versions of familiar equa-
tions, e.g., F = m dv/dt rewritten as F = d(mv)/ dt. The following
is a less trivial example, where F = ma alone would not have been
very easy to work with.

Rain falling into a moving cart example 22
. If 1 kg/s of rain falls vertically into a 10-kg cart that is rolling
without friction at an initial speed of 1.0 m/s, what is the effect on
the speed of the cart when the rain first starts falling?

. The rain and the cart make horizontal forces on each other, but
there is no external horizontal force on the rain-plus-cart system,
so the horizontal motion obeys

F =
d(mv )

dt
= 0

384 Chapter 14 Conservation of Momentum



We use the product rule to find

0 =
dm
dt

v + m
dv
dt

.

We are trying to find how v changes, so we solve for dv/dt ,

dv
dt

= − v
m

dm
dt

= −
(

1 m/s
10 kg

)
(1 kg/s)

= −0.1 m/s2.

(This is only at the moment when the rain starts to fall.)

Finally we note that there are cases where F = ma is not just
less convenient than F = dp/dt but in fact F = ma is wrong and
F = dp/dt is right. A good example is the formation of a comet’s
tail by sunlight. We cannot use F = ma to describe this process,
since we are dealing with a collision of light with matter, whereas
Newton’s laws only apply to matter. The equation F = dp/ dt, on
the other hand, allows us to find the force experienced by an atom of
gas in the comet’s tail if we know the rate at which the momentum
vectors of light rays are being turned around by reflection from the
atom.

Section 14.6
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Summary
Selected vocabulary
momentum . . . a measure of motion, equal to mv for material

objects
collision . . . . . an interaction between moving objects that

lasts for a certain time
center of mass . . the balance point or average position of the

mass in a system

Notation
p . . . . . . . . . . the momentum vector
cm . . . . . . . . . center of mass, as in xcm, acm, etc.

Other terminology and notation
impulse, I, J . . the amount of momentum transferred, ∆p
elastic collision . one in which no KE is converted into other

forms of energy
inelastic collision one in which some KE is converted to other

forms of energy

Summary

If two objects interact via a force, Newton’s third law guaran-
tees that any change in one’s velocity vector will be accompanied
by a change in the other’s which is in the opposite direction. Intu-
itively, this means that if the two objects are not acted on by any
external force, they cannot cooperate to change their overall state of
motion. This can be made quantitative by saying that the quantity
m1v1 + m2v2 must remain constant as long as the only forces are
the internal ones between the two objects. This is a conservation
law, called the conservation of momentum, and like the conserva-
tion of energy, it has evolved over time to include more and more
phenomena unknown at the time the concept was invented. The
momentum of a material object is

p = mv,

but this is more like a standard for comparison of momenta rather
than a definition. For instance, light has momentum, but has no
mass, and the above equation is not the right equation for light. The
law of conservation of momentum says that the total momentum of
any closed system, i.e., the vector sum of the momentum vectors of
all the things in the system, is a constant.

An important application of the momentum concept is to colli-
sions, i.e., interactions between moving objects that last for a certain
amount of time while the objects are in contact or near each other.
Conservation of momentum tells us that certain outcomes of a col-
lision are impossible, and in some cases may even be sufficient to
predict the motion after the collision. In other cases, conservation
of momentum does not provide enough equations to find all the un-
knowns. In some collisions, such as the collision of a superball with
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the floor, very little kinetic energy is converted into other forms of
energy, and this provides one more equation, which may suffice to
predict the outcome.

The total momentum of a system can be related to its total mass
and the velocity of its center of mass by the equation

ptotal = mtotalvcm.

The center of mass, introduced on an intuitive basis in book 1 as
the “balance point” of an object, can be generalized to any system
containing any number of objects, and is defined mathematically
as the weighted average of the positions of all the parts of all the
objects,

xcm =
m1x1 +m2x2 + . . .

m1 +m2 + . . .
,

with similar equations for the y and z coordinates.

The frame of reference moving with the center of mass of a closed
system is always a valid inertial frame, and many problems can be
greatly simplified by working them in the inertial frame. For exam-
ple, any collision between two objects appears in the c.m. frame as
a head-on one-dimensional collision.

When a system is not closed, the rate at which momentum is
transferred in or out is simply the total force being exerted externally
on the system. If the force is constant,

Ftotal =
∆ptotal

∆t
.

When the force is not constant, the force equals the slope of the
tangent line on a graph of p versus t, and the change in momentum
equals the area under the F − t graph.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Derive a formula expressing the kinetic energy of an object in
terms of its momentum and mass.

√

2 Two people in a rowboat wish to move around without causing
the boat to move. What should be true about their total momen-
tum? Explain.

3 A learjet traveling due east at 300 mi/hr collides with a
jumbo jet which was heading southwest at 150 mi/hr. The jumbo
jet’s mass is five times greater than that of the learjet. When they
collide, the learjet sticks into the fuselage of the jumbo jet, and they
fall to earth together. Their engines stop functioning immediately
after the collision. On a map, what will be the direction from the
location of the collision to the place where the wreckage hits the
ground? (Give an angle.)

√

4 A bullet leaves the barrel of a gun with a kinetic energy of 90
J. The gun barrel is 50 cm long. The gun has a mass of 4 kg, the
bullet 10 g.
(a) Find the bullet’s final velocity.

√

(b) Find the bullet’s final momentum.
√

(c) Find the momentum of the recoiling gun.
(d) Find the kinetic energy of the recoiling gun, and explain why
the recoiling gun does not kill the shooter.

√

Problem 5

5 The graph shows the force, in meganewtons, exerted by a
rocket engine on the rocket as a function of time. If the rocket’s
mass is 4000 kg, at what speed is the rocket moving when the engine
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Problem 8

stops firing? Assume it goes straight up, and neglect the force of
gravity, which is much less than a meganewton.

√

6 Cosmic rays are particles from outer space, mostly protons and
atomic nuclei, that are continually bombarding the earth. Most of
them, although they are moving extremely fast, have no discernible
effect even if they hit your body, because their masses are so small.
Their energies vary, however, and a very small minority of them
have extremely large energies. In some cases the energy is as much
as several Joules, which is comparable to the KE of a well thrown
rock! If you are in a plane at a high altitude and are so incredibly
unlucky as to be hit by one of these rare ultra-high-energy cosmic
rays, what would you notice, the momentum imparted to your body,
the energy dissipated in your body as heat, or both? Base your con-
clusions on numerical estimates, not just random speculation. (At
these high speeds, one should really take into account the devia-
tions from Newtonian physics described by Einstein’s special theory
of relativity. Don’t worry about that, though.)

7 Show that for a body made up of many equal masses, the
equation for the center of mass becomes a simple average of all the
positions of the masses.

8 The figure shows a view from above of a collision about to
happen between two air hockey pucks sliding without friction. They
have the same speed, vi, before the collision, but the big puck is 2.3
times more massive than the small one. Their sides have sticky stuff
on them, so when they collide, they will stick together. At what
angle will they emerge from the collision? In addition to giving a
numerical answer, please indicate by drawing on the figure how your
angle is defined. . Solution, p. 560

9 A flexible rope of mass m and length L slides without friction
over the edge of a table. Let x be the length of the rope that is
hanging over the edge at a given moment in time.
(a) Show that x satisfies the equation of motion d2 x/ dt2 = gx/L.
[Hint: Use F = dp/dt, which allows you to handle the two parts of
the rope separately even though mass is moving out of one part and
into the other.]
(b) Give a physical explanation for the fact that a larger value of
x on the right-hand side of the equation leads to a greater value of
the acceleration on the left side.
(c) When we take the second derivative of the function x(t) we are
supposed to get essentially the same function back again, except
for a constant out in front. The function ex has the property that
it is unchanged by differentiation, so it is reasonable to look for
solutions to this problem that are of the form x = bect, where b and
c are constants. Show that this does indeed provide a solution for
two specific values of c (and for any value of b).
(d) Show that the sum of any two solutions to the equation of motion
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is also a solution.
(e) Find the solution for the case where the rope starts at rest at
t = 0 with some nonzero value of x.

∫
?

10 A very massive object with velocity v collides head-on with
an object at rest whose mass is very small. No kinetic energy is
converted into other forms. Prove that the low-mass object recoils
with velocity 2v. [Hint: Use the center-of-mass frame of reference.]

11 When the contents of a refrigerator cool down, the changed
molecular speeds imply changes in both momentum and energy.
Why, then, does a fridge transfer power through its radiator coils,
but not force? . Solution, p. 560

12 A 10-kg bowling ball moving at 2.0 m/s hits a 1.0-kg bowling
pin, which is initially at rest. The other pins are all gone already,
and the collision is head-on, so that the motion is one-dimensional.
Assume that negligible amounts of heat and sound are produced.
Find the velocity of the pin immediately after the collision.

13 A rocket ejects exhaust with an exhaust velocity u. The rate
at which the exhaust mass is used (mass per unit time) is b. We
assume that the rocket accelerates in a straight line starting from
rest, and that no external forces act on it. Let the rocket’s initial
mass (fuel plus the body and payload) be mi, and mf be its final
mass, after all the fuel is used up. (a) Find the rocket’s final velocity,
v, in terms of u, mi, and mf . Neglect the effects of special relativity.
(b) A typical exhaust velocity for chemical rocket engines is 4000
m/s. Estimate the initial mass of a rocket that could accelerate a
one-ton payload to 10% of the speed of light, and show that this
design won’t work. (For the sake of the estimate, ignore the mass of
the fuel tanks. The speed is fairly small compared to c, so it’s not
an unreasonable approximation to ignore relativity.)

√ ∫
?

14 A firework shoots up into the air, and just before it explodes
it has a certain momentum and kinetic energy. What can you say
about the momenta and kinetic energies of the pieces immediately
after the explosion? [Based on a problem from PSSC Physics.]

. Solution, p. 560

15 Suppose a system consisting of pointlike particles has a total
kinetic energy Kcm measured in the center-of-mass frame of refer-
ence. Since they are pointlike, they cannot have any energy due to
internal motion.
(a) Prove that in a different frame of reference, moving with veloc-
ity u relative to the center-of-mass frame, the total kinetic energy
equals Kcm +M |u|2/2, where M is the total mass. [Hint: You can
save yourself a lot of writing if you express the total kinetic energy
using the dot product.] . Solution, p. 561
(b) Use this to prove that if energy is conserved in one frame of
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reference, then it is conserved in every frame of reference. The total
energy equals the total kinetic energy plus the sum of the potential
energies due to the particles’ interactions with each other, which
we assume depends only on the distance between particles. [For a
simpler numerical example, see problem 13 on p. 312.] ?

16 The big difference between the equations for momentum and
kinetic energy is that one is proportional to v and one to v2. Both,
however, are proportional to m. Suppose someone tells you that
there’s a third quantity, funkosity, defined as f = m2v, and that
funkosity is conserved. How do you know your leg is being pulled?

. Solution, p. 561

17 A mass m moving at velocity v collides with a stationary
target having the same mass m. Find the maximum amount of
energy that can be released as heat and sound.

√

18 Two blobs of putty collide head-on and stick. The collision is
completely symmetric: the blobs are of equal mass, and they collide
at equal speeds. What becomes of the energy the blobs had before
the collision? The momentum?

19 The force acting on an object is F = At2. The object is at
rest at time t = 0. What is its momentum at t = T?√

[problem by B. Shotwell]
∫

20 A bullet of mass m strikes a block of mass M which is hanging
by a string of length L from the ceiling. It is observed that, after
the sticky collision, the maximum angle that the string makes with
the vertical is θ. This setup is called a ballistic pendulum, and it
can be used to measure the speed of the bullet.
(a) What vertical height does the block reach?

√

(b) What was the speed of the block just after the collision?
√

(c) What was the speed of the bullet just before it struck the block?√
[problem by B. Shotwell]

21 A car of mass M and a truck of mass 2M collide head-on
with equal speeds v, and the collision is perfectly inelastic, i.e., the
maximum possible amount of kinetic energy is transformed into heat
and sound, consistent with conservation of momentum.
(a) What is the magnitude of the change in momentum of the car?√

(b) What is the magnitude of the change in momentum of the truck?√

(c) What is the final speed of the two vehicles?
√

(d) What fraction of the initial kinetic energy was lost as a result of
the collision?

√
[problem by B. Shotwell]
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A tornado touches down in Spring Hill, Kansas, May 20, 1957.

Chapter 15

Conservation of Angular
Momentum

“Sure, and maybe the sun won’t come up tomorrow.” Of course,
the sun only appears to go up and down because the earth spins,
so the cliche should really refer to the unlikelihood of the earth’s
stopping its rotation abruptly during the night. Why can’t it stop?
It wouldn’t violate conservation of momentum, because the earth’s
rotation doesn’t add anything to its momentum. While California
spins in one direction, some equally massive part of India goes the
opposite way, canceling its momentum. A halt to Earth’s rotation
would entail a drop in kinetic energy, but that energy could simply
be converted into some other form, such as heat.

Other examples along these lines are not hard to find. A hydro-
gen atom spins at the same rate for billions of years. A high-diver
who is rotating when he comes off the board does not need to make
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any physical effort to continue rotating, and indeed would be unable
to stop rotating before he hit the water.

These observations have the hallmarks of a conservation law:

A closed system is involved. Nothing is making an effort to
twist the earth, the hydrogen atom, or the high-diver. They are
isolated from rotation-changing influences, i.e., they are closed
systems.

Something remains unchanged. There appears to be a numer-
ical quantity for measuring rotational motion such that the total
amount of that quantity remains constant in a closed system.

Something can be transferred back and forth without
changing the total amount. In figure a, the jumper wants to
get his feet out in front of him so he can keep from doing a “face
plant” when he lands. Bringing his feet forward would involve a
certain quantity of counterclockwise rotation, but he didn’t start
out with any rotation when he left the ground. Suppose we con-
sider counterclockwise as positive and clockwise as negative. The
only way his legs can acquire some positive rotation is if some other
part of his body picks up an equal amount of negative rotation.
This is why he swings his arms up behind him, clockwise.

a / An early photograph of an old-fashioned long-jump.

What numerical measure of rotational motion is conserved? Car
engines and old-fashioned LP records have speeds of rotation mea-
sured in rotations per minute (r.p.m.), but the number of rota-
tions per minute (or per second) is not a conserved quantity. A
twirling figure skater, for instance, can pull her arms in to increase
her r.p.m.’s. The first section of this chapter deals with the nu-
merical definition of the quantity of rotation that results in a valid
conservation law.
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b / An overhead view of a
piece of putty being thrown at
a door. Even though the putty
is neither spinning nor traveling
along a curve, we must define it
as having some kind of “rotation”
because it is able to make the
door rotate.

c / As seen by someone standing
at the axis, the putty changes
its angular position. We there-
fore define it as having angular
momentum.

15.1 Conservation of angular momentum
When most people think of rotation, they think of a solid object
like a wheel rotating in a circle around a fixed point. Examples of
this type of rotation, called rigid rotation or rigid-body rotation, in-
clude a spinning top, a seated child’s swinging leg, and a helicopter’s
spinning propeller. Rotation, however, is a much more general phe-
nomenon, and includes noncircular examples such as a comet in
an elliptical orbit around the sun, or a cyclone, in which the core
completes a circle more quickly than the outer parts.

If there is a numerical measure of rotational motion that is a
conserved quantity, then it must include nonrigid cases like these,
since nonrigid rotation can be traded back and forth with rigid ro-
tation. For instance, there is a trick for finding out if an egg is
raw or hardboiled. If you spin a hardboiled egg and then stop it
briefly with your finger, it stops dead. But if you do the same with
a raw egg, it springs back into rotation because the soft interior was
still swirling around within the momentarily motionless shell. The
pattern of flow of the liquid part is presumably very complex and
nonuniform due to the asymmetric shape of the egg and the differ-
ent consistencies of the yolk and the white, but there is apparently
some way to describe the liquid’s total amount of rotation with a
single number, of which some percentage is given back to the shell
when you release it.

The best strategy is to devise a way of defining the amount of
rotation of a single small part of a system. The amount of rotation
of a system such as a cyclone will then be defined as the total of all
the contributions from its many small parts.

The quest for a conserved quantity of rotation even requires us
to broaden the rotation concept to include cases where the motion
doesn’t repeat or even curve around. If you throw a piece of putty
at a door, the door will recoil and start rotating. The putty was
traveling straight, not in a circle, but if there is to be a general
conservation law that can cover this situation, it appears that we
must describe the putty as having had some “rotation,” which it
then gave up to the door. The best way of thinking about it is to
attribute rotation to any moving object or part of an object that
changes its angle in relation to the axis of rotation. In the putty-
and-door example, the hinge of the door is the natural point to think
of as an axis, and the putty changes its angle as seen by someone
standing at the hinge. For this reason, the conserved quantity we are
investigating is called angular momentum. The symbol for angular
momentum can’t be a or m, since those are used for acceleration
and mass, so the symbol L is arbitrarily chosen instead.

Imagine a 1-kg blob of putty, thrown at the door at a speed of
1 m/s, which hits the door at a distance of 1 m from the hinge.
We define this blob to have 1 unit of angular momentum. When
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d / A putty blob thrown di-
rectly at the axis has no angular
motion, and therefore no angular
momentum. It will not cause the
door to rotate.

e / Only the component of
the velocity vector perpendicular
to the dashed line should be
counted into the definition of
angular momentum.

it hits the door, the door will recoil and start rotating. We can
use the speed at which the door recoils as a measure of the angular
momentum the blob brought in.1

Experiments show, not surprisingly, that a 2-kg blob thrown in
the same way makes the door rotate twice as fast, so the angular
momentum of the putty blob must be proportional to mass,

L ∝ m.

Similarly, experiments show that doubling the velocity of the
blob will have a doubling effect on the result, so its angular momen-
tum must be proportional to its velocity as well,

L ∝ mv.

You have undoubtedly had the experience of approaching a closed
door with one of those bar-shaped handles on it and pushing on the
wrong side, the side close to the hinges. You feel like an idiot, be-
cause you have so little leverage that you can hardly budge the door.
The same would be true with the putty blob. Experiments would
show that the amount of rotation the blob can give to the door is
proportional to the distance, r, from the axis of rotation, so angular
momentum must also be proportional to r,

L ∝ mvr.

We are almost done, but there is one missing ingredient. We
know on grounds of symmetry that a putty ball thrown directly
inward toward the hinge will have no angular momentum to give
to the door. After all, there would not even be any way to de-
cide whether the ball’s rotation was clockwise or counterclockwise
in this situation. It is therefore only the component of the blob’s
velocity vector perpendicular to the door that should be counted in
its angular momentum,

L = mv⊥r.

More generally, v⊥ should be thought of as the component of the
object’s velocity vector that is perpendicular to the line joining the
object to the axis of rotation.

We find that this equation agrees with the definition of the origi-
nal putty blob as having one unit of angular momentum, and we can
now see that the units of angular momentum are (kg·m/s)·m, i.e.,
kg·m2/s. This gives us a way of calculating the angular momentum
of any material object or any system consisting of material objects:

1We assume that the door is much more massive than the blob. Under this
assumption, the speed at which the door recoils is much less than the original
speed of the blob, so the blob has lost essentially all its angular momentum, and
given it to the door.
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f / A figure skater pulls in her
arms so that she can execute a
spin more rapidly.

angular momentum of a material object
The angular momentum of a moving particle is

L = mv⊥r,

where m is its mass, v⊥ is the component of its velocity vector
perpendicular to the line joining it to the axis of rotation, and r is
its distance from the axis. Positive and negative signs are used to
describe opposite directions of rotation.

The angular momentum of a finite-sized object or a system
of many objects is found by dividing it up into many small parts,
applying the equation to each part, and adding to find the total
amount of angular momentum.

Note that r is not necessarily the radius of a circle. (As implied
by the qualifiers, matter isn’t the only thing that can have angular
momentum. Light can also have angular momentum, and the above
equation would not apply to light.)

Conservation of angular momentum has been verified over and
over again by experiment, and is now believed to be one of the three
most fundamental principles of physics, along with conservation of
energy and momentum.

A figure skater pulls her arms in example 1
When a figure skater is twirling, there is very little friction between
her and the ice, so she is essentially a closed system, and her
angular momentum is conserved. If she pulls her arms in, she is
decreasing r for all the atoms in her arms. It would violate con-
servation of angular momentum if she then continued rotating at
the same speed, i.e., taking the same amount of time for each
revolution, because her arms’ contributions to her angular mo-
mentum would have decreased, and no other part of her would
have increased its angular momentum. This is impossible be-
cause it would violate conservation of angular momentum. If her
total angular momentum is to remain constant, the decrease in r
for her arms must be compensated for by an overall increase in
her rate of rotation. That is, by pulling her arms in, she substan-
tially reduces the time for each rotation.
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h / Example 3. A view of the
earth-moon system from above
the north pole. All distances
have been highly distorted for
legibility. The earth’s rotation is
counterclockwise from this point
of view (arrow). The moon’s grav-
ity creates a bulge on the side
near it, because its gravitational
pull is stronger there, and an
“anti-bulge” on the far side, since
its gravity there is weaker. For
simplicity, let’s focus on the tidal
bulge closer to the moon. Its
frictional force is trying to slow
down the earth’s rotation, so its
force on the earth’s solid crust is
toward the bottom of the figure.
By Newton’s third law, the crust
must thus make a force on the
bulge which is toward the top of
the figure. This causes the bulge
to be pulled forward at a slight
angle, and the bulge’s gravity
therefore pulls the moon forward,
accelerating its orbital motion
about the earth and flinging it
outward.

g / Example 2.

Changing the axis example 2
An object’s angular momentum can be different depending on the
axis about which it rotates. Figure g shows two double-exposure
photographs a viola player tipping the bow in order to cross from
one string to another. Much more angular momentum is required
when playing near the bow’s handle, called the frog, as in the
panel on the right; not only are most of the atoms in the bow
at greater distances, r , from the axis of rotation, but the ones in
the tip also have more momentum, p. It is difficult for the player
to quickly transfer a large angular momentum into the bow, and
then transfer it back out just as quickly. (In the language of section
15.4, large torques are required.) This is one of the reasons that
string players tend to stay near the middle of the bow as much as
possible.

Earth’s slowing rotation and the receding moon example 3
As noted in chapter 1, the earth’s rotation is actually slowing down
very gradually, with the kinetic energy being dissipated as heat by
friction between the land and the tidal bulges raised in the seas
by the earth’s gravity. Does this mean that angular momentum is
not really perfectly conserved? No, it just means that the earth
is not quite a closed system by itself. If we consider the earth
and moon as a system, then the angular momentum lost by the
earth must be gained by the moon somehow. In fact very precise
measurements of the distance between the earth and the moon
have been carried out by bouncing laser beams off of a mirror
left there by astronauts, and these measurements show that the
moon is receding from the earth at a rate of 4 centimeters per
year! The moon’s greater value of r means that it has a greater
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angular momentum, and the increase turns out to be exactly the
amount lost by the earth. In the days of the dinosaurs, the days
were significantly shorter, and the moon was closer and appeared
bigger in the sky.

But what force is causing the moon to speed up, drawing it out
into a larger orbit? It is the gravitational forces of the earth’s tidal
bulges. The effect is described qualitatively in the caption of the
figure. The result would obviously be extremely difficult to calcu-
late directly, and this is one of those situations where a conserva-
tion law allows us to make precise quantitative statements about
the outcome of a process when the calculation of the process
itself would be prohibitively complex.

Restriction to rotation in a plane

Is angular momentum a vector, or is it a scalar? On p. 206, we
defined the distinction between a vector and a scalar in terms of the
quantity’s behavior when rotated. If rotation doesn’t change it, it’s
a scalar. If rotation affects it in the same way that it would affect
an arrow, then it’s a vector. Using these definitions, figure i shows
that angular momentum cannot be a scalar.

i / Angular momentum is not a
scalar. If we turn the picture
around, the angular momentum
does change: the counterclock-
wise motion of the wheels be-
comes clockwise from our new
point of view.

It turns out that there is a way of defining angular momentum as
a vector, but in this book the examples will be confined to a single
plane of rotation, i.e., effectively two-dimensional situations. In this
special case, we can choose to visualize the plane of rotation from
one side or the other, and to define clockwise and counterclockwise
rotation as having opposite signs of angular momentum.

Figure j shows a can rolling down a board. Although the can is
three-dimensional, we can view it from the side and project out the
third dimension, reducing the motion to rotation in a plane. This
means that the axis is a point, even though the word “axis” often
connotes a line in students’ minds, as in an x or y axis.
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k / The planet’s angular mo-
mentum is related to the rate at
which it sweeps out area.

j / We reduce the motion to rota-
tion in a plane, and the axis is
then a point.

Discussion question

A Conservation of plain old momentum, p, can be thought of as the
greatly expanded and modified descendant of Galileo’s original principle
of inertia, that no force is required to keep an object in motion. The princi-
ple of inertia is counterintuitive, and there are many situations in which it
appears superficially that a force is needed to maintain motion, as main-
tained by Aristotle. Think of a situation in which conservation of angular
momentum, L, also seems to be violated, making it seem incorrectly that
something external must act on a closed system to keep its angular mo-
mentum from “running down.”

15.2 Angular momentum in planetary motion
We now discuss the application of conservation of angular momen-
tum to planetary motion, both because of its intrinsic importance
and because it is a good way to develop a visual intuition for angular
momentum.

Kepler’s law of equal areas states that the area swept out by
a planet in a certain length of time is always the same. Angular
momentum had not been invented in Kepler’s time, and he did not
even know the most basic physical facts about the forces at work. He
thought of this law as an entirely empirical and unexpectedly simple
way of summarizing his data, a rule that succeeded in describing
and predicting how the planets sped up and slowed down in their
elliptical paths. It is now fairly simple, however, to show that the
equal area law amounts to a statement that the planet’s angular
momentum stays constant.

There is no simple geometrical rule for the area of a pie wedge
cut out of an ellipse, but if we consider a very short time interval,
as shown in figure k, the shaded shape swept out by the planet is
very nearly a triangle. We do know how to compute the area of a
triangle. It is one half the product of the base and the height:

area =
1

2
bh.

We wish to relate this to angular momentum, which contains
the variables r and v⊥ . If we consider the sun to be the axis of
rotation, then the variable r is identical to the base of the triangle,
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Discussion question A.

r = b. Referring to the magnified portion of the figure, v⊥ can be
related to h, because the two right triangles are similar:

h

distance traveled
=
v⊥
|v|

The area can thus be rewritten as

area =
1

2
r
v⊥(distance traveled)

|v|
.

The distance traveled equals |v|∆t, so this simplifies to

area =
1

2
rv⊥∆t.

We have found the following relationship between angular momen-
tum and the rate at which area is swept out:

L = 2m
area

∆t
.

The factor of 2 in front is simply a matter of convention, since any
conserved quantity would be an equally valid conserved quantity if
you multiplied it by a constant. The factor of m was not relevant
to Kepler, who did not know the planets’ masses, and who was only
describing the motion of one planet at a time.

We thus find that Kepler’s equal-area law is equivalent to a state-
ment that the planet’s angular momentum remains constant. But
wait, why should it remain constant? — the planet is not a closed
system, since it is being acted on by the sun’s gravitational force.
There are two valid answers. The first is that it is actually the to-
tal angular momentum of the sun plus the planet that is conserved.
The sun, however, is millions of times more massive than the typical
planet, so it accelerates very little in response to the planet’s gravi-
tational force. It is thus a good approximation to say that the sun
doesn’t move at all, so that no angular momentum is transferred
between it and the planet.

The second answer is that to change the planet’s angular mo-
mentum requires not just a force but a force applied in a certain
way. In section 15.4 we discuss the transfer of angular momentum
by a force, but the basic idea here is that a force directly in toward
the axis does not change the angular momentum.

Discussion questions

A Suppose an object is simply traveling in a straight line at constant
speed. If we pick some point not on the line and call it the axis of rotation,
is area swept out by the object at a constant rate? Would it matter if we
chose a different axis?

B The figure is a strobe photo of a pendulum bob, taken from under-
neath the pendulum looking straight up. The black string can’t be seen
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in the photograph. The bob was given a slight sideways push when it
was released, so it did not swing in a plane. The bright spot marks the
center, i.e., the position the bob would have if it hung straight down at us.
Does the bob’s angular momentum appear to remain constant if we con-
sider the center to be the axis of rotation? What if we choose a different
axis?

Discussion question B.

15.3 Two theorems about angular momentum
With plain old momentum, p, we had the freedom to work in any
inertial frame of reference we liked. The same object could have
different values of momentum in two different frames, if the frames
were not at rest with respect to each other. Conservation of mo-
mentum, however, would be true in either frame. As long as we
employed a single frame consistently throughout a calculation, ev-
erything would work.

The same is true for angular momentum, and in addition there
is an ambiguity that arises from the definition of an axis of rotation.
For a wheel, the natural choice of an axis of rotation is obviously
the axle, but what about an egg rotating on its side? The egg
has an asymmetric shape, and thus no clearly defined geometric
center. A similar issue arises for a cyclone, which does not even
have a sharply defined shape, or for a complicated machine with
many gears. The following theorem, the first of two presented in
this section without proof, explains how to deal with this issue.
Although I have put descriptive titles above both theorems, they
have no generally accepted names.

the choice of axis theorem
It is entirely arbitrary what point one defines as the axis for
purposes of calculating angular momentum. If a closed sys-
tem’s angular momentum is conserved when calculated with
one choice of axis, then it will also be conserved for any other
choice. Likewise, any inertial frame of reference may be used.
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l / Example 4.

m / Everyone has a strong
tendency to think of the diver as
rotating about his own center of
mass. However, he is flying in
an arc, and he also has angular
momentum because of this
motion.

n / This rigid object has an-
gular momentum both because
it is spinning about its center of
mass and because it is moving
through space.

Colliding asteroids described with different axes example 4
Observers on planets A and B both see the two asteroids collid-
ing. The asteroids are of equal mass and their impact speeds are
the same. Astronomers on each planet decide to define their own
planet as the axis of rotation. Planet A is twice as far from the col-
lision as planet B. The asteroids collide and stick. For simplicity,
assume planets A and B are both at rest.

With planet A as the axis, the two asteroids have the same amount
of angular momentum, but one has positive angular momentum
and the other has negative. Before the collision, the total angular
momentum is therefore zero. After the collision, the two asteroids
will have stopped moving, and again the total angular momen-
tum is zero. The total angular momentum both before and after
the collision is zero, so angular momentum is conserved if you
choose planet A as the axis.

The only difference with planet B as axis is that r is smaller by a
factor of two, so all the angular momenta are halved. Even though
the angular momenta are different than the ones calculated by
planet A, angular momentum is still conserved.

The earth spins on its own axis once a day, but simultaneously
travels in its circular one-year orbit around the sun, so any given
part of it traces out a complicated loopy path. It would seem difficult
to calculate the earth’s angular momentum, but it turns out that
there is an intuitively appealing shortcut: we can simply add up the
angular momentum due to its spin plus that arising from its center
of mass’s circular motion around the sun. This is a special case of
the following general theorem:

the spin theorem
An object’s angular momentum with respect to some outside
axis A can be found by adding up two parts:
(1) The first part is the object’s angular momentum found
by using its own center of mass as the axis, i.e., the angular
momentum the object has because it is spinning.
(2) The other part equals the angular momentum that the
object would have with respect to the axis A if it had all its
mass concentrated at and moving with its center of mass.

A system with its center of mass at rest example 5
In the special case of an object whose center of mass is at rest,
the spin theorem implies that the object’s angular momentum is
the same regardless of what axis we choose. (This is an even
stronger statement than the choice of axis theorem, which only
guarantees that angular momentum is conserved for any given
choice of axis, without specifying that it is the same for all such
choices.)
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Angular momentum of a rigid object example 6
. A motorcycle wheel has almost all its mass concentrated at
the outside. If the wheel has mass m and radius r , and the time
required for one revolution is T , what is the spin part of its angular
momentum?

. This is an example of the commonly encountered special case
of rigid motion, as opposed to the rotation of a system like a hur-
ricane in which the different parts take different amounts of time
to go around. We don’t really have to go through a laborious
process of adding up contributions from all the many parts of a
wheel, because they are all at about the same distance from the
axis, and are all moving around the axis at about the same speed.
The velocity is all perpendicular to the spokes,

v⊥ = v
= (circumference)/T
= 2πr/T ,

and the angular momentum of the wheel about its center is

L = mv⊥r
= m(2πr/T )r

= 2πmr2/T .

Note that although the factors of 2π in this expression is peculiar
to a wheel with its mass concentrated on the rim, the proportional-
ity to m/T would have been the same for any other rigidly rotating
object. Although an object with a noncircular shape does not have
a radius, it is also true in general that angular momentum is pro-
portional to the square of the object’s size for fixed values of m and
T . For instance doubling an object’s size doubles both the v⊥ and
r factors in the contribution of each of its parts to the total angular
momentum, resulting in an overall factor of four increase.

The figure shows some examples of angular momenta of various
shapes rotating about their centers of mass. The equations for their
angular momenta were derived using calculus, as described in my
calculus-based book Simple Nature. Do not memorize these equa-
tions!

The hammer throw example 7
. In the men’s Olympic hammer throw, a steel ball of radius 6.1 cm
is swung on the end of a wire of length 1.22 m. What fraction of
the ball’s angular momentum comes from its rotation, as opposed
to its motion through space?

. It’s always important to solve problems symbolically first, and
plug in numbers only at the end, so let the radius of the ball be b,
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o / Example 8.

and the length of the wire `. If the time the ball takes to go once
around the circle is T , then this is also the time it takes to revolve
once around its own axis. Its speed is v = 2π`/T , so its angular
momentum due to its motion through space is mv` = 2πm`2/T .
Its angular momentum due to its rotation around its own cen-
ter is (4π/5)mb2/T . The ratio of these two angular momenta is
(2/5)(b/`)2 = 1.0×10−3. The angular momentum due to the ball’s
spin is extremely small.

Toppling a rod example 8
. A rod of length b and mass m stands upright. We want to strike
the rod at the bottom, causing it to fall and land flat. Find the
momentum, p, that should be delivered, in terms of m, b, and
g. Can this really be done without having the rod scrape on the
floor?

. This is a nice example of a question that can very nearly be
answered based only on units. Since the three variables, m, b,
and g, all have different units, they can’t be added or subtracted.
The only way to combine them mathematically is by multiplication
or division. Multiplying one of them by itself is exponentiation, so
in general we expect that the answer must be of the form

p = Amjbkg l ,

where A, j , k , and l are unitless constants. The result has to have
units of kg·m/s. To get kilograms to the first power, we need

j = 1,
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meters to the first power requires

k + l = 1,

and seconds to the power −1 implies

l = 1/2.

We find j = 1, k = 1/2, and l = 1/2, so the solution must be of the
form

p = Am
√

bg.

Note that no physics was required!

Consideration of units, however, won’t help us to find the unit-
less constant A. Let t be the time the rod takes to fall, so that
(1/2)gt2 = b/2. If the rod is going to land exactly on its side,
then the number of revolutions it completes while in the air must
be 1/4, or 3/4, or 5/4, . . . , but all the possibilities greater than 1/4
would cause the head of the rod to collide with the floor prema-
turely. The rod must therefore rotate at a rate that would cause
it to complete a full rotation in a time T = 4t , and it has angular
momentum L = (π/6)mb2/T .

The momentum lost by the object striking the rod is p, and by
conservation of momentum, this is the amount of momentum, in
the horizontal direction, that the rod acquires. In other words,
the rod will fly forward a little. However, this has no effect on
the solution to the problem. More importantly, the object striking
the rod loses angular momentum bp/2, which is also transferred
to the rod. Equating this to the expression above for L, we find
p = (π/12)m

√
bg.

Finally, we need to know whether this can really be done without
having the foot of the rod scrape on the floor. The figure shows
that the answer is no for this rod of finite width, but it appears
that the answer would be yes for a sufficiently thin rod. This is
analyzed further in homework problem 28 on page 428.

Discussion question

A In the example of the colliding asteroids, suppose planet A was mov-
ing toward the top of the page, at the same speed as the bottom asteroid.
How would planet A’s astronomers describe the angular momenta of the
asteroids? Would angular momentum still be conserved?

15.4 Torque: the rate of transfer of angular
momentum

Force can be interpreted as the rate of transfer of momentum. The
equivalent in the case of angular momentum is called torque (rhymes
with “fork”). Where force tells us how hard we are pushing or
pulling on something, torque indicates how hard we are twisting on
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p / Energy, momentum, and
angular momentum can be trans-
ferred. The rates of transfer are
called power, force, and torque.

q / The plane’s four engines
produce zero total torque but not
zero total force.

it. Torque is represented by the Greek letter tau, τ , and the rate
of change of an object’s angular momentum equals the total torque
acting on it,

τtotal =
∆L

∆t
.

(If the angular momentum does not change at a constant rate, the
total torque equals the slope of the tangent line on a graph of L
versus t.)

As with force and momentum, it often happens that angular
momentum recedes into the background and we focus our interest on
the torques. The torque-focused point of view is exemplified by the
fact that many scientifically untrained but mechanically apt people
know all about torque, but none of them have heard of angular
momentum. Car enthusiasts eagerly compare engines’ torques, and
there is a tool called a torque wrench which allows one to apply a
desired amount of torque to a screw and avoid overtightening it.

Torque distinguished from force

Of course a force is necessary in order to create a torque — you
can’t twist a screw without pushing on the wrench — but force and
torque are two different things. One distinction between them is
direction. We use positive and negative signs to represent forces in
the two possible directions along a line. The direction of a torque,
however, is clockwise or counterclockwise, not a linear direction.

The other difference between torque and force is a matter of
leverage. A given force applied at a door’s knob will change the
door’s angular momentum twice as rapidly as the same force applied
halfway between the knob and the hinge. The same amount of force
produces different amounts of torque in these two cases.

It is possible to have a zero total torque with a nonzero total
force. An airplane with four jet engines, q, would be designed so
that their forces are balanced on the left and right. Their forces are
all in the same direction, but the clockwise torques of two of the
engines are canceled by the counterclockwise torques of the other
two, giving zero total torque.

Conversely we can have zero total force and nonzero total torque.
A merry-go-round’s engine needs to supply a nonzero torque on it
to bring it up to speed, but there is zero total force on it. If there
was not zero total force on it, its center of mass would accelerate!
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r / The boy makes a torque
on the tetherball.

s / The geometric relationships
referred to in the relationship
between force and torque.

Relationship between force and torque

How do we calculate the amount of torque produced by a given
force? Since it depends on leverage, we should expect it to depend
on the distance between the axis and the point of application of
the force. We’ll derive an equation relating torque to force for a
particular very simple situation, and state without proof that the
equation actually applies to all situations.

To try to pin down this relationship more precisely, let’s imagine
hitting a tetherball, figure r. The boy applies a force F to the ball
for a short time ∆t, accelerating the ball from rest to a velocity v.
Since force is the rate of transfer of momentum, we have

F =
m∆v

∆t
.

Since the initial velocity is zero, ∆v is the same as the final velocity
v. Multiplying both sides by r gives

Fr =
mvr

∆t
.

But mvr is simply the amount of angular momentum he’s given the
ball, so mvr/∆t also equals the amount of torque he applied. The
result of this example is

τ = Fr.

Figure r was drawn so that the force F was in the direction
tangent to the circle, i.e., perpendicular to the radius r. If the boy
had applied a force parallel to the radius line, either directly inward
or outward, then the ball would not have picked up any clockwise
or counterclockwise angular momentum.

If a force acts at an angle other than 0 or 90◦with respect to the
line joining the object and the axis, it would be only the component
of the force perpendicular to the line that would produce a torque,

τ = F⊥r.

Although this result was proved under a simplified set of circum-
stances, it is more generally valid:

relationship between force and torque
The rate at which a force transfers angular momentum to an
object, i.e., the torque produced by the force, is given by

|τ | = r|F⊥|,

where r is the distance from the axis to the point of applica-
tion of the force, and F⊥ is the component of the force that
is perpendicular to the line joining the axis to the point of
application.
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t / The quantity r⊥.

The equation is stated with absolute value signs because the
positive and negative signs of force and torque indicate different
things, so there is no useful relationship between them. The sign
of the torque must be found by physical inspection of the case at
hand.

From the equation, we see that the units of torque can be writ-
ten as newtons multiplied by meters. Metric torque wrenches are
calibrated in N·m, but American ones use foot-pounds, which is also
a unit of distance multiplied by a unit of force. We know from our
study of mechanical work that newtons multiplied by meters equal
joules, but torque is a completely different quantity from work, and
nobody writes torques with units of joules, even though it would be
technically correct.

self-check A
Compare the magnitudes and signs of the four torques shown in the
figure. . Answer, p. 567

How torque depends on the direction of the force example 9
. How can the torque applied to the wrench in the figure be ex-
pressed in terms of r , |F |, and the angle θ between these two
vectors?

. The force vector and its F⊥ component form the hypotenuse
and one leg of a right triangle,

and the interior angle opposite to F⊥ equals θ. The absolute value
of F⊥ can thus be expressed as

F⊥ = |F| sin θ,

leading to
|τ| = r |F| sin θ.
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u / Example 10.

Sometimes torque can be more neatly visualized in terms of the
quantity r⊥ shown in figure t, which gives us a third way of express-
ing the relationship between torque and force:

|τ | = r⊥|F|.

Of course you would not want to go and memorize all three
equations for torque. Starting from any one of them you could easily
derive the other two using trigonometry. Familiarizing yourself with
them can however clue you in to easier avenues of attack on certain
problems.

The torque due to gravity

Up until now we’ve been thinking in terms of a force that acts
at a single point on an object, such as the force of your hand on the
wrench. This is of course an approximation, and for an extremely
realistic calculation of your hand’s torque on the wrench you might
need to add up the torques exerted by each square millimeter where
your skin touches the wrench. This is seldom necessary. But in
the case of a gravitational force, there is never any single point at
which the force is applied. Our planet is exerting a separate tug on
every brick in the Leaning Tower of Pisa, and the total gravitational
torque on the tower is the sum of the torques contributed by all the
little forces. Luckily there is a trick that allows us to avoid such
a massive calculation. It turns out that for purposes of computing
the total gravitational torque on an object, you can get the right
answer by just pretending that the whole gravitational force acts at
the object’s center of mass.

Gravitational torque on an outstretched arm example 10
. Your arm has a mass of 3.0 kg, and its center of mass is 30
cm from your shoulder. What is the gravitational torque on your
arm when it is stretched out horizontally to one side, taking the
shoulder to be the axis?

. The total gravitational force acting on your arm is

|F | = (3.0 kg)(9.8 m/s2) = 29 N.

For the purpose of calculating the gravitational torque, we can
treat the force as if it acted at the arm’s center of mass. The force
is straight down, which is perpendicular to the line connecting the
shoulder to the center of mass, so

F⊥ = |F | = 29 N.

Continuing to pretend that the force acts at the center of the arm,
r equals 30 cm = 0.30 m, so the torque is

τ = rF⊥ = 9 N·m.
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v / Example 11.

Cow tipping example 11
In 2005, Dr. Margo Lillie and her graduate student Tracy Boech-
ler published a study claiming to debunk cow tipping. Their claim
was based on an analysis of the torques that would be required
to tip a cow, which showed that one person wouldn’t be able to
make enough torque to do it. A lively discussion ensued on the
popular web site slashdot.org (“news for nerds, stuff that mat-
ters”) concerning the validity of the study. Personally, I had al-
ways assumed that cow-tipping was a group sport anyway, but as
a physicist, I also had some quibbles with their calculation. Here’s
my own analysis.

There are three forces on the cow: the force of gravity FW , the
ground’s normal force FN , and the tippers’ force FA.

As soon as the cow’s left hooves (on the right from our point of
view) break contact with the ground, the ground’s force is being
applied only to hooves on the other side. We don’t know the
ground’s force, and we don’t want to find it. Therefore we take
the axis to be at its point of application, so that its torque is zero.

For the purpose of computing torques, we can pretend that gravity
acts at the cow’s center of mass, which I’ve placed a little lower
than the center of its torso, since its legs and head also have
some mass, and the legs are more massive than the head and
stick out farther, so they lower the c.m. more than the head raises
it. The angle θW between the vertical gravitational force and the
line rW is about 14◦. (An estimate by Matt Semke at the University
of Nebraska-Lincoln gives 20◦, which is in the same ballpark.)

To generate the maximum possible torque with the least possible
force, the tippers want to push at a point as far as possible from
the axis, which will be the shoulder on the other side, and they
want to push at a 90 degree angle with respect to the radius line
rA.

When the tippers are just barely applying enough force to raise
the cow’s hooves on one side, the total torque has to be just
slightly more than zero. (In reality, they want to push a lot harder
than this — hard enough to impart a lot of angular momentum to
the cow fair in a short time, before it gets mad and hurts them.
We’re just trying to calculate the bare minimum force they can
possibly use, which is the question that science can answer.) Set-
ting the total torque equal to zero,

τN + τW + τA = 0,

and letting counterclockwise torques be positive, we have

0−mgrW sin θW + FArA sin 90◦ = 0
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Discussion question B.

FA =
rW

rA
mg sin θW

≈ 1
1.5

(680 kg)(9.8 m/s2) sin 14◦

= 1100 N.

The 680 kg figure for the typical mass of a cow is due to Lillie
and Boechler, who are veterinarians, so I assume it’s fairly accu-
rate. My estimate of 1100 N comes out significantly lower than
their 1400 N figure, mainly because their incorrect placement of
the center of mass gives θW = 24◦. I don’t think 1100 N is an
impossible amount of force to require of one big, strong person
(it’s equivalent to lifting about 110 kg, or 240 pounds), but given
that the tippers need to impart a large angular momentum fairly
quickly, it’s probably true that several people would be required.

The main practical issue with cow tipping is that cows generally
sleep lying down. Falling on its side can also seriously injure a
cow.

Discussion questions

A This series of discussion questions deals with past students’ incorrect
reasoning about the following problem.

Suppose a comet is at the point in its orbit shown in the figure. The
only force on the comet is the sun’s gravitational force.

Throughout the question, define all torques and angular momenta
using the sun as the axis.

(1) Is the sun producing a nonzero torque on the comet? Explain.
(2) Is the comet’s angular momentum increasing, decreasing, or
staying the same? Explain.

Explain what is wrong with the following answers. In some cases, the an-
swer is correct, but the reasoning leading up to it is wrong. (a) Incorrect
answer to part (1): “Yes, because the sun is exerting a force on the comet,
and the comet is a certain distance from the sun.”
(b) Incorrect answer to part (1): “No, because the torques cancel out.”
(c) Incorrect answer to part (2): “Increasing, because the comet is speed-
ing up.”

B Which claw hammer would make it easier to get the nail out of the
wood if the same force was applied in the same direction?

C You whirl a rock over your head on the end of a string, and gradually
pull in the string, eventually cutting the radius in half. What happens to
the rock’s angular momentum? What changes occur in its speed, the time
required for one revolution, and its acceleration? Why might the string
break?

D A helicopter has, in addition to the huge fan blades on top, a smaller
propeller mounted on the tail that rotates in a vertical plane. Why?
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Discussion question E.

E The photo shows an amusement park ride whose two cars rotate in
opposite directions. Why is this a good design?
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w / The windmills are not closed
systems, but angular momentum
is being transferred out of them
at the same rate it is transferred
in, resulting in constant angular
momentum. To get an idea of
the huge scale of the modern
windmill farm, note the sizes of
the trucks and trailers.

15.5 Statics
Equilibrium

There are many cases where a system is not closed but maintains
constant angular momentum. When a merry-go-round is running at
constant angular momentum, the engine’s torque is being canceled
by the torque due to friction.

When an object has constant momentum and constant angular
momentum, we say that it is in equilibrium. This is a scientific
redefinition of the common English word, since in ordinary speech
nobody would describe a car spinning out on an icy road as being
in equilibrium.

Very commonly, however, we are interested in cases where an ob-
ject is not only in equilibrium but also at rest, and this corresponds
more closely to the usual meaning of the word. Trees and bridges
have been designed by evolution and engineers to stay at rest, and
to do so they must have not just zero total force acting on them but
zero total torque. It is not enough that they don’t fall down, they
also must not tip over. Statics is the branch of physics concerned
with problems such as these.

Solving statics problems is now simply a matter of applying and
combining some things you already know:

• You know the behaviors of the various types of forces, for
example that a frictional force is always parallel to the surface
of contact.

• You know about vector addition of forces. It is the vector sum
of the forces that must equal zero to produce equilibrium.

• You know about torque. The total torque acting on an object
must be zero if it is to be in equilibrium.

• You know that the choice of axis is arbitrary, so you can make
a choice of axis that makes the problem easy to solve.

In general, this type of problem could involve four equations in four
unknowns: three equations that say the force components add up
to zero, and one equation that says the total torque is zero. Most
cases you’ll encounter will not be this complicated. In the following
example, only the equation for zero total torque is required in order
to get an answer.

414 Chapter 15 Conservation of Angular Momentum



x / Example 12.

y / Example 13.

Art! example 12
. The abstract sculpture shown in figure x contains a cube of
mass m and sides of length b. The cube rests on top of a cylinder,
which is off-center by a distance a. Find the tension in the cable.

. There are four forces on the cube: a gravitational force mg, the
force FT from the cable, the upward normal force from the cylin-
der, FN , and the horizontal static frictional force from the cylinder,
Fs.

The total force on the cube in the vertical direction is zero:
FN −mg = 0.

As our axis for defining torques, let’s choose the center of the
cube. The cable’s torque is counterclockwise, the torque due to
FN clockwise. Letting counterclockwise torques be positive, and
using the convenient equation τ = r⊥F , we find the equation for
the total torque:

bFT − aFN = 0.
We could also write down the equation saying that the total hori-
zontal force is zero, but that would bring in the cylinder’s frictional
force on the cube, which we don’t know and don’t need to find. We
already have two equations in the two unknowns FT and FN , so
there’s no need to make it into three equations in three unknowns.
Solving the first equation for FN = mg, we then substitute into the
second equation to eliminate FN , and solve for FT = (a/b)mg.

As a check, our result makes sense when a = 0; the cube is
balanced on the cylinder, so the cable goes slack.

A flagpole example 13
. A 10-kg flagpole is being held up by a lightweight horizontal
cable, and is propped against the foot of a wall as shown in the
figure. If the cable is only capable of supporting a tension of 70
N, how great can the angle α be without breaking the cable?

. All three objects in the figure are supposed to be in equilibrium:
the pole, the cable, and the wall. Whichever of the three objects
we pick to investigate, all the forces and torques on it have to
cancel out. It is not particularly helpful to analyze the forces and
torques on the wall, since it has forces on it from the ground that
are not given and that we don’t want to find. We could study the
forces and torques on the cable, but that doesn’t let us use the
given information about the pole. The object we need to analyze
is the pole.

The pole has three forces on it, each of which may also result in
a torque: (1) the gravitational force, (2) the cable’s force, and (3)
the wall’s force.

We are free to define an axis of rotation at any point we wish, and
it is helpful to define it to lie at the bottom end of the pole, since
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by that definition the wall’s force on the pole is applied at r = 0
and thus makes no torque on the pole. This is good, because we
don’t know what the wall’s force on the pole is, and we are not
trying to find it.

With this choice of axis, there are two nonzero torques on the
pole, a counterclockwise torque from the cable and a clockwise
torque from gravity. Choosing to represent counterclockwise torques
as positive numbers, and using the equation |τ| = r |F | sin θ, we
have

rcable|Fcable| sin θcable − rgrav |Fgrav | sin θgrav = 0.

A little geometry gives θcable = 90◦ − α and θgrav = α, so

rcable|Fcable| sin(90◦ − α)− rgrav |Fgrav | sinα = 0.

The gravitational force can be considered as acting at the pole’s
center of mass, i.e., at its geometrical center, so rcable is twice
rgrav , and we can simplify the equation to read

2|Fcable| sin(90◦ − α)− |Fgrav | sinα = 0.

These are all quantities we were given, except for α, which is the
angle we want to find. To solve for α we need to use the trig
identity sin(90◦ − x) = cos x ,

2|Fcable| cosα− |Fgrav | sinα = 0,

which allows us to find

tanα = 2
|Fcable|
|Fgrav |

α = tan−1
(

2
|Fcable|
|Fgrav |

)
= tan−1

(
2× 70 N

98 N

)
= 55◦.
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z / Stable and unstable equi-
libria.

aa / The dancer’s equilibrium
is unstable. If she didn’t con-
stantly make tiny adjustments,
she would tip over.

ab / Example 14.

Stable and unstable equilibria

A pencil balanced upright on its tip could theoretically be in
equilibrium, but even if it was initially perfectly balanced, it would
topple in response to the first air current or vibration from a pass-
ing truck. The pencil can be put in equilibrium, but not in stable
equilibrium. The things around us that we really do see staying still
are all in stable equilibrium.

Why is one equilibrium stable and another unstable? Try push-
ing your own nose to the left or the right. If you push it a millimeter
to the left, your head responds with a gentle force to the right, which
keeps your nose from flying off of your face. If you push your nose a
centimeter to the left, your face’s force on your nose becomes much
stronger. The defining characteristic of a stable equilibrium is that
the farther the object is moved away from equilibrium, the stronger
the force is that tries to bring it back.

The opposite is true for an unstable equilibrium. In the top
figure, the ball resting on the round hill theoretically has zero total
force on it when it is exactly at the top. But in reality the total
force will not be exactly zero, and the ball will begin to move off to
one side. Once it has moved, the net force on the ball is greater than
it was, and it accelerates more rapidly. In an unstable equilibrium,
the farther the object gets from equilibrium, the stronger the force
that pushes it farther from equilibrium.

This idea can be rephrased in terms of energy. The difference
between the stable and unstable equilibria shown in figure z is that
in the stable equilibrium, the potential energy is at a minimum, and
moving to either side of equilibrium will increase it, whereas the
unstable equilibrium represents a maximum.

Note that we are using the term “stable” in a weaker sense than
in ordinary speech. A domino standing upright is stable in the sense
we are using, since it will not spontaneously fall over in response to
a sneeze from across the room or the vibration from a passing truck.
We would only call it unstable in the technical sense if it could be
toppled by any force, no matter how small. In everyday usage, of
course, it would be considered unstable, since the force required to
topple it is so small.

An application of calculus example 14
. Nancy Neutron is living in a uranium nucleus that is undergoing
fission. Nancy’s potential energy as a function of position can be
approximated by PE = x4 − x2, where all the units and numeri-
cal constants have been suppressed for simplicity. Use calculus
to locate the equilibrium points, and determine whether they are
stable or unstable.

. The equilibrium points occur where the PE is at a minimum or
maximum, and minima and maxima occur where the derivative
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ac / The biceps muscle flexes the
arm.

ad / The triceps extends the
arm.

(which equals minus the force on Nancy) is zero. This deriva-
tive is dPE/dx = 4x3 − 2x , and setting it equal to zero, we have
x = 0,±1/

√
2. Minima occur where the second derivative is pos-

itive, and maxima where it is negative. The second derivative
is 12x2 − 2, which is negative at x = 0 (unstable) and positive at
x = ±1/

√
2 (stable). Interpretation: the graph of the PE is shaped

like a rounded letter ‘W,’ with the two troughs representing the two
halves of the splitting nucleus. Nancy is going to have to decide
which half she wants to go with.

15.6 Simple Machines: the lever
Although we have discussed some simple machines such as the pul-
ley, without the concept of torque we were not yet ready to ad-
dress the lever, which is the machine nature used in designing living
things, almost to the exclusion of all others. (We can speculate what
life on our planet might have been like if living things had evolved
wheels, gears, pulleys, and screws.) The figures show two examples
of levers within your arm. Different muscles are used to flex and
extend the arm, because muscles work only by contraction.

Analyzing example ac physically, there are two forces that do
work. When we lift a load with our biceps muscle, the muscle does
positive work, because it brings the bone in the forearm in the direc-
tion it is moving. The load’s force on the arm does negative work,
because the arm moves in the direction opposite to the load’s force.
This makes sense, because we expect our arm to do positive work on
the load, so the load must do an equal amount of negative work on
the arm. (If the biceps was lowering a load, the signs of the works
would be reversed. Any muscle is capable of doing either positive
or negative work.)

There is also a third force on the forearm: the force of the upper
arm’s bone exerted on the forearm at the elbow joint (not shown
with an arrow in the figure). This force does no work, because the
elbow joint is not moving.

Because the elbow joint is motionless, it is natural to define our
torques using the joint as the axis. The situation now becomes
quite simple, because the upper arm bone’s force exerted at the
elbow neither does work nor creates a torque. We can ignore it
completely. In any lever there is such a point, called the fulcrum.

If we restrict ourselves to the case in which the forearm rotates
with constant angular momentum, then we know that the total
torque on the forearm is zero,

τmuscle + τload = 0.

If we choose to represent counterclockwise torques as positive, then
the muscle’s torque is positive, and the load’s is negative. In terms
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of their absolute values,

|τmuscle| = |τload|.

Assuming for simplicity that both forces act at angles of 90◦with
respect to the lines connecting the axis to the points at which they
act, the absolute values of the torques are

rmuscleFmuscle = rloadFarm,

where rmuscle, the distance from the elbow joint to the biceps’ point
of insertion on the forearm, is only a few cm, while rload might be 30
cm or so. The force exerted by the muscle must therefore be about
ten times the force exerted by the load. We thus see that this lever
is a force reducer. In general, a lever may be used either to increase
or to reduce a force.

Why did our arms evolve so as to reduce force? In general,
your body is built for compactness and maximum speed of motion
rather than maximum force. This is the main anatomical difference
between us and the Neanderthals (their brains covered the same
range of sizes as those of modern humans), and it seems to have
worked for us.

As with all machines, the lever is incapable of changing the
amount of mechanical work we can do. A lever that increases force
will always reduce motion, and vice versa, leaving the amount of
work unchanged.

It is worth noting how simple and yet how powerful this analysis
was. It was simple because we were well prepared with the concepts
of torque and mechanical work. In anatomy textbooks, whose read-
ers are assumed not to know physics, there is usually a long and
complicated discussion of the different types of levers. For example,
the biceps lever, ac, would be classified as a class III lever, since it
has the fulcrum and load on the ends and the muscle’s force acting
in the middle. The triceps, ad, is called a class I lever, because the
load and muscle’s force are on the ends and the fulcrum is in the
middle. How tiresome! With a firm grasp of the concept of torque,
we realize that all such examples can be analyzed in much the same
way. Physics is at its best when it lets us understand many appar-
ently complicated phenomena in terms of a few simple yet powerful
concepts.
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ae / The r − ϕ representation of
a curve.

af / Proof that the two angles
labeled ϕ are in fact equal: The
definition of an ellipse is that the
sum of the distances from the two
foci stays constant. If we move a
small distance ` along the ellipse,
then one distance shrinks by an
amount ` cosϕ1, while the other
grows by ` cosϕ2. These are
equal, so ϕ1 = ϕ2.

15.7 ? Proof of Kepler’s elliptical orbit law
Kepler determined purely empirically that the planets’ orbits were
ellipses, without understanding the underlying reason in terms of
physical law. Newton’s proof of this fact based on his laws of motion
and law of gravity was considered his crowning achievement both
by him and by his contemporaries, because it showed that the same
physical laws could be used to analyze both the heavens and the
earth. Newton’s proof was very lengthy, but by applying the more
recent concepts of conservation of energy and angular momentum
we can carry out the proof quite simply and succinctly, and without
calculus.

The basic idea of the proof is that we want to describe the shape
of the planet’s orbit with an equation, and then show that this equa-
tion is exactly the one that represents an ellipse. Newton’s original
proof had to be very complicated because it was based directly on
his laws of motion, which include time as a variable. To make any
statement about the shape of the orbit, he had to eliminate time
from his equations, leaving only space variables. But conservation
laws tell us that certain things don’t change over time, so they have
already had time eliminated from them.

There are many ways of representing a curve by an equation, of
which the most familiar is y = ax + b for a line in two dimensions.
It would be perfectly possible to describe a planet’s orbit using an
x − y equation like this, but remember that we are applying con-
servation of angular momentum, and the space variables that occur
in the equation for angular momentum are the distance from the
axis, r, and the angle between the velocity vector and the r vector,
which we will call ϕ. The planet will have ϕ=90◦when it is moving
perpendicular to the r vector, i.e., at the moments when it is at its
smallest or greatest distances from the sun. When ϕ is less than
90◦the planet is approaching the sun, and when it is greater than
90◦it is receding from it. Describing a curve with an r−ϕ equation
is like telling a driver in a parking lot a certain rule for what direc-
tion to steer based on the distance from a certain streetlight in the
middle of the lot.

The proof is broken into the three parts for easier digestion.
The first part is a simple and intuitively reasonable geometrical fact
about ellipses, whose proof we relegate to the caption of figure af;
you will not be missing much if you merely absorb the result without
reading the proof.

(1) If we use one of the two foci of an ellipse as an axis for
defining the variables r and ϕ, then the angle between the tangent
line and the line drawn to the other focus is the same as ϕ, i.e., the
two angles labeled ϕ in figure af are in fact equal.

The other two parts form the meat of our proof. We state the
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ag / Proof of part (3).

results first and then prove them.

(2) A planet, moving under the influence of the sun’s gravity
with less than the energy required to escape, obeys an equation of
the form

sinϕ =
1√

−pr2 + qr
,

where p and q are positive constants that depend on the planet’s
energy and angular momentum.

(3) A curve is an ellipse if and only if its r−ϕ equation is of the
form

sinϕ =
1√

−pr2 + qr
,

where p and q are positive constants that depend on the size and
shape of the ellipse.

Proof of part (2)

The component of the planet’s velocity vector that is perpen-
dicular to the r vector is v⊥ = v sinϕ, so conservation of angular
momentum tells us that L = mrv sinϕ is a constant. Since the
planet’s mass is a constant, this is the same as the condition

rv sinϕ = constant.

Conservation of energy gives

1

2
mv2 − GMm

r
= constant.

We solve the first equation for v and plug into the second equation
to eliminate v. Straightforward algebra then leads to the equation
claimed above, with the constant p being positive because of our
assumption that the planet’s energy is insufficient to escape from
the sun, i.e., its total energy is negative.

Proof of part (3)

We define the quantities α, d, and s as shown in the figure. The
law of cosines gives

d2 = r2 + s2 − 2rs cosα.

Using α = 180◦−2ϕ and the trigonometric identities cos(180◦−x) =
− cosx and cos 2x = 1− 2 sin2 x, we can rewrite this as

d2 = r2 + s2 − 2rs
(
2 sin2 ϕ− 1

)
.

Straightforward algebra transforms this into

sin ϕ =

√
(r + s)2 − d2

4rs
.

Since r + s is constant, the top of the fraction is constant, and the
denominator can be rewritten as 4rs = 4r(constant − r), which is
equivalent to the desired form.

Section 15.7 ? Proof of Kepler’s elliptical orbit law 421



Summary
Selected vocabulary
angular momen-
tum . . . . . . . .

a measure of rotational motion; a conserved
quantity for a closed system

axis . . . . . . . . An arbitrarily chosen point used in the defini-
tion of angular momentum. Any object whose
direction changes relative to the axis is consid-
ered to have angular momentum. No matter
what axis is chosen, the angular momentum of
a closed system is conserved.

torque . . . . . . the rate of change of angular momentum; a
numerical measure of a force’s ability to twist
on an object

equilibrium . . . a state in which an object’s momentum and
angular momentum are constant

stable equilibrium one in which a force always acts to bring the
object back to a certain point

unstable equilib-
rium . . . . . . . .

one in which any deviation of the object from
its equilibrium position results in a force push-
ing it even farther away

Notation
L . . . . . . . . . . angular momentum
t . . . . . . . . . . torque
T . . . . . . . . . the time required for a rigidly rotating body

to complete one rotation

Other terminology and notation
period . . . . . . . a name for the variable T defined above
moment of iner-
tia, I . . . . . . .

the proportionality constant in the equation
L = 2πI/T

Summary

Angular momentum is a measure of rotational motion which is
conserved for a closed system. This book only discusses angular
momentum for rotation of material objects in two dimensions. Not
all rotation is rigid like that of a wheel or a spinning top. An example
of nonrigid rotation is a cyclone, in which the inner parts take less
time to complete a revolution than the outer parts. In order to define
a measure of rotational motion general enough to include nonrigid
rotation, we define the angular momentum of a system by dividing
it up into small parts, and adding up all the angular momenta of
the small parts, which we think of as tiny particles. We arbitrarily
choose some point in space, the axis, and we say that anything
that changes its direction relative to that point possesses angular
momentum. The angular momentum of a single particle is

L = mv⊥r,

where v⊥ is the component of its velocity perpendicular to the line

422 Chapter 15 Conservation of Angular Momentum



joining it to the axis, and r is its distance from the axis. Positive and
negative signs of angular momentum are used to indicate clockwise
and counterclockwise rotation.

The choice of axis theorem states that any axis may be used for
defining angular momentum. If a system’s angular momentum is
constant for one choice of axis, then it is also constant for any other
choice of axis.

The spin theorem states that an object’s angular momentum
with respect to some outside axis A can be found by adding up two
parts:

(1) The first part is the object’s angular momentum found by
using its own center of mass as the axis, i.e., the angular momentum
the object has because it is spinning.

(2) The other part equals the angular momentum that the ob-
ject would have with respect to the axis A if it had all its mass
concentrated at and moving with its center of mass.

Torque is the rate of change of angular momentum. The torque
a force can produce is a measure of its ability to twist on an object.
The relationship between force and torque is

|τ | = r|F⊥|,

where r is the distance from the axis to the point where the force is
applied, and F⊥ is the component of the force perpendicular to the
line connecting the axis to the point of application. Statics problems
can be solved by setting the total force and total torque on an object
equal to zero and solving for the unknowns.
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Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 You are trying to loosen a stuck bolt on your RV using a big
wrench that is 50 cm long. If you hang from the wrench, and your
mass is 55 kg, what is the maximum torque you can exert on the
bolt?

√

2 A physical therapist wants her patient to rehabilitate his in-
jured elbow by laying his arm flat on a table, and then lifting a 2.1
kg mass by bending his elbow. In this situation, the weight is 33
cm from his elbow. He calls her back, complaining that it hurts him
to grasp the weight. He asks if he can strap a bigger weight onto
his arm, only 17 cm from his elbow. How much mass should she
tell him to use so that he will be exerting the same torque? (He is
raising his forearm itself, as well as the weight.)

√

3 An object thrown straight up in the air is momentarily at rest
when it reaches the top of its motion. Does that mean that it is in
equilibrium at that point? Explain.

4 An object is observed to have constant angular momentum.
Can you conclude that no torques are acting on it? Explain. [Based
on a problem by Serway and Faughn.]

5 A person of weight W stands on the ball of one foot. Find
the tension in the calf muscle and the force exerted by the shinbones
on the bones of the foot, in terms of W , a, and b. For simplicity,
assume that all the forces are at 90-degree angles to the foot, i.e.,
neglect the angle between the foot and the floor.

√

6 Two objects have the same momentum vector. Assume that
they are not spinning; they only have angular momentum due to
their motion through space. Can you conclude that their angular
momenta are the same? Explain. [Based on a problem by Serway
and Faughn.]
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Problem 7.

Problems 8 and 9.

Problem 10.

7 The sun turns on its axis once every 26.0 days. Its mass is
2.0 × 1030 kg and its radius is 7.0 × 108 m. Assume it is a rigid
sphere of uniform density.
(a) What is the sun’s angular momentum?

√

In a few billion years, astrophysicists predict that the sun will use
up all its sources of nuclear energy, and will collapse into a ball of
exotic, dense matter known as a white dwarf. Assume that its radius
becomes 5.8 × 106 m (similar to the size of the Earth.) Assume it
does not lose any mass between now and then. (Don’t be fooled
by the photo, which makes it look like nearly all of the star was
thrown off by the explosion. The visually prominent gas cloud is
actually thinner than the best laboratory vacuum ever produced on
earth. Certainly a little bit of mass is actually lost, but it is not at
all unreasonable to make an approximation of zero loss of mass as
we are doing.)
(b) What will its angular momentum be?
(c) How long will it take to turn once on its axis?

√

8 A uniform ladder of mass m and length L leans against a
smooth wall, making an angle θ with respect to the ground. The dirt
exerts a normal force and a frictional force on the ladder, producing
a force vector with magnitude F1 at an angle φ with respect to the
ground. Since the wall is smooth, it exerts only a normal force on
the ladder; let its magnitude be F2.
(a) Explain why φ must be greater than θ. No math is needed.
(b) Choose any numerical values you like for m and L, and show
that the ladder can be in equilibrium (zero torque and zero total
force vector) for θ = 45.00◦ and φ = 63.43◦.

9 Continuing problem 8, find an equation for φ in terms of θ,
and show that m and L do not enter into the equation. Do not
assume any numerical values for any of the variables. You will need
the trig identity sin(a− b) = sin a cos b− sin b cos a. (As a numerical
check on your result, you may wish to check that the angles given
in part b of the previous problem satisfy your equation.)

√
?

10 (a) Find the minimum horizontal force which, applied at
the axle, will pull a wheel over a step. Invent algebra symbols for
whatever quantities you find to be relevant, and give your answer
in symbolic form. [Hints: There are four forces on the wheel at
first, but only three when it lifts off. Normal forces are always
perpendicular to the surface of contact. Note that the corner of the
step cannot be perfectly sharp, so the surface of contact for this
force really coincides with the surface of the wheel.]
(b) Under what circumstances does your result become infinite?
Give a physical interpretation.
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Problem 16.

Problem 17.

11 A yo-yo of total mass m consists of two solid cylinders
of radius R, connected by a small spindle of negligible mass and
radius r. The top of the string is held motionless while the string
unrolls from the spindle. Show that the acceleration of the yo-yo
is g/(1 + R2/2r2). [Hint: The acceleration and the tension in the
string are unknown. Use τ = ∆L/∆t and F = ma to determine
these two unknowns.] ?

12 A ball is connected by a string to a vertical post. The ball is
set in horizontal motion so that it starts winding the string around
the post. Assume that the motion is confined to a horizontal plane,
i.e., ignore gravity. Michelle and Astrid are trying to predict the
final velocity of the ball when it reaches the post. Michelle says
that according to conservation of angular momentum, the ball has
to speed up as it approaches the post. Astrid says that according to
conservation of energy, the ball has to keep a constant speed. Who
is right? [Hint: How is this different from the case where you whirl
a rock in a circle on a string and gradually reel in the string?]

13 In the 1950’s, serious articles began appearing in magazines
like Life predicting that world domination would be achieved by the
nation that could put nuclear bombs in orbiting space stations, from
which they could be dropped at will. In fact it can be quite difficult
to get an orbiting object to come down. Let the object have energy
E = KE +PE and angular momentum L. Assume that the energy
is negative, i.e., the object is moving at less than escape velocity.
Show that it can never reach a radius less than

rmin =
GMm

2E

(
−1 +

√
1 +

2EL2

G2M2m3

)
.

[Note that both factors are negative, giving a positive result.]

14 [Problem 14 has been deleted.]

15 [Problem 15 has been deleted.] ?

16 Two bars of length L are connected with a hinge and placed
on a frictionless cylinder of radius r. (a) Show that the angle θ shown
in the figure is related to the unitless ratio r/L by the equation

r

L
=

cos2 θ

2 tan θ
.

(b) Discuss the physical behavior of this equation for very large and
very small values of r/L. ?

17 You wish to determine the mass of a ship in a bottle without
taking it out. Show that this can be done with the setup shown in
the figure, with a scale supporting the bottle at one end, provided
that it is possible to take readings with the ship slid to several
different locations. Note that you can’t determine the position of
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Problem 20.

Problem 23.

the ship’s center of mass just by looking at it, and likewise for the
bottle. In particular, you can’t just say, “position the ship right on
top of the fulcrum” or “position it right on top of the balance.”

18 Two atoms will interact through electrical forces between
their protons and electrons. One fairly good approximation to the
potential energy is the Lennard-Jones formula,

PE(r) = k

[(a
r

)12
− 2

(a
r

)6
]

,

where r is the center-to-center distance between the atoms and k is
a positive constant. Show that (a) there is an equilibrium point at
r = a,
(b) the equilibrium is stable, and
(c) the energy required to bring the atoms from their equilibrium
separation to infinity is k. . Hint, p. 547

∫
19 Suppose that we lived in a universe in which Newton’s law
of gravity gave forces proportional to r−7 rather than r−2. Which,
if any, of Kepler’s laws would still be true? Which would be com-
pletely false? Which would be different, but in a way that could be
calculated with straightforward algebra?

20 The figure shows scale drawing of a pair of pliers being
used to crack a nut, with an appropriately reduced centimeter grid.
Warning: do not attempt this at home; it is bad manners. If the
force required to crack the nut is 300 N, estimate the force required
of the person’s hand. . Solution, p. 561

21 Show that a sphere of radius R that is rolling without slipping
has angular momentum and momentum in the ratio L/p = (2/5)R.

22 Suppose a bowling ball is initially thrown so that it has no
angular momentum at all, i.e., it is initially just sliding down the
lane. Eventually kinetic friction will get it spinning fast enough so
that it is rolling without slipping. Show that the final velocity of the
ball equals 5/7 of its initial velocity. [Hint: You’ll need the result of
problem 21.]

23 The rod in the figure is supported by the finger and the
string.
(a) Find the tension, T , in the string, and the force, F , from the
finger, in terms of m, b,L, and g.

√

(b) Comment on the cases b = L and b = L/2.
(c) Are any values of b unphysical?

24 Two horizontal tree branches on the same tree have equal
diameters, but one branch is twice as long as the other. Give a
quantitative comparison of the torques where the branches join the
trunk. [Thanks to Bong Kang.]
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Problem 27.

Problem 31.

25 (a) Alice says Cathy’s body has zero momentum, but Bob
says Cathy’s momentum is nonzero. Nobody is lying or making a
mistake. How is this possible? Give a concrete example.
(b) Alice and Bob agree that Dong’s body has nonzero momentum,
but disagree about Dong’s angular momentum, which Alice says is
zero, and Bob says is nonzero. Explain.

26 Penguins are playful animals. Tux the Penguin invents a new
game using a natural circular depression in the ice. He waddles at
top speed toward the crater, aiming off to the side, and then hops
into the air and lands on his belly just inside its lip. He then belly-
surfs, moving in a circle around the rim. The ice is frictionless, so
his speed is constant. Is Tux’s angular momentum zero, or nonzero?
What about the total torque acting on him? Take the center of the
crater to be the axis. Explain your answers.

27 Make a rough estimate of the mechanical advantage of the
lever shown in the figure. In other words, for a given amount of
force applied on the handle, how many times greater is the resulting
force on the cork?

28 In example 8 on page 405, prove that if the rod is sufficiently
thin, it can be toppled without scraping on the floor.

. Solution, p. 561 ?

29 A massless rod of length ` has weights, each of mass m, at-
tached to its ends. The rod is initially put in a horizontal position,
and laid on an off-center fulcrum located at a distance b from the
rod’s center. The rod will topple. (a) Calculate the total gravita-
tional torque on the rod directly, by adding the two torques. (b)
Verify that this gives the same result as would have been obtained
by taking the entire gravitational force as acting at the center of
mass.

30 A skilled motorcyclist can ride up a ramp, fly through the
air, and land on another ramp. Why would it be useful for the rider
to speed up or slow down the back wheel while in the air?

31 (a) The bar of mass m is attached at the wall with a hinge,
and is supported on the right by a massless cable. Find the tension,
T , in the cable in terms of the angle θ.

√

(b) Interpreting your answer to part a, what would be the best angle
to use if we wanted to minimize the strain on the cable?
(c) Again interpreting your answer to part a, for what angles does
the result misbehave mathematically? Interpet this physically.
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32 A disk starts from rest and rotates about a fixed axis, subject
to a constant torque. The work done by the torque during the first
revolution is W . What is the work done by the torque during the
second revolution?

√
[problem by B. Shotwell]
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Exercise 15: Torque
Equipment:

• rulers with holes in them

• spring scales (two per group)

While one person holds the pencil which forms the axle for the ruler, the other members of the
group pull on the scale and take readings. In each case, calculate the total torque on the ruler,
and find out whether it equals zero to roughly within the accuracy of the experiment. Finish
the calculations for each part before moving on to the next one.
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Chapter 16

Thermodynamics

This chapter is optional, and should probably be omitted from a two-
semester survey course. It can be covered at any time after chapter
13.

In a developing country like China, a refrigerator is the mark of
a family that has arrived in the middle class, and a car is the ulti-
mate symbol of wealth. Both of these are heat engines: devices for
converting between heat and other forms of energy. Unfortunately
for the Chinese, neither is a very efficient device. Burning fossil fuels
has made China’s big cities the most polluted on the planet, and
the country’s total energy supply isn’t sufficient to support Amer-
ican levels of energy consumption by more than a small fraction
of China’s population. Could we somehow manipulate energy in a
more efficient way?

Conservation of energy is a statement that the total amount of
energy is constant at all times, which encourages us to believe that
any energy transformation can be undone — indeed, the laws of
physics you’ve learned so far don’t even distinguish the past from
the future. If you get in a car and drive around the block, the
net effect is to consume some of the energy you paid for at the
gas station, using it to heat the neighborhood. There would not
seem to be any fundamental physical principle to prevent you from
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recapturing all that heat and using it again the next time you want
to go for a drive. More modestly, why don’t engineers design a car
engine so that it recaptures the heat energy that would otherwise
be wasted via the radiator and the exhaust?

Hard experience, however, has shown that designers of more and
more efficient engines run into a brick wall at a certain point. The
generators that the electric company uses to produce energy at an
oil-fueled plant are indeed much more efficient than a car engine, but
even if one is willing to accept a device that is very large, expensive,
and complex, it turns out to be impossible to make a perfectly effi-
cient heat engine — not just impossible with present-day technology,
but impossible due to a set of fundamental physical principles known
as the science of thermodynamics. And thermodynamics isn’t just a
pesky set of constraints on heat engines. Without thermodynamics,
there is no way to explain the direction of time’s arrow — why we
can remember the past but not the future, and why it’s easier to
break Humpty Dumpty than to put him back together again.

16.1 Pressure and temperature
When we heat an object, we speed up the mind-bogglingly complex
random motion of its molecules. One method for taming complexity
is the conservation laws, since they tell us that certain things must
remain constant regardless of what process is going on. Indeed,
the law of conservation of energy is also known as the first law of
thermodynamics.

But as alluded to in the introduction to this chapter, conserva-
tion of energy by itself is not powerful enough to explain certain
empirical facts about heat. A second way to sidestep the complex-
ity of heat is to ignore heat’s atomic nature and concentrate on
quantities like temperature and pressure that tell us about a sys-
tem’s properties as a whole. This approach is called macroscopic in
contrast to the microscopic method of attack. Pressure and temper-
ature were fairly well understood in the age of Newton and Galileo,
hundreds of years before there was any firm evidence that atoms
and molecules even existed.

Unlike the conserved quantities such as mass, energy, momen-
tum, and angular momentum, neither pressure nor temperature is
additive. Two cups of coffee have twice the heat energy of a single
cup, but they do not have twice the temperature. Likewise, the
painful pressure on your eardrums at the bottom of a pool is not
affected if you insert or remove a partition between the two halves
of the pool.

Pressure

We restrict ourselves to a discussion of pressure in fluids at rest
and in equilibrium. In physics, the term “fluid” is used to mean
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a / A simple pressure gauge
consists of a cylinder open at one
end, with a piston and a spring
inside. The depth to which the
spring is depressed is a measure
of the pressure. To determine the
absolute pressure, the air needs
to be pumped out of the interior of
the gauge, so that there is no air
pressure acting outward on the
piston. In many practical gauges,
the back of the piston is open to
the atmosphere, so the pressure
the gauge registers equals the
pressure of the fluid minus the
pressure of the atmosphere.

either a gas or a liquid. The important feature of a fluid can be
demonstrated by comparing with a cube of jello on a plate. The
jello is a solid. If you shake the plate from side to side, the jello will
respond by shearing, i.e., by slanting its sides, but it will tend to
spring back into its original shape. A solid can sustain shear forces,
but a fluid cannot. A fluid does not resist a change in shape unless
it involves a change in volume.

If you’re at the bottom of a pool, you can’t relieve the pain in
your ears by turning your head. The water’s force on your eardrum
is always the same, and is always perpendicular to the surface where
the eardrum contacts the water. If your ear is on the east side of
your head, the water’s force is to the west. If you keep your head
in the same spot while turning around so your ear is on the north,
the force will still be the same in magnitude, and it will change
its direction so that it is still perpendicular to the eardrum: south.
This shows that pressure has no direction in space, i.e., it is a scalar.
The direction of the force is determined by the orientation of the
surface on which the pressure acts, not by the pressure itself. A
fluid flowing over a surface can also exert frictional forces, which
are parallel to the surface, but the present discussion is restricted
to fluids at rest.

Experiments also show that a fluid’s force on a surface is pro-
portional to the surface area. The vast force of the water behind
a dam, for example, in proportion to the dam’s great surface area.
(The bottom of the dam experiences a higher proportion of its force.)

Based on these experimental results, it appears that the useful
way to define pressure is as follows. The pressure of a fluid at a
given point is defined as F⊥/A, where A is the area of a small surface
inserted in the fluid at that point, and F⊥ is the component of the
fluid’s force on the surface which is perpendicular to the surface.

This is essentially how a pressure gauge works. The reason that
the surface must be small is so that there will not be any significant
difference in pressure between one part of it and another part. The
SI units of pressure are evidently N/m2, and this combination can
be abbreviated as the pascal, 1 Pa=1 N/m2. The pascal turns out
to be an inconveniently small unit, so car tires, for example, have
recommended pressures imprinted on them in units of kilopascals.

Pressure in U.S. units example 1
In U.S. units, the unit of force is the pound, and the unit of distance
is the inch. The unit of pressure is therefore pounds per square
inch, or p.s.i. (Note that the pound is not a unit of mass.)
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Atmospheric pressure in U.S. and metric units example 2
. A figure that many people in the U.S. remember is that atmo-
spheric pressure is about 15 pounds per square inch. What is
this in metric units?

.

15 lb
1 in2 =

68 N
(0.0254 m)2

= 1.0× 105 N/m2

= 100 kPa

Only pressure differences are normally significant.

If you spend enough time on an airplane, the pain in your ears
subsides. This is because your body has gradually been able to ad-
mit more air into the cavity behind the eardrum. Once the pressure
inside is equalized with the pressure outside, the inward and out-
ward forces on your eardrums cancel out, and there is no physical
sensation to tell you that anything unusual is going on. For this
reason, it is normally only pressure differences that have any phys-
ical significance. Thus deep-sea fish are perfectly healthy in their
habitat because their bodies have enough internal pressure to cancel
the pressure from the water in which they live; if they are caught in
a net and brought to the surface rapidly, they explode because their
internal pressure is so much greater than the low pressure outside.

Getting killed by a pool pump example 3
. My house has a pool, which I maintain myself. A pool always
needs to have its water circulated through a filter for several hours
a day in order to keep it clean. The filter is a large barrel with a
strong clamp that holds the top and bottom halves together. My
filter has a prominent warning label that warns me not to try to
open the clamps while the pump is on, and it shows a cartoon
of a person being struck by the top half of the pump. The cross-
sectional area of the filter barrel is 0.25 m2. Like most pressure
gauges, the one on my pool pump actually reads the difference in
pressure between the pressure inside the pump and atmospheric
pressure. The gauge reads 90 kPa. What is the force that is
trying to pop open the filter?

. If the gauge told us the absolute pressure of the water inside,
we’d have to find the force of the water pushing outward and the
force of the air pushing inward, and subtract in order to find the
total force. Since air surrounds us all the time, we would have to
do such a subtraction every time we wanted to calculate anything
useful based on the gauge’s reading. The manufacturers of the
gauge decided to save us from all this work by making it read the
difference in pressure between inside and outside, so all we have
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b / This doesn’t happen. If
pressure could vary horizontally
in equilibrium, the cube of water
would accelerate horizontally.
This is a contradiction, since
we assumed the fluid was in
equilibrium.

c / This does happen. The
sum of the forces from the
surrounding parts of the fluid is
upward, canceling the downward
force of gravity.

d / The pressure is the same
at all the points marked with dots.

to do is multiply the gauge reading by the cross-sectional area of
the filter:

F = PA

= (90× 103 N/m2)(0.25 m2)
= 22000 N

That’s a lot of force!

The word “suction” and other related words contain a hidden
misunderstanding related to this point about pressure differences.
When you suck water up through a straw, there is nothing in your
mouth that is attracting the water upward. The force that lifts the
water is from the pressure of the water in the cup. By creating a
partial vacuum in your mouth, you decreased the air’s downward
force on the water so that it no longer exactly canceled the upward
force.

Variation of pressure with depth

The pressure within a fluid in equilibrium can only depend on
depth, due to gravity. If the pressure could vary from side to side,
then a piece of the fluid in between, b, would be subject to unequal
forces from the parts of the fluid on its two sides. But fluids do not
exhibit shear forces, so there would be no other force that could keep
this piece of fluid from accelerating. This contradicts the assumption
that the fluid was in equilibrium.

self-check A
How does this proof fail for solids? . Answer, p. 568

To find the variation with depth, we consider the vertical forces
acting on a tiny, imaginary cube of the fluid having height ∆y and
areas dA on the top and bottom. Using positive numbers for upward
forces, we have

Pbottom∆A− Ptop∆A− Fg = 0.

The weight of the fluid is Fg = mg = ρV g = ρ∆A∆y g, where ρ is
the density of the fluid, so the difference in pressure is

∆P = −ρg∆y. [variation in pressure with depth for

a fluid of density ρ in equilibrium;

positive y is up.]

The factor of ρ explains why we notice the difference in pressure
when diving 3 m down in a pool, but not when going down 3 m
of stairs. Note also that the equation only tells us the difference in
pressure, not the absolute pressure. The pressure at the surface of
a swimming pool equals the atmospheric pressure, not zero, even
though the depth is zero at the surface. The blood in your body
does not even have an upper surface.
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e / We have to wait for the
thermometer to equilibrate its
temperature with the temperature
of Irene’s armpit.

Pressure of lava underneath a volcano example 4
. A volcano has just finished erupting, and a pool of molten lava
is lying at rest in the crater. The lava has come up through an
opening inside the volcano that connects to the earth’s molten
mantle. The density of the lava is 4.1 g/cm3. What is the pressure
in the lava underneath the base of the volcano, 3000 m below the
surface of the pool?

.

∆P = ρg∆y

= (4.1 g/cm3)(9.8 m/s2)(3000 m)

= (4.1× 106 g/m3)(9.8 m/s2)(3000 m)

= (4.1× 103 kg/m3)(9.8 m/s2)(3000 m)

= 1.2× 108 N/m2

= 1.2× 108 Pa

This is the difference between the pressure we want to find and
atmospheric pressure at the surface. The latter, however, is tiny
compared to the ∆P we just calculated, so what we’ve found is
essentially the pressure, P.

Atmospheric pressure example 5
This example uses calculus.

Gases, unlike liquids, are quite compressible, and at a given tem-
perature, the density of a gas is approximately proportional to
the pressure. The proportionality constant is discussed in section
16.2, but for now let’s just call it k , ρ = kP. Using this fact, we can
find the variation of atmospheric pressure with altitude, assuming
constant temperature:

dP = −ρg dy
dP = −kPg dy
dP
P

= −kg dy

ln P = −kgy + constant [integrating both sides]

P = (constant)e−kgy [exponentiating both sides]

Pressure falls off exponentially with height. There is no sharp
cutoff to the atmosphere, but the exponential gets extremely small
by the time you’re ten or a hundred miles up.

Temperature

Thermal equilibrium

We use the term temperature casually, but what is it exactly?
Roughly speaking, temperature is a measure of how concentrated
the heat energy is in an object. A large, massive object with very
little heat energy in it has a low temperature.
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f / Thermal equilibrium can
be prevented. Otters have a coat
of fur that traps air bubbles for in-
sulation. If a swimming otter was
in thermal equilibrium with cold
water, it would be dead. Heat is
still conducted from the otter’s
body to the water, but much
more slowly than it would be in a
warm-blooded animal that didn’t
have this special adaptation.

g / A hot air balloon is inflated.
Because of thermal expansion,
the hot air is less dense than
the surrounding cold air, and
therefore floats as the cold air
drops underneath it and pushes it
up out of the way.

But physics deals with operational definitions, i.e., definitions of
how to measure the thing in question. How do we measure temper-
ature? One common feature of all temperature-measuring devices
is that they must be left for a while in contact with the thing whose
temperature is being measured. When you take your temperature
with a fever thermometer, you wait for the mercury inside to come
up to the same temperature as your body. The thermometer ac-
tually tells you the temperature of its own working fluid (in this
case the mercury). In general, the idea of temperature depends on
the concept of thermal equilibrium. When you mix cold eggs from
the refrigerator with flour that has been at room temperature, they
rapidly reach a compromise temperature. What determines this
compromise temperature is conservation of energy, and the amount
of energy required to heat or cool each substance by one degree.
But without even having constructed a temperature scale, we can
see that the important point is the phenomenon of thermal equi-
librium itself: two objects left in contact will approach the same
temperature. We also assume that if object A is at the same tem-
perature as object B, and B is at the same temperature as C, then
A is at the same temperature as C. This statement is sometimes
known as the zeroth law of thermodynamics, so called because after
the first, second, and third laws had been developed, it was realized
that there was another law that was even more fundamental.

Thermal expansion

The familiar mercury thermometer operates on the principle that
the mercury, its working fluid, expands when heated and contracts
when cooled. In general, all substances expand and contract with
changes in temperature. The zeroth law of thermodynamics guar-
antees that we can construct a comparative scale of temperatures
that is independent of what type of thermometer we use. If a ther-
mometer gives a certain reading when it’s in thermal equilibrium
with object A, and also gives the same reading for object B, then
A and B must be the same temperature, regardless of the details of
how the thermometers works.

What about constructing a temperature scale in which every
degree represents an equal step in temperature? The Celsius scale
has 0 as the freezing point of water and 100 as its boiling point. The
hidden assumption behind all this is that since two points define a
line, any two thermometers that agree at two points must agree at
all other points. In reality if we calibrate a mercury thermometer
and an alcohol thermometer in this way, we will find that a graph
of one thermometer’s reading versus the other is not a perfectly
straight y = x line. The subtle inconsistency becomes a drastic one
when we try to extend the temperature scale through the points
where mercury and alcohol boil or freeze. Gases, however, are much
more consistent among themselves in their thermal expansion than
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h / A simplified version of an
ideal gas thermometer. The
whole instrument is allowed to
come into thermal equilibrium
with the substance whose tem-
perature is to be measured, and
the mouth of the cylinder is left
open to standard pressure. The
volume of the noble gas gives an
indication of temperature.

i / The volume of 1 kg of neon
gas as a function of temperature
(at standard pressure). Although
neon would actually condense
into a liquid at some point, extrap-
olating the graph to zero volume
gives the same temperature as
for any other gas: absolute zero.

solids or liquids, and the noble gases like helium and neon are more
consistent with each other than gases in general. Continuing to
search for consistency, we find that noble gases are more consistent
with each other when their pressure is very low.

As an idealization, we imagine a gas in which the atoms interact
only with the sides of the container, not with each other. Such a
gas is perfectly nonreactive (as the noble gases very nearly are), and
never condenses to a liquid (as the noble gases do only at extremely
low temperatures). Its atoms take up a negligible fraction of the
available volume. Any gas can be made to behave very much like
this if the pressure is extremely low, so that the atoms hardly ever
encounter each other. Such a gas is called an ideal gas, and we define
the Celsius scale in terms of the volume of the gas in a thermometer
whose working substance is an ideal gas maintained at a fixed (very
low) pressure, and which is calibrated at 0 and 100 degrees according
to the melting and boiling points of water. The Celsius scale is not
just a comparative scale but an additive one as well: every step in
temperature is equal, and it makes sense to say that the difference
in temperature between 18 and 28◦C is the same as the difference
between 48 and 58.

Absolute zero and the kelvin scale

We find that if we extrapolate a graph of volume versus temper-
ature, the volume becomes zero at nearly the same temperature for
all gases: −273◦C. Real gases will all condense into liquids at some
temperature above this, but an ideal gas would achieve zero vol-
ume at this temperature, known as absolute zero. The most useful
temperature scale in scientific work is one whose zero is defined by
absolute zero, rather than by some arbitrary standard like the melt-
ing point of water. The ideal temperature scale for scientific work,
called the Kelvin scale, is the same as the Celsius scale, but shifted
by 273 degrees to make its zero coincide with absolute zero. Scien-
tists use the Celsius scale only for comparisons or when a change
in temperature is all that is required for a calculation. Only on the
Kelvin scale does it make sense to discuss ratios of temperatures,
e.g., to say that one temperature is twice as hot as another.

Which temperature scale to use example 6
. You open an astronomy book and encounter the equation

(light emitted) = (constant)× T 4

for the light emitted by a star as a function of its surface tempera-
ture. What temperature scale is implied?

. The equation tells us that doubling the temperature results in
the emission of 16 times as much light. Such a ratio only makes
sense if the Kelvin scale is used.
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16.2 Microscopic description of an ideal gas
Evidence for the kinetic theory

Why does matter have the thermal properties it does? The basic
answer must come from the fact that matter is made of atoms. How,
then, do the atoms give rise to the bulk properties we observe?
Gases, whose thermal properties are so simple, offer the best chance
for us to construct a simple connection between the microscopic and
macroscopic worlds.

A crucial observation is that although solids and liquids are
nearly incompressible, gases can be compressed, as when we in-
crease the amount of air in a car’s tire while hardly increasing its
volume at all. This makes us suspect that the atoms in a solid are
packed shoulder to shoulder, while a gas is mostly vacuum, with
large spaces between molecules. Most liquids and solids have den-
sities about 1000 times greater than most gases, so evidently each
molecule in a gas is separated from its nearest neighbors by a space
something like 10 times the size of the molecules themselves.

If gas molecules have nothing but empty space between them,
why don’t the molecules in the room around you just fall to the
floor? The only possible answer is that they are in rapid motion,
continually rebounding from the walls, floor and ceiling. In chapter
12, we have already seen some of the evidence for the kinetic theory
of heat, which states that heat is the kinetic energy of randomly
moving molecules. This theory was proposed by Daniel Bernoulli
in 1738, and met with considerable opposition, because there was
no precedent for this kind of perpetual motion. No rubber ball,
however elastic, rebounds from a wall with exactly as much energy
as it originally had, nor do we ever observe a collision between balls
in which none of the kinetic energy at all is converted to heat and
sound. The analogy is a false one, however. A rubber ball consists
of atoms, and when it is heated in a collision, the heat is a form
of motion of those atoms. An individual molecule, however, cannot
possess heat. Likewise sound is a form of bulk motion of molecules,
so colliding molecules in a gas cannot convert their kinetic energy to
sound. Molecules can indeed induce vibrations such as sound waves
when they strike the walls of a container, but the vibrations of the
walls are just as likely to impart energy to a gas molecule as to
take energy from it. Indeed, this kind of exchange of energy is the
mechanism by which the temperatures of the gas and its container
become equilibrated.

Pressure, volume, and temperature

A gas exerts pressure on the walls of its container, and in the
kinetic theory we interpret this apparently constant pressure as the
averaged-out result of vast numbers of collisions occurring every
second between the gas molecules and the walls. The empirical
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facts about gases can be summarized by the relation

PV ∝ nT , [ideal gas]

which really only holds exactly for an ideal gas. Here n is the number
of molecules in the sample of gas.

Volume related to temperature example 7
The proportionality of volume to temperature at fixed pressure
was the basis for our definition of temperature.

Pressure related to temperature example 8
Pressure is proportional to temperature when volume is held con-
stant. An example is the increase in pressure in a car’s tires when
the car has been driven on the freeway for a while and the tires
and air have become hot.

We now connect these empirical facts to the kinetic theory of
a classical ideal gas. For simplicity, we assume that the gas is
monoatomic (i.e., each molecule has only one atom), and that it
is confined to a cubical box of volume V , with L being the length
of each edge and A the area of any wall. An atom whose velocity
has an x component vx will collide regularly with the left-hand wall,
traveling a distance 2L parallel to the x axis between collisions with
that wall. The time between collisions is ∆t = 2L/vx, and in each
collision the x component of the atom’s momentum is reversed from
−mvx to mvx. The total force on the wall is

F =
∆px,1

∆t1
+

∆px,2

∆t2
+ . . . [monoatomic ideal gas],

where the indices 1, 2, . . . refer to the individual atoms. Substituting
∆px,i = 2mvx,i and ∆ti = 2L/vx,i, we have

F =
mv2

x,1

L
+
mv2

x,2

L
+ . . . [monoatomic ideal gas].

The quantity mv2
x,i is twice the contribution to the kinetic energy

from the part of the atom’s center of mass motion that is parallel to
the x axis. Since we’re assuming a monoatomic gas, center of mass
motion is the only type of motion that gives rise to kinetic energy.
(A more complex molecule could rotate and vibrate as well.) If the
quantity inside the sum included the y and z components, it would
be twice the total kinetic energy of all the molecules. By symmetry,
it must therefore equal 2/3 of the total kinetic energy, so

F =
2KEtotal

3L
[monoatomic ideal gas].

Dividing by A and using AL = V , we have

P =
2KEtotal

3V
[monoatomic ideal gas].
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This can be connected to the empirical relation PV ∝ nT if we
multiply by V on both sides and rewrite KEtotal as nKEav, where
KEav is the average kinetic energy per molecule:

PV =
2

3
nKEav [monoatomic ideal gas].

For the first time we have an interpretation for the temperature
based on a microscopic description of matter: in a monoatomic ideal
gas, the temperature is a measure of the average kinetic energy per
molecule. The proportionality between the two is KEav = (3/2)kT ,
where the constant of proportionality k, known as Boltzmann’s con-
stant, has a numerical value of 1.38× 10−23 J/K. In terms of Boltz-
mann’s constant, the relationship among the bulk quantities for an
ideal gas becomes

PV = nkT , [ideal gas]

which is known as the ideal gas law. Although I won’t prove it here,
this equation applies to all ideal gases, even though the derivation
assumed a monoatomic ideal gas in a cubical box. (You may have
seen it written elsewhere as PV = NRT , where N = n/NA is the
number of moles of atoms, R = kNA, and NA = 6.0 × 1023, called
Avogadro’s number, is essentially the number of hydrogen atoms in
1 g of hydrogen.)

Pressure in a car tire example 9
. After driving on the freeway for a while, the air in your car’s
tires heats up from 10◦C to 35◦C. How much does the pressure
increase?

. The tires may expand a little, but we assume this effect is small,
so the volume is nearly constant. From the ideal gas law, the
ratio of the pressures is the same as the ratio of the absolute
temperatures,

P2/P1 = T2/T1

= (308 K)/(283 K)
= 1.09,

or a 9% increase.

Earth’s senescence example 10
Microbes were the only life on Earth up until the relatively re-
cent advent of multicellular life, and are arguably still the domi-
nant form of life on our planet. Furthermore, the sun has been
gradually heating up ever since it first formed, and this continuing
process will soon (“soon” in the sense of geological time) elimi-
nate multicellular life again. Heat-induced decreases in the atmo-
sphere’s CO2 content will kill off all complex plants within about
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j / A space suit (example 11).

500 million years, and although some animals may be able to live
by eating algae, it will only be another few hundred million years
at most until the planet is completely heat-sterilized.

Why is the sun getting brighter? The only thing that keeps a star
like our sun from collapsing due to its own gravity is the pressure
of its gases. The sun’s energy comes from nuclear reactions at
its core, and the net result of these reactions is to fuse hydrogen
atoms into helium atoms. It takes four hydrogens to make one
helium, so the number of atoms in the sun is continuously de-
creasing. Since PV = nkT , this causes a decrease in pressure,
which makes the core contract. As the core contracts, collisions
between hydrogen atoms become more frequent, and the rate of
fusion reactions increases.

A piston, a refrigerator, and a space suit example 11
Both sides of the equation PV = nkT have units of energy. Sup-
pose the pressure in a cylinder of gas pushes a piston out, as in
the power stroke of an automobile engine. Let the cross-sectional
area of the piston and cylinder be A, and let the piston travel a
small distance ∆x . Then the gas’s force on the piston F = PA
does an amount of mechanical work W = F∆x = PA∆x = P∆V ,
where ∆V is the change in volume. This energy has to come
from somewhere; it comes from cooling the gas. In a car, what
this means is that we’re harvesting the energy released by burn-
ing the gasoline.

In a refrigerator, we use the same process to cool the gas, which
then cools the food.

In a space suit, the quantity P∆V represents the work the astro-
naut has to do because bending her limbs changes the volume
of the suit. The suit inflates under pressure like a balloon, and
doesn’t want to bend. This makes it very tiring to work for any
significant period of time.
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k / The temperature differ-
ence between the hot and cold
parts of the air can be used to
extract mechanical energy, for
example with a fan blade that
spins because of the rising hot air
currents.

l / If the temperature of the
air is first allowed to become
uniform, then no mechanical
energy can be extracted. The
same amount of heat energy
is present, but it is no longer
accessible for doing mechanical
work.

16.3 Entropy
Efficiency and grades of energy

Some forms of energy are more convenient than others in certain
situations. You can’t run a spring-powered mechanical clock on a
battery, and you can’t run a battery-powered clock with mechanical
energy. However, there is no fundamental physical principle that
prevents you from converting 100% of the electrical energy in a
battery into mechanical energy or vice-versa. More efficient motors
and generators are being designed every year. In general, the laws
of physics permit perfectly efficient conversion within a broad class
of forms of energy.

Heat is different. Friction tends to convert other forms of energy
into heat even in the best lubricated machines. When we slide a
book on a table, friction brings it to a stop and converts all its kinetic
energy into heat, but we never observe the opposite process, in which
a book spontaneously converts heat energy into mechanical energy
and starts moving! Roughly speaking, heat is different because it is
disorganized. Scrambling an egg is easy. Unscrambling it is harder.

We summarize these observations by saying that heat is a lower
grade of energy than other forms such as mechanical energy.

Of course it is possible to convert heat into other forms of energy
such as mechanical energy, and that is what a car engine does with
the heat created by exploding the air-gasoline mixture. But a car
engine is a tremendously inefficient device, and a great deal of the
heat is simply wasted through the radiator and the exhaust. Engi-
neers have never succeeded in creating a perfectly efficient device for
converting heat energy into mechanical energy, and we now know
that this is because of a deeper physical principle that is far more
basic than the design of an engine.

Heat engines

Heat may be more useful in some forms than in other, i.e., there
are different grades of heat energy. In figure k, the difference in
temperature can be used to extract mechanical work with a fan
blade. This principle is used in power plants, where steam is heated
by burning oil or by nuclear reactions, and then allowed to expand
through a turbine which has cooler steam on the other side. On
a smaller scale, there is a Christmas toy that consists of a small
propeller spun by the hot air rising from a set of candles, very much
like the setup shown in the figure.

In figure l, however, no mechanical work can be extracted be-
cause there is no difference in temperature. Although the air in l
has the same total amount of energy as the air in k, the heat in l
is a lower grade of energy, since none of it is accessible for doing
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m / The beginning of the first
expansion stroke, in which the
working gas is kept in thermal
equilibrium with the hot reservoir.

n / The beginning of the sec-
ond expansion stroke, in which
the working gas is thermally
insulated. The working gas cools
because it is doing work on the
piston and thus losing energy.

o / The beginning of the first
compression stroke. The working
gas begins the stroke at the same
temperature as the cold reservoir,
and remains in thermal contact
with it the whole time. The engine
does negative work.

p / The beginning of the sec-
ond compression stroke, in which
mechanical work is absorbed,
heating the working gas back up
to TH .

mechanical work.

In general, we define a heat engine as any device that takes heat
from a reservoir of hot matter, extracts some of the heat energy to do
mechanical work, and expels a lesser amount of heat into a reservoir
of cold matter. The efficiency of a heat engine equals the amount of
useful work extracted, W , divided by the amount of energy we had
to pay for in order to heat the hot reservoir. This latter amount
of heat is the same as the amount of heat the engine extracts from
the high-temperature reservoir, QH . (The letter Q is the standard
notation for a transfer of heat.) By conservation of energy, we have
QH = W + QL, where QL is the amount of heat expelled into the
low-temperature reservoir, so the efficiency of a heat engine, W/QH ,
can be rewritten as

efficiency = 1− QL
QH

. [efficiency of any heat engine]

It turns out that there is a particular type of heat engine, the
Carnot engine, which, although not 100% efficient, is more efficient
than any other. The grade of heat energy in a system can thus be
unambiguously defined in terms of the amount of heat energy in it
that cannot be extracted, even by a Carnot engine.

How can we build the most efficient possible engine? Let’s start
with an unnecessarily inefficient engine like a car engine and see
how it could be improved. The radiator and exhaust expel hot
gases, which is a waste of heat energy. These gases are cooler than
the exploded air-gas mixture inside the cylinder, but hotter than
the air that surrounds the car. We could thus improve the engine’s
efficiency by adding an auxiliary heat engine to it, which would
operate with the first engine’s exhaust as its hot reservoir and the
air as its cold reservoir. In general, any heat engine that expels
heat at an intermediate temperature can be made more efficient by
changing it so that it expels heat only at the temperature of the
cold reservoir.

Similarly, any heat engine that absorbs some energy at an in-
termediate temperature can be made more efficient by adding an
auxiliary heat engine to it which will operate between the hot reser-
voir and this intermediate temperature.

Based on these arguments, we define a Carnot engine as a heat
engine that absorbs heat only from the hot reservoir and expels it
only into the cold reservoir. Figures m-p show a realization of a
Carnot engine using a piston in a cylinder filled with a monoatomic
ideal gas. This gas, known as the working fluid, is separate from,
but exchanges energy with, the hot and cold reservoirs. It turns out
that this particular Carnot engine has an efficiency given by

efficiency = 1− TL
TH

, [efficiency of a Carnot engine]
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q / Entropy can be understood
using the metaphor of a water
wheel. Letting the water levels
equalize is like letting the entropy
maximize. Taking water from the
high side and putting it into the
low side increases the entropy.
Water levels in this metaphor
correspond to temperatures in
the actual definition of entropy.

where TL is the temperature of the cold reservoir and TH is the
temperature of the hot reservoir. (A proof of this fact is given in
my book Simple Nature, which you can download for free.)

Even if you do not wish to dig into the details of the proof,
the basic reason for the temperature dependence is not so hard to
understand. Useful mechanical work is done on strokes m and n,
in which the gas expands. The motion of the piston is in the same
direction as the gas’s force on the piston, so positive work is done
on the piston. In strokes o and p, however, the gas does negative
work on the piston. We would like to avoid this negative work,
but we must design the engine to perform a complete cycle. Luckily
the pressures during the compression strokes are lower than the ones
during the expansion strokes, so the engine doesn’t undo all its work
with every cycle. The ratios of the pressures are in proportion to
the ratios of the temperatures, so if TL is 20% of TH , the engine is
80% efficient.

We have already proved that any engine that is not a Carnot
engine is less than optimally efficient, and it is also true that all
Carnot engines operating between a given pair of temperatures TH
and TL have the same efficiency. Thus a Carnot engine is the most
efficient possible heat engine.

Entropy

We would like to have some numerical way of measuring the
grade of energy in a system. We want this quantity, called entropy,
to have the following two properties:

(1) Entropy is additive. When we combine two systems and
consider them as one, the entropy of the combined system equals
the sum of the entropies of the two original systems. (Quantities
like mass and energy also have this property.)

(2) The entropy of a system is not changed by operating a Carnot
engine within it.

It turns out to be simpler and more useful to define changes
in entropy than absolute entropies. Suppose as an example that a
system contains some hot matter and some cold matter. It has a
relatively high grade of energy because a heat engine could be used
to extract mechanical work from it. But if we allow the hot and
cold parts to equilibrate at some lukewarm temperature, the grade
of energy has gotten worse. Thus putting heat into a hotter area
is more useful than putting it into a cold area. Motivated by these
considerations, we define a change in entropy as follows:

∆S =
Q

T
[change in entropy when adding

heat Q to matter at temperature T ;

∆S is negative if heat is taken out]
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A system with a higher grade of energy has a lower entropy.

Entropy is additive. example 12
Since changes in entropy are defined by an additive quantity (heat)
divided by a non-additive one (temperature), entropy is additive.

Entropy isn’t changed by a Carnot engine. example 13
The efficiency of a heat engine is defined by

efficiency = 1−QL/QH ,

and the efficiency of a Carnot engine is

efficiency = 1− TL/TH ,

so for a Carnot engine we have QL/QH = TL/TH , which can be
rewritten as QL/TL = QH/TH . The entropy lost by the hot reservoir
is therefore the same as the entropy gained by the cold one.

Entropy increases in heat conduction. example 14
When a hot object gives up energy to a cold one, conservation
of energy tells us that the amount of heat lost by the hot object
is the same as the amount of heat gained by the cold one. The
change in entropy is −Q/TH + Q/TL, which is positive because
TL < TH .

Entropy is increased by a non-Carnot engine. example 15
The efficiency of a non-Carnot engine is less than 1 - TL/TH ,
so QL/QH > TL/TH and QL/TL > QH/TH . This means that the
entropy increase in the cold reservoir is greater than the entropy
decrease in the hot reservoir.

A book sliding to a stop example 16
A book slides across a table and comes to a stop. Once it stops,
all its kinetic energy has been transformed into heat. As the book
and table heat up, their entropies both increase, so the total en-
tropy increases as well.

Examples 14-16 involved closed systems, and in all of them the
total entropy either increased or stayed the same. It never decreased.
Here are two examples of schemes for decreasing the entropy of a
closed system, with explanations of why they don’t work.

Using a refrigerator to decrease entropy? example 17
. A refrigerator takes heat from a cold area and dumps it into a
hot area. (1) Does this lead to a net decrease in the entropy of
a closed system? (2) Could you make a Carnot engine more ef-
ficient by running a refrigerator to cool its low-temperature reser-
voir and eject heat into its high-temperature reservoir?

. (1) No. The heat that comes off of the radiator coils on the
back of your kitchen fridge is a great deal more than the heat the
fridge removes from inside; the difference is what it costs to run
your fridge. The heat radiated from the coils is so much more
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than the heat removed from the inside that the increase in the
entropy of the air in the room is greater than the decrease of the
entropy inside the fridge. The most efficient refrigerator is actually
a Carnot engine running in reverse, which leads to neither an
increase nor a decrease in entropy.

(2) No. The most efficient refrigerator is a reversed Carnot en-
gine. You will not achieve anything by running one Carnot engine
in reverse and another forward. They will just cancel each other
out.

Maxwell’s daemon example 18
. Physicist James Clerk Maxwell imagined pair of neighboring
rooms, their air being initially in thermal equilibrium, having a par-
tition across the middle with a tiny door. A miniscule daemon is
posted at the door with a little ping-pong paddle, and his duty is to
try to build up faster-moving air molecules in room B and slower
ones in room A. For instance, when a fast molecule is headed
through the door, going from A to B, he lets it by, but when a
slower than average molecule tries the same thing, he hits it back
into room A. Would this decrease the total entropy of the pair of
rooms?

. No. The daemon needs to eat, and we can think of his body
as a little heat engine. His metabolism is less efficient than a
Carnot engine, so he ends up increasing the entropy rather than
decreasing it.

Observation such as these lead to the following hypothesis, known
as the second law of thermodynamics:

The entropy of a closed system always increases, or at best stays
the same: ∆S ≥ 0.

At present my arguments to support this statement may seem
less than convincing, since they have so much to do with obscure
facts about heat engines. A more satisfying and fundamental expla-
nation for the continual increase in entropy was achieved by Ludwig
Boltzmann, and you may wish to learn more about Boltzmann’s
ideas from my book Simple Nature, which you can download for
free. Briefly, Boltzmann realized that entropy was a measure of
randomness or disorder at the atomic level, and disorder doesn’t
spontaneously change into order.

To emphasize the fundamental and universal nature of the sec-
ond law, here are a few examples.

Entropy and evolution example 19
A favorite argument of many creationists who don’t believe in evo-
lution is that evolution would violate the second law of thermody-
namics: the death and decay of a living thing releases heat (as
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when a compost heap gets hot) and lessens the amount of en-
ergy available for doing useful work, while the reverse process,
the emergence of life from nonliving matter, would require a de-
crease in entropy. Their argument is faulty, since the second law
only applies to closed systems, and the earth is not a closed sys-
tem. The earth is continuously receiving energy from the sun.

The heat death of the universe example 20
Victorian philosophers realized that living things had low entropy,
as discussed in example 19, and spent a lot of time worrying
about the heat death of the universe: eventually the universe
would have to become a high-entropy, lukewarm soup, with no
life or organized motion of any kind. Fortunately (?), we now
know a great many other things that will make the universe in-
hospitable to life long before its entropy is maximized. Life on
earth, for instance, will end when the sun evolves into a giant star
and vaporizes our planet.

Hawking radiation example 21
Any process that could destroy heat (or convert it into noth-

ing but mechanical work) would lead to a reduction in entropy.
Black holes are supermassive stars whose gravity is so strong
that nothing, not even light, can escape from them once it gets
within a boundary known as the event horizon. Black holes are
commonly observed to suck hot gas into them. Does this lead to
a reduction in the entropy of the universe? Of course one could
argue that the entropy is still there inside the black hole, but being
able to “hide” entropy there amounts to the same thing as being
able to destroy entropy.

The physicist Steven Hawking was bothered by this question, and
finally realized that although the actual stuff that enters a black
hole is lost forever, the black hole will gradually lose energy in the
form of light emitted from just outside the event horizon. This light
ends up reintroducing the original entropy back into the universe
at large.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) Show that under conditions of standard pressure and tem-
perature, the volume of a sample of an ideal gas depends only on
the number of molecules in it.
(b) One mole is defined as 6.0×1023 atoms. Find the volume of one
mole of an ideal gas, in units of liters, at standard temperature and
pressure (0◦C and 101 kPa).

√

2 A gas in a cylinder expands its volume by an amount ∆V ,
pushing out a piston. Show that the work done by the gas on the
piston is given by ∆W = P∆V .

3 (a) A helium atom contains 2 protons, 2 electrons, and 2
neutrons. Find the mass of a helium atom.

√

(b) Find the number of atoms in 1 kg of helium.
√

(c) Helium gas is monoatomic. Find the amount of heat needed
to raise the temperature of 1 kg of helium by 1 degree C. (This is
known as helium’s heat capacity at constant volume.)

√

4 Refrigerators, air conditioners, and heat pumps are heat en-
gines that work in reverse. You put in mechanical work, and the
effect is to take heat out of a cooler reservoir and deposit heat in a
warmer one: QL+W = QH . As with the heat engines discussed pre-
viously, the efficiency is defined as the energy transfer you want (QL
for a refrigerator or air conditioner, QH for a heat pump) divided
by the energy transfer you pay for (W ).

Efficiencies are supposed to be unitless, but the efficiency of an air
conditioner is normally given in terms of an EER rating (or a more
complex version called an SEER). The EER is defined as QL/W , but
expressed in the barbaric units of of Btu/watt-hour. A typical EER
rating for a residential air conditioner is about 10 Btu/watt-hour,
corresponding to an efficiency of about 3. The standard tempera-
tures used for testing an air conditioner’s efficiency are 80◦F (27◦C)
inside and 95◦F (35◦C) outside.

(a) What would be the EER rating of a reversed Carnot engine used
as an air conditioner?

√

(b) If you ran a 3-kW residential air conditioner, with an efficiency
of 3, for one hour, what would be the effect on the total entropy
of the universe? Is your answer consistent with the second law of
thermodynamics?

√
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5 (a) Estimate the pressure at the center of the Earth, assuming
it is of constant density throughout. Use the technique of example
5 on page 436. Note that g is not constant with respect to depth
— it equals Gmr/b3 for r, the distance from the center, less than b,
the earth’s radius.1 State your result in terms of G, m, and b.
(b) Show that your answer from part a has the right units for pres-
sure.
(c) Evaluate the result numerically.

√

(d) Given that the earth’s atmosphere is on the order of one thou-
sandth the thickness of the earth’s radius, and that the density of
the earth is several thousand times greater than the density of the
lower atmosphere, check that your result is of a reasonable order of
magnitude.

∫
6 (a) Determine the ratio between the escape velocities from the
surfaces of the earth and the moon.

√

(b) The temperature during the lunar daytime gets up to about
130◦C. In the extremely thin (almost nonexistent) lunar atmosphere,
estimate how the typical velocity of a molecule would compare with
that of the same type of molecule in the earth’s atmosphere. As-
sume that the earth’s atmosphere has a temperature of 0◦C.

√

(c) Suppose you were to go to the moon and release some fluo-
rocarbon gas, with molecular formula CnF2n+2. Estimate what is
the smallest fluorocarbon molecule (lowest n) whose typical velocity
would be lower than that of an N2 molecule on earth in proportion
to the moon’s lower escape velocity. The moon would be able to
retain an atmosphere made of these molecules.

√

7 Most of the atoms in the universe are in the form of gas that
is not part of any star or galaxy: the intergalactic medium (IGM).
The IGM consists of about 10−5 atoms per cubic centimeter, with
a typical temperature of about 103 K. These are, in some sense, the
density and temperature of the universe (not counting light, or the
exotic particles known as “dark matter”). Calculate the pressure of
the universe (or, speaking more carefully, the typical pressure due
to the IGM).

√

8 A sample of gas is enclosed in a sealed chamber. The gas
consists of molecules, which are then split in half through some
process such as exposure to ultraviolet light, or passing an electric
spark through the gas. The gas returns to the same temperature
as the surrounding room, but the molecules remain split apart, at
least for some amount of time. (To achieve these conditions, we
would need an extremely dilute gas. Otherwise the recombination
of the molecules would be faster than the cooling down to the same
temperature as the room.) How does its pressure now compare with

1Derivation: The shell theorem tells us that the gravitational field at r is the
same as if all the mass existing at greater depths was concentrated at the earth’s
center. Since volume scales like the third power of distance, this constitutes a
fraction (r/b)3 of the earth’s mass, so the field is (Gm/r2)(r/b)3 = Gmr/b3.
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its pressure before the molecules were split?

Problems 451



Problem 9.

9 The figure shows a demonstration performed by Otto von
Guericke for Emperor Ferdinand III, in which two teams of horses
failed to pull apart a pair of hemispheres from which the air had
been evacuated. (a) What object makes the force that holds the
hemispheres together? (b) The hemispheres are in a museum in
Berlin, and have a diameter of 65 cm. What is the amount of force
holding them together? (Hint: The answer would be the same if
they were cylinders or pie plates rather then hemispheres.)

10 Even when resting, the human body needs to do a certain
amount of mechanical work to keep the heart beating. This quantity
is difficult to define and measure with high precision, and also de-
pends on the individual and her level of activity, but it’s estimated
to be about 1 to 5 watts. Suppose we consider the human body
as nothing more than a pump. A person who is just lying in bed
all day needs about 1000 kcal/day worth of food to stay alive. (a)
Estimate the person’s thermodynamic efficiency as a pump, and (b)
compare with the maximum possible efficiency imposed by the laws
of thermodynamics for a heat engine operating across the difference
between a body temperature of 37◦C and an ambient temperature
of 22◦C. (c) Interpret your answer. . Answer, p. 569

11 (a) Atmospheric pressure at sea level is 101 kPa. The deepest
spot in the world’s oceans is a valley called the Challenger Deep, in
the Marianas Trench, with a depth of 11.0 km. Find the pressure
at this depth, in units of atmospheres. Although water under this
amount of pressure does compress by a few percent, assume for the
purposes of this problem that it is incompressible.
(b) Suppose that an air bubble is formed at this depth and then
rises to the surface. Estimate the change in its volume and radius.

. Solution, p. 562
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12 Our sun is powered by nuclear fusion reactions, and as a first
step in these reactions, one proton must approach another proton to
within a short enough range r. This is difficult to achieve, because
the protons have electric charge +e and therefore repel one another
electrically. (It’s a good thing that it’s so difficult, because other-
wise the sun would use up all of its fuel very rapidly and explode.)
To make fusion possible, the protons must be moving fast enough
to come within the required range. Even at the high temperatures
present in the core of our sun, almost none of the protons are mov-
ing fast enough.
(a) For comparison, the early universe, soon after the Big Bang,
had extremely high temperatures. Estimate the temperature T
that would have been required so that protons with average en-
ergies could fuse. State your result in terms of r, the mass m of the
proton, and universal constants.
(b) Show that the units of your answer to part a make sense.
(c) Evaluate your result from part a numerically, using r = 10−15 m
and m = 1.7 × 10−27 kg. As a check, you should find that this is
much hotter than the sun’s core temperature of ∼ 107 K.

. Solution, p. 562

13 Object A is a brick. Object B is half of a similar brick. If A
is heated, we have ∆S = Q/T . Show that if this equation is valid
for A, then it is also valid for B. . Solution, p. 563

14 Typically the atmosphere gets colder with increasing altitude.
However, sometimes there is an inversion layer, in which this trend
is reversed, e.g., because a less dense mass of warm air moves into a
certain area, and rises above the denser colder air that was already
present. Suppose that this causes the pressure P as a function of
height y to be given by a function of the form P = Poe

−ky(1 + by),
where constant temperature would give b = 0 and an inversion layer
would give b > 0. (a) Infer the units of the constants Po, k, and b.
(b) Find the density of the air as a function of y, of the constants,
and of the acceleration of gravity g. (c) Check that the units of your
answer to part b make sense. . Solution, p. 563

15 You use a spoon at room temperature, 22◦C, to mix your
coffee, which is at 80◦C. During this brief period of thermal contact,
1.3 J of heat is transferred from the coffee to the spoon. Find the
total change in the entropy of the universe.

√
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Vibrations and Waves
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The vibrations of this electric bass
string are converted to electrical
vibrations, then to sound vibra-
tions, and finally to vibrations of
our eardrums.

Chapter 17

Vibrations

Dandelion. Cello. Read those two words, and your brain instantly
conjures a stream of associations, the most prominent of which have
to do with vibrations. Our mental category of “dandelion-ness” is
strongly linked to the color of light waves that vibrate about half a
million billion times a second: yellow. The velvety throb of a cello
has as its most obvious characteristic a relatively low musical pitch
— the note you are spontaneously imagining right now might be
one whose sound vibrations repeat at a rate of a hundred times a
second.

Evolution has designed our two most important senses around
the assumption that not only will our environment be drenched with
information-bearing vibrations, but in addition those vibrations will
often be repetitive, so that we can judge colors and pitches by the
rate of repetition. Granting that we do sometimes encounter non-
repeating waves such as the consonant “sh,” which has no recogniz-
able pitch, why was Nature’s assumption of repetition nevertheless
so right in general?

Repeating phenomena occur throughout nature, from the orbits
of electrons in atoms to the reappearance of Halley’s Comet every 75
years. Ancient cultures tended to attribute repetitious phenomena
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a / If we try to draw a non-
repeating orbit for Halley’s
Comet, it will inevitably end up
crossing itself.

b / A spring has an equilib-
rium length, 1, and can be
stretched, 2, or compressed, 3. A
mass attached to the spring can
be set into motion initially, 4, and
will then vibrate, 4-13.

like the seasons to the cyclical nature of time itself, but we now
have a less mystical explanation. Suppose that instead of Halley’s
Comet’s true, repeating elliptical orbit that closes seamlessly upon
itself with each revolution, we decide to take a pen and draw a
whimsical alternative path that never repeats. We will not be able to
draw for very long without having the path cross itself. But at such
a crossing point, the comet has returned to a place it visited once
before, and since its potential energy is the same as it was on the
last visit, conservation of energy proves that it must again have the
same kinetic energy and therefore the same speed. Not only that,
but the comet’s direction of motion cannot be randomly chosen,
because angular momentum must be conserved as well. Although
this falls short of being an ironclad proof that the comet’s orbit must
repeat, it no longer seems surprising that it does.

Conservation laws, then, provide us with a good reason why
repetitive motion is so prevalent in the universe. But it goes deeper
than that. Up to this point in your study of physics, I have been
indoctrinating you with a mechanistic vision of the universe as a
giant piece of clockwork. Breaking the clockwork down into smaller
and smaller bits, we end up at the atomic level, where the electrons
circling the nucleus resemble — well, little clocks! From this point
of view, particles of matter are the fundamental building blocks
of everything, and vibrations and waves are just a couple of the
tricks that groups of particles can do. But at the beginning of
the 20th century, the tables were turned. A chain of discoveries
initiated by Albert Einstein led to the realization that the so-called
subatomic “particles” were in fact waves. In this new world-view,
it is vibrations and waves that are fundamental, and the formation
of matter is just one of the tricks that waves can do.

17.1 Period, frequency, and amplitude

Figure b shows our most basic example of a vibration. With no
forces on it, the spring assumes its equilibrium length, b/1. It can
be stretched, 2, or compressed, 3. We attach the spring to a wall
on the left and to a mass on the right. If we now hit the mass with
a hammer, 4, it oscillates as shown in the series of snapshots, 4-13.
If we assume that the mass slides back and forth without friction
and that the motion is one-dimensional, then conservation of energy
proves that the motion must be repetitive. When the block comes
back to its initial position again, 7, its potential energy is the same
again, so it must have the same kinetic energy again. The motion
is in the opposite direction, however. Finally, at 10, it returns to its
initial position with the same kinetic energy and the same direction
of motion. The motion has gone through one complete cycle, and
will now repeat forever in the absence of friction.

The usual physics terminology for motion that repeats itself over

458 Chapter 17 Vibrations



c / Position-versus-time graphs
for half a period and a full period.

d / Example 1.

and over is periodic motion, and the time required for one repetition
is called the period, T . (The symbol P is not used because of the
possible confusion with momentum.) One complete repetition of the
motion is called a cycle.

We are used to referring to short-period sound vibrations as
“high” in pitch, and it sounds odd to have to say that high pitches
have low periods. It is therefore more common to discuss the rapid-
ity of a vibration in terms of the number of vibrations per second,
a quantity called the frequency, f . Since the period is the number
of seconds per cycle and the frequency is the number of cycles per
second, they are reciprocals of each other,

f = 1/T .

A carnival game example 1
In the carnival game shown in figure d, the rube is supposed to
push the bowling ball on the track just hard enough so that it goes
over the hump and into the valley, but does not come back out
again. If the only types of energy involved are kinetic and poten-
tial, this is impossible. Suppose you expect the ball to come back
to a point such as the one shown with the dashed outline, then
stop and turn around. It would already have passed through this
point once before, going to the left on its way into the valley. It
was moving then, so conservation of energy tells us that it can-
not be at rest when it comes back to the same point. The motion
that the customer hopes for is physically impossible. There is
a physically possible periodic motion in which the ball rolls back
and forth, staying confined within the valley, but there is no way
to get the ball into that motion beginning from the place where we
start. There is a way to beat the game, though. If you put enough
spin on the ball, you can create enough kinetic friction so that a
significant amount of heat is generated. Conservation of energy
then allows the ball to be at rest when it comes back to a point
like the outlined one, because kinetic energy has been converted
into heat.

Period and frequency of a fly’s wing-beats example 2
A Victorian parlor trick was to listen to the pitch of a fly’s buzz, re-
produce the musical note on the piano, and announce how many
times the fly’s wings had flapped in one second. If the fly’s wings
flap, say, 200 times in one second, then the frequency of their
motion is f = 200/1 s = 200 s−1. The period is one 200th of a
second, T = 1/f = (1/200) s = 0.005 s.
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e / 1. The amplitude of the
vibrations of the mass on a spring
could be defined in two different
ways. It would have units of
distance. 2. The amplitude of a
swinging pendulum would more
naturally be defined as an angle.

Units of inverse second, s−1, are awkward in speech, so an abbre-
viation has been created. One Hertz, named in honor of a pioneer
of radio technology, is one cycle per second. In abbreviated form,
1 Hz = 1 s−1. This is the familiar unit used for the frequencies on
the radio dial.

Frequency of a radio station example 3
. KKJZ’s frequency is 88.1 MHz. What does this mean, and what
period does this correspond to?

. The metric prefix M- is mega-, i.e., millions. The radio waves
emitted by KKJZ’s transmitting antenna vibrate 88.1 million times
per second. This corresponds to a period of

T = 1/f = 1.14× 10−8 s.

This example shows a second reason why we normally speak in
terms of frequency rather than period: it would be painful to have
to refer to such small time intervals routinely. I could abbreviate
by telling people that KKJZ’s period was 11.4 nanoseconds, but
most people are more familiar with the big metric prefixes than
with the small ones.

Units of frequency are also commonly used to specify the speeds
of computers. The idea is that all the little circuits on a computer
chip are synchronized by the very fast ticks of an electronic clock, so
that the circuits can all cooperate on a task without getting ahead
or behind. Adding two numbers might require, say, 30 clock cycles.
Microcomputers these days operate at clock frequencies of about a
gigahertz.

We have discussed how to measure how fast something vibrates,
but not how big the vibrations are. The general term for this is
amplitude, A. The definition of amplitude depends on the system
being discussed, and two people discussing the same system may
not even use the same definition. In the example of the block on the
end of the spring, e/1, the amplitude will be measured in distance
units such as cm. One could work in terms of the distance traveled
by the block from the extreme left to the extreme right, but it
would be somewhat more common in physics to use the distance
from the center to one extreme. The former is usually referred to as
the peak-to-peak amplitude, since the extremes of the motion look
like mountain peaks or upside-down mountain peaks on a graph of
position versus time.

In other situations we would not even use the same units for am-
plitude. The amplitude of a child on a swing, or a pendulum, e/2,
would most conveniently be measured as an angle, not a distance,
since her feet will move a greater distance than her head. The elec-
trical vibrations in a radio receiver would be measured in electrical
units such as volts or amperes.
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f / Sinusoidal and non-sinusoidal
vibrations.

g / The force exerted by an
ideal spring, which behaves
exactly according to Hooke’s law.

17.2 Simple harmonic motion
Why are sine-wave vibrations so common?

If we actually construct the mass-on-a-spring system discussed
in the previous section and measure its motion accurately, we will
find that its x−t graph is nearly a perfect sine-wave shape, as shown
in figure f/1. (We call it a “sine wave” or “sinusoidal” even if it is
a cosine, or a sine or cosine shifted by some arbitrary horizontal
amount.) It may not be surprising that it is a wiggle of this general
sort, but why is it a specific mathematically perfect shape? Why is
it not a sawtooth shape like 2 or some other shape like 3? The mys-
tery deepens as we find that a vast number of apparently unrelated
vibrating systems show the same mathematical feature. A tuning
fork, a sapling pulled to one side and released, a car bouncing on
its shock absorbers, all these systems will exhibit sine-wave motion
under one condition: the amplitude of the motion must be small.

It is not hard to see intuitively why extremes of amplitude would
act differently. For example, a car that is bouncing lightly on its
shock absorbers may behave smoothly, but if we try to double the
amplitude of the vibrations the bottom of the car may begin hitting
the ground, f/4. (Although we are assuming for simplicity in this
chapter that energy is never dissipated, this is clearly not a very
realistic assumption in this example. Each time the car hits the
ground it will convert quite a bit of its potential and kinetic en-
ergy into heat and sound, so the vibrations would actually die out
quite quickly, rather than repeating for many cycles as shown in the
figure.)

The key to understanding how an object vibrates is to know how
the force on the object depends on the object’s position. If an object
is vibrating to the right and left, then it must have a leftward force
on it when it is on the right side, and a rightward force when it is on
the left side. In one dimension, we can represent the direction of the
force using a positive or negative sign, and since the force changes
from positive to negative there must be a point in the middle where
the force is zero. This is the equilibrium point, where the object
would stay at rest if it was released at rest. For convenience of
notation throughout this chapter, we will define the origin of our
coordinate system so that x equals zero at equilibrium.

The simplest example is the mass on a spring, for which the force
on the mass is given by Hooke’s law,

F = −kx.

We can visualize the behavior of this force using a graph of F versus
x, as shown in figure g. The graph is a line, and the spring constant,
k, is equal to minus its slope. A stiffer spring has a larger value of
k and a steeper slope. Hooke’s law is only an approximation, but
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h / Seen from close up, any
F − x curve looks like a line.

it works very well for most springs in real life, as long as the spring
isn’t compressed or stretched so much that it is permanently bent
or damaged.

The following important theorem, whose proof is given in op-
tional section 17.3, relates the motion graph to the force graph.

Theorem: A linear force graph makes a sinusoidal motion
graph.

If the total force on a vibrating object depends only on the
object’s position, and is related to the objects displacement
from equilibrium by an equation of the form F = −kx, then
the object’s motion displays a sinusoidal graph with period
T = 2π

√
m/k.

Even if you do not read the proof, it is not too hard to understand
why the equation for the period makes sense. A greater mass causes
a greater period, since the force will not be able to whip a massive
object back and forth very rapidly. A larger value of k causes a
shorter period, because a stronger force can whip the object back
and forth more rapidly.

This may seem like only an obscure theorem about the mass-on-
a-spring system, but figure h shows it to be far more general than
that. Figure h/1 depicts a force curve that is not a straight line. A
system with this F −x curve would have large-amplitude vibrations
that were complex and not sinusoidal. But the same system would
exhibit sinusoidal small-amplitude vibrations. This is because any
curve looks linear from very close up. If we magnify the F − x
graph as shown in figure h/2, it becomes very difficult to tell that
the graph is not a straight line. If the vibrations were confined to
the region shown in h/2, they would be very nearly sinusoidal. This
is the reason why sinusoidal vibrations are a universal feature of
all vibrating systems, if we restrict ourselves to small amplitudes.
The theorem is therefore of great general significance. It applies
throughout the universe, to objects ranging from vibrating stars to
vibrating nuclei. A sinusoidal vibration is known as simple harmonic
motion.

Period is approximately independent of amplitude, if the
amplitude is small.

Until now we have not even mentioned the most counterintu-
itive aspect of the equation T = 2π

√
m/k: it does not depend on

amplitude at all. Intuitively, most people would expect the mass-on-
a-spring system to take longer to complete a cycle if the amplitude
was larger. (We are comparing amplitudes that are different from
each other, but both small enough that the theorem applies.) In
fact the larger-amplitude vibrations take the same amount of time
as the small-amplitude ones. This is because at large amplitudes,
the force is greater, and therefore accelerates the object to higher
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speeds.

Legend has it that this fact was first noticed by Galileo during
what was apparently a less than enthralling church service. A gust
of wind would now and then start one of the chandeliers in the
cathedral swaying back and forth, and he noticed that regardless
of the amplitude of the vibrations, the period of oscillation seemed
to be the same. Up until that time, he had been carrying out his
physics experiments with such crude time-measuring techniques as
feeling his own pulse or singing a tune to keep a musical beat. But
after going home and testing a pendulum, he convinced himself that
he had found a superior method of measuring time. Even without
a fancy system of pulleys to keep the pendulum’s vibrations from
dying down, he could get very accurate time measurements, because
the gradual decrease in amplitude due to friction would have no
effect on the pendulum’s period. (Galileo never produced a modern-
style pendulum clock with pulleys, a minute hand, and a second
hand, but within a generation the device had taken on the form
that persisted for hundreds of years after.)

The pendulum example 4
.Compare the periods of pendula having bobs with different masses.

. From the equation T = 2π
√

m/k , we might expect that a larger
mass would lead to a longer period. However, increasing the
mass also increases the forces that act on the pendulum: gravity
and the tension in the string. This increases k as well as m, so
the period of a pendulum is independent of m.

Discussion questions

A Suppose that a pendulum has a rigid arm mounted on a bearing,
rather than a string tied at its top with a knot. The bob can then oscil-
late with center-to-side amplitudes greater than 90◦. For the maximum
amplitude of 180◦, what can you say about the period?

B In the language of calculus, Newton’s second law for a simple
harmonic oscillator can be written in the form d2 x/dt2 = −(. . .)x , where
“. . . ” refers to a constant, and the minus sign says that if we pull the object
away from equilibrium, a restoring force tries to bring it back to equlibrium,
which is the opposite direction. This is why we get motion that looks like a
sine or cosine function: these are functions that, when differentiated twice,
give back the original function but with an opposite sign. Now consider
the example described in discussion question A, where a pendulum is
upright or nearly upright. How does the analysis play out differently?
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i / The object moves along
the circle at constant speed,
but even though its overall
speed is constant, the x and y
components of its velocity are
continuously changing, as shown
by the unequal spacing of the
points when projected onto the
line below. Projected onto the
line, its motion is the same as
that of an object experiencing a
force F = −kx .

17.3 ? Proofs

In this section we prove (1) that a linear F − x graph gives
sinusoidal motion, (2) that the period of the motion is 2π

√
m/k,

and (3) that the period is independent of the amplitude. You may
omit this section without losing the continuity of the chapter.

The basic idea of the proof can be understood by imagining
that you are watching a child on a merry-go-round from far away.
Because you are in the same horizontal plane as her motion, she
appears to be moving from side to side along a line. Circular motion
viewed edge-on doesn’t just look like any kind of back-and-forth
motion, it looks like motion with a sinusoidal x−t graph, because the
sine and cosine functions can be defined as the x and y coordinates
of a point at angle θ on the unit circle. The idea of the proof, then,
is to show that an object acted on by a force that varies as F = −kx
has motion that is identical to circular motion projected down to
one dimension. The v2/r expression will also fall out at the end.

The moons of Jupiter example 5
Before moving on to the proof, we illustrate the concept using
the moons of Jupiter. Their discovery by Galileo was an epochal
event in astronomy, because it proved that not everything in the
universe had to revolve around the earth as had been believed.
Galileo’s telescope was of poor quality by modern standards, but
figure j shows a simulation of how Jupiter and its moons might
appear at intervals of three hours through a large present-day in-
strument. Because we see the moons’ circular orbits edge-on,
they appear to perform sinusoidal vibrations. Over this time pe-
riod, the innermost moon, Io, completes half a cycle.

j / Example 5.
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For an object performing uniform circular motion, we have

|a| = v2

r
.

The x component of the acceleration is therefore

ax =
v2

r
cos θ,

where θ is the angle measured counterclockwise from the x axis.
Applying Newton’s second law,

Fx
m

= −v
2

r
cos θ, so

Fx = −mv2

r
cos θ.

Since our goal is an equation involving the period, it is natural to
eliminate the variable v = circumference/T = 2πr/T , giving

Fx = −4π2mr

T 2
cos θ.

The quantity r cos θ is the same as x, so we have

Fx = −4π2m

T 2
x.

Since everything is constant in this equation except for x, we have
proved that motion with force proportional to x is the same as circu-
lar motion projected onto a line, and therefore that a force propor-
tional to x gives sinusoidal motion. Finally, we identify the constant
factor of 4π2m/T 2 with k, and solving for T gives the desired equa-
tion for the period,

T = 2π

√
m

k
.

Since this equation is independent of r, T is independent of the
amplitude, subject to the initial assumption of perfect F = −kx
behavior, which in reality will only hold approximately for small x.
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Summary
Selected vocabulary
periodic motion . motion that repeats itself over and over
period . . . . . . . the time required for one cycle of a periodic

motion
frequency . . . . . the number of cycles per second, the inverse of

the period
amplitude . . . . the amount of vibration, often measured from

the center to one side; may have different units
depending on the nature of the vibration

simple harmonic
motion . . . . . .

motion whose x− t graph is a sine wave

Notation
T . . . . . . . . . period
f . . . . . . . . . . frequency
A . . . . . . . . . amplitude
k . . . . . . . . . . the slope of the graph of F versus x, where

F is the total force acting on an object and
x is the object’s position; for a spring, this is
known as the spring constant.

Other terminology and notation
ν . . . . . . . . . . The Greek letter ν, nu, is used in many books

for frequency.
ω . . . . . . . . . . The Greek letter ω, omega, is often used as an

abbreviation for 2πf .

Summary

Periodic motion is common in the world around us because of
conservation laws. An important example is one-dimensional motion
in which the only two forms of energy involved are potential and
kinetic; in such a situation, conservation of energy requires that an
object repeat its motion, because otherwise when it came back to
the same point, it would have to have a different kinetic energy and
therefore a different total energy.

Not only are periodic vibrations very common, but small-amplitude
vibrations are always sinusoidal as well. That is, the x− t graph is a
sine wave. This is because the graph of force versus position will al-
ways look like a straight line on a sufficiently small scale. This type
of vibration is called simple harmonic motion. In simple harmonic
motion, the period is independent of the amplitude, and is given by

T = 2π
√
m/k.
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Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Find an equation for the frequency of simple harmonic motion
in terms of k and m.

√

2 Many single-celled organisms propel themselves through water
with long tails, which they wiggle back and forth. (The most obvious
example is the sperm cell.) The frequency of the tail’s vibration is
typically about 10-15 Hz. To what range of periods does this range
of frequencies correspond?

√

3 (a) Pendulum 2 has a string twice as long as pendulum 1. If
we define x as the distance traveled by the bob along a circle away
from the bottom, how does the k of pendulum 2 compare with the
k of pendulum 1? Give a numerical ratio. [Hint: the total force
on the bob is the same if the angles away from the bottom are the
same, but equal angles do not correspond to equal values of x.]

(b) Based on your answer from part (a), how does the period of pen-
dulum 2 compare with the period of pendulum 1? Give a numerical
ratio.

4 A pneumatic spring consists of a piston riding on top of the
air in a cylinder. The upward force of the air on the piston is
given by Fair = ax−1.4, where a is a constant with funny units of
N ·m1.4. For simplicity, assume the air only supports the weight,
FW , of the piston itself, although in practice this device is used to
support some other object. The equilibrium position, x0, is where
FW equals −Fair. (Note that in the main text I have assumed
the equilibrium position to be at x = 0, but that is not the natural
choice here.) Assume friction is negligible, and consider a case where
the amplitude of the vibrations is very small. Let a = 1.0 N·m1.4,
x0 = 1.00 m, and FW = −1.00 N. The piston is released from
x = 1.01 m. Draw a neat, accurate graph of the total force, F , as a
function of x, on graph paper, covering the range from x = 0.98 m
to 1.02 m. Over this small range, you will find that the force is
very nearly proportional to x − x0. Approximate the curve with a
straight line, find its slope, and derive the approximate period of
oscillation.

√

5 Consider the same pneumatic piston described in problem
4, but now imagine that the oscillations are not small. Sketch a
graph of the total force on the piston as it would appear over this
wider range of motion. For a wider range of motion, explain why
the vibration of the piston about equilibrium is not simple harmonic
motion, and sketch a graph of x vs t, showing roughly how the curve
is different from a sine wave. [Hint: Acceleration corresponds to the
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Problem 7.

curvature of the x − t graph, so if the force is greater, the graph
should curve around more quickly.]

6 Archimedes’ principle states that an object partly or wholly
immersed in fluid experiences a buoyant force equal to the weight
of the fluid it displaces. For instance, if a boat is floating in water,
the upward pressure of the water (vector sum of all the forces of
the water pressing inward and upward on every square inch of its
hull) must be equal to the weight of the water displaced, because
if the boat was instantly removed and the hole in the water filled
back in, the force of the surrounding water would be just the right
amount to hold up this new “chunk” of water. (a) Show that a cube
of mass m with edges of length b floating upright (not tilted) in a
fluid of density ρ will have a draft (depth to which it sinks below
the waterline) h given at equilibrium by h0 = m/b2ρ. (b) Find the
total force on the cube when its draft is h, and verify that plugging
in h − h0 gives a total force of zero. (c) Find the cube’s period of
oscillation as it bobs up and down in the water, and show that can
be expressed in terms of and g only.

√

7 The figure shows a see-saw with two springs at Codornices Park
in Berkeley, California. Each spring has spring constant k, and a
kid of mass m sits on each seat. (a) Find the period of vibration in
terms of the variables k, m, a, and b. (b) Discuss the special case
where a = b, rather than a > b as in the real see-saw. (c) Show that
your answer to part a also makes sense in the case of b = 0.

√
?

8 Show that the equation T = 2π
√
m/k has units that make

sense.

9 A hot scientific question of the 18th century was the shape
of the earth: whether its radius was greater at the equator than at
the poles, or the other way around. One method used to attack this
question was to measure gravity accurately in different locations
on the earth using pendula. If the highest and lowest latitudes
accessible to explorers were 0 and 70 degrees, then the the strength
of gravity would in reality be observed to vary over a range from
about 9.780 to 9.826 m/s2. This change, amounting to 0.046 m/s2,
is greater than the 0.022 m/s2 effect to be expected if the earth had
been spherical. The greater effect occurs because the equator feels
a reduction due not just to the acceleration of the spinning earth
out from under it, but also to the greater radius of the earth at
the equator. What is the accuracy with which the period of a one-
second pendulum would have to be measured in order to prove that
the earth was not a sphere, and that it bulged at the equator?

√
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Exercise 17: Vibrations
Equipment:

• air track and carts of two different masses

• springs

• spring scales

Place the cart on the air track and attach springs so that it can vibrate.

1. Test whether the period of vibration depends on amplitude. Try at least one moderate
amplitude, for which the springs do not go slack, at least one amplitude that is large enough so
that they do go slack, and one amplitude that’s the very smallest you can possibly observe.

2. Try a cart with a different mass. Does the period change by the expected factor, based on
the equation T = 2π

√
m/k?

3. Use a spring scale to pull the cart away from equilibrium, and make a graph of force versus
position. Is it linear? If so, what is its slope?

4. Test the equation T = 2π
√
m/k numerically.
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Top: A series of images from
a film of the Tacoma Narrows
Bridge vibrating on the day it was
to collapse. Middle: The bridge
immediately before the collapse,
with the sides vibrating 8.5 me-
ters (28 feet) up and down. Note
that the bridge is over a mile long.
Bottom: During and after the fi-
nal collapse. The right-hand pic-
ture gives a sense of the massive
scale of the construction.

Chapter 18

Resonance

Soon after the mile-long Tacoma Narrows Bridge opened in July
1940, motorists began to notice its tendency to vibrate frighteningly
in even a moderate wind. Nicknamed “Galloping Gertie,” the bridge
collapsed in a steady 42-mile-per-hour wind on November 7 of the
same year. The following is an eyewitness report from a newspaper
editor who found himself on the bridge as the vibrations approached
the breaking point.

“Just as I drove past the towers, the bridge began to sway vi-
olently from side to side. Before I realized it, the tilt became so
violent that I lost control of the car... I jammed on the brakes and
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got out, only to be thrown onto my face against the curb.

“Around me I could hear concrete cracking. I started to get my
dog Tubby, but was thrown again before I could reach the car. The
car itself began to slide from side to side of the roadway.

“On hands and knees most of the time, I crawled 500 yards or
more to the towers... My breath was coming in gasps; my knees
were raw and bleeding, my hands bruised and swollen from gripping
the concrete curb... Toward the last, I risked rising to my feet and
running a few yards at a time... Safely back at the toll plaza, I
saw the bridge in its final collapse and saw my car plunge into the
Narrows.”

The ruins of the bridge formed an artificial reef, one of the
world’s largest. It was not replaced for ten years. The reason for its
collapse was not substandard materials or construction, nor was the
bridge under-designed: the piers were hundred-foot blocks of con-
crete, the girders massive and made of carbon steel. The bridge was
destroyed because the bridge absorbed energy efficiently from the
wind, but didn’t dissipate it efficiently into heat. The replacement
bridge, which has lasted half a century so far, was built smarter, not
stronger. The engineers learned their lesson and simply included
some slight modifications to avoid the phenomenon that spelled the
doom of the first one.

18.1 Energy in vibrations
One way of describing the collapse of the bridge is that the bridge
kept taking energy from the steadily blowing wind and building up
more and more energetic vibrations. In this section, we discuss the
energy contained in a vibration, and in the subsequent sections we
will move on to the loss of energy and the adding of energy to a
vibrating system, all with the goal of understanding the important
phenomenon of resonance.

Going back to our standard example of a mass on a spring,
we find that there are two forms of energy involved: the potential
energy stored in the spring and the kinetic energy of the moving
mass. We may start the system in motion either by hitting the
mass to put in kinetic energy or by pulling it to one side to put in
potential energy. Either way, the subsequent behavior of the system
is identical. It trades energy back and forth between kinetic and
potential energy. (We are still assuming there is no friction, so that
no energy is converted to heat, and the system never runs down.)

The most important thing to understand about the energy con-
tent of vibrations is that the total energy is proportional to the
square of the amplitude. Although the total energy is constant, it
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a / Example 1.

is instructive to consider two specific moments in the motion of the
mass on a spring as examples. When the mass is all the way to
one side, at rest and ready to reverse directions, all its energy is
potential. We have already seen that the potential energy stored
in a spring equals (1/2)kx2, so the energy is proportional to the
square of the amplitude. Now consider the moment when the mass
is passing through the equilibrium point at x = 0. At this point it
has no potential energy, but it does have kinetic energy. The veloc-
ity is proportional to the amplitude of the motion, and the kinetic
energy, (1/2)mv2, is proportional to the square of the velocity, so
again we find that the energy is proportional to the square of the
amplitude. The reason for singling out these two points is merely
instructive; proving that energy is proportional to A2 at any point
would suffice to prove that energy is proportional to A2 in general,
since the energy is constant.

Are these conclusions restricted to the mass-on-a-spring exam-
ple? No. We have already seen that F = −kx is a valid approxima-
tion for any vibrating object, as long as the amplitude is small. We
are thus left with a very general conclusion: the energy of any vibra-
tion is approximately proportional to the square of the amplitude,
provided that the amplitude is small.

Water in a U-tube example 1
If water is poured into a U-shaped tube as shown in the figure, it
can undergo vibrations about equilibrium. The energy of such a
vibration is most easily calculated by considering the “turnaround
point” when the water has stopped and is about to reverse direc-
tions. At this point, it has only potential energy and no kinetic
energy, so by calculating its potential energy we can find the en-
ergy of the vibration. This potential energy is the same as the
work that would have to be done to take the water out of the right-
hand side down to a depth A below the equilibrium level, raise it
through a height A, and place it in the left-hand side. The weight
of this chunk of water is proportional to A, and so is the height
through which it must be lifted, so the energy is proportional to
A2.

The range of energies of sound waves example 2
. The amplitude of vibration of your eardrum at the threshold of
pain is about 106 times greater than the amplitude with which
it vibrates in response to the softest sound you can hear. How
many times greater is the energy with which your ear has to cope
for the painfully loud sound, compared to the soft sound?

. The amplitude is 106 times greater, and energy is proportional
to the square of the amplitude, so the energy is greater by a factor
of 1012 . This is a phenomenally large factor!
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b / Friction has the effect of
pinching the x − t graph of a
vibrating object.

We are only studying vibrations right now, not waves, so we are
not yet concerned with how a sound wave works, or how the energy
gets to us through the air. Note that because of the huge range of
energies that our ear can sense, it would not be reasonable to have
a sense of loudness that was additive. Consider, for instance, the
following three levels of sound:

barely audible wind
quiet conversation . . . . 105 times more energy than the

wind
heavy metal concert . . 1012 times more energy than the

wind

In terms of addition and subtraction, the difference between the
wind and the quiet conversation is nothing compared to the differ-
ence between the quiet conversation and the heavy metal concert.
Evolution wanted our sense of hearing to be able to encompass all
these sounds without collapsing the bottom of the scale so that any-
thing softer than the crack of doom would sound the same. So rather
than making our sense of loudness additive, mother nature made it
multiplicative. We sense the difference between the wind and the
quiet conversation as spanning a range of about 5/12 as much as the
whole range from the wind to the heavy metal concert. Although
a detailed discussion of the decibel scale is not relevant here, the
basic point to note about the decibel scale is that it is logarithmic.
The zero of the decibel scale is close to the lower limit of human
hearing, and adding 1 unit to the decibel measurement corresponds
to multiplying the energy level (or actually the power per unit area)
by a certain factor.

18.2 Energy lost from vibrations

Until now, we have been making the relatively unrealistic as-
sumption that a vibration would never die out. For a realistic mass
on a spring, there will be friction, and the kinetic and potential
energy of the vibrations will therefore be gradually converted into
heat. Similarly, a guitar string will slowly convert its kinetic and
potential energy into sound. In all cases, the effect is to “pinch” the
sinusoidal x − t graph more and more with passing time. Friction
is not necessarily bad in this context — a musical instrument that
never got rid of any of its energy would be completely silent! The
dissipation of the energy in a vibration is known as damping.

self-check A
Most people who try to draw graphs like those shown on the left will
tend to shrink their wiggles horizontally as well as vertically. Why is this
wrong? . Answer, p. 568

In the graphs in figure b, I have not shown any point at which
the damped vibration finally stops completely. Is this realistic? Yes
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c / The amplitude is halved
with each cycle.

and no. If energy is being lost due to friction between two solid
surfaces, then we expect the force of friction to be nearly indepen-
dent of velocity. This constant friction force puts an upper limit on
the total distance that the vibrating object can ever travel without
replenishing its energy, since work equals force times distance, and
the object must stop doing work when its energy is all converted
into heat. (The friction force does reverse directions when the ob-
ject turns around, but reversing the direction of the motion at the
same time that we reverse the direction of the force makes it certain
that the object is always doing positive work, not negative work.)

Damping due to a constant friction force is not the only possi-
bility however, or even the most common one. A pendulum may
be damped mainly by air friction, which is approximately propor-
tional to v2, while other systems may exhibit friction forces that
are proportional to v. It turns out that friction proportional to v
is the simplest case to analyze mathematically, and anyhow all the
important physical insights can be gained by studying this case.

If the friction force is proportional to v, then as the vibrations
die down, the frictional forces get weaker due to the lower speeds.
The less energy is left in the system, the more miserly the system
becomes with giving away any more energy. Under these conditions,
the vibrations theoretically never die out completely, and mathemat-
ically, the loss of energy from the system is exponential: the system
loses a fixed percentage of its energy per cycle. This is referred to
as exponential decay.

A non-rigorous proof is as follows. The force of friction is pro-
portional to v, and v is proportional to how far the object travels in
one cycle, so the frictional force is proportional to amplitude. The
amount of work done by friction is proportional to the force and to
the distance traveled, so the work done in one cycle is proportional
to the square of the amplitude. Since both the work and the energy
are proportional to A2, the amount of energy taken away by friction
in one cycle is a fixed percentage of the amount of energy the system
has.

self-check B
Figure c shows an x-t graph for a strongly damped vibration, which loses
half of its amplitude with every cycle. What fraction of the energy is lost
in each cycle? . Answer, p. 568

It is customary to describe the amount of damping with a quan-
tity called the quality factor, Q, defined as the number of cycles
required for the energy to fall off by a factor of 535. (The origin
of this obscure numerical factor is e2π, where e = 2.71828 . . . is the
base of natural logarithms. Choosing this particular number causes
some of our later equations to come out nice and simple.) The ter-
minology arises from the fact that friction is often considered a bad
thing, so a mechanical device that can vibrate for many oscillations
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d / 1. Pushing a child on a
swing gradually puts more and
more energy into her vibrations.
2. A fairly realistic graph of the
driving force acting on the child.
3. A less realistic, but more
mathematically simple, driving
force.

before it loses a significant fraction of its energy would be considered
a high-quality device.

Exponential decay in a trumpet example 3
. The vibrations of the air column inside a trumpet have a Q of
about 10. This means that even after the trumpet player stops
blowing, the note will keep sounding for a short time. If the player
suddenly stops blowing, how will the sound intensity 20 cycles
later compare with the sound intensity while she was still blowing?

. The trumpet’s Q is 10, so after 10 cycles the energy will have
fallen off by a factor of 535. After another 10 cycles we lose an-
other factor of 535, so the sound intensity is reduced by a factor
of 535× 535 = 2.9× 105.

The decay of a musical sound is part of what gives it its charac-
ter, and a good musical instrument should have the right Q, but the
Q that is considered desirable is different for different instruments.
A guitar is meant to keep on sounding for a long time after a string
has been plucked, and might have a Q of 1000 or 10000. One of the
reasons why a cheap synthesizer sounds so bad is that the sound
suddenly cuts off after a key is released.

Q of a stereo speaker example 4
Stereo speakers are not supposed to reverberate or “ring” after an
electrical signal that stops suddenly. After all, the recorded music
was made by musicians who knew how to shape the decays of
their notes correctly. Adding a longer “tail” on every note would
make it sound wrong. We therefore expect that stereo speaker
will have a very low Q, and indeed, most speakers are designed
with a Q of about 1. (Low-quality speakers with larger Q values
are referred to as “boomy.”)

We will see later in the chapter that there are other reasons why
a speaker should not have a high Q.

18.3 Putting energy into vibrations

When pushing a child on a swing, you cannot just apply a con-
stant force. A constant force will move the swing out to a certain
angle, but will not allow the swing to start swinging. Nor can you
give short pushes at randomly chosen times. That type of ran-
dom pushing would increase the child’s kinetic energy whenever you
happened to be pushing in the same direction as her motion, but it
would reduce her energy when your pushing happened to be in the
opposite direction compared to her motion. To make her build up
her energy, you need to make your pushes rhythmic, pushing at the
same point in each cycle. In other words, your force needs to form a
repeating pattern with the same frequency as the normal frequency
of vibration of the swing. Graph d/1 shows what the child’s x − t
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e / The amplitude approaches a
maximum.

graph would look like as you gradually put more and more energy
into her vibrations. A graph of your force versus time would prob-
ably look something like graph 2. It turns out, however, that it is
much simpler mathematically to consider a vibration with energy
being pumped into it by a driving force that is itself a sine-wave, 3.
A good example of this is your eardrum being driven by the force
of a sound wave.

Now we know realistically that the child on the swing will not
keep increasing her energy forever, nor does your eardrum end up
exploding because a continuing sound wave keeps pumping more and
more energy into it. In any realistic system, there is energy going
out as well as in. As the vibrations increase in amplitude, there is an
increase in the amount of energy taken away by damping with each
cycle. This occurs for two reasons. Work equals force times distance
(or, more accurately, the area under the force-distance curve). As
the amplitude of the vibrations increases, the damping force is being
applied over a longer distance. Furthermore, the damping force
usually increases with velocity (we usually assume for simplicity
that it is proportional to velocity), and this also serves to increase
the rate at which damping forces remove energy as the amplitude
increases. Eventually (and small children and our eardrums are
thankful for this!), the amplitude approaches a maximum value, e,
at which energy is removed by the damping force just as quickly as
it is being put in by the driving force.

This process of approaching a maximum amplitude happens ex-
tremely quickly in many cases, e.g., the ear or a radio receiver, and
we don’t even notice that it took a millisecond or a microsecond
for the vibrations to “build up steam.” We are therefore mainly
interested in predicting the behavior of the system once it has had
enough time to reach essentially its maximum amplitude. This is
known as the steady-state behavior of a vibrating system.

Now comes the interesting part: what happens if the frequency
of the driving force is mismatched to the frequency at which the
system would naturally vibrate on its own? We all know that a
radio station doesn’t have to be tuned in exactly, although there is
only a small range over which a given station can be received. The
designers of the radio had to make the range fairly small to make it
possible to eliminate unwanted stations that happened to be nearby
in frequency, but it couldn’t be too small or you wouldn’t be able
to adjust the knob accurately enough. (Even a digital radio can
be tuned to 88.0 MHz and still bring in a station at 88.1 MHz.)
The ear also has some natural frequency of vibration, but in this
case the range of frequencies to which it can respond is quite broad.
Evolution has made the ear’s frequency response as broad as pos-
sible because it was to our ancestors’ advantage to be able to hear
everything from a low roar to a high-pitched shriek.
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The remainder of this section develops four important facts about
the response of a system to a driving force whose frequency is not
necessarily the same as the system’s natural frequency of vibration.
The style is approximate and intuitive, but proofs are given in sec-
tion 18.4.

First, although we know the ear has a frequency — about 4000
Hz — at which it would vibrate naturally, it does not vibrate at
4000 Hz in response to a low-pitched 200 Hz tone. It always re-
sponds at the frequency at which it is driven. Otherwise all pitches
would sound like 4000 Hz to us. This is a general fact about driven
vibrations:

(1) The steady-state response to a sinusoidal driving force oc-
curs at the frequency of the force, not at the system’s own natural
frequency of vibration.

Now let’s think about the amplitude of the steady-state response.
Imagine that a child on a swing has a natural frequency of vibration
of 1 Hz, but we are going to try to make her swing back and forth at
3 Hz. We intuitively realize that quite a large force would be needed
to achieve an amplitude of even 30 cm, i.e., the amplitude is less in
proportion to the force. When we push at the natural frequency of
1 Hz, we are essentially just pumping energy back into the system
to compensate for the loss of energy due to the damping (friction)
force. At 3 Hz, however, we are not just counteracting friction. We
are also providing an extra force to make the child’s momentum
reverse itself more rapidly than it would if gravity and the tension
in the chain were the only forces acting. It is as if we are artificially
increasing the k of the swing, but this is wasted effort because we
spend just as much time decelerating the child (taking energy out
of the system) as accelerating her (putting energy in).

Now imagine the case in which we drive the child at a very
low frequency, say 0.02 Hz or about one vibration per minute. We
are essentially just holding the child in position while very slowly
walking back and forth. Again we intuitively recognize that the
amplitude will be very small in proportion to our driving force.
Imagine how hard it would be to hold the child at our own head-
level when she is at the end of her swing! As in the too-fast 3 Hz
case, we are spending most of our effort in artificially changing the
k of the swing, but now rather than reinforcing the gravity and
tension forces we are working against them, effectively reducing k.
Only a very small part of our force goes into counteracting friction,
and the rest is used in repetitively putting potential energy in on
the upswing and taking it back out on the downswing, without any
long-term gain.

We can now generalize to make the following statement, which
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f / The collapsed section of
the Nimitz Freeway.

is true for all driven vibrations:

(2) A vibrating system resonates at its own natural frequency.1

That is, the amplitude of the steady-state response is greatest in
proportion to the amount of driving force when the driving force
matches the natural frequency of vibration.

An opera singer breaking a wine glass example 5
In order to break a wineglass by singing, an opera singer must
first tap the glass to find its natural frequency of vibration, and
then sing the same note back.

Collapse of the Nimitz Freeway in an earthquake example 6
I led off the chapter with the dramatic collapse of the Tacoma
Narrows Bridge, mainly because it was well documented by a
local physics professor, and an unknown person made a movie
of the collapse. The collapse of a section of the Nimitz Freeway
in Oakland, CA, during a 1989 earthquake is however a simpler
example to analyze.

An earthquake consists of many low-frequency vibrations that oc-
cur simultaneously, which is why it sounds like a rumble of inde-
terminate pitch rather than a low hum. The frequencies that we
can hear are not even the strongest ones; most of the energy is
in the form of vibrations in the range of frequencies from about 1
Hz to 10 Hz.

Now all the structures we build are resting on geological layers
of dirt, mud, sand, or rock. When an earthquake wave comes
along, the topmost layer acts like a system with a certain natural
frequency of vibration, sort of like a cube of jello on a plate being
shaken from side to side. The resonant frequency of the layer
depends on how stiff it is and also on how deep it is. The ill-
fated section of the Nimitz freeway was built on a layer of mud,
and analysis by geologist Susan E. Hough of the U.S. Geological
Survey shows that the mud layer’s resonance was centered on
about 2.5 Hz, and had a width covering a range from about 1 Hz
to 4 Hz.

When the earthquake wave came along with its mixture of fre-
quencies, the mud responded strongly to those that were close to
its own natural 2.5 Hz frequency. Unfortunately, an engineering
analysis after the quake showed that the overpass itself had a res-
onant frequency of 2.5 Hz as well! The mud responded strongly to
the earthquake waves with frequencies close to 2.5 Hz, and the
bridge responded strongly to the 2.5 Hz vibrations of the mud,
causing sections of it to collapse.

Collapse of the Tacoma Narrows Bridge example 7
Let’s now examine the more conceptually difficult case of the
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Tacoma Narrows Bridge. The surprise here is that the wind was
steady. If the wind was blowing at constant velocity, why did it
shake the bridge back and forth? The answer is a little compli-
cated. Based on film footage and after-the-fact wind tunnel exper-
iments, it appears that two different mechanisms were involved.

The first mechanism was the one responsible for the initial, rel-
atively weak vibrations, and it involved resonance. As the wind
moved over the bridge, it began acting like a kite or an airplane
wing. As shown in the figure, it established swirling patterns of air
flow around itself, of the kind that you can see in a moving cloud
of smoke. As one of these swirls moved off of the bridge, there
was an abrupt change in air pressure, which resulted in an up or
down force on the bridge. We see something similar when a flag
flaps in the wind, except that the flag’s surface is usually verti-
cal. This back-and-forth sequence of forces is exactly the kind of
periodic driving force that would excite a resonance. The faster
the wind, the more quickly the swirls would get across the bridge,
and the higher the frequency of the driving force would be. At just
the right velocity, the frequency would be the right one to excite
the resonance. The wind-tunnel models, however, show that the
pattern of vibration of the bridge excited by this mechanism would
have been a different one than the one that finally destroyed the
bridge.

The bridge was probably destroyed by a different mechanism, in
which its vibrations at its own natural frequency of 0.2 Hz set up
an alternating pattern of wind gusts in the air immediately around
it, which then increased the amplitude of the bridge’s vibrations.
This vicious cycle fed upon itself, increasing the amplitude of the
vibrations until the bridge finally collapsed.

As long as we’re on the subject of collapsing bridges, it is worth
bringing up the reports of bridges falling down when soldiers march-
ing over them happened to step in rhythm with the bridge’s natural
frequency of oscillation. This is supposed to have happened in 1831
in Manchester, England, and again in 1849 in Anjou, France. Many
modern engineers and scientists, however, are suspicious of the anal-
ysis of these reports. It is possible that the collapses had more to do
with poor construction and overloading than with resonance. The
Nimitz Freeway and Tacoma Narrows Bridge are far better docu-
mented, and occurred in an era when engineers’ abilities to analyze
the vibrations of a complex structure were much more advanced.

Emission and absorption of light waves by atoms example 8
In a very thin gas, the atoms are sufficiently far apart that they can
act as individual vibrating systems. Although the vibrations are of
a very strange and abstract type described by the theory of quan-
tum mechanics, they nevertheless obey the same basic rules as
ordinary mechanical vibrations. When a thin gas made of a cer-
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g / The definition of the full
width at half maximum.

tain element is heated, it emits light waves with certain specific
frequencies, which are like a fingerprint of that element. As with
all other vibrations, these atomic vibrations respond most strongly
to a driving force that matches their own natural frequency. Thus
if we have a relatively cold gas with light waves of various fre-
quencies passing through it, the gas will absorb light at precisely
those frequencies at which it would emit light if heated.

(3) When a system is driven at resonance, the steady-state vi-
brations have an amplitude that is proportional to Q.

This is fairly intuitive. The steady-state behavior is an equilib-
rium between energy input from the driving force and energy loss
due to damping. A low-Q oscillator, i.e., one with strong damping,
dumps its energy faster, resulting in lower-amplitude steady-state
motion.

self-check C
If an opera singer is shopping for a wine glass that she can impress her
friends by breaking, what should she look for? . Answer, p. 568

Piano strings ringing in sympathy with a sung note example 9
. A sufficiently loud musical note sung near a piano with the lid
raised can cause the corresponding strings in the piano to vibrate.
(A piano has a set of three strings for each note, all struck by the
same hammer.) Why would this trick be unlikely to work with a
violin?

. If you have heard the sound of a violin being plucked (the pizzi-
cato effect), you know that the note dies away very quickly. In
other words, a violin’s Q is much lower than a piano’s. This means
that its resonances are much weaker in amplitude.

Our fourth and final fact about resonance is perhaps the most
surprising. It gives us a way to determine numerically how wide
a range of driving frequencies will produce a strong response. As
shown in the graph, resonances do not suddenly fall off to zero out-
side a certain frequency range. It is usual to describe the width of a
resonance by its full width at half-maximum (FWHM) as illustrated
in figure g.

(4) The FWHM of a resonance is related to its Q and its resonant
frequency fres by the equation

FWHM =
fres
Q

.

(This equation is only a good approximation when Q is large.)
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Why? It is not immediately obvious that there should be any
logical relationship between Q and the FWHM. Here’s the idea. As
we have seen already, the reason why the response of an oscillator
is smaller away from resonance is that much of the driving force is
being used to make the system act as if it had a different k. Roughly
speaking, the half-maximum points on the graph correspond to the
places where the amount of the driving force being wasted in this
way is the same as the amount of driving force being used pro-
ductively to replace the energy being dumped out by the damping
force. If the damping force is strong, then a large amount of force
is needed to counteract it, and we can waste quite a bit of driving
force on changing k before it becomes comparable to the damping
force. If, on the other hand, the damping force is weak, then even a
small amount of force being wasted on changing k will become sig-
nificant in proportion, and we cannot get very far from the resonant
frequency before the two are comparable.

Changing the pitch of a wind instrument example 10
. A saxophone player normally selects which note to play by
choosing a certain fingering, which gives the saxophone a cer-
tain resonant frequency. The musician can also, however, change
the pitch significantly by altering the tightness of her lips. This
corresponds to driving the horn slightly off of resonance. If the
pitch can be altered by about 5% up or down (about one musi-
cal half-step) without too much effort, roughly what is the Q of a
saxophone?

. Five percent is the width on one side of the resonance, so the
full width is about 10%, FWHM / fres = 0.1. This implies a Q
of about 10, i.e., once the musician stops blowing, the horn will
continue sounding for about 10 cycles before its energy falls off by
a factor of 535. (Blues and jazz saxophone players will typically
choose a mouthpiece that has a low Q, so that they can produce
the bluesy pitch-slides typical of their style. “Legit,” i.e., classically
oriented players, use a higher-Q setup because their style only
calls for enough pitch variation to produce a vibrato.)

Decay of a saxophone tone example 11
. If a typical saxophone setup has a Q of about 10, how long will
it take for a 100-Hz tone played on a baritone saxophone to die
down by a factor of 535 in energy, after the player suddenly stops
blowing?

. A Q of 10 means that it takes 10 cycles for the vibrations to die
down in energy by a factor of 535. Ten cycles at a frequency of
100 Hz would correspond to a time of 0.1 seconds, which is not
very long. This is why a saxophone note doesn’t “ring” like a note
played on a piano or an electric guitar.

Q of a radio receiver example 12
. A radio receiver used in the FM band needs to be tuned in to
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h / Example 14. 1. A com-
pass needle vibrates about the
equilibrium position under the
influence of the earth’s magnetic
forces. 2. The orientation of a
proton’s spin vibrates around its
equilibrium direction under the
influence of the magnetic forces
coming from the surrounding
electrons and nuclei.

i / A member of the author’s
family, who turned out to be
healthy.

j / A three-dimensional com-
puter reconstruction of the shape
of a human brain, based on
magnetic resonance data.

within about 0.1 MHz for signals at about 100 MHz. What is its
Q?

. Q = fres/FWHM = 1000. This is an extremely high Q compared
to most mechanical systems.

Q of a stereo speaker example 13
We have already given one reason why a stereo speaker should
have a low Q: otherwise it would continue ringing after the end of
the musical note on the recording. The second reason is that we
want it to be able to respond to a large range of frequencies.

Nuclear magnetic resonance example 14
If you have ever played with a magnetic compass, you have un-

doubtedly noticed that if you shake it, it takes some time to settle
down, h/1. As it settles down, it acts like a damped oscillator of
the type we have been discussing. The compass needle is simply
a small magnet, and the planet earth is a big magnet. The mag-
netic forces between them tend to bring the needle to an equilib-
rium position in which it lines up with the planet-earth-magnet.

Essentially the same physics lies behind the technique called Nu-
clear Magnetic Resonance (NMR). NMR is a technique used to
deduce the molecular structure of unknown chemical substances,
and it is also used for making medical images of the inside of peo-
ple’s bodies. If you ever have an NMR scan, they will actually tell
you you are undergoing “magnetic resonance imaging” or “MRI,”
because people are scared of the word “nuclear.” In fact, the
nuclei being referred to are simply the non-radioactive nuclei of
atoms found naturally in your body.

Here’s how NMR works. Your body contains large numbers of
hydrogen atoms, each consisting of a small, lightweight electron
orbiting around a large, heavy proton. That is, the nucleus of a
hydrogen atom is just one proton. A proton is always spinning
on its own axis, and the combination of its spin and its electrical
charge causes it to behave like a tiny magnet. The principle is
identical to that of an electromagnet, which consists of a coil of
wire through which electrical charges pass; the circling motion of
the charges in the coil of wire makes it magnetic, and in the same
way, the circling motion of the proton’s charge makes it magnetic.

Now a proton in one of your body’s hydrogen atoms finds itself
surrounded by many other whirling, electrically charged particles:
its own electron, plus the electrons and nuclei of the other nearby
atoms. These neighbors act like magnets, and exert magnetic
forces on the proton, h/2. The k of the vibrating proton is simply a
measure of the total strength of these magnetic forces. Depend-
ing on the structure of the molecule in which the hydrogen atom
finds itself, there will be a particular set of magnetic forces acting
on the proton and a particular value of k . The NMR apparatus
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k / Driving at a frequency above
resonance.

l / Driving at resonance.

m / Driving at a frequency
below resonance.

bombards the sample with radio waves, and if the frequency of
the radio waves matches the resonant frequency of the proton,
the proton will absorb radio-wave energy strongly and oscillate
wildly. Its vibrations are damped not by friction, because there is
no friction inside an atom, but by the reemission of radio waves.

By working backward through this chain of reasoning, one can de-
termine the geometric arrangement of the hydrogen atom’s neigh-
boring atoms. It is also possible to locate atoms in space, allowing
medical images to be made.

Finally, it should be noted that the behavior of the proton cannot
be described entirely correctly by Newtonian physics. Its vibra-
tions are of the strange and spooky kind described by the laws of
quantum mechanics. It is impressive, however, that the few sim-
ple ideas we have learned about resonance can still be applied
successfully to describe many aspects of this exotic system.

Discussion question

A Nikola Tesla, one of the inventors of radio and an archetypical mad
scientist, told a credulous reporter in 1912 the following story about an
application of resonance. He built an electric vibrator that fit in his pocket,
and attached it to one of the steel beams of a building that was under
construction in New York. Although the article in which he was quoted
didn’t say so, he presumably claimed to have tuned it to the resonant fre-
quency of the building. “In a few minutes, I could feel the beam trembling.
Gradually the trembling increased in intensity and extended throughout
the whole great mass of steel. Finally, the structure began to creak and
weave, and the steelworkers came to the ground panic-stricken, believ-
ing that there had been an earthquake. ... [If] I had kept on ten minutes
more, I could have laid that building flat in the street.” Is this physically
plausible?

18.4 ? Proofs
Our first goal is to predict the amplitude of the steady-state vibra-
tions as a function of the frequency of the driving force and the
amplitude of the driving force. With that equation in hand, we will
then prove statements 2, 3, and 4 from section 18.3. We assume
without proof statement 1, that the steady-state motion occurs at
the same frequency as the driving force.

As with the proof in chapter 17, we make use of the fact that
a sinusoidal vibration is the same as the projection of circular mo-
tion onto a line. We visualize the system shown in figures k-m,
in which the mass swings in a circle on the end of a spring. The
spring does not actually change its length at all, but it appears to
from the flattened perspective of a person viewing the system edge-
on. The radius of the circle is the amplitude, A, of the vibrations
as seen edge-on. The damping force can be imagined as a back-
ward drag force supplied by some fluid through which the mass is
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moving. As usual, we assume that the damping is proportional to
velocity, and we use the symbol b for the proportionality constant,
|Fd| = bv. The driving force, represented by a hand towing the mass
with a string, has a tangential component |Ft| which counteracts the
damping force, |Ft| = |Fd|, and a radial component Fr which works
either with or against the spring’s force, depending on whether we
are driving the system above or below its resonant frequency.

The speed of the rotating mass is the circumference of the circle
divided by the period, v = 2πA/T , its acceleration (which is directly
inward) is a = v2/r, and Newton’s second law gives a = F/m =
(kA + Fr)/m. We write fo for 1

2π

√
k/m. Straightforward algebra

yields

[1]
Fr
Ft

=
2πm

bf

(
f2 − f2

o

)
.

This is the ratio of the wasted force to the useful force, and we see
that it becomes zero when the system is driven at resonance.

The amplitude of the vibrations can be found by attacking the
equation |Ft| = bv = 2πbAf , which gives

[2] A =
|Ft|

2πbf
.(2)

However, we wish to know the amplitude in terms of |F|, not |Ft|.
From now on, let’s drop the cumbersome magnitude symbols. With
the Pythagorean theorem, it is easily proved that

[3] Ft =
F√

1 +
(
Fr
Ft

)2
, (3)

and equations 1-3 can then be combined to give the final result

[4] A =
F

2π

√
4π2m2 (f2 − f2

o )2 + b2f2

.

Statement 2: maximum amplitude at resonance

Equation [4] makes it plausible that the amplitude is maximized
when the system is driven at close to its resonant frequency. At
f = fo, the first term inside the square root vanishes, and this
makes the denominator as small as possible, causing the amplitude
to be as big as possible. (Actually this is only approximately true,
because it is possible to make A a little bigger by decreasing f a little
below fo, which makes the second term smaller. This technical issue
is addressed in homework problem 3 on page 489.)

Statement 3: amplitude at resonance proportional to Q

Equation [4] shows that the amplitude at resonance is propor-
tional to 1/b, and the Q of the system is inversely proportional to
b, so the amplitude at resonance is proportional to Q.
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Statement 4: FWHM related to Q

We will satisfy ourselves by proving only the proportionality
FWHM ∝ fo/Q, not the actual equation FWHM = fo/Q. The
energy is proportional to A2, i.e., to the inverse of the quantity
inside the square root in equation [4]. At resonance, the first term
inside the square root vanishes, and the half-maximum points occur
at frequencies for which the whole quantity inside the square root
is double its value at resonance, i.e., when the two terms are equal.
At the half-maximum points, we have

f2 − f2
o =

(
fo ±

FWHM

2

)2

− f2
o

= ±fo · FWHM +
1

4
FWHM2

If we assume that the width of the resonance is small compared to
the resonant frequency, then the FWHM2 term is negligible com-
pared to the fo · FWHM term, and setting the terms in equation 4
equal to each other gives

4π2m2 (foFWHM)2 = b2f2.

We are assuming that the width of the resonance is small compared
to the resonant frequency, so f and fo can be taken as synonyms.
Thus,

FWHM =
b

2πm
.

We wish to connect this to Q, which can be interpreted as the en-
ergy of the free (undriven) vibrations divided by the work done by
damping in one cycle. The former equals kA2/2, and the latter is
proportional to the force, bv ∝ bAfo, multiplied by the distance
traveled, A. (This is only a proportionality, not an equation, since
the force is not constant.) We therefore find that Q is proportional
to k/bfo. The equation for the FWHM can then be restated as a
proportionality FWHM ∝ k/Qfom ∝ fo/Q.
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Summary
Selected vocabulary
damping . . . . . the dissipation of a vibration’s energy into

heat energy, or the frictional force that causes
the loss of energy

quality factor . . the number of oscillations required for a sys-
tem’s energy to fall off by a factor of 535 due
to damping

driving force . . . an external force that pumps energy into a vi-
brating system

resonance . . . . the tendency of a vibrating system to respond
most strongly to a driving force whose fre-
quency is close to its own natural frequency
of vibration

steady state . . . the behavior of a vibrating system after it has
had plenty of time to settle into a steady re-
sponse to a driving force

Notation
Q . . . . . . . . . the quality factor
fo . . . . . . . . . the natural (resonant) frequency of a vibrating

system, i.e., the frequency at which it would
vibrate if it was simply kicked and left alone

f . . . . . . . . . . the frequency at which the system actually vi-
brates, which in the case of a driven system is
equal to the frequency of the driving force, not
the natural frequency

Summary

The energy of a vibration is always proportional to the square of
the amplitude, assuming the amplitude is small. Energy is lost from
a vibrating system for various reasons such as the conversion to heat
via friction or the emission of sound. This effect, called damping,
will cause the vibrations to decay exponentially unless energy is
pumped into the system to replace the loss. A driving force that
pumps energy into the system may drive the system at its own
natural frequency or at some other frequency. When a vibrating
system is driven by an external force, we are usually interested in
its steady-state behavior, i.e., its behavior after it has had time to
settle into a steady response to a driving force. In the steady state,
the same amount of energy is pumped into the system during each
cycle as is lost to damping during the same period.

The following are four important facts about a vibrating system
being driven by an external force:

(1) The steady-state response to a sinusoidal driving force oc-
curs at the frequency of the force, not at the system’s own natural
frequency of vibration.
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(2) A vibrating system resonates at its own natural frequency.
That is, the amplitude of the steady-state response is greatest in
proportion to the amount of driving force when the driving force
matches the natural frequency of vibration.

(3) When a system is driven at resonance, the steady-state vi-
brations have an amplitude that is proportional to Q.

(4) The FWHM of a resonance is related to its Q and its resonant
frequency fo by the equation

FWHM =
fo

Q
.

(This equation is only a good approximation when Q is large.)
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 If one stereo system is capable of producing 20 watts of sound
power and another can put out 50 watts, how many times greater
is the amplitude of the sound wave that can be created by the more
powerful system? (Assume they are playing the same music.)

2 Many fish have an organ known as a swim bladder, an air-
filled cavity whose main purpose is to control the fish’s buoyancy
and allow it to keep from rising or sinking without having to use its
muscles. In some fish, however, the swim bladder (or a small exten-
sion of it) is linked to the ear and serves the additional purpose of
amplifying sound waves. For a typical fish having such an anatomy,
the bladder has a resonant frequency of 300 Hz, the bladder’s Q is 3,
and the maximum amplification is about a factor of 100 in energy.
Over what range of frequencies would the amplification be at least
a factor of 50?

√

3 As noted in section 18.4, it is only approximately true that the
amplitude has its maximum at the natural frequency (1/2π)

√
k/m.

Being more careful, we should actually define two different symbols,
fo = (1/2π)

√
k/m and fres for the slightly different frequency at

which the amplitude is a maximum, i.e., the actual resonant fre-
quency. In this notation, the amplitude as a function of frequency
is

A =
F

2π
√

4π2m2
(
f2 − f2

0

)2
+ b2f2

.

Show that the maximum occurs not at fo but rather at

fres =

√
f2

0 −
b2

8π2m2
=

√
f2

0 −
1

2
FWHM2

Hint: Finding the frequency that minimizes the quantity inside the
square root is equivalent to, but much easier than, finding the fre-
quency that maximizes the amplitude.

∫
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4 (a) Let W be the amount of work done by friction in the first
cycle of oscillation, i.e., the amount of energy lost to heat. Find
the fraction of the original energy E that remains in the oscillations
after n cycles of motion.

(b) From this, prove the equation(
1− W

E

)Q
= e−2π

(recalling that the number 535 in the definition of Q is e2π).

(c) Use this to prove the approximation 1/Q ≈ (1/2π)W/E. (Hint:
Use the approximation ln(1 +x) ≈ x, which is valid for small values
of x, as shown on p. 1061.)

5 The goal of this problem is to refine the proportionality
FWHM ∝ fres/Q into the equation FWHM = fres/Q, i.e., to prove
that the constant of proportionality equals 1.

(a) Show that the work done by a damping force F = −bv over one
cycle of steady-state motion equals Wdamp = −2π2bfA2. Hint: It
is less confusing to calculate the work done over half a cycle, from
x = −A to x = +A, and then double it.

(b) Show that the fraction of the undriven oscillator’s energy lost to
damping over one cycle is |Wdamp|/E = 4π2bf/k.

(c) Use the previous result, combined with the result of problem 4,
to prove that Q equals k/2πbf .

(d) Combine the preceding result for Q with the equation FWHM =
b/2πm from section 18.4 to prove the equation FWHM = fres/Q.∫

?

6 (a) We observe that the amplitude of a certain free oscillation
decreases from Ao to Ao/Z after n oscillations. Find its Q.

√

(b) The figure is from Shape memory in Spider draglines, Emile,
Le Floch, and Vollrath, Nature 440:621 (2006). Panel 1 shows an
electron microscope’s image of a thread of spider silk. In 2, a spi-
der is hanging from such a thread. From an evolutionary point of
view, it’s probably a bad thing for the spider if it twists back and
forth while hanging like this. (We’re referring to a back-and-forth
rotation about the axis of the thread, not a swinging motion like a
pendulum.) The authors speculate that such a vibration could make
the spider easier for predators to see, and it also seems to me that
it would be a bad thing just because the spider wouldn’t be able
to control its orientation and do what it was trying to do. Panel 3
shows a graph of such an oscillation, which the authors measured
using a video camera and a computer, with a 0.1 g mass hung from it
in place of a spider. Compared to human-made fibers such as kevlar
or copper wire, the spider thread has an unusual set of properties:
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Problem 6.

1. It has a low Q, so the vibrations damp out quickly.

2. It doesn’t become brittle with repeated twisting as a copper
wire would.

3. When twisted, it tends to settle in to a new equilibrium angle,
rather than insisting on returning to its original angle. You
can see this in panel 2, because although the experimenters
initially twisted the wire by 35 degrees, the thread only per-
formed oscillations with an amplitude much smaller than ±35
degrees, settling down to a new equilibrium at 27 degrees.

4. Over much longer time scales (hours), the thread eventually
resets itself to its original equilbrium angle (shown as zero
degrees on the graph). (The graph reproduced here only shows
the motion over a much shorter time scale.) Some human-
made materials have this “memory” property as well, but they
typically need to be heated in order to make them go back to
their original shapes.

Focusing on property number 1, estimate the Q of spider silk from
the graph.

√
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Exercise 18: Resonance
1. Compare the oscillator’s energies at A, B, C, and D.

2. Compare the Q values of the two oscillators.

3. Match the x-t graphs in #2 with the amplitude-frequency graphs below.
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a / Dipping a finger in some
water, 1, causes a disturbance
that spreads outward, 2.

“The Great Wave Off Kanagawa,” by Katsushika Hokusai (1760-1849).

Chapter 19

Free Waves

Your vocal cords or a saxophone reed can vibrate, but being able
to vibrate wouldn’t be of much use unless the vibrations could be
transmitted to the listener’s ear by sound waves. What are waves
and why do they exist? Put your fingertip in the middle of a cup
of water and then remove it suddenly. You will have noticed two
results that are surprising to most people. First, the flat surface
of the water does not simply sink uniformly to fill in the volume
vacated by your finger. Instead, ripples spread out, and the process
of flattening out occurs over a long period of time, during which
the water at the center vibrates above and below the normal water
level. This type of wave motion is the topic of the present chapter.
Second, you have found that the ripples bounce off of the walls of
the cup, in much the same way that a ball would bounce off of a
wall. In the next chapter we discuss what happens to waves that
have a boundary around them. Until then, we confine ourselves to
wave phenomena that can be analyzed as if the medium (e.g., the
water) was infinite and the same everywhere.

It isn’t hard to understand why removing your fingertip creates
ripples rather than simply allowing the water to sink back down
uniformly. The initial crater, (a), left behind by your finger has
sloping sides, and the water next to the crater flows downhill to fill
in the hole. The water far away, on the other hand, initially has
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no way of knowing what has happened, because there is no slope
for it to flow down. As the hole fills up, the rising water at the
center gains upward momentum, and overshoots, creating a little
hill where there had been a hole originally. The area just outside of
this region has been robbed of some of its water in order to build
the hill, so a depressed “moat” is formed, (b). This effect cascades
outward, producing ripples.
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b / The two circular patterns of
ripples pass through each other.
Unlike material objects, wave pat-
terns can overlap in space, and
when this happens they combine
by addition.

19.1 Wave motion
There are three main ways in which wave motion differs from the
motion of objects made of matter.

1. Superposition

The most profound difference is that waves do not display any-
thing analogous to the normal forces between objects that come in
contact. Two wave patterns can therefore overlap in the same re-
gion of space, as shown in figure b. Where the two waves coincide,
they add together. For instance, suppose that at a certain loca-
tion in at a certain moment in time, each wave would have had a
crest 3 cm above the normal water level. The waves combine at this
point to make a 6-cm crest. We use negative numbers to represent
depressions in the water. If both waves would have had a trough
measuring -3 cm, then they combine to make an extra-deep -6 cm
trough. A +3 cm crest and a -3 cm trough result in a height of zero,
i.e., the waves momentarily cancel each other out at that point.
This additive rule is referred to as the principle of superposition,
“superposition” being merely a fancy word for “adding.”

Superposition can occur not just with sinusoidal waves like the
ones in the figure above but with waves of any shape. The figures
on the following page show superposition of wave pulses. A pulse is
simply a wave of very short duration. These pulses consist only of
a single hump or trough. If you hit a clothesline sharply, you will
observe pulses heading off in both directions. This is analogous to
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the way ripples spread out in all directions when you make a distur-
bance at one point on water. The same occurs when the hammer
on a piano comes up and hits a string.

Experiments to date have not shown any deviation from the
principle of superposition in the case of light waves. For other types
of waves, it is typically a very good approximation for low-energy
waves.

Discussion question

A In figure c/3, the fifth frame shows the spring just about perfectly
flat. If the two pulses have essentially canceled each other out perfectly,
then why does the motion pick up again? Why doesn’t the spring just stay
flat?

c / These pictures show the motion of wave pulses along a spring. To make a pulse, one end of the
spring was shaken by hand. Movies were filmed, and a series of frame chosen to show the motion. 1. A pulse
travels to the left. 2. Superposition of two colliding positive pulses. 3. Superposition of two colliding pulses, one
positive and one negative.
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e / As the wave pulse goes
by, the ribbon tied to the spring
is not carried along. The motion
of the wave pattern is to the
right, but the medium (spring) is
moving up and down, not to the
right.

d / As the wave pattern passes the rubber duck, the duck stays
put. The water isn’t moving forward with the wave.

2. The medium is not transported with the wave.

Figure d shows a series of water waves before it has reached a
rubber duck (left), having just passed the duck (middle) and having
progressed about a meter beyond the duck (right). The duck bobs
around its initial position, but is not carried along with the wave.
This shows that the water itself does not flow outward with the
wave. If it did, we could empty one end of a swimming pool simply
by kicking up waves! We must distinguish between the motion of
the medium (water in this case) and the motion of the wave pattern
through the medium. The medium vibrates; the wave progresses
through space.

self-check A
In figure e, you can detect the side-to-side motion of the spring because
the spring appears blurry. At a certain instant, represented by a single
photo, how would you describe the motion of the different parts of the
spring? Other than the flat parts, do any parts of the spring have zero
velocity? . Answer, p. 568

A worm example 1
The worm in the figure is moving to the right. The wave pattern,
a pulse consisting of a compressed area of its body, moves to
the left. In other words, the motion of the wave pattern is in the
opposite direction compared to the motion of the medium.
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f / Example 2. The surfer is
dragging his hand in the water.

g / Example 3: a breaking
wave.

h / Example 4. The boat has
run up against a limit on its speed
because it can’t climb over its
own wave. Dolphins get around
the problem by leaping out of the
water.

Surfing example 2
The incorrect belief that the medium moves with the wave is often
reinforced by garbled secondhand knowledge of surfing. Anyone
who has actually surfed knows that the front of the board pushes
the water to the sides, creating a wake — the surfer can even drag
his hand through the water, as in figure f. If the water was moving
along with the wave and the surfer, this wouldn’t happen. The
surfer is carried forward because forward is downhill, not because
of any forward flow of the water. If the water was flowing forward,
then a person floating in the water up to her neck would be carried
along just as quickly as someone on a surfboard. In fact, it is even
possible to surf down the back side of a wave, although the ride
wouldn’t last very long because the surfer and the wave would
quickly part company.

3. A wave’s velocity depends on the medium.

A material object can move with any velocity, and can be sped
up or slowed down by a force that increases or decreases its kinetic
energy. Not so with waves. The magnitude of a wave’s velocity
depends on the properties of the medium (and perhaps also on the
shape of the wave, for certain types of waves). Sound waves travel
at about 340 m/s in air, 1000 m/s in helium. If you kick up water
waves in a pool, you will find that kicking harder makes waves that
are taller (and therefore carry more energy), not faster. The sound
waves from an exploding stick of dynamite carry a lot of energy,
but are no faster than any other waves. Thus although both waves
and physical objects carry energy as they move through space, the
energy of the wave relates to its amplitude, not to its speed.

In the following section we will give an example of the physi-
cal relationship between the wave speed and the properties of the
medium.

Breaking waves example 3
The velocity of water waves increases with depth. The crest of a
wave travels faster than the trough, and this can cause the wave
to break.

Once a wave is created, the only reason its speed will change is
if it enters a different medium or if the properties of the medium
change. It is not so surprising that a change in medium can slow
down a wave, but the reverse can also happen. A sound wave trav-
eling through a helium balloon will slow down when it emerges into
the air, but if it enters another balloon it will speed back up again!
Similarly, water waves travel more quickly over deeper water, so a
wave will slow down as it passes over an underwater ridge, but speed
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i / Circular and linear wave
patterns.

j / Plane and spherical wave
patterns.

up again as it emerges into deeper water.

Hull speed example 4
The speeds of most boats, and of some surface-swimming ani-
mals, are limited by the fact that they make a wave due to their
motion through the water. The boat in figure h is going at the
same speed as its own waves, and can’t go any faster. No mat-
ter how hard the boat pushes against the water, it can’t make
the wave move ahead faster and get out of the way. The wave’s
speed depends only on the medium. Adding energy to the wave
doesn’t speed it up, it just increases its amplitude.

A water wave, unlike many other types of wave, has a speed that
depends on its shape: a broader wave moves faster. The shape
of the wave made by a boat tends to mold itself to the shape of
the boat’s hull, so a boat with a longer hull makes a broader wave
that moves faster. The maximum speed of a boat whose speed is
limited by this effect is therefore closely related to the length of its
hull, and the maximum speed is called the hull speed. Sailboats
designed for racing are not just long and skinny to make them
more streamlined — they are also long so that their hull speeds
will be high.

Wave patterns

If the magnitude of a wave’s velocity vector is preordained, what
about its direction? Waves spread out in all directions from every
point on the disturbance that created them. If the disturbance is
small, we may consider it as a single point, and in the case of water
waves the resulting wave pattern is the familiar circular ripple, i/1.
If, on the other hand, we lay a pole on the surface of the water
and wiggle it up and down, we create a linear wave pattern, i/2.
For a three-dimensional wave such as a sound wave, the analogous
patterns would be spherical waves and plane waves, j.

Infinitely many patterns are possible, but linear or plane waves
are often the simplest to analyze, because the velocity vector is in
the same direction no matter what part of the wave we look at. Since
all the velocity vectors are parallel to one another, the problem is
effectively one-dimensional. Throughout this chapter and the next,
we will restrict ourselves mainly to wave motion in one dimension,
while not hesitating to broaden our horizons when it can be done
without too much complication.
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k / Hitting a key on a piano
causes a hammer to come up
from underneath and hit a string
(actually a set of three strings).
The result is a pair of pulses
moving away from the point of
impact.

l / A string is struck with a
hammer, 1, and two pulses fly off,
2.

m / A continuous string can
be modeled as a series of
discrete masses connected by
springs.

Discussion questions

A [see above]

B Sketch two positive wave pulses on a string that are overlapping but
not right on top of each other, and draw their superposition. Do the same
for a positive pulse running into a negative pulse.

C A traveling wave pulse is moving to the right on a string. Sketch the
velocity vectors of the various parts of the string. Now do the same for a
pulse moving to the left.

D In a spherical sound wave spreading out from a point, how would
the energy of the wave fall off with distance?

19.2 Waves on a string
So far you have learned some counterintuitive things about the be-
havior of waves, but intuition can be trained. The first half of this
section aims to build your intuition by investigating a simple, one-
dimensional type of wave: a wave on a string. If you have ever
stretched a string between the bottoms of two open-mouthed cans
to talk to a friend, you were putting this type of wave to work.
Stringed instruments are another good example. Although we usu-
ally think of a piano wire simply as vibrating, the hammer actually
strikes it quickly and makes a dent in it, which then ripples out in
both directions. Since this chapter is about free waves, not bounded
ones, we pretend that our string is infinitely long.

After the qualitative discussion, we will use simple approxima-
tions to investigate the speed of a wave pulse on a string. This quick
and dirty treatment is then followed by a rigorous attack using the
methods of calculus, which may be skipped by the student who has
not studied calculus. How far you penetrate in this section is up to
you, and depends on your mathematical self-confidence. If you skip
some of the math, you should nevertheless absorb the significance
of the result, discussed on p. 504.

Intuitive ideas

Consider a string that has been struck, l/1, resulting in the cre-
ation of two wave pulses, 2, one traveling to the left and one to the
right. This is analogous to the way ripples spread out in all direc-
tions from a splash in water, but on a one-dimensional string, “all
directions” becomes “both directions.”

We can gain insight by modeling the string as a series of masses
connected by springs. (In the actual string the mass and the springi-
ness are both contributed by the molecules themselves.) If we look
at various microscopic portions of the string, there will be some ar-
eas that are flat, m/1, some that are sloping but not curved, 2, and
some that are curved, 3 and 4. In example 1 it is clear that both the
forces on the central mass cancel out, so it will not accelerate. The
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n / A triangular pulse spreads out.

same is true of 2, however. Only in curved regions such as 3 and 4
is an acceleration produced. In these examples, the vector sum of
the two forces acting on the central mass is not zero. The impor-
tant concept is that curvature makes force: the curved areas of a
wave tend to experience forces resulting in an acceleration toward
the mouth of the curve. Note, however, that an uncurved portion
of the string need not remain motionless. It may move at constant
velocity to either side.

Approximate treatment

We now carry out an approximate treatment of the speed at
which two pulses will spread out from an initial indentation on a
string. For simplicity, we imagine a hammer blow that creates a tri-
angular dent, n/1. We will estimate the amount of time, t, required
until each of the pulses has traveled a distance equal to the width
of the pulse itself. The velocity of the pulses is then ±w/t.

As always, the velocity of a wave depends on the properties of
the medium, in this case the string. The properties of the string can
be summarized by two variables: the tension, T , and the mass per
unit length, µ (Greek letter mu).

If we consider the part of the string encompassed by the initial
dent as a single object, then this object has a mass of approxi-
mately µw (mass/length × length = mass). (Here, and throughout
the derivation, we assume that h is much less than w, so that we can
ignore the fact that this segment of the string has a length slightly
greater than w.) Although the downward acceleration of this seg-
ment of the string will be neither constant over time nor uniform
across the string, we will pretend that it is constant for the sake of
our simple estimate. Roughly speaking, the time interval between
n/1 and 2 is the amount of time required for the initial dent to accel-
erate from rest and reach its normal, flattened position. Of course
the tip of the triangle has a longer distance to travel than the edges,
but again we ignore the complications and simply assume that the
segment as a whole must travel a distance h. Indeed, it might seem
surprising that the triangle would so neatly spring back to a per-
fectly flat shape. It is an experimental fact that it does, but our
analysis is too crude to address such details.

The string is kinked, i.e., tightly curved, at the edges of the
triangle, so it is here that there will be large forces that do not
cancel out to zero. There are two forces acting on the triangular
hump, one of magnitude T acting down and to the right, and one
of the same magnitude acting down and to the left. If the angle
of the sloping sides is θ, then the total force on the segment equals
2T sin θ. Dividing the triangle into two right triangles, we see that
sin θ equals h divided by the length of one of the sloping sides. Since
h is much less than w, the length of the sloping side is essentially
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the same as w/2, so we have sin θ = 2h/w, and F = 4Th/w. The
acceleration of the segment (actually the acceleration of its center
of mass) is

a = F/m

= 4Th/µw2.

The time required to move a distance h under constant acceleration
a is found by solving h = 1

2at
2 to yield

t =

√
2h

a

= w

√
µ

2T
.

Our final result for the velocity of the pulses is

|v| = w

t

=

√
2T

µ
.

The remarkable feature of this result is that the velocity of the
pulses does not depend at all on w or h, i.e., any triangular pulse
has the same speed. It is an experimental fact (and we will also
prove rigorously in the following subsection) that any pulse of any
kind, triangular or otherwise, travels along the string at the same
speed. Of course, after so many approximations we cannot expect
to have gotten all the numerical factors right. The correct result for
the velocity of the pulses is

v =

√
T

µ
.

The importance of the above derivation lies in the insight it
brings —that all pulses move with the same speed — rather than in
the details of the numerical result. The reason for our too-high value
for the velocity is not hard to guess. It comes from the assumption
that the acceleration was constant, when actually the total force on
the segment would diminish as it flattened out.

Rigorous derivation using calculus (optional)

After expending considerable effort for an approximate solution,
we now display the power of calculus with a rigorous and completely
general treatment that is nevertheless much shorter and easier. Let
the flat position of the string define the x axis, so that y measures
how far a point on the string is from equilibrium. The motion of
the string is characterized by y(x, t), a function of two variables.
Knowing that the force on any small segment of string depends
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on the curvature of the string in that area, and that the second
derivative is a measure of curvature, it is not surprising to find that
the infinitesimal force dF acting on an infinitesimal segment dx is
given by

dF = T
d2 y

dx2
dx.

(This can be proved by vector addition of the two infinitesimal forces
acting on either side.) The acceleration is then a = dF/ dm, or,
substituting dm = µdx,

d2 y

dt2
=
T

µ

d2 y

dx2
.

The second derivative with respect to time is related to the second
derivative with respect to position. This is no more than a fancy
mathematical statement of the intuitive fact developed above, that
the string accelerates so as to flatten out its curves.

Before even bothering to look for solutions to this equation, we
note that it already proves the principle of superposition, because
the derivative of a sum is the sum of the derivatives. Therefore the
sum of any two solutions will also be a solution.

Based on experiment, we expect that this equation will be sat-
isfied by any function y(x, t) that describes a pulse or wave pattern
moving to the left or right at the correct speed v. In general, such
a function will be of the form y = f(x− vt) or y = f(x+ vt), where
f is any function of one variable. Because of the chain rule, each
derivative with respect to time brings out a factor of ±v. Evaluating
the second derivatives on both sides of the equation gives

(±v)2 f ′′ =
T

µ
f ′′.

Squaring gets rid of the sign, and we find that we have a valid
solution for any function f , provided that v is given by

v =

√
T

µ
.
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Significance of the result

This specific result for the speed of waves on a string, v =
√
T/µ,

is utterly unimportant. Don’t memorize it. Don’t take notes on it.
Try to erase it from your memory.

What is important about this result is that it is an example of
two things that are usually true, at least approximately, for mechan-
ical waves in general:

1. The speed at which a wave moves does not depend on the size
or shape of the wave.

2. The speed of a mechanical wave depends on a combination
of two properties of the medium: some measure of its inertia
and some measure of its tightness, i.e., the strength of the force
trying to bring the medium back toward equilibrium.

self-check B
(a) What is it about the equation v =

√
T/µ that relates to fact 1 above?

(b) In the equation v =
√

T/µ, which variable is a measure of inertia,
and which is a measure of tightness? (c) Now suppose that we produce
compressional wave pulses in a metal rod by tapping the end of the
rod with a hammer. What physical properties of the rod would play
the roles of inertia and tightness? How would you expect the speed of
compressional waves in lead to compare with their speed in aluminum?
. Answer, p. 568

19.3 Sound and light waves
Sound waves

The phenomenon of sound is easily found to have all the char-
acteristics we expect from a wave phenomenon:

• Sound waves obey superposition. Sounds do not knock other
sounds out of the way when they collide, and we can hear more
than one sound at once if they both reach our ear simultane-
ously.

• The medium does not move with the sound. Even standing
in front of a titanic speaker playing earsplitting music, we do
not feel the slightest breeze.

• The velocity of sound depends on the medium. Sound travels
faster in helium than in air, and faster in water than in helium.
Putting more energy into the wave makes it more intense, not
faster. For example, you can easily detect an echo when you
clap your hands a short distance from a large, flat wall, and
the delay of the echo is no shorter for a louder clap.
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Although not all waves have a speed that is independent of the
shape of the wave, and this property therefore is irrelevant to our
collection of evidence that sound is a wave phenomenon, sound does
nevertheless have this property. For instance, the music in a large
concert hall or stadium may take on the order of a second to reach
someone seated in the nosebleed section, but we do not notice or
care, because the delay is the same for every sound. Bass, drums,
and vocals all head outward from the stage at 340 m/s, regardless
of their differing wave shapes.

If sound has all the properties we expect from a wave, then what
type of wave is it? It must be a vibration of a physical medium such
as air, since the speed of sound is different in different media, such
as helium or water. Further evidence is that we don’t receive sound
signals that have come to our planet through outer space. The roars
and whooshes of Hollywood’s space ships are fun, but scientifically
wrong.1

We can also tell that sound waves consist of compressions and
expansions, rather than sideways vibrations like the shimmying of a
snake. Only compressional vibrations would be able to cause your
eardrums to vibrate in and out. Even for a very loud sound, the
compression is extremely weak; the increase or decrease compared
to normal atmospheric pressure is no more than a part per million.
Our ears are apparently very sensitive receivers! Unlike a wave on a
string, which vibrates in the direction perpendicular to the direction
in which the wave pattern moves, a sound wave is a longitudinal
wave, i.e., one in which the vibration is forward and backward along
the direction of motion.

Light waves

Entirely similar observations lead us to believe that light is a
wave, although the concept of light as a wave had a long and tortu-
ous history. It is interesting to note that Isaac Newton very influen-
tially advocated a contrary idea about light. The belief that matter
was made of atoms was stylish at the time among radical thinkers
(although there was no experimental evidence for their existence),
and it seemed logical to Newton that light as well should be made of
tiny particles, which he called corpuscles (Latin for “small objects”).
Newton’s triumphs in the science of mechanics, i.e., the study of
matter, brought him such great prestige that nobody bothered to

1Outer space is not a perfect vacuum, so it is possible for sounds waves to
travel through it. However, if we want to create a sound wave, we typically do
it by creating vibrations of a physical object, such as the sounding board of a
guitar, the reed of a saxophone, or a speaker cone. The lower the density of the
surrounding medium, the less efficiently the energy can be converted into sound
and carried away. An isolated tuning fork, left to vibrate in interstellar space,
would dissipate the energy of its vibration into internal heat at a rate many
orders of magnitude greater than the rate of sound emission into the nearly
perfect vacuum around it.
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question his incorrect theory of light for 150 years. One persua-
sive proof that light is a wave is that according to Newton’s theory,
two intersecting beams of light should experience at least some dis-
ruption because of collisions between their corpuscles. Even if the
corpuscles were extremely small, and collisions therefore very infre-
quent, at least some dimming should have been measurable. In fact,
very delicate experiments have shown that there is no dimming.

The wave theory of light was entirely successful up until the 20th
century, when it was discovered that not all the phenomena of light
could be explained with a pure wave theory. It is now believed that
both light and matter are made out of tiny chunks which have both
wave and particle properties. For now, we will content ourselves
with the wave theory of light, which is capable of explaining a great
many things, from cameras to rainbows.

If light is a wave, what is waving? What is the medium that
wiggles when a light wave goes by? It isn’t air. A vacuum is impen-
etrable to sound, but light from the stars travels happily through
zillions of miles of empty space. Light bulbs have no air inside them,
but that doesn’t prevent the light waves from leaving the filament.
For a long time, physicists assumed that there must be a mysterious
medium for light waves, and they called it the aether (not to be
confused with the chemical). Supposedly the aether existed every-
where in space, and was immune to vacuum pumps. The details of
the story are more fittingly reserved for later in this course, but the
end result was that a long series of experiments failed to detect any
evidence for the aether, and it is no longer believed to exist. Instead,
light can be explained as a wave pattern made up of electrical and
magnetic fields.
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o / A graph of pressure ver-
sus time for a periodic sound
wave, the vowel “ah.”

p / A similar graph for a non-
periodic wave, “sh.”

q / A strip chart recorder.

19.4 Periodic waves
Period and frequency of a periodic wave

You choose a radio station by selecting a certain frequency. We
have already defined period and frequency for vibrations, but what
do they signify in the case of a wave? We can recycle our previous
definition simply by stating it in terms of the vibrations that the
wave causes as it passes a receiving instrument at a certain point
in space. For a sound wave, this receiver could be an eardrum or
a microphone. If the vibrations of the eardrum repeat themselves
over and over, i.e., are periodic, then we describe the sound wave
that caused them as periodic. Likewise we can define the period
and frequency of a wave in terms of the period and frequency of
the vibrations it causes. As another example, a periodic water wave
would be one that caused a rubber duck to bob in a periodic manner
as they passed by it.

The period of a sound wave correlates with our sensory impres-
sion of musical pitch. A high frequency (short period) is a high note.
The sounds that really define the musical notes of a song are only
the ones that are periodic. It is not possible to sing a non-periodic
sound like “sh” with a definite pitch.

The frequency of a light wave corresponds to color. Violet is the
high-frequency end of the rainbow, red the low-frequency end. A
color like brown that does not occur in a rainbow is not a periodic
light wave. Many phenomena that we do not normally think of as
light are actually just forms of light that are invisible because they
fall outside the range of frequencies our eyes can detect. Beyond the
red end of the visible rainbow, there are infrared and radio waves.
Past the violet end, we have ultraviolet, x-rays, and gamma rays.

Graphs of waves as a function of position

Some waves, like sound waves, are easy to study by placing a
detector at a certain location in space and studying the motion as
a function of time. The result is a graph whose horizontal axis is
time. With a water wave, on the other hand, it is simpler just to
look at the wave directly. This visual snapshot amounts to a graph
of the height of the water wave as a function of position. Any wave
can be represented in either way.

An easy way to visualize this is in terms of a strip chart recorder,
an obsolescing device consisting of a pen that wiggles back and forth
as a roll of paper is fed under it. It can be used to record a per-
son’s electrocardiogram, or seismic waves too small to be felt as a
noticeable earthquake but detectable by a seismometer. Taking the
seismometer as an example, the chart is essentially a record of the
ground’s wave motion as a function of time, but if the paper was set
to feed at the same velocity as the motion of an earthquake wave, it
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r / A water wave profile cre-
ated by a series of repeating
pulses.

would also be a full-scale representation of the profile of the actual
wave pattern itself. Assuming, as is usually the case, that the wave
velocity is a constant number regardless of the wave’s shape, know-
ing the wave motion as a function of time is equivalent to knowing
it as a function of position.

Wavelength

Any wave that is periodic will also display a repeating pattern
when graphed as a function of position. The distance spanned by
one repetition is referred to as one wavelength. The usual notation
for wavelength is λ, the Greek letter lambda. Wavelength is to space
as period is to time.

s / Wavelengths of linear and circular water waves.

Wave velocity related to frequency and wavelength

Suppose that we create a repetitive disturbance by kicking the
surface of a swimming pool. We are essentially making a series of
wave pulses. The wavelength is simply the distance a pulse is able to
travel before we make the next pulse. The distance between pulses
is λ, and the time between pulses is the period, T , so the speed of
the wave is the distance divided by the time,

v = λ/T .

This important and useful relationship is more commonly writ-
ten in terms of the frequency,

v = fλ.
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u / A water wave traveling
into a region with a different
depth changes its wavelength.

Wavelength of radio waves example 5
. The speed of light is 3.0 × 108 m/s. What is the wavelength of
the radio waves emitted by KMHD, a station whose frequency is
89.1 MHz?

. Solving for wavelength, we have

λ = v/f

= (3.0× 108 m/s)/(89.1× 106 s−1)
= 3.4 m

The size of a radio antenna is closely related to the wavelength of
the waves it is intended to receive. The match need not be exact
(since after all one antenna can receive more than one wave-
length!), but the ordinary “whip” antenna such as a car’s is 1/4 of
a wavelength. An antenna optimized to receive KMHD’s signal
would have a length of 3.4 m/4 = 0.85 m.

t / Ultrasound, i.e., sound with fre-
quencies higher than the range
of human hearing, was used to
make this image of a fetus. The
resolution of the image is re-
lated to the wavelength, since
details smaller than about one
wavelength cannot be resolved.
High resolution therefore requires
a short wavelength, correspond-
ing to a high frequency.

The equation v = fλ defines a fixed relationship between any two
of the variables if the other is held fixed. The speed of radio waves
in air is almost exactly the same for all wavelengths and frequencies
(it is exactly the same if they are in a vacuum), so there is a fixed
relationship between their frequency and wavelength. Thus we can
say either “Are we on the same wavelength?” or “Are we on the
same frequency?”

A different example is the behavior of a wave that travels from
a region where the medium has one set of properties to an area
where the medium behaves differently. The frequency is now fixed,
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because otherwise the two portions of the wave would otherwise
get out of step, causing a kink or discontinuity at the boundary,
which would be unphysical. (A more careful argument is that a
kink or discontinuity would have infinite curvature, and waves tend
to flatten out their curvature. An infinite curvature would flatten
out infinitely fast, i.e., it could never occur in the first place.) Since
the frequency must stay the same, any change in the velocity that
results from the new medium must cause a change in wavelength.

The velocity of water waves depends on the depth of the water,
so based on λ = v/f , we see that water waves that move into a
region of different depth must change their wavelength, as shown in
figure u. This effect can be observed when ocean waves come up to
the shore. If the deceleration of the wave pattern is sudden enough,
the tip of the wave can curl over, resulting in a breaking wave.

A note on dispersive waves
The discussion of wave velocity given here is actually an oversimplifi-
cation for a wave whose velocity depends on its frequency and wave-
length. Such a wave is called a dispersive wave. Nearly all the waves
we deal with in this course are non-dispersive, but the issue becomes
important in quantum physics, as discussed in more detail in optional
section 35.2.

Sinusoidal waves

Sinusoidal waves are the most important special case of periodic
waves. In fact, many scientists and engineers would be uncomfort-
able with defining a waveform like the “ah” vowel sound as having
a definite frequency and wavelength, because they consider only
sine waves to be pure examples of a certain frequency and wave-
lengths. Their bias is not unreasonable, since the French mathe-
matician Fourier showed that any periodic wave with frequency f
can be constructed as a superposition of sine waves with frequencies
f , 2f , 3f , ... In this sense, sine waves are the basic, pure building
blocks of all waves. (Fourier’s result so surprised the mathematical
community of France that he was ridiculed the first time he publicly
presented his theorem.)

However, what definition to use is a matter of utility. Our sense
of hearing perceives any two sounds having the same period as pos-
sessing the same pitch, regardless of whether they are sine waves
or not. This is undoubtedly because our ear-brain system evolved
to be able to interpret human speech and animal noises, which are
periodic but not sinusoidal. Our eyes, on the other hand, judge a
color as pure (belonging to the rainbow set of colors) only if it is a
sine wave.
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v / The pattern of waves made
by a point source moving to the
right across the water. Note
the shorter wavelength of the
forward-emitted waves and
the longer wavelength of the
backward-going ones.

Discussion question

A Suppose we superimpose two sine waves with equal amplitudes
but slightly different frequencies, as shown in the figure. What will the
superposition look like? What would this sound like if they were sound
waves?

19.5 The Doppler effect

Figure v shows the wave pattern made by the tip of a vibrating
rod which is moving across the water. If the rod had been vibrating
in one place, we would have seen the familiar pattern of concentric
circles, all centered on the same point. But since the source of
the waves is moving, the wavelength is shortened on one side and
lengthened on the other. This is known as the Doppler effect.

Note that the velocity of the waves is a fixed property of the
medium, so for example the forward-going waves do not get an extra
boost in speed as would a material object like a bullet being shot
forward from an airplane.

We can also infer a change in frequency. Since the velocity is
constant, the equation v = fλ tells us that the change in wave-
length must be matched by an opposite change in frequency: higher
frequency for the waves emitted forward, and lower for the ones
emitted backward. The frequency Doppler effect is the reason for
the familiar dropping-pitch sound of a race car going by. As the car
approaches us, we hear a higher pitch, but after it passes us we hear
a frequency that is lower than normal.

The Doppler effect will also occur if the observer is moving but
the source is stationary. For instance, an observer moving toward a
stationary source will perceive one crest of the wave, and will then be
surrounded by the next crest sooner than she otherwise would have,
because she has moved toward it and hastened her encounter with
it. Roughly speaking, the Doppler effect depends only the relative
motion of the source and the observer, not on their absolute state
of motion (which is not a well-defined notion in physics) or on their
velocity relative to the medium.

Restricting ourselves to the case of a moving source, and to waves
emitted either directly along or directly against the direction of mo-
tion, we can easily calculate the wavelength, or equivalently the
frequency, of the Doppler-shifted waves. Let v be the velocity of
the waves, and vs the velocity of the source. The wavelength of the
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w / Example 8. A Doppler
radar image of Hurricane Katrina,
in 2005.

forward-emitted waves is shortened by an amount vsT equal to the
distance traveled by the source over the course of one period. Using
the definition f = 1/T and the equation v = fλ, we find for the
wavelength of the Doppler-shifted wave the equation

λ′ =
(

1− vs
v

)
λ.

A similar equation can be used for the backward-emitted waves, but
with a plus sign rather than a minus sign.

Doppler-shifted sound from a race car example 6
. If a race car moves at a velocity of 50 m/s, and the velocity of
sound is 340 m/s, by what percentage are the wavelength and
frequency of its sound waves shifted for an observer lying along
its line of motion?

. For an observer whom the car is approaching, we find

1− vs

v
= 0.85,

so the shift in wavelength is 15%. Since the frequency is inversely
proportional to the wavelength for a fixed value of the speed of
sound, the frequency is shifted upward by

1/0.85 = 1.18,

i.e., a change of 18%. (For velocities that are small compared
to the wave velocities, the Doppler shifts of the wavelength and
frequency are about the same.)

Doppler shift of the light emitted by a race car example 7
. What is the percent shift in the wavelength of the light waves
emitted by a race car’s headlights?

. Looking up the speed of light, v = 3.0× 108 m/s, we find

1− vs

v
= 0.99999983,

i.e., the percentage shift is only 0.000017%.

The second example shows that under ordinary earthbound cir-
cumstances, Doppler shifts of light are negligible because ordinary
things go so much slower than the speed of light. It’s a different
story, however, when it comes to stars and galaxies, and this leads
us to a story that has profound implications for our understanding
of the origin of the universe.

Doppler radar example 8
The first use of radar was by Britain during World War II: anten-
nas on the ground sent radio waves up into the sky, and detected
the echoes when the waves were reflected from German planes.
Later, air forces wanted to mount radar antennas on airplanes,
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x / The galaxy M51. Under
high magnification, the milky
clouds reveal themselves to be
composed of trillions of stars.

but then there was a problem, because if an airplane wanted to
detect another airplane at a lower altitude, it would have to aim
its radio waves downward, and then it would get echoes from
the ground. The solution was the invention of Doppler radar, in
which echoes from the ground were differentiated from echoes
from other aircraft according to their Doppler shifts. A similar
technology is used by meteorologists to map out rainclouds with-
out being swamped by reflections from the ground, trees, and
buildings.

Optional topic: Doppler shifts of light
If Doppler shifts depend only on the relative motion of the source and
receiver, then there is no way for a person moving with the source and
another person moving with the receiver to determine who is moving
and who isn’t. Either can blame the Doppler shift entirely on the other’s
motion and claim to be at rest herself. This is entirely in agreement with
the principle stated originally by Galileo that all motion is relative.

On the other hand, a careful analysis of the Doppler shifts of water
or sound waves shows that it is only approximately true, at low speeds,
that the shifts just depend on the relative motion of the source and ob-
server. For instance, it is possible for a jet plane to keep up with its own
sound waves, so that the sound waves appear to stand still to the pilot
of the plane. The pilot then knows she is moving at exactly the speed
of sound. The reason this doesn’t disprove the relativity of motion is
that the pilot is not really determining her absolute motion but rather her
motion relative to the air, which is the medium of the sound waves.

Einstein realized that this solved the problem for sound or water
waves, but would not salvage the principle of relative motion in the case
of light waves, since light is not a vibration of any physical medium such
as water or air. Beginning by imagining what a beam of light would
look like to a person riding a motorcycle alongside it, Einstein even-
tually came up with a radical new way of describing the universe, in
which space and time are distorted as measured by observers in differ-
ent states of motion. As a consequence of this theory of relativity, he
showed that light waves would have Doppler shifts that would exactly,
not just approximately, depend only on the relative motion of the source
and receiver. The resolution of the motorcycle paradox is given in ex-
ample 7 on p. 712, and a quantitative discussion of Doppler shifts of
light is given on p. 716.

The Big Bang

As soon as astronomers began looking at the sky through tele-
scopes, they began noticing certain objects that looked like clouds
in deep space. The fact that they looked the same night after night
meant that they were beyond the earth’s atmosphere. Not know-
ing what they really were, but wanting to sound official, they called
them “nebulae,” a Latin word meaning “clouds” but sounding more
impressive. In the early 20th century, astronomers realized that al-
though some really were clouds of gas (e.g., the middle “star” of
Orion’s sword, which is visibly fuzzy even to the naked eye when
conditions are good), others were what we now call galaxies: virtual
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y / How do astronomers know
what mixture of wavelengths a
star emitted originally, so that
they can tell how much the
Doppler shift was? This image
(obtained by the author with
equipment costing about $5, and
no telescope) shows the mixture
of colors emitted by the star
Sirius. (If you have the book in
black and white, blue is on the left
and red on the right.) The star
appears white or bluish-white to
the eye, but any light looks white
if it contains roughly an equal
mixture of the rainbow colors,
i.e., of all the pure sinusoidal
waves with wavelengths lying in
the visible range. Note the black
“gap teeth.” These are the fin-
gerprint of hydrogen in the outer
atmosphere of Sirius. These
wavelengths are selectively ab-
sorbed by hydrogen. Sirius is in
our own galaxy, but similar stars
in other galaxies would have
the whole pattern shifted toward
the red end, indicating they are
moving away from us.

z / The telescope at Mount
Wilson used by Hubble.

island universes consisting of trillions of stars (for example the An-
dromeda Galaxy, which is visible as a fuzzy patch through binoc-
ulars). Three hundred years after Galileo had resolved the Milky
Way into individual stars through his telescope, astronomers real-
ized that the universe is made of galaxies of stars, and the Milky
Way is simply the visible part of the flat disk of our own galaxy,
seen from inside.

This opened up the scientific study of cosmology, the structure
and history of the universe as a whole, a field that had not been
seriously attacked since the days of Newton. Newton had realized
that if gravity was always attractive, never repulsive, the universe
would have a tendency to collapse. His solution to the problem was
to posit a universe that was infinite and uniformly populated with
matter, so that it would have no geometrical center. The gravita-
tional forces in such a universe would always tend to cancel out by
symmetry, so there would be no collapse. By the 20th century, the
belief in an unchanging and infinite universe had become conven-
tional wisdom in science, partly as a reaction against the time that
had been wasted trying to find explanations of ancient geological
phenomena based on catastrophes suggested by biblical events like
Noah’s flood.

In the 1920’s astronomer Edwin Hubble began studying the
Doppler shifts of the light emitted by galaxies. A former college
football player with a serious nicotine addiction, Hubble did not
set out to change our image of the beginning of the universe. His
autobiography seldom even mentions the cosmological discovery for
which he is now remembered. When astronomers began to study the
Doppler shifts of galaxies, they expected that each galaxy’s direction
and velocity of motion would be essentially random. Some would be
approaching us, and their light would therefore be Doppler-shifted
to the blue end of the spectrum, while an equal number would be
expected to have red shifts. What Hubble discovered instead was
that except for a few very nearby ones, all the galaxies had red
shifts, indicating that they were receding from us at a hefty frac-
tion of the speed of light. Not only that, but the ones farther away
were receding more quickly. The speeds were directly proportional
to their distance from us.

Did this mean that the earth (or at least our galaxy) was the
center of the universe? No, because Doppler shifts of light only
depend on the relative motion of the source and the observer. If
we see a distant galaxy moving away from us at 10% of the speed
of light, we can be assured that the astronomers who live in that
galaxy will see ours receding from them at the same speed in the
opposite direction. The whole universe can be envisioned as a rising
loaf of raisin bread. As the bread expands, there is more and more
space between the raisins. The farther apart two raisins are, the
greater the speed with which they move apart.
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Extrapolating backward in time using the known laws of physics,
the universe must have been denser and denser at earlier and earlier
times. At some point, it must have been extremely dense and hot,
and we can even detect the radiation from this early fireball, in the
form of microwave radiation that permeates space. The phrase Big
Bang was originally coined by the doubters of the theory to make it
sound ridiculous, but it stuck, and today essentially all astronomers
accept the Big Bang theory based on the very direct evidence of the
red shifts and the cosmic microwave background radiation.

What the Big Bang is not

Finally it should be noted what the Big Bang theory is not. It is
not an explanation of why the universe exists. Such questions belong
to the realm of religion, not science. Science can find ever simpler
and ever more fundamental explanations for a variety of phenom-
ena, but ultimately science takes the universe as it is according to
observations.

Furthermore, there is an unfortunate tendency, even among many
scientists, to speak of the Big Bang theory as a description of the
very first event in the universe, which caused everything after it.
Although it is true that time may have had a beginning (Einstein’s
theory of general relativity admits such a possibility), the methods
of science can only work within a certain range of conditions such
as temperature and density. Beyond a temperature of about 109

degrees C, the random thermal motion of subatomic particles be-
comes so rapid that its velocity is comparable to the speed of light.
Early enough in the history of the universe, when these temperatures
existed, Newtonian physics becomes less accurate, and we must de-
scribe nature using the more general description given by Einstein’s
theory of relativity, which encompasses Newtonian physics as a spe-
cial case. At even higher temperatures, beyond about 1033 degrees,
physicists know that Einstein’s theory as well begins to fall apart,
but we don’t know how to construct the even more general theory
of nature that would work at those temperatures. No matter how
far physics progresses, we will never be able to describe nature at
infinitely high temperatures, since there is a limit to the temper-
atures we can explore by experiment and observation in order to
guide us to the right theory. We are confident that we understand
the basic physics involved in the evolution of the universe starting a
few minutes after the Big Bang, and we may be able to push back to
milliseconds or microseconds after it, but we cannot use the methods
of science to deal with the beginning of time itself.
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aa / Shock waves from by
the X-15 rocket plane, flying at
3.5 times the speed of sound.

ab / As in figure aa, this plane
shows a shock wave. The sudden
decompression of the air causes
water droplets to condense,
forming a cloud.

Discussion questions

A If an airplane travels at exactly the speed of sound, what would be
the wavelength of the forward-emitted part of the sound waves it emitted?
How should this be interpreted, and what would actually happen? What
happens if it’s going faster than the speed of sound? Can you use this to
explain what you see in figure aa?

B If bullets go slower than the speed of sound, why can a supersonic
fighter plane catch up to its own sound, but not to its own bullets?

C If someone inside a plane is talking to you, should their speech be
Doppler shifted?

D The plane in figure ab was photographed when it was traveling at
a speed close to the speed of sound. Comparing figures aa and ab, how
can we tell from the angles of the cones that the speed is much lower in
figure ab?
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Summary
Selected vocabulary
superposition . . the adding together of waves that overlap with

each other
medium . . . . . a physical substance whose vibrations consti-

tute a wave
wavelength . . . . the distance in space between repetitions of a

periodic wave
Doppler effect . . the change in a wave’s frequency and wave-

length due to the motion of the source or the
observer or both

Notation
λ . . . . . . . . . . wavelength (Greek letter lambda)

Summary

Wave motion differs in three important ways from the motion of
material objects:

(1) Waves obey the principle of superposition. When two waves
collide, they simply add together.

(2) The medium is not transported along with the wave. The
motion of any given point in the medium is a vibration about its
equilibrium location, not a steady forward motion.

(3) The velocity of a wave depends on the medium, not on the
amount of energy in the wave. (For some types of waves, notably
water waves, the velocity may also depend on the shape of the wave.)

Sound waves consist of increases and decreases (typically very
small ones) in the density of the air. Light is a wave, but it is a
vibration of electric and magnetic fields, not of any physical medium.
Light can travel through a vacuum.

A periodic wave is one that creates a periodic motion in a receiver
as it passes it. Such a wave has a well-defined period and frequency,
and it will also have a wavelength, which is the distance in space
between repetitions of the wave pattern. The velocity, frequency,
and wavelength of a periodic wave are related by the equation

v = fλ.

A wave emitted by a moving source will be shifted in wavelength
and frequency. The shifted wavelength is given by the equation

λ′ =
(

1− vs
v

)
λ,

where v is the velocity of the waves and vs is the velocity of the
source, taken to be positive or negative so as to produce a Doppler-
lengthened wavelength if the source is receding and a Doppler-
shortened one if it approaches. A similar shift occurs if the observer
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is moving, and in general the Doppler shift depends approximately
only on the relative motion of the source and observer if their ve-
locities are both small compared to the waves’ velocity. (This is not
just approximately but exactly true for light waves, and as required
by Einstein’s theory of relativity.)
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Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The following is a graph of the height of a water wave as a
function of position, at a certain moment in time.

Trace this graph onto another piece of paper, and then sketch below
it the corresponding graphs that would be obtained if

(a) the amplitude and frequency were doubled while the velocity
remained the same;

(b) the frequency and velocity were both doubled while the ampli-
tude remained unchanged;

(c) the wavelength and amplitude were reduced by a factor of three
while the velocity was doubled.

Explain all your answers. [Problem by Arnold Arons.]

2 (a) The graph shows the height of a water wave pulse as a
function of position. Draw a graph of height as a function of time
for a specific point on the water. Assume the pulse is traveling to
the right.
(b) Repeat part a, but assume the pulse is traveling to the left.
(c) Now assume the original graph was of height as a function of
time, and draw a graph of height as a function of position, assuming
the pulse is traveling to the right.
(d) Repeat part c, but assume the pulse is traveling to the left.
Explain all your answers. [Problem by Arnold Arons.]
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Problem 3.

3 The figure shows one wavelength of a steady sinusoidal wave
traveling to the right along a string. Define a coordinate system
in which the positive x axis points to the right and the positive y
axis up, such that the flattened string would have y = 0. Copy
the figure, and label with y = 0 all the appropriate parts of the
string. Similarly, label with v = 0 all parts of the string whose
velocities are zero, and with a = 0 all parts whose accelerations
are zero. There is more than one point whose velocity is of the
greatest magnitude. Pick one of these, and indicate the direction of
its velocity vector. Do the same for a point having the maximum
magnitude of acceleration. Explain all your answers.

[Problem by Arnold Arons.]

4 (a) Find an equation for the relationship between the Doppler-
shifted frequency of a wave and the frequency of the original wave,
for the case of a stationary observer and a source moving directly
toward or away from the observer.

√

(b) Check that the units of your answer make sense.
(c) Check that the dependence on vs makes sense.

5 Suggest a quantitative experiment to look for any deviation
from the principle of superposition for surface waves in water. Make
it simple and practical.

6 The musical note middle C has a frequency of 262 Hz. What
are its period and wavelength?

√

7 Singing that is off-pitch by more than about 1% sounds bad.
How fast would a singer have to be moving relative to the rest of
a band to make this much of a change in pitch due to the Doppler
effect?

√

8 In section 19.2, we saw that the speed of waves on a string
depends on the ratio of T/µ, i.e., the speed of the wave is greater if
the string is under more tension, and less if it has more inertia. This
is true in general: the speed of a mechanical wave always depends
on the medium’s inertia in relation to the restoring force (tension,
stiffness, resistance to compression,...). Based on these ideas, ex-
plain why the speed of sound in air is significantly greater on a hot
day, while the speed of sound in liquids and solids shows almost no
variation with temperature.
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A cross-sectional view of a human body, showing the vocal tract.

Chapter 20

Bounded Waves

Speech is what separates humans most decisively from animals. No
other species can master syntax, and even though chimpanzees can
learn a vocabulary of hand signs, there is an unmistakable difference
between a human infant and a baby chimp: starting from birth, the
human experiments with the production of complex speech sounds.

Since speech sounds are instinctive for us, we seldom think about
them consciously. How do we control sound waves so skillfully?
Mostly we do it by changing the shape of a connected set of hollow
cavities in our chest, throat, and head. Somehow by moving the
boundaries of this space in and out, we can produce all the vowel
sounds. Up until now, we have been studying only those properties
of waves that can be understood as if they existed in an infinite,
open space. In this chapter we address what happens when a wave is
confined within a certain space, or when a wave pattern encounters
the boundary between two different media, as when a light wave
moving through air encounters a glass windowpane.
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a / A diver photographed this fish,
and its reflection, from underwa-
ter. The reflection is the one on
top, and is formed by light waves
that went up to the surface of
the water, but were then reflected
back down into the water.

20.1 Reflection, transmission, and absorption
Reflection and transmission

Sound waves can echo back from a cliff, and light waves are
reflected from the surface of a pond. We use the word reflection,
normally applied only to light waves in ordinary speech, to describe
any such case of a wave rebounding from a barrier. Figure b shows
a circular water wave being reflected from a straight wall. In this
chapter, we will concentrate mainly on reflection of waves that move
in one dimension, as in figure c.

Wave reflection does not surprise us. After all, a material object
such as a rubber ball would bounce back in the same way. But waves
are not objects, and there are some surprises in store.

First, only part of the wave is usually reflected. Looking out
through a window, we see light waves that passed through it, but a
person standing outside would also be able to see her reflection in
the glass. A light wave that strikes the glass is partly reflected and
partly transmitted (passed) by the glass. The energy of the original
wave is split between the two. This is different from the behavior of
the rubber ball, which must go one way or the other, not both.

Second, consider what you see if you are swimming underwater
and you look up at the surface. You see your own reflection. This
is utterly counterintuitive, since we would expect the light waves to
burst forth to freedom in the wide-open air. A material projectile
shot up toward the surface would never rebound from the water-air
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b / Circular water waves are
reflected from a boundary on the
top.

c / A wave on a spring, ini-
tially traveling to the left, is
reflected from the fixed end.

boundary! Figure a shows a similar example.

What is it about the difference between two media that causes
waves to be partly reflected at the boundary between them? Is it
their density? Their chemical composition? Typically what matters
is the speed of the wave in the two media.1 A wave is partially
reflected and partially transmitted at the boundary between media in
which it has different speeds. For example, the speed of light waves
in window glass is about 30% less than in air, which explains why
windows always make reflections. Figures d/1 and 2 show examples
of wave pulses being reflected at the boundary between two coil
springs of different weights, in which the wave speed is different.

Reflections such as b and c, where a wave encounters a massive
fixed object, can usually be understood on the same basis as cases
like d/1 and 2 later in this section, where two media meet. Example
c, for instance, is like a more extreme version of example d/1. If the
heavy coil spring in d/1 was made heavier and heavier, it would end
up acting like the fixed wall to which the light spring in c has been
attached.

self-check A
In figure c, the reflected pulse is upside-down, but its depth is just as
big as the original pulse’s height. How does the energy of the reflected
pulse compare with that of the original? . Answer, p. 568

Fish have internal ears. example 1
Why don’t fish have ear-holes? The speed of sound waves in
a fish’s body is not much different from their speed in water, so
sound waves are not strongly reflected from a fish’s skin. They
pass right through its body, so fish can have internal ears.

Whale songs traveling long distances example 2
Sound waves travel at drastically different speeds through rock,
water, and air. Whale songs are thus strongly reflected at both
the bottom and the surface. The sound waves can travel hun-
dreds of miles, bouncing repeatedly between the bottom and the
surface, and still be detectable. Sadly, noise pollution from ships
has nearly shut down this cetacean version of the internet.

Long-distance radio communication. example 3
Radio communication can occur between stations on opposite
sides of the planet. The mechanism is similar to the one ex-
plained in example 2, but the three media involved are the earth,
the atmosphere, and the ionosphere.

self-check B
Sonar is a method for ships and submarines to detect each other by
producing sound waves and listening for echoes. What properties would
an underwater object have to have in order to be invisible to sonar? .

1Some exceptions are described in sec. 20.5, p. 539.
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Answer, p. 568

The use of the word “reflection” naturally brings to mind the cre-
ation of an image by a mirror, but this might be confusing, because
we do not normally refer to “reflection” when we look at surfaces
that are not shiny. Nevertheless, reflection is how we see the surfaces
of all objects, not just polished ones. When we look at a sidewalk,
for example, we are actually seeing the reflecting of the sun from
the concrete. The reason we don’t see an image of the sun at our
feet is simply that the rough surface blurs the image so drastically.

d / 1. A wave in the lighter spring, where the wave speed is greater,
travels to the left and is then partly reflected and partly transmitted at the
boundary with the heavier coil spring, which has a lower wave speed.
The reflection is inverted. 2. A wave moving to the right in the heavier
spring is partly reflected at the boundary with the lighter spring. The
reflection is uninverted.
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e / 1. An uninverted reflec-
tion. The reflected pulse is
reversed front to back, but is
not upside-down. 2. An inverted
reflection. The reflected pulse is
reversed both front to back and
top to bottom.

f / A pulse traveling through
a highly absorptive medium.

Inverted and uninverted reflections

Notice how the pulse reflected back to the right in example d/1
comes back upside-down, whereas the one reflected back to the left
in 2 returns in its original upright form. This is true for other waves
as well. In general, there are two possible types of reflections, a
reflection back into a faster medium and a reflection back into a
slower medium. One type will always be an inverting reflection and
one noninverting.

It’s important to realize that when we discuss inverted and un-
inverted reflections on a string, we are talking about whether the
wave is flipped across the direction of motion (i.e., upside-down in
these drawings). The reflected pulse will always be reversed front
to back, as shown in figure e. This is because it is traveling in the
other direction. The leading edge of the pulse is what gets reflected
first, so it is still ahead when it starts back to the left — it’s just
that “ahead” is now in the opposite direction.

Absorption

So far we have tacitly assumed that wave energy remains as wave
energy, and is not converted to any other form. If this was true, then
the world would become more and more full of sound waves, which
could never escape into the vacuum of outer space. In reality, any
mechanical wave consists of a traveling pattern of vibrations of some
physical medium, and vibrations of matter always produce heat, as
when you bend a coat-hangar back and forth and it becomes hot.
We can thus expect that in mechanical waves such as water waves,
sound waves, or waves on a string, the wave energy will gradually
be converted into heat. This is referred to as absorption.

The wave suffers a decrease in amplitude, as shown in figure f.
The decrease in amplitude amounts to the same fractional change
for each unit of distance covered. For example, if a wave decreases
from amplitude 2 to amplitude 1 over a distance of 1 meter, then
after traveling another meter it will have an amplitude of 1/2. That
is, the reduction in amplitude is exponential. This can be proven
as follows. By the principle of superposition, we know that a wave
of amplitude 2 must behave like the superposition of two identical
waves of amplitude 1. If a single amplitude-1 wave would die down to
amplitude 1/2 over a certain distance, then two amplitude-1 waves
superposed on top of one another to make amplitude 1+1 = 2 must
die down to amplitude 1/2 + 1/2 = 1 over the same distance.

self-check C
As a wave undergoes absorption, it loses energy. Does this mean that
it slows down? . Answer, p. 568

In many cases, this frictional heating effect is quite weak. Sound
waves in air, for instance, dissipate into heat extremely slowly, and
the sound of church music in a cathedral may reverberate for as much
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g / X-rays are light waves with a
very high frequency. They are
absorbed strongly by bones, but
weakly by flesh.

as 3 or 4 seconds before it becomes inaudible. During this time it
has traveled over a kilometer! Even this very gradual dissipation
of energy occurs mostly as heating of the church’s walls and by the
leaking of sound to the outside (where it will eventually end up as
heat). Under the right conditions (humid air and low frequency), a
sound wave in a straight pipe could theoretically travel hundreds of
kilometers before being noticeably attenuated.

In general, the absorption of mechanical waves depends a great
deal on the chemical composition and microscopic structure of the
medium. Ripples on the surface of antifreeze, for instance, die out
extremely rapidly compared to ripples on water. For sound waves
and surface waves in liquids and gases, what matters is the viscosity
of the substance, i.e., whether it flows easily like water or mercury
or more sluggishly like molasses or antifreeze. This explains why
our intuitive expectation of strong absorption of sound in water is
incorrect. Water is a very weak absorber of sound (viz. whale songs
and sonar), and our incorrect intuition arises from focusing on the
wrong property of the substance: water’s high density, which is
irrelevant, rather than its low viscosity, which is what matters.

Light is an interesting case, since although it can travel through
matter, it is not itself a vibration of any material substance. Thus
we can look at the star Sirius, 1014 km away from us, and be as-
sured that none of its light was absorbed in the vacuum of outer
space during its 9-year journey to us. The Hubble Space Telescope
routinely observes light that has been on its way to us since the
early history of the universe, billions of years ago. Of course the
energy of light can be dissipated if it does pass through matter (and
the light from distant galaxies is often absorbed if there happen to
be clouds of gas or dust in between).

Soundproofing example 4
Typical amateur musicians setting out to soundproof their garages
tend to think that they should simply cover the walls with the
densest possible substance. In fact, sound is not absorbed very
strongly even by passing through several inches of wood. A better
strategy for soundproofing is to create a sandwich of alternating
layers of materials in which the speed of sound is very different,
to encourage reflection.

The classic design is alternating layers of fiberglass and plywood.
The speed of sound in plywood is very high, due to its stiffness,
while its speed in fiberglass is essentially the same as its speed
in air. Both materials are fairly good sound absorbers, but sound
waves passing through a few inches of them are still not going
to be absorbed sufficiently. The point of combining them is that
a sound wave that tries to get out will be strongly reflected at
each of the fiberglass-plywood boundaries, and will bounce back
and forth many times like a ping pong ball. Due to all the back-
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h / A tympanometer, example
7.

and-forth motion, the sound may end up traveling a total distance
equal to ten times the actual thickness of the soundproofing be-
fore it escapes. This is the equivalent of having ten times the
thickness of sound-absorbing material.

The swim bladder example 5
The swim bladder of a fish, which was first discussed in home-
work problem 2 in chapter 18, is often located right next to the
fish’s ear. As discussed in example 1 on page 523, the fish’s body
is nearly transparent to sound, so it’s actually difficult to get any
of the sound wave energy to deposit itself in the fish so that the
fish can hear it! The physics here is almost exactly the same as
the physics of example 4 above, with the gas-filled swim bladder
playing the role of the low-density material.

Radio transmission example 6
A radio transmitting station, such as a commercial station or an
amateur “ham” radio station, must have a length of wire or cable
connecting the amplifier to the antenna. The cable and the an-
tenna act as two different media for radio waves, and there will
therefore be partial reflection of the waves as they come from the
cable to the antenna. If the waves bounce back and forth many
times between the amplifier and the antenna, a great deal of their
energy will be absorbed. There are two ways to attack the prob-
lem. One possibility is to design the antenna so that the speed of
the waves in it is as close as possible to the speed of the waves
in the cable; this minimizes the amount of reflection. The other
method is to connect the amplifier to the antenna using a type
of wire or cable that does not strongly absorb the waves. Partial
reflection then becomes irrelevant, since all the wave energy will
eventually exit through the antenna.

The tympanogram example 7
The tympanogram is a medical procedure used to diagnose prob-
lems with the middle ear.

The middle ear is a chamber, normally filled with air, lying be-
tween the eardrum (tympanic membrane) and the inner ear. It
contains a tiny set of bones that act as a system of levers to
amplify the motion of the eardrum and transmit it to the inner
ear. The air pressure in the inner ear is normally equalized via
the Eustachian tube, which connects to the throat; when you feel
uncomfortable pressure in your ear while flying, it’s because the
pressure has not yet equalized. Ear infections or allergies can
cause the middle ear to become filled with fluid, and the Eu-
stachian tube can also become blocked, so that the pressure in
the inner ear cannot become equalized.

The tympanometer has a probe that is inserted into the ear, with
several holes. One hole is used to send a 226 Hz sound wave into
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the ear canal. The ear has evolved so as to transmit a maximum
amount of wave motion to the inner ear. Any change in its physical
properties will change its behavior from its normal optimum, so
that more sound energy than normal is reflected back. A second
hole in the probe senses the reflected wave. If the reflection is
stronger than normal, there is probably something wrong with the
inner ear.

The full physical analysis is fairly complex. The middle ear has
some of the characteristics of a mass oscillating on a spring, but
it also has some of the characteristics of a medium that carries
waves. Crudely, we could imagine that an infected, fluid-filled
middle ear would act as a medium that differed greatly from the
air in the outer ear, causing a large amount of reflection.

Equally crudely, we could forget about the wave ideas and think of
the middle ear purely as a mass on a spring. We expect resonant
behavior, and there is in fact such a resonance, which is typically
at a frequency of about 600 Hz in adults, so the 226 Hz frequency
emitted by the probe is actually quite far from resonance. If the
mechanisms of the middle ear are jammed and cannot vibrate,
then it is not possible for energy of the incoming sound wave to
be turned into energy of vibration in the middle ear, and therefore
by conservation of energy we would expect all of the sound to be
reflected.

Sometimes the middle ear’s mechanisms can get jammed be-
cause of abnormally high or low pressure, because the Eustach-
ian tube is blocked and cannot equalize the pressure with the
outside environment. Diagnosing such a condition is the purpose
of the third hole in the probe, which is used to vary the pressure
in the ear canal. The amount of reflection is measured as a func-
tion of this pressure. If the reflection is minimized for some value
of the pressure that is different than atmospheric pressure, it indi-
cates that that is the value of the pressure in the middle ear; when
the pressures are equalized, the forces on the eardrum cancel
out, and it can relax to its normal position, unjamming the middle
ear’s mechanisms.

Discussion question

A A sound wave that underwent a pressure-inverting reflection would
have its compressions converted to expansions and vice versa. How
would its energy and frequency compare with those of the original sound?
Would it sound any different? What happens if you swap the two wires
where they connect to a stereo speaker, resulting in waves that vibrate in
the opposite way?
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i / 1. A change in frequency
without a change in wavelength
would produce a discontinuity in
the wave. 2. A simple change in
wavelength without a reflection
would result in a sharp kink in the
wave.

20.2 Quantitative treatment of reflection
In this section we use the example of waves on a string to analyze
the reasons why a reflection occurs at the boundary between media,
predict quantitatively the intensities of reflection and transmission,
and discuss how to tell which reflections are inverting and which
are noninverting. Some more technical aspects of the discussion are
relegated to sec. 20.5, p. 539.

Why reflection occurs

To understand the fundamental reasons for what does occur at
the boundary between media, let’s first discuss what doesn’t happen.
For the sake of concreteness, consider a sinusoidal wave on a string.
If the wave progresses from a heavier portion of the string, in which
its velocity is low, to a lighter-weight part, in which it is high, then
the equation v = fλ tells us that it must change its frequency, or
its wavelength, or both. If only the frequency changed, then the
parts of the wave in the two different portions of the string would
quickly get out of step with each other, producing a discontinuity in
the wave, i/1. This is unphysical, so we know that the wavelength
must change while the frequency remains constant, 2.

But there is still something unphysical about figure 2. The sud-
den change in the shape of the wave has resulted in a sharp kink
at the boundary. This can’t really happen, because the medium
tends to accelerate in such a way as to eliminate curvature. A sharp
kink corresponds to an infinite curvature at one point, which would
produce an infinite acceleration, which would not be consistent with
the smooth pattern of wave motion envisioned in figure 2. Waves
can have kinks, but not stationary kinks.

We conclude that without positing partial reflection of the wave,
we cannot simultaneously satisfy the requirements of (1) continuity
of the wave, and (2) no sudden changes in the slope of the wave.
(The student who has studied calculus will recognize this as amount-
ing to an assumption that both the wave and its derivative are con-
tinuous functions.)

Does this amount to a proof that reflection occurs? Not quite.
We have only proven that certain types of wave motion are not
valid solutions. In the following subsection, we prove that a valid
solution can always be found in which a reflection occurs. Now in
physics, we normally assume (but seldom prove formally) that the
equations of motion have a unique solution, since otherwise a given
set of initial conditions could lead to different behavior later on,
but the Newtonian universe is supposed to be deterministic. Since
the solution must be unique, and we derive below a valid solution
involving a reflected pulse, we will have ended up with what amounts
to a proof of reflection.
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j / A pulse being partially re-
flected and partially transmitted
at the boundary between two
strings in which the speed of
waves is different. The top
drawing shows the pulse heading
to the right, toward the heavier
string. For clarity, all but the first
and last drawings are schematic.
Once the reflected pulse begins
to emerge from the boundary,
it adds together with the trailing
parts of the incident pulse. Their
sum, shown as a wider line, is
what is actually observed.

Intensity of reflection

We will now show, in the case of waves on a string, that it is pos-
sible to satisfy the physical requirements given above by construct-
ing a reflected wave, and as a bonus this will produce an equation
for the proportions of reflection and transmission and a prediction
as to which conditions will lead to inverted and which to uninverted
reflection. We assume only that the principle of superposition holds,
which is a good approximation for waves on a string of sufficiently
small amplitude.

Let the unknown amplitudes of the reflected and transmitted
waves be R and T , respectively. An inverted reflection would be
represented by a negative value of R. We can without loss of gen-
erality take the incident (original) wave to have unit amplitude.
Superposition tells us that if, for instance, the incident wave had
double this amplitude, we could immediately find a corresponding
solution simply by doubling R and T .

Just to the left of the boundary, the height of the wave is given
by the height 1 of the incident wave, plus the height R of the part
of the reflected wave that has just been created and begun heading
back, for a total height of 1+R. On the right side immediately next
to the boundary, the transmitted wave has a height T . To avoid a
discontinuity, we must have

1 +R = T .

Next we turn to the requirement of equal slopes on both sides of
the boundary. Let the slope of the incoming wave be s immediately
to the left of the junction. If the wave was 100% reflected, and
without inversion, then the slope of the reflected wave would be −s,
since the wave has been reversed in direction. In general, the slope
of the reflected wave equals −sR, and the slopes of the superposed
waves on the left side add up to s − sR. On the right, the slope
depends on the amplitude, T , but is also changed by the stretching
or compression of the wave due to the change in speed. If, for
example, the wave speed is twice as great on the right side, then
the slope is cut in half by this effect. The slope on the right is
therefore s(v1/v2)T , where v1 is the velocity in the original medium
and v2 the velocity in the new medium. Equality of slopes gives
s− sR = s(v1/v2)T , or

1−R =
v1

v2
T .

Solving the two equations for the unknowns R and T gives

R =
v2 − v1

v2 + v1
and T =

2v2

v2 + v1
.

The first equation shows that there is no reflection unless the two
wave speeds are different, and that the reflection is inverted in re-
flection back into a fast medium.
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The energies of the transmitted and reflected waves always add
up to the same as the energy of the original wave. There is never
any abrupt loss (or gain) in energy when a wave crosses a bound-
ary. (Conversion of wave energy to heat occurs for many types of
waves, but it occurs throughout the medium.) The equation for
T , surprisingly, allows the amplitude of the transmitted wave to be
greater than 1, i.e., greater than that of the incident wave. This
does not violate conservation of energy, because this occurs when
the second string is less massive, reducing its kinetic energy, and the
transmitted pulse is broader and less strongly curved, which lessens
its potential energy. In other words, the constant of proportionality
in E ∝ A2 is different in the two different media.

We have attempted to develop some general facts about wave
reflection by using the specific example of a wave on a string, which
raises the question of whether these facts really are general. These
issues are discussed in more detail in optional section 20.5, p. 539,
but here is a brief summary.

The following facts are more generally true for wave reflection
in one dimension.

• The wave is partially reflected and partially transmitted, with
the reflected and transmitted parts sharing the energy.

• For an interface between media 1 and 2, there are two possible
reflections: back into 1, and back into 2. One of these is
inverting (R < 0) and the other is noninverting (R > 0).

The following aspects of our analysis may need to be modified
for different types of waves.

• In some cases, the expressions for the reflected and transmit-
ted amplitudes depend not on the ratio v1/v2 but on some
more complicated ratio v1 . . . /v2 . . ., where . . . stands for some
additional property of the medium.

• The sign of R, depends not just on this ratio but also on
the type of the wave and on what we choose as a measure of
amplitude.
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k / Seen from this angle, the
optical coating on the lenses of
these binoculars appears purple
and green. (The color varies
depending on the angle from
which the coating is viewed, and
the angle varies across the faces
of the lenses because of their
curvature.)

l / A rope consisting of three
sections, the middle one being
lighter.

m / Two reflections, are su-
perimposed. One reflection is
inverted.

20.3 Interference effects

If you look at the front of a pair of high-quality binoculars, you
will notice a greenish-blue coating on the lenses. This is advertised
as a coating to prevent reflection. Now reflection is clearly undesir-
able — we want the light to go in the binoculars — but so far I’ve
described reflection as an unalterable fact of nature, depending only
on the properties of the two wave media. The coating can’t change
the speed of light in air or in glass, so how can it work? The key is
that the coating itself is a wave medium. In other words, we have
a three-layer sandwich of materials: air, coating, and glass. We will
analyze the way the coating works, not because optical coatings are
an important part of your education but because it provides a good
example of the general phenomenon of wave interference effects.

There are two different interfaces between media: an air-coating
boundary and a coating-glass boundary. Partial reflection and par-
tial transmission will occur at each boundary. For ease of visual-
ization let’s start by considering an equivalent system consisting of
three dissimilar pieces of string tied together, and a wave pattern
consisting initially of a single pulse. Figure l/1 shows the incident
pulse moving through the heavy rope, in which its velocity is low.
When it encounters the lighter-weight rope in the middle, a faster
medium, it is partially reflected and partially transmitted. (The
transmitted pulse is bigger, but nevertheless has only part of the
original energy.) The pulse transmitted by the first interface is then
partially reflected and partially transmitted by the second bound-
ary, 3. In figure 4, two pulses are on the way back out to the left,
and a single pulse is heading off to the right. (There is still a weak
pulse caught between the two boundaries, and this will rattle back
and forth, rapidly getting too weak to detect as it leaks energy to
the outside with each partial reflection.)

Note how, of the two reflected pulses in 4, one is inverted and
one uninverted. One underwent reflection at the first boundary (a
reflection back into a slower medium is uninverted), but the other
was reflected at the second boundary (reflection back into a faster
medium is inverted).

Now let’s imagine what would have happened if the incoming
wave pattern had been a long sinusoidal wave train instead of a
single pulse. The first two waves to reemerge on the left could be
in phase, m/1, or out of phase, 2, or anywhere in between. The
amount of lag between them depends entirely on the width of the
middle segment of string. If we choose the width of the middle string
segment correctly, then we can arrange for destructive interference
to occur, 2, with cancellation resulting in a very weak reflected wave.

This whole analysis applies directly to our original case of optical
coatings. Visible light from most sources does consist of a stream
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n / A soap bubble displays
interference effects.

of short sinusoidal wave-trains such as the ones drawn above. The
only real difference between the waves-on-a-rope example and the
case of an optical coating is that the first and third media are air
and glass, in which light does not have the same speed. However,
the general result is the same as long as the air and the glass have
light-wave speeds that are either both greater than the coating’s or
both less than the coating’s.

The business of optical coatings turns out to be a very arcane
one, with a plethora of trade secrets and “black magic” techniques
handed down from master to apprentice. Nevertheless, the ideas
you have learned about waves in general are sufficient to allow you
to come to some definite conclusions without any further technical
knowledge. The self-check and discussion questions will direct you
along these lines of thought.

The example of an optical coating was typical of a wide variety
of wave interference effects. With a little guidance, you are now
ready to figure out for yourself other examples such as the rainbow
pattern made by a compact disc, a layer of oil on a puddle, or a
soap bubble.

self-check D
1. Color corresponds to wavelength of light waves. Is it possible to
choose a thickness for an optical coating that will produce destructive
interference for all colors of light?

2. How can you explain the rainbow colors on the soap bubble in figure
n? . Answer, p. 568

Discussion questions

A Is it possible to get complete destructive interference in an optical
coating, at least for light of one specific wavelength?

B Sunlight consists of sinusoidal wave-trains containing on the order
of a hundred cycles back-to-back, for a length of something like a tenth of
a millimeter. What happens if you try to make an optical coating thicker
than this?

C Suppose you take two microscope slides and lay one on top of the
other so that one of its edges is resting on the corresponding edge of the
bottom one. If you insert a sliver of paper or a hair at the opposite end,
a wedge-shaped layer of air will exist in the middle, with a thickness that
changes gradually from one end to the other. What would you expect to
see if the slides were illuminated from above by light of a single color?
How would this change if you gradually lifted the lower edge of the top
slide until the two slides were finally parallel?

D An observation like the one described in discussion question C was
used by Newton as evidence against the wave theory of light! If Newton
didn’t know about inverting and noninverting reflections, what would have
seemed inexplicable to him about the region where the air layer had zero
or nearly zero thickness?
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o / A model of a guitar string.

p / The motion of a pulse on
the string.

q / A tricky way to double the
frequency.

20.4 Waves bounded on both sides
In the examples discussed in section 20.3, it was theoretically true
that a pulse would be trapped permanently in the middle medium,
but that pulse was not central to our discussion, and in any case it
was weakening severely with each partial reflection. Now consider
a guitar string. At its ends it is tied to the body of the instrument
itself, and since the body is very massive, the behavior of the waves
when they reach the end of the string can be understood in the same
way as if the actual guitar string was attached on the ends to strings
that were extremely massive, o. Reflections are most intense when
the two media are very dissimilar. Because the wave speed in the
body is so radically different from the speed in the string, we should
expect nearly 100% reflection.

Although this may seem like a rather bizarre physical model of
the actual guitar string, it already tells us something interesting
about the behavior of a guitar that we would not otherwise have
understood. The body, far from being a passive frame for attaching
the strings to, is actually the exit path for the wave energy in the
strings. With every reflection, the wave pattern on the string loses
a tiny fraction of its energy, which is then conducted through the
body and out into the air. (The string has too little cross-section to
make sound waves efficiently by itself.) By changing the properties
of the body, moreover, we should expect to have an effect on the
manner in which sound escapes from the instrument. This is clearly
demonstrated by the electric guitar, which has an extremely massive,
solid wooden body. Here the dissimilarity between the two wave
media is even more pronounced, with the result that wave energy
leaks out of the string even more slowly. This is why an electric
guitar with no electric pickup can hardly be heard at all, and it is
also the reason why notes on an electric guitar can be sustained for
longer than notes on an acoustic guitar.

If we initially create a disturbance on a guitar string, how will
the reflections behave? In reality, the finger or pick will give the
string a triangular shape before letting it go, and we may think of
this triangular shape as a very broad “dent” in the string which
will spread out in both directions. For simplicity, however, let’s just
imagine a wave pattern that initially consists of a single, narrow
pulse traveling up the neck, p/1. After reflection from the top end,
it is inverted, 3. Now something interesting happens: figure 5 is
identical to figure 1. After two reflections, the pulse has been in-
verted twice and has changed direction twice. It is now back where
it started. The motion is periodic. This is why a guitar produces
sounds that have a definite sensation of pitch.

self-check E
Notice that from p/1 to p/5, the pulse has passed by every point on the
string exactly twice. This means that the total distance it has traveled
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r / Using the sum of four sine
waves to approximate the trian-
gular initial shape of a plucked
guitar string.

equals 2L, where L is the length of the string. Given this fact, what are
the period and frequency of the sound it produces, expressed in terms
of L and v , the velocity of the wave? . Answer, p. 569

Note that if the waves on the string obey the principle of super-
position, then the velocity must be independent of amplitude, and
the guitar will produce the same pitch regardless of whether it is
played loudly or softly. In reality, waves on a string obey the prin-
ciple of superposition approximately, but not exactly. The guitar,
like just about any acoustic instrument, is a little out of tune when
played loudly. (The effect is more pronounced for wind instruments
than for strings, but wind players are able to compensate for it.)

Now there is only one hole in our reasoning. Suppose we some-
how arrange to have an initial setup consisting of two identical pulses
heading toward each other, as in figure q. They will pass through
each other, undergo a single inverting reflection, and come back to
a configuration in which their positions have been exactly inter-
changed. This means that the period of vibration is half as long.
The frequency is twice as high.

This might seem like a purely academic possibility, since nobody
actually plays the guitar with two picks at once! But in fact it is an
example of a very general fact about waves that are bounded on both
sides. A mathematical theorem called Fourier’s theorem states that
any wave can be created by superposing sine waves. Figure r shows
how even by using only four sine waves with appropriately chosen
amplitudes, we can arrive at a sum which is a decent approximation
to the realistic triangular shape of a guitar string being plucked.
The one-hump wave, in which half a wavelength fits on the string,
will behave like the single pulse we originally discussed. We call
its frequency fo. The two-hump wave, with one whole wavelength,
is very much like the two-pulse example. For the reasons discussed
above, its frequency is 2fo. Similarly, the three-hump and four-hump
waves have frequencies of 3fo and 4fo.

Theoretically we would need to add together infinitely many
such wave patterns to describe the initial triangular shape of the
string exactly, although the amplitudes required for the very high
frequency parts would be very small, and an excellent approximation
could be achieved with as few as ten waves.

We thus arrive at the following very general conclusion. When-
ever a wave pattern exists in a medium bounded on both sides by
media in which the wave speed is very different, the motion can be
broken down into the motion of a (theoretically infinite) series of sine
waves, with frequencies fo, 2fo, 3fo, ... Except for some technical
details, to be discussed below, this analysis applies to a vast range of
sound-producing systems, including the air column within the hu-
man vocal tract. Because sounds composed of this kind of pattern
of frequencies are so common, our ear-brain system has evolved so
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s / Graphs of loudness ver-
sus frequency for the vowel “ah,”
sung as three different musical
notes. G is consonant with D,
since every overtone of G that is
close to an overtone of D (*) is at
exactly the same frequency. G
and C# are dissonant together,
since some of the overtones of G
(x) are close to, but not right on
top of, those of C#.

t / Sine waves add to make
sine waves. Other functions don’t
have this property.

as to perceive them as a single, fused sensation of tone.

Musical applications

Many musicians claim to be able to pick out by ear several of the
frequencies 2fo, 3fo, ..., called overtones or harmonics of the funda-
mental fo, but they are kidding themselves. In reality, the overtone
series has two important roles in music, neither of which depends
on this fictitious ability to “hear out” the individual overtones.

First, the relative strengths of the overtones is an important
part of the personality of a sound, called its timbre (rhymes with
“amber”). The characteristic tone of the brass instruments, for ex-
ample, is a sound that starts out with a very strong harmonic series
extending up to very high frequencies, but whose higher harmonics
die down drastically as the attack changes to the sustained portion
of the note.

Second, although the ear cannot separate the individual harmon-
ics of a single musical tone, it is very sensitive to clashes between
the overtones of notes played simultaneously, i.e., in harmony. We
tend to perceive a combination of notes as being dissonant if they
have overtones that are close but not the same. Roughly speaking,
strong overtones whose frequencies differ by more than 1% and less
than 10% cause the notes to sound dissonant. It is important to
realize that the term “dissonance” is not a negative one in music.
No matter how long you search the radio dial, you will never hear
more than three seconds of music without at least one dissonant
combination of notes. Dissonance is a necessary ingredient in the
creation of a musical cycle of tension and release. Musically knowl-
edgeable people don’t use the word “dissonant” as a criticism of
music, although dissonance can be used in a clumsy way, or without
providing any contrast between dissonance and consonance.

Standing waves

Figure u shows sinusoidal wave patterns made by shaking a rope.
I used to enjoy doing this at the bank with the pens on chains, back
in the days when people actually went to the bank. You might think
that I and the person in the photos had to practice for a long time
in order to get such nice sine waves. In fact, a sine wave is the only
shape that can create this kind of wave pattern, called a standing
wave, which simply vibrates back and forth in one place without
moving. The sine wave just creates itself automatically when you
find the right frequency, because no other shape is possible.

If you think about it, it’s not even obvious that sine waves should
be able to do this trick. After all, waves are supposed to travel at a
set speed, aren’t they? The speed isn’t supposed to be zero! Well, we
can actually think of a standing wave as a superposition of a moving
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v / A salamander crawls across a
person’s palm. Its spine oscillates
as a standing wave.

w / Example 8.

u / Standing waves on a spring.

sine wave with its own reflection, which is moving the opposite way.
Sine waves have the unique mathematical property, t, that the sum
of sine waves of equal wavelength is simply a new sine wave with
the same wavelength. As the two sine waves go back and forth, they
always cancel perfectly at the ends, and their sum appears to stand
still.

Standing wave patterns are rather important, since atoms are
really standing-wave patterns of electron waves. You are a standing
wave!

Harmonics on string instruments example 8
Figure w shows a violist playing what string players refer to as a
natural harmonic. The term “harmonic” is used here in a some-
what different sense than in physics. The musician’s pinkie is
pressing very lightly against the string — not hard enough to
make it touch the fingerboard — at a point precisely at the center
of the string’s length. As shown in the diagram, this allows the
string to vibrate at frequencies 2fo, 4fo, 6fo, . . ., which have sta-
tionary points at the center of the string, but not at the odd mul-
tiples fo, 3fo, . . .. Since all the overtones are multiples of 2fo, the
ear perceives 2fo as the basic frequency of the note. In musical
terms, doubling the frequency corresponds to raising the pitch by
an octave. The technique can be used in order to make it easier
to play high notes in rapid passages, or for its own sake, because
of the change in timbre.
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x / Surprisingly, sound waves
undergo partial reflection at the
open ends of tubes as well as
closed ones.

y / Graphs of excess density
versus position for the lowest-
frequency standing waves of
three types of air columns. Points
on the axis have normal air
density.

Standing-wave patterns of air columns

The air column inside a wind instrument behaves very much
like the wave-on-a-string example we’ve been concentrating on so
far, the main difference being that we may have either inverting or
noninverting reflections at the ends.

Some organ pipes are closed at both ends. The speed of sound
is different in metal than in air, so there is a strong reflection at
the closed ends, and we can have standing waves. These reflections
are both density-noninverting, so we get symmetric standing-wave
patterns, such as the one shown in figure y/1.

Figure x shows the sound waves in and around a bamboo Japanese
flute called a shakuhachi, which is open at both ends of the air col-
umn. We can only have a standing wave pattern if there are re-
flections at the ends, but that is very counterintuitive — why is
there any reflection at all, if the sound wave is free to emerge into
open space, and there is no change in medium? Recall the reason
why we got reflections at a change in medium: because the wave-
length changes, so the wave has to readjust itself from one pattern
to another, and the only way it can do that without developing a
kink is if there is a reflection. Something similar is happening here.
The only difference is that the wave is adjusting from being a plane
wave to being a spherical wave. The reflections at the open ends
are density-inverting, y/2, so the wave pattern is pinched off at the
ends. Comparing panels 1 and 2 of the figure, we see that although
the wave patterns are different, in both cases the wavelength is the
same: in the lowest-frequency standing wave, half a wavelength fits
inside the tube. Thus, it isn’t necessary to memorize which type of
reflection is inverting and which is uninverting. It’s only necessary
to know that the tubes are symmetric.

Finally, we can have an asymmetric tube: closed at one end and
open at the other. A common example is the pan pipes, z, which are
closed at the bottom and open at the top. The standing wave with
the lowest frequency is therefore one in which 1/4 of a wavelength
fits along the length of the tube, as shown in figure y/3.

Sometimes an instrument’s physical appearance can be mislead-
ing. A concert flute, aa, is closed at the mouth end and open at
the other, so we would expect it to behave like an asymmetric air
column; in reality, it behaves like a symmetric air column open at
both ends, because the embouchure hole (the hole the player blows
over) acts like an open end. The clarinet and the saxophone look
similar, having a mouthpiece and reed at one end and an open end
at the other, but they act different. In fact the clarinet’s air col-
umn has patterns of vibration that are asymmetric, the saxophone
symmetric. The discrepancy comes from the difference between the
conical tube of the sax and the cylindrical tube of the clarinet. The
adjustment of the wave pattern from a plane wave to a spherical
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z / A pan pipe is an asym-
metric air column, open at the top
and closed at the bottom.

aa / A concert flute looks like
an asymmetric air column, open
at the mouth end and closed at
the other. However, its patterns of
vibration are symmetric, because
the embouchure hole acts like an
open end.

wave is more gradual at the flaring bell of the saxophone.

self-check F
Draw a graph of density versus position for the first overtone of the air
column in a tube open at one end and closed at the other. This will be
the next-to-longest possible wavelength that allows for a point of maxi-
mum vibration at one end and a point of no vibration at the other. How
many times shorter will its wavelength be compared to the wavelength
of the lowest-frequency standing wave, shown in the figure? Based on
this, how many times greater will its frequency be? . Answer, p. 569

Discussion question

A Figure v on p. 537 shows the salamander in the salamander’s frame
of reference, so that the palm moves. In the palm’s frame, would this
be a traveling wave? Would the worm in example 1 on p. 497 execute a
standing wave in its own frame? Is there anything qualitatively different
about these two animals’ patterns of motion, other than the fact that one
wave is transverse and the other longitudinal?

20.5 ? Some technical aspects of reflection
In this optional section we address some technical details of the
treatment of reflection and transmission of waves. These gory de-
tails are likely to be of interest mainly to students majoring in the
physical sciences.

Dependence of reflection on other variables besides velocity

In section 20.2 we derived the expressions for the transmitted
and reflected amplitudes by demanding that two things match up
on both sides of the boundary: the height of the wave and the
slope of the wave. These requirements were stated purely in terms
of kinematics (the description of how the wave moves) rather than
dynamics (the explanation for the wave motion in terms of Newton’s
laws). For this reason, the results depended only on the purely
kinematic quantity α = v2/v1, as can be seen more clearly if we
rewrite the expressions in the following form:

R =
α− 1

α+ 1
and T =

2α

α+ 1
.

But this purely kinematical treatment only worked because of
a dynamical fact that we didn’t emphasize. We assumed equality
of the slopes, s1 = s2, because waves don’t like to have kinks. The
underlying dynamical reason for this, in the case of a wave on a
string, is that a kink is pointlike, so the portion of the string at the
kink is infinitesimal in size, and therefore has essentially zero mass.
If the transverse forces acting on it differed by some finite amount,
then its acceleration would be infinite, which is not possible. The
difference between the two forces is Ts1 − Ts2, so s1 = s2. But this
relies on the assumption that T is the same on both sides of the
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ab / A disturbance in freeway
traffic.

ac / In the mirror image, the
areas of positive excess traffic
density are still positive, but
the velocities of the cars have
all been reversed, so areas of
positive excess velocity have
been turned into negative ones.

boundary. Now this is true, because we can’t put different amounts
of tension on two ropes that are tied together end to end. Any excess
tension applied to one rope is distributed equally to the other. For
other types of waves, however, we cannot make a similar argument,
and therefore it need not be true that s1 = s2.

A more detailed analysis shows that in general we have not α =
v2/v1 but α = z2/z1, where z is a quantity called impedance which
is defined for this purpose. In a great many examples, as for the
waves on a string, it is true that v2/v1 = z2/z1, but this is not a
universal fact. Most of the exceptions are rather specialized and
technical, such as the reflection of light waves when the media have
magnetic properties, but one fairly common and important example
is the case of sound waves, for which z = ρv depends not just on
the wave velocity v but also on the density ρ. A practical example
occurs in medical ultrasound scans, where the contrast of the image
is made possible because of the very large differences in impedance
between different types of tissue. The speed of sound in various
tissues such as bone and muscle varies by about a factor of 2, which
is not a particularly huge factor, but there are also large variations
in density. The lung, for example, is basically a sponge or sack filled
with air. For this reason, the acoustic impedances of the tissues
show a huge amount of variation, with, e.g., zbone/zlung ≈ 40.

Inverted and uninverted reflections in general

For waves on a string, reflections back into a faster medium are
inverted, while those back into a slower medium are uninverted. Is
this true for all types of waves? The rather subtle answer is that it
depends on what property of the wave you are discussing.

Let’s start by considering wave disturbances of freeway traffic.
Anyone who has driven frequently on crowded freeways has observed
the phenomenon in which one driver taps the brakes, starting a chain
reaction that travels backward down the freeway as each person in
turn exercises caution in order to avoid rear-ending anyone. The
reason why this type of wave is relevant is that it gives a simple,
easily visualized example of how our description of a wave depends
on which aspect of the wave we have in mind. In steadily flowing
freeway traffic, both the density of cars and their velocity are con-
stant all along the road. Since there is no disturbance in this pattern
of constant velocity and density, we say that there is no wave. Now
if a wave is touched off by a person tapping the brakes, we can either
describe it as a region of high density or as a region of decreasing
velocity.

The freeway traffic wave is in fact a good model of a sound wave,
and a sound wave can likewise be described either by the density
(or pressure) of the air or by its speed. Likewise many other types
of waves can be described by either of two functions, one of which
is often the derivative of the other with respect to position.
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Now let’s consider reflections. If we observe the freeway wave in
a mirror, the high-density area will still appear high in density, but
velocity in the opposite direction will now be described by a neg-
ative number. A person observing the mirror image will draw the
same density graph, but the velocity graph will be flipped across the
x axis, and its original region of negative slope will now have posi-
tive slope. Although I don’t know any physical situation that would
correspond to the reflection of a traffic wave, we can immediately ap-
ply the same reasoning to sound waves, which often do get reflected,
and determine that a reflection can either be density-inverting and
velocity-noninverting or density-noninverting and velocity-inverting.

This same type of situation will occur over and over as one en-
counters new types of waves, and to apply the analogy we need
only determine which quantities, like velocity, become negated in a
mirror image and which, like density, stay the same.

A light wave, for instance, consists of a traveling pattern of elec-
tric and magnetic fields. All you need to know in order to analyze the
reflection of light waves is how electric and magnetic fields behave
under reflection; you don’t need to know any of the detailed physics
of electricity and magnetism. An electric field can be detected, for
example, by the way one’s hair stands on end. The direction of the
hair indicates the direction of the electric field. In a mirror image,
the hair points the other way, so the electric field is apparently re-
versed in a mirror image. The behavior of magnetic fields, however,
is a little tricky. The magnetic properties of a bar magnet, for in-
stance, are caused by the aligned rotation of the outermost orbiting
electrons of the atoms. In a mirror image, the direction of rotation
is reversed, say from clockwise to counterclockwise, and so the mag-
netic field is reversed twice: once simply because the whole picture
is flipped and once because of the reversed rotation of the electrons.
In other words, magnetic fields do not reverse themselves in a mirror
image. We can thus predict that there will be two possible types
of reflection of light waves. In one, the electric field is inverted and
the magnetic field uninverted (example 8, p. 712). In the other, the
electric field is uninverted and the magnetic field inverted.
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Summary
Selected vocabulary
reflection . . . . . the bouncing back of part of a wave from a

boundary
transmission . . . the continuation of part of a wave through a

boundary
absorption . . . . the gradual conversion of wave energy into

heating of the medium
standing wave . . a wave pattern that stays in one place

Notation
λ . . . . . . . . . . wavelength (Greek letter lambda)

Summary

Whenever a wave encounters the boundary between two media
in which its speeds are different, part of the wave is reflected and
part is transmitted. The reflection is always reversed front-to-back,
but may also be inverted in amplitude. Whether the reflection is
inverted depends on how the wave speeds in the two media compare,
e.g., a wave on a string is uninverted when it is reflected back into a
segment of string where its speed is lower. The greater the difference
in wave speed between the two media, the greater the fraction of
the wave energy that is reflected. Surprisingly, a wave in a dense
material like wood will be strongly reflected back into the wood at
a wood-air boundary.

A one-dimensional wave confined by highly reflective boundaries
on two sides will display motion which is periodic. For example, if
both reflections are inverting, the wave will have a period equal
to twice the time required to traverse the region, or to that time
divided by an integer. An important special case is a sinusoidal
wave; in this case, the wave forms a stationary pattern composed of
a superposition of sine waves moving in opposite direction.
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C 261.6 Hz
D 293.7
E 329.6
F 349.2
G 392.0
A 440.0
B[ 466.2

Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Light travels faster in warmer air. On a sunny day, the sun
can heat a road and create a layer of hot air above it. Let’s model
this layer as a uniform one with a sharp boundary separating it from
the cooler air above. Use this model to explain the formation of a
mirage appearing like the shiny surface of a pool of water.

2 (a) Compute the amplitude of light that is reflected back
into air at an air-water interface, relative to the amplitude of the
incident wave. The speeds of light in air and water are 3.0 × 108

and 2.2× 108 m/s, respectively.
(b) Find the energy of the reflected wave as a fraction of the incident
energy. [Hint: The answers to the two parts are not the same.]√

3 A concert flute produces its lowest note, at about 262 Hz,
when half of a wavelength fits inside its tube. Compute the length
of the flute. . Answer, p. 569

4 (a) A good tenor saxophone player can play all of the fol-
lowing notes without changing her fingering, simply by altering the
tightness of her lips: E[ (150 Hz), E[ (300 Hz), B[ (450 Hz), and
E[ (600 Hz). How is this possible? (I’m not asking you to analyze
the coupling between the lips, the reed, the mouthpiece, and the air
column, which is very complicated.)
(b) Some saxophone players are known for their ability to use this
technique to play “freak notes,” i.e., notes above the normal range
of the instrument. Why isn’t it possible to play notes below the
normal range using this technique?

5 The table gives the frequencies of the notes that make up the
key of F major, starting from middle C and going up through all
seven notes.
(a) Calculate the first four or five harmonics of C and G, and deter-
mine whether these two notes will be consonant or dissonant. (Re-
call that harmonics that differ by about 1-10% cause dissonance.)
(b) Do the same for C and B[.
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6 Brass and wind instruments go up in pitch as the musician
warms up. As a typical empirical example, a trumpet’s frequency
might go up by about 1%. Let’s consider possible physical reasons
for the change in pitch. (a) Solids generally expand with increas-
ing temperature, because the stronger random motion of the atoms
tends to bump them apart. Brass expands by 1.88×10−5 per degree
C. Would this tend to raise the pitch, or lower it? Estimate the size
of the effect in comparison with the observed change in frequency.
(b) The speed of sound in a gas is proportional to the square root of
the absolute temperature, where zero absolute temperature is -273
degrees C. As in part a, analyze the size and direction of the effect.

7 Your exhaled breath contains about 4.5% carbon dioxide, and
is therefore more dense than fresh air by about 2.3%. By analogy
with the treatment of waves on a string in section 19.2, we expect
that the speed of sound will be inversely proportional to the square
root of the density of the gas. Calculate the effect on the frequency
produced by a wind instrument.

8 The expressions for the amplitudes of reflected and transmitted
waves depend on the unitless ratio v2/v1 (or, more generally, on the
ratio of the impedances). Call this ratio α. (a) Show that changing
α to 1/α (e.g., by interchanging the roles of the two media) has an
effect on the reflected amplitude that can be expressed in a simple
way, and discuss what this means in terms of inversion and energy.
(b) Find the two values of α for which |R| = 1/2.
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Three essential mathematical skills

More often than not when a search-and-rescue team finds a hiker dead in the wilderness, it turns
out that the person was not carrying some item from a short list of essentials, such as water
and a map. There are three mathematical essentials in this course.

1. Converting units
basic technique: section 0.9, p. 29; conversion of area, volume, etc.: section 1.1, p. 41

Examples:

0.7��kg× 103 g

1��kg
= 700 g.

To check that we have the conversion factor the right way up (103 rather then 1/103), we note
that the smaller unit of grams has been compensated for by making the number larger.

For units like m2, kg/m3, etc., we have to raise the conversion factor to the appropriate power:

4 m3 ×
(

103 mm

1 m

)3

= 4× 109
��m

3 × mm3

��m3
= 4× 109 mm3

Examples with solutions — p. 36, #6; p. 59, #10

Problems you can check at lightandmatter.com/area1checker.html — p. 36, #5; p. 36, #4;
p. 36, #7; p. 59, #1; p. 60, #19

2. Reasoning about ratios and proportionalities
The technique is introduced in section 1.2, p. 43, in the context of area and volume, but it
applies more generally to any relationship in which one variable depends on another raised to
some power.

Example: When a car or truck travels over a road, there is wear and tear on the road surface,
which incurs a cost. Studies show that the cost per kilometer of travel C is given by

C = kw4,

where w is the weight per axle and k is a constant. The weight per axle is about 13 times higher
for a semi-trailer than for my Honda Fit. How many times greater is the cost imposed on the
federal government when the semi travels a given distance on an interstate freeway?

. First we convert the equation into a proportionality by throwing out k, which is the same for
both vehicles:

C ∝ w4

Next we convert this proportionality to a statement about ratios:

C1

C2
=

(
w1

w2

)4

≈ 29, 000

Since the gas taxes paid by the trucker are nowhere near 29,000 times more than those I pay to
drive my Fit the same distance, the federal government is effectively awarding a massive subsidy
to the trucking company. Plus my Fit is cuter.
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Examples with solutions — p. 59, #11; p. 59, #12; p. 60, #17; p. 119, #16; p. 120, #22; p. 256,
#6; p. 282, #10; p. 283, #15; p. 285, #19; p. 311, #8; p. 311, #9

Problems you can check at lightandmatter.com/area1checker.html — p. 60, #16; p. 60,
#18; p. 61, #23; p. 62, #24; p. 62, #25; p. 201, #7; p. 256, #8; p. 281, #5; p. 282, #8; p. 285,
#21; p. 310, #4; p. 424, #2

3. Vector addition
section 7.3, p. 210

Example: The ∆r vector from San Diego to Los Angeles has magnitude 190 km and direction
129◦counterclockwise from east. The one from LA to Las Vegas is 370 km at 38◦counterclockwise
from east. Find the distance and direction from San Diego to Las Vegas.

. Graphical addition is discussed on p. 210. Here we concentrate on analytic addition, which
involves adding the x components to find the total x component, and similarly for y. The trig
needed in order to find the components of the second leg (LA to Vegas) is laid out in figure e
on p. 207 and explained in detail in example 3 on p. 207:

∆x2 = (370 km) cos 38◦ = 292 km

∆y2 = (370 km) sin 38◦ = 228 km

(Since these are intermediate results, we keep an extra sig fig to avoid accumulating too much
rounding error.) Once we understand the trig for one example, we don’t need to reinvent the
wheel every time. The pattern is completely universal, provided that we first make sure to get
the angle expressed according to the usual trig convention, counterclockwise from the x axis.
Applying the pattern to the first leg, we have:

∆x1 = (190 km) cos 129◦ = −120 km

∆y1 = (190 km) sin 129◦ = 148 km

For the vector directly from San Diego to Las Vegas, we have

∆x = ∆x1 + ∆x2 = 172 km

∆y = ∆y1 + ∆y2 = 376 km.

The distance from San Diego to Las Vegas is found using the Pythagorean theorem,√
(172 km)2 + (376 km)2 = 410 km

(rounded to two sig figs because it’s one of our final results). The direction is one of the two
possible values of the inverse tangent

tan−1(∆y/∆x) = {65◦, 245◦}.

Consulting a sketch shows that the first of these values is the correct one.

Examples with solutions — p. 234, #8; p. 234, #9; p. 389, #8

Problems you can check at lightandmatter.com/area1checker.html — p. 216, #3; p. 216,
#4; p. 233, #1; p. 233, #3; p. 236, #16; p. 281, #3; p. 286, #23; p. 388, #3
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Hints for volume 1

Hints for chapter 10
Page 284, problem 17:
If you try to calculate the two forces and subtract, your calculator will probably give a result of
zero due to rounding. Instead, reason about the fractional amount by which the quantity 1/r2

will change. As a warm-up, you may wish to observe the percentage change in 1/r2 that results
from changing r from 1 to 1.01.

Hints for chapter 15
Page 427, problem 18:
The first two parts can be done more easily by setting a = 1, since the value of a only changes
the distance scale. One way to do part b is by graphing.

Solutions to selected problems for volume 1

Solutions for chapter 0
Page 36, problem 6:

134 mg× 10−3 g

1 mg
× 10−3 kg

1 g
= 1.34× 10−4 kg

Page 37, problem 8:
(a) Let’s do 10.0 g and 1000 g. The arithmetic mean is 505 grams. It comes out to be 0.505 kg,
which is consistent. (b) The geometric mean comes out to be 100 g or 0.1 kg, which is consistent.
(c) If we multiply meters by meters, we get square meters. Multiplying grams by grams should
give square grams! This sounds strange, but it makes sense. Taking the square root of square
grams (g2) gives grams again. (d) No. The superduper mean of two quantities with units of
grams wouldn’t even be something with units of grams! Related to this shortcoming is the fact
that the superduper mean would fail the kind of consistency test carried out in the first two
parts of the problem.

Page 37, problem 12:
(a) They’re all defined in terms of the ratio of side of a triangle to another. For instance, the
tangent is the length of the opposite side over the length of the adjacent side. Dividing meters
by meters gives a unitless result, so the tangent, as well as the other trig functions, is unitless.
(b) The tangent function gives a unitless result, so the units on the right-hand side had better
cancel out. They do, because the top of the fraction has units of meters squared, and so does
the bottom.

Solutions for chapter 1
Page 59, problem 10:

1 mm2 ×
(

1 cm

10 mm

)2

= 10−2 cm2

Page 59, problem 11:
The bigger scope has a diameter that’s ten times greater. Area scales as the square of the linear
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dimensions, so A ∝ d2, or in the language of ratios A1/A2 = (d1/d2)2 = 100. Its light-gathering
power is a hundred times greater.

Page 59, problem 12:
Since they differ by two steps on the Richter scale, the energy of the bigger quake is 104 times
greater. The wave forms a hemisphere, and the surface area of the hemisphere over which the
energy is spread is proportional to the square of its radius, A ∝ r2, or r ∝

√
A, which means

r1/r2 =
√
A1/A2. If the amount of vibration was the same, then the surface areas must be in

the ratio A1/A2 = 104, which means that the ratio of the radii is 102.

Page 60, problem 17:
The cone of mixed gin and vermouth is the same shape as the cone of vermouth, but its linear
dimensions are doubled. Translating the proportionality V ∝ L3 into an equation about ratios,
we have V1/V2 = (L1/L2)3 = 8. Since the ratio of the whole thing to the vermouth is 8, the
ratio of gin to vermouth is 7.

Page 60, problem 19:
The proportionality V ∝ L3 can be restated in terms of ratios as V1/V2 = (L1/L2)3 = (1/10)3 =
1/1000, so scaling down the linear dimensions by a factor of 1/10 reduces the volume by 1/1000,
to a milliliter.

Page 61, problem 21:
Let’s estimate the Great Wall’s volume, and then figure out how many bricks that would repre-
sent. The wall is famous because it covers pretty much all of China’s northern border, so let’s
say it’s 1000 km long. From pictures, it looks like it’s about 10 m high and 10 m wide, so the
total volume would be 106 m× 10 m× 10 m = 108 m3. If a single brick has a volume of 1 liter,
or 10−3 m3, then this represents about 1011 bricks. If one person can lay 10 bricks in an hour
(taking into account all the preparation, etc.), then this would be 1010 man-hours.

Page 62, problem 26:
Directly guessing the number of jelly beans would be like guessing volume directly. That would
be a mistake. Instead, we start by estimating the linear dimensions, in units of beans. The
contents of the jar look like they’re about 10 beans deep. Although the jar is a cylinder,
its exact geometrical shape doesn’t really matter for the purposes of our order-of-magnitude
estimate. Let’s pretend it’s a rectangular jar. The horizontal dimensions are also something like
10 beans, so it looks like the jar has about 10× 10× 10 or ∼ 103 beans inside.

Solutions for chapter 2
Page 89, problem 4:

1 light-year = v∆t

=
(
3× 108 m/s

)
(1 year)

=
(
3× 108 m/s

) [
(1 year)×

(
365 days

1 year

)
×
(

24 hours

1 day

)
×
(

3600 s

1 hour

)]
= 9.5× 1015 m

Page 89, problem 5:
Velocity is relative, so having to lean tells you nothing about the current value of the train’s
velocity. Fullerton is moving at a huge speed relative to Beijing, but that doesn’t produce any
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noticeable effect in either city. The fact that you have to lean tells you that the train is changing
its speed, but it doesn’t tell you what the train’s current speed is.

Page 89, problem 7:
To the person riding the moving bike, bug A is simply going in circles. The only difference
between the motions of the two wheels is that one is traveling through space, but motion is
relative, so this doesn’t have any effect on the bugs. It’s equally hard for each of them.

Page 90, problem 10:
In one second, the ship moves v meters to the east, and the person moves v meters north relative
to the deck. Relative to the water, he traces the diagonal of a triangle whose length is given
by the Pythagorean theorem, (v2 + v2)1/2 =

√
2v. Relative to the water, he is moving at a

45-degree angle between north and east.

Solutions for chapter 3
Page 119, problem 14:

Page 119, problem 15:
Taking g to be 10 m/s2, the bullet loses 10 m/s of speed every second, so it will take 10 s to
come to a stop, and then another 10 s to come back down, for a total of 20 s.

Page 119, problem 16:
∆x = 1

2at
2, so for a fixed value of ∆x, we have t ∝ 1/

√
a. Translating this into the language of

ratios gives tM/tE =
√
aE/aM =

√
3 = 1.7.

Page 119, problem 17:

v =
dx

dt
= 10− 3t2

a =
dv

dt
= −6t

= −18 m/s2

Page 120, problem 18:
(a) Solving for ∆x = 1

2at
2 for a, we find a = 2∆x/t2 = 5.51 m/s2. (b) v =

√
2a∆x = 66.6 m/s.

(c) The actual car’s final velocity is less than that of the idealized constant-acceleration car. If
the real car and the idealized car covered the quarter mile in the same time but the real car
was moving more slowly at the end than the idealized one, the real car must have been going
faster than the idealized car at the beginning of the race. The real car apparently has a greater
acceleration at the beginning, and less acceleration at the end. This make sense, because every
car has some maximum speed, which is the speed beyond which it cannot accelerate.
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Page 120, problem 19:
Since the lines are at intervals of one m/s and one second, each box represents one meter. From
t = 0 to t = 2 s, the area under the curve represents a positive ∆x of 6 m. (The triangle has half
the area of the 2× 6 rectangle it fits inside.) After t = 2 s, the area above the curve represents
negative ∆x. To get −6 m worth of area, we need to go out to t = 6 s, at which point the
triangle under the axis has a width of 4 s and a height of 3 m/s, for an area of 6 m (half of
3× 4).

Page 120, problem 20:
(a) We choose a coordinate system with positive pointing to the right. Some people might
expect that the ball would slow down once it was on the more gentle ramp. This may be true
if there is significant friction, but Galileo’s experiments with inclined planes showed that when
friction is negligible, a ball rolling on a ramp has constant acceleration, not constant speed. The
speed stops increasing as quickly once the ball is on the more gentle slope, but it still keeps on
increasing. The a-t graph can be drawn by inspecting the slope of the v-t graph.

(b) The ball will roll back down, so the second half of the motion is the same as in part a. In
the first (rising) half of the motion, the velocity is negative, since the motion is in the opposite
direction compared to the positive x axis. The acceleration is again found by inspecting the
slope of the v-t graph.

Page 120, problem 21:
This is a case where it’s probably easiest to draw the acceleration graph first. While the ball
is in the air (bc, de, etc.), the only force acting on it is gravity, so it must have the same,
constant acceleration during each hop. Choosing a coordinate system where the positive x axis
points up, this becomes a negative acceleration (force in the opposite direction compared to the
axis). During the short times between hops when the ball is in contact with the ground (cd,
ef, etc.), it experiences a large acceleration, which turns around its velocity very rapidly. These
short positive accelerations probably aren’t constant, but it’s hard to know how they’d really
look. We just idealize them as constant accelerations. Similarly, the hand’s force on the ball
during the time ab is probably not constant, but we can draw it that way, since we don’t know
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how to draw it more realistically. Since our acceleration graph consists of constant-acceleration
segments, the velocity graph must consist of line segments, and the position graph must consist
of parabolas. On the x graph, I chose zero to be the height of the center of the ball above the
floor when the ball is just lying on the floor. When the ball is touching the floor and compressed,
as in interval cd, its center is below this level, so its x is negative.

Page 120, problem 22:
We have v2

f = 2a∆x, so the distance is proportional to the square of the velocity. To get up to
half the speed, the ball needs 1/4 the distance, i.e., L/4.

Solutions for chapter 4
Page 148, problem 7:
a = ∆v/∆t, and also a = F/m, so

∆t =
∆v

a

=
m∆v

F

=
(1000 kg)(50 m/s− 20 m/s)

3000 N
= 10 s

Page 149, problem 10:
(a) This is a measure of the box’s resistance to a change in its state of motion, so it measures
the box’s mass. The experiment would come out the same in lunar gravity.
(b) This is a measure of how much gravitational force it feels, so it’s a measure of weight. In
lunar gravity, the box would make a softer sound when it hit.
(c) As in part a, this is a measure of its resistance to a change in its state of motion: its mass.
Gravity isn’t involved at all.

Page 150, problem 15:
The partner’s hands are not touching the climber, so they don’t make any force on him. The
hands have an indirect effect through the rope, but our concept of force only includes direct
effects (section 4.4, p. 141).

The corrected table looks like this:
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force of the earth’s gravity, ↓
force from the rope, ↑

The student is also wrong to claim that the upward and downward forces are unbalanced. The
climber is moving down at constant speed, so his acceleration is zero, and the total force acting
on him is zero. The upward and downward forces are of equal strength, and they cancel.

Solutions for chapter 5
Page 182, problem 14:

(a)

top spring’s rightward force on connector
...connector’s leftward force on top spring
bottom spring’s rightward force on connector
...connector’s leftward force on bottom spring
hand’s leftward force on connector
...connector’s rightward force on hand

Looking at the three forces on the connector, we see that the hand’s force must be double the
force of either spring. The value of x− xo is the same for both springs and for the arrangement
as a whole, so the spring constant must be 2k. This corresponds to a stiffer spring (more force
to produce the same extension).

(b) Forces in which the left spring participates:

hand’s leftward force on left spring
...left spring’s rightward force on hand
right spring’s rightward force on left spring
...left spring’s leftward force on right spring

Forces in which the right spring participates:

left spring’s leftward force on right spring
...right spring’s rightward force on left spring
wall’s rightward force on right spring
...right spring’s leftward force on wall

Since the left spring isn’t accelerating, the total force on it must be zero, so the two forces acting
on it must be equal in magnitude. The same applies to the two forces acting on the right spring.
The forces between the two springs are connected by Newton’s third law, so all eight of these
forces must be equal in magnitude. Since the value of x−xo for the whole setup is double what
it is for either spring individually, the spring constant of the whole setup must be k/2, which
corresponds to a less stiff spring.

Page 182, problem 16:
(a) Spring constants in parallel add, so the spring constant has to be proportional to the cross-
sectional area. Two springs in series give half the spring constant, three springs in series give 1/3,
and so on, so the spring constant has to be inversely proportional to the length. Summarizing,
we have k ∝ A/L. (b) With the Young’s modulus, we have k = (A/L)E.The spring constant
has units of N/m, so the units of E would have to be N/m2.

Page 183, problem 18:
(a) The swimmer’s acceleration is caused by the water’s force on the swimmer, and the swimmer

552



makes a backward force on the water, which accelerates the water backward. (b) The club’s
normal force on the ball accelerates the ball, and the ball makes a backward normal force on the
club, which decelerates the club. (c) The bowstring’s normal force accelerates the arrow, and
the arrow also makes a backward normal force on the string. This force on the string causes the
string to accelerate less rapidly than it would if the bow’s force was the only one acting on it.
(d) The tracks’ backward frictional force slows the locomotive down. The locomotive’s forward
frictional force causes the whole planet earth to accelerate by a tiny amount, which is too small
to measure because the earth’s mass is so great.

Page 183, problem 20:
The person’s normal force on the box is paired with the box’s normal force on the person. The
dirt’s frictional force on the box pairs with the box’s frictional force on the dirt. The earth’s
gravitational force on the box matches the box’s gravitational force on the earth.

Page 184, problem 26:
(a) A liter of water has a mass of 1.0 kg. The mass is the same in all three locations. Mass
indicates how much an object resists a change in its motion. It has nothing to do with gravity.
(b) The term “weight” refers to the force of gravity on an object. The bottle’s weight on earth
is FW = mg = 9.8 N. Its weight on the moon is about one sixth that value, and its weight in
interstellar space is zero.

Page 185, problem 29:
First, let’s account for every object that’s touching her: the floor and the roof. Any time two
solid objects are in contact, we expect a normal force, which is the force that keeps them from
passing through each other. Normal forces are repulsive, which means here that the roof’s force
on her head is down (away from itself), and the floor’s force on her feet is up (away from itself).
There could also be frictional forces, but in this problem there is symmetry between left and
right, so it wouldn’t make sense for frictional forces to exist here — if they did, there would be
no way to decide which way they should point.

In addition to these contact forces, we will have a non-contact force: the earth’s gravity.

The physical reasoning above establishes the left-hand column of the table below. Once we’ve
established the left-hand column, the right-hand column can be generated purely by manipu-
lating the words and symbols, without further recourse to physical insight. By Newton’s third
law, we interchange the two objects and reverse the arrow. The type of the force is the same.

force acting on woman force related to it by Newton’s third law

roof’s normal force on woman, ↓ woman’s normal force on roof, ↑
floor’s normal force on woman, ↑ woman’s normal force on floor, ↓
planet earth’s gravitational force on
woman, ↓

woman’s gravitational force on earth, ↑

Solutions for chapter 6
Page 200, problem 5:
(a) The easiest strategy is to find the time spent aloft, and then find the range. The vertical
motion and the horizontal motion are independent. The vertical motion has acceleration −g,
and the cannonball spends enough time in the air to reverse its vertical velocity component
completely, so we have

∆vy = vyf − vyo
= −2v sin θ.
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The time spent aloft is therefore

∆t = ∆vy/ay

= 2v sin θ/g.

During this time, the horizontal distance traveled is

R = vx∆t

= 2v2 sin θ cos θ/g.

(b) The range becomes zero at both θ = 0 and at θ = 90◦. The θ = 0 case gives zero range
because the ball hits the ground as soon as it leaves the mouth of the cannon. A 90-degree angle
gives zero range because the cannonball has no horizontal motion.

Solutions for chapter 8
Page 234, problem 8:
We want to find out about the velocity vector vBG of the bullet relative to the ground, so we need
to add Annie’s velocity relative to the ground vAG to the bullet’s velocity vector vBA relative
to her. Letting the positive x axis be east and y north, we have

vBA,x = (140 mi/hr) cos 45◦

= 100 mi/hr

vBA,y = (140 mi/hr) sin 45◦

= 100 mi/hr

and

vAG,x = 0

vAG,y = 30 mi/hr.

The bullet’s velocity relative to the ground therefore has components

vBG,x = 100 mi/hr and

vBG,y = 130 mi/hr.

Its speed on impact with the animal is the magnitude of this vector

|vBG| =
√

(100 mi/hr)2 + (130 mi/hr)2

= 160 mi/hr

(rounded off to 2 significant figures).

Page 234, problem 9:
Since its velocity vector is constant, it has zero acceleration, and the sum of the force vectors
acting on it must be zero. There are three forces acting on the plane: thrust, lift, and gravity.
We are given the first two, and if we can find the third we can infer its mass. The sum of the y
components of the forces is zero, so

0 = Fthrust,y + Flift,y + FW ,y

= |Fthrust| sin θ + |Flift| cos θ −mg.
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The mass is

m = (|Fthrust| sin θ + |Flift| cos θ)/g

= 7.0× 104 kg

Page 234, problem 10:
(a) Since the wagon has no acceleration, the total forces in both the x and y directions must
be zero. There are three forces acting on the wagon: FT , FW , and the normal force from the
ground, FN . If we pick a coordinate system with x being horizontal and y vertical, then the
angles of these forces measured counterclockwise from the x axis are 90◦− φ, 270◦, and 90◦+ θ,
respectively. We have

Fx,total = |FT | cos(90◦ − φ) + |FW | cos(270◦) + |FN | cos(90◦ + θ)

Fy,total = |FT | sin(90◦ − φ) + |FW | sin(270◦) + |FN | sin(90◦ + θ),

which simplifies to

0 = |FT | sinφ− |FN | sin θ
0 = |FT | cosφ− |FW |+ |FN | cos θ.

The normal force is a quantity that we are not given and do not wish to find, so we should
choose it to eliminate. Solving the first equation for |FN | = (sinφ/ sin θ)|FT |, we eliminate |FN |
from the second equation,

0 = |FT | cosφ− |FW |+ |FT | sinφ cos θ/ sin θ

and solve for |FT |, finding

|FT | =
|FW |

cosφ+ sinφ cos θ/ sin θ
.

Multiplying both the top and the bottom of the fraction by sin θ, and using the trig identity for
sin(θ + φ) gives the desired result,

|FT | =
sin θ

sin(θ + φ)
|FW |.

(b) The case of φ = 0, i.e., pulling straight up on the wagon, results in |FT | = |FW |: we simply
support the wagon and it glides up the slope like a chair-lift on a ski slope. In the case of
φ = 180◦ − θ, |FT | becomes infinite. Physically this is because we are pulling directly into the
ground, so no amount of force will suffice.

Page 235, problem 11:
(a) If there was no friction, the angle of repose would be zero, so the coefficient of static friction,
µs, will definitely matter. We also make up symbols θ, m and g for the angle of the slope, the
mass of the object, and the acceleration of gravity. The forces form a triangle just like the one
in example 5 on p. 225, but instead of a force applied by an external object, we have static
friction, which is less than µs|FN |. As in that example, |Fs| = mg sin θ, and |Fs| < µs|FN |, so

mg sin θ < µs|FN |.

From the same triangle, we have |FN | = mg cos θ, so

mg sin θ < µsmg cos θ.
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Rearranging,

θ < tan−1 µs.

(b) Both m and g canceled out, so the angle of repose would be the same on an asteroid.

Page 238, problem 25:
(a) There is no theoretical limit on how much normal force FN the climber can make on the
walls with each foot, so the frictional force can be made arbitrarily large. This means that with
any µ > 0, we can always get the vertical forces to cancel. The theoretical minimum value of µ
will be determined by the need for the horizontal forces to cancel, so that the climber doesn’t
pop out of the corner like a watermelon seed squeezed between two fingertips. The horizontal
component of the frictional force is always less than the magnitude of the frictional force, which
is turn is less than µFN . To find the minimum value of µ, we set the static frictional force equal
to µFN .

Let the x axis be along the plane that bisects the two walls, let y be the horizontal direction
perpendicular to x, and let z be vertical. Then cancellation of the forces in the z direction
is not the limiting factor, for the reasons described above, and cancellation in y is guaranteed
by symmetry, so the only issue is the cancellation of the x forces. We have 2Fs cos(θ/2) −
2FN sin(θ/2) = 0. Combining this with Fs = µFN results in µ = tan(θ/2).

(b) For θ = 0, µ is very close to zero. That is, we can always theoretically stay stuck between
two parallel walls, simply by pressing hard enough, even if the walls are made of ice or polished
marble with a coating of WD-40. As θ gets close to 180◦, µ blows up to infinity. We need at
least some dihedral angle to do this technique, because otherwise we’re facing a flat wall, and
there is nothing to cancel the wall’s normal force on our feet.

(c) The result is 99.0◦, i.e., just a little wider than a right angle.

Solutions for chapter 9
Page 255, problem 5:
Each cyclist has a radial acceleration of v2/r = 5 m/s2. The tangential accelerations of cyclists
A and B are 375 N/75 kg = 5 m/s2.

Page 256, problem 6:
(a) The inward normal force must be sufficient to produce circular motion, so

|FN | = mv2/r.

We are searching for the minimum speed, which is the speed at which the static friction force is
just barely able to cancel out the downward gravitational force. The maximum force of static
friction is

|Fs| = µs|FN |,
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and this cancels the gravitational force, so

|Fs| = mg.

Solving these three equations for v gives

v =

√
gr

µs
.

(b) Greater by a factor of
√

3.

Page 256, problem 7:
The inward force must be supplied by the inward component of the normal force,

|FN | sin θ = mv2/r.

The upward component of the normal force must cancel the downward force of gravity,

|FN | cos θ = mg.

Eliminating |FN | and solving for θ, we find

θ = tan−1

(
v2

gr

)
.

Solutions for chapter 10
Page 282, problem 10:
Newton’s law of gravity is F = GMm/r2. Both G and the astronaut’s mass m are the same in
the two situations, so F ∝Mr−2. In terms of ratios, this is

Fc
Fe

=
Mc

Me

(
rc
re

)−2

.

The result is 11 N.

Page 283, problem 11:
Newton’s law of gravity says F = Gm1m2/r

2, and Newton’s second law says F = m2a, so
Gm1m2/r

2 = m2a. Since m2 cancels, a is independent of m2.

Page 283, problem 12:
Newton’s second law gives

F = mDaD,

where F is Ida’s force on Dactyl. Using Newton’s universal law of gravity, F= GmImD/r
2,and

the equation a = v2/r for circular motion, we find

GmImD/r
2 = mDv

2/r.

Dactyl’s mass cancels out, giving
GmI/r

2 = v2/r.

Dactyl’s velocity equals the circumference of its orbit divided by the time for one orbit: v =
2πr/T . Inserting this in the above equation and solving for mI , we find

mI =
4π2r3

GT 2
,
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so Ida’s density is

ρ = mI/V

=
4π2r3

GV T 2
.

Page 283, problem 15:
Newton’s law of gravity depends on the inverse square of the distance, so if the two planets’
masses had been equal, then the factor of 0.83/0.059 = 14 in distance would have caused the
force on planet c to be 142 = 2.0 × 102 times weaker. However, planet c’s mass is 3.0 times
greater, so the force on it is only smaller by a factor of 2.0× 102/3.0 = 65.

Page 284, problem 16:
The reasoning is reminiscent of section 10.2. From Newton’s second law we have

F = ma = mv2/r = m(2πr/T )2/r = 4π2mr/T 2,

and Newton’s law of gravity gives F = GMm/r2, where M is the mass of the earth. Setting
these expressions equal to each other, we have

4π2mr/T 2 = GMm/r2,

which gives

r =

(
GMT 2

4π2

)1/3

= 4.22× 104 km.

This is the distance from the center of the earth, so to find the altitude, we need to subtract
the radius of the earth. The altitude is 3.58× 104 km.

Page 284, problem 17:
Any fractional change in r results in double that amount of fractional change in 1/r2. For
example, raising r by 1% causes 1/r2 to go down by very nearly 2%. A 27-day orbit is 1/13.5
of a year, so the fractional change in 1/r2 is

2× (4/13.5) cm

3.84× 105 km
× 1 km

105 cm
= 1.5× 10−11

Page 285, problem 19:
(a) The asteroid’s mass depends on the cube of its radius, and for a given mass the surface
gravity depends on r−2. The result is that surface gravity is directly proportional to radius.
Half the gravity means half the radius, or one eighth the mass. (b) To agree with a, Earth’s
mass would have to be 1/8 Jupiter’s. We assumed spherical shapes and equal density. Both
planets are at least roughly spherical, so the only way out of the contradiction is if Jupiter’s
density is significantly less than Earth’s.

Solutions for chapter 11
Page 311, problem 7:
A force is an interaction between two objects, so while the bullet is in the air, there is no force.
There is only a force while the bullet is in contact with the book. There is energy the whole
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time, and the total amount doesn’t change. The bullet has some kinetic energy, and transfers
some of it to the book as heat, sound, and the energy required to tear a hole through the book.

Page 311, problem 8:
(a) The energy stored in the gasoline is being changed into heat via frictional heating, and also
probably into sound and into energy of water waves. Note that the kinetic energy of the propeller
and the boat are not changing, so they are not involved in the energy transformation. (b) The
crusing speed would be greater by a factor of the cube root of 2, or about a 26% increase.

Page 311, problem 9:
We don’t have actual masses and velocities to plug in to the equation, but that’s OK. We just
have to reason in terms of ratios and proportionalities. Kinetic energy is proportional to mass
and to the square of velocity, so B’s kinetic energy equals

(13.4 J)(3.77)/(2.34)2 = 9.23 J

Page 311, problem 11:
Room temperature is about 20◦C. The fraction of the energy that actually goes into heating
the water is

(250 g)/(0.24 g·◦C/J)× (100◦C− 20◦C)

(1.25× 103 J/s) (126 s)
= 0.53

So roughly half of the energy is wasted. The wasted energy might be in several forms: heating
of the cup, heating of the oven itself, or leakage of microwaves from the oven.

Solutions for chapter 12
Page 327, problem 5:

Etotal,i = Etotal,f

PEi + heati = PEf +KEf + heatf
1

2
mv2 = PEi − PEf + heati − heatf

= −∆PE −∆heat

v =

√
2

(
−∆PE −∆heat

m

)
= 6.4 m/s

Page 328, problem 7:
Let θ be the angle by which he has progressed around the pipe. Conservation of energy gives

Etotal,i = Etotal,f

PEi = PEf +KEf

0 = ∆PE +KEf

0 = mgr(cos θ − 1) +
1

2
mv2.

While he is still in contact with the pipe, the radial component of his acceleration is

ar =
v2

r
,
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and making use of the previous equation we find

ar = 2g(1− cos θ).

There are two forces on him, a normal force from the pipe and a downward gravitational force
from the earth. At the moment when he loses contact with the pipe, the normal force is zero,
so the radial component, mg cos θ, of the gravitational force must equal mar,

mg cos θ = 2mg(1− cos θ),

which gives

cos θ =
2

3
.

The amount by which he has dropped is r(1− cos θ), which equals r/3 at this moment.

Page 328, problem 9:
(a) Example: As one child goes up on one side of a see-saw, another child on the other side
comes down. (b) Example: A pool ball hits another pool ball, and transfers some KE.

Page 328, problem 11:
Suppose the river is 1 m deep, 100 m wide, and flows at a speed of 10 m/s, and that the falls
are 100 m tall. In 1 second, the volume of water flowing over the falls is 103 m3, with a mass of
106 kg. The potential energy released in one second is (106 kg)(g)(100 m) = 109 J, so the power
is 109 W. A typical household might have 10 hundred-watt applicances turned on at any given
time, so it consumes about 103 watts on the average. The plant could supply a about million
households with electricity.

Solutions for chapter 13
Page 357, problem 18:
No. Work describes how energy was transferred by some process. It isn’t a measurable property
of a system.

Solutions for chapter 14
Page 389, problem 8:
Let m be the mass of the little puck and M = 2.3m be the mass of the big one. All we need
to do is find the direction of the total momentum vector before the collision, because the total
momentum vector is the same after the collision. Given the two components of the momentum
vector px = Mv and py = mv, the direction of the vector is tan−1(py/px) = 23◦ counterclockwise
from the big puck’s original direction of motion.

Page 390, problem 11:
Momentum is a vector. The total momentum of the molecules is always zero, since the momenta
in different directions cancal out on the average. Cooling changes individual molecular momenta,
but not the total.

Page 390, problem 14:
By conservation of momentum, the total momenta of the pieces after the explosion is the same
as the momentum of the firework before the explosion. However, there is no law of conservation
of kinetic energy, only a law of conservation of energy. The chemical energy in the gunpowder
is converted into heat and kinetic energy when it explodes. All we can say about the kinetic
energy of the pieces is that their total is greater than the kinetic energy before the explosion.

560



Page 390, problem 15:
(a) Particle i had velocity vi in the center-of-mass frame, and has velocity vi + u in the new
frame. The total kinetic energy is

1

2
m1 (v1 + u)2 + . . . ,

where “. . . ” indicates that the sum continues for all the particles. Rewriting this in terms of
the vector dot product, we have

1

2
m1 (v1 + u) · (v1 + u) + . . . =

1

2
m1 (v1 · v1 + 2u · v1 + u · u) + . . . .

When we add up all the terms like the first one, we get Kcm. Adding up all the terms like the
third one, we get M |u|2/2. The terms like the second term cancel out:

m1u · v1 + . . . = u · (m1v1 + . . .) ,

where the sum in brackets equals the total momentum in the center-of-mass frame, which is
zero by definition.
(b) Changing frames of reference doesn’t change the distances between the particles, so the
potential energies are all unaffected by the change of frames of reference. Suppose that in a
given frame of reference, frame 1, energy is conserved in some process: the initial and final
energies add up to be the same. First let’s transform to the center-of-mass frame. The potential
energies are unaffected by the transformation, and the total kinetic energy is simply reduced
by the quantity M |u1|2/2, where u1 is the velocity of frame 1 relative to the center of mass.
Subtracting the same constant from the initial and final energies still leaves them equal. Now
we transform to frame 2. Again, the effect is simply to change the initial and final energies by
adding the same constant.

Page 391, problem 16:
A conservation law is about addition: it says that when you add up a certain thing, the total
always stays the same. Funkosity would violate the additive nature of conservation laws, because
a two-kilogram mass would have twice as much funkosity as a pair of one-kilogram masses moving
at the same speed.

Solutions for chapter 15
Page 427, problem 20:
The pliers are not moving, so their angular momentum remains constant at zero, and the total
torque on them must be zero. Not only that, but each half of the pliers must have zero total
torque on it. This tells us that the magnitude of the torque at one end must be the same as
that at the other end. The distance from the axis to the nut is about 2.5 cm, and the distance
from the axis to the centers of the palm and fingers are about 8 cm. The angles are close
enough to 90◦ that we can pretend they’re 90 degrees, considering the rough nature of the other
assumptions and measurements. The result is (300 N)(2.5 cm) = (F )(8 cm), or F = 90 N.

Page 428, problem 28:
The foot of the rod is moving in a circle relative to the center of the rod, with speed v = πb/T ,
and acceleration v2/(b/2) = (π2/8)g. This acceleration is initially upward, and is greater in
magnitude than g, so the foot of the rod will lift off without dragging. We could also worry
about whether the foot of the rod would make contact with the floor again before the rod
finishes up flat on its back. This is a question that can be settled by graphing, or simply by

561



inspection of figure o on page 405. The key here is that the two parts of the acceleration are
both independent of m and b, so the result is univeral, and it does suffice to check a graph in
a single example. In practical terms, this tells us something about how difficult the trick is to
do. Because π2/8 = 1.23 isn’t much greater than unity, a hit that is just a little too weak (by
a factor of 1.231/2 = 1.11) will cause a fairly obvious qualitative change in the results. This is
easily observed if you try it a few times with a pencil.

Solutions for chapter 16
Page 452, problem 11:
(a) We have

dP = ρg dy

∆P =

∫
ρg dy,

and since we’re taking water to be incompressible, and g doesn’t change very much over 11 km
of height, we can treat ρ and g as constants and take them outside the integral.

∆P = ρg∆y

= (1.0 g/cm3)(9.8 m/s2)(11.0 km)

= (1.0× 103 kg/m3)(9.8 m/s2)(1.10× 104 m)

= 1.0× 108 Pa

= 1.0× 103 atm.

The precision of the result is limited to a few percent, due to the compressibility of the water,
so we have at most two significant figures. If the change in pressure were exactly a thousand
atmospheres, then the pressure at the bottom would be 1001 atmospheres; however, this dis-
tinction is not relevant at the level of approximation we’re attempting here.
(b) Since the air in the bubble is in thermal contact with the water, it’s reasonable to assume
that it keeps the same temperature the whole time. The ideal gas law is PV = nkT , and
rewriting this as a proportionality gives

V ∝ P−1,

or
Vf
Vi

=

(
Pf
Pi

)−1

≈ 103.

Since the volume is proportional to the cube of the linear dimensions, the growth in radius is
about a factor of 10.

Page 452, problem 12:
(a) Roughly speaking, the thermal energy is ∼ kBT (where kB is the Boltzmann constant), and
we need this to be on the same order of magnitude as ke2/r (where k is the Coulomb constant).
For this type of rough estimate it’s not especially crucial to get all the factors of two right, but
let’s do so anyway. Each proton’s average kinetic energy due to motion along a particular axis
is (1/2)kBT . If two protons are colliding along a certain line in the center-of-mass frame, then
their average combined kinetic energy due to motion along that axis is 2(1/2)kBT = kBT . So
in fact the factors of 2 cancel. We have T = ke2/kBr.
(b) The units are K = (J·m/C2)(C2)/((J/K)·m), which does work out.

562



(c) The numerical result is ∼ 1010 K, which as suggested is much higher than the temperature
at the core of the sun.

Page 453, problem 13:
If the full-sized brick A undergoes some process, such as heating it with a blowtorch, then we
want to be able to apply the equation ∆S = Q/T to either the whole brick or half of it, which
would be identical to B. When we redefine the boundary of the system to contain only half of
the brick, the quantities ∆S and Q are each half as big, because entropy and energy are additive
quantities. T , meanwhile, stays the same, because temperature isn’t additive — two cups of
coffee aren’t twice as hot as one. These changes to the variables leave the equation consistent,
since each side has been divided by 2.

Page 453, problem 14:
(a) If the expression 1 + by is to make sense, then by has to be unitless, so b has units of m−1.
The input to the exponential function also has to be unitless, so k also has of m−1. The only
factor with units on the right-hand side is Po, so Po must have units of pressure, or Pa.
(b)

dP = ρg dy

ρ =
1

g

dP

dy

=
Po
g
e−ky(−k − kby + b)

(c) The three terms inside the parentheses on the right all have units of m−1, so it makes sense
to add them, and the factor in parentheses has those units. The units of the result from b then
look like

kg

m3
=

Pa

m/s2
m−1

=
N/m2

m2/s2

=
kg·m−1 ·s−2

m2/s2
,

which checks out.

Answers to self-checks for volume 1

Answers to self-checks for chapter 0
Page 17, self-check A:
If only he has the special powers, then his results can never be reproduced.

Page 19, self-check B:
They would have had to weigh the rays, or check for a loss of weight in the object from which
they were have emitted. (For technical reasons, this was not a measurement they could actually
do, hence the opportunity for disagreement.)

Page 25, self-check C:
A dictionary might define “strong” as “possessing powerful muscles,” but that’s not an oper-
ational definition, because it doesn’t say how to measure strength numerically. One possible
operational definition would be the number of pounds a person can bench press.
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Page 28, self-check D:
A microsecond is 1000 times longer than a nanosecond, so it would seem like 1000 seconds, or
about 20 minutes.

Page 29, self-check E:
Exponents have to do with multiplication, not addition. The first line should be 100 times
longer than the second, not just twice as long.

Page 32, self-check F:
The various estimates differ by 5 to 10 million. The CIA’s estimate includes a ridiculous number
of gratuitous significant figures. Does the CIA understand that every day, people in are born
in, die in, immigrate to, and emigrate from Nigeria?

Page 32, self-check G:
(1) 4; (2) 2; (3) 2

Answers to self-checks for chapter 1
Page 42, self-check A:
1 yd2 × (3 ft/1 yd)2 = 9 ft2

1 yd3 × (3 ft/1 yd)3 = 27 ft3

Page 48, self-check B:
C1/C2 = (w1/w2)4

Answers to self-checks for chapter 2
Page 71, self-check A:
Coasting on a bike and coasting on skates give one-dimensional center-of-mass motion, but
running and pedaling require moving body parts up and down, which makes the center of mass
move up and down. The only example of rigid-body motion is coasting on skates. (Coasting on
a bike is not rigid-body motion, because the wheels twist.)

Page 71, self-check B:
By shifting his weight around, he can cause the center of mass not to coincide with the geometric
center of the wheel.

Page 72, self-check C:
(1) a point in time; (2) time in the abstract sense; (3) a time interval

Page 73, self-check D:
Zero, because the “after” and “before” values of x are the same.

Page 81, self-check E:
(1) The effect only occurs during blastoff, when their velocity is changing. Once the rocket
engines stop firing, their velocity stops changing, and they no longer feel any effect. (2) It is
only an observable effect of your motion relative to the air.

Answers to self-checks for chapter 3
Page 97, self-check A:
Its speed increases at a steady rate, so in the next second it will travel 19 cm.

Answers to self-checks for chapter 4
Page 139, self-check A:
(1) The case of ρ = 0 represents an object falling in a vacuum, i.e., there is no density of air.
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The terminal velocity would be infinite. Physically, we know that an object falling in a vacuum
would never stop speeding up, since there would be no force of air friction to cancel the force of
gravity. (2) The 4-cm ball would have a mass that was greater by a factor of 4× 4× 4, but its
cross-sectional area would be greater by a factor of 4× 4. Its terminal velocity would be greater
by a factor of

√
43/42 = 2. (3) It isn’t of any general importance. It’s just an example of one

physical situation. You should not memorize it.

Page 142, self-check B:
(1) This is motion, not force. (2) This is a description of how the sub is able to get the water
to produce a forward force on it. (3) The sub runs out of energy, not force.

Answers to self-checks for chapter 5
Page 155, self-check A:
The sprinter pushes backward against the ground, and by Newton’s third law, the ground pushes
forward on her. (Later in the race, she is no longer accelerating, but the ground’s forward force
is needed in order to cancel out the backward forces, such as air friction.)

Page 163, self-check B:
(1) It’s kinetic friction, because her uniform is sliding over the dirt. (2) It’s static friction,
because even though the two surfaces are moving relative to the landscape, they’re not slipping
over each other. (3) Only kinetic friction creates heat, as when you rub your hands together. If
you move your hands up and down together without sliding them across each other, no heat is
produced by the static friction.

Page 163, self-check C:
By the POFOSTITO mnemonic, we know that each of the bird’s forces on the trunk will be of
the same type as the corresponding force of the tree on the bird, but in the opposite direction.
The bird’s feet make a normal force on the tree that is to the right and a static frictional force
that is downward.

Page 164, self-check D:
Frictionless ice can certainly make a normal force, since otherwise a hockey puck would sink
into the ice. Friction is not possible without a normal force, however: we can see this from the
equation, or from common sense, e.g., while sliding down a rope you do not get any friction
unless you grip the rope.

Page 165, self-check E:
(1) Normal forces are always perpendicular to the surface of contact, which means right or left
in this figure. Normal forces are repulsive, so the cliff’s force on the feet is to the right, i.e., away
from the cliff. (2) Frictional forces are always parallel to the surface of contact, which means
right or left in this figure. Static frictional forces are in the direction that would tend to keep
the surfaces from slipping over each other. If the wheel was going to slip, its surface would be
moving to the left, so the static frictional force on the wheel must be in the direction that would
prevent this, i.e., to the right. This makes sense, because it is the static frictional force that
accelerates the dragster. (3) Normal forces are always perpendicular to the surface of contact.
In this diagram, that means either up and to the left or down and to the right. Normal forces
are repulsive, so the ball is pushing the bat away from itself. Therefore the ball’s force is down
and to the right on this diagram.

Answers to self-checks for chapter 6

565



Page 193, self-check A:
The wind increases the ball’s overall speed. If you think about it in terms of overall speed,
it’s not so obvious that the increased speed is exactly sufficient to compensate for the greater
distance. However, it becomes much simpler if you think about the forward motion and the
sideways motion as two separate things. Suppose the ball is initially moving at one meter per
second. Even if it picks up some sideways motion from the wind, it’s still getting closer to the
wall by one meter every second.

Answers to self-checks for chapter 7
Page 205, self-check A:
v = ∆r/∆t

Page 206, self-check B:

Page 211, self-check C:
A −B is equivalent to A + (−B), which can be calculated graphically by reversing B to form
−B, and then adding it to A.

Answers to self-checks for chapter 8
Page 221, self-check A:
(1) It is speeding up, because the final velocity vector has the greater magnitude. (2) The result
would be zero, which would make sense. (3) Speeding up produced a ∆v vector in the same
direction as the motion. Slowing down would have given a ∆v that pointed backward.

Page 222, self-check B:
As we have already seen, the projectile has ax = 0 and ay = −g, so the acceleration vector is
pointing straight down.

Answers to self-checks for chapter 9
Page 245, self-check A:
(1) Uniform. They have the same motion as the drum itself, which is rotating as one solid piece.
No part of the drum can be rotating at a different speed from any other part. (2) Nonuniform.
Gravity speeds it up on the way down and slows it down on the way up.

Answers to self-checks for chapter 10
Page 264, self-check A:
It would just stay where it was. Plugging v = 0 into eq. [1] would give F = 0, so it would not
accelerate from rest, and would never fall into the sun. No astronomer had ever observed an
object that did that!

Page 265, self-check B:

F ∝ mr/T 2 ∝ mr/(r3/2)2 ∝ mr/r3 = m/r2

Page 268, self-check C:
The equal-area law makes equally good sense in the case of a hyperbolic orbit (and observations
verify it). The elliptical orbit law had to be generalized by Newton to include hyperbolas. The
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law of periods doesn’t make sense in the case of a hyperbolic orbit, because a hyperbola never
closes back on itself, so the motion never repeats.

Page 273, self-check D:
Above you there is a small part of the shell, comprising only a tiny fraction of the earth’s mass.
This part pulls you up, while the whole remainder of the shell pulls you down. However, the
part above you is extremely close, so it makes sense that its force on you would be far out of
proportion to its small mass.

Answers to self-checks for chapter 11
Page 302, self-check A:
(1) A spring-loaded toy gun can cause a bullet to move, so the spring is capable of storing energy
and then converting it into kinetic energy. (2) The amount of energy stored in the spring relates
to the amount of compression, which can be measured with a ruler.

Answers to self-checks for chapter 12
Page 322, self-check A:
Both balls start from the same height and end at the same height, so they have the same ∆y.
This implies that their losses in potential energy are the same, so they must both have gained
the same amount of kinetic energy.

Answers to self-checks for chapter 13
Page 332, self-check A:
Work is defined as the transfer of energy, so like energy it is a scalar with units of joules.

Page 336, self-check B:
Whenever energy is transferred out of the spring, the same amount has to be transferred into
the ball, and vice versa. As the spring compresses, the ball is doing positive work on the spring
(giving up its KE and transferring energy into the spring as PE), and as it decompresses the
ball is doing negative work (extracting energy).

Page 339, self-check C:
(a) No. The pack is moving at constant velocity, so its kinetic energy is staying the same. It
is only moving horizontally, so its gravitational potential energy is also staying the same. No
energy transfer is occurring. (b) No. The horse’s upward force on the pack forms a 90-degree
angle with the direction of motion, so cos θ = 0, and no work is done.

Page 341, self-check D:
Only in (a) can we use Fd to calculate work. In (b) and (c), the force is changing as the distance
changes.

Answers to self-checks for chapter 15
Page 409, self-check A:
1, 2, and 4 all have the same sign, because they are trying to twist the wrench clockwise. The
sign of torque 3 is opposite to the signs of the others. The magnitude of torque 3 is the greatest,
since it has a large r, and the force is nearly all perpendicular to the wrench. Torques 1 and 2
are the same because they have the same values of r and F⊥. Torque 4 is the smallest, due to
its small r.

Answers to self-checks for chapter 16
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Page 435, self-check A:
Solids can exert shear forces. A solid could be in an equilibrium in which the shear forces were
canceling the forces due to unequal pressures on the sides of the cube.

Answers to self-checks for chapter 18
Page 474, self-check A:
The horizontal axis is a time axis, and the period of the vibrations is independent of amplitude.
Shrinking the amplitude does not make the cycles any faster.

Page 475, self-check B:
Energy is proportional to the square of the amplitude, so its energy is four times smaller after
every cycle. It loses three quarters of its energy with each cycle.

Page 481, self-check C:
She should tap the wine glasses she finds in the store and look for one with a high Q, i.e., one
whose vibrations die out very slowly. The one with the highest Q will have the highest-amplitude
response to her driving force, making it more likely to break.

Answers to self-checks for chapter 19
Page 497, self-check A:
The leading edge is moving up, the trailing edge is moving down, and the top of the hump is
motionless for one instant.

Page 504, self-check B:
(a) It doesn’t have w or h in it. (b) Inertia is measured by µ, tightness by T . (c) Inertia would
be measured by the density of the metal, tightness by its resistance to compression. Lead is
more dense than aluminum, and this would tend to make the speed of the waves lower in lead.
Lead is also softer, so it probably has less resistance to compression, and we would expect this
to provide an additional effect in the same direction. Compressional waves will definitely be
slower in lead than in aluminum.

Answers to self-checks for chapter 20
Page 523, self-check A:
The energy of a wave is usually proportional to the square of its amplitude. Squaring a negative
number gives a positive result, so the energy is the same.

Page 523, self-check B:
A substance is invisible to sonar if the speed of sound waves in it is the same as in water.
Reflections only occur at boundaries between media in which the wave speed is different.

Page 525, self-check C:
No. A material object that loses kinetic energy slows down, but a wave is not a material object.
The velocity of a wave ordinarily only depends on the medium, not the amplitude. The speed
of a soft sound, for example, is the same as the speed of a loud sound.

Page 533, self-check D:
1. No. To get the best possible interference, the thickness of the coating must be such that the
second reflected wave train lags behind the first by an integer number of wavelengths. Optimal
performance can therefore only be produced for one specific color of light. The typical greenish
color of the coatings shows that they do the worst job for green light.

2. Light can be reflected either from the outer surface of the film or from the inner surface, and
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there can be either constructive or destructive interference between the two reflections. We see
a pattern that varies across the surface because its thickness isn’t constant. We see rainbow
colors because the condition for destructive or constructive interference depends on wavelength.
White light is a mixture of all the colors of the rainbow, and at a particular place on the soap
bubble, part of that mixture, say red, may be reflected strongly, while another part, blue for
example, is almost entirely transmitted.

Page 534, self-check E:
The period is the time required to travel a distance 2L at speed v, T = 2L/v. The frequency is
f = 1/T = v/2L.

Page 539, self-check F:

The wave pattern will look like this: . Three quarters of a wavelength fit in the tube, so the
wavelength is three times shorter than that of the lowest-frequency mode, in which one quarter
of a wave fits. Since the wavelength is smaller by a factor of three, the frequency is three times
higher. Instead of fo, 2fo, 3fo, 4fo, . . ., the pattern of wave frequencies of this air column goes
fo, 3fo, 5fo, 7fo, . . .

Answers for volume 1

Answers for chapter 1
Page 61, problem 23:
Check: The actual number of species of lupine occurring in the San Gabriels is 22. You should
find that your answer comes out in the same ballpark as this figure, but not exactly the same,
of course, because the scaling rule is only a generalization.

Answers for chapter 16
Page 452, problem 10:
(a) ∼ 2− 10% (b) 5% (c) The high end for the body’s actual efficiency is higher than the limit
imposed by the laws of thermodynamics. However, the high end of the 1-5 watt range quoted in
the problem probably includes large people who aren’t just lying around. Still, it’s impressive
that the human body comes so close to the thermodynamic limit.

Answers for chapter 20
Page 543, problem 3:
Check: The actual length of a flute is about 66 cm.
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Chapter 21

Electricity and Circuits

Where the telescope ends, the microscope begins. Which of the two
has the grander view? Victor Hugo

His father died during his mother’s pregnancy. Rejected by her as
a boy, he was packed off to boarding school when she remarried.
He himself never married, but in middle age he formed an intense
relationship with a much younger man, a relationship that he ter-
minated when he underwent a psychotic break. Following his early
scientific successes, he spent the rest of his professional life mostly
in frustration over his inability to unlock the secrets of alchemy.

The man being described is Isaac Newton, but not the triumphant
Newton of the standard textbook hagiography. Why dwell on the
sad side of his life? To the modern science educator, Newton’s life-
long obsession with alchemy may seem an embarrassment, a distrac-
tion from his main achievement, the creation of the modern science
of mechanics. To Newton, however, his alchemical researches were
naturally related to his investigations of force and motion. What
was radical about Newton’s analysis of motion was its universal-
ity: it succeeded in describing both the heavens and the earth with
the same equations, whereas previously it had been assumed that
the sun, moon, stars, and planets were fundamentally different from
earthly objects. But Newton realized that if science was to describe
all of nature in a unified way, it was not enough to unite the human
scale with the scale of the universe: he would not be satisfied until
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he fit the microscopic universe into the picture as well.

It should not surprise us that Newton failed. Although he was a firm
believer in the existence of atoms, there was no more experimental
evidence for their existence than there had been when the ancient
Greeks first posited them on purely philosophical grounds. Alchemy
labored under a tradition of secrecy and mysticism. Newton had
already almost single-handedly transformed the fuzzyheaded field
of “natural philosophy” into something we would recognize as the
modern science of physics, and it would be unjust to criticize him
for failing to change alchemy into modern chemistry as well. The
time was not ripe. The microscope was a new invention, and it was
cutting-edge science when Newton’s contemporary Hooke discovered
that living things were made out of cells.

21.1 The quest for the atomic force
Newton was not the first of the age of reason. He was the last of
the magicians. John Maynard Keynes

Nevertheless it will be instructive to pick up Newton’s train of
thought and see where it leads us with the benefit of modern hind-
sight. In uniting the human and cosmic scales of existence, he had
reimagined both as stages on which the actors were objects (trees
and houses, planets and stars) that interacted through attractions
and repulsions. He was already convinced that the objects inhab-
iting the microworld were atoms, so it remained only to determine
what kinds of forces they exerted on each other.

His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces — friction,
sticky forces, the normal forces that keep objects from occupying
the same space, and so on — must all simply be expressions of a
more fundamental force acting between atoms. Tape sticks to paper
because the atoms in the tape attract the atoms in the paper. My
house doesn’t fall to the center of the earth because its atoms repel
the atoms of the dirt under it.

Here he got stuck. It was tempting to think that the atomic force
was a form of gravity, which he knew to be universal, fundamental,
and mathematically simple. Gravity, however, is always attractive,
so how could he use it to explain the existence of both attractive
and repulsive atomic forces? The gravitational force between ob-
jects of ordinary size is also extremely small, which is why we never
notice cars and houses attracting us gravitationally. It would be
hard to understand how gravity could be responsible for anything
as vigorous as the beating of a heart or the explosion of gunpowder.
Newton went on to write a million words of alchemical notes filled
with speculation about some other force, perhaps a “divine force” or
“vegetative force” that would for example be carried by the sperm
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a / Four pieces of tape are
prepared, 1, as described in the
text. Depending on which com-
bination is tested, the interaction
can be either repulsive, 2, or
attractive, 3.

to the egg.

Luckily, we now know enough to investigate a different suspect as a
candidate for the atomic force: electricity. Electric forces are often
observed between objects that have been prepared by rubbing (or
other surface interactions), for instance when clothes rub against
each other in the dryer. A useful example is shown in figure a/1:
stick two pieces of tape on a tabletop, and then put two more pieces
on top of them. Lift each pair from the table, and then separate
them. The two top pieces will then repel each other, a/2, as will
the two bottom pieces. A bottom piece will attract a top piece,
however, a/3. Electrical forces like these are similar in certain ways
to gravity, the other force that we already know to be fundamental:

• Electrical forces are universal. Although some substances,
such as fur, rubber, and plastic, respond more strongly to
electrical preparation than others, all matter participates in
electrical forces to some degree. There is no such thing as a
“nonelectric” substance. Matter is both inherently gravita-
tional and inherently electrical.

• Experiments show that the electrical force, like the gravita-
tional force, is an inverse square force. That is, the electrical
force between two spheres is proportional to 1/r2, where r is
the center-to-center distance between them.

Furthermore, electrical forces make more sense than gravity as can-
didates for the fundamental force between atoms, because we have
observed that they can be either attractive or repulsive.

21.2 Electrical forces
Charge

“Charge” is the technical term used to indicate that an object has
been prepared so as to participate in electrical forces. This is to
be distinguished from the common usage, in which the term is used
indiscriminately for anything electrical. For example, although we
speak colloquially of “charging” a battery, you may easily verify
that a battery has no charge in the technical sense, e.g., it does not
exert any electrical force on a piece of tape that has been prepared
as described in the previous section.

Two types of charge

We can easily collect reams of data on electrical forces between
different substances that have been charged in different ways. We
find for example that cat fur prepared by rubbing against rabbit
fur will attract glass that has been rubbed on silk. How can we
make any sense of all this information? A vast simplification is
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achieved by noting that there are really only two types of charge.
Suppose we pick cat fur rubbed on rabbit fur as a representative of
type A, and glass rubbed on silk for type B. We will now find that
there is no “type C.” Any object electrified by any method is either
A-like, attracting things A attracts and repelling those it repels, or
B-like, displaying the same attractions and repulsions as B. The two
types, A and B, always display opposite interactions. If A displays
an attraction with some charged object, then B is guaranteed to
undergo repulsion with it, and vice-versa.

The coulomb

Although there are only two types of charge, each type can come in
different amounts. The metric unit of charge is the coulomb (rhymes
with “drool on”), defined as follows:

One Coulomb (C) is the amount of charge such that a force of
9.0×109 N occurs between two pointlike objects with charges
of 1 C separated by a distance of 1 m.

The notation for an amount of charge is q. The numerical factor
in the definition is historical in origin, and is not worth memoriz-
ing. The definition is stated for pointlike, i.e., very small, objects,
because otherwise different parts of them would be at different dis-
tances from each other.

A model of two types of charged particles

Experiments show that all the methods of rubbing or otherwise
charging objects involve two objects, and both of them end up get-
ting charged. If one object acquires a certain amount of one type of
charge, then the other ends up with an equal amount of the other
type. Various interpretations of this are possible, but the simplest
is that the basic building blocks of matter come in two flavors, one
with each type of charge. Rubbing objects together results in the
transfer of some of these particles from one object to the other. In
this model, an object that has not been electrically prepared may ac-
tually possesses a great deal of both types of charge, but the amounts
are equal and they are distributed in the same way throughout it.
Since type A repels anything that type B attracts, and vice versa,
the object will make a total force of zero on any other object. The
rest of this chapter fleshes out this model and discusses how these
mysterious particles can be understood as being internal parts of
atoms.

Use of positive and negative signs for charge

Because the two types of charge tend to cancel out each other’s
forces, it makes sense to label them using positive and negative signs,
and to discuss the total charge of an object. It is entirely arbitrary
which type of charge to call negative and which to call positive.
Benjamin Franklin decided to describe the one we’ve been calling
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“A” as negative, but it really doesn’t matter as long as everyone is
consistent with everyone else. An object with a total charge of zero
(equal amounts of both types) is referred to as electrically neutral.

self-check A
Criticize the following statement: “There are two types of charge, attrac-
tive and repulsive.” . Answer, p.
1043

Coulomb’s law

A large body of experimental observations can be summarized as
follows:

Coulomb’s law: The magnitude of the force acting between point-
like charged objects at a center-to-center distance r is given by the
equation

|F| = k
|q1||q2|
r2

,

where the constant k equals 9.0× 109 N·m2/C2. The force is attrac-
tive if the charges are of different signs, and repulsive if they have
the same sign.

Clever modern techniques have allowed the 1/r2 form of Coulomb’s
law to be tested to incredible accuracy, showing that the exponent
is in the range from 1.9999999999999998 to 2.0000000000000002.

Note that Coulomb’s law is closely analogous to Newton’s law of
gravity, where the magnitude of the force is Gm1m2/r

2, except that
there is only one type of mass, not two, and gravitational forces
are never repulsive. Because of this close analogy between the two
types of forces, we can recycle a great deal of our knowledge of
gravitational forces. For instance, there is an electrical equivalent
of the shell theorem: the electrical forces exerted externally by a
uniformly charged spherical shell are the same as if all the charge
was concentrated at its center, and the forces exerted internally are
zero.

Conservation of charge

An even more fundamental reason for using positive and negative
signs for electrical charge is that experiments show that charge is
conserved according to this definition: in any closed system, the
total amount of charge is a constant. This is why we observe that
rubbing initially uncharged substances together always has the re-
sult that one gains a certain amount of one type of charge, while
the other acquires an equal amount of the other type. Conservation
of charge seems natural in our model in which matter is made of
positive and negative particles. If the charge on each particle is a
fixed property of that type of particle, and if the particles themselves
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b / A charged piece of tape
attracts uncharged pieces of
paper from a distance, and they
leap up to it.

c / The paper has zero total
charge, but it does have charged
particles in it that can move.

can be neither created nor destroyed, then conservation of charge is
inevitable.

Electrical forces involving neutral objects

As shown in figure b, an electrically charged object can attract ob-
jects that are uncharged. How is this possible? The key is that
even though each piece of paper has a total charge of zero, it has at
least some charged particles in it that have some freedom to move.
Suppose that the tape is positively charged, c. Mobile particles in
the paper will respond to the tape’s forces, causing one end of the
paper to become negatively charged and the other to become posi-
tive. The attraction between the paper and the tape is now stronger
than the repulsion, because the negatively charged end is closer to
the tape.

self-check B
What would have happened if the tape was negatively charged? .

Answer, p. 1043

Discussion questions

A If the electrical attraction between two pointlike objects at a distance
of 1 m is 9×109 N, why can’t we infer that their charges are +1 and −1 C?
What further observations would we need to do in order to prove this?

B An electrically charged piece of tape will be attracted to your hand.
Does that allow us to tell whether the mobile charged particles in your
hand are positive or negative, or both?

21.3 Current
Unity of all types of electricity

We are surrounded by things we have been told are “electrical,”
but it’s far from obvious what they have in common to justify being
grouped together. What relationship is there between the way socks
cling together and the way a battery lights a lightbulb? We have
been told that both an electric eel and our own brains are somehow
electrical in nature, but what do they have in common?

British physicist Michael Faraday (1791-1867) set out to address
this problem. He investigated electricity from a variety of sources
— including electric eels! — to see whether they could all produce
the same effects, such as shocks and sparks, attraction and repul-
sion. “Heating” refers, for example, to the way a lightbulb filament
gets hot enough to glow and emit light. Magnetic induction is an
effect discovered by Faraday himself that connects electricity and
magnetism. We will not study this effect, which is the basis for the
electric generator, in detail until later in the book.
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d / Michael Faraday (1791-
1867) was the son of a poor
blacksmith.

e / Gymnotus carapo, a knifefish,
uses electrical signals to sense
its environment and to commu-
nicate with others of its species.

source effect
attraction and

shocks sparks repulsion heating
rubbing

√ √ √ √

battery
√ √ √ √

animal
√ √

(
√

)
√

magnetically
induced

√ √ √ √

The table shows a summary of some of Faraday’s results. Check
marks indicate that Faraday or his close contemporaries were able to
verify that a particular source of electricity was capable of producing
a certain effect. (They evidently failed to demonstrate attraction
and repulsion between objects charged by electric eels, although
modern workers have studied these species in detail and been able
to understand all their electrical characteristics on the same footing
as other forms of electricity.)

Faraday’s results indicate that there is nothing fundamentally dif-
ferent about the types of electricity supplied by the various sources.
They are all able to produce a wide variety of identical effects. Wrote
Faraday, “The general conclusion which must be drawn from this
collection of facts is that electricity, whatever may be its source, is
identical in its nature.”

If the types of electricity are the same thing, what thing is that?
The answer is provided by the fact that all the sources of electricity
can cause objects to repel or attract each other. We use the word
“charge” to describe the property of an object that allows it to
participate in such electrical forces, and we have learned that charge
is present in matter in the form of nuclei and electrons. Evidently
all these electrical phenomena boil down to the motion of charged
particles in matter.

Electric current

If the fundamental phenomenon is the motion of charged particles,
then how can we define a useful numerical measurement of it? We
might describe the flow of a river simply by the velocity of the
water, but velocity will not be appropriate for electrical purposes
because we need to take into account how much charge the moving
particles have, and in any case there are no practical devices sold
at Radio Shack that can tell us the velocity of charged particles.
Experiments show that the intensity of various electrical effects is
related to a different quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the flow
of water, this quantity is called the electric current, I. Its units
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of coulombs/second are more conveniently abbreviated as amperes,
1 A=1 C/s. (In informal speech, one usually says “amps.”)

The main subtlety involved in this definition is how to account for
the two types of charge. The stream of water coming from a hose
is made of atoms containing charged particles, but it produces none
of the effects we associate with electric currents. For example, you
do not get an electrical shock when you are sprayed by a hose. This
type of experiment shows that the effect created by the motion of
one type of charged particle can be canceled out by the motion of
the opposite type of charge in the same direction. In water, every
oxygen atom with a charge of +8e is surrounded by eight electrons
with charges of −e, and likewise for the hydrogen atoms.

We therefore refine our definition of current as follows:

definition of electric current
When charged particles are exchanged between regions of space
A and B, the electric current flowing from A to B is

I =
∆q

∆t
,

where ∆q is the change in region B’s total charge occurring
over a period of time ∆t.

In the garden hose example, your body picks up equal amounts of
positive and negative charge, resulting in no change in your total
charge, so the electrical current flowing into you is zero.

Interpretation of ∆q/∆t example 1
. How should the expression ∆q/∆t be interpreted when the cur-
rent isn’t constant?

. You’ve seen lots of equations of this form before: v = ∆x/∆t ,
F = ∆p/∆t , etc. These are all descriptions of rates of change,
and they all require that the rate of change be constant. If the
rate of change isn’t constant, you instead have to use the slope
of the tangent line on a graph. The slope of a tangent line is
equivalent to a derivative in calculus; applications of calculus are
discussed in section 21.7.

Ions moving across a cell membrane example 2
. Figure g shows ions, labeled with their charges, moving in or
out through the membranes of four cells. If the ions all cross
the membranes during the same interval of time, how would the
currents into the cells compare with each other?

. Cell A has positive current going into it because its charge is
increased, i.e., has a positive value of ∆q.

Cell B has the same current as cell A, because by losing one unit
of negative charge it also ends up increasing its own total charge
by one unit.
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Cell C’s total charge is reduced by three units, so it has a large
negative current going into it.

Cell D loses one unit of charge, so it has a small negative current
into it.

g / Example 2

It may seem strange to say that a negatively charged particle going
one way creates a current going the other way, but this is quite
ordinary. As we will see, currents flow through metal wires via the
motion of electrons, which are negatively charged, so the direction
of motion of the electrons in a circuit is always opposite to the
direction of the current. Of course it would have been convenient
of Benjamin Franklin had defined the positive and negative signs of
charge the opposite way, since so many electrical devices are based
on metal wires.

Number of electrons flowing through a lightbulb example 3
. If a lightbulb has 1.0 A flowing through it, how many electrons
will pass through the filament in 1.0 s?

. We are only calculating the number of electrons that flow, so we
can ignore the positive and negative signs. Solving for ∆q = I∆t
gives a charge of 1.0 C flowing in this time interval. The number
of electrons is

number of electrons = coulombs× electrons
coulomb

= coulombs/
coulombs
electron

= 1.0 C/e

= 6.2× 1018

21.4 Circuits
How can we put electric currents to work? The only method of
controlling electric charge we have studied so far is to charge differ-
ent substances, e.g., rubber and fur, by rubbing them against each
other. Figure h/1 shows an attempt to use this technique to light
a lightbulb. This method is unsatisfactory. True, current will flow
through the bulb, since electrons can move through metal wires, and
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h / 1. Static electricity runs
out quickly. 2. A practical circuit.
3. An open circuit. 4. How an
ammeter works. 5. Measuring
the current with an ammeter.

the excess electrons on the rubber rod will therefore come through
the wires and bulb due to the attraction of the positively charged
fur and the repulsion of the other electrons. The problem is that
after a zillionth of a second of current, the rod and fur will both have
run out of charge. No more current will flow, and the lightbulb will
go out.

Figure h/2 shows a setup that works. The battery pushes charge
through the circuit, and recycles it over and over again. (We will
have more to say later in this chapter about how batteries work.)
This is called a complete circuit. Today, the electrical use of the
word “circuit” is the only one that springs to mind for most people,
but the original meaning was to travel around and make a round
trip, as when a circuit court judge would ride around the boondocks,
dispensing justice in each town on a certain date.

Note that an example like h/3 does not work. The wire will quickly
begin acquiring a net charge, because it has no way to get rid of the
charge flowing into it. The repulsion of this charge will make it more
and more difficult to send any more charge in, and soon the electrical
forces exerted by the battery will be canceled out completely. The
whole process would be over so quickly that the filament would not
even have enough time to get hot and glow. This is known as an
open circuit. Exactly the same thing would happen if the complete
circuit of figure h/2 was cut somewhere with a pair of scissors, and
in fact that is essentially how an ordinary light switch works: by
opening up a gap in the circuit.

The definition of electric current we have developed has the great
virtue that it is easy to measure. In practical electrical work, one
almost always measures current, not charge. The instrument used to
measure current is called an ammeter. A simplified ammeter, h/4,
simply consists of a coiled-wire magnet whose force twists an iron
needle against the resistance of a spring. The greater the current,
the greater the force. Although the construction of ammeters may
differ, their use is always the same. We break into the path of the
electric current and interpose the meter like a tollbooth on a road,
h/5. There is still a complete circuit, and as far as the battery and
bulb are concerned, the ammeter is just another segment of wire.

Does it matter where in the circuit we place the ammeter? Could
we, for instance, have put it in the left side of the circuit instead
of the right? Conservation of charge tells us that this can make no
difference. Charge is not destroyed or “used up” by the lightbulb,
so we will get the same current reading on either side of it. What is
“used up” is energy stored in the battery, which is being converted
into heat and light energy.
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21.5 Voltage
The volt unit

Electrical circuits can be used for sending signals, storing informa-
tion, or doing calculations, but their most common purpose by far is
to manipulate energy, as in the battery-and-bulb example of the pre-
vious section. We know that lightbulbs are rated in units of watts,
i.e., how many joules per second of energy they can convert into
heat and light, but how would this relate to the flow of charge as
measured in amperes? By way of analogy, suppose your friend, who
didn’t take physics, can’t find any job better than pitching bales of
hay. The number of calories he burns per hour will certainly depend
on how many bales he pitches per minute, but it will also be pro-
portional to how much mechanical work he has to do on each bale.
If his job is to toss them up into a hayloft, he will get tired a lot
more quickly than someone who merely tips bales off a loading dock
into trucks. In metric units,

joules

second
=

haybales

second
× joules

haybale
.

Similarly, the rate of energy transformation by a battery will not
just depend on how many coulombs per second it pushes through a
circuit but also on how much mechanical work it has to do on each
coulomb of charge:

joules

second
=

coulombs

second
× joules

coulomb

or
power = current× work per unit charge.

Units of joules per coulomb are abbreviated as volts, 1 V=1 J/C,
named after the Italian physicist Alessandro Volta. Everyone knows
that batteries are rated in units of volts, but the voltage concept is
more general than that; it turns out that voltage is a property of
every point in space. To gain more insight, let’s think more carefully
about what goes on in the battery and bulb circuit.

The concept of voltage (electrical potential) in general

To do work on a charged particle, the battery apparently must be
exerting forces on it. How does it do this? Well, the only thing that
can exert an electrical force on a charged particle is another charged
particle. It’s as though the haybales were pushing and pulling each
other into the hayloft! This is potentially a horribly complicated
situation. Even if we knew how much excess positive or negative
charge there was at every point in the circuit (which realistically we
don’t) we would have to calculate zillions of forces using Coulomb’s
law, perform all the vector additions, and finally calculate how much
work was being done on the charges as they moved along. To make
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things even more scary, there is more than one type of charged
particle that moves: electrons are what move in the wires and the
bulb’s filament, but ions are the moving charge carriers inside the
battery. Luckily, there are two ways in which we can simplify things:

The situation is unchanging. Unlike the imaginary setup
in which we attempted to light a bulb using a rubber rod and a
piece of fur, this circuit maintains itself in a steady state (after
perhaps a microsecond-long period of settling down after the
circuit is first assembled). The current is steady, and as charge
flows out of any area of the circuit it is replaced by the same
amount of charge flowing in. The amount of excess positive
or negative charge in any part of the circuit therefore stays
constant. Similarly, when we watch a river flowing, the water
goes by but the river doesn’t disappear.

Force depends only on position. Since the charge distri-
bution is not changing, the total electrical force on a charged
particle depends only on its own charge and on its location.
If another charged particle of the same type visits the same
location later on, it will feel exactly the same force.

The second observation tells us that there is nothing all that dif-
ferent about the experience of one charged particle as compared to
another’s. If we single out one particle to pay attention to, and fig-
ure out the amount of work done on it by electrical forces as it goes
from point A to point B along a certain path, then this is the same
amount of work that will be done on any other charged particles
of the same type as it follows the same path. For the sake of visu-
alization, let’s think about the path that starts at one terminal of
the battery, goes through the light bulb’s filament, and ends at the
other terminal. When an object experiences a force that depends
only on its position (and when certain other, technical conditions
are satisfied), we can define an electrical energy associated with the
position of that object. The amount of work done on the particle by
electrical forces as it moves from A to B equals the drop in electri-
cal energy between A and B. This electrical energy is what is being
converted into other forms of energy such as heat and light. We
therefore define ∆V in general as electrical energy per unit charge:

definition of potential difference
The ∆V between two points in space is defined as

∆V = ∆PEelec/q,

where ∆PEelec is the change in the electrical energy of a par-
ticle with charge q as it moves from the initial point to the
final point.

In this context, where we think of the voltage as being a scalar
function that is defined everywhere in space, it is more common in
formal writing to refer to it as the electrical potential.
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j / Example 4.

The amount of power dissipated (i.e., rate at which energy is trans-
formed by the flow of electricity) is then given by the equation

P = I∆V .

Energy stored in a battery example 4
. The 1.2 V rechargeable battery in figure j is labeled 1800 milliamp-
hours. What is the maximum amount of energy the battery can
store?

. An ampere-hour is a unit of current multiplied by a unit of time.
Current is charge per unit time, so an ampere-hour is in fact a
funny unit of charge:

(1 A)(1 hour) = (1 C/s)(3600 s)
= 3600 C

1800 milliamp-hours is therefore 1800 × 10−3 × 3600 C = 6.5 ×
103 C. That’s a huge number of charged particles, but the total
loss of electrical energy will just be their total charge multiplied by
the voltage difference across which they move:

∆PEelec = q∆V

= (6.5× 103 C)(1.2 V)
= 7.8 kJ

Units of volt-amps example 5
. Doorbells are often rated in volt-amps. What does this combi-
nation of units mean?

. Current times voltage gives units of power, P = I∆V , so volt-
amps are really just a nonstandard way of writing watts. They are
telling you how much power the doorbell requires.

Power dissipated by a battery and bulb example 6
. If a 9.0-volt battery causes 1.0 A to flow through a lightbulb, how
much power is dissipated?

. The voltage rating of a battery tells us what voltage difference
∆V it is designed to maintain between its terminals.

P = I ∆V
= 9.0 A · V

= 9.0
C
s
· J

C
= 9.0 J/s
= 9.0 W

The only nontrivial thing in this problem was dealing with the units.
One quickly gets used to translating common combinations like
A · V into simpler terms.
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Here are a few questions and answers about the voltage concept.

Question: OK, so what is voltage, really?
Answer: A device like a battery has positive and negative charges
inside it that push other charges around the outside circuit. A
higher-voltage battery has denser charges in it, which will do more
work on each charged particle that moves through the outside cir-
cuit.

To use a gravitational analogy, we can put a paddlewheel at the
bottom of either a tall waterfall or a short one, but a kg of water
that falls through the greater gravitational energy difference will
have more energy to give up to the paddlewheel at the bottom.

Question: Why do we define voltage as electrical energy divided by
charge, instead of just defining it as electrical energy?
Answer: One answer is that it’s the only definition that makes the
equation P = I∆V work. A more general answer is that we want
to be able to define a voltage difference between any two points
in space without having to know in advance how much charge the
particles moving between them will have. If you put a nine-volt
battery on your tongue, then the charged particles that move across
your tongue and give you that tingly sensation are not electrons but
ions, which may have charges of +e, −2e, or practically anything.
The manufacturer probably expected the battery to be used mostly
in circuits with metal wires, where the charged particles that flowed
would be electrons with charges of −e. If the ones flowing across
your tongue happen to have charges of −2e, the electrical energy
difference for them will be twice as much, but dividing by their
charge of −2e in the definition of voltage will still give a result of 9
V .

Question: Are there two separate roles for the charged particles in
the circuit, a type that sits still and exerts the forces, and another
that moves under the influence of those forces?
Answer: No. Every charged particle simultaneously plays both
roles. Newton’s third law says that any particle that has an electri-
cal force acting on it must also be exerting an electrical force back on
the other particle. There are no “designated movers” or “designated
force-makers.”

Question: Why does the definition of voltage only refer to voltage
differences?
Answer: It’s perfectly OK to define voltage as V = PEelec/q. But
recall that it is only differences in interaction energy, U , that have
direct physical meaning in physics. Similarly, voltage differences are
really more useful than absolute voltages. A voltmeter measures
voltage differences, not absolute voltages.
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Discussion questions

A A roller coaster is sort of like an electric circuit, but it uses gravitational
forces on the cars instead of electric ones. What would a high-voltage
roller coaster be like? What would a high-current roller coaster be like?

B Criticize the following statements:

“He touched the wire, and 10000 volts went through him.”

“That battery has a charge of 9 volts.”

“You used up the charge of the battery.”

C When you touch a 9-volt battery to your tongue, both positive and
negative ions move through your saliva. Which ions go which way?

D I once touched a piece of physics apparatus that had been wired
incorrectly, and got a several-thousand-volt voltage difference across my
hand. I was not injured. For what possible reason would the shock have
had insufficient power to hurt me?
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21.6 Resistance
Resistance

So far we have simply presented it as an observed fact that a battery-
and-bulb circuit quickly settles down to a steady flow, but why
should it? Newton’s second law, a = F/m, would seem to predict
that the steady forces on the charged particles should make them
whip around the circuit faster and faster. The answer is that as
charged particles move through matter, there are always forces, anal-
ogous to frictional forces, that resist the motion. These forces need
to be included in Newton’s second law, which is really a = Ftotal/m,
not a = F/m. If, by analogy, you push a crate across the floor at
constant speed, i.e., with zero acceleration, the total force on it must
be zero. After you get the crate going, the floor’s frictional force is
exactly canceling out your force. The chemical energy stored in your
body is being transformed into heat in the crate and the floor, and
no longer into an increase in the crate’s kinetic energy. Similarly, the
battery’s internal chemical energy is converted into heat, not into
perpetually increasing the charged particles’ kinetic energy. Chang-
ing energy into heat may be a nuisance in some circuits, such as a
computer chip, but it is vital in an incandescent lightbulb, which
must get hot enough to glow. Whether we like it or not, this kind
of heating effect is going to occur any time charged particles move
through matter.

What determines the amount of heating? One flashlight bulb de-
signed to work with a 9-volt battery might be labeled 1.0 watts,
another 5.0. How does this work? Even without knowing the de-
tails of this type of friction at the atomic level, we can relate the
heat dissipation to the amount of current that flows via the equa-
tion P = I∆V. If the two flashlight bulbs can have two different
values of P when used with a battery that maintains the same ∆V ,
it must be that the 5.0-watt bulb allows five times more current to
flow through it.

For many substances, including the tungsten from which lightbulb
filaments are made, experiments show that the amount of current
that will flow through it is directly proportional to the voltage dif-
ference placed across it. For an object made of such a substance,
we define its electrical resistance as follows:

definition of resistance
If an object inserted in a circuit displays a current flow pro-
portional to the voltage difference across it, then we define its
resistance as the constant ratio

R = ∆V/I

The units of resistance are volts/ampere, usually abbreviated as
ohms, symbolized with the capital Greek letter omega, Ω.
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l / Four objects made of the
same substance have different
resistances.

Resistance of a lightbulb example 7
. A flashlight bulb powered by a 9-volt battery has a resistance of
10 Ω. How much current will it draw?

. Solving the definition of resistance for I, we find

I = ∆V/R
= 0.9 V/Ω
= 0.9 V/(V/A)
= 0.9 A

Ohm’s law states that many substances, including many solids and
some liquids, display this kind of behavior, at least for voltages
that are not too large. The fact that Ohm’s law is called a “law”
should not be taken to mean that all materials obey it, or that it has
the same fundamental importance as Newton’s laws, for example.
Materials are called ohmic or nonohmic, depending on whether they
obey Ohm’s law. Although we will concentrate on ohmic materials
in this book, it’s important to keep in mind that a great many
materials are nonohmic, and devices made from them are often very
important. For instance, a transistor is a nonohmic device that can
be used to amplify a signal (as in a guitar amplifier) or to store and
manipulate the ones and zeroes in a computer chip.

If objects of the same size and shape made from two different ohmic
materials have different resistances, we can say that one material is
more resistive than the other, or equivalently that it is less conduc-
tive. Materials, such as metals, that are very conductive are said
to be good conductors. Those that are extremely poor conductors,
for example wood or rubber, are classified as insulators. There is
no sharp distinction between the two classes of materials. Some,
such as silicon, lie midway between the two extremes, and are called
semiconductors.

On an intuitive level, we can understand the idea of resistance by
making the sounds “hhhhhh” and “ffffff.” To make air flow out of
your mouth, you use your diaphragm to compress the air in your
chest. The pressure difference between your chest and the air outside
your mouth is analogous to a voltage difference. When you make the
“h” sound, you form your mouth and throat in a way that allows air
to flow easily. The large flow of air is like a large current. Dividing
by a large current in the definition of resistance means that we get
a small resistance. We say that the small resistance of your mouth
and throat allows a large current to flow. When you make the “f”
sound, you increase the resistance and cause a smaller current to
flow.

Note that although the resistance of an object depends on the sub-
stance it is made of, we cannot speak simply of the “resistance of
gold” or the “resistance of wood.” Figure l shows four examples of
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m / A medical MRI scanner,
which uses superconductors.

objects that have had wires attached at the ends as electrical con-
nections. If they were made of the same substance, they would all
nevertheless have different resistances because of their different sizes
and shapes. A more detailed discussion will be more natural in the
context of the following chapter, but it should not be too surprising
that the resistance of l/2 will be greater than that of l/1 — the
image of water flowing through a pipe, however incorrect, gives us
the right intuition. Object l/3 will have a smaller resistance than
l/1 because the charged particles have less of it to get through.

Superconductors

All materials display some variation in resistance according to tem-
perature (a fact that is used in thermostats to make a thermometer
that can be easily interfaced to an electric circuit). More spectac-
ularly, most metals have been found to exhibit a sudden change to
zero resistance when cooled to a certain critical temperature. They
are then said to be superconductors. Currently, the most impor-
tant practical application of superconductivity is in medical MRI
(magnetic resonance imaging) scanners. The mechanism of MRI is
explained on p. 483, but the important point for now is that when
your body is inserted into one of these devices, you are being im-
mersed in an extremely strong magnetic field produced by electric
currents flowing through the coiled wires of an electromagnet. If
these wires were not superconducting, they would instantly burn up
because of the heat generated by their resistance.

There are many other potential applications for superconductors,
but most of these, such as power transmission, are not currently
economically feasible because of the extremely low temperatures
required for superconductivity to occur.

However, it was discovered in 1986 that certain ceramics are super-
conductors at less extreme temperatures. The technological barrier
is now in finding practical methods for making wire out of these
brittle materials. Wall Street is currently investing billions of dol-
lars in developing superconducting devices for cellular phone relay
stations based on these materials.

There is currently no satisfactory theory of superconductivity in
general, although superconductivity in metals is understood fairly
well. Unfortunately I have yet to find a fundamental explanation of
superconductivity in metals that works at the introductory level.

Constant voltage throughout a conductor

The idea of a superconductor leads us to the question of how we
should expect an object to behave if it is made of a very good con-
ductor. Superconductors are an extreme case, but often a metal
wire can be thought of as a perfect conductor, for example if the
parts of the circuit other than the wire are made of much less con-
ductive materials. What happens if R equals zero in the equation
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o / The voltmeter doesn’t care
which of these setups you use.

R = ∆V/I? The result of dividing two numbers can only be zero if
the number on top equals zero. This tells us that if we pick any two
points in a perfect conductor, the voltage difference between them
must be zero. In other words, the entire conductor must be at the
same voltage.

n / 1. The finger deposits charges
on the solid, spherical, metal
doorknob and is then withdrawn.
2. Almost instantaneously, the
charges’ mutual repulsion makes
them redistribute themselves uni-
formly on the surface of the
sphere. The only excess charge
is on the surface; charges do ex-
ist in the atoms that form the in-
terior of the sphere, but they are
balanced. Charges on the interior
feel zero total electrical force from
the ones at the surface. Charges
at the surface experience a net
outward repulsion, but this is can-
celed out by the force that keeps
them from escaping into the air.
3. A voltmeter shows zero dif-
ference in voltage between any
two points on the interior or sur-
face of the sphere. If the volt-
age difference wasn’t zero, then
energy could be released by the
flow of charge from one point to
the other; this only happens be-
fore equilibrium is reached.

Constant voltage means that no work would be done on a charge as
it moved from one point in the conductor to another. If zero work
was done only along a certain path between two specific points, it
might mean that positive work was done along part of the path and
negative work along the rest, resulting in a cancellation. But there is
no way that the work could come out to be zero for all possible paths
unless the electrical force on a charge was in fact zero at every point.
Suppose, for example, that you build up a static charge by scuffing
your feet on a carpet, and then you deposit some of that charge onto
a doorknob, which is a good conductor. How can all that charge be
in the doorknob without creating any electrical force at any point
inside it? The only possible answer is that the charge moves around
until it has spread itself into just the right configuration so that the
forces exerted by all the little bits of excess surface charge on any
charged particle within the doorknob exactly cancel out.

We can explain this behavior if we assume that the charge placed
on the doorknob eventually settles down into a stable equilibrium.
Since the doorknob is a conductor, the charge is free to move through
it. If it was free to move and any part of it did experience a nonzero
total force from the rest of the charge, then it would move, and we
would not have an equilibrium.

Excess charge placed on a conductor, once it reaches its equilibrium
configuration, is entirely on the surface, not on the interior. This
should be intuitively reasonable in figure n, for example, since the
charges are all repelling each other. A proof is given in example 16
on p. 657.

Since wires are good conductors, constancy of voltage throughout a
conductor provides a convenient freedom in hooking up a voltmeter
to a circuit. In figure o, points B and C are on the same piece of
conducting wire, so VB = VC . Measuring VB − VA gives the same
result as measuring VC − VA.
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p / Example 8. In 1 and 2,
charges that are visible on the
front surface of the conductor are
shown as solid dots; the others
would have to be seen through
the conductor, which we imagine
is semi-transparent.

q / Short-circuiting a battery.
Warning: you can burn yourself
this way or start a fire! If you
want to try this, try making the
connection only very briefly, use
a low-voltage battery, and avoid
touching the battery or the wire,
both of which will get hot.

The lightning rod example 8
Suppose you have a pear-shaped conductor like the one in figure
p/1. Since the pear is a conductor, there are free charges every-
where inside it. Panels 1 and 2 of the figure show a computer sim-
ulation with 100 identical electric charges. In 1, the charges are
released at random positions inside the pear. Repulsion causes
them all to fly outward onto the surface and then settle down into
an orderly but nonuniform pattern.

We might not have been able to guess the pattern in advance, but
we can verify that some of its features make sense. For example,
charge A has more neighbors on the right than on the left, which
would tend to make it accelerate off to the left. But when we
look at the picture as a whole, it appears reasonable that this is
prevented by the larger number of more distant charges on its left
than on its right.

There also seems to be a pattern to the nonuniformity: the charges
collect more densely in areas like B, where the surface is strongly
curved, and less densely in flatter areas like C.

To understand the reason for this pattern, consider p/3. Two con-
ducting spheres are connected by a conducting wire. Since the
whole apparatus is conducting, it must all be at one voltage. As
shown in problem 43 on p. 624, the density of charge is greater
on the smaller sphere. This is an example of a more general fact
observed in p/2, which is that the charge on a conductor packs
itself more densely in areas that are more sharply curved.

Similar reasoning shows why Benjamin Franklin used a sharp tip
when he invented the lightning rod. The charged stormclouds in-
duce positive and negative charges to move to opposite ends of
the rod. At the pointed upper end of the rod, the charge tends
to concentrate at the point, and this charge attracts the light-
ning. The same effect can sometimes be seen when a scrap
of aluminum foil is inadvertently put in a microwave oven. Mod-
ern experiments (Moore et al., Journal of Applied Meteorology 39
(1999) 593) show that although a sharp tip is best at starting a
spark, a more moderate curve, like the right-hand tip of the pear
in this example, is better at successfully sustaining the spark for
long enough to connect a discharge to the clouds.

Short circuits

So far we have been assuming a perfect conductor. What if it is
a good conductor, but not a perfect one? Then we can solve for
∆V = IR. An ordinary-sized current will make a very small result
when we multiply it by the resistance of a good conductor such as
a metal wire. The voltage throughout the wire will then be nearly
constant. If, on the other hand, the current is extremely large, we
can have a significant voltage difference. This is what happens in a
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Resistors.

r / The symbol used in schemat-
ics to represent a resistor.

s / An example of a resistor
with a color code.

black 0
brown 1
red 2
orange 3
yellow 4
green 5
blue 6
violet 7
gray 8
white 9
silver ±10%
gold ±5%

t / Color codes used on resistors.

short-circuit: a circuit in which a low-resistance pathway connects
the two sides of a voltage source. Note that this is much more
specific than the popular use of the term to indicate any electrical
malfunction at all. If, for example, you short-circuit a 9-volt battery
as shown in figure q, you will produce perhaps a thousand amperes
of current, leading to a very large value of P = I∆V . The wire gets
hot!

self-check C
What would happen to the battery in this kind of short circuit? .

Answer, p. 1043

Resistors

Inside any electronic gadget you will see quite a few little circuit
elements like the one shown in the photo. These resistors are simply
a cylinder of ohmic material with wires attached to the end.

At this stage, most students have a hard time understanding why
resistors would be used inside a radio or a computer. We obviously
want a lightbulb or an electric stove to have a circuit element that
resists the flow of electricity and heats up, but heating is undesirable
in radios and computers. Without going too far afield, let’s use a
mechanical analogy to get a general idea of why a resistor would be
used in a radio.

The main parts of a radio receiver are an antenna, a tuner for se-
lecting the frequency, and an amplifier to strengthen the signal suf-
ficiently to drive a speaker. The tuner resonates at the selected fre-
quency, just as in the examples of mechanical resonance discussed
in chapter 18. The behavior of a mechanical resonator depends on
three things: its inertia, its stiffness, and the amount of friction or
damping. The first two parameters locate the peak of the resonance
curve, while the damping determines the width of the resonance.
In the radio tuner we have an electrically vibrating system that res-
onates at a particular frequency. Instead of a physical object moving
back and forth, these vibrations consist of electrical currents that
flow first in one direction and then in the other. In a mechanical sys-
tem, damping means taking energy out of the vibration in the form
of heat, and exactly the same idea applies to an electrical system:
the resistor supplies the damping, and therefore controls the width
of the resonance. If we set out to eliminate all resistance in the tuner
circuit, by not building in a resistor and by somehow getting rid of
all the inherent electrical resistance of the wires, we would have a
useless radio. The tuner’s resonance would be so narrow that we
could never get close enough to the right frequency to bring in the
station. The roles of inertia and stiffness are played by other circuit
elements we have not discusses (a capacitor and a coil).

Many electrical devices are based on electrical resistance and Ohm’s
law, even if they do not have little components in them that look
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like the usual resistor. The following are some examples.

Lightbulb

There is nothing special about a lightbulb filament — you can easily
make a lightbulb by cutting a narrow waist into a metallic gum
wrapper and connecting the wrapper across the terminals of a 9-volt
battery. The trouble is that it will instantly burn out. Edison solved
this technical challenge by encasing the filament in an evacuated
bulb, which prevented burning, since burning requires oxygen.

Polygraph

The polygraph, or “lie detector,” is really just a set of meters for
recording physical measures of the subject’s psychological stress,
such as sweating and quickened heartbeat. The real-time sweat
measurement works on the principle that dry skin is a good insula-
tor, but sweaty skin is a conductor. Of course a truthful subject may
become nervous simply because of the situation, and a practiced liar
may not even break a sweat. The method’s practitioners claim that
they can tell the difference, but you should think twice before al-
lowing yourself to be polygraph tested. Most U.S. courts exclude
all polygraph evidence, but some employers attempt to screen out
dishonest employees by polygraph testing job applicants, an abuse
that ranks with such pseudoscience as handwriting analysis.

Fuse

A fuse is a device inserted in a circuit tollbooth-style in the same
manner as an ammeter. It is simply a piece of wire made of metals
having a relatively low melting point. If too much current passes
through the fuse, it melts, opening the circuit. The purpose is to
make sure that the building’s wires do not carry so much current
that they themselves will get hot enough to start a fire. Most modern
houses use circuit breakers instead of fuses, although fuses are still
common in cars and small devices. A circuit breaker is a switch
operated by a coiled-wire magnet, which opens the circuit when
enough current flows. The advantage is that once you turn off some
of the appliances that were sucking up too much current, you can
immediately flip the switch closed. In the days of fuses, one might
get caught without a replacement fuse, or even be tempted to stuff
aluminum foil in as a replacement, defeating the safety feature.

Voltmeter

A voltmeter is nothing more than an ammeter with an additional
high-value resistor through which the current is also forced to flow.
Ohm’s law states that the current through the resistor is related
directly to the voltage difference across it, so the meter can be cali-
brated in units of volts based on the known value of the resistor. The
voltmeter’s two probes are touched to the two locations in a circuit
between which we wish to measure the voltage difference, u/2. Note
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u / 1. A simplified diagram of
how a voltmeter works. 2. Mea-
suring the voltage difference
across a lightbulb. 3. The same
setup drawn in schematic form. 4.
The setup for measuring current
is different.

how cumbersome this type of drawing is, and how difficult it can
be to tell what is connected to what. This is why electrical draw-
ing are usually shown in schematic form. Figure u/3 is a schematic
representation of figure u/2.

The setups for measuring current and voltage are different. When
we are measuring current, we are finding “how much stuff goes
through,” so we place the ammeter where all the current is forced
to go through it. Voltage, however, is not “stuff that goes through,”
it is a measure of electrical energy. If an ammeter is like the meter
that measures your water use, a voltmeter is like a measuring stick
that tells you how high a waterfall is, so that you can determine how
much energy will be released by each kilogram of falling water. We
do not want to force the water to go through the measuring stick!
The arrangement in figure u/3 is a parallel circuit: one in there are
“forks in the road” where some of the current will flow one way and
some will flow the other. Figure u/4 is said to be wired in series:
all the current will visit all the circuit elements one after the other.
We will deal with series and parallel circuits in more detail in the
following chapter.

If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so
low that the bulb would go out. You would have severely disturbed
the behavior of the circuit by trying to measure something about it.

Incorrectly placing an ammeter in parallel is likely to be even more
disconcerting. The ammeter has nothing but wire inside it to pro-
vide resistance, so given the choice, most of the current will flow
through it rather than through the bulb. So much current will flow
through the ammeter, in fact, that there is a danger of burning out
the battery or the meter or both! For this reason, most ammeters
have fuses or circuit breakers inside. Some models will trip their
circuit breakers and make an audible alarm in this situation, while
others will simply blow a fuse and stop working until you replace it.

Discussion questions

A In figure u/1, would it make any difference in the voltage measure-
ment if we touched the voltmeter’s probes to different points along the
same segments of wire?

B Explain why it would be incorrect to define resistance as the amount
of charge the resistor allows to flow.

21.7
∫

Applications of calculus
As discussed in example 1 on page 582, the definition of current as
the rate of change of charge with respect to time must be reexpressed
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as a derivative in the case where the rate of change is not constant,

I =
dq

dt
.

Finding current given charge example 9
. A charged balloon falls to the ground, and its charge begins
leaking off to the Earth. Suppose that the charge on the balloon
is given by q = ae−bt . Find the current as a function of time, and
interpret the answer.

. Taking the derivative, we have

I =
dq
dt

= −abe−bt

An exponential function approaches zero as the exponent gets
more and more negative. This means that both the charge and
the current are decreasing in magnitude with time. It makes sense
that the charge approaches zero, since the balloon is losing its
charge. It also makes sense that the current is decreasing in
magnitude, since charge cannot flow at the same rate forever
without overshooting zero.

21.8 Series and parallel circuits
Schematics

I see a chess position; Kasparov sees an interesting Ruy Lopez vari-
ation. To the uninitiated a schematic may look as unintelligible as
Mayan hieroglyphs, but even a little bit of eye training can go a long
way toward making its meaning leap off the page. A schematic is a
stylized and simplified drawing of a circuit. The purpose is to elim-
inate as many irrelevant features as possible, so that the relevant
ones are easier to pick out.

v / 1. Wrong: The shapes of the
wires are irrelevant. 2. Wrong:
Right angles should be used. 3.
Wrong: A simple pattern is made
to look unfamiliar and compli-
cated. 4. Right.

An example of an irrelevant feature is the physical shape, length, and
diameter of a wire. In nearly all circuits, it is a good approximation
to assume that the wires are perfect conductors, so that any piece
of wire uninterrupted by other components has constant voltage
throughout it. Changing the length of the wire, for instance, does
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w / The two shaded areas
shaped like the letter “E” are both
regions of constant voltage.

not change this fact. (Of course if we used miles and miles of wire,
as in a telephone line, the wire’s resistance would start to add up,
and its length would start to matter.) The shapes of the wires
are likewise irrelevant, so we draw them with standardized, stylized
shapes made only of vertical and horizontal lines with right-angle
bends in them. This has the effect of making similar circuits look
more alike and helping us to recognize familiar patterns, just as
words in a newspaper are easier to recognize than handwritten ones.
Figure v shows some examples of these concepts.

The most important first step in learning to read schematics is to
learn to recognize contiguous pieces of wire which must have con-
stant voltage throughout. In figure w, for example, the two shaded
E-shaped pieces of wire must each have constant voltage. This fo-
cuses our attention on two of the main unknowns we’d like to be
able to predict: the voltage of the left-hand E and the voltage of
the one on the right.

Parallel resistances and the junction rule

One of the simplest examples to analyze is the parallel resistance
circuit, of which figure w was an example. In general we may have
unequal resistances R1 and R2, as in x/1. Since there are only two
constant-voltage areas in the circuit, x/2, all three components have
the same voltage difference across them. A battery normally suc-
ceeds in maintaining the voltage differences across itself for which it
was designed, so the voltage drops ∆V1 and ∆V2 across the resistors
must both equal the voltage of the battery:

∆V1 = ∆V2 = ∆Vbattery.

Each resistance thus feels the same voltage difference as if it was
the only one in the circuit, and Ohm’s law tells us that the amount
of current flowing through each one is also the same as it would
have been in a one-resistor circuit. This is why household electrical
circuits are wired in parallel. We want every appliance to work
the same, regardless of whether other appliances are plugged in or
unplugged, turned on or switched off. (The electric company doesn’t
use batteries of course, but our analysis would be the same for any
device that maintains a constant voltage.)

Of course the electric company can tell when we turn on every light
in the house. How do they know? The answer is that we draw more
current. Each resistance draws a certain amount of current, and
the amount that has to be supplied is the sum of the two individual
currents. The current is like a river that splits in half, x/3, and then
reunites. The total current is

Itotal = I1 + I2.
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x / 1. Two resistors in parallel.
2. There are two constant-voltage
areas. 3. The current that comes
out of the battery splits between
the two resistors, and later re-
unites. 4. The two resistors in
parallel can be treated as a single
resistor with a smaller resistance
value.

This is an example of a general fact called the junction rule:

the junction rule
In any circuit that is not storing or releasing charge, conser-
vation of charge implies that the total current flowing out of
any junction must be the same as the total flowing in.

Coming back to the analysis of our circuit, we apply Ohm’s law to
each resistance, resulting in

Itotal = ∆V/R1 + ∆V/R2

= ∆V

(
1

R1
+

1

R2

)
.

As far as the electric company is concerned, your whole house is just
one resistor with some resistance R, called the equivalent resistance.
They would write Ohm’s law as

Itotal = ∆V/R,

from which we can determine the equivalent resistance by compari-
son with the previous expression:

1/R =
1

R1
+

1

R2

R =

(
1

R1
+

1

R2

)−1

[equivalent resistance of two resistors in parallel]

Two resistors in parallel, x/4, are equivalent to a single resistor with
a value given by the above equation.

Two lamps on the same household circuit example 10
. You turn on two lamps that are on the same household circuit.
Each one has a resistance of 1 ohm. What is the equivalent re-
sistance, and how does the power dissipation compare with the
case of a single lamp?
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. The equivalent resistance of the two lamps in parallel is

R =
(

1
R1

+
1

R2

)−1

=
(

1
1 Ω

+
1

1 Ω

)−1

=
(

1 Ω−1 + 1 Ω−1
)−1

=
(

2 Ω−1
)−1

= 0.5 Ω

The voltage difference across the whole circuit is always the 110
V set by the electric company (it’s alternating current, but that’s
irrelevant). The resistance of the whole circuit has been cut in
half by turning on the second lamp, so a fixed amount of voltage
will produce twice as much current. Twice the current flowing
across the same voltage difference means twice as much power
dissipation, which makes sense.

The cutting in half of the resistance surprises many students, since
we are “adding more resistance” to the circuit by putting in the
second lamp. Why does the equivalent resistance come out to be
less than the resistance of a single lamp? This is a case where purely
verbal reasoning can be misleading. A resistive circuit element, such
as the filament of a lightbulb, is neither a perfect insulator nor
a perfect conductor. Instead of analyzing this type of circuit in
terms of “resistors,” i.e., partial insulators, we could have spoken of
“conductors.” This example would then seem reasonable, since we
“added more conductance,” but one would then have the incorrect
expectation about the case of resistors in series, discussed in the
following section.

Perhaps a more productive way of thinking about it is to use me-
chanical intuition. By analogy, your nostrils resist the flow of air
through them, but having two nostrils makes it twice as easy to
breathe.

Three resistors in parallel example 11
. What happens if we have three or more resistors in parallel?

. This is an important example, because the solution involves
an important technique for understanding circuits: breaking them
down into smaller parts and them simplifying those parts. In the
circuit 21.8.2/1, with three resistors in parallel, we can think of
two of the resistors as forming a single resistor, 21.8.2/2, with
equivalent resistance

R12 =
(

1
R1

+
1

R2

)−1

.
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Example 11.

We can then simplify the circuit as shown in 21.8.2/3, so that it
contains only two resistances. The equivalent resistance of the
whole circuit is then given by

R123 =
(

1
R12

+
1

R3

)−1

.

Substituting for R12 and simplifying, we find the result

R123 =
(

1
R1

+
1

R2
+

1
R3

)−1

,

which you probably could have guessed. The interesting point
here is the divide-and-conquer concept, not the mathematical re-
sult.

An arbitrary number of identical resistors in parallel example 12
. What is the resistance of N identical resistors in parallel?

. Generalizing the results for two and three resistors, we have

RN =
(

1
R1

+
1

R2
+ . . .

)−1

,

where “...” means that the sum includes all the resistors. If all the
resistors are identical, this becomes

RN =
(

N
R

)−1

=
R
N
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Example 13: Uniting four re-
sistors in parallel is equivalent to
making a single resistor with the
same length but four times the
cross-sectional area. The result
is to make a resistor with one
quarter the resistance.

Dependence of resistance on cross-sectional area example 13
We have alluded briefly to the fact that an object’s electrical re-
sistance depends on its size and shape, but now we are ready
to begin making more mathematical statements about it. As sug-
gested by figure 13, increasing a resistors’s cross-sectional area
is equivalent to adding more resistors in parallel, which will lead to
an overall decrease in resistance. Any real resistor with straight,
parallel sides can be sliced up into a large number of pieces, each
with cross-sectional area of, say, 1 µm2. The number, N, of such
slices is proportional to the total cross-sectional area of the resis-
tor, and by application of the result of the previous example we
therefore find that the resistance of an object is inversely propor-
tional to its cross-sectional area.

A fat pipe has less resistance
than a skinny pipe.

An analogous relationship holds for water pipes, which is why
high-flow trunk lines have to have large cross-sectional areas. To
make lots of water (current) flow through a skinny pipe, we’d need
an impractically large pressure (voltage) difference.
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z / A voltmeter is really an
ammeter with an internal resistor.
When we measure the voltage
difference across a resistor, 1, we
are really constructing a parallel
resistance circuit, 2.

Incorrect readings from a voltmeter example 14
A voltmeter is really just an ammeter with an internal resistor, and
we use a voltmeter in parallel with the thing that we’re trying to
measure the voltage difference across. This means that any time
we measure the voltage drop across a resistor, we’re essentially
putting two resistors in parallel. The ammeter inside the voltmeter
can be ignored for the purpose of analyzing how current flows in
the circuit, since it is essentially just some coiled-up wire with a
very low resistance.

Now if we are carrying out this measurement on a resistor that is
part of a larger circuit, we have changed the behavior of the cir-
cuit through our act of measuring. It is as though we had modified
the circuit by replacing the resistance R with the smaller equiva-
lent resistance of R and Rv in parallel. It is for this reason that
voltmeters are built with the largest possible internal resistance.
As a numerical example, if we use a voltmeter with an internal
resistance of 1 MΩ to measure the voltage drop across a one-
ohm resistor, the equivalent resistance is 0.999999 Ω, which is
not different enough to make any difference. But if we tried to use
the same voltmeter to measure the voltage drop across a 2 MΩ
resistor, we would be reducing the resistance of that part of the
circuit by a factor of three, which would produce a drastic change
in the behavior of the whole circuit.

This is the reason why you can’t use a voltmeter to measure the
voltage difference between two different points in mid-air, or between
the ends of a piece of wood. This is by no means a stupid thing to
want to do, since the world around us is not a constant-voltage
environment, the most extreme example being when an electrical
storm is brewing. But it will not work with an ordinary voltmeter
because the resistance of the air or the wood is many gigaohms. The
effect of waving a pair of voltmeter probes around in the air is that
we provide a reuniting path for the positive and negative charges
that have been separated — through the voltmeter itself, which is
a good conductor compared to the air. This reduces to zero the
voltage difference we were trying to measure.

In general, a voltmeter that has been set up with an open circuit (or
a very large resistance) between its probes is said to be “floating.”
An old-fashioned analog voltmeter of the type described here will
read zero when left floating, the same as when it was sitting on the
shelf. A floating digital voltmeter usually shows an error message.

Series resistances

The two basic circuit layouts are parallel and series, so a pair of
resistors in series, aa/1, is another of the most basic circuits we can
make. By conservation of charge, all the current that flows through
one resistor must also flow through the other (as well as through the
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aa / 1. A battery drives cur-
rent through two resistors in
series. 2. There are three
constant-voltage regions. 3.
The three voltage differences are
related. 4. If the meter crab-walks
around the circuit without flipping
over or crossing its legs, the
resulting voltages have plus and
minus signs that make them add
up to zero.

battery):
I1 = I2.

The only way the information about the two resistance values is
going to be useful is if we can apply Ohm’s law, which will relate the
resistance of each resistor to the current flowing through it and the
voltage difference across it. Figure aa/2 shows the three constant-
voltage areas. Voltage differences are more physically significant
than voltages, so we define symbols for the voltage differences across
the two resistors in figure aa/3.

We have three constant-voltage areas, with symbols for the differ-
ence in voltage between every possible pair of them. These three
voltage differences must be related to each other. It is as though I
tell you that Fred is a foot taller than Ginger, Ginger is a foot taller
than Sally, and Fred is two feet taller than Sally. The information
is redundant, and you really only needed two of the three pieces of
data to infer the third. In the case of our voltage differences, we
have

|∆V1|+ |∆V2| = |∆Vbattery|.
The absolute value signs are because of the ambiguity in how we
define our voltage differences. If we reversed the two probes of the
voltmeter, we would get a result with the opposite sign. Digital
voltmeters will actually provide a minus sign on the screen if the
wire connected to the “V” plug is lower in voltage than the one
connected to the “COM” plug. Analog voltmeters pin the needle
against a peg if you try to use them to measure negative voltages,
so you have to fiddle to get the leads connected the right way, and
then supply any necessary minus sign yourself.

Figure aa/4 shows a standard way of taking care of the ambiguity
in signs. For each of the three voltage measurements around the
loop, we keep the same probe (the darker one) on the clockwise
side. It is as though the voltmeter was sidling around the circuit
like a crab, without ever “crossing its legs.” With this convention,
the relationship among the voltage drops becomes

∆V1 + ∆V2 = −∆Vbattery,

or, in more symmetrical form,

∆V1 + ∆V2 + ∆Vbattery = 0.

More generally, this is known as the loop rule for analyzing circuits:

the loop rule
Assuming the standard convention for plus and minus signs,
the sum of the voltage drops around any closed loop in a DC
circuit must be zero.

Looking for an exception to the loop rule would be like asking for a
hike that would be downhill all the way and that would come back
to its starting point!
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Example 15.

Example 17. Doubling the
length of a resistor is like putting
two resistors in series. The
resistance is doubled.

For the circuit we set out to analyze, the equation

∆V1 + ∆V2 + ∆Vbattery = 0

can now be rewritten by applying Ohm’s law to each resistor:

I1R1 + I2R2 + ∆Vbattery = 0.

The currents are the same, so we can factor them out:

I (R1 +R2) + ∆Vbattery = 0,

and this is the same result we would have gotten if we had been
analyzing a one-resistor circuit with resistance R1 + R2. Thus the
equivalent resistance of resistors in series equals the sum of their
resistances.

Two lightbulbs in series example 15
. If two identical lightbulbs are placed in series, how do their
brightnesses compare with the brightness of a single bulb?

. Taken as a whole, the pair of bulbs act like a doubled resistance,
so they will draw half as much current from the wall. Each bulb
will be dimmer than a single bulb would have been.

The total power dissipated by the circuit is I∆V . The voltage drop
across the whole circuit is the same as before, but the current is
halved, so the two-bulb circuit draws half as much total power as
the one-bulb circuit. Each bulb draws one-quarter of the normal
power.

Roughly speaking, we might expect this to result in one quarter
the light being produced by each bulb, but in reality lightbulbs
waste quite a high percentage of their power in the form of heat
and wavelengths of light that are not visible (infrared and ultravi-
olet). Less light will be produced, but it’s hard to predict exactly
how much less, since the efficiency of the bulbs will be changed
by operating them under different conditions.

More than two equal resistances in series example 16
By straightforward application of the divide-and-conquer technique
discussed in the previous section, we find that the equivalent re-
sistance of N identical resistances R in series will be NR.

Dependence of resistance on length example 17
In the previous section, we proved that resistance is inversely
proportional to cross-sectional area. By equivalent reason about
resistances in series, we find that resistance is proportional to
length. Analogously, it is harder to blow through a long straw than
through a short one.
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Combining the results of examples 13 and 17, we find that the re-
sistance of an object with straight, parallel sides is given by

R = (constant) · L/A

The proportionality constant is called the resistivity, and it depends
only on the substance of which the object is made. A resistivity
measurement could be used, for instance, to help identify a sample
of an unknown substance.

Choice of high voltage for power lines example 18
Thomas Edison got involved in a famous technological contro-
versy over the voltage difference that should be used for electrical
power lines. At this time, the public was unfamiliar with electricity,
and easily scared by it. The president of the United States, for
instance, refused to have electrical lighting in the White House
when it first became commercially available because he consid-
ered it unsafe, preferring the known fire hazard of oil lamps to
the mysterious dangers of electricity. Mainly as a way to over-
come public fear, Edison believed that power should be transmit-
ted using small voltages, and he publicized his opinion by giving
demonstrations at which a dog was lured into position to be killed
by a large voltage difference between two sheets of metal on the
ground. (Edison’s opponents also advocated alternating current
rather than direct current, and AC is more dangerous than DC as
well. As we will discuss later, AC can be easily stepped up and
down to the desired voltage level using a device called a trans-
former.)

Now if we want to deliver a certain amount of power PL to a
load such as an electric lightbulb, we are constrained only by the
equation PL = I∆VL. We can deliver any amount of power we
wish, even with a low voltage, if we are willing to use large cur-
rents. Modern electrical distribution networks, however, use dan-
gerously high voltage differences of tens of thousands of volts.
Why did Edison lose the debate?

It boils down to money. The electric company must deliver the
amount of power PL desired by the customer through a transmis-
sion line whose resistance RT is fixed by economics and geogra-
phy. The same current flows through both the load and the trans-
mission line, dissipating power usefully in the former and waste-
fully in the latter. The efficiency of the system is

efficiency =
power paid for by the customer

power paid for by the utility

=
PL

PL + PT

=
1

1 + PT/PL
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Putting ourselves in the shoes of the electric company, we wish
to get rid of the variable PT , since it is something we control only
indirectly by our choice of ∆VT and I. Substituting PT = I∆VT , we
find

efficiency =
1

1 + I∆VT
PL

We assume the transmission line (but not necessarily the load) is
ohmic, so substituting ∆VT = IRT gives

efficiency =
1

1 + I2RT
PL

This quantity can clearly be maximized by making I as small as
possible, since we will then be dividing by the smallest possible
quantity on the bottom of the fraction. A low-current circuit can
only deliver significant amounts of power if it uses high voltages,
which is why electrical transmission systems use dangerous high
voltages.

Two ways of handling signs example 19
The figure above shows two ways of visualizing the loop rule and
handling the signs involved. In panel 1, each circuit element is
labeled with the voltage drop across it.

In 2, the crab is a voltmeter whose reading is the voltage on the
white claw minus the voltage on the black claw. The crab can’t
flip over. It can only scuttle sideways as it moves around the loop
that we’ve chosen, consisting of four resistors. The sum of the
four readings is zero.

Panel 3 shows a visualization of the same circuit in which voltage
is like height. The stick figure on the ledge wants to get down to
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the ground by doing a series of hops. He has two ways: do the
3 V drop and then the 1 V drop, or do the 2 V and the other 2
V. Here we treat all the voltage differences as positive numbers.
This method works nicely if you’re pretty sure for each resistor in
the circuit which end is the higher voltage.

Example 20.

A complicated circuit example 20
. All seven resistors in the left-hand panel of figure ab are identi-
cal. Initially, the switch S is open as shown in the figure, and the
current through resistor A is Io. The switch is then closed. Find
the current through resistor B, after the switch is closed, in terms
of Io.

. The second panel shows the circuit redrawn for simplicity, in the
initial condition with the switch open. When the switch is open, no
current can flow through the central resistor, so we may as well
ignore it. I’ve also redrawn the junctions, without changing what’s
connected to what. This is the kind of mental rearranging that
you’ll eventually learn to do automatically from experience with
analyzing circuits. The redrawn version makes it easier to see
what’s happening with the current. Charge is conserved, so any
charge that flows past point 1 in the circuit must also flow past
points 2 and 3. This would have been harder to reason about by
applying the junction rule to the original version, which appears
to have nine separate junctions.

In the new version, it’s also clear that the circuit has a great deal
of symmetry. We could flip over each parallel pair of identical re-
sistors without changing what’s connected to what, so that makes
it clear that the voltage drops and currents must be equal for the
members of each pair. We can also prove this by using the loop
rule. The loop rule says that the two voltage drops in loop 4 must
be equal, and similarly for loops 5 and 6. Since the resistors obey
Ohm’s law, equal voltage drops across them also imply equal cur-
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rents. That means that when the current at point 1 comes to the
top junction, exactly half of it goes through each resistor. Then
the current reunites at 2, splits between the next pair, and so on.
We conclude that each of the six resistors in the circuit experi-
ences the same voltage drop and the same current. Applying the
loop rule to loop 7, we find that the sum of the three voltage drops
across the three left-hand resistors equals the battery’s voltage,
V , so each resistor in the circuit experiences a voltage drop V/3.
Letting R stand for the resistance of one of the resistors, we find
that the current through resistor B, which is the same as the cur-
rents through all the others, is given by Io = V/3R.

We now pass to the case where the switch is closed, as shown
in the third panel. The battery’s voltage is the same as before,
and each resistor’s resistance is the same, so we can still use the
same symbols V and R for them. It is no longer true, however,
that each resistor feels a voltage drop V/3. The equivalent resis-
tance of the whole circuit is R/2 + R/3 + R/2 = 4R/3, so the total
current drawn from the battery is 3V/4R. In the middle group
of resistors, this current is split three ways, so the new current
through B is (1/3)(3V/4R) = V/4R = 3Io/4.

Interpreting this result, we see that it comes from two effects that
partially cancel. Closing the switch reduces the equivalent re-
sistance of the circuit by giving charge another way to flow, and
increases the amount of current drawn from the battery. Resistor
B, however, only gets a 1/3 share of this greater current, not 1/2.
The second effect turns out to be bigger than first, and therefore
the current through resistor B is lessened over all.

Getting killed by your ammeter example 21
As with a voltmeter, an ammeter can give erroneous readings if it
is used in such a way that it changes the behavior the circuit. An
ammeter is used in series, so if it is used to measure the current
through a resistor, the resistor’s value will effectively be changed
to R + Ra, where Ra is the resistance of the ammeter. Ammeters
are designed with very low resistances in order to make it unlikely
that R + Ra will be significantly different from R.

In fact, the real hazard is death, not a wrong reading! Virtually
the only circuits whose resistances are significantly less than that
of an ammeter are those designed to carry huge currents. An
ammeter inserted in such a circuit can easily melt. When I was
working at a laboratory funded by the Department of Energy, we
got periodic bulletins from the DOE safety office about serious ac-
cidents at other sites, and they held a certain ghoulish fascination.
One of these was about a DOE worker who was completely in-
cinerated by the explosion created when he inserted an ordinary
Radio Shack ammeter into a high-current circuit. Later estimates
showed that the heat was probably so intense that the explosion
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was a ball of plasma — a gas so hot that its atoms have been
ionized.

Discussion questions

A We have stated the loop rule in a symmetric form where a series
of voltage drops adds up to zero. To do this, we had to define a standard
way of connecting the voltmeter to the circuit so that the plus and minus
signs would come out right. Suppose we wish to restate the junction rule
in a similar symmetric way, so that instead of equating the current coming
in to the current going out, it simply states that a certain sum of currents at
a junction adds up to zero. What standard way of inserting the ammeter
would we have to use to make this work?

B The lightbulbs are all identical. In each case, a change is proposed
to make to the circuit. Predict the change in brightness of each bulb.
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Summary
Selected vocabulary
charge . . . . . . a numerical rating of how strongly an object

participates in electrical forces
coulomb (C) . . . the unit of electrical charge
current . . . . . . the rate at which charge crosses a certain

boundary
ampere . . . . . . the metric unit of current, one coulomb pe sec-

ond; also “amp”
ammeter . . . . . a device for measuring electrical current
circuit . . . . . . . an electrical device in which charge can come

back to its starting point and be recycled
rather than getting stuck in a dead end

open circuit . . . a circuit that does not function because it has
a gap in it

short circuit . . . a circuit that does not function because charge
is given a low-resistance “shortcut” path that
it can follow, instead of the path that makes
it do something useful

voltage . . . . . . electrical potential energy per unit charge that
will be possessed by a charged particle at a
certain point in space

volt . . . . . . . . the metric unit of voltage, one joule per
coulomb

voltmeter . . . . . a device for measuring voltage differences
ohmic . . . . . . . describes a substance in which the flow of cur-

rent between two points is proportional to the
voltage difference between them

resistance . . . . the ratio of the voltage difference to the cur-
rent in an object made of an ohmic substance

ohm . . . . . . . . the metric unit of electrical resistance, one volt
per ampere

Notation
q . . . . . . . . . . charge
I . . . . . . . . . . current
A . . . . . . . . . units of amperes
V . . . . . . . . . voltage
V . . . . . . . . . units of volts
R . . . . . . . . . resistance
Ω . . . . . . . . . units of ohms

Other terminology and notation
electric potential rather than the more informal “voltage” used

here; despite the misleading name, it is not the
same as electric potential energy

eV . . . . . . . . . a unit of energy, equal to e multiplied by 1
volt; 1.6× 10−19 joules
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Summary

All the forces we encounter in everyday life boil down to two ba-
sic types: gravitational forces and electrical forces. A force such
as friction or a “sticky force” arises from electrical forces between
individual atoms.

Just as we use the word “mass” to describe how strongly an object
participates in gravitational forces, we use the word “charge” for
the intensity of its electrical forces. There are two types of charge.
Two charges of the same type repel each other, but objects whose
charges are different attract each other. Charge is measured in units
of coulombs (C).

Mobile charged particle model: A great many phenomena are easily
understood if we imagine matter as containing two types of charged
particles, which are at least partially able to move around.

Positive and negative charge: Ordinary objects that have not been
specially prepared have both types of charge spread evenly through-
out them in equal amounts. The object will then tend not to exert
electrical forces on any other object, since any attraction due to
one type of charge will be balanced by an equal repulsion from the
other. (We say “tend not to” because bringing the object near an
object with unbalanced amounts of charge could cause its charges
to separate from each other, and the force would no longer cancel
due to the unequal distances.) It therefore makes sense to describe
the two types of charge using positive and negative signs, so that an
unprepared object will have zero total charge.

The Coulomb force law states that the magnitude of the electrical
force between two charged particles is given by |F| = k|q1||q2|/r2.

Conservation of charge: An even more fundamental reason for using
positive and negative signs for charge is that with this definition the
total charge of a closed system is a conserved quantity.

All electrical phenomena are alike in that that arise from the pres-
ence or motion of charge. Most practical electrical devices are based
on the motion of charge around a complete circuit, so that the charge
can be recycled and does not hit any dead ends. The most useful
measure of the flow of charge is current, I = ∆q/∆t.

An electrical device whose job is to transform energy from one form
into another, e.g., a lightbulb, uses power at a rate which depends
both on how rapidly charge is flowing through it and on how much
work is done on each unit of charge. The latter quantity is known
as the voltage difference between the point where the current enters
the device and the point where the current leaves it. Since there is a
type of potential energy associated with electrical forces, the amount
of work they do is equal to the difference in potential energy between
the two points, and we therefore define voltage differences directly
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in terms of potential energy, ∆V = ∆PEelec/q. The rate of power
dissipation is P = I∆V .

Many important electrical phenomena can only be explained if we
understand the mechanisms of current flow at the atomic level. In
metals, currents are carried by electrons, in liquids by ions. Gases
are normally poor conductors unless their atoms are subjected to
such intense electrical forces that the atoms become ionized.

Many substances, including all solids, respond to electrical forces
in such a way that the flow of current between two points is pro-
portional to the voltage difference between those points. Such a
substance is called ohmic, and an object made out of an ohmic
substance can be rated in terms of its resistance, R = ∆V/I. An
important corollary is that a perfect conductor, with R = 0, must
have constant voltage everywhere within it.

A schematic is a drawing of a circuit that standardizes and stylizes
its features to make it easier to understand. Any circuit can be
broken down into smaller parts. For instance, one big circuit may be
understood as two small circuits in series, another as three circuits
in parallel. When circuit elements are combined in parallel and in
series, we have two basic rules to guide us in understanding how the
parts function as a whole:

the junction rule: In any circuit that is not storing or re-
leasing charge, conservation of charge implies that the total
current flowing out of any junction must be the same as the
total flowing in.

the loop rule: Assuming the standard convention for plus
and minus signs, the sum of the voltage drops around any
closed loop in a circuit must be zero.

The simplest application of these rules is to pairs of resistors com-
bined in series or parallel. In such cases, the pair of resistors acts
just like a single unit with a certain resistance value, called their
equivalent resistance. Resistances in series add to produce a larger
equivalent resistance,

Rseries = R1 +R2,

because the current has to fight its way through both resistances.
Parallel resistors combine to produce an equivalent resistance that
is smaller than either individual resistance,

Rparallel =

(
1

R1
+

1

R2

)−1

,

because the current has two different paths open to it.

An important example of resistances in parallel and series is the use
of voltmeters and ammeters in resistive circuits. A voltmeter acts
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as a large resistance in parallel with the resistor across which the
voltage drop is being measured. The fact that its resistance is not
infinite means that it alters the circuit it is being used to investigate,
producing a lower equivalent resistance. An ammeter acts as a small
resistance in series with the circuit through which the current is to
be determined. Its resistance is not quite zero, which leads to an
increase in the resistance of the circuit being tested.
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Problem 1. Top: A realistic
picture of a neuron. Bottom:
A simplified diagram of one
segment of the tail (axon).

Problem 2.

Problem 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure shows a neuron, which is the type of cell your nerves
are made of. Neurons serve to transmit sensory information to the
brain, and commands from the brain to the muscles. All this data
is transmitted electrically, but even when the cell is resting and not
transmitting any information, there is a layer of negative electrical
charge on the inside of the cell membrane, and a layer of positive
charge just outside it. This charge is in the form of various ions
dissolved in the interior and exterior fluids. Why would the negative
charge remain plastered against the inside surface of the membrane,
and likewise why doesn’t the positive charge wander away from the
outside surface?

2 A helium atom finds itself momentarily in this arrangement.
Find the direction and magnitude of the force acting on the right-
hand electron. The two protons in the nucleus are so close together
(∼ 1 fm) that you can consider them as being right on top of each
other.

√

3 The helium atom of problem 2 has some new experiences, goes
through some life changes, and later on finds itself in the configura-
tion shown here. What are the direction and magnitude of the force
acting on the bottom electron? (Draw a sketch to make clear the
definition you are using for the angle that gives direction.)

√

4 Suppose you are holding your hands in front of you, 10 cm
apart.
(a) Estimate the total number of electrons in each hand.

√

(b) Estimate the total repulsive force of all the electrons in one hand
on all the electrons in the other.

√

(c) Why don’t you feel your hands repelling each other?
(d) Estimate how much the charge of a proton could differ in mag-
nitude from the charge of an electron without creating a noticeable
force between your hands.
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Problem 8.

5 As discussed in more detail in section 26.4, a nucleus contains
protons, which have positive charge, and neutrons, which have zero
charge. If only the electrical force existed, a nucleus would imme-
diately fly apart due to electrical repulsion. However, there is also
another force, called the strong nuclear force, which keeps this from
happening. Suppose that a proton in a lead nucleus wanders out to
the surface of the nucleus, and experiences a strong nuclear force of
about 8 kN from the nearby neutrons and protons pulling it back in.
Compare this numerically to the repulsive electrical force from the
other protons, and verify that the net force is attractive. A lead nu-
cleus is very nearly spherical, is about 6.5 fm in radius, and contains
82 protons, each with a charge of +e, where e = 1.60 × 10−19 C.√

6 The subatomic particles called muons behave exactly like elec-
trons, except that a muon’s mass is greater by a factor of 206.77.
Muons are continually bombarding the Earth as part of the stream
of particles from space known as cosmic rays. When a muon strikes
an atom, it can displace one of its electrons. If the atom happens
to be a hydrogen atom, then the muon takes up an orbit that is on
the average 206.77 times closer to the proton than the orbit of the
ejected electron. How many times greater is the electric force experi-
enced by the muon than that previously felt by the electron?

√

7 The Earth and Moon are bound together by gravity. If, in-
stead, the force of attraction were the result of each having a charge
of the same magnitude but opposite in sign, find the quantity of
charge that would have to be placed on each to produce the re-
quired force.

√

8 The figure shows one layer of the three-dimensional structure
of a salt crystal. The atoms extend much farther off in all directions,
but only a six-by-six square is shown here. The larger circles are the
chlorine ions, which have charges of −e, where e = 1.60× 10−19 C.
The smaller circles are sodium ions, with charges of +e. The center-
to-center distance between neighboring ions is about 0.3 nm. Real
crystals are never perfect, and the crystal shown here has two de-
fects: a missing atom at one location, and an extra lithium atom,
shown as a grey circle, inserted in one of the small gaps. If the
lithium atom has a charge of +e, what is the direction and mag-
nitude of the total force on it? Assume there are no other defects
nearby in the crystal besides the two shown here.

. Hint, p. 1032
√

?
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Problem 9.

Problem 11.

9 In the semifinals of an electrostatic croquet tournament, Jessica
hits her positively charged ball, sending it across the playing field,
rolling to the left along the x axis. It is repelled by two other
positive charges. These two equal charges are fixed on the y axis at
the locations shown in the figure. (a) Express the force on the ball in
terms of the ball’s position, x. (b) At what value of x does the ball
experience the greatest deceleration? Express you answer in terms
of b. [Based on a problem by Halliday and Resnick.]

√ ∫
10 In a wire carrying a current of 1.0 pA, how long do you have
to wait, on the average, for the next electron to pass a given point?
Express your answer in units of microseconds. The charge of an
electron is −e = −1.60× 10−19 C.

. Solution, p. 1032

11 Referring back to our old friend the neuron from problem
1 on page 616, let’s now consider what happens when the nerve is
stimulated to transmit information. When the blob at the top (the
cell body) is stimulated, it causes Na+ ions to rush into the top of
the tail (axon). This electrical pulse will then travel down the axon,
like a flame burning down from the end of a fuse, with the Na+ ions
at each point first going out and then coming back in. If 1010 Na+

ions cross the cell membrane in 0.5 ms, what amount of current is
created? The charge of a Na+ ion is +e = 1.60× 10−19 C.

√

12 If a typical light bulb draws about 900 mA from a 110 V
household circuit, what is its resistance? (Don’t worry about the
fact that it’s alternating current.)

√

13 A resistor has a voltage difference ∆V across it, causing a
current I to flow.
(a) Find an equation for the power it dissipates as heat in terms of
the variables I and R only, eliminating ∆V .

√

(b) If an electrical line coming to your house is to carry a given
amount of current, interpret your equation from part a to explain
whether the wire’s resistance should be small, or large.

14 (a) Express the power dissipated by a resistor in terms of R
and ∆V only, eliminating I.

√

(b) Electrical receptacles in your home are mostly 110 V, but cir-
cuits for electric stoves, air conditioners, and washers and driers are
usually 220 V. The two types of circuits have differently shaped re-
ceptacles. Suppose you rewire the plug of a drier so that it can be
plugged in to a 110 V receptacle. The resistor that forms the heat-
ing element of the drier would normally draw 200 W. How much
power does it actually draw now?

√

15 Use the result of problem 42 on page 624 to find an equation
for the voltage at a point in space at a distance r from a point charge
Q. (Take your V = 0 distance to be anywhere you like.)

√
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Problem 16.

A printed circuit board, like
the kind referred to in problem
17.

An LP record, problem 19.

Problem 21.

16 You are given a battery, a flashlight bulb, and a single piece
of wire. Draw at least two configurations of these items that would
result in lighting up the bulb, and at least two that would not light
it. (Don’t draw schematics.) Note that the bulb has two electrical
contacts: one is the threaded metal jacket, and the other is the tip
(at the bottom in the figure).

If you’re not sure what’s going on, there are a couple of ways to
check. The best is to try it in real life by either borrowing the mate-
rials from your instructor or scrounging the materials from around
the house. (If you have a flashlight with this type of bulb, you can
remove the bulb.) Another method is to use the simulation at phet.
colorado.edu/en/simulation/circuit-construction-kit-dc.

[Problem by Arnold Arons.]

17 You have to do different things with a circuit to measure
current than to measure a voltage difference. Which would be more
practical for a printed circuit board, in which the wires are actually
strips of metal embedded inside the board? . Solution, p. 1032

18 Problem 18 has been replaced with problem 43.

19 (a) You take an LP record out of its sleeve, and it acquires a
static charge of 1 nC. You play it at the normal speed of 331

3 r.p.m.,
and the charge moving in a circle creates an electric current. What
is the current, in amperes?

√

(b) Although the planetary model of the atom can be made to work
with any value for the radius of the electrons’ orbits, more advanced
models that we will study later in this course predict definite radii.
If the electron is imagined as circling around the proton at a speed
of 2.2× 106 m/s, in an orbit with a radius of 0.05 nm, what electric
current is created? The charge of an electron is −e = −1.60 ×
10−19 C.

√
?

20 Three charges, each of strength Q (Q > 0) form a fixed
equilateral triangle with sides of length b. You throw a particle of
mass m and positive charge q from far away, with an initial speed
v. Your goal is to get the particle to go to the center of the triangle,
your aim is perfect, and you are free to throw from any direction
you like. What is the minimum possible value of v? You will need
the result of problem 42.

√

21 Referring back to problem 8, p. 617, about the sodium chlo-
ride crystal, suppose the lithium ion is going to jump from the gap it
is occupying to one of the four closest neighboring gaps. Which one
will it jump to, and if it starts from rest, how fast will it be going
by the time it gets there? (It will keep on moving and accelerating
after that, but that does not concern us.) You will need the result
of problem 42.

. Hint, p. 1032
√

?
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22 We have referred to resistors dissipating heat, i.e., we have
assumed that P = I∆V is always greater than zero. Could I∆V
come out to be negative for a resistor? If so, could one make a
refrigerator by hooking up a resistor in such a way that it absorbed
heat instead of dissipating it?

23 Hybrid and electric cars have been gradually gaining market
share, but during the same period of time, manufacturers such as
Porsche have also begun designing and selling cars with “mild hy-
brid” systems, in which power-hungry parts like water pumps are
powered by a higher-voltage battery rather than running directly
on shafts from the motor. Traditionally, car batteries have been 12
volts. Car companies have dithered over what voltage to use as the
standard for mild hybrids, building systems based on 36 V, 42 V,
and 48 V. For the purposes of this problem, we consider 36 V.
(a) Suppose the battery in a new car is used to run a device that
requires the same amount of power as the corresponding device in
the old car. Based on the sample figures above, how would the cur-
rents handled by the wires in one of the new cars compare with the
currents in the old ones?

√

(b) The real purpose of the greater voltage is to handle devices that
need more power. Can you guess why they decided to change to
higher-voltage batteries rather than increasing the power without
increasing the voltage?

24 (a) Many battery-operated devices take more than one bat-
tery. If you look closely in the battery compartment, you will see
that the batteries are wired in series. Consider a flashlight circuit.
What does the loop rule tell you about the effect of putting several
batteries in series in this way?
(b) The cells of an electric eel’s nervous system are not that differ-
ent from ours — each cell can develop a voltage difference across
it of somewhere on the order of one volt. How, then, do you think
an electric eel can create voltages of thousands of volts between
different parts of its body?

25 The heating element of an electric stove is connected in series
with a switch that opens and closes many times per second. When
you turn the knob up for more power, the fraction of the time that
the switch is closed increases. Suppose someone suggests a simpler
alternative for controlling the power by putting the heating element
in series with a variable resistor controlled by the knob. (With the
knob turned all the way clockwise, the variable resistor’s resistance is
nearly zero, and when it’s all the way counterclockwise, its resistance
is essentially infinite.) (a) Draw schematics. (b) Why would the
simpler design be undesirable?
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Problem 28.

Problem 29.

26 A 1.0 Ω toaster and a 2.0 Ω lamp are connected in parallel
with the 110-V supply of your house. (Ignore the fact that the
voltage is AC rather than DC.)
(a) Draw a schematic of the circuit.
(b) For each of the three components in the circuit, find the current
passing through it and the voltage drop across it.

√

(c) Suppose they were instead hooked up in series. Draw a schematic
and calculate the same things.

√

27 Wire is sold in a series of standard diameters, called “gauges.”
The difference in diameter between one gauge and the next in the
series is about 20%. How would the resistance of a given length of
wire compare with the resistance of the same length of wire in the
next gauge in the series?

√

28 The figure shows two possible ways of wiring a flashlight with
a switch. Both will serve to turn the bulb on and off, although the
switch functions in the opposite sense. Why is method 1 preferable?

29 In the figure, the battery is 9 V.
(a) What are the voltage differences across each light bulb?

√

(b) What current flows through each of the three components of the
circuit?

√

(c) If a new wire is added to connect points A and B, how will the
appearances of the bulbs change? What will be the new voltages
and currents?
(d) Suppose no wire is connected from A to B, but the two bulbs
are switched. How will the results compare with the results from
the original setup as drawn?

30 You have a circuit consisting of two unknown resistors in
series, and a second circuit consisting of two unknown resistors in
parallel.
(a) What, if anything, would you learn about the resistors in the
series circuit by finding that the currents through them were equal?
(b) What if you found out the voltage differences across the resistors
in the series circuit were equal?
(c) What would you learn about the resistors in the parallel circuit
from knowing that the currents were equal?
(d) What if the voltages in the parallel circuit were equal?
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Problem 31.

31 A student in a biology lab is given the following instruc-
tions: “Connect the cerebral eraser (C.E.) and the neural depo-
larizer (N.D.) in parallel with the power supply (P.S.). (Under no
circumstances should you ever allow the cerebral eraser to come
within 20 cm of your head.) Connect a voltmeter to measure the
voltage across the cerebral eraser, and also insert an ammeter in
the circuit so that you can make sure you don’t put more than 100
mA through the neural depolarizer.” The diagrams show two lab
groups’ attempts to follow the instructions. (a) Translate diagram
a into a standard-style schematic. What is correct and incorrect
about this group’s setup? (b) Do the same for diagram b.

32 How many different resistance values can be created by com-
bining three unequal resistors? (Don’t count possibilities where not
all the resistors are used.)

33 A person in a rural area who has no electricity runs an
extremely long extension cord to a friend’s house down the road so
she can run an electric light. The cord is so long that its resistance,
x, is not negligible. Show that the lamp’s brightness is greatest if
its resistance, y, is equal to x. Explain physically why the lamp is
dim for values of y that are too small or too large.

∫

34 What resistance values can be created by combining a 1 kΩ
resistor and a 10 kΩ resistor? . Solution, p. 1032

35 Suppose six identical resistors, each with resistance R, are
connected so that they form the edges of a tetrahedron (a pyramid
with three sides in addition to the base, i.e., one less side than an
Egyptian pyramid). What resistance value or values can be obtained
by making connections onto any two points on this arrangement?

. Solution, p. 1032 ?
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Problems 36 and 37.

Problem 38.

Problem 39.

Problem 40.

36 The figure shows a circuit containing five lightbulbs con-
nected to a battery. Suppose you’re going to connect one probe of a
voltmeter to the circuit at the point marked with a dot. How many
unique, nonzero voltage differences could you measure by connecting
the other probe to other wires in the circuit?

37 The lightbulbs in the figure are all identical. If you were
inserting an ammeter at various places in the circuit, how many
unique currents could you measure? If you know that the current
measurement will give the same number in more than one place,
only count that as one unique current.

38 The bulbs are all identical. Which one doesn’t light up? ?

39 Each bulb has a resistance of one ohm. How much power is
drawn from the one-volt battery?

√
?

40 The bulbs all have unequal resistances. Given the three
currents shown in the figure, find the currents through bulbs A, B,
C, and D.

√

41 A silk thread is uniformly charged by rubbing it with llama
fur. The thread is then dangled vertically above a metal plate and
released. As each part of the thread makes contact with the conduct-
ing plate, its charge is deposited onto the plate. Since the thread is
accelerating due to gravity, the rate of charge deposition increases
with time, and by time t the cumulative amount of charge is q = ct2,
where c is a constant. (a) Find the current flowing onto the plate.

√

(b) Suppose that the charge is immediately carried away through a
resistance R. Find the power dissipated as heat.

√∫

Problems 623



Problem 44.

42 (a) Recall from example 7 on p. 346 that the gravita-
tional energy of two gravitationally interacting spheres is given by
PE = −Gm1m2/r, where r is the center-to-center distance. Sketch
a graph of PE as a function of r, making sure that your graph be-
haves properly at small values of r, where you’re dividing by a small
number, and at large ones, where you’re dividing by a large one.
Check that your graph behaves properly when a rock is dropped
from a larger r to a smaller one; the rock should lose potential en-
ergy as it gains kinetic energy.
(b) Electrical forces are closely analogous to gravitational ones, since
both depend on 1/r2. Since the forces are analogous, the potential
energies should also behave analogously. Using this analogy, write
down the expression for the electrical potential energy of two inter-
acting charged particles. The main uncertainty here is the sign out
in front. Like masses attract, but like charges repel. To figure out
whether you have the right sign in your equation, sketch graphs in
the case where both charges are positive, and also in the case where
one is positive and one negative; make sure that in both cases, when
the charges are released near one another, their motion causes them
to lose PE while gaining KE.

√

43 In example 8 on p. 594, suppose that the larger sphere has
radius a, the smaller one b. (a) Use the result of problem 15 to show
that the ratio of the charges on the two spheres is qa/qb = a/b. (b)
Show that the density of charge (charge per unit area) is the other
way around: the charge density on the smaller sphere is greater than
that on the larger sphere in the ratio a/b.

44 Find the current drawn from the battery.
√

45 It’s fairly common in electrical circuits for additional, undesir-
able resistances to occur because of factors such as dirty, corroded,
or loose connections. Suppose that a device with resistance R nor-
mally dissipates power P , but due to an additional series resistance
r the total power is reduced to P ′. We might, for example, detect
this change because the battery powering our device ran down more
slowly than normal.
(a) Find the unknown resistance r.

√

(b) Check that the units of your result make sense.
(c) Check that your result makes sense in the special cases P ′ = P
and P ′ = 0.
(d) Suppose we redefine P ′ as the useful power dissipated in R.
For example, this would be the change we would notice because a
flashlight was dimmer. Find r.

√
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Exercise 21A: Electrical measurements
1. How many different currents could you measure in this circuit? Make a prediction, and then
try it.

What do you notice? How does this make sense in terms of the roller coaster metaphor intro-
duced in discussion question 21.5A on p. 589?

What is being used up in the resistor?

2. By connecting probes to these points, how many ways could you measure a voltage? How
many of them would be different numbers? Make a prediction, and then do it.

What do you notice? Interpret this using the roller coaster metaphor, and color in parts of the
circuit that represent constant voltages.

3. The resistors are unequal. How many different voltages and currents can you measure? Make
a prediction, and then try it.

What do you notice? Interpret this using the roller coaster metaphor, and color in parts of the
circuit that represent constant voltages.
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Exercise 21B: Voltage and
current
This exercise is based on one created by Vir-
ginia Roundy.

Apparatus:

DC power supply

1.5 volt batteries

lightbulbs and holders

wire

highlighting pens, 3 colors

When you first glance at this exercise, it may
look scary and intimidating — all those cir-
cuits! However, all those wild-looking circuits
can be analyzed using the following four guides
to thinking:

1. A circuit has to be complete, i.e., it must
be possible for charge to get recycled as it goes
around the circuit. If it’s not complete, then
charge will build up at a dead end. This built-
up charge will repel any other charge that tries
to get in, and everything will rapidly grind to
a stop.

2. There is constant voltage everywhere along
a piece of wire. To apply this rule during this
lab, I suggest you use the colored highlight-
ing pens to mark the circuit. For instance, if
there’s one whole piece of the circuit that’s all
at the same voltage, you could highlight it in
yellow. A second piece of the circuit, at some
other voltage, could be highlighted in blue.

3. Charge is conserved, so charge can’t “get
used up.”

4. You can draw a rollercoaster diagram, like
the one shown below. On this kind of diagram,
height corresponds to voltage — that’s why
the wires are drawn as horizontal tracks.

A Bulb and a Switch

Look at circuit 1, and try to predict what will
happen when the switch is open, and what will
happen when it’s closed. Write both your pre-
dictions in the table on the following page be-
fore you build the circuit. When you build the
circuit, you don’t need an actual switch like a
light switch; just connect and disconnect the
banana plugs. Use one of the 1.5 volt batteries
as your voltage source.

Circuit 1
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switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)

Did it work the way you expected? If not, try
to figure it out with the benefit of hindsight,
and write your explanation in the table above.

Circuit 2 (Don’t leave the switch closed for a
long time!)

switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)
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Circuit 3
switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)

Circuit 4
switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)
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Two Bulbs

Instead of a battery, use the DC power supply,
set to 2.4 volts, for circuits 5 and 6. Analyze
this one both by highlighting and by drawing
a rollercoaster diagram.

Circuit 5
bulb a

prediction

explanation

observation

explanation
(if differ-
ent)

bulb b

prediction

explanation

observation

explanation
(if differ-
ent)

Circuit 6
bulb a

prediction

explanation

observation

explanation
(if differ-
ent)

bulb b

prediction

explanation

observation

explanation
(if differ-
ent)

Exercise 21B: Voltage and current 629



Two Batteries

Use batteries for circuits 7-9. Circuits 7 and
8 are both good candidates for rollercoaster
diagrams.

Circuit 7
prediction

explanation

observation

explanation
(if different)

Circuit 8
prediction

explanation

observation

explanation
(if different)

A Final Challenge

Circuit 9
bulb a

prediction

explanation

observation

explanation
(if differ-
ent)

bulb b

prediction

explanation

observation

explanation
(if differ-
ent)
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Exercise 21C: Reasoning about circuits
The questions in this exercise can all be solved using some combination of the following ap-
proaches:

a) There is constant voltage throughout any conductor.

b) Ohm’s law can be applied to any part of a circuit.

c) Apply the loop rule.

d) Apply the junction rule.

In each case, discuss the question, decide what you think is the right answer, and then try the
experiment.

If you’ve already done exercise 21B, skip number 1.

1. The series circuit is changed as shown.

Which reasoning is correct?

• Each bulb now has its sides connected to the two terminals of the battery, so each now has
2.4 V across it instead of 1.2 V. They get brighter.

• Just as in the original circuit, the current goes through one bulb, then the other. It’s just
that now the current goes in a figure-8 pattern. The bulbs glow the same as before.

2. A wire is added as shown to the original circuit.

What is wrong with the following reasoning?

The top right bulb will go out, because its two sides are now connected with wire, so there will
be no voltage difference across it. The other three bulbs will not be affected.
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3. A wire is added as shown to the original circuit.

What is wrong with the following reasoning?

The current flows out of the right side of the battery. When it hits the first junction, some of
it will go left and some will keep going up The part that goes up lights the top right bulb. The
part that turns left then follows the path of least resistance, going through the new wire instead
of the bottom bulb. The top bulb stays lit, the bottom one goes out, and others stay the same.

4. What happens when one bulb is unscrewed, leaving an air gap?

5. This part is optional. You can do it if you finished early and would like an extra challenge.

Predict the voltage drop across each of the three bulbs in part 4, and also predict how the three
currents will compare with one another. (You can’t predict the currents in units of amperes,
since you don’t know the resistances of the bulbs.) Test your predictions. If your predictions
are wrong, try to figure out what’s going on.
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Chapter 22

The Nonmechanical
Universe

“Okay. Your duties are as follows: Get Breen. I don’t care how you get
him, but get him soon. That faker! He posed for twenty years as a scientist
without ever being apprehended. Well, I’m going to do some apprehend-
ing that’ll make all previous apprehending look like no apprehension at all.
You with me?”

“Yes,” said Battle, very much confused. “What’s that thing you have?”

“Piggy-back heat-ray. You transpose the air in its path into an unstable
isotope which tends to carry all energy as heat. Then you shoot your
juice light, or whatever along the isotopic path and you burn whatever’s
on the receiving end. You want a few?”

“No,” said Battle. “I have my gats. What else have you got for offense and
defense?” Underbottam opened a cabinet and proudly waved an arm.
“Everything,” he said.

“Disintegraters, heat-rays, bombs of every type. And impenetrable shields
of energy, massive and portable. What more do I need?”1

Cutting-edge science readily infiltrates popular culture, though some-
times in garbled form. The Newtonian imagination populated the
universe mostly with that nice solid stuff called matter, which was
made of little hard balls called atoms. In the early twentieth cen-
tury, consumers of pulp fiction and popularized science began to
hear of a new image of the universe, full of x-rays, N-rays, and
Hertzian waves. What they were beginning to soak up through
their skins was a drastic revision of Newton’s concept of a universe
made of chunks of matter which happened to interact via forces. In
the newly emerging picture, the universe was made of force, or, to
be more technically accurate, of ripples in universal fields of force.
Unlike the average reader of Cosmic Stories in 1941, you now have
enough technical background to understand what a “force field” re-
ally is.

1From “The Reversible Revolutions,” by Cecil Corwin, Cosmic Stories, March
1941. Art by Morey, Bok, Kyle, Hunt, Forte. Copyright expired.
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a / This Global Positioning
System (GPS) system, running
on a smartphone attached to a
bike’s handlebar, depends on
Einstein’s theory of relativity.
Time flows at a different rates
aboard a GPS satellite than it
does on the bike, and the GPS
software has to take this into
account.

b / The clock took up two seats,
and two tickets were bought for it
under the name of “Mr. Clock.”

22.1 The stage and the actors
Newton’s instantaneous action at a distance

The Newtonian picture has particles interacting with each other
by exerting forces from a distance, and these forces are imagined
to occur without any time delay. For example, suppose that super-
powerful aliens, angered when they hear disco music in our AM radio
transmissions, come to our solar system on a mission to cleanse the
universe of our aesthetic contamination. They apply a force to our
sun, causing it to go flying out of the solar system at a gazillion
miles an hour. According to Newton’s laws, the gravitational force
of the sun on the earth will immediately start dropping off. This
will be detectable on earth, and since sunlight takes eight minutes
to get from the sun to the earth, the change in gravitational force
will, according to Newton, be the first way in which earthlings learn
the bad news — the sun will not visibly start receding until a little
later. Although this scenario is fanciful enough to be at home in the
pages of Cosmic Stories, it shows a real feature of Newton’s laws:
that information can be transmitted from one place in the universe
to another with zero time delay, so that transmission and reception
occur at exactly the same instant.

Newton was sharp enough to realize that this required a nontrivial
assumption, which was that there was some completely objective
and well-defined way of saying whether two things happened at ex-
actly the same instant. He stated this assumption explicitly: “Abso-
lute, true, and mathematical time, of itself, and from its own nature
flows at a constant rate without regard to anything external. . . ”

No absolute time

Ever since Einstein, we’ve known that this assumption was false.
When Einstein first began to develop the theory of relativity, around
1905, the only real-world observations he could draw on were am-
biguous and indirect. Today, the evidence is part of everyday life.
For example, every time you use a GPS receiver, figure a, you’re
using Einstein’s theory of relativity. Somewhere between 1905 and
today, technology became good enough to allow conceptually simple
experiments that students in the early 20th century could only dis-
cuss in terms like “Imagine that we could. . . ” A good jumping-on
point is 1971. In that year, J.C. Hafele and R.E. Keating brought
atomic clocks aboard commercial airliners, b, and flew around the
world, once from east to west and once from west to east. Hafele and
Keating observed that there was a discrepancy between the times
measured by the traveling clocks and the times measured by similar
clocks that stayed home at the U.S. Naval Observatory in Wash-
ington. The east-going clock lost time, ending up off by −59 ± 10
nanoseconds, while the west-going one gained 273± 7 ns. Although
this example is particularly dramatic, a large number of other ex-
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c / Newton’s laws do not dis-
tinguish past from future. The
football could travel in either
direction while obeying Newton’s
laws.

periments have also confirmed that time is not absolute, as Newton
had imagined.

Nevertheless, the effects that Hafele and Keating observed were
small. This makes sense: Newton’s laws have already been thor-
oughly tested by experiments under a wide variety of conditions,
so a new theory like relativity must agree with Newton’s to a good
approximation, within the Newtonian theory’s realm of applicabil-
ity. This requirement of backward-compatibility is known as the
correspondence principle.

Causality

It’s also reassuring that the effects on time were small compared
to the three-day lengths of the plane trips. There was therefore no
opportunity for paradoxical scenarios such as one in which the east-
going experimenter arrived back in Washington before he left and
then convinced himself not to take the trip. A theory that maintains
this kind of orderly relationship between cause and effect is said to
satisfy causality.

Causality is like a water-hungry front-yard lawn in Los Angeles: we
know we want it, but it’s not easy to explain why. Even in plain old
Newtonian physics, there is no clear distinction between past and
future. In figure c, number 18 throws the football to number 25,
and the ball obeys Newton’s laws of motion. If we took a video of
the pass and played it backward, we would see the ball flying from
25 to 18, and Newton’s laws would still be satisfied. Nevertheless,
we have a strong psychological impression that there is a forward
arrow of time. I can remember what the stock market did last year,
but I can’t remember what it will do next year. Joan of Arc’s mil-
itary victories against England caused the English to burn her at
the stake; it’s hard to accept that Newton’s laws provide an equally
good description of a process in which her execution in 1431 caused
her to win a battle in 1429. There is no consensus at this point
among physicists on the origin and significance of time’s arrow, and
for our present purposes we don’t need to solve this mystery. In-
stead, we merely note the empirical fact that, regardless of what
causality really means and where it really comes from, its behavior
is consistent. Specifically, experiments show that if an observer in a
certain frame of reference observes that event A causes event B, then
observers in other frames agree that A causes B, not the other way
around. This is merely a generalization about a large body of ex-
perimental results, not a logically necessary assumption. If Keating
had gone around the world and arrived back in Washington before
he left, it would have disproved this statement about causality.

Time delays in forces exerted at a distance

Relativity is closely related to electricity and magnetism, and we
will go into relativity in more detail in chapters 23-27. What we
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care about for now is that relativity forbids Newton’s instantaneous
action at a distance. For suppose that instantaneous action at a
distance existed. It would then be possible to send signals from one
place in the universe to another without any time lag. This would
allow perfect synchronization of all clocks. But the Hafele-Keating
experiment demonstrates that clocks A and B that have been ini-
tially synchronized will drift out of sync if one is in motion relative
to the other.2 With instantaneous transmission of signals, we could
determine, without having to wait for A and B to be reunited, which
was ahead and which was behind. Since they don’t need to be re-
united, neither one needs to undergo any acceleration; each clock
can fix an inertial frame of reference, with a velocity vector that
changes neither its direction nor its magnitude. But this violates
the principle that constant-velocity motion is relative, because each
clock can be considered to be at rest, in its own frame of reference.
Since no experiment has ever detected any violation of the relativ-
ity of motion, we conclude that instantaneous action at a distance
is impossible.

Since forces can’t be transmitted instantaneously, it becomes natural
to imagine force-effects spreading outward from their source like
ripples on a pond, and we then have no choice but to impute some
physical reality to these ripples. We call them fields, and they have
their own independent existence. Chapters 22-24 are mainly about
the electric and magnetic fields, although we’ll also talk about the
gravitational field. Ripples of the electric and magnetic fields turn
out to be light waves. Fields don’t have to wiggle; they can hold still
as well. The earth’s magnetic field, for example, is nearly constant,
which is why we can use it for direction-finding.

Even empty space, then, is not perfectly featureless. It has measur-
able properties. For example, we can drop a rock in order to measure
the direction of the gravitational field, or use a magnetic compass to
find the direction of the magnetic field. This concept made a deep
impression on Einstein as a child. He recalled that when he was five
years old, the gift of a magnetic compass convinced him that there
was “something behind things, something deeply hidden.”

More evidence that fields of force are real: they carry energy.

The smoking-gun argument for this strange notion of traveling force
ripples comes from the fact that they carry energy. In figure d/1,
Alice and Betty hold positive charges A and B at some distance from
one another. If Alice chooses to move her charge closer to Betty’s,
d/2, Alice will have to do some mechanical work against the electri-
cal repulsion, burning off some of the calories from that chocolate
cheesecake she had at lunch. This reduction in her body’s chemical
energy is offset by a corresponding increase in the electrical potential

2As discussed in ch. 24, there are actually two different effects here, one due
to motion and one due to gravity.
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d / Fields carry energy.

energy q∆V . Not only that, but Alice feels the resistance stiffen as
the charges get closer together and the repulsion strengthens. She
has to do a little extra work, but this is all properly accounted for
in the electrical potential energy.

But now suppose, d/3, that Betty decides to play a trick on Alice
by tossing charge B far away just as Alice is getting ready to move
charge A. We have already established that Alice can’t feel charge
B’s motion instantaneously, so the electric forces must actually be
propagated by an electric field. Of course this experiment is utterly
impractical, but suppose for the sake of argument that the time it
takes the change in the electric field to propagate across the dia-
gram is long enough so that Alice can complete her motion before
she feels the effect of B’s disappearance. She is still getting stale
information about B’s position. As she moves A to the right, she
feels a repulsion, because the field in her region of space is still the
field caused by B in its old position. She has burned some chocolate
cheesecake calories, and it appears that conservation of energy has
been violated, because these calories can’t be properly accounted
for by any interaction with B, which is long gone.

If we hope to preserve the law of conservation of energy, then the
only possible conclusion is that the electric field itself carries away
the cheesecake energy. In fact, this example represents an impracti-
cal method of transmitting radio waves. Alice does work on charge
A, and that energy goes into the radio waves. Even if B had never
existed, the radio waves would still have carried energy, and Alice
would still have had to do work in order to create them.

Discussion questions

A Amy and Bill are flying on spaceships in opposite directions at such
high velocities that the relativistic effect on time’s rate of flow is easily
noticeable. Motion is relative, so Amy considers herself to be at rest and
Bill to be in motion. She says that time is flowing normally for her, but
Bill is slow. But Bill can say exactly the same thing. How can they both
think the other is slow? Can they settle the disagreement by getting on
the radio and seeing whose voice is normal and whose sounds slowed
down and Darth-Vadery?
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e / The wind patterns in a
certain area of the ocean could
be charted in a “sea of arrows”
representation like this. Each
arrow represents both the wind’s
strength and its direction at a
certain location.

22.2 The gravitational field

Given that fields of force are real, how do we define, measure, and
calculate them? A fruitful metaphor will be the wind patterns ex-
perienced by a sailing ship. Wherever the ship goes, it will feel a
certain amount of force from the wind, and that force will be in a
certain direction. The weather is ever-changing, of course, but for
now let’s just imagine steady wind patterns. Definitions in physics
are operational, i.e., they describe how to measure the thing being
defined. The ship’s captain can measure the wind’s “field of force”
by going to the location of interest and determining both the direc-
tion of the wind and the strength with which it is blowing. Charting
all these measurements on a map leads to a depiction of the field of
wind force like the one shown in the figure. This is known as the
“sea of arrows” method of visualizing a field.

Now let’s see how these concepts are applied to the fundamental
force fields of the universe. We’ll start with the gravitational field,
which is the easiest to understand. As with the wind patterns,
we’ll start by imagining gravity as a static field, even though the
existence of the tides proves that there are continual changes in the
gravity field in our region of space. Defining the direction of the
gravitational field is easy enough: we simply go to the location of
interest and measure the direction of the gravitational force on an
object, such as a weight tied to the end of a string.

But how should we define the strength of the gravitational field?
Gravitational forces are weaker on the moon than on the earth, but
we cannot specify the strength of gravity simply by giving a certain
number of newtons. The number of newtons of gravitational force
depends not just on the strength of the local gravitational field but
also on the mass of the object on which we’re testing gravity, our
“test mass.” A boulder on the moon feels a stronger gravitational
force than a pebble on the earth. We can get around this problem
by defining the strength of the gravitational field as the force acting
on an object, divided by the object’s mass.

definition of the gravitational field
The gravitational field vector, g, at any location in space is
found by placing a test mass mt at that point. The field vector
is then given by g = F/mt, where F is the gravitational force
on the test mass.

The magnitude of the gravitational field near the surface of the
earth is about 9.8 N/kg, and it’s no coincidence that this number
looks familiar, or that the symbol g is the same as the one for
gravitational acceleration. The force of gravity on a test mass will
equal mtg, where g is the gravitational acceleration. Dividing by
mt simply gives the gravitational acceleration. Why define a new
name and new units for the same old quantity? The main reason is
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f / The gravitational field sur-
rounding a clump of mass such
as the earth.

g / The gravitational fields of
the earth and moon superpose.
Note how the fields cancel at one
point, and how there is no bound-
ary between the interpenetrating
fields surrounding the two bodies.

that it prepares us with the right approach for defining other fields.

The most subtle point about all this is that the gravitational field
tells us about what forces would be exerted on a test mass by the
earth, sun, moon, and the rest of the universe, if we inserted a test
mass at the point in question. The field still exists at all the places
where we didn’t measure it.

Gravitational field of the earth example 1
. What is the magnitude of the earth’s gravitational field, in terms
of its mass, M, and the distance r from its center?

. Substituting |F| = GMmt/r2 into the definition of the gravitational
field, we find |g| = GM/r2. This expression could be used for
the field of any spherically symmetric mass distribution, since the
equation we assumed for the gravitational force would apply in
any such case.

Sources and sinks

If we make a sea-of-arrows picture of the gravitational fields sur-
rounding the earth, f, the result is evocative of water going down
a drain. For this reason, anything that creates an inward-pointing
field around itself is called a sink. The earth is a gravitational sink.
The term “source” can refer specifically to things that make outward
fields, or it can be used as a more general term for both “outies” and
“innies.” However confusing the terminology, we know that gravi-
tational fields are only attractive, so we will never find a region of
space with an outward-pointing field pattern.

Knowledge of the field is interchangeable with knowledge of its
sources (at least in the case of a static, unchanging field). If aliens
saw the earth’s gravitational field pattern they could immediately
infer the existence of the planet, and conversely if they knew the
mass of the earth they could predict its influence on the surround-
ing gravitational field.

Superposition of fields

A very important fact about all fields of force is that when there is
more than one source (or sink), the fields add according to the rules
of vector addition. The gravitational field certainly will have this
property, since it is defined in terms of the force on a test mass, and
forces add like vectors. Superposition is an important characteristic
of waves, so the superposition property of fields is consistent with
the idea that disturbances can propagate outward as waves in a field.

Reduction in gravity on Io due to Jupiter’s gravity example 2
. The average gravitational field on Jupiter’s moon Io is 1.81 N/kg.
By how much is this reduced when Jupiter is directly overhead?
Io’s orbit has a radius of 4.22 × 108 m, and Jupiter’s mass is
1.899× 1027 kg.
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. By the shell theorem, we can treat the Jupiter as if its mass was
all concentrated at its center, and likewise for Io. If we visit Io and
land at the point where Jupiter is overhead, we are on the same
line as these two centers, so the whole problem can be treated
one-dimensionally, and vector addition is just like scalar addition.
Let’s use positive numbers for downward fields (toward the center
of Io) and negative for upward ones. Plugging the appropriate
data into the expression derived in example 1, we find that the
Jupiter’s contribution to the field is −0.71 N/kg. Superposition
says that we can find the actual gravitational field by adding up
the fields created by Io and Jupiter: 1.81− 0.71 N/kg = 1.1 N/kg.
You might think that this reduction would create some spectacular
effects, and make Io an exciting tourist destination. Actually you
would not detect any difference if you flew from one side of Io
to the other. This is because your body and Io both experience
Jupiter’s gravity, so you follow the same orbital curve through the
space around Jupiter.

Gravitational waves

Looking back at the argument given on p. 636 for the existence of
energy-bearing ripples in the electric field, we see that nowhere was
it necessary to appeal to any specific properties of the electrical in-
teraction. We therefore expect energy-carrying gravitational waves
to exist, and Einstein’s general theory of relativity does describe
such waves and their properties.

h / The part of the LIGO grav-
ity wave detector at Hanford Nu-
clear Reservation, near Richland,
Washington. The other half of the
detector is in Louisiana.

A Caltech-MIT collaboration has built a pair of gravitational wave
detectors called LIGO to search for direct evidence of gravitational
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waves. Since they are essentially the most sensitive vibration de-
tectors ever made, they are located in quiet rural areas, and signals
are compared between them to make sure that they were not due to
passing trucks. The signature of a gravitational wave is if the same
wiggle is seen in both detectors within a short time. The detectors
are able to sense a vibration that causes a change of 10−18 m in
the distance between the mirrors at the ends of the 4-km vacuum
tunnels. This is a thousand times less than the size of an atomic
nucleus! In 2016, the collaboration announced the first detection of
a gravitational wave, which is believed to have originated from the
collision of two black holes. Propagation of gravitational waves at
c was verified through multiple methods both by study of the 2016
event and through an event in 2017, interpreted as a collision of two
neutron stars, in which both gravitational waves and electromag-
netic waves were detected simultaneously.

22.3 The electric field
Definition

The definition of the electric field is directly analogous to, and has
the same motivation as, the definition of the gravitational field:

definition of the electric field
The electric field vector, E, at any location in space is found
by placing a test charge qt at that point. The electric field
vector is then given by E = F/qt, where F is the electric force
on the test charge.

Charges are what create electric fields. Unlike gravity, which is
always attractive, electricity displays both attraction and repulsion.
A positive charge is a source of electric fields, and a negative one is
a sink.

The most difficult point about the definition of the electric field is
that the force on a negative charge is in the opposite direction com-
pared to the field. This follows from the definition, since dividing
a vector by a negative number reverses its direction. It’s as though
we had some objects that fell upward instead of down.

self-check A
Find an equation for the magnitude of the field of a single point charge
Q. . Answer, p. 1043
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i / Example 3.

Superposition of electric fields example 3
. Charges q and −q are at a distance b from each other, as
shown in the figure. What is the electric field at the point P, which
lies at a third corner of the square?

. The field at P is the vector sum of the fields that would have
been created by the two charges independently. Let positive x be
to the right and let positive y be up.

Negative charges have fields that point at them, so the charge
−q makes a field that points to the right, i.e., has a positive x
component. Using the answer to the self-check, we have

E−q,x =
kq
b2

E−q,y = 0.

Note that if we had blindly ignored the absolute value signs and
plugged in −q to the equation, we would have incorrectly con-
cluded that the field went to the left.

By the Pythagorean theorem, the positive charge is at a distance√
2b from P, so the magnitude of its contribution to the field is

E = kq/2b2. Positive charges have fields that point away from
them, so the field vector is at an angle of 135◦counterclockwise
from the x axis.

Eq,x =
kq
2b2 cos 135◦

= − kq
23/2b2

Eq,y =
kq
2b2 sin 135◦

=
kq

23/2b2

The total field is

Ex =
(

1− 2−3/2
) kq

b2

Ey =
kq

23/2b2 .
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j / A Geiger-Müller tube.

k / Proof that the electric field of
a line of charge is proportional to
1/r , example 4.

A line of charge example 4
In a complete circuit, there is typically no net charge on any of

the wires. However, there are some devices in which a circuit is
intentionally left open in order to produce a nonzero net charge
on a wire. One example is a type of radiation detector called a
Geiger-Müller tube, figure j. A high voltage is applied between
the outside of the cylinder and the wire that runs along the central
axis. A net positive charge builds up on the wire and a nega-
tive one on the cylinder’s wall. Electric fields originate from the
wire, spread outward from the axis, and terminate on the wall.
The cylinder is filled with a low-pressure inert gas. An incoming
particle of radioactivity strikes an atom of the gas, ionizing it, i.e.,
splitting it into positively and negatively charged parts, known as
ions. These ions then accelerate in opposite directions, since the
force exerted by an electric field on a charged particle flips di-
rections when the charge is reversed. The ions accelerate up to
speeds at which they are capable of ionizing other atoms when
they collide with them. The result is an electrical avalanche that
causes a disturbance on the voltmeter.

Motivated by this example, we would like to find how the field of
a long, uniformly charged wire varies with distance. In figure k/1,
the point P experiences a field that is the vector sum of contri-
butions such as the one coming from the segment q. The field
Eq arising from this segment has to be added to similar contri-
butions from all other segments of the wire. By symmetry, the
total field will end up pointing at a right angle to the wire. We now
consider point P′, figure k/2, at twice the distance from the wire.
If we reproduce all the angles from k/1, then the new triangle is
simply a copy of the old one that has been scaled up by a factor
of two. The left side’s length has doubled, so q′ = 2q, and this
would tend to make Eq′ twice as big. But all the distances have
also been doubled, and the 1/r2 in Coulomb’s law therefore con-
tributes an additional factor of 1/4. Combining these two factors,
we find Eq′ = Eq/2. The total field is the sum of contributions
such as Eq′ , so if all of these have been weakened by a factor of
two, the same must apply to the total as well. There was nothing
special about the number 2, so we conclude that in general the
electric field of a line of charge is proportional to 1/r .

Applying this to the Geiger-Müller tube, we can see the reason
why the device is built with a wire. When r is small, 1/r is big,
and the field is very strong. Therefore the device can be sensitive
enough to trigger an avalanche in the gas when only a single
atom has been ionized.

We have only shown that the field is proportional to 1/r , but we
haven’t filled in the other factors in the equation. This is done in
example 15 on p. 657.
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m / A dipole field. Electric
fields diverge from a positive
charge and converge on a
negative charge.

n / A water molecule is a dipole.

Dipoles

The simplest set of sources that can occur with electricity but not
with gravity is the dipole, consisting of a positive charge and a neg-
ative charge with equal magnitudes. More generally, an electric
dipole can be any object with an imbalance of positive charge on
one side and negative on the other. A water molecule, n, is a dipole
because the electrons tend to shift away from the hydrogen atoms
and onto the oxygen atom.

Your microwave oven acts on water molecules with electric fields.
Let us imagine what happens if we start with a uniform electric field,
l/1, made by some external charges, and then insert a dipole, l/2,
consisting of two charges connected by a rigid rod. The dipole dis-
turbs the field pattern, but more important for our present purposes
is that it experiences a torque. In this example, the positive charge
feels an upward force, but the negative charge is pulled down. The
result is that the dipole wants to align itself with the field, l/3. The
microwave oven heats food with electrical (and magnetic) waves.
The alternation of the torque causes the molecules to wiggle and in-
crease the amount of random motion. The slightly vague definition
of a dipole given above can be improved by saying that a dipole is
any object that experiences a torque in an electric field.

What determines the torque on a dipole placed in an externally
created field? Torque depends on the force, the distance from the
axis at which the force is applied, and the angle between the force
and the line from the axis to the point of application. Let a dipole
consisting of charges +q and −q separated by a distance ` be placed
in an external field of magnitude |E|, at an angle θ with respect to
the field. The total torque on the dipole is

τ =
`

2
q|E| sin θ +

`

2
q|E| sin θ

= `q|E| sin θ.

(Note that even though the two forces are in opposite directions,
the torques do not cancel, because they are both trying to twist the

l / 1. A uniform electric field created by some charges “off-stage.”
2. A dipole is placed in the field. 3. The dipole aligns with the field.
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dipole in the same direction.) The quantity `q is called the dipole
moment, notated D.

Dipole moment of a molecule of NaCl gas example 5
. In a molecule of NaCl gas, the center-to-center distance be-
tween the two atoms is about 0.24 nm. Assuming that the chlo-
rine completely steals one of the sodium’s electrons, compute the
magnitude of this molecule’s dipole moment.

. The total charge is zero, so it doesn’t matter where we choose
the origin of our coordinate system. For convenience, let’s choose
it to be at one of the atoms, so that the charge on that atom
doesn’t contribute to the dipole moment. The magnitude of the
dipole moment is then

D = (2.4× 10−10 m)(e)

= (2.4× 10−10 m)(1.6× 10−19 C)

≈ 4× 10−29 C ·m.

The experimentally measured value is 3.0 × 10−29 C · m, which
shows that the electron is not completely “stolen.”

More complex dipoles can also be assigned a dipole moment — they
are defined as having the same dipole moment as the two-charge
dipole that would experience the same torque.

Molecules with zero and nonzero dipole moments example 6
It can be useful to know whether or not a molecule is polar, i.e.,
has a nonzero dipole moment. A polar molecule such as water
is readily heated in a microwave oven, while a nonpolar one is
not. Polar molecules are attracted to one another, so polar sub-
stances dissolve in other polar substances, but not in nonpolar
substances, i.e., “like dissolves like.”

o / Example 6. The positive x axis
is to the right, y is up, and z is
out of the page. Dark gray atoms
are carbon, and the small light
gray ones are hydrogen. Some
other elements are labeled when
their identity would otherwise not
be clear.

In a symmetric molecule such as carbon disulfide, figure o/1, the
dipole moment vanishes. For if we rotate the molecule by 180
degrees about any one of the three coordinate axes defined in the
caption of the figure, the molecule is unchanged, which means
that its dipole moment is unchanged. This means that CS2 cannot
be equivalent to any simple, two-charge dipole, because a simple
dipole can only stay the same under a 180 degree rotation if the
rotation is about the line connecting the two charges.
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Similar symmetry arguments show that sulfur hexafluoride, o/2,
and benzene o/3, have vanishing dipole moments.

The formaldehyde molecule, o/4, does not have enough symme-
try to guarantee that its dipole moment must vanish, but it does
have enough to dictate it must be equivalent to a two-charge
dipole lying along the left-right axis. Chloroform, o/5, is a front-to-
back dipole for the orientation drawn in the figure.

From these considerations we can tell, for example, that carbon
disulfide will be soluble in benzene, but chloroform will not.

Symmetry arguments are not enough to determine, for example,
whether formaldehyde is equivalent to a dipole whose positive
charge lies to the left of its negative one or to the right. This
requires some knowledge of chemistry and the periodic table.

Alternative definition of the electric field

The behavior of a dipole in an externally created field leads us to
an alternative definition of the electric field:

alternative definition of the electric field
The electric field vector, E, at any location in space is defined
by observing the torque exerted on a test dipole Dt placed
there. The direction of the field is the direction in which the
field tends to align a dipole (from − to +), and the field’s
magnitude is |E| = τ/Dt sin θ.

The main reason for introducing a second definition for the same
concept is that the magnetic field is most easily defined using a
similar approach.

Potential related to electric field

Voltage (electric potential) is potential energy per unit charge, and
electric field is force per unit charge. We can therefore relate po-
tential and field if we start from the relationship between potential
energy and force,

∆PE = −Fd, [assuming constant force and

motion parallel to the force]

and divide by charge,

∆PE

q
= −F

q
d,

giving

∆V = −Ed, [assuming constant force and

motion parallel to the force]

In other words, the difference in potential between two points equals
the electric field strength multiplied by the distance between them.
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p / Example 8.

The interpretation is that a strong electric field is a region of space
where the potential is rapidly changing. By analogy, a steep hillside
is a place on the map where the altitude is rapidly changing.

Field generated by an electric eel example 7
. Suppose an electric eel is 1 m long, and generates a voltage
difference of 1000 volts between its head and tail. What is the
electric field in the water around it?

. We are only calculating the amount of field, not its direction, so
we ignore positive and negative signs. Subject to the possibly in-
accurate assumption of a constant field parallel to the eel’s body,
we have

|E| = ∆V
∆x

= 1000 V/m.

The hammerhead shark example 8
One of the reasons hammerhead sharks have their heads shaped
the way they do is that, like quite a few other fish, they can sense
electric fields as a way of finding prey, which may for example
be hidden in the sand. From the equation E = ∆V/∆x , we can
see that if the shark is sensing the potential difference between
two points, it will be able to detect smaller electric fields if those
two points are farther apart. The shark has a network of sensory
organs, called the ampullae of Lorenzini, on the skin of its head.
Since the network is spread over a wider head, the ∆x is larger.
Some sharks can detect electric fields as weak as 50 picovolts
per meter!

Relating the units of electric field and potential example 9
From our original definition of the electric field, we expect it to
have units of newtons per coulomb, N/C. The example above,
however, came out in volts per meter, V/m. Are these inconsis-
tent? Let’s reassure ourselves that this all works. In this kind of
situation, the best strategy is usually to simplify the more complex
units so that they involve only mks units and coulombs. Since po-
tential is defined as electrical energy per unit charge, it has units
of J/C:

V
m

=
J/C
m

=
J

C ·m
.

To connect joules to newtons, we recall that work equals force
times distance, so J = N ·m, so

V
m

=
N ·m
C ·m

=
N
C

As with other such difficulties with electrical units, one quickly
begins to recognize frequently occurring combinations.
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q / Discussion question H.

Discussion questions

A In the definition of the electric field, does the test charge need to be
1 coulomb? Does it need to be positive?

B Does a charged particle such as an electron or proton feel a force
from its own electric field?

C Is there an electric field surrounding a wall socket that has nothing
plugged into it, or a battery that is just sitting on a table?

D In a flashlight powered by a battery, which way do the electric fields
point? What would the fields be like inside the wires? Inside the filament
of the bulb?

E Criticize the following statement: “An electric field can be represented
by a sea of arrows showing how current is flowing.”

F The field of a point charge, |E| = kQ/r2, was derived in the self-
check above. How would the field pattern of a uniformly charged sphere
compare with the field of a point charge?

G The interior of a perfect electrical conductor in equilibrium must
have zero electric field, since otherwise the free charges within it would
be drifting in response to the field, and it would not be in equilibrium. What
about the field right at the surface of a perfect conductor? Consider the
possibility of a field perpendicular to the surface or parallel to it.

H Compare the dipole moments of the molecules and molecular ions
shown in the figure.

I Small pieces of paper that have not been electrically prepared in
any way can be picked up with a charged object such as a charged piece
of tape. In our new terminology, we could describe the tape’s charge as
inducing a dipole moment in the paper. Can a similar technique be used
to induce not just a dipole moment but a charge?

J The earth and moon are fairly uneven in size and far apart, like a
baseball and a ping-pong ball held in your outstretched arms. Imagine
instead a planetary system with the character of a double planet: two
planets of equal size, close together. Sketch a sea of arrows diagram of
their gravitational field.
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22.4 Calculating energy in fields
We found on p. 636 that fields have energy, and we now know as
well that fields act like vectors. Presumably there is a relationship
between the strength of a field and its energy density. Flipping the
direction of the field can’t change the density of energy, which is a
scalar and therefore has no direction in space. We therefore expect
that the energy density to be proportional to the square of the field,
so that changing E to −E has no effect on the result. This is exactly
what we’ve already learned to expect for waves: the energy depends
on the square of the amplitude. The relevant equations for the
gravitational and electric fields are as follows:

(energy stored in the gravitational field per m3) = − 1

8πG
|g|2

(energy stored in the electric field per m3) =
1

8πk
|E|2

A similar expression is given on p. 703 for the magnetic field.

Although funny factors of 8π and the plus and minus signs may
have initially caught your eye, they are not the main point. The
important idea is that the energy density is proportional to the
square of the field strength in all cases. We first give a simple
numerical example and work a little on the concepts, and then turn
our attention to the factors out in front.

In chapter 22 when we discussed the original reason for introducing
the concept of a field of force, a prime motivation was that otherwise
there was no way to account for the energy transfers involved when
forces were delayed by an intervening distance. We used to think of
the universe’s energy as consisting of

kinetic energy

+gravitational potential energy based on the distances between

objects that interact gravitationally

+electric potential energy based on the distances between

objects that interact electrically

+magnetic potential energy based on the distances between

objects that interact magnetically,

but in nonstatic situations we must use a different method:

kinetic energy

+gravitational potential energy stored in gravitational fields

+electric potential energy stored in electric fields

+magnetic potential stored in magnetic fields
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r / Example 10.

s / Example 11.

Surprisingly, the new method still gives the same answers for the
static cases.

Energy stored in a capacitor example 10
A pair of parallel metal plates, seen from the side in figure r,

can be used to store electrical energy by putting positive charge
on one side and negative charge on the other. Such a device is
called a capacitor. (We have encountered such an arrangement
previously, but there its purpose was to deflect a beam of elec-
trons, not to store energy.)

In the old method of describing potential energy, 1, we think in
terms of the mechanical work that had to be done to separate
the positive and negative charges onto the two plates, working
against their electrical attraction. The new description, 2, at-
tributes the storage of energy to the newly created electric field
occupying the volume between the plates. Since this is a static
case, both methods give the same, correct answer.

Potential energy of a pair of opposite charges example 11
Imagine taking two opposite charges, s, that were initially far apart
and allowing them to come together under the influence of their
electrical attraction.

According to the old method, potential energy is lost because the
electric force did positive work as it brought the charges together.
(This makes sense because as they come together and acceler-
ate it is their potential energy that is being lost and converted to
kinetic energy.)

By the new method, we must ask how the energy stored in the
electric field has changed. In the region indicated approximately
by the shading in the figure, the superposing fields of the two
charges undergo partial cancellation because they are in oppos-
ing directions. The energy in the shaded region is reduced by
this effect. In the unshaded region, the fields reinforce, and the
energy is increased.

It would be quite a project to do an actual numerical calculation of
the energy gained and lost in the two regions (this is a case where
the old method of finding energy gives greater ease of computa-
tion), but it is fairly easy to convince oneself that the energy is
less when the charges are closer. This is because bringing the
charges together shrinks the high-energy unshaded region and
enlarges the low-energy shaded region.
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t / Discussion question A.

Energy transmitted by ripples in the electric and magnetic fields
example 12
We’ll see in chapter 24 that phenomena like light, radio waves,
and x-rays are all ripples in the electric and magnetic fields. The
old method would give zero energy for a region of space contain-
ing a light wave but no charges. That would be wrong! We can
only use the old method in static cases.

Now let’s give at least some justification for the other features of
the expressions for energy density, − 1

8πG |g|
2 and 1

8πk |E|
2, besides

the proportionality to the square of the field strength.

First, why the different plus and minus signs? The basic idea is that
the signs have to be opposite in the gravitational and electric cases
because there is an attraction between two positive masses (which
are the only kind that exist), but two positive charges would repel.
Since we’ve already seen examples where the positive sign in the
electric energy makes sense, the gravitational energy equation must
be the one with the minus sign.

It may also seem strange that the constants G and k are in the
denominator. They tell us how strong the three different forces
are, so shouldn’t they be on top? No. Consider, for instance, an
alternative universe in which gravity is twice as strong as in ours.
The numerical value of G is doubled. Because G is doubled, all the
gravitational field strengths are doubled as well, which quadruples
the quantity |g|2. In the expression − 1

8πG |g|
2, we have quadrupled

something on top and doubled something on the bottom, which
makes the energy twice as big. That makes perfect sense.

Discussion questions

A The figure shows a positive charge in the gap between two capacitor
plates. First make a large drawing of the field pattern that would be formed
by the capacitor itself, without the extra charge in the middle. Next, show
how the field pattern changes when you add the particle at these two po-
sitions. Compare the energy of the electric fields in the two cases. Does
this agree with what you would have expected based on your knowledge
of electrical forces?

B Criticize the following statement: “A solenoid makes a charge in the
space surrounding it, which dissipates when you release the energy.”

C In example 11, I argued that the fields surrounding a positive
and negative charge contain less energy when the charges are closer
together. Perhaps a simpler approach is to consider the two extreme pos-
sibilities: the case where the charges are infinitely far apart, and the one
in which they are at zero distance from each other, i.e., right on top of
each other. Carry out this reasoning for the case of (1) a positive charge
and a negative charge of equal magnitude, (2) two positive charges of
equal magnitude, (3) the gravitational energy of two equal masses.
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22.5
∫

Potential for nonuniform fields
The calculus-savvy reader will have no difficulty generalizing the
field-potential relationship to the case of a varying field. The po-
tential energy associated with a varying force is

∆PE = −
∫
F dx, [one dimension]

so for electric fields we divide by q to find

∆V = −
∫
E dx, [one dimension]

Applying the fundamental theorem of calculus yields

E = −dV

dx
. [one dimension]

Potential associated with a point charge example 13
. What is the potential associated with a point charge?

. As derived previously in self-check A on page 641, the field is

|E| = kQ
r2

The difference in potential between two points on the same radius
line is

∆V =
∫

dV

= −
∫

Ex dx

In the general discussion above, x was just a generic name for
distance traveled along the line from one point to the other, so in
this case x really means r .

∆V = −
∫ r2

r1

Er dr

= −
∫ r2

r1

kQ
r2 dr

=
kQ
r

]r2

r1

=
kQ
r2
− kQ

r1
.

The standard convention is to use r1 =∞ as a reference point, so
that the potential at any distance r from the charge is

V =
kQ
r

.
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v / The constant-potential curves
surrounding a point charge. Near
the charge, the curves are so
closely spaced that they blend
together on this drawing due to
the finite width with which they
were drawn. Some electric fields
are shown as arrows.

The interpretation is that if you bring a positive test charge closer
to a positive charge, its electrical energy is increased; if it was
released, it would spring away, releasing this as kinetic energy.

self-check B
Show that you can recover the expression for the field of a point charge
by evaluating the derivative Ex = −dV/dx . . Answer, p. 1043

u / Left: A topographical map of Stowe, Vermont. From one constant-height line to the next is a height
difference of 200 feet. Lines far apart, as in the lower village, indicate relatively flat terrain, while lines
close together, like the ones to the west of the main town, represent a steep slope. Streams flow downhill,
perpendicular to the constant-height lines. Right: The same map has been redrawn in perspective, with
shading to suggest relief.

22.6 Two or three dimensions
The topographical map shown in figure u suggests a good way to
visualize the relationship between field and potential in two dimen-
sions. Each contour on the map is a line of constant height; some
of these are labeled with their elevations in units of feet. Height is
related to gravitational potential energy, so in a gravitational anal-
ogy, we can think of height as representing potential. Where the
contour lines are far apart, as in the town, the slope is gentle. Lines
close together indicate a steep slope.

If we walk along a straight line, say straight east from the town,
then height (potential) is a function of the east-west coordinate x.
Using the usual mathematical definition of the slope, and writing
V for the height in order to remind us of the electrical analogy, the
slope along such a line is ∆V/∆x. If the slope isn’t constant, we
either need to use the slope of the V − x graph, or use calculus and
talk about the derivative dV/ dx.

What if everything isn’t confined to a straight line? Water flows
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w / Self-check C.

downhill. Notice how the streams on the map cut perpendicularly
through the lines of constant height.

It is possible to map potentials in the same way, as shown in figure
v. The electric field is strongest where the constant-potential curves
are closest together, and the electric field vectors always point per-
pendicular to the constant-potential curves.

Figure x shows some examples of ways to visualize field and potential
patterns.

Mathematically, the calculus of section 22.5 generalizes to three di-
mensions as follows:

Ex = −dV/ dx

Ey = −dV/ dy

Ez = −dV/ dz

self-check C
Imagine that the topographical map in figure w represents potential
rather than height. (a) Consider the stream that starts near the cen-
ter of the map. Determine the positive and negative signs of dV/dx
and dV/dy , and relate these to the direction of the force that is pushing
the current forward against the resistance of friction. (b) If you wanted
to find a lot of electric charge on this map, where would you look? .

Answer, p. 1043
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x / Two-dimensional field and po-
tential patterns. Top: A uniformly
charged rod. Bottom: A dipole.
In each case, the diagram on the
left shows the field vectors and
constant-potential curves, while
the one on the right shows the
potential (up-down coordinate) as
a function of x and y. Interpret-
ing the field diagrams: Each ar-
row represents the field at the
point where its tail has been po-
sitioned. For clarity, some of the
arrows in regions of very strong
field strength are not shown —
they would be too long to show.
Interpreting the constant-potential
curves: In regions of very strong
fields, the curves are not shown
because they would merge to-
gether to make solid black re-
gions. Interpreting the perspec-
tive plots: Keep in mind that even
though we’re visualizing things
in three dimensions, these are
really two-dimensional potential
patterns being represented. The
third (up-down) dimension repre-
sents potential, not position.

22.7 ? Field lines and Gauss’s law
When we look at the “sea of arrows” representation of a field, y/1,
there is a natural visual tendency to imagine connecting the arrows
as in y/2. The curves formed in this way are called field lines, and
they have a direction, shown by the arrowheads.

y / Two different representations of an electric field.
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z / Example 14.

aa / The number of field lines
coming in and out of each region
depends on the total charge it
encloses.

An avalanche transceiver example 14
The dipole field pattern is universal: it always has the same math-
ematical shape, and this holds regardless of whether the field
is electric or magnetic, static or oscillating. One of its universal
properties is that the field lines always pass through the source,
and this is taken advantage of in a device called an avalanche
transceiver used by backcountry skiers and hikers in winter. The
device is worn on the body and is left in transmitting mode while
the user is traveling. It creates a dipole pattern of electric and
magnetic fields, oscillating at 457 kHz. If a member of the party is
buried in an avalanche, his companions must find and locate him
within about 30-90 minutes, or he will suffocate. The rescuers
switch their own transceivers to receive mode, allowing them to
determine the direction of the field line; when the antenna is par-
allel to the field line, the oscillating electric field drives electrons
up and down it, creating the maximum possible current.

In the figure, the rescuer moves along the field line from A to B.
At B, she verifies that the strength of the signal has increased.
(If it hadn’t, she would have had to turn around and go in the
opposite direction.) She redetermines the direction of the field
and continues in the new direction. Continuing the process, she
proceeds along an approximation to the field line. At D she finds
that the field strength has fallen off again, so she knows that she
has just passed over the victim’s position.

Electric field lines originate from positive charges and terminate on
negative ones. We can choose a constant of proportionality that fixes
how coarse or fine the “grain of the wood” is, but once this choice
is made the strength of each charge is shown by the number of lines
that begin or end on it. For example, figure y/2 shows eight lines at
each charge, so we know that q1/q2 = (−8)/8 = −1. Because lines
never begin or end except on a charge, we can always find the total
charge inside any given region by subtracting the number of lines
that go in from the number that come out and multiplying by the
appropriate constant of proportionality. Ignoring the constant, we
can apply this technique to figure aa to find qA = −8, qB = 2−2 = 0,
and qC = 5− 5 = 0.

Figures y and aa are drawn in two dimensions, but we should really
imagine them in three dimensions, so that the regions A, B, and C
in figure aa are volumes bounded by surfaces. It is only because
our universe happens to have three dimensions that the field line
concept is as useful as it is. This is because the number of field lines
per unit area perpendicularly piercing a surface can be interpreted
as the strength of the electric field. To see this, consider an imag-
inary spherical surface of radius r, with a positive charge q at its
center. The field at the surface equals kq/r2. The number of field
lines piercing the surface is independent of r, but the surface’s area
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ab / Example 15.

is proportional to r2, so the number of piercings per unit area is
proportional to 1/r2, just like the electric field. With this interpre-
tation, we arrive at Gauss’s law, which states that the field strength
on a surface multiplied by the surface area equals the total charge
enclosed by the surface. (This particular formulation only works in
the case where the field pierces the surface perpendicularly and is
constant in magnitude over the whole surface. It can be reformu-
lated so as to eliminate these restrictions, but we won’t require that
reformulation for our present purposes.)

The field of a line of charge example 15
In example 4 on p. 643, we found by simple scaling arguments

that the electric field of a line of charge is proportional to 1/r ,
where r is the distance from the line. Since electric fields are al-
ways proportional to the Coulomb constant k and to the amount of
charge, clearly we must have something of the form
E = (. . .)k (q/L)/r , where q/L is the charge per unit length and
(. . .) represents an unknown numerical constant (which you can
easily verify is unitless). Using Gauss’s law we can fill in the final
piece of the puzzle, which is the value of this constant.

Figure ab shows two surfaces, a cylindrical one A and a spherical
one B. Every field line that passes through A also passes through
B. By making A sufficiently small and B sufficiently large, we can
make the field on each surface nearly constant and perpendicular
to the surface, as required by our restricted form of Gauss’s law.
If radius rB is made large, the field at B made by the line of charge
becomes indistinguishable from that of a point charge, kq/r2

B. By
Gauss’s law, the electric field at each surface is proportional to
the number of field lines divided by its area. But the number of
field lines is the same in both cases, so each field is inversely pro-
portional to the corresponding surface area. We therefore have

EA = EB

(
AB

AA

)
=

(
kq
r2
B

)(
4πr2

B
2πrAL

)

=
2kq
LrA

.

The unknown numerical constant equals 2.

No charge on the interior of a conductor example 16
I asserted on p. 593 that for a perfect conductor in equilibrium, ex-
cess charge is found only at the surface, never in the interior. This
can be proved using Gauss’s law. Suppose that a charge q ex-
isted at some point in the interior, and it was in stable equilibrium.
For concreteness, let’s say q is positive. If its equilibrium is to be
stable, then we need an electric field everywhere around it that
points inward like a pincushion, so that if the charge were to be
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ac / Example 17.

perturbed slightly, the field would bring it back to its equilibrium
position. Since Newton’s third law forbids objects from making
forces on themselves, this field would have to be the field con-
tributed by all the other charges, not by q itself. But by Gauss’s
law, an external set of charges cannot form this kind of inward-
pointing pincushion pattern; for such a pattern, Gauss’s law would
require there to be some negative charge inside the pincusion.

22.8
∫
? Electric

field of a continuous charge distribution
Charge really comes in discrete chunks, but often it is mathemat-
ically convenient to treat a set of charges as if they were like a
continuous fluid spread throughout a region of space. For example,
a charged metal ball will have charge spread nearly uniformly all
over its surface, and in for most purposes it will make sense to ig-
nore the fact that this uniformity is broken at the atomic level. The
electric field made by such a continuous charge distribution is the
sum of the fields created by every part of it. If we let the “parts”
become infinitesimally small, we have a sum of an infinite number of
infinitesimal numbers, which is an integral. If it was a discrete sum,
we would have a total electric field in the x direction that was the
sum of all the x components of the individual fields, and similarly
we’d have sums for the y and z components. In the continuous case,
we have three integrals.

Field of a uniformly charged rod example 17
. A rod of length L has charge Q spread uniformly along it. Find

the electric field at a point a distance d from the center of the rod,
along the rod’s axis. (This is different from examples 4 on p. 643
and 15 on p. 657, both because the point is on the axis of the rod
and because the rod is of finite length.)

. This is a one-dimensional situation, so we really only need to
do a single integral representing the total field along the axis. We
imagine breaking the rod down into short pieces of length dz,
each with charge dq. Since charge is uniformly spread along the
rod, we have dq = λdz, where λ = Q/L (Greek lambda) is the
charge per unit length, in units of coulombs per meter. Since
the pieces are infinitesimally short, we can treat them as point
charges and use the expression k dq/r2 for their contributions to
the field, where r = d − z is the distance from the charge at z to
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the point in which we are interested.

Ez =
∫

k dq
r2

=
∫ +L/2

−L/2

kλdz
r2

= kλ
∫ +L/2

−L/2

dz
(d − z)2

The integral can be looked up in a table, or reduced to an ele-
mentary form by substituting a new variable for d − z. The result
is

Ez = kλ
(

1
d − z

)+L/2

−L/2

=
kQ
L

(
1

d − L/2
− 1

d + L/2

)
.

For large values of d , this expression gets smaller for two rea-
sons: (1) the denominators of the fractions become large, and
(2) the two fractions become nearly the same, and tend to cancel
out. This makes sense, since the field should get weaker as we
get farther away from the charge. In fact, the field at large dis-
tances must approach kQ/d2, since from a great distance, the
rod looks like a point.

It’s also interesting to note that the field becomes infinite at the
ends of the rod, but is not infinite on the interior of the rod. Can
you explain physically why this happens?
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Summary
Selected vocabulary
field . . . . . . . . a property of a point in space describing the

forces that would be exerted on a particle if it
was there

sink . . . . . . . . a point at which field vectors converge
source . . . . . . . a point from which field vectors diverge; of-

ten used more inclusively to refer to points of
either convergence or divergence

electric field . . . the force per unit charge exerted on a test
charge at a given point in space

gravitational field the force per unit mass exerted on a test mass
at a given point in space

electric dipole . . an object that has an imbalance between pos-
itive charge on one side and negative charge
on the other; an object that will experience a
torque in an electric field

Notation
g . . . . . . . . . . the gravitational field
E . . . . . . . . . the electric field
D . . . . . . . . . an electric dipole moment

Other terminology and notation
d, p, m . . . . . . other notations for the electric dipole moment

Summary

Experiments show that time is not absolute: it flows at different
rates depending on an observer’s state of motion. This is an exam-
ple of the strange effects predicted by Einstein’s theory of relativ-
ity. All of these effects, however, are very small when the relative
velocities are small compared to c. This makes sense, because New-
ton’s laws have already been thoroughly tested by experiments at
such speeds, so a new theory like relativity must agree with the old
one in their realm of common applicability. This requirement of
backwards-compatibility is known as the correspondence principle.

Since time is not absolute, simultaneity is not a well-defined con-
cept, and therefore the universe cannot operate as Newton imagined,
through instantaneous action at a distance. There is a delay in time
before a change in the configuration of mass and charge in one cor-
ner of the universe will make itself felt as a change in the forces
experienced far away. We imagine the outward spread of such a
change as a ripple in an invisible universe-filling field of force.

We define the gravitational field at a given point as the force per
unit mass exerted on objects inserted at that point, and likewise the
electric field is defined as the force per unit charge. These fields are
vectors, and the fields generated by multiple sources add according
to the rules of vector addition.
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When the electric field is constant, the ∆V between two points lying
on a line parallel to the field is related to the field by the equation
∆V = −Ed, where d is the distance between the two points. In this
context, one usually refers to V as the electrical potential rather
than “the voltage.”

Fields of force contain energy. The density of energy is proportional
to the square of the magnitude of the field. In the case of static
fields, we can calculate potential energy either using the previous
definition in terms of mechanical work or by calculating the energy
stored in the fields. If the fields are not static, the old method gives
incorrect results and the new one must be used.

Summary 661



Problem 1.

Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In our by-now-familiar neuron, the voltage difference be-
tween the inner and outer surfaces of the cell membrane is about
Vout − Vin = −70 mV in the resting state, and the thickness of the
membrane is about 6.0 nm (i.e., only about a hundred atoms thick).
What is the electric field inside the membrane?

√

2 The gap between the electrodes in an automobile engine’s
spark plug is 0.060 cm. To produce an electric spark in a gasoline-
air mixture, an electric field of 3.0 × 106 V/m must be achieved.
On starting a car, what minimum voltage must be supplied by the
ignition circuit? Assume the field is uniform.

√

(b) The small size of the gap between the electrodes is inconvenient
because it can get blocked easily, and special tools are needed to
measure it. Why don’t they design spark plugs with a wider gap?

3 (a) At time t = 0, a positively charged particle is placed,
at rest, in a vacuum, in which there is a uniform electric field of
magnitude E. Write an equation giving the particle’s speed, v, in
terms of t, E, and its mass and charge m and q.

√

(b) If this is done with two different objects and they are observed
to have the same motion, what can you conclude about their masses
and charges? (For instance, when radioactivity was discovered, it
was found that one form of it had the same motion as an electron
in this type of experiment.)

4 Three charges are arranged on a square as shown. All three
charges are positive. What value of q2/q1 will produce zero electric
field at the center of the square? . Solution, p. 1033

5 Show that the magnitude of the electric field produced by a
simple two-charge dipole, at a distant point along the dipole’s axis,
is to a good approximation proportional to D/r3, where r is the
distance from the dipole. [Hint: Use the approximation (1 + ε)p ≈
1 + pε, which is valid for small ε.] ?

6 Consider the electric field created by a uniform ring of total
charge q and radius b. (a) Show that the field at a point on the ring’s
axis at a distance a from the plane of the ring is kqa(a2 + b2)−3/2.
(b) Show that this expression has the right behavior for a = 0 and
for a much greater than b. ?

7 Example 4 on p. 643 showed that the electric field of a long,
uniform line of charge falls off with distance as 1/r. By a similar
technique, show that the electric field of a uniformly charged plane
has no dependence on the distance from the plane. ?
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8 Given that the field of a dipole is proportional to D/r3 (prob-
lem 5), show that its potential varies as D/r2. (Ignore positive and
negative signs and numerical constants of proportionality.)

∫
9 A carbon dioxide molecule is structured like O-C-O, with all
three atoms along a line. The oxygen atoms grab a little bit of extra
negative charge, leaving the carbon positive. The molecule’s sym-
metry, however, means that it has no overall dipole moment, unlike
a V-shaped water molecule, for instance. Whereas the potential of
a dipole of magnitude D is proportional to D/r2, it turns out that
the potential of a carbon dioxide molecule at a distant point along
the molecule’s axis equals b/r3, where r is the distance from the
molecule and b is a constant. What would be the electric field of
a carbon dioxide molecule at a point on the molecule’s axis, at a
distance r from the molecule?

√ ∫
10 A proton is in a region in which the electric field is given by
E = a + bx3. If the proton starts at rest at x1 = 0, find its speed,
v, when it reaches position x2. Give your answer in terms of a, b,
x2, and e and m, the charge and mass of the proton.

√ ∫
11 Consider the electric field created by a uniformly charged
cylinder that extends to infinity in one direction. (a) Starting from
the result of problem 8, show that the field at the center of the
cylinder’s mouth is 2πkσ, where σ is the density of charge on the
cylinder, in units of coulombs per square meter. [Hint: You can use
a method similar to the one in problem 9.] (b) This expression is
independent of the radius of the cylinder. Explain why this should
be so. For example, what would happen if you doubled the cylinder’s
radius?

∫
12 In an electrical storm, the cloud and the ground act like a
parallel-plate capacitor, which typically charges up due to frictional
electricity in collisions of ice particles in the cold upper atmosphere.
Lightning occurs when the magnitude of the electric field reaches a
critical value Ec, at which air is ionized.
(a) Treat the cloud as a flat square with sides of length L. If it is at
a height h above the ground, find the amount of energy released in
the lightning strike.

√

(b) Based on your answer from part a, which is more dangerous, a
lightning strike from a high-altitude cloud or a low-altitude one?
(c) Make an order-of-magnitude estimate of the energy released by
a typical lightning bolt, assuming reasonable values for its size and
altitude. Ec is about 106 N/C.

See problem 16 for a note on how recent research affects this esti-
mate.

13 The neuron in the figure has been drawn fairly short, but some
neurons in your spinal cord have tails (axons) up to a meter long.
The inner and outer surfaces of the membrane act as the “plates”
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Problem 13.

of a capacitor. (The fact that it has been rolled up into a cylinder
has very little effect.) In order to function, the neuron must create
a voltage difference V between the inner and outer surfaces of the
membrane. Let the membrane’s thickness, radius, and length be t,
r, and L. (a) Calculate the energy that must be stored in the electric
field for the neuron to do its job. (In real life, the membrane is made
out of a substance called a dielectric, whose electrical properties
increase the amount of energy that must be stored. For the sake of
this analysis, ignore this fact.) . Hint, p. 1032

√

(b) An organism’s evolutionary fitness should be better if it needs
less energy to operate its nervous system. Based on your answer to
part a, what would you expect evolution to do to the dimensions t
and r? What other constraints would keep these evolutionary trends
from going too far?

14 To do this problem, you need to understand how to do
volume integrals in cylindrical and spherical coordinates. (a) Show
that if you try to integrate the energy stored in the field of a long,
straight wire, the resulting energy per unit length diverges both at
r → 0 and r → ∞. Taken at face value, this would imply that a
certain real-life process, the initiation of a current in a wire, would
be impossible, because it would require changing from a state of
zero magnetic energy to a state of infinite magnetic energy. (b)
Explain why the infinities at r → 0 and r →∞ don’t really happen
in a realistic situation. (c) Show that the electric energy of a point
charge diverges at r → 0, but not at r →∞.

A remark regarding part (c): Nature does seem to supply us with
particles that are charged and pointlike, e.g., the electron, but one
could argue that the infinite energy is not really a problem, because
an electron traveling around and doing things neither gains nor loses
infinite energy; only an infinite change in potential energy would be
physically troublesome. However, there are real-life processes that
create and destroy pointlike charged particles, e.g., the annihilation
of an electron and antielectron with the emission of two gamma
rays. Physicists have, in fact, been struggling with infinities like
this since about 1950, and the issue is far from resolved. Some
theorists propose that apparently pointlike particles are actually not
pointlike: close up, an electron might be like a little circular loop of
string.

∫
?
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Problem 15.

15 The figure shows cross-sectional views of two cubical ca-
pacitors, and a cross-sectional view of the same two capacitors put
together so that their interiors coincide. A capacitor with the plates
close together has a nearly uniform electric field between the plates,
and almost zero field outside; these capacitors don’t have their plates
very close together compared to the dimensions of the plates, but
for the purposes of this problem, assume that they still have ap-
proximately the kind of idealized field pattern shown in the figure.
Each capacitor has an interior volume of 1.00 m3, and is charged up
to the point where its internal field is 1.00 V/m. (a) Calculate the
energy stored in the electric field of each capacitor when they are
separate. (b) Calculate the magnitude of the interior field when the
two capacitors are put together in the manner shown. Ignore effects
arising from the redistribution of each capacitor’s charge under the
influence of the other capacitor. (c) Calculate the energy of the
put-together configuration. Does assembling them like this release
energy, consume energy, or neither?

√

16 In problem 12 on p. 663, you estimated the energy released
in a bolt of lightning, based on the energy stored in the electric field
immediately before the lightning occurs. The assumption was that
the field would build up to a certain value, which is what is necessary
to ionize air. However, real-life measurements always seemed to
show electric fields strengths roughly 10 times smaller than those
required in that model. For a long time, it wasn’t clear whether the
field measurements were wrong, or the model was wrong. Research
carried out in 2003 seems to show that the model was wrong. It is
now believed that the final triggering of the bolt of lightning comes
from cosmic rays that enter the atmosphere and ionize some of the
air. If the field is 10 times smaller than the value assumed in problem
12, what effect does this have on the final result of problem 12?

√
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Exercise 22: Field vectors
Apparatus:

3 solenoids

DC power supply

compass

ruler

cut-off plastic cup

At this point you’ve studied the gravitational field, g, and the electric field, E, but not the
magnetic field, B. However, they all have some of the same mathematical behavior: they act
like vectors. Furthermore, magnetic fields are the easiest to manipulate in the lab. Manipulating
gravitational fields directly would require futuristic technology capable of moving planet-sized
masses around! Playing with electric fields is not as ridiculously difficult, but static electric
charges tend to leak off through your body to ground, and static electricity effects are hard to
measure numerically. Magnetic fields, on the other hand, are easy to make and control. Any
moving charge, i.e. any current, makes a magnetic field.

A practical device for making a strong magnetic field is simply a coil of wire, formally known
as a solenoid. The field pattern surrounding the solenoid gets stronger or weaker in proportion
to the amount of current passing through the wire.

1. With a single solenoid connected to the power supply and laid with its axis horizontal, use a
magnetic compass to explore the field pattern inside and outside it. The compass shows you the
field vector’s direction, but not its magnitude, at any point you choose. Note that the field the
compass experiences is a combination (vector sum) of the solenoid’s field and the earth’s field.

2. What happens when you bring the compass extremely far away from the solenoid?

What does this tell you about the way the solenoid’s field varies with distance?

Thus although the compass doesn’t tell you the field vector’s magnitude numerically, you can
get at least some general feel for how it depends on distance.
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3. The figure below is a cross-section of the solenoid in the plane containing its axis. Make a
sea-of-arrows sketch of the magnetic field in this plane. The length of each arrow should at least
approximately reflect the strength of the magnetic field at that point.

Does the field seem to have sources or sinks?

4. What do you think would happen to your sketch if you reversed the wires?

Try it.
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5. Now hook up the two solenoids in parallel. You are going to measure what happens when
their two fields combine at a certain point in space. As you’ve seen already, the solenoids’
nearby fields are much stronger than the earth’s field; so although we now theoretically have
three fields involved (the earth’s plus the two solenoids’), it will be safe to ignore the earth’s
field. The basic idea here is to place the solenoids with their axes at some angle to each other,
and put the compass at the intersection of their axes, so that it is the same distance from each
solenoid. Since the geometry doesn’t favor either solenoid, the only factor that would make one
solenoid influence the compass more than the other is current. You can use the cut-off plastic
cup as a little platform to bring the compass up to the same level as the solenoids’ axes.

a)What do you think will happen with the solenoids’ axes at 90 degrees to each other, and equal
currents? Try it. Now represent the vector addition of the two magnetic fields with a diagram.
Check your diagram with your instructor to make sure you’re on the right track.

b) Now try to make a similar diagram of what would happen if you switched the wires on one
of the solenoids.

After predicting what the compass will do, try it and see if you were right.

c)Now suppose you were to go back to the arrangement you had in part a, but you changed one
of the currents to half its former value. Make a vector addition diagram, and use trig to predict
the angle.

Try it. To cut the current to one of the solenoids in half, an easy and accurate method is
simply to put the third solenoid in series with it, and put that third solenoid so far away that
its magnetic field doesn’t have any significant effect on the compass.
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a / As time passes, the driver
says the car stays in the same
place, but the cow says the car is
moving forward.

Chapter 23

Relativity and magnetism

Many people imagine Einstein’s theory of relativity as something
exotic and speculative. It’s certainly not speculative at this point in
history, since you use it every time you use a GPS receiver. But it’s
even less exotic than that. Every time you stick a magnet to your
refrigerator, you’re making use of relativity. Let’s dig a little deeper
into relativity as preparation for understanding what magnetism is
and where it comes from.

23.1 Spacetime
Let’s compare how Aristotle, Galileo, and Einstein would describe
space and time.

Aristotle: All observers agree on whether or not two things happen
at the same time, and also on whether they happen at the same
place.

Galileo: Observers always agree on simultaneity, but not necessarily
on whether things happen in the same place.

The reason for the disagreement is shown in figure a. Aristotle says
that the only legitimate observers are those that are at rest relative
to the ground, while Galileo is willing to accept any inertial frame
of reference, such as the driver’s. Galileo ended up winning this
argument because of experiments verifying the principle of inertia.

Einstein: Observers need not agree on whether two things happen
at the same time or the same place.

We accept Einstein’s view because of evidence such as the atomic
clock experiment described on p. 634. Such experiments rule out
both the instantaneous transmission of signals (p. 635) and, as we
will argue in more detail on p. 676, Galileo’s claim about universal
agreement on simultaneity.

One of the reasons that nineteenth-century Europeans found Marx-
ism alarming was because it was atheistic, and they felt that without
the framework of religion, there could be no basis for morality. For
similar reasons, I was deeply disoriented when I first encountered
relativity. The idea had been firmly inculcated that the universe
was described by mathematical functions, and the natural habitat
of those functions was graph paper. The graph paper provided what
seemed like a necessary framework. For a position-time graph, the
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b / Hell, according to Hieronymus
Bosch (1450-1516).

c / A phone transmits a 1 or
0 to a cell tower. The phone, the
tower, and the signal all have
world-lines. Two events, corre-
sponding to the transmission and
reception of the signal, can be
defined by the intersections of
the world-lines.

vertical lines meant “same time,” and the horizontal ones “same
place.” Somehow it didn’t bother me much when Galileo erased the
same-place lines (or at least relegated them to subjectivity), but
without the same-time lines I felt lost, as if I were wandering in a
landscape of Hieronymus Bosch’s hell or Dali’s melting watches.

One of the disorienting things about this vision of the universe is
that it takes away the notion that we can have a literal “vision”
of the universe. We no longer have the idea of a snapshot of the
landscape at a certain moment frozen in time. The sense of vision
is merely a type of optical measurement, in which we receive signals
that have traveled to our eyes at some finite speed (the speed of
light). What relativity substitutes for the Galilean instantaneous
snapshot is the concept of spacetime, which is like the graph paper
when its lines have been erased. Every point on the paper is called
an event. How can we even agree on the existence of an event,
or define which one we are talking about, if we can’t necessarily
agree on its time or position? The relativist’s attitude is that if a
firecracker pops, that’s an event, everyone agrees that it’s an event,
and x and t coordinates are just an optional and arbitrary name
or label for the event. Labeling an event with coordinates is like
God asking Adam to name all the birds and animals: the animals
weren’t consulted and didn’t care.

My grandparents’ German shepherd lived for a certain amount of
time, so he was not just a pointlike event in spacetime. Way back in
ch. 2, we saw how to represent the motion of such things as curves
on an x-t graph. From the point of view of relativity, the curve is
the thing — we make no distinction between the dog and the dog’s
track through spacetime. Such a track is called a world-line. A
world-line is a set of events strung together continuously: the dog
as a puppy in Walnut Creek in 1964, the dog dozing next to the
TV in 1970, and so on. The strange terminology is translated from
German, and is supposed to be a description of the idea that the
line is the thing’s track through the world, i.e., through spacetime.

Sometimes if we want to describe an event, we can describe it as the
beginning or end of a world-line: the dog’s birth, or the firecracker’s
self-destruction. More commonly, we pick out an event of interest
as the intersection of two world-lines, as in figure c. In this figure,
as is common in relativity, we omit any indications of the axes, since
the idea is that events and world-lines are primary, and coordinates
secondary. In this book, to be consistent with the familiar depiction
of x-t graphs, we will use the convention that later times on an
object’s world-line are to the right, but it is actually more common in
relativity to show time progressing from the bottom of the diagram
to the top.

All observers agree on whether or not two world-lines intersect, and
another aid in holding on to our sanity is that they agree on whether
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d / Normally we only try to
represent one spatial dimension
in a depiction of spacetime, as
in panel 1, where a light bulb is
momentarily turned on, produc-
ing flashes of light that spread
out in both directions. In panel
2 we attempt to show a second
spatial dimension, so that the
world-line becomes a surface: a
“world-sheet” shaped like a cone.

or not world-lines are straight. A straight world-line is an object
moving inertially, with no forces acting on it.

If we wish to, we are able to draw a graph-paper grid on our picture
of spacetime, and assign x and t coordinates to events, but these
are not built into the structure of spacetime, and they are observer-
dependent — even more so than in Galilean spacetime. They are
best thought of as the sophisticated results of a laborious process of
collecting and analyzing data obtained by methods such as consult-
ing clocks or exchanging signals between different places. Figure e
outlines such a process in a cartoonish way. A fleet of rocket ships,
carrying surveyors, is sent out from Earth and dispersed throughout
a vast region of space. The surveyors look through their theodolites
at images, which are formed by light rays (dashed lines) that have
arrived after traveling at a finite speed. Such light rays carry old,
stale information about various events. A nuclear war has broken
out. Rock and roll music has arrived on Saturn. The resulting data
are then transmitted by various means (passenger pigeon, Morse-
coded radio, paper mail) and consolidated at the surveying office,
where coordinates are charted.

e / Coordinates like x and t are the after-the-fact result of a process analogous to surveying.

self-check A
Here is a spacetime graph for an empty object such as a house: .
Explain why it looks like this. My grandparents had a dog door with a
flap cut into their back door, so that their dog could come in and out.
Draw a spacetime diagram showing the dog going out into the back
yard. Can an observer using another frame of reference say that the
dog didn’t go outside? . Answer, p. 1043

In the next section we turn to a more quantitative treatment of how
time and distance behave in relativity.
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f / All three clocks are mov-
ing to the east. Even though the
west-going plane is moving to the
west relative to the air, the air
is moving to the east due to the
earth’s rotation.

23.2 Relativistic distortion of space and time
Time distortion arising from motion and gravity

Let’s refer back to the results of the Hafele-Keating experiment de-
scribed on p. 634. Hafele and Keating were testing specific quantita-
tive predictions of relativity, and they verified them to within their
experiment’s error bars. Let’s work backward instead, and inspect
the empirical results for clues as to how time works.

The east-going clock lost time, ending up off by −59 ± 10 nanosec-
onds, while the west-going one gained 273 ± 7 ns. Since two trav-
eling clocks experienced effects in opposite directions, we can tell
that the rate at which time flows depends on the motion of the ob-
server. The east-going clock was moving in the same direction as
the earth’s rotation, so its velocity relative to the earth’s center was
greater than that of the clock that remained in Washington, while
the west-going clock’s velocity was correspondingly reduced. The
fact that the east-going clock fell behind, and the west-going one
got ahead, shows that the effect of motion is to make time go more
slowly. This effect of motion on time was predicted by Einstein in
his original 1905 paper on relativity, written when he was 26.

If this had been the only effect in the Hafele-Keating experiment,
then we would have expected to see effects on the two flying clocks
that were equal in size. Making up some simple numbers to keep the
arithmetic transparent, suppose that the earth rotates from west to
east at 1000 km/hr, and that the planes fly at 300 km/hr. Then the
speed of the clock on the ground is 1000 km/hr, the speed of the
clock on the east-going plane is 1300 km/hr, and that of the west-
going clock 700 km/hr. Since the speeds of 700, 1000, and 1300
km/hr have equal spacing on either side of 1000, we would expect
the discrepancies of the moving clocks relative to the one in the lab
to be equal in size but opposite in sign.

In fact, the two effects are unequal in size: −59 ns and 273 ns.
This implies that there is a second effect involved, a speeding up
of time simply due to the planes’ being up in the air. This was
verified more directly in a 1978 experiment by Iijima and Fujiwara,
figure g, in which identical atomic clocks were kept at rest at the
top and bottom of a mountain near Tokyo. This experiment, unlike
the Hafele-Keating one, isolates one effect on time, the gravitational
one: time’s rate of flow increases with height in a gravitational field.
Einstein didn’t figure out how to incorporate gravity into relativ-
ity until 1915, after much frustration and many false starts. The
simpler version of the theory without gravity is known as special
relativity, the full version as general relativity. We’ll restrict our-
selves to special relativity until chapter 27, and that means that
what we want to focus on right now is the distortion of time due to
motion, not gravity.
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h / The correspondence prin-
ciple requires that the relativistic
distortion of time become small
for small velocities.

g / A graph showing the time difference between two atomic clocks.
One clock was kept at Mitaka Observatory, at 58 m above sea level.
The other was moved back and forth to a second observatory, Norikura
Corona Station, at the peak of the Norikura volcano, 2876 m above sea
level. The plateaus on the graph are data from the periods when the
clocks were compared side by side at Mitaka. The difference between
one plateau and the next shows a gravitational effect on the rate of flow
of time, accumulated during the period when the mobile clock was at the
top of Norikura. Cf. problem 4, p. 833.

We can now see in more detail how to apply the correspondence
principle. The behavior of the three clocks in the Hafele-Keating
experiment shows that the amount of time distortion increases as
the speed of the clock’s motion increases. Newton lived in an era
when the fastest mode of transportation was a galloping horse, and
the best pendulum clocks would accumulate errors of perhaps a
minute over the course of several days. A horse is much slower
than a jet plane, so the distortion of time would have had a relative
size of only ∼ 10−15 — much smaller than the clocks were capable
of detecting. At the speed of a passenger jet, the effect is about
10−12, and state-of-the-art atomic clocks in 1971 were capable of
measuring that. A GPS satellite travels much faster than a jet air-
plane, and the effect on the satellite turns out to be ∼ 10−10. The
general idea here is that all physical laws are approximations, and
approximations aren’t simply right or wrong in different situations.
Approximations are better or worse in different situations, and the
question is whether a particular approximation is good enough in a
given situation to serve a particular purpose. The faster the motion,
the worse the Newtonian approximation of absolute time. Whether
the approximation is good enough depends on what you’re trying
to accomplish. The correspondence principle says that the approxi-
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i / Two events are given as
points on a graph of position
versus time. Joan of Arc helps to
restore Charles VII to the throne.
At a later time and a different
position, Joan of Arc is sentenced
to death.

j / A change of units distorts
an x-t graph. This graph depicts
exactly the same events as figure
i. The only change is that the x
and t coordinates are measured
using different units, so the grid is
compressed in t and expanded in
x .

k / A convention we’ll use to
represent a distortion of time and
space.

mation must have been good enough to explain all the experiments
done in the centuries before Einstein came up with relativity.

By the way, don’t get an inflated idea of the importance of these
atomic clock experiments. Special relativity had already been con-
firmed by a vast and varied body of experiments decades before the
1970’s. The only reason I’m giving such a prominent role to these
experiments, which were actually more important as tests of general
relativity, is that they were conceptually very direct. It would be
nice to have an equally simple and transparent atomic clock exper-
iment in which only the effect of motion was singled out, with no
gravitational effect. Example 5 on page 683 describes how some-
thing along these lines was eventually carried out, forty years after
the Hafele-Keating experiment.

The Lorentz transformation

Relativity says that when two observers are in different frames of
reference, each observer considers the other one’s perception of time
to be distorted. We’ll also see that something similar happens to
their observations of distances, so both space and time are distorted.
What exactly is this distortion? How do we even conceptualize it?

The idea isn’t really as radical as it might seem at first. We can vi-
sualize the structure of space and time using a graph with position
and time on its axes. These graphs are familiar by now, but we’re
going to look at them in a slightly different way. Before, we used
them to describe the motion of objects. The grid underlying the
graph was merely the stage on which the actors played their parts.
Now the background comes to the foreground: it’s time and space
themselves that we’re studying. We don’t necessarily need to have
a line or a curve drawn on top of the grid to represent a particu-
lar object. We may, for example, just want to talk about events,
depicted as points on the graph as in figure i. A distortion of the
Cartesian grid underlying the graph can arise for perfectly ordinary
reasons that Newton would have readily accepted. For example, we
can simply change the units used to measure time and position, as
in figure j.

We’re going to have quite a few examples of this type, so I’ll adopt
the convention shown in figure k for depicting them. Figure k sum-
marizes the relationship between figures i and j in a more compact
form. The gray rectangle represents the original coordinate grid
of figure i, while the grid of black lines represents the new version
from figure j. Omitting the grid from the gray rectangle makes the
diagram easier to decode visually.

Our goal of unraveling the mysteries of special relativity amounts
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to nothing more than finding out how to draw a diagram like k
in the case where the two different sets of coordinates represent
measurements of time and space made by two different observers,
each in motion relative to the other. Galileo and Newton thought
they knew the answer to this question, but their answer turned
out to be only approximately right. To avoid repeating the same
mistakes, we need to clearly spell out what we think are the basic
properties of time and space that will be a reliable foundation for
our reasoning. I want to emphasize that there is no purely logical
way of deciding on this list of properties. The ones I’ll list are simply
a summary of the patterns observed in the results from a large body
of experiments. Furthermore, some of them are only approximate.
For example, property 1 below is only a good approximation when
the gravitational field is weak, so it is a property that applies to
special relativity, not to general relativity.

Experiments show that:

1. No point in time or space has properties that make it different
from any other point.

2. Likewise, all directions in space have the same properties.

3. Motion is relative, i.e., all inertial frames of reference are
equally valid.

4. Causality holds, in the sense described on page 635.

5. Time depends on the state of motion of the observer.

Most of these are not very subversive. Properties 1 and 2 date
back to the time when Galileo and Newton started applying the
same universal laws of motion to the solar system and to the earth;
this contradicted Aristotle, who believed that, for example, a rock
would naturally want to move in a certain special direction (down)
in order to reach a certain special location (the earth’s surface).
Property 3 is the reason that Einstein called his theory “relativity,”
but Galileo and Newton believed exactly the same thing to be true,
as dramatized by Galileo’s run-in with the Church over the question
of whether the earth could really be in motion around the sun.
Example 3 on p. 247 describes a modern, high-precision experiment
that can be interpreted as a test of this principle. Property 4 would
probably surprise most people only because it asserts in such a weak
and specialized way something that they feel deeply must be true.
The only really strange item on the list is 5, but the Hafele-Keating
experiment forces it upon us.
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l / A Galilean version of the
relationship between two frames
of reference. As in all such
graphs in this chapter, the original
coordinates, represented by the
gray rectangle, have a time axis
that goes to the right, and a
position axis that goes straight
up.

m / A transformation that leads
to disagreements about whether
two events occur at the same
time and place. This is not just
a matter of opinion. Either the
arrow hit the bull’s-eye or it didn’t.

If it were not for property 5, the relativity of time, we could imagine
that figure l would give the correct transformation between frames of
reference in motion relative to one another. Let’s say that observer
1, whose grid coincides with the gray rectangle, is a hitch-hiker
standing by the side of a road. Event A is a raindrop hitting his
head, and event B is another raindrop hitting his head. He says that
A and B occur at the same location in space. Observer 2 is a motorist
who drives by without stopping; to him, the passenger compartment
of his car is at rest, while the asphalt slides by underneath. He says
that A and B occur at different points in space, because during the
time between the first raindrop and the second, the hitch-hiker has
moved backward. On the other hand, observer 2 says that events A
and C occur in the same place, while the hitch-hiker disagrees. The
slope of the grid-lines is simply the velocity of the relative motion
of each observer relative to the other.

Figure l has familiar, comforting, and eminently sensible behavior,
but it also happens to be wrong, because it violates property 5.
The distortion of the coordinate grid has only moved the vertical
lines up and down, so both observers agree that events like B and
C are simultaneous. If this was really the way things worked, then
all observers could synchronize all their clocks with one another for
once and for all, and the clocks would never get out of sync. This
contradicts the results of the Hafele-Keating experiment, in which
all three clocks were initially synchronized in Washington, but later
went out of sync because of their different states of motion.

It might seem as though we still had a huge amount of wiggle room
available for the correct form of the distortion. It turns out, however,
that properties 1-5 are sufficient to prove that there is only one
answer, which is the one found by Einstein in 1905. To see why this
is, let’s work by a process of elimination.

Figure m shows a transformation that might seem at first glance to
be as good a candidate as any other, but it violates property 3, that
motion is relative, for the following reason. In observer 2’s frame
of reference, some of the grid lines cross one another. This means
that observers 1 and 2 disagree on whether or not certain events are
the same. But as described on p. 671, the intersection of world-lines
is supposed to be something that all observers agree on, and this
means that they must be able to agree whether two events are the
same or different. For instance, suppose that event A marks the
arrival of an arrow at the bull’s-eye of a target, and event B is the
location and time when the bull’s-eye is punctured. Events A and
B occur at the same location and at the same time. If one observer
says that A and B coincide, but another says that they don’t, we
have a direct contradiction. Since the two frames of reference in
figure m give contradictory results, one of them is right and one
is wrong. This violates property 3, because all inertial frames of
reference are supposed to be equally valid. To avoid problems like
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n / A nonlinear transformation.

this, we clearly need to make sure that none of the grid lines ever
cross one another.

The next type of transformation we want to kill off is shown in figure
n, in which the grid lines curve, but never cross one another. The
trouble with this one is that it violates property 1, the uniformity
of time and space. The transformation is unusually “twisty” at A,
whereas at B it’s much more smooth. This can’t be correct, because
the transformation is only supposed to depend on the relative state
of motion of the two frames of reference, and that given information
doesn’t single out a special role for any particular point in spacetime.
If, for example, we had one frame of reference rotating relative to
the other, then there would be something special about the axis of
rotation. But we’re only talking about inertial frames of reference
here, as specified in property 3, so we can’t have rotation; each
frame of reference has to be moving in a straight line at constant
speed. For frames related in this way, there is nothing that could
single out an event like A for special treatment compared to B, so
transformation n violates property 1.

The examples in figures m and n show that the transformation we’re
looking for must be linear, meaning that it must transform lines into
lines, and furthermore that it has to take parallel lines to parallel
lines. Einstein wrote in his 1905 paper that “. . . on account of the
property of homogeneity [property 1] which we ascribe to time and
space, the [transformation] must be linear.”1 Applying this to our
diagrams, the original gray rectangle, which is a special type of par-
allelogram containing right angles, must be transformed into another
parallelogram. There are three types of transformations, figure o,
that have this property. Case I is the Galilean transformation of
figure l on page 676, which we’ve already ruled out.

o / Three types of transformations that preserve parallelism. Their
distinguishing feature is what they do to simultaneity, as shown by what
happens to the left edge of the original rectangle. In I, the left edge
remains vertical, so simultaneous events remain simultaneous. In II, the
left edge turns counterclockwise. In III, it turns clockwise.

Case II can also be discarded. Here every point on the grid rotates
counterclockwise. What physical parameter would determine the

1A. Einstein, “On the Electrodynamics of Moving Bodies,” Annalen der
Physik 17 (1905), p. 891, tr. Saha and Bose.
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p / In the units that are most
convenient for relativity, the trans-
formation has symmetry about a
45-degree diagonal line.

amount of rotation? The only thing that could be relevant would
be v, the relative velocity of the motion of the two frames of reference
with respect to one another. But if the angle of rotation was pro-
portional to v, then for large enough velocities the grid would have
left and right reversed, and this would violate property 4, causality:
one observer would say that event A caused a later event B, but
another observer would say that B came first and caused A.

The only remaining possibility is case III, which I’ve redrawn in
figure p with a couple of changes. This is the one that Einstein
predicted in 1905. The transformation is known as the Lorentz
transformation, after Hendrik Lorentz (1853-1928), who partially
anticipated Einstein’s work, without arriving at the correct inter-
pretation. The distortion is a kind of smooshing and stretching, as
suggested by the hands. Also, we’ve already seen in figures i-k on
page 674 that we’re free to stretch or compress everything as much
as we like in the horizontal and vertical directions, because this sim-
ply corresponds to changing the units of measurement for time and
distance. In figure p I’ve chosen units that give the whole drawing
a convenient symmetry about a 45-degree diagonal line. Ordinarily
it wouldn’t make sense to talk about a 45-degree angle on a graph
whose axes had different units. But in relativity, the symmetric ap-
pearance of the transformation tells us that space and time ought
to be treated on the same footing, and measured in the same units.

678 Chapter 23 Relativity and magnetism



q / Interpretation of the Lorentz
transformation. The slope in-
dicated in the figure gives the
relative velocity of the two frames
of reference. Events A and B that
were simultaneous in frame 1
are not simultaneous in frame 2,
where event A occurs to the right
of the t = 0 line represented by
the left edge of the grid, but event
B occurs to its left.

As in our discussion of the Galilean transformation, slopes are in-
terpreted as velocities, and the slope of the near-horizontal lines in
figure q is interpreted as the relative velocity of the two observers.
The difference between the Galilean version and the relativistic one
is that now there is smooshing happening from the other side as
well. Lines that were vertical in the original grid, representing si-
multaneous events, now slant over to the right. This tells us that, as
required by property 5, different observers do not agree on whether
events that occur in different places are simultaneous. The Hafele-
Keating experiment tells us that this non-simultaneity effect is fairly
small, even when the velocity is as big as that of a passenger jet,
and this is what we would have anticipated by the correspondence
principle. The way that this is expressed in the graph is that if we
pick the time unit to be the second, then the distance unit turns out
to be hundreds of thousands of miles. In these units, the velocity
of a passenger jet is an extremely small number, so the slope v in a
figure like q is extremely small, and the amount of distortion is tiny
— it would be much too small to see on this scale.

The only thing left to determine about the Lorentz transformation
is the size of the transformed parallelogram relative to the size of
the original one. Although the drawing of the hands in figure p
may suggest that the grid deforms like a framework made of rigid
coat-hanger wire, that is not the case. If you look carefully at the
figure, you’ll see that the edges of the smooshed parallelogram are
actually a little longer than the edges of the original rectangle. In
fact what stays the same is not lengths but areas, as proved in the
caption to figure r.

r / Proof that Lorentz transformations don’t change area: We first subject a square to a transformation
with velocity v , and this increases its area by a factor R(v ), which we want to prove equals 1. We chop the
resulting parallelogram up into little squares and finally apply a −v transformation; this changes each little
square’s area by a factor R(−v ), so the whole figure’s area is also scaled by R(−v ). The final result is to restore
the square to its original shape and area, so R(v )R(−v ) = 1. But R(v ) = R(−v ) by property 2 of spacetime on
page 675, which states that all directions in space have the same properties, so R(v ) = 1.
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s / The clock is at rest in the
original frame of reference, and it
measures a time interval t . In the
new frame of reference, the time
interval is greater by a factor that
we notate as G.

t / A graph of γ as a function
of v .

The G factor

Figure q showed us that observers in different frames disagree on
whether different events are simultaneous. This is an indication that
time is not absolute, so we shouldn’t be surprised that time’s rate
of flow is also different for different observers. We use the symbol G
(Greek letter gamma) defined in the figure s to measure this unequal
rate of flow. With a little algebra and geometry (homework problem
2, page 694), one can use the equal-area property to show that this
ratio is given by

G =
1√

1− v2
.

If you’ve had good training in physics, the first thing you probably
think when you look at this equation is that it must be nonsense,
because its units don’t make sense. How can we take something
with units of velocity squared, and subtract it from a unitless 1?
But remember that this is expressed in our new relativistic units,
in which the same units are used for distance and time. We refer
to these as natural units. In this system, velocities are always unit-
less. This sort of thing happens frequently in physics. For instance,
before James Joule discovered conservation of energy, nobody knew
that heat and mechanical energy were different forms of the same
thing, so instead of measuring them both in units of joules as we
would do now, they measured heat in one unit (such as calories)
and mechanical energy in another (such as foot-pounds). In ordi-
nary metric units, we just need an extra conversion factor, called c,
and the equation becomes

G =
1√

1−
(
v
c

)2 .

When we say, “It’s five hours from LA to Vegas,” we’re using a unit
of time as a unit of distance. This works because there is a standard
speed implied: the speed of a car on the freeway. Similarly, the
conversion factor c can be interpreted as a speed, so that v/c is the
unitless ratio of two speeds.

As argued on p. 635, cause and effect can never be propagated in-
stantaneously; c turns out to be the specific numerical speed limit
on cause and effect. In particular, we’ll see in section 24.3 that light
travels at c, which has a numerical value in SI units of 3.0×108 m/s.
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u / The ruler is moving in frame
1, represented by a square, but
at rest in frame 2, shown as a
parallelogram. Each picture of
the ruler is a snapshot taken
at a certain moment as judged
according to frame 2’s notion
of simultaneity. An observer in
frame 1 judges the ruler’s length
instead according to frame 1’s
definition of simultaneity, i.e.,
using points that are lined up
vertically on the graph. The ruler
appears shorter in the frame in
which it is moving. As proved in
figure v, the length contracts from
L to L/γ.

Because G is always greater than 1, we have the following interpre-
tation:

Time dilation
A clock runs fastest in the frame of reference of an observer
who is at rest relative to the clock. An observer in motion
relative to the clock at speed v perceives the clock as running
more slowly by a factor of G.

As proved in figures u and v, lengths are also distorted:

Length contraction
A meter-stick appears longest to an observer who is at rest
relative to it. An observer moving relative to the meter-stick
at v observes the stick to be shortened by a factor of G.

v / This figure proves, as claimed in figure u, that the length con-
traction is x = 1/γ. First we slice the parallelogram vertically like a salami
and slide the slices down, making the top and bottom edges horizontal.
Then we do the same in the horizontal direction, forming a rectangle with
sides γ and x . Since both the Lorentz transformation and the slicing
processes leave areas unchanged, the area γx of the rectangle must
equal the area of the original square, which is 1.

self-check B
What is G when v = 0? What does this mean? . Answer, p. 1044

Changing an equation from natural units to SI example 1
Often it is easier to do all of our algebra in natural units, which
are simpler because c = 1, and all factors of c can therefore be
omitted. For example, suppose we want to solve for v in terms of
G. In natural units, we have G = 1/

√
1− v2, so G−2 = 1 − v2, and

v =
√

1− G−2.

This form of the result might be fine for many purposes, but if we
wanted to find a value of v in SI units, we would need to reinsert
factors of c in the final result. There is no need to do this through-
out the whole derivation. By looking at the final result, we see that
there is only one possible way to do this so that the results make
sense in SI, which is to write v = c

√
1− G−2.
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Motion of a ray of light example 2
. The motion of a certain ray of light is given by the equation
x = −t . Is this expressed in natural units, or in SI units? Convert
to the other system.

. The equation is in natural units. It wouldn’t make sense in SI
units, because we would have meters on the left and seconds
on the right. To convert to SI units, we insert a factor of c in the
only possible place that will cause the equation to make sense:
x = −ct .

w / Example 3.

An interstellar road trip example 3
Alice stays on earth while her twin Betty heads off in a spaceship
for Tau Ceti, a nearby star. Tau Ceti is 12 light-years away, so
even though Betty travels at 87% of the speed of light, it will take
her a long time to get there: 14 years, according to Alice.

Betty experiences time dilation. At this speed, her G is 2.0, so that
the voyage will only seem to her to last 7 years. But there is per-
fect symmetry between Alice’s and Betty’s frames of reference, so
Betty agrees with Alice on their relative speed; Betty sees herself
as being at rest, while the sun and Tau Ceti both move backward
at 87% of the speed of light. How, then, can she observe Tau Ceti
to get to her in only 7 years, when it should take 14 years to travel
12 light-years at this speed?

We need to take into account length contraction. Betty sees the
distance between the sun and Tau Ceti to be shrunk by a factor of
2. The same thing occurs for Alice, who observes Betty and her
spaceship to be foreshortened.
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x / Example 5, time dilation mea-
sured with an atomic clock at low
speeds. The theoretical curve,
shown with a dashed line, is cal-
culated from G = 1/

√
1− (v/c)2;

at these small velocities, the
approximation of example 4 is
an excellent one, so the graph is
indistinguishable from a parabola.
This graph corresponds to an
extreme close-up view of the
lower left corner of figure t. The
error bars on the experimental
points are about the same size
as the dots.

The correspondence principle example 4
The correspondence principle requires that G be close to 1 for the
velocities much less than c encountered in everyday life. In natu-
ral units, G = (1−v2)−1/2. For small values of ε, the approximation
(1+ε)p ≈ 1+pε holds (see p. 1061). Applying this approximation,
we find G ≈ 1 + v2/2.

As expected, this gives approximately 1 when v is small com-
pared to 1 (i.e., compared to c, which equals 1 in natural units).

In problem 7 on p. 695 we rewrite this in SI units.

Figure t on p. 680 shows that the approximation is not valid for
large values of v/c. In fact, G blows up to infinity as v gets closer
and closer to c.

A moving atomic clock example 5
Example 4 shows that when v is small, relativistic effects are ap-
proximately proportional to v2, so it is very difficult to observe
them at low speeds. For example, a car on the freeway travels
at about 1/10 the speed of a passenger jet, so the resulting time
dilation is only 1/100 as much. For this reason, it was not until
four decades after Hafele and Keating that anyone did a concep-
tually simple atomic clock experiment in which the only effect was
motion, not gravity; it is difficult to move a clock at a high enough
velocity without putting it in some kind of aircraft, which then has
to fly at some altitude. In 2010, however, Chou et al.2 succeeded
in building an atomic clock accurate enough to detect time dilation
at speeds as low as 10 m/s. Figure x shows their results. Since it
was not practical to move the entire clock, the experimenters only
moved the aluminum atoms inside the clock that actually made it
“tick.”

Large time dilation example 6
The time dilation effect in the Hafele-Keating experiment was very
small. If we want to see a large time dilation effect, we can’t do it
with something the size of the atomic clocks they used; the kinetic
energy would be greater than the total megatonnage of all the
world’s nuclear arsenals. We can, however, accelerate subatomic
particles to speeds at which G is large. For experimental particle
physicists, relativity is something you do all day before heading
home and stopping off at the store for milk. An early, low-precision
experiment of this kind was performed by Rossi and Hall in 1941,
using naturally occurring cosmic rays.
2Science 329 (2010) 1630
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z / Example 6: Muons accel-
erated to nearly c undergo
radioactive decay much more
slowly than they would accord-
ing to an observer at rest with
respect to the muons. The first
two data-points (unfilled circles)
were subject to large systematic
errors.

y / Apparatus used for the test
of relativistic time dilation de-
scribed in example 6. The promi-
nent black and white blocks are
large magnets surrounding a cir-
cular pipe with a vacuum inside.
(c) 1974 by CERN.

Figure y shows a 1974 experiment3 of a similar type which verified
the time dilation predicted by relativity to a precision of about one
part per thousand. Particles called muons (named after the Greek
letter µ, “myoo”) were produced by an accelerator at CERN, near
Geneva. A muon is essentially a heavier version of the elec-
tron. Muons undergo radioactive decay, lasting an average of
only 2.197 µs before they evaporate into an electron and two neu-
trinos. The 1974 experiment was actually built in order to mea-
sure the magnetic properties of muons, but it produced a high-
precision test of time dilation as a byproduct. Because muons
have the same electric charge as electrons, they can be trapped
using magnetic fields. Muons were injected into the ring shown in
figure y, circling around it until they underwent radioactive de-
cay. At the speed at which these muons were traveling, they
had G = 29.33, so on the average they lasted 29.33 times longer
than the normal lifetime. In other words, they were like tiny alarm
clocks that self-destructed at a randomly selected time. Figure z
shows the number of radioactive decays counted, as a function of
the time elapsed after a given stream of muons was injected into
the storage ring. The two dashed lines show the rates of decay
predicted with and without relativity. The relativistic line is the one
that agrees with experiment.
3Bailey at al., Nucl. Phys. B150(1979) 1

684 Chapter 23 Relativity and magnetism



aa / Example 7: In the garage’s frame of reference, the bus is moving, and fits in the garage due to
length contraction. In the bus’s frame, the garage is moving, and can’t hold the bus due to its length
contraction.

The garage paradox example 7
Suppose we take a schoolbus and drive it at relativistic speeds

into a garage of ordinary size, in which it normally would not fit.
Because of the length contraction, it fits. But the driver will per-
ceive the garage as being contracted and thus even less able to
contain the bus.

The paradox is resolved when we recognize that the concept of
fitting the bus in the garage “all at once” contains a hidden as-
sumption, the assumption that it makes sense to ask whether the
front and back of the bus can simultaneously be in the garage.
Observers in different frames of reference moving at high relative
speeds do not necessarily agree on whether things happen si-
multaneously. As shown in figure aa, the person in the garage’s
frame can shut the door at an instant B he perceives to be si-
multaneous with the front bumper’s arrival A at the back wall of
the garage, but the driver would not agree about the simultaneity
of these two events, and would perceive the door as having shut
long after she plowed through the back wall.
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Discussion question B

An example of length contraction example 8
Figure ab shows an artist’s rendering of the length contraction
for the collision of two gold nuclei at relativistic speeds in the
RHIC accelerator in Long Island, New York, which went on line
in 2000. The gold nuclei would appear nearly spherical (or just
slightly lengthened like an American football) in frames moving
along with them, but in the laboratory’s frame, they both appear
drastically foreshortened as they approach the point of collision.
The later pictures show the nuclei merging to form a hot soup, in
which experimenters hope to observe a new form of matter.

Example 8: Colliding nuclei show
relativistic length contraction.

Discussion questions

A A person in a spaceship moving at 99.99999999% of the speed
of light relative to Earth shines a flashlight forward through dusty air, so
the beam is visible. What does she see? What would it look like to an
observer on Earth?

B A question that students often struggle with is whether time and
space can really be distorted, or whether it just seems that way. Compare
with optical illusions or magic tricks. How could you verify, for instance,
that the lines in the figure are actually parallel? Are relativistic effects the
same, or not?

C On a spaceship moving at relativistic speeds, would a lecture seem
even longer and more boring than normal?

D Mechanical clocks can be affected by motion. For example, it was
a significant technological achievement to build a clock that could sail
aboard a ship and still keep accurate time, allowing longitude to be deter-
mined. How is this similar to or different from relativistic time dilation?
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ac / Discussion question G.

E Figure ab from page 686, depicting the collision of two nuclei at the
RHIC accelerator, is reproduced below. What would the shapes of the two
nuclei look like to a microscopic observer riding on the left-hand nucleus?
To an observer riding on the right-hand one? Can they agree on what is
happening? If not, why not — after all, shouldn’t they see the same thing
if they both compare the two nuclei side-by-side at the same instant in
time?

Discussion question E: colliding nuclei show relativistic length contraction.

F If you stick a piece of foam rubber out the window of your car while
driving down the freeway, the wind may compress it a little. Does it make
sense to interpret the relativistic length contraction as a type of strain
that pushes an object’s atoms together like this? How does this relate to
discussion question E?

G The rod in the figure is perfectly rigid. At event A, the hammer strikes
one end of the rod. At event B, the other end moves. Since the rod is
perfectly rigid, it can’t compress, so A and B are simultaneous. In frame
2, B happens before A. Did the motion at the right end cause the person
on the left to decide to pick up the hammer and use it?

Section 23.2 Relativistic distortion of space and time 687



ad / 1. When the circuit is
incomplete, no current flows
through the wire, and the magnet
is unaffected. It points in the
direction of the Earth’s magnetic
field. 2. The circuit is completed,
and current flows through the
wire. The wire has a strong
effect on the magnet, which turns
almost perpendicular to it. If the
earth’s field could be removed
entirely, the compass would point
exactly perpendicular to the wire;
this is the direction of the wire’s
field.

ae / A schematic representa-
tion of an unmagnetized material,
1, and a magnetized one, 2.

23.3 Magnetic interactions
Think not that I am come to destroy the law, or the prophets: I am
not come to destroy, but to fulfill. Matthew 5:17

At this stage, you understand roughly as much about the classi-
fication of interactions as physicists understood around the year
1800. There appear to be three fundamentally different types of
interactions: gravitational, electrical, and magnetic. Many types
of interactions that appear superficially to be distinct — stickiness,
chemical interactions, the energy an archer stores in a bow — are
really the same: they’re manifestations of electrical interactions be-
tween atoms. Is there any way to shorten the list any further? The
prospects seem dim at first. For instance, we find that if we rub a
piece of fur on a rubber rod, the fur does not attract or repel a mag-
net. The fur has an electric field, and the magnet has a magnetic
field. The two are completely separate, and don’t seem to affect
one another. Likewise we can test whether magnetizing a piece of
iron changes its weight. The weight doesn’t seem to change by any
measurable amount, so magnetism and gravity seem to be unrelated.

That was where things stood until 1820, when the Danish physicist
Hans Christian Oersted was delivering a lecture at the University
of Copenhagen, and he wanted to give his students a demonstration
that would illustrate the cutting edge of research. He generated a
current in a wire by making a short circuit across a battery, and
held the wire near a magnetic compass. The ideas was to give an
example of how one could search for a previously undiscovered link
between electricity (the electric current in the wire) and magnetism.
One never knows how much to believe from these dramatic legends,
but the story is4 that the experiment he’d expected to turn out
negative instead turned out positive: when he held the wire near
the compass, the current in the wire caused the compass to twist!

People had tried similar experiments before, but only with static
electricity, not with a moving electric current. For instance, they
had hung batteries so that they were free to rotate in the earth’s
magnetic field, and found no effect; since the battery was not con-
nected to a complete circuit, there was no current flowing. With
Oersted’s own setup, ad, the effect was only produced when the
“circuit was closed, but not when open, as certain very celebrated
physicists in vain attempted several years ago.”5

Oersted was eventually led to the conclusion that magnetism was
an interaction between moving charges and other moving charges,
i.e., between one current and another. A permanent magnet, he in-

4Oersted’s paper describing the phenomenon says that “The first experiments
on the subject . . . were set on foot in the classes for electricity, galvanism, and
magnetism, which were held by me in the winter just past,” but that doesn’t tell
us whether the result was really a surprise that occurred in front of his students.

5All quotes are from the 1876 translation by J.E. Kempe.
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af / Magnetism is an interac-
tion between moving charges
and moving charges. The moving
charges in the wire attract the
moving charges in the beam of
charged particles in the vacuum
tube.

ferred, contained currents on a microscopic scale that simply weren’t
practical to measure with an ammeter. Today this seems natural
to us, since we’re accustomed to picturing an atom as a tiny solar
system, with the electrons whizzing around the nucleus in circles.
As shown in figure ae, a magnetized piece of iron is different from an
unmagnetized piece because the atoms in the unmagnetized piece
are jumbled in random orientations, whereas the atoms in the mag-
netized piece are at least partially organized to face in a certain
direction.

Figure af shows an example that is conceptually simple, but not
very practical. If you try this with a typical vacuum tube, like a
TV or computer monitor, the current in the wire probably won’t be
enough to produce a visible effect. A more practical method is to
hold a magnet near the screen. We still have an interaction between
moving charges and moving charges, but the swirling electrons in
the atoms in the magnet are now playing the role played by the
moving charges in the wire in figure af. Warning: if you do this,
make sure your monitor has a demagnetizing button! If not, then
your monitor may be permanently ruined.

Relativity requires magnetism

So magnetism is an interaction between moving charges and moving
charges. But how can that be? Relativity tells us that motion is
a matter of opinion. Consider figure ag. In this figure and in fig-
ure ah, the dark and light coloring of the particles represents the
fact that one particle has positive charge and the other negative.
Observer ag/2 sees the two particles as flying through space side by
side, so they would interact both electrically (simply because they’re
charged) and magnetically (because they’re charges in motion). But
an observer moving along with them, ag/1, would say they were both
at rest, and would expect only an electrical interaction. This seems
like a paradox. Magnetism, however, comes not to destroy relativity
but to fulfill it. Magnetic interactions must exist according to the
theory of relativity. To understand how this can be, consider how
time and space behave in relativity. Observers in different frames
of reference disagree about the lengths of measuring sticks and the
speeds of clocks, but the laws of physics are valid and self-consistent
in either frame of reference. Similarly, observers in different frames
of reference disagree about what electric and magnetic fields there
are, but they agree about concrete physical events. An observer in
frame of reference ag/1 says there are electric fields around the par-
ticles, and predicts that as time goes on, the particles will begin to
accelerate towards one another, eventually colliding. She explains
the collision as being due to the electrical attraction between the
particles. A different observer, ag/2, says the particles are moving.
This observer also predicts that the particles will collide, but ex-
plains their motion in terms of both an electric field and a magnetic
field. As we’ll see shortly, the magnetic field is required in order
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ag / One observer sees an
electric field, while the other
sees both an electric field and a
magnetic one.

ah / A model of a charged
particle and a current-carrying
wire, seen in two different frames
of reference. The relativistic
length contraction is highly exag-
gerated. The force on the lone
particle is purely magnetic in 1,
and purely electric in 2.

to maintain consistency between the predictions made in the two
frames of reference.

To see how this really works out, we need to find a nice simple
example. An example like figure ag is not easy to handle, because in
the second frame of reference, the moving charges create fields that
change over time at any given location, like when the V-shaped wake
of a speedboat washes over a buoy. Examples like figure af are easier,
because there is a steady flow of charges, and all the fields stay the
same over time. Figure ah/1 shows a simplified and idealized model
of figure af. The charge by itself is like one of the charged particles
in the vacuum tube beam of figure af, and instead of the wire, we
have two long lines of charges moving in opposite directions. Note
that, as discussed in discussion question C on page 589, the currents
of the two lines of charges do not cancel out. The dark and light
balls represent particles with opposite charges. Because of this, the
total current in the “wire” is double what it would be if we took
away one line.

As a model of figure af, figure ah/1 is partly realistic and partly
unrealistic. In a real piece of copper wire, there are indeed charged
particles of both types, but it turns out that the particles of one
type (the protons) are locked in place, while only some of the other
type (the electrons) are free to move. The model also shows the
particles moving in a simple and orderly way, like cars on a two-
lane road, whereas in reality most of the particles are organized
into copper atoms, and there is also a great deal of random thermal
motion. The model’s unrealistic features aren’t a problem, because
the point of this exercise is only to find one particular situation that
shows magnetic effects must exist based on relativity.

What electrical force does the lone particle in figure ah/1 feel? Since
the density of “traffic” on the two sides of the “road” is equal, there
is zero overall electrical force on the lone particle. Each “car” that
attracts the lone particle is paired with a partner on the other side
of the road that repels it. If we didn’t know about magnetism, we’d
think this was the whole story: the lone particle feels no force at all
from the wire.

Figure ah/2 shows what we’d see if we were observing all this from a
frame of reference moving along with the lone charge. Here’s where
the relativity comes in. Relativity tells us that moving objects ap-
pear contracted to an observer who is not moving along with them.
Both lines of charge are in motion in both frames of reference, but
in frame 1 they were moving at equal speeds, so their contractions
were equal. In frame 2, however, their speeds are unequal. The
dark charges are moving more slowly than in frame 1, so in frame 2
they are less contracted. The light-colored charges are moving more
quickly, so their contraction is greater now. The “cars” on the two
sides of the “road” are no longer paired off, so the electrical forces
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ai / Magnetic interactions in-
volving only two particles at a
time. In these figures, unlike
figure ah/1, there are electrical
forces as well as magnetic ones.
The electrical forces are not
shown here. Don’t memorize
these rules!

on the lone particle no longer cancel out as they did in ah/1. The
lone particle is attracted to the wire, because the particles attract-
ing it are more dense than the ones repelling it. Furthermore, the
attraction felt by the lone charge must be purely electrical, since the
lone charge is at rest in this frame of reference, and magnetic effects
occur only between moving charges and other moving charges.

Now observers in frames 1 and 2 disagree about many things, but
they do agree on concrete events. Observer 2 is going to see the lone
particle drift toward the wire due to the wire’s electrical attraction,
gradually speeding up, and eventually hit the wire. If 2 sees this
collision, then 1 must as well. But 1 knows that the total electrical
force on the lone particle is exactly zero. There must be some new
type of force. She invents a name for this new type of force: mag-
netism. This was a particularly simple example, because the force
was purely magnetic in one frame of reference, and purely electrical
in another. In general, an observer in a certain frame of reference
will measure a mixture of electric and magnetic fields, while an ob-
server in another frame, in motion with respect to the first, says
that the same volume of space contains a different mixture.

We therefore arrive at the conclusion that electric and magnetic phe-
nomena aren’t separate. They’re different sides of the same coin.
We refer to electric and magnetic interactions collectively as elec-
tromagnetic interactions. Our list of the fundamental interactions
of nature now has two items on it instead of three: gravity and
electromagnetism.

Oersted found that magnetism was an interaction between moving
charges and other moving charges. We can see this in the situation
described in figure ah/1, in which the result of the argument de-
pended on the fact that both the lone charge and the charges in the
wire were moving. To see this in a different way, we can apply the
result of example 4 on p. 683, that for small velocities the G factor dif-
fers from 1 by about v2/2c2. Let the lone charge in figure ah/1 have
velocity u, the ones in the wire ±v. As we’ll see on p. 704, velocities
in relative motion don’t exactly add and subtract relativistically, but
as long as we assume that u and v are small, the correspondence
principle guarantees that they will approximately add and subtract.
Then the velocities in the lone charge’s rest frame, ah/2, are ap-
proximately 0, v − u, and −v − u. The nonzero charge density of
the wire in frame ah/2 is then proportional to the difference in the
length contractions G−v−u − Gv−u ≈ 2uv/c2. This depends on the
product of the velocities u and v, which is as expected if magnetism
is an interaction of moving charges with moving charges.

The basic rules for magnetic attractions and repulsions, shown in
figure ai, aren’t quite as simple as the ones for gravity and electric-
ity. Rules ai/1 and ai/2 follow directly from our previous analysis
of figure ah. Rules 3 and 4 are obtained by flipping the type of
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Example 9

charge that the bottom particle has. For instance, rule 3 is like rule
1, except that the bottom charge is now the opposite type. This
turns the attraction into a repulsion. (We know that flipping the
charge reverses the interaction, because that’s the way it works for
electric forces, and magnetic forces are just electric forces viewed in
a different frame of reference.)

A magnetic weathervane placed near a current. example 9
Figure 23.3.1 shows a magnetic weathervane, consisting of two
charges that spin in circles around the axis of the arrow. (The
magnetic field doesn’t cause them to spin; a motor is needed to
get them to spin in the first place.) Just like the magnetic compass
in figure ad, the weathervane’s arrow tends to align itself in the
direction perpendicular to the wire. This is its preferred orientation
because the charge close to the wire is attracted to the wire, while
the charge far from the wire is repelled by it.

Discussion questions

A In the situation shown in figure ah, is there a frame in which the force
F is a purely electric one, FE? Pure FB?
Is there a frame in which the electromagnetic field is a pure E? Pure B?
Is there zero net charge in both frames? One? Neither?
What about the current?

B For the situation shown in figure ah, draw a spacetime diagram
showing the positive charges as black world-lines and the negative as
red, in the wire’s rest frame. Use a ruler, and draw the spacing fairly
accurately. Interpret this in the frame of the lone charge.

C Resolve the following paradox concerning the argument given in this
section. We would expect that at any given time, electrons in a solid would
be associated with protons in a definite way. For simplicity, let’s imagine
that the solid is made out of hydrogen (which actually does become a
metal under conditions of very high pressure). A hydrogen atom consists
of a single proton and a single electron. Even if the electrons are moving
and forming an electric current, we would imagine that this would be like
a game of musical chairs, with the protons as chairs and the electrons
as people. Each electron has a proton that is its “friend,” at least for the
moment. This is the situation shown in figure ah/1. How, then, can an
observer in a different frame see the electrons and protons as not being
paired up, as in ah/2?
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Summary
Notation
G . . . . . . . . . . an abbreviation for 1/

√
1− v2/c2

Summary

Experiments show that space and time do not have the properties
claimed by Galileo and Newton. Time and space as seen by one
observer are distorted compared to another observer’s perceptions if
they are moving relative to each other. This distortion is quantified
by the factor

G =
1√

1− v2

c2

,

where v is the relative velocity of the two observers, and c is a
universal velocity that is the same in all frames of reference. Light
travels at c. A clock appears to run fastest to an observer who is
not in motion relative to it, and appears to run too slowly by a
factor of G to an observer who has a velocity v relative to the clock.
Similarly, a meter-stick appears longest to an observer who sees it
at rest, and appears shorter to other observers. Time and space are
relative, not absolute.

As a consequence of relativity, we must have not just electrical in-
teractions of charges with charges, but also an additional magnetic
interaction of moving charges with other moving charges.
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Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 What happens in the equation for G when you put in a negative
number for v? Explain what this means physically, and why it makes
sense.

2 In this homework problem, you’ll fill in the steps of the algebra
required in order to find the equation for G on page 680. To keep the
algebra simple, let the time t in figure s equal 1, as suggested in the
figure accompanying this homework problem. The original square
then has an area of 1, and the transformed parallelogram must also
have an area of 1. (a) Prove that point P is at x = vG, so that its
(t,x) coordinates are (G, vG). (b) Find the (t,x) coordinates of point
Q. (c) Find the length of the short diagonal connecting P and Q.
(d) Average the coordinates of P and Q to find the coordinates of
the midpoint C of the parallelogram, and then find distance OC. (e)
Find the area of the parallelogram by computing twice the area of
triangle PQO. [Hint: You can take PQ to be the base of the triangle.]
(f) Set this area equal to 1 and solve for G to prove G = 1/

√
1− v2.√

3 Astronauts in three different spaceships are communicating
with each other. Those aboard ships A and B agree on the rate at
which time is passing, but they disagree with the ones on ship C.
(a) Alice is aboard ship A. How does she describe the motion of her
own ship, in its frame of reference?
(b) Describe the motion of the other two ships according to Alice.
(c) Give the description according to Betty, whose frame of reference
is ship B.
(d) Do the same for Cathy, aboard ship C.

4 The Voyager 1 space probe, launched in 1977, is moving faster
relative to the earth than any other human-made object, at 17,000
meters per second.
(a) Calculate the probe’s G.
(b) Over the course of one year on earth, slightly less than one year
passes on the probe. How much less? (There are 31 million seconds
in a year.)

√

5 The earth is orbiting the sun, and therefore is contracted
relativistically in the direction of its motion. Compute the amount
by which its diameter shrinks in this direction.

√
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6 Page 675 lists five observed properties of space and time that
sufficed to derive relativity. There are other sets of postulates that
could also have been used, and in fact this was not the set that was
first used by Einstein. Suppose that our first inkling that spacetime
isn’t Galilean consists of an experiment like the one in figure af on
p. 689, and that we interpret it, correctly, as being evidence of a
relativistic length contraction as in figure ah on p. 690. Besides
this fact, what else is needed in order to get the full structure of
relativity?

7 Natural relativistic units were introduced on p. 680, and ex-
amples 1 and 2 on pp. 681 and 682 gave examples of how to convert
an equation from natural units to SI units. In example 4 on p. 683,
we derived the approximation

G ≈ 1 +
v2

2

for values of v that are small compared to 1 (i.e., small compared
to the speed of light in natural units). As in the other examples,
convert this equation to SI units. . Solution, p. 1033

8 We want to throw a ball of diameter b through a hole of
diameter h in a thin wall. Clearly this is possible if b < h, but
consider the case where b > h. If the motion is relativistic, then
is it unambiguous whether the ball fits through the hole, or is this
frame-dependent, as in example 7 on p. 685? If the former, then is
there some velocity v that is required, expressible in terms of b and
h?
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a / Breaking a bar magnet in half
doesn’t create two monopoles, it
creates two smaller dipoles.

b / An explanation at the atomic
level.

Chapter 24

Electromagnetism

24.1 The magnetic field
No magnetic monopoles

If you could play with a handful of electric dipoles and a handful of
bar magnets, they would appear very similar. For instance, a pair
of bar magnets wants to align themselves head-to-tail, and a pair of
electric dipoles does the same thing. (It is unfortunately not that
easy to make a permanent electric dipole that can be handled like
this, since the charge tends to leak.)

You would eventually notice an important difference between the
two types of objects, however. The electric dipoles can be broken
apart to form isolated positive charges and negative charges. The
two-ended device can be broken into parts that are not two-ended.
But if you break a bar magnet in half, a, you will find that you have
simply made two smaller two-ended objects.

The reason for this behavior is not hard to divine from our micro-
scopic picture of permanent iron magnets. An electric dipole has
extra positive “stuff” concentrated in one end and extra negative in
the other. The bar magnet, on the other hand, gets its magnetic
properties not from an imbalance of magnetic “stuff” at the two
ends but from the orientation of the rotation of its electrons. One
end is the one from which we could look down the axis and see the
electrons rotating clockwise, and the other is the one from which
they would appear to go counterclockwise. There is no difference
between the “stuff” in one end of the magnet and the other, b.

Nobody has ever succeeded in isolating a single magnetic pole. In
technical language, we say that magnetic monopoles do not seem to
exist. Electric monopoles do exist — that’s what charges are.

Electric and magnetic forces seem similar in many ways. Both
act at a distance, both can be either attractive or repulsive, and
both are intimately related to the property of matter called charge.
(Recall that magnetism is an interaction between moving charges.)
Physicists’s aesthetic senses have been offended for a long time be-
cause this seeming symmetry is broken by the existence of elec-
tric monopoles and the absence of magnetic ones. Perhaps some
exotic form of matter exists, composed of particles that are mag-
netic monopoles. If such particles could be found in cosmic rays
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The unit of magnetic field,
the tesla, is named after Serbian-
American inventor Nikola Tesla.

A standard dipole made from
a square loop of wire shorting
across a battery. It acts very
much like a bar magnet, but its
strength is more easily quantified.

A dipole tends to align itself
to the surrounding magnetic field.

or moon rocks, it would be evidence that the apparent asymmetry
was only an asymmetry in the composition of the universe, not in
the laws of physics. For these admittedly subjective reasons, there
have been several searches for magnetic monopoles. Experiments
have been performed, with negative results, to look for magnetic
monopoles embedded in ordinary matter. Soviet physicists in the
1960’s made exciting claims that they had created and detected mag-
netic monopoles in particle accelerators, but there was no success
in attempts to reproduce the results there or at other accelerators.
The most recent search for magnetic monopoles, done by reanalyz-
ing data from the search for the top quark at Fermilab, turned up
no candidates, which shows that either monopoles don’t exist in
nature or they are extremely massive and thus hard to create in
accelerators.

Definition of the magnetic field

Since magnetic monopoles don’t seem to exist, it would not make
much sense to define a magnetic field in terms of the force on a
test monopole. Instead, we follow the philosophy of the alternative
definition of the electric field, and define the field in terms of the
torque on a magnetic test dipole. This is exactly what a magnetic
compass does: the needle is a little iron magnet which acts like a
magnetic dipole and shows us the direction of the earth’s magnetic
field.

To define the strength of a magnetic field, however, we need some
way of defining the strength of a test dipole, i.e., we need a definition
of the magnetic dipole moment. We could use an iron permanent
magnet constructed according to certain specifications, but such an
object is really an extremely complex system consisting of many
iron atoms, only some of which are aligned. A more fundamental
standard dipole is a square current loop. This could be little resistive
circuit consisting of a square of wire shorting across a battery.

We will find that such a loop, when placed in a magnetic field,
experiences a torque that tends to align plane so that its face points
in a certain direction. (Since the loop is symmetric, it doesn’t care
if we rotate it like a wheel without changing the plane in which it
lies.) It is this preferred facing direction that we will end up defining
as the direction of the magnetic field.

Experiments show if the loop is out of alignment with the field,
the torque on it is proportional to the amount of current, and also
to the interior area of the loop. The proportionality to current
makes sense, since magnetic forces are interactions between moving
charges, and current is a measure of the motion of charge. The
proportionality to the loop’s area is also not hard to understand,
because increasing the length of the sides of the square increases
both the amount of charge contained in this circular “river” and
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c / The magnetic field pattern
of a bar magnet. This picture was
made by putting iron filings on
a piece of paper, and bringing
a bar magnet up underneath it.
Note how the field pattern passes
across the body of the magnet,
forming closed loops, as in figure
d/2. There are no sources or
sinks.

d / Electric fields, 1, have sources
and sinks, but magnetic fields, 2,
don’t.

e / Transformation of the fields.

the amount of leverage supplied for making torque. Two separate
physical reasons for a proportionality to length result in an overall
proportionality to length squared, which is the same as the area of
the loop. For these reasons, we define the magnetic dipole moment
of a square current loop as

Dm = IA, [definition of the magnetic

dipole moment of a square current loop]

We now define the magnetic field in a manner entirely analogous to
the alternative definition of the electric field on p. 646:

definition of the magnetic field
The magnetic field vector, B, at any location in space is de-
fined by observing the torque exerted on a magnetic test dipole
Dmt consisting of a square current loop. The field’s magnitude
is |B| = τ/Dmt sin θ, where θ is the angle by which the loop is
misaligned. The direction of the field is perpendicular to the
loop; of the two perpendiculars, we choose the one such that
if we look along it, the loop’s current is counterclockwise.

We find from this definition that the magnetic field has units of
N·m/A·m2 = N/A·m. This unwieldy combination of units is abbre-
viated as the tesla, 1 T = 1 N/A·m. Refrain from memorizing the
part about the counterclockwise direction at the end; in section 24.5
we’ll see how to understand this in terms of more basic principles.

The nonexistence of magnetic monopoles means that unlike an elec-
tric field, d/1, a magnetic one, d/2, can never have sources or sinks.
The magnetic field vectors lead in paths that loop back on them-
selves, without ever converging or diverging at a point.

Relativity

The definition of the tesla as 1 N/A ·m looks messy, but relativity
suggests a simple explanation. We saw in section 23.3 that a partic-
ular mixture of electric and magnetic fields appears to be a different
mixture in a different frame of reference. In a system of units de-
signed for relativity, E and B have the same units. The SI, which
predates relativity, wasn’t designed this way, which is also why c is
some number with units of m/s rather than simply equaling 1. The
SI units of the E and B fields are almost the same: they differ only
by a factor of m/s.

Figure e shows that something similar to the parallelogram diagrams
developed in ch. 23 also works as a way of representing the transfor-
mation of the E and B fields from one frame of reference to another.
One frame is moving relative to the other in the x direction, and
this mixes certain components of the fields. A dot on the graph
represents a particular set of fields, which are seen by each observer
according to her own coordinate grid.
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24.2 Calculating magnetic fields and forces
Magnetostatics

Our study of the electric field built on our previous understanding
of electric forces, which was ultimately based on Coulomb’s law for
the electric force between two point charges. Since magnetism is
ultimately an interaction between currents, i.e., between moving
charges, it is reasonable to wish for a magnetic analog of Coulomb’s
law, an equation that would tell us the magnetic force between any
two moving point charges.

Such a law, unfortunately, does not exist. Coulomb’s law describes
the special case of electrostatics: if a set of charges is sitting around
and not moving, it tells us the interactions among them. Coulomb’s
law fails if the charges are in motion, since it does not incorporate
any allowance for the time delay in the outward propagation of a
change in the locations of the charges.

A pair of moving point charges will certainly exert magnetic forces
on one another, but their magnetic fields are like the v-shaped bow
waves left by boats. Each point charge experiences a magnetic field
that originated from the other charge when it was at some previous
position. There is no way to construct a force law that tells us the
force between them based only on their current positions in space.

There is, however, a science of magnetostatics that covers a great
many important cases. Magnetostatics describes magnetic forces
among currents in the special case where the currents are steady
and continuous, leading to magnetic fields throughout space that
do not change over time.

The magnetic field of a long, straight wire is one example that we can
say something about without resorting to fancy mathematics. We
saw in examples 4 on p. 643 and 15 on p. 657 that the electric field
of a uniform line of charge is E = 2kq/Lr, where r is the distance
from the line and q/L is the charge per unit length. In a frame
of reference moving at velocity v parallel to the line, this electric
field will be observed as a combination of electric and magnetic
fields. It therefore follows that the magnetic field of a long, straight,
current-carrying wire must be proportional to 1/r. We also expect
that it will be proportional to the Coulomb constant, which sets the
strength of electric and magnetic interactions, and to the current I in
the wire. The complete expression turns out to be B = (k/c2)(2I/r).
This is identical to the expression for E except for replacement of
q/L with I and an additional factor of 1/c2. The latter occurs
because magnetism is a purely relativistic effect, and the relativistic
length contraction depends on v2/c2.
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f / Some magnetic fields.

Figure f shows the equations for some of the more commonly en-
countered configurations, with illustrations of their field patterns.
They all have a factor of k/c2 in front, which shows that magnetism
is just electricity (k) seen through the lens of relativity (1/c2). A
convenient feature of SI units is that k/c2 has a numerical value of
exactly 10−7, with units of N/A2.

Field created by a long, straight wire carrying current I:

B =
k
c2 ·

2I
r

Here r is the distance from the center of the wire. The field vectors
trace circles in planes perpendicular to the wire, going clockwise when
viewed from along the direction of the current.

Field created by a single circular loop of current:
The field vectors form a dipole-like pattern, coming through the loop
and back around on the outside. Each oval path traced out by the field
vectors appears clockwise if viewed from along the direction the current
is going when it punches through it. There is no simple equation for a
field at an arbitrary point in space, but for a point lying along the central
axis perpendicular to the loop, the field is

B =
k
c2 · 2πIb2 (b2 + z2)−3/2

,

where b is the radius of the loop and z is the distance of the point from
the plane of the loop.

Field created by a solenoid (cylindrical coil):
The field pattern is similar to that of a single loop, but for a long solenoid
the paths of the field vectors become very straight on the inside of the
coil and on the outside immediately next to the coil. For a sufficiently
long solenoid, the interior field also becomes very nearly uniform, with
a magnitude of

B =
k
c2 · 4πIN/`,

where N is the number of turns of wire and ` is the length of the solenoid.
The field near the mouths or outside the coil is not constant, and is
more difficult to calculate. For a long solenoid, the exterior field is much
smaller than the interior field.

Don’t memorize the equations!
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Example 1.

Force on a charge moving through a magnetic field

We now know how to calculate magnetic fields in some typical sit-
uations, but one might also like to be able to calculate magnetic
forces, such as the force of a solenoid on a moving charged particle,
or the force between two parallel current-carrying wires.

We will restrict ourselves to the case of the force on a charged par-
ticle moving through a magnetic field, which allows us to calculate
the force between two objects when one is a moving charged parti-
cle and the other is one whose magnetic field we know how to find.
An example is the use of solenoids inside a TV tube to guide the
electron beam as it paints a picture.

Experiments show that the magnetic force on a moving charged
particle has a magnitude given by

|F| = q|v||B| sin θ,

where v is the velocity vector of the particle, and θ is the angle be-
tween the v and B vectors. Unlike electric and gravitational forces,
magnetic forces do not lie along the same line as the field vector.
The force is always perpendicular to both v and B. Given two vec-
tors, there is only one line perpendicular to both of them, so the
force vector points in one of the two possible directions along this
line. For a positively charged particle, the direction of the force
vector can be found as follows. First, position the v and B vectors
with their tails together. The direction of F is such that if you sight
along it, the B vector is clockwise from the v vector; for a nega-
tively charged particle the direction of the force is reversed. Note
that since the force is perpendicular to the particle’s motion, the
magnetic field never does work on it.

If we place a moving test charge in a magnetic field, we can use the
equation |F| = q|v||B| sin θ and the geometrical relationship dis-
cussed above to indirectly determine B. (More than one measure-
ment will in general be required.) This can also serve as a definition
of the magnetic field, analogous to the one on p. 641 for the electric
field.

Magnetic levitation example 1
In figure 24.2.2, a small, disk-shaped permanent magnet is stuck
on the side of a battery, and a wire is clasped loosely around the
battery, shorting it. A large current flows through the wire. The
electrons moving through the wire feel a force from the magnetic
field made by the permanent magnet, and this force levitates the
wire.

From the photo, it’s possible to find the direction of the magnetic
field made by the permanent magnet. The electrons in the copper
wire are negatively charged, so they flow from the negative (flat)
terminal of the battery to the positive terminal (the one with the
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Example 2.

bump, in front). As the electrons pass by the permanent magnet,
we can imagine that they would experience a field either toward
the magnet, or away from it, depending on which way the magnet
was flipped when it was stuck onto the battery. Imagine sighting
along the upward force vector, which you could do if you were
a tiny bug lying on your back underneath the wire. Since the
electrons are negatively charged, the B vector must be counter-
clockwise from the v vector, which means toward the magnet.

A circular orbit example 2
Magnetic forces cause a beam of electrons to move in a circle.
The beam is created in a vacuum tube, in which a small amount
of hydrogen gas has been left. A few of the electrons strike hy-
drogen molecules, creating light and letting us see the beam. A
magnetic field is produced by passing a current (meter) through
the circular coils of wire in front of and behind the tube. In the
bottom figure, with the magnetic field turned on, the force per-
pendicular to the electrons’ direction of motion causes them to
move in a circle.

Nervous-system effects during an MRI scan example 3
During an MRI scan of the head, the patient’s nervous system

is exposed to intense magnetic fields, and there are ions moving
around in the nerves. The resulting forces on the ions can cause
symptoms such as vertigo.

Energy in the magnetic field

On p. 649 I gave equations for the energy stored in the gravitational
and electric fields. Since a magnetic field is essentially an electric
field seen in a different frame of reference, we expect the magnetic-
field equation to be closely analogous to the electric version, and it
is:

(energy stored in the gravitational field per m3) = − 1

8πG
|g|2

(energy stored in the electric field per m3) =
1

8πk
|E|2

(energy stored in the magnetic field per m3) =
c2

8πk
|B|2

The idea here is that k/c2 is the magnetic version of the electric
quantity k, the 1/c2 representing the fact that magnetism is a rela-
tivistic effect.
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g / If you’ve flown in a jet
plane, you can thank relativity
for helping you to avoid crashing
into a mountain or an ocean. The
figure shows a standard piece of
navigational equipment called a
ring laser gyroscope. A beam
of light is split into two parts,
sent around the perimeter of the
device, and reunited. Since light
travels at the universal speed c,
which is constant, we expect the
two parts to come back together
at the same time. If they don’t,
it’s evidence that the device has
been rotating. The plane’s com-
puter senses this and notes how
much rotation has accumulated.

Getting killed by a solenoid example 4
Solenoids are very common electrical devices, but they can be a
hazard to someone who is working on them. Imagine a solenoid
that initially has a DC current passing through it. The current cre-
ates a magnetic field inside and around it, which contains energy.
Now suppose that we break the circuit. Since there is no longer
a complete circuit, current will quickly stop flowing, and the mag-
netic field will collapse very quickly. The field had energy stored
in it, and even a small amount of energy can create a danger-
ous power surge if released over a short enough time interval. It
is prudent not to fiddle with a solenoid that has current flowing
through it, since breaking the circuit could be hazardous to your
health.

As a typical numerical estimate, let’s assume a 40 cm × 40 cm
× 40 cm solenoid with an interior magnetic field of 1.0 T (quite
a strong field). For the sake of this rough estimate, we ignore
the exterior field, which is weak, and assume that the solenoid is
cubical in shape. The energy stored in the field is

(energy per unit volume)(volume) =
c2

8πk
|B|2V

= 3× 104 J

That’s a lot of energy!

24.3 The universal speed c

Let’s think a little more about the role of the 45-degree diagonal in
the Lorentz transformation. Slopes on these graphs are interpreted
as velocities. This line has a slope of 1 in relativistic units, but
that slope corresponds to c in ordinary metric units. We already
know that the relativistic distance unit must be extremely large
compared to the relativistic time unit, so c must be extremely large.
Now note what happens when we perform a Lorentz transformation:
this particular line gets stretched, but the new version of the line lies
right on top of the old one, and its slope stays the same. In other
words, if one observer says that something has a velocity equal to c,
every other observer will agree on that velocity as well. (The same
thing happens with −c.)

Velocities don’t simply add and subtract.

This is counterintuitive, since we expect velocities to add and sub-
tract in relative motion. If a dog is running away from me at 5
m/s relative to the sidewalk, and I run after it at 3 m/s, the dog’s
velocity in my frame of reference is 2 m/s. According to everything
we have learned about motion (p. 82), the dog must have different
speeds in the two frames: 5 m/s in the sidewalk’s frame and 2 m/s
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h / A proof that causality im-
poses a universal speed limit. In
the original frame of reference,
represented by the square, event
A happens a little before event B.
In the new frame, shown by the
parallelogram, A happens after
t = 0, but B happens before t = 0;
that is, B happens before A. The
time ordering of the two events
has been reversed. This can only
happen because events A and B
are very close together in time
and fairly far apart in space. The
line segment connecting A and
B has a slope greater than 1,
meaning that if we wanted to be
present at both events, we would
have to travel at a speed greater
than c (which equals 1 in the
units used on this graph). You will
find that if you pick any two points
for which the slope of the line
segment connecting them is less
than 1, you can never get them to
straddle the new t = 0 line in this
funny, time-reversed way. Since
different observers disagree on
the time order of events like A
and B, causality requires that
information never travel from
A to B or from B to A; if it did,
then we would have time-travel
paradoxes. The conclusion is that
c is the maximum speed of cause
and effect in relativity.

in mine. But velocities are measured by dividing a distance by a
time, and both distance and time are distorted by relativistic effects,
so we actually shouldn’t expect the ordinary arithmetic addition of
velocities to hold in relativity; it’s an approximation that’s valid at
velocities that are small compared to c.

A universal speed limit

For example, suppose Janet takes a trip in a spaceship, and accel-
erates until she is moving at 0.6c relative to the earth. She then
launches a space probe in the forward direction at a speed relative
to her ship of 0.6c. We might think that the probe was then moving
at a velocity of 1.2c, but in fact the answer is still less than c (prob-
lem 1, page 722). This is an example of a more general fact about
relativity, which is that c represents a universal speed limit. This is
required by causality, as shown in figure h.

Light travels at c.

Now consider a beam of light. We’re used to talking casually about
the “speed of light,” but what does that really mean? Motion is
relative, so normally if we want to talk about a velocity, we have to
specify what it’s measured relative to. A sound wave has a certain
speed relative to the air, and a water wave has its own speed relative
to the water. If we want to measure the speed of an ocean wave, for
example, we should make sure to measure it in a frame of reference
at rest relative to the water. But light isn’t a vibration of a physical
medium; it can propagate through the near-perfect vacuum of outer
space, as when rays of sunlight travel to earth. This seems like a
paradox: light is supposed to have a specific speed, but there is no
way to decide what frame of reference to measure it in. The way
out of the paradox is that light must travel at a velocity equal to c.
Since all observers agree on a velocity of c, regardless of their frame
of reference, everything is consistent.

The Michelson-Morley experiment

The constancy of the speed of light had in fact already been observed
when Einstein was an 8-year-old boy, but because nobody could
figure out how to interpret it, the result was largely ignored. In
1887 Michelson and Morley set up a clever apparatus to measure
any difference in the speed of light beams traveling east-west and
north-south. The motion of the earth around the sun at 110,000
km/hour (about 0.01% of the speed of light) is to our west during the
day. Michelson and Morley believed that light was a vibration of a
mysterious medium called the ether, so they expected that the speed
of light would be a fixed value relative to the ether. As the earth
moved through the ether, they thought they would observe an effect
on the velocity of light along an east-west line. For instance, if they
released a beam of light in a westward direction during the day, they
expected that it would move away from them at less than the normal
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speed because the earth was chasing it through the ether. They were
surprised when they found that the expected 0.01% change in the
speed of light did not occur.

The Michelson-Morley experiment, shown in photographs, and drawings
from the original 1887 paper. 1. A simplified drawing of the apparatus. A
beam of light from the source, s, is partially reflected and partially trans-
mitted by the half-silvered mirror h1. The two half-intensity parts of the
beam are reflected by the mirrors at a and b, reunited, and observed in
the telescope, t. If the earth’s surface was supposed to be moving through
the ether, then the times taken by the two light waves to pass through the
moving ether would be unequal, and the resulting time lag would be de-
tectable by observing the interference between the waves when they were
reunited. 2. In the real apparatus, the light beams were reflected multi-
ple times. The effective length of each arm was increased to 11 meters,
which greatly improved its sensitivity to the small expected difference in
the speed of light. 3. In an earlier version of the experiment, they had run
into problems with its “extreme sensitiveness to vibration,” which was “so
great that it was impossible to see the interference fringes except at brief
intervals . . . even at two o’clock in the morning.” They therefore mounted
the whole thing on a massive stone floating in a pool of mercury, which
also made it possible to rotate it easily. 4. A photo of the apparatus.
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Discussion questions

A The figure shows a famous thought experiment devised by Einstein.
A train is moving at constant velocity to the right when bolts of lightning
strike the ground near its front and back. Alice, standing on the dirt at
the midpoint of the flashes, observes that the light from the two flashes
arrives simultaneously, so she says the two strikes must have occurred
simultaneously. Bob, meanwhile, is sitting aboard the train, at its middle.
He passes by Alice at the moment when Alice later figures out that the
flashes happened. Later, he receives flash 2, and then flash 1. He infers
that since both flashes traveled half the length of the train, flash 2 must
have occurred first. How can this be reconciled with Alice’s belief that the
flashes were simultaneous? Explain using a graph.

B Use a graph to resolve the following relativity paradox. Relativity
says that in one frame of reference, event A could happen before event
B, but in someone else’s frame B would come before A. How can this be?
Obviously the two people could meet up at A and talk as they cruised
past each other. Wouldn’t they have to agree on whether B had already
happened?

C The machine-gunner in the figure sends out a spray of bullets.
Suppose that the bullets are being shot into outer space, and that the
distances traveled are trillions of miles (so that the human figure in the
diagram is not to scale). After a long time, the bullets reach the points
shown with dots which are all equally far from the gun. Their arrivals
at those points are events A through E, which happen at different times.
Sketch these events on a position-time graph. The chain of impacts ex-
tends across space at a speed greater than c. Does this violate special
relativity?
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Discussion question C.

D The graph shows three galaxies. The axes are drawn according to
an observer at rest relative to the galaxy 2, so that that galaxy is always at
the same x coordinate. Intelligent species in the three different galaxies
develop radio technology independently, and at some point each begins
to actively send out signals in an attempt to communicate with other civi-
lizations. Events a, b, and c mark the points at which these signals begin
spreading out across the universe at the speed of light. Find the events at
which the inhabitants of galaxy 2 detect the signals from galaxies 1 and
3. According to 2, who developed radio first, 1 or 3? On top of the graph,
draw a new pair of position and time axes, for the frame in which galaxy 3
is at rest. According to 3, in what order did events a, b, and c happen?

Discussion question D.

708 Chapter 24 Electromagnetism



l / The geometry of induced
fields. The induced field tends to
form a whirlpool pattern around
the change in the vector produc-
ing it. Note how they circulate in
opposite directions.

24.4 Induction
The principle of induction

Physicists of Michelson and Morley’s generation thought that light
was a mechanical vibration of the ether, but we now know that it is a
ripple in the electric and magnetic fields. With hindsight, relativity
essentially requires this:

1. Relativity requires that changes in any field propagate as waves
at a finite speed (p. 635).

2. Relativity says that if a wave has a fixed speed but is not a
mechanical disturbance in a physical medium, then it must
travel at the universal velocity c (p. 705).

What is less obvious is that there are not two separate kinds of
waves, electric and magnetic. In fact an electric wave can’t exist
without a magnetic one, or a magnetic one without an electric one.
This new fact follows from the principle of induction, which was
discovered experimentally by Faraday in 1831, seventy-five years
before Einstein. Let’s state Faraday’s idea first, and then see how
something like it must follow inevitably from relativity:

the principle of induction
Any electric field that changes over time will produce a mag-
netic field in the space around it.

Any magnetic field that changes over time will produce an
electric field in the space around it.

The induced field tends to have a whirlpool pattern, as shown in
figure l, but the whirlpool image is not to be taken too literally; the
principle of induction really just requires a field pattern such that, if
one inserted a paddlewheel in it, the paddlewheel would spin. All of
the field patterns shown in figure m are ones that could be created
by induction; all have a counterclockwise “curl” to them.

m / Three fields with counter-
clockwise “curls.”
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o / A generator.

p / A transformer.

n / Observer 1 is at rest with respect to the bar magnet, and observes
magnetic fields that have different strengths at different distances from the
magnet. Observer 2, hanging out in the region to the left of the magnet,
sees the magnet moving toward her, and detects that the magnetic field
in that region is getting stronger as time passes.

Figure n shows an example of the fundamental reason why a chang-
ing B field must create an E field. In section 23.3 we established
that according to relativity, what one observer describes as a purely
magnetic field, an observer in a different state of motion describes
as a mixture of magnetic and electric fields. This is why there must
be both an E and a B in observer 2’s frame. Observer 2 cannot
explain the electric field as coming from any charges. In frame 2,
the E can only be explained as an effect caused by the changing B.

Observer 1 says, “2 feels a changing B field because he’s moving
through a static field.” Observer 2 says, “I feel a changing B because
the magnet is getting closer.”

Although this argument doesn’t prove the “whirlpool” geometry, we
can verify that the fields I’ve drawn in figure n are consistent with
it. The ∆B vector is upward, and the electric field has a curliness to
it: a paddlewheel inserted in the electric field would spin clockwise
as seen from above, since the clockwise torque made by the strong
electric field on the right is greater than the counterclockwise torque
made by the weaker electric field on the left.

The generator example 5
A generator, o, consists of a permanent magnet that rotates within
a coil of wire. The magnet is turned by a motor or crank, (not
shown). As it spins, the nearby magnetic field changes. Accord-
ing to the principle of induction, this changing magnetic field re-
sults in an electric field, which has a whirlpool pattern. This elec-
tric field pattern creates a current that whips around the coils of
wire, and we can tap this current to light the lightbulb.

self-check A
When you’re driving a car, the engine recharges the battery continu-
ously using a device called an alternator, which is really just a genera-
tor like the one shown on the previous page, except that the coil rotates
while the permanent magnet is fixed in place. Why can’t you use the
alternator to start the engine if your car’s battery is dead? . Answer,
p. 1044

The transformer example 6
In example 18 on p. 607 we discussed the advantages of trans-
mitting power over electrical lines using high voltages and low
currents. However, we don’t want our wall sockets to operate at
10000 volts! For this reason, the electric company uses a device
called a transformer, p, to convert to lower voltages and higher
currents inside your house. The coil on the input side creates a
magnetic field. Transformers work with alternating current, so the
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magnetic field surrounding the input coil is always changing. This
induces an electric field, which drives a current around the output
coil.

If both coils were the same, the arrangement would be symmetric,
and the output would be the same as the input, but an output coil
with a smaller number of coils gives the electric forces a smaller
distance through which to push the electrons. Less mechanical
work per unit charge means a lower voltage. Conservation of en-
ergy, however, guarantees that the amount of power on the output
side must equal the amount put in originally, IinVin = IoutVout , so
this reduced voltage must be accompanied by an increased cur-
rent.

24.5 Electromagnetic waves
The most important consequence of induction is the existence of
electromagnetic waves. Whereas a gravitational wave would consist
of nothing more than a rippling of gravitational fields, the principle
of induction tells us that there can be no purely electrical or purely
magnetic waves. Instead, we have waves in which there are both
electric and magnetic fields, such as the sinusoidal one shown in the
figure. Maxwell proved that such waves were a direct consequence
of his equations, and derived their properties mathematically. The
derivation would be beyond the mathematical level of this book, so
we will just state the results.

An electromagnetic wave.

A sinusoidal electromagnetic wave has the geometry shown above.
The E and B fields are perpendicular to the direction of motion, and
are also perpendicular to each other. If you look along the direction
of motion of the wave, the B vector is always 90 degrees clockwise
from the E vector. In a plane wave, the magnitudes of the two fields
are related by |E| = c|B|.

How is an electromagnetic wave created? It could be emitted, for
example, by an electron orbiting an atom or currents going back and
forth in a transmitting antenna. In general any accelerating charge
will create an electromagnetic wave, although only a current that
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r / Example 8. The incident
and reflected waves are drawn
offset from each other for clar-
ity, but are actually on top of
each other so that their fields
superpose.

Heinrich Hertz (1857-1894).

varies sinusoidally with time will create a sinusoidal wave. Once
created, the wave spreads out through space without any need for
charges or currents along the way to keep it going. As the electric
field oscillates back and forth, it induces the magnetic field, and
the oscillating magnetic field in turn creates the electric field. The
whole wave pattern propagates through empty space at the velocity
c.

Einstein’s motorcycle example 7
As a teenage physics student, Einstein imagined the following
paradox. (See p. 513.) What if he could get on a motorcycle
and ride at speed c, alongside a beam of light? In his frame of
reference, he observes constant electric and magnetic fields. But
only a changing electric field can induce a magnetic field, and
only a changing magnetic field can induce an electric field. The
laws of physics are violated in his frame, and this seems to violate
the principle that all frames of reference are equally valid.

The resolution of the paradox is that c is a universal speed limit,
so the motorcycle can’t be accelerated to c. Observers can never
be at rest relative to a light wave, so no observer can have a frame
of reference in which a light wave is observed to be at rest.

Reflection example 8
The wave in figure r hits a silvered mirror. The metal is a good
conductor, so it has constant voltage throughout, and the electric
field equals zero inside it: the wave doesn’t penetrate and is 100%
reflected. If the electric field is to be zero at the surface as well,
the reflected wave must have its electric field inverted (p. 525), so
that the incident and reflected fields cancel there.

But the magnetic field of the reflected wave is not inverted. This
is because the reflected wave, when viewed along its leftward
direction of propagation, needs to have its B vector 90 degrees
clockwise from its E vector.

Polarization

Two electromagnetic waves traveling in the same direction through
space can differ by having their electric and magnetic fields in dif-
ferent directions, a property of the wave called its polarization.

Light is an electromagnetic wave

Once Maxwell had derived the existence of electromagnetic waves,
he became certain that they were the same phenomenon as light.
Both are transverse waves (i.e., the vibration is perpendicular to
the direction the wave is moving), and the velocity is the same.

Heinrich Hertz (for whom the unit of frequency is named) verified
Maxwell’s ideas experimentally. Hertz was the first to succeed in
producing, detecting, and studying electromagnetic waves in detail
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using antennas and electric circuits. To produce the waves, he had
to make electric currents oscillate very rapidly in a circuit. In fact,
there was really no hope of making the current reverse directions
at the frequencies of 1015 Hz possessed by visible light. The fastest
electrical oscillations he could produce were 109 Hz, which would
give a wavelength of about 30 cm. He succeeded in showing that,
just like light, the waves he produced were polarizable, and could be
reflected and refracted (i.e., bent, as by a lens), and he built devices
such as parabolic mirrors that worked according to the same optical
principles as those employing light. Hertz’s results were convincing
evidence that light and electromagnetic waves were one and the
same.

The electromagnetic spectrum

Today, electromagnetic waves with frequencies in the range em-
ployed by Hertz are known as radio waves. Any remaining doubts
that the “Hertzian waves,” as they were then called, were the same
type of wave as light waves were soon dispelled by experiments in
the whole range of frequencies in between, as well as the frequencies
outside that range. In analogy to the spectrum of visible light, we
speak of the entire electromagnetic spectrum, of which the visible
spectrum is one segment.

The terminology for the various parts of the spectrum is worth mem-
orizing, and is most easily learned by recognizing the logical relation-
ships between the wavelengths and the properties of the waves with
which you are already familiar. Radio waves have wavelengths that
are comparable to the size of a radio antenna, i.e., meters to tens
of meters. Microwaves were named that because they have much
shorter wavelengths than radio waves; when food heats unevenly
in a microwave oven, the small distances between neighboring hot
and cold spots is half of one wavelength of the standing wave the
oven creates. The infrared, visible, and ultraviolet obviously have
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Example 9: an electromag-
netic wave that is legal in one
frame of reference is legal in
another. As in figure e on p. 699,
the each frame of reference is in
motion relative to the other along
the x axis. If the wave’s electric
field is aligned with the y axis,
and its magnetic field with z, then
x is also the direction in which
the wave is moving, as required
for our example.

much shorter wavelengths, because otherwise the wave nature of
light would have been as obvious to humans as the wave nature of
ocean waves. To remember that ultraviolet, x-rays, and gamma rays
all lie on the short-wavelength side of visible, recall that all three of
these can cause cancer. (As we’ll discuss later in the course, there is
a basic physical reason why the cancer-causing disruption of DNA
can only be caused by very short-wavelength electromagnetic waves.
Contrary to popular belief, microwaves cannot cause cancer, which
is why we have microwave ovens and not x-ray ovens!)

Switching frames of reference example 9
If we switch to a different frame of reference, a legal light wave
should still be legal. Consider the requirement E = cB, in the
case where observer 1 says observer 2 is trying to run away from
the wave. In figure e on p. 699, we saw that the familiar par-
allelogram graphs described the transformation of electric and
magnetic fields from one frame of reference to another. These
pictures are intended to be used in units where c = 1, so the
requirement for the fields becomes E = B, and such a combina-
tion of fields is represented by a dot on the diagonal, which is the
same line in both frames.

Why the sky is blue example 10
When sunlight enters the upper atmosphere, a particular air mole-
cule finds itself being washed over by an electromagnetic wave of
frequency f . The molecule’s charged particles (nuclei and elec-
trons) act like oscillators being driven by an oscillating force, and
respond by vibrating at the same frequency f . Energy is sucked
out of the incoming beam of sunlight and converted into the ki-
netic energy of the oscillating particles. However, these particles
are accelerating, so they act like little radio antennas that put the
energy back out as spherical waves of light that spread out in all
directions. An object oscillating at a frequency f has an accel-
eration proportional to f 2, and an accelerating charged particle
creates an electromagnetic wave whose fields are proportional
to its acceleration, so the field of the reradiated spherical wave
is proportional to f 2. The energy of a field is proportional to the
square of the field, so the energy of the reradiated wave is pro-
portional to f 4. Since blue light has about twice the frequency of
red light, this process is about 24 = 16 times as strong for blue as
for red, and that’s why the sky is blue.
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u / In this scene from Swan
Lake, the choreography has a
symmetry with respect to left and
right.

s / An electromagnetic wave strikes an ohmic surface. The wave’s electric
field causes currents to flow up and down. The wave’s magnetic field then
acts on these currents, producing a force in the direction of the wave’s
propagation. This is a pre-relativistic argument that light must possess
inertia.

t / A simplified drawing of the 1903 experiment by Nichols and Hull that
verified the predicted momentum of light waves. Two circular mirrors were
hung from a fine quartz fiber, inside an evacuated bell jar. A 150 mW
beam of light was shone on one of the mirrors for 6 s, producing a tiny
rotation, which was measurable by an optical lever (not shown). The force
was within 0.6% of the theoretically predicted value (problem 12 on p. 813)
of 0.001 µN. For comparison, a short clipping of a single human hair
weighs ∼ 1 µN.

Momentum of light

Newton defined momentum as mv, which would imply that light,
which has no mass, should have no momentum. But Newton’s laws
only work at speeds small compared to the speed of light, and light
travels at the speed of light. In fact, it’s straightforward to show that
electromagnetic waves have momentum. If a light wave strikes an
ohmic surface, as in figure s, the wave’s electric field causes charges
to vibrate back and forth in the surface. These currents then ex-
perience a magnetic force from the wave’s magnetic field, and ap-
plication of the geometrical rule on p. 702 shows that the resulting
force is in the direction of propagation of the wave. A light wave
has momentum and inertia. This is explored further in problem 12
on p. 813. Figure t shows an experimental confirmation.

24.6 ? Symmetry and handedness
Imagine that you establish radio contact with an alien on another
planet. Neither of you even knows where the other one’s planet
is, and you aren’t able to establish any landmarks that you both
recognize. You manage to learn quite a bit of each other’s languages,
but you’re stumped when you try to establish the definitions of left
and right (or, equivalently, clockwise and counterclockwise). Is there
any way to do it?

If there was any way to do it without reference to external land-
marks, then it would imply that the laws of physics themselves were
asymmetric, which would be strange. Why should they distinguish
left from right? The gravitational field pattern surrounding a star
or planet looks the same in a mirror, and the same goes for electric
fields. The field patterns shown in section 24.2 seem to violate this
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C.S. Wu

v / A graphical representation
of the Lorentz transformation for
a velocity of (3/5)c. The long
diagonal is stretched by a factor
of two, the short one is half its
former length, and the area is the
same as before.

w / The pattern of waves made
by a point source moving to the
right across the water. Note
the shorter wavelength of the
forward-emitted waves and
the longer wavelength of the
backward-going ones.

principle, but do they really? Could you use these patterns to ex-
plain left and right to the alien? In fact, the answer is no. If you
look back at the definition of the magnetic field in section 24.1, it
also contains a reference to handedness: the counterclockwise direc-
tion of the loop’s current as viewed along the magnetic field. The
aliens might have reversed their definition of the magnetic field, in
which case their drawings of field patterns would look like mirror
images of ours.

Until the middle of the twentieth century, physicists assumed that
any reasonable set of physical laws would have to have this kind of
symmetry between left and right. An asymmetry would be grotesque.
Whatever their aesthetic feelings, they had to change their opinions
about reality when experiments by C.S. Wu et al. showed that the
weak nuclear force (section 22.4) violates right-left symmetry! It is
still a mystery why right-left symmetry is observed so scrupulously
in general, but is violated by one particular type of physical process.

24.7 ? Doppler shifts and clock time
Figure v shows our now-familiar method of visualizing a Lorentz
transformation, in a case where the numbers come out to be par-
ticularly simple. This diagram has two geometrical features that
we have referred to before without digging into their physical sig-
nificance: the stretch factor of the diagonals, and the area. In this
section we’ll see that the former can be related to the Doppler effect,
and the latter to clock time.

Doppler shifts of light

When Doppler shifts happen to ripples on a pond or the sound waves
from an airplane, they can depend on the relative motion of three
different objects: the source, the receiver, and the medium. But
light waves don’t have a medium. Therefore Doppler shifts of light
can only depend on the relative motion of the source and observer.

One simple case is the one in which the relative motion of the source
and the receiver is perpendicular to the line connecting them. That
is, the motion is transverse. Nonrelativistic Doppler shifts happen
because the distance between the source and receiver is changing,
so in nonrelativistic physics we don’t expect any Doppler shift at
all when the motion is transverse, and this is what is in fact ob-
served to high precision. For example, the photo shows shortened
and lengthened wavelengths to the right and left, along the source’s
line of motion, but an observer above or below the source measures
just the normal, unshifted wavelength and frequency. But relativis-
tically, we have a time dilation effect, so for light waves emitted
transversely, there is a Doppler shift of 1/G in frequency (or G in
wavelength).

The other simple case is the one in which the relative motion of the
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x / At event O, the source
and the receiver are on top of
each other, so as the source
emits a wave crest, it is received
without any time delay. At P, the
source emits another wave crest,
and at Q the receiver receives it.

source and receiver is longitudinal, i.e., they are either approaching
or receding from one another. For example, distant galaxies are
receding from our galaxy due to the expansion of the universe, and
this expansion was originally detected because Doppler shifts toward
the red (low-frequency) end of the spectrum were observed.

Nonrelativistically, we would expect the light from such a galaxy
to be Doppler shifted down in frequency by some factor, which
would depend on the relative velocities of three different objects: the
source, the wave’s medium, and the receiver. Relativistically, things
get simpler, because light isn’t a vibration of a physical medium, so
the Doppler shift can only depend on a single velocity v, which is
the rate at which the separation between the source and the receiver
is increasing.

The square in figure x is the “graph paper” used by someone who
considers the source to be at rest, while the parallelogram plays a
similar role for the receiver. The figure is drawn for the case where
v = 3/5 (in units where c = 1), and in this case the stretch factor
of the long diagonal is 2. To keep the area the same, the short
diagonal has to be squished to half its original size. But now it’s a
matter of simple geometry to show that OP equals half the width
of the square, and this tells us that the Doppler shift is a factor of
1/2 in frequency. That is, the squish factor of the short diagonal is
interpreted as the Doppler shift. To get this as a general equation for
velocities other than 3/5, one can show by straightforward fiddling
with the result of part c of problem 2 on p. 694 that the Doppler
shift is

D(v) =

√
1− v
1 + v

.

Here v > 0 is the case where the source and receiver are getting
farther apart, v < 0 the case where they are approaching. (This
is the opposite of the sign convention used in section 19.5. It is
convenient to change conventions here so that we can use positive
values of v in the case of cosmological red-shifts, which are the most
important application.)

Suppose that Alice stays at home on earth while her twin Betty takes
off in her rocket ship at 3/5 of the speed of light. When I first learned
relativity, the thing that caused me the most pain was understanding
how each observer could say that the other was the one whose time
was slow. It seemed to me that if I could take a pill that would speed
up my mind and my body, then naturally I would see everybody else
as being slow. Shouldn’t the same apply to relativity? But suppose
Alice and Betty get on the radio and try to settle who is the fast
one and who is the slow one. Each twin’s voice sounds slooooowed
doooowwwwn to the other. If Alice claps her hands twice, at a
time interval of one second by her clock, Betty hears the hand-
claps coming over the radio two seconds apart, but the situation is
exactly symmetric, and Alice hears the same thing if Betty claps.
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Each twin analyzes the situation using a diagram identical to x, and
attributes her sister’s observations to a complicated combination of
time distortion, the time taken by the radio signals to propagate,
and the motion of her twin relative to her.

self-check B
Turn your book upside-down and reinterpret figure x. . Answer, p.
1044

A symmetry property of the Doppler effect example 11
Suppose that A and B are at rest relative to one another, but C is
moving along the line between A and B. A transmits a signal to C,
who then retransmits it to B. The signal accumulates two Doppler
shifts, and the result is their product D(v )D(−v ). But this product
must equal 1, so we must have D(−v )D(v ) = 1, which can be
verified directly from the equation.

The Ives-Stilwell experiment example 12
The result of example 11 was the basis of one of the earliest labo-
ratory tests of special relativity, by Ives and Stilwell in 1938. They
observed the light emitted by excited by a beam of H+

2 and H+
3

ions with speeds of a few tenths of a percent of c. Measuring
the light from both ahead of and behind the beams, they found
that the product of the Doppler shifts D(v )D(−v ) was equal to 1,
as predicted by relativity. If relativity had been false, then one
would have expected the product to differ from 1 by an amount
that would have been detectable in their experiment. In 2003,
Saathoff et al. carried out an extremely precise version of the
Ives-Stilwell technique with Li+ ions moving at 6.4% of c. The
frequencies observed, in units of MHz, were:

fo = 546466918.8± 0.4
(unshifted frequency)

foD(−v ) = 582490203.44± .09
(shifted frequency, forward)

foD(v ) = 512671442.9± 0.5
(shifted frequency, backward)√

foD(−v ) · foD(v ) = 546466918.6± 0.3

The results show incredibly precise agreement between fo and√
foD(−v ) · foD(v ), as expected relativistically because D(v )D(−v )

is supposed to equal 1. The agreement extends to 9 significant
figures, whereas if relativity had been false there should have
been a relative disagreement of about v2 = .004, i.e., a discrep-
ancy in the third significant figure. The spectacular agreement
with theory has made this experiment a lightning rod for anti-
relativity kooks.

We saw on p. 704 that relativistic velocities should not be expected
to be exactly additive, and problem 1 on p. 722 verifies this in the
special case where A moves relative to B at 0.6c and B relative to

718 Chapter 24 Electromagnetism



C at 0.6c — the result not being 1.2c. The relativistic Doppler
shift provides a simple way of deriving a general equation for the
relativistic combination of velocities; problem 21 on p. 727 guides
you through the steps of this derivation.

? Clock time

On p. 679 we proved that the Lorentz transformation doesn’t change
the area of a shape in the x-t plane. We used this only as a stepping
stone toward the Lorentz transformation, but it is natural to wonder
whether this kind of area has any physical interest of its own.

The equal-area result is not relativistic, since the proof never ap-
peals to property 5 on page 675. Cases I and II on page 677 also
have the equal-area property. We can see this clearly in a Galilean
transformation like figure l on p. 676, where the distortion of the
rectangle could be accomplished by cutting it into vertical slices
and then displacing the slices upward without changing their areas.

But the area does have a nice interpretation in the relativistic case.
Suppose that we have events A (Charles VII is restored to the
throne) and B (Joan of Arc is executed). Now imagine that techno-
logically advanced aliens want to be present at both A and B, but
in the interim they wish to fly away in their spaceship, be present
at some other event P (perhaps a news conference at which they
give an update on the events taking place on earth), but get back
in time for B. Since nothing can go faster than c (which we take to
equal 1 in appropriate units), P cannot be too far away. The set
of all possible events P forms a rectangle, figure y/1, in the x − t
plane that has A and B at opposite corners and whose edges have
slopes equal to ±1. We call this type of rectangle a light-rectangle,
because its sides could represent the motion of rays of light.

y / 1. The gray light-rectangle rep-
resents the set of all events such
as P that could be visited after A
and before B.
2. The rectangle becomes a
square in the frame in which A
and B occur at the same location
in space.
3. The area of the dashed square
is τ2, so the area of the gray
square is τ2/2.The area of this rectangle will be the same regardless of one’s frame

of reference. In particular, we could choose a special frame of ref-
erence, panel 2 of the figure, such that A and B occur in the same
place. (They do not occur at the same place, for example, in the
sun’s frame, because the earth is spinning and going around the
sun.) Since the speed c, which equals 1 in our units, is the same in
all frames of reference, and the sides of the rectangle had slopes ±1
in frame 1, they must still have slopes ±1 in frame 2. The rectangle
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becomes a square with its diagonals parallel to the x and t axes, and
the length of these diagonals equals the time τ elapsed on a clock
that is at rest in frame 2, i.e., a clock that glides through space at
constant velocity from A to B, meeting up with the planet earth at
the appointed time. As shown in panel 3 of the figure, the area of
the gray regions can be interpreted as half the square of this gliding-
clock time. If events A and B are separated by a distance x and a
time t, then in general t2 − x2 gives the square of the gliding-clock
time.1

When |x| is greater than |t|, events A and B are so far apart in
space and so close together in time that it would be impossible to
have a cause and effect relationship between them, since c = 1 is
the maximum speed of cause and effect. In this situation t2 − x2

is negative and cannot be interpreted as a clock time, but it can
be interpreted as minus the square of the distance between A and
B as measured by rulers at rest in a frame in which A and B are
simultaneous.

No matter what, t2 − x2 is the same as measured in all frames of
reference. Geometrically, it plays the same role in the x-t plane
that ruler measurements play in the Euclidean plane. In Euclidean
geometry, the ruler-distance between any two points stays the same
regardless of rotation, i.e., regardless of the angle from which we
view the scene; according to the Pythagorean theorem, the square
of this distance is x2 + y2. In the x-t plane, t2 − x2 stays the same
regardless of the frame of reference.

To avoid overloading the reader with terms to memorize, some com-
monly used terminology is relegated to problem 22 on p. 728.

1Proof: Based on units, the expression must have the form (. . .)t2 + (. . .)tx+
(. . .)x2, where each (. . .) represents a unitless constant. The tx coefficient must
be zero by property 2 on p. 675. For consistency with figure y/3, the t2 coefficient
must equal 1. Since the area vanishes for x = t, the x2 coefficient must equal
−1.
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Summary
Selected vocabulary
magnetic field . . a field of force, defined in terms of the torque

exerted on a test dipole
magnetic dipole . an object, such as a current loop, an atom,

or a bar magnet, that experiences torques due
to magnetic forces; the strength of magnetic
dipoles is measured by comparison with a stan-
dard dipole consisting of a square loop of wire
of a given size and carrying a given amount of
current

induction . . . . . the production of an electric field by a chang-
ing magnetic field, or vice-versa

Notation
B . . . . . . . . . the magnetic field
Dm . . . . . . . . magnetic dipole moment

Summary

The magnetic field is defined in terms of the torque on a magnetic
test dipole. It has no sources or sinks; magnetic field patterns never
converge on or diverge from a point.

Relativity dictates a maximum speed limit c for cause and effect.
This speed is the same in all frames of reference.

Relativity requires that the magnetic and electric fields be intimately
related. The principle of induction states that any changing electric
field produces a magnetic field in the surrounding space, and vice-
versa. These induced fields tend to form whirlpool patterns.

The most important consequence of the principle of induction is
that there are no purely magnetic or purely electric waves. Elec-
tromagnetic disturbances propagate outward at c as combined mag-
netic and electric waves, with a well-defined relationship between
the magnitudes and directions of the electric and magnetic fields.
These electromagnetic waves are what light is made of, but other
forms of electromagnetic waves exist besides visible light, including
radio waves, x-rays, and gamma rays.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure illustrates a Lorentz transformation using the con-
ventions employed in section 23.2. For simplicity, the transforma-
tion chosen is one that lengthens one diagonal by a factor of 2.
Since Lorentz transformations preserve area, the other diagonal is
shortened by a factor of 2. Let the original frame of reference, de-
picted with the square, be A, and the new one B. (a) By measuring
with a ruler on the figure, show that the velocity of frame B rela-
tive to frame A is 0.6c. (b) Print out a copy of the page. With a
ruler, draw a third parallelogram that represents a second succes-
sive Lorentz transformation, one that lengthens the long diagonal
by another factor of 2. Call this third frame C. Use measurements
with a ruler to determine frame C’s velocity relative to frame A.
Does it equal double the velocity found in part a? Explain why it
should be expected to turn out the way it does.

√
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Problem 4.

2 (a) In this chapter we’ve represented Lorentz transformations
as distortions of a square into various parallelograms, with the de-
gree of distortion depending on the velocity of one frame of reference
relative to another. Suppose that one frame of reference was mov-
ing at c relative to another. Discuss what would happen in terms
of distortion of a square, and show that this is impossible by using
an argument similar to the one used to rule out transformations like
the one in figure m on page 676.
(b) Resolve the following paradox. Two pen-pointer lasers are placed
side by side and aimed in parallel directions. Their beams both
travel at c relative to the hardware, but each beam has a velocity of
zero relative to the neighboring beam. But the speed of light can’t
be zero; it’s supposed to be the same in all frames of reference.

3 Consider two solenoids, one of which is smaller so that it can
be put inside the other. Assume they are long enough so that each
one only contributes significantly to the field inside itself, and the
interior fields are nearly uniform. Consider the configuration where
the small one is inside the big one with their currents circulating in
the same direction, and a second configuration in which the currents
circulate in opposite directions. Compare the energies of these con-
figurations with the energy when the solenoids are far apart. Based
on this reasoning, which configuration is stable, and in which con-
figuration will the little solenoid tend to get twisted around or spit
out? . Hint, p. 1032

4 The figure shows a nested pair of circular wire loops used
to create magnetic fields. (The twisting of the leads is a practical
trick for reducing the magnetic fields they contribute, so the fields
are very nearly what we would expect for an ideal circular current
loop.) The coordinate system below is to make it easier to discuss
directions in space. One loop is in the y − z plane, the other in the
x − y plane. Each of the loops has a radius of 1.0 cm, and carries
1.0 A in the direction indicated by the arrow.
(a) Using the equation in optional section 24.2, calculate the mag-
netic field that would be produced by one such loop, at its center.

√

(b) Describe the direction of the magnetic field that would be pro-
duced, at its center, by the loop in the x− y plane alone.
(c) Do the same for the other loop.
(d) Calculate the magnitude of the magnetic field produced by the
two loops in combination, at their common center. Describe its
direction.

√
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5 One model of the hydrogen atom has the electron circling
around the proton at a speed of 2.2 × 106 m/s, in an orbit with a
radius of 0.05 nm. (Although the electron and proton really orbit
around their common center of mass, the center of mass is very close
to the proton, since it is 2000 times more massive. For this problem,
assume the proton is stationary.) In homework problem 19, p. 619,
you calculated the electric current created.
(a) Now estimate the magnetic field created at the center of the
atom by the electron. We are treating the circling electron as a cur-
rent loop, even though it’s only a single particle.

√

(b) Does the proton experience a nonzero force from the electron’s
magnetic field? Explain.
(c) Does the electron experience a magnetic field from the proton?
Explain.
(d) Does the electron experience a magnetic field created by its own
current? Explain.
(e) Is there an electric force acting between the proton and electron?
If so, calculate it.

√

(f) Is there a gravitational force acting between the proton and elec-
tron? If so, calculate it.
(g) An inward force is required to keep the electron in its orbit –
otherwise it would obey Newton’s first law and go straight, leaving
the atom. Based on your answers to the previous parts, which force
or forces (electric, magnetic and gravitational) contributes signifi-
cantly to this inward force?
[Based on a problem by Arnold Arons.]

6 Suppose a charged particle is moving through a region of
space in which there is an electric field perpendicular to its velocity
vector, and also a magnetic field perpendicular to both the particle’s
velocity vector and the electric field. Show that there will be one
particular velocity at which the particle can be moving that results
in a total force of zero on it; this requires that you analyze both
the magnitudes and the directions of the forces compared to one
another. Relate this velocity to the magnitudes of the electric and
magnetic fields. (Such an arrangement, called a velocity filter, is
one way of determining the speed of an unknown particle.)

7 If you put four times more current through a solenoid, how
many times more energy is stored in its magnetic field?

√

8 Suppose we are given a permanent magnet with a complicated,
asymmetric shape. Describe how a series of measurements with
a magnetic compass could be used to determine the strength and
direction of its magnetic field at some point of interest. Assume that
you are only able to see the direction to which the compass needle
settles; you cannot measure the torque acting on it. ?

724 Chapter 24 Electromagnetism



9 Consider two solenoids, one of which is smaller so that it
can be put inside the other. Assume they are long enough to act
like ideal solenoids, so that each one only contributes significantly
to the field inside itself, and the interior fields are nearly uniform.
Consider the configuration where the small one is partly inside and
partly hanging out of the big one, with their currents circulating in
the same direction. Their axes are constrained to coincide.
(a) Find the difference in the magnetic energy between the configu-
ration where the solenoids are separate and the configuration where
the small one is inserted into the big one. Your equation will in-
clude the length x of the part of the small solenoid that is inside
the big one, as well as other relevant variables describing the two
solenoids.

√

(b) Based on your answer to part a, find the force acting

Problem 10.

10 Four long wires are arranged, as shown, so that their cross-
section forms a square, with connections at the ends so that current
flows through all four before exiting. Note that the current is to the
right in the two back wires, but to the left in the front wires. If the
dimensions of the cross-sectional square (height and front-to-back)
are b, find the magnetic field (magnitude and direction) along the
long central axis.

√

11 The purpose of this problem is to find the force experienced by
a straight, current-carrying wire running perpendicular to a uniform
magnetic field. (a) Let A be the cross-sectional area of the wire, n
the number of free charged particles per unit volume, q the charge
per particle, and v the average velocity of the particles. Show that
the current is I = Avnq. (b) Show that the magnetic force per unit
length is AvnqB. (c) Combining these results, show that the force
on the wire per unit length is equal to IB. . Solution, p. 1033

12 Suppose two long, parallel wires are carrying current I1 and
I2. The currents may be either in the same direction or in oppo-
site directions. (a) Using the information from section 24.2, de-
termine under what conditions the force is attractive, and under
what conditions it is repulsive. Note that, because of the difficul-
ties explored in problem 14, it’s possible to get yourself tied up in
knots if you use the energy approach of section 22.4. (b) Starting
from the result of problem 11, calculate the force per unit length.

. Solution, p. 1033

Problems 725



Problem 15.

13 Section 24.2 states the following rule:

For a positively charged particle, the direction of the F vector is the
one such that if you sight along it, the B vector is clockwise from
the v vector.

Make a three-dimensional model of the three vectors using pencils
or rolled-up pieces of paper to represent the vectors assembled with
their tails together. Now write down every possible way in which
the rule could be rewritten by scrambling up the three symbols F ,
B, and v. Referring to your model, which are correct and which are
incorrect?

14 Prove that any two planar current loops with the same value
of IA will experience the same torque in a magnetic field, regardless
of their shapes. In other words, the dipole moment of a current loop
can be defined as IA, regardless of whether its shape is a square.

?

15 A Helmholtz coil is defined as a pair of identical circular
coils lying in parallel planes and separated by a distance, h, equal
to their radius, b. (Each coil may have more than one turn of wire.)
Current circulates in the same direction in each coil, so the fields
tend to reinforce each other in the interior region. This configuration
has the advantage of being fairly open, so that other apparatus can
be easily placed inside and subjected to the field while remaining
visible from the outside. The choice of h = b results in the most
uniform possible field near the center. A photograph of a Helmholtz
coil is shown in example 2 on page 703.
(a) Find the percentage drop in the field at the center of one coil,
compared to the full strength at the center of the whole apparatus.√

(b) What value of h (not equal to b) would make this difference
equal to zero?

√

16 (a) In the photo of the vacuum tube apparatus in figure
24.2.2 on p. 703, infer the direction of the magnetic field from the
motion of the electron beam. (b) Based on your answer to a, find
the direction of the currents in the coils. (c) What direction are
the electrons in the coils going? (d) Are the currents in the coils
repelling or attracting the currents consisting of the beam inside the
tube? Compare with figure ai on p. 691. . Solution, p. 1034

17 In the photo of the vacuum tube apparatus in section 24.2,
an approximately uniform magnetic field caused circular motion. Is
there any other possibility besides a circle? What can happen in
general? ?
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18 This problem is now problem 16 on p. 665.

19 In section 24.2 I gave an equation for the magnetic field in
the interior of a solenoid, but that equation doesn’t give the right
answer near the mouths or on the outside. Although in general the
computation of the field in these other regions is complicated, it is
possible to find a precise, simple result for the field at the center of
one of the mouths, using only symmetry and vector addition. What
is it? . Solution, p. 1034 ?

20 Prove that in an electromagnetic plane wave, half the energy
is in the electric field and half in the magnetic field.

21 As promised in section 24.7, this problem will lead you
through the steps of finding an equation for the combination of
velocities in relativity, generalizing the numerical result found in
problem 1. Suppose that A moves relative to B at velocity u, and
B relative to C at v. We want to find A’s velocity w relative to
C, in terms of u and v. Suppose that A emits light with a certain
frequency. This will be observed by B with a Doppler shift D(u).
C detects a further shift of D(v) relative to B. We therefore expect
the Doppler shifts to multiply, D(w) = D(u)D(v), and this provides
an implicit rule for determining w if u and v are known. (a) Using
the expression for D given in section 24.7.1, write down an equation
relating u, v, and w. (b) Solve for w in terms of u and v. (c) Show
that your answer to part b satisfies the correspondence principle.

. Solution, p. 1034
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Problem 22.

22 On p. 719, we defined a quantity t2 − x2, which is often
referred to as the spacetime interval. Let’s notate it as I (cursive
letter “I”). The only reason this quantity is interesting is that it
stays the same in all frames of reference, but to define it, we first
had to pick a frame of reference in order to define an x−t plane, and
then turn around and prove that it didn’t matter what frame had
been chosen. It might thus be nicer simply to define it as the square
of the gliding-clock time, in the case where B can be reached from
A. Since this definition never refers to any coordinates or frame of
reference, we know automatically that it is frame-independent. In
this case where I > 0, we say that the relationship between A and
B is timelike; there is enough time for cause and effect to propagate
between A and B. An interval I < 0 is called spacelike.

In the spacelike case, we can define I using rulers, as on p. 720,
but it’s awkward to have to introduce an entirely new measuring
instrument in order to complete the definition. Geroch2 suggests
a cute alternative in which this case as well can be treated using
clocks. Let observer O move inertially (i.e., without accelerating),
and let her initial position and state of motion be chosen such that
she will be present at event A. Before A, she emits a ray of light,
choosing to emit it at the correct time and in the correct direction
so that it will reach B. At B, we arrange to have the ray reflected
so that O can receive the reflection at some later time. Let t1 be
the time elapsed on O’s clock from emission of the first ray until
event A, and let t2 be the time from A until she receives the second
ray. The goal of this problem is to show that if we define I as
−t1t2, we obtain the same result as with the previous definition.
Since t1 are t2 are simply clock readings, not coordinates defined
in an arbitrary frame of reference, this definition is automatically
frame-independent.

(a) Show that I , as originally defined on p. 719, has the same units
as the expression −t1t2.
(b) Pick an event in the x− t plane, and sketch the regions that are
timelike and spacelike in relation to it.
(c) The special case of I = 0 is called a lightlike interval. Such
events lie on a cone in the diagram drawn in part b, and this cone
is called the light cone. Verify that the two definitions of I agree
on the light cone.
(d) Prove that the two definitions agree on I in the spacelike case.
(e) What goes wrong if O doesn’t move inertially?

23 Can a field that is purely electrical in one frame of reference
be purely magnetic in some other frame? Use figure e on p. 699.

2Robert Geroch, General Relativity from A to B, University of Chicago Press,
1978
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Exercise 24A: Polarization
Apparatus:

calcite (Iceland spar) crystal

polaroid film

1. Lay the crystal on a piece of paper that has print on it. You will observe a double image.
See what happens if you rotate the crystal.

Evidently the crystal does something to the light that passes through it on the way from the
page to your eye. One beam of light enters the crystal from underneath, but two emerge from
the top; by conservation of energy the energy of the original beam must be shared between
them. Consider the following three possible interpretations of what you have observed:

(a) The two new beams differ from each other, and from the original beam, only in energy.
Their other properties are the same.

(b) The crystal adds to the light some mysterious new property (not energy), which comes in
two flavors, X and Y. Ordinary light doesn’t have any of either. One beam that emerges from
the crystal has some X added to it, and the other beam has Y.

(c) There is some mysterious new property that is possessed by all light. It comes in two flavors,
X and Y, and most ordinary light sources make an equal mixture of type X and type Y light.
The original beam is an even mixture of both types, and this mixture is then split up by the
crystal into the two purified forms.

In parts 2 and 3 you’ll make observations that will allow you to figure out which of these is
correct.

2. Now place a polaroid film over the crystal and see what you observe. What happens when
you rotate the film in the horizontal plane? Does this observation allow you to rule out any of
the three interpretations?

3. Now put the polaroid film under the crystal and try the same thing. Putting together all
your observations, which interpretation do you think is correct?

4. Look at an overhead light fixture through the polaroid, and try rotating it. What do you
observe? What does this tell you about the light emitted by the lightbulb?

5. Now position yourself with your head under a light fixture and directly over a shiny surface,
such as a glossy tabletop. You’ll see the lamp’s reflection, and the light coming from the lamp
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to your eye will have undergone a reflection through roughly a 180-degree angle (i.e. it very
nearly reversed its direction). Observe this reflection through the polaroid, and try rotating it.
Finally, position yourself so that you are seeing glancing reflections, and try the same thing.
Summarize what happens to light with properties X and Y when it is reflected. (This is the
principle behind polarizing sunglasses.)
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Exercise 24B: Events and spacetime
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Chapter 25

Capacitance and
Inductance

The long road leading from the light bulb to the computer started
with one very important step: the introduction of feedback into
electronic circuits. Although the principle of feedback has been un-
derstood and and applied to mechanical systems for centuries, and
to electrical ones since the early twentieth century, for most of us
the word evokes an image of Jimi Hendrix intentionally creating
earsplitting screeches, or of the school principal doing the same in-
advertently in the auditorium. In the guitar example, the musician
stands in front of the amp and turns it up so high that the sound
waves coming from the speaker come back to the guitar string and
make it shake harder. This is an example of positive feedback: the
harder the string vibrates, the stronger the sound waves, and the
stronger the sound waves, the harder the string vibrates. The only
limit is the power-handling ability of the amplifier.

Negative feedback is equally important. Your thermostat, for exam-
ple, provides negative feedback by kicking the heater off when the
house gets warm enough, and by firing it up again when it gets too
cold. This causes the house’s temperature to oscillate back and forth
within a certain range. Just as out-of-control exponential freak-outs
are a characteristic behavior of positive-feedback systems, oscillation
is typical in cases of negative feedback. You have already studied
negative feedback extensively in ch. 17 in the case of a mechanical
system, although we didn’t call it that.

25.1 Capacitance and inductance
In a mechanical oscillation, energy is exchanged repetitively between
potential and kinetic forms, and may also be siphoned off in the
form of heat dissipated by friction. In an electrical circuit, resistors
are the circuit elements that dissipate heat. What are the electrical
analogs of storing and releasing the potential and kinetic energy of a
vibrating object? When you think of energy storage in an electrical
circuit, you are likely to imagine a battery, but even rechargeable
batteries can only go through 10 or 100 cycles before they wear out.
In addition, batteries are not able to exchange energy on a short
enough time scale for most applications. The circuit in a musical
synthesizer may be called upon to oscillate thousands of times a
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a / The symbol for a capaci-
tor.

b / Some capacitors.

c / Two common geometries
for inductors. The cylindrical
shape on the left is called a
solenoid.

d / The symbol for an induc-
tor.

e / Some inductors.

second, and your microwave oven operates at gigahertz frequencies.
Instead of batteries, we generally use capacitors and inductors to
store energy in oscillating circuits. Capacitors, which you’ve already
encountered, store energy in electric fields. An inductor does the
same with magnetic fields.

Capacitors

A capacitor’s energy exists in its surrounding electric fields. It is
proportional to the square of the field strength, which is proportional
to the charges on the plates. If we assume the plates carry charges
that are the same in magnitude, +q and −q, then the energy stored
in the capacitor must be proportional to q2. For historical reasons,
we write the constant of proportionality as 1/2C,

EC =
1

2C
q2.

The constant C is a geometrical property of the capacitor, called its
capacitance.

Based on this definition, the units of capacitance must be coulombs
squared per joule, and this combination is more conveniently abbre-
viated as the farad, 1 F = 1 C2/J. “Condenser” is a less formal
term for a capacitor. Note that the labels printed on capacitors
often use MF to mean µF, even though MF should really be the
symbol for megafarads, not microfarads. Confusion doesn’t result
from this nonstandard notation, since picofarad and microfarad val-
ues are the most common, and it wasn’t until the 1990’s that even
millifarad and farad values became available in practical physical
sizes. Figure a shows the symbol used in schematics to represent a
capacitor.

Inductors

Any current will create a magnetic field, so in fact every current-
carrying wire in a circuit acts as an inductor! However, this type
of “stray” inductance is typically negligible, just as we can usually
ignore the stray resistance of our wires and only take into account
the actual resistors. To store any appreciable amount of magnetic
energy, one usually uses a coil of wire designed specifically to be
an inductor. All the loops’ contribution to the magnetic field add
together to make a stronger field. Unlike capacitors and resistors,
practical inductors are easy to make by hand. One can for instance
spool some wire around a short wooden dowel, put the spool inside
a plastic aspirin bottle with the leads hanging out, and fill the bottle
with epoxy to make the whole thing rugged. An inductor like this,
in the form cylindrical coil of wire, is called a solenoid, c, and a
stylized solenoid, d, is the symbol used to represent an inductor in
a circuit regardless of its actual geometry.

How much energy does an inductor store? The energy density is
proportional to the square of the magnetic field strength, which is
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f / Inductances in series add.

g / Capacitances in parallel
add.

h / A variable capacitor.

in turn proportional to the current flowing through the coiled wire,
so the energy stored in the inductor must be proportional to I2. We
write L/2 for the constant of proportionality, giving

EL =
L

2
I2.

As in the definition of capacitance, we have a factor of 1/2, which
is purely a matter of definition. The quantity L is called the induc-
tance of the inductor, and we see that its units must be joules per
ampere squared. This clumsy combination of units is more com-
monly abbreviated as the henry, 1 henry = 1 J/A2. Rather than
memorizing this definition, it makes more sense to derive it when
needed from the definition of inductance. Many people know in-
ductors simply as “coils,” or “chokes,” and will not understand you
if you refer to an “inductor,” but they will still refer to L as the
“inductance,” not the “coilance” or “chokeance!”

Identical inductances in series example 1
If two inductors are placed in series, any current that passes
through the combined double inductor must pass through both
its parts. Thus by the definition of inductance, the inductance is
doubled as well. In general, inductances in series add, just like
resistances. The same kind of reasoning also shows that the in-
ductance of a solenoid is approximately proportional to its length,
assuming the number of turns per unit length is kept constant.

Identical capacitances in parallel example 2
When two identical capacitances are placed in parallel, any charge
deposited at the terminals of the combined double capacitor will
divide itself evenly between the two parts. The electric fields sur-
rounding each capacitor will be half the intensity, and therefore
store one quarter the energy. Two capacitors, each storing one
quarter the energy, give half the total energy storage. Since ca-
pacitance is inversely related to energy storage, this implies that
identical capacitances in parallel give double the capacitance. In
general, capacitances in parallel add. This is unlike the behav-
ior of inductors and resistors, for which series configurations give
addition.

This is consistent with the fact that the capacitance of a single
parallel-plate capacitor proportional to the area of the plates. If
we have two parallel-plate capacitors, and we combine them in
parallel and bring them very close together side by side, we have
produced a single capacitor with plates of double the area, and it
has approximately double the capacitance.

Inductances in parallel and capacitances in series are explored in
homework problems 4 and 6.

A variable capacitor example 3
Figure h/1 shows the construction of a variable capacitor out of
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i / Discussion question B.

j / A series LRC circuit.

k / A mechanical analogy for
the LRC circuit.

two parallel semicircles of metal. One plate is fixed, while the
other can be rotated about their common axis with a knob. The
opposite charges on the two plates are attracted to one another,
and therefore tend to gather in the overlapping area. This over-
lapping area, then, is the only area that effectively contributes to
the capacitance, and turning the knob changes the capacitance.
The simple design can only provide very small capacitance val-
ues, so in practice one usually uses a bank of capacitors, wired
in parallel, with all the moving parts on the same shaft.

Discussion questions

A Suppose that two parallel-plate capacitors are wired in parallel, and
are placed very close together, side by side, so that their fields overlap.
Will the resulting capacitance be too small, or too big? Could you twist
the circuit into a different shape and make the effect be the other way
around, or make the effect vanish? How about the case of two inductors
in series?

B Most practical capacitors do not have an air gap or vacuum gap
between the plates; instead, they have an insulating substance called a
dielectric. We can think of the molecules in this substance as dipoles that
are free to rotate (at least a little), but that are not free to move around,
since it is a solid. The figure shows a highly stylized and unrealistic way
of visualizing this. We imagine that all the dipoles are intially turned side-
ways, (1), and that as the capacitor is charged, they all respond by turning
through a certain angle, (2). (In reality, the scene might be much more
random, and the alignment effect much weaker.)

For simplicity, imagine inserting just one electric dipole into the vacuum
gap. For a given amount of charge on the plates, how does this affect
the amount of energy stored in the electric field? How does this affect the
capacitance?

Now redo the analysis in terms of the mechanical work needed in order
to charge up the plates.

25.2 Oscillations
Figure j shows the simplest possible oscillating circuit. For any use-
ful application it would actually need to include more components.
For example, if it was a radio tuner, it would need to be connected to
an antenna and an amplifier. Nevertheless, all the essential physics
is there.

We can analyze it without any sweat or tears whatsoever, simply by
constructing an analogy with a mechanical system. In a mechanical
oscillator, k, we have two forms of stored energy,

Espring =
1

2
kx2 (1)

K =
1

2
mv2. (2)

In the case of a mechanical oscillator, we have usually assumed a
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friction force of the form that turns out to give the nicest mathe-
matical results, F = −bv. In the circuit, the dissipation of energy
into heat occurs via the resistor, with no mechanical force involved,
so in order to make the analogy, we need to restate the role of the
friction force in terms of energy. The power dissipated by friction
equals the mechanical work it does in a time interval ∆t, divided by
∆t, P = W/∆t = F∆x/∆t = Fv = −bv2, so

rate of heat dissipation = −bv2. (3)

self-check A
Equation (1) has x squared, and equations (2) and (3) have v squared.
Because they’re squared, the results don’t depend on whether these
variables are positive or negative. Does this make physical sense? .

Answer, p. 1044

In the circuit, the stored forms of energy are

EC =
1

2C
q2 (1′)

EL =
1

2
LI2, (2′)

and the rate of heat dissipation in the resistor is

rate of heat dissipation = −RI2. (3′)

Comparing the two sets of equations, we first form analogies between
quantities that represent the state of the system at some moment
in time:

x↔ q

v ↔ I

self-check B
How is v related mathematically to x? How is I connected to q? Are the
two relationships analogous? . Answer, p. 1044

Next we relate the ones that describe the system’s permanent char-
acteristics:

k ↔ 1/C

m↔ L

b↔ R

Since the mechanical system naturally oscillates with a period T =
2π
√
m/k , we can immediately solve the electrical version by anal-

ogy, giving
T = 2π

√
LC.
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Rather than period, T , and frequency, f , it turns out to be more
convenient if we work with the quantity ω = 2πf , which can be
interpreted as the number of radians per second. Then

ω =
1√
LC

.

Since the resistance R is analogous to b in the mechanical case,
we find that the Q (quality factor, not charge) of the resonance
is inversely proportional to R, and the width of the resonance is
directly proportional to R.

Tuning a radio receiver example 4
A radio receiver uses this kind of circuit to pick out the desired
station. Since the receiver resonates at a particular frequency,
stations whose frequencies are far off will not excite any response
in the circuit. The value of R has to be small enough so that only
one station at a time is picked up, but big enough so that the
tuner isn’t too touchy. The resonant frequency can be tuned by
adjusting either L or C, but variable capacitors are easier to build
than variable inductors.

A numerical calculation example 5
The phone company sends more than one conversation at a time
over the same wire, which is accomplished by shifting each voice
signal into different range of frequencies during transmission. The
number of signals per wire can be maximized by making each
range of frequencies (known as a bandwidth) as small as possi-
ble. It turns out that only a relatively narrow range of frequencies
is necessary in order to make a human voice intelligible, so the
phone company filters out all the extreme highs and lows. (This is
why your phone voice sounds different from your normal voice.)

. If the filter consists of an LRC circuit with a broad resonance
centered around 1.0 kHz, and the capacitor is 1 µF (microfarad),
what inductance value must be used?

. Solving for L, we have

L =
1

Cω2

=
1

(10−6 F)(2π× 103 s−1)2

= 2.5× 10−3 F−1s2

Checking that these really are the same units as henries is a little
tedious, but it builds character:

F−1s2 = (C2/J)−1s2

= J · C−2s2

= J/A2

= H
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The result is 25 mH (millihenries).

This is actually quite a large inductance value, and would require
a big, heavy, expensive coil. In fact, there is a trick for making
this kind of circuit small and cheap. There is a kind of silicon
chip called an op-amp, which, among other things, can be used
to simulate the behavior of an inductor. The main limitation of the
op-amp is that it is restricted to low-power applications.

25.3 Voltage and current
What is physically happening in one of these oscillating circuits?
Let’s first look at the mechanical case, and then draw the analogy
to the circuit. For simplicity, let’s ignore the existence of damping,
so there is no friction in the mechanical oscillator, and no resistance
in the electrical one.

Suppose we take the mechanical oscillator and pull the mass away
from equilibrium, then release it. Since friction tends to resist the
spring’s force, we might naively expect that having zero friction
would allow the mass to leap instantaneously to the equilibrium
position. This can’t happen, however, because the mass would have
to have infinite velocity in order to make such an instantaneous leap.
Infinite velocity would require infinite kinetic energy, but the only
kind of energy that is available for conversion to kinetic is the energy
stored in the spring, and that is finite, not infinite. At each step on
its way back to equilibrium, the mass’s velocity is controlled exactly
by the amount of the spring’s energy that has so far been converted
into kinetic energy. After the mass reaches equilibrium, it overshoots
due to its own momentum. It performs identical oscillations on both
sides of equilibrium, and it never loses amplitude because friction is
not available to convert mechanical energy into heat.

Now with the electrical oscillator, the analog of position is charge.
Pulling the mass away from equilibrium is like depositing charges
+q and −q on the plates of the capacitor. Since resistance tends
to resist the flow of charge, we might imagine that with no friction
present, the charge would instantly flow through the inductor (which
is, after all, just a piece of wire), and the capacitor would discharge
instantly. However, such an instant discharge is impossible, because
it would require infinite current for one instant. Infinite current
would create infinite magnetic fields surrounding the inductor, and
these fields would have infinite energy. Instead, the rate of flow
of current is controlled at each instant by the relationship between
the amount of energy stored in the magnetic field and the amount of
current that must exist in order to have that strong a field. After the
capacitor reaches q = 0, it overshoots. The circuit has its own kind
of electrical “inertia,” because if charge was to stop flowing, there
would have to be zero current through the inductor. But the current
in the inductor must be related to the amount of energy stored in
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l / The inductor releases en-
ergy and gives it to the black box.

its magnetic fields. When the capacitor is at q = 0, all the circuit’s
energy is in the inductor, so it must therefore have strong magnetic
fields surrounding it and quite a bit of current going through it.

The only thing that might seem spooky here is that we used to
speak as if the current in the inductor caused the magnetic field,
but now it sounds as if the field causes the current. Actually this is
symptomatic of the elusive nature of cause and effect in physics. It’s
equally valid to think of the cause and effect relationship in either
way. This may seem unsatisfying, however, and for example does not
really get at the question of what brings about a voltage difference
across the resistor (in the case where the resistance is finite); there
must be such a voltage difference, because without one, Ohm’s law
would predict zero current through the resistor.

Voltage, then, is what is really missing from our story so far.

Let’s start by studying the voltage across a capacitor. Voltage is
electrical potential energy per unit charge, so the voltage difference
between the two plates of the capacitor is related to the amount by
which its energy would increase if we increased the absolute values
of the charges on the plates from q to q + ∆q:

VC = (Eq+∆q − Eq)/∆q

=
∆EC
∆q

=
∆

∆q

(
1

2C
q2

)
=

q

C

Many books use this as the definition of capacitance. This equation,
by the way, probably explains the historical reason why C was de-
fined so that the energy was inversely proportional to C for a given
value of q: the people who invented the definition were thinking of a
capacitor as a device for storing charge rather than energy, and the
amount of charge stored for a fixed voltage (the charge “capacity”)
is proportional to C.

In the case of an inductor, we know that if there is a steady, con-
stant current flowing through it, then the magnetic field is constant,
and so is the amount of energy stored; no energy is being exchanged
between the inductor and any other circuit element. But what if
the current is changing? The magnetic field is proportional to the
current, so a change in one implies a change in the other. For con-
creteness, let’s imagine that the magnetic field and the current are
both decreasing. The energy stored in the magnetic field is there-
fore decreasing, and by conservation of energy, this energy can’t just
go away — some other circuit element must be taking energy from
the inductor. The simplest example, shown in figure l, is a series
circuit consisting of the inductor plus one other circuit element. It
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doesn’t matter what this other circuit element is, so we just call it a
black box, but if you like, we can think of it as a resistor, in which
case the energy lost by the inductor is being turned into heat by
the resistor. The junction rule tells us that both circuit elements
have the same current through them, so I could refer to either one,
and likewise the loop rule tells us Vinductor + Vblack box = 0, so the
two voltage drops have the same absolute value, which we can refer
to as V . Whatever the black box is, the rate at which it is taking
energy from the inductor is given by |P | = |IV |, so

|IV | =
∣∣∣∣∆EL∆t

∣∣∣∣
=

∣∣∣∣ ∆

∆t

(
1

2
LI2

)∣∣∣∣
=

∣∣∣∣LI∆I

∆t

∣∣∣∣ ,
or

|V | =
∣∣∣∣L∆I

∆t

∣∣∣∣ ,
which in many books is taken to be the definition of inductance.
The direction of the voltage drop (plus or minus sign) is such that
the inductor resists the change in current.

There’s one very intriguing thing about this result. Suppose, for
concreteness, that the black box in figure l is a resistor, and that
the inductor’s energy is decreasing, and being converted into heat
in the resistor. The voltage drop across the resistor indicates that it
has an electric field across it, which is driving the current. But where
is this electric field coming from? There are no charges anywhere
that could be creating it! What we’ve discovered is one special case
of a more general principle, the principle of induction: a changing
magnetic field creates an electric field, which is in addition to any
electric field created by charges. (The reverse is also true: any elec-
tric field that changes over time creates a magnetic field.) Induction
forms the basis for such technologies as the generator and the trans-
former, and ultimately it leads to the existence of light, which is a
wave pattern in the electric and magnetic fields. These are all topics
for chapter 24, but it’s truly remarkable that we could come to this
conclusion without yet having learned any details about magnetism.

The cartoons in figure m compares electric fields made by charges,
1, to electric fields made by changing magnetic fields, 2-3. In m/1,
two physicists are in a room whose ceiling is positively charged and
whose floor is negatively charged. The physicist on the bottom

Section 25.3 Voltage and current 743



m / Electric fields made by charges, 1, and by changing magnetic fields, 2 and 3.

throws a positively charged bowling ball into the curved pipe. The
physicist at the top uses a radar gun to measure the speed of the ball
as it comes out of the pipe. They find that the ball has slowed down
by the time it gets to the top. By measuring the change in the ball’s
kinetic energy, the two physicists are acting just like a voltmeter.
They conclude that the top of the tube is at a higher voltage than
the bottom of the pipe. A difference in voltage indicates an electric
field, and this field is clearly being caused by the charges in the floor
and ceiling.

In m/2, there are no charges anywhere in the room except for the
charged bowling ball. Moving charges make magnetic fields, so there
is a magnetic field surrounding the helical pipe while the ball is
moving through it. A magnetic field has been created where there
was none before, and that field has energy. Where could the energy
have come from? It can only have come from the ball itself, so
the ball must be losing kinetic energy. The two physicists working
together are again acting as a voltmeter, and again they conclude
that there is a voltage difference between the top and bottom of
the pipe. This indicates an electric field, but this electric field can’t
have been created by any charges, because there aren’t any in the
room. This electric field was created by the change in the magnetic
field.

The bottom physicist keeps on throwing balls into the pipe, until the
pipe is full of balls, m/3, and finally a steady current is established.
While the pipe was filling up with balls, the energy in the magnetic
field was steadily increasing, and that energy was being stolen from
the balls’ kinetic energy. But once a steady current is established,
the energy in the magnetic field is no longer changing. The balls
no longer have to give up energy in order to build up the field, and
the physicist at the top finds that the balls are exiting the pipe at
full speed again. There is no voltage difference any more. Although
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n / An RC circuit.

there is a current, ∆I/∆t is zero.

Discussion question

A What happens when the physicist at the bottom in figure m/3 starts
getting tired, and decreases the current?

25.4 Decay
Up until now I’ve soft-pedaled the fact that by changing the char-
acteristics of an oscillator, it is possible to produce non-oscillatory
behavior. For example, imagine taking the mass-on-a-spring system
and making the spring weaker and weaker. In the limit of small
k, it’s as though there was no spring whatsoever, and the behavior
of the system is that if you kick the mass, it simply starts slowing
down. For friction proportional to v, as we’ve been assuming, the re-
sult is that the velocity approaches zero, but never actually reaches
zero. This is unrealistic for the mechanical oscillator, which will not
have vanishing friction at low velocities, but it is quite realistic in
the case of an electrical circuit, for which the voltage drop across the
resistor really does approach zero as the current approaches zero.

Electrical circuits can exhibit all the same behavior. For simplicity
we will analyze only the cases of LRC circuits with L = 0 or C = 0.

The RC circuit

We first analyze the RC circuit, n. In reality one would have to
“kick” the circuit, for example by briefly inserting a battery, in
order to get any interesting behavior. We start with Ohm’s law and
the equation for the voltage across a capacitor:

VR = IR

VC = q/C

The loop rule tells us

VR + VC = 0,

and combining the three equations results in a relationship between
q and I:

I = − 1

RC
q

The negative sign tells us that the current tends to reduce the charge
on the capacitor, i.e. to discharge it. It makes sense that the current
is proportional to q: if q is large, then the attractive forces between
the +q and −q charges on the plates of the capacitor are large,
and charges will flow more quickly through the resistor in order to
reunite. If there was zero charge on the capacitor plates, there would
be no reason for current to flow. Since amperes, the unit of current,
are the same as coulombs per second, it appears that the quantity
RC must have units of seconds, and you can check for yourself that
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o / Over a time interval RC,
the charge on the capacitor is
reduced by a factor of e.

p / An RL circuit.

this is correct. RC is therefore referred to as the time constant of
the circuit.

How exactly do I and q vary with time? Rewriting I as ∆q/∆t, we
have

∆q

∆t
= − 1

RC
q.

This equation describes a function q(t) that always gets smaller over
time, and whose rate of decrease is big at first, when q is big, but
gets smaller and smaller as q approaches zero. As an example of
this type of mathematical behavior, we could imagine a man who
has 1024 weeds in his backyard, and resolves to pull out half of
them every day. On the first day, he pulls out half, and has 512
left. The next day, he pulls out half of the remaining ones, leaving
256. The sequence continues exponentially: 128, 64, 32, 16, 8, 4, 2,
1. Returning to our electrical example, the function q(t) apparently
needs to be an exponential, which we can write in the form aebt,
where e = 2.718... is the base of natural logarithms. We could have
written it with base 2, as in the story of the weeds, rather than
base e, but the math later on turns out simpler if we use e. It
doesn’t make sense to plug a number that has units into a function
like an exponential, so bt must be unitless, and b must therefore
have units of inverse seconds. The number b quantifies how fast the
exponential decay is. The only physical parameters of the circuit
on which b could possibly depend are R and C, and the only way
to put units of ohms and farads together to make units of inverse
seconds is by computing 1/RC. Well, actually we could use 7/RC
or 3π/RC, or any other unitless number divided by RC, but this
is where the use of base e comes in handy: for base e, it turns out
that the correct unitless constant is 1. Thus our solution is

q = qo exp

(
− t

RC

)
.

The number RC, with units of seconds, is called the RC time con-
stant of the circuit, and it tells us how long we have to wait if we
want the charge to fall off by a factor of 1/e.

The RL circuit

The RL circuit, p, can be attacked by similar methods, and it can
easily be shown that it gives

I = Io exp

(
−R
L
t

)
.

The RL time constant equals L/R.
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Death by solenoid; spark plugs example 6
When we suddenly break an RL circuit, what will happen? It might
seem that we’re faced with a paradox, since we only have two
forms of energy, magnetic energy and heat, and if the current
stops suddenly, the magnetic field must collapse suddenly. But
where does the lost magnetic energy go? It can’t go into resistive
heating of the resistor, because the circuit has now been broken,
and current can’t flow!

The way out of this conundrum is to recognize that the open gap
in the circuit has a resistance which is large, but not infinite. This
large resistance causes the RL time constant L/R to be very
small. The current thus continues to flow for a very brief time,
and flows straight across the air gap where the circuit has been
opened. In other words, there is a spark!

We can determine based on several different lines of reasoning
that the voltage drop from one end of the spark to the other must
be very large. First, the air’s resistance is large, so V = IR re-
quires a large voltage. We can also reason that all the energy
in the magnetic field is being dissipated in a short time, so the
power dissipated in the spark, P = IV , is large, and this requires
a large value of V . (I isn’t large — it is decreasing from its initial
value.) Yet a third way to reach the same result is to consider the
equation VL = ∆I/∆t : since the time constant is short, the time
derivative ∆I/∆t is large.

This is exactly how a car’s spark plugs work. Another application
is to electrical safety: it can be dangerous to break an inductive
circuit suddenly, because so much energy is released in a short
time. There is also no guarantee that the spark will discharge
across the air gap; it might go through your body instead, since
your body might have a lower resistance.

Discussion question

A A gopher gnaws through one of the wires in the DC lighting system
in your front yard, and the lights turn off. At the instant when the circuit
becomes open, we can consider the bare ends of the wire to be like the
plates of a capacitor, with an air gap (or gopher gap) between them. What
kind of capacitance value are we talking about here? What would this tell
you about the RC time constant?
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q / In a capacitor, the current
is 90◦ ahead of the voltage in
phase.

25.5 Impedance
So far we have been thinking in terms of the free oscillations of a
circuit. This is like a mechanical oscillator that has been kicked but
then left to oscillate on its own without any external force to keep
the vibrations from dying out. Suppose an LRC circuit is driven
with a sinusoidally varying voltage, such as will occur when a radio
tuner is hooked up to a receiving antenna. We know that a current
will flow in the circuit, and we know that there will be resonant
behavior, but it is not necessarily simple to relate current to voltage
in the most general case. Let’s start instead with the special cases
of LRC circuits consisting of only a resistance, only a capacitance,
or only an inductance. We are interested only in the steady-state
response.

The purely resistive case is easy. Ohm’s law gives

I =
V

R
.

In the purely capacitive case, the relation V = q/C lets us calculate

I =
∆q

∆t

= C
∆V

∆t
.

If the voltage varies as, for example, V (t) = Ṽ sin(ωt), then it can be
shown using calculus that the current will be I(t) = ωCṼ cos(ωt),
so the maximum current is Ĩ = ωCṼ . By analogy with Ohm’s law,
we can then write

Ĩ =
Ṽ

ZC
,

where the quantity

ZC =
1

ωC
, [impedance of a capacitor]

having units of ohms, is called the impedance of the capacitor at
this frequency. Note that it is only the maximum current, Ĩ, that
is proportional to the maximum voltage, Ṽ , so the capacitor is not
behaving like a resistor. The maxima of V and I occur at differ-
ent times, as shown in figure q. It makes sense that the impedance
becomes infinite at zero frequency. Zero frequency means that it
would take an infinite time before the voltage would change by any
amount. In other words, this is like a situation where the capaci-
tor has been connected across the terminals of a battery and been
allowed to settle down to a state where there is constant charge
on both terminals. Since the electric fields between the plates are
constant, there is no energy being added to or taken out of the
field. A capacitor that can’t exchange energy with any other circuit
component is nothing more than a broken (open) circuit.
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r / The current through an in-
ductor lags behind the voltage by
a phase angle of 90◦.

self-check C
Why can’t a capacitor have its impedance printed on it along with its
capacitance? . Answer, p. 1044

Similar math gives

ZL = ωL [impedance of an inductor]

for an inductor. It makes sense that the inductor has lower impedance
at lower frequencies, since at zero frequency there is no change in
the magnetic field over time. No energy is added to or released
from the magnetic field, so there are no induction effects, and the
inductor acts just like a piece of wire with negligible resistance. The
term “choke” for an inductor refers to its ability to “choke out” high
frequencies.

The phase relationships shown in figures q and r can be remembered
using my own mnemonic, “eVIL,” which shows that the voltage (V)
leads the current (I) in an inductive circuit, while the opposite is
true in a capacitive one. A more traditional mnemonic is “ELI the
ICE man,” which uses the notation E for emf, a concept closely
related to voltage.

Low-pass and high-pass filters example 7
An LRC circuit only responds to a certain range (band) of fre-
quencies centered around its resonant frequency. As a filter, this
is known as a bandpass filter. If you turn down both the bass and
the treble on your stereo, you have created a bandpass filter.

To create a high-pass or low-pass filter, we only need to insert
a capacitor or inductor, respectively, in series. For instance, a
very basic surge protector for a computer could be constructed
by inserting an inductor in series with the computer. The desired
60 Hz power from the wall is relatively low in frequency, while the
surges that can damage your computer show much more rapid
time variation. Even if the surges are not sinusoidal signals, we
can think of a rapid “spike” qualitatively as if it was very high in
frequency — like a high-frequency sine wave, it changes very
rapidly.

Inductors tend to be big, heavy, expensive circuit elements, so a
simple surge protector would be more likely to consist of a capac-
itor in parallel with the computer. (In fact one would normally just
connect one side of the power circuit to ground via a capacitor.)
The capacitor has a very high impedance at the low frequency of
the desired 60 Hz signal, so it siphons off very little of the current.
But for a high-frequency signal, the capacitor’s impedance is very
small, and it acts like a zero-impedance, easy path into which the
current is diverted.

The main things to be careful about with impedance are that (1) the
concept only applies to a circuit that is being driven sinusoidally, (2)
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the impedance of an inductor or capacitor is frequency-dependent,
and (3) impedances in parallel and series don’t combine according
to the same rules as resistances. It is possible, however, to get get
around the third limitation, as discussed in subsection .

Discussion questions

A Figure q on page 748 shows the voltage and current for a capacitor.
Sketch the q-t graph, and use it to give a physical explanation of the
phase relationship between the voltage and current. For example, why is
the current zero when the voltage is at a maximum or minimum?

B Relate the features of the graph in figure r on page 749 to the story
told in cartoons in figure m/2-3 on page 744.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Suppose that an FM radio tuner for the US commercial broad-
cast band (88-108 MHz) consists of a series LRC circuit. If the in-
ductor is 1.0 µH, what range of capacitances should the variable
capacitor be able to provide?

√

2 (a) Show that the equation VL = L∆I/∆t has the right units.
(b) Verify that RC has units of time.
(c) Verify that L/R has units of time.

3 Find the energy stored in a capacitor in terms of its capacitance
and the voltage difference across it.

√

4 Find the inductance of two identical inductors in parallel.

5 The wires themselves in a circuit can have resistance, induc-
tance, and capacitance. Would “stray” inductance and capacitance
be most important for low-frequency or for high-frequency circuits?
For simplicity, assume that the wires act like they’re in series with
an inductor or capacitor.

6 (a) Find the capacitance of two identical capacitors in series.
(b) Based on this, how would you expect the capacitance of a
parallel-plate capacitor to depend on the distance between the plates?

7 Find the capacitance of the surface of the earth, assuming
there is an outer spherical “plate” at infinity. (In reality, this outer
plate would just represent some distant part of the universe to which
we carried away some of the earth’s charge in order to charge up the
earth.)

√

8 Starting from the relation V = L∆I/∆t for the voltage dif-
ference across an inductor, show that an inductor has an impedance
equal to Lω.
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a / Marie and Pierre Curie were
the first to purify radium in signifi-
cant quantities. Radium’s intense
radioactivity made possible the
experiments that led to the mod-
ern planetary model of the atom,
in which electrons orbit a nucleus
made of protons and neutrons.

Chapter 26

The Atom and E=mc2

26.1 Atoms
I was brought up to look at the atom as a nice, hard fellow, red or
grey in color according to taste. Rutherford

The chemical elements

How would one find out what types of atoms there were? Today,
it doesn’t seem like it should have been very difficult to work out
an experimental program to classify the types of atoms. For each
type of atom, there should be a corresponding element, i.e., a pure
substance made out of nothing but that type of atom. Atoms are
supposed to be unsplittable, so a substance like milk could not pos-
sibly be elemental, since churning it vigorously causes it to split
up into two separate substances: butter and whey. Similarly, rust
could not be an element, because it can be made by combining two
substances: iron and oxygen. Despite its apparent reasonableness,
no such program was carried out until the eighteenth century.

By 1900, however, chemists had done a reasonably good job of find-

753



mHe

mH
= 3.97

mNe

mH
= 20.01

mSc

mH
= 44.60

b / Examples of masses of
atoms compared to that of hydro-
gen. Note how some, but not all,
are close to integers.

ing out what the elements were. They also had determined the
ratios of the different atoms’ masses fairly accurately. A typical
technique would be to measure how many grams of sodium (Na)
would combine with one gram of chlorine (Cl) to make salt (NaCl).
(This assumes you’ve already decided based on other evidence that
salt consisted of equal numbers of Na and Cl atoms.) The masses of
individual atoms, as opposed to the mass ratios, were known only
to within a few orders of magnitude based on indirect evidence, and
plenty of physicists and chemists denied that individual atoms were
anything more than convenient symbols.

The following table gives the atomic masses of all the elements, on
a standard scale in which the mass of hydrogen is very close to 1.0.
The absolute calibration of the whole scale was only very roughly
known for a long time, but was eventually tied down, with the mass
of a hydrogen atom being determined to be about 1.7× 10−27 kg.

Ag 107.9 Eu 152.0 Mo 95.9 Sc 45.0
Al 27.0 F 19.0 N 14.0 Se 79.0
Ar 39.9 Fe 55.8 Na 23.0 Si 28.1
As 74.9 Ga 69.7 Nb 92.9 Sn 118.7
Au 197.0 Gd 157.2 Nd 144.2 Sr 87.6
B 10.8 Ge 72.6 Ne 20.2 Ta 180.9
Ba 137.3 H 1.0 Ni 58.7 Tb 158.9
Be 9.0 He 4.0 O 16.0 Te 127.6
Bi 209.0 Hf 178.5 Os 190.2 Ti 47.9
Br 79.9 Hg 200.6 P 31.0 Tl 204.4
C 12.0 Ho 164.9 Pb 207.2 Tm 168.9
Ca 40.1 In 114.8 Pd 106.4 U 238
Ce 140.1 Ir 192.2 Pt 195.1 V 50.9
Cl 35.5 K 39.1 Pr 140.9 W 183.8
Co 58.9 Kr 83.8 Rb 85.5 Xe 131.3
Cr 52.0 La 138.9 Re 186.2 Y 88.9
Cs 132.9 Li 6.9 Rh 102.9 Yb 173.0
Cu 63.5 Lu 175.0 Ru 101.1 Zn 65.4
Dy 162.5 Mg 24.3 S 32.1 Zr 91.2
Er 167.3 Mn 54.9 Sb 121.8

Making sense of the elements

As the information accumulated, the challenge was to find a way of
systematizing it; the modern scientist’s aesthetic sense rebels against
complication. This hodgepodge of elements was an embarrassment.
One contemporary observer, William Crookes, described the ele-
ments as extending “before us as stretched the wide Atlantic before
the gaze of Columbus, mocking, taunting and murmuring strange
riddles, which no man has yet been able to solve.” It wasn’t long
before people started recognizing that many atoms’ masses were
nearly integer multiples of the mass of hydrogen, the lightest ele-
ment. A few excitable types began speculating that hydrogen was
the basic building block, and that the heavier elements were made
of clusters of hydrogen. It wasn’t long, however, before their parade
was rained on by more accurate measurements, which showed that
not all of the elements had atomic masses that were near integer
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multiples of hydrogen, and even the ones that were close to being
integer multiples were off by one percent or so.

c / A modern periodic table. Ele-
ments in the same column have
similar chemical properties. The
modern atomic numbers, dis-
cussed on p. 771, were not known
in Mendeleev’s time, since the ta-
ble could be flipped in various
ways.

Chemistry professor Dmitri Mendeleev, preparing his lectures in
1869, wanted to find some way to organize his knowledge for his
students to make it more understandable. He wrote the names of
all the elements on cards and began arranging them in different ways
on his desk, trying to find an arrangement that would make sense of
the muddle. The row-and-column scheme he came up with is essen-
tially our modern periodic table. The columns of the modern version
represent groups of elements with similar chemical properties, and
each row is more massive than the one above it. Going across each
row, this almost always resulted in placing the atoms in sequence
by weight as well. What made the system significant was its predic-
tive value. There were three places where Mendeleev had to leave
gaps in his checkerboard to keep chemically similar elements in the
same column. He predicted that elements would exist to fill these
gaps, and extrapolated or interpolated from other elements in the
same column to predict their numerical properties, such as masses,
boiling points, and densities. Mendeleev’s professional stock sky-
rocketed when his three elements (later named gallium, scandium
and germanium) were discovered and found to have very nearly the
properties he had predicted.

One thing that Mendeleev’s table made clear was that mass was not
the basic property that distinguished atoms of different elements.
To make his table work, he had to deviate from ordering the ele-
ments strictly by mass. For instance, iodine atoms are lighter than
tellurium, but Mendeleev had to put iodine after tellurium so that
it would lie in a column with chemically similar elements.

Direct proof that atoms existed

The success of the kinetic theory of heat was taken as strong evi-
dence that, in addition to the motion of any object as a whole, there
is an invisible type of motion all around us: the random motion of
atoms within each object. But many conservatives were not con-
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vinced that atoms really existed. Nobody had ever seen one, after
all. It wasn’t until generations after the kinetic theory of heat was
developed that it was demonstrated conclusively that atoms really
existed and that they participated in continuous motion that never
died out.

The smoking gun to prove atoms were more than mathematical
abstractions came when some old, obscure observations were reex-
amined by an unknown Swiss patent clerk named Albert Einstein.
A botanist named Brown, using a microscope that was state of the
art in 1827, observed tiny grains of pollen in a drop of water on a
microscope slide, and found that they jumped around randomly for
no apparent reason. Wondering at first if the pollen he’d assumed to
be dead was actually alive, he tried looking at particles of soot, and
found that the soot particles also moved around. The same results
would occur with any small grain or particle suspended in a liquid.
The phenomenon came to be referred to as Brownian motion, and
its existence was filed away as a quaint and thoroughly unimportant
fact, really just a nuisance for the microscopist.

It wasn’t until 1906 that Einstein found the correct interpretation
for Brown’s observation: the water molecules were in continuous
random motion, and were colliding with the particle all the time,
kicking it in random directions. After all the millennia of speculation
about atoms, at last there was solid proof. Einstein’s calculations
dispelled all doubt, since he was able to make accurate predictions
of things like the average distance traveled by the particle in a cer-
tain amount of time. (Einstein received the Nobel Prize not for his
theory of relativity but for his papers on Brownian motion and the
photoelectric effect.)

Discussion questions

A How could knowledge of the size of an individual aluminum atom be
used to infer an estimate of its mass, or vice versa?

B How could one test Einstein’s interpretation of Brownian motion by
observing it at different temperatures?

26.2 Quantization of charge
Proving that atoms actually existed was a big accomplishment, but
demonstrating their existence was different from understanding their
properties. Note that the Brown-Einstein observations had nothing
at all to do with electricity, and yet we know that matter is inher-
ently electrical, and we have been successful in interpreting certain
electrical phenomena in terms of mobile positively and negatively
charged particles. Are these particles atoms? Parts of atoms? Par-
ticles that are entirely separate from atoms? It is perhaps prema-
ture to attempt to answer these questions without any conclusive
evidence in favor of the charged-particle model of electricity.
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d / A young Robert Millikan.

e / A simplified diagram of
Millikan’s apparatus.

Strong support for the charged-particle model came from a 1911 ex-
periment by physicist Robert Millikan at the University of Chicago.
Consider a jet of droplets of perfume or some other liquid made by
blowing it through a tiny pinhole. The droplets emerging from the
pinhole must be smaller than the pinhole, and in fact most of them
are even more microscopic than that, since the turbulent flow of air
tends to break them up. Millikan reasoned that the droplets would
acquire a little bit of electric charge as they rubbed against the chan-
nel through which they emerged, and if the charged-particle model
of electricity was right, the charge might be split up among so many
minuscule liquid drops that a single drop might have a total charge
amounting to an excess of only a few charged particles — perhaps
an excess of one positive particle on a certain drop, or an excess of
two negative ones on another.

Millikan’s ingenious apparatus, e, consisted of two metal plates,
which could be electrically charged as needed. He sprayed a cloud of
oil droplets into the space between the plates, and selected one drop
through a microscope for study. First, with no charge on the plates,
he would determine the drop’s mass by letting it fall through the
air and measuring its terminal velocity, i.e., the velocity at which
the force of air friction canceled out the force of gravity. The force
of air drag on a slowly moving sphere had already been found by
experiment to be bvr2, where b was a constant. Setting the total
force equal to zero when the drop is at terminal velocity gives

bvr2 −mg = 0,

and setting the known density of oil equal to the drop’s mass divided
by its volume gives a second equation,

ρ =
m

4
3πr

3
.

Everything in these equations can be measured directly except for
m and r, so these are two equations in two unknowns, which can be
solved in order to determine how big the drop is.

Next Millikan charged the metal plates, adjusting the amount of
charge so as to exactly counteract gravity and levitate the drop.
If, for instance, the drop being examined happened to have a total
charge that was negative, then positive charge put on the top plate
would attract it, pulling it up, and negative charge on the bottom
plate would repel it, pushing it up. (Theoretically only one plate
would be necessary, but in practice a two-plate arrangement like this
gave electrical forces that were more uniform in strength throughout
the space where the oil drops were.) When the drop was being
levitated, the gravitational and electric forces canceled, so qE = mg.
Since the mass of the drop, the gravitational field g, and the electric
field E were all known, the charge q could be determined.
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q
/(1.64

q (C) ×10−19 C)

−1.970× 10−18 −12.02
−0.987× 10−18 −6.02
−2.773× 10−18 −16.93

f / A few samples of Millikan’s
data.

Table f shows a few of the results from Millikan’s 1911 paper. (Mil-
likan took data on both negatively and positively charged drops, but
in his paper he gave only a sample of his data on negatively charged
drops, so these numbers are all negative.) Even a quick look at the
data leads to the suspicion that the charges are not simply a series of
random numbers. For instance, the second charge is almost exactly
equal to half the first one. Millikan explained the observed charges
as all being integer multiples of a single number, 1.64 × 10−19 C.
In the second column, dividing by this constant gives numbers that
are essentially integers, allowing for the random errors present in
the experiment. Millikan states in his paper that these results were
a

. . . direct and tangible demonstration . . . of the correct-
ness of the view advanced many years ago and supported
by evidence from many sources that all electrical charges,
however produced, are exact multiples of one definite,
elementary electrical charge, or in other words, that an
electrical charge instead of being spread uniformly over
the charged surface has a definite granular structure,
consisting, in fact, of . . . specks, or atoms of electric-
ity, all precisely alike, peppered over the surface of the
charged body.

In other words, he had provided direct evidence for the charged-
particle model of electricity and against models in which electricity
was described as some sort of fluid. The basic charge is notated e,
and the modern value is e = 1.60× 10−19 C. The word “quantized”
is used in physics to describe a quantity that can only have certain
numerical values, and cannot have any of the values between those.
In this language, we would say that Millikan discovered that charge
is quantized. The charge e is referred to as the quantum of charge.

self-check A
Is money quantized? What is the quantum of money? . Answer, p.
1044

A historical note on Millikan’s fraud
Very few undergraduate physics textbooks mention the well-documented
fact that although Millikan’s conclusions were correct, he was guilty of
scientific fraud. His technique was difficult and painstaking to perform,
and his original notebooks, which have been preserved, show that the
data were far less perfect than he claimed in his published scientific
papers. In his publications, he stated categorically that every single
oil drop observed had had a charge that was a multiple of e, with no
Exceptions or omissions. But his notebooks are replete with notations
such as “beautiful data, keep,” and “bad run, throw out.” Millikan, then,
appears to have earned his Nobel Prize by advocating a correct position
with dishonest descriptions of his data.
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g / Cathode rays observed in
a vacuum tube.

26.3 The electron
Cathode rays

Nineteenth-century physicists spent a lot of time trying to come up
with wild, random ways to play with electricity. The best exper-
iments of this kind were the ones that made big sparks or pretty
colors of light.

One such parlor trick was the cathode ray. To produce it, you first
had to hire a good glassblower and find a good vacuum pump. The
glassblower would create a hollow tube and embed two pieces of
metal in it, called the electrodes, which were connected to the out-
side via metal wires passing through the glass. Before letting him
seal up the whole tube, you would hook it up to a vacuum pump,
and spend several hours huffing and puffing away at the pump’s
hand crank to get a good vacuum inside. Then, while you were still
pumping on the tube, the glassblower would melt the glass and seal
the whole thing shut. Finally, you would put a large amount of pos-
itive charge on one wire and a large amount of negative charge on
the other. Metals have the property of letting charge move through
them easily, so the charge deposited on one of the wires would
quickly spread out because of the repulsion of each part of it for
every other part. This spreading-out process would result in nearly
all the charge ending up in the electrodes, where there is more room
to spread out than there is in the wire. For obscure historical rea-
sons a negative electrode is called a cathode and a positive one is
an anode.

Figure g shows the light-emitting stream that was observed. If, as
shown in this figure, a hole was made in the anode, the beam would
extend on through the hole until it hit the glass. Drilling a hole
in the cathode, however would not result in any beam coming out
on the left side, and this indicated that the stuff, whatever it was,
was coming from the cathode. The rays were therefore christened
“cathode rays.” (The terminology is still used today in the term
“cathode ray tube” or “CRT” for the picture tube of a TV or com-
puter monitor.)

Were cathode rays a form of light, or of matter?

Were cathode rays a form of light, or matter? At first no one re-
ally cared what they were, but as their scientific importance became
more apparent, the light-versus-matter issue turned into a contro-
versy along nationalistic lines, with the Germans advocating light
and the English holding out for matter. The supporters of the ma-
terial interpretation imagined the rays as consisting of a stream of
atoms ripped from the substance of the cathode.

One of our defining characteristics of matter is that material objects
cannot pass through each other. Experiments showed that cathode
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h / J.J. Thomson.

rays could penetrate at least some small thickness of matter, such
as a metal foil a tenth of a millimeter thick, implying that they were
a form of light.

Other experiments, however, pointed to the contrary conclusion.
Light is a wave phenomenon, and one distinguishing property of
waves is demonstrated by speaking into one end of a paper towel
roll. The sound waves do not emerge from the other end of the
tube as a focused beam. Instead, they begin spreading out in all
directions as soon as they emerge. This shows that waves do not
necessarily travel in straight lines. If a piece of metal foil in the shape
of a star or a cross was placed in the way of the cathode ray, then
a “shadow” of the same shape would appear on the glass, showing
that the rays traveled in straight lines. This straight-line motion
suggested that they were a stream of small particles of matter.

These observations were inconclusive, so what was really needed
was a determination of whether the rays had mass and weight. The
trouble was that cathode rays could not simply be collected in a cup
and put on a scale. When the cathode ray tube is in operation, one
does not observe any loss of material from the cathode, or any crust
being deposited on the anode.

Nobody could think of a good way to weigh cathode rays, so the
next most obvious way of settling the light/matter debate was to
check whether the cathode rays possessed electrical charge. Light
was known to be uncharged. If the cathode rays carried charge,
they were definitely matter and not light, and they were presum-
ably being made to jump the gap by the simultaneous repulsion of
the negative charge in the cathode and attraction of the positive
charge in the anode. The rays would overshoot the anode because
of their momentum. (Although electrically charged particles do not
normally leap across a gap of vacuum, very large amounts of charge
were being used, so the forces were unusually intense.)

Thomson’s experiments

Physicist J.J. Thomson at Cambridge carried out a series of defini-
tive experiments on cathode rays around the year 1897. By turning
them slightly off course with electrical forces, i, he showed that they
were indeed electrically charged, which was strong evidence that
they were material. Not only that, but he proved that they had
mass, and measured the ratio of their mass to their charge, m/q.
Since their mass was not zero, he concluded that they were a form
of matter, and presumably made up of a stream of microscopic,
negatively charged particles. When Millikan published his results
fourteen years later, it was reasonable to assume that the charge of
one such particle equaled minus one fundamental charge, q = −e,
and from the combination of Thomson’s and Millikan’s results one
could therefore determine the mass of a single cathode ray particle.
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i / Thomson’s experiment proving
cathode rays had electric charge
(redrawn from his original paper).
The cathode, c, and anode, A, are
as in any cathode ray tube. The
rays pass through a slit in the an-
ode, and a second slit, B, is inter-
posed in order to make the beam
thinner and eliminate rays that
were not going straight. Charging
plates D and E shows that cath-
ode rays have charge: they are
attracted toward the positive plate
D and repelled by the negative
plate E.

The basic technique for determining m/q was simply to measure
the angle through which the charged plates bent the beam. The
electric force acting on a cathode ray particle while it was between
the plates was

Felec = qE.

By Newton’s second law, a = F/m, we can find m/q:

m

q
=
E

a

There was just one catch. Thomson needed to know the cathode ray
particles’ velocity in order to figure out their acceleration. At that
point, however, nobody had even an educated guess as to the speed
of the cathode rays produced in a given vacuum tube. The beam
appeared to leap across the vacuum tube practically instantaneously,
so it was no simple matter of timing it with a stopwatch!

Thomson’s clever solution was to observe the effect of both electric
and magnetic forces on the beam. The magnetic force exerted by a
particular magnet would depend on both the cathode ray’s charge
and its speed:

Fmag = qvB

Thomson played with the electric and magnetic forces until either
one would produce an equal effect on the beam, allowing him to
solve for the speed,

v =
E

B
.

Knowing the speed (which was on the order of 10% of the speed of
light for his setup), he was able to find the acceleration and thus
the mass-to-charge ratio m/q. Thomson’s techniques were relatively
crude (or perhaps more charitably we could say that they stretched
the state of the art of the time), so with various methods he came
up with m/q values that ranged over about a factor of two, even
for cathode rays extracted from a cathode made of a single mate-
rial. The best modern value is m/q = 5.69 × 10−12 kg/C, which is
consistent with the low end of Thomson’s range.
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The cathode ray as a subatomic particle: the electron

What was significant about Thomson’s experiment was not the ac-
tual numerical value of m/q, however, so much as the fact that,
combined with Millikan’s value of the fundamental charge, it gave
a mass for the cathode ray particles that was thousands of times
smaller than the mass of even the lightest atoms. Even without
Millikan’s results, which were 14 years in the future, Thomson rec-
ognized that the cathode rays’ m/q was thousands of times smaller
than the m/q ratios that had been measured for electrically charged
atoms in chemical solutions. He correctly interpreted this as evi-
dence that the cathode rays were smaller building blocks — he called
them electrons — out of which atoms themselves were formed. This
was an extremely radical claim, coming at a time when atoms had
not yet been proven to exist! Even those who used the word “atom”
often considered them no more than mathematical abstractions, not
literal objects. The idea of searching for structure inside of “un-
splittable” atoms was seen by some as lunacy, but within ten years
Thomson’s ideas had been amply verified by many more detailed
experiments.

Discussion questions

A Thomson started to become convinced during his experiments that
the “cathode rays” observed coming from the cathodes of vacuum tubes
were building blocks of atoms — what we now call electrons. He then
carried out observations with cathodes made of a variety of metals, and
found that m/q was roughly the same in every case, considering his lim-
ited accuracy. Given his suspicion, why did it make sense to try different
metals? How would the consistent values of m/q test his hypothesis?

B My students have frequently asked whether the m/q that Thomson
measured was the value for a single electron, or for the whole beam. Can
you answer this question?

C Thomson found that the m/q of an electron was thousands of times
smaller than that of charged atoms in chemical solutions. Would this imply
that the electrons had more charge? Less mass? Would there be no way
to tell? Explain. Remember that Millikan’s results were still many years in
the future, so q was unknown.

D Can you guess any practical reason why Thomson couldn’t just
let one electron fly across the gap before disconnecting the battery and
turning off the beam, and then measure the amount of charge deposited
on the anode, thus allowing him to measure the charge of a single electron
directly?

E Why is it not possible to determine m and q themselves, rather than
just their ratio, by observing electrons’ motion in electric and magnetic
fields?

The raisin cookie model

Based on his experiments, Thomson proposed a picture of the atom
which became known as the raisin cookie model. In the neutral
atom, j, there are four electrons with a total charge of −4e, sitting
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j / The raisin cookie model of
the atom with four units of
charge, which we now know to be
beryllium.

in a sphere (the “cookie”) with a charge of +4e spread throughout it.
It was known that chemical reactions could not change one element
into another, so in Thomson’s scenario, each element’s cookie sphere
had a permanently fixed radius, mass, and positive charge, different
from those of other elements. The electrons, however, were not a
permanent feature of the atom, and could be tacked on or pulled out
to make charged ions. Although we now know, for instance, that a
neutral atom with four electrons is the element beryllium, scientists
at the time did not know how many electrons the various neutral
atoms possessed.

This model is clearly different from the one you’ve learned in grade
school or through popular culture, where the positive charge is con-
centrated in a tiny nucleus at the atom’s center. An equally impor-
tant change in ideas about the atom has been the realization that
atoms and their constituent subatomic particles behave entirely dif-
ferently from objects on the human scale. For instance, we’ll see
later that an electron can be in more than one place at one time.
The raisin cookie model was part of a long tradition of attempts
to make mechanical models of phenomena, and Thomson and his
contemporaries never questioned the appropriateness of building a
mental model of an atom as a machine with little parts inside. To-
day, mechanical models of atoms are still used (for instance the
tinker-toy-style molecular modeling kits like the ones used by Wat-
son and Crick to figure out the double helix structure of DNA), but
scientists realize that the physical objects are only aids to help our
brains’ symbolic and visual processes think about atoms.

Although there was no clear-cut experimental evidence for many of
the details of the raisin cookie model, physicists went ahead and
started working out its implications. For instance, suppose you had
a four-electron atom. All four electrons would be repelling each
other, but they would also all be attracted toward the center of the
“cookie” sphere. The result should be some kind of stable, sym-
metric arrangement in which all the forces canceled out. People
sufficiently clever with math soon showed that the electrons in a
four-electron atom should settle down at the vertices of a pyramid
with one less side than the Egyptian kind, i.e., a regular tetrahe-
dron. This deduction turns out to be wrong because it was based
on incorrect features of the model, but the model also had many
successes, a few of which we will now discuss.

Flow of electrical charge in wires example 1
One of my former students was the son of an electrician, and
had become an electrician himself. He related to me how his
father had remained refused to believe all his life that electrons
really flowed through wires. If they had, he reasoned, the metal
would have gradually become more and more damaged, eventu-
ally crumbling to dust.
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His opinion is not at all unreasonable based on the fact that elec-
trons are material particles, and that matter cannot normally pass
through matter without making a hole through it. Nineteenth-
century physicists would have shared his objection to a charged-
particle model of the flow of electrical charge. In the raisin-cookie
model, however, the electrons are very low in mass, and there-
fore presumably very small in size as well. It is not surprising that
they can slip between the atoms without damaging them.

Flow of electrical charge across cell membranes example 2
Your nervous system is based on signals carried by charge mov-
ing from nerve cell to nerve cell. Your body is essentially all liquid,
and atoms in a liquid are mobile. This means that, unlike the case
of charge flowing in a solid wire, entire charged atoms can flow in
your nervous system

Emission of electrons in a cathode ray tube example 3
Why do electrons detach themselves from the cathode of a vac-
uum tube? Certainly they are encouraged to do so by the re-
pulsion of the negative charge placed on the cathode and the
attraction from the net positive charge of the anode, but these are
not strong enough to rip electrons out of atoms by main force —
if they were, then the entire apparatus would have been instantly
vaporized as every atom was simultaneously ripped apart!

The raisin cookie model leads to a simple explanation. We know
that heat is the energy of random motion of atoms. The atoms in
any object are therefore violently jostling each other all the time,
and a few of these collisions are violent enough to knock electrons
out of atoms. If this occurs near the surface of a solid object, the
electron may can come loose. Ordinarily, however, this loss of
electrons is a self-limiting process; the loss of electrons leaves
the object with a net positive charge, which attracts the lost sheep
home to the fold. (For objects immersed in air rather than vacuum,
there will also be a balanced exchange of electrons between the
air and the object.)

This interpretation explains the warm and friendly yellow glow of
the vacuum tubes in an antique radio. To encourage the emission
of electrons from the vacuum tubes’ cathodes, the cathodes are
intentionally warmed up with little heater coils.

Discussion questions

A Today many people would define an ion as an atom (or molecule)
with missing electrons or extra electrons added on. How would people
have defined the word “ion” before the discovery of the electron?

B Since electrically neutral atoms were known to exist, there had to be
positively charged subatomic stuff to cancel out the negatively charged
electrons in an atom. Based on the state of knowledge immediately after
the Millikan and Thomson experiments, was it possible that the positively
charged stuff had an unquantized amount of charge? Could it be quan-
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k / Henri Becquerel (1852-1908).

l / Becquerel’s photographic
plate. In the exposure at the
bottom of the image, he has
found that he could absorb the
radiations, casting the shadow
of a Maltese cross that was
placed between the plate and the
uranium salts.

tized in units of +e? In units of +2e? In units of +5/7e?

26.4 The nucleus
Radioactivity

Becquerel’s discovery of radioactivity

How did physicists figure out that the raisin cookie model was in-
correct, and that the atom’s positive charge was concentrated in a
tiny, central nucleus? The story begins with the discovery of ra-
dioactivity by the French chemist Becquerel. Up until radioactivity
was discovered, all the processes of nature were thought to be based
on chemical reactions, which were rearrangements of combinations
of atoms. Atoms exert forces on each other when they are close to-
gether, so sticking or unsticking them would either release or store
electrical energy. That energy could be converted to and from other
forms, as when a plant uses the energy in sunlight to make sugars
and carbohydrates, or when a child eats sugar, releasing the energy
in the form of kinetic energy.

Becquerel discovered a process that seemed to release energy from
an unknown new source that was not chemical. Becquerel, whose fa-
ther and grandfather had also been physicists, spent the first twenty
years of his professional life as a successful civil engineer, teaching
physics on a part-time basis. He was awarded the chair of physics
at the Musée d’Histoire Naturelle in Paris after the death of his
father, who had previously occupied it. Having now a significant
amount of time to devote to physics, he began studying the interac-
tion of light and matter. He became interested in the phenomenon
of phosphorescence, in which a substance absorbs energy from light,
then releases the energy via a glow that only gradually goes away.
One of the substances he investigated was a uranium compound,
the salt UKSO5. One day in 1896, cloudy weather interfered with
his plan to expose this substance to sunlight in order to observe
its fluorescence. He stuck it in a drawer, coincidentally on top of a
blank photographic plate — the old-fashioned glass-backed counter-
part of the modern plastic roll of film. The plate had been carefully
wrapped, but several days later when Becquerel checked it in the
darkroom before using it, he found that it was ruined, as if it had
been completely exposed to light.

History provides many examples of scientific discoveries that hap-
pened this way: an alert and inquisitive mind decides to investigate
a phenomenon that most people would not have worried about ex-
plaining. Becquerel first determined by further experiments that
the effect was produced by the uranium salt, despite a thick wrap-
ping of paper around the plate that blocked out all light. He tried
a variety of compounds, and found that it was the uranium that
did it: the effect was produced by any uranium compound, but not
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by any compound that didn’t include uranium atoms. The effect
could be at least partially blocked by a sufficient thickness of metal,
and he was able to produce silhouettes of coins by interposing them
between the uranium and the plate. This indicated that the effect
traveled in a straight line., so that it must have been some kind of
ray rather than, e.g., the seepage of chemicals through the paper.
He used the word “radiations,” since the effect radiated out from
the uranium salt.

At this point Becquerel still believed that the uranium atoms were
absorbing energy from light and then gradually releasing the energy
in the form of the mysterious rays, and this was how he presented it
in his first published lecture describing his experiments. Interesting,
but not earth-shattering. But he then tried to determine how long it
took for the uranium to use up all the energy that had supposedly
been stored in it by light, and he found that it never seemed to
become inactive, no matter how long he waited. Not only that,
but a sample that had been exposed to intense sunlight for a whole
afternoon was no more or less effective than a sample that had
always been kept inside. Was this a violation of conservation of
energy? If the energy didn’t come from exposure to light, where did
it come from?

Three kinds of “radiations”

Unable to determine the source of the energy directly, turn-of-the-
century physicists instead studied the behavior of the “radiations”
once they had been emitted. Becquerel had already shown that
the radioactivity could penetrate through cloth and paper, so the
first obvious thing to do was to investigate in more detail what
thickness of material the radioactivity could get through. They
soon learned that a certain fraction of the radioactivity’s intensity
would be eliminated by even a few inches of air, but the remainder
was not eliminated by passing through more air. Apparently, then,
the radioactivity was a mixture of more than one type, of which one
was blocked by air. They then found that of the part that could
penetrate air, a further fraction could be eliminated by a piece of
paper or a very thin metal foil. What was left after that, however,
was a third, extremely penetrating type, some of whose intensity
would still remain even after passing through a brick wall. They
decided that this showed there were three types of radioactivity,
and without having the faintest idea of what they really were, they
made up names for them. The least penetrating type was arbitrarily
labeled α (alpha), the first letter of the Greek alphabet, and so on
through β (beta) and finally G (gamma) for the most penetrating
type.

Radium: a more intense source of radioactivity

The measuring devices used to detect radioactivity were crude: pho-
tographic plates or even human eyeballs (radioactivity makes flashes
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m / A simplified version of
Rutherford’s 1908 experiment,
showing that alpha particles were
doubly ionized helium atoms.

n / These pellets of uranium
fuel will be inserted into the metal
fuel rod and used in a nuclear
reactor. The pellets emit alpha
and beta radiation, which the
gloves are thick enough to stop.

of light in the jelly-like fluid inside the eye, which can be seen by the
eyeball’s owner if it is otherwise very dark). Because the ways of de-
tecting radioactivity were so crude and insensitive, further progress
was hindered by the fact that the amount of radioactivity emitted by
uranium was not really very great. The vital contribution of physi-
cist/chemist Marie Curie and her husband Pierre was to discover the
element radium, and to purify and isolate significant quantities of
it. Radium emits about a million times more radioactivity per unit
mass than uranium, making it possible to do the experiments that
were needed to learn the true nature of radioactivity. The dangers of
radioactivity to human health were then unknown, and Marie died
of leukemia thirty years later. (Pierre was run over and killed by a
horsecart.)

Tracking down the nature of alphas, betas, and gammas

As radium was becoming available, an apprentice scientist named
Ernest Rutherford arrived in England from his native New Zealand
and began studying radioactivity at the Cavendish Laboratory. The
young colonial’s first success was to measure the mass-to-charge ra-
tio of beta rays. The technique was essentially the same as the one
Thomson had used to measure the mass-to-charge ratio of cathode
rays by measuring their deflections in electric and magnetic fields.
The only difference was that instead of the cathode of a vacuum
tube, a nugget of radium was used to supply the beta rays. Not
only was the technique the same, but so was the result. Beta rays
had the same m/q ratio as cathode rays, which suggested they were
one and the same. Nowadays, it would make sense simply to use
the term “electron,” and avoid the archaic “cathode ray” and “beta
particle,” but the old labels are still widely used, and it is unfortu-
nately necessary for physics students to memorize all three names
for the same thing.

At first, it seemed that neither alphas or gammas could be deflected
in electric or magnetic fields, making it appear that neither was
electrically charged. But soon Rutherford obtained a much more
powerful magnet, and was able to use it to deflect the alphas but
not the gammas. The alphas had a much larger value of m/q than
the betas (about 4000 times greater), which was why they had been
so hard to deflect. Gammas are uncharged, and were later found to
be a form of light.

The m/q ratio of alpha particles turned out to be the same as those
of two different types of ions, He++ (a helium atom with two miss-
ing electrons) and H+

2 (two hydrogen atoms bonded into a molecule,
with one electron missing), so it seemed likely that they were one
or the other of those. The diagram shows a simplified version of
Rutherford’s ingenious experiment proving that they were He++

ions. The gaseous element radon, an alpha emitter, was introduced
into one half of a double glass chamber. The glass wall dividing
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o / Ernest Rutherford (1871-
1937).

p / Marsden and Rutherford’s
apparatus.

the chamber was made extremely thin, so that some of the rapidly
moving alpha particles were able to penetrate it. The other cham-
ber, which was initially evacuated, gradually began to accumulate a
population of alpha particles (which would quickly pick up electrons
from their surroundings and become electrically neutral). Ruther-
ford then determined that it was helium gas that had appeared in
the second chamber. Thus alpha particles were proved to be He++

ions. The nucleus was yet to be discovered, but in modern terms,
we would describe a He++ ion as the nucleus of a He atom.

To summarize, here are the three types of radiation emitted by
radioactive elements, and their descriptions in modern terms:

α particle stopped by a few inches of air He nucleus

β particle stopped by a piece of paper electron

G ray penetrates thick shielding a type of light

Discussion question

A Most sources of radioactivity emit alphas, betas, and gammas, not
just one of the three. In the radon experiment, how did Rutherford know
that he was studying the alphas?

The planetary model

The stage was now set for the unexpected discovery that the posi-
tively charged part of the atom was a tiny, dense lump at the atom’s
center rather than the “cookie dough” of the raisin cookie model.
By 1909, Rutherford was an established professor, and had students
working under him. For a raw undergraduate named Marsden, he
picked a research project he thought would be tedious but straight-
forward.

It was already known that although alpha particles would be stopped
completely by a sheet of paper, they could pass through a sufficiently
thin metal foil. Marsden was to work with a gold foil only 1000
atoms thick. (The foil was probably made by evaporating a little
gold in a vacuum chamber so that a thin layer would be deposited
on a glass microscope slide. The foil would then be lifted off the
slide by submerging the slide in water.)

Rutherford had already determined in his previous experiments the
speed of the alpha particles emitted by radium, a fantastic 1.5×107

m/s. The experimenters in Rutherford’s group visualized them as
very small, very fast cannonballs penetrating the “cookie dough”
part of the big gold atoms. A piece of paper has a thickness of a
hundred thousand atoms or so, which would be sufficient to stop
them completely, but crashing through a thousand would only slow
them a little and turn them slightly off of their original paths.

Marsden’s supposedly ho-hum assignment was to use the apparatus
shown in figure p to measure how often alpha particles were deflected
at various angles. A tiny lump of radium in a box emitted alpha
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particles, and a thin beam was created by blocking all the alphas
except those that happened to pass out through a tube. Typically
deflected in the gold by only a small amount, they would reach a
screen very much like the screen of a TV’s picture tube, which would
make a flash of light when it was hit. Here is the first example we
have encountered of an experiment in which a beam of particles
is detected one at a time. This was possible because each alpha
particle carried so much kinetic energy; they were moving at about
the same speed as the electrons in the Thomson experiment, but
had ten thousand times more mass.

Marsden sat in a dark room, watching the apparatus hour after
hour and recording the number of flashes with the screen moved to
various angles. The rate of the flashes was highest when he set the
screen at an angle close to the line of the alphas’ original path, but if
he watched an area farther off to the side, he would also occasionally
see an alpha that had been deflected through a larger angle. After
seeing a few of these, he got the crazy idea of moving the screen to
see if even larger angles ever occurred, perhaps even angles larger
than 90 degrees.

q / Alpha particles being scattered by a gold nucleus. On this scale,
the gold atom is the size of a car, so all the alpha particles shown here
are ones that just happened to come unusually close to the nucleus.
For these exceptional alpha particles, the forces from the electrons are
unimportant, because they are so much more distant than the nucleus.

The crazy idea worked: a few alpha particles were deflected through
angles of up to 180 degrees, and the routine experiment had become
an epoch-making one. Rutherford said, “We have been able to get
some of the alpha particles coming backwards. It was almost as
incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you.” Explanations were hard to come by
in the raisin cookie model. What intense electrical forces could have
caused some of the alpha particles, moving at such astronomical
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r / The planetary model of
the atom.

speeds, to change direction so drastically? Since each gold atom
was electrically neutral, it would not exert much force on an alpha
particle outside it. True, if the alpha particle was very near to or
inside of a particular atom, then the forces would not necessarily
cancel out perfectly; if the alpha particle happened to come very
close to a particular electron, the 1/r2 form of the Coulomb force law
would make for a very strong force. But Marsden and Rutherford
knew that an alpha particle was 8000 times more massive than an
electron, and it is simply not possible for a more massive object to
rebound backwards from a collision with a less massive object while
conserving momentum and energy. It might be possible in principle
for a particular alpha to follow a path that took it very close to one
electron, and then very close to another electron, and so on, with the
net result of a large deflection, but careful calculations showed that
such multiple “close encounters” with electrons would be millions of
times too rare to explain what was actually observed.

At this point, Rutherford and Marsden dusted off an unpopular
and neglected model of the atom, in which all the electrons or-
bited around a small, positively charged core or “nucleus,” just like
the planets orbiting around the sun. All the positive charge and
nearly all the mass of the atom would be concentrated in the nu-
cleus, rather than spread throughout the atom as in the raisin cookie
model. The positively charged alpha particles would be repelled by
the gold atom’s nucleus, but most of the alphas would not come
close enough to any nucleus to have their paths drastically altered.
The few that did come close to a nucleus, however, could rebound
backwards from a single such encounter, since the nucleus of a heavy
gold atom would be fifty times more massive than an alpha parti-
cle. It turned out that it was not even too difficult to derive a
formula giving the relative frequency of deflections through various
angles, and this calculation agreed with the data well enough (to
within 15%), considering the difficulty in getting good experimental
statistics on the rare, very large angles.

What had started out as a tedious exercise to get a student started
in science had ended as a revolution in our understanding of nature.
Indeed, the whole thing may sound a little too much like a moralistic
fable of the scientific method with overtones of the Horatio Alger
genre. The skeptical reader may wonder why the planetary model
was ignored so thoroughly until Marsden and Rutherford’s discov-
ery. Is science really more of a sociological enterprise, in which cer-
tain ideas become accepted by the establishment, and other, equally
plausible explanations are arbitrarily discarded? Some social scien-
tists are currently ruffling a lot of scientists’ feathers with critiques
very much like this, but in this particular case, there were very
sound reasons for rejecting the planetary model. As you’ll learn in
more detail later in this course, any charged particle that under-
goes an acceleration dissipate energy in the form of light. In the
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s / The planetary model ap-
plied to a nonmetal, 1, an
unmagnetized metal, 2, and a
magnetized metal, 3. Note that
these figures are all simplified in
several ways. For one thing, the
electrons of an individual atom do
not all revolve around the nucleus
in the same plane. It is also very
unusual for a metal to become so
strongly magnetized that 100%
of its atoms have their rotations
aligned as shown in this figure.

planetary model, the electrons were orbiting the nucleus in circles
or ellipses, which meant they were undergoing acceleration, just like
the acceleration you feel in a car going around a curve. They should
have dissipated energy as light, and eventually they should have
lost all their energy. Atoms don’t spontaneously collapse like that,
which was why the raisin cookie model, with its stationary electrons,
was originally preferred. There were other problems as well. In the
planetary model, the one-electron atom would have to be flat, which
would be inconsistent with the success of molecular modeling with
spherical balls representing hydrogen and atoms. These molecular
models also seemed to work best if specific sizes were used for dif-
ferent atoms, but there is no obvious reason in the planetary model
why the radius of an electron’s orbit should be a fixed number. In
view of the conclusive Marsden-Rutherford results, however, these
became fresh puzzles in atomic physics, not reasons for disbelieving
the planetary model.

Some phenomena explained with the planetary model

The planetary model may not be the ultimate, perfect model of the
atom, but don’t underestimate its power. It already allows us to
visualize correctly a great many phenomena.

As an example, let’s consider the distinctions among nonmetals,
metals that are magnetic, and metals that are nonmagnetic. As
shown in figure s, a metal differs from a nonmetal because its outer-
most electrons are free to wander rather than owing their allegiance
to a particular atom. A metal that can be magnetized is one that
is willing to line up the rotations of some of its electrons so that
their axes are parallel. Recall that magnetic forces are forces made
by moving charges; we have not yet discussed the mathematics and
geometry of magnetic forces, but it is easy to see how random ori-
entations of the atoms in the nonmagnetic substance would lead to
cancellation of the forces.

Even if the planetary model does not immediately answer such ques-
tions as why one element would be a metal and another a nonmetal,
these ideas would be difficult or impossible to conceptualize in the
raisin cookie model.

Discussion question

A In reality, charges of the same type repel one another and charges
of different types are attracted. Suppose the rules were the other way
around, giving repulsion between opposite charges and attraction be-
tween similar ones. What would the universe be like?

Atomic number

As alluded to in a discussion question in the previous section, scien-
tists of this period had only a very approximate idea of how many
units of charge resided in the nuclei of the various chemical ele-
ments. Although we now associate the number of units of nuclear
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charge with the element’s position on the periodic table, and call
it the atomic number, they had no idea that such a relationship
existed. Mendeleev’s table just seemed like an organizational tool,
not something with any necessary physical significance. And every-
thing Mendeleev had done seemed equally valid if you turned the
table upside-down or reversed its left and right sides, so even if you
wanted to number the elements sequentially with integers, there was
an ambiguity as to how to do it. Mendeleev’s original table was in
fact upside-down compared to the modern one.

t / A modern periodic table,
labeled with atomic numbers.
Mendeleev’s original table was
upside-down compared to this
one.

In the period immediately following the discovery of the nucleus,
physicists only had rough estimates of the charges of the various
nuclei. In the case of the very lightest nuclei, they simply found
the maximum number of electrons they could strip off by various
methods: chemical reactions, electric sparks, ultraviolet light, and
so on. For example they could easily strip off one or two electrons
from helium, making He+ or He++, but nobody could make He+++,
presumably because the nuclear charge of helium was only +2e.
Unfortunately only a few of the lightest elements could be stripped
completely, because the more electrons were stripped off, the greater
the positive net charge remaining, and the more strongly the rest of
the negatively charged electrons would be held on. The heavy ele-
ments’ atomic numbers could only be roughly extrapolated from the
light elements, where the atomic number was about half the atom’s
mass expressed in units of the mass of a hydrogen atom. Gold, for
example, had a mass about 197 times that of hydrogen, so its atomic
number was estimated to be about half that, or somewhere around
100. We now know it to be 79.

How did we finally find out? The riddle of the nuclear charges was at
last successfully attacked using two different techniques, which gave
consistent results. One set of experiments, involving x-rays, was
performed by the young Henry Mosely, whose scientific brilliance
was soon to be sacrificed in a battle between European imperialists
over who would own the Dardanelles, during that pointless conflict

772 Chapter 26 The Atom and E=mc2



then known as the War to End All Wars, and now referred to as
World War I.

u / An alpha particle has to come
much closer to the low-charged
copper nucleus in order to be de-
flected through the same angle.

Since Mosely’s analysis requires several concepts with which you
are not yet familiar, we will instead describe the technique used
by James Chadwick at around the same time. An added bonus of
describing Chadwick’s experiments is that they presaged the impor-
tant modern technique of studying collisions of subatomic particles.
In grad school, I worked with a professor whose thesis adviser’s the-
sis adviser was Chadwick, and he related some interesting stories
about the man. Chadwick was apparently a little nutty and a com-
plete fanatic about science, to the extent that when he was held in a
German prison camp during World War II, he managed to cajole his
captors into allowing him to scrounge up parts from broken radios
so that he could attempt to do physics experiments.

Chadwick’s experiment worked like this. Suppose you perform two
Rutherford-type alpha scattering measurements, first one with a
gold foil as a target as in Rutherford’s original experiment, and
then one with a copper foil. It is possible to get large angles of
deflection in both cases, but as shown in figure v, the alpha particle
must be heading almost straight for the copper nucleus to get the
same angle of deflection that would have occurred with an alpha
that was much farther off the mark; the gold nucleus’ charge is so
much greater than the copper’s that it exerts a strong force on the
alpha particle even from far off. The situation is very much like
that of a blindfolded person playing darts. Just as it is impossible
to aim an alpha particle at an individual nucleus in the target, the
blindfolded person cannot really aim the darts. Achieving a very
close encounter with the copper atom would be akin to hitting an
inner circle on the dartboard. It’s much more likely that one would
have the luck to hit the outer circle, which covers a greater number
of square inches. By analogy, if you measure the frequency with
which alphas are scattered by copper at some particular angle, say
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between 19 and 20 degrees, and then perform the same measurement
at the same angle with gold, you get a much higher percentage for
gold than for copper.

v / An alpha particle must be
headed for the ring on the front
of the imaginary cylindrical pipe
in order to produce scattering at
an angle between 19 and 20 de-
grees. The area of this ring
is called the “cross-section” for
scattering at 19-20◦because it is
the cross-sectional area of a cut
through the pipe.

In fact, the numerical ratio of the two nuclei’s charges can be derived
from this same experimentally determined ratio. Using the standard
notation Z for the atomic number (charge of the nucleus divided by
e), the following equation can be proved (example 4):

Z2
gold

Z2
copper

=
number of alphas scattered by gold at 19-20◦

number of alphas scattered by copper at 19-20◦

By making such measurements for targets constructed from all the
elements, one can infer the ratios of all the atomic numbers, and
since the atomic numbers of the light elements were already known,
atomic numbers could be assigned to the entire periodic table. Ac-
cording to Mosely, the atomic numbers of copper, silver and plat-
inum were 29, 47, and 78, which corresponded well with their posi-
tions on the periodic table. Chadwick’s figures for the same elements
were 29.3, 46.3, and 77.4, with error bars of about 1.5 times the fun-
damental charge, so the two experiments were in good agreement.

The point here is absolutely not that you should be ready to plug
numbers into the above equation for a homework or exam question!
My overall goal in this chapter is to explain how we know what we
know about atoms. An added bonus of describing Chadwick’s ex-
periment is that the approach is very similar to that used in modern
particle physics experiments, and the ideas used in the analysis are
closely related to the now-ubiquitous concept of a “cross-section.”
In the dartboard analogy, the cross-section would be the area of the
circular ring you have to hit. The reasoning behind the invention of
the term “cross-section” can be visualized as shown in figure v. In
this language, Rutherford’s invention of the planetary model came
from his unexpected discovery that there was a nonzero cross-section
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for alpha scattering from gold at large angles, and Chadwick con-
firmed Mosely’s determinations of the atomic numbers by measuring
cross-sections for alpha scattering.

Proof of the relationship between Z and scattering example 4
The equation above can be derived by the following not very rigor-
ous proof. To deflect the alpha particle by a certain angle requires
that it acquire a certain momentum component in the direction
perpendicular to its original momentum. Although the nucleus’s
force on the alpha particle is not constant, we can pretend that
it is approximately constant during the time when the alpha is
within a distance equal to, say, 150% of its distance of closest
approach, and that the force is zero before and after that part of
the motion. (If we chose 120% or 200%, it shouldn’t make any
difference in the final result, because the final result is a ratio,
and the effects on the numerator and denominator should cancel
each other.) In the approximation of constant force, the change
in the alpha’s perpendicular momentum component is then equal
to F∆t . The Coulomb force law says the force is proportional to
Z/r2. Although r does change somewhat during the time interval
of interest, it’s good enough to treat it as a constant number, since
we’re only computing the ratio between the two experiments’ re-
sults. Since we are approximating the force as acting over the
time during which the distance is not too much greater than the
distance of closest approach, the time interval ∆t must be propor-
tional to r , and the sideways momentum imparted to the alpha,
F∆t , is proportional to (Z/r2)r , or Z/r . If we’re comparing alphas
scattered at the same angle from gold and from copper, then ∆p
is the same in both cases, and the proportionality ∆p ∝ Z/r tells
us that the ones scattered from copper at that angle had to be
headed in along a line closer to the central axis by a factor equal-
ing Zgold/Zcopper. If you imagine a “dartboard ring” that the alphas
have to hit, then the ring for the gold experiment has the same
proportions as the one for copper, but it is enlarged by a factor
equal to Zgold/Zcopper. That is, not only is the radius of the ring
greater by that factor, but unlike the rings on a normal dartboard,
the thickness of the outer ring is also greater in proportion to its
radius. When you take a geometric shape and scale it up in size
like a photographic enlargement, its area is increased in propor-
tion to the square of the enlargement factor, so the area of the
dartboard ring in the gold experiment is greater by a factor equal
to (Zgold/Zcopper)2. Since the alphas are aimed entirely randomly,
the chances of an alpha hitting the ring are in proportion to the
area of the ring, which proves the equation given above.

As an example of the modern use of scattering experiments and
cross-section measurements, you may have heard of the recent ex-
perimental evidence for the existence of a particle called the top
quark. Of the twelve subatomic particles currently believed to be the
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smallest constituents of matter, six form a family called the quarks,
distinguished from the other six by the intense attractive forces that
make the quarks stick to each other. (The other six consist of the
electron plus five other, more exotic particles.) The only two types of
quarks found in naturally occurring matter are the “up quark” and
“down quark,” which are what protons and neutrons are made of,
but four other types were theoretically predicted to exist, for a total
of six. (The whimsical term “quark” comes from a line by James
Joyce reading “Three quarks for master Mark.”) Until recently, only
five types of quarks had been proven to exist via experiments, and
the sixth, the top quark, was only theorized. There was no hope
of ever detecting a top quark directly, since it is radioactive, and
only exists for a zillionth of a second before evaporating. Instead,
the researchers searching for it at the Fermi National Accelerator
Laboratory near Chicago measured cross-sections for scattering of
nuclei off of other nuclei. The experiment was much like those of
Rutherford and Chadwick, except that the incoming nuclei had to
be boosted to much higher speeds in a particle accelerator. The
resulting encounter with a target nucleus was so violent that both
nuclei were completely demolished, but, as Einstein proved, energy
can be converted into matter, and the energy of the collision creates
a spray of exotic, radioactive particles, like the deadly shower of
wood fragments produced by a cannon ball in an old naval battle.
Among those particles were some top quarks. The cross-sections
being measured were the cross-sections for the production of certain
combinations of these secondary particles. However different the
details, the principle was the same as that employed at the turn of
the century: you smash things together and look at the fragments
that fly off to see what was inside them. The approach has been
compared to shooting a clock with a rifle and then studying the
pieces that fly off to figure out how the clock worked.

Discussion questions

A The diagram, showing alpha particles being deflected by a gold
nucleus, was drawn with the assumption that alpha particles came in on
lines at many different distances from the nucleus. Why wouldn’t they all
come in along the same line, since they all came out through the same
tube?

B Why does it make sense that, as shown in the figure, the trajectories
that result in 19◦ and 20◦ scattering cross each other?

C Rutherford knew the velocity of the alpha particles emitted by radium,
and guessed that the positively charged part of a gold atom had a charge
of about +100e (we now know it is +79e). Considering the fact that some
alpha particles were deflected by 180◦, how could he then use conserva-
tion of energy to derive an upper limit on the size of a gold nucleus? (For
simplicity, assume the size of the alpha particle is negligible compared to
that of the gold nucleus, and ignore the fact that the gold nucleus recoils
a little from the collision, picking up a little kinetic energy.)
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The structure of nuclei

The proton

The fact that the nuclear charges were all integer multiples of e
suggested to many physicists that rather than being a pointlike ob-
ject, the nucleus might contain smaller particles having individual
charges of +e. Evidence in favor of this idea was not long in arriv-
ing. Rutherford reasoned that if he bombarded the atoms of a very
light element with alpha particles, the small charge of the target
nuclei would give a very weak repulsion. Perhaps those few alpha
particles that happened to arrive on head-on collision courses would
get so close that they would physically crash into some of the target
nuclei. An alpha particle is itself a nucleus, so this would be a col-
lision between two nuclei, and a violent one due to the high speeds
involved. Rutherford hit pay dirt in an experiment with alpha par-
ticles striking a target containing nitrogen atoms. Charged particles
were detected flying out of the target like parts flying off of cars in
a high-speed crash. Measurements of the deflection of these parti-
cles in electric and magnetic fields showed that they had the same
charge-to-mass ratio as singly-ionized hydrogen atoms. Rutherford
concluded that these were the conjectured singly-charged particles
that held the charge of the nucleus, and they were later named
protons. The hydrogen nucleus consists of a single proton, and in
general, an element’s atomic number gives the number of protons
contained in each of its nuclei. The mass of the proton is about 1800
times greater than the mass of the electron.

The neutron

It would have been nice and simple if all the nuclei could have been
built only from protons, but that couldn’t be the case. If you spend
a little time looking at a periodic table, you will soon notice that
although some of the atomic masses are very nearly integer multiples
of hydrogen’s mass, many others are not. Even where the masses are
close whole numbers, the masses of an element other than hydrogen
is always greater than its atomic number, not equal to it. Helium,
for instance, has two protons, but its mass is four times greater than
that of hydrogen.

Chadwick cleared up the confusion by proving the existence of a new
subatomic particle. Unlike the electron and proton, which are elec-
trically charged, this particle is electrically neutral, and he named it
the neutron. Chadwick’s experiment has been described in detail in
section 14.2, but briefly the method was to expose a sample of the
light element beryllium to a stream of alpha particles from a lump
of radium. Beryllium has only four protons, so an alpha that hap-
pens to be aimed directly at a beryllium nucleus can actually hit it
rather than being stopped short of a collision by electrical repulsion.
Neutrons were observed as a new form of radiation emerging from
the collisions, and Chadwick correctly inferred that they were previ-
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w / Examples of the construction
of atoms: hydrogen (top) and
helium (bottom). On this scale,
the electrons’ orbits would be the
size of a college campus.

ously unsuspected components of the nucleus that had been knocked
out. As described earlier, Chadwick also determined the mass of the
neutron; it is very nearly the same as that of the proton.

To summarize, atoms are made of three types of particles:

charge mass in units of
the proton’s mass

location in atom

proton +e 1 in nucleus

neutron 0 1.001 in nucleus

electron −e 1/1836 orbiting nucleus

The existence of neutrons explained the mysterious masses of the
elements. Helium, for instance, has a mass very close to four times
greater than that of hydrogen. This is because it contains two neu-
trons in addition to its two protons. The mass of an atom is essen-
tially determined by the total number of neutrons and protons. The
total number of neutrons plus protons is therefore referred to as the
atom’s mass number.

Isotopes

We now have a clear interpretation of the fact that helium is close
to four times more massive than hydrogen, and similarly for all the
atomic masses that are close to an integer multiple of the mass
of hydrogen. But what about copper, for instance, which had an
atomic mass 63.5 times that of hydrogen? It didn’t seem reasonable
to think that it possessed an extra half of a neutron! The solution
was found by measuring the mass-to-charge ratios of singly-ionized
atoms (atoms with one electron removed). The technique is essen-
tially that same as the one used by Thomson for cathode rays, except
that whole atoms do not spontaneously leap out of the surface of
an object as electrons sometimes do. Figure x shows an example of
how the ions can be created and injected between the charged plates
for acceleration.

Injecting a stream of copper ions into the device, we find a surprise
— the beam splits into two parts! Chemists had elevated to dogma
the assumption that all the atoms of a given element were identical,
but we find that 69% of copper atoms have one mass, and 31% have
another. Not only that, but both masses are very nearly integer
multiples of the mass of hydrogen (63 and 65, respectively). Copper
gets its chemical identity from the number of protons in its nucleus,
29, since chemical reactions work by electric forces. But apparently
some copper atoms have 63−29 = 34 neutrons while others have 65−
29 = 36. The atomic mass of copper, 63.5, reflects the proportions
of the mixture of the mass-63 and mass-65 varieties. The different
mass varieties of a given element are called isotopes of that element.

Isotopes can be named by giving the mass number as a subscript to
the left of the chemical symbol, e.g., 65Cu. Examples:
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x / A version of the Thomson
apparatus modified for measuring
the mass-to-charge ratios of
ions rather than electrons. A
small sample of the element in
question, copper in our example,
is boiled in the oven to create
a thin vapor. (A vacuum pump
is continuously sucking on the
main chamber to keep it from
accumulating enough gas to stop
the beam of ions.) Some of the
atoms of the vapor are ionized by
a spark or by ultraviolet light. Ions
that wander out of the nozzle
and into the region between
the charged plates are then
accelerated toward the top of the
figure. As in the Thomson experi-
ment, mass-to-charge ratios are
inferred from the deflection of the
beam.

protons neutrons mass number
1H 1 0 0+1 = 1
4He 2 2 2+2 = 4
12C 6 6 6+6 = 12
14C 6 8 6+8 = 14
262Ha 105 157 105+157 = 262

self-check B
Why are the positive and negative charges of the accelerating plates
reversed in the isotope-separating apparatus compared to the Thomson
apparatus? . Answer, p. 1044

Chemical reactions are all about the exchange and sharing of elec-
trons: the nuclei have to sit out this dance because the forces of
electrical repulsion prevent them from ever getting close enough to
make contact with each other. Although the protons do have a
vitally important effect on chemical processes because of their elec-
trical forces, the neutrons can have no effect on the atom’s chemical
reactions. It is not possible, for instance, to separate 63Cu from 65Cu
by chemical reactions. This is why chemists had never realized that
different isotopes existed. (To be perfectly accurate, different iso-
topes do behave slightly differently because the more massive atoms
move more sluggishly and therefore react with a tiny bit less inten-
sity. This tiny difference is used, for instance, to separate out the
isotopes of uranium needed to build a nuclear bomb. The smallness
of this effect makes the separation process a slow and difficult one,
which is what we have to thank for the fact that nuclear weapons
have not been built by every terrorist cabal on the planet.)

Sizes and shapes of nuclei

Matter is nearly all nuclei if you count by weight, but in terms of
volume nuclei don’t amount to much. The radius of an individual
neutron or proton is very close to 1 fm (1 fm=10−15 m), so even a big
lead nucleus with a mass number of 208 still has a diameter of only
about 13 fm, which is ten thousand times smaller than the diameter
of a typical atom. Contrary to the usual imagery of the nucleus as a
small sphere, it turns out that many nuclei are somewhat elongated,
like an American football, and a few have exotic asymmetric shapes
like pears or kiwi fruits.

Discussion questions

A Suppose the entire universe was in a (very large) cereal box, and
the nutritional labeling was supposed to tell a godlike consumer what per-
centage of the contents was nuclei. Roughly what would the percentage
be like if the labeling was according to mass? What if it was by volume?
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z / The strong nuclear force
cuts off very sharply at a range of
about 1 fm.

y / A nuclear power plant at Cat-
tenom, France. Unlike the coal
and oil plants that supply most
of the U.S.’s electrical power, a
nuclear power plant like this one
releases no pollution or green-
house gases into the Earth’s at-
mosphere, and therefore doesn’t
contribute to global warming. The
white stuff puffing out of this
plant is non-radioactive water va-
por. Although nuclear power
plants generate long-lived nuclear
waste, this waste arguably poses
much less of a threat to the bio-
sphere than greenhouse gases
would.

The strong nuclear force, alpha decay and fission

Once physicists realized that nuclei consisted of positively charged
protons and uncharged neutrons, they had a problem on their hands.
The electrical forces among the protons are all repulsive, so the
nucleus should simply fly apart! The reason all the nuclei in your
body are not spontaneously exploding at this moment is that there
is another force acting. This force, called the strong nuclear force, is
always attractive, and acts between neutrons and neutrons, neutrons
and protons, and protons and protons with roughly equal strength.
The strong nuclear force does not have any effect on electrons, which
is why it does not influence chemical reactions.

Unlike electric forces, whose strengths are given by the simple Coulomb
force law, there is no simple formula for how the strong nuclear force
depends on distance. Roughly speaking, it is effective over ranges
of ∼ 1 fm, but falls off extremely quickly at larger distances (much
faster than 1/r2). Since the radius of a neutron or proton is about
1 fm, that means that when a bunch of neutrons and protons are
packed together to form a nucleus, the strong nuclear force is effec-
tive only between neighbors.

Figure aa illustrates how the strong nuclear force acts to keep or-
dinary nuclei together, but is not able to keep very heavy nuclei
from breaking apart. In aa/1, a proton in the middle of a carbon
nucleus feels an attractive strong nuclear force (arrows) from each
of its nearest neighbors. The forces are all in different directions,
and tend to cancel out. The same is true for the repulsive electri-
cal forces (not shown). In figure aa/2, a proton at the edge of the
nucleus has neighbors only on one side, and therefore all the strong
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aa / 1. The forces cancel. 2. The forces don’t cancel. 3. In a
heavy nucleus, the large number of electrical repulsions can add up to
a force that is comparable to the strong nuclear attraction. 4. Alpha
emission. 5. Fission.

nuclear forces acting on it are tending to pull it back in. Although
all the electrical forces from the other five protons (dark arrows) are
all pushing it out of the nucleus, they are not sufficient to overcome
the strong nuclear forces.

In a very heavy nucleus, aa/3, a proton that finds itself near the edge
has only a few neighbors close enough to attract it significantly via
the strong nuclear force, but every other proton in the nucleus exerts
a repulsive electrical force on it. If the nucleus is large enough, the
total electrical repulsion may be sufficient to overcome the attraction
of the strong force, and the nucleus may spit out a proton. Proton
emission is fairly rare, however; a more common type of radioactive
decay1 in heavy nuclei is alpha decay, shown in aa/4. The imbalance
of the forces is similar, but the chunk that is ejected is an alpha
particle (two protons and two neutrons) rather than a single proton.

It is also possible for the nucleus to split into two pieces of roughly
equal size, aa/5, a process known as fission. Note that in addition
to the two large fragments, there is a spray of individual neutrons.
In a nuclear fission bomb or a nuclear fission reactor, some of these

1Alpha decay is more common because an alpha particle happens to be a
very stable arrangement of protons and neutrons.
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neutrons fly off and hit other nuclei, causing them to undergo fission
as well. The result is a chain reaction.

When a nucleus is able to undergo one of these processes, it is said
to be radioactive, and to undergo radioactive decay. Some of the
naturally occurring nuclei on earth are radioactive. The term “ra-
dioactive” comes from Becquerel’s image of rays radiating out from
something, not from radio waves, which are a whole different phe-
nomenon. The term “decay” can also be a little misleading, since it
implies that the nucleus turns to dust or simply disappears – actu-
ally it is splitting into two new nuclei with the same total number
of neutrons and protons, so the term “radioactive transformation”
would have been more appropriate. Although the original atom’s
electrons are mere spectators in the process of weak radioactive
decay, we often speak loosely of “radioactive atoms” rather than
“radioactive nuclei.”

Randomness in physics

How does an atom decide when to decay? We might imagine that
it is like a termite-infested house that gets weaker and weaker, un-
til finally it reaches the day on which it is destined to fall apart.
Experiments, however, have not succeeded in detecting such “tick-
ing clock” hidden below the surface; the evidence is that all atoms
of a given isotope are absolutely identical. Why, then, would one
uranium atom decay today while another lives for another million
years? The answer appears to be that it is entirely random. We
can make general statements about the average time required for a
certain isotope to decay, or how long it will take for half the atoms
in a sample to decay (its half-life), but we can never predict the
behavior of a particular atom.

This is the first example we have encountered of an inescapable
randomness in the laws of physics. If this kind of randomness makes
you uneasy, you’re in good company. Einstein’s famous quote is
“...I am convinced that He [God] does not play dice.“ Einstein’s
distaste for randomness, and his association of determinism with
divinity, goes back to the Enlightenment conception of the universe
as a gigantic piece of clockwork that only had to be set in motion
initially by the Builder. Physics had to be entirely rebuilt in the 20th
century to incorporate the fundamental randomness of physics, and
this modern revolution is the topic of chapters 33-26. In

particular, we will delay the mathematical development of the half-
life concept until then.

The weak nuclear force; beta decay

All the nuclear processes we’ve discussed so far have involved re-
arrangements of neutrons and protons, with no change in the total
number of neutrons or the total number of protons. Now consider
the proportions of neutrons and protons in your body and in the
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planet earth: neutrons and protons are roughly equally numerous
in your body’s carbon and oxygen nuclei, and also in the nickel and
iron that make up most of the earth. The proportions are about
50-50. But, as discussed in more detail on p. 793, the only chemi-
cal elements produced in any significant quantities by the big bang2

were hydrogen (about 90%) and helium (about 10%). If the early
universe was almost nothing but hydrogen atoms, whose nuclei are
protons, where did all those neutrons come from?

The answer is that there is another nuclear force, the weak nuclear
force, that is capable of transforming neutrons into protons and
vice-versa. Two possible reactions are

n→ p + e− + ν̄ [electron decay]

and

p→ n + e+ + ν. [positron decay]

(There is also a third type called electron capture, in which a proton
grabs one of the atom’s electrons and they produce a neutron and
a neutrino.)

Whereas alpha decay and fission are just a redivision of the previ-
ously existing particles, these reactions involve the destruction of
one particle and the creation of three new particles that did not
exist before.

There are three new particles here that you have never previously
encountered. The symbol e+ stands for an antielectron, which is
a particle just like the electron in every way, except that its elec-
tric charge is positive rather than negative. Antielectrons are also
known as positrons. Nobody knows why electrons are so common in
the universe and antielectrons are scarce. When an antielectron en-
counters an electron, they annihilate each other, producing gamma
rays, and this is the fate of all the antielectrons that are produced
by natural radioactivity on earth. Antielectrons are an example of
antimatter. A complete atom of antimatter would consist of antipro-
tons, antielectrons, and antineutrons. Although individual particles
of antimatter occur commonly in nature due to natural radioactivity
and cosmic rays, only a few complete atoms of antihydrogen have
ever been produced artificially.

The notation ν stands for a particle called a neutrino, and ν̄ means
an antineutrino. Neutrinos and antineutrinos have no electric charge
(hence the name).

We can now list all four of the known fundamental forces of physics:

• gravity

2The evidence for the big bang theory of the origin of the universe was dis-
cussed on p. 513.
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• electromagnetism

• strong nuclear force

• weak nuclear force

The other forces we have learned about, such as friction and the
normal force, all arise from electromagnetic interactions between
atoms, and therefore are not considered to be fundamental forces of
physics.

Decay of 212Pb example 5
As an example, consider the radioactive isotope of lead 212Pb. It
contains 82 protons and 130 neutrons. It decays by the process
n → p + e− + ν̄ . The newly created proton is held inside the
nucleus by the strong nuclear force, so the new nucleus contains
83 protons and 129 neutrons. Having 83 protons makes it the
element bismuth, so it will be an atom of 212Bi.

In a reaction like this one, the electron flies off at high speed (typ-
ically close to the speed of light), and the escaping electrons are
the things that make large amounts of this type of radioactivity
dangerous. The outgoing electron was the first thing that tipped
off scientists in the early 1900s to the existence of this type of ra-
dioactivity. Since they didn’t know that the outgoing particles were
electrons, they called them beta particles, and this type of radioac-
tive decay was therefore known as beta decay. A clearer but less
common terminology is to call the two processes electron decay and
positron decay.

The neutrino or antineutrino emitted in such a reaction pretty much
ignores all matter, because its lack of charge makes it immune to
electrical forces, and it also remains aloof from strong nuclear in-
teractions. Even if it happens to fly off going straight down, it is
almost certain to make it through the entire earth without inter-
acting with any atoms in any way. It ends up flying through outer
space forever. The neutrino’s behavior makes it exceedingly diffi-
cult to detect, and when beta decay was first discovered nobody
realized that neutrinos even existed. We now know that the neu-
trino carries off some of the energy produced in the reaction, but at
the time it seemed that the total energy afterwards (not counting
the unsuspected neutrino’s energy) was greater than the total en-
ergy before the reaction, violating conservation of energy. Physicists
were getting ready to throw conservation of energy out the window
as a basic law of physics when indirect evidence led them to the
conclusion that neutrinos existed.

Discussion questions

A In the reactions n → p + e− + ν̄ and p → n + e+ + ν, verify that
charge is conserved. In beta decay, when one of these reactions happens
to a neutron or proton within a nucleus, one or more gamma rays may
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also be emitted. Does this affect conservation of charge? Would it be
possible for some extra electrons to be released without violating charge
conservation?

B When an antielectron and an electron annihilate each other, they
produce two gamma rays. Is charge conserved in this reaction?

ab / 1. Our sun’s source of energy is nuclear fusion, so nuclear fusion is also the source of power for
all life on earth, including, 2, this rain forest in Fatu-Hiva. 3. The first release of energy by nuclear fusion
through human technology was the 1952 Ivy Mike test at the Enewetak Atoll. 4. This array of gamma-ray
detectors is called GAMMASPHERE. During operation, the array is closed up, and a beam of ions produced
by a particle accelerator strikes a target at its center, producing nuclear fusion reactions. The gamma rays
can be studied for information about the structure of the fused nuclei, which are typically varieties not found
in nature. 5. Nuclear fusion promises to be a clean, inexhaustible source of energy. However, the goal of
commercially viable nuclear fusion power has remained elusive, due to the engineering difficulties involved
in magnetically containing a plasma (ionized gas) at a sufficiently high temperature and density. This photo
shows the experimental JET reactor, with the device opened up on the left, and in action on the right.
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Fusion

As we have seen, heavy nuclei tend to fly apart because each proton
is being repelled by every other proton in the nucleus, but is only
attracted by its nearest neighbors. The nucleus splits up into two
parts, and as soon as those two parts are more than about 1 fm
apart, the strong nuclear force no longer causes the two fragments
to attract each other. The electrical repulsion then accelerates them,
causing them to gain a large amount of kinetic energy. This release
of kinetic energy is what powers nuclear reactors and fission bombs.

It might seem, then, that the lightest nuclei would be the most
stable, but that is not the case. Let’s compare an extremely light
nucleus like 4He with a somewhat heavier one, 16O. A neutron or
proton in 4He can be attracted by the three others, but in 16O, it
might have five or six neighbors attracting it. The 16O nucleus is
therefore more stable.

It turns out that the most stable nuclei of all are those around nickel
and iron, having about 30 protons and 30 neutrons. Just as a nucleus
that is too heavy to be stable can release energy by splitting apart
into pieces that are closer to the most stable size, light nuclei can
release energy if you stick them together to make bigger nuclei that
are closer to the most stable size. Fusing one nucleus with another
is called nuclear fusion. Nuclear fusion is what powers our sun and
other stars.
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Nuclear energy and binding energies

In the same way that chemical reactions can be classified as exother-
mic (releasing energy) or endothermic (requiring energy to react), so
nuclear reactions may either release or use up energy. The energies
involved in nuclear reactions are greater by a huge factor. Thou-
sands of tons of coal would have to be burned to produce as much
energy as would be produced in a nuclear power plant by one kg of
fuel.

Although nuclear reactions that use up energy (endothermic reac-
tions) can be initiated in accelerators, where one nucleus is rammed
into another at high speed, they do not occur in nature, not even
in the sun. The amount of kinetic energy required is simply not
available.

To find the amount of energy consumed or released in a nuclear
reaction, you need to know how much nuclear interaction energy,
Unuc, was stored or released. Experimentalists have determined the
amount of nuclear energy stored in the nucleus of every stable el-
ement, as well as many unstable elements. This is the amount of
mechanical work that would be required to pull the nucleus apart
into its individual neutrons and protons, and is known as the nuclear
binding energy.

A reaction occurring in the sun example 6
The sun produces its energy through a series of nuclear fusion
reactions. One of the reactions is

1H +2 H→3 He + G

The excess energy is almost all carried off by the gamma ray (not
by the kinetic energy of the helium-3 atom). The binding energies
in units of pJ (picojoules) are:

1H 0 J
2H 0.35593 pJ
3He 1.23489 pJ

The total initial nuclear energy is 0 pJ+0.35593 pJ, and the final
nuclear energy is 1.23489 pJ, so by conservation of energy, the
gamma ray must carry off 0.87896 pJ of energy. The gamma ray
is then absorbed by the sun and converted to heat.

self-check C
Why is the binding energy of 1H exactly equal to zero? . Answer, p.
1044

Figure ac is a compact way of showing the vast variety of the nuclei.
Each box represents a particular number of neutrons and protons.
The black boxes are nuclei that are stable, i.e., that would require an
input of energy in order to change into another. The gray boxes show
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ad / A map showing levels of
radiation near the site of the
Chernobyl nuclear accident.

ac / The known nuclei, represented on a chart of proton number versus neutron number. Note the two
nuclei in the bottom row with zero protons.

all the unstable nuclei that have been studied experimentally. Some
of these last for billions of years on the average before decaying and
are found in nature, but most have much shorter average lifetimes,
and can only be created and studied in the laboratory.

The curve along which the stable nuclei lie is called the line of sta-
bility. Nuclei along this line have the most stable proportion of
neutrons to protons. For light nuclei the most stable mixture is
about 50-50, but we can see that stable heavy nuclei have two or
three times more neutrons than protons. This is because the elec-
trical repulsions of all the protons in a heavy nucleus add up to a
powerful force that would tend to tear it apart. The presence of
a large number of neutrons increases the distances among the pro-
tons, and also increases the number of attractions due to the strong
nuclear force.

Biological effects of ionizing radiation

Units used to measure exposure

As a science educator, I find it frustrating that nowhere in the mas-
sive amount of journalism devoted to nuclear safety does one ever
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ae / In this classic zombie flick, a
newscaster speculates that the
dead have been reanimated due
to radiation brought back to earth
by a space probe.

af / Radiation doesn’t mutate
entire multicellular organisms.

find any numerical statements about the amount of radiation to
which people have been exposed. Anyone capable of understanding
sports statistics or weather reports ought to be able to understand
such measurements, as long as something like the following explana-
tory text was inserted somewhere in the article:

Radiation exposure is measured in units of Sieverts (Sv). The aver-
age person is exposed to about 2000 µSv (microSieverts) each year
from natural background sources.

With this context, people would be able to come to informed con-
clusions. For example, figure ad shows a scary-looking map of the
levels of radiation in the area surrounding the 1986 nuclear accident
at Chernobyl, Ukraine, the most serious that has ever occurred. At
the boundary of the most highly contaminated (bright red) areas,
people would be exposed to about 13,000 µSv per year, or about four
times the natural background level. In the pink areas, which are still
densely populated, the exposure is comparable to the natural level
found in a high-altitude city such as Denver.

What is a Sievert? It measures the amount of energy per kilogram
deposited in the body by ionizing radiation, multiplied by a “quality
factor” to account for the different health hazards posed by alphas,
betas, gammas, neutrons, and other types of radiation. Only ion-
izing radiation is counted, since nonionizing radiation simply heats
one’s body rather than killing cells or altering DNA. For instance,
alpha particles are typically moving so fast that their kinetic energy
is sufficient to ionize thousands of atoms, but it is possible for an
alpha particle to be moving so slowly that it would not have enough
kinetic energy to ionize even one atom.

Unfortunately, most people don’t know much about radiation and
tend to react to it based on unscientific cultural notions. These may,
as in figure ae, be based on fictional tropes silly enough to require the
suspension of disbelief by the audience, but they can also be more
subtle. People of my kids’ generation are more familiar with the
2011 Fukushima nuclear accident than with the much more serious
Chernobyl accident. The news coverage of Fukushima showed scary
scenes of devastated landscapes and distraught evacuees, implying
that people had been killed and displaced by the release of radiation
from the reaction. In fact, there were no deaths at all due to the
radiation released at Fukushima, and no excess cancer deaths are
statistically predicted in the future. The devastation and the death
toll of 16,000 were caused by the earthquake and tsunami, which
were also what damaged the plant.

Effects of exposure

Notwithstanding the pop culture images like figure af, it is not pos-
sible for a multicellular animal to become “mutated” as a whole.
In most cases, a particle of ionizing radiation will not even hit the
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DNA, and even if it does, it will only affect the DNA of a single cell,
not every cell in the animal’s body. Typically, that cell is simply
killed, because the DNA becomes unable to function properly. Once
in a while, however, the DNA may be altered so as to make that
cell cancerous. For instance, skin cancer can be caused by UV light
hitting a single skin cell in the body of a sunbather. If that cell
becomes cancerous and begins reproducing uncontrollably, she will
end up with a tumor twenty years later.

Other than cancer, the only other dramatic effect that can result
from altering a single cell’s DNA is if that cell happens to be a
sperm or ovum, which can result in nonviable or mutated offspring.
Men are relatively immune to reproductive harm from radiation,
because their sperm cells are replaced frequently. Women are more
vulnerable because they keep the same set of ova as long as they
live.

Effects of high doses of radiation

A whole-body exposure of 5,000,000 µSv will kill a person within a
week or so. Luckily, only a small number of humans have ever been
exposed to such levels: one scientist working on the Manhattan
Project, some victims of the Nagasaki and Hiroshima explosions,
and 31 workers at Chernobyl. Death occurs by massive killing of
cells, especially in the blood-producing cells of the bone marrow.

Effects of low doses radiation

Lower levels, on the order of 1,000,000 µSv, were inflicted on some
people at Nagasaki and Hiroshima. No acute symptoms result from
this level of exposure, but certain types of cancer are significantly
more common among these people. It was originally expected that
the radiation would cause many mutations resulting in birth defects,
but very few such inherited effects have been observed.

A great deal of time has been spent debating the effects of very low
levels of ionizing radiation. The following table gives some sample
figures.

maximum beneficial dose per day ∼ 10,000 µSv
CT scan ∼ 10,000 µSv
natural background per year 2,000-7,000 µSv
health guidelines for exposure to a fetus 1,000 µSv
flying from New York to Tokyo 150 µSv
chest x-ray 50 µSv

Note that the largest number, on the first line of the table, is the
maximum beneficial dose. The most useful evidence comes from
experiments in animals, which can intentionally be exposed to sig-
nificant and well measured doses of radiation under controlled con-
ditions. Experiments show that low levels of radiation activate cel-
lular damage control mechanisms, increasing the health of the or-
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ag / A typical example of ra-
diation hormesis: the health of
mice is improved by low levels
of radiation. In this study, young
mice were exposed to fairly high
levels of x-rays, while a control
group of mice was not exposed.
The mice were weighed, and
their rate of growth was taken
as a measure of their health. At
levels below about 50,000 µSv,
the radiation had a beneficial
effect on the health of the mice,
presumably by activating cellular
damage control mechanisms.
The two highest data points
are statistically significant at the
99% level. The curve is a fit to
a theoretical model. Redrawn
from T.D. Luckey, Hormesis with
Ionizing Radiation, CRC Press,
1980.

ganism. For example, exposure to radiation up to a certain level
makes mice grow faster; makes guinea pigs’ immune systems func-
tion better against diptheria; increases fertility in trout and mice;
improves fetal mice’s resistance to disease; increases the life-spans of
flour beetles and mice; and reduces mortality from cancer in mice.
This type of effect is called radiation hormesis.

There is also some evidence that in humans, small doses of radiation
increase fertility, reduce genetic abnormalities, and reduce mortal-
ity from cancer. The human data, however, tend to be very poor
compared to the animal data. Due to ethical issues, one cannot do
controlled experiments in humans. For example, one of the best
sources of information has been from the survivors of the Hiroshima
and Nagasaki bomb blasts, but these people were also exposed to
high levels of carcinogenic chemicals in the smoke from their burning
cities; for comparison, firefighters have a heightened risk of cancer,
and there are also significant concerns about cancer from the 9/11
attacks in New York. The direct empirical evidence about radiation
hormesis in humans is therefore not good enough to tell us anything
unambiguous,3 and the most scientifically reasonable approach is to
assume that the results in animals also hold for humans: small doses
of radiation in humans are beneficial, rather than harmful. However,
a variety of cultural and historical factors have led to a situation in
which public health policy is based on the assumption, known as
“linear no-threshold” (LNT), that even tiny doses of radiation are
harmful, and that the risk they carry is proportional to the dose.
In other words, law and policy are made based on the assumption
that the effects of radiation on humans are dramatically different
than its effects on mice and guinea pigs. Even with the unrealis-
tic assumption of LNT, one can still evaluate risks by comparing
with natural background radiation. For example, we can see that
the effect of a chest x-ray is about a hundred times smaller than
the effect of spending a year in Colorado, where the level of natural
background radiation from cosmic rays is higher than average, due
to the high altitude. Dropping the implausible LNT assumption, we
can see that the impact on one’s health of spending a year in Col-
orado is likely to be positive, because the excess radiation is below
the maximum beneficial level.

The green case for nuclear power

In the late twentieth century, antinuclear activists largely succeeded
in bringing construction of new nuclear power plants to a halt in
the U.S. Ironically, we now know that the burning of fossil fuels,
which leads to global warming, is a far more grave threat to the

3For two opposing viewpoints, see Tubiana et al., “The Linear No-Threshold
Relationship Is Inconsistent with Radiation Biologic and Experimental Data,”
Radiology, 251 (2009) 13 and Little et al., “ Risks Associated with Low Doses
and Low Dose Rates of Ionizing Radiation: Why Linearity May Be (Almost) the
Best We Can Do,” Radiology, 251 (2009) 6.
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ah / Wild Przewalski’s horses
prosper in the Chernobyl area.

ai / Fossil fuels have done
incomparably more damage to
the environment than nuclear
power ever has. Polar bears’
habitat is rapidly being destroyed
by global warming.

environment than even the Chernobyl disaster. A team of biologists
writes: “During recent visits to Chernobyl, we experienced numer-
ous sightings of moose (Alces alces), roe deer (Capreol capreolus),
Russian wild boar (Sus scrofa), foxes (Vulpes vulpes), river otter
(Lutra canadensis), and rabbits (Lepus europaeus) ... Diversity of
flowers and other plants in the highly radioactive regions is impres-
sive and equals that observed in protected habitats outside the zone
... The observation that typical human activity (industrialization,
farming, cattle raising, collection of firewood, hunting, etc.) is more
devastating to biodiversity and abundance of local flora and fauna
than is the worst nuclear power plant disaster validates the nega-
tive impact the exponential growth of human populations has on
wildlife.”4

Nuclear power is the only source of energy that is sufficient to re-
place any significant percentage of energy from fossil fuels on the
rapid schedule demanded by the speed at which global warming is
progressing. People worried about the downside of nuclear energy
might be better off putting their energy into issues related to nu-
clear weapons: the poor stewardship of the former Soviet Union’s
warheads; nuclear proliferation in unstable states such as Pakistan;
and the poor safety and environmental history of the superpowers’
nuclear weapons programs, including the loss of several warheads
in plane crashes, and the environmental disaster at the Hanford,
Washington, weapons plant.

Protection from radiation

People do sometimes work with strong enough radioactivity that
there is a serious health risk. Typically the scariest sources are those
used in cancer treatment and in medical and biological research.
Also, a dental technician, for example, needs to take precautions to
avoid accumulating a large radiation dose from giving dental x-rays
to many patients. There are three general ways to reduce exposure:
time, distance, and shielding. This is why a dental technician doing
x-rays wears a lead apron (shielding) and steps outside of the x-ray
room while running an exposure (distance). Reducing the time of
exposure dictates, for example, that a person working with a hot
cancer-therapy source would minimize the amount of time spent
near it.

Shielding against alpha and beta particles is trivial to accomplish.
(Alphas can’t even penetrate the skin.) Gammas and x-rays interact
most strongly with materials that are dense and have high atomic
numbers, which is why lead is so commonly used. But other mate-

4Baker and Chesser, Env. Toxicology and Chem. 19 (1231) 2000. Similar
effects have been seen at the Bikini Atoll, the site of a 1954 hydrogen bomb test.
Although some species have disappeared from the area, the coral reef is in many
ways healthier than similar reefs elsewhere, because humans have tended to stay
away for fear of radiation (Richards et al., Marine Pollution Bulletin 56 (2008)
503).
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aj / The Crab Nebula is a
remnant of a supernova explo-
sion. Almost all the elements our
planet is made of originated in
such explosions.

ak / Construction of the UNI-
LAC accelerator in Germany, one
of whose uses is for experiments
to create very heavy artificial
elements. In such an experiment,
fusion products recoil through a
device called SHIP (not shown)
that separates them based on
their charge-to-mass ratios —
it is essentially just a scaled-up
version of Thomson’s appara-
tus. A typical experiment runs
for several months, and out of
the billions of fusion reactions
induced during this time, only
one or two may result in the
production of superheavy atoms.
In all the rest, the fused nucleus
breaks up immediately. SHIP
is used to identify the small
number of “good” reactions and
separate them from this intense
background.

rials will also work. For example, the reason that bones show up so
clearly on x-ray images is that they are dense and contain plenty of
calcium, which has a higher atomic number than the elements found
in most other body tissues, which are mostly made of water.

Neutrons are difficult to shield against. Because they are electrically
neutral, they don’t interact intensely with matter in the same way
as alphas and betas. They only interact if they happen to collide
head-on with a nucleus, and that doesn’t happen very often because
nuclei are tiny targets. Kinematically, a collision can transfer kinetic
energy most efficiently when the target is as low in mass as possible
compared to the projectile. For this reason, substances that contain
a lot of hydrogen make the best shielding against neutrons. Blocks
of paraffin wax from the supermarket are often used for this purpose.

? The creation of the elements

Creation of hydrogen and helium in the Big Bang

Did all the chemical elements we’re made of come into being in the
big bang?5 Temperatures in the first microseconds after the big
bang were so high that atoms and nuclei could not hold together
at all. After things had cooled down enough for nuclei and atoms
to exist, there was a period of about three minutes during which
the temperature and density were high enough for fusion to occur,
but not so high that atoms could hold together. We have a good,
detailed understanding of the laws of physics that apply under these
conditions, so theorists are able to say with confidence that the
only element heavier than hydrogen that was created in significant
quantities was helium.

We are stardust

In that case, where did all the other elements come from? As-
tronomers came up with the answer. By studying the combinations
of wavelengths of light, called spectra, emitted by various stars, they
had been able to determine what kinds of atoms they contained.
(We will have more to say about spectra at the end of this book.)
They found that the stars fell into two groups. One type was nearly
100% hydrogen and helium, while the other contained 99% hydrogen
and helium and 1% other elements. They interpreted these as two
generations of stars. The first generation had formed out of clouds
of gas that came fresh from the big bang, and their composition
reflected that of the early universe. The nuclear fusion reactions
by which they shine have mainly just increased the proportion of
helium relative to hydrogen, without making any heavier elements.
The members of the first generation that we see today, however, are
only those that lived a long time. Small stars are more miserly with
their fuel than large stars, which have short lives. The large stars of

5The evidence for the big bang theory of the origin of the universe was dis-
cussed in subsection 19.5.1.
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the first generation have already finished their lives. Near the end of
its lifetime, a star runs out of hydrogen fuel and undergoes a series
of violent and spectacular reorganizations as it fuses heavier and
heavier elements. Very large stars finish this sequence of events by
undergoing supernova explosions, in which some of their material is
flung off into the void while the rest collapses into an exotic object
such as a black hole or neutron star.

The second generation of stars, of which our own sun is an example,
condensed out of clouds of gas that had been enriched in heavy
elements due to supernova explosions. It is those heavy elements
that make up our planet and our bodies.

Discussion questions

A Should the quality factor for neutrinos be very small, because they
mostly don’t interact with your body?

B Would an alpha source be likely to cause different types of cancer
depending on whether the source was external to the body or swallowed
in contaminated food? What about a gamma source?

marg()

26.5 Relativistic mass and energy
The radioactive decay processes described in this chapter do not con-
serve mass. For example, you’re probably reading this in a building
that has smoke detectors containing the isotope 241Am, an alpha
emitter. The decay products are a helium atom plus an atom of
237Np. In units of 10−27 kg, the masses involved are:

241Am 400.28421
237Np 393.62768
4He 6.64647

The final state has a total mass of 400.27415 of these units, meaning
a loss of 0.01006. This is an example of Einstein’s famous E = mc2

at work: some mass has been converted into energy. In fact this type
of mass-energy conversion is not just a property of nuclear decay. It
is an example of a much wider set of phenomena in relativity. Let’s
see how quantities like mass, force, momentum, and energy behave
relativistically.

Momentum

Consider the following scheme for traveling faster than the speed of
light. The basic idea can be demonstrated by dropping a ping-pong
ball and a baseball stacked on top of each other like a snowman.
They separate slightly in mid-air, and the baseball therefore has
time to hit the floor and rebound before it collides with the ping-
pong ball, which is still on the way down. The result is a surprise
if you haven’t seen it before: the ping-pong ball flies off at high
speed and hits the ceiling! A similar fact is known to people who
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investigate the scenes of accidents involving pedestrians. If a car
moving at 90 kilometers per hour hits a pedestrian, the pedestrian
flies off at nearly double that speed, 180 kilometers per hour. Now
suppose the car was moving at 90 percent of the speed of light.
Would the pedestrian fly off at 180% of c?

To see why not, we have to back up a little and think about where
this speed-doubling result comes from. For any collision, there is
a special frame of reference, the center-of-mass frame, in which the
two colliding objects approach each other, collide, and rebound with
their velocities reversed. In the center-of-mass frame, the total mo-
mentum of the objects is zero both before and after the collision.

al / An unequal collision, viewed
in the center-of-mass frame, 1,
and in the frame where the small
ball is initially at rest, 2. The mo-
tion is shown as it would appear
on the film of an old-fashioned
movie camera, with an equal
amount of time separating each
frame from the next. Film 1 was
made by a camera that tracked
the center of mass, film 2 by one
that was initially tracking the small
ball, and kept on moving at the
same speed after the collision.

Figure al/1 shows such a frame of reference for objects of very un-
equal mass. Before the collision, the large ball is moving relatively
slowly toward the top of the page, but because of its greater mass,
its momentum cancels the momentum of the smaller ball, which is
moving rapidly in the opposite direction. The total momentum is
zero. After the collision, the two balls just reverse their directions of
motion. We know that this is the right result for the outcome of the
collision because it conserves both momentum and kinetic energy,
and everything not forbidden is compulsory, i.e., in any experiment,
there is only one possible outcome, which is the one that obeys all
the conservation laws.

self-check D
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How do we know that momentum and kinetic energy are conserved in
figure al/1? . Answer, p. 1044

Let’s make up some numbers as an example. Say the small ball is 1
kg, the big one 6 kg. In frame 1, let’s make the velocities as follows:

before the collision after the collision

-0.6 0.6
0.1 -0.1

Figure al/2 shows the same collision in a frame of reference where
the small ball was initially at rest. To find all the velocities in this
frame, we just add 0.6 to all the ones in the previous table.

before the collision after the collision

0 1.2
0.7 0.5

In this frame, as expected, the small ball flies off with a velocity, 1.2,
that is almost twice the initial velocity of the big ball, 0.7. In this
example the ratio of the two balls’ masses was 6, but if the ratio of
the masses is made larger and larger, the ratio of the velocities gets
closer and closer to 2.

If all those velocities were in meters per second, then that’s exactly
what would happen. But what if all these velocities were in units
of the speed of light? Now it’s no longer a good approximation
just to add velocities. We need to combine them according to the
relativistic rules. For instance, in problem 1 on p. 722 you showed
that combining a velocity of 0.6 times the speed of light with another
velocity of 0.6 results in 0.88, not 1.2. The results are very different:

before the collision after the collision

0 0.88
0.67 0.51

am / A 6-kg ball moving at 88%
of the speed of light hits a 1-kg
ball. The balls appear foreshort-
ened due to the relativistic distor-
tion of space.

We can interpret this as follows. Figure al/1 is one in which the big
ball is moving fairly slowly. This is very nearly the way the scene
would be seen by an ant standing on the big ball. According to
an observer in frame am, however, both balls are moving at nearly
the speed of light after the collision. Because of this, the balls
appear foreshortened, but the distance between the two balls is also
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an / Example 7.

shortened. To this observer, it seems that the small ball isn’t pulling
away from the big ball very fast.

Now here’s what’s interesting about all this. The outcome shown
in figure al/2 was supposed to be the only one possible, the only
one that satisfied both conservation of energy and conservation of
momentum. So how can the different result shown in figure am
be possible? The answer is that relativistically, momentum must
not equal mv. The old, familiar definition is only an approximation
that’s valid at low speeds. If we observe the behavior of the small
ball in figure am, it looks as though it somehow had some extra
inertia. It’s as though a football player tried to knock another player
down without realizing that the other guy had a three-hundred-
pound bag full of lead shot hidden under his uniform — he just
doesn’t seem to react to the collision as much as he should. This
extra inertia is described6 by redefining momentum as

p = mGv.

At very low velocities, G is close to 1, and the result is very nearly
mv, as demanded by the correspondence principle. But at very high
velocities, G gets very big — the small ball in figure am has a G of
2.1, and therefore has more than double the inertia that we would
expect nonrelativistically.

This also explains the answer to another paradox often posed by
beginners at relativity. Suppose you keep on applying a steady force
to an object that’s already moving at 0.9999c. Why doesn’t it just
keep on speeding up past c? The answer is that force is the rate
of change of momentum. At 0.9999c, an object already has a G of
71, and therefore has already sucked up 71 times the momentum
you’d expect at that speed. As its velocity gets closer and closer to
c, its G approaches infinity. To move at c, it would need an infinite
momentum, which could only be caused by an infinite force.

Push as hard as you like . . . example 7
We don’t have to depend on our imaginations to see what would
happen if we kept on applying a force to an object indefinitely and
tried to accelerate it past c. A nice experiment of this type was
done by Bertozzi in 1964. In this experiment, electrons were ac-
celerated by an electric field E through a distance `1. Applying
Newton’s laws gives Newtonian predictions aN for the accelera-
tion and tN for the time required.7

The electrons were then allowed to fly down a pipe for a further
distance `2 = 8.4 m without being acted on by any force. The
time of flight t2 for this second distance was used to find the final
velocity v = `2/t2 to which they had actually been accelerated.
6See p. 805 for a proof.
7Newton’s second law gives aN = F/m = eE/m. The constant-acceleration

equation ∆x = (1/2)at2 then gives tN =
√

2m`1/eE .
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ao / Two early high-precision
tests of the relativistic equation
p = mGv for momentum. Graph-
ing p/m rather than p allows the
data for electrons and protons to
be placed on the same graph.
Natural units are used, so that
the horizontal axis is the velocity
in units of c, and the vertical axis
is the unitless quantity p/mc.
The very small error bars for
the data point from Zrelov are
represented by the height of the
black rectangle.

Figure an shows the results.8 According to Newton, an accelera-
tion aN acting for a time tN should produce a final velocity aN tN .
The solid line in the graph shows the prediction of Newton’s laws,
which is that a constant force exerted steadily over time will pro-
duce a velocity that rises linearly and without limit.

The experimental data, shown as black dots, clearly tell a different
story. The velocity never goes above a certain maximum value,
which we identify as c. The dashed line shows the predictions
of special relativity, which are in good agreement with the experi-
mental results.

Figure ao shows experimental data confirming the relativistic equa-
tion for momentum.

Equivalence of mass and energy

Now we’re ready to see why mass and energy must be equivalent
as claimed in the famous E = mc2. So far we’ve only considered
collisions in which none of the kinetic energy is converted into any
other form of energy, such as heat or sound. Let’s consider what
happens if a blob of putty moving at velocity v hits another blob
that is initially at rest, sticking to it. The nonrelativistic result is
that to obey conservation of momentum the two blobs must fly off
together at v/2. Half of the initial kinetic energy has been converted
to heat.9

Relativistically, however, an interesting thing happens. A hot object
has more momentum than a cold object! This is because the rela-
tivistically correct expression for momentum is mGv, and the more
rapidly moving atoms in the hot object have higher values of G. In
our collision, the final combined blob must therefore be moving a
little more slowly than the expected v/2, since otherwise the final
momentum would have been a little greater than the initial momen-
tum. To an observer who believes in conservation of momentum and
knows only about the overall motion of the objects and not about
their heat content, the low velocity after the collision would seem
to be the result of a magical change in the mass, as if the mass of
two combined, hot blobs of putty was more than the sum of their
individual masses.

We know that the masses of all the atoms in the blobs must be the
same as they always were. The change is due to the change in G
with heating, not to a change in mass. The heat energy, however,
seems to be acting as if it was equivalent to some extra mass. If the
quantity of heat is E, then it turns out that the extra mass m is

8To make the low-energy portion of the graph legible, Bertozzi’s highest-
energy data point is omitted.

9A double-mass object moving at half the speed does not have the same
kinetic energy. Kinetic energy depends on the square of the velocity, so cutting
the velocity in half reduces the energy by a factor of 1/4, which, multiplied by
the doubled mass, makes 1/2 the original energy.
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ap / A New York Times head-
line from November 10, 1919,
describing the observations
discussed in example 8.

such that E = mc2 (proof, p. 805).

But this whole argument was based on the fact that heat is a form
of kinetic energy at the atomic level. Would E = mc2 apply to
other forms of energy as well? Suppose a rocket ship contains some
electrical energy stored in a battery. If we believed that E = mc2

applied to forms of kinetic energy but not to electrical energy, then
we would have to believe that the pilot of the rocket could slow
the ship down by using the battery to run a heater! This would
not only be strange, but it would violate the principle of relativity,
because the result of the experiment would be different depending
on whether the ship was at rest or not. The only logical conclusion is
that all forms of energy are equivalent to mass. Running the heater
then has no effect on the motion of the ship, because the total
energy in the ship was unchanged; one form of energy (electrical)
was simply converted to another (heat).

The equation E = mc2 tells us how much energy is equivalent to how
much mass: the conversion factor is the square of the speed of light,
c. Since c a big number, you get a really really big number when
you multiply it by itself to get c2. This means that even a small
amount of mass is equivalent to a very large amount of energy.

aq / Example 8.

Gravity bending light example 8
Gravity is a universal attraction between things that have mass,
and since the energy in a beam of light is equivalent to some
very small amount of mass, we expect that light will be affected
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by gravity, although the effect should be very small. The first im-
portant experimental confirmation of relativity came in 1919 when
stars next to the sun during a solar eclipse were observed to have
shifted a little from their ordinary position. (If there was no eclipse,
the glare of the sun would prevent the stars from being observed.)
Starlight had been deflected by the sun’s gravity. Figure aq is a
photographic negative, so the circle that appears bright is actually
the dark face of the moon, and the dark area is really the bright
corona of the sun. The stars, marked by lines above and below
them, appeared at positions slightly different than their normal
ones.

Black holes example 9
A star with sufficiently strong gravity can prevent light from leav-
ing. Quite a few black holes have been detected via their gravita-
tional forces on neighboring stars or clouds of gas and dust.

You’ve learned about conservation of mass and conservation of en-
ergy, but now we see that they’re not even separate conservation
laws. As a consequence of the theory of relativity, mass and en-
ergy are equivalent, and are not separately conserved — one can
be converted into the other. Imagine that a magician waves his
wand, and changes a bowl of dirt into a bowl of lettuce. You’d be
impressed, because you were expecting that both dirt and lettuce
would be conserved quantities. Neither one can be made to vanish,
or to appear out of thin air. However, there are processes that can
change one into the other. A farmer changes dirt into lettuce, and
a compost heap changes lettuce into dirt. At the most fundamen-
tal level, lettuce and dirt aren’t really different things at all; they’re
just collections of the same kinds of atoms — carbon, hydrogen, and
so on. Because mass and energy are like two different sides of the
same coin, we may speak of mass-energy, a single conserved quantity,
found by adding up all the mass and energy, with the appropriate
conversion factor: E +mc2.

A rusting nail example 10
. An iron nail is left in a cup of water until it turns entirely to rust.
The energy released is about 0.5 MJ. In theory, would a suffi-
ciently precise scale register a change in mass? If so, how much?

. The energy will appear as heat, which will be lost to the envi-
ronment. The total mass-energy of the cup, water, and iron will
indeed be lessened by 0.5 MJ. (If it had been perfectly insulated,
there would have been no change, since the heat energy would
have been trapped in the cup.) The speed of light is c = 3 × 108
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ar / Top: A PET scanner. Middle:
Each positron annihilates with an
electron, producing two gamma-
rays that fly off back-to-back.
When two gamma rays are ob-
served simultaneously in the ring
of detectors, they are assumed to
come from the same annihilation
event, and the point at which they
were emitted must lie on the line
connecting the two detectors.
Bottom: A scan of a person’s
torso. The body has concentrated
the radioactive tracer around the
stomach, indicating an abnormal
medical condition.

meters per second, so converting to mass units, we have

m =
E
c2

=
0.5× 106 J(

3× 108 m/s
)2

= 6× 10−12 kilograms.

The change in mass is too small to measure with any practical
technique. This is because the square of the speed of light is
such a large number.

Electron-positron annihilation example 11
Natural radioactivity in the earth produces positrons, which are
like electrons but have the opposite charge. A form of antimat-
ter, positrons annihilate with electrons to produce gamma rays, a
form of high-frequency light. Such a process would have been
considered impossible before Einstein, because conservation of
mass and energy were believed to be separate principles, and
this process eliminates 100% of the original mass. The amount
of energy produced by annihilating 1 kg of matter with 1 kg of
antimatter is

E = mc2

= (2 kg)
(

3.0× 108 m/s
)2

= 2× 1017 J,

which is on the same order of magnitude as a day’s energy con-
sumption for the entire world’s population!

Positron annihilation forms the basis for the medical imaging tech-
nique called a PET (positron emission tomography) scan, in which
a positron-emitting chemical is injected into the patient and map-
ped by the emission of gamma rays from the parts of the body
where it accumulates.

One commonly hears some misinterpretations of E = mc2, one being
that the equation tells us how much kinetic energy an object would
have if it was moving at the speed of light. This wouldn’t make
much sense, both because the equation for kinetic energy has 1/2 in
it, KE = (1/2)mv2, and because a material object can’t be made
to move at the speed of light. However, this naturally leads to the
question of just how much mass-energy a moving object has. We
know that when the object is at rest, it has no kinetic energy, so
its mass-energy is simply equal to the energy-equivalent of its mass,
mc2,

E = mc2 when v = 0,

where the symbol E (cursive “E”) stands for mass-energy. The point
of using the new symbol is simply to remind ourselves that we’re
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talking about relativity, so an object at rest has E = mc2, not E = 0
as we’d assume in classical physics.

Suppose we start accelerating the object with a constant force. A
constant force means a constant rate of transfer of momentum, but
p = mGv approaches infinity as v approaches c, so the object will
only get closer and closer to the speed of light, but never reach it.
Now what about the work being done by the force? The force keeps
doing work and doing work, which means that we keep on using
up energy. Mass-energy is conserved, so the energy being expended
must equal the increase in the object’s mass-energy. We can continue
this process for as long as we like, and the amount of mass-energy
will increase without limit. We therefore conclude that an object’s
mass-energy approaches infinity as its speed approaches the speed
of light,

E → ∞ when v → c.

Now that we have some idea what to expect, what is the actual
equation for the mass-energy? As proved in my book Simple Nature,
it is

E = mGc2.

self-check E
Verify that this equation has the two properties we wanted. .

Answer, p. 1044

KE compared to mc2 at low speeds example 12
. An object is moving at ordinary nonrelativistic speeds. Compare
its kinetic energy to the energy mc2 it has purely because of its
mass.

. The speed of light is a very big number, so mc2 is a huge num-
ber of joules. The object has a gigantic amount of energy be-
cause of its mass, and only a relatively small amount of additional
kinetic energy because of its motion.

Another way of seeing this is that at low speeds, G is only a tiny
bit greater than 1, so E is only a tiny bit greater than mc2.

The correspondence principle for mass-energy example 13
. Show that the equation E = mGc2 obeys the correspondence

principle.

. As we accelerate an object from rest, its mass-energy becomes
greater than its resting value. We interpret this excess mass-
energy as the object’s kinetic energy,

K E = E(v )− E(v = 0)

= mGc2 −mc2

= m(G− 1)c2.
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In example 4 on page 683, we found G ≈ 1 + v2/2c2, so

K E ≈ m(1 +
v2

2c2 − 1)c2

=
1
2

mv2,

which is the nonrelativistic expression. As demanded by the cor-
respondence principle, relativity agrees with nonrelativistic physics
at speeds that are small compared to the speed of light.

26.6 ? Proofs
In section 26.5 I gave physical arguments to the effect that relativis-
tic momentum should be greater than mv and that an energy E
should be equivalent relativistically to some amount of mass m. In
this section I’ll prove that the relativistic equations are as claimed:
p = mGv and E = mc2. The structure of the proofs is essentially
the same as in two famous 1905 papers by Einstein, “On the elec-
trodynamics of moving bodies” and “Does the inertia of a body
depend upon its energy content?” If you’re interested in reading
these arguments as Einstein originally wrote them, you can find En-
glish translations at www.fourmilab.ch. We start off by proving
two preliminary results relating to Doppler shifts.

Transformation of the fields in a light wave

On p. 716 I showed that when a light wave is observed in two dif-
ferent frames in different states of motion parallel to the wave’s
direction of motion, the frequency is observed to be Doppler-shifted
by a factor D(v) =

√
(1− v)/(1 + v), where c = 1 and v is the

relative velocity of the two frames. But a change in frequency is
not the only change we expect. We also expect the intensity of the
wave to change, since a combination of electric and magnetic fields
observed in one frame of reference becomes some other set of fields
in a different frame (p. 689). There are equations that express this
transformation from E and B to E′ and B′, but they’re a little com-
plicated, so instead we’ll just determine what happens in the special
case of an electromagnetic wave.

Since the transformation of E and B to E′ and B′ is a universal
thing, we’re free to imagine that the wave was created in any way
we wish. Suppose that it was created by a uniform sheet of charge
in the x-y plane, oscillating in the y direction with amplitude A and
frequency f . This will clearly produce electromagnetic waves prop-
agating in the +z and −z directions, and by an argument similar
to that of problem 7 on p. 662, we know that these waves’ intensity
will not fall off at all with distance from the sheet. Since magnetic
fields are produced by currents, and the currents produced by the
motion of the sheet are proportional to Af , the amplitude of the
magnetic field in the wave is proportional to Af . The oscillating
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magnetic field induces an electric field, and since electromagnetic
waves always have E = Bc, the oscillating part of the electric field
is also proportional of Af .

An observer moving away from the sheet sees a sheet that is both
oscillating more slowly (f is Doppler-shifted to fD) and receding.
But the recession has no effect, because the fields don’t fall off with
distance. Also, A stays the same, because the Lorentz transforma-
tion has no effect on lengths perpendicular to the relative motion of
the two frames. Since the fields are proportional to Af , the fields
seen by the receding observer are attenuated by a factor of D.

Transformation of the volume of a light wave

Since the fields in an electromagnetic wave are changed by a factor of
D when we change frames, we might expect that the wave’s energy
would change by a factor of D2. But the square of the field only
gives the energy per unit volume, and the volume changes as well.
The following argument shows that the volume increases by a factor
of 1/D.

If an electromagnetic wave-train has duration ∆t, we already know
that its duration changes by a factor of 1/D when we change to a
different frame of reference. But the speed of light is the same for
all observers, so if the length of the wave-train is ∆z, all observers
must agree on the value of ∆z/∆t, and 1/D must also be the factor
by which ∆z scales up.10 Since the Lorentz transformation doesn’t
change ∆x or ∆y, the volume of the wave-train is also increased by
a factor of 1/D.

Transformation of the energy of a light wave

Combining the two preceding results, we find that when we change
frames of reference, the energy density (per unit volume) of a light
wave changes by a factor of D2, but the volume changes by 1/D, so
the result is that the wave’s energy changes by a factor of D. In Ein-
stein’s words, “It is remarkable that the energy and the frequency of
a [wave-train] vary with the state of motion of the observer in accor-
dance with the same law,” i.e., that both scale by the same factor
D. Einstein had a reason to be especially interested in this fact. In
the same “miracle year” of 1905, he also published a paper in which
he hypothesized that light had both particle and wave properties,
with the energy E of a light-particle related to the frequency f of
the corresponding light-wave by E = hf , where h was a constant.

10At first glance, one might think that this length-scaling factor would simply
be G, and that the volume would be reduced rather than increased. But G is
only the scale-down factor for the length of a thing compared to that thing’s
length in a frame where it is at rest. Light waves don’t have a frame in which
they’re at rest. One can also see this from the geometry of figure x on p. 717.
The diagram is completely symmetric with respect to its treatment of time and
space, so if we flip it across its diagonal, interchanging the roles of z and t, we
obtain the same result for the wave-train’s spatial extent ∆z.
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(More about this in ch. 34.) If E and f had not both scaled by the
same factor, then the relation E = hf could not have held in all
frames of reference.

E = mc2

Suppose that a material object O, initially at rest, emits two light
rays, each with energy E, in the +z and −z directions. O could be
a lantern with windows on opposite sides, or it could be an electron
and an antielectron annihilating each other to produce a pair of
gamma rays. In this frame, O loses energy 2E and the light rays
gain 2E, so energy is conserved.

We now switch to a new frame of reference moving at a certain
velocity v in the z direction relative to the original frame. We assume
that O’s energy is different in this frame, but that the change in its
energy amounts to multiplication by some unitless factor x, which
depends only on v, since there is nothing else it could depend on that
could allow us to form a unitless quantity. In this frame the light
rays have energies ED(v) and ED(−v). If conservation of energy is
to hold in the new frame as it did in the old, we must have 2xE =
ED(v) + ED(−v). After some algebra, we find x = 1/

√
1− v2. In

other words, an object with energy E in its rest frame has energy
GE in a frame moving at velocity v relative to the first one. Since G
is never zero, it follows that even an object at rest has some nonzero
energy. We define this energy-at-rest as its mass, i.e., E = m in
units where c = 1.

P = mGv

Defining an object’s energy-at-rest as its mass only works if this
same mass is also a valid measure of inertia. More specifically, we
should be able to use this mass to construct a self-consistent logical
system in which (1) momentum is conserved, (2) conservation of
momentum holds in all frames of reference, and (3) p ≈ mv for
v << c, satisfying the correspondence principle.

Let a material object P, at rest and having mass 2E, be completely
annihilated, creating two beams of light, each with energy E, flying
off in opposite directions. A real-world example would be if P con-
sisted of an electron and an antielectron. As shown on p. 715, light
has momentum. Because beams of light can be split up or recom-
bined without violating conservation of momentum, a light wave’s
momentum must be proportional to its energy, |p| = yE, where the
constant of proportionality y is found in problem 12 on p. 813 but
not needed here. Let the momentum of a material object be mvx,
where our goal is to prove x = G. In this frame of reference, v = 0,
and conservation of momentum follows by symmetry.

We now change to a new frame of reference, moving at some speed
v along the line of emission of the two light rays. In this frame,
conservation of momentum requires 2Evx = yE/D − yED. We
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as / 1. A balance that mea-
sures the gravitational attraction
between masses M and m. (See
section 10.5 for a more detailed
description.) When the two
masses M are inserted, the fiber
twists. 2. A simplified diagram
of Kreuzer’s modification. The
moving teflon mass is submerged
in a liquid with nearly the same
density. 3. Kreuzer’s actual
apparatus.

therefore have vx/y = (1/D − D)/2, which can be shown with a
little algebra to equal vG. Since only x can depend on v, not y, and
the correspondence principle requires x ≈ 1 for v << c, we find that
x = G, as claimed.

Problem 15 on p. 814 checks that this result also works correctly for
a system consisting of material particles.

26.7 ? Two tests of Newton’s third law
E = mc2 states that a certain amount of energy E is equivalent to a
certain amount of mass m. But mass pops up in physics in several
different guises: the mass measured by an object’s inertia, the “ac-
tive” gravitational mass ma that determines the gravitational forces
it makes on other objects, and the “passive” gravitational mass mp

that measures how strongly it feels gravity. Einstein’s reason for
predicting the same behavior for ma and mp was that anything else
would have violated Newton’s third law for gravitational forces.

Suppose instead that an object’s energy content contributes only to
mp, not to ma. Atomic nuclei get something like 1% of their mass
from the energy of the electric fields inside their nuclei, but this
percentage varies with the number of protons, so if we have objects
m and M with different chemical compositions, it follows that in
this theory mp/ma will not be the same as Mp/Ma, and in this
non-Einsteinian version of relativity, Newton’s third law is violated.

This was tested in a Princeton PhD-thesis experiment by Kreuzer11

in 1966. Kreuzer carried out an experiment, figure as, using masses
made of two different substances. The first substance was teflon.
The second substance was a mixture of the liquids trichloroethy-
lene and dibromoethane, with the proportions chosen so as to give
a passive-mass density as close as possible to that of teflon, as de-
termined by the neutral buoyancy of the teflon masses suspended
inside the liquid. If the active-mass densities of these substances are
not strictly proportional to their passive-mass densities, then mov-
ing the chunk of teflon back and forth in figure as/2 would change
the gravitational force acting on the nearby small sphere. No such
change was observed, and the results verified mp/ma = Mp/Ma to
within one part in 106, in agreement with Einstein and Newton. If
electrical energy had not contributed at all to active mass, then a
violation of the third law would have been detected at the level of
about one part in 102.

The Kreuzer result was improved in 1986 by Bartlett and van Bu-
ren12 using data gathered by bouncing laser beams off of a mirror
left behind on the moon by the Apollo astronauts, as described
p. 277. Since the moon has an asymmetrical distribution of iron

11Kreuzer, Phys. Rev. 169 (1968) 1007
12Phys. Rev. Lett. 57 (1986) 21
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and aluminum, a theory with mp/ma 6= Mp/Ma would cause it to
have an anomalous acceleration along a certain line. The lack of
any such observed acceleration limits violations of Newton’s third
law to about one part in 1010.

Section 26.7 ? Two tests of Newton’s third law 807



Summary
Selected vocabulary
alpha particle . . a form of radioactivity consisting of helium nu-

clei
beta particle . . . a form of radioactivity consisting of electrons
gamma ray . . . . a form of radioactivity consisting of a very

high-frequency form of light
proton . . . . . . a positively charged particle, one of the types

that nuclei are made of
neutron . . . . . . an uncharged particle, the other types that nu-

clei are made of
isotope . . . . . . one of the possible varieties of atoms of a given

element, having a certain number of neutrons
atomic number . the number of protons in an atom’s nucleus;

determines what element it is
atomic mass . . . the mass of an atom
mass number . . the number of protons plus the number of neu-

trons in a nucleus; approximately proportional
to its atomic mass

strong nuclear
force . . . . . . . .

the force that holds nuclei together against
electrical repulsion

weak nuclear
force . . . . . . . .

the force responsible for beta decay

beta decay . . . . the radioactive decay of a nucleus via the re-
action n → p + e− + ν̄ or p → n + e+ + ν;
so called because an electron or antielectron is
also known as a beta particle

alpha decay . . . the radioactive decay of a nucleus via emission
of an alpha particle

fission . . . . . . . the radioactive decay of a nucleus by splitting
into two parts

fusion . . . . . . . a nuclear reaction in which two nuclei stick
together to form one bigger nucleus

µSv . . . . . . . . a unit for measuring a person’s exposure to
radioactivity

Notation
e− . . . . . . . . . an electron
e+ . . . . . . . . . an antielectron; just like an electron, but with

positive charge
n . . . . . . . . . . a neutron
p . . . . . . . . . . a proton
ν . . . . . . . . . . a neutrino
ν̄ . . . . . . . . . . an antineutrino
E . . . . . . . . . . mass-energy
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Other terminology and notation
Z . . . . . . . . . atomic number (number of protons in a nu-

cleus)
N . . . . . . . . . number of neutrons in a nucleus
A . . . . . . . . . mass number (N + Z)

Summary

Quantization of charge: Millikan’s oil drop experiment showed that
the total charge of an object could only be an integer multiple of
a basic unit of charge (e). This supported the idea the the “flow”
of electrical charge was the motion of tiny particles rather than the
motion of some sort of mysterious electrical fluid.

Einstein’s analysis of Brownian motion was the first definitive proof
of the existence of atoms. Thomson’s experiments with vacuum
tubes demonstrated the existence of a new type of microscopic par-
ticle with a very small ratio of mass to charge. Thomson correctly
interpreted these as building blocks of matter even smaller than
atoms: the first discovery of subatomic particles. These particles
are called electrons.

The above experimental evidence led to the first useful model of
the interior structure of atoms, called the raisin cookie model. In
the raisin cookie model, an atom consists of a relatively large, mas-
sive, positively charged sphere with a certain number of negatively
charged electrons embedded in it.

Rutherford and Marsden observed that some alpha particles from a
beam striking a thin gold foil came back at angles up to 180 degrees.
This could not be explained in the then-favored raisin-cookie model
of the atom, and led to the adoption of the planetary model of the
atom, in which the electrons orbit a tiny, positively-charged nucleus.
Further experiments showed that the nucleus itself was a cluster of
positively-charged protons and uncharged neutrons.

Radioactive nuclei are those that can release energy. The most com-
mon types of radioactivity are alpha decay (the emission of a he-
lium nucleus), beta decay (the transformation of a neutron into a
proton or vice-versa), and gamma decay (the emission of a type of
very-high-frequency light). Stars are powered by nuclear fusion re-
actions, in which two light nuclei collide and form a bigger nucleus,
with the release of energy.

Human exposure to ionizing radiation is measured in units of mi-
crosieverts (µSv). The typical person is exposed to about 2000 µSv
worth of natural background radiation per year.

Exploring further

The First Three Minutes, Steven Weinberg. This book de-
scribes the first three minutes of the universe’s existence.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Use the nutritional information on some packaged food to
make an order-of-magnitude estimate of the amount of chemical
energy stored in one atom of food, in units of joules. Assume that
a typical atom has a mass of 10−26 kg. This constitutes a rough
estimate of the amounts of energy there are on the atomic scale.
[See chapter 1 for help on how to do order-of-magnitude estimates.
Note that a nutritional “calorie” is really a kilocalorie.]

√

2 The nuclear process of beta decay by electron capture is de-
scribed parenthetically on p. 783. The reaction is p + e− → n + ν.
(a) Show that charge is conserved in this reaction.
(b) Explain why electron capture doesn’t occur in hydrogen atoms.
(If it did, matter wouldn’t exist!) . Solution, p. 1035

3 241Pu decays either by electron decay or by alpha decay. (A
given 241Pu nucleus may do either one; it’s random.) What are the
isotopes created as products of these two modes of decay?

4 (a) Recall that the gravitational energy of two gravitationally
interacting spheres is given by PEg = −Gm1m2/r, where r is the
center-to-center distance. What would be the analogous equation
for two electrically interacting spheres? Justify your choice of a
plus or minus sign on physical grounds, considering attraction and
repulsion.

√

(b) Use this expression to estimate the energy required to pull apart
a raisin-cookie atom of the one-electron type, assuming a radius of
10−10 m.

√

(c) Compare this with the result of problem 1.

5 A neon light consists of a long glass tube full of neon, with
metal caps on the ends. Positive charge is placed on one end of
the tube, negative on the other. The electric forces generated can
be strong enough to strip electrons off of a certain number of neon
atoms. Assume for simplicity that only one electron is ever stripped
off of any neon atom. When an electron is stripped off of an atom,
both the electron and the neon atom (now an ion) have electric
charge, and they are accelerated by the forces exerted by the charged
ends of the tube. (They do not feel any significant forces from
the other ions and electrons within the tube, because only a tiny
minority of neon atoms ever gets ionized.) Light is finally produced
when ions are reunited with electrons. Give a numerical comparison
of the magnitudes and directions of the accelerations of the electrons
and ions. [You may need some data from page 1062.]

√

6 If you put two hydrogen atoms near each other, they will feel
an attractive force, and they will pull together to form a molecule.
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Problem 7.

Problem 8.

(Molecules consisting of two hydrogen atoms are the normal form of
hydrogen gas.) How is this possible, since each is electrically neu-
tral? Shouldn’t the attractive and repulsive forces all cancel out
exactly? Use the raisin cookie model. (Students who have taken
chemistry often try to use fancier models to explain this, but if you
can’t explain it using a simple model, you probably don’t understand
the fancy model as well as you thought you did!) It’s not so easy
to prove that the force should actually be attractive rather than re-
pulsive, so just concentrate on explaining why it doesn’t necessarily
have to vanish completely.

7 The figure shows a simplified diagram of an electron gun such
as the one used in an old-fashioned TV tube. Electrons that spon-
taneously emerge from the negative electrode (cathode) are then
accelerated to the positive electrode, which has a hole in it. (Once
they emerge through the hole, they will slow down. However, if the
two electrodes are fairly close together, this slowing down is a small
effect, because the attractive and repulsive forces experienced by the
electron tend to cancel.) (a) If the voltage difference between the
electrodes is ∆V, what is the velocity of an electron as it emerges
at B? (Assume its initial velocity, at A, is negiligible.) (b) Evaluate
your expression numerically for the case where ∆V = 10 kV, and
compare to the speed of light. . Solution, p. 1035

8 The figure shows a simplified diagram of a device called a tan-
dem accelerator, used for accelerating beams of ions up to speeds
on the order of 1-10% of the speed of light. (Since these velocities
are not too big compared to c, you can use nonrelativistic physics
throughout this problem.) The nuclei of these ions collide with
the nuclei of atoms in a target, producing nuclear reactions for ex-
periments studying the structure of nuclei. The outer shell of the
accelerator is a conductor at zero voltage (i.e., the same voltage as
the Earth). The electrode at the center, known as the “terminal,” is
at a high positive voltage, perhaps millions of volts. Negative ions
with a charge of −1 unit (i.e., atoms with one extra electron) are
produced offstage on the right, typically by chemical reactions with
cesium, which is a chemical element that has a strong tendency to
give away electrons. Relatively weak electric and magnetic forces
are used to transport these −1 ions into the accelerator, where they
are attracted to the terminal. Although the center of the terminal
has a hole in it to let the ions pass through, there is a very thin car-
bon foil there that they must physically penetrate. Passing through
the foil strips off some number of electrons, changing the atom into
a positive ion, with a charge of +n times the fundamental charge.
Now that the atom is positive, it is repelled by the terminal, and
accelerates some more on its way out of the accelerator.

(a) Find the velocity, v, of the emerging beam of positive ions, in
terms of n, their mass m, the terminal voltage V , and fundamental
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constants. Neglect the small change in mass caused by the loss of
electrons in the stripper foil.

√

(b) To fuse protons with protons, a minimum beam velocity of about
11% of the speed of light is required. What terminal voltage would
be needed in this case?

√

(c) In the setup described in part b, we need a target containing
atoms whose nuclei are single protons, i.e., a target made of hydro-
gen. Since hydrogen is a gas, and we want a foil for our target, we
have to use a hydrogen compound, such as a plastic. Discuss what
effect this would have on the experiment.

9 In example 6 on page 683, I remarked that accelerating a
macroscopic (i.e., not microscopic) object to close to the speed of
light would require an unreasonable amount of energy. Suppose that
the starship Enterprise from Star Trek has a mass of 8.0 × 107 kg,
about the same as the Queen Elizabeth 2. Compute the kinetic
energy it would have to have if it was moving at half the speed of
light. Compare with the total energy content of the world’s nuclear
arsenals, which is about 1021 J.

√

10 (a) A free neutron (as opposed to a neutron bound into an
atomic nucleus) is unstable, and undergoes beta decay (which you
may want to review). The masses of the particles involved are as
follows:

neutron 1.67495× 10−27 kg
proton 1.67265× 10−27 kg
electron 0.00091× 10−27 kg
antineutrino < 10−35 kg

Find the energy released in the decay of a free neutron.
√

(b) Neutrons and protons make up essentially all of the mass of the
ordinary matter around us. We observe that the universe around us
has no free neutrons, but lots of free protons (the nuclei of hydrogen,
which is the element that 90% of the universe is made of). We find
neutrons only inside nuclei along with other neutrons and protons,
not on their own.

If there are processes that can convert neutrons into protons, we
might imagine that there could also be proton-to-neutron conver-
sions, and indeed such a process does occur sometimes in nuclei
that contain both neutrons and protons: a proton can decay into a
neutron, a positron, and a neutrino. A positron is a particle with
the same properties as an electron, except that its electrical charge
is positive. A neutrino, like an antineutrino, has negligible mass.

Although such a process can occur within a nucleus, explain why
it cannot happen to a free proton. (If it could, hydrogen would be
radioactive, and you wouldn’t exist!)
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11 (a) Find a relativistic equation for the velocity of an object
in terms of its mass and momentum (eliminating G). Use natural
units (i.e., discard factors of c) throughout.

√

(b) Show that your result is approximately the same as the nonrel-
ativistic value, p/m, at low velocities.
(c) Show that very large momenta result in speeds close to the speed
of light.
(d) Insert factors of c to make your result from part a usable in SI
units.

√

?

12 An object moving at a speed very close to the speed of light
is referred to as ultrarelativistic. Ordinarily (luckily) the only ul-
trarelativistic objects in our universe are subatomic particles, such
as cosmic rays or particles that have been accelerated in a particle
accelerator.
(a) What kind of number is G for an ultrarelativistic particle?
(b) Repeat example 12 on page 802, but instead of very low, non-
relativistic speeds, consider ultrarelativistic speeds.
(c) Find an equation for the ratio E/p. The speed may be relativis-
tic, but don’t assume that it’s ultrarelativistic.

√

(d) Simplify your answer to part c for the case where the speed is
ultrarelativistic.

√

(e) We can think of a beam of light as an ultrarelativistic object —
it certainly moves at a speed that’s sufficiently close to the speed
of light! Suppose you turn on a one-watt flashlight, leave it on for
one second, and then turn it off. Compute the momentum of the
recoiling flashlight, in units of kg·m/s. (Cf. p. 715.)

√

(f) Discuss how your answer in part e relates to the correspondence
principle.

13 As discussed in section 19.2, the speed at which a disturbance
travels along a string under tension is given by v =

√
T/µ, where µ

is the mass per unit length, and T is the tension.
(a) Suppose a string has a density ρ, and a cross-sectional area A.
Find an expression for the maximum tension that could possibly
exist in the string without producing v > c, which is impossible
according to relativity. Express your answer in terms of ρ, A, and
c. The interpretation is that relativity puts a limit on how strong
any material can be.

√

(b) Every substance has a tensile strength, defined as the force
per unit area required to break it by pulling it apart. The ten-
sile strength is measured in units of N/m2, which is the same as the
pascal (Pa), the mks unit of pressure. Make a numerical estimate
of the maximum tensile strength allowed by relativity in the case
where the rope is made out of ordinary matter, with a density on
the same order of magnitude as that of water. (For comparison,
kevlar has a tensile strength of about 4× 109 Pa, and there is spec-
ulation that fibers made from carbon nanotubes could have values
as high as 6× 1010 Pa.)

√
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(c) A black hole is a star that has collapsed and become very dense,
so that its gravity is too strong for anything ever to escape from it.
For instance, the escape velocity from a black hole is greater than
c, so a projectile can’t be shot out of it. Many people, when they
hear this description of a black hole in terms of an escape velocity,
wonder why it still wouldn’t be possible to extract an object from
a black hole by other means. For example, suppose we lower an
astronaut into a black hole on a rope, and then pull him back out
again. Why might this not work?

14 (a) A charged particle is surrounded by a uniform electric
field. Starting from rest, it is accelerated by the field to speed v after
traveling a distance d. Now it is allowed to continue for a further
distance 3d, for a total displacement from the start of 4d. What
speed will it reach, assuming newtonian physics?
(b) Find the relativistic result for the case of v = c/2.

15 Problem 15 on p. 390 (with the solution given in the back of
the book) demonstrates that in Newtonian mechanics, conservation
of momentum is the necessary and sufficient condition if conserva-
tion of energy is to hold in all frames of reference. The purpose of
this problem is to generalize that idea to relativity (in one dimen-
sion).

Let a system contain two interacting particles, each with unit mass.
Then if energy is conserved in a particular frame, we must have
G1 + G2 = G′1 + G′2, where the primes indicate the quantities after
interaction. Suppose that we now change to a new frame, in motion
relative to the first one at a velocity ε that is much less than 1 (in
units where c = 1). The velocities all change according to the result
of problem 21 on p. 727. Show that energy is conserved in the new
frame if and only if momentum is conserved.

Hints: (1) Since ε is small, you can take 1/(1+ε) ≈ 1−ε. (2) Rather
than directly using the result of problem 21, it is easier to eliminate
the velocities in favor of the corresponding Doppler-shift factors D,
which simply multiply when the velocities are combined. (3) The
identity vG = (1/D −D)/2 is handy here. ?

16 (a) Let L be the diameter of our galaxy. Suppose that a
person in a spaceship of mass m wants to travel across the galaxy
at constant speed, taking proper time τ . Find the kinetic energy of
the spaceship. (b) Your friend is impatient, and wants to make the
voyage in an hour. For L = 105 light years, estimate the energy in
units of megatons of TNT (1 megaton=4× 109 J).
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Exercise 26A: Sports in Slowlightland
In Slowlightland, the speed of light is 20 mi/hr = 32 km/hr = 9 m/s. Think of an example of
how relativistic effects would work in sports. Things can get very complex very quickly, so try
to think of a simple example that focuses on just one of the following effects:

• relativistic momentum

• relativistic kinetic energy

• relativistic addition of velocities (See problem 21, with the answer given on p. 1034.)

• time dilation and length contraction

• Doppler shifts of light (See section 24.7.)

• equivalence of mass and energy

• time it takes for light to get to an athlete’s eye

• deflection of light rays by gravity
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Exercise 26B: Nuclear decay
1. Consulting a periodic table, find the N , Z, and A of the following:

N Z A
4He
244Pu

2. Consider the following five decay processes:

• α decay

• γ decay

• p→ n + e+ + ν (β+ decay)

• n→ p + e− + ν̄ (β− decay)

• p + e− → n + ν (electron capture)

What would be the action of each of these on the chart of the nuclei? The * represents the
original nucleus.

3. (a) Suppose that 244Pu undergoes perfectly symmetric fission, and also emits two neutrons.
Find the daughter isotope.

(b) Is the daughter stable, or is it neutron-rich or -poor relative to the line of stability? (To
estimate what’s stable, you can use a large chart of the nuclei, or, if you don’t have one handy,
consult a periodic table and use the average atomic mass as an approximation to the stable
value of A.)

(c) Consulting the chart of the nuclei (fig. ac on p. 788), explain why it turns out this way.

(d) If the daughter is unstable, which process from question #2 would you expect it to decay
by?
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Exercise 26C: Misconceptions about relativity
The following is a list of common misconceptions about relativity. The class will be split
up into random groups, and each group will cooperate on developing an explanation of the
misconception, and then the groups will present their explanations to the class. There may
be multiple rounds, with students assigned to different randomly chosen groups in successive
rounds.

1. How can light have momentum if it has zero mass?

2. What does the world look like in a frame of reference moving at c?

3. Alice observes Betty coming toward her from the left at c/2, and Carol from the right at
c/2. Therefore Betty is moving at the speed of light relative to Carol.

4. Are relativistic effects such as length contraction and time dilation real, or do they just
seem to be that way?

5. Special relativity only matters if you’re moving close to the speed of light.

6. Special relativity says that everything is relative.

7. There is a common misconception that relativistic length contraction is what we would
actually see. Refute this by drawing a spacetime diagram for an object approaching an
observer, and tracing rays of light emitted from the object’s front and back that both
reach the observer’s eye at the same time.

8. When you travel close to the speed of light, your time slows down.

9. Is a light wave’s wavelength relativistically length contracted by a factor of gamma?

10. Accelerate a baseball to ultrarelativistic speeds. Does it become a black hole?

11. Where did the Big Bang happen?

12. The universe can’t be infinite in size, because it’s only had a finite amount of time to
expand from the point where the Big Bang happened.
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Postulates of Euclidean geome-
try:
1. Two points determine a line.
2. Line segments can be ex-
tended.
3. A unique circle can be con-
structed given any point as its
center and any line segment as
its radius.
4. All right angles are equal to
one another.
5. Given a line and a point not
on the line, no more than one
line can be drawn through the
point and parallel to the given
line.

a / Noneuclidean effects, such as
the discrepancy from 180◦ in the
sum of the angles of a triangle,
are expected to be proportional
to area. Here, a noneuclidean
equilateral triangle is cut up into
four smaller equilateral triangles,
each with 1/4 the area. As proved
in problem 1, the discrepancy
is quadrupled when the area is
quadrupled.

Chapter 27

General relativity

What you’ve learned so far about relativity is known as the special
theory of relativity, which is compatible with three of the four known
forces of nature: electromagnetism, the strong nuclear force, and
the weak nuclear force. Gravity, however, can’t be shoehorned into
the special theory. In order to make gravity work, Einstein had to
generalize relativity. The resulting theory is known as the general
theory of relativity.1

27.1 Our universe isn’t Euclidean
Euclid proved thousands of years ago that the angles in a triangle
add up to 180◦. But what does it really mean to “prove” this?
Euclid proved it based on certain assumptions (his five postulates),
listed in the margin of this page. But how do we know that the
postulates are true?

Only by observation can we tell whether any of Euclid’s statements
are correct characterizations of how space actually behaves in our
universe. If we draw a triangle on paper with a ruler and measure
its angles with a protractor, we will quickly verify to pretty good
precision that the sum is close to 180◦. But of course we already
knew that space was at least approximately Euclidean. If there
had been any gross error in Euclidean geometry, it would have been
detected in Euclid’s own lifetime. The correspondence principle tells
us that if there is going to be any deviation from Euclidean geometry,
it must be small under ordinary conditions.

To improve the precision of the experiment, we need to make sure
that our ruler is very straight. One way to check would be to sight
along it by eye, which amounts to comparing its straightness to that
of a ray of light. For that matter, we might as well throw the physical
ruler in the trash and construct our triangle out of three laser beams.
To avoid effects from the air we should do the experiment in outer
space. Doing it in space also has the advantage of allowing us to
make the triangle very large; as shown in figure a, the discrepancy

1Einstein originally described the distinction between the two theories by
saying that the special theory applied to nonaccelerating frames of reference,
while the general one allowed any frame at all. The modern consensus is that
Einstein was misinterpreting his own theory, and that special relativity actually
handles accelerating frames just fine.

819



b / An Einstein’s ring. The
distant object is a quasar,
MG1131+0456, and the one
in the middle is an unknown
object, possibly a supermassive
black hole. The intermediate
object’s gravity focuses the rays
of light from the distant one.
Because the entire arrangement
lacks perfect axial symmetry, the
ring is nonuniform; most of its
brightness is concentrated in two
lumps on opposite sides.

from 180◦ is expected to be proportional to the area of the triangle.

But we already know that light rays are bent by gravity. We expect
it based on E = mc2, which tells us that the energy of a light
ray is equivalent to a certain amount of mass, and furthermore it
has been verified experimentally by the deflection of starlight by
the sun (example 8, p. 799). We therefore know that our universe
is noneuclidean, and we gain the further insight that the level of
deviation from Euclidean behavior depends on gravity.

Since the noneuclidean effects are bigger when the system being
studied is larger, we expect them to be especially important in the
study of cosmology, where the distance scales are very large.

Einstein’s ring example 1
An Einstein’s ring, figure b, is formed when there is a chance
alignment of a distant source with a closer gravitating body. This
type of gravitational lensing is direct evidence for the noneuclidean
nature of space. The two light rays are lines, and they violate Eu-
clid’s first postulate, that two points determine a line.

One could protest that effects like these are just an imperfection
of the light rays as physical models of straight lines. Maybe the
noneuclidean effects would go away if we used something better and
straighter than a light ray. But we don’t know of anything straighter
than a light ray. Furthermore, we observe that all measuring devices,
not just optical ones, report the same noneuclidean behavior.

Curvature

An example of such a non-optical measurement is the Gravity Probe
B satellite, figure d, which was launched into a polar orbit in 2004
and operated until 2010. The probe carried four gyroscopes made
of quartz, which were the most perfect spheres ever manufactured,
varying from sphericity by no more than about 40 atoms. Each
gyroscope floated weightlessly in a vacuum, so that its rotation was
perfectly steady. After 5000 orbits, the gyroscopes had reoriented
themselves by about 2 × 10−3◦ relative to the distant stars. This
effect cannot be explained by Newtonian physics, since no torques
acted on them. It was, however, exactly as predicted by Einstein’s
theory of general relativity. It becomes easier to see why such an
effect would be expected due to the noneuclidean nature of space if
we characterize euclidean geometry as the geometry of a flat plane
as opposed to a curved one. On a curved surface like a sphere,
figure c, Euclid’s fifth postulate fails, and it’s not hard to see that
we can get triangles for which the sum of the angles is not 180◦.
By transporting a gyroscope all the way around the edges of such a
triangle and back to its starting point, we change its orientation.

The triangle in figure c has angles that add up to more than 180◦.
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d / Gravity Probe B was in a
polar orbit around the earth. As
in the right panel of figure c,
the orientation of the gyroscope
changes when it is carried around
a curve and back to its starting
point. Because the effect was
small, it was necessary to let it
accumulate over the course of
5000 orbits in order to make it
detectable.

e / A triangle in a space with
negative curvature has angles
that add to less than 180◦.

c / Left : A 90-90-90 triangle. Its angles add up to more than 180◦.
Middle: The triangle “pops” off the page visually. We intuitively want
to visualize it as lying on a curved surface such as the earth’s. Right :
A gyroscope carried smoothly around its perimeter ends up having
changed its orientation when it gets back to its starting point.

This type of curvature is referred to as positive. It is also possible
to have negative curvature, as in figure e.

In general relativity, curvature isn’t just something caused by grav-
ity. Gravity is curvature, and the curvature involves both space
and time, as may become clearer once you get to figure k. Thus
the distinction between special and general relativity is that gen-
eral relativity handles curved spacetime, while special relativity is
restricted to the case where spacetime is flat.

Curvature doesn’t require higher dimensions

Although we often visualize curvature by imagining embedding a
two-dimensional surface in a three-dimensional space, that’s just
an aid in visualization. There is no evidence for any additional
dimensions, nor is it necessary to hypothesize them in order to let
spacetime be curved as described in general relativity.

f / Only measurements from within the plane define whether the
plane is curved. It could look curved when drawn embedded in three
dimensions, but nevertheless still be intrinsically flat.

Put yourself in the shoes of a two-dimensional being living in a two-
dimensional space. Euclid’s postulates all refer to constructions that
can be performed using a compass and an unmarked straightedge.
If this being can physically verify them all as descriptions of the
space she inhabits, then she knows that her space is Euclidean, and
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that propositions such as the Pythagorean theorem are physically
valid in her universe. But the diagram in f/1 illustrating the proof
of the Pythagorean theorem in Euclid’s Elements (proposition I.47)
is equally valid if the page is rolled onto a cylinder, 2, or formed into
a wavy corrugated shape, 3. These types of curvature, which can be
achieved without tearing or crumpling the surface, are not real to
her. They are simply side-effects of visualizing her two-dimensional
universe as if it were embedded in a hypothetical third dimension
— which doesn’t exist in any sense that is empirically verifiable
to her. Of the curved surfaces in figure f, only the sphere, 4, has
curvature that she can measure; the diagram can’t be plastered onto
the sphere without folding or cutting and pasting.

So the observation of curvature doesn’t imply the existence of extra
dimensions, nor does embedding a space in a higher-dimensional one
so that it looks curvy always mean that there will be any curvature
detectable from within the lower-dimensional space.

27.2 The equivalence principle
Universality of free-fall

Although light rays and gyroscopes seem to agree that space is
curved in a gravitational field, it’s always conceivable that we could
find something else that would disagree. For example, suppose that
there is a new and improved ray called the StraightRayTM. The
StraightRay is like a light ray, but when we construct a triangle out
of StraightRays, we always get the Euclidean result for the sum of
the angles. We would then have to throw away general relativity’s
whole idea of describing gravity in terms of curvature. One good
way of making a StraightRay would be if we had a supply of some
kind of exotic matter — call it FloatyStuffTM — that had the or-
dinary amount of inertia, but was completely unaffected by gravity.
We could then shoot a stream of FloatyStuff particles out of a nozzle
at nearly the speed of light and make a StraightRay.

Normally when we release a material object in a gravitational field, it
experiences a force mg, and then by Newton’s second law its acceler-
ation is a = F/m = mg/m = g. The m’s cancel, which is the reason
that everything falls with the same acceleration (in the absence of
other forces such as air resistance). The universality of this behavior
is what allows us to interpret the gravity geometrically in general
relativity. For example, the Gravity Probe B gyroscopes were made
out of quartz, but if they had been made out of something else, it
wouldn’t have mattered. But if we had access to some FloatyStuff,
the geometrical picture of gravity would fail, because the “m” that
described its susceptibility to gravity would be a different “m” than
the one describing its inertia.

The question of the existence or nonexistence of such forms of matter
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g / An artificial horizon.

turns out to be related to the question of what kinds of motion
are relative. Let’s say that alien gangsters land in a flying saucer,
kidnap you out of your back yard, konk you on the head, and take
you away. When you regain consciousness, you’re locked up in a
sealed cabin in their spaceship. You pull your keychain out of your
pocket and release it, and you observe that it accelerates toward the
floor with an acceleration that seems quite a bit slower than what
you’re used to on earth, perhaps a third of a gee. There are two
possible explanations for this. One is that the aliens have taken you
to some other planet, maybe Mars, where the strength of gravity is
a third of what we have on earth. The other is that your keychain
didn’t really accelerate at all: you’re still inside the flying saucer,
which is accelerating at a third of a gee, so that it was really the
deck that accelerated up and hit the keys.

There is absolutely no way to tell which of these two scenarios is
actually the case — unless you happen to have a chunk of FloatyStuff
in your other pocket. If you release the FloatyStuff and it hovers
above the deck, then you’re on another planet and experiencing
genuine gravity; your keychain responded to the gravity, but the
FloatyStuff didn’t. But if you release the FloatyStuff and see it hit
the deck, then the flying saucer is accelerating through outer space.

The nonexistence of FloatyStuff in our universe is called the equiv-
alence principle. If the equivalence principle holds, then an acceler-
ation (such as the acceleration of the flying saucer) is always equiv-
alent to a gravitational field, and no observation can ever tell the
difference without reference to something external. (And suppose
you did have some external reference point — how would you know
whether it was accelerating?)

The artificial horizon example 2
The pilot of an airplane cannot always easily tell which way is up.
The horizon may not be level simply because the ground has an
actual slope, and in any case the horizon may not be visible if the
weather is foggy. One might imagine that the problem could be
solved simply by hanging a pendulum and observing which way
it pointed, but by the equivalence principle the pendulum cannot
tell the difference between a gravitational field and an acceler-
ation of the aircraft relative to the ground — nor can any other
accelerometer, such as the pilot’s inner ear. For example, when
the plane is turning to the right, accelerometers will be tricked into
believing that “down” is down and to the left. To get around this
problem, airplanes use a device called an artificial horizon, which
is essentially a gyroscope. The gyroscope has to be initialized
when the plane is known to be oriented in a horizontal plane. No
gyroscope is perfect, so over time it will drift. For this reason the
instrument also contains an accelerometer, and the gyroscope is
always forced into agreement with the accelerometer’s average
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h / 1. A ray of light is emit-
ted upward from the floor of the
elevator. The elevator acceler-
ates upward. 2. By the time the
light is detected at the ceiling, the
elevator has changed its velocity,
so the light is detected with a
Doppler shift.

i / Pound and Rebka at the
top and bottom of the tower.

output over the preceding several minutes. If the plane is flown in
circles for several minutes, the artificial horizon will be fooled into
indicating that the wrong direction is vertical.

Gravitational Doppler shifts and time dilation

An interesting application of the equivalence principle is the ex-
planation of gravitational time dilation. As described on p. 672,
experiments show that a clock at the top of a mountain runs faster
than one down at its foot.

To calculate this effect, we make use of the fact that the gravi-
tational field in the area around the mountain is equivalent to an
acceleration. Suppose we’re in an elevator accelerating upward with
acceleration a, and we shoot a ray of light from the floor up toward
the ceiling, at height h. The time ∆t it takes the light ray to get
to the ceiling is about h/c, and by the time the light ray reaches
the ceiling, the elevator has sped up by v = a∆t = ah/c, so we’ll
see a red-shift in the ray’s frequency. Since v is small compared
to c, we don’t need to use the fancy Doppler shift equation from
section 24.7; we can just approximate the Doppler shift factor as
1− v/c ≈ 1−ah/c2. By the equivalence principle, we should expect
that if a ray of light starts out low down and then rises up through
a gravitational field g, its frequency will be Doppler shifted by a fac-
tor of 1 − gh/c2. This effect was observed in a famous experiment
carried out by Pound and Rebka in 1959. Gamma-rays were emit-
ted at the bottom of a 22.5-meter tower at Harvard and detected at
the top with the Doppler shift predicted by general relativity. (See
problem 4.)

In the mountain-valley experiment, the frequency of the clock in
the valley therefore appears to be running too slowly by a factor of
1 − gh/c2 when it is compared via radio with the clock at the top
of the mountain. We conclude that time runs more slowly when
one is lower down in a gravitational field, and the slow-down factor
between two points is given by 1− gh/c2, where h is the difference
in height.

We have built up a picture of light rays interacting with gravity. To
confirm that this make sense, recall that we have already observed
on p. 715 and in problem 12 on p. 813 that light has momentum.
The equivalence principle says that whatever has inertia must also
participate in gravitational interactions. Therefore light waves must
have weight, and must lose energy when they rise through a gravi-
tational field(cf. p. 804).

Local flatness

The noneuclidean nature of spacetime produces effects that grow in
proportion to the area of the region being considered. Interpret-
ing such effects as evidence of curvature, we see that this connects
naturally to the idea that curvature is undetectable from close up.
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j / The earth is flat — locally.

k / Spacetime is locally flat.

For example, the curvature of the earth’s surface is not normally
noticeable to us in everyday life. Locally, the earth’s surface is flat,
and the same is true for spacetime.

Local flatness turns out to be another way of stating the equivalence
principle. In a variation on the alien-abduction story, suppose that
you regain consciousness aboard the flying saucer and find yourself
weightless. If the equivalence principle holds, then you have no way
of determining from local observations, inside the saucer, whether
you are actually weightless in deep space, or simply free-falling in ap-
parent weightlessness, like the astronauts aboard the International
Space Station. That means that locally, we can always adopt a free-
falling frame of reference in which there is no gravitational field at
all. If there is no gravity, then special relativity is valid, and we can
treat our local region of spacetime as being approximately flat.

In figure k, an apple falls out of a tree. Its path is a “straight” line
in spacetime, in the same sense that the equator is a “straight” line
on the earth’s surface.

Inertial frames

In Newtonian mechanics, we have a distinction between inertial and
noninertial frames of reference. An inertial frame according to New-
ton is one that has a constant velocity vector relative to the stars.
But what if the stars themselves are accelerating due to a gravita-
tional force from the rest of the galaxy? We could then take the
galaxy’s center of mass as defining an inertial frame, but what if
something else is acting on the galaxy?

l / Wouldn’t it be nice if we could define the meaning of a Newto-
nian inertial frame of reference? Newton makes it sound easy: to define
an inertial frame, just find some object that is not accelerating because
it is not being acted on by any external forces. But what object would
we use? The earth? The “fixed stars?” Our galaxy? Our supercluster of
galaxies? All of these are accelerating — relative to something.

If we had some FloatyStuff, we could resolve the whole question.
FloatyStuff isn’t affected by gravity, so if we release a sample of it
in mid-air, it will continue on a trajectory that defines a perfect
Newtonian inertial frame. (We’d better have it on a tether, because
otherwise the earth’s rotation will carry the earth out from under
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m / Matter is lifted out of a
Newtonian black hole with a
bucket. The dashed line rep-
resents the point at which the
escape velocity equals the speed
of light. For a real, relativistic
black hole, this is impossible.

it.) But if the equivalence principle holds, then Newton’s definition
of an inertial frame is fundamentally flawed.

There is a different definition of an inertial frame that works better
in relativity. A Newtonian inertial frame was defined by an object
that isn’t subject to any forces, gravitational or otherwise. In gen-
eral relativity, we instead define an inertial frame using an object
that that isn’t influenced by anything other than gravity. By this
definition, a free-falling rock defines an inertial frame, but this book
sitting on your desk does not.

27.3 Black holes
The observations described so far showed only small effects from
curvature. To get a big effect, we should look at regions of space in
which there are strong gravitational fields. The prime example is a
black hole. The best studied examples are two objects in our own
galaxy: Cygnus X-1, which is believed to be a black hole with about
ten times the mass of our sun, and Sagittarius A*, an object near
the center of our galaxy with about four million solar masses. (See
problem 14, p. 283 for how we know Sagittarius A*’s mass.)

Although a black hole is a relativistic object, we can gain some
insight into how it works by applying Newtonian physics. As shown
in problem 21 on p. 358, a spherical body of mass M has an escape
velocity v =

√
2GM/r, which is the minimum velocity that we

would need to give to a projectile shot from a distance r so that it
would never fall back down. If r is small enough, the escape velocity
will be greater than c, so that even a ray of light can never escape.

We can now make an educated guess as to what this means without
having to study all the mathematics of general relativity. In rela-
tivity, c isn’t really the speed of light, it’s really to be thought of
as a restriction on how fast cause and effect can propagate through
space. This suggests the correct interpretation, which is that for an
object compact enough to be a black hole, there is no way for an
event at a distance closer than r to have an effect on an event far
away. There is an invisible, spherical boundary with radius r, called
the event horizon, and the region within that boundary is cut off
from the rest of the universe in terms of cause and effect. If you
wanted to explore that region, you could drop into it while wearing
a space-suit — but it would be a one-way trip, because you could
never get back out to report on what you had seen.

In the Newtonian description of a black hole, matter could be lifted
out of a black hole, m. Would this be possible with a real-world
black hole, which is relativistic rather than Newtonian? No, because
the bucket is causally separated from the outside universe. No rope
would be strong enough for this job (problem 13, p. 813).
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n / The equivalence principle tells
us that spacetime locally has the
same structure as in special rel-
ativity, so we can draw the famil-
iar parallelogram of x − t coordi-
nates at each point near the black
hole. Superimposed on each lit-
tle grid is a pair of lines repre-
senting motion at the speed of
light in both directions, inward and
outward. Because spacetime is
curved, these lines do not ap-
pear to be at 45-degree angles,
but to an observer in that region,
they would appear to be. When
light rays are emitted inward and
outward from a point outside the
event horizon, one escapes and
one plunges into the black hole.
On this diagram, they look like
they are decelerating and accel-
erating, but local observers com-
paring them to their own coordi-
nate grids would always see them
as moving at exactly c. When
rays are emitted from a point in-
side the event horizon, neither es-
capes; the distortion is so severe
that “outward” is really inward.

One misleading aspect of the Newtonian analysis is that it encour-
ages us to imagine that a light ray trying to escape from a black
hole will slow down, stop, and then fall back in. This can’t be right,
because we know that any observer who sees a light ray flying by
always measures its speed to be c. This was true in special relativity,
and by the equivalence principle we can be assured that the same is
true locally in general relativity. Figure n shows what would really
happen.

Although the light rays in figure n don’t speed up or slow down, they
do experience gravitational Doppler shifts. If a light ray is emitted
from just above the event horizon, then it will escape to an infinite
distance, but it will suffer an extreme Doppler shift toward low
frequencies. A distant observer also has the option of interpreting
this as a gravitational time dilation that greatly lowers the frequency
of the oscillating electric charges that produced the ray. If the point
of emission is made closer and closer to the horizon, the frequency
and energy (see p. 804) measured by a distant observer approach
zero, making the ray impossible to observe.

Information paradox

Black holes have some disturbing implications for the kind of uni-
verse that in the Age of the Enlightenment was imagined to have
been set in motion initially and then left to run forever like clock-
work.

Newton’s laws have built into them the implicit assumption that
omniscience is possible, at least in principle. For example, New-
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o / In Newtonian contexts,
physicists and astronomers had
a correct intuition that it’s hard
for things to collapse gravita-
tionally. This star cluster has
been around for about 15 billion
years, but it hasn’t collapsed into
a black hole. If any individual
star happens to head toward the
center, conservation of angular
momentum tends to cause it to
swing past and fly back out. The
Penrose singularity theorem tells
us that this Newtonian intuition is
wrong when applied to an object
that has collapsed past a certain
point.

ton’s definition of an inertial frame of reference leads to an infinite
regress, as described on p. 825. For Newton this isn’t a problem, be-
cause in principle an omnisicient observer can know the location of
every mass in the universe. In this conception of the cosmos, there
are no theoretical limits on human knowledge, only practical ones;
if we could gather sufficiently precise data about the state of the
universe at one time, and if we could carry out all the calculations
to extrapolate into the future, then we could know everything that
would ever happen. (See the famous quote by Laplace on p. 18.)

But the existence of event horizons surrounding black holes makes it
impossible for any observer to be omniscient; only an observer inside
a particular horizon can see what’s going on inside that horizon.

Furthermore, a black hole has at its center an infinitely dense point,
called a singularity, containing all its mass, and this implies that
information can be destroyed and made inaccessible to any observer
at all. For example, suppose that astronaut Alice goes on a suicide
mission to explore a black hole, free-falling in through the event
horizon. She has a certain amount of time to collect data and satisfy
her intellectual curiosity, but then she impacts the singularity and is
compacted into a mathematical point. Now astronaut Betty decides
that she will never be satisfied unless the secrets revealed to Alice
are known to her as well — and besides, she was Alice’s best friend,
and she wants to know whether Alice had any last words. Betty
can jump through the horizon, but she can never know Alice’s last
words, nor can any other observer who jumps in after Alice does.

This destruction of information is known as the black hole infor-
mation paradox, and it’s referred to as a paradox because quantum
physics (ch. 33-36) has built into its DNA the requirement that in-
formation is never lost in this sense.

Formation

Around 1960, as black holes and their strange properties began to
be better understood and more widely discussed, many physicists
who found these issues distressing comforted themselves with the
belief that black holes would never really form from realistic initial
conditions, such as the collapse of a massive star. Their skepticism
was not entirely unreasonable, since it is usually very hard in astron-
omy to hit a gravitating target, the reason being that conservation
of angular momentum tends to make the projectile swing past. (See
problem 13 on p. 426 for a quantitative analysis.) For example, if
we wanted to drop a space probe into the sun, we would have to ex-
tremely precisely stop its sideways orbital motion so that it would
drop almost exactly straight in. Once a star started to collapse,
the theory went, and became relatively compact, it would be such a
small target that further infalling material would be unlikely to hit
it, and the process of collapse would halt. According to this point
of view, theorists who had calculated the collapse of a star into a
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black hole had been oversimplifying by assuming a star that was
initially perfectly spherical and nonrotating. Remove the unrealis-
tically perfect symmetry of the initial conditions, and a black hole
would never actually form.

But Roger Penrose proved in 1964 that this was wrong. In fact,
once an object collapses to a certain density, the Penrose singularity
theorem guarantees mathematically that it will collapse further until
a singularity is formed, and this singularity is surrounded by an
event horizon. Since the brightness of an object like Sagittarius A*
is far too low to be explained unless it has an event horizon (the
interstellar gas flowing into it would glow due to frictional heating),
we can be certain that there really is a singularity at its core.

27.4 Cosmology
The Big Bang

Section 19.5 presented the evidence, discovered by Hubble, that the
universe is expanding in the aftermath of the Big Bang: when we
observe the light from distant galaxies, it is always Doppler-shifted
toward the red end of the spectrum, indicating that no matter what
direction we look in the sky, everything is rushing away from us.
This seems to go against the modern attitude, originated by Coper-
nicus, that we and our planet do not occupy a special place in the
universe. Why is everything rushing away from our planet in par-
ticular? But general relativity shows that this anti-Copernican con-
clusion is wrong. General relativity describes space not as a rigidly
defined background but as something that can curve and stretch,
like a sheet of rubber. We imagine all the galaxies as existing on the
surface of such a sheet, which then expands uniformly. The space
between the galaxies (but not the galaxies themselves) grows at a
steady rate, so that any observer, inhabiting any galaxy, will see
every other galaxy as receding. There is therefore no privileged or
special location in the universe.

We might think that there would be another kind of special place,
which would be the one at which the Big Bang happened. Maybe
someone has put a brass plaque there? But general relativity doesn’t
describe the Big Bang as an explosion that suddenly occurred in a
preexisting background of time and space. According to general
relativity, space itself came into existence at the Big Bang, and the
hot, dense matter of the early universe was uniformly distributed
everywhere. The Big Bang happened everywhere at once.

Observations show that the universe is very uniform on large scales,
and for ease of calculation, the first physical models of the expanding
universe were constructed with perfect uniformity. In these models,
the Big Bang was a singularity. This singularity can’t even be in-
cluded as an event in spacetime, so that time itself only exists after

Section 27.4 Cosmology 829



the Big Bang. A Big Bang singularity also creates an even more
acute version of the black hole information paradox. Whereas mat-
ter and information disappear into a black hole singularity, stuff
pops out of a Big Bang singularity, and there is no physical princi-
ple that could predict what it would be.

As with black holes, there was considerable skepticism about whether
the existence of an initial singularity in these models was an ari-
fact of the unrealistically perfect uniformity assumed in the models.
Perhaps in the real universe, extrapolation of all the paths of the
galaxies backward in time would show them missing each other by
millions of light-years. But in 1972 Stephen Hawking proved a vari-
ant on the Penrose singularity theorem that applied to Big Bang
singularities. By the Hawking singularity theorem, the level of uni-
formity we see in the present-day universe is more than sufficient to
prove that a Big Bang singularity must have existed.

The cosmic censorship hypothesis

It might not be too much of a philosophical jolt to imagine that
information was spontaneously created in the Big Bang. Setting
up the initial conditions of the entire universe is traditionally the
prerogative of God, not the laws of physics. But there is nothing
fundamental in general relativity that forbids the existence of other
singularities that act like the Big Bang, being information produc-
ers rather than information consumers. As John Earman of the
University of Pittsburgh puts it, anything could pop out of such
a singularity, including green slime or your lost socks. This would
eliminate any hope of finding a universal set of laws of physics that
would be able to make a prediction given any initial situation.

That would be such a devastating defeat for the enterprise of physics
that in 1969 Penrose proposed an alternative, humorously named the
“cosmic censorship hypothesis,” which states that every singularity
in our universe, other than the Big Bang, is hidden behind an event
horizon. Therefore if green slime spontaneously pops out of one,
there is limited impact on the predictive ability of physics, since
the slime can never have any causal effect on the outside world. A
singularity that is not modestly cloaked behind an event horizon
is referred to as a naked singularity. Nobody has yet been able to
prove the cosmic censorship hypothesis.

The advent of high-precision cosmology

We expect that if there is matter in the universe, it should have
gravitational fields, and in the rubber-sheet analogy this should be
represented as a curvature of the sheet. Instead of a flat sheet, we
can have a spherical balloon, so that cosmological expansion is like
inflating it with more and more air. It is also possible to have nega-
tive curvature, as in figure e on p. 821. All three of these are valid,
possible cosmologies according to relativity. The positive-curvature
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p / An expanding universe
with positive spatial curvature
can be imagined as a balloon
being blown up. Every galaxy’s
distance from every other galaxy
increases, but no galaxy is the
center of the expansion.

q / The angular scale of fluc-
tuations in the cosmic microwave
background can be used to infer
the curvature of the universe.

type happens if the average density of matter in the universe is above
a certain critical level, the negative-curvature one if the density is
below that value.

To find out which type of universe we inhabit, we could try to take
a survey of the matter in the universe and determine its average
density. Historically, it has been very difficult to do this, even to
within an order of magnitude. Most of the matter in the universe
probably doesn’t emit light, making it difficult to detect. Astronom-
ical distance scales are also very poorly calibrated against absolute
units such as the SI.

Instead, we measure the universe’s curvature, and infer the density
of matter from that. It turns out that we can do this by observ-
ing the cosmic microwave background (CMB) radiation, which is
the light left over from the brightly glowing early universe, which
was dense and hot. As the universe has expanded, light waves that
were in flight have expanded their wavelengths along with it. This
afterglow of the big bang was originally visible light, but after bil-
lions of years of expansion it has shifted into the microwave radio
part of the electromagnetic spectrum. The CMB is not perfectly
uniform, and this turns out to give us a way to measure the uni-
verse’s curvature. Since the CMB was emitted when the universe
was only about 400,000 years old, any vibrations or disturbances in
the hot hydrogen and helium gas that filled space in that era would
only have had time to travel a certain distance, limited by the speed
of sound. We therefore expect that no feature in the CMB should
be bigger than a certain known size. In a universe with negative
spatial curvature, the sum of the interior angles of a triangle is less
than the Euclidean value of 180 degrees. Therefore if we observe
a variation in the CMB over some angle, the distance between two
points on the sky is actually greater than would have been inferred
from Euclidean geometry. The opposite happens if the curvature is
positive.

This observation was done by the 1989-1993 COBE probe, and its
2001-2009 successor, the Wilkinson Microwave Anisotropy Probe.
The result is that the angular sizes are almost exactly equal to what
they should be according to Euclidean geometry. We therefore infer
that the universe is very close to having zero average spatial cur-
vature on the cosmological scale, and this tells us that its average
density must be within about 0.5% of the critical value. The years
since COBE and WMAP mark the advent of an era in which cos-
mology has gone from being a field of estimates and rough guesses
to a high-precision science.

If one is inclined to be skeptical about the seemingly precise an-
swers to the mysteries of the cosmos, there are consistency checks
that can be carried out. In the bad old days of low-precision cos-
mology, estimates of the age of the universe ranged from 10 billion
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to 20 billion years, and the low end was inconsistent with the age
of the oldest star clusters. This was believed to be a problem either
for observational cosmology or for the astrophysical models used to
estimate the ages of the clusters: “You can’t be older than your
ma.” Current data have shown that the low estimates of the age
were incorrect, so consistency is restored. (The best figure for the
age of the universe is currently 13.8± 0.1 billion years.)

Dark energy and dark matter

Not everything works out so smoothly, however. One surprise, dis-
cussed in section 10.6, is that the universe’s expansion is not cur-
rently slowing down, as had been expected due to the gravitational
attraction of all the matter in it. Instead, it is currently speeding up.
This is attributed to a variable in Einstein’s equations, long assumed
to be zero, which represents a universal gravitational repulsion of
space itself, occurring even when there is no matter present. The
current name for this is “dark energy,” although the fancy name is
just a label for our ignorance about what causes it.

Another surprise comes from attempts to model the formation of
the elements during the era shortly after the Big Bang, before the
formation of the first stars (section 26.4.10). The observed rela-
tive abundances of hydrogen, helium, and deuterium (2H) cannot
be reconciled with the density of low-velocity matter inferred from
the observational data. If the inferred mass density were entirely
due to normal matter (i.e., matter whose mass consisted mostly of
protons and neutrons), then nuclear reactions in the dense early uni-
verse should have proceeded relatively efficiently, leading to a much
higher ratio of helium to hydrogen, and a much lower abundance of
deuterium. The conclusion is that most of the matter in the universe
must be made of an unknown type of exotic matter, known as “dark
matter.” We are in the ironic position of knowing that precisely 96%
of the universe is something other than atoms, but knowing nothing
about what that something is. As of 2013, there have been several
experiments that have been carried out to attempt the direct detec-
tion of dark matter particles. These are carried out at the bottom of
mineshafts to eliminate background radiation. Early claims of suc-
cess appear to have been statistical flukes, and the most sensitive
experiments have not detected anything.2

2arxiv.org/abs/1310.8214
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Problem 4b. Redrawn from
Van Baak, Physics Today 60
(2007) 16.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Prove, as claimed in the caption of figure a on p. 819, that
S−180◦ = 4(s−180◦), where S is the sum of the angles of the large
equilateral triangle and s is the corresponding sum for one of the
four small ones. . Solution, p. 1035

2 If a two-dimensional being lived on the surface of a cone,
would it say that its space was curved, or not?

3 (a) Verify that the equation 1 − gh/c2 for the gravitational
Doppler shift and gravitational time dilation has units that make
sense. (b) Does this equation satisfy the correspondence principle?

4 (a) Calculate the Doppler shift to be expected in the Pound-
Rebka experiment described on p. 824. (b) In the 1978 Iijima
mountain-valley experiment (p. 672), analysis was complicated by
the clock’s sensitivity to pressure, humidity, and temperature. A
cleaner version of the experiment was done in 2005 by hobbyist
Tom Van Baak. He put his kids and three of his atomic clocks in a
minivan and drove from Bellevue, Washington to a lodge on Mount
Rainier, 1340 meters higher in elevation. They spent the weekend
there. Back at home, he compared the clocks to others that had
stayed at his house. Verify that the effect shown in the graph is as
predicted by general relativity.

5 The International Space Station orbits at an altitude of about
350 km and a speed of about 8000 m/s relative to the ground. Com-
pare the gravitational and kinematic time dilations. Over all, does
time run faster on the ISS than on the ground, or more slowly?

6 Section 27.3 presented a Newtonian estimate of how compact
an object would have to be in order to be a black hole. Although
this estimate is not really right, it turns out to give the right answer
to within about a factor of 2. To roughly what size would the earth
have to be compressed in order to become a black hole?

7 Clock A sits on a desk. Clock B is tossed up in the air from
the same height as the desk and then comes back down. Compare
the elapsed times. . Hint, p. 1032 . Solution, p. 1035

8 The angular defect d of a triangle (measured in radians)
is defined as s − π, where s is the sum of the interior angles. The
angular defect is proportional to the area A of the triangle. Consider
the geometry measured by a two-dimensional being who lives on the
surface of a sphere of radius R. First find some triangle on the sphere
whose area and angular defect are easy to calculate. Then determine
the general equation for d in terms of A and R.

√
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Exercise 27: Misconceptions about relativity
The following is a list of common misconceptions about relativity. The class will be split
up into random groups, and each group will cooperate on developing an explanation of the
misconception, and then the groups will present their explanations to the class. There may
be multiple rounds, with students assigned to different randomly chosen groups in successive
rounds.

1. How can light have momentum if it has zero mass?

2. What does the world look like in a frame of reference moving at c?

3. Alice observes Betty coming toward her from the left at c/2, and Carol from the right at
c/2. Therefore Betty is moving at the speed of light relative to Carol.

4. Are relativistic effects such as length contraction and time dilation real, or do they just
seem to be that way?

5. Special relativity only matters if you’re moving close to the speed of light.

6. Special relativity says that everything is relative.

7. There is a common misconception that relativistic length contraction is what we would
actually see. Refute this by drawing a spacetime diagram for an object approaching an
observer, and tracing rays of light emitted from the object’s front and back that both
reach the observer’s eye at the same time.

8. When you travel close to the speed of light, your time slows down.

9. Is a light wave’s wavelength relativistically length contracted by a factor of gamma?

10. Accelerate a baseball to ultrarelativistic speeds. Does it become a black hole?

11. Where did the Big Bang happen?

12. The universe can’t be infinite in size, because it’s only had a finite amount of time to
expand from the point where the Big Bang happened.
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Chapter 28

The Ray Model of Light

Ads for one Macintosh computer bragged that it could do an arith-
metic calculation in less time than it took for the light to get from the
screen to your eye. We find this impressive because of the contrast
between the speed of light and the speeds at which we interact with
physical objects in our environment. Perhaps it shouldn’t surprise
us, then, that Newton succeeded so well in explaining the motion of
objects, but was far less successful with the study of light.

The climax of our study of electricity and magnetism was discovery
that light is an electromagnetic wave. Knowing this, however, is not
the same as knowing everything about eyes and telescopes. In fact,
the full description of light as a wave can be rather cumbersome.
We will instead spend most of our treatment of optics making use
of a simpler model of light, the ray model, which does a fine job in
most practical situations. Not only that, but we will even backtrack
a little and start with a discussion of basic ideas about light and
vision that predated the discovery of electromagnetic waves.
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28.1 The nature of light
The cause and effect relationship in vision

Despite its title, this chapter is far from your first look at light.
That familiarity might seem like an advantage, but most people have
never thought carefully about light and vision. Even smart people
who have thought hard about vision have come up with incorrect
ideas. The ancient Greeks, Arabs and Chinese had theories of light
and vision, all of which were mostly wrong, and all of which were
accepted for thousands of years.

One thing the ancients did get right is that there is a distinction
between objects that emit light and objects that don’t. When you
see a leaf in the forest, it’s because three different objects are doing
their jobs: the leaf, the eye, and the sun. But luminous objects
like the sun, a flame, or the filament of a light bulb can be seen by
the eye without the presence of a third object. Emission of light
is often, but not always, associated with heat. In modern times,
we are familiar with a variety of objects that glow without being
heated, including fluorescent lights and glow-in-the-dark toys.

How do we see luminous objects? The Greek philosophers Pythago-
ras (b. ca. 560 BC) and Empedocles of Acragas (b. ca. 492
BC), who unfortunately were very influential, claimed that when
you looked at a candle flame, the flame and your eye were both
sending out some kind of mysterious stuff, and when your eye’s stuff
collided with the candle’s stuff, the candle would become evident to
your sense of sight.

Bizarre as the Greek “collision of stuff theory” might seem, it had a
couple of good features. It explained why both the candle and your
eye had to be present for your sense of sight to function. The theory
could also easily be expanded to explain how we see nonluminous
objects. If a leaf, for instance, happened to be present at the site
of the collision between your eye’s stuff and the candle’s stuff, then
the leaf would be stimulated to express its green nature, allowing
you to perceive it as green.

Modern people might feel uneasy about this theory, since it suggests
that greenness exists only for our seeing convenience, implying a hu-
man precedence over natural phenomena. Nowadays, people would
expect the cause and effect relationship in vision to be the other way
around, with the leaf doing something to our eye rather than our eye
doing something to the leaf. But how can you tell? The most com-
mon way of distinguishing cause from effect is to determine which
happened first, but the process of seeing seems to occur too quickly
to determine the order in which things happened. Certainly there is
no obvious time lag between the moment when you move your head
and the moment when your reflection in the mirror moves.

Today, photography provides the simplest experimental evidence
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a / Light from a candle is bumped
off course by a piece of glass.
Inserting the glass causes the
apparent location of the candle
to shift. The same effect can
be produced by taking off your
eyeglasses and looking at which
you see near the edge of the
lens, but a flat piece of glass
works just as well as a lens for
this purpose.

that nothing has to be emitted from your eye and hit the leaf in
order to make it “greenify.” A camera can take a picture of a leaf
even if there are no eyes anywhere nearby. Since the leaf appears
green regardless of whether it is being sensed by a camera, your eye,
or an insect’s eye, it seems to make more sense to say that the leaf’s
greenness is the cause, and something happening in the camera or
eye is the effect.

Light is a thing, and it travels from one point to another.

Another issue that few people have considered is whether a candle’s
flame simply affects your eye directly, or whether it sends out light
which then gets into your eye. Again, the rapidity of the effect makes
it difficult to tell what’s happening. If someone throws a rock at you,
you can see the rock on its way to your body, and you can tell that
the person affected you by sending a material substance your way,
rather than just harming you directly with an arm motion, which
would be known as “action at a distance.” It is not easy to do a
similar observation to see whether there is some “stuff” that travels
from the candle to your eye, or whether it is a case of action at a
distance.

Newtonian physics includes both action at a distance (e.g., the
earth’s gravitational force on a falling object) and contact forces
such as the normal force, which only allow distant objects to exert
forces on each other by shooting some substance across the space
between them (e.g., a garden hose spraying out water that exerts a
force on a bush).

One piece of evidence that the candle sends out stuff that travels to
your eye is that as in figure a, intervening transparent substances
can make the candle appear to be in the wrong location, suggesting
that light is a thing that can be bumped off course. Many peo-
ple would dismiss this kind of observation as an optical illusion,
however. (Some optical illusions are purely neurological or psycho-
logical effects, although some others, including this one, turn out to
be caused by the behavior of light itself.)

A more convincing way to decide in which category light belongs is
to find out if it takes time to get from the candle to your eye; in
Newtonian physics, action at a distance is supposed to be instan-
taneous. The fact that we speak casually today of “the speed of
light” implies that at some point in history, somebody succeeded in
showing that light did not travel infinitely fast. Galileo tried, and
failed, to detect a finite speed for light, by arranging with a person
in a distant tower to signal back and forth with lanterns. Galileo
uncovered his lantern, and when the other person saw the light, he
uncovered his lantern. Galileo was unable to measure any time lag
that was significant compared to the limitations of human reflexes.

The first person to prove that light’s speed was finite, and to deter-
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b / An image of Jupiter and
its moon Io (left) from the Cassini
probe.

c / The earth is moving to-
ward Jupiter and Io. Since the
distance is shrinking, it is taking
less and less time for the light to
get to us from Io, and Io appears
to circle Jupiter more quickly than
normal. Six months later, the
earth will be on the opposite side
of the sun, and receding from
Jupiter and Io, so Io will appear
to revolve around Jupiter more
slowly.

mine it numerically, was Ole Roemer, in a series of measurements
around the year 1675. Roemer observed Io, one of Jupiter’s moons,
over a period of several years. Since Io presumably took the same
amount of time to complete each orbit of Jupiter, it could be thought
of as a very distant, very accurate clock. A practical and accurate
pendulum clock had recently been invented, so Roemer could check
whether the ratio of the two clocks’ cycles, about 42.5 hours to 1
orbit, stayed exactly constant or changed a little. If the process of
seeing the distant moon was instantaneous, there would be no rea-
son for the two to get out of step. Even if the speed of light was
finite, you might expect that the result would be only to offset one
cycle relative to the other. The earth does not, however, stay at a
constant distance from Jupiter and its moons. Since the distance is
changing gradually due to the two planets’ orbital motions, a finite
speed of light would make the “Io clock” appear to run faster as the
planets drew near each other, and more slowly as their separation
increased. Roemer did find a variation in the apparent speed of Io’s
orbits, which caused Io’s eclipses by Jupiter (the moments when Io
passed in front of or behind Jupiter) to occur about 7 minutes early
when the earth was closest to Jupiter, and 7 minutes late when it
was farthest. Based on these measurements, Roemer estimated the
speed of light to be approximately 2×108 m/s, which is in the right
ballpark compared to modern measurements of 3×108 m/s. (I’m not
sure whether the fairly large experimental error was mainly due to
imprecise knowledge of the radius of the earth’s orbit or limitations
in the reliability of pendulum clocks.)

Light can travel through a vacuum.

Many people are confused by the relationship between sound and
light. Although we use different organs to sense them, there are
some similarities. For instance, both light and sound are typically
emitted in all directions by their sources. Musicians even use visual
metaphors like “tone color,” or “a bright timbre” to describe sound.
One way to see that they are clearly different phenomena is to note
their very different velocities. Sure, both are pretty fast compared to
a flying arrow or a galloping horse, but as we have seen, the speed of
light is so great as to appear instantaneous in most situations. The
speed of sound, however, can easily be observed just by watching a
group of schoolchildren a hundred feet away as they clap their hands
to a song. There is an obvious delay between when you see their
palms come together and when you hear the clap.

The fundamental distinction between sound and light is that sound
is an oscillation in air pressure, so it requires air (or some other
medium such as water) in which to travel. Today, we know that
outer space is a vacuum, so the fact that we get light from the
sun, moon and stars clearly shows that air is not necessary for the
propagation of light.
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Discussion questions

A If you observe thunder and lightning, you can tell how far away the
storm is. Do you need to know the speed of sound, of light, or of both?

B When phenomena like X-rays and cosmic rays were first discovered,
suggest a way one could have tested whether they were forms of light.

C Why did Roemer only need to know the radius of the earth’s orbit,
not Jupiter’s, in order to find the speed of light?

28.2 Interaction of light with matter
Absorption of light

The reason why the sun feels warm on your skin is that the sunlight
is being absorbed, and the light energy is being transformed into
heat energy. The same happens with artificial light, so the net
result of leaving a light turned on is to heat the room. It doesn’t
matter whether the source of the light is hot, like the sun, a flame,
or an incandescent light bulb, or cool, like a fluorescent bulb. (If
your house has electric heat, then there is absolutely no point in
fastidiously turning off lights in the winter; the lights will help to
heat the house at the same dollar rate as the electric heater.)

This process of heating by absorption is entirely different from heat-
ing by thermal conduction, as when an electric stove heats spaghetti
sauce through a pan. Heat can only be conducted through matter,
but there is vacuum between us and the sun, or between us and the
filament of an incandescent bulb. Also, heat conduction can only
transfer heat energy from a hotter object to a colder one, but a cool
fluorescent bulb is perfectly capable of heating something that had
already started out being warmer than the bulb itself.

How we see nonluminous objects

Not all the light energy that hits an object is transformed into heat.
Some is reflected, and this leads us to the question of how we see
nonluminous objects. If you ask the average person how we see a
light bulb, the most likely answer is “The light bulb makes light,
which hits our eyes.” But if you ask how we see a book, they
are likely to say “The bulb lights up the room, and that lets me
see the book.” All mention of light actually entering our eyes has
mysteriously disappeared.

Most people would disagree if you told them that light was reflected
from the book to the eye, because they think of reflection as some-
thing that mirrors do, not something that a book does. They asso-
ciate reflection with the formation of a reflected image, which does
not seem to appear in a piece of paper.

Imagine that you are looking at your reflection in a nice smooth
piece of aluminum foil, fresh off the roll. You perceive a face, not a
piece of metal. Perhaps you also see the bright reflection of a lamp
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d / Two self-portraits of the
author, one taken in a mirror and
one with a piece of aluminum foil.

e / Specular and diffuse re-
flection.

over your shoulder behind you. Now imagine that the foil is just
a little bit less smooth. The different parts of the image are now
a little bit out of alignment with each other. Your brain can still
recognize a face and a lamp, but it’s a little scrambled, like a Picasso
painting. Now suppose you use a piece of aluminum foil that has
been crumpled up and then flattened out again. The parts of the
image are so scrambled that you cannot recognize an image. Instead,
your brain tells you you’re looking at a rough, silvery surface.

Mirror-like reflection at a specific angle is known as specular re-
flection, and random reflection in many directions is called diffuse
reflection. Diffuse reflection is how we see nonluminous objects.
Specular reflection only allows us to see images of objects other
than the one doing the reflecting. In top part of figure d, imagine
that the rays of light are coming from the sun. If you are looking
down at the reflecting surface, there is no way for your eye-brain
system to tell that the rays are not really coming from a sun down
below you.

Figure f shows another example of how we can’t avoid the conclusion
that light bounces off of things other than mirrors. The lamp is one
I have in my house. It has a bright bulb, housed in a completely
opaque bowl-shaped metal shade. The only way light can get out of
the lamp is by going up out of the top of the bowl. The fact that I
can read a book in the position shown in the figure means that light
must be bouncing off of the ceiling, then bouncing off of the book,
then finally getting to my eye.

This is where the shortcomings of the Greek theory of vision become
glaringly obvious. In the Greek theory, the light from the bulb and
my mysterious “eye rays” are both supposed to go to the book,
where they collide, allowing me to see the book. But we now have a
total of four objects: lamp, eye, book, and ceiling. Where does the
ceiling come in? Does it also send out its own mysterious “ceiling
rays,” contributing to a three-way collision at the book? That would
just be too bizarre to believe!

The differences among white, black, and the various shades of gray
in between is a matter of what percentage of the light they absorb
and what percentage they reflect. That’s why light-colored clothing
is more comfortable in the summer, and light-colored upholstery in
a car stays cooler that dark upholstery.
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f / Light bounces off of the
ceiling, then off of the book.

g / Discussion question C.

Numerical measurement of the brightness of light

We have already seen that the physiological sensation of loudness
relates to the sound’s intensity (power per unit area), but is not
directly proportional to it. If sound A has an intensity of 1 nW/m2,
sound B is 10 nW/m2, and sound C is 100 nW/m2, then the increase
in loudness from B to C is perceived to be the same as the increase
from A to B, not ten times greater. That is, the sensation of loudness
is logarithmic.

The same is true for the brightness of light. Brightness is related
to power per unit area, but the psychological relationship is a log-
arithmic one rather than a proportionality. For doing physics, it’s
the power per unit area that we’re interested in. The relevant unit
is W/m2. One way to determine the brightness of light is to mea-
sure the increase in temperature of a black object exposed to the
light. The light energy is being converted to heat energy, and the
amount of heat energy absorbed in a given amount of time can be
related to the power absorbed, using the known heat capacity of the
object. More practical devices for measuring light intensity, such
as the light meters built into some cameras, are based on the con-
version of light into electrical energy, but these meters have to be
calibrated somehow against heat measurements.

Discussion questions

A The curtains in a room are drawn, but a small gap lets light through,
illuminating a spot on the floor. It may or may not also be possible to see
the beam of sunshine crossing the room, depending on the conditions.
What’s going on?

B Laser beams are made of light. In science fiction movies, laser
beams are often shown as bright lines shooting out of a laser gun on a
spaceship. Why is this scientifically incorrect?

C A documentary film-maker went to Harvard’s 1987 graduation cer-
emony and asked the graduates, on camera, to explain the cause of the
seasons. Only two out of 23 were able to give a correct explanation, but
you now have all the information needed to figure it out for yourself, as-
suming you didn’t already know. The figure shows the earth in its winter
and summer positions relative to the sun. Hint: Consider the units used
to measure the brightness of light, and recall that the sun is lower in the
sky in winter, so its rays are coming in at a shallower angle.

28.3 The ray model of light
Models of light

Note how I’ve been casually diagramming the motion of light with
pictures showing light rays as lines on the page. More formally,
this is known as the ray model of light. The ray model of light
seems natural once we convince ourselves that light travels through
space, and observe phenomena like sunbeams coming through holes
in clouds. Having already been introduced to the concept of light
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as an electromagnetic wave, you know that the ray model is not the
ultimate truth about light, but the ray model is simpler, and in any
case science always deals with models of reality, not the ultimate
nature of reality. The following table summarizes three models of
light.

h / Three models of light.

The ray model is a generic one. By using it we can discuss the path
taken by the light, without committing ourselves to any specific
description of what it is that is moving along that path. We will
use the nice simple ray model for most of our treatment of optics,
and with it we can analyze a great many devices and phenomena.
Not until chapter 32 will we concern ourselves specifically with wave
optics, although in the intervening chapters I will sometimes analyze
the same phenomenon using both the ray model and the wave model.

Note that the statements about the applicability of the various mod-
els are only rough guides. For instance, wave interference effects are
often detectable, if small, when light passes around an obstacle that
is quite a bit bigger than a wavelength. Also, the criterion for when
we need the particle model really has more to do with energy scales
than distance scales, although the two turn out to be related.

The alert reader may have noticed that the wave model is required
at scales smaller than a wavelength of light (on the order of a mi-
crometer for visible light), and the particle model is demanded on
the atomic scale or lower (a typical atom being a nanometer or so in
size). This implies that at the smallest scales we need both the wave
model and the particle model. They appear incompatible, so how
can we simultaneously use both? The answer is that they are not
as incompatible as they seem. Light is both a wave and a particle,
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but a full understanding of this apparently nonsensical statement is
a topic for chapter 34.

i / Examples of ray diagrams.

Ray diagrams

Without even knowing how to use the ray model to calculate any-
thing numerically, we can learn a great deal by drawing ray dia-
grams. For instance, if you want to understand how eyeglasses help
you to see in focus, a ray diagram is the right place to start. Many
students under-utilize ray diagrams in optics and instead rely on rote
memorization or plugging into formulas. The trouble with memo-
rization and plug-ins is that they can obscure what’s really going
on, and it is easy to get them wrong. Often the best plan is to do a
ray diagram first, then do a numerical calculation, then check that
your numerical results are in reasonable agreement with what you
expected from the ray diagram.

j / 1. Correct. 2. Incorrect: im-
plies that diffuse reflection only
gives one ray from each reflecting
point. 3. Correct, but unneces-
sarily complicated

Figure j shows some guidelines for using ray diagrams effectively.
The light rays bend when they pass out through the surface of the
water (a phenomenon that we’ll discuss in more detail later). The
rays appear to have come from a point above the goldfish’s actual
location, an effect that is familiar to people who have tried spear-
fishing.

• A stream of light is not really confined to a finite number of
narrow lines. We just draw it that way. In j/1, it has been
necessary to choose a finite number of rays to draw (five),
rather than the theoretically infinite number of rays that will
diverge from that point.
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• There is a tendency to conceptualize rays incorrectly as ob-
jects. In his Optics, Newton goes out of his way to caution
the reader against this, saying that some people “consider ...
the refraction of ... rays to be the bending or breaking of them
in their passing out of one medium into another.” But a ray
is a record of the path traveled by light, not a physical thing
that can be bent or broken.

• In theory, rays may continue infinitely far into the past and
future, but we need to draw lines of finite length. In j/1, a
judicious choice has been made as to where to begin and end
the rays. There is no point in continuing the rays any farther
than shown, because nothing new and exciting is going to
happen to them. There is also no good reason to start them
earlier, before being reflected by the fish, because the direction
of the diffusely reflected rays is random anyway, and unrelated
to the direction of the original, incoming ray.

• When representing diffuse reflection in a ray diagram, many
students have a mental block against drawing many rays fan-
ning out from the same point. Often, as in example j/2, the
problem is the misconception that light can only be reflected
in one direction from one point.

• Another difficulty associated with diffuse reflection, example
j/3, is the tendency to think that in addition to drawing many
rays coming out of one point, we should also be drawing many
rays coming from many points. In j/1, drawing many rays
coming out of one point gives useful information, telling us,
for instance, that the fish can be seen from any angle. Drawing
many sets of rays, as in j/3, does not give us any more useful
information, and just clutters up the picture in this example.
The only reason to draw sets of rays fanning out from more
than one point would be if different things were happening to
the different sets.

Discussion question

A Suppose an intelligent tool-using fish is spear-hunting for humans.
Draw a ray diagram to show how the fish has to correct its aim. Note
that although the rays are now passing from the air to the water, the same
rules apply: the rays are closer to being perpendicular to the surface when
they are in the water, and rays that hit the air-water interface at a shallow
angle are bent the most.

28.4 Geometry of specular reflection
To change the motion of a material object, we use a force. Is there
any way to exert a force on a beam of light? Experiments show
that electric and magnetic fields do not deflect light beams, so ap-
parently light has no electric charge. Light also has no mass, so
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k / The geometry of specular
reflection.

until the twentieth century it was believed to be immune to gravity
as well. Einstein predicted that light beams would be very slightly
deflected by strong gravitational fields, and he was proved correct
by observations of rays of starlight that came close to the sun, but
obviously that’s not what makes mirrors and lenses work!

If we investigate how light is reflected by a mirror, we will find that
the process is horrifically complex, but the final result is surprisingly
simple. What actually happens is that the light is made of electric
and magnetic fields, and these fields accelerate the electrons in the
mirror. Energy from the light beam is momentarily transformed
into extra kinetic energy of the electrons, but because the electrons
are accelerating they re-radiate more light, converting their kinetic
energy back into light energy. We might expect this to result in a
very chaotic situation, but amazingly enough, the electrons move
together to produce a new, reflected beam of light, which obeys two
simple rules:

• The angle of the reflected ray is the same as that of the incident
ray.

• The reflected ray lies in the plane containing the incident ray
and the normal (perpendicular) line. This plane is known as
the plane of incidence.

The two angles can be defined either with respect to the normal, like
angles B and C in the figure, or with respect to the reflecting surface,
like angles A and D. There is a convention of several hundred years’
standing that one measures the angles with respect to the normal,
but the rule about equal angles can logically be stated either as
B=C or as A=D.

The phenomenon of reflection occurs only at the boundary between
two media, just like the change in the speed of light that passes from
one medium to another. As we have seen in chapter 20, this is the
way all waves behave.

Most people are surprised by the fact that light can be reflected
back from a less dense medium. For instance, if you are diving and
you look up at the surface of the water, you will see a reflection of
yourself.
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self-check A
Each of these diagrams is supposed to show two different rays being
reflected from the same point on the same mirror. Which are correct,
and which are incorrect?

. Answer, p. 1045

Reversibility of light rays

The fact that specular reflection displays equal angles of incidence
and reflection means that there is a symmetry: if the ray had come
in from the right instead of the left in the figure above, the angles
would have looked exactly the same. This is not just a pointless
detail about specular reflection. It’s a manifestation of a very deep
and important fact about nature, which is that the laws of physics do
not distinguish between past and future. Cannonballs and planets
have trajectories that are equally natural in reverse, and so do light
rays. This type of symmetry is called time-reversal symmetry.

Typically, time-reversal symmetry is a characteristic of any process
that does not involve heat. For instance, the planets do not ex-
perience any friction as they travel through empty space, so there
is no frictional heating. We should thus expect the time-reversed
versions of their orbits to obey the laws of physics, which they do.
In contrast, a book sliding across a table does generate heat from
friction as it slows down, and it is therefore not surprising that this
type of motion does not appear to obey time-reversal symmetry. A
book lying still on a flat table is never observed to spontaneously
start sliding, sucking up heat energy and transforming it into kinetic
energy.

Similarly, the only situation we’ve observed so far where light does
not obey time-reversal symmetry is absorption, which involves heat.
Your skin absorbs visible light from the sun and heats up, but we
never observe people’s skin to glow, converting heat energy into vis-
ible light. People’s skin does glow in infrared light, but that doesn’t
mean the situation is symmetric. Even if you absorb infrared, you
don’t emit visible light, because your skin isn’t hot enough to glow
in the visible spectrum.

These apparent heat-related asymmetries are not actual asymme-
tries in the laws of physics. The interested reader may wish to learn
more about this from optional chapter 16 on thermodynamics.

Ray tracing on a computer example 1
A number of techniques can be used for creating artificial visual
scenes in computer graphics. Figure l shows such a scene, which
was created by the brute-force technique of simply constructing
a very detailed ray diagram on a computer. This technique re-
quires a great deal of computation, and is therefore too slow to
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be used for video games and computer-animated movies. One
trick for speeding up the computation is to exploit the reversibility
of light rays. If one was to trace every ray emitted by every illu-
minated surface, only a tiny fraction of those would actually end
up passing into the virtual “camera,” and therefore almost all of
the computational effort would be wasted. One can instead start
a ray at the camera, trace it backward in time, and see where it
would have come from. With this technique, there is no wasted
effort.

l / This photorealistic image of a nonexistent countertop was pro-
duced completely on a computer, by computing a complicated ray
diagram.
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m / Discussion question B.

n / Discussion question C.

o / The solid lines are physi-
cally possible paths for light rays
traveling from A to B and from
A to C. They obey the principle
of least time. The dashed lines
do not obey the principle of
least time, and are not physically
possible.

Discussion questions

A If a light ray has a velocity vector with components cx and cy , what
will happen when it is reflected from a surface that lies along the y axis?
Make sure your answer does not imply a change in the ray’s speed.

B Generalizing your reasoning from discussion question A, what will
happen to the velocity components of a light ray that hits a corner, as
shown in the figure, and undergoes two reflections?

C Three pieces of sheet metal arranged perpendicularly as shown in
the figure form what is known as a radar corner. Let’s assume that the
radar corner is large compared to the wavelength of the radar waves, so
that the ray model makes sense. If the radar corner is bathed in radar
rays, at least some of them will undergo three reflections. Making a fur-
ther generalization of your reasoning from the two preceding discussion
questions, what will happen to the three velocity components of such a
ray? What would the radar corner be useful for?

28.5 ? The principle of least time for reflection
We had to choose between an unwieldy explanation of reflection at
the atomic level and a simpler geometric description that was not as
fundamental. There is a third approach to describing the interaction
of light and matter which is very deep and beautiful. Emphasized
by the twentieth-century physicist Richard Feynman, it is called the
principle of least time, or Fermat’s principle.

Let’s start with the motion of light that is not interacting with
matter at all. In a vacuum, a light ray moves in a straight line.
This can be rephrased as follows: of all the conceivable paths light
could follow from P to Q, the only one that is physically possible is
the path that takes the least time.

What about reflection? If light is going to go from one point to
another, being reflected on the way, the quickest path is indeed the
one with equal angles of incidence and reflection. If the starting and
ending points are equally far from the reflecting surface, o, it’s not
hard to convince yourself that this is true, just based on symmetry.
There is also a tricky and simple proof, shown in figure p, for the
more general case where the points are at different distances from
the surface.
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p / Paths AQB and APB are
two conceivable paths that a ray
could follow to get from A to B
with one reflection, but only AQB
is physically possible. We wish
to prove that the path AQB, with
equal angles of incidence and
reflection, is shorter than any
other path, such as APB. The
trick is to construct a third point,
C, lying as far below the surface
as B lies above it. Then path
AQC is a straight line whose
length is the same as AQB’s, and
path APC has the same length as
path APB. Since AQC is straight,
it must be shorter than any other
path such as APC that connects
A and C, and therefore AQB must
be shorter than any path such as
APB.

q / Light is emitted at the center
of an elliptical mirror. There are
four physically possible paths by
which a ray can be reflected and
return to the center.

Not only does the principle of least time work for light in a vacuum
and light undergoing reflection, we will also see in a later chap-
ter that it works for the bending of light when it passes from one
medium into another.

Although it is beautiful that the entire ray model of light can be
reduced to one simple rule, the principle of least time, it may seem
a little spooky to speak as if the ray of light is intelligent, and has
carefully planned ahead to find the shortest route to its destination.
How does it know in advance where it’s going? What if we moved the
mirror while the light was en route, so conditions along its planned
path were not what it “expected?” The answer is that the principle
of least time is really a shortcut for finding certain results of the
wave model of light, which is the topic of the last chapter of this
book.

There are a couple of subtle points about the principle of least time.
First, the path does not have to be the quickest of all possible paths;
it only needs to be quicker than any path that differs infinitesimally
from it. In figure p, for instance, light could get from A to B either
by the reflected path AQB or simply by going straight from A to
B. Although AQB is not the shortest possible path, it cannot be
shortened by changing it infinitesimally, e.g., by moving Q a little
to the right or left. On the other hand, path APB is physically
impossible, because it is possible to improve on it by moving point
P infinitesimally to the right.

It’s not quite right to call this the principle of least time. In figure
q, for example, the four physically possible paths by which a ray
can return to the center consist of two shortest-time paths and two
longest-time paths. Strictly speaking, we should refer to the prin-
ciple of least or greatest time, but most physicists omit the niceties,
and assume that other physicists understand that both maxima and
minima are possible.
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Summary
Selected vocabulary
absorption . . . . what happens when light hits matter and gives

up some of its energy
reflection . . . . . what happens when light hits matter and

bounces off, retaining at least some of its en-
ergy

specular reflec-
tion . . . . . . . .

reflection from a smooth surface, in which the
light ray leaves at the same angle at which it
came in

diffuse reflection reflection from a rough surface, in which a sin-
gle ray of light is divided up into many weaker
reflected rays going in many directions

normal . . . . . . the line perpendicular to a surface at a given
point

Notation
c . . . . . . . . . . the speed of light

Summary

We can understand many phenomena involving light without having
to use sophisticated models such as the wave model or the particle
model. Instead, we simply describe light according to the path it
takes, which we call a ray. The ray model of light is useful when
light is interacting with material objects that are much larger than
a wavelength of light. Since a wavelength of visible light is so short
compared to the human scale of existence, the ray model is useful
in many practical cases.

We see things because light comes from them to our eyes. Objects
that glow may send light directly to our eyes, but we see an ob-
ject that doesn’t glow via light from another source that has been
reflected by the object.

Many of the interactions of light and matter can be understood
by considering what happens when light reaches the boundary be-
tween two different substances. In this situation, part of the light is
reflected (bounces back) and part passes on into the new medium.
This is not surprising — it is typical behavior for a wave, and light is
a wave. Light energy can also be absorbed by matter, i.e., converted
into heat.

A smooth surface produces specular reflection, in which the reflected
ray exits at the same angle with respect to the normal as that of the
incoming ray. A rough surface gives diffuse reflection, where a single
ray of light is divided up into many weaker reflected rays going in
many directions.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Draw a ray diagram showing why a small light source (a
candle, say) produces sharper shadows than a large one (e.g., a long
fluorescent bulb).

2 A Global Positioning System (GPS) receiver is a device that
lets you figure out where you are by receiving timed radio signals
from satellites. It works by measuring the travel time for the signals,
which is related to the distance between you and the satellite. By
finding the ranges to several different satellites in this way, it can
pin down your location in three dimensions to within a few meters.
How accurate does the measurement of the time delay have to be to
determine your position to this accuracy?

3 Estimate the frequency of an electromagnetic wave whose
wavelength is similar in size to an atom (about a nm). Referring
back to figure 24.5.3 on p. 713, in what part of the electromagnetic
spectrum would such a wave lie (infrared, gamma-rays, . . . )?

4 The Stealth Bomber is designed with flat, smooth surfaces.
Why would this make it difficult to detect using radar?

. Solution, p. 1035

5 The figure on the next page shows a curved (parabolic) mir-
ror, with three parallel light rays coming toward it. One ray is
approaching along the mirror’s center line. (a) Continue the light
rays until they are about to undergo their second reflection. To get
good enough accuracy, you’ll need to photocopy the page (or down-
load the book and print the page) and draw in the normal at each
place where a ray is reflected. What do you notice? (b) Make up
an example of a practical use for this device. (c) How could you
use this mirror with a small lightbulb to produce a parallel beam of
light rays going off to the right? . Solution, p. 1036

6 The natives of planet Wumpus play pool using light rays on
an eleven-sided table with mirrors for bumpers, shown in the figure
on the next page. Trace this shot accurately with a ruler to reveal
the hidden message. To get good enough accuracy, you’ll need to
photocopy the page (or download the book and print the page) and
construct each reflection using a protractor.

. Solution, p. 1036

Problems 853



Problem 5.

Problem 6.
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Narcissus, by Michelangelo Car-
avaggio, ca. 1598.

Chapter 29

Images by Reflection

Infants are always fascinated by the antics of the Baby in the Mirror.
Now if you want to know something about mirror images that most
people don’t understand, try this. First bring this page closer and
closer to your eyes, until you can no longer focus on it without
straining. Then go in the bathroom and see how close you can
get your face to the surface of the mirror before you can no longer
easily focus on the image of your own eyes. You will find that
the shortest comfortable eye-mirror distance is much less than the
shortest comfortable eye-paper distance. This demonstrates that
the image of your face in the mirror acts as if it had depth and
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a / An image formed by a
mirror.

existed in the space behind the mirror. If the image was like a flat
picture in a book, then you wouldn’t be able to focus on it from
such a short distance.

In this chapter we will study the images formed by flat and curved
mirrors on a qualitative, conceptual basis. Although this type of
image is not as commonly encountered in everyday life as images
formed by lenses, images formed by reflection are simpler to under-
stand, so we discuss them first. In chapter 30 we will turn to a more
mathematical treatment of images made by reflection. Surprisingly,
the same equations can also be applied to lenses, which are the topic
of chapter 31.

29.1 A virtual image

We can understand a mirror image using a ray diagram. Figure a
shows several light rays, 1, that originated by diffuse reflection at
the person’s nose. They bounce off the mirror, producing new rays,
2. To anyone whose eye is in the right position to get one of these
rays, they appear to have come from a behind the mirror, 3, where
they would have originated from a single point. This point is where
the tip of the image-person’s nose appears to be. A similar analysis
applies to every other point on the person’s face, so it looks as
though there was an entire face behind the mirror. The customary
way of describing the situation requires some explanation:

Customary description in physics: There is an image of the face
behind the mirror.

Translation: The pattern of rays coming from the mirror is exactly
the same as it would be if there were a face behind the mirror.
Nothing is really behind the mirror.

This is referred to as a virtual image, because the rays do not actu-
ally cross at the point behind the mirror. They only appear to have
originated there.

self-check A

Imagine that the person in figure a moves his face down quite a bit —
a couple of feet in real life, or a few inches on this scale drawing. The
mirror stays where it is. Draw a new ray diagram. Will there still be an
image? If so, where is it visible from? . Answer, p. 1045

The geometry of specular reflection tells us that rays 1 and 2 are
at equal angles to the normal (the imaginary perpendicular line
piercing the mirror at the point of reflection). This means that
ray 2’s imaginary continuation, 3, forms the same angle with the
mirror as ray 1. Since each ray of type 3 forms the same angles with
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c / The praxinoscope.

the mirror as its partner of type 1, we see that the distance of the
image from the mirror is the same as that of the actual face from
the mirror, and it lies directly across from it. The image therefore
appears to be the same size as the actual face.

b / Example 1.

An eye exam example 1
Figure b shows a typical setup in an optometrist’s examination
room. The patient’s vision is supposed to be tested at a distance
of 6 meters (20 feet in the U.S.), but this distance is larger than
the amount of space available in the room. Therefore a mirror is
used to create an image of the eye chart behind the wall.

The Praxinoscope example 2
Figure c shows an old-fashioned device called a praxinoscope,
which displays an animated picture when spun. The removable
strip of paper with the pictures printed on it has twice the radius
of the inner circle made of flat mirrors, so each picture’s virtual
image is at the center. As the wheel spins, each picture’s image
is replaced by the next.
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Discussion question

A The figure shows an object that is off to one side of a mirror. Draw
a ray diagram. Is an image formed? If so, where is it, and from which
directions would it be visible?
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d / An image formed by a
curved mirror.

e / The image is magnified
by the same factor in depth and
in its other dimensions.

f / Increased magnification
always comes at the expense of
decreased field of view.

29.2 Curved mirrors

An image in a flat mirror is a pretechnological example: even an-
imals can look at their reflections in a calm pond. We now pass
to our first nontrivial example of the manipulation of an image by
technology: an image in a curved mirror. Before we dive in, let’s
consider why this is an important example. If it was just a ques-
tion of memorizing a bunch of facts about curved mirrors, then you
would rightly rebel against an effort to spoil the beauty of your lib-
erally educated brain by force-feeding you technological trivia. The
reason this is an important example is not that curved mirrors are
so important in and of themselves, but that the results we derive for
curved bowl-shaped mirrors turn out to be true for a large class of
other optical devices, including mirrors that bulge outward rather
than inward, and lenses as well. A microscope or a telescope is sim-
ply a combination of lenses or mirrors or both. What you’re really
learning about here is the basic building block of all optical devices
from movie projectors to octopus eyes.

Because the mirror in figure d is curved, it bends the rays back closer
together than a flat mirror would: we describe it as converging. Note
that the term refers to what it does to the light rays, not to the
physical shape of the mirror’s surface . (The surface itself would be
described as concave. The term is not all that hard to remember,
because the hollowed-out interior of the mirror is like a cave.) It
is surprising but true that all the rays like 3 really do converge on
a point, forming a good image. We will not prove this fact, but it
is true for any mirror whose curvature is gentle enough and that
is symmetric with respect to rotation about the perpendicular line
passing through its center (not asymmetric like a potato chip). The
old-fashioned method of making mirrors and lenses is by grinding
them in grit by hand, and this automatically tends to produce an
almost perfect spherical surface.

Bending a ray like 2 inward implies bending its imaginary continu-
ation 3 outward, in the same way that raising one end of a seesaw
causes the other end to go down. The image therefore forms deeper
behind the mirror. This doesn’t just show that there is extra dis-
tance between the image-nose and the mirror; it also implies that
the image itself is bigger from front to back. It has been magnified
in the front-to-back direction.

It is easy to prove that the same magnification also applies to the
image’s other dimensions. Consider a point like E in figure e. The
trick is that out of all the rays diffusely reflected by E, we pick the
one that happens to head for the mirror’s center, C. The equal-angle
property of specular reflection plus a little straightforward geometry
easily leads us to the conclusion that triangles ABC and CDE are
the same shape, with ABC being simply a scaled-up version of CDE.
The magnification of depth equals the ratio BC/CD, and the up-
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down magnification is AB/DE. A repetition of the same proof shows
that the magnification in the third dimension (out of the page) is
also the same. This means that the image-head is simply a larger
version of the real one, without any distortion. The scaling factor
is called the magnification, M . The image in the figure is magnified
by a factor M = 1.9.

Note that we did not explicitly specify whether the mirror was a
sphere, a paraboloid, or some other shape. However, we assumed
that a focused image would be formed, which would not necessarily
be true, for instance, for a mirror that was asymmetric or very deeply
curved.

29.3 A real image
If we start by placing an object very close to the mirror, g/1, and
then move it farther and farther away, the image at first behaves
as we would expect from our everyday experience with flat mirrors,
receding deeper and deeper behind the mirror. At a certain point,
however, a dramatic change occurs. When the object is more than
a certain distance from the mirror, g/2, the image appears upside-
down and in front of the mirror.

g / 1. A virtual image. 2. A
real image. As you’ll verify in
homework problem 6, the image
is upside-down

Here’s what’s happened. The mirror bends light rays inward, but
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h / A Newtonian telescope
being used with a camera.

when the object is very close to it, as in g/1, the rays coming from a
given point on the object are too strongly diverging (spreading) for
the mirror to bring them back together. On reflection, the rays are
still diverging, just not as strongly diverging. But when the object
is sufficiently far away, g/2, the mirror is only intercepting the rays
that came out in a narrow cone, and it is able to bend these enough
so that they will reconverge.

Note that the rays shown in the figure, which both originated at
the same point on the object, reunite when they cross. The point
where they cross is the image of the point on the original object.
This type of image is called a real image, in contradistinction to the
virtual images we’ve studied before.

Definition: A real image is one where rays actually cross. A virtual
image is a point from which rays only appear to have come.

The use of the word “real” is perhaps unfortunate. It sounds as
though we are saying the image was an actual material object, which
of course it is not.

The distinction between a real image and a virtual image is an im-
portant one, because a real image can be projected onto a screen
or photographic film. If a piece of paper is inserted in figure g/2
at the location of the image, the image will be visible on the paper
(provided the object is bright and the room is dark). Your eye uses
a lens to make a real image on the retina.

self-check B
Sketch another copy of the face in figure g/1, even farther from the
mirror, and draw a ray diagram. What has happened to the location of
the image? . Answer, p. 1045

29.4 Images of images
If you are wearing glasses right now, then the light rays from the
page are being manipulated first by your glasses and then by the lens
of your eye. You might think that it would be extremely difficult
to analyze this, but in fact it is quite easy. In any series of optical
elements (mirrors or lenses or both), each element works on the rays
furnished by the previous element in exactly the same manner as if
the image formed by the previous element was an actual object.

Figure h shows an example involving only mirrors. The Newtonian
telescope, invented by Isaac Newton, consists of a large curved mir-
ror, plus a second, flat mirror that brings the light out of the tube.
(In very large telescopes, there may be enough room to put a camera
or even a person inside the tube, in which case the second mirror is
not needed.) The tube of the telescope is not vital; it is mainly a
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i / A Newtonian telescope
being used for visual rather than
photographic observing. In real
life, an eyepiece lens is normally
used for additional magnification,
but this simpler setup will also
work.

structural element, although it can also be helpful for blocking out
stray light. The lens has been removed from the front of the camera
body, and is not needed for this setup. Note that the two sample
rays have been drawn parallel, because an astronomical telescope
is used for viewing objects that are extremely far away. These two
“parallel” lines actually meet at a certain point, say a crater on the
moon, so they can’t actually be perfectly parallel, but they are par-
allel for all practical purposes since we would have to follow them
upward for a quarter of a million miles to get to the point where
they intersect.

The large curved mirror by itself would form an image I, but the
small flat mirror creates an image of the image, I′. The relationship
between I and I′ is exactly the same as it would be if I was an actual
object rather than an image: I and I′ are at equal distances from
the plane of the mirror, and the line between them is perpendicular
to the plane of the mirror.

One surprising wrinkle is that whereas a flat mirror used by itself
forms a virtual image of an object that is real, here the mirror is
forming a real image of virtual image I. This shows how pointless it
would be to try to memorize lists of facts about what kinds of images
are formed by various optical elements under various circumstances.
You are better off simply drawing a ray diagram.

j / The angular size of the flower
depends on its distance from the
eye.

Although the main point here was to give an example of an image
of an image, figure i also shows an interesting case where we need
to make the distinction between magnification and angular mag-
nification. If you are looking at the moon through this telescope,
then the images I and I′ are much smaller than the actual moon.
Otherwise, for example, image I would not fit inside the telescope!
However, these images are very close to your eye compared to the
actual moon. The small size of the image has been more than com-
pensated for by the shorter distance. The important thing here is
the amount of angle within your field of view that the image covers,
and it is this angle that has been increased. The factor by which it
is increased is called the angular magnification, Ma.
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k / The person uses a mirror to
get a view of both sides of the
ladybug. Although the flat mirror
has M = 1, it doesn’t give an an-
gular magnification of 1. The im-
age is farther from the eye than
the object, so the angular magni-
fication Ma = αi/αo is less than
one.

Discussion questions

A Locate the images of you that will be formed if you stand between
two parallel mirrors.
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B Locate the images formed by two perpendicular mirrors, as in the
figure. What happens if the mirrors are not perfectly perpendicular?
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C Locate the images formed by the periscope.
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Summary
Selected vocabulary
real image . . . . a place where an object appears to be, be-

cause the rays diffusely reflected from any
given point on the object have been bent so
that they come back together and then spread
out again from the new point

virtual image . . like a real image, but the rays don’t actually
cross again; they only appear to have come
from the point on the image

converging . . . . describes an optical device that brings light
rays closer to the optical axis

diverging . . . . .
bends light rays farther from the optical axis

magnification . . the factor by which an image’s linear size is
increased (or decreased)

angular magnifi-
cation . . . . . . .

the factor by which an image’s apparent angu-
lar size is increased (or decreased)

concave . . . . . . describes a surface that is hollowed out like a
cave

convex . . . . . . describes a surface that bulges outward

Notation
M . . . . . . . . . the magnification of an image
Ma . . . . . . . . the angular magnification of an image

Summary

A large class of optical devices, including lenses and flat and curved
mirrors, operates by bending light rays to form an image. A real
image is one for which the rays actually cross at each point of the
image. A virtual image, such as the one formed behind a flat mirror,
is one for which the rays only appear to have crossed at a point on
the image. A real image can be projected onto a screen; a virtual
one cannot.

Mirrors and lenses will generally make an image that is either smaller
than or larger than the original object. The scaling factor is called
the magnification. In many situations, the angular magnification is
more important than the actual magnification.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A man is walking at 1.0 m/s directly towards a flat mirror.
At what speed is his separation from his image decreasing?

√

2 If a mirror on a wall is only big enough for you to see your-
self from your head down to your waist, can you see your entire
body by backing up? Test this experimentally and come up with an
explanation for your observations, including a ray diagram.

Note that when you do the experiment, it’s easy to confuse yourself
if the mirror is even a tiny bit off of vertical. One way to check
yourself is to artificially lower the top of the mirror by putting a
piece of tape or a post-it note where it blocks your view of the top
of your head. You can then check whether you are able to see more
of yourself both above and below by backing up.

3 In this chapter we’ve only done examples of mirrors with
hollowed-out shapes (called concave mirrors). Now draw a ray dia-
gram for a curved mirror that has a bulging outward shape (called a
convex mirror). (a) How does the image’s distance from the mirror
compare with the actual object’s distance from the mirror? From
this comparison, determine whether the magnification is greater
than or less than one. (b) Is the image real, or virtual? Could
this mirror ever make the other type of image?

4 As discussed in question 3, there are two types of curved
mirrors, concave and convex. Make a list of all the possible com-
binations of types of images (virtual or real) with types of mirrors
(concave and convex). (Not all of the four combinations are phys-
ically possible.) Now for each one, use ray diagrams to determine
whether increasing the distance of the object from the mirror leads
to an increase or a decrease in the distance of the image from the
mirror.

Draw BIG ray diagrams! Each diagram should use up about half a
page of paper.

Some tips: To draw a ray diagram, you need two rays. For one of
these, pick the ray that comes straight along the mirror’s axis, since
its reflection is easy to draw. After you draw the two rays and locate
the image for the original object position, pick a new object position
that results in the same type of image, and start a new ray diagram,
in a different color of pen, right on top of the first one. For the two
new rays, pick the ones that just happen to hit the mirror at the
same two places; this makes it much easier to get the result right
without depending on extreme accuracy in your ability to draw the
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Problem 7.

Problem 9.

reflected rays.

5 If the user of an astronomical telescope moves her head
closer to or farther away from the image she is looking at, does
the magnification change? Does the angular magnification change?
Explain. (For simplicity, assume that no eyepiece is being used.)

. Solution, p. 1036

6 In figure g/2 in on page 860, only the image of my forehead was
located by drawing rays. Either photocopy the figure or download
the book and print out the relevant page. On this copy of the figure,
make a new set of rays coming from my chin, and locate its image.
To make it easier to judge the angles accurately, draw rays from the
chin that happen to hit the mirror at the same points where the two
rays from the forehead were shown hitting it. By comparing the
locations of the chin’s image and the forehead’s image, verify that
the image is actually upside-down, as shown in the original figure.

7 The figure shows four points where rays cross. Of these, which
are image points? Explain.

8 Here’s a game my kids like to play. I sit next to a sunny
window, and the sun reflects from the glass on my watch, making a
disk of light on the wall or floor, which they pretend to chase as I
move it around. Is the spot a disk because that’s the shape of the
sun, or because it’s the shape of my watch? In other words, would
a square watch make a square spot, or do we just have a circular
image of the circular sun, which will be circular no matter what?

9 Suppose we have a polygonal room whose walls are mirrors, and
there a pointlike light source in the room. In most such examples,
every point in the room ends up being illuminated by the light source
after some finite number of reflections. A difficult mathematical
question, first posed in the middle of the last century, is whether
it is ever possible to have an example in which the whole room is
not illuminated. (Rays are assumed to be absorbed if they strike
exactly at a vertex of the polygon, or if they pass exactly through
the plane of a mirror.)

The problem was finally solved in 1995 by G.W. Tokarsky, who
found an example of a room that was not illuminable from a cer-
tain point. Figure 9 shows a slightly simpler example found two
years later by D. Castro. If a light source is placed at either of the
locations shown with dots, the other dot remains unilluminated, al-
though every other point is lit up. It is not straightforward to prove
rigorously that Castro’s solution has this property. However, the
plausibility of the solution can be demonstrated as follows.

Suppose the light source is placed at the right-hand dot. Locate
all the images formed by single reflections. Note that they form a
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regular pattern. Convince yourself that none of these images illumi-
nates the left-hand dot. Because of the regular pattern, it becomes
plausible that even if we form images of images, images of images
of images, etc., none of them will ever illuminate the other dot.

There are various other versions of the problem, some of which re-
main unsolved. The book by Klee and Wagon gives a good intro-
duction to the topic, although it predates Tokarsky and Castro’s
work.

References:
G.W. Tokarsky, “Polygonal Rooms Not Illuminable from Every Point.”
Amer. Math. Monthly 102, 867-879, 1995.
D. Castro, “Corrections.” Quantum 7, 42, Jan. 1997.
V. Klee and S. Wagon, Old and New Unsolved Problems in Plane
Geometry and Number Theory. Mathematical Association of Amer-
ica, 1991. ?
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Exercise 29: Exploring images with a curved mirror
Equipment:

concave mirrors with deep curvature

concave mirrors with gentle curvature

convex mirrors

1. Obtain a curved mirror from your instructor. If it is silvered on both sides, make sure you’re
working with the concave side, which bends light rays inward. Look at your own face in the
mirror. Now change the distance between your face and the mirror, and see what happens.
Explore the full range of possible distances between your face and the mirror.

In these observations you’ve been changing two variables at once: the distance between the
object (your face) and the mirror, and the distance from the mirror to your eye. In general,
scientific experiments become easier to interpret if we practice isolation of variables, i.e., only
change one variable while keeping all the others constant. In parts 2 and 3 you’ll form an image
of an object that’s not your face, so that you can have independent control of the object distance
and the point of view.

2. With the mirror held far away from you, observe the image of something behind you, over
your shoulder. Now bring your eye closer and closer to the mirror. Can you see the image with
your eye very close to the mirror? See if you can explain your observation by drawing a ray
diagram.

——————–> turn page
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3. Now imagine the following new situation, but don’t actually do it yet. Suppose you lay the
mirror face-up on a piece of tissue paper, put your finger a few cm above the mirror, and look
at the image of your finger. As in part 2, you can bring your eye closer and closer to the mirror.

Will you be able to see the image with your eye very close to the mirror? Draw a ray diagram
to help you predict what you will observe.

Prediction:

Now test your prediction. If your prediction was incorrect, see if you can figure out what went
wrong, or ask your instructor for help.

4. For parts 4 and 5, it’s more convenient to use concave mirrors that are more gently curved;
obtain one from your instructor. Lay the mirror on the tissue paper, and use it to create an
image of the overhead lights on a piece of paper above it and a little off to the side. What do
you have to do in order to make the image clear? Can you explain this observation using a ray
diagram?

——————–> turn page
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5. Now imagine the following experiment, but don’t do it yet. What will happen to the image
on the paper if you cover half of the mirror with your hand?

Prediction:

Test your prediction. If your prediction was incorrect, can you explain what happened?

6. Now imagine forming an image with a convex mirror (one that bulges outward), and that
therefore bends light rays away from the central axis (i.e., is diverging). Draw a typical ray
diagram.

Is the image real, or virtual? Will there be more than one type of image?

Prediction:

Test your prediction.
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Breakfast Table, by Willem Clasz. de Heda, 17th century. The painting shows a variety of images, some of
them distorted, resulting both from reflection and from refraction (ch. 31).

Chapter 30

Images, Quantitatively

It sounds a bit odd when a scientist refers to a theory as “beauti-
ful,” but to those in the know it makes perfect sense. One mark
of a beautiful theory is that it surprises us by being simple. The
mathematical theory of lenses and curved mirrors gives us just such
a surprise. We expect the subject to be complex because there are
so many cases: a converging mirror forming a real image, a diverg-
ing lens that makes a virtual image, and so on for a total of six
possibilities. If we want to predict the location of the images in all
these situations, we might expect to need six different equations,
and six more for predicting magnifications. Instead, it turns out
that we can use just one equation for the location of the image and
one equation for its magnification, and these two equations work
in all the different cases with no changes except for plus and minus
signs. This is the kind of thing the physicist Eugene Wigner referred
to as “the unreasonable effectiveness of mathematics.” Sometimes
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a / The relationship between
the object’s position and the
image’s can be expressed in
terms of the angles θo and θi .

we can find a deeper reason for this kind of unexpected simplicity,
but sometimes it almost seems as if God went out of Her way to
make the secrets of universe susceptible to attack by the human
thought-tool called math.

30.1 A real image formed by a converging
mirror

Location of the image

We will now derive the equation for the location of a real image
formed by a converging mirror. We assume for simplicity that the
mirror is spherical, but actually this isn’t a restrictive assumption,
because any shallow, symmetric curve can be approximated by a
sphere. The shape of the mirror can be specified by giving the
location of its center, C. A deeply curved mirror is a sphere with a
small radius, so C is close to it, while a weakly curved mirror has
C farther away. Given the point O where the object is, we wish to
find the point I where the image will be formed.

To locate an image, we need to track a minimum of two rays coming
from the same point. Since we have proved in the previous chapter
that this type of image is not distorted, we can use an on-axis point,
O, on the object, as in figure a/1. The results we derive will also
hold for off-axis points, since otherwise the image would have to be
distorted, which we know is not true. We let one of the rays be
the one that is emitted along the axis; this ray is especially easy to
trace, because it bounces straight back along the axis again. As our
second ray, we choose one that strikes the mirror at a distance of 1
from the axis. “One what?” asks the astute reader. The answer is
that it doesn’t really matter. When a mirror has shallow curvature,
all the reflected rays hit the same point, so 1 could be expressed
in any units you like. It could, for instance, be 1 cm, unless your
mirror is smaller than 1 cm!

The only way to find out anything mathematical about the rays is
to use the sole mathematical fact we possess concerning specular
reflection: the incident and reflected rays form equal angles with
respect to the normal, which is shown as a dashed line. Therefore
the two angles shown in figure a/2 are the same, and skipping some
straightforward geometry, this leads to the visually reasonable result
that the two angles in figure a/3 are related as follows:

θi + θo = constant

(Note that θi and θo, which are measured from the image and the
object, not from the eye like the angles we referred to in discussing
angular magnification on page 862.) For example, move O farther
from the mirror. The top angle in figure a/2 is increased, so the
bottom angle must increase by the same amount, causing the image
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b / The geometrical interpre-
tation of the focal angle.

c / Example 1, an alternative
test for finding the focal angle.
The mirror is the same as in
figure b.

point, I, to move closer to the mirror. In terms of the angles shown in
figure a/3, the more distant object has resulted in a smaller angle θo,
while the closer image corresponds to a larger θi; One angle increases
by the same amount that the other decreases, so their sum remains
constant. These changes are summarized in figure a/4.

The sum θi + θo is a constant. What does this constant repre-
sent? Geometrically, we interpret it as double the angle made by
the dashed radius line. Optically, it is a measure of the strength of
the mirror, i.e., how strongly the mirror focuses light, and so we call
it the focal angle, θf ,

θi + θo = θf .

Suppose, for example, that we wish to use a quick and dirty optical
test to determine how strong a particular mirror is. We can lay
it on the floor as shown in figure c, and use it to make an image
of a lamp mounted on the ceiling overhead, which we assume is
very far away compared to the radius of curvature of the mirror,
so that the mirror intercepts only a very narrow cone of rays from
the lamp. This cone is so narrow that its rays are nearly parallel,
and θo is nearly zero. The real image can be observed on a piece of
paper. By moving the paper nearer and farther, we can bring the
image into focus, at which point we know the paper is located at
the image point. Since θo ≈ 0, we have θi ≈ θf , and we can then
determine this mirror’s focal angle either by measuring θi directly
with a protractor, or indirectly via trigonometry. A strong mirror
will bring the rays together to form an image close to the mirror,
and these rays will form a blunt-angled cone with a large θi and θf .

An alternative optical test example 1
. Figure c shows an alternative optical test. Rather than placing
the object at infinity as in figure b, we adjust it so that the image
is right on top of the object. Points O and I coincide, and the rays
are reflected right back on top of themselves. If we measure the
angle θ shown in figure c, how can we find the focal angle?

. The object and image angles are the same; the angle labeled
θ in the figure equals both of them. We therefore have θi + θo =
θ = θf . Comparing figures b and c, it is indeed plausible that the
angles are related by a factor of two.

At this point, we could consider our work to be done. Typically,
we know the strength of the mirror, and we want to find the image
location for a given object location. Given the mirror’s focal angle
and the object location, we can determine θo by trigonometry, sub-
tract to find θi = θf − θo, and then do more trig to find the image
location.

There is, however, a shortcut that can save us from doing so much
work. Figure a/3 shows two right triangles whose legs of length 1
coincide and whose acute angles are θo and θi. These can be related
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d / The object and image dis-
tances

e / Mirror 1 is weaker than
mirror 2. It has a shallower
curvature, a longer focal length,
and a smaller focal angle. It
reflects rays at angles not much
different than those that would be
produced with a flat mirror.

by trigonometry to the object and image distances shown in figure
d:

tan θo = 1/do tan θi = 1/di

Ever since chapter 29, we’ve been assuming small angles. For small
angles, we can use the small-angle approximation tanx ≈ x (for x
in radians), giving simply

θo = 1/do θi = 1/di.

We likewise define a distance called the focal length, f according to
θf = 1/f . In figure b, f is the distance from the mirror to the place
where the rays cross. We can now reexpress the equation relating
the object and image positions as

1

f
=

1

di
+

1

do
.

Figure e summarizes the interpretation of the focal length and focal
angle.1

Which form is better, θf = θi + θo or 1/f = 1/di + 1/do? The
angular form has in its favor its simplicity and its straightforward
visual interpretation, but there are two reasons why we might prefer
the second version. First, the numerical values of the angles depend
on what we mean by “one unit” for the distance shown as 1 in
figure a/1. Second, it is usually easier to measure distances rather
than angles, so the distance form is more convenient for number
crunching. Neither form is superior overall, and we will often need
to use both to solve any given problem.2

A searchlight example 2
Suppose we need to create a parallel beam of light, as in a search-
light. Where should we place the lightbulb? A parallel beam has
zero angle between its rays, so θi = 0. To place the lightbulb
correctly, however, we need to know a distance, not an angle:
the distance do between the bulb and the mirror. The problem
involves a mixture of distances and angles, so we need to get
everything in terms of one or the other in order to solve it. Since
1There is a standard piece of terminology which is that the “focal point” is

the point lying on the optical axis at a distance from the mirror equal to the focal
length. This term isn’t particularly helpful, because it names a location where
nothing normally happens. In particular, it is not normally the place where the
rays come to a focus! — that would be the image point. In other words, we
don’t normally have di = f , unless perhaps do =∞. A recent online discussion
among some physics teachers (https://carnot.physics.buffalo.edu/archives, Feb.
2006) showed that many disliked the terminology, felt it was misleading, or didn’t
know it and would have misinterpreted it if they had come across it. That is, it
appears to be what grammarians call a “skunked term” — a word that bothers
half the population when it’s used incorrectly, and the other half when it’s used
correctly.

2I would like to thank Fouad Ajami for pointing out the pedagogical advan-
tages of using both equations side by side.
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the goal is to find a distance, let’s figure out the image distance
corresponding to the given angle θi = 0. These are related by
di = 1/θi , so we have di = ∞. (Yes, dividing by zero gives infin-
ity. Don’t be afraid of infinity. Infinity is a useful problem-solving
device.) Solving the distance equation for do, we have

do = (1/f − 1/di )−1

= (1/f − 0)−1

= f

The bulb has to be placed at a distance from the mirror equal to
its focal point.

Diopters example 3
An equation like di = 1/θi really doesn’t make sense in terms of
units. Angles are unitless, since radians aren’t really units, so
the right-hand side is unitless. We can’t have a left-hand side
with units of distance if the right-hand side of the same equation
is unitless. This is an artifact of my cavalier statement that the
conical bundles of rays spread out to a distance of 1 from the axis
where they strike the mirror, without specifying the units used to
measure this 1. In real life, optometrists define the thing we’re
calling θi = 1/di as the “dioptric strength” of a lens or mirror,
and measure it in units of inverse meters (m−1), also known as
diopters (1 D=1 m−1).

Magnification

We have already discussed in the previous chapter how to find the
magnification of a virtual image made by a curved mirror. The
result is the same for a real image, and we omit the proof, which
is very similar. In our new notation, the result is M = di/do. A
numerical example is given in section 30.2.

30.2 Other cases with curved mirrors
The equation di = (1/f − 1/do)

−1 can easily produce a negative
result, but we have been thinking of di as a distance, and distances
can’t be negative. A similar problem occurs with θi = θf − θo for
θo > θf . What’s going on here?

The interpretation of the angular equation is straightforward. As
we bring the object closer and closer to the image, θo gets bigger and
bigger, and eventually we reach a point where θo = θf and θi = 0.
This large object angle represents a bundle of rays forming a cone
that is very broad, so broad that the mirror can no longer bend
them back so that they reconverge on the axis. The image angle
θi = 0 represents an outgoing bundle of rays that are parallel. The
outgoing rays never cross, so this is not a real image, unless we want
to be charitable and say that the rays cross at infinity. If we go on
bringing the object even closer, we get a virtual image.
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f / A graph of the image distance
di as a function of the object dis-
tance do.

To analyze the distance equation, let’s look at a graph of di as a
function of do. The branch on the upper right corresponds to the
case of a real image. Strictly speaking, this is the only part of the
graph that we’ve proven corresponds to reality, since we never did
any geometry for other cases, such as virtual images. As discussed in
the previous section, making do bigger causes di to become smaller,
and vice-versa.

Letting do be less than f is equivalent to θo > θf : a virtual image
is produced on the far side of the mirror. This is the first example
of Wigner’s “unreasonable effectiveness of mathematics” that we
have encountered in optics. Even though our proof depended on
the assumption that the image was real, the equation we derived
turns out to be applicable to virtual images, provided that we either
interpret the positive and negative signs in a certain way, or else
modify the equation to have different positive and negative signs.

self-check A
Interpret the three places where, in physically realistic parts of the graph,
the graph approaches one of the dashed lines. [This will come more
naturally if you have learned the concept of limits in a math class.] .

Answer, p. 1045

A flat mirror example 4
We can even apply the equation to a flat mirror. As a sphere gets
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bigger and bigger, its surface is more and more gently curved.
The planet Earth is so large, for example, that we cannot even
perceive the curvature of its surface. To represent a flat mirror, we
let the mirror’s radius of curvature, and its focal length, become
infinite. Dividing by infinity gives zero, so we have

1/do = −1/di ,

or

do = −di .

If we interpret the minus sign as indicating a virtual image on the
far side of the mirror from the object, this makes sense.

It turns out that for any of the six possible combinations of real or
virtual images formed by converging or diverging lenses or mirrors,
we can apply equations of the form

θf = θi + θo

and

1

f
=

1

di
+

1

do
,

with only a modification of plus or minus signs. There are two pos-
sible approaches here. The approach we have been using so far is
the more popular approach in American textbooks: leave the equa-
tion the same, but attach interpretations to the resulting negative
or positive values of the variables. The trouble with this approach
is that one is then forced to memorize tables of sign conventions,
e.g., that the value of di should be negative when the image is a
virtual image formed by a converging mirror. Positive and negative
signs also have to be memorized for focal lengths. Ugh! It’s highly
unlikely that any student has ever retained these lengthy tables in
his or her mind for more than five minutes after handing in the final
exam in a physics course. Of course one can always look such things
up when they are needed, but the effect is to turn the whole thing
into an exercise in blindly plugging numbers into formulas.

As you have gathered by now, there is another method which I think
is better, and which I’ll use throughout the rest of this book. In this
method, all distances and angles are positive by definition, and we
put in positive and negative signs in the equations depending on the
situation. (I thought I was the first to invent this method, but I’ve
been told that this is known as the European sign convention, and
that it’s fairly common in Europe.) Rather than memorizing these
signs, we start with the generic equations

θf = ±θi ± θo
1

f
= ± 1

di
± 1

do
,
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g / Example 5.

and then determine the signs by a two-step method that depends on
ray diagrams. There are really only two signs to determine, not four;
the signs in the two equations match up in the way you’d expect.
The method is as follows:

1. Use ray diagrams to decide whether θo and θi vary in the same
way or in opposite ways. (In other words, decide whether making θo
greater results in a greater value of θi or a smaller one.) Based on
this, decide whether the two signs in the angle equation are the same
or opposite. If the signs are opposite, go on to step 2 to determine
which is positive and which is negative.

2. If the signs are opposite, we need to decide which is the positive
one and which is the negative. Since the focal angle is never negative,
the smaller angle must be the one with a minus sign.

In step 1, many students have trouble drawing the ray diagram
correctly. For simplicity, you should always do your diagram for a
point on the object that is on the axis of the mirror, and let one
of your rays be the one that is emitted along the axis and reflected
straight back on itself, as in the figures in section 30.1. As shown
in figure a/4 in section 30.1, there are four angles involved: two at
the mirror, one at the object (θo), and one at the image (θi). Make
sure to draw in the normal to the mirror so that you can see the two
angles at the mirror. These two angles are equal, so as you change
the object position, they fan out or fan in, like opening or closing
a book. Once you’ve drawn this effect, you should easily be able to
tell whether θo and θi change in the same way or in opposite ways.

Although focal lengths are always positive in the method used in
this book, you should be aware that diverging mirrors and lenses
are assigned negative focal lengths in the other method, so if you
see a lens labeled f = −30 cm, you’ll know what it means.

An anti-shoplifting mirror example 5
. Convenience stores often install a diverging mirror so that the
clerk has a view of the whole store and can catch shoplifters. Use
a ray diagram to show that the image is reduced, bringing more
into the clerk’s field of view. If the focal length of the mirror is 3.0
m, and the mirror is 7.0 m from the farthest wall, how deep is the
image of the store?

. As shown in ray diagram g/1, di is less than do. The magnifica-
tion, M = di/do, will be less than one, i.e., the image is actually
reduced rather than magnified.

Apply the method outlined above for determining the plus and
minus signs. Step 1: The object is the point on the opposite
wall. As an experiment, g/2, move the object closer. I did these
drawings using illustration software, but if you were doing them
by hand, you’d want to make the scale much larger for greater
accuracy. Also, although I split figure g into two separate drawings
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in order to make them easier to understand, you’re less likely to
make a mistake if you do them on top of each other.

The two angles at the mirror fan out from the normal. Increasing
θo has clearly made θi larger as well. (All four angles got big-
ger.) There must be a cancellation of the effects of changing the
two terms on the right in the same way, and the only way to get
such a cancellation is if the two terms in the angle equation have
opposite signs:

θf = +θi − θo

or
θf = −θi + θo.

Step 2: Now which is the positive term and which is negative?
Since the image angle is bigger than the object angle, the angle
equation must be

θf = θi − θo,

in order to give a positive result for the focal angle. The signs of
the distance equation behave the same way:

1
f

=
1
di
− 1

do
.

Solving for di , we find

di =
(

1
f

+
1
do

)−1

= 2.1 m.

The image of the store is reduced by a factor of 2.1/7.0 = 0.3,
i.e., it is smaller by 70%.

A shortcut for real images example 6
In the case of a real image, there is a shortcut for step 1, the
determination of the signs. In a real image, the rays cross at
both the object and the image. We can therefore time-reverse the
ray diagram, so that all the rays are coming from the image and
reconverging at the object. Object and image swap roles. Due
to this time-reversal symmetry, the object and image cannot be
treated differently in any of the equations, and they must therefore
have the same signs. They are both positive, since they must add
up to a positive result.

30.3 ? Aberrations
An imperfection or distortion in an image is called an aberration.
An aberration can be produced by a flaw in a lens or mirror, but
even with a perfect optical surface some degree of aberration is un-
avoidable. To see why, consider the mathematical approximation
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h / A diverging mirror in the shape
of a sphere. The image is re-
duced (M < 1). This is similar
to example 5, but here the image
is distorted because the mirror’s
curve is not shallow.

we’ve been making, which is that the depth of the mirror’s curve
is small compared to do and di. Since only a flat mirror can sat-
isfy this shallow-mirror condition perfectly, any curved mirror will
deviate somewhat from the mathematical behavior we derived by
assuming that condition. There are two main types of aberration in
curved mirrors, and these also occur with lenses.

(1) An object on the axis of the lens or mirror may be imaged cor-
rectly, but off-axis objects may be out of focus or distorted. In a
camera, this type of aberration would show up as a fuzziness or
warping near the sides of the picture when the center was perfectly
focused. An example of this is shown in figure i, and in that partic-
ular example, the aberration is not a sign that the equipment was
of low quality or wasn’t right for the job but rather an inevitable
result of trying to flatten a panoramic view; in the limit of a 360-
degree panorama, the problem would be similar to the problem of
representing the Earth’s surface on a flat map, which can’t be ac-
complished without distortion.

(2) The image may be sharp when the object is at certain distances
and blurry when it is at other distances. The blurriness occurs
because the rays do not all cross at exactly the same point. If we
know in advance the distance of the objects with which the mirror
or lens will be used, then we can optimize the shape of the optical
surface to make in-focus images in that situation. For instance, a
spherical mirror will produce a perfect image of an object that is
at the center of the sphere, because each ray is reflected directly
onto the radius along which it was emitted. For objects at greater
distances, however, the focus will be somewhat blurry. In astronomy
the objects being used are always at infinity, so a spherical mirror
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i / This photo was taken using a
“fish-eye lens,” which gives an ex-
tremely large field of view.

is a poor choice for a telescope. A different shape (a parabola) is
better specialized for astronomy.

j / Spherical mirrors are the
cheapest to make, but parabolic
mirrors are better for making
images of objects at infinity.
A sphere has equal curvature
everywhere, but a parabola has
tighter curvature at its center and
gentler curvature at the sides.

One way of decreasing aberration is to use a small-diameter mirror
or lens, or block most of the light with an opaque screen with a
hole in it, so that only light that comes in close to the axis can get
through. Either way, we are using a smaller portion of the lens or
mirror whose curvature will be more shallow, thereby making the
shallow-mirror (or thin-lens) approximation more accurate. Your
eye does this by narrowing down the pupil to a smaller hole. In
a camera, there is either an automatic or manual adjustment, and
narrowing the opening is called “stopping down.” The disadvantage
of stopping down is that light is wasted, so the image will be dimmer
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or a longer exposure must be used.

k / Even though the spherical mir-
ror (solid line) is not well adapted
for viewing an object at infinity,
we can improve its performance
greatly by stopping it down. Now
the only part of the mirror be-
ing used is the central portion,
where its shape is virtually in-
distinguishable from a parabola
(dashed line).

What I would suggest you take away from this discussion for the
sake of your general scientific education is simply an understanding
of what an aberration is, why it occurs, and how it can be reduced,
not detailed facts about specific types of aberrations.

l / The Hubble Space Telescope
was placed into orbit with faulty
optics in 1990. Its main mir-
ror was supposed to have been
nearly parabolic, since it is an as-
tronomical telescope, meant for
producing images of objects at in-
finity. However, contractor Per-
kin Elmer had delivered a faulty
mirror, which produced aberra-
tions. The large photo shows as-
tronauts putting correcting mirrors
in place in 1993. The two small
photos show images produced by
the telescope before and after the
fix.
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Summary
Selected vocabulary
focal length . . . a property of a lens or mirror, equal to the

distance from the lens or mirror to the image
it forms of an object that is infinitely far away

Notation
f . . . . . . . . . . the focal length
do . . . . . . . . . the distance of the object from the mirror
di . . . . . . . . . the distance of the image from the mirror
θf . . . . . . . . . the focal angle, defined as 1/f
θo . . . . . . . . . the object angle, defined as 1/do
θi . . . . . . . . . the image angle, defined as 1/di

Other terminology and notation
f > 0 . . . . . . . describes a converging lens or mirror; in this

book, all focal lengths are positive, so there is
no such implication

f < 0 . . . . . . . describes a diverging lens or mirror; in this
book, all focal lengths are positive

M < 0 . . . . . .
indicates an inverted image; in this book, all
magnifications are positive

Summary

Every lens or mirror has a property called the focal length, which is
defined as the distance from the lens or mirror to the image it forms
of an object that is infinitely far away. A stronger lens or mirror
has a shorter focal length.

The relationship between the locations of an object and its image
formed by a lens or mirror can always be expressed by equations of
the form

θf = ±θi ± θo
1

f
= ± 1

di
± 1

do
.

The choice of plus and minus signs depends on whether we are deal-
ing with a lens or a mirror, whether the lens or mirror is converging
or diverging, and whether the image is real or virtual. A method
for determining the plus and minus signs is as follows:

1. Use ray diagrams to decide whether θi and θo vary in the same
way or in opposite ways. Based on this, decide whether the
two signs in the equation are the same or opposite. If the signs
are opposite, go on to step 2 to determine which is positive
and which is negative.

2. If the signs are opposite, we need to decide which is the positive
one and which is the negative. Since the focal angle is never
negative, the smaller angle must be the one with a minus sign.
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Once the correct form of the equation has been determined, the
magnification can be found via the equation

M =
di
do

.

This equation expresses the idea that the entire image-world is
shrunk consistently in all three dimensions.
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Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Apply the equation M = di/do to the case of a flat mirror.
. Solution, p. 1037

2 Use the method described in the text to derive the equation
relating object distance to image distance for the case of a virtual
image produced by a converging mirror. . Solution, p. 1037

3 (a) Make up a numerical example of a virtual image formed by
a converging mirror with a certain focal length, and determine the
magnification. (You will need the result of problem 2.) Make sure
to choose values of do and f that would actually produce a virtual
image, not a real one. Now change the location of the object a
little bit and redetermine the magnification, showing that it changes.
At my local department store, the cosmetics department sells hand
mirrors advertised as giving a magnification of 5 times. How would
you interpret this?

(b) Suppose a Newtonian telescope is being used for astronomical
observing. Assume for simplicity that no eyepiece is used, and as-
sume a value for the focal length of the mirror that would be rea-
sonable for an amateur instrument that is to fit in a closet. Is the
angular magnification different for objects at different distances?
For example, you could consider two planets, one of which is twice
as far as the other. . Solution, p. 1037

4 (a) Find a case where the magnification of a curved mirror
is infinite. Is the angular magnification infinite from any realistic
viewing position? (b) Explain why an arbitrarily large magnification
can’t be achieved by having a sufficiently small value of do.

. Solution, p. 1037

5 The figure shows a device for constructing a realistic optical
illusion. Two mirrors of equal focal length are put against each
other with their silvered surfaces facing inward. A small object
placed in the bottom of the cavity will have its image projected in
the air above. The way it works is that the top mirror produces a
virtual image, and the bottom mirror then creates a real image of
the virtual image. (a) Show that if the image is to be positioned
as shown, at the mouth of the cavity, then the focal length of the
mirrors is related to the dimension h via the equation

1

f
=

1

h
+

1

h+
(

1
h −

1
f

)−1 .

(b) Restate the equation in terms of a single variable x = h/f , and
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Problem 8.

Problem 12.

show that there are two solutions for x. Which solution is physically
consistent with the assumptions of the calculation? ?

6 A concave surface that reflects sound waves can act just like
a converging mirror. Suppose that, standing near such a surface,
you are able to find a point where you can place your head so that
your own whispers are focused back on your head, so that they
sound loud to you. Given your distance to the surface, what is the
surface’s focal length?

√

7 Find the focal length of the mirror in problem 5 in chapter
28.

√

8 Rank the focal lengths of the mirrors in the figure, from short-
est to longest. Explain.

9 (a) A converging mirror is being used to create a virtual image.
What is the range of possible magnifications? (b) Do the same for
the other types of images that can be formed by curved mirrors
(both converging and diverging).

10 (a) A converging mirror with a focal length of 20 cm is used
to create an image, using an object at a distance of 10 cm. Is the
image real, or is it virtual? (b) How about f = 20 cm and do = 30
cm? (c) What if it was a diverging mirror with f = 20 cm and
do = 10 cm? (d) A diverging mirror with f = 20 cm and do = 30
cm? . Solution, p. 1038

11 A diverging mirror of focal length f is fixed, and faces down.
An object is dropped from the surface of the mirror, and falls away
from it with acceleration g. The goal of the problem is to find the
maximum velocity of the image.
(a) Describe the motion of the image verbally, and explain why we
should expect there to be a maximum velocity.
(b) Use arguments based on units to determine the form of the
solution, up to an unknown unitless multiplicative constant.
(c) Complete the solution by determining the unitless constant.

√ ∫
12 A mechanical linkage is a device that changes one type of
motion into another. The most familiar example occurs in a gasoline
car’s engine, where a connecting rod changes the linear motion of the
piston into circular motion of the crankshaft. The top panel of the
figure shows a mechanical linkage invented by Peaucellier in 1864,
and independently by Lipkin around the same time. It consists of
six rods joined by hinges, the four short ones forming a rhombus.
Point O is fixed in space, but the apparatus is free to rotate about
O. Motion at P is transformed into a different motion at P′ (or vice
versa).

Geometrically, the linkage is a mechanical implementation of the
ancient problem of inversion in a circle. Considering the case in

888 Chapter 30 Images, Quantitatively



which the rhombus is folded flat, let the k be the distance from O
to the point where P and P′ coincide. Form the circle of radius k
with its center at O. As P and P′ move in and out, points on the
inside of the circle are always mapped to points on its outside, such
that rr′ = k2. That is, the linkage is a type of analog computer
that exactly solves the problem of finding the inverse of a number
r. Inversion in a circle has many remarkable geometrical properties,
discussed in H.S.M. Coxeter, Introduction to Geometry, Wiley, 1961.
If a pen is inserted through a hole at P, and P′ is traced over a
geometrical figure, the Peaucellier linkage can be used to draw a
kind of image of the figure.

A related problem is the construction of pictures, like the one in
the bottom panel of the figure, called anamorphs. The drawing of
the column on the paper is highly distorted, but when the reflecting
cylinder is placed in the correct spot on top of the page, an undis-
torted image is produced inside the cylinder. (Wide-format movie
technologies such as Cinemascope are based on similar principles.)

Show that the Peaucellier linkage does not convert correctly between
an image and its anamorph, and design a modified version of the
linkage that does. Some knowledge of analytic geometry will be
helpful. ?
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Exercise 30: Object and image distances
Equipment:

optical benches

converging mirrors

illuminated objects

1. Set up the optical bench with the mirror at zero on the centimeter scale. Set up the
illuminated object on the bench as well.

2. Each group will locate the image for their own value of the object distance, by finding where
a piece of paper has to be placed in order to see the image on it. (The instructor will do one
point as well.) Note that you will have to tilt the mirror a little so that the paper on which you
project the image doesn’t block the light from the illuminated object.

Is the image real or virtual? How do you know? Is it inverted, or uninverted?

Draw a ray diagram.

3. Measure the image distance and write your result in the table on the board. Do the same for
the magnification.

4. What do you notice about the trend of the data on the board? Draw a second ray diagram
with a different object distance, and show why this makes sense. Some tips for doing this
correctly: (1) For simplicity, use the point on the object that is on the mirror’s axis. (2) You
need to trace two rays to locate the image. To save work, don’t just do two rays at random
angles. You can either use the on-axis ray as one ray, or do two rays that come off at the same
angle, one above and one below the axis. (3) Where each ray hits the mirror, draw the normal
line, and make sure the ray is at equal angles on both sides of the normal.

5. We will find the mirror’s focal length from the instructor’s data-point. Then, using this focal
length, calculate a theoretical prediction of the image distance, and write it on the board next
to the experimentally determined image distance.
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Three stages in the evolution of the eye. The flatworm has two eye pits. The nautilus’s eyes are pinhole
cameras. The human eye incorporates a lens.

Chapter 31

Refraction

Economists normally consider free markets to be the natural way of
judging the monetary value of something, but social scientists also
use questionnaires to gauge the relative value of privileges, disad-
vantages, or possessions that cannot be bought or sold. They ask
people to imagine that they could trade one thing for another and
ask which they would choose. One interesting result is that the av-
erage light-skinned person in the U.S. would rather lose an arm than
suffer the racist treatment routinely endured by African-Americans.
Even more impressive is the value of sight. Many prospective par-
ents can imagine without too much fear having a deaf child, but
would have a far more difficult time coping with raising a blind one.

So great is the value attached to sight that some have imbued it
with mystical aspects. Joan of Arc saw visions, and my college
has a “vision statement.” Christian fundamentalists who perceive a
conflict between evolution and their religion have claimed that the
eye is such a perfect device that it could never have arisen through
a process as helter-skelter as evolution, or that it could not have
evolved because half of an eye would be useless. In fact, the struc-
ture of an eye is fundamentally dictated by physics, and it has arisen
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a / A human eye.

b / The anatomy of the eye.

c / A simplified optical dia-
gram of the eye. Light rays are
bent when they cross from the
air into the eye. (A little of the
incident rays’ energy goes into
the reflected rays rather than the
ones transmitted into the eye.)

separately by evolution somewhere between eight and 40 times, de-
pending on which biologist you ask. We humans have a version of
the eye that can be traced back to the evolution of a light-sensitive
“eye spot” on the head of an ancient invertebrate. A sunken pit
then developed so that the eye would only receive light from one
direction, allowing the organism to tell where the light was coming
from. (Modern flatworms have this type of eye.) The top of the
pit then became partially covered, leaving a hole, for even greater
directionality (as in the nautilus). At some point the cavity became
filled with jelly, and this jelly finally became a lens, resulting in the
general type of eye that we share with the bony fishes and other
vertebrates. Far from being a perfect device, the vertebrate eye is
marred by a serious design flaw due to the lack of planning or intelli-
gent design in evolution: the nerve cells of the retina and the blood
vessels that serve them are all in front of the light-sensitive cells,
blocking part of the light. Squids and other molluscs, whose eyes
evolved on a separate branch of the evolutionary tree, have a more
sensible arrangement, with the light-sensitive cells out in front.

31.1 Refraction
Refraction

The fundamental physical phenomenon at work in the eye is that
when light crosses a boundary between two media (such as air and
the eye’s jelly), part of its energy is reflected, but part passes into
the new medium. In the ray model of light, we describe the original
ray as splitting into a reflected ray and a transmitted one (the one
that gets through the boundary). Of course the reflected ray goes in
a direction that is different from that of the original one, according
to the rules of reflection we have already studied. More surprisingly
— and this is the crucial point for making your eye focus light
— the transmitted ray is bent somewhat as well. This bending
phenomenon is called refraction. The origin of the word is the same
as that of the word “fracture,” i.e., the ray is bent or “broken.”
(Keep in mind, however, that light rays are not physical objects
that can really be “broken.”) Refraction occurs with all waves, not
just light waves.

The actual anatomy of the eye, b, is quite complex, but in essence it
is very much like every other optical device based on refraction. The
rays are bent when they pass through the front surface of the eye,
c. Rays that enter farther from the central axis are bent more, with
the result that an image is formed on the retina. There is only one
slightly novel aspect of the situation. In most human-built optical
devices, such as a movie projector, the light is bent as it passes into
a lens, bent again as it reemerges, and then reaches a focus beyond
the lens. In the eye, however, the “screen” is inside the eye, so the
rays are only refracted once, on entering the jelly, and never emerge
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d / The incident, reflected,
and transmitted (refracted) rays
all lie in a plane that includes the
normal (dashed line).

e / The angles θ1 and θ2 are
related to each other, and also
depend on the properties of the
two media. Because refraction
is time-reversal symmetric, there
is no need to label the rays with
arrowheads.

f / Refraction has time-reversal
symmetry. Regardless of whether
the light is going into or out of the
water, the relationship between
the two angles is the same, and
the ray is closer to the normal
while in the water.

again.

A common misconception is that the “lens” of the eye is what does
the focusing. All the transparent parts of the eye are made of fairly
similar stuff, so the dramatic change in medium is when a ray crosses
from the air into the eye (at the outside surface of the cornea). This
is where nearly all the refraction takes place. The lens medium
differs only slightly in its optical properties from the rest of the eye,
so very little refraction occurs as light enters and exits the lens.
The lens, whose shape is adjusted by muscles attached to it, is only
meant for fine-tuning the focus to form images of near or far objects.

Refractive properties of media

What are the rules governing refraction? The first thing to observe
is that just as with reflection, the new, bent part of the ray lies in
the same plane as the normal (perpendicular) and the incident ray,
d.

If you try shooting a beam of light at the boundary between two
substances, say water and air, you’ll find that regardless of the angle
at which you send in the beam, the part of the beam in the water
is always closer to the normal line, e. It doesn’t matter if the ray is
entering the water or leaving, so refraction is symmetric with respect
to time-reversal, f.

If, instead of water and air, you try another combination of sub-
stances, say plastic and gasoline, again you’ll find that the ray’s
angle with respect to the normal is consistently smaller in one and
larger in the other. Also, we find that if substance A has rays closer
to normal than in B, and B has rays closer to normal than in C, then
A has rays closer to normal than C. This means that we can rank-
order all materials according to their refractive properties. Isaac
Newton did so, including in his list many amusing substances, such
as “Danzig vitriol” and “a pseudo-topazius, being a natural, pellu-
cid, brittle, hairy stone, of a yellow color.” Several general rules can
be inferred from such a list:

• Vacuum lies at one end of the list. In refraction across the
interface between vacuum and any other medium, the other
medium has rays closer to the normal.

• Among gases, the ray gets closer to the normal if you increase
the density of the gas by pressurizing it more.

• The refractive properties of liquid mixtures and solutions vary
in a smooth and systematic manner as the proportions of the
mixture are changed.

• Denser substances usually, but not always, have rays closer to
the normal.
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g / The relationship between
the angles in refraction.

The second and third rules provide us with a method for measuring
the density of an unknown sample of gas, or the concentration of
a solution. The latter technique is very commonly used, and the
CRC Handbook of Physics and Chemistry, for instance, contains
extensive tables of the refractive properties of sugar solutions, cat
urine, and so on.

Snell’s law

The numerical rule governing refraction was discovered by Snell,
who must have collected experimental data something like what is
shown on this graph and then attempted by trial and error to find
the right equation. The equation he came up with was

sin θ1

sin θ2
= constant.

The value of the constant would depend on the combination of media
used. For instance, any one of the data points in the graph would
have sufficed to show that the constant was 1.3 for an air-water
interface (taking air to be substance 1 and water to be substance
2).

Snell further found that if media A and B gave a constant KAB and
media B and C gave a constant KBC , then refraction at an interface
between A and C would be described by a constant equal to the
product, KAC = KABKBC . This is exactly what one would expect
if the constant depended on the ratio of some number characterizing
one medium to the number characteristic of the second medium.
This number is called the index of refraction of the medium, written
as n in equations. Since measuring the angles would only allow him
to determine the ratio of the indices of refraction of two media, Snell
had to pick some medium and define it as having n = 1. He chose
to define vacuum as having n = 1. (The index of refraction of air
at normal atmospheric pressure is 1.0003, so for most purposes it is
a good approximation to assume that air has n = 1.) He also had
to decide which way to define the ratio, and he chose to define it so
that media with their rays closer to the normal would have larger
indices of refraction. This had the advantage that denser media
would typically have higher indices of refraction, and for this reason
the index of refraction is also referred to as the optical density.
Written in terms of indices of refraction, Snell’s equation becomes

sin θ1

sin θ2
=
n2

n1
,

but rewriting it in the form
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h / Example 1.

n1 sin θ1 = n2 sin θ2

[relationship between angles of rays at the interface be-
tween media with indices of refraction n1 and n2; angles
are defined with respect to the normal]

makes us less likely to get the 1’s and 2’s mixed up, so this the way
most people remember Snell’s law. A few indices of refraction are
given in the back of the book.

self-check A
(1) What would the graph look like for two substances with the same
index of refraction?

(2) Based on the graph, when does refraction at an air-water interface
change the direction of a ray most strongly? . Answer, p. 1045

Finding an angle using Snell’s law example 1
. A submarine shines its searchlight up toward the surface of the
water. What is the angle α shown in the figure?

. The tricky part is that Snell’s law refers to the angles with re-
spect to the normal. Forgetting this is a very common mistake.
The beam is at an angle of 30◦ with respect to the normal in the
water. Let’s refer to the air as medium 1 and the water as 2.
Solving Snell’s law for θ1, we find

θ1 = sin−1
(

n2

n1
sin θ2

)
.

As mentioned above, air has an index of refraction very close to
1, and water’s is about 1.3, so we find θ1 = 40◦. The angle α is
therefore 50◦.

The index of refraction is related to the speed of light.

What neither Snell nor Newton knew was that there is a very simple
interpretation of the index of refraction. This may come as a relief
to the reader who is taken aback by the complex reasoning involving
proportionalities that led to its definition. Later experiments showed
that the index of refraction of a medium was inversely proportional
to the speed of light in that medium. Since c is defined as the speed
of light in vacuum, and n = 1 is defined as the index of refraction
of vacuum, we have

n =
c

v
.

[n = medium’s index of refraction, v = speed of light
in that medium, c = speed of light in a vacuum]

Many textbooks start with this as the definition of the index of re-
fraction, although that approach makes the quantity’s name some-
what of a mystery, and leaves students wondering why c/v was used
rather than v/c. It should also be noted that measuring angles of re-
fraction is a far more practical method for determining n than direct
measurement of the speed of light in the substance of interest.
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i / A mechanical model of re-
fraction.

A mechanical model of Snell’s law

Why should refraction be related to the speed of light? The mechan-
ical model shown in the figure may help to make this more plausible.
Suppose medium 2 is thick, sticky mud, which slows down the car.
The car’s right wheel hits the mud first, causing the right side of
the car to slow down. This will cause the car to turn to the right
until it moves far enough forward for the left wheel to cross into the
mud. After that, the two sides of the car will once again be moving
at the same speed, and the car will go straight.

Of course, light isn’t a car. Why should a beam of light have any-
thing resembling a “left wheel” and “right wheel?” After all, the me-
chanical model would predict that a motorcycle would go straight,
and a motorcycle seems like a better approximation to a ray of light
than a car. The whole thing is just a model, not a description of
physical reality.

j / A derivation of Snell’s law.

A derivation of Snell’s law

However intuitively appealing the mechanical model may be, light is
a wave, and we should be using wave models to describe refraction.
In fact Snell’s law can be derived quite simply from wave concepts.
Figure j shows the refraction of a water wave. The water in the
upper left part of the tank is shallower, so the speed of the waves is
slower there, and their wavelengths is shorter. The reflected part of
the wave is also very faintly visible.
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In the close-up view on the right, the dashed lines are normals to
the interface. The two marked angles on the right side are both
equal to θ1, and the two on the left to θ2.

Trigonometry gives

sin θ1 = λ1/h and

sin θ2 = λ2/h.

Eliminating h by dividing the equations, we find

sin θ1

sin θ2
=
λ1

λ2
.

The frequencies of the two waves must be equal or else they would
get out of step, so by v = fλ we know that their wavelengths are
proportional to their velocities. Combining λ ∝ v with v ∝ 1/n
gives λ ∝ 1/n, so we find

sin θ1

sin θ2
=
n2

n1
,

which is one form of Snell’s law.

Ocean waves near and far from shore example 2
Ocean waves are formed by winds, typically on the open sea, and
the wavefronts are perpendicular to the direction of the wind that
formed them. At the beach, however, you have undoubtedly ob-
served that waves tend come in with their wavefronts very nearly
(but not exactly) parallel to the shoreline. This is because the
speed of water waves in shallow water depends on depth: the
shallower the water, the slower the wave. Although the change
from the fast-wave region to the slow-wave region is gradual rather
than abrupt, there is still refraction, and the wave motion is nearly
perpendicular to the normal in the slow region.

Color and refraction

In general, the speed of light in a medium depends both on the
medium and on the wavelength of the light. Another way of saying
it is that a medium’s index of refraction varies with wavelength.
This is why a prism can be used to split up a beam of white light
into a rainbow. Each wavelength of light is refracted through a
different angle.

How much light is reflected, and how much is transmitted?

In chapter 20 we developed an equation for the percentage of the
wave energy that is transmitted and the percentage reflected at a
boundary between media. This was only done in the case of waves
in one dimension, however, and rather than discuss the full three di-
mensional generalization it will be more useful to go into some qual-
itative observations about what happens. First, reflection happens
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k / Total internal reflection in
a fiber-optic cable.

l / A simplified drawing of a
surgical endoscope. The first
lens forms a real image at
one end of a bundle of optical
fibers. The light is transmitted
through the bundle, and is finally
magnified by the eyepiece.

m / Endoscopic images of a
duodenal ulcer.

only at the interface between two media, and two media with the
same index of refraction act as if they were a single medium. Thus,
at the interface between media with the same index of refraction,
there is no reflection, and the ray keeps going straight. Continuing
this line of thought, it is not surprising that we observe very lit-
tle reflection at an interface between media with similar indices of
refraction.

The next thing to note is that it is possible to have situations where
no possible angle for the refracted ray can satisfy Snell’s law. Solving
Snell’s law for θ2, we find

θ2 = sin−1

(
n1

n2
sin θ1

)
,

and if n1 is greater than n2, then there will be large values of θ1

for which the quantity (n1/n2) sin θ is greater than one, meaning
that your calculator will flash an error message at you when you
try to take the inverse sine. What can happen physically in such
a situation? The answer is that all the light is reflected, so there
is no refracted ray. This phenomenon is known as total internal
reflection, and is used in the fiber-optic cables that nowadays carry
almost all long-distance telephone calls. The electrical signals from
your phone travel to a switching center, where they are converted
from electricity into light. From there, the light is sent across the
country in a thin transparent fiber. The light is aimed straight into
the end of the fiber, and as long as the fiber never goes through any
turns that are too sharp, the light will always encounter the edge
of the fiber at an angle sufficiently oblique to give total internal
reflection. If the fiber-optic cable is thick enough, one can see an
image at one end of whatever the other end is pointed at.

Alternatively, a bundle of cables can be used, since a single thick
cable is too hard to bend. This technique for seeing around corners
is useful for making surgery less traumatic. Instead of cutting a
person wide open, a surgeon can make a small “keyhole” incision
and insert a bundle of fiber-optic cable (known as an endoscope)
into the body.

Since rays at sufficiently large angles with respect to the normal
may be completely reflected, it is not surprising that the relative
amount of reflection changes depending on the angle of incidence,
and is greatest for large angles of incidence.
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Discussion questions

A What index of refraction should a fish have in order to be invisible to
other fish?

B Does a surgeon using an endoscope need a source of light inside
the body cavity? If so, how could this be done without inserting a light
bulb through the incision?

C A denser sample of a gas has a higher index of refraction than a
less dense sample (i.e., a sample under lower pressure), but why would
it not make sense for the index of refraction of a gas to be proportional to
density?

D The earth’s atmosphere gets thinner and thinner as you go higher in
altitude. If a ray of light comes from a star that is below the zenith, what
will happen to it as it comes into the earth’s atmosphere?

E Does total internal reflection occur when light in a denser medium
encounters a less dense medium, or the other way around? Or can it
occur in either case?

31.2 Lenses
Figures n/1 and n/2 show examples of lenses forming images. There
is essentially nothing for you to learn about imaging with lenses
that is truly new. You already know how to construct and use ray
diagrams, and you know about real and virtual images. The concept
of the focal length of a lens is the same as for a curved mirror.
The equations for locating images and determining magnifications
are of the same form. It’s really just a question of flexing your
mental muscles on a few examples. The following self-checks and
discussion questions will get you started. I’ve also made a video
that demonstrates some applications and how to explain them with
ray diagrams: https://youtu.be/gL8awy6PWLQ.

n / 1. A converging lens forms an
image of a candle flame. 2. A di-
verging lens.
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p / The radii of curvature ap-
pearing in the lensmaker’s
equation.

self-check B
(1) In figures n/1 and n/2, classify the images as real or virtual.

(2) Glass has an index of refraction that is greater than that of air. Con-
sider the topmost ray in figure n/1. Explain why the ray makes a slight
left turn upon entering the lens, and another left turn when it exits.

(3) If the flame in figure n/2 was moved closer to the lens, what would
happen to the location of the image? . Answer, p. 1045

Discussion questions

A In figures n/1 and n/2, the front and back surfaces are parallel to each
other at the center of the lens. What will happen to a ray that enters near
the center, but not necessarily along the axis of the lens? Draw a BIG ray
diagram, and show a ray that comes from off axis.

In discussion questions B-F, don’t draw ultra-detailed ray diagrams
as in A.

B Suppose you wanted to change the setup in figure n/1 so that the
location of the actual flame in the figure would instead be occupied by an
image of a flame. Where would you have to move the candle to achieve
this? What about in n/2?

C There are three qualitatively different types of image formation that
can occur with lenses, of which figures n/1 and n/2 exhaust only two.
Figure out what the third possibility is. Which of the three possibilities can
result in a magnification greater than one? Cf. problem 4, p. 867.

D Classify the examples shown in figure o according to the types of
images delineated in discussion question C.

E In figures n/1 and n/2, the only rays drawn were those that happened
to enter the lenses. Discuss this in relation to figure o.

F In the right-hand side of figure o, the image viewed through the lens
is in focus, but the side of the rose that sticks out from behind the lens is
not. Why?

31.3 ? The lensmaker’s equation

The focal length of a spherical mirror is simply r/2, but we cannot
expect the focal length of a lens to be given by pure geometry, since
it also depends on the index of refraction of the lens. Suppose we
have a lens whose front and back surfaces are both spherical. (This
is no great loss of generality, since any surface with a sufficiently
shallow curvature can be approximated with a sphere.) Then if the
lens is immersed in a medium with an index of refraction of 1, its
focal length is given approximately by

f =

[
(n− 1)

∣∣∣∣ 1

r1
± 1

r2

∣∣∣∣]−1

,

where n is the index of refraction and r1 and r2 are the radii of
curvature of the two surfaces of the lens. This is known as the
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q / Dispersion of white light
by a prism. White light is a
mixture of all the wavelengths of
the visible spectrum. Waves of
different wavelengths undergo
different amounts of refraction.

o / Two images of a rose created by the same lens and recorded with the same camera.

lensmaker’s equation. In my opinion it is not particularly worthy
of memorization. The positive sign is used when both surfaces are
curved outward or both are curved inward; otherwise a negative
sign applies. The proof of this equation is left as an exercise to
those readers who are sufficiently brave and motivated.

31.4 Dispersion
For most materials, we observe that the index of refraction depends
slightly on wavelength, being highest at the blue end of the visible
spectrum and lowest at the red. For example, white light disperses
into a rainbow when it passes through a prism, q. Even when the
waves involved aren’t light waves, and even when refraction isn’t of
interest, the dependence of wave speed on wavelength is referred to
as dispersion. Dispersion inside spherical raindrops is responsible
for the creation of rainbows in the sky, and in an optical instrument
such as the eye or a camera it is responsible for a type of aberration
called chromatic aberration (section 30.3 and problem 2). As we’ll
see in section 35.2, dispersion causes a wave that is not a pure sine
wave to have its shape distorted as it travels, and also causes the
speed at which energy and information are transported by the wave
to be different from what one might expect from a naive calculation.
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r / The principle of least time
applied to refraction.

31.5 ? The principle of least time for refraction
We have seen previously how the rules governing straight-line mo-
tion of light and reflection of light can be derived from the principle
of least time. What about refraction? In the figure, it is indeed
plausible that the bending of the ray serves to minimize the time
required to get from a point A to point B. If the ray followed the un-
bent path shown with a dashed line, it would have to travel a longer
distance in the medium in which its speed is slower. By bending
the correct amount, it can reduce the distance it has to cover in the
slower medium without going too far out of its way. It is true that
Snell’s law gives exactly the set of angles that minimizes the time
required for light to get from one point to another. The proof of
this fact is left as an exercise (problem 9, p. 908).

31.6 ? Case study: the eye of the jumping
spider

Figure s shows an exceptionally cute jumping spider. The jumping
spider does not build a web. It stalks its prey like a cat, so it needs
excellent eyesight. In some ways, its visual system is more sophis-
ticated and more functional than that of a human, illustrating how
evolution does not progress systematically toward “higher” forms of
life.

s / Top left: A female jumping spi-
der, Phidippus mystaceus. Top
right: Cross-section in a horizon-
tal plane, viewed from above, of
the jumping spider Metaphidippus
aeneolus. The eight eyes are
shown in white. Bottom: Close-up
of one of the large principal eyes.
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One way in which the spider outdoes us is that it has eight eyes to
our two. (Each eye is simple, not compound like that of a fly.) The
reason this works well has to do with the trade-off between magnifi-
cation and field of view. The elongated principal eyes at the front of
the head have a large value of di, resulting in a large magnification
M = di/do. This high magnification is used for sophisticated visual
tasks like distinguishing prey from a potential mate. (The pretty
stripes on the legs in the photo are probably evolved to aid in mak-
ing this distinction, which is a crucial one on a Saturday night.) As
always with a high magnification, this results in a reduction in the
field of view: making the image bigger means reducing the amount
of the potential image that can actually fit on the retina. The ani-
mal has tunnel vision in these forward eyes. To allow it to glimpse
prey from other angles, it has the additional eyes on the sides of its
head. These are not elongated, and the smaller di gives a smaller
magnification but a larger field of view. When the spider sees some-
thing moving in these eyes, it turns its body so that it can take
a look with the front eyes. The tiniest pair of eyes are too small
to be useful. These vestigial organs, like the maladaptive human
appendix, are an example of the tendency of evolution to produce
unfortunate accidents due to the lack of intelligent design. The use
of multiple eyes for these multiple purposes is far superior to the
two-eye arrangement found in humans, octopuses, etc., especially
because of its compactness. If the spider had only two spherical
eyes, they would have to have the same front-to-back dimension in
order to produce the same acuity, but then the eyes would take up
nearly all of the front of the head.

Another beautiful feature of these eyes is that they will never need
bifocals. A human eye uses muscles to adjust for seeing near and
far, varying f in order to achive a fixed di for differing values of
do. On older models of H. sap., this poorly engineered feature is
usually one of the first things to break down. The spider’s front
eyes have muscles, like a human’s, that rotate the tube, but none
that vary f , which is fixed. However, the retina consists of four
separate layers at slightly different values of di. The figure only
shows the detailed cellular structure of the rearmost layer, which is
the most acute. Depending on do, the image may lie closest to any
one of the four layers, and the spider can then use that layer to get
a well-focused view. The layering is also believed to help eliminate
problems caused by the variation of the index of refraction with
wavelength (cf. problem 2, p. 906).

Although the spider’s eye is different in many ways from a human’s
or an octopus’s, it shares the same fundamental construction, be-
ing essentially a lens that forms a real image on a screen inside a
darkened chamber. From this perspective, the main difference is
simply the scale, which is miniaturized by about a factor of 102 in
the linear dimensions. How far down can this scaling go? Does an
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amoeba or a white blood cell lack an eye merely because it doesn’t
have a nervous system that could make sense of the signals? In
fact there is an optical limit on the miniaturization of any eye or
camera. The spider’s eye is already so small that on the scale of the
bottom panel in figure s, one wavelength of visible light would be
easily distinguishable — about the length of the comma in this sen-
tence. Chapter 32 is about optical effects that occur when the wave
nature of light is important, and problem 14 on p. 932 specifically
addresses the effect on this spider’s vision.
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Summary
Selected vocabulary
refraction . . . . the change in direction that occurs when a

wave encounters the interface between two me-
dia

index of refrac-
tion . . . . . . . .

an optical property of matter; the speed of
light in a vacuum divided by the speed of light
in the substance in question

Notation
n . . . . . . . . . . the index of refraction

Summary

Refraction is a change in direction that occurs when a wave en-
counters the interface between two media. Together, refraction and
reflection account for the basic principles behind nearly all optical
devices.

Snell discovered the equation for refraction,

n1 sin θ1 = n2 sin θ2,

[angles measured with respect to the normal]

through experiments with light rays, long before light was proven
to be a wave. Snell’s law can be proven based on the geometrical
behavior of waves. Here n is the index of refraction. Snell invented
this quantity to describe the refractive properties of various sub-
stances, but it was later found to be related to the speed of light in
the substance,

n =
c

v
,

where c is the speed of light in a vacuum. In general a material’s
index of refraction is different for different wavelengths of light.

As discussed in chapter 20, any wave is partially transmitted and
partially reflected at the boundary between two media in which its
speeds are different. It is not particularly important to know the
equation that tells what fraction is transmitted (and thus refracted),
but important technologies such as fiber optics are based on the fact
that this fraction becomes zero for sufficiently oblique angles. This
phenomenon is referred to as total internal reflection. It occurs when
there is no angle that satisfies Snell’s law.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Suppose a converging lens is constructed of a type of plastic
whose index of refraction is less than that of water. How will the
lens’s behavior be different if it is placed underwater?

. Solution, p. 1038

2 There are two main types of telescopes, refracting (using a
lens) and reflecting (using a mirror as in figure i on p. 862). (Some
telescopes use a mixture of the two types of elements: the light first
encounters a large curved mirror, and then goes through an eyepiece
that is a lens. To keep things simple, assume no eyepiece is used.)
What implications would the color-dependence of focal length have
for the relative merits of the two types of telescopes? Describe the
case where an image is formed of a white star. You may find it
helpful to draw a ray diagram.

3 Based on Snell’s law, explain why rays of light passing through
the edges of a converging lens are bent more than rays passing
through parts closer to the center. It might seem like it should
be the other way around, since the rays at the edge pass through
less glass — shouldn’t they be affected less? In your answer:

• Include a ray diagram showing a huge, full-page, close-up view
of the relevant part of the lens.

• Make use of the fact that the front and back surfaces aren’t
always parallel; a lens in which the front and back surfaces are
always parallel doesn’t focus light at all, so if your explanation
doesn’t make use of this fact, your argument must be incorrect.

• Make sure your argument still works even if the rays don’t
come in parallel to the axis or from a point on the axis.
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Problem 6.

. Solution, p. 1038

4 When you take pictures with a camera, the distance between
the lens and the film or chip has to be adjusted, depending on the
distance at which you want to focus. This is done by moving the
lens. If you want to change your focus so that you can take a picture
of something farther away, which way do you have to move the lens?
Explain using ray diagrams. [Based on a problem by Eric Mazur.]

5 (a) Light is being reflected diffusely from an object 1.000 m
underwater. The light that comes up to the surface is refracted at
the water-air interface. If the refracted rays all appear to come from
the same point, then there will be a virtual image of the object in
the water, above the object’s actual position, which will be visible
to an observer above the water. Consider three rays, A, B and C,
whose angles in the water with respect to the normal are θi = 0.000◦,
1.000◦ and 20.000◦ respectively. Find the depth of the point at which
the refracted parts of A and B appear to have intersected, and do
the same for A and C. Show that the intersections are at nearly the
same depth, but not quite. [Check: The difference in depth should
be about 4 cm.]

(b) Since all the refracted rays do not quite appear to have come
from the same point, this is technically not a virtual image. In
practical terms, what effect would this have on what you see?

(c) In the case where the angles are all small, use algebra and trig to
show that the refracted rays do appear to come from the same point,
and find an equation for the depth of the virtual image. Do not put
in any numerical values for the angles or for the indices of refraction
— just keep them as symbols. You will need the approximation
sin θ ≈ tan θ ≈ θ, which is valid for small angles measured in radians.

?

6 The drawing shows the anatomy of the human eye, at twice life
size. Find the radius of curvature of the outer surface of the cornea
by measurements on the figure, and then derive the focal length of
the air-cornea interface, where almost all the focusing of light occurs.
You will need to use physical reasoning to modify the lensmaker’s
equation for the case where there is only a single refracting surface.
Assume that the index of refraction of the cornea is essentially that
of water.

√
?

7 When swimming underwater, why is your vision made much
clearer by wearing goggles with flat pieces of glass that trap air
behind them? [Hint: You can simplify your reasoning by considering
the special case where you are looking at an object far away, and
along the optic axis of the eye.] . Solution, p. 1039
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Problem 8.

8 The figure shows four lenses. Lens 1 has two spherical surfaces.
Lens 2 is the same as lens 1 but turned around. Lens 3 is made by
cutting through lens 1 and turning the bottom around. Lens 4 is
made by cutting a central circle out of lens 1 and recessing it.

(a) A parallel beam of light enters lens 1 from the left, parallel to
its axis. Reasoning based on Snell’s law, will the beam emerging
from the lens be bent inward, or outward, or will it remain parallel
to the axis? Explain your reasoning. As part of your answer, make
a huge drawing of one small part of the lens, and apply Snell’s law
at both interfaces. Recall that rays are bent more if they come to
the interface at a larger angle with respect to the normal.

(b) What will happen with lenses 2, 3, and 4? Explain. Drawings
are not necessary. . Solution, p. 1040

9 Prove that the principle of least time leads to Snell’s law. ?

10 An object is more than one focal length from a converging
lens. (a) Draw a ray diagram. (b) Using reasoning like that devel-
oped in chapter 30, determine the positive and negative signs in the
equation 1/f = ±1/di ± 1/do. (c) The images of the rose in section
4.2 were made using a lens with a focal length of 23 cm. If the lens
is placed 80 cm from the rose, locate the image.

√

11 An object is less than one focal length from a converging lens.
(a) Draw a ray diagram. (b) Using reasoning like that developed in
chapter 30, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) The images of the rose in section 4.2 were
made using a lens with a focal length of 23 cm. If the lens is placed
10 cm from the rose, locate the image.

√

12 Nearsighted people wear glasses whose lenses are diverging.
(a) Draw a ray diagram. For simplicity pretend that there is no
eye behind the glasses. (b) Using reasoning like that developed in
chapter 30, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) If the focal length of the lens is 50.0 cm,
and the person is looking at an object at a distance of 80.0 cm,
locate the image.

√
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Problem 13.

13 Two standard focal lengths for camera lenses are 50 mm
(standard) and 28 mm (wide-angle). To see how the focal lengths
relate to the angular size of the field of view, it is helpful to visualize
things as represented in the figure. Instead of showing many rays
coming from the same point on the same object, as we normally do,
the figure shows two rays from two different objects. Although the
lens will intercept infinitely many rays from each of these points, we
have shown only the ones that pass through the center of the lens,
so that they suffer no angular deflection. (Any angular deflection at
the front surface of the lens is canceled by an opposite deflection at
the back, since the front and back surfaces are parallel at the lens’s
center.) What is special about these two rays is that they are aimed
at the edges of one 35-mm-wide frame of film; that is, they show
the limits of the field of view. Throughout this problem, we assume
that do is much greater than di. (a) Compute the angular width
of the camera’s field of view when these two lenses are used. (b)
Use small-angle approximations to find a simplified equation for the
angular width of the field of view, θ, in terms of the focal length,
f , and the width of the film, w. Your equation should not have
any trig functions in it. Compare the results of this approximation
with your answers from part a. (c) Suppose that we are holding
constant the aperture (amount of surface area of the lens being
used to collect light). When switching from a 50-mm lens to a 28-
mm lens, how many times longer or shorter must the exposure be
in order to make a properly developed picture, i.e., one that is not
under- or overexposed? [Based on a problem by Arnold Arons.]

. Solution, p. 1040

14 A nearsighted person is one whose eyes focus light too
strongly, and who is therefore unable to relax the lens inside her
eye sufficiently to form an image on her retina of an object that is
too far away.

(a) Draw a ray diagram showing what happens when the person
tries, with uncorrected vision, to focus at infinity.

(b) What type of lenses do her glasses have? Explain.

(c) Draw a ray diagram showing what happens when she wears
glasses. Locate both the image formed by the glasses and the fi-
nal image.

(d) Suppose she sometimes uses contact lenses instead of her glasses.
Does the focal length of her contacts have to be less than, equal to,
or greater than that of her glasses? Explain.

Problems 909



Problem 20.

15 Diamond has an index of refraction of 2.42, and part of
the reason diamonds sparkle is that this encourages a light ray to
undergo many total internal reflections before it emerges. (a) Cal-
culate the critical angle at which total internal reflection occurs in
diamond. (b) Explain the interpretation of your result: Is it mea-
sured from the normal, or from the surface? Is it a minimum angle
for total internal reflection, or is it a maximum? How would the
critical angle have been different for a substance such as glass or
plastic, with a lower index of refraction?

√

16 Fred’s eyes are able to focus on things as close as 5.0 cm.
Fred holds a magnifying glass with a focal length of 3.0 cm at a
height of 2.0 cm above a flatworm. (a) Locate the image, and find
the magnification. (b) Without the magnifying glass, from what
distance would Fred want to view the flatworm to see its details
as well as possible? With the magnifying glass? (c) Compute the
angular magnification.

17 This problem has been deleted.

18 It would be annoying if your eyeglasses produced a magnified
or reduced image. Prove that when the eye is very close to a lens,
and the lens produces a virtual image, the angular magnification is
always approximately equal to 1 (regardless of whether the lens is
diverging or converging).

19 A typical mirror consists of a pane of glass of thickness t
and index of refraction n, “silvered” on the back with a reflective
coating. Let do and di be measured from the back of the mirror.
Show that di = do − 2(1 − 1/n)t. Use the result of, and make the
approximation employed in, problem 5c. As a check on your result,
consider separately the special values of n and t that would recover
the case without any glass.

20 The figure shows a lens with surfaces that are curved, but
whose thickness is constant along any horizontal line. Use the lens-
maker’s equation to prove that this “lens” is not really a lens at
all. . Solution, p. 1041

21 Estimate the radii of curvature of the two optical surfaces in
the eye of the jumping spider in in figure s on p. 902. Use physical
reasoning to modify the lensmaker’s equation for a case like this
one, in which there are three indices of refraction n1 (air), n2 (lens),
and n3 (the material behind the lens), and n1 6= n3. Show that the
interface between n2 and n3 contributes negligibly to focusing, and
verify that the image is produced at approximately the right place
in the eye when the object is far away. As a check on your result,
direct optical measurements by M.F. Land in 1969 gave f = 512 µm.√
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22 Zahra likes to play practical jokes on the friends she goes
hiking with. One night, by a blazing camp fire, she stealthily uses
a lens of focal length f to gather light from the fire and make a hot
spot on Becky’s neck. (a) Using the method of section 30.2, p. 877,
draw a ray diagram and set up the equation for the image location,
inferring the correct plus and minus signs from the diagram. (b)
Let A be the distance from the lens to the campfire, and B the
distance from the lens to Becky’s neck. Consider the following nine
possibilities:

B
< f = f > f

A
< f
= f
> f

By reasoning about your equation from part a, determine which of
these are possible and which are not. . Solution, p. 1041
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Exercise 31: How strong are your glasses?
This exercise was created by Dan MacIsaac.

Equipment:

eyeglasses

diverging lenses for students who don’t wear glasses, or who use converging glasses

rulers and metersticks

scratch paper

marking pens

Most people who wear glasses have glasses whose lenses are diverging, which allows them to
focus on objects far away. Such a lens cannot form a real image, so its focal length cannot be
measured as easily as that of an converging lens. In this exercise you will determine the focal
length of your own glasses by taking them off, holding them at a distance from your face, and
looking through them at a set of parallel lines on a piece of paper. The lines will be reduced
(the lens’s magnification is less than one), and by adjusting the distance between the lens and
the paper, you can make the magnification equal 1/2 exactly, so that two spaces between lines
as seen through the lens fit into one space as seen simultaneously to the side of the lens. This
object distance can be used in order to find the focal length of the lens.

1. Does this technique really measure magnification or does it measure angular magnification?
What can you do in your experiment in order to make these two quantities nearly the same, so
the math is simpler?

2. Before taking any numerical data, use algebra to find the focal length of the lens in terms of
do, the object distance that results in a magnification of 1/2.

3. Use a marker to draw three evenly spaced parallel lines on the paper. (A spacing of a few cm
works well.) Measure the object distance that results in a magnification of 1/2, and determine
the focal length of your lens.
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This image of the Pleiades star cluster shows haloes around the stars due to the wave nature of light.

Chapter 32

Wave Optics

Electron microscopes can make images of individual atoms, but why
will a visible-light microscope never be able to? Stereo speakers
create the illusion of music that comes from a band arranged in
your living room, but why doesn’t the stereo illusion work with bass
notes? Why are computer chip manufacturers investing billions of
dollars in equipment to etch chips with x-rays instead of visible
light?

The answers to all of these questions have to do with the subject
of wave optics. So far this book has discussed the interaction of
light waves with matter, and its practical applications to optical
devices like mirrors, but we have used the ray model of light almost
exclusively. Hardly ever have we explicitly made use of the fact that
light is an electromagnetic wave. We were able to get away with the
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a / In this view from overhead, a
straight, sinusoidal water wave
encounters a barrier with two
gaps in it. Strong wave vibration
occurs at angles X and Z, but
there is none at all at angle Y.
(The figure has been retouched
from a real photo of water waves.
In reality, the waves beyond the
barrier would be much weaker
than the ones before it, and they
would therefore be difficult to
see.)

b / This doesn’t happen.

simple ray model because the chunks of matter we were discussing,
such as lenses and mirrors, were thousands of times larger than a
wavelength of light. We now turn to phenomena and devices that
can only be understood using the wave model of light.

32.1 Diffraction

Figure a shows a typical problem in wave optics, enacted with water
waves. It may seem surprising that we don’t get a simple pattern like
figure b, but the pattern would only be that simple if the wavelength
was hundreds of times shorter than the distance between the gaps
in the barrier and the widths of the gaps.

Wave optics is a broad subject, but this example will help us to pick
out a reasonable set of restrictions to make things more manageable:

(1) We restrict ourselves to cases in which a wave travels through
a uniform medium, encounters a certain area in which the medium
has different properties, and then emerges on the other side into a
second uniform region.

(2) We assume that the incoming wave is a nice tidy sine-wave pat-
tern with wavefronts that are lines (or, in three dimensions, planes).

(3) In figure a we can see that the wave pattern immediately beyond
the barrier is rather complex, but farther on it sorts itself out into a
set of wedges separated by gaps in which the water is still. We will
restrict ourselves to studying the simpler wave patterns that occur
farther away, so that the main question of interest is how intense
the outgoing wave is at a given angle.

The kind of phenomenon described by restriction (1) is called diffrac-
tion. Diffraction can be defined as the behavior of a wave when it
encounters an obstacle or a nonuniformity in its medium. In general,
diffraction causes a wave to bend around obstacles and make pat-
terns of strong and weak waves radiating out beyond the obstacle.
Understanding diffraction is the central problem of wave optics. If
you understand diffraction, even the subset of diffraction problems
that fall within restrictions (2) and (3), the rest of wave optics is
icing on the cake.

Diffraction can be used to find the structure of an unknown diffract-
ing object: even if the object is too small to study with ordinary
imaging, it may be possible to work backward from the diffraction
pattern to learn about the object. The structure of a crystal, for
example, can be determined from its x-ray diffraction pattern.

Diffraction can also be a bad thing. In a telescope, for example,
light waves are diffracted by all the parts of the instrument. This
will cause the image of a star to appear fuzzy even when the focus has
been adjusted correctly. By understanding diffraction, one can learn
how a telescope must be designed in order to reduce this problem
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c / A practical, low-tech setup for
observing diffraction of light.

d / The bottom figure is sim-
ply a copy of the middle portion
of the top one, scaled up by a
factor of two. All the angles are
the same. Physically, the angular
pattern of the diffraction fringes
can’t be any different if we scale
both λ and d by the same factor,
leaving λ/d unchanged.

— essentially, it should have the biggest possible diameter.

There are two ways in which restriction (2) might commonly be
violated. First, the light might be a mixture of wavelengths. If we
simply want to observe a diffraction pattern or to use diffraction as
a technique for studying the object doing the diffracting (e.g., if the
object is too small to see with a microscope), then we can pass the
light through a colored filter before diffracting it.

A second issue is that light from sources such as the sun or a light-
bulb does not consist of a nice neat plane wave, except over very
small regions of space. Different parts of the wave are out of step
with each other, and the wave is referred to as incoherent. One way
of dealing with this is shown in figure c. After filtering to select a
certain wavelength of red light, we pass the light through a small
pinhole. The region of the light that is intercepted by the pinhole is
so small that one part of it is not out of step with another. Beyond
the pinhole, light spreads out in a spherical wave; this is analogous
to what happens when you speak into one end of a paper towel roll
and the sound waves spread out in all directions from the other end.
By the time the spherical wave gets to the double slit it has spread
out and reduced its curvature, so that we can now think of it as a
simple plane wave.

If this seems laborious, you may be relieved to know that modern
technology gives us an easier way to produce a single-wavelength,
coherent beam of light: the laser.

The parts of the final image on the screen in c are called diffraction
fringes. The center of each fringe is a point of maximum brightness,
and halfway between two fringes is a minimum.

Discussion question

A Why would x-rays rather than visible light be used to find the structure
of a crystal? Sound waves are used to make images of fetuses in the
womb. What would influence the choice of wavelength?

32.2 Scaling of diffraction
This chapter has “optics” in its title, so it is nominally about light,
but we started out with an example involving water waves. Water
waves are certainly easier to visualize, but is this a legitimate com-
parison? In fact the analogy works quite well, despite the fact that
a light wave has a wavelength about a million times shorter. This
is because diffraction effects scale uniformly. That is, if we enlarge
or reduce the whole diffraction situation by the same factor, includ-
ing both the wavelengths and the sizes of the obstacles the wave
encounters, the result is still a valid solution.

This is unusually simple behavior! In section 1.2 we saw many ex-
amples of more complex scaling, such as the impossibility of bacteria
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e / Christiaan Huygens (1629-
1695).

the size of dogs, or the need for an elephant to eliminate heat through
its ears because of its small surface-to-volume ratio, whereas a tiny
shrew’s life-style centers around conserving its body heat.

Of course water waves and light waves differ in many ways, not just
in scale, but the general facts you will learn about diffraction are
applicable to all waves. In some ways it might have been more ap-
propriate to insert this chapter after chapter 20 on bounded waves,
but many of the important applications are to light waves, and you
would probably have found these much more difficult without any
background in optics.

Another way of stating the simple scaling behavior of diffraction is
that the diffraction angles we get depend only on the unitless ratio
λ/d, where λ is the wavelength of the wave and d is some dimension
of the diffracting objects, e.g., the center-to-center spacing between
the slits in figure a. If, for instance, we scale up both λ and d by a
factor of 37, the ratio λ/d will be unchanged.

32.3 The correspondence principle
The only reason we don’t usually notice diffraction of light in ev-
eryday life is that we don’t normally deal with objects that are
comparable in size to a wavelength of visible light, which is about a
millionth of a meter. Does this mean that wave optics contradicts
ray optics, or that wave optics sometimes gives wrong results? No.
If you hold three fingers out in the sunlight and cast a shadow with
them, either wave optics or ray optics can be used to predict the
straightforward result: a shadow pattern with two bright lines where
the light has gone through the gaps between your fingers. Wave op-
tics is a more general theory than ray optics, so in any case where
ray optics is valid, the two theories will agree. This is an example
of a general idea enunciated by the physicist Niels Bohr, called the
correspondence principle: when flaws in a physical theory lead to
the creation of a new and more general theory, the new theory must
still agree with the old theory within its more restricted area of ap-
plicability. After all, a theory is only created as a way of describing
experimental observations. If the original theory had not worked in
any cases at all, it would never have become accepted.

In the case of optics, the correspondence principle tells us that when
λ/d is small, both the ray and the wave model of light must give
approximately the same result. Suppose you spread your fingers and
cast a shadow with them using a coherent light source. The quantity
λ/d is about 10−4, so the two models will agree very closely. (To be
specific, the shadows of your fingers will be outlined by a series of
light and dark fringes, but the angle subtended by a fringe will be
on the order of 10−4 radians, so they will be too tiny to be visible.
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f / Double-slit diffraction.

g / A wavefront can be analyzed
by the principle of superposition,
breaking it down into many small
parts.

h / If it was by itself, each of
the parts would spread out as a
circular ripple.

i / Adding up the ripples pro-
duces a new wavefront.

self-check A
What kind of wavelength would an electromagnetic wave have to have
in order to diffract dramatically around your body? Does this contradict
the correspondence principle? . Answer, p. 1045

32.4 Huygens’ principle

Returning to the example of double-slit diffraction, f, note the strong
visual impression of two overlapping sets of concentric semicircles.
This is an example of Huygens’ principle, named after a Dutch physi-
cist and astronomer. (The first syllable rhymes with “boy.”) Huy-
gens’ principle states that any wavefront can be broken down into
many small side-by-side wave peaks, g, which then spread out as
circular ripples, h, and by the principle of superposition, the result
of adding up these sets of ripples must give the same result as al-
lowing the wave to propagate forward, i. In the case of sound or
light waves, which propagate in three dimensions, the “ripples” are
actually spherical rather than circular, but we can often imagine
things in two dimensions for simplicity.

In double-slit diffraction the application of Huygens’ principle is
visually convincing: it is as though all the sets of ripples have been
blocked except for two. It is a rather surprising mathematical fact,
however, that Huygens’ principle gives the right result in the case of
an unobstructed linear wave, h and i. A theoretically infinite number
of circular wave patterns somehow conspire to add together and
produce the simple linear wave motion with which we are familiar.

Since Huygens’ principle is equivalent to the principle of superposi-
tion, and superposition is a property of waves, what Huygens had
created was essentially the first wave theory of light. However, he
imagined light as a series of pulses, like hand claps, rather than as
a sinusoidal wave.

The history is interesting. Isaac Newton loved the atomic theory of
matter so much that he searched enthusiastically for evidence that
light was also made of tiny particles. The paths of his light particles
would correspond to rays in our description; the only significant
difference between a ray model and a particle model of light would
occur if one could isolate individual particles and show that light
had a “graininess” to it. Newton never did this, so although he
thought of his model as a particle model, it is more accurate to say
he was one of the builders of the ray model.

Almost all that was known about reflection and refraction of light
could be interpreted equally well in terms of a particle model or a
wave model, but Newton had one reason for strongly opposing Huy-
gens’ wave theory. Newton knew that waves exhibited diffraction,
but diffraction of light is difficult to observe, so Newton believed
that light did not exhibit diffraction, and therefore must not be

Section 32.4 Huygens’ principle 917



j / Thomas Young

k / Double-slit diffraction.

l / Use of Huygens’ principle.

m / Constructive interference
along the center-line.

a wave. Although Newton’s criticisms were fair enough, the de-
bate also took on the overtones of a nationalistic dispute between
England and continental Europe, fueled by English resentment over
Leibniz’s supposed plagiarism of Newton’s calculus. Newton wrote
a book on optics, and his prestige and political prominence tended
to discourage questioning of his model.

Thomas Young (1773-1829) was the person who finally, a hundred
years later, did a careful search for wave interference effects with
light and analyzed the results correctly. He observed double-slit
diffraction of light as well as a variety of other diffraction effects, all
of which showed that light exhibited wave interference effects, and
that the wavelengths of visible light waves were extremely short.
The crowning achievement was the demonstration by the experi-
mentalist Heinrich Hertz and the theorist James Clerk Maxwell that
light was an electromagnetic wave. Maxwell is said to have related
his discovery to his wife one starry evening and told her that she was
the only other person in the world who knew what starlight was.

32.5 Double-slit diffraction
Let’s now analyze double-slit diffraction, k, using Huygens’ princi-
ple. The most interesting question is how to compute the angles
such as X and Z where the wave intensity is at a maximum, and
the in-between angles like Y where it is minimized. Let’s measure
all our angles with respect to the vertical center line of the figure,
which was the original direction of propagation of the wave.

If we assume that the width of the slits is small (on the order of
the wavelength of the wave or less), then we can imagine only a
single set of Huygens ripples spreading out from each one, l. White
lines represent peaks, black ones troughs. The only dimension of the
diffracting slits that has any effect on the geometric pattern of the
overlapping ripples is then the center-to-center distance, d, between
the slits.

We know from our discussion of the scaling of diffraction that there
must be some equation that relates an angle like θZ to the ratio λ/d,

λ

d
↔ θZ .

If the equation for θZ depended on some other expression such as
λ+ d or λ2/d, then it would change when we scaled λ and d by the
same factor, which would violate what we know about the scaling
of diffraction.

Along the central maximum line, X, we always have positive waves
coinciding with positive ones and negative waves coinciding with
negative ones. (I have arbitrarily chosen to take a snapshot of the
pattern at a moment when the waves emerging from the slit are
experiencing a positive peak.) The superposition of the two sets of
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n / The waves travel distances L
and L′ from the two slits to get
to the same point in space, at an
angle θ from the center line.

o / A close-up view of figure
n, showing how the path length
difference L − L′ is related to d
and to the angle θ.

ripples therefore results in a doubling of the wave amplitude along
this line. There is constructive interference. This is easy to explain,
because by symmetry, each wave has had to travel an equal number
of wavelengths to get from its slit to the center line, m: Because
both sets of ripples have ten wavelengths to cover in order to reach
the point along direction X, they will be in step when they get there.

At the point along direction Y shown in the same figure, one wave
has traveled ten wavelengths, and is therefore at a positive extreme,
but the other has traveled only nine and a half wavelengths, so it is
at a negative extreme. There is perfect cancellation, so points along
this line experience no wave motion.

But the distance traveled does not have to be equal in order to get
constructive interference. At the point along direction Z, one wave
has gone nine wavelengths and the other ten. They are both at a
positive extreme.

self-check B
At a point half a wavelength below the point marked along direction X,
carry out a similar analysis. . Answer, p. 1046

To summarize, we will have perfect constructive interference at any
point where the distance to one slit differs from the distance to the
other slit by an integer number of wavelengths. Perfect destruc-
tive interference will occur when the number of wavelengths of path
length difference equals an integer plus a half.

Now we are ready to find the equation that predicts the angles of
the maxima and minima. The waves travel different distances to
get to the same point in space, n. We need to find whether the
waves are in phase (in step) or out of phase at this point in order to
predict whether there will be constructive interference, destructive
interference, or something in between.

One of our basic assumptions in this chapter is that we will only be
dealing with the diffracted wave in regions very far away from the
object that diffracts it, so the triangle is long and skinny. Most real-
world examples with diffraction of light, in fact, would have triangles
with even skinner proportions than this one. The two long sides are
therefore very nearly parallel, and we are justified in drawing the
right triangle shown in figure o, labeling one leg of the right triangle
as the difference in path length , L−L′, and labeling the acute angle
as θ. (In reality this angle is a tiny bit greater than the one labeled
θ in figure n.)

The difference in path length is related to d and θ by the equation

L− L′

d
= sin θ.

Constructive interference will result in a maximum at angles for
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p / Cutting d in half doubles
the angles of the diffraction
fringes.

q / Double-slit diffraction pat-
terns of long-wavelength red light
(top) and short-wavelength blue
light (bottom).

which L− L′ is an integer number of wavelengths,

L− L′ = mλ. [condition for a maximum;

m is an integer]

Here m equals 0 for the central maximum, −1 for the first maximum
to its left, +2 for the second maximum on the right, etc. Putting
all the ingredients together, we find mλ/d = sin θ, or

λ

d
=

sin θ

m
. [condition for a maximum;

m is an integer]

Similarly, the condition for a minimum is

λ

d
=

sin θ

m
. [condition for a minimum;

m is an integer plus 1/2]

That is, the minima are about halfway between the maxima.

As expected based on scaling, this equation relates angles to the
unitless ratio λ/d. Alternatively, we could say that we have proven
the scaling property in the special case of double-slit diffraction. It
was inevitable that the result would have these scaling properties,
since the whole proof was geometric, and would have been equally
valid when enlarged or reduced on a photocopying machine!

Counterintuitively, this means that a diffracting object with smaller
dimensions produces a bigger diffraction pattern, p.

Double-slit diffraction of blue and red light example 1
Blue light has a shorter wavelength than red. For a given double-
slit spacing d , the smaller value of λ/d for leads to smaller values
of sin θ, and therefore to a more closely spaced set of diffraction
fringes, as shown in figure q.

The correspondence principle example 2
Let’s also consider how the equations for double-slit diffraction
relate to the correspondence principle. When the ratio λ/d is very
small, we should recover the case of simple ray optics. Now if λ/d
is small, sin θ must be small as well, and the spacing between
the diffraction fringes will be small as well. Although we have not
proven it, the central fringe is always the brightest, and the fringes
get dimmer and dimmer as we go farther from it. For small values
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r / Interpretation of the angu-
lar spacing ∆θ in example 3.
It can be defined either from
maximum to maximum or from
minimum to minimum. Either way,
the result is the same. It does not
make sense to try to interpret ∆θ
as the width of a fringe; one can
see from the graph and from the
image below that it is not obvious
either that such a thing is well
defined or that it would be the
same for all fringes.

of λ/d , the part of the diffraction pattern that is bright enough to
be detectable covers only a small range of angles. This is exactly
what we would expect from ray optics: the rays passing through
the two slits would remain parallel, and would continue moving
in the θ = 0 direction. (In fact there would be images of the two
separate slits on the screen, but our analysis was all in terms of
angles, so we should not expect it to address the issue of whether
there is structure within a set of rays that are all traveling in the
θ = 0 direction.)

Spacing of the fringes at small angles example 3
At small angles, we can use the approximation sin θ ≈ θ, which
is valid if θ is measured in radians. The equation for double-slit
diffraction becomes simply

λ

d
=
θ

m
,

which can be solved for θ to give

θ =
mλ
d

.

The difference in angle between successive fringes is the change
in θ that results from changing m by plus or minus one,

∆θ =
λ

d
.

For example, if we write θ7 for the angle of the seventh bright
fringe on one side of the central maximum and θ8 for the neigh-
boring one, we have

θ8 − θ7 =
8λ
d
− 7λ

d

=
λ

d
,

and similarly for any other neighboring pair of fringes.

Although the equation λ/d = sin θ/m is only valid for a double slit,
it is can still be a guide to our thinking even if we are observing
diffraction of light by a virus or a flea’s leg: it is always true that

(1) large values of λ/d lead to a broad diffraction pattern, and

(2) diffraction patterns are repetitive.

In many cases the equation looks just like λ/d = sin θ/m but with
an extra numerical factor thrown in, and with d interpreted as some
other dimension of the object, e.g., the diameter of a piece of wire.
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s / A triple slit.

t / A double-slit diffraction pattern
(top), and a pattern made by five
slits (bottom).

32.6 Repetition
Suppose we replace a double slit with a triple slit, s. We can think
of this as a third repetition of the structures that were present in
the double slit. Will this device be an improvement over the double
slit for any practical reasons?

The answer is yes, as can be shown using figure u. For ease of visu-
alization, I have violated our usual rule of only considering points
very far from the diffracting object. The scale of the drawing is
such that a wavelengths is one cm. In u/1, all three waves travel an
integer number of wavelengths to reach the same point, so there is a
bright central spot, as we would expect from our experience with the
double slit. In figure u/2, we show the path lengths to a new point.
This point is farther from slit A by a quarter of a wavelength, and
correspondingly closer to slit C. The distance from slit B has hardly
changed at all. Because the paths lengths traveled from slits A and
C differ by half a wavelength, there will be perfect destructive in-
terference between these two waves. There is still some uncanceled
wave intensity because of slit B, but the amplitude will be three
times less than in figure u/1, resulting in a factor of 9 decrease in
brightness. Thus, by moving off to the right a little, we have gone
from the bright central maximum to a point that is quite dark.

u / 1. There is a bright central maximum. 2. At this point just off the central maximum, the path lengths traveled
by the three waves have changed.

Now let’s compare with what would have happened if slit C had been
covered, creating a plain old double slit. The waves coming from
slits A and B would have been out of phase by 0.23 wavelengths,
but this would not have caused very severe interference. The point
in figure u/2 would have been quite brightly lit up.

To summarize, we have found that adding a third slit narrows down
the central fringe dramatically. The same is true for all the other
fringes as well, and since the same amount of energy is concentrated
in narrower diffraction fringes, each fringe is brighter and easier to
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v / Single-slit diffraction of
water waves.

w / Single-slit diffraction of
red light. Note the double width
of the central maximum.

x / A pretty good simulation
of the single-slit pattern of figure
v, made by using three motors to
produce overlapping ripples from
three neighboring points in the
water.

see, t.

This is an example of a more general fact about diffraction: if some
feature of the diffracting object is repeated, the locations of the
maxima and minima are unchanged, but they become narrower.

Taking this reasoning to its logical conclusion, a diffracting object
with thousands of slits would produce extremely narrow fringes.
Such an object is called a diffraction grating.

32.7 Single-slit diffraction

If we use only a single slit, is there diffraction? If the slit is not
wide compared to a wavelength of light, then we can approximate
its behavior by using only a single set of Huygens ripples. There
are no other sets of ripples to add to it, so there are no constructive
or destructive interference effects, and no maxima or minima. The
result will be a uniform spherical wave of light spreading out in all
directions, like what we would expect from a tiny lightbulb. We
could call this a diffraction pattern, but it is a completely feature-
less one, and it could not be used, for instance, to determine the
wavelength of the light, as other diffraction patterns could.

All of this, however, assumes that the slit is narrow compared to a
wavelength of light. If, on the other hand, the slit is broader, there
will indeed be interference among the sets of ripples spreading out
from various points along the opening. Figure v shows an example
with water waves, and figure w with light.

self-check C
How does the wavelength of the waves compare with the width of the
slit in figure v? . Answer, p. 1046

We will not go into the details of the analysis of single-slit diffrac-
tion, but let us see how its properties can be related to the general
things we’ve learned about diffraction. We know based on scaling
arguments that the angular sizes of features in the diffraction pat-
tern must be related to the wavelength and the width, a, of the slit
by some relationship of the form

λ

a
↔ θ.

This is indeed true, and for instance the angle between the maximum
of the central fringe and the maximum of the next fringe on one side
equals 1.5λ/a. Scaling arguments will never produce factors such as
the 1.5, but they tell us that the answer must involve λ/a, so all the
familiar qualitative facts are true. For instance, shorter-wavelength
light will produce a more closely spaced diffraction pattern.

An important scientific example of single-slit diffraction is in tele-
scopes. Images of individual stars, as in figure y, are a good way to
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y / An image of the Pleiades
star cluster. The circular rings
around the bright stars are due to
single-slit diffraction at the mouth
of the telescope’s tube.

z / A radio telescope.

examine diffraction effects, because all stars except the sun are so
far away that no telescope, even at the highest magnification, can
image their disks or surface features. Thus any features of a star’s
image must be due purely to optical effects such as diffraction. A
prominent cross appears around the brightest star, and dimmer ones
surround the dimmer stars. Something like this is seen in most tele-
scope photos, and indicates that inside the tube of the telescope
there were two perpendicular struts or supports. Light diffracted
around these struts. You might think that diffraction could be elim-
inated entirely by getting rid of all obstructions in the tube, but the
circles around the stars are diffraction effects arising from single-
slit diffraction at the mouth of the telescope’s tube! (Actually we
have not even talked about diffraction through a circular opening,
but the idea is the same.) Since the angular sizes of the diffracted
images depend on λ/a, the only way to improve the resolution of
the images is to increase the diameter, a, of the tube. This is one
of the main reasons (in addition to light-gathering power) why the
best telescopes must be very large in diameter.

self-check D
What would this imply about radio telescopes as compared with visible-
light telescopes? . Answer, p.
1046

Double-slit diffraction is easier to understand conceptually than
single-slit diffraction, but if you do a double-slit diffraction experi-
ment in real life, you are likely to encounter a complicated pattern
like figure aa/1, rather than the simpler one, 2, you were expecting.
This is because the slits are fairly big compared to the wavelength
of the light being used. We really have two different distances in
our pair of slits: d, the distance between the slits, and w, the width
of each slit. Remember that smaller distances on the object the
light diffracts around correspond to larger features of the diffraction
pattern. The pattern 1 thus has two spacings in it: a short spac-
ing corresponding to the large distance d, and a long spacing that
relates to the small dimension w.

Discussion question

A Why is it optically impossible for bacteria to evolve eyes that use
visible light to form images?

32.8
∫
? The principle of least time

In section 28.5 and 31.5, we saw how in the ray model of light,
both refraction and reflection can be described in an elegant and
beautiful way by a single principle, the principle of least time. We
can now justify the principle of least time based on the wave model
of light. Consider an example involving reflection, ab. Starting at
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ab / Light could take many
different paths from A to B.

aa / 1. A diffraction pattern formed by a real double slit. The width of each slit is fairly big compared to
the wavelength of the light. This is a real photo. 2. This idealized pattern is not likely to occur in real life. To get
it, you would need each slit to be so narrow that its width was comparable to the wavelength of the light, but
that’s not usually possible. This is not a real photo. 3. A real photo of a single-slit diffraction pattern caused by
a slit whose width is the same as the widths of the slits used to make the top pattern.

point A, Huygens’ principle for waves tells us that we can think of
the wave as spreading out in all directions. Suppose we imagine all
the possible ways that a ray could travel from A to B. We show
this by drawing 25 possible paths, of which the central one is the
shortest. Since the principle of least time connects the wave model
to the ray model, we should expect to get the most accurate results
when the wavelength is much shorter than the distances involved —
for the sake of this numerical example, let’s say that a wavelength is
1/10 of the shortest reflected path from A to B. The table, 2, shows
the distances traveled by the 25 rays.

Note how similar are the distances traveled by the group of 7 rays,
indicated with a bracket, that come closest to obeying the principle
of least time. If we think of each one as a wave, then all 7 are again
nearly in phase at point B. However, the rays that are farther from
satisfying the principle of least time show more rapidly changing
distances; on reuniting at point B, their phases are a random jumble,
and they will very nearly cancel each other out. Thus, almost none
of the wave energy delivered to point B goes by these longer paths.
Physically we find, for instance, that a wave pulse emitted at A
is observed at B after a time interval corresponding very nearly
to the shortest possible path, and the pulse is not very “smeared
out” when it gets there. The shorter the wavelength compared to
the dimensions of the figure, the more accurate these approximate
statements become.

Instead of drawing a finite number of rays, such as 25, what happens
if we think of the angle, θ, of emission of the ray as a continuously
varying variable? Minimizing the distance L requires

dL

dθ
= 0.
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Because L is changing slowly in the vicinity of the angle that satisfies
the principle of least time, all the rays that come out close to this
angle have very nearly the same L, and remain very nearly in phase
when they reach B. This is the basic reason why the discrete table,
ab/2, turned out to have a group of rays that all traveled nearly the
same distance.

As discussed in section 28.5, the principle of least time is really a
principle of least or greatest time. This makes perfect sense, since
dL/dθ = 0 can in general describe either a minimum or a maximum

The principle of least time is very general. It does not apply just to
refraction and reflection — it can even be used to prove that light
rays travel in a straight line through empty space, without taking
detours! This general approach to wave motion was used by Richard
Feynman, one of the pioneers who in the 1950’s reconciled quantum
mechanics with relativity. A very readable explanation is given in
a book Feynman wrote for laypeople, QED: The Strange Theory of
Light and Matter.
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Summary
Selected vocabulary
diffraction . . . . the behavior of a wave when it encounters an

obstacle or a nonuniformity in its medium;
in general, diffraction causes a wave to bend
around obstacles and make patterns of strong
and weak waves radiating out beyond the ob-
stacle.

coherent . . . . . a light wave whose parts are all in phase with
each other

Other terminology and notation
wavelets . . . . . the ripples in Huygens’ principle

Summary

Wave optics is a more general theory of light than ray optics. When
light interacts with material objects that are much larger then one
wavelength of the light, the ray model of light is approximately
correct, but in other cases the wave model is required.

Huygens’ principle states that, given a wavefront at one moment in
time, the future behavior of the wave can be found by breaking the
wavefront up into a large number of small, side-by-side wave peaks,
each of which then creates a pattern of circular or spherical ripples.
As these sets of ripples add together, the wave evolves and moves
through space. Since Huygens’ principle is a purely geometrical con-
struction, diffraction effects obey a simple scaling rule: the behavior
is unchanged if the wavelength and the dimensions of the diffract-
ing objects are both scaled up or down by the same factor. If we
wish to predict the angles at which various features of the diffraction
pattern radiate out, scaling requires that these angles depend only
on the unitless ratio λ/d, where d is the size of some feature of the
diffracting object.

Double-slit diffraction is easily analyzed using Huygens’ principle if
the slits are narrower than one wavelength. We need only construct
two sets of ripples, one spreading out from each slit. The angles
of the maxima (brightest points in the bright fringes) and minima
(darkest points in the dark fringes) are given by the equation

λ

d
=

sin θ

m
,

where d is the center-to-center spacing of the slits, and m is an
integer at a maximum or an integer plus 1/2 at a minimum.

If some feature of a diffracting object is repeated, the diffraction
fringes remain in the same places, but become narrower with each
repetition. By repeating a double-slit pattern hundreds or thou-
sands of times, we obtain a diffraction grating.

A single slit can produce diffraction fringes if it is larger than one
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wavelength. Many practical instances of diffraction can be inter-
preted as single-slit diffraction, e.g., diffraction in telescopes. The
main thing to realize about single-slit diffraction is that it exhibits
the same kind of relationship between λ, d, and angles of fringes as
in any other type of diffraction.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Why would blue or violet light be the best for microscopy?
. Solution, p. 1042

2 Match gratings A-C with the diffraction patterns 1-3 that they
produce. Explain.

3 The beam of a laser passes through a diffraction grating, fans
out, and illuminates a wall that is perpendicular to the original
beam, lying at a distance of 2.0 m from the grating. The beam
is produced by a helium-neon laser, and has a wavelength of 694.3
nm. The grating has 2000 lines per centimeter. (a) What is the
distance on the wall between the central maximum and the maxima
immediately to its right and left? (b) How much does your answer
change when you use the small-angle approximations θ ≈ sin θ ≈
tan θ?

√

4 When white light passes through a diffraction grating, what
is the smallest value of m for which the visible spectrum of order m
overlaps the next one, of order m + 1? (The visible spectrum runs
from about 400 nm to about 700 nm.)
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5 Ultrasound, i.e., sound waves with frequencies too high to be
audible, can be used for imaging fetuses in the womb or for break-
ing up kidney stones so that they can be eliminated by the body.
Consider the latter application. Lenses can be built to focus sound
waves, but because the wavelength of the sound is not all that small
compared to the diameter of the lens, the sound will not be concen-
trated exactly at the geometrical focal point. Instead, a diffraction
pattern will be created with an intense central spot surrounded by
fainter rings. About 85% of the power is concentrated within the
central spot. The angle of the first minimum (surrounding the cen-
tral spot) is given by sin θ = λ/b, where b is the diameter of the lens.
This is similar to the corresponding equation for a single slit, but
with a factor of 1.22 in front which arises from the circular shape of
the aperture. Let the distance from the lens to the patient’s kidney
stone be L = 20 cm. You will want f > 20 kHz, so that the sound
is inaudible. Find values of b and f that would result in a usable
design, where the central spot is small enough to lie within a kidney
stone 1 cm in diameter.

6 For star images such as the ones in figure y, estimate the
angular width of the diffraction spot due to diffraction at the mouth
of the telescope. Assume a telescope with a diameter of 10 meters
(the largest currently in existence), and light with a wavelength in
the middle of the visible range. Compare with the actual angular
size of a star of diameter 109 m seen from a distance of 1017 m.
What does this tell you? . Solution, p. 1042

7 Under what circumstances could one get a mathematically
undefined result by solving the double-slit diffraction equation for θ?
Give a physical interpretation of what would actually be observed.

. Solution, p. 1042

8 When ultrasound is used for medical imaging, the frequency
may be as high as 5-20 MHz. Another medical application of ultra-
sound is for therapeutic heating of tissues inside the body; here, the
frequency is typically 1-3 MHz. What fundamental physical reasons
could you suggest for the use of higher frequencies for imaging?
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9 The figure below shows two diffraction patterns, both made
with the same wavelength of red light. (a) What type of slits made
the patterns? Is it a single slit, double slits, or something else?
Explain. (b) Compare the dimensions of the slits used to make the
top and bottom pattern. Give a numerical ratio, and state which
way the ratio is, i.e., which slit pattern was the larger one. Explain.

. Solution, p. 1042

10 The figure below shows two diffraction patterns. The top one
was made with yellow light, and the bottom one with red. Could
the slits used to make the two patterns have been the same?
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Problems 12 and 13.

11 The figure below shows three diffraction patterns. All were
made under identical conditions, except that a different set of double
slits was used for each one. The slits used to make the top pattern
had a center-to-center separation d = 0.50 mm, and each slit was
w = 0.04 mm wide. (a) Determine d and w for the slits used to
make the pattern in the middle. (b) Do the same for the slits used
to make the bottom pattern.

. Solution, p. 1042

12 The figure shows a diffraction pattern made by a double slit,
along with an image of a meter stick to show the scale. The slits
were 146 cm away from the screen on which the diffraction pattern
was projected. The spacing of the slits was 0.050 mm. What was
the wavelength of the light?

√

13 The figure shows a diffraction pattern made by a double
slit, along with an image of a meter stick to show the scale. Sketch
the diffraction pattern from the figure on your paper. Now consider
the four variables in the equation λ/d = sin θ/m. Which of these
are the same for all five fringes, and which are different for each
fringe? Which variable would you naturally use in order to label
which fringe was which? Label the fringes on your sketch using the
values of that variable.

14 Figure s on p. 902 shows the anatomy of a jumping spider’s
principal eye. The smallest feature the spider can distinguish is
limited by the size of the receptor cells in its retina. (a) By making
measurements on the diagram, estimate this limiting angular size
in units of minutes of arc (60 minutes = 1 degree).(b) Show that
this is greater than, but roughly in the same ballpark as, the limit
imposed by diffraction for visible light.

Remark: Evolution is a scientific theory that makes testable predictions, and if
observations contradict its predictions, the theory can be disproved. It would
be maladaptive for the spider to have retinal receptor cells with sizes much
less than the limit imposed by diffraction, since it would increase complexity
without giving any improvement in visual acuity. The results of this problem
confirm that, as predicted by Darwinian evolution, this is not the case. Work
by M.F. Land in 1969 shows that in this spider’s eye, aberration is a somewhat
bigger effect than diffraction, so that the size of the receptors is very nearly at
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an evolutionary optimum.
√ √
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Exercise 32A: Double-source interference
1. Two sources separated by a distance d = 2 cm make circular ripples with a wavelength of
λ = 1 cm. On a piece of paper, make a life-size drawing of the two sources in the default setup,
and locate the following points:

A. The point that is 10 wavelengths from source #1 and 10 wavelengths from source #2.

B. The point that is 10.5 wavelengths from #1 and 10.5 from #2.

C. The point that is 11 wavelengths from #1 and 11 from #2.

D. The point that is 10 wavelengths from #1 and 10.5 from #2.

E. The point that is 11 wavelengths from #1 and 11.5 from #2.

F. The point that is 10 wavelengths from #1 and 11 from #2.

G. The point that is 11 wavelengths from #1 and 12 from #2.

You can do this either using a compass or by putting the next page under your paper and
tracing. It is not necessary to trace all the arcs completely, and doing so is unnecessarily time-
consuming; you can fairly easily estimate where these points would lie, and just trace arcs long
enough to find the relevant intersections.

What do these points correspond to in the real wave pattern?

2. Make a fresh copy of your drawing, showing only point F and the two sources, which form a
long, skinny triangle. Now suppose you were to change the setup by doubling d, while leaving λ
the same. It’s easiest to understand what’s happening on the drawing if you move both sources
outward, keeping the center fixed. Based on your drawing, what will happen to the position of
point F when you double d? Measure its angle with a protractor.

3. What would happen if you doubled both λ and d compared to the standard setup?

4. Combining the ideas from parts 2 and 3, what do you think would happen to your angles if,
starting from the standard setup, you doubled λ while leaving d the same?

5. Suppose λ was a millionth of a centimeter, while d was still as in the standard setup. What
would happen to the angles? What does this tell you about observing diffraction of light?
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Exercise 32B: Single-slit diffraction
Equipment:

rulers

computer with web browser

The following page is a diagram of a single slit and a screen onto which its diffraction pattern
is projected. The class will make a numerical prediction of the intensity of the pattern at the
different points on the screen. Each group will be responsible for calculating the intensity at
one of the points. (Either 11 groups or six will work nicely – in the latter case, only points a,
c, e, g, i, and k are used.) The idea is to break up the wavefront in the mouth of the slit into
nine parts, each of which is assumed to radiate semicircular ripples as in Huygens’ principle.
The wavelength of the wave is 1 cm, and we assume for simplicity that each set of ripples has
an amplitude of 1 unit when it reaches the screen.

1. For simplicity, let’s imagine that we were only to use two sets of ripples rather than nine.
You could measure the distance from each of the two points inside the slit to your point on
the screen. Suppose the distances were both 25.0 cm. What would be the amplitude of the
superimposed waves at this point on the screen?

Suppose one distance was 24.0 cm and the other was 25.0 cm. What would happen?

What if one was 24.0 cm and the other was 26.0 cm?

What if one was 24.5 cm and the other was 25.0 cm?

In general, what combinations of distances will lead to completely destructive and completely
constructive interference?

Can you estimate the answer in the case where the distances are 24.7 and 25.0 cm?

2. Although it is possible to calculate mathematically the amplitude of the sine wave that results
from superimposing two sine waves with an arbitrary phase difference between them, the algebra
is rather laborious, and it become even more tedious when we have more than two waves to super-
impose. Instead, one can simply use a computer spreadsheet or some other computer program to
add up the sine waves numerically at a series of points covering one complete cycle. This is what
we will actually do. You just need to enter the relevant data into the computer, then examine the
results and pick off the amplitude from the resulting list of numbers. You can run the software
through a web interface at http://lightandmatter.com/cgi-bin/diffraction1.cgi.

3. Measure all nine distances to your group’s point on the screen, and write them on the board
- that way everyone can see everyone else’s data, and the class can try to make sense of why the
results came out the way they did. Determine the amplitude of the combined wave, and write
it on the board as well.

The class will discuss why the results came out the way they did.

936 Chapter 32 Wave Optics



Exercise 32B: Single-slit diffraction 937



Exercise 32C: Diffraction of light
Equipment:

slit patterns, lasers, straight-filament bulbs

station 1
You have a mask with a bunch of different double slits cut out of it. The values of w and d are
as follows:

pattern A w=0.04 mm d=.250 mm
pattern B w=0.04 mm d=.500 mm
pattern C w=0.08 mm d=.250 mm
pattern D w=0.08 mm d=.500 mm

Predict how the patterns will look different, and test your prediction. The easiest way to get
the laser to point at different sets of slits is to stick folded up pieces of paper in one side or the
other of the holders.

station 2
This is just like station 1, but with single slits:

pattern A w=0.02 mm
pattern B w=0.04 mm
pattern C w=0.08 mm
pattern D w=0.16 mm

Predict what will happen, and test your predictions. If you have time, check the actual numerical
ratios of the w values against the ratios of the sizes of the diffraction patterns

station 3
This is like station 1, but the only difference among the sets of slits is how many slits there are:

pattern A double slit
pattern B 3 slits
pattern C 4 slits
pattern D 5 slits

station 4
Hold the diffraction grating up to your eye, and look through it at the straight-filament light
bulb. If you orient the grating correctly, you should be able to see the m = 1 and m = −1
diffraction patterns off the left and right. If you have it oriented the wrong way, they’ll be above
and below the bulb instead, which is inconvenient because the bulb’s filament is vertical. Where
is the m = 0 fringe? Can you see m = 2, etc.?

Station 5 has the same equipment as station 4. If you’re assigned to station 5 first, you should
actually do activity 4 first, because it’s easier.

station 5
Use the transformer to increase and decrease the voltage across the bulb. This allows you to
control the filament’s temperature. Sketch graphs of intensity as a function of wavelength for
various temperatures. The inability of the wave model of light to explain the mathematical
shapes of these curves was historically one of the reasons for creating a new model, in which
light is both a particle and a wave.
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The continental U.S. got its first taste of volcanism in recent memory with
the eruption of Mount St. Helens in 1980.

Chapter 33

Rules of Randomness

Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
positions of the things which compose it...nothing would be
uncertain, and the future as the past would be laid out before
its eyes. Pierre Simon de Laplace, 1776

The Quantum Mechanics is very imposing. But an inner voice
tells me that it is still not the final truth. The theory yields
much, but it hardly brings us nearer to the secret of the Old
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One. In any case, I am convinced that He does not play dice.
Albert Einstein

However radical Newton’s clockwork universe seemed to his con-
temporaries, by the early twentieth century it had become a sort of
smugly accepted dogma. Luckily for us, this deterministic picture of
the universe breaks down at the atomic level. The clearest demon-
stration that the laws of physics contain elements of randomness
is in the behavior of radioactive atoms. Pick two identical atoms
of a radioactive isotope, say the naturally occurring uranium 238,
and watch them carefully. They will decay at different times, even
though there was no difference in their initial behavior.

We would be in big trouble if these atoms’ behavior was as pre-
dictable as expected in the Newtonian world-view, because radioac-
tivity is an important source of heat for our planet. In reality, each
atom chooses a random moment at which to release its energy, re-
sulting in a nice steady heating effect. The earth would be a much
colder planet if only sunlight heated it and not radioactivity. Prob-
ably there would be no volcanoes, and the oceans would never have
been liquid. The deep-sea geothermal vents in which life first evolved
would never have existed. But there would be an even worse conse-
quence if radioactivity was deterministic: after a few billion years of
peace, all the uranium 238 atoms in our planet would presumably
pick the same moment to decay. The huge amount of stored nuclear
energy, instead of being spread out over eons, would all be released
at one instant, blowing our whole planet to Kingdom Come.1

The new version of physics, incorporating certain kinds of random-
ness, is called quantum physics (for reasons that will become clear
later). It represented such a dramatic break with the previous, de-
terministic tradition that everything that came before is considered
“classical,” even the theory of relativity. The remainder of this book
is a basic introduction to quantum physics.

Discussion question

A I said “Pick two identical atoms of a radioactive isotope.” Are two
atoms really identical? If their electrons are orbiting the nucleus, can we
distinguish each atom by the particular arrangement of its electrons at
some instant in time?

1This is under the assumption that all the radioactive heating comes from
uranium atoms, and that all the atoms were created at the same time. In
reality, both uranium and thorium atoms contribute, and they may not have all
been created at the same time. We have only a general idea of the processes
that created these heavy elements in the gas cloud from which our solar system
condensed. Some portion of them may have come from nuclear reactions in
supernova explosions in that particular nebula, but some may have come from
previous supernova explosions throughout our galaxy, or from exotic events like
collisions of white dwarf stars.
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33.1 Randomness isn’t random
Einstein’s distaste for randomness, and his association of determin-
ism with divinity, goes back to the Enlightenment conception of the
universe as a gigantic piece of clockwork that only had to be set
in motion initially by the Builder. Many of the founders of quan-
tum mechanics were interested in possible links between physics and
Eastern and Western religious and philosophical thought, but every
educated person has a different concept of religion and philosophy.
Bertrand Russell remarked, “Sir Arthur Eddington deduces religion
from the fact that atoms do not obey the laws of mathematics. Sir
James Jeans deduces it from the fact that they do.”

Russell’s witticism, which implies incorrectly that mathematics can-
not describe randomness, reminds us how important it is not to over-
simplify this question of randomness. You should not simply sur-
mise, “Well, it’s all random, anything can happen.” For one thing,
certain things simply cannot happen, either in classical physics or
quantum physics. The conservation laws of mass, energy, momen-
tum, and angular momentum are still valid, so for instance processes
that create energy out of nothing are not just unlikely according to
quantum physics, they are impossible.

A useful analogy can be made with the role of randomness in evo-
lution. Darwin was not the first biologist to suggest that species
changed over long periods of time. His two new fundamental ideas
were that (1) the changes arose through random genetic variation,
and (2) changes that enhanced the organism’s ability to survive and
reproduce would be preserved, while maladaptive changes would be
eliminated by natural selection. Doubters of evolution often consider
only the first point, about the randomness of natural variation, but
not the second point, about the systematic action of natural selec-
tion. They make statements such as, “the development of a complex
organism like Homo sapiens via random chance would be like a whirl-
wind blowing through a junkyard and spontaneously assembling a
jumbo jet out of the scrap metal.” The flaw in this type of reason-
ing is that it ignores the deterministic constraints on the results of
random processes. For an atom to violate conservation of energy is
no more likely than the conquest of the world by chimpanzees next
year.

Discussion question

A Economists often behave like wannabe physicists, probably because
it seems prestigious to make numerical calculations instead of talking
about human relationships and organizations like other social scientists.
Their striving to make economics work like Newtonian physics extends
to a parallel use of mechanical metaphors, as in the concept of a mar-
ket’s supply and demand acting like a self-adjusting machine, and the
idealization of people as economic automatons who consistently strive to
maximize their own wealth. What evidence is there for randomness rather
than mechanical determinism in economics?
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a / The probability that one
wheel will give a cherry is 1/10.
The probability that all three
wheels will give cherries is
1/10× 1/10× 1/10.

33.2 Calculating randomness
You should also realize that even if something is random, we can still
understand it, and we can still calculate probabilities numerically.
In other words, physicists are good bookmakers. A good bookie can
calculate the odds that a horse will win a race much more accurately
than an inexperienced one, but nevertheless cannot predict what will
happen in any particular race.

Statistical independence

As an illustration of a general technique for calculating odds, sup-
pose you are playing a 25-cent slot machine. Each of the three
wheels has one chance in ten of coming up with a cherry. If all three
wheels come up cherries, you win $100. Even though the results of
any particular trial are random, you can make certain quantitative
predictions. First, you can calculate that your odds of winning on
any given trial are 1/10 × 1/10 × 1/10 = 1/1000 = 0.001. Here, I
am representing the probabilities as numbers from 0 to 1, which is
clearer than statements like “The odds are 999 to 1,” and makes the
calculations easier. A probability of 0 represents something impos-
sible, and a probability of 1 represents something that will definitely
happen.

Also, you can say that any given trial is equally likely to result in
a win, and it doesn’t matter whether you have won or lost in prior
games. Mathematically, we say that each trial is statistically inde-
pendent, or that separate games are uncorrelated. Most gamblers
are mistakenly convinced that, to the contrary, games of chance are
correlated. If they have been playing a slot machine all day, they
are convinced that it is “getting ready to pay,” and they do not
want anyone else playing the machine and “using up” the jackpot
that they “have coming.” In other words, they are claiming that
a series of trials at the slot machine is negatively correlated, that
losing now makes you more likely to win later. Craps players claim
that you should go to a table where the person rolling the dice is
“hot,” because she is likely to keep on rolling good numbers. Craps
players, then, believe that rolls of the dice are positively correlated,
that winning now makes you more likely to win later.

My method of calculating the probability of winning on the slot ma-
chine was an example of the following important rule for calculations
based on independent probabilities:

the law of independent probabilities
If the probability of one event happening is PA, and the prob-

ability of a second statistically independent event happening
is PB, then the probability that they will both occur is the
product of the probabilities, PAPB. If there are more than
two events involved, you simply keep on multiplying.
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This can be taken as the definition of statistical independence.

Note that this only applies to independent probabilities. For in-
stance, if you have a nickel and a dime in your pocket, and you
randomly pull one out, there is a probability of 0.5 that it will be
the nickel. If you then replace the coin and again pull one out ran-
domly, there is again a probability of 0.5 of coming up with the
nickel, because the probabilities are independent. Thus, there is a
probability of 0.25 that you will get the nickel both times.

Suppose instead that you do not replace the first coin before pulling
out the second one. Then you are bound to pull out the other coin
the second time, and there is no way you could pull the nickel out
twice. In this situation, the two trials are not independent, because
the result of the first trial has an effect on the second trial. The law
of independent probabilities does not apply, and the probability of
getting the nickel twice is zero, not 0.25.

Experiments have shown that in the case of radioactive decay, the
probability that any nucleus will decay during a given time interval
is unaffected by what is happening to the other nuclei, and is also
unrelated to how long it has gone without decaying. The first obser-
vation makes sense, because nuclei are isolated from each other at
the centers of their respective atoms, and therefore have no physical
way of influencing each other. The second fact is also reasonable,
since all atoms are identical. Suppose we wanted to believe that cer-
tain atoms were “extra tough,” as demonstrated by their history of
going an unusually long time without decaying. Those atoms would
have to be different in some physical way, but nobody has ever suc-
ceeded in detecting differences among atoms. There is no way for
an atom to be changed by the experiences it has in its lifetime.

Addition of probabilities

The law of independent probabilities tells us to use multiplication to
calculate the probability that both A and B will happen, assuming
the probabilities are independent. What about the probability of
an “or” rather than an “and?” If two events A and B are mutually
exclusive, then the probability of one or the other occurring is the
sum PA + PB. For instance, a bowler might have a 30% chance of
getting a strike (knocking down all ten pins) and a 20% chance of
knocking down nine of them. The bowler’s chance of knocking down
either nine pins or ten pins is therefore 50%.

It does not make sense to add probabilities of things that are not
mutually exclusive, i.e., that could both happen. Say I have a 90%
chance of eating lunch on any given day, and a 90% chance of eating
dinner. The probability that I will eat either lunch or dinner is not
180%.
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b / Normalization: the proba-
bility of picking land plus the
probability of picking water adds
up to 1.

Normalization

If I spin a globe and randomly pick a point on it, I have about a
70% chance of picking a point that’s in an ocean and a 30% chance
of picking a point on land. The probability of picking either wa-
ter or land is 70% + 30% = 100%. Water and land are mutually
exclusive, and there are no other possibilities, so the probabilities
had to add up to 100%. It works the same if there are more than
two possibilities — if you can classify all possible outcomes into a
list of mutually exclusive results, then all the probabilities have to
add up to 1, or 100%. This property of probabilities is known as
normalization.

Averages

Another way of dealing with randomness is to take averages. The
casino knows that in the long run, the number of times you win
will approximately equal the number of times you play multiplied
by the probability of winning. In the game mentioned above, where
the probability of winning is 0.001, if you spend a week playing,
and pay $2500 to play 10,000 times, you are likely to win about 10
times (10, 000×0.001 = 10), and collect $1000. On the average, the
casino will make a profit of $1500 from you. This is an example of
the following rule.

rule for calculating averages
If you conduct N identical, statistically independent trials,

and the probability of success in each trial is P , then on the
average, the total number of successful trials will be NP . If N
is large enough, the relative error in this estimate will become
small.

The statement that the rule for calculating averages gets more and
more accurate for larger and larger N (known popularly as the “law
of averages”) often provides a correspondence principle that con-
nects classical and quantum physics. For instance, the amount of
power produced by a nuclear power plant is not random at any
detectable level, because the number of atoms in the reactor is so
large. In general, random behavior at the atomic level tends to av-
erage out when we consider large numbers of atoms, which is why
physics seemed deterministic before physicists learned techniques for
studying atoms individually.

We can achieve great precision with averages in quantum physics
because we can use identical atoms to reproduce exactly the same
situation many times. If we were betting on horses or dice, we would
be much more limited in our precision. After a thousand races, the
horse would be ready to retire. After a million rolls, the dice would
be worn out.
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c / Why are dice random?

self-check A
Which of the following things must be independent, which could be in-
dependent, and which definitely are not independent?

(1) the probability of successfully making two free-throws in a row in
basketball

(2) the probability that it will rain in London tomorrow and the probability
that it will rain on the same day in a certain city in a distant galaxy

(3) your probability of dying today and of dying tomorrow

. Answer, p. 1046

Discussion questions

A Newtonian physics is an essentially perfect approximation for de-
scribing the motion of a pair of dice. If Newtonian physics is deterministic,
why do we consider the result of rolling dice to be random?

B Why isn’t it valid to define randomness by saying that randomness
is when all the outcomes are equally likely?

C The sequence of digits 121212121212121212 seems clearly nonran-
dom, and 41592653589793 seems random. The latter sequence, how-
ever, is the decimal form of pi, starting with the third digit. There is a story
about the Indian mathematician Ramanujan, a self-taught prodigy, that a
friend came to visit him in a cab, and remarked that the number of the
cab, 1729, seemed relatively uninteresting. Ramanujan replied that on
the contrary, it was very interesting because it was the smallest number
that could be represented in two different ways as the sum of two cubes.
The Argentine author Jorge Luis Borges wrote a short story called “The
Library of Babel,” in which he imagined a library containing every book
that could possibly be written using the letters of the alphabet. It would in-
clude a book containing only the repeated letter “a;” all the ancient Greek
tragedies known today, all the lost Greek tragedies, and millions of Greek
tragedies that were never actually written; your own life story, and various
incorrect versions of your own life story; and countless anthologies con-
taining a short story called “The Library of Babel.” Of course, if you picked
a book from the shelves of the library, it would almost certainly look like a
nonsensical sequence of letters and punctuation, but it’s always possible
that the seemingly meaningless book would be a science-fiction screen-
play written in the language of a Neanderthal tribe, or the lyrics to a set
of incomparably beautiful love songs written in a language that never ex-
isted. In view of these examples, what does it really mean to say that
something is random?
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d / Probability distribution for
the result of rolling a single die.

e / Rolling two dice and adding
them up.

f / A probability distribution
for height of human adults. (Not
real data.)

33.3 Probability distributions

So far we’ve discussed random processes having only two possible
outcomes: yes or no, win or lose, on or off. More generally, a random
process could have a result that is a number. Some processes yield
integers, as when you roll a die and get a result from one to six, but
some are not restricted to whole numbers, for example the number
of seconds that a uranium-238 atom will exist before undergoing
radioactive decay.

Consider a throw of a die. If the die is “honest,” then we expect
all six values to be equally likely. Since all six probabilities must
add up to 1, then probability of any particular value coming up
must be 1/6. We can summarize this in a graph, d. Areas under
the curve can be interpreted as total probabilities. For instance,
the area under the curve from 1 to 3 is 1/6 + 1/6 + 1/6 = 1/2, so
the probability of getting a result from 1 to 3 is 1/2. The function
shown on the graph is called the probability distribution.

Figure e shows the probabilities of various results obtained by rolling
two dice and adding them together, as in the game of craps. The
probabilities are not all the same. There is a small probability of
getting a two, for example, because there is only one way to do it,
by rolling a one and then another one. The probability of rolling
a seven is high because there are six different ways to do it: 1+6,
2+5, etc.

If the number of possible outcomes is large but finite, for example
the number of hairs on a dog, the graph would start to look like a
smooth curve rather than a ziggurat.

What about probability distributions for random numbers that are
not integers? We can no longer make a graph with probability on
the y axis, because the probability of getting a given exact num-
ber is typically zero. For instance, there is zero probability that
a radioactive atom will last for exactly 3 seconds, since there are
infinitely many possible results that are close to 3 but not exactly
three, for example 2.999999999999999996876876587658465436. It
doesn’t usually make sense, therefore, to talk about the probability
of a single numerical result, but it does make sense to talk about
the probability of a certain range of results. For instance, the prob-
ability that an atom will last more than 3 and less than 4 seconds is
a perfectly reasonable thing to discuss. We can still summarize the
probability information on a graph, and we can still interpret areas
under the curve as probabilities.

But the y axis can no longer be a unitless probability scale. In
radioactive decay, for example, we want the x axis to have units of
time, and we want areas under the curve to be unitless probabilities.
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g / A close-up of the right-
hand tail of the distribution shown
in the figure f.

h / The average of a proba-
bility distribution.

i / The full width at half maxi-
mum (FWHM) of a probability
distribution.

The area of a single square on the graph paper is then

(unitless area of a square)

= (width of square with time units)× (height of square).

If the units are to cancel out, then the height of the square must
evidently be a quantity with units of inverse time. In other words,
the y axis of the graph is to be interpreted as probability per unit
time, not probability.

Figure f shows another example, a probability distribution for peo-
ple’s height. This kind of bell-shaped curve is quite common.

self-check B
Compare the number of people with heights in the range of 130-135 cm
to the number in the range 135-140. . Answer, p. 1046

Looking for tall basketball players example 1
. A certain country with a large population wants to find very tall
people to be on its Olympic basketball team and strike a blow
against western imperialism. Out of a pool of 108 people who are
the right age and gender, how many are they likely to find who are
over 225 cm (7 feet 4 inches) in height? Figure g gives a close-up
of the “tail” of the distribution shown previously in figure f.

. The shaded area under the curve represents the probability that
a given person is tall enough. Each rectangle represents a prob-
ability of 0.2× 10−7 cm−1× 1 cm = 2× 10−8. There are about 35
rectangles covered by the shaded area, so the probability of hav-
ing a height greater than 225 cm is 7×10−7 , or just under one in
a million. Using the rule for calculating averages, the average, or
expected number of people this tall is (108)× (7× 10−7) = 70.

Average and width of a probability distribution

If the next Martian you meet asks you, “How tall is an adult hu-
man?,” you will probably reply with a statement about the average
human height, such as “Oh, about 5 feet 6 inches.” If you wanted
to explain a little more, you could say, “But that’s only an average.
Most people are somewhere between 5 feet and 6 feet tall.” Without
bothering to draw the relevant bell curve for your new extraterres-
trial acquaintance, you’ve summarized the relevant information by
giving an average and a typical range of variation.

The average of a probability distribution can be defined geometri-
cally as the horizontal position at which it could be balanced if it
was constructed out of cardboard, h. A convenient numerical mea-
sure of the amount of variation about the average, or amount of
uncertainty, is the full width at half maximum, or FWHM, defined
in figure g. (The FWHM was introduced on p. 481.)
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A great deal more could be said about this topic, and indeed an in-
troductory statistics course could spend months on ways of defining
the center and width of a distribution. Rather than force-feeding you
on mathematical detail or techniques for calculating these things, it
is perhaps more relevant to point out simply that there are various
ways of defining them, and to inoculate you against the misuse of
certain definitions.

The average is not the only possible way to say what is a typical
value for a quantity that can vary randomly; another possible defi-
nition is the median, defined as the value that is exceeded with 50%
probability. When discussing incomes of people living in a certain
town, the average could be very misleading, since it can be affected
massively if a single resident of the town is Bill Gates. Nor is the
FWHM the only possible way of stating the amount of random vari-
ation; another possible way of measuring it is the standard deviation
(defined as the square root of the average squared deviation from
the average value).

33.4 Exponential decay and half-life
Most people know that radioactivity “lasts a certain amount of
time,” but that simple statement leaves out a lot. As an example,
consider the following medical procedure used to diagnose thyroid
function. A very small quantity of the isotope 131I, produced in a
nuclear reactor, is fed to or injected into the patient. The body’s
biochemical systems treat this artificial, radioactive isotope exactly
the same as 127I, which is the only naturally occurring type. (Nu-
tritionally, iodine is a necessary trace element. Iodine taken into
the body is partly excreted, but the rest becomes concentrated in
the thyroid gland. Iodized salt has had iodine added to it to pre-
vent the nutritional deficiency known as goiters, in which the iodine-
starved thyroid becomes swollen.) As the 131I undergoes beta decay,
it emits electrons, neutrinos, and gamma rays. The gamma rays can
be measured by a detector passed over the patient’s body. As the
radioactive iodine becomes concentrated in the thyroid, the amount
of gamma radiation coming from the thyroid becomes greater, and
that emitted by the rest of the body is reduced. The rate at which
the iodine concentrates in the thyroid tells the doctor about the
health of the thyroid.

If you ever undergo this procedure, someone will presumably explain
a little about radioactivity to you, to allay your fears that you will
turn into the Incredible Hulk, or that your next child will have an
unusual number of limbs. Since iodine stays in your thyroid for
a long time once it gets there, one thing you’ll want to know is
whether your thyroid is going to become radioactive forever. They
may just tell you that the radioactivity “only lasts a certain amount
of time,” but we can now carry out a quantitative derivation of how
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the radioactivity really will die out.

Let Psurv(t) be the probability that an iodine atom will survive with-
out decaying for a period of at least t. It has been experimentally
measured that half all 131I atoms decay in 8 hours, so we have

Psurv(8 hr) = 0.5.

Now using the law of independent probabilities, the probability of
surviving for 16 hours equals the probability of surviving for the first
8 hours multiplied by the probability of surviving for the second 8
hours,

Psurv(16 hr) = 0.50× 0.50

= 0.25.

Similarly we have

Psurv(24 hr) = 0.50× 0.5× 0.5

= 0.125.

Generalizing from this pattern, the probability of surviving for any
time t that is a multiple of 8 hours is

Psurv(t) = 0.5t/8 hr.

We now know how to find the probability of survival at intervals
of 8 hours, but what about the points in time in between? What
would be the probability of surviving for 4 hours? Well, using the
law of independent probabilities again, we have

Psurv(8 hr) = Psurv(4 hr)× Psurv(4 hr),

which can be rearranged to give

Psurv(4 hr) =
√
Psurv(8 hr)

=
√

0.5

= 0.707.

This is exactly what we would have found simply by plugging in
Psurv(t) = 0.5t/8 hr and ignoring the restriction to multiples of 8
hours. Since 8 hours is the amount of time required for half of the
atoms to decay, it is known as the half-life, written t1/2. The general
rule is as follows:

exponential decay equation

Psurv(t) = 0.5t/t1/2

Using the rule for calculating averages, we can also find the number
of atoms, N(t), remaining in a sample at time t:

N(t) = N(0)× 0.5t/t1/2

Both of these equations have graphs that look like dying-out expo-
nentials, as in the example below.
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j / Calibration of the 14C dating method using tree rings and arti-
facts whose ages were known from other methods. Redrawn from Emilio
Segrè, Nuclei and Particles, 1965.

14C Dating example 2
Almost all the carbon on Earth is 12C, but not quite. The isotope
14C, with a half-life of 5600 years, is produced by cosmic rays in
the atmosphere. It decays naturally, but is replenished at such a
rate that the fraction of 14C in the atmosphere remains constant,
at 1.3 × 10−12 . Living plants and animals take in both 12C and
14C from the atmosphere and incorporate both into their bodies.
Once the living organism dies, it no longer takes in C atoms from
the atmosphere, and the proportion of 14C gradually falls off as
it undergoes radioactive decay. This effect can be used to find
the age of dead organisms, or human artifacts made from plants
or animals. Figure j shows the exponential decay curve of 14C
in various objects. Similar methods, using longer-lived isotopes,
prove the earth was billions of years old, not a few thousand as
some had claimed on religious grounds.
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Radioactive contamination at Chernobyl example 3
.One of the most dangerous radioactive isotopes released by the
Chernobyl disaster in 1986 was 90Sr, whose half-life is 28 years.
(a) How long will it be before the contamination is reduced to one
tenth of its original level? (b) If a total of 1027 atoms was released,
about how long would it be before not a single atom was left?

. (a) We want to know the amount of time that a 90Sr nucleus
has a probability of 0.1 of surviving. Starting with the exponential
decay formula,

Psur v = 0.5t/t1/2 ,

we want to solve for t . Taking natural logarithms of both sides,

ln P =
t

t1/2
ln 0.5,

so

t =
t1/2

ln 0.5
ln P

Plugging in P = 0.1 and t1/2 = 28 years, we get t = 93 years.

(b) This is just like the first part, but P = 10−27 . The result is
about 2500 years.

Rate of decay

If you want to find how many radioactive decays occur within a time
interval lasting from time t to time t+∆t, the most straightforward
approach is to calculate it like this:

(number of decays between t and t+ ∆t)

= N(t)−N(t+ ∆t)

= N(0) [Psurv(t)− Psurv(t+ ∆t)]

= N(0)
[
0.5t/t1/2 − 0.5(t+∆t)/t1/2

]
= N(0)

[
1− 0.5∆t/t1/2

]
0.5t/t1/2

A problem arises when ∆t is small compared to t1/2. For instance,
suppose you have a hunk of 1022 atoms of 235U, with a half-life of
700 million years, which is 2.2×1016 s. You want to know how many
decays will occur in ∆t = 1 s. Since we’re specifying the current
number of atoms, t = 0. As you plug in to the formula above on
your calculator, the quantity 0.5∆t/t1/2 comes out on your calculator
to equal one, so the final result is zero. That’s incorrect, though.
In reality, 0.5∆t/t1/2 should equal 0.999999999999999968, but your
calculator only gives eight digits of precision, so it rounded it off to
one. In other words, the probability that a 235U atom will survive
for 1 s is very close to one, but not equal to one. The number of
decays in one second is therefore 3.2× 105, not zero.
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Well, my calculator only does eight digits of precision, just like yours,
so how did I know the right answer? The way to do it is to use the
following approximation (see p. 1061):

ab ≈ 1 + b ln a, if b� 1

(The symbol � means “is much less than.”) Using it, we can find
the following approximation:

(number of decays between t and t+ ∆t)

= N(0)
[
1− 0.5∆t/t1/2

]
0.5t/t1/2

≈ N(0)

[
1−

(
1 +

∆t

t1/2
ln 0.5

)]
0.5t/t1/2

≈ (ln 2)N(0)0.5t/t1/2
∆t

t1/2

This also gives us a way to calculate the rate of decay, i.e., the
number of decays per unit time. Dividing by ∆t on both sides, we
have

(decays per unit time) ≈
(ln 2)N(0)

t1/2
0.5t/t1/2 , if ∆t� t1/2.

The hot potato example 4
. A nuclear physicist with a demented sense of humor tosses
you a cigar box, yelling “hot potato.” The label on the box says
“contains 1020 atoms of 17F, half-life of 66 s, produced today in
our reactor at 1 p.m.” It takes you two seconds to read the label,
after which you toss it behind some lead bricks and run away. The
time is 1:40 p.m. Will you die?

. The time elapsed since the radioactive fluorine was produced
in the reactor was 40 minutes, or 2400 s. The number of elapsed
half-lives is therefore t/t1/2 = 36. The initial number of atoms
was N(0) = 1020 . The number of decays per second is now
about 107 s−1, so it produced about 2×107 high-energy electrons
while you held it in your hands. Although twenty million electrons
sounds like a lot, it is not really enough to be dangerous.

By the way, none of the equations we’ve derived so far was the
actual probability distribution for the time at which a particular
radioactive atom will decay. That probability distribution would be
found by substituting N(0) = 1 into the equation for the rate of
decay.

If the sheer number of equations is starting to seem formidable,
let’s pause and think for a second. The simple equation for Psurv is
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something you can derive easily from the law of independent prob-
abilities any time you need it. From that, you can quickly find the
exact equation for the rate of decay. The derivation of the approx-
imate equations for ∆t � t is a little hairier, but note that except
for the factors of ln 2, everything in these equations can be found
simply from considerations of logic and units. For instance, a longer
half-life will obviously lead to a slower rate of decays, so it makes
sense that we divide by it. As for the ln 2 factors, they are exactly
the kind of thing that one looks up in a book when one needs to
know them.

Discussion questions

A In the medical procedure involving 131I, why is it the gamma rays
that are detected, not the electrons or neutrinos that are also emitted?

B For 1 s, Fred holds in his hands 1 kg of radioactive stuff with a
half-life of 1000 years. Ginger holds 1 kg of a different substance, with a
half-life of 1 min, for the same amount of time. Did they place themselves
in equal danger, or not?

C How would you interpret it if you calculated N(t), and found it was
less than one?

D Does the half-life depend on how much of the substance you have?
Does the expected time until the sample decays completely depend on
how much of the substance you have?

33.5
∫

Applications of calculus
The area under the probability distribution is of course an integral.
If we call the random number x and the probability distribution
D(x), then the probability that x lies in a certain range is given by

(probability of a ≤ x ≤ b) =

∫ b

a
D(x) dx.

What about averages? If x had a finite number of equally probable
values, we would simply add them up and divide by how many we
had. If they weren’t equally likely, we’d make the weighted average
x1P1 + x2P2+... But we need to generalize this to a variable x that
can take on any of a continuum of values. The continuous version
of a sum is an integral, so the average is

(average value of x) =

∫
xD(x) dx,

where the integral is over all possible values of x.
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Probability distribution for radioactive decay example 5
Here is a rigorous justification for the statement in section 33.4
that the probability distribution for radioactive decay is found by
substituting N(0) = 1 into the equation for the rate of decay. We
know that the probability distribution must be of the form

D(t) = k0.5t/t1/2 ,

where k is a constant that we need to determine. The atom is
guaranteed to decay eventually, so normalization gives us

(probability of 0 ≤ t <∞) = 1

=
∫ ∞

0
D(t) dt .

The integral is most easily evaluated by converting the function
into an exponential with e as the base

D(t) = k exp
[
ln
(

0.5t/t1/2

)]
= k exp

[
t

t1/2
ln 0.5

]
= k exp

(
− ln 2

t1/2
t
)

,

which gives an integral of the familiar form
∫

ecx dx = (1/c)ecx .
We thus have

1 = −
kt1/2

ln 2
exp

(
− ln 2

t1/2
t
)

,

which gives the desired result:

k =
ln 2
t1/2

.

Average lifetime example 6
You might think that the half-life would also be the average life-
time of an atom, since half the atoms’ lives are shorter and half
longer. But the half whose lives are longer include some that sur-
vive for many half-lives, and these rare long-lived atoms skew the
average. We can calculate the average lifetime as follows:

(average lifetime) =
∫ ∞

0
t D(t) dt

Using the convenient base-e form again, we have

(average lifetime) =
ln 2
t1/2

∫ ∞
0

t exp
(
− ln 2

t1/2
t
)

dt .

This integral is of a form that can either be attacked with in-
tegration by parts or by looking it up in a table. The result is
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∫
xecx dx = x

c ecx − 1
c2 ecx , and the first term can be ignored for

our purposes because it equals zero at both limits of integration.
We end up with

(average lifetime) =
ln 2
t1/2

(
t1/2

ln 2

)2

=
t1/2

ln 2
= 1.443 t1/2,

which is, as expected, longer than one half-life.

Section 33.5
∫
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Summary
Selected vocabulary
probability . . . . the likelihood that something will happen, ex-

pressed as a number between zero and one
normalization . . the property of probabilities that the sum of

the probabilities of all possible outcomes must
equal one

independence . . the lack of any relationship between two ran-
dom events

probability distri-
bution . . . . . .

a curve that specifies the probabilities of var-
ious random values of a variable; areas under
the curve correspond to probabilities

FWHM . . . . . . the full width at half-maximum of a probabil-
ity distribution; a measure of the width of the
distribution

half-life . . . . . . the amount of time that a radioactive atom
will survive with probability 1/2 without de-
caying

Notation
P . . . . . . . . . probability
t1/2 . . . . . . . . half-life

D . . . . . . . . . a probability distribution (used only in op-
tional section 33.5; not a standardized nota-
tion)

Summary

Quantum physics differs from classical physics in many ways, the
most dramatic of which is that certain processes at the atomic level,
such as radioactive decay, are random rather than deterministic.
There is a method to the madness, however: quantum physics still
rules out any process that violates conservation laws, and it also
offers methods for calculating probabilities numerically.

In this chapter we focused on certain generic methods of working
with probabilities, without concerning ourselves with any physical
details. Without knowing any of the details of radioactive decay,
for example, we were still able to give a fairly complete treatment
of the relevant probabilities. The most important of these generic
methods is the law of independent probabilities, which states that if
two random events are not related in any way, then the probability
that they will both occur equals the product of the two probabilities,

probability of A and B

= PAPB [if A and B are independent].

The most important application is to radioactive decay. The time
that a radioactive atom has a 50% chance of surviving is called
the half-life, t1/2. The probability of surviving for two half-lives is
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(1/2)(1/2) = 1/4, and so on. In general, the probability of surviving
a time t is given by

Psurv(t) = 0.5t/t1/2 .

Related quantities such as the rate of decay and probability distribu-
tion for the time of decay are given by the same type of exponential
function, but multiplied by certain constant factors.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 If a radioactive substance has a half-life of one year, does this
mean that it will be completely decayed after two years? Explain.

2 Many individuals carry the recessive gene for albinism, but
they are not albino unless they receive the gene from both their
parents. In the U.S., an individual’s probability of receiving the
gene from a given parent is about 0.014. What is the probability
that a given child will be born albino?

√

3 Problem 3 has been deleted.

4 Use a calculator to check the approximation that

ab ≈ 1 + b ln a,

if b � 1, using some arbitrary numbers. Then see how good the
approximation is for values of b that are not quite as small compared
to one.

5 Make up an example of a numerical problem involving a
rate of decay where ∆t � t1/2, but the exact expression for the
rate of decay on page 953 can still be evaluated on a calculator
without getting something that rounds off to zero. Check that you
get approximately the same result using both methods on pp. 953-
954 to calculate the number of decays between t and t + ∆t. Keep
plenty of significant figures in your results, in order to show the
difference between them.

6 Devise a method for testing experimentally the hypothesis that
a gambler’s chance of winning at craps is independent of her previous
record of wins and losses. If you don’t invoke the mathematical
definition of statistical independence, then you haven’t proposed a
test. This has nothing to do with the details of the rules of craps,
or with the fact that it’s a game played using dice.

7 Refer to the probability distribution for people’s heights in
figure f on page 948.
(a) Show that the graph is properly normalized.
(b) Estimate the fraction of the population having heights between
140 and 150 cm.

√
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Problem 8.

8 (a) A nuclear physicist is studying a nuclear reaction caused in
an accelerator experiment, with a beam of ions from the accelerator
striking a thin metal foil and causing nuclear reactions when a nu-
cleus from one of the beam ions happens to hit one of the nuclei in
the target. After the experiment has been running for a few hours,
a few billion radioactive atoms have been produced, embedded in
the target. She does not know what nuclei are being produced, but
she suspects they are an isotope of some heavy element such as Pb,
Bi, Fr or U. Following one such experiment, she takes the target foil
out of the accelerator, sticks it in front of a detector, measures the
activity every 5 min, and makes a graph (figure). The isotopes she
thinks may have been produced are:

isotope half-life (minutes)
211Pb 36.1
214Pb 26.8
214Bi 19.7
223Fr 21.8
239U 23.5

Which one is it?
(b) Having decided that the original experimental conditions pro-
duced one specific isotope, she now tries using beams of ions travel-
ing at several different speeds, which may cause different reactions.
The following table gives the activity of the target 10, 20 and 30 min-
utes after the end of the experiment, for three different ion speeds.

activity (millions of decays/s) after. . .
10 min 20 min 30 min

first ion speed 1.933 0.832 0.382
second ion speed 1.200 0.545 0.248
third ion speed 7.211 1.296 0.248

Since such a large number of decays is being counted, assume that
the data are only inaccurate due to rounding off when writing down
the table. Which are consistent with the production of a single
isotope, and which imply that more than one isotope was being
created?
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9 All helium on earth is from the decay of naturally occurring
heavy radioactive elements such as uranium. Each alpha particle
that is emitted ends up claiming two electrons, which makes it a
helium atom. If the original 238U atom is in solid rock (as opposed
to the earth’s molten regions), the He atoms are unable to diffuse
out of the rock. This problem involves dating a rock using the
known decay properties of uranium 238. Suppose a geologist finds
a sample of hardened lava, melts it in a furnace, and finds that it
contains 1230 mg of uranium and 2.3 mg of helium. 238U decays by
alpha emission, with a half-life of 4.5 × 109 years. The subsequent
chain of alpha and electron (beta) decays involves much shorter half-
lives, and terminates in the stable nucleus 206Pb. (You may want to
review alpha and beta decay.) Almost all natural uranium is 238U,
and the chemical composition of this rock indicates that there were
no decay chains involved other than that of 238U.
(a) How many alphas are emitted in decay chain of a single 238U
atom?
[Hint: Use conservation of mass.]
(b) How many electrons are emitted per decay chain?
[Hint: Use conservation of charge.]
(c) How long has it been since the lava originally hardened?

√

10 Physicists thought for a long time that bismuth-209 was the
heaviest stable isotope. (Very heavy elements decay by alpha emis-
sion because of the strong electrical repulsion of all their protons.)
However, a 2003 paper by Marcillac et al. describes an experiment
in which bismuth-209 lost its claim to fame — it actually undergoes
alpha decay with a half-life of 1.9× 1019 years.
(a) After the alpha particle is emitted, what is the isotope left over?
(b) Compare the half-life to the age of the universe, which is about
14 billion years.
(c) A tablespoon of Pepto-Bismol contains about 4× 1020 bismuth-
209 atoms. Once you’ve swallowed it, how much time will it take,
on the average, before the first atomic decay?

√

11 A blindfolded person fires a gun at a circular target of radius
b, and is allowed to continue firing until a shot actually hits it. Any
part of the target is equally likely to get hit. We measure the random
distance r from the center of the circle to where the bullet went in.
(a) Show that the probability distribution of r must be of the form
D(r) = kr, where k is some constant. (Of course we have D(r) = 0
for r > b.)
(b) Determine k by requiring D to be properly normalized.

√

(c) Find the average value of r.
√

(d) Interpreting your result from part c, how does it compare with
b/2? Does this make sense? Explain.

∫
12 We are given some atoms of a certain radioactive isotope,
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with half-life t1/2. We pick one atom at random, and observe it for
one half-life, starting at time zero. If it decays during that one-half-
life period, we record the time t at which the decay occurred. If it
doesn’t, we reset our clock to zero and keep trying until we get an
atom that cooperates. The final result is a time 0 ≤ t ≤ t1/2, with a
distribution that looks like the usual exponential decay curve, but
with its tail chopped off.
(a) Find the distribution D(t), with the proper normalization.

√

(b) Find the average value of t.
√

(c) Interpreting your result from part b, how does it compare with
t1/2/2? Does this make sense? Explain.

∫
13 The speed, v, of an atom in an ideal gas has a probability
distribution of the form D(v) = bve−cv

2
, where 0 ≤ v <∞, c relates

to the temperature, and b is determined by normalization.
(a) Sketch the distribution.
(b) Find b in terms of c.

√

(c) Find the average speed in terms of c, eliminating b. (Don’t try
to do the indefinite integral, because it can’t be done in closed form.
The relevant definite integral can be found in tables or done with
computer software.)

√ ∫
14 Neutrinos interact so weakly with normal matter that, of
the neutrinos from the sun that enter the earth from the day side,
only about 10−10 of them fail to reemerge on the night side. From
this fact, estimate the thickness of matter, in units of light-years,
that would be required in order to block half of them. This “half-
distance” is analogous to a half-life for radioactive decay.
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In recent decades, a huge hole in the ozone layer has spread out from
Antarctica.

Chapter 34

Light as a Particle

The only thing that interferes with my learning is my educa-
tion.

Albert Einstein

Radioactivity is random, but do the laws of physics exhibit ran-
domness in other contexts besides radioactivity? Yes. Radioactive
decay was just a good playpen to get us started with concepts of
randomness, because all atoms of a given isotope are identical. By
stocking the playpen with an unlimited supply of identical atom-
toys, nature helped us to realize that their future behavior could be
different regardless of their original identicality. We are now ready
to leave the playpen, and see how randomness fits into the structure
of physics at the most fundamental level.

The laws of physics describe light and matter, and the quantum
revolution rewrote both descriptions. Radioactivity was a good ex-
ample of matter’s behaving in a way that was inconsistent with
classical physics, but if we want to get under the hood and under-
stand how nonclassical things happen, it will be easier to focus on
light rather than matter. A radioactive atom such as uranium-235
is after all an extremely complex system, consisting of 92 protons,
143 neutrons, and 92 electrons. Light, however, can be a simple sine
wave.

However successful the classical wave theory of light had been — al-
lowing the creation of radio and radar, for example — it still failed
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to describe many important phenomena. An example that is cur-
rently of great interest is the way the ozone layer protects us from
the dangerous short-wavelength ultraviolet part of the sun’s spec-
trum. In the classical description, light is a wave. When a wave
passes into and back out of a medium, its frequency is unchanged,
and although its wavelength is altered while it is in the medium,
it returns to its original value when the wave reemerges. Luckily
for us, this is not at all what ultraviolet light does when it passes
through the ozone layer, or the layer would offer no protection at
all!

34.1 Evidence for light as a particle

a / Images made by a digital cam-
era. In each successive image,
the dim spot of light has been
made even dimmer.

For a long time, physicists tried to explain away the problems with
the classical theory of light as arising from an imperfect understand-
ing of atoms and the interaction of light with individual atoms and
molecules. The ozone paradox, for example, could have been at-
tributed to the incorrect assumption that the ozone layer was a
smooth, continuous substance, when in reality it was made of indi-
vidual ozone molecules. It wasn’t until 1905 that Albert Einstein
threw down the gauntlet, proposing that the problem had nothing to
do with the details of light’s interaction with atoms and everything
to do with the fundamental nature of light itself.

In those days the data were sketchy, the ideas vague, and the ex-
periments difficult to interpret; it took a genius like Einstein to cut
through the thicket of confusion and find a simple solution. Today,
however, we can get right to the heart of the matter with a piece of
ordinary consumer electronics, the digital camera. Instead of film, a
digital camera has a computer chip with its surface divided up into a
grid of light-sensitive squares, called “pixels.” Compared to a grain
of the silver compound used to make regular photographic film, a
digital camera pixel is activated by an amount of light energy or-
ders of magnitude smaller. We can learn something new about light
by using a digital camera to detect smaller and smaller amounts of
light, as shown in figures a/1 through a/3. Figure 1 is fake, but 2
and 3 are real digital-camera images made by Prof. Lyman Page
of Princeton University as a classroom demonstration. Figure 1 is
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b / A water wave is partially
absorbed.

c / A stream of bullets is par-
tially absorbed.

what we would see if we used the digital camera to take a picture of
a fairly dim source of light. In figures 2 and 3, the intensity of the
light was drastically reduced by inserting semitransparent absorbers
like the tinted plastic used in sunglasses. Going from 1 to 2 to 3,
more and more light energy is being thrown away by the absorbers.

The results are dramatically different from what we would expect
based on the wave theory of light. If light was a wave and nothing
but a wave, b, then the absorbers would simply cut down the wave’s
amplitude across the whole wavefront. The digital camera’s entire
chip would be illuminated uniformly, and weakening the wave with
an absorber would just mean that every pixel would take a long time
to soak up enough energy to register a signal.

But figures a/2 and a/3 show that some pixels take strong hits while
others pick up no energy at all. Instead of the wave picture, the im-
age that is naturally evoked by the data is something more like a
hail of bullets from a machine gun, c. Each “bullet” of light appar-
ently carries only a tiny amount of energy, which is why detecting
them individually requires a sensitive digital camera rather than an
eye or a piece of film.

Although Einstein was interpreting different observations, this is
the conclusion he reached in his 1905 paper: that the pure wave
theory of light is an oversimplification, and that the energy of a beam
of light comes in finite chunks rather than being spread smoothly
throughout a region of space.

d / Einstein and Seurat: twins
separated at birth? Detail from
Seine Grande Jatte by Georges
Seurat, 1886.
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e / Apparatus for observing
the photoelectric effect. A beam
of light strikes a capacitor plate
inside a vacuum tube, and elec-
trons are ejected (black arrows).

We now think of these chunks as particles of light, and call them
“photons,” although Einstein avoided the word “particle,” and the
word “photon” was invented later. Regardless of words, the trou-
ble was that waves and particles seemed like inconsistent categories.
The reaction to Einstein’s paper could be kindly described as vig-
orously skeptical. Even twenty years later, Einstein wrote, “There
are therefore now two theories of light, both indispensable, and —
as one must admit today despite twenty years of tremendous effort
on the part of theoretical physicists — without any logical connec-
tion.” In the remainder of this chapter we will learn how the seeming
paradox was eventually resolved.

Discussion questions

A Suppose someone rebuts the digital camera data in figure a, claim-
ing that the random pattern of dots occurs not because of anything fun-
damental about the nature of light but simply because the camera’s pixels
are not all exactly the same — some are just more sensitive than others.
How could we test this interpretation?

B Discuss how the correspondence principle applies to the observa-
tions and concepts discussed in this section.

34.2 How much light is one photon?
The photoelectric effect

We have seen evidence that light energy comes in little chunks, so
the next question to be asked is naturally how much energy is in one
chunk. The most straightforward experimental avenue for address-
ing this question is a phenomenon known as the photoelectric effect.
The photoelectric effect occurs when a photon strikes the surface of
a solid object and knocks out an electron. It occurs continually all
around you. It is happening right now at the surface of your skin
and on the paper or computer screen from which you are reading
these words. It does not ordinarily lead to any observable electrical
effect, however, because on the average, free electrons are wandering
back in just as frequently as they are being ejected. (If an object
did somehow lose a significant number of electrons, its growing net
positive charge would begin attracting the electrons back more and
more strongly.)

Figure e shows a practical method for detecting the photoelectric
effect. Two very clean parallel metal plates (the electrodes of a ca-
pacitor) are sealed inside a vacuum tube, and only one plate is ex-
posed to light. Because there is a good vacuum between the plates,
any ejected electron that happens to be headed in the right direc-
tion will almost certainly reach the other capacitor plate without
colliding with any air molecules.

The illuminated (bottom) plate is left with a net positive charge,
and the unilluminated (top) plate acquires a negative charge from
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f / The hamster in her hamster
ball is like an electron emerging
from the metal (tiled kitchen floor)
into the surrounding vacuum
(wood floor). The wood floor is
higher than the tiled floor, so as
she rolls up the step, the hamster
will lose a certain amount of
kinetic energy, analogous to Es.
If her kinetic energy is too small,
she won’t even make it up the
step.

the electrons deposited on it. There is thus an electric field between
the plates, and it is because of this field that the electrons’ paths are
curved, as shown in the diagram. However, since vacuum is a good
insulator, any electrons that reach the top plate are prevented from
responding to the electrical attraction by jumping back across the
gap. Instead they are forced to make their way around the circuit,
passing through an ammeter. The ammeter measures the strength
of the photoelectric effect.

An unexpected dependence on frequency

The photoelectric effect was discovered serendipitously by Heinrich
Hertz in 1887, as he was experimenting with radio waves. He was not
particularly interested in the phenomenon, but he did notice that the
effect was produced strongly by ultraviolet light and more weakly by
lower frequencies. Light whose frequency was lower than a certain
critical value did not eject any electrons at all.1 This dependence on
frequency didn’t make any sense in terms of the classical wave theory
of light. A light wave consists of electric and magnetic fields. The
stronger the fields, i.e., the greater the wave’s amplitude, the greater
the forces that would be exerted on electrons that found themselves
bathed in the light. It should have been amplitude (brightness) that
was relevant, not frequency. The dependence on frequency not only
proves that the wave model of light needs modifying, but with the
proper interpretation it allows us to determine how much energy is
in one photon, and it also leads to a connection between the wave
and particle models that we need in order to reconcile them.

To make any progress, we need to consider the physical process by
which a photon would eject an electron from the metal electrode. A
metal contains electrons that are free to move around. Ordinarily,
in the interior of the metal, such an electron feels attractive forces
from atoms in every direction around it. The forces cancel out. But
if the electron happens to find itself at the surface of the metal,
the attraction from the interior side is not balanced out by any
attraction from outside. In popping out through the surface the
electron therefore loses some amount of energy Es, which depends
on the type of metal used.

Suppose a photon strikes an electron, annihilating itself and giving
up all its energy to the electron.2 The electron will (1) lose kinetic
energy through collisions with other electrons as it plows through
the metal on its way to the surface; (2) lose an amount of kinetic
energy equal to Es as it emerges through the surface; and (3) lose
more energy on its way across the gap between the plates, due to

1In fact this was all prior to Thomson’s discovery of the electron, so Hertz
would not have described the effect in terms of electrons — we are discussing
everything with the benefit of hindsight.

2We now know that this is what always happens in the photoelectric effect,
although it had not yet been established in 1905 whether or not the photon was
completely annihilated.
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g / A different way of study-
ing the photoelectric effect.

h / The quantity Es + e∆V in-
dicates the energy of one photon.
It is found to be proportional to
the frequency of the light.

the electric field between the plates. Even if the electron happens to
be right at the surface of the metal when it absorbs the photon, and
even if the electric field between the plates has not yet built up very
much, Es is the bare minimum amount of energy that the electron
must receive from the photon if it is to contribute to a measurable
current. The reason for using very clean electrodes is to minimize Es
and make it have a definite value characteristic of the metal surface,
not a mixture of values due to the various types of dirt and crud
that are present in tiny amounts on all surfaces in everyday life.

We can now interpret the frequency dependence of the photoelectric
effect in a simple way: apparently the amount of energy possessed
by a photon is related to its frequency. A low-frequency red or
infrared photon has an energy less than Es, so a beam of them will
not produce any current. A high-frequency blue or violet photon,
on the other hand, packs enough of a punch to allow an electron to
get out of the electrode. At frequencies higher than the minimum,
the photoelectric current continues to increase with the frequency
of the light because of effects (1) and (3).

Numerical relationship between energy and frequency

Figure g shows an experiment that is used sometimes in college
laboratory courses to probe the relationship between the energy and
frequency of a photon. The idea is simply to illuminate one plate of
the vacuum tube with light of a single wavelength and monitor the
voltage difference between the two plates as they charge up. Since
the resistance of a voltmeter is very high (much higher than the
resistance of an ammeter), we can assume to a good approximation
that electrons reaching the top plate are stuck there permanently,
so the voltage will keep on increasing for as long as electrons are
making it across the vacuum tube.

At a moment when the voltage difference has reached a value ∆V ,
the minimum energy required by an electron to make it out of the
bottom plate and across the gap to the other plate is Es + e∆V.
As ∆V increases, we eventually reach a point at which Es + e∆V
equals the energy of one photon. No more electrons can cross the
gap, and the reading on the voltmeter stops rising. The quantity
Es+e∆V now tells us the energy of one photon. If we determine this
energy for a variety of frequencies, h, we find the following simple
relationship between the energy of a photon and the frequency of
the light:

E = hf ,

where h is a constant with a numerical value of 6.63 × 10−34 J ·s.
Note how the equation brings the wave and particle models of light
under the same roof: the left side is the energy of one particle of
light, while the right side is the frequency of the same light, inter-
preted as a wave. The constant h is known as Planck’s constant,
after theorist Max Planck.
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self-check A
How would you extract h from the graph in figure h? What if you didn’t
even know Es in advance, and could only graph e∆V versus f? .

Answer, p. 1046

Since the energy of a photon is hf , a beam of light can only have
energies of hf , 2hf , 3hf , etc. Its energy is quantized — there is no
such thing as a fraction of a photon. Quantum physics gets its name
from the fact that it quantizes things like energy, momentum, and
angular momentum that had previously been thought to be smooth,
continuous and infinitely divisible.

Number of photons emitted by a lightbulb per second example 1
. Roughly how many photons are emitted by a 100-W lightbulb in
1 second?

. People tend to remember wavelengths rather than frequencies
for visible light. The bulb emits photons with a range of frequen-
cies and wavelengths, but let’s take 600 nm as a typical wave-
length for purposes of estimation. The energy of a single photon
is

Ephoton = hf

=
hc
λ

A power of 100 W means 100 joules per second, so the number
of photons is

100 J
Ephoton

=
100 J
hc/λ

≈ 3× 1020.

This hugeness of this number is consistent with the correspon-
dence principle. The experiments that established the classical
theory of optics weren’t wrong. They were right, within their do-
main of applicability, in which the number of photons was so large
as to be indistinguishable from a continuous beam.

Measuring the wave example 2
When surfers are out on the water waiting for their chance to
catch a wave, they’re interested in both the height of the waves
and when the waves are going to arrive. In other words, they ob-
serve both the amplitude and phase of the waves, and it doesn’t
matter to them that the water is granular at the molecular level.
The correspondence principle requires that we be able to do the
same thing for electromagnetic waves, since the classical theory
of electricity and magnetism was all stated and verified experi-
mentally in terms of the fields E and B, which are the amplitude of
an electromagnetic wave. The phase is also necessary, since the
laws of induction predict different results depending on whether
an oscillating field is on its way up or on its way back down.
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This is a more demanding application of the correspondence prin-
ciple than the one in example 1, since amplitudes and phases
constitute more detailed information than the over-all intensity of
a beam of light. Eyeball measurements can’t detect this type of in-
formation, since the eye is much bigger than a wavelength, but for
example an AM radio receiver can do it with radio waves, since
the wavelength for a station at 1000 kHz is about 300 meters,
which is much larger than the antenna. The correspondence prin-
ciple demands that we be able to explain this in terms of the pho-
ton theory, and this requires not just that we have a large number
of photons emitted by the transmitter per second, as in example 1,
but that even by the time they spread out and reach the receiving
antenna, there should be many photons overlapping each other
within a space of one cubic wavelength. Problem 13 on p. 986
verifies that the number is in fact extremely large.

Momentum of a photon example 3
. According to the theory of relativity, the momentum of a beam
of light is given by p = E/c (see homework problem 12 on page
813). Apply this to find the momentum of a single photon in terms
of its frequency, and in terms of its wavelength.

. Combining the equations p = E/c and E = hf , we find

p =
E
c

=
hf
c

.

To reexpress this in terms of wavelength, we use c = fλ:

p =
hf
fλ

=
h
λ

The second form turns out to be simpler.

Discussion questions

A The photoelectric effect only ever ejects a very tiny percentage of
the electrons available near the surface of an object. How well does this
agree with the wave model of light, and how well with the particle model?
Consider the two different distance scales involved: the wavelength of the
light, and the size of an atom, which is on the order of 10−10 or 10−9 m.

B What is the significance of the fact that Planck’s constant is numeri-
cally very small? How would our everyday experience of light be different
if it was not so small?

C How would the experiments described above be affected if a single
electron was likely to get hit by more than one photon?

D Draw some representative trajectories of electrons for ∆V = 0, ∆V
less than the maximum value, and ∆V greater than the maximum value.
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E Does E = hf imply that a photon changes its energy when it passes
from one transparent material into another substance with a different in-
dex of refraction?

34.3 Wave-particle duality
How can light be both a particle and a wave? We are now ready
to resolve this seeming contradiction. Often in science when some-
thing seems paradoxical, it’s because we (1) don’t define our terms
carefully, or (2) don’t test our ideas against any specific real-world
situation. Let’s define particles and waves as follows:

• Waves exhibit superposition, and specifically interference phe-
nomena.

• Particles can only exist in whole numbers, not fractions.

As a real-world check on our philosophizing, there is one particular
experiment that works perfectly. We set up a double-slit interference
experiment that we know will produce a diffraction pattern if light is
an honest-to-goodness wave, but we detect the light with a detector
that is capable of sensing individual photons, e.g., a digital camera.
To make it possible to pick out individual dots due to individual
photons, we must use filters to cut down the intensity of the light
to a very low level, just as in the photos by Prof. Page on p. 966.
The whole thing is sealed inside a light-tight box. The results are
shown in figure i. (In fact, the similar figures in on page 966 are
simply cutouts from these figures.)

i / Wave interference patterns
photographed by Prof. Lyman
Page with a digital camera. Laser
light with a single well-defined
wavelength passed through a
series of absorbers to cut down
its intensity, then through a set of
slits to produce interference, and
finally into a digital camera chip.
(A triple slit was actually used,
but for conceptual simplicity we
discuss the results in the main
text as if it was a double slit.) In
panel 2 the intensity has been
reduced relative to 1, and even
more so for panel 3.

Neither the pure wave theory nor the pure particle theory can ex-
plain the results. If light was only a particle and not a wave, there
would be no interference effect. The result of the experiment would
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j / Bullets pass through a double
slit.

k / A water wave passes through
a double slit.

l / A single photon can go
through both slits.

be like firing a hail of bullets through a double slit, j. Only two
spots directly behind the slits would be hit.

If, on the other hand, light was only a wave and not a particle, we
would get the same kind of diffraction pattern that would happen
with a water wave, k. There would be no discrete dots in the photo,
only a diffraction pattern that shaded smoothly between light and
dark.

Applying the definitions to this experiment, light must be both a
particle and a wave. It is a wave because it exhibits interference
effects. At the same time, the fact that the photographs contain
discrete dots is a direct demonstration that light refuses to be split
into units of less than a single photon. There can only be whole
numbers of photons: four photons in figure i/3, for example.

A wrong interpretation: photons interfering with each other

One possible interpretation of wave-particle duality that occurred
to physicists early in the game was that perhaps the interference
effects came from photons interacting with each other. By analogy,
a water wave consists of moving water molecules, and interference
of water waves results ultimately from all the mutual pushes and
pulls of the molecules. This interpretation has been conclusively
disproved by forming interference patterns with light so dim that
no more than one photon is in flight at a time. In figure i/3, for
example, the intensity of the light has been cut down so much by the
absorbers that if it was in the open, the average separation between
photons would be on the order of a kilometer! Although most light
sources tend to emit photons in bunches, experiments have been
done with light sources that really do emit single photons at wide
time intervals, and the same type of interference pattern is observed,
showing that a single photon can interfere with itself.

The concept of a photon’s path is undefined.

If a single photon can demonstrate double-slit interference, then
which slit did it pass through? The unavoidable answer must be
that it passes through both! This might not seem so strange if we
think of the photon as a wave, but it is highly counterintuitive if
we try to visualize it as a particle. The moral is that we should not
think in terms of the path of a photon. Like the fully human and
fully divine Jesus of Christian theology, a photon is supposed to be
100% wave and 100% particle. If a photon had a well defined path,
then it would not demonstrate wave superposition and interference
effects, contradicting its wave nature. (In sec. 35.4 we will discuss
the Heisenberg uncertainty principle, which gives a numerical way
of approaching this issue.)
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m / Example 4.

The probability interpretation

The correct interpretation of wave-particle duality is suggested by
the random nature of the experiment we’ve been discussing: even
though every photon wave/particle is prepared and released in the
same way, the location at which it is eventually detected by the
digital camera is different every time. The idea of the probability
interpretation of wave-particle duality is that the location of the
photon-particle is random, but the probability that it is in a certain
location is higher where the photon-wave’s amplitude is greater.

More specifically, the probability distribution of the particle must
be proportional to the square of the wave’s amplitude,

(probability distribution) ∝ (amplitude)2.

This follows from the correspondence principle and from the fact
that a wave’s energy density is proportional to the square of its am-
plitude. If we run the double-slit experiment for a long enough time,
the pattern of dots fills in and becomes very smooth as would have
been expected in classical physics. To preserve the correspondence
between classical and quantum physics, the amount of energy de-
posited in a given region of the picture over the long run must be
proportional to the square of the wave’s amplitude. The amount of
energy deposited in a certain area depends on the number of pho-
tons picked up, which is proportional to the probability of finding
any given photon there.

A microwave oven example 4
. The figure shows two-dimensional (top) and one-dimensional
(bottom) representations of the standing wave inside a microwave
oven. Gray represents zero field, and white and black signify the
strongest fields, with white being a field that is in the opposite di-
rection compared to black. Compare the probabilities of detecting
a microwave photon at points A, B, and C.

. A and C are both extremes of the wave, so the probabilities of
detecting a photon at A and C are equal. It doesn’t matter that we
have represented C as negative and A as positive, because it is
the square of the amplitude that is relevant. The amplitude at B is
about 1/2 as much as the others, so the probability of detecting a
photon there is about 1/4 as much.

Discussion questions

A Referring back to the example of the carrot in the microwave oven,
show that it would be nonsensical to have probability be proportional to
the field itself, rather than the square of the field.

B Einstein did not try to reconcile the wave and particle theories of
light, and did not say much about their apparent inconsistency. Einstein
basically visualized a beam of light as a stream of bullets coming from
a machine gun. In the photoelectric effect, a photon “bullet” would only
hit one atom, just as a real bullet would only hit one person. Suppose
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n / A photon hits a piece of
glass that reflects half of the light
and transmits the other half.

someone reading his 1905 paper wanted to interpret it by saying that
Einstein’s so-called particles of light are simply short wave-trains that only
occupy a small region of space. Comparing the wavelength of visible light
(a few hundred nm) to the size of an atom (on the order of 0.1 nm), explain
why this poses a difficulty for reconciling the particle and wave theories.

C Can a white photon exist?

D In double-slit diffraction of photons, would you get the same pattern
of dots on the digital camera image if you covered one slit? Why should it
matter whether you give the photon two choices or only one?

34.4 Nonlocality and entanglement
Nonlocality

People sometimes say that quantum mechanics is the set of rules for
describing the world of the very small, but this is a false general-
ization, like saying that terriers are untrainable. How do we define
our measure of how small is small? The only distance scales we’ve
discussed have been wavelengths, and there is no upper limit on
wavelengths. The wavelength of an FM radio photon is bigger than
my terrier, who is very obedient to Newton’s laws. The only scale
built in to the structure of quantum mechanics is Planck’s constant,
and Planck’s constant has units of joules per hertz, not meters, so it
can’t be converted into a distance. Quantum mechanics is, as far as
we can tell, a valid tool for describing systems at scales from quarks
to galaxies.

So quantum behavior can occur at any scale, even large ones. For an
example that may be a little disturbing, consider the arrangement
shown in figure n. A single photon comes in from the left and
encounters a diagonal piece of glass. The glass reflects half the light
and transmits half of it. The photon is a wave, and this is expected
wave behavior. But the photon is also a particle, and we can’t have
half a particle. Therefore either camera A will detect a whole photon
and B will see none, or it will be the other way around. If we repeat
the experiment many times times, we might come up with a list of
results like this:

A B

no yes
yes no
yes no
no yes
no yes
yes no
no yes
yes no

An instant before the moment of detection, the photon is a wave
pattern that just happens to consist of two widely separated pieces,
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each carrying half the energy. The situation seems perfectly sym-
metric, but then a moment later we find that B has detected the
photon and A hasn’t. If B’s detection of the photon is random, then
how does the information get to A that it had better not detect it?
This seems as though there is some sort of conspiracy being carried
out over arbitrarily large distances and with no time delay. It’s as
though the two parts of the wave are a pair of criminal suspects who
would like to line up their stories but are being kept in separate jail
cells so that they can’t communicate. If the part of the wave at B is
going to be detected (at full strength, carrying 100% of the energy
E = hf), how does the part at A get the message that it should fade
away like the Cheshire cat? This coordination would have to occur
over very large distances — real-world experiments of this type have
been done over distances of a thousand kilometers, with the photons
traveling either through outer space or through fiber-optic cables.
Einstein derisively referred to this apparent coordination as “spooky
action at a distance.”

Niels Bohr and two collaborators proposed in 1924 the seemingly
reasonable solution that there can’t be any such coordination. Then
the random detection of the photon by camera A and camera B
would be independent. Independent probabilities multiply, so there
would be a probability of (1/2)(1/2) = 1/4 that both cameras would
see photons. This would violate conservation of energy, since the
original energy E = hf would have been detected twice, and the
universe would have gained 1hf worth of total energy. But Bohr
pointed out that there would also be the same probability that nei-
ther camera would detect a photon, in which case the change in the
universe’s energy would be −1hf . On the average, energy would
be conserved. According to Bohr’s theory, conservation of energy
and momentum would not be absolute laws of physics but only rules
that would be true on the average.

The experimentalists Geiger and Bothe immediately set out to test
this prediction. They performed an experiment analogous to the
one in figure n, but with x-rays rather than visible light. Their
results, published in 1926, showed that if one detector saw the x-ray
photon, the other did not, so that energy was always conserved at
the microscopic level, not just on the average. We never observe an
outcome in which both A and B detect a photon, or one in which
neither detects it. That is, the occurrence of event A (camera A
sees a photon) and event B (camera B sees one) are both random,
but they are not independent.

Entanglement

At a 1927 conference in Brussels, Einstein protested that this was
a problem, because the two detectors could in principle make their
observations simultaneously, and it would then seem that some influ-
ence or communication was being transmitted between them faster
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than the speed of light. “It seems to me,” he complained, “that this
difficulty cannot be overcome unless the description of the process
in terms of the . . . wave is supplemented by some detailed specifi-
cation of the [trajectory of the particle]. . . . If one works only with
. . . waves, the interpretation . . . , I think, contradicts the postulate
of relativity.”

The experimental fact ends up being that the spooky action at a
distance exists, and it does go faster than light. In 2012, Guerreiro
et al.3 carried out a very direct and conceptually simple enactment
of exactly the experiment in figure n, with electronic timing precise
enough to prove that the detection events at A and B were sepa-
rated from each other by too great a distance to have been linked
by any influence traveling at ≤ c. These findings are summarized by
saying that quantum mechanics is nonlocal. A single wave-particle
can be spread out over an arbitrarily large region of space, but its
interactions that transfer energy and momentum are always corre-
lated over these distances in such a way that the conservation laws
are maintained.

What Einstein had not originally appreciated was that these correla-
tions do not violate relativity because they do not actually transport
any energy, or even any information, between A and B. For exam-
ple, if Alice is at detector A, and Bob is at B, a million kilometers
away, Alice can detect the photon and know immediately that Bob
did not detect it. She learns something seemingly instantaneously
about Bob — Bob is probably sad and disappointed right now. But
because Bob does not have any control over the result, he cannot
use this fact to send a message to Alice, so there is no transmission
of information. Alice and Bob’s states are said to be entangled.

o / Entanglement is like finding
that you only have your left glove,
so that you must have left your
right glove at home. There is a
gain in information, but no sudden
transmission of information from
the dog to you.

By analogy, suppose that you head off to work on a winter day in
New York. As you step out of the subway station into the cold air,
you reach into your pockets for your gloves, but you find that you
only have your left glove. Oh, you must have dropped your right

3arxiv.org/abs/1204.1712. The paper is very readable.
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glove on the floor while you were petting your adorable terrier on
the way out the door. The presence of your left glove tells you that
your right glove must be at home. But there has been no spooky
action at a distance. You have simply recovered some information
about a region of space that lies at some distance from you.

Einstein and Bohr had strong physical intuitions that led them to
incorrect predictions about experiments, and these predictions were
the fruits of inappropriate mental pictures of what was going on.
If we take the principles of quantum mechanics seriously, then the
correct picture is the following. Before the photon in figure n hits
the glass diagonal, the state of things is the following.

A photon is headed to the right.

Our photon is then partially reflected and partially transmitted.
Now we have a superposition of two wave patterns:

c
The photon has been
reflected upward.

+ c′
The photon has con-
tinue to the right.

,

where the amplitudes c and c′ are equal in absolute value.4

Let’s say that the cameras are at equal distances from the glass
diagonal, so that their chances to detect the photon occur simulta-
neously.5 After detection, we have this:

c
Camera A detected a
photon and B didn’t.

+ c′
B detected a photon
and A didn’t.

,

Here we have made the nontrivial assumption that material objects
like cameras obey the same wave-superposition rules as photons.
This turns out to be true. Cameras are made out of things like
electrons, and as we’ll see in chapter 35, things like electrons are
also wave-particles, and they obey all the same wave-particle rules
as photons. The states of the two cameras are now entangled.

You can see where this is going. Alice had been standing by camera
A, watching anxiously, while Bob, a million kilometers away, was
breathlessly observing camera B.

c

Alice saw a photon
and Bob didn’t. They
consider this result to
have been random.

+ c′

Bob saw a photon and
Alice didn’t. They
consider this result to
have been random.

,

4Conservation of energy requires c2 = 1/2 and c′2 = 1/2, even in classical
physics. We could have, for example, c = 1/

√
2 and c′ = −1/

√
2. Such a possible

difference in signs wouldn’t concern us in this example. It would only be relevant
if there were some later opportunity for the two parts of the wave to recombine
and superimpose on one another, producing interference effects.

5According to special relativity, this simultaneity holds only in one frame
of reference, say the lab frame. But if simultaneity does hold in one frame,
then we can also say that in all frames, the distance between the two events is
“spacelike,” i.e., they are too far apart to have been connected by any causal
influence propagating at ≤ c.
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p / Schrödinger’s cat.

It doesn’t seem to Alice and Bob as though their brains are in a
superposition of two states. They feel as though they have only
experienced the one possibility that actually happened, not a mix-
ture of both at the same time. And yet this picture of the physics
explains very nicely how the deterministic laws of physics produce
a result that seems to them to have been random.

If Alice and Bob have been split into two ghostlike halves of them-
selves, then conceivably these half-selves could undergo interference,
as in the double-slit experiment. But there are practical reasons why
we cannot actually detect such interference effects. For one thing,
Alice and Bob are macroscopic objects, with energies E on the or-
der of many joules. Because Planck’s constant is small, their wave
frequencies f = E/h are extremely high, and their wavelengths
incredibly short (on the order of 10−34 m!). We have seen that
diffraction becomes undetectable when wavelengths are too short.
Furthermore, there is a phenomenon called decoherence, in which
interactions with the environment tend to rapidly randomize the
wave-phases of large objects. When phases are randomized, inter-
ference and diffraction effects become undetectable.

Historically, it seemed absurd to the originators of quantum me-
chanics to imagine a macroscopic object in a superposition of states.
The most celebrated example is called the Schrödinger’s cat experi-
ment. Luckily for the cat, there probably was no actual experiment
— it was simply a “thought experiment” that the German theorist
Schrödinger discussed with his colleagues. Schrödinger wrote:

One can even construct quite burlesque cases. A cat is
shut up in a steel container, together with the following
diabolical apparatus (which one must keep out of the
direct clutches of the cat): In a Geiger tube [radiation
detector] there is a tiny mass of radioactive substance, so
little that in the course of an hour perhaps one atom of
it disintegrates, but also with equal probability not even
one; if it does happen, the counter [detector] responds
and ... activates a hammer that shatters a little flask
of prussic acid [filling the chamber with poison gas]. If
one has left this entire system to itself for an hour, then
one will say to himself that the cat is still living, if in
that time no atom has disintegrated. The first atomic
disintegration would have poisoned it.

It seemed ridiculous to Schrödinger that at the end of the hour,
“The uncertainty originally restricted to the atomic domain has been
transformed into a macroscopic uncertainty...,” and the cat would
be in a superposed state.

In modern language, people like Einstein and Schrödinger didn’t feel
comfortable with nonlocality, or with entanglement of subatomic
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q / The volume under a sur-
face.

particles, and they felt even less comfortable with applying these
concepts to macroscopic objects. Today, entanglement has been
demonstrated using objects that clearly deserve to be called macro-
scopic. For example, in 2012, K.C. Lee et al. created a version of
the experiment in figure n in which the cameras were replaced by
small diamonds, about 1 mm in size. They were separated by 15
cm, which is a macroscopic distance. When a photon hit one of the
diamonds, it produced a vibration in the crystal lattice. This vibra-
tion was localized to a relatively small region within the diamond,
but this region was still large enough that one has to admit that it
qualifies as macroscopic. Its atoms had a total weight of about 0.1
nanograms, which is a quantity big enough to weigh on a state-of-
the-art balance, and the region was about 0.01 mm in size, which
would make it visible with a magnifying glass.

The quantum states of the two diamonds became entangled: if one
had detected the photon, the other hadn’t. This entangled state
was maintained for only about 7 picoseconds before decoherence de-
stroyed the phase relationship between one diamond and the other.
But Lee was able to use additional photons to “read out” the quan-
tum states in only 0.5 ps, before decoherence occurred, and verify
that there were wave interference effects in which one diamond’s
quantum-mechanical wave had a definite phase relationship with the
other’s. Although these experiments are difficult, they suggest that
there is no obstruction in principle to observing quantum-mechanical
effects such as superposition in arbitrarily large objects.

34.5 Photons in three dimensions
Up until now I’ve been sneaky and avoided a full discussion of the
three-dimensional aspects of the probability interpretation. The ex-
ample of the carrot in the microwave oven, for example, reduced to a
one-dimensional situation because we were considering three points
along the same line and because we were only comparing ratios of
probabilities.

A typical example of a probability distribution in section 33.3 was
the distribution of heights of human beings. The thing that var-
ied randomly, height, h, had units of meters, and the probability
distribution was a graph of a function D(h). The units of the
probability distribution had to be m−1 (inverse meters) so that ar-
eas under the curve, interpreted as probabilities, would be unitless:
(area) = (height)(width) = m−1 ·m.

Now suppose we have a two-dimensional problem, e.g., the proba-
bility distribution for the place on the surface of a digital camera
chip where a photon will be detected. The point where it is detected
would be described with two variables, x and y, each having units
of meters. The probability distribution will be a function of both
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variables, D(x, y). A probability is now visualized as the volume
under the surface described by the function D(x, y), as shown in
figure q. The units of D must be m−2 so that probabilities will be
unitless: (probability) = (depth)(length)(width) = m−2 ·m ·m.

Generalizing finally to three dimensions, we find by analogy that the
probability distribution will be a function of all three coordinates,
D(x, y, z), and will have units of m−3. It is, unfortunately, impossi-
ble to visualize the graph unless you are a mutant with a natural feel
for life in four dimensions. If the probability distribution is nearly
constant within a certain volume of space v, the probability that the
photon is in that volume is simply vD. If you know enough calculus,
it should be clear that this can be generalized to P =

∫
D dx dy dz

if D is not constant.
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Summary
Selected vocabulary
photon . . . . . . . . . . . a particle of light
photoelectric effect . . . . the ejection, by a photon, of an elec-

tron from the surface of an object
wave-particle duality . . . the idea that light is both a wave and

a particle

Summary

Around the turn of the twentieth century, experiments began to
show problems with the classical wave theory of light. In any exper-
iment sensitive enough to detect very small amounts of light energy,
it becomes clear that light energy cannot be divided into chunks
smaller than a certain amount. Measurements involving the pho-
toelectric effect demonstrate that this smallest unit of light energy
equals hf , where f is the frequency of the light and h is a number
known as Planck’s constant. We say that light energy is quantized
in units of hf , and we interpret this quantization as evidence that
light has particle properties as well as wave properties. Particles of
light are called photons.

The only method of reconciling the wave and particle natures of
light that has stood the test of experiment is the probability inter-
pretation: the probability that the particle is at a given location
is proportional to the square of the amplitude of the wave at that
location.

One important consequence of wave-particle duality is that we must
abandon the concept of the path the particle takes through space.
To hold on to this concept, we would have to contradict the well
established wave nature of light, since a wave can spread out in
every direction simultaneously.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

For some of these homework problems, you may find it convenient
to refer to the diagram of the electromagnetic spectrum shown on
p. 713.

1 Give a numerical comparison of the number of photons per
second emitted by a hundred-watt FM radio transmitter and a
hundred-watt lightbulb.

√

2 Two different flashes of light each have the same energy. One
consists of photons with a wavelength of 600 nm, the other 400 nm.
If the number of photons in the 600-nm flash is 3.0×1018, how many
photons are in the 400-nm flash?

√

3 When light is reflected from a mirror, perhaps only 80% of
the energy comes back. The rest is converted to heat. One could
try to explain this in two different ways: (1) 80% of the photons are
reflected, or (2) all the photons are reflected, but each loses 20% of
its energy. Based on your everyday knowledge about mirrors, how
can you tell which interpretation is correct? [Based on a problem
from PSSC Physics.]

4 Suppose we want to build an electronic light sensor using an
apparatus like the one described in section 34.2 on p. 968. How
would its ability to detect different parts of the spectrum depend on
the type of metal used in the capacitor plates?

5 The photoelectric effect can occur not just for metal cathodes
but for any substance, including living tissue. Ionization of DNA
molecules can cause cancer or birth defects. If the energy required to
ionize DNA is on the same order of magnitude as the energy required
to produce the photoelectric effect in a metal, which of these types
of electromagnetic waves might pose such a hazard? Explain.

60 Hz waves from power lines

100 MHz FM radio

1900 MHz radio waves from a cellular phone

2450 MHz microwaves from a microwave oven

visible light

ultraviolet light

x-rays

6 The beam of a 100-W overhead projector covers an area of
1 m× 1 m when it hits the screen 3 m away. Estimate the number
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Problem 7.

Problem 8.

of photons that are in flight at any given time. (Since this is only
an estimate, we can ignore the fact that the beam is not parallel.)

7 The two diffraction patterns were made by sending a flash of
light through the same double slit. Give a numerical comparison of
the amounts of energy in the two flashes.

√

8 Three of the four graphs are consistently normalized to repre-
sent a wave consisting of the same number of photons. Which one
isn’t? Explain.

9 Photon Fred has a greater energy than photon Ginger. For
each of the following quantities, explain whether Fred’s value of
that quantity is greater than Ginger’s, less than Ginger’s, or equal
to Ginger’s. If there is no way to tell, explain why.

frequency

speed

wavelength

period

electric field strength

magnetic field strength

10 Give experimental evidence to disprove the following inter-
pretation of wave-particle duality: A photon is really a particle, but
it travels along a wavy path, like a zigzag with rounded corners. Cite
a specific, real experiment.

11 In the photoelectric effect, electrons are observed with virtu-
ally no time delay (∼ 10 ns), even when the light source is very weak.
(A weak light source does however only produce a small number of
ejected electrons.) The purpose of this problem is to show that the
lack of a significant time delay contradicted the classical wave the-
ory of light, so throughout this problem you should put yourself in
the shoes of a classical physicist and pretend you don’t know about
photons at all. At that time, it was thought that the electron might
have a radius on the order of 10−15 m. (Recent experiments have
shown that if the electron has any finite size at all, it is far smaller.)
(a) Estimate the power that would be soaked up by a single electron
in a beam of light with an intensity of 1 mW/m2.

√

(b) The energy, Es, required for the electron to escape through the
surface of the cathode is on the order of 10−19 J. Find how long it
would take the electron to absorb this amount of energy, and explain
why your result constitutes strong evidence that there is something
wrong with the classical theory.

√
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Problem 12.

12 Many radio antennas are designed so that they preferen-
tially emit or receive electromagnetic waves in a certain direction.
However, no antenna is perfectly directional. The wave shown in the
figure represents a single photon being emitted by an antenna at the
center. The antenna is directional, so there is a stronger wave on
the right than on the left. What is the probability that the photon
will be observed on the right?

13 (a) A radio transmitter radiates power P in all directions, so
that the energy spreads out spherically. Find the energy density at
a distance r.

√

(b) Let the wavelength be λ. As described in example 2 on p. 971,
find the number of photons in a volume λ3 at this distance r.

√

(c) For a 1000 kHz AM radio transmitting station, assuming rea-
sonable values of P and r, verify, as claimed in the example, that
the result from part b is very large.
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Dorothy melts the Wicked Witch
of the West.

Chapter 35

Matter as a Wave

[In] a few minutes I shall be all melted... I have been wicked
in my day, but I never thought a little girl like you would ever
be able to melt me and end my wicked deeds. Look out —
here I go!

The Wicked Witch of the West

As the Wicked Witch learned the hard way, losing molecular cohe-
sion can be unpleasant. That’s why we should be very grateful that
the concepts of quantum physics apply to matter as well as light.
If matter obeyed the laws of classical physics, molecules wouldn’t
exist.

Consider, for example, the simplest atom, hydrogen. Why does
one hydrogen atom form a chemical bond with another hydrogen
atom? Roughly speaking, we’d expect a neighboring pair of hy-
drogen atoms, A and B, to exert no force on each other at all,
attractive or repulsive: there are two repulsive interactions (proton
A with proton B and electron A with electron B) and two attractive
interactions (proton A with electron B and electron A with proton
B). Thinking a little more precisely, we should even expect that once
the two atoms got close enough, the interaction would be repulsive.
For instance, if you squeezed them so close together that the two
protons were almost on top of each other, there would be a tremen-
dously strong repulsion between them due to the 1/r2 nature of the

987



electrical force. A more detailed calculation using classical physics
gives an extremely weak binding, about 1/17 the strength of what
we actually observe, which is far too weak to make the bond hold
together.

Quantum physics to the rescue! As we’ll see shortly, the whole prob-
lem is solved by applying the same quantum concepts to electrons
that we have already used for photons.

35.1 Electrons as waves
We started our journey into quantum physics by studying the ran-
dom behavior of matter in radioactive decay, and then asked how
randomness could be linked to the basic laws of nature governing
light. The probability interpretation of wave-particle duality was
strange and hard to accept, but it provided such a link. It is now
natural to ask whether the same explanation could be applied to
matter. If the fundamental building block of light, the photon, is
a particle as well as a wave, is it possible that the basic units of
matter, such as electrons, are waves as well as particles?

A young French aristocrat studying physics, Louis de Broglie (pro-
nounced “broylee”), made exactly this suggestion in his 1923 Ph.D.
thesis. His idea had seemed so farfetched that there was serious
doubt about whether to grant him the degree. Einstein was asked
for his opinion, and with his strong support, de Broglie got his de-
gree.

Only two years later, American physicists C.J. Davisson and L. Ger-
mer confirmed de Broglie’s idea by accident. They had been study-
ing the scattering of electrons from the surface of a sample of nickel,
made of many small crystals. (One can often see such a crystalline
pattern on a brass doorknob that has been polished by repeated
handling.) An accidental explosion occurred, and when they put
their apparatus back together they observed something entirely dif-
ferent: the scattered electrons were now creating an interference
pattern! This dramatic proof of the wave nature of matter came
about because the nickel sample had been melted by the explosion
and then resolidified as a single crystal. The nickel atoms, now
nicely arranged in the regular rows and columns of a crystalline
lattice, were acting as the lines of a diffraction grating. The new
crystal was analogous to the type of ordinary diffraction grating in
which the lines are etched on the surface of a mirror (a reflection
grating) rather than the kind in which the light passes through the
transparent gaps between the lines (a transmission grating).

Although we will concentrate on the wave-particle duality of elec-
trons because it is important in chemistry and the physics of atoms,
all the other “particles” of matter you’ve learned about show wave
properties as well. Figure a, for instance, shows a wave interference
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pattern of neutrons.

It might seem as though all our work was already done for us,
and there would be nothing new to understand about electrons:
they have the same kind of funny wave-particle duality as photons.
That’s almost true, but not quite. There are some important ways
in which electrons differ significantly from photons:

1. Electrons have mass, and photons don’t.

2. Photons always move at the speed of light, but electrons can
move at any speed less than c.

3. Photons don’t have electric charge, but electrons do, so electric
forces can act on them. The most important example is the
atom, in which the electrons are held by the electric force of
the nucleus.

4. Electrons cannot be absorbed or emitted as photons are. De-
stroying an electron, or creating one out of nothing, would
violate conservation of charge.

(In chapter 36 we will learn of one more fundamental way in which
electrons differ from photons, for a total of five.)

a / A double-slit interference pat-
tern made with neutrons. (A.
Zeilinger, R. Gähler, C.G. Shull,
W. Treimer, and W. Mampe, Re-
views of Modern Physics, Vol. 60,
1988.)

Because electrons are different from photons, it is not immediately
obvious which of the photon equations from chapter 34 can be ap-
plied to electrons as well. A particle property, the energy of one
photon, is related to its wave properties via E = hf or, equivalently,
E = hc/λ. The momentum of a photon was given by p = hf/c or
p = h/λ (example 3 on page 972). Ultimately it was a matter of ex-
periment to determine which of these equations, if any, would work
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for electrons, but we can make a quick and dirty guess simply by
noting that some of the equations involve c, the speed of light, and
some do not. Since c is irrelevant in the case of an electron, we
might guess that the equations of general validity are those that do
not have c in them:

E = hf

p =
h

λ

This is essentially the reasoning that de Broglie went through, and
experiments have confirmed these two equations for all the funda-
mental building blocks of light and matter, not just for photons and
electrons.

The second equation, which I soft-pedaled in chapter 34, takes on
a greater importance for electrons. This is first of all because the
momentum of matter is more likely to be significant than the mo-
mentum of light under ordinary conditions, and also because force
is the transfer of momentum, and electrons are affected by electrical
forces.

The wavelength of an elephant example 1
. What is the wavelength of a trotting elephant?

. One may doubt whether the equation should be applied to an
elephant, which is not just a single particle but a rather large col-
lection of them. Throwing caution to the wind, however, we esti-
mate the elephant’s mass at 103 kg and its trotting speed at 10
m/s. Its wavelength is therefore roughly

λ =
h
p

=
h

mv

=
6.63× 10−34 J·s
(103 kg)(10 m/s)

∼ 10−37

(
kg·m2/s2)·s

kg·m/s
= 10−37 m.

The wavelength found in this example is so fantastically small that
we can be sure we will never observe any measurable wave phe-
nomena with elephants. The result is numerically small because
Planck’s constant is so small, and as in some examples encountered
previously, this smallness is in accord with the correspondence prin-
ciple.

Although a smaller mass in the equation λ = h/mv does result in a
longer wavelength, the wavelength is still quite short even for indi-
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vidual electrons under typical conditions, as shown in the following
example.

The typical wavelength of an electron example 2
. Electrons in circuits and in atoms are typically moving through
voltage differences on the order of 1 V, so that a typical energy is
(e)(1 V), which is on the order of 10−19 J. What is the wavelength
of an electron with this amount of kinetic energy?

. This energy is nonrelativistic, since it is much less than mc2.
Momentum and energy are therefore related by the nonrelativistic
equation K E = p2/2m. Solving for p and substituting in to the
equation for the wavelength, we find

λ =
h√

2m · K E
= 1.6× 10−9 m.

This is on the same order of magnitude as the size of an atom,
which is no accident: as we will discuss in the next chapter in
more detail, an electron in an atom can be interpreted as a stand-
ing wave. The smallness of the wavelength of a typical electron
also helps to explain why the wave nature of electrons wasn’t dis-
covered until a hundred years after the wave nature of light. To
scale the usual wave-optics devices such as diffraction gratings
down to the size needed to work with electrons at ordinary ener-
gies, we need to make them so small that their parts are compa-
rable in size to individual atoms. This is essentially what Davisson
and Germer did with their nickel crystal.

self-check A
These remarks about the inconvenient smallness of electron wavelengths
apply only under the assumption that the electrons have typical ener-
gies. What kind of energy would an electron have to have in order to
have a longer wavelength that might be more convenient to work with?
. Answer, p. 1046

What kind of wave is it?

If a sound wave is a vibration of matter, and a photon is a vibration
of electric and magnetic fields, what kind of a wave is an electron
made of? The disconcerting answer is that there is no experimen-
tal “observable,” i.e., directly measurable quantity, to correspond
to the electron wave itself. In other words, there are devices like
microphones that detect the oscillations of air pressure in a sound
wave, and devices such as radio receivers that measure the oscilla-
tion of the electric and magnetic fields in a light wave, but nobody
has ever found any way to measure an electron wave directly.

We can of course detect the energy (or momentum) possessed by an
electron just as we could detect the energy of a photon using a digital
camera. (In fact I’d imagine that an unmodified digital camera
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b / These two electron waves
are not distinguishable by any
measuring device.

chip placed in a vacuum chamber would detect electrons just as
handily as photons.) But this only allows us to determine where the
wave carries high probability and where it carries low probability.
Probability is proportional to the square of the wave’s amplitude,
but measuring its square is not the same as measuring the wave
itself. In particular, we get the same result by squaring either a
positive number or its negative, so there is no way to determine the
positive or negative sign of an electron wave.

Most physicists tend toward the school of philosophy known as op-
erationalism, which says that a concept is only meaningful if we can
define some set of operations for observing, measuring, or testing it.
According to a strict operationalist, then, the electron wave itself
is a meaningless concept. Nevertheless, it turns out to be one of
those concepts like love or humor that is impossible to measure and
yet very useful to have around. We therefore give it a symbol, Ψ
(the capital Greek letter psi), and a special name, the electron wave-
function (because it is a function of the coordinates x, y, and z that
specify where you are in space). It would be impossible, for exam-
ple, to calculate the shape of the electron wave in a hydrogen atom
without having some symbol for the wave. But when the calculation
produces a result that can be compared directly to experiment, the
final algebraic result will turn out to involve only Ψ2, which is what
is observable, not Ψ itself.

Since Ψ, unlike E and B, is not directly measurable, we are free to
make the probability equations have a simple form: instead of having
the probability distribution equal to some funny constant multiplied
by Ψ2, we simply define Ψ so that the constant of proportionality is
one:

(probability distribution) = Ψ2.

Since the probability distribution has units of m−3, the units of Ψ
must be m−3/2.

Discussion question

A Frequency is oscillations per second, whereas wavelength is meters
per oscillation. How could the equations E = hf and p = h/λ be made
to look more alike by using quantities that were more closely analogous?
(This more symmetric treatment makes it easier to incorporate relativity
into quantum mechanics, since relativity says that space and time are not
entirely separate.)
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c / Part of an infinite sine wave.

35.2
∫
? Dispersive waves

A colleague of mine who teaches chemistry loves to tell the story
about an exceptionally bright student who, when told of the equa-
tion p = h/λ, protested, “But when I derived it, it had a factor of
2!” The issue that’s involved is a real one, albeit one that could be
glossed over (and is, in most textbooks) without raising any alarms
in the mind of the average student. The present optional section
addresses this point; it is intended for the student who wishes to
delve a little deeper.

Here’s how the now-legendary student was presumably reasoning.
We start with the equation v = fλ, which is valid for any sine
wave, whether it’s quantum or classical. Let’s assume we already
know E = hf , and are trying to derive the relationship between
wavelength and momentum:

λ =
v

f

=
vh

E

=
vh

1
2mv

2

=
2h

mv

=
2h

p

The reasoning seems valid, but the result does contradict the ac-
cepted one, which is after all solidly based on experiment.

The mistaken assumption is that we can figure everything out in
terms of pure sine waves. Mathematically, the only wave that has a
perfectly well defined wavelength and frequency is a sine wave, and
not just any sine wave but an infinitely long one, c. The unphysical
thing about such a wave is that it has no leading or trailing edge, so
it can never be said to enter or leave any particular region of space.
Our derivation made use of the velocity, v, and if velocity is to be a
meaningful concept, it must tell us how quickly stuff (mass, energy,
momentum,...) is transported from one region of space to another.
Since an infinitely long sine wave doesn’t remove any stuff from one
region and take it to another, the “velocity of its stuff” is not a well
defined concept.

Of course the individual wave peaks do travel through space, and
one might think that it would make sense to associate their speed
with the “speed of stuff,” but as we will see, the two velocities are
in general unequal when a wave’s velocity depends on wavelength.
Such a wave is called a dispersive wave, because a wave pulse consist-
ing of a superposition of waves of different wavelengths will separate
(disperse) into its separate wavelengths as the waves move through
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d / A finite-length sine wave.

e / A beat pattern created by
superimposing two sine waves
with slightly different wave-
lengths.

space at different speeds. Nearly all the waves we have encountered
have been nondispersive. For instance, sound waves and light waves
(in a vacuum) have speeds independent of wavelength. A water wave
is one good example of a dispersive wave. Long-wavelength water
waves travel faster, so a ship at sea that encounters a storm typi-
cally sees the long-wavelength parts of the wave first. When dealing
with dispersive waves, we need symbols and words to distinguish
the two speeds. The speed at which wave peaks move is called the
phase velocity, vp, and the speed at which “stuff” moves is called
the group velocity, vg.

An infinite sine wave can only tell us about the phase velocity, not
the group velocity, which is really what we would be talking about
when we referred to the speed of an electron. If an infinite sine wave
is the simplest possible wave, what’s the next best thing? We might
think the runner up in simplicity would be a wave train consisting
of a chopped-off segment of a sine wave, d. However, this kind of
wave has kinks in it at the end. A simple wave should be one that
we can build by superposing a small number of infinite sine waves,
but a kink can never be produced by superposing any number of
infinitely long sine waves.

Actually the simplest wave that transports stuff from place to place
is the pattern shown in figure e. Called a beat pattern, it is formed
by superposing two sine waves whose wavelengths are similar but
not quite the same. If you have ever heard the pulsating howling
sound of musicians in the process of tuning their instruments to each
other, you have heard a beat pattern. The beat pattern gets stronger
and weaker as the two sine waves go in and out of phase with each
other. The beat pattern has more “stuff” (energy, for example)
in the areas where constructive interference occurs, and less in the
regions of cancellation. As the whole pattern moves through space,
stuff is transported from some regions and into other ones.

If the frequency of the two sine waves differs by 10%, for instance,
then ten periods will be occur between times when they are in
phase. Another way of saying it is that the sinusoidal “envelope”
(the dashed lines in figure e) has a frequency equal to the difference
in frequency between the two waves. For instance, if the waves had
frequencies of 100 Hz and 110 Hz, the frequency of the envelope
would be 10 Hz.

To apply similar reasoning to the wavelength, we must define a
quantity z = 1/λ that relates to wavelength in the same way that
frequency relates to period. In terms of this new variable, the z of
the envelope equals the difference between the z’s of the two sine
waves.

The group velocity is the speed at which the envelope moves through
space. Let ∆f and ∆z be the differences between the frequencies and
z’s of the two sine waves, which means that they equal the frequency
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f / Three possible standing-
wave patterns for a particle in a
box.

and z of the envelope. The group velocity is vg = fenvelopeλenvelope =
∆f/∆z. If ∆f and ∆z are sufficiently small, we can approximate
this expression as a derivative,

vg =
df

dz
.

This expression is usually taken as the definition of the group veloc-
ity for wave patterns that consist of a superposition of sine waves
having a narrow range of frequencies and wavelengths. In quan-
tum mechanics, with f = E/h and z = p/h, we have vg = dE/dp.
In the case of a nonrelativistic electron the relationship between
energy and momentum is E = p2/2m, so the group velocity is
dE/dp = p/m = v, exactly what it should be. It is only the phase
velocity that differs by a factor of two from what we would have
expected, but the phase velocity is not the physically important
thing.

35.3 Bound states
Electrons are at their most interesting when they’re in atoms, that
is, when they are bound within a small region of space. We can
understand a great deal about atoms and molecules based on simple
arguments about such bound states, without going into any of the
realistic details of atom. The simplest model of a bound state is
known as the particle in a box: like a ball on a pool table, the
electron feels zero force while in the interior, but when it reaches
an edge it encounters a wall that pushes back inward on it with
a large force. In particle language, we would describe the electron
as bouncing off of the wall, but this incorrectly assumes that the
electron has a certain path through space. It is more correct to
describe the electron as a wave that undergoes 100% reflection at
the boundaries of the box.

Like a generation of physics students before me, I rolled my eyes
when initially introduced to the unrealistic idea of putting a parti-
cle in a box. It seemed completely impractical, an artificial textbook
invention. Today, however, it has become routine to study electrons
in rectangular boxes in actual laboratory experiments. The “box” is
actually just an empty cavity within a solid piece of silicon, amount-
ing in volume to a few hundred atoms. The methods for creating
these electron-in-a-box setups (known as “quantum dots”) were a
by-product of the development of technologies for fabricating com-
puter chips.

For simplicity let’s imagine a one-dimensional electron in a box,
i.e., we assume that the electron is only free to move along a line.
The resulting standing wave patterns, of which the first three are
shown in figure f, are just like some of the patterns we encountered
with sound waves in musical instruments. The wave patterns must
be zero at the ends of the box, because we are assuming the walls
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g / The spectrum of the light
from the star Sirius. Photograph
by the author.

are impenetrable, and there should therefore be zero probability of
finding the electron outside the box. Each wave pattern is labeled
according to n, the number of peaks and valleys it has. In quan-
tum physics, these wave patterns are referred to as “states” of the
particle-in-the-box system.

The following seemingly innocuous observations about the particle
in the box lead us directly to the solutions to some of the most
vexing failures of classical physics:

The particle’s energy is quantized (can only have certain values).
Each wavelength corresponds to a certain momentum, and a given
momentum implies a definite kinetic energy, E = p2/2m. (This is
the second type of energy quantization we have encountered. The
type we studied previously had to do with restricting the number
of particles to a whole number, while assuming some specific wave-
length and energy for each particle. This type of quantization refers
to the energies that a single particle can have. Both photons and
matter particles demonstrate both types of quantization under the
appropriate circumstances.)

The particle has a minimum kinetic energy. Long wavelengths cor-
respond to low momenta and low energies. There can be no state
with an energy lower than that of the n = 1 state, called the ground
state.

The smaller the space in which the particle is confined, the higher
its kinetic energy must be. Again, this is because long wavelengths
give lower energies.

Spectra of thin gases example 3
A fact that was inexplicable by classical physics was that thin

gases absorb and emit light only at certain wavelengths. This
was observed both in earthbound laboratories and in the spectra
of stars. Figure g shows the example of the spectrum of the star
Sirius, in which there are “gap teeth” at certain wavelengths. Tak-
ing this spectrum as an example, we can give a straightforward
explanation using quantum physics.

Energy is released in the dense interior of the star, but the outer
layers of the star are thin, so the atoms are far apart and electrons
are confined within individual atoms. Although their standing-
wave patterns are not as simple as those of the particle in the
box, their energies are quantized.

When a photon is on its way out through the outer layers, it can be
absorbed by an electron in an atom, but only if the amount of en-
ergy it carries happens to be the right amount to kick the electron
from one of the allowed energy levels to one of the higher lev-
els. The photon energies that are missing from the spectrum are
the ones that equal the difference in energy between two elec-
tron energy levels. (The most prominent of the absorption lines in
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h / Example ??: Two hydro-
gen atoms bond to form an H2
molecule. In the molecule, the
two electrons’ wave patterns
overlap, and are about twice as
wide.

Sirius’s spectrum are absorption lines of the hydrogen atom.)

The stability of atoms example 4
In many Star Trek episodes the Enterprise, in orbit around a planet,
suddenly lost engine power and began spiraling down toward the
planet’s surface. This was utter nonsense, of course, due to con-
servation of energy: the ship had no way of getting rid of energy,
so it did not need the engines to replenish it.

Consider, however, the electron in an atom as it orbits the nu-
cleus. The electron does have a way to release energy: it has an
acceleration due to its continuously changing direction of motion,
and according to classical physics, any accelerating charged par-
ticle emits electromagnetic waves. According to classical physics,
atoms should collapse!

The solution lies in the observation that a bound state has a min-
imum energy. An electron in one of the higher-energy atomic
states can and does emit photons and hop down step by step in
energy. But once it is in the ground state, it cannot emit a photon
because there is no lower-energy state for it to go to.

Chemical bonds example 5
I began this section with a classical argument that chemical

bonds, as in an H2 molecule, should not exist. Quantum physics
explains why this type of bonding does in fact occur. There are
actually two effects going on, one due to kinetic energy and one
due to electrical energy. We’ll concentrate on the kinetic energy
effect in this example. (A qualitatively different type of bonding is
discussed on page ??.)

The kinetic energy effect is pretty simple. When the atoms are
next to each other, the electrons are shared between them. The
“box” is about twice as wide, and a larger box allows a smaller ki-
netic energy. Energy is required in order to separate the atoms.

Discussion questions

A Neutrons attract each other via the strong nuclear force, so according
to classical physics it should be possible to form nuclei out of clusters of
two or more neutrons, with no protons at all. Experimental searches,
however, have failed to turn up evidence of a stable two-neutron system
(dineutron) or larger stable clusters. These systems are apparently not
just unstable in the sense of being able to beta decay but unstable in
the sense that they don’t hold together at all. Explain based on quantum
physics why a dineutron might spontaneously fly apart.

B The following table shows the energy gap between the ground state
and the first excited state for four nuclei, in units of picojoules. (The nuclei
were chosen to be ones that have similar structures, e.g., they are all
spherical in shape.)
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i / Werner Heisenberg (1901-
1976). Heisenberg helped to
develop the foundations of quan-
tum mechanics, including the
Heisenberg uncertainty principle.
He was the scientific leader of
the Nazi atomic-bomb program
up until its cancellation in 1942,
when the military decided that it
was too ambitious a project to
undertake in wartime, and too
unlikely to produce results.

nucleus energy gap (picojoules)
4He 3.234
16O 0.968
40Ca 0.536
208Pb 0.418

Explain the trend in the data.

35.4 The uncertainty principle
Eliminating randomness through measurement?

A common reaction to quantum physics, among both early-twentieth-
century physicists and modern students, is that we should be able to
get rid of randomness through accurate measurement. If I say, for
example, that it is meaningless to discuss the path of a photon or an
electron, you might suggest that we simply measure the particle’s
position and velocity many times in a row. This series of snapshots
would amount to a description of its path.

A practical objection to this plan is that the process of measure-
ment will have an effect on the thing we are trying to measure. This
may not be of much concern, for example, when a traffic cop mea-
sures your car’s motion with a radar gun, because the energy and
momentum of the radar pulses aren’t enough to change the car’s
motion significantly. But on the subatomic scale it is a very real
problem. Making a videotape of an electron orbiting a nucleus is
not just difficult, it is theoretically impossible, even with the video
camera hooked up to the best imaginable microscope. The video
camera makes pictures of things using light that has bounced off
them and come into the camera. If even a single photon of the
right wavelength was to bounce off of the electron we were trying to
study, the electron’s recoil would be enough to change its behavior
significantly (see homework problem 4).

The Heisenberg uncertainty principle

This insight, that measurement changes the thing being measured,
is the kind of idea that clove-cigarette-smoking intellectuals outside
of the physical sciences like to claim they knew all along. If only,
they say, the physicists had made more of a habit of reading literary
journals, they could have saved a lot of work. The anthropologist
Margaret Mead has recently been accused of inadvertently encour-
aging her teenaged Samoan informants to exaggerate the freedom of
youthful sexual experimentation in their society. If this is considered
a damning critique of her work, it is because she could have done
better: other anthropologists claim to have been able to eliminate
the observer-as-participant problem and collect untainted data.

The German physicist Werner Heisenberg, however, showed that
in quantum physics, any measuring technique runs into a brick wall
when we try to improve its accuracy beyond a certain point. Heisen-
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berg showed that the limitation is a question of what there is to be
known, even in principle, about the system itself, not of the inabil-
ity of a particular measuring device to ferret out information that
is knowable.

Suppose, for example, that we have constructed an electron in a box
(quantum dot) setup in our laboratory, and we are able to adjust
the length L of the box as desired. All the standing wave patterns
pretty much fill the box, so our knowledge of the electron’s position
is of limited accuracy. If we write ∆x for the range of uncertainty
in our knowledge of its position, then ∆x is roughly the same as the
length of the box:

∆x ≈ L
If we wish to know its position more accurately, we can certainly
squeeze it into a smaller space by reducing L, but this has an unin-
tended side-effect. A standing wave is really a superposition of two
traveling waves going in opposite directions. The equation p = h/λ
only gives the magnitude of the momentum vector, not its direc-
tion, so we should really interpret the wave as a 50/50 mixture of
a right-going wave with momentum p = h/λ and a left-going one
with momentum p = −h/λ. The uncertainty in our knowledge of
the electron’s momentum is ∆p = 2h/λ, covering the range between
these two values. Even if we make sure the electron is in the ground
state, whose wavelength λ = 2L is the longest possible, we have an
uncertainty in momentum of ∆p = h/L. In general, we find

∆p & h/L,

with equality for the ground state and inequality for the higher-
energy states. Thus if we reduce L to improve our knowledge of the
electron’s position, we do so at the cost of knowing less about its
momentum. This trade-off is neatly summarized by multiplying the
two equations to give

∆p∆x & h.

Although we have derived this in the special case of a particle in a
box, it is an example of a principle of more general validity:

the Heisenberg uncertainty principle
It is not possible, even in principle, to know the momentum and the
position of a particle simultaneously and with perfect accuracy. The
uncertainties in these two quantities are always such that

∆p∆x & h.

(This approximation can be made into a strict inequality, ∆p∆x >
h/4π, but only with more careful definitions, which we will not
bother with.1)

1See homework problems 6 and 7.
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Note that although I encouraged you to think of this derivation
in terms of a specific real-world system, the quantum dot, I never
made any reference to specific measuring equipment. The argument
is simply that we cannot know the particle’s position very accurately
unless it has a very well defined position, it cannot have a very well
defined position unless its wave-pattern covers only a very small
amount of space, and its wave-pattern cannot be thus compressed
without giving it a short wavelength and a correspondingly uncer-
tain momentum. The uncertainty principle is therefore a restriction
on how much there is to know about a particle, not just on what we
can know about it with a certain technique.

An estimate for electrons in atoms example 6
. A typical energy for an electron in an atom is on the order of
(1 volt)·e, which corresponds to a speed of about 1% of the speed
of light. If a typical atom has a size on the order of 0.1 nm, how
close are the electrons to the limit imposed by the uncertainty
principle?

. If we assume the electron moves in all directions with equal
probability, the uncertainty in its momentum is roughly twice its
typical momentum. This only an order-of-magnitude estimate, so
we take ∆p to be the same as a typical momentum:

∆p∆x = ptypical∆x

= (melectron)(0.01c)(0.1× 10−9 m)

= 3× 10−34 J·s

This is on the same order of magnitude as Planck’s constant, so
evidently the electron is “right up against the wall.” (The fact that
it is somewhat less than h is of no concern since this was only an
estimate, and we have not stated the uncertainty principle in its
most exact form.)

self-check B
If we were to apply the uncertainty principle to human-scale objects,
what would be the significance of the small numerical value of Planck’s
constant? . Answer, p. 1046

self-check C
Suppose rain is falling on your roof, and there is a tiny hole that lets
raindrops into your living room now and then. All these drops hit the
same spot on the floor, so they have the same value of x . Not only
that, but if the rain is falling straight down, they all have zero horizontal
momentum. Thus it seems that the raindrops have ∆p = 0, ∆x = 0,
and ∆p∆x = 0, violating the uncertainty principle. To look for the hole in
this argument, consider how it would be acted out on the microscopic
scale: an electron wave comes along and hits a narrow slit. What really
happens? . Answer, p. 1047
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j / An electron in a gentle
electric field gradually shortens
its wavelength as it gains energy.

l / 1. Kinks like this don’t
happen. 2. The wave actually
penetrates into the classically
forbidden region.

Discussion questions

A Compare ∆p and ∆x for the two lowest energy levels of the one-
dimensional particle in a box, and discuss how this relates to the uncer-
tainty principle.

B On a graph of ∆p versus ∆x, sketch the regions that are allowed and
forbidden by the Heisenberg uncertainty principle. Interpret the graph:
Where does an atom lie on it? An elephant? Can either p or x be mea-
sured with perfect accuracy if we don’t care about the other?

35.5 Electrons in electric fields

So far the only electron wave patterns we’ve considered have been
simple sine waves, but whenever an electron finds itself in an electric
field, it must have a more complicated wave pattern. Let’s consider
the example of an electron being accelerated by the electron gun at
the back of a TV tube. The electron is moving from a region of low
voltage into a region of higher voltage. Since its charge is negative,
it loses PE by moving to a higher voltage, so its KE increases. As
its potential energy goes down, its kinetic energy goes up by an
equal amount, keeping the total energy constant. Increasing kinetic
energy implies a growing momentum, and therefore a shortening
wavelength, j.

The wavefunction as a whole does not have a single well-defined
wavelength, but the wave changes so gradually that if you only look
at a small part of it you can still pick out a wavelength and relate
it to the momentum and energy. (The picture actually exagger-
ates by many orders of magnitude the rate at which the wavelength
changes.)

But what if the electric field was stronger? The electric field in a TV
is only ∼ 105 N/C, but the electric field within an atom is more like
1012 N/C. In figure k, the wavelength changes so rapidly that there
is nothing that looks like a sine wave at all. We could get a general
idea of the wavelength in a given region by measuring the distance
between two peaks, but that would only be a rough approximation.
Suppose we want to know the wavelength at point P. The trick is
to construct a sine wave, like the one shown with the dashed line,
which matches the curvature of the actual wavefunction as closely
as possible near P. The sine wave that matches as well as possible is
called the “osculating” curve, from a Latin word meaning “to kiss.”
The wavelength of the osculating curve is the wavelength that will
relate correctly to conservation of energy.

Tunneling

We implicitly assumed that the particle-in-a-box wavefunction would
cut off abruptly at the sides of the box, l/1, but that would be un-
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k / A typical wavefunction of an electron in an atom (heavy curve)
and the osculating sine wave (dashed curve) that matches its curvature
at point P.

physical. A kink has infinite curvature, and curvature is related to
energy, so it can’t be infinite. A physically realistic wavefunction
must always “tail off” gradually, l/2. In classical physics, a parti-
cle can never enter a region in which its potential energy would be
greater than the amount of energy it has available. But in quantum
physics the wavefunction will always have a tail that reaches into
the classically forbidden region. If it was not for this effect, called
tunneling, the fusion reactions that power the sun would not occur
due to the high potential energy that nuclei need in order to get
close together! Tunneling is discussed in more detail in the next
section.

35.6
∫
? The Schrödinger equation

In section 35.5 we were able to apply conservation of energy to
an electron’s wavefunction, but only by using the clumsy graphical
technique of osculating sine waves as a measure of the wave’s cur-
vature. You have learned a more convenient measure of curvature
in calculus: the second derivative. To relate the two approaches, we
take the second derivative of a sine wave:

d2

dx2
sin

(
2πx

λ

)
=

d

dx

(
2π

λ
cos

2πx

λ

)
= −

(
2π

λ

)2

sin
2πx

λ

Taking the second derivative gives us back the same function, but
with a minus sign and a constant out in front that is related to
the wavelength. We can thus relate the second derivative to the
osculating wavelength:

[1]
d2 Ψ

dx2
= −

(
2π

λ

)2

Ψ

This could be solved for λ in terms of Ψ, but it will turn out to be
more convenient to leave it in this form.
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Using conservation of energy, we have

E = KE + PE

=
p2

2m
+ PE

=
(h/λ)2

2m
+ PE

[2]

Note that both equation [1] and equation [2] have λ2 in the denom-
inator. We can simplify our algebra by multiplying both sides of
equation [2] by Ψ to make it look more like equation [1]:

E ·Ψ =
(h/λ)2

2m
Ψ + PE ·Ψ

=
1

2m

(
h

2π

)2(2π

λ

)2

Ψ + PE ·Ψ

= − 1

2m

(
h

2π

)2 d2 Ψ

dx2
+ PE ·Ψ

Further simplification is achieved by using the symbol ~ (h with a
slash through it, read “h-bar”) as an abbreviation for h/2π. We then
have the important result known as the Schrödinger equation:

E ·Ψ = − ~
2

2m

d2 Ψ

dx2
+ PE ·Ψ

(Actually this is a simplified version of the Schrödinger equation,
applying only to standing waves in one dimension.) Physically it is
a statement of conservation of energy. The total energy E must be
constant, so the equation tells us that a change in potential energy
must be accompanied by a change in the curvature of the wavefunc-
tion. This change in curvature relates to a change in wavelength,
which corresponds to a change in momentum and kinetic energy.
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m / Tunneling through a bar-
rier.

self-check D
Considering the assumptions that were made in deriving the Schrödinger
equation, would it be correct to apply it to a photon? To an electron mov-
ing at relativistic speeds? . Answer, p.
1047

Usually we know right off the bat how the potential energy de-
pends on x, so the basic mathematical problem of quantum physics
is to find a function Ψ(x) that satisfies the Schrödinger equation
for a given function PE(x). An equation, such as the Schrödinger
equation, that specifies a relationship between a function and its
derivatives is known as a differential equation.

The study of differential equations in general is beyond the mathe-
matical level of this book, but we can gain some important insights
by considering the easiest version of the Schrödinger equation, in
which the potential energy is constant. We can then rearrange the
Schrödinger equation as follows:

d2 Ψ

dx2
=

2m(PE − E)

~2
Ψ,

which boils down to

d2 Ψ

dx2
= aΨ,

where, according to our assumptions, a is independent of x. We need
to find a function whose second derivative is the same as the original
function except for a multiplicative constant. The only functions
with this property are sine waves and exponentials:

d2

dx2
[ q sin(rx+ s) ] = −qr2 sin(rx+ s)

d2

dx2

[
qerx+s

]
= qr2erx+s

The sine wave gives negative values of a, a = −r2, and the exponen-
tial gives positive ones, a = r2. The former applies to the classically
allowed region with PE < E.

This leads us to a quantitative calculation of the tunneling effect
discussed briefly in the preceding subsection. The wavefunction ev-
idently tails off exponentially in the classically forbidden region.
Suppose, as shown in figure m, a wave-particle traveling to the right
encounters a barrier that it is classically forbidden to enter. Al-
though the form of the Schrödinger equation we’re using technically
does not apply to traveling waves (because it makes no reference
to time), it turns out that we can still use it to make a reasonable
calculation of the probability that the particle will make it through
the barrier. If we let the barrier’s width be w, then the ratio of the
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wavefunction on the left side of the barrier to the wavefunction on
the right is

qerx+s

qer(x+w)+s
= e−rw.

Probabilities are proportional to the squares of wavefunctions, so
the probability of making it through the barrier is

P = e−2rw

= exp

(
−2w

~
√

2m(PE − E)

)

self-check E
If we were to apply this equation to find the probability that a person can
walk through a wall, what would the small value of Planck’s constant
imply? . Answer, p. 1047

Use of complex numbers

In a classically forbidden region, a particle’s total energy, PE+KE,
is less than its PE, so its KE must be negative. If we want to
keep believing in the equation KE = p2/2m, then apparently the
momentum of the particle is the square root of a negative number.
This is a symptom of the fact that the Schrödinger equation fails
to describe all of nature unless the wavefunction and various other
quantities are allowed to be complex numbers. In particular it is not
possible to describe traveling waves correctly without using complex
wavefunctions.

This may seem like nonsense, since real numbers are the only ones
that are, well, real! Quantum mechanics can always be related to the
real world, however, because its structure is such that the results of
measurements always come out to be real numbers. For example, we
may describe an electron as having non-real momentum in classically
forbidden regions, but its average momentum will always come out
to be real (the imaginary parts average out to zero), and it can never
transfer a non-real quantity of momentum to another particle.

A complete investigation of these issues is beyond the scope of this
book, and this is why we have normally limited ourselves to standing
waves, which can be described with real-valued wavefunctions.
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Summary
Selected vocabulary
wavefunction . . the numerical measure of an electron wave, or

in general of the wave corresponding to any
quantum mechanical particle

Notation
~ . . . . . . . . . . Planck’s constant divided by 2π (used only in

optional section 35.6)
Ψ . . . . . . . . . the wavefunction of an electron

Summary

Light is both a particle and a wave. Matter is both a particle and a
wave. The equations that connect the particle and wave properties
are the same in all cases:

E = hf

p = h/λ

Unlike the electric and magnetic fields that make up a photon-
wave, the electron wavefunction is not directly measurable. Only
the square of the wavefunction, which relates to probability, has
direct physical significance.

A particle that is bound within a certain region of space is a standing
wave in terms of quantum physics. The two equations above can
then be applied to the standing wave to yield some important general
observations about bound particles:

1. The particle’s energy is quantized (can only have certain val-
ues).

2. The particle has a minimum energy.

3. The smaller the space in which the particle is confined, the
higher its kinetic energy must be.

These immediately resolve the difficulties that classical physics had
encountered in explaining observations such as the discrete spectra
of atoms, the fact that atoms don’t collapse by radiating away their
energy, and the formation of chemical bonds.

A standing wave confined to a small space must have a short wave-
length, which corresponds to a large momentum in quantum physics.
Since a standing wave consists of a superposition of two traveling
waves moving in opposite directions, this large momentum should
actually be interpreted as an equal mixture of two possible mo-
menta: a large momentum to the left, or a large momentum to the
right. Thus it is not possible for a quantum wave-particle to be
confined to a small space without making its momentum very un-
certain. In general, the Heisenberg uncertainty principle states that
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it is not possible to know the position and momentum of a particle
simultaneously with perfect accuracy. The uncertainties in these
two quantities must satisfy the approximate inequality

∆p∆x & h.

When an electron is subjected to electric forces, its wavelength can-
not be constant. The “wavelength” to be used in the equation
p = h/λ should be thought of as the wavelength of the sine wave
that most closely approximates the curvature of the wavefunction
at a specific point.

Infinite curvature is not physically possible, so realistic wavefunc-
tions cannot have kinks in them, and cannot just cut off abruptly
at the edge of a region where the particle’s energy would be in-
sufficient to penetrate according to classical physics. Instead, the
wavefunction “tails off” in the classically forbidden region, and as a
consequence it is possible for particles to “tunnel” through regions
where according to classical physics they should not be able to pen-
etrate. If this quantum tunneling effect did not exist, there would
be no fusion reactions to power our sun, because the energies of
the nuclei would be insufficient to overcome the electrical repulsion
between them.

Exploring further

The New World of Mr. Tompkins: George Gamow’s Clas-
sic Mr. Tompkins in Paperback, George Gamow. Mr. Tomp-
kins finds himself in a world where the speed of light is only 30 miles
per hour, making relativistic effects obvious. Later parts of the book
play similar games with Planck’s constant.

The First Three Minutes: A Modern View of the Origin of
the Universe, Steven Weinberg. Surprisingly simple ideas allow
us to understand the infancy of the universe surprisingly well.

Three Roads to Quantum Gravity, Lee Smolin. The great-
est embarrassment of physics today is that we are unable to fully
reconcile general relativity (the theory of gravity) with quantum
mechanics. This book does a good job of introducing the lay reader
to a difficult, speculative subject, and showing that even though
we don’t have a full theory of quantum gravity, we do have a clear
outline of what such a theory must look like.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In a television, suppose the electrons are accelerated from rest
through a voltage difference of 104 V. What is their final wavelength?√

2 Use the Heisenberg uncertainty principle to estimate the
minimum velocity of a proton or neutron in a 208Pb nucleus, which
has a diameter of about 13 fm (1 fm = 10−15 m). Assume that
the speed is nonrelativistic, and then check at the end whether this
assumption was warranted.

√

3 A free electron that contributes to the current in an ohmic
material typically has a speed of 105 m/s (much greater than the
drift velocity).
(a) Estimate its de Broglie wavelength, in nm.

√

(b) If a computer memory chip contains 108 electric circuits in a
1 cm2 area, estimate the linear size, in nm, of one such circuit.

√

(c) Based on your answers from parts a and b, does an electrical
engineer designing such a chip need to worry about wave effects
such as diffraction?
(d) Estimate the maximum number of electric circuits that can fit on
a 1 cm2 computer chip before quantum-mechanical effects become
important.

4 On page 998, I discussed the idea of hooking up a video
camera to a visible-light microscope and recording the trajectory of
an electron orbiting a nucleus. An electron in an atom typically has
a speed of about 1% of the speed of light.
(a) Calculate the momentum of the electron.

√

(b) When we make images with photons, we can’t resolve details
that are smaller than the photons’ wavelength. Suppose we wanted
to map out the trajectory of the electron with an accuracy of 0.01
nm. What part of the electromagnetic spectrum would we have to
use?
(c) As found in homework problem 12 on page 813, the momentum
of a photon is given by p = E/c. Estimate the momentum of a
photon having the necessary wavelength.

√

(d) Comparing your answers from parts a and c, what would be the
effect on the electron if the photon bounced off of it? What does
this tell you about the possibility of mapping out an electron’s orbit
around a nucleus?
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5 Find the energy of a nonrelativistic particle in a one-dimensional
box of length L, expressing your result in terms of L, the particle’s
mass m, the number of peaks and valleys n in the wavefunction, and
fundamental constants.

√

6 The Heisenberg uncertainty principle, ∆p∆x & h, can only be
made into a strict inequality if we agree on a rigorous mathematical
definition of ∆x and ∆p. Suppose we define the deltas in terms of the
full width at half maximum (FWHM), which we first encountered
on p. 481 and revisited on page 949 of this book. Now consider
the lowest-energy state of the one-dimensional particle in a box. As
argued on page 999, the momentum has equal probability of being
h/L or −h/L, so the FWHM definition gives ∆p = 2h/L.
(a) Find ∆x using the FWHM definition. Keep in mind that the
probability distribution depends on the square of the wavefunction.
(b) Find ∆x∆p.

√

7 If x has an average value of zero, then the standard deviation
of the probability distribution D(x) is defined by

σ2 =

√∫
D(x)x2 dx,

where the integral ranges over all possible values of x.

Interpretation: if x only has a high probability of having values close
to the average (i.e., small positive and negative values), the thing
being integrated will always be small, because x2 is always a small
number; the standard deviation will therefore be small. Squaring
x makes sure that either a number below the average (x < 0) or a
number above the average (x > 0) will contribute a positive amount
to the standard deviation. We take the square root of the whole
thing so that it will have the same units as x, rather than having
units of x2.

Redo problem 6 using the standard deviation rather than the FWHM.

Hints: (1) You need to determine the amplitude of the wave based
on normalization. (2) You’ll need the following definite integral:∫ π/2
−π/2 u

2 cos2 udu = (π3 − 6π)/24.
√ ∫

8 In section 35.6 we derived an expression for the probability
that a particle would tunnel through a rectangular barrier, i.e., a
region in which the interaction energy U(x) has a graph that looks
like a rectangle. Generalize this to a barrier of any shape. [Hints:
First try generalizing to two rectangular barriers in a row, and then
use a series of rectangular barriers to approximate the actual curve
of an arbitrary function U(x). Note that the width and height of
the barrier in the original equation occur in such a way that all that
matters is the area under the U -versus-x curve. Show that this is
still true for a series of rectangular barriers, and generalize using an
integral.] If you had done this calculation in the 1930’s you could
have become a famous physicist.

∫
?
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9 The electron, proton, and neutron were discovered, respec-
tively, in 1897, 1919, and 1932. The neutron was late to the party,
and some physicists felt that it was unnecessary to consider it as
fundamental. Maybe it could be explained as simply a proton with
an electron trapped inside it. The charges would cancel out, giving
the composite particle the correct neutral charge, and the masses
at least approximately made sense (a neutron is heavier than a pro-
ton). (a) Given that the diameter of a proton is on the order of
10−15 m, use the Heisenberg uncertainty principle to estimate the
trapped electron’s minimum momentum.

√

(b) Find the electron’s minimum kinetic energy.
√

(c) Show via E = mc2 that the proposed explanation may have a
problem, because the contribution to the neutron’s mass from the
electron’s kinetic energy would be comparable to the neutron’s en-
tire mass.

1010 Chapter 35 Matter as a Wave



A wavefunction of an electron in a
hydrogen atom.

Chapter 36

The Atom

You can learn a lot by taking a car engine apart, but you will have
learned a lot more if you can put it all back together again and make
it run. Half the job of reductionism is to break nature down into
its smallest parts and understand the rules those parts obey. The
second half is to show how those parts go together, and that is our
goal in this chapter. We have seen how certain features of all atoms
can be explained on a generic basis in terms of the properties of
bound states, but this kind of argument clearly cannot tell us any
details of the behavior of an atom or explain why one atom acts
differently from another.

The biggest embarrassment for reductionists is that the job of putting
things back together is usually much harder than the taking them
apart. Seventy years after the fundamentals of atomic physics were
solved, it is only beginning to be possible to calculate accurately the
properties of atoms that have many electrons. Systems consisting of
many atoms are even harder. Supercomputer manufacturers point
to the folding of large protein molecules as a process whose calcula-
tion is just barely feasible with their fastest machines. The goal of
this chapter is to give a gentle and visually oriented guide to some
of the simpler results about atoms.
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a / Eight wavelengths fit around
this circle: ` = 8.

36.1 Classifying states
We’ll focus our attention first on the simplest atom, hydrogen, with
one proton and one electron. We know in advance a little of what
we should expect for the structure of this atom. Since the electron
is bound to the proton by electrical forces, it should display a set
of discrete energy states, each corresponding to a certain standing
wave pattern. We need to understand what states there are and
what their properties are.

What properties should we use to classify the states? The most
sensible approach is to used conserved quantities. Energy is one
conserved quantity, and we already know to expect each state to
have a specific energy. It turns out, however, that energy alone is
not sufficient. Different standing wave patterns of the atom can
have the same energy.

Momentum is also a conserved quantity, but it is not particularly
appropriate for classifying the states of the electron in a hydrogen
atom. The reason is that the force between the electron and the pro-
ton results in the continual exchange of momentum between them.
(Why wasn’t this a problem for energy as well? Kinetic energy and
momentum are related by KE = p2/2m, so the much more mas-
sive proton never has very much kinetic energy. We are making an
approximation by assuming all the kinetic energy is in the electron,
but it is quite a good approximation.)

Angular momentum does help with classification. There is no trans-
fer of angular momentum between the proton and the electron, since
the force between them is a center-to-center force, producing no
torque.

Like energy, angular momentum is quantized in quantum physics.
As an example, consider a quantum wave-particle confined to a cir-
cle, like a wave in a circular moat surrounding a castle. A sine
wave in such a “quantum moat” cannot have any old wavelength,
because an integer number of wavelengths must fit around the cir-
cumference, C, of the moat. The larger this integer is, the shorter
the wavelength, and a shorter wavelength relates to greater momen-
tum and angular momentum. Since this integer is related to angular
momentum, we use the symbol ` for it:

λ =
C

`
The angular momentum is

L = rp.

Here, r = C/2π, and p = h/λ = h`/C, so

L =
C

2π
· h`
C

=
h

2π
`
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b / The angular momentum
vector of a spinning top.

In the example of the quantum moat, angular momentum is quan-
tized in units of h/2π, and this turns out to be a completely general
fact about quantum physics. That makes h/2π a pretty important
number, so we define the abbreviation ~ = h/2π. This symbol is
read “h-bar.”

quantization of angular momentum
The angular momentum of a particle due to its motion through
space is quantized in units of ~.

self-check A
What is the angular momentum of the wavefunction shown on page
1011? . Answer, p. 1047

36.2 Angular momentum in three dimensions
Up until now we’ve only worked with angular momentum in the
context of rotation in a plane, for which we could simply use pos-
itive and negative signs to indicate clockwise and counterclockwise
directions of rotation. A hydrogen atom, however, is unavoidably
three-dimensional. Let’s first consider the generalization of angu-
lar momentum to three dimensions in the classical case, and then
consider how it carries over into quantum physics.

Three-dimensional angular momentum in classical physics

If we are to completely specify the angular momentum of a classical
object like a top, b, in three dimensions, it’s not enough to say
whether the rotation is clockwise or counterclockwise. We must
also give the orientation of the plane of rotation or, equivalently,
the direction of the top’s axis. The convention is to specify the
direction of the axis. There are two possible directions along the
axis, and as a matter of convention we use the direction such that
if we sight along it, the rotation appears clockwise.

Angular momentum can, in fact, be defined as a vector pointing
along this direction. This might seem like a strange definition, since
nothing actually moves in that direction, but it wouldn’t make sense
to define the angular momentum vector as being in the direction of
motion, because every part of the top has a different direction of
motion. Ultimately it’s not just a matter of picking a definition
that is convenient and unambiguous: the definition we’re using is
the only one that makes the total angular momentum of a system a
conserved quantity if we let “total” mean the vector sum.

As with rotation in one dimension, we cannot define what we mean
by angular momentum in a particular situation unless we pick a
point as an axis. This is really a different use of the word “axis”
than the one in the previous paragraphs. Here we simply mean a
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c / 1. This particle is moving
directly away from the axis, and
has no angular momentum.
2. This particle has angular
momentum.

point from which we measure the distance r. In the hydrogen atom,
the nearly immobile proton provides a natural choice of axis.

Three-dimensional angular momentum in quantum physics

Once we start to think more carefully about the role of angular
momentum in quantum physics, it may seem that there is a basic
problem: the angular momentum of the electron in a hydrogen atom
depends on both its distance from the proton and its momentum,
so in order to know its angular momentum precisely it would seem
we would need to know both its position and its momentum simul-
taneously with good accuracy. This, however, might seem to be
forbidden by the Heisenberg uncertainty principle.

Actually the uncertainty principle does place limits on what can be
known about a particle’s angular momentum vector, but it does not
prevent us from knowing its magnitude as an exact integer multiple
of ~. The reason is that in three dimensions, there are really three
separate uncertainty principles:

∆px∆x & h

∆py∆y & h

∆pz∆z & h

Now consider a particle, c/1, that is moving along the x axis at
position x and with momentum px. We may not be able to know
both x and px with unlimited accuracy, but we can still know the
particle’s angular momentum about the origin exactly. Classically,
it is zero, because the particle is moving directly away from the
origin: if it was to be nonzero, we would need both a nonzero x and
a nonzero py. In quantum terms, the uncertainty principle does not
place any constraint on ∆x∆py.

Suppose, on the other hand, a particle finds itself, as in figure c/2,
at a position x along the x axis, and it is moving parallel to the y
axis with momentum py. It has angular momentum xpy about the z
axis, and again we can know its angular momentum with unlimited
accuracy, because the uncertainty principle only relates x to px and
y to py. It does not relate x to py.

As shown by these examples, the uncertainty principle does not re-
strict the accuracy of our knowledge of angular momenta as severely
as might be imagined. However, it does prevent us from knowing all
three components of an angular momentum vector simultaneously.
The most general statement about this is the following theorem,
which we present without proof:
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e / The energy of a state in
the hydrogen atom depends only
on its n quantum number.

the angular momentum vector in quantum physics
The most that can be known about an angular momentum vector
is its magnitude and one of its three vector components. Both are
quantized in units of ~.

36.3 The hydrogen atom
Deriving the wavefunctions of the states of the hydrogen atom from
first principles would be mathematically too complex for this book,
but it’s not hard to understand the logic behind such a wavefunction
in visual terms. Consider the wavefunction from the beginning of
the chapter, which is reproduced below. Although the graph looks
three-dimensional, it is really only a representation of the part of the
wavefunction lying within a two-dimensional plane. The third (up-
down) dimension of the plot represents the value of the wavefunction
at a given point, not the third dimension of space. The plane chosen
for the graph is the one perpendicular to the angular momentum
vector.

d / A wavefunction of a hydrogen
atom.

Each ring of peaks and valleys has eight wavelengths going around
in a circle, so this state has L = 8~, i.e., we label it ` = 8. The
wavelength is shorter near the center, and this makes sense because
when the electron is close to the nucleus it has a lower PE, a higher
KE, and a higher momentum.

Between each ring of peaks in this wavefunction is a nodal circle,
i.e., a circle on which the wavefunction is zero. The full three-
dimensional wavefunction has nodal spheres: a series of nested spher-
ical surfaces on which it is zero. The number of radii at which nodes
occur, including r = ∞, is called n, and n turns out to be closely
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related to energy. The ground state has n = 1 (a single node only
at r = ∞), and higher-energy states have higher n values. There
is a simple equation relating n to energy, which we will discuss in
section 36.4.

The numbers n and `, which identify the state, are called its quan-
tum numbers. A state of a given n and ` can be oriented in a variety
of directions in space. We might try to indicate the orientation using
the three quantum numbers `x = Lx/~, `y = Ly/~, and `z = Lz/~.
But we have already seen that it is impossible to know all three of
these simultaneously. To give the most complete possible descrip-
tion of a state, we choose an arbitrary axis, say the z axis, and label
the state according to n, `, and `z.

Angular momentum requires motion, and motion implies kinetic
energy. Thus it is not possible to have a given amount of angular
momentum without having a certain amount of kinetic energy as
well. Since energy relates to the n quantum number, this means
that for a given n value there will be a maximum possible `. It
turns out that this maximum value of ` equals n− 1.

In general, we can list the possible combinations of quantum num-
bers as follows:

n can equal 1, 2, 3, . . .
` can range from 0 to n− 1, in steps of 1
`z can range from −` to `, in steps of 1

Applying these rules, we have the following list of states:

n = 1, ` = 0, `z = 0 one state
n = 2, ` = 0, `z = 0 one state
n = 2, ` = 1, `z = −1, 0, or 1 three states
. . . . . .

self-check B
Continue the list for n = 3. . Answer, p. 1047

Figure f shows the lowest-energy states of the hydrogen atom. The
left-hand column of graphs displays the wavefunctions in the x− y
plane, and the right-hand column shows the probability distribution
in a three-dimensional representation.

Discussion questions

A The quantum number n is defined as the number of radii at which
the wavefunction is zero, including r = ∞. Relate this to the features of
the figures on the facing page.

B Based on the definition of n, why can’t there be any such thing as
an n = 0 state?

C Relate the features of the wavefunction plots in figure f to the corre-
sponding features of the probability distribution pictures.
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f / The three lowest-energy states of hydrogen.

D How can you tell from the wavefunction plots in figure f which ones
have which angular momenta?

E Criticize the following incorrect statement: “The ` = 8 wavefunction
in figure d has a shorter wavelength in the center because in the center
the electron is in a higher energy level.”

F Discuss the implications of the fact that the probability cloud in of the
n = 2, ` = 1 state is split into two parts.
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36.4 ? Energies of states in hydrogen
History

The experimental technique for measuring the energy levels of an
atom accurately is spectroscopy: the study of the spectrum of light
emitted (or absorbed) by the atom. Only photons with certain en-
ergies can be emitted or absorbed by a hydrogen atom, for example,
since the amount of energy gained or lost by the atom must equal
the difference in energy between the atom’s initial and final states.
Spectroscopy had become a highly developed art several decades
before Einstein even proposed the photon, and the Swiss spectro-
scopist Johann Balmer determined in 1885 that there was a simple
equation that gave all the wavelengths emitted by hydrogen. In
modern terms, we think of the photon wavelengths merely as indi-
rect evidence about the underlying energy levels of the atom, and
we rework Balmer’s result into an equation for these atomic energy
levels:

En = −2.2× 10−18 J

n2
,

This energy includes both the kinetic energy of the electron and
the electrical energy. The zero-level of the electrical energy scale
is chosen to be the energy of an electron and a proton that are
infinitely far apart. With this choice, negative energies correspond
to bound states and positive energies to unbound ones.

Where does the mysterious numerical factor of 2.2 × 10−18 J come
from? In 1913 the Danish theorist Niels Bohr realized that it was
exactly numerically equal to a certain combination of fundamental
physical constants:

En = −mk
2e4

2~2
· 1

n2
,

where m is the mass of the electron, and k is the Coulomb force
constant for electric forces.

Bohr was able to cook up a derivation of this equation based on the
incomplete version of quantum physics that had been developed by
that time, but his derivation is today mainly of historical interest.
It assumes that the electron follows a circular path, whereas the
whole concept of a path for a particle is considered meaningless in
our more complete modern version of quantum physics. Although
Bohr was able to produce the right equation for the energy levels,
his model also gave various wrong results, such as predicting that
the atom would be flat, and that the ground state would have ` = 1
rather than the correct ` = 0.

Approximate treatment

A full and correct treatment is impossible at the mathematical level
of this book, but we can provide a straightforward explanation for
the form of the equation using approximate arguments.
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g / The energy levels of a
particle in a box, contrasted with
those of the hydrogen atom.

A typical standing-wave pattern for the electron consists of a central
oscillating area surrounded by a region in which the wavefunction
tails off. As discussed in section 35.6, the oscillating type of pattern
is typically encountered in the classically allowed region, while the
tailing off occurs in the classically forbidden region where the elec-
tron has insufficient kinetic energy to penetrate according to clas-
sical physics. We use the symbol r for the radius of the spherical
boundary between the classically allowed and classically forbidden
regions. Classically, r would be the distance from the proton at
which the electron would have to stop, turn around, and head back
in.

If r had the same value for every standing-wave pattern, then we’d
essentially be solving the particle-in-a-box problem in three dimen-
sions, with the box being a spherical cavity. Consider the energy
levels of the particle in a box compared to those of the hydrogen
atom, g. They’re qualitatively different. The energy levels of the
particle in a box get farther and farther apart as we go higher in en-
ergy, and this feature doesn’t even depend on the details of whether
the box is two-dimensional or three-dimensional, or its exact shape.
The reason for the spreading is that the box is taken to be com-
pletely impenetrable, so its size, r, is fixed. A wave pattern with n
humps has a wavelength proportional to r/n, and therefore a mo-
mentum proportional to n, and an energy proportional to n2. In
the hydrogen atom, however, the force keeping the electron bound
isn’t an infinite force encountered when it bounces off of a wall, it’s
the attractive electrical force from the nucleus. If we put more en-
ergy into the electron, it’s like throwing a ball upward with a higher
energy — it will get farther out before coming back down. This
means that in the hydrogen atom, we expect r to increase as we go
to states of higher energy. This tends to keep the wavelengths of
the high energy states from getting too short, reducing their kinetic
energy. The closer and closer crowding of the energy levels in hydro-
gen also makes sense because we know that there is a certain energy
that would be enough to make the electron escape completely, and
therefore the sequence of bound states cannot extend above that
energy.

When the electron is at the maximum classically allowed distance r
from the proton, it has zero kinetic energy. Thus when the electron
is at distance r, its energy is purely electrical:

[1] E = −ke
2

r

Now comes the approximation. In reality, the electron’s wavelength
cannot be constant in the classically allowed region, but we pretend
that it is. Since n is the number of nodes in the wavefunction, we
can interpret it approximately as the number of wavelengths that
fit across the diameter 2r. We are not even attempting a derivation
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that would produce all the correct numerical factors like 2 and π
and so on, so we simply make the approximation

[2] λ ∼ r

n
.

Finally we assume that the typical kinetic energy of the electron is
on the same order of magnitude as the absolute value of its total
energy. (This is true to within a factor of two for a typical classical
system like a planet in a circular orbit around the sun.) We then
have

absolute value of total energy[3]

=
ke2

r
∼ K
= p2/2m

= (h/λ)2/2m

∼ h2n2/2mr2

We now solve the equation ke2/r ∼ h2n2/2mr2 for r and throw
away numerical factors we can’t hope to have gotten right, yielding

[4] r ∼ h2n2

mke2
.

Plugging n = 1 into this equation gives r = 2 nm, which is indeed
on the right order of magnitude. Finally we combine equations [4]
and [1] to find

E ∼ −mk
2e4

h2n2
,

which is correct except for the numerical factors we never aimed to
find.

Discussion questions

A States of hydrogen with n greater than about 10 are never observed
in the sun. Why might this be?

B Sketch graphs of r and E versus n for the hydrogen atom, and com-
pare with analogous graphs for the one-dimensional particle in a box.

36.5 Electron spin
It’s disconcerting to the novice ping-pong player to encounter for
the first time a more skilled player who can put spin on the ball.
Even though you can’t see that the ball is spinning, you can tell
something is going on by the way it interacts with other objects in
its environment. In the same way, we can tell from the way electrons
interact with other things that they have an intrinsic spin of their
own. Experiments show that even when an electron is not moving
through space, it still has angular momentum amounting to ~/2.
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h / The top has angular mo-
mentum both because of the
motion of its center of mass
through space and due to its
internal rotation. Electron spin is
roughly analogous to the intrinsic
spin of the top.

This may seem paradoxical because the quantum moat, for instance,
gave only angular momenta that were integer multiples of ~, not
half-units, and I claimed that angular momentum was always quan-
tized in units of ~, not just in the case of the quantum moat. That
whole discussion, however, assumed that the angular momentum
would come from the motion of a particle through space. The ~/2
angular momentum of the electron is simply a property of the par-
ticle, like its charge or its mass. It has nothing to do with whether
the electron is moving or not, and it does not come from any in-
ternal motion within the electron. Nobody has ever succeeded in
finding any internal structure inside the electron, and even if there
was internal structure, it would be mathematically impossible for it
to result in a half-unit of angular momentum.

We simply have to accept this ~/2 angular momentum, called the
“spin” of the electron — Mother Nature rubs our noses in it as an
observed fact. Protons and neutrons have the same ~/2 spin,
while photons have an intrinsic spin of ~. In general, half-integer
spins are typical of material particles. Integral values are found for
the particles that carry forces: photons, which embody the electric
and magnetic fields of force, as well as the more exotic messengers
of the nuclear and gravitational forces. The photon is particularly
important: it has spin 1.

As was the case with ordinary angular momentum, we can describe
spin angular momentum in terms of its magnitude, and its compo-
nent along a given axis. We notate these quantities, in units of ~,
as s and sz, so an electron has s = 1/2 and sz = +1/2 or -1/2.

Taking electron spin into account, we need a total of four quantum
numbers to label a state of an electron in the hydrogen atom: n, `,
`z, and sz. (We omit s because it always has the same value.) The
symbols ` and `z include only the angular momentum the electron
has because it is moving through space, not its spin angular mo-
mentum. The availability of two possible spin states of the electron
leads to a doubling of the numbers of states:

n = 1, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 1, `z = −1, 0, or 1, sz = +1/2 or −1/2 six states
. . . . . .

36.6 Atoms with more than one electron
What about other atoms besides hydrogen? It would seem that
things would get much more complex with the addition of a second
electron. A hydrogen atom only has one particle that moves around
much, since the nucleus is so heavy and nearly immobile. Helium,
with two, would be a mess. Instead of a wavefunction whose square
tells us the probability of finding a single electron at any given lo-
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cation in space, a helium atom would need to have a wavefunction
whose square would tell us the probability of finding two electrons
at any given combination of points. Ouch! In addition, we would
have the extra complication of the electrical interaction between the
two electrons, rather than being able to imagine everything in terms
of an electron moving in a static field of force created by the nucleus
alone.

Despite all this, it turns out that we can get a surprisingly good de-
scription of many-electron atoms simply by assuming the electrons
can occupy the same standing-wave patterns that exist in a hydro-
gen atom. The ground state of helium, for example, would have
both electrons in states that are very similar to the n = 1 states of
hydrogen. The second-lowest-energy state of helium would have one
electron in an n = 1 state, and the other in an n = 2 states. The
relatively complex spectra of elements heavier than hydrogen can
be understood as arising from the great number of possible combi-
nations of states for the electrons.

A surprising thing happens, however, with lithium, the three-electron
atom. We would expect the ground state of this atom to be one in
which all three electrons settle down into n = 1 states. What really
happens is that two electrons go into n = 1 states, but the third
stays up in an n = 2 state. This is a consequence of a new principle
of physics:

the Pauli exclusion principle
Only one electron can ever occupy a given state.

There are two n = 1 states, one with sz = +1/2 and one with
sz = −1/2, but there is no third n = 1 state for lithium’s third
electron to occupy, so it is forced to go into an n = 2 state.

It can be proved mathematically that the Pauli exclusion principle
applies to any type of particle that has half-integer spin. Thus
two neutrons can never occupy the same state, and likewise for two
protons. Photons, however, are immune to the exclusion principle
because their spin is an integer. Material objects can’t pass through
each other, but beams of light can. With a little oversimplification,
we can say that the basic reason is that the exclusion principle
applies to one but not to the other.1

Photons are made out electric and magnetic fields, which are di-
rectly measurable, but the wavefunction of a spin-1/2 particle is not
observable (p. 991). The exclusion principle offers a more funda-
mental explanation of this difference between light and matter. We
saw in example 2 on p. 971 that in a typical light wave, a huge num-

1There are also electrical forces between atoms, but as argued on page ??,
the attractions and repulsions tend to cancel out.
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i / The beginning of the peri-
odic table.

j / Hydrogen is highly reactive.

ber of photons overlap one another within a volume of one cubic
wavelength, and this is what allows us to measure the amplitude
and phase of the wave with a device like an antenna. But for elec-
trons, the exclusion principle prevents us from having more than one
particle in such a volume, so we can’t perform this type of classical
measurement of the wave.

Deriving the periodic table

We can now account for the structure of the periodic table, which
seemed so mysterious even to its inventor Mendeleev. The first row
consists of atoms with electrons only in the n = 1 states:

H 1 electron in an n = 1 state
He 2 electrons in the two n = 1 states

The next row is built by filling the n = 2 energy levels:

Li 2 electrons in n = 1 states, 1 electron in an n = 2 state
Be 2 electrons in n = 1 states, 2 electrons in n = 2 states
. . .
O 2 electrons in n = 1 states, 6 electrons in n = 2 states
F 2 electrons in n = 1 states, 7 electrons in n = 2 states

Ne 2 electrons in n = 1 states, 8 electrons in n = 2 states

In the third row we start in on the n = 3 levels:

Na 2 electrons in n = 1 states, 8 electrons in n = 2 states, 1
electron in an n = 3 state

...

We can now see a logical link between the filling of the energy levels
and the structure of the periodic table. Column 0, for example,
consists of atoms with the right number of electrons to fill all the
available states up to a certain value of n. Column I contains atoms
like lithium that have just one electron more than that.

This shows that the columns relate to the filling of energy levels,
but why does that have anything to do with chemistry? Why, for
example, are the elements in columns I and VII dangerously reac-
tive? Consider, for example, the element sodium (Na), which is so
reactive that it may burst into flames when exposed to air. The
electron in the n = 3 state has an unusually high energy. If we let
a sodium atom come in contact with an oxygen atom, energy can
be released by transferring the n = 3 electron from the sodium to
one of the vacant lower-energy n = 2 states in the oxygen. This
energy is transformed into heat. Any atom in column I is highly
reactive for the same reason: it can release energy by giving away
the electron that has an unusually high energy.

Column VII is spectacularly reactive for the opposite reason: these
atoms have a single vacancy in a low-energy state, so energy is re-
leased when these atoms steal an electron from another atom.
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It might seem as though these arguments would only explain reac-
tions of atoms that are in different rows of the periodic table, be-
cause only in these reactions can a transferred electron move from a
higher-n state to a lower-n state. This is incorrect. An n = 2 elec-
tron in fluorine (F), for example, would have a different energy than
an n = 2 electron in lithium (Li), due to the different number of
protons and electrons with which it is interacting. Roughly speak-
ing, the n = 2 electron in fluorine is more tightly bound (lower in
energy) because of the larger number of protons attracting it. The
effect of the increased number of attracting protons is only partly
counteracted by the increase in the number of repelling electrons,
because the forces exerted on an electron by the other electrons are
in many different directions and cancel out partially.

Neutron stars example 1
Here’s an exotic example that doesn’t even involve atoms. When
a star runs out of fuel for its nuclear reactions, it begins to collapse
under its own weight. Since Newton’s law of gravity depends on
the inverse square of the distance, the gravitational forces be-
come stronger as the star collapses, which encourages it to col-
lapse even further. The final result depends on the mass of the
star, but let’s consider a star that’s only a little more massive than
our own sun. Such a star will collapse to the point where the grav-
itational energy being released is sufficient to cause the reaction
p+e− → n+ν to occur. (As you found in homework problem 10 on
page 812, this reaction can only occur when there is some source
of energy, because the mass-energy of the products is greater
than the mass-energy of the things being consumed.) The neu-
trinos fly off and are never heard from again, so we’re left with a
star consisting only of neutrons!

Now the exclusion principle comes into play. The collapse can’t
continue indefinitely. The situation is in fact closely analogous
to that of an atom. A lead atom’s cloud of 82 electrons can’t
shrink down to the size of a hydrogen atom, because only two
electrons can have the lowest-energy wave pattern. The same
happens with the neutron star. No physical repulsion keeps the
neutrons apart. They’re electrically neutral, so they don’t repel or
attract one another electrically. The gravitational force is attrac-
tive, and as the collapse proceeds to the point where the neutrons
come within range of the strong nuclear force (∼ 10−15 m), we
even start getting nuclear attraction. The only thing that stops the
whole process is the exclusion principle. The star ends up being
only a few kilometers across, and has the same billion-ton-per-
teaspoon density as an atomic nucleus. Indeed, we can think of it
as one big nucleus (with atomic number zero, because there are
no protons).

As with a spinning figure skater pulling her arms in, conservation
of angular momentum makes the star spin faster and faster. The
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whole object may end up with a rotational period of a fraction of a
second! Such a star sends out radio pulses with each revolution,
like a sort of lighthouse. The first time such a signal was detected,
radio astronomers thought that it was a signal from aliens.
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Summary
Selected vocabulary
quantum number a numerical label used to classify a quantum

state
spin . . . . . . . . the built-in angular momentum possessed by

a particle even when at rest

Notation
n . . . . . . . . . . the number of radial nodes in the wavefunc-

tion, including the one at r =∞
~ . . . . . . . . . . h/2π
L . . . . . . . . . . the angular momentum vector of a particle,

not including its spin
` . . . . . . . . . . the magnitude of the L vector, divided by ~
`z . . . . . . . . . the z component of the L vector, divided by

~; this is the standard notation in nuclear
physics, but not in atomic physics

s . . . . . . . . . . the magnitude of the spin angular momentum
vector, divided by ~

sz . . . . . . . . . the z component of the spin angular momen-
tum vector, divided by ~; this is the standard
notation in nuclear physics, but not in atomic
physics

Other terminology and notation
m` . . . . . . . . . a less obvious notation for `z, standard in

atomic physics
ms . . . . . . . . . a less obvious notation for sz, standard in

atomic physics

Summary

Hydrogen, with one proton and one electron, is the simplest atom,
and more complex atoms can often be analyzed to a reasonably
good approximation by assuming their electrons occupy states that
have the same structure as the hydrogen atom’s. The electron in a
hydrogen atom exchanges very little energy or angular momentum
with the proton, so its energy and angular momentum are nearly
constant, and can be used to classify its states. The energy of a
hydrogen state depends only on its n quantum number.

In quantum physics, the angular momentum of a particle moving
in a plane is quantized in units of ~. Atoms are three-dimensional,
however, so the question naturally arises of how to deal with angu-
lar momentum in three dimensions. In three dimensions, angular
momentum is a vector in the direction perpendicular to the plane
of motion, such that the motion appears clockwise if viewed along
the direction of the vector. Since angular momentum depends on
both position and momentum, the Heisenberg uncertainty principle
limits the accuracy with which one can know it. The most that can
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be known about an angular momentum vector is its magnitude and
one of its three vector components, both of which are quantized in
units of ~.

In addition to the angular momentum that an electron carries by
virtue of its motion through space, it possesses an intrinsic angular
momentum with a magnitude of ~/2. Protons and neutrons also
have spins of ~/2, while the photon has a spin equal to ~.

Particles with half-integer spin obey the Pauli exclusion principle:
only one such particle can exist in a given state, i.e., with a given
combination of quantum numbers.

We can enumerate the lowest-energy states of hydrogen as follows:

n = 1, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 1, `z = −1, 0, or 1, sz = +1/2 or −1/2 six states
. . . . . .

The periodic table can be understood in terms of the filling of these
states. The nonreactive noble gases are those atoms in which the
electrons are exactly sufficient to fill all the states up to a given n
value. The most reactive elements are those with one more electron
than a noble gas element, which can release a great deal of energy
by giving away their high-energy electron, and those with one elec-
tron fewer than a noble gas, which release energy by accepting an
electron.
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Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) A distance scale is shown below the wavefunctions and
probability densities illustrated in figure f on page 1017. Compare
this with the order-of-magnitude estimate derived in section 36.4 for
the radius r at which the wavefunction begins tailing off. Was the
estimate in section 36.4 on the right order of magnitude?
(b) Although we normally say the moon orbits the earth, actually
they both orbit around their common center of mass, which is below
the earth’s surface but not at its center. The same is true of the
hydrogen atom. Does the center of mass lie inside the proton or
outside it?

2 The figure shows eight of the possible ways in which an electron
in a hydrogen atom could drop from a higher energy state to a
state of lower energy, releasing the difference in energy as a photon.
Of these eight transitions, only D, E, and F produce photons with
wavelengths in the visible spectrum.
(a) Which of the visible transitions would be closest to the violet
end of the spectrum, and which would be closest to the red end?
Explain.
(b) In what part of the electromagnetic spectrum would the photons
from transitions A, B, and C lie? What about G and H? Explain.
(c) Is there an upper limit to the wavelengths that could be emitted
by a hydrogen atom going from one bound state to another bound
state? Is there a lower limit? Explain.

3 Before the quantum theory, experimentalists noted that in
many cases, they would find three lines in the spectrum of the same
atom that satisfied the following mysterious rule: 1/λ1 = 1/λ2 +
1/λ3. Explain why this would occur. Do not use reasoning that
only works for hydrogen — such combinations occur in the spectra
of all elements. [Hint: Restate the equation in terms of the energies
of photons.]

4 Find an equation for the wavelength of the photon emitted
when the electron in a hydrogen atom makes a transition from en-
ergy level n1 to level n2. [You will need to have read optional section
36.4.]

√

5 Estimate the angular momentum of a spinning basketball, in
units of ~. Explain how this result relates to the correspondence
principle.

6 Assume that the kinetic energy of an electron in the n = 1
state of a hydrogen atom is on the same order of magnitude as the
absolute value of its total energy, and estimate a typical speed at
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which it would be moving. (It cannot really have a single, definite
speed, because its kinetic and interaction energy trade off at different
distances from the proton, but this is just a rough estimate of a
typical speed.) Based on this speed, were we justified in assuming
that the electron could be described nonrelativistically?

7 The wavefunction of the electron in the ground state of a
hydrogen atom, shown in the top left of figure f on p. 1017, is

Ψ = π−1/2a−3/2e−r/a,

where r is the distance from the proton, and a = ~2/kme2 =
5.3 × 10−11 m is a constant that sets the size of the wave. The
figure doesn’t show the proton; let’s take the proton to be a sphere
with a radius of b = 0.5 fm.
(a) Reproduce figure f in a rough sketch, and indicate, relative to
the size of your sketch, some idea of how big a and b are.
(b) Calculate symbolically, without plugging in numbers, the prob-
ability that at any moment, the electron is inside the proton. [Hint:
Does it matter if you plug in r = 0 or r = b in the equation for the
wavefunction?]

√

(c) Calculate the probability numerically.
√

(d) Based on the equation for the wavefunction, is it valid to think
of a hydrogen atom as having a finite size? Can a be interpreted
as the size of the atom, beyond which there is nothing? Or is there
any limit on how far the electron can be from the proton?

8 Use physical reasoning to explain how the equation for the
energy levels of hydrogen,

En = −mk
2e4

2~2
· 1

n2
,

should be generalized to the case of an atom with atomic number Z
that has had all its electrons removed except for one. ?

9 This question requires that you read optional section 36.4.
A muon is a subatomic particle that acts exactly like an electron
except that its mass is 207 times greater. Muons can be created by
cosmic rays, and it can happen that one of an atom’s electrons is
displaced by a muon, forming a muonic atom. If this happens to
a hydrogen atom, the resulting system consists simply of a proton
plus a muon.
(a) How would the size of a muonic hydrogen atom in its ground
state compare with the size of the normal atom?
(b) If you were searching for muonic atoms in the sun or in the
earth’s atmosphere by spectroscopy, in what part of the electromag-
netic spectrum would you expect to find the absorption lines?

10 Consider a classical model of the hydrogen atom in which
the electron orbits the proton in a circle at constant speed. In this
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model, the electron and proton can have no intrinsic spin. Using the
result of problem 14 in ch. 24, show that in this model, the atom’s
magnetic dipole moment Dm is related to its angular momentum
by Dm = (−e/2m)L, regardless of the details of the orbital motion.
Assume that the magnetic field is the same as would be produced
by a circular current loop, even though there is really only a sin-
gle charged particle. [Although the model is quantum-mechanically
incorrect, the result turns out to give the correct quantum mechan-
ical value for the contribution to the atom’s dipole moment coming
from the electron’s orbital motion. There are other contributions,
however, arising from the intrinsic spins of the electron and proton.]

11 Hydrogen is the only element whose energy levels can be
expressed exactly in an equation. Calculate the ratio λE/λF of the
wavelengths of the transitions labeled E and F in problem 2 on
p. 1028. Express your answer as an exact fraction, not a decimal
approximation. In an experiment in which atomic wavelengths are
being measured, this ratio provides a natural, stringent check on the
precision of the results.

√

1030 Chapter 36 The Atom



Exercise 36: Quantum versus classical randomness
1. Imagine the classical version of the particle in a one-dimensional box. Suppose you insert
the particle in the box and give it a known, predetermined energy, but a random initial position
and a random direction of motion. You then pick a random later moment in time to see where
it is. Sketch the resulting probability distribution by shading on top of a line segment. Does
the probability distribution depend on energy?

2. Do similar sketches for the first few energy levels of the quantum mechanical particle in a
box, and compare with 1.

3. Do the same thing as in 1, but for a classical hydrogen atom in two dimensions, which acts
just like a miniature solar system. Assume you’re always starting out with the same fixed values
of energy and angular momentum, but a position and direction of motion that are otherwise
random. Do this for L = 0, and compare with a real L = 0 probability distribution for the
hydrogen atom.

4. Repeat 3 for a nonzero value of L, say L=~.

5. Summarize: Are the classical probability distributions accurate? What qualitative features
are possessed by the classical diagrams but not by the quantum mechanical ones, or vice-versa?
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Hints for volume 2

Hints for chapter 21
Page 617, problem 8:
The force on the lithium ion is the vector sum of all the forces of all the quadrillions of sodium
and chlorine atoms, which would obviously be too laborious to calculate. Nearly all of these
forces, however, are canceled by a force from an ion on the opposite side of the lithium.

Page 619, problem 21:
The approach is similar to the one used for the other problem, but you want to work with
voltage and electrical energy rather than force.

Hints for chapter 22
Page 663, problem 13:
Since we have t � r, the volume of the membrane is essentially the same as if it was unrolled
and flattened out, and the field’s magnitude is nearly constant.

Hints for chapter 24
Page 723, problem 3:
A stable system has low energy; energy would have to be added to change its configuration.

Hints for chapter 27
Page 833, problem 7:
Apply the equivalence principle.

Solutions to selected problems for volume 2

Solutions for chapter 21
Page 618, problem 10:
∆t = ∆q/I = e/I = 0.160 µs

Page 619, problem 17:
It’s much more practical to measure voltage differences. To measure a current, you have to
break the circuit somewhere and insert the meter there, but it’s not possible to disconnect the
circuits sealed inside the board.

Page 622, problem 34:
In series, they give 11 kΩ. In parallel, they give (1/1 kΩ + 1/10 kΩ)−1 = 0.9 kΩ.

Page 622, problem 35:
The actual shape is irrelevant; all we care about is what’s connected to what. Therefore, we
can draw the circuit flattened into a plane. Every vertex of the tetrahedron is adjacent to every
other vertex, so any two vertices to which we connect will give the same resistance. Picking two
arbitrarily, we have this:

This is unfortunately a circuit that cannot be converted into parallel and series parts, and that’s
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what makes this a hard problem! However, we can recognize that by symmetry, there is zero
current in the resistor marked with an asterisk. Eliminating this one, we recognize the whole
arrangement as a triple parallel circuit consisting of resistances R, 2R, and 2R. The resulting
resistance is R/2.

Solutions for chapter 22
Page 662, problem 4:
Let the square’s sides be of length a. The field at the center is the vector sum of the fields that
would have been produced individually by the three charges. Each of these individual fields is
kq/r2, where r1 = a/

√
2 for the two charges q1, and r2 = a/2 for q2. Vector addition can be

done by adding components. Let x be horizontal and y vertical. The y components cancel by
symmetry. The sum of the x components is

Ex =
kq1

r2
1

cos 45◦ +
kq1

r2
1

cos 45◦ − kq2

r2
2

.

Substituting cos 45◦ = 1/
√

2 and setting this whole expression equal to zero, we find q2/q1 =
1/
√

2.

Solutions for chapter 23
Page 695, problem 7:
To make the units make sense, we need to make sure that both sides of the ≈ sign have the
same units, and also that both terms on the right-hand side have the same units. Everything is
unitless except for the second term on the right, so we add a factor of c−2 to fix it:

γ ≈ 1 +
v2

2c2
.

Solutions for chapter 24
Page 725, problem 11:
(a) Current means how much charge passes by a given point per unit time. During a time
interval ∆t, all the charge carriers in a certain region behind the point will pass by. This region
has length v∆t and cross-sectional area A, so its volume is Av∆t, and the amount of charge in
it is Avnq∆t. To find the current, we divide this amount of charge by ∆t, giving I = Avnq.
(b) A segment of the wire of length L has a force QvB acting on it, where Q = ALnq is the
total charge of the moving charge carriers in that part of the wire. The force per unit length is
ALnqvB/L = AnqvB. (c) Dividing the two results gives F/L = IB.

Page 725, problem 12:
(a) The figure shows the case where the currents are in opposite directions.

The field vector shown is one made by wire 1, which causes an effect on wire 2. It points up
because wire 1’s field pattern is clockwise as view from along the direction of current I1. For
simplicity, let’s assume that the current I2 is made by positively charged particles moving in
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the direction of the current. (You can check that the final result would be the same if they were
negatively charged, as would actually be the case in a metal wire.) The force on one of these
positively charged particles in wire 2 is supposed to have a direction such that when you sight
along it, the B vector is clockwise from the v vector. This can only be accomplished if the force
on the particle in wire 2 is in the direction shown. Wire 2 is repelled by wire 1.

To verify that wire 1 is also repelled by wire 2, we can either go through the same type of
argument again, or we can simply apply Newton’s third law.

Simialar arguments show that the force is attractive if the currents are in the same direction.

(b) The force on wire 2 is F/L = I2B, where B = 2kI1/c
2r is the field made by wire 1 and r is

the distance between the wires. The result is

F/L = 2kI1I2/c
2r.

Page 726, problem 16:
(a) Based on our knowledge of the field pattern of a current-carrying loop, we know that the
magnetic field must be either into or out of the page. This makes sense, since that would mean
the field is always perpendicular to the plane of the electrons’ motion; if it was in their plane of
motion, then the angle between the v and B vectors would be changing all the time, but we see
no evidence of such behavior. With the field turned on, the force vector is apparently toward
the center of the circle. Let’s analyze the force at the moment when the electrons have started
moving, which is at the right side of the circle. The force is to the left. Since the electrons are
negatively charged particles, we know that if we sight along the force vector, the B vector must
be counterclockwise from the v vector. The magnetic field must be out of the page. (b) Looking
at figure f on page 701, we can tell that the current in the coils must be counterclockwise as
viewed from the perspective of the camera. (c) Electrons are negatively charged, so to produce
a counterclockwise current, the electrons in the coils must be going clockwise, i.e., they are
counterrotating compared to the beam. (d) The current in the coils is keep the electrons in the
beam from going straight, i.e. the force is a repulsion. This makes sense by comparison with
figure w in section 23.2: like charges moving in opposite directions repel one another.

Page 727, problem 19:
The trick is to imagine putting together two identical solenoids to make one double-length
solenoid. The field of the doubled solenoid is given by the vector sum of the two solenoids’
individual fields. At points on the axis, symmetry guarantees that the individual fields lie along
the axis, and similarly for the total field. At the center of one of the mouths, we thus have two
parallel field vectors of equal strength, whose sum equals the interior field. But the interior field
of the doubled solenoid is the same as that of the individual ones, since the equation for the
field only depends on the number of turns per unit length. Therefore the field at the center of
a solenoid’s mouth equals exactly half the interior field.

Page 727, problem 21:
(a) Plugging in, we find √

1− w
1 + w

=

√
1− u
1 + u

√
1− v
1 + v

.

(b) First let’s simplify by squaring both sides.

1− w
1 + w

=
1− u
1 + u

· 1− v
1 + v

.
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For convenience, let’s write A for the right-hand side of this equation. We then have

1− w
1 + w

= A

1− w = A+Aw.

Solving for w,

w =
1−A
1 +A

=
(1 + u)(1 + v)− (1− u)(1− v)

(1 + u)(1 + v) + (1− u)(1− v)

=
2(u+ v)

2(1 + uv)

=
u+ v

1 + uv

(c) This is all in units where c = 1. The correspondence principle says that we should get
w ≈ u + v when both u and v are small compared to 1. Under those circumstances, uv is the
product of two very small numbers, which makes it very, very small. Neglecting this term in
the denominator, we recover the nonrelativistic result.

Solutions for chapter 26
Page 810, problem 2:
(a) In the reaction p + e− → n + ν, the charges on the left are e+ (−e) = 0, and both charges
on the right are zero. (b) The neutrino has negligible mass. The masses on the left add up to
1.6736× 10−27 kg, which is less than the 1.6750× 10−27 kg mass of the neutron on the right, so
energy would be required from an external source in order to make this reaction happen.

Page 811, problem 7:
(a) The change in PE is e∆V, so the KE gained is (1/2)mv2 = eV . Solving for v, we get
v =

√
2eV/m. (b) Plugging in numbers, the velocity is 5.9× 107 m/s. This is about 20% of the

speed of light. (Since it’s not that close to the speed of light, we’ll get a reasonably accurate
answer without taking into account Einstein’s theory of relativity.)

Solutions for chapter 27
Page 833, problem 1:
At the center of each of the large triangle’s sides, the angles add up to 180◦ because they form
a straight line. Therefore 4s = S + 3× 180◦, so S − 180◦ = 4(s− 180◦).

Page 833, problem 7:
By the equivalence principle, we can adopt a frame tied to the tossed clock, B, and in this frame
there is no gravitational field. We see a desk and clock A go by. The desk applies a force to clock
A, decelerating it and then reaccelerating it so that it comes back. We’ve already established
that the effect of motion is to slow down time, so clock A reads a smaller time interval.

Solutions for chapter 28
Page 853, problem 4:
Because the surfaces are flat, you get specular reflection. In specular reflection, all the reflected
rays go in one direction. Unless the plane is directly overhead, that direction won’t be the right
direction to make the rays come back to the radar station.
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This is different from a normal plane, which has complicated, bumpy surfaces. These surfaces
give diffuse reflection, which spreads the reflected rays randomly in more or less every possible
direction.

Page 853, problem 5:
(a) The rays all cross at pretty much the same place, given the accuracy with which we can
draw them.
(b) It could be used to cook food, for instance. All the sunlight is concentrated in a small area.
(c) Put the lightbulb at the point where the rays cross. The outgoing rays will then form a
parallel beam going out to the right.

Page 853, problem 6:
It spells “bonk.”

Solutions for chapter 29
Page 868, problem 5:
The magnification is the ratio of the image’s size to the object’s size. It has nothing to do
with the person’s location. The angular magnification, however, does depend on the person’s
location, because things farther away subtend smaller angles. The distance to the actual object
is not changed significantly, since it’s zillions of miles away in outer space, but the distance to
the image does change if the observer’s point of view changes. If you can get closer to the image,
the angular magnification is greater.

Solutions for chapter 30

1036



Page 887, problem 1:
For a flat mirror, di and do are equal, so the magnification is 1, i.e., the image is the same size
as the object.

Page 887, problem 2:
See the ray diagram below. Decreasing θo decreases θi, so the equation θf = ±θi + ±θo must
have opposite signs on the right. Since θo is bigger than θi, the only way to get a positive θf is
if the signs are θf = −θi + θo. This gives 1/f = −1/di + 1/do.

Page 887, problem 3:
(a) In problem #2 we found that the equation relating the object and image distances was
of the form 1/f = −1/di + 1/do. Let’s make f = 1.00 m. To get a virtual image we need
do < f , so let do = 0.50 m. Solving for di, we find di = 1/(1/do − 1/f) = 1.00 m. The
magnification is M = di/do = 2.00. If we change do to 0.55 m, the magnification becomes 2.22.
The magnification changes somewhat with distance, so the store’s ad must be assuming you’ll
use the mirror at a certain distance. It can’t have a magnification of 5 at all distances.
(b) Theoretically yes, but in practical terms no. If you go through a calculation similar to the
one in part a, you’ll find that the images of both planets are formed at almost exactly the same
di, di = f , since 1/do is pretty close to zero for any astronomical object. The more distant
planet has an image half as big (M = di/do, and do is doubled), but we’re talking about angular
magnification here, so what we care about is the angular size of the image compared to the
angular size of the object. The more distant planet has half the angular size, but its image has
half the angular size as well, so the angular magnification is the same. If you think about it, it
wouldn’t make much sense for the angular magnification to depend on the planet’s distance —
if it did, then determining astronomical distances would be much easier than it actually is!

Page 887, problem 4:
(a) This occurs when the di is infinite. Let’s say it’s a converging mirror creating a virtual
image, as in problems 2 and 3. Then we’d get an infinite di if we put do = f , i.e., the object is
at the focal point of the mirror. The image is infinitely large, but it’s also infinitely far away,
so its angular size isn’t infinite; an angular size can never be more than about 180◦ since you
can’t see in back of your head!.
(b) It’s not possible to make the magnification infinite by having do = 0. The image location
and object location are related by 1/f = 1/do − 1/di, so 1/di = 1/do − 1/f . If do is zero, then
1/do is infinite, 1/di is infinite, and di is zero as well. In other words, as do approaches zero,
so does di, and di/do doesn’t blow up. Physically, the mirror’s curvature becomes irrelevant
from the point of view of a tiny flea sitting on its surface: the mirror seems flat to the flea. So
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physically the magnification would be 1, not infinity, for very small values of do.

Page 888, problem 10:
(a) The object distance is less than the focal length, so the image is virtual: because the object
is so close, the cone of rays is diverging too strongly for the mirror to bring it back to a focus.
(b) Now the object distance is greater than the focal length, so the image is real. (c),(d) A
diverging mirror can only make virtual images.

Solutions for chapter 31
Page 906, problem 1:
The refracted ray that was bent closer to the normal in the plastic when the plastic was in air
will be bent farther from the normal in the plastic when the plastic is in water. It will become
a diverging lens.

Page 906, problem 3:
Refraction occurs only at the boundary between two substances, which in this case means the
surface of the lens. Light doesn’t get bent at all inside the lens, so the thickness of the lens isn’t
really what’s important. What matters is the angles of the lens’ surfaces at various points.

Ray 1 makes an angle of zero with respect to the normal as it enters the lens, so it doesn’t get
bent at all, and likewise at the back.

At the edge of the lens, 2, the front and back are not parallel, so a ray that traverses the lens
at the edge ends up being bent quite a bit.

Although I drew both ray 1 and ray 2 coming in along the axis of the lens, it really doesn’t
matter. For instance, ray 3 bends on the way in, but bends an equal amount on the way out,
so it still emerges from the lens moving in the same direction as the direction it originally had.

Summarizing and systematizing these observations, we can say that for a ray that enters the
lens at the center, where the surfaces are parallel, the sum of the two deflection angles is zero.
Since the total deflection is zero at the center, it must be larger away from the center.
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Page 907, problem 7:
Normally, in air, your eyes do most of their focusing at the air-eye boundary. When you swim
without goggles, there is almost no difference in speed at the water-eye interface, so light is not
strongly refracted there (see figure), and the image is far behind the retina.

Goggles fix this problem for the following reason. The light rays cross a water-air boundary
as they enter the goggles, but they’re coming in along the normal, so they don’t get bent. At
the air-eye boundary, they get bent the same amount they normally would when you weren’t
swimming.
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Page 907, problem 8:
(a) See the figure below. The first refraction clearly bends it inward. However, the back surface
of the lens is more slanted, so the ray makes a bigger angle with respect to the normal at the
back surface. The bending at the back surface is therefore greater than the bending at the front
surface, and the ray ends up being bent outward more than inward.

(b) Lens 2 must act the same as lens 1. It’s diverging. One way of knowing this is time-reversal
symmetry: if we flip the original figure over and then reverse the direction of the ray, it’s still a
valid diagram.

Lens 3 is diverging like lens 1 on top, and diverging like lens 2 on the bottom. It’s a diverging
lens.

As for lens 4, any close-up diagram we draw of a particular ray passing through it will look
exactly like the corresponding close-up diagram for some part of lens 1. Lens 4 behaves the
same as lens 1.

Page 909, problem 13:
Since do is much greater than di, the lens-film distance di is essentially the same as f . (a)
Splitting the triangle inside the camera into two right triangles, straightforward trigonometry
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gives

θ = 2 tan−1 w

2f

for the field of view. This comes out to be 39◦ and 64◦ for the two lenses. (b) For small angles,
the tangent is approximately the same as the angle itself, provided we measure everything in
radians. The equation above then simplifies to

θ =
w

f

The results for the two lenses are .70 rad = 40◦, and 1.25 rad = 72◦. This is a decent approxi-
mation.

(c) With the 28-mm lens, which is closer to the film, the entire field of view we had with the
50-mm lens is now confined to a small part of the film. Using our small-angle approximation
θ = w/f , the amount of light contained within the same angular width θ is now striking a piece
of the film whose linear dimensions are smaller by the ratio 28/50. Area depends on the square
of the linear dimensions, so all other things being equal, the film would now be overexposed by
a factor of (50/28)2 = 3.2. To compensate, we need to shorten the exposure by a factor of 3.2.

Page 910, problem 20:
One surface is curved outward and one inward. Therefore the minus sign applies in the lens-
maker’s equation. Since the radii of curvature are equal, the quantity 1/r1 − 1/r2 equals zero,
and the resulting focal length is infinite. A big focal length indicates a weak lens. An infinite
focal length tells us that the lens is infinitely weak — it doesn’t focus or defocus rays at all.

Page 911, problem 22:
(a) The situation being described requires a real image, since the rays need to converge at a
point on Becky’s neck. See the ray diagram drawn with thick lines, showing object location o
and image location i.

If we move the object farther away, to o′ the cone of rays intercepted by the lens (thin lines) is
less strongly diverging, and the lens is able to bring it to a closer focus, at i′. In the diagrams,
we see that a smaller θo leads to a larger θi, so the signs in the equation ±θo ± θi = θf must be
the same, and therefore both positive, since θf is positive by definition. The equation relating
the image and object locations must be 1/f = 1/do + 1/di.

(b) The case with di = f is not possible, because then we need 1/do = 0, i.e., do =∞. Although
it is possible in principle to have an object so far away that it is practically at infinity, that is
not possible in this situation, since Zahra can’t take her lens very far away from the fire. By the
way, this means that the focal length f is not where the focus happens — the focus happens at
di.

For similar reasons, we can’t have do = f .

Since all the variables are positive, we must have 1/do and 1/di both less than 1/f . This implies
that do > f and di > f . Of the nine logical possibilities in the table, only this one is actually
possible for this real image.
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Solutions for chapter 32
Page 929, problem 1:
You don’t want the wave properties of light to cause all kinds of funny-looking diffraction effects.
You want to see the thing you’re looking at in the same way you’d see a big object. Diffraction
effects are most pronounced when the wavelength of the light is relatively large compared to the
size of the object the light is interacting with, so red would be the worst. Blue light is near the
short-wavelength end of the visible spectrum, which would be the best.

Page 930, problem 6:
For the size of the diffraction blob, we have:

λ

d
∼ sin θ

≈ θ

θ ∼ 700 nm

10 m
≈ 10−7 radians

For the actual angular size of the star, the small-angle approximation gives

θ ∼ 109 m

1017 m
= 10−8 radians

The diffraction blob is ten times bigger than the actual disk of the star, so we can never make
an image of the star itself in this way.

Page 930, problem 7:
The equation, solved for θ, is θ = sin−1(mλ/d). The sine function only ranges from −1 to +1,
so the inverse sine is undefined for |mλ/d| > 1, i.e., |m| > d/λ. Physically, we only get fringes
out to angles of 90 degrees (the inverse sine of 1) on both sides, corresponding to values of m
less than d/λ.

Page 931, problem 9:
(a) You can tell it’s a single slit because of the double-width central fringe.
(b) Four fringes on the top pattern are about 23.5 mm, while five fringes on the bottom one are
about 14.5 mm. The spacings are 5.88 and 2.90 mm, with a ratio of 2.03. A smaller d leads to
larger diffraction angles, so the width of the slit used to make the bottom pattern was almost
exactly twice as wide as the one used to make the top one.

Page 932, problem 11:
(a) The patterns have two structures, a coarse one and a fine one. You can look up in the book
which corresponds to w and which to d, or just use the fact that smaller features make bigger
diffraction angles. The top and middle patterns have the same coarse spacing, so they have the
same w. The fine structure in the top pattern has 7 fringes in 12.5 mm, for a spacing of 1.79
mm, while the middle pattern has 11 fringes in 41.5 mm, giving a spacing of 3.77 mm. The
value of d for the middle pattern is therefore (0.50 mm)(1.79/3.77) = 0.23 mm.
(b) This one has about the same d as the top one (it’s difficult to measure accurately because
each group has only a small number of fringes), but the coarse spacing is different, indicating
a different value of w. It has two coarse groupings in 23 mm, i.e., a spacing of 12.5 mm. The
coarse groupings in the original pattern were about 23 mm apart, so there is a factor of two
between the w = 0.04 mm of the top pattern and the w = 0.08 mm of the bottom one.
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Answers to self-checks for volume 2

Answers to self-checks for chapter 21
Page 579, self-check A:
Either type can be involved in either an attraction or a repulsion. A positive charge could be
involved in either an attraction (with a negative charge) or a repulsion (with another positive),
and a negative could participate in either an attraction (with a positive) or a repulsion (with a
negative).

Page 580, self-check B:
It wouldn’t make any difference. The roles of the positive and negative charges in the paper
would be reversed, but there would still be a net attraction.

Page 595, self-check C:
The large amount of power means a high rate of conversion of the battery’s chemical energy
into heat. The battery will quickly use up all its energy, i.e., “burn out.”

Answers to self-checks for chapter 22
Page 641, self-check A:
The reasoning is exactly analogous to that used in example 1 on page 639 to derive an equation
for the gravitational field of the earth. The field is F/qt = (kQqt/r

2)/qt = kQ/r2.

Page 653, self-check B:

Ex = −dV

dx

= − d

dx

(
kQ

r

)
=
kQ

r2

Page 654, self-check C:
(a) The voltage (height) increases as you move to the east or north. If we let the positive x
direction be east, and choose positive y to be north, then dV/ dx and dV/ dy are both positive.
This means that Ex and Ey are both negative, which makes sense, since the water is flowing in
the negative x and y directions (south and west).
(b) The electric fields are all pointing away from the higher ground. If this was an electrical
map, there would have to be a large concentration of charge all along the top of the ridge, and
especially at the mountain peak near the south end.

Answers to self-checks for chapter 23
Page 671, self-check A:
The diagram for the house looks like because in the one dimension of space being repre-
sented, it has walls on both sides, and its existence also extends over a certain amount of time
(left to right). If the dog is in the house at rest, then goes outside, and stays at rest in the

back yard for a while, the spacetime diagram looks like this: . An observer using
another frame of reference has to agree that the dog went outside, because observers agree on
intersections of world-lines, and the dog’s world-line intersects the world-line of the house’s back
wall.
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Page 681, self-check B:
At v = 0, we get γ = 1, so t = T . There is no time distortion unless the two frames of reference
are in relative motion.

Answers to self-checks for chapter 24
Page 710, self-check A:
An induced electric field can only be created by a changing magnetic field. Nothing is changing
if your car is just sitting there. A point on the coil won’t experience a changing magnetic field
unless the coil is already spinning, i.e., the engine has already turned over.

Page 718, self-check B:
Both the time axis and the position axis have been turned around. Flipping the time axis means
that the roles of transmitter and receiver have been swapped, and it also means that Alice and
Betty are approaching one another rather that receding. The time experienced by the receiving
observer is now the longer one, so the Doppler-shift factor has been inverted: the receiver now
measures a Doppler shift of 1/2 rather than 2 in frequency.

Answers to self-checks for chapter 25
Page 739, self-check A:
Yes. The mass has the same kinetic energy regardless of which direction it’s moving. Friction
coverts mechanical energy into heat at the same rate whether the mass is sliding to the right
or to the left. The spring has an equilibrium length, and energy can be stored in it either by
compressing it (x < 0) or stretching it (x > 0).

Page 739, self-check B:
Velocity, v, is the rate of change of position, x, with respect to time. This is exactly analogous
to I = ∆q/∆t.

Page 748, self-check C:
The impedance depends on the frequency at which the capacitor is being driven. It isn’t just a
single value for a particular capacitor.

Answers to self-checks for chapter 26
Page 758, self-check A:
Yes. In U.S. currency, the quantum of money is the penny.

Page 779, self-check B:
Thomson was accelerating electrons, which are negatively charged. This apparatus is supposed
to accelerated atoms with one electron stripped off, which have positive net charge. In both
cases, a particle that is between the plates should be attracted by the forward plate and repelled
by the plate behind it.

Page 787, self-check C:
The hydrogen-1 nucleus is simple a proton. The binding energy is the energy required to tear a
nucleus apart, but for a nucleus this simple there is nothing to tear apart.

Page 795, self-check D:
The total momentum is zero before the collision. After the collision, the two momenta have
reversed their directions, but they still cancel. Neither object has changed its kinetic energy, so
the total energy before and after the collision is also the same.

Page 802, self-check E:
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At v = 0, we have γ = 1, so the mass-energy is mc2 as claimed. As v approaches c, γ approaches
infinity, so the mass energy becomes infinite as well.

Answers to self-checks for chapter 28
Page 848, self-check A:
Only 1 is correct. If you draw the normal that bisects the solid ray, it also bisects the dashed
ray.

Answers to self-checks for chapter 29
Page 856, self-check A:
You should have found from your ray diagram that an image is still formed, and it has simply
moved down the same distance as the real face. However, this new image would only be visible
from high up, and the person can no longer see his own image.

Page 861, self-check B:
Increasing the distance from the face to the mirror has decreased the distance from the image
to the mirror. This is the opposite of what happened with the virtual image.

Answers to self-checks for chapter 30
Page 878, self-check A:
At the top of the graph, di approaches infinity when do approaches f . Interpretation: the rays
just barely converge to the right of the mirror.

On the far right, di approaches f as do approaches infinity; this is the definition of the focal
length.

At the bottom, di approaches negative infinity when do approaches f from the other side.
Interpretation: the rays don’t quite converge on the right side of the mirror, so they appear to
have come from a virtual image point very far to the left of the mirror.

Answers to self-checks for chapter 31
Page 895, self-check A:
(1) If n1 and n2 are equal, Snell’s law becomes sin θ1 = sin θ2, which implies θ1 = θ2, since both
angles are between 0 and 90◦. The graph would be a straight line along the diagonal of the
graph. (2) The graph is farthest from the diagonal when the angles are large, i.e., when the ray
strikes the interface at a grazing angle.

Page 899, self-check B:
(1) In 1, the rays cross the image, so it’s real. In 2, the rays only appear to have come from the
image point, so the image is virtual. (2) A rays is always closer to the normal in the medium
with the higher index of refraction. The first left turn makes the ray closer to the normal, which
is what should happen in glass. The second left turn makes the ray farther from the normal,
and that’s what should happen in air. (3) Take the topmost ray as an example. It will still take
two right turns, but since it’s entering the lens at a steeper angle, it will also leave at a steeper
angle. Tracing backward to the image, the steeper lines will meet closer to the lens.

Answers to self-checks for chapter 32
Page 917, self-check A:
It would have to have a wavelength on the order of centimeters or meters, the same distance
scale as that of your body. These would be microwaves or radio waves. (This effect can easily
be noticed when a person affects a TV’s reception by standing near the antenna.) None of this
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contradicts the correspondence principle, which only states that the wave model must agree with
the ray model when the ray model is applicable. The ray model is not applicable here because
λ/d is on the order of 1.

Page 919, self-check B:
At this point, both waves would have traveled nine and a half wavelengths. They would both
be at a negative extreme, so there would be constructive interference.

Page 923, self-check C:
Judging by the distance from one bright wave crest to the next, the wavelength appears to be
about 2/3 or 3/4 as great as the width of the slit.

Page 924, self-check D:
Since the wavelengths of radio waves are thousands of times longer, diffraction causes the res-
olution of a radio telescope to be thousands of times worse, all other things being equal. (To
compensate for the wavelength, it’s desirable to make the telescope very large, as in figure z on
page 924.)

(1 rectangle = 5 cm × 0.005 cm−1 = 0.025), but that would have been pointless, because we
were just going to compare the two areas.

Answers to self-checks for chapter 33
Page 947, self-check A:
(1) Most people would think they were positively correlated, but they could be independent. (2)
These must be independent, since there is no possible physical mechanism that could make one
have any effect on the other. (3) These cannot be independent, since dying today guarantees
that you won’t die tomorrow.

Page 949, self-check B:
The area under the curve from 130 to 135 cm is about 3/4 of a rectangle. The area from 135
to 140 cm is about 1.5 rectangles. The number of people in the second range is about twice as
much. We could have converted these to actual probabilities

Answers to self-checks for chapter 34
Page 970, self-check A:
The axes of the graph are frequency and photon energy, so its slope is Planck’s constant. It
doesn’t matter if you graph e∆V rather than Es + e∆V , because that only changes the y-
intercept, not the slope.

Answers to self-checks for chapter 35
Page 991, self-check A:
Wavelength is inversely proportional to momentum, so to produce a large wavelength we would
need to use electrons with very small momenta and energies. (In practical terms, this isn’t very
easy to do, since ripping an electron out of an object is a violent process, and it’s not so easy
to calm the electron down afterward.)

Page 1000, self-check B:
Under the ordinary circumstances of life, the accuracy with which we can measure the position
and momentum of an object doesn’t result in a value of ∆p∆x that is anywhere near the tiny
order of magnitude of Planck’s constant. We run up against the ordinary limitations on the
accuracy of our measuring techniques long before the uncertainty principle becomes an issue.
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Page 1000, self-check C:
The electron wave will suffer single-slit diffraction, and spread out to the sides after passing
through the slit. Neither ∆p nor ∆x is zero for the diffracted wave.

Page 1004, self-check D:
No. The equation KE = p2/2m is nonrelativistic, so it can’t be applied to an electron moving
at relativistic speeds. Photons always move at relativistic speeds, so it can’t be applied to them,
either.

Page 1005, self-check E:
Dividing by Planck’s constant, a small number, gives a large negative result inside the exponen-
tial, so the probability will be very small.

Answers to self-checks for chapter 36
Page 1013, self-check A:
If you trace a circle going around the center, you run into a series of eight complete wavelengths.
Its angular momentum is 8~.

Page 1016, self-check B:
n = 3, ` = 0, `z = 0: one state
n = 3, ` = 1, `z = −1, 0, or 1: three states
n = 3, ` = 2, `z = −2, -1, 0, 1, or 2: five states
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Index
aberration, 881

chromatic, 901
absorption, 841
absorption of waves, 525
absorption spectrum, 996
acceleration, 99

as a vector, 221
constant, 111
definition, 106
negative, 102

alchemists, 293
alchemy, 17, 576
alpha decay, 781

nature of emitted particle, 768
alpha particle, see alpha decay
ammeter, 584
ampere (unit), 582
amplitude

defined, 460
peak-to-peak, 460
related to energy, 472

anamorph, 889
angular magnification, 862
angular momentum

and the uncertainty principle, 1013
choice of axis theorem, 402
defined, 395
definition, 396
in three dimensions, 1013
introduction to, 393
quantization of, 1012
related to area swept out, 400
spin theorem, 403

antielectron, 783
antimatter, 783
area, 109

operational definition, 41
scaling of, 43

area under a curve
area under a-t graph, 111
under v-t graph, 109

astrology, 17
atom

raisin-cookie model of, 762

atomic number

defined, 772

atoms

helium, 1021

lithium, 1022

sodium, 1023

with many electrons, 1021

averages, 946

rule for calculating, 946

Avogadro’s number, 441

Bacon, Francis, 21

Balmer, Johann, 1018

beta decay, 783

nature of emitted particle, 768

beta particle, see beta decay

Big Bang, 276

described in general relativity, 829

binding energy

nuclear, 787

black hole, 448, 800, 826

event horizon, 826

formation, 828

information paradox, 827

singularity, 828

Bohr

Niels, 916

Bohr, Niels, 1018

Boltzmann’s constant, 441

bond, see chemical bonds

bound states, 995

box

particle in a, 995

Brahe, Tycho, 262

brightness of light, 843

Brownian motion, 756

calculus

differential, 86

fundamental theorem of, 115

integral, 115

invention by Newton, 85

Leibnitz notation, 86

with vectors, 228
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capacitor, 650, 735

capacitance, 735

carbon-14 dating, 952

Carnot engine, 444

cathode rays, 19, 759

causality, 635

Celsius (unit), 438

center of mass, 68

frame of reference, 375

motion of, 69

related to momentum, 373

center-of-mass motion, 69

centi- (metric prefix), 24

Chadwick, James

discovery of neutron, 371

chain reaction, 782

charge, 577

conservation of, 579

quantization of, 756

chemical bonds

quantum explanation for hydrogen, 997

Chernobyl, 789

choice of axis theorem, 402

circuit, 584

complete, 584

open, 584

parallel, 597

series, 597

short, 595

circular motion, 243

nonuniform, 245

uniform, 245

classical physics, 942

climate change, 325, 791

CMB, 276

cockroaches, 51

coefficient of kinetic friction, 164

coefficient of static friction, 163

collision

defined, 369

color, 897

comet, 457

complete circuit, 584

complex numbers

use in quantum physics, 1005

component

defined, 195

concave

defined, 866

conduction of heat, 324

distinguished from work, 332

conductor

defined, 591

consonance, 536

convection, 324

converging, 859

conversions of units, 29

convex

defined, 866

coordinate system

defined, 74

Copernicus, 79

correspondence principle, 297, 916

defined, 635

for mass-energy, 802

for relativistic momentum, 797

for time dilation, 635

cosmic censorship, 830

cosmic microwave background, 276, 831

cosmological constant, 276

coulomb (unit), 578

Coulomb’s law, 579

Crookes, William, 754

current

defined, 581

curved spacetime, 821

damping

defined, 474

dark energy, 275, 832

dark matter, 832

Darwin, 20

Darwin, Charles, 943

Davisson, C.J., 988

de Broglie, Louis, 988

decay

exponential, 950

decibel scale, 474

decoherence, 980

delta notation, 72

derivative, 86

second, 115

Dialogues Concerning the Two New Sciences,
44

diffraction

defined, 914
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double-slit, 918

fringe, 915

scaling of, 915

single-slit, 923

diffraction grating, 923

diffuse reflection, 842

digital camera, 966

diopter, 877

dipole

electric, 644

dipole moment, 645

dispersion, 901

dissonance, 536

diverging, 866

DNA, 789

Doppler effect

for light, 716

Doppler shift, 511

gravitational, 824

dot product of two vectors, 349

double-slit diffraction, 918

driving force, 477

duality

wave-particle, 973

eardrum, 477

Eddington, Arthur, 943

Einstein’s ring, 820

Einstein, Albert, 458, 942, 965

and Brownian motion, 756

and randomness, 943

electric current

defined, 581

electric dipole, 644

electric field, 641

related to voltage, 646

electric forces, 577

electrical force

in atoms, 371

electromagnetic spectrum, 713

electromagnetic wave

momentum of, 715, 813, 824

electromagnetic waves, 711

electromagnetism, 691

electron, 371, 762

as a wave, 988

spin of, 1020

wavefunction, 991

electron capture, 783

electron decay, 783

element, chemical, 294

elements, chemical, 753

elephant, 53

elliptical orbit, 268

elliptical orbit law, 420

emission spectrum, 996

Empedocles of Acragas, 838

endoscope, 898

energy

distinguished from force, 141

equivalence to mass, 798

gravitational potential energy, 320

potential, 318

quantization of for bound states, 996

related to amplitude, 472

stored in fields, 649

stored in magnetic field, 703

engine

Carnot, 444

heat, 431

Enlightenment, 943

entanglement, 978

of macroscopic objects, 981

equilibrium

defined, 414

stable versus unstable, 417

equivalence principle, 822

equivalent resistance

of resistors in parallel, 600

ether, 706

Euclidean geometry, 819

event horizon, 826

evolution, 891

randomness in, 943

exclusion principle, 1022

exponential decay, 950

defined, 475

rate of, 953

eye

evolution of, 891

human, 893

fall factor, 334

falling objects, 95

farad

defined, 736
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Faraday, Michael, 709

types of electricity, 580

Fermat’s principle, see least time, principle of

Feynman, 98

Feynman, Richard, 98

field

electric, 641

gravitational, 638

magnetic, 697

fields

superposition of, 639

fields of force, 633

flatworm, 892

focal angle, 875

focal length, 876

focal point, 876

force

analysis of forces, 167

Aristotelian versus Newtonian, 128

as a vector, 224

contact, 130

distinguished from energy, 141

fields of, 633

frictional, 162

gravitational, 161

net, 132

noncontact, 130

normal, 161

positive and negative signs of, 131

transmission, 172

forces

classification of, 158

Fourier’s theorem, 535

frame of reference

defined, 74

inertial

in general relativity, 826

in Newtonian mechanics, 144

preferred, 248, 277

rotating, 244

Franklin, Benjamin

definition of signs of charge, 578

French Revolution, 24

frequency

defined, 459

friction

fluid, 166

kinetic, 162, 163

static, 162, 163
fringe

diffraction, 915
fulcrum, 418
full width at half-maximum, 481
fundamental, 536
FWHM, 481

Galileo, 463, 839
Galileo Galilei, 43
gamma decay

nature of emitted particle, 768
gamma ray, 371, see gamma decay
garage paradox, 685
gas

spectrum of, 996
Gauss’s law, 657
Geiger-Müller tube, 643
general relativity, 819
generator, 710, 743
geothermal vents, 942
Germer, L., 988
global warming, 325, 791
goiters, 950
grand jete, 69
graphing, 77
graphs

of position versus time, 74
velocity versus time, 84

gravitational field, 638
gravitational time dilation, 824
gravitational waves, 640
Gravity Probe B, 820
group velocity, 994

half-life, 950
Halley’s Comet, 457
handedness, 715
harmonics, 536
Hawking radiation, 448
Hawking singularity theorem, 830
Hawking, Stephen, 830
heat

as a fluid, 316
as a form of kinetic energy, 316

heat conduction
distinguished from work, 332

heat engine, 431
heat transfer
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by conduction, 324

by convection, 324

by radiation, 324

Heisenberg uncertainty principle, 998

in three dimensions, 1014

Heisenberg, Werner

uncertainty principle, 998

helium, 1021

Hertz, Heinrich, 712, 969

Heinrich, 918

high jump, 71

Hindenburg, 1023

Hiroshima, 790

homogeneity of spacetime, 677

Hooke, 576

Hooke’s law, 175, 461

hormesis, 791

Hugo, Victor, 575

Huygens’ principle, 917

hydrogen atom, 1015

angular momentum in, 1012

classification of states, 1012

energies of states in, 1018

energy in, 1012

L quantum number, 1015

momentum in, 1012

n quantum number, 1015

hydrogen molecule, see chemical bonds

hyperbolic orbit, 268

hypothesis, 16

ideal gas law, 441

images

formed by curved mirrors, 859

formed by plane mirrors, 856

location of, 874

of images, 861

real, 860

virtual, 856

impedance, 748

of an inductor, 749

incoherent light, 915

independence

statistical, 944, 945

independent probabilities

law of, 944

index of refraction

defined, 894

related to speed of light, 895
inductance

defined, 737
induction, 709, 743
inductor, 735

inductance, 735
inertia, principle of, 80
information paradox, 827
insulator

defined, 591
integral, 115
interference effects, 532
interval

lightlike, 728
spacelike, 728
spacetime, 728
timelike, 728

inverted reflection, 525
Io, 840
iodine, 950
isotopes, 778
Ives-Stilwell experiment, 718

Jeans, James, 943
joule (unit), 298
Joyce, James, 316
junction rule, 599
Jupiter, 840

kelvin (unit), 438
Kepler

elliptical orbit law, 420
law of equal areas, 400

Kepler’s laws, 262, 263
elliptical orbit law, 263
equal-area law, 263
law of periods, 263, 265

Kepler, Johannes, 262
Keynes, John Maynard, 576
kilo- (metric prefix), 24
kilogram, 25
kinetic energy, 303

compared to momentum, 366

Laplace, 18
Laplace, Pierre Simon de, 941
least time, principle of, 850, 902, 925
Leibnitz, 86
lens, 899
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lensmaker’s equation, 900

lever, 418

light, 18, 504

absorption of, 841

brightness of, 843

Doppler effect for, 716

momentum of, 715, 813, 824

particle model of, 843

ray model of, 843

speed of, 839

wave model of, 843

light cone, 728

LIGO, 640

line of charge

field of, 643, 657, 658

linear no-threshold, 791

Lipkin linkage, 888

LNT, 791

longitudinal wave, 505

loop rule, 605

Lorentz transformation, 678

Lorentz, Hendrik, 678

magnetic field, 697

defined, 699

magnetism

and relativity, 689

caused by moving charges, 688

related to electricity, 691

magnetostatics, 700

magnification

angular, 862

by a converging mirror, 859

negative, 885

magnitude of a vector

defined, 204

mass, 136

equivalence to energy, 798

mass-energy

conservation of, 800

correspondence principle, 802

of a moving particle, 802

matter, 18

as a wave, 987

Maxwell, James Clerk, 918

mega- (metric prefix), 24

Mendeleev, Dmitri, 755

metric system, 24

prefixes, 24

Michelson-Morley experiment, 706

micro- (metric prefix), 24

microwaves, 19

milli- (metric prefix), 24

Millikan, Robert, 757

mirror

converging, 874

mks units, 25

model

scientific, 162

models, 69

molecules

nonexistence in classical physics, 987

mollusc, 892

moment

dipole, 645

momentum

compared to kinetic energy, 366

defined, 363

examples in three dimensions, 379

of light, 366, 715, 813, 824

rate of change of, 376

related to center of mass, 373

relativistic, 794

transfer of, 376

monopoles

magnetic, 697

motion

periodic, 459

rigid-body, 67

types of, 67

MRI (magnetic resonance imaging), see NMR,
see NMR

Muybridge, Eadweard, 219

naked singularity, 830

nano- (metric prefix), 24

natural units, 680

nautilus, 892

Neanderthals, 419

neutral (electrically), 579

neutron

discovery of, 371

spin of, 1021

neutron stars, 1024

Newton’s laws of motion

first law, 131
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test of, 114, 247, 277
in three dimensions, 197
second law, 135

test of, 139
third law, 154

test of, 806
Newton, Isaac

alchemy, 575
definition of time, 26
determinism, 942
law of gravity, 264
laws of motion, see Newton’s laws of mo-

tion
Newtonian telescope, 861
particle theory of light, 917

Nichols-Hull experiment on momentum of light,
715

NMR (nuclear magnetic resonance), 483, 703
normalization, 946
nuclear forces, 716, 780
nucleus, 371

discovery, 770

Oersted, Hans Christian, 688
Ohm’s law, 591
ohmic

defined, 591
op-amp, 741
open circuit, 584
operational amplifier (op-amp), 741
operational definition

acceleration, 103
energy, 307
none for electron’s wavefunction, 992
power, 307

operational definitions, 24
operationalism, see operational definition
orbit

circular, 268
elliptical, 268
hyperbolic, 268

order-of-magnitude estimates, 55
overtones, 536
ozone layer, 966

parabola
motion of projectile on, 196

parallel circuit
defined, 597

particle

definition of, 973

particle in a box, 995

particle model of light, 843, 917

particle zoo, 315

pascal

unit, 433

path of a photon undefined, 974

Pauli exclusion principle, 20, 1022

Peaucellier linkage, 888

Penrose singularity theorem, 829

Penrose, Roger, 829

period

defined, 459

of uniform circular motion, 251

periodic table, 755, 772, 1023

perpetual motion machine, 294

phase velocity, 994

photoelectric effect, 968

photon

Einstein’s early theory, 968

energy of, 970

in three dimensions, 981

spin of, 1021

physics, 18

pitch, 457

Planck’s constant, 970

Planck, Max, 970

POFOSTITO, 156

polarization, 712

Pope, 44

positron, 783, 801

positron decay, 783

potential

electrical, 586

potential energy

electrical, 323

gravitational, 320, 346

nuclear, 323

of a spring, 345

related to work, 345

Pound-Rebka experiment, 824

power, 306

electrical, 587

praxinoscope, 857

pressure, 432

principle of superposition, 495

probabilities
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addition of, 945
normalization of, 946

probability distributions, 948
averages of, 949
widths of, 949

probability interpretation, 975
projectiles, 196
protein molecules, 1011
proton, 371

spin of, 1021
pulley, 176
pulse

defined, 495
Pythagoras, 838

quality factor
defined, 475

quantization, 756
quantum dot, 995
quantum moat, 1012
quantum numbers, 1016

`, 1016
`z, 1016
m`, 1026
ms, 1026
n, 1016
s, 1021
sz, 1021

quantum physics, 942
quarks, 316

radar, 965
radial component

defined, 253
radiation hormesis, 791
radiation of heat, 324
radio, 965
radio waves, 19
radioactivity, 950
raisin cookie model, 762
randomness, 943
ray diagrams, 845
ray model of light, 843, 917
RC circuit, 745
RC time constant, 746
reductionism, 21
reflection

diffuse, 842
specular, 846

reflection of waves, 522

reflections

inverted and uninverted, 525

refraction

and color, 897

defined, 892

relativity

and magnetism, 689

general, 819

Renaissance, 15

repetition of diffracting objects, 922

resistance

defined, 590

in parallel, 599

in series, 604

resistivity

defined, 607

resistor, 595

resistors

in parallel, 600

resonance

defined, 479

retina, 861

reversibility, 848

RHIC accelerator, 686

rigid rotation

defined, 395

RL circuit, 746

Roemer, 840

rotation, 67

Russell, Bertrand, 943

Rutherford

characterization of alpha particles, 768

discovery of nucleus, 770

salamanders, 51

scalar

defined, 206

scalar (dot) product, 349

scaling, 43

applied to biology, 51

schematic, 598

schematics, 598

Schrödinger equation, 1002

scientific method, 16

sea-of-arrows representation, 639

second (unit), 25

series circuit
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defined, 597

shell theorem, 272

short circuit

defined, 595

SI units, 25

Sievert (unit), 789

significant figures, 31

simple harmonic motion

defined, 462

period of, 462

simple machine

defined, 176

single-slit

diffraction, 923

singularity

Big Bang, 830

black hole, 828

naked, 830

singularity theorem

Hawking, 830

Penrose, 829

sinks in fields, 639

Sirius, 996

slam dunk, 69

slingshot effect, 375

Snell’s law, 894

derivation of, 896

mechanical model of, 896

sodium, 1023

solenoid, 736

sound, 504

speed of, 498

sources of fields, 639

spacetime

curvature of, 821

spacetime interval, 728

spark plug, 747

specific heat capacity, 298

spectrum

absorption, 996

electromagnetic, 713

emission, 996

speed of light, 680

spin, 1020

electron’s, 1020

neutron’s, 1021

photon’s, 1021

proton’s, 1021

spin theorem, 403

spring

potential energy of, 345

work done by, 345

spring constant, 175, 461

Squid, 892

standing wave, 536

Stanford, Leland, 219

Star Trek, 997

states

bound, 995

statics, 414

steady-state behavior, 477

Stevin, Simon, 297

strain, 175

strong nuclear force, 780

strong nuclear force, 780

superposition of fields, 639

Swift, Jonathan, 43

swing, 476

symmetry, 715

telescope, 861, 924

temperature

absolute zero, 438

as a measure of energy per atom, 317

Celsius, 438

Kelvin, 438

macroscopic definition, 438

tension, 173

tesla (unit), 699

theory, 16

thermodynamics, 317, 432

first law of, 432

second law of, 447

zeroth law of, 437

thermometer, 438

Thomson, J.J.

cathode ray experiments, 760

timbre, 536

time

duration, 72

point in, 72

time constant

RC, 746

time dilation

gravitational, 824

time reversal, 848
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torque

defined, 406

due to gravity, 410

relationship to force, 408

total internal reflection, 898

transformer, 710, 743

transistor, 591

transmission of forces, 172

tuning fork, 461

tunneling, 1001

tympanogram, 527

ultraviolet light, 966

uncertainty principle, 998

in three dimensions, 1014

unit vectors, 212

units

natural relativistic, 680

units, conversion of, 29

vector

acceleration, 221

addition, 204

graphical, 210

defined, 204, 206

force, 224

magnitude of, 204

velocity, 220

velocity

addition of, 82

relativistic, 704, 719, 727

as a vector, 220

definition, 75

group, 994

negative, 82

phase, 994

vertebra, 54

vision, 838

volt (unit)

defined, 585

voltage

defined, 586

related to electric field, 646

voltmeter, 596

volume

operational definition, 41

scaling of, 43

Voyager space probe, 694

watt (unit), 306
wave

definition of, 973
dispersive, 901, 993
longitudinal, 505
periodic, 507

wave model of light, 843, 917
wave-particle duality, 973

probability interpretation of, 975
wavefunction

complex numbers in, 1005
of the electron, 991

wavelength, 508
waves

electromagnetic, 711
gravitational, 640

weak nuclear force, 716, 782
weight force

defined, 130
relationship to mass, 138

Wicked Witch of the West, 987
Wigner, Eugene, 873
work

calculated as Fd, 332
calculated with calculus, 343
defined, 332
distinguished from heat conduction, 332
done by a spring, 345
done by a varying force, 340, 458, 461, 464
force not collinear with motion, 339
in three dimensions, 338
not equal to Fd, 347
positive and negative, 336
related to potential energy, 345

work-kinetic energy theorem, 348
world-line, 670

x-rays, 19

Young’s modulus, 182
Young, Thomas, 918
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Mathematical Review
Algebra

Quadratic equation:

The solutions of ax2 + bx+ c = 0
are x = −b±

√
b2−4ac

2a .

Logarithms and exponentials:

ln(ab) = ln a+ ln b

ea+b = eaeb

ln ex = eln x = x

ln(ab) = b ln a

Geometry, area, and volume

area of a triangle of base b and height h = 1
2bh

circumference of a circle of radius r = 2πr
area of a circle of radius r = πr2

surface area of a sphere of radius r = 4πr2

volume of a sphere of radius r = 4
3πr

3

Trigonometry with a right triangle

sin θ = o/h cos θ = a/h tan θ = o/a

Pythagorean theorem: h2 = a2 + o2

Trigonometry with any triangle

Law of Sines:

sinα

A
=

sinβ

B
=

sin γ

C

Law of Cosines:

C2 = A2 +B2 − 2AB cos γ

Properties of the derivative and integral (for
students in calculus-based courses)

Let f and g be functions of x, and let c be a con-
stant.

Linearity of the derivative:

d

dx
(cf) = c

df

dx

d

dx
(f + g) =

df

dx
+

dg

dx

The chain rule:

d

dx
f(g(x)) = f ′(g(x))g′(x)

Derivatives of products and quotients:

d

dx
(fg) =

df

dx
g +

dg

dx
f

d

dx

(
f

g

)
=
f ′

g
− fg′

g2

Some derivatives:
d

dxx
m = mxm−1, except for m = 0

d
dx sinx = cosx d

dx cosx = − sinx
d

dxe
x = ex d

dx lnx = 1
x

Linearity of the integral:∫
cf(x) dx = c

∫
f(x) dx

∫
[f(x) + g(x)] =

∫
f(x) dx+

∫
g(x) dx

The fundamental theorem of calculus:
The derivative and the integral undo each other,
in the following sense:∫ b

a

f ′(x) dx = f(b)− f(a)
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Approximations to Exponents and Logarithms
It is often useful to have certain approxima-
tions involving exponents and logarithms. As
a simple numerical example, suppose that your
bank balance grows by 1% for two years in
a row. Then the result of compound inter-
est is growth by a factor of 1.012 = 1.0201,
but the compounding effect is quite small, and
the result is essentially 2% growth. That is,
1.012 ≈ 1.02. This is a special case of the
more general approximation

(1 + ε)p ≈ 1 + pε,

which holds for small values of ε and is used
in example 4 on p. 683 relating to relativity.
Proof: Any real exponent p can be approx-
imated to the desired precision as p = a/b,
where a and b are integers. Let (1+ε)p = 1+x.
Then (1+ε)a = (1+x)b. Multiplying out both
sides gives 1 + aε + . . . = 1 + bx + . . ., where
. . . indicates higher powers. Neglecting these
higher powers gives x ≈ (a/b)ε ≈ pε.

We have considered an approximation that can
be found by restricting the base of an exponen-
tial to be close to 1. It is often of interest as
well to consider the case where the exponent
is restricted to be small. Consider the base-
e case. One way of defining e is that when
we use it as a base, the rate of growth of the
function ex, for small x, equals 1. That is,

ex ≈ 1 + x

for small x. This can easily be generalized to
other bases, since ax = eln(ax) = ex ln a, giving

ax ≈ 1 + x ln a.

We use this approximation on p. 954 in con-
nection with radioactive decay.

Finally, since ex ≈ 1 + x, we also have

ln(1 + x) ≈ x,

which is used in problem 4 on p. 490, relating
to damped oscillations.
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Useful Data

Metric Prefixes

M- mega- 106

k- kilo- 103

m- milli- 10−3

µ- (Greek mu) micro- 10−6

n- nano- 10−9

p- pico- 10−12

f- femto- 10−15

(Centi-, 10−2, is used only in the centimeter.)

The Greek Alphabet

α A alpha ν N nu
β B beta ξ Ξ xi
γ Γ gamma o O omicron
δ ∆ delta π Π pi
ε E epsilon ρ P rho
ζ Z zeta σ Σ sigma
η H eta τ T tau
θ Θ theta υ Y upsilon
ι I iota φ Φ phi
κ K kappa χ X chi
λ Λ lambda ψ Ψ psi
µ M mu ω Ω omega

Subatomic Particles

particle mass (kg) radius (fm)
electron 9.109× 10−31 . 0.01
proton 1.673× 10−27 ∼ 1.1
neutron 1.675× 10−27 ∼ 1.1

The radii of protons and neutrons can only be given approx-

imately, since they have fuzzy surfaces. For comparison, a

typical atom is about a million fm in radius.

Notation and Units

quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
density kg/m3 ρ
velocity m/s v
acceleration m/s2 a
force N = kg·m/s2 F
pressure Pa=1 N/m2 P
energy J = kg·m2/s2 E
power W = 1 J/s P
momentum kg·m/s p
angular momentum kg·m2/s or J·s L
period s T
wavelength m λ
frequency s−1 or Hz f
gamma factor unitless γ
probability unitless P
prob. distribution various D

electron wavefunction m−3/2 Ψ

Earth, Moon, and Sun

body mass (kg) radius (km) radius of orbit (km)
earth 5.97× 1024 6.4× 103 1.49× 108

moon 7.35× 1022 1.7× 103 3.84× 105

sun 1.99× 1030 7.0× 105 —

Fundamental Constants

gravitational constant G = 6.67× 10−11 N·m2/kg2

Coulomb constant k = 8.99× 109 N·m2/C2

quantum of charge e = 1.60× 10−19 C
speed of light c = 3.00× 108 m/s
Planck’s constant h = 6.63× 10−34 J·s
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